Please use this identifier to cite or link to this item:
http://theses.ncl.ac.uk/jspui/handle/10443/5699
Title: | A flat extension theorem for truncated matrix-valued multisequences |
Authors: | Trachana, Matina |
Issue Date: | 2022 |
Publisher: | Newcastle University |
Abstract: | Given a truncated multisequence of p × p Hermitian matrices S := (Sγ1,...,γd ) (γ1,...,γd)∈Nd 0 0≤γ1+···+γd≤m , the truncated matrix-valued moment problem on R d asks whether or not there exists a p×p positive semidefinite matrix-valued measure T, with convergent moments of all orders, such that Sγ1,...,γd = Z · · · Z Rd x γ1 1 · · · x γd d dT(x1, . . . , xd) for all (γ1, . . . , γd) ∈ N d 0 which satisfy 0 ≤ Pd j=1 γj ≤ m. When such a measure exists we say that T is a representing measure for S. We shall see that if m is even, then S has a minimal representing measure (that is, Pκ a=1 rank Qa is as small as possible) if and only if a block matrix determined entirely by S has a rank-preserving positive extension. In this case, the support of the representing measure has a connection with zeros (suitably interpreted) of a system of matrix-valued polynomials which describe the rank-preserving extension. The proof of this result relies on operator theory and certain results for ideals of multivariate matrix-valued polynomials. Our result subsumes the celebrated flat extension theorem of Curto and Fialkow. We shall pay particularly close attention to the bivariate quadratic matrix-valued moment problem (that is, where d = 2 and m = 2). |
Description: | PhD Thesis |
URI: | http://hdl.handle.net/10443/5699 |
Appears in Collections: | School of Mathematics, Statistics and Physics |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Trachana M 2022.pdf | Thesis | 1.73 MB | Adobe PDF | View/Open |
dspacelicence.pdf | Licence | 43.82 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.