Please use this identifier to cite or link to this item:

`http://theses.ncl.ac.uk/jspui/handle/10443/4819`

Full metadata record

DC Field | Value | Language |
---|---|---|

dc.contributor.author | Alshammari, Hadi Obaid | - |

dc.date.accessioned | 2020-11-12T11:38:44Z | - |

dc.date.available | 2020-11-12T11:38:44Z | - |

dc.date.issued | 2019 | - |

dc.identifier.uri | http://theses.ncl.ac.uk/jspui/handle/10443/4819 | - |

dc.description | Ph. D. Thesis | en_US |

dc.description.abstract | The tetrablock is the set E = fx 2 C3 : 1 x1z x2w + x3zw 6= 0 whenever jzj 1; jwj 1g: The closure of E is denoted by E. A tetra-inner function is an analytic map x from the unit disc D to E whose boundary values at almost all points of the unit circle T belong to the distinguished boundary bE of E. There is a natural notion of degree of a rational tetra-inner function x; it is simply the topological degree of the continuous map xjT from T to bE. In this thesis we give a prescription for the construction of a general rational tetra-inner function of degree n. The prescription makes use of a known solution of an interpolation problem for nite Blaschke products of given degree in terms of a Pick matrix formed from the interpolation data. Alsalhi and Lykova proved that if x = (x1; x2; x3) is a rational tetra-inner function of degree n, then x1x2x3 either is equal to 0 or has exactly n zeros in the closed unit disc D, counted with an appropriate notion of multiplicity. It turns out that a natural choice of data for the construction of a rational tetra-inner function x = (x1; x2; x3) consists of the points in D for which x1x2 x3 = 0 and the values of x at these points. We also give a matricial formulation of a criterion for the solvability of a Diag-synthesis problem. The symbol Diag denotes an instance of the structured singular value of 2 2 matrix corresponding to the subspace of diagonal matrices in M2 2(C). Given distinct points 1; :::; n 2 D and target matrices W1; :::;Wn 2 M2 2(C) one seeks an analytic 2 2 matrix-valued function F on D such that F( j) = Wj for j = 1; :::; n; and Diag(F( )) < 1; for all 2 D: | en_US |

dc.description.sponsorship | Government of Saudi Arabia, Jouf University | en_US |

dc.language.iso | en | en_US |

dc.publisher | Newcastle University | en_US |

dc.title | The Construction of Rational Tetra-Inner Functions | en_US |

dc.type | Thesis | en_US |

Appears in Collections: | School of Mathematics and Statistics |

Files in This Item:

File | Description | Size | Format | |
---|---|---|---|---|

Alshammari H 2019.pdf | Thesis | 1.67 MB | Adobe PDF | View/Open |

dspacelicence.pdf | Licence | 43.82 kB | Adobe PDF | View/Open |

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.