Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/4269
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŚmigaj, Magdalena-
dc.date.accessioned2019-04-15T13:58:31Z-
dc.date.available2019-04-15T13:58:31Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/10443/4269-
dc.descriptionPhD Thesisen_US
dc.description.abstractClimate change indirectly affects the distribution and abundance of forest insect pests and pathogens, as well as the severity of tree diseases. Red band needle blight is a disease which has a particularly significant economic impact on pine plantation forests worldwide, affecting diameter and height growth. Monitoring its spread and intensity is complicated by the fact that the diseased trees are often only visible from aircraft in the advanced stages of the epidemic. There is therefore a need for a more robust method to map the extent and severity of the disease. This thesis examined the use of a range of remote sensing techniques and instrumentation, including thermography, hyperspectral imaging and laser scanning, for the identification of tree stress symptoms caused by the onset of red band needle blight. Three study plots, located in a plantation forest within the Loch Lomond and the Trossachs National Park that exhibited a range of red band needle blight infection levels, were established and surveyed. Airborne hyperspectral and LiDAR data were acquired for two Lodgepole pine stands, whilst for one Scots pine stand, airborne LiDAR and Unmanned Aerial Vehicle-borne (UAV-borne) thermal imagery were acquired alongside leaf spectroscopic measurements. Analysis of the acquired data demonstrated the potential for the use of thermographic, hyperspectral and LiDAR sensors for detection of red band needle blight-induced changes in pine trees. The three datasets were sensitive to different disease symptoms, i.e. thermography to alterations in transpiration, LiDAR to defoliation, and hyperspectral imagery to changes in leaf biochemical properties. The combination of the sensors could therefore enhance the ability to diagnose the infection.en_US
dc.description.sponsorshipNatural Environment Research Council (NERC) for funding this PhD program (studentship award 1368552) and providing access to specialist equipment through a Field Spectroscopy Facility loan (710.114). I would like to thank NERC Airborne Research Facility for providing airborne data (grant: GB 14-04) that made the PhD a challenge, to say the least. My sincere gratitude goes to the Douglas Bomford Trust for providing additional funds, which allowed for completion of the UAV-borne part of this research.en_US
dc.language.isoenen_US
dc.publisherNewcastle Universityen_US
dc.titleHyperspectral, thermal and LiDAR remote sensing for red band needle blight detection in pine plantation forestsen_US
dc.typeThesisen_US
Appears in Collections:School of Engineering

Files in This Item:
File Description SizeFormat 
SmigajM2018.pdfThesis18.4 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.