Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/1375
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMahyuddin., Nor Muzlifah-
dc.date.accessioned2012-09-14T15:44:08Z-
dc.date.available2012-09-14T15:44:08Z-
dc.date.issued2011-
dc.identifier.urihttp://hdl.handle.net/10443/1375-
dc.descriptionPhD Thesisen_US
dc.description.abstractarket forces are continually demanding devices with increased functionality/unit area; these demands have been satisfied through aggressive technology scaling which, unfortunately, has impacted adversely on the global interconnect delay subsequently reducing system performance. Line drivers have been used to mitigate the problems with delay; however, these have a large power consumption. A solution to reducing the power dissipation of the drivers is to use lower supply voltages. However, by adopting a lower power supply voltage, the performance of the line drivers for global interconnects is impaired unless low-swing signalling techniques are implemented. Low-swing signalling techniques can provide high speed signalling with low power consumption and hence can be used to drive global on-chip interconnect. Most of the proposed low-swing signalling schemes are immune to noise as they have a good SNR. However, they tend to have a large penalty in area and complexity as they require additional circuitry such as voltage generators and low-Vth devices. Most of the schemes also incorporate multiple Vdd and reference voltages which increase the overall circuit complexity. A diode-connected driver circuit has the best attributes over other low-swing signalling techniques in terms of low power, low delay, good SNR and low area overhead. By incorporating a diode-connected configuration at the output, it can provide high speed signalling due to its high driving capability. However, this configuration also has its limitations as it has issues with its adaptability to process variations, as well as an issue with leakage currents. To address these limitations, two novel driver schemes have been designed, namely, nLVSD and mLVSD, which, additionally, have improvements in performance and power consumption. Comparisons between the proposed schemes with the existing diode-connected driver circuits (MJ and DDC) showed that the nLVSD and mLVSD drivers have approximately 46% and 50% less delay. The name MJ originates from the driver’s designer called Juan A. Montiel-Nelson, while DDC stands for dynamic diode-connected. In terms of power consumption, the nLVSD and mLVSD drivers also produce 43% and 7% improvement. Additionally, the mLVSD driver scheme is the most robust as its SNR is 14 to 44% higher compared to other diode-connected driver circuits. On the other hand, the nLVSD driver has 6% lower SNR compared to the MJ driver, even though it is 19% more robust than the DDC driver. However, since its SNR is still above 1, its improved performance and reduced power consumption, as well other advantages it has over other diode-connected driver circuits can compensate for this limitation. Regarding the robustness to external disturbances, the proposedmdriver circuits are more robust to crosstalk effects as the nLVSD and mLVSD drivers are approximately 35% and 7% more robust than other diode-connected drivers. Furthermore, the mLVSD driver is 5%, 33% and 47% more tolerant to SEUs compared to the nLVSD, MJ and DDC driver circuits respectively, whilst the MJ and DDC drivers are 26% and 40% less tolerant to SEUs iii compared to the nLVSD circuit. A comparison between the four schemes was also undertaken in the presence of ±3σ process and voltage (PV) variations. The analysis indicated that both proposed driver schemes are more robust than other diode-connected driver schemes, namely, the MJ and DDC driver circuits. The MJ driver scheme deviates approximately 18% and 35% more in delay and power consumption compared to the proposed schemes. The DDC driver has approximately 20% and 57% more variations in delay and power consumption in comparison to the proposed schemes. In order to further improve the robustness of the proposed driver circuits against process variation and environmental disturbances, they were further analysed to identify which process variables had the most impact on circuit delay and power consumption, as well as identifying several design techniques to mitigate problems with environmental disturbances. The most significant process parameters to have impact on circuit delay and power consumption were identified to be Vdd, tox, Vth, s, w and t. The impact of SEUs on the circuit can be reduced by increasing the bias currents whilst design methods such as increasing the interconnect spacing can help improve the circuit robustness against crosstalk. Overall it is considered that the proposed nLVSD and mLVSD circuits advance the state of the art in driver design for on-chip signalling applications.en_US
dc.language.isoenen_US
dc.publishernewcastle Universityen_US
dc.titleA novel low-swing voltage driver design and the analysis of its robustness to the effects of process variation and external disturbancesen_US
dc.typeThesisen_US
Appears in Collections:School of Electrical, Electronic and Computer Engineering

Files in This Item:
File Description SizeFormat 
Nor Mahyuddin11.pdfThesis2.68 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.