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ABSTRACT 

Market forces are continually demanding devices with increased functionality/unit area; these 

demands have been satisfied through aggressive technology scaling which, unfortunately, has 

impacted adversely on the global interconnect delay subsequently reducing system performance. 

Line drivers have been used to mitigate the problems with delay; however, these have a large 

power consumption. A solution to reducing the power dissipation of the drivers is to use lower 

supply voltages. However, by adopting a lower power supply voltage, the performance of the line 

drivers for global interconnects is impaired unless low-swing signalling techniques are 

implemented. Low-swing signalling techniques can provide high speed signalling with low power 

consumption and hence can be used to drive global on-chip interconnect. Most of the proposed 

low-swing signalling schemes are immune to noise as they have a good SNR. However, they tend 

to have a large penalty in area and complexity as they require additional circuitry such as voltage 

generators and low-Vth devices. Most of the schemes also incorporate multiple Vdd and reference 

voltages which increase the overall circuit complexity. A diode-connected driver circuit has the 

best attributes over other low-swing signalling techniques in terms of low power, low delay, good 

SNR and low area overhead. By incorporating a diode-connected configuration at the output, it can 

provide high speed signalling due to its high driving capability. However, this configuration also 

has its limitations as it has issues with its adaptability to process variations, as well as an issue with 

leakage currents. To address these limitations, two novel driver schemes have been designed, 

namely, nLVSD and mLVSD, which, additionally, have improvements in performance and power 

consumption. Comparisons between the proposed schemes with the existing diode-connected 

driver circuits (MJ and DDC) showed that the nLVSD and mLVSD drivers have approximately 

46% and 50% less delay. The name MJ originates from the driver’s designer called Juan A. 

Montiel-Nelson, while DDC stands for dynamic diode-connected. In terms of power 

consumption, the nLVSD and mLVSD drivers also produce 43% and 7% improvement. 

Additionally, the mLVSD driver scheme is the most robust as its SNR is 14 to 44% higher 

compared to other diode-connected driver circuits. On the other hand, the nLVSD driver has 6% 

lower SNR compared to the MJ driver, even though it is 19% more robust than the DDC driver. 

However, since its SNR is still above 1, its improved performance and reduced power 

consumption, as well other advantages it has over other diode-connected driver circuits can 

compensate for this limitation. Regarding the robustness to external disturbances, the proposed 

driver circuits are more robust to crosstalk effects as the nLVSD and mLVSD drivers are 

approximately 35% and 7% more robust than other diode-connected drivers. Furthermore, the 

mLVSD driver is 5%, 33% and 47% more tolerant to SEUs compared to the nLVSD, MJ and DDC 

driver circuits respectively, whilst the MJ and DDC drivers are 26% and 40% less tolerant to SEUs 
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compared to the nLVSD circuit. A comparison between the four schemes was also undertaken in 

the presence of ±3σ process and voltage (PV) variations. The analysis indicated that both proposed 

driver schemes are more robust than other diode-connected driver schemes, namely, the MJ and 

DDC driver circuits. The MJ driver scheme deviates approximately 18% and 35% more in delay 

and power consumption compared to the proposed schemes. The DDC driver has approximately 

20% and 57% more variations in delay and power consumption in comparison to the proposed 

schemes. In order to further improve the robustness of the proposed driver circuits against process 

variation and environmental disturbances, they were further analysed to identify which process 

variables had the most impact on circuit delay and power consumption, as well as identifying 

several design techniques to mitigate problems with environmental disturbances. The most 

significant process parameters to have impact on circuit delay and power consumption were 

identified to be Vdd, tox, Vth, s, w and t. The impact of SEUs on the circuit can be reduced by 

increasing the bias currents whilst design methods such as increasing the interconnect spacing can 

help improve the circuit robustness against crosstalk. Overall it is considered that the proposed 

nLVSD and mLVSD circuits advance the state of the art in driver design for on-chip signalling 

applications. 
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Chapter 1 

 

INTRODUCTION 

 

1.1. Background 

Advances in semiconductor technology have resulted in the manufacture of smaller and 

subsequently faster switching devices. However, the potential for further performance 

improvements is being limited by the adverse effects that dimension scaling has on 

interconnectivity, which dominates an IC layout. As the line width of the interconnect 

decreases its resistance increases necessitating in the use of circuits with a high drive 

capability for global on-chip signalling. Many different driver circuits have been designed to 

address this issue; however the main problem that still exists are long propagation delay 

times and high energy consumption. One cannot reduce the propagation delay without 

increasing the energy consumption and vice versa. However, low swing drivers [1-6] have 

emerged to be the answer to this problem. With the ability to symmetrically lower the 

voltage swing on the interconnect shorter delay times and low power dissipation are able to 

achieved, but with one major consequence, which is reduced noise margin. Consequently, 

this will greatly affect the overall performance. Additionally, process variation also adds up 

to the problems in the performance. Effects such as noise, process variability and single 

event upsets (SEU), whose frequency of occurrence is increasing as device dimensions are 

reduced, should be considered in the design of low swing driver circuits to ascertain their 

robustness in driving long global interconnect. 

This chapter continues with a general introduction to the background development of 

integrated circuits (IC) from their initial conception until present time. Subsequently, the 

impact of technology scaling on devices and interconnects is briefly reviewed. This is 

followed by brief introduction to interconnect structures; materials and interconnectivity 

analysis that are generally used to evaluate on-chip interconnect performance.  Additionally, 

wire delay models and power dissipation equations are briefly introduced together with the 

techniques currently used to drive on-chip interconnects. As technology advances further into 

the deep submicron regions, process variations affect device and interconnect parameters and 

subsequent issues will also briefly be discussed.  
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1.2. History Of Integrated Circuits 

Semiconductor technology started with the development of the first transistor by Bardeen, 

Brattain and Shockley at Bell Labs, late in 1947 [7]. As shown in Figure 1.1 IC technology 

started in 1958, and by the early 60s the first commercially available digital ICs were 

introduced by Fairchild and Texas Instruments.  

In 1965, Intel‟s co-founder Gordon Moore had a vision of the long-term trends in the future 

of computing hardware. He stated, “The integrated circuit complexity will exponentially 

increase at a rate of roughly a factor of 2 per year”[8]. This vision is popularly known as 

Moore‟s Law. Intel has kept that pace for over 40 years, as can be seen in Figure 1.1. In 

1971, Intel developed its first microprocessor, the 4004 using a P-channel silicon gate 

technology [9]. Subsequently, N-channel technology was developed in 1974, which had an 

improved performance over P-channel devices due to higher mobility of electrons compared 

to holes. Thus, the N-channel technology was chosen by Intel to produce the 8080, which 

was 10 times faster than the 8008, the processor introduced after the 4004 [9], subsequently 

followed by 8088, 8086 and 80286 processors. Intel made a further development in its 

microprocessor products when in 1985, the 80386 was introduced which was Intel is first 

CMOS processor [9]. 

 

Figure 1.1: Technology advances in semiconductor industry [10]. 
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The 90s showed the birth of the Intel Pentium, the first processor capable of executing more 

than 1 instruction per clock cycle. The introduction of the Pentium in 1993 was subsequently 

followed by the Pentium Pro in 1995, Pentium II in 1997 and Pentium III in 1999. The 

monopoly of the semiconductor industry by Intel became very apparent from the beginning 

of 2000 until today, with the implementation of Pentium 4 with 180nm technology, followed 

by 130nm, 90nm and 65nm versions. In 2007, Intel‟s 45nm technology was debuted as the 

first high-k gate silicon technology with dual metal gates, which dramatically increases the 

processor‟s energy efficiency. This technology is used in the implementation of recent Intel 

Core 2 Duo processor. 

The number of transistors recorded for every generation of integration in Intel is shown in 

Table 1.1. The Intel Core 2 Duo processor contains 1.7 billion transistors [11]. It is 

categorized as the Ultra Large Scale Integration (ULSI) chip. The most recent examples of 

advancement in integration are System on Chip (SoC) and the 3D ICs. SoC comprises of 

multiple function systems on a single silicon chip, which cuts development cycle while 

increasing product functionality, performance and quality. A 3D IC is a chip with two or 

more stacked layers of electronic components, integrated or interconnected vertically into a 

single module [12], which is noted for its increased density, speed and power maintenance 

but also offers unique security advantages such as mitigating the problem with reverse 

engineering through its stacking process, which will conceal almost all of the circuitry.  

Table 1.1: Number of transistors for different generations of Intel processor [8]. 

Microprocessor Year Number of Transistors 

Intel 4004 1971 2,300 

Intel 8086 1978 29,000 

Intel 80,486 1989 1,200,000 

Intel Pentium 1993 3,100,000 

Intel Pentium II 1997 7,500,000 

Intel Pentium III 1999 9,500,000 

Intel Pentium 4 2000 42,000,000 

Intel Itanium 2 2003 220,000,000 

Intel Dual Core Itanium 2 2007 1,700,000,000 
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Figure 1.2: The linewidths for different generation of IC technology [13]. 

As pointed out by the Moore‟s Law, the transistor count doubled every 2 years and this is 

mostly due to the significant reduction in linewidth as can be seen in Figure 1.2. The 

shrinking linewidth enables more components to fit onto an IC. However, there are a number 

of consequences related to the shrinkage in linewidth. The reduction in linewidth not only 

affects overall circuit performance, but also requires several modifications to be made in the 

manufacturing process, which leads to the increase in complexity of the processes being 

used. This means the equipment has to have greater precision, resulting in the need for more 

costly equipment as linewidth shrinks in size. 

 

1.3. Devices  

1.3.1. MOSFET structure and operation 

The MOSFET is a four-terminal device, where the current flows between the source and 

drain region when the voltage is applied to the gate terminal. The fourth terminal is 

represented by the body which serves to modulate the device characteristics and parameters 

[14]. There are three main MOSFET technology families; PMOS, NMOS and CMOS. PMOS 

device is made by diffusing p-type dopants into an n-type silicon substrate to form the source 
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and the drain. In this type of transistor, current is carried by positively charged carriers, 

which are holes, moving through a p-type channel. NMOS is similar to PMOS but uses N-

type dopants to make n-channel transistors in p-type silicon substrate. The current flows 

through n-type channel between source and drain, which is carried by the negatively charged 

carriers, i.e. electrons. CMOS is a combination of both p-channel and n-channel devices on 

the same silicon substrate. The structure of CMOS device is shown in Figure 1.3. 

 

Figure 1.3: Cross-section of CMOS device [15]. 

The operation of a MOSFET device involves flow of current between the drain and source 

terminals by applying voltage to the gate terminal. A thin layer of silicon dioxide (SiO2) is 

situated below the gate terminal. For proper operation, a voltage terminal is also applied to 

the bulk or silicon substrate. Considering an NMOS transistor as an example, when the gate 

voltage is increased above certain threshold voltage (Vth), a conducting channel of electrons 

is formed in the p-type silicon substrate between the n-type source and drain. The 

conductivity of the channel is modulated by the gate voltage which means the larger the 

voltage difference between the gate and the source, the smaller the resistance of the 

conducting channel and larger the current. When the voltage is lower than Vth, no channel 

exists and the transistor is considered to be open. This behaviour makes transistor a suitable 

switching device in digital circuits. 

1.3.2. Power dissipation of CMOS circuits 

CMOS circuits can be in two distinct states; a static state during highs and lows of the signals 

or clocks, and a dynamic state during the transitions. The total device power can be broken 

down to static and dynamic components, and is made of dynamic power and power due to 

the static state of the signals. 

Dynamic power dissipation is a function of switching factor (α), total load capacitance, 

supply voltage and switching frequency, which is shown in Equ.1.1 [16]; 
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  .               (1.1) 

Static power dissipation is expressed as a product of static current and supply voltage. It can 

be calculated by Equ.1.2; 

                                          (1.2)                      

                   
                      (1.3) 

The static current flows between the supply rails in the absence of switching activity, which 

should be equal to 0 as PMOS and NMOS devices are never on simultaneously in the static 

state. However, this is not the case as there is a leakage current flowing between source or 

drain and the substrate. This leakage current can be described using a model in Figure 1.4 

where it describes the parasitic diodes of a CMOS inverter. The leakage current is described 

by Equ.1.3, where Is is a reverse saturation current; V, a diode voltage; k, a Boltzmann‟s 

constant; q, an electronic charge and T is for temperature. This is called sub-threshold current 

and it becomes more apparent as the technology scales down. Circuit designers are beginning 

to consider static power just as important as dynamic power in power analysis. 

p+ p+

p-substrate (bulk)

n+ n+p+ n+

N-well

Vdd

V (diode voltage)

Vin

Vout

 

Figure 1.4: Model containing presence of parasitic diodes in CMOS inverter. 

1.3.3. Device Scaling 

As discussed previously in Section 1.2, the reduction line widths have a significant impact on 

die sizes and yields, the reduction in feature sizes also influences the properties of the MOS 

transistor as well as indirectly affecting the design metrics such as the switching frequency. 

There are two basic types of device scaling; full scaling and fixed-voltage scaling. Full 

scaling is also known as constant electric field scaling where voltages and dimensions are 

scaled by the same factor S. Full scaling keeps electric fields constant, which ensures the 
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physical integrity of the devices and avoids breakdown or other secondary effects. This type 

of scaling results in higher performance, reduced power consumption and greater device 

density. The effects of full scaling on the device and circuit parameters are shown in Table 

1.2. 

Table 1.2: Scaling for short-channel devices [14]. 

Parameter  Relation  Full Scaling Fixed-Voltage 

Scaling 

W, L, tox  1/S 1/S 

VDD, VT  1/S 1 

Areadevice WL 1/S
2
 1/S

2
 

Cox 1/ tox S S 

Cgate CoxWL 1/S 1/S 

Isat CoxWV 1/S 1 

Current Density Isat/Area S S
2
 

Ron V/ Isat 1 1 

Intrinsic Delay Ron Cgate 1/S 1/S 

P IsatV 1/S
2
 1 

Power Density P/Area 1 S
2
 

 

The intrinsic delay is the product of the gate capacitance and the on-resistance of a transistor 

and is a constant, due to the simultaneous scaling of voltage supply and current levels. 

Therefore, the improved performance is mainly due to the reduced scaling of the gate 

capacitance. Power consumption is the product voltage supply and current where both scale 

down significantly, resulting in a quadratic reduction in power. 

Fixed-voltage scaling is proposed as a better alternative to full scaling. This is because full 

scaling is not feasible in reality since the voltage cannot be scaled aberrantly for the new 

devices to be compatible with existing components. Therefore, the device dimensions are 

reduced by a factor of S while the voltage remains constant. However, in a velocity-saturated 

device, keeping the voltage constant while scaling the device dimensions increases the drain 

current and power density by a factor of S
2
, as shown in Table 1.2. Additionally, this will 

lead to serious reliability problems such as hot-carrier degradation, oxide-breakdown [17]. 

To summarize the discussion on device scaling, some of the main characteristics on the 

recent CMOS processes and future predictions are shown in Table 1.3. The effective drive 

current remains approximately constant. In order to maintain this level of drive current with a 

continuously reduced supply voltage, aggressive down-scaling of the threshold voltage is 
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required. This however causes a rapid increase in the gate leakage and sub-threshold leakage 

current. 

Table 1.3: Scaling trends for device and interconnect [18]. 

Year of Production  2005 2007 2010 2013 

Technology DRAM 1/2 Pitch(nm) L 80 65 45 32 

No of metal levels  11 11 12 13 

Power supply voltage(V) Vdd 1.1 1.1 1 0.9 

Effective NMOS drive current(µA/µm) Idd 1020 1211 1807 2109 

Effective parasitic series source/drain 

(kΩ-µm) 

Rsd 0.18 0.2 0.18 0.17 

Total gate capacitance(fF/µm) Cgtotal 1.63 0.71 0.84 0.658 

Intrinsic delay of MOSFET, CV/I (ps) Di 0.87 0.64 0.46 0.28 

Maximum On-chip Frequency(GHz) Freq 5.20 4.70 5.88 7.34 

Minimum Clock Period  

= 15 FO4 = 212.5 * CV/I (ps) 

T 184.88 136.00 97.75 59.50 

Saturation Threshold Voltage (mV) VTH 195 134 103 93 

Gate leakage (A/cm²) x10
2
  1.88 8.00 1.56 2.23 

Subthreshold Leakage (µA/µm) Ilkg 0.06 0.2 0.28 0.29 

Minimum Global wiring pitch(µm) w+s 0.3 0.21 0.135 0.096 

Average Global wiring dual damascene, AR t/w 2.2 2.3 2.4 2.5 

Interconnect delay RC for 1mm Cu min  

pitch global wire(ps) 

τ 111 227 542 1129 

Conductor effective resistivity for  

minimum width  global wires, nΩ-m 

(with skin effect) 

ρ 25.3 27.3 31 35.2 

Capacitance per unit length for global  

wires(pF/cm) 

Cw 2.2 2.15 1.9 1.85 

Interlevel metal insulator permittivity k 3.25 3.1 2.75 2.6 

 

 

1.4. On-Chip Interconnectivity 

Interconnect is one of the most important components in on-chip signalling. This is apparent 

since the interconnect parameters have great influence on the overall circuit performance, 

especially on longer wires. 

1.4.1. Structure and materials 

There are two types of on-chip interconnectivity namely local and global. Local 

interconnects, which are relatively short, are between gates within a functional block for 

example an ALU; global interconnects, which are much longer, are used to transport signals 
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between functional blocks and are usually configured in a bus structure, with the exception of 

the clock signal. The global interconnects are usually routed on the upper low resistance 

metallisation layers on a chip. The length of the interconnect not only creates larger signal 

delays but also has a relatively large coupling capacitance which renders the signal 

transported along the lines more susceptible to noise effects. Furthermore the adverse effects 

of technology scaling, as discussed later, impacts heavily on the performance of the global 

interconnects and is a major challenge to circuit designers. 

As shown in Figure 1.5, circuit interconnectivity creates a very complex structure comprising 

many layers of „wires‟ separated by a dielectric insulation, namely SiO2.  

 

Figure 1.5: A three dimensional view of interconnect structure [19]. 

Currently the materials used for conductors are Aluminium (Al) and Copper (Cu). 

Aluminium-based alloys are used for mature process while Copper-based alloys are used, for 

example, in modern high performance microprocessors. The formation of aluminium 

interconnects is achieved using either a physical vapour deposition (PVD) or chemical 

vapour deposition (CVD) process to cover the entire chip area; the actual interconnect pattern 

is subsequently delineated using a photolithographic procedure followed by an etching 

process.  

Copper has a narrower line width than Aluminium but with the same resistivity which results 

in a denser interconnect system. Copper material is deposited by an electrochemical or 

vapour deposition process. The etching process for Copper is harder than Aluminium since 
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dual damascene process [20] is used which involves the deposition of Copper on previously 

etched oxide trenches and later to be removed using chemical mechanical planarization 

(CMP) process. Copper-based alloy is more expensive than Aluminium-based alloy but can 

be compensated by better performance.  

The dielectric material is Silicon Dioxide (SiO2), which has good dielectric properties and is 

compatible with the rest of the IC processing steps. The dielectric constant for SiO2 is 3.9 

which is considered to be a high-k dielectric material. The dielectric material influences the 

value of capacitance between conductors through its dielectric constant. As the dielectric 

constant increases, the interconnect capacitance also increases which leads to longer delays 

and the increased potential for crosstalk interference between the interconnect wires. 

Recently, low-k dielectric materials have been introduced and are implemented on most 

circuits as the requirement for high speed signalling [21]. 

1.4.2. Parasitic components 

Interconnect is composed of three parasitic components; capacitance (C), resistance (R) and 

inductance (L). These components are used to model the wire which is extremely useful in 

timing analysis, especially in estimating the interconnect delay. However, most designers 

prefer to implement RC model compared to RLC model, because their ability to link 

interconnect performance easily with physical layout definitions such as line widths, line 

separation. 

Inductance effects are increasingly important for most on-chip interconnects but the RC 

model is still sufficiently accurate to model local and intermediate wires lengths. Even for 

global interconnects, RC model is still preferable over the RLC model due to its simplicity 

and efficiency and is still being frequently implemented in the majority of interconnect 

timing and crosstalk noise estimations [22]. Therefore for this thesis, only the RC model is 

considered, i.e. the parasitic components to be discussed will only cover resistance and 

capacitance. 

On-chip interconnect structures are composed of a metal line with rectangular cross-section 

as shown in Figure 1.6(a). With a uniform metal line of width (w) and thickness (t), 

interconnect resistance (R) can be calculated as, 
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 ,               (1.4) 

where le is the interconnect length and ρ is the resistivity of the metal.  

In addition to metal lines, vias, which connect multiple layers vertically, contribute to 

interconnect resistance as well. As the number of metal layers steadily increases and the via 

size continues to shrink, the effect of via resistance can contribute as much as an additional 

10% to the total critical path delay [23]. Wire delay is strongly influenced by the interconnect 

resistance as it causes Ohmic (IR) drop along the wires, which significantly reduces the noise 

margin, especially if the current density is high. 

 

(a)           (b) 

Figure 1.6: Structures of interconnect (a) resistance and (b) capacitance. 

Interconnect capacitance is known as the coupling of electrical field between the lines. It is a 

function of the dimensions, distance to surrounding wires and distance to the substrate, as 

shown in Figure 1.6(b). The value of capacitance is calculated as follows 

             
   

   
    ,              (1.5) 

where w and le are the width and length of the interconnect, and tdi and εdi represent the 

thickness and permittivity of the dielectric layer respectively.  

1.4.3. Interconnectivity Analysis 

The implementation of an interconnectivity scheme is analysed in terms of the wire delay, 

energy consumption and signal integrity which comprises components such as slew rate, 

crosstalk noise and overshoot. 
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1.4.3.1. First order wire delay model 

One of the most important factors describing the performance of a wire is its delay or 

latency, which is usually, measured at the 50% VDD points, from the input of the driver to the 

end of the line (the input of the receiver). Delay is a function of driver strength and wire 

loading. 

When analysing interconnect delay a first order wire delay model known as Elmore delay 

model [14] is frequently used. Elmore states that the first order time constant at one node is 

the sum of the RC components at that particular node. Therefore, every segment of the wire 

can contribute to the delay. Based on Elmore model analysis, the delay for distributed model 

line is as shown in Figure 1.7 and expressed as follows, 

 

Figure 1.7: Elmore delay model [14]. 

                                                      
 
             

 
   

 
   

 
               (1.6) 

The distributed model is commonly used to represent a wire, especially longer wires. The 

larger the number of segments for distributed model, the more accurate the wire delay is. 

However in the SPICE circuit simulator, the large number of segments is represented by the 

π model [22] as it is a reasonable approximation of distributed RC model. 

1.4.3.2. Energy consumption 

Due to technology scaling and larger chip sizes, on-chip signals must be transported across 

more resistive and longer interconnects within shrinking delay budgets [24]. Longer 

interconnects will lead to a larger total capacitance and thus to more energy consumption. 

The ever increasing energy consumption of an integrated circuit is mainly due to the 

interconnect wires and the associated driver and receiver circuits with 40% [14] of it 

dominated by the interconnect wires. Designers are starting to consider trading off speed for 

power as circuit techniques such as low swing signalling [1-6]  and bit encoding [25-27] have 

been developed at the cost of reduced noise immunity, routing density and delay penalty. 
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1.4.3.3. Signal integrity  

Signal integrity of the global interconnects deteriorates in the nano-meter regime. This is the 

result of technology scaling where the on-chip interconnect has a smaller pitch in the 

advanced technology nodes. The interconnect pitch is scaled down in order to support the 

increasing device density. In addition, in order to mitigate the delay problem, the scaling of 

the cross-sectional area of metal wires is required. This results in narrower and taller metal 

wires, which leads to larger aspect ratio. This improves the interconnect delay problem but 

causes stronger coupling between neighbouring lines, which will lead to crosstalk noise [22]. 

Crosstalk noise affects the performance of a circuit by distorting the original switching 

waveforms which leads to a significant delay variation. 

In addition to crosstalk noise, another issue that needs to be considered in designing on-chip 

interconnect is the slew rate. The slew rate or rise time is defined as the time required for the 

signals to change from 10% to 90% of its final value. In reality, the slew rate is finite which 

delays signal stabilization, especially if the driver strength is limited and the interconnect line 

is lossy.  

1.4.4. Interconnect Scaling 

Section 1.3.3 described the types of scaling for devices and its impact on the characteristics 

of a MOS transistor and its performance. The improvement in performance is very much 

associated with the scaling of the device dimensions. Therefore, as the device dimensions are 

scaled down, the interconnect dimensions must also be reduced to take full advantage of the 

scaling process.  

The interconnect scaling used is called ideal scaling. It is similar to full scaling of devices as 

all dimensions of the wire are scaled by the same factor S. The length of local interconnects 

scale in the same way as the devices but global interconnects scale differently. Global 

interconnects provide interconnectivity between large blocks and the input-output circuitry. 

The average length of long wires is proportional to the die size of the circuit. As the feature 

size of a device has continued to shrink over the past decades, the die size is gradually 

increased [13]. Due to these circumstances, scaling between local and global interconnects 

needs to be differentiated. 

The effects of interconnect scaling are shown in Table 1.4, where the dimensions of local 

wires are scaled with a factor S. The scaling of global wires is different and more 
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complicated, which results in a significant increase in the delay of the global wires. This is a 

great contrast to the gate delay, which reduces from year to year, and is the reason why 

interconnect delay is becoming an important factor in integrated circuit design. 

Table 1.4: Ideal scaling of interconnect [14]  

Parameter  Relation Local Wire Global Wire 

W, H, t  1/S 1/S 

l  1/S 1/SC 

C lW/T 1/S 1/SC 

R l/WH S S
2
/S

C
 

CR L
2
/Ht 1 S

2
/SC

2
 

 

Table 1.3 clearly shows that there is a rapid increase in global interconnect delay. As stated 

in [18] a 0.7X reverse interconnect scaling trend and 14% increase in die size, have created a 

challenge for on-chip global interconnect in high performance microprocessors in achieving 

low propagation delay and high signalling bandwidth [4]. The RC time constant increases 

with each technology node due to a significant increase in resistance despite a small decrease 

in capacitance, which also leads to a greater deviation in the line edge rate.  

The scaling in interconnect is not just due to the critical scaling of its dimension but also 

relates to its manufacture.  Due to yield and manufacturing limitations in scaling with the 

interconnect thickness, the aspect ratio (AR) also continues to increase as shown in Table 1.3. 

The requirement to minimize dishing on patterned metal line structures and the need to 

minimize the variations in the sheet resistance, caused by the extensive copper dishing and 

erosion due to the Chemical Mechanical Planarization (CMP) process, are among the factors 

that influence the increase in AR. These factors also cause a similar increase in the inter-level 

dielectric (ILD) thickness, which will have significant impact on interconnect capacitance. 

 

1.5. Techniques For Driving On-Chip Interconnect 

Main problems with long interconnect signalling is caused by the large RC time constant, 

which varies as the square of the length. The large RC time constant can degrade the 

processor performance. Several solutions to this problem have been introduced and are 

briefly described below. 
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1.5.1. Repeater insertion 

Figure 1.8 shows interconnection between a driver and a receiver with and without repeater 

insertion. Almost 50% of the total path delay is monopolised by the interconnect delay. The 

propagation delay over long interconnect can be minimized by using repeater insertion 

technique. 

RC

Driver Receiver  

(a) 

Repeater

RC/2 RC/2

Driver Receiver  

(b) 

Figure 1.8: The models of (a) normal interconnect and (b) interconnect with a repeater. 

The repeater insertion involves dividing a long interconnect into smaller segments and a 

repeater is inserted to drive each of these segments. By inserting repeaters along the 

interconnect wire length, the total delay can be reduced, however, there are few 

disadvantages associated with this method. This technique increases the power dissipation of 

bus due to large buffers needed to drive the bus. In nano-meter technologies, the leakage 

power dissipation in these buffers can account for more than 20% of total power 

consumption [28]. In addition, the delay associated with repeaters themselves also contribute 

to delay performance of global interconnects.  

1.5.2. Low voltage swing signalling  

Although low voltage swing signalling technique is usually implemented for power 

reduction, this technique can also be used for high speed signalling. There are two types of 

low voltage swing signalling namely, differential and single-ended signalling. Both 

techniques incorporate reduced voltage swing on the interconnect wire but differ in the 

number of wires used. For example differential signalling requires 2 wires, which transmit 

the signal data across the entire length of interconnect. A sense amplifier at the receiving end 

will detect the voltage difference and convert the received signal back to its normal level. 
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However, this type of signalling is exposed to the possibility of jitter variation and additional 

delay by the amplifier. This is mainly due to the use of 2 wires with different signal 

transitions on each wire. Single-ended signalling will not suffer from these factors but is 

prone to noise. Recently, there have been several designs proposed which incorporate either 

single-ended or differential signalling. These new low swing techniques improve on their 

delay and noise immunity as well as their energy efficiency [1], [3], [6], [29], and will be 

discussed in more details in Chapter 2. 

 

1.6. The Impact Of Process Variation On On-Chip Signalling  

Process variations are categorized as either die-to-die (D2D) or within die (WD) variations. 

WD variations, also known as intra-die variations are focus of this study. These variations 

are random and can be classified into two categories, which are device variations and 

interconnect variations. Device variations and interconnect variations can also be categorized 

as intrinsic variation as they are mostly caused by the fabrication process. They can be 

further categorized as systematic or random. 

1.6.1. Device variations 

Manufacturing process parameter variation becomes a major bottleneck to the reliable design 

of VLSI systems in nanometer region [30,31]. The imperfections in the process parameters 

due to sub-wavelength lithography and device variations in small geometry devices such as 

random dopant fluctuations and line edge roughness, cause great variations in the circuit 

parameters, such as Vth, oxide thickness (tox), mobility (µo), device width and effective gate 

length (Leff).  

Vth variability is caused by variability in oxide thickness and dopant fluctuations. Statistical 

variation in device parameters leads to a statistical distribution of Vth. Since Vth corresponds 

to the circuit delay, this will also lead to statistical distribution of the circuit delay. Leakage 

power has exponential dependence on Vth. Therefore, small variations in Vth will cause large 

variability in leakage power [32]. It is expected that high performance microprocessors will 

be exposed to 30% variation in maximum allowable operating frequency and 20X variation 

in the leakage power [30] due to variation in transistor parameters. 
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The main source of circuit performance variability is channel length variation, which is due 

to D2D and WD variations. Since each variation can cause increase in variability of one or 

more key design parameters, the variation in channel length will affect the switching speed 

and static leakage current. This is due to the strong connection of Vth to the channel length. 

Channel length variability results from wafer non-uniformity or line edge roughness. 

Meanwhile, device width variation is caused by polishing or lithography issues. 

1.6.2. Interconnect variations 

Most of the work regarding process variation focuses on the impact of within die variation in 

devices without considering variations in the interconnect. This will result in an inaccurate 

yield estimation and circuit optimization for current and future technologies. In DSM 

technologies, interconnect variation becomes increasingly important especially on signal 

delays. 

The interconnect variation results from uncertainties of physical parts of line, for example, 

interconnect width, inter-wire spacing, ILD thickness and the aspect ratios. Some of which 

are introduced by CMP processes to planarize the IC surface. The CMP processes cause 

surface imperfections in the wires due to dishing and erosion. This is important source of 

timing variability [33]. The variations in the wire dimensions greatly affect the interconnect 

resistance. It is considered that interconnect resistance is more sensitive to process variation 

than interconnect capacitance due to the narrow line effects. 

 

1.7. Main Contributions Of This Research  

Market forces are continually demanding devices with increased functionality per unit area 

which have been satisfied through aggressive technology scaling, adversely affecting on the 

global interconnect delay thus reducing system performance. Line drivers can be used to 

mitigate the delay problem but its main problem is its high dynamic power consumption. One 

solution is to reduce Vdd but this can impair the performance of the line drivers for global 

interconnect unless low swing techniques are implemented. Although they can provide high 

speed signalling with low power consumption, most of the low swing techniques suffer from 

large area penalty and increases in circuit complexity. In addition, most of the techniques 

require additional circuitry such as voltage generators and low-Vth devices, as well as 
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incorporating multiple Vdd and reference voltage sources. Subsequently, they also show the 

non-adaptability towards process variation and leakage currents. 

In order to address these limitations, two novel driver schemes have been designed, namely, 

nLVSD and mLVSD, which show vast improvements in terms of delay and power 

consumption, as well as noise immunity and leakage current. These improvements will be 

shown in the later sections. Therefore, the main contributions of this research to the low 

swing signalling applications are as follows: 

a) Improved delay performance 

b) Improved power dissipation 

c) Occupies smaller footprint 

d) Developed new leakage control circuits 

e) Analysed robustness to process variations and external disturbances 

f) Identified which process variables have the most impact on delay and power 

consumption 

g) Developed design techniques to mitigate the effect of process variations 

h) Developed design techniques to mitigate the effects of SEU and crosstalk 

 

1.8. Publications  

a) N. M. Mahyuddin, G. Russell, and E. G. Chester, “Design and analysis of a low-

swing driver scheme for long interconnects,” Microelectronics Journal, vol. 42, no. 9, 

pp. 1039-1048, 2011. 

1.9. Outlines And Scope Of Thesis 

Having briefly introduced the advances in semiconductor technology over the past fifty 

years, the subsequent issues resulting from the reduction in the physical dimensions of 

devices and interconnects and the contributions of this research towards low swing signalling 

application; the subsequent chapters will described the work carried out in this research 

programme to address the power and performance issues related to scaling effects on 

interconnects. Chapter 2 reviews low voltage swing techniques for line driver 

implementation as these methods are considered to be the most efficient regarding power 

dissipation and have less impact on performance. Chapter 3 introduces advancement to the 

state of the art in low voltage swing driver design. Building on the work outlined in Chapter 
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3 a complete on-chip signalling system comprises, driver, interconnect and receiver, 

represented by a level converter is also presented. As device geometries shrink circuit 

packaging densities increase and circuit application become more susceptible to temporary 

faults such as crosstalk and SEUs, thus it is important to consider the effect of these faults on 

the low-swing signalling schemes, as discusses in Chapter 4. Subsequently, as technology 

nodes become smaller the effects of process variations on circuit performance become more 

evident; consequently Chapter 5 outlines the analyses of the effect of process variation on the 

performance of the proposed signalling system. The final chapter comprises the discussion of 

the performance and variability analyses carried out in previous chapter and followed by the 

overall conclusions resulting from the investigation, and suggestions for future works, 

respectfully.  
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Chapter 2 

 

POWER REDUCTION TECHNIQUES FOR ON-CHIP SIGNALLING 

 

2.1. Background 

The trend of decreasing device size and increasing chip densities involving several hundreds 

of millions of transistors per chip has resulted in tremendous increase in design complexity 

[1,2]. Additionally this trend of reducing the feature size along with increasing the clock 

frequency has made reliability a huge challenge for the designers [3]. Furthermore, market 

forces are continually demanding devices with increased functionality/unit area; these 

demands have been satisfied through aggressive technology scaling which, unfortunately, has 

impacted adversely on the global interconnect delay subsequently reducing system 

performance. Subsequently, high power line drivers have been used to mitigate the problems 

with delay; however, these have large power consumption. The need to address these 

problems of global on-chip interconnect is evident from the increased interest in the 

development of low-power and high-speed on-chip signalling schemes. In this chapter, the 

different approaches and techniques used to mitigate the problems of power consumption as 

well as maintaining high speed signalling are briefly reviewed, pointing out their strengths 

and weaknesses. The review starts off with the description of the general model and the 

parameters associated with power consumption in digital integrated circuits. This is followed 

by addressing several power reduction techniques that can be divided into full-swing and 

low-swing signalling schemes. The full-swing signalling methods comprises bootstrapping 

techniques and parallelism or multiplexing techniques [4-6], while the low-swing signalling 

method consists of single-ended and differential signalling schemes. Subsequently, the low-

swing signalling techniques will be focused on due to their capabilities of providing low 

power and high speed signalling with minimum area consumption and complexity. The 

chapter concludes with a qualitative comparison between the low-power high-speed 

signalling schemes. 
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2.2. Power Consumption In Digital Integrated Circuits 

A general model of power consumption was introduced in the previous chapter. Power 

consumption comprises of dynamic and static power, with the dynamic power being 

dominant and is the result of charging and discharging of the load capacitance. Static power 

consumption, as previously mentioned, is caused by the leakage currents. The leakage 

current has increasingly become important as the technology scales down, especially at 45nm 

and beyond. At 45nm and beyond, the gate-oxide tunnelling leakage current becomes more 

dominant than the sub-threshold leakage current due to the oxide thickness. Thinner oxide 

will lead to high electric field across the gate oxide, even if Vdd is scaled lower than 0.7V. 

The direct consequence of thinner oxide and high electric field is an occurrence of quantum 

mechanical tunnelling and a sizeable current can flow from/to the gate terminal [7]. As the 

contributions of leakage power consumption is considered relatively small for conventional 

on-chip signalling, especially for 90nm technology, the power consumption can be 

considered to comprise mainly of the dynamic power consumption [8]. However, for low-

swing signalling applications, the leakage current could be quite significant and may present 

drawbacks to the performance of several low-swing signalling schemes. Therefore, for this 

thesis, the leakage current will be considered in the analysis carried out for all the circuits 

designed using a 90nm technology. 

2.2.1. Dynamic power consumption 

Dynamic power consumption is due to capacitance charging/discharging and consumes most 

of the power used by CMOS circuits. Consider a situation where an inverter is used and the 

total load capacitance is represented at the output by the capacitor, CL as shown in Figure 2.1. 

For the input transition from high to low, the NMOS pull-down network (PDN) is cut off and 

PMOS pull-up network (PUN) is activated, charging the load capacitance, CL up to Vdd. This 

process draws energy equal to CLVdd
2
 from the power supply. Half of this is dissipated 

immediately in the PMOS transistor, while the other half is stored on the load capacitance. 

The process is reversed as the input returns to Vdd and CL is discharged, the energy of 

CLVdd
2
 is dissipated in the NMOS PDN.  

The derivation of the energy dissipated in the capacitor is as follows: 

In a parallel plate capacitor there is a uniform electric field; 
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,                                                     (2.1) 

where W is energy and     is electric field. 

The volume of the plate capacitor is, 

                                                                   
 

 
,                                                    (2.2) 

where A is the surface area and d is the length of the plate capacitor, and the magnitude of the 

electric field is, 
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By adding equations 2.2 and 2.3 into Eq.2.1, the equation for the energy dissipated in the 

capacitor is obtained, 
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where   
   

 
 . 

It can be concluded that the dynamic power consumption is dependent on the switching 

activity of the signals, which can be defined as expected number of rising and falling 

transitions per data cycle. Coupled with the average data rate, f, which can be the clock 

frequency in a synchronous system, the dynamic power consumption, as shown in Equ.1.1, is 

proportional to the activity factor (α) which is used to model the average switching activity in 

the circuit, the total load capacitance (CL), the square of the supply voltage (Vdd) and the 

switching frequency (f). It is important to analyze the behaviour of each component of the 

dynamic power consumption, i.e. Vdd, CL, f, and α; in order to identify an effective way of 

obtaining the power savings.  
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Figure 2.1: The load capacitance charging and discharging paths. 

2.2.1.1. Power supply voltage, Vdd 

Without the need of any special circuitry, voltage reduction offers the most significant means 

of reducing the power consumption due to its quadratic relationship to power. Unfortunately, 

the supply voltage cannot be reduced without affecting other performance parameters such as 

circuit delay, where it influences the delay negatively, leading to reduced system 

performance. The delay will increase linearly with the decrease in supply voltage for Vdd >> 

Vth. Large reductions in circuit speed, which accompanies the decrease in Vdd, can be 

controlled provided that the Vdd/Vth ratio is kept constant [9]. In conclusion, Vdd reduction 

is a significant means of lowering the power consumption. The other aspects that remain to 

be addressed are the issues of minimising the total load capacitance and activity factor in the 

means to reduce power consumption. 

2.2.1.2. Load capacitance 

The dynamic power consumption has a linear dependency on the switching of the load 

capacitance, which comprises the capacitances in the devices and interconnect. The device 

capacitances used to be larger than the interconnect parasitic capacitances but as the 

technology has scaled down, the interconnect capacitance has increasingly become more 

significant. The total load capacitance can be expressed as, 

                                             CL = Cgate + Cdiffusion + Cwire                            (2.1) 
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The gate capacitance consists of non-linear components such as the overlap capacitances and 

their values depend upon the operating region. However, for power estimation of digital 

circuits, the gate capacitance is approximated as, 

     Cgate = CoxWLeff            (2.2) 

where Cox = εox/tox  is the gate oxide capacitance per unit area and Leff is the effective channel 

length.  

The diffusion capacitance is made of two components; bottom-plate capacitance and side-

wall junction capacitance. The nominal values of these capacitances can be found in 

Berkeley BSIM4 model [10].  

Cwire is the parasitic capacitance, which is a very strong function of the geometry. For the 

configuration of a conductor surrounded by two adjacent wires as shown in Figure 2.2, 

Sakurai in [11] defines a coupling capacitance as follows: 

              
 
            

     

                 (2.3) 

                    
 

                       
     

      
    

                  (2.4) 

                                (2.5) 

where εk is dielectric permittivity, h is dielectric height and s is separation between two 

wires. Cwire defines a total capacitance for the middle conductor as the sum of Cg and 2Cc 

assuming that there is no signal transition on the two adjacent wires. 
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Figure 2.2: Cross-section of wire capacitance [12]. 

Although minimizing the load capacitance, by using smaller devices and shorter wires offers 

another technique to minimize power consumption [9], it has, in a similar way to supply 

voltage reduction, a negative effect on the circuit performance. For example, the load 

capacitance can be reduced by shrinking the device sizes but this unfortunately will reduce 

the current drive of the transistors, slowing down the circuit. This loss in performance might 

prevent Vdd from being lowered as much as possible. 

2.2.1.3. Switching factor 

In addition to the supply voltage and load capacitance, the switching factor also influences 

the dynamic power consumption. The switching factor is a combination of the activity factor, 

α, and the switching frequency (       ). Zero dynamic power will be consumed if there 

is no switching activity. The switching factor can be interpreted as the expected number of 

data transitions per period clock cycle. It corresponds to the expected number of energy 

consuming transitions that will be triggered by the arrival of each new data. The value of the 

switching factor in different situations is crucial for the determination of power consumption. 

For example, it is known that the maximum activity of a random data signal driven for 

simple logic circuits is 0.4 to 0.5 [13]. For more complex circuits such as finite state 

machines, this tends to be lower. It can be concluded that the average switching factor may 

vary between 0.05 and 0.5 depending upon the situation. 

Switching factor can be combined with the load capacitance to form an effective capacitance 

which describes the average capacitance charged during each data period. There are several 

techniques for reducing switching activity as a means of saving power such as algorithmic 
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level techniques [14,15] and multi-level logic optimization [16,17]. However, in order to 

have inherently lower data activity, the techniques usually employ complex arithmetic or 

architecture. This is a price to be paid for the reduced data activity in terms of higher 

physical capacitance.                                                                                                                                                                                                                                                                                                                   

2.2.2. Leakage currents 

In nanometer scaled CMOS circuits, beside the dynamic power dissipation, energy 

dissipation can result from various forms of leakage currents such as gate-oxide tunnelling, 

sub-threshold leakage and junction tunnelling leakages. For submicron technologies, the 

dominant leakage mechanism is the sub-threshold leakage current. However, the gate-oxide 

tunnelling leakage currents become adversely dominant at 45nm technologies and below [7]. 

Tunnelling is caused by the decrease in the gate-oxide thickness, which is needed to achieve 

a high current drive capability and to reduce the short-channel effects. The short-channel 

effect is caused by the decrease in the channel length, which leads to the increase in the 

depletion regions in the source and drain areas of a device. The short-channel effect produces 

a reduction of the threshold voltage, which also increases the sub-threshold leakage currents 

[8]. The circuit designs in this thesis are carried out in 90nm technology and involve using a 

low value of Vdd (1.0V), which also indicates a reduction in the threshold voltage 

accordingly to maintain good driving capabilities. As a result, the leakage current gradually 

becomes a limiting factor for down-scaling the threshold voltage since it determines the 

power consumption of a chip in an idle state. Thus at 90nm technology, it is important to 

consider the sub-threshold leakage current in the analysis as the device behaviour in the sub-

threshold regime can be affected, directly influence on the power consumption. The gate-

oxide tunnelling leakage current will be neglected in this thesis as its effect is relatively small 

at 90nm and even at 65nm technology. 

The sub-threshold leakage is present only during the OFF state of a transistor, as it is caused 

by the weak inversion region in the channel for small values of the gate voltage (Vg << Vth) 

[18]. In order to overcome this effect, the threshold voltage has been kept high, 

approximately above 0.5V. However, as technologies are scaled further down into the sub-

nanometer regions, maintaining a relatively high threshold voltage has become challenging. 

There have been, for example in a driver circuit, several methods adopted to overcome the 

problems associated with leakage currents such as creating a direct static path between the 
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input and output of the driver [19], or implementing leakage control transistor (LCT) [20]. In 

order to cancel out the leakage current effects and improve the noise immunity a low speed 

static path is created, as shown in Figure 2.3(a), which can be as small as a minimum sized 

inverter. This path is used when the input is stable and there is no transition activity. 

Pull-up
Network

Pull-down
Network

Static path

OUTIN

LCT

IN
OUT

 

(a)                                                                    (b) 

Figure 2.3: The architecture of leakage reduction mechanism: (a) static path [19] and (b) 

leakage control transistor [20]. 

Implementation of the LCT method is usually applied to low voltage drivers which 

accommodate more than one path for the signal propagation during the transition activity. 

The leakage control transistor, as shown in Figure 2.3(b), is created by the controller in the 

gate terminal of one transistor by the source of the other. For any input combination, one of 

the leakage control transistors is always near the cut-off voltage which consequently 

increases the resistance of the path from Vdd to ground, subsequently leading to a decrease in 

the sub-threshold leakage currents. Both of these methods will be considered in the design of 

the proposed low-swing signalling scheme for this work, which will be discussed in the next 

chapter. 

 

2.3. Low Power CMOS Circuits 

Power consumption has emerged as a very significant design parameter. Aggressive market 

driven demands and technology-related limitations have steered researchers to try to invent 

new design techniques and methodologies to confront the power requirements. In a given 

CMOS technology, in order to achieve a high throughput, more power is consumed due to 
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proportional relations between the dynamic power dissipation and the switching activity. 

Thus, conventional CMOS signalling such as shown in Figure 2.4 is no longer applicable for 

on-chip applications. The driver and receiver circuits are both conventional CMOS inverters 

[21]. Conventional CMOS signalling reduces the power consumption by reducing the power 

supply but resulting in circuit speed reduction. Both low power consumption and high speed 

signalling can be achieved if highly efficient logic circuits with low power-delay-products 

are implemented. Several low-power high-speed signalling schemes, which have been 

proposed in the past, will be discussed next. They are divided into two categories, namely, 

full-swing and low-swing signalling schemes.  

IN OUT

Driver Receiver

Vdd Vdd

 

Figure 2.4: The conventional CMOS signalling scheme [21]. 

 

2.3.1. Full-swing on-chip signalling schemes 

Two examples of the full-swing signalling schemes are the bootstrapping techniques, which 

enhance the driving capability of the driver circuits and reduces the power consumption; and 

the parallelism techniques which incorporate a multiplexing transmitter that reduces the 

clock load of the pre-amplifier and driver stages, which reduces the power consumption and 

provides speed improvement. 

2.3.1.1. The bootstrapping techniques 

Bootstrapping techniques can be used in the low voltage CMOS dynamic and static logic 

circuits to enhance speed performance for system-on-chip applications. The techniques are 

used in a CMOS large-load full-swing driver which exploits capacitive coupling to drive a 

dynamic node to a voltage that exceeds the power supply. Bootstrapping techniques can be 

divided into two categories, which are direct and indirect methods shown in Figure 2.5. In 

the direct method extra capacitors are directly connected between the input and output of the 
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driver through the pass transistors [22,23], whilst in the indirect method two extra capacitors 

are connected to the gates of the devices (A and B) at the output stage of the driver to 

improve the device driving capability during the switching transition [24]. However since the 

threshold voltage of the CMOS devices do not scale down with the same factor as the power 

supply, the indirect techniques are not very effective in driving the large capacitive loads. 

The direct methods, on other hand, directly apply the bootstrapping capacitors to the output 

node, thereby improving the driver speed. 
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(a) 
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Figure 2.5: The architectures of (a) direct and (b) indirect bootstrapping techniques [19]. 

Several line drivers that employ direct bootstrapping techniques sometimes use two 

bootstrapped capacitors. For example, a driver logic circuit such as the M-driver [23] which 

consists of three stages, namely, the controlling signal circuit, positive and negative pumping 

circuit and the driving circuit, requires two bootstrap capacitors for low-to-high and high-to-

low transitions. Another direct bootstrapping circuit which also requires two capacitors for 

successful transitions is the CMOS bootstrapped dynamic logic circuit (BDL) [25]. The BDL 

circuit comprises a dynamic logic circuit and a bootstrapped circuit, where two bootstrapped 

capacitors are used for its two periods of operations, that is pre-charge and logic evaluation.  

Both the M and BDL driver circuits have improvements in terms of speed, power and active 

area over other dynamic bootstrapping driver circuits such as the D-driver [22], which 

requires access to the bulk nodes of PMOS and NMOS devices. However, both drivers 

employ two bootstrap capacitors which add to the complexity of the overall circuits due to 

the increase in the power consumption and area overhead. This is overcome by the F-driver 

[26], which requires only one bootstrap capacitor to achieve bootstrapping for both switching 

transitions, resulting in lower area and power consumption.  

The main problem with the bootstrapping technique is its tendency to overshoot and 

undershoot the voltage signal. If the voltage across a device exceeds the power supply by 
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more than a small amount, permanent damage may occur [19], which is why this technique is 

seldom used. Even though the enhanced driving capability greatly improves speed 

performance of a driver circuit its full swing signalling capability and the use of bootstrap 

capacitor, which can be as large as the internal load capacitance of the driver circuit, results 

in significant increase in power consumption. 

2.3.1.2. The parallelism or multiplexing techniques 

The parallelism technique is a technology independent technique which reduces power 

consumption and maintains the throughput of logic blocks and processors by decreasing the 

operating frequency and supply voltage [27,28]. At a reduced Vdd, this method is used to 

maintain the throughput of logic devices that are placed on the critical path. Parallelism as 

shown in Figure 2.6 accommodates M parallel units which are clocked at f/M. Each unit can 

compute its results in a time slot M times longer and can therefore be supplied at a reduced 

supply voltage. 
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Figure 2.6: The architecture of parallelism technique [8]. 

Multiple instances are needed if the units used are datapaths or processors which results in an 

M times area increase and switching capacitance. However, if the units used consist of 

smaller transistors and the operating frequency is reduced, a power reduction can be 

achieved. In addition, some parallelized logic units do not require M-unit replication such as 

memories. In parallelized memories, each unit contains 1/M bits of data or instruction, 

resulting in the same total area to store the information and the same total switching 

capacitance. Parallelized circuits such as memories, shift registers and serial-parallel 
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converters are a few examples that accommodate parallelism at low Vdd and incurring a 

small overhead [29]. 

The parallelism technique can be applied to on-chip signalling schemes through the use of 

transceivers. Parallelism in transceivers obviates the need for high frequency clocks to 

achieve high bit-rates [30,31]. High bit-rates can be supported while both transmitter and 

receiver operate at a lower frequency. The technique comprises multiple transmitters 

connected in parallel converting low frequency parallel data streams into a single high 

frequency stream on the channel through a multiplexer. The parallel receivers will then 

convert the high frequency data stream back to the low frequency parallel data streams [31]. 

The parallelism technique lowers the clock frequency needed to support a certain bit-rate and 

thus provides opportunities for saving power. This is mainly due to the voltage being 

adaptively scaled down for the lower clock frequency. However, without the voltage scaling, 

the power reduction cannot be achieved because the power reduction due to the lower 

frequency is cancelled by the increased switched capacitance. 

The parallelism technique with multiplexed transceivers can be divided into two categories, 

namely, the output and input multiplexed transmitters. The output multiplexed transmitter 

proposed by Yang [30] has multiple drivers connected in parallel with each driver consisting 

of two PMOS transistors in series, as shown in Figure 2.7. Each driver is only active when 

the inputs, namely dclk(n) and qclk(n), are low. The inputs are aligned with the clock phases 

that are one phase apart, Φ(n) and Φ(n+1). The pre-driver shown in Figure 2.7 controls the 

input clock frequency depending on the data being transmitted to match the delays between 

the two inputs. However, there are factors that limit the potential of this driver circuit which 

is mostly Vth-related problems. Increased driver sizing is necessary to support the desired 

swing at low Vdd as Vdd approaches Vth. However, this reduces the power savings benefits 

of low voltage operation since increasing the driver size means higher driver current, thus 

increase in power. In addition, lower Vdd will result in a narrower pulse width at the output 

[30]. 
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Figure 2.7: The output multiplexed transmitter by Yang et al [30]. 

 

Alternatively, the problems with the output multiplexed transmitter shown in Figure 2.7 can 

be solved by implementing the multiplexed transmitter with the level shifting pre-driver 

circuit [32]. The level-shifting pre-driver shown in Figure 2.8, shifts the voltage level of 

input driver down by Vth so that the PMOS driver inputs swing between –Vth and V-Vth 

which subsequently mitigates the previous driver‟s problem with Vdd as the PMOS driver 

behaves as if its Vth is 0. In addition, this driver is less sensitive to supply voltage variation 

because the turn-on and turn-off points of the driver are now independent of Vdd [32]. 

However, the power savings benefit might be compromised by the need for negative pulse 

generator to assist the PMOS driver in switching down to –Vth for full output swing. Power 

saving is achieved with increased data rates without increasing the size of the driver but 

instead requires additional circuitry, i.e. the negative pulse generator. The power savings 

benefit of the output multiplexed transmitter scheme with level-shifting pre-driver circuit is 

significantly affected as the negative pulse generator is required for each driver at every data 

stream input. Subsequently, this also results in the silicon area overhead. 
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Figure 2.8: The output multiplexed transmitter with level-shifting [32]. 

The input multiplexed transmitters shown in Figure 2.9 [33] provides speed improvement 

over the output multiplexed architecture as well as significantly lower power and area 

overheads. The input multiplexed transmitter reduces the clock load by a significant amount 

by multiplexing signals before amplification. It also reduces area by requiring only a single 

copy of the output driver rather than one copy for each multiplexer input. The transmitter 

comprises a dual pseudo-NMOS multiplexer, a pre-amplifier and an output driver, and also 

employs a delay-locked loop circuit with regulated supply voltage, which further reduces the 

power consumption as well as achieving better supply noise rejection [33].  

The main problem with the parallelism or multiplexing technique is its stringent matching 

requirement among the parallel components to avoid degradation of signal quality. To add to 

its complexity, each multiplexed transmitter is required for every data stream input which 

may include additional circuitry such as level shifter as in [32]. This leads to increase in 

power consumption and silicon area overhead. Even though input multiplexed transmitter has 

several advantages over the output multiplexed transmitter in terms of power, area and speed, 

its characteristic of having a full swing signalling capability, which is like the bootstrapped 

techniques, results in the increase in power consumption. In addition, the power saving of the 

parallelism or multiplexing techniques are strongly dependent on the voltage scaling.  
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Figure 2.9: The input multiplexed transmitter [33]. 

Compared to the full-swing signalling schemes such as the bootstrapping technique and the 

parallelism technique, there are several low-power high-speed on-chip signalling schemes 

which have better power-delay performance; these are the low-swing on-chip signalling 

schemes, which will be discussed in the next section. 

2.3.2. Low-swing on-chip signalling schemes 

This technique aims at power reduction on a large load capacitance through the use of 

reduced voltage swing on the interconnections. With the load capacitance, operating 

frequency and supply voltage remain unchanged, on-chip lower power consumption can be 

achieved using specially designed circuits. These circuits which are placed at each end of the 

interconnection are used to convert the full rail-to-rail swing to low voltage swing, and vice 

versa. 

In this thesis, the main focus is reducing the power consumption of on-chip interconnects 

while maintaining the circuit performance. One of the best solutions toward achieving better 

energy efficiency is by reducing the voltage swing of the signal on the interconnect. Low 

swing drivers can accommodate either a single-ended or differential signalling schemes. In 

single-ended signalling, the receiver detects an absolute change in voltage in a single wire 



38 
 

while the receiver detects a relative difference in voltage between two wires in differential 

signalling. Several low swing signalling schemes such as those that employ multiple voltage 

supplies, reference voltages, bootstrapping, charge sharing, differential voltage mode, driver 

pre-emphasis, current mode techniques and diode-connected configuration will be now 

discussed, highlighting the mechanism, the advantages and disadvantages of each scheme. 

2.3.2.1. Multiple voltage techniques  

There are two main categories of multiple voltage techniques that is the multi-Vdd technique 

and multi-Vth technique. Both methods have the same concept where high supply voltage or 

high threshold voltage is applied to the critical gates while the rest of the circuits is 

connected to a lower supply voltage or has transistors with lower threshold voltages.  

The multi-Vdd technique can be referred as clustered voltage scaling. The circuit is 

partitioned so that the non-critical gates run at VddL and only critical gates use VddH. the 

multi-Vdd technique is usually applied to effectively reduce power consumption without 

degrading the operating speed. However, level converters should be inserted to prevent a 

large static current flow to the low-to-high conversion. A good example of the multi-Vdd 

technique is the conventional low-swing signalling scheme shown in Figure 2.10, which 

employs both VddL and VddH at the driver and the receiver. Several low-swing circuits that 

employ multi-Vdd technique focus on the effective design of the level converter  such as the 

level converter using pass transistor half latch [34], the PMOS cross-coupled level converter 

[35] and the single supply diode voltage limited level converter [36]. The effective design of 

the level converter at the receiver end is very important as the performance of the driver 

circuit is solely dependent on it. 
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Figure 2.10: The conventional low-swing signalling scheme [37]. 
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Similar to other low-swing signalling schemes, the level converter shown in Figure 2.11(a) 

using pass transistor half latch provides low power and high speed but since it requires VddL 

and VddH , the placement and routing are difficult in physical designs [34]. The PMOS cross-

coupled level converter as shown in Figure 2.11(b) suffers from the same problems regarding 

the placement and routing which is solved by the single supply diode voltage limited level 

converter. The placement and routing is made easier by using a single Vdd at the level 

converter [36]. However this technique does not have the best performance compared to the 

first two techniques, namely the conventional low-swing signalling scheme shown in Figure 

2.10, and the low-swing multiple Vdd signalling schemes with pass transistor half latch as in 

Figure 2.11(a). 

The main issue with the multi-Vdd technique is the timing analysis and layout placement. 

With a single power supply, timing analysis is simpler as it can be performed for single 

performance point based on a characterized library. However for multiple power supplies, 

the timing analysis has to be performed separately for each Vdd, making it more complex. In 

addition, both low and high Vdd cells need to be separated because they have different n-well 

voltages [38], which increase the complexity of the circuit. 
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  (a)                                                                  (b) 

Figure 2.11: The low-swing multiple Vdd signalling schemes with (a) pass transistor half 

latch [34] and (b) PMOS cross-coupled level converter [35]. 

Another issue with the multi-Vdd technique is the increase in static current, which is caused 

by not feeding the output of the low Vdd gates directly to the high Vdd gates because the 

output can never be raised higher than low Vdd [38]. Even if the output of low Vdd gates is 

connected to the high Vdd circuit, the static current still flows due to the PMOS in the high 



40 
 

Vdd circuit never being completely cut-off. A possible solution to the static current problem 

is to place a level converter between high and low Vdd gates. However, this may result in the 

increase in area and power. The multi-Vth technique can overcome the problem with static 

power consumption. 

The multi-Vth technique accommodates both high threshold and low threshold transistors in 

the driver circuit to significantly improve the power delay product through reduced output 

swing level voltage. A cross-coupled latch is usually used as the receiver which re-converts 

the reduced swing to a full swing [21]. An example of a line driver circuit employing the 

multi-Vth technique, shown in Figure 2.12, is the Up-Down Low-Swing voltage driver 

scheme, which accommodates both the low Vth and high Vth transistors at the driver and the 

receiver circuits. This architecture is similar to the multi-Vdd driver scheme.  
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Figure 2.12: Up-Down low-swing voltage driver (UDLD) [21]. 

Unlike the multi-Vdd technique which suffers from increased static current, the multi-Vth 

technique is usually used to reduce the static power. If the multi-Vdd technique is combined 

with the multi-Vth technique, both the static and dynamic consumption can be reduced [39]. 

However, the problems regarding placement and routing with the multi-Vdd techniques, also 

apply to the multi-Vth technique as two different Vth values are used which requires two 

different technology libraries. Therefore, if both techniques are implemented, the power 
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savings achieved by these techniques seem insignificant compared to the increase complexity 

of their physical designs. 

2.3.2.2. Static source driver scheme 

The static source driver signalling schemes discussed here are the low-swing single-ended 

voltage mode (VM) signalling schemes with the static source driver. The static source drivers 

are useful for global on-chip signalling as they provide fast signalling. They also provide low 

power consumption on the interconnect through reduced voltage swing. The first example of 

the static source driver is the conventional low-swing signalling driver shown previously in 

Figure 2.10. The conventional low-swing signalling scheme employs a static source driver 

with two power supplies, VddH and VddL to provide low swing voltage on the interconnect. 

Even though the signalling scheme provides a low-power and high-speed signalling, the use 

of multiple power supplies increases the complexity of the circuit. 

Another example of the static-source driver scheme that incorporates multiple reference 

voltages is the symmetric driver and level converter (SDLC) shown in Figure 2.13, which 

comprises a static source-offset driver and a symmetric level converter. The source-offset 

driver in [40] has a configuration of a CMOS inverter. The differences are that the driver 

operates with the internal supply voltages, Vsl and Vcl, and the threshold voltages of the 

MOSFETs are lowered so that ΔVthn = Vsl  and ΔVthp = Vdd - Vsl. This way the effective gate 

voltages are the same as the conventional CMOS inverter operating at Vdd [40].   
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Figure 2.13: The symmetric driver and level converter scheme [40]. 
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The receiver for the SDLC circuit has a similar configuration to the conventional low-swing 

signalling scheme except that a pair of pass transistors is added and the internal inverter is 

replaced by the CMOS crossed-coupled latch. Two internal supply voltages are used instead 

of multiple Vdd, which are applied to the gates of the pair of pass transistors. The internal 

supply voltages originate from the internal voltage generator at the driver side. Therefore the 

earlier problem with the layout placement with conventional low-swing signalling using 

multiple voltage supplies is mitigated. However, by using low voltage supplies to obtain 

reduced voltage swing, the driver consumes a significant amount of driving current.  This is 

overcome by using low-Vth devices to achieve the required level of voltage swing. However, 

the use of the internal voltage generator which provides the two extra power rails contributes 

to the complexity of the scheme as it introduces additional routing to the scheme. 

The main issues with the previous method are the use of extra power rails and low-Vth 

devices. The static source driver to be mentioned next, overcomes this problem by utilizing 

the threshold voltage drop of source followers, and is known as the static source driver level 

converter (SSDLC) signalling scheme. The output of the source-follower in the SSDLC 

scheme, shown in Figure 2.14 tracks the threshold voltage drop of the input, simplifying the 

way to limit the interconnect swing without the use of extra reference voltages or circuitry. 

The source-follower driver also provides a high impedance input and fast signalling. The 

source-follower is usually used as a level shifter or a buffer to drive large capacitive loads. In 

this configuration, the driver limits the interconnect swing from |Vthp| to Vdd-Vthn or 

approximately two threshold values below Vdd. 
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Figure 2.14: The symmetric source driver level converter (SSDLC) scheme [37]. 
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The receiver for the SSDLC scheme is similar to the receiver in the SDLC scheme except 

that the gates of the two pass transistors are biased at Vdd and ground respectively. Low-Vth 

devices are not required for this driver scheme due to the characteristic of the source 

follower. However, as stated in [37], the driver scheme requires a large Vdd, greater than 

2.8V, to generate a reasonable voltage swing on the interconnect. This may be the reason 

why its energy-delay product is almost the same as the conventional low-swing signalling 

scheme [37]. The advantage that the SSDLC scheme has over the conventional low-swing 

signalling and other static source driver schemes is improvements in terms of delay and 

complexity but lacks in the aspect of power saving, which is essential for on-chip signalling 

applications.  

In conclusion, the static source driver scheme is strongly dependent on the level conversion 

circuitry of the receiver for successful signalling, and most of the driver schemes such as the 

conventional low-swing signalling and the SDLC schemes require extra power rails or 

multiple power supplies. Even if multiple power supplies or extra power rails are not used, a 

relatively large Vdd is needed to successfully operate as in the SSDLC scheme.  

2.3.2.3. NMOS only push-pull driver scheme 

The previous two schemes, the SSDLC and ASDLC only manage to provide linear energy 

reductions since both schemes use standard Vdd. An NMOS only push-pull driver scheme is 

an improvement over the source-follower driver scheme in terms of power consumption. The 

driver scheme does not require any extra power supplies nor implementation of multiple 

voltage techniques but instead employs a voltage reference to drive the interconnect with 

reduced swing. The voltage reference could be as low as 0.7V. Similar to the static source 

driver scheme, the driver is dependent on the level conversion circuitry of the receiver. The 

basic structure of the NMOS only push-pull driver scheme is shown in Figure 2.15, 

accommodating differential sense amplifier at the receiver side. 
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Figure 2.15: NMOS only push-pull driver scheme [37]. 
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Several NMOS only push-pull driver schemes with different receiver designs [37] will be 

discussed here. There are four types of level converter used with the NMOS only push-pull 

driver. One of the level converters uses low-Vth devices, while another implements a 

coupling capacitor. There are also level converters that rely on extra timing signals to 

successfully retrieve the original signal. 

The level converter with low-Vth devices is similar to the level converter in the conventional 

low-swing signalling scheme except that, as the name suggests, uses low-Vth devices. The 

reference voltage is also applied to the level converter which is set to 0.7V and the Vthn and 

|Vthp| of the low-Vth devices are set at 0.3V [37]. The internal inverter in the level converter 

regenerates a complementary input signal internally, turning the level converter into a 

differential sense amplifier. The use of low-Vth devices will cause excessive leakage currents 

but since the low-Vth devices in this scheme are sized smaller than the driver, it is negligible 

compared to the total switching power of the driver scheme. In addition, the low-Vth devices 

are essential for this scheme as they help in turning on the NMOS or turning off the PMOS 

devices at the receiver output. 

Another level converter design for this driver scheme implements a capacitive coupling as an 

alternative to the low-Vth devices. The coupling capacitor is used to boost the low swing 

signal in order to turn on the NMOS transistor at the receiver output. Similar to the previous 

level converter, a voltage reference is also used for this scheme except that two voltage 

references are used instead which are set at 0.8V and 1.2V. The concept of charge sharing is 

introduced between the coupling capacitor and the parasitic capacitances. This however 

requires the coupling capacitor to be large enough for the charge sharing to work. The 

coupling capacitor is also used to convert a very low swing to a full swing using a 

bootstrapping technique. By using the coupled capacitance, low-Vth devices and extra timing 

signals are not needed. The level converter is also sensitive [37] to the device variations, 

especially the uncertainty in Vth as it can affect the small noise margin.  

Examples of the level converter for the NMOS only push-pull driver scheme that use extra 

timing signals for the receivers to detect the low swing signal more effectively are the level-

converting register (LCR) and pseudo-differential interconnect (PDIFF) schemes.  The LCR 

scheme shown in Figure 2.16 comprises of a cross-coupled inverter pair with one pre-charge 

transistor and one pass transistor whose gates are controlled by two timing signals, i.e. PRE 

and EVAL respectively [37]. The LCR scheme consumes little area overhead but the use of 
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extra timing signals increases the complexity of the circuit. In addition, the matching of the 

current drive capabilities at the input of the receiver is sensitive to the receiver‟s noise 

margin which is susceptible to supply noise and Vth variations. The LCR provides fast 

signalling only if the EVAL signal is applied after the input of the receiver reaches the stable 

point. The NMOS only push-pull driver scheme with LCR is too dependent on the timing 

signals for reliable operation. 
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Vdd
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PRE  

Figure 2.16: The level-converting register (LCR) [37]. 

The pseudo-differential interconnect scheme [37] is a level converter which also requires 

extra timing signals. The receiver comprises a clocked sense amplifier followed by a static 

flip flop. Similar to the LCR scheme, one voltage reference is used. The usage of a single 

wire per bit improves the reliability of this scheme in the aspect of the input offset and circuit 

sensitivity. However, there is a possible mismatch between the different voltage references of 

the driver and receiver which contributes to some reliability degradation. 

Although the NMOS only push-pull driver schemes provides a significant improvement in 

the energy-delay product compared to the static source driver schemes, the schemes are still 

susceptible to supply noise and device variations. In addition, the use of reference voltages 

and extra timing signals increase the complexity of the schemes. 

2.3.2.4. Charge sharing bus 

The charge sharing technique has been mentioned previously in the NMOS only push-pull 

driver scheme where its voltage level converter utilizes this technique in the coupling 
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capacitor for reliable level conversion. The charge sharing technique can also be applied to 

the differential signalling scheme. The technique is also often used between two bus wires to 

reduce the voltage swing using either a charge inter-shared bus [41] or charge recycling bus 

[42-44] schemes.  
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Figure 2.17: The charge inter-shared bus (CISB) scheme [41]. 

An example of the charge inter-shared bus scheme is the CISB shown in Figure 2.17, which 

is a reduced swing internal bus architecture achieving low power operation with no DC 

power consumption within any of the bus architecture [41]. The reduced swing is obtained by 

charge sharing between the bus wires and an additional bus wire, referred to as dummy 
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ground. The dummy ground is initially discharged to the real ground value and then 

immediately isolated from the ground, followed by the bus wires being discharged to the 

dummy ground instead of the real ground [41]. 

Noise could be significant due to the reduced swing but this can be overcome by 

implementing a differential amplifying scheme at the receiver end. The differential amplifier 

requires two reference voltages and extra timing signals to operate the dummy ground. 

Although the differential amplifier at the receiver is useful in overcoming the noise 

problems, the potential saving of this scheme is also compromised by the use of reference 

voltages and extra timing signals. Subsequently, the use of reference voltages and extra 

timing signals increase the complexity of the scheme. The cell area is almost double the cell 

area of conventional bus scheme due to the increased number of logic gates in the bus driver 

as well as the receiver. 

All charge stored at the output node of a typical CMOS circuit is dumped to the ground when 

the output state changes. A charge recycling circuit can reuse the charge from the previous 

cycles to reduce the power associated with the nodes involved in charge recycling by half 

[42]. An example of a charge recycling bus scheme is the low-swing charge recycling 

(LSCR) scheme which uses differential pass transistor logic, as shown in Figure 2.18. The 

LSCR scheme is used for low-power silicon-on-insulator (SOI) applications because in SOI 

the charge recycling bus scheme is less affected by the body effect and Vth variations when 

the source and drain voltages are raised [43], whilst leading to faster speed since lower Vthn 

in the pass transistor chain speeds up the circuit. Low power consumption is expected but the 

potential savings are compromised due to the transient leakage current during the clock 

transition, which is caused by the charge recycling mechanism. In addition, the complexity of 

the circuit is increased due to the use of clocked latched sense amplifier and differential 

signalling.  

Overall, the main issue of charge sharing bus schemes, whether they are charge inter-shared 

or charge recycled techniques, is still related to the complexity of the circuit. However as 

stated in [44], the power savings of the charge sharing bus scheme is more beneficial if it is 

applied to larger buses applications, where extra timing signals and reference voltages are 

tolerable.  
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Figure 2.18: Low-swing charge recycling (LSCR) scheme [43]. 

2.3.2.5. Differential voltage mode signalling scheme 

The previous low-swing signalling techniques with the exception of the charge sharing bus, 

implement a single-ended signalling scheme. There are several on-chip signalling schemes 

that use differential signalling taking advantage of their high noise immunity characteristic.  

The differential signalling techniques can be implemented in current mode (CM) and voltage 

mode (VM) signalling schemes. The difference between CM and VM signalling is that the 

signal produced on the transmission lines in VM uses the voltage as a signal while CM uses 

the current. In addition, a VM receiver presents a high impedance capacitive termination [45] 

while a low impedance termination is presented at the CM receiver which results in reduced 

signal swing and increased bandwidth. 

Differential VM signalling is able to further reduce the signal swing at a very low Vdd as 

used in the low-swing signalling scheme in [46]. The proposed drivers in [46] consume less 

current and introduce ac-coupling without modifying the design compared to the current-

mode drivers. An example of this driver scheme is a voltage mode driver with a low Vdd, as 

shown in Figure 2.19(a), which comprises of two NMOS transistors as pull-up and pull-down 

networks. However this configuration of the driver scheme requires additional external low 

voltage supply to obtain low swing output voltage since the output voltage swing is 

determined to be Vdd/2. This increases the complexity of the circuit. 
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(a)                                                                   (b)              

Figure 2.19: The differential VM signalling driver with (a) external low-voltage supply and 

(b) regulator [46]. 

The external voltage supply can be replaced with regulated Vdd as proposed by the 

differential VM driver scheme in Figure 2.19(b), where the voltage swing is controlled by a 

regulator. However, the regulator is known to be a complicated analogue circuit which 

requires large capacitor, Cbypass at the regulated supply output for an ac ground. The solution 

to this problem leads to another low-swing differential VM driver design as shown in Figure 

2.20.       

The driver circuit shown in Figure 2.20(a) is called a reduced-swing voltage mode driver, 

which basically consists of two CMOS inverters and incorporates two supplementary 

resistors, Rb between the two inverters to make an additional current path. The resistive 

current path allows the voltage to be reduced with the increase in resistance between Vdd and 

ground leads to less drawn current with the reduced output voltage swing. A PMOS transistor 

is used as a pull-up resistor since all devices in the driver operate with a shared supply, thus 

there is no need for an extra low power supply. The driver scheme also employs de-emphasis 

drivers to compensate the inter-symbol interference due to narrow bandwidth of the channel.  

Inter-symbol interference occurs when data on a channel is corrupted by other data travelling 

on the same channel but at an earlier time. For lossy and on-chip interconnect channels, this 

happens when the energy stored from data earlier sent sums with the unrelated data. In other 

words, the inter-symbol interference occurs when the attenuated high frequency signal 

components are overwhelmed by the un-attenuated low frequency components [47]. This can 
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be compensated by emphasizing the high frequency signal or attenuating the low frequency 

components which will equalize the channels. 
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Figure 2.20: The configuration of (a) reduced-swing VM driver signalling scheme with (b) 

de-emphasis driver [46]. 

Figure 2.20(b) shows the reduced-swing VM driver with de-emphasis drivers. The de-

emphasis drivers have weak strength and one clock latency to the main driver. Since the 

interconnect for this scheme is already doubled due to the nature of differential signalling, 

additional circuitry such as the de-emphasis driver increases the total area overhead. 

However, there are more efficient ways incorporating a de-emphasis driver into a differential 

signalling scheme, these methods will be discussed later in Section 2.3.2.7. 

The receiver used for the schemes proposed previously comprised a clocked unbalanced 

sense amplifier, which charges and discharges every clock cycle, which will slightly increase 

the power consumption as the activity factor will be high. Another differential voltage mode 

signalling scheme is proposed in [48] which comprises a receiver circuit based on the 

symmetric source driver level converter (SSDLC) scheme, as mentioned previously in 
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Section 2.3.2.2. The differential voltage mode driver circuit proposed in [48] is called a self 

level converter (SLC) driver, which consists of a pair of identical level converter circuits fed 

by the input signal and its complement. There is a pair of diode-connected transistors at the 

driver output which can be sized accordingly to control the output voltage swing in the 

desired range. The receiver produces a difference signal which cancels out any coupled and 

common mode noise that maybe present in the signal [48], thus increasing the robustness and 

reliability of the scheme. The SLC driver scheme has better delay and power characteristics 

but has no improvement on the effect of process variation on delay. 

The differential voltage mode signalling scheme is advantageous over the single-ended 

schemes proposed previously, especially in terms of noise immunity and has better delay and 

power characteristics. However, similar to the single-ended scheme, the differential voltage 

mode signalling also requires additional circuitry such as a voltage regulator, de-emphasis 

drivers and additional low power supplies to increase its robustness against noise and process 

variations; subsequently, its main disadvantage is its overall complexity. 

2.3.2.6. Current mode signalling scheme 

The low-swing CM signalling scheme has significant advantages over the conventional low-

swing VM signalling (Figure 2.10) in terms of power, delay and noise immunity [49]. The 

scheme is also one of the promising alternatives to the voltage mode buffer insertion scheme 

for high-speed low-power on-chip signalling. This technique was usually used for off-chip 

interconnections but several circuit designers [37,50] have explored its potential for on-chip 

use. The CM signalling can be implemented as a single-ended or differential signalling.  

A. Single-ended Current Mode Signalling Scheme 

Several repeaterless CM signalling schemes with driver pre-emphasis or dynamic 

overdriving have been proposed for data transmission over long interconnects [51-53]. The 

CM signalling schemes with driver pre-emphasis will be discussed later in the next section. 

Dynamic overdriving means giving a strong drive to the line during the transition of the input 

and very small drive in steady state. It also involves amplifying high frequency components 

of the input signal before transmitting. This will lead to the decrease in delay of the 

interconnect. The scheme can adaptively control the signal swing based on the input. CM 

signalling schemes with a dynamic overdriving driver are single-ended permitting high-speed 

data transmission at low static power consumption to be achieved [54].  
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An example of this scheme is the dynamically overdriving driver with feedback inverter or 

DOD-FB [51] as shown in Figure 2.21.  The scheme consists of a strong driver and a weak 

driver where the output of the driver is fed back to the feedback inverter at the front. The 

strong driver is turned off after the line voltage crosses the switching threshold of the 

feedback inverter [51]. The receiver used for this scheme comprises a low gain amplifier and 

a controlled current source in the feedback loop of the amplifier. The feedback circuit clamps 

the interconnect line to Vdd/2 and creates a current sensing virtual ground node at the 

receiver input. A high sensing speed is achieved because the node is always very close to the 

amplifying inverter threshold voltage. The input level of the amplifier can change very 

quickly by the small amount needed to swing its output before the feedback becomes active 

to clamp the input to approximately Vdd/2 [51]. However, the main disadvantage of this 

scheme is with respect to clamping the input voltage to Vdd/2 which results in continuous 

current drain through the interconnect line, thus increasing in the power consumption. The 

scheme still suffers from static power consumption even though it uses sleep transistors 

during steady state to control the static current. 
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Figure 2.21: Dynamic over-driving driver circuit with feedback inverter scheme. 

The DOD-FB scheme is significantly affected by the static current and thus another 

dynamically overdriving driver scheme is proposed to mitigate this problem. The scheme is 

known as a pulse-based CM scheme, as shown in Figure 2.22 which is designed to trade off 
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speed for a smaller static current drain [51]. The scheme implements a pulse generator at the 

input driver to convert the data stream into pulses. The transmitter is basically an inverter 

driver but with an output swing which is limited between Vdd-|Vthp| and ground. The 

receiver consists of a current mirror which reconstructs the pulses at the receiving end, and a 

feedback inverter latch. This is followed by a level converter which regenerates the level 

from pulses to the original data stream. The level converter also includes a delay element. 

The limited swing from the driver reduces the power consumption and is very critical to the 

receiver operation as a higher swing would turn off the receiver transistor through the current 

mirror [51]. The pull-down transistor of the driver has a relatively large width which is 

essential to provide a low resistance path to the ground. In comparison to the DOD-FB 

scheme, the static current is reduced but the pulse-based CM scheme is not suitable for high 

data activity as it trades off high speed for lower static power consumption. 
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Figure 2.22: Dynamic over-driving driver circuit with pulse-based CM scheme. 

Another dynamically overdriving driver scheme has been proposed [54], which is an 

improvement over the DOD-FB and pulse-based CM scheme in terms of power, delay and 

area. The scheme is a dynamic overdriving driver scheme with a biasing circuit and is also 

known as DOD-Bias, as shown in Figure 2.23. Similar to the DOD-FB scheme, strong and 

weak drivers are employed with the strong driver kept on for a fixed duration of time given 

by delay element in the driver. The bias voltages of the current sources in the strong and 

weak drivers are generated by inverters with a shorted input and output. The bias generation 
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circuit for the PMOS current sources consists of a small PMOS transistor which functions as 

a process corner sensor, and a long channel NMOS transistor as an internal resistor [54]. The 

same configuration is also applied for the bias generation circuit for the NMOS current 

sources but substitutes the small PMOS transistor with an NMOS device, and the long 

channel NMOS transistor with PMOS device. The static power consumption is reduced in 

this scheme as it is distributed to all the lines in the bias generation circuit. The delay element 

is a chain of 3 inverters while the receiver consists of diode-connected PMOS and NMOS 

pair, followed by an inverter.  
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Figure 2.23: The dynamic overdriving driver scheme with a biasing circuit [54]. 

The DOD-Bias scheme provides significant improvements in terms of power, delay and area 

over other similar techniques and the conventional low-swing signalling method. However, 

there are a few flaws with this scheme, especially by incorporating the dynamic overdriving 

driver. Firstly, the DOD driver used in this low-swing signalling scheme limits the overall 

speed through the use of long channel transistors in the DOD driver which increase the 

interconnect delay [54]. Even though the problem regarding the static current is mitigated by 

the DOD-Bias scheme, the throughput of these CM schemes is still degraded due to the 

process variations. 
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B. Differential Current Mode Signalling Scheme 

Differential CM signalling has a distinct advantage over the single-ended method in terms of 

noise immunity and signal integrity, which is important in deep submicron designs. 

Additionally, it can operate at much higher signalling rates than the conventional single-

ended VM signalling schemes. The operation of the transmission line in the differential CM 

method allows the voltage swing to be reduced without using separate voltage references 

[48] and also isolates the received signal from power supply noise [49]. The drawback of CM 

signalling is the static power consumption. However, this can be reduced through differential 

CM signalling such as the single pFET current source signalling scheme [55]. 

The single pFET current source signalling (SiPF) scheme [55] consists of two current 

sources and some control logic as shown in Figure 2.24(a). The receiver used for this scheme 

is shown in Figure 2.24(b). Figure 2.25 shows the architecture of the SiPF scheme, where 

extra timing signals are required for the pulse generators at the driver and the receiver. There 

are two control signals, TEN and SEN, from the pulse generator which control the signalling 

scheme operation. The TEN signal enables the driver while the SEN signal enables the 

current mode sense amplifier receiver. The receiver converts the current difference into a 

logic level output. Basically, the current sources are controlled using the logic gates and the 

interconnect which draws high current during data transfer is actively clamped from the 

transmitter side. This method is to prevent the current from draining through the interconnect 

line. The scheme can also be used to connect multiple tri-state transmitters to a single 

interconnect which is faster than using parallelism or multiplexing techniques and thus saves 

on the number of wires required. This differential CM scheme with pulse generators is 

efficient in terms of delay and power, especially for global on-chip signalling as well as 

providing a reduction in static power consumption.  
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Figure 2.24: The architecture of (a) the SiPF transmitter and (b) the CM sense amplifier 

receiver [55]. 
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Figure 2.25: The overall architecture of the SiPF scheme [55]. 

Another example of a differential CM signalling scheme which instead of using pulse 

generators to control the signalling, a common-mode feedback circuit is used. The 

differential CM signalling scheme shown in Figure 2.26 is one of the schemes that is able to 

present a reduced swing signal and output a common-mode voltage by implementing a 

common-mode feedback circuit [56]. The driver comprises source-coupled logic gates with 

load resistors. The scheme also includes switching both the source and sink currents at the 
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output stage, which helps in reducing the total current consumption. The common-mode 

feedback circuit is applied at the input of the pre-driver buffers which help in driving the 

large input capacitance at the output of the driver. The buffers control the input common-

mode voltage of the output driver very carefully which maintains the correct operation of the 

transistors at the output stage. The common-mode feedback circuitry provides a common-

mode noise rejection which improves the reliability of the driver scheme. In addition, there is 

an improvement in speed and power. 
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Figure 2.26: Differential CM signalling scheme with common-mode feedback circuit [56]. 

The SiPF and the differential CM signalling scheme with common-mode feedback circuit, 

require additional circuitry for the signalling operations. However, a system which does not 

require a pulse generator or feedback circuitry in order to achieve a high-speed low-power 

on-chip signalling capability is the low-swing differential CM signalling scheme [57]. As 

shown in Figure 2.27, the driver consists of a current source, a differential pull-down 

network and an active PMOS load. A reference voltage called Vload is fed to the gate of the 

NMOS transistor which functions as a current source; Vload is set at 1.8V. The scheme is 

based on the current steering approach where the current source will generate a constant 

current which is steered to one of the circuit paths depending on the inputs to the differential 

pull-down network. The pair of PMOS transistors at the pull-up network acts as a load 

resistance. This differential CM signalling scheme provides constant energy consumption 

due to the use of constant current source. The dynamic power consumption is negligible with 
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respect to the static power [57]. The scheme improves in energy-delay product and area 

overhead compared to the repeater insertion technique. 
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Figure 2.27: Low-swing differential CM signalling scheme [57]. 

Overall, the differential CM signalling schemes discussed previously come with significant 

costs because the transmitter and receiver require extensive complex design management 

such as the pulse generator and feedback circuitry, and may still be vulnerable to clock skew 

and jitter variations. They also introduce extensive area overhead due to the additional 

circuitry and extra timings as well as doubling the number of wires due to the nature of 

differential signalling. These drawbacks increase the complexity of the circuit. Even though 

the differential CM signalling scheme such as the low-swing differential CM signalling 

scheme [57] does not implement additional circuitry or extra timing, it does however, require 

a reference voltage, which is essential in keeping the current source constant for reliable 

signalling. In addition, for low data activity applications, the differential CM signalling 

scheme can create larger power dissipation than the conventional single-ended VM signalling 

schemes [58], due to the static current path of CM signalling which adds to the total power 

dissipation [59]. 
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2.3.2.7. Driver pre-emphasis techniques 

Driver pre-emphasis techniques are often used for low-power applications as they provide 

low-swing signalling. Unlike most low-swing signalling schemes which often sacrifice noise 

margin and bandwidth for low power consumption, the driver pre-emphasis techniques 

improve the bandwidth whilst trading off noise margin due to reduced voltage swing. This 

technique can be associated with the differential CM [53] and single-ended VM signalling 

methods [47,53]. The scheme is based on an equalization technique where the frequency 

dependent attenuation in a lossy transmission line is suppressed to achieve higher data rates. 

The suppression reduces the voltage swing, which leads to improvements in bandwidth and 

power consumption. In addition, the scheme also provides an overdrive of the signal at the 

receiver input which subsequently increases the signalling speed. When the data goes 

through the driver, it is pre-emphasized, which means it will not introduce any extra delay 

into the timing. Furthermore the data sequence does not need to be pipelined or delayed 

before entering the input of the bus. 

There are two types of low-swing signalling schemes which incorporate driver pre-emphasis 

techniques [53]. The first scheme involves a differential CM signalling with driver pre-

emphasis technique, and consists of, as shown in Figure 2.28, a single-ended to differential 

converter circuit, a 1-tap finite impulse response (FIR) filter and a simple digital-to-analog 

converter (DAC), where they are used to reduce the driver power overhead.  
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Figure 2.28: Differential CM signalling scheme with driver pre-emphasis techniques [53]. 
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The digital-to-analog converter comprises two tri-state gates which are only turned on when 

a transition is detected [53]. The input to the 1-tap filter is from the delay element which 

consists of long-channel transistors. The filter checks whether the current data is different 

from the previous data sent and determines whether the DAC should be turned on. The 

receiver consists of an NMOS transistor and a differential pair of an active current mirror. 

The NMOS transistor is situated at the input of the receiver and acts as the resistive 

termination, while the current mirror amplifies the differential signal swing and converts it to 

a single-ended output. The long-channel transistors are used to compensate for the input 

offset voltage [53]. This configuration provides effective power savings for high data activity 

applications. As been analysed in [53], the static current for the differential CM signalling 

scheme with driver pre-emphasis technique is high for data activity factor less than 0.1.   

Another configuration of an on-chip signalling scheme which incorporates the driver pre-

emphasis technique is the single-end VM circuit. In current mode signalling, the high 

frequency signal components are pre-emphasized at the driver whilst in VM signalling the 

low frequency signal components are de-emphasized [47] which reduces the inter-symbol 

interference and thus saves power. 

The single-ended VM signalling scheme with pre-emphasis driver is shown in Figure 2.29. 

The DAC circuit employs two stages of tri-state gates where the first stage is a pair of 

PMOS/NMOS transistors forming an un-attenuated driver, which provides a full signal swing 

at the driver output [53] The second stage consists of two pairs of PMOS/NMOS transistors 

forming an attenuated driver which attenuate all consecutive 1’s or 0’s. The un-attenuated 

driver is only turned on when there is a transition activity, which provides full signal swing at 

the driver output. The attenuated driver consists of a normal output driver gate which is 

connected to diode-connected transistors to provide the low signal swing from Vth to Vdd-

Vth at the receiver input. 

 



61 
 

Di-1Di

clock

Vdd

bufinv

Digital-to-analog 
converter1-Tap FIR filter

Sense amplifier

out

Vdd

1-Di

Dout

 

Figure 2.29: Single-ended VM signalling scheme with pre-emphasis driver [47]. 

The power-delay performance of the driver pre-emphasis technique is significantly improved 

compared to the repeater insertion technique. The pre-emphasis technique improves the 

bandwidth while trading off noise margin for a reduced signal swing. The reduced power 

consumption is achieved by both the CM and VM signalling schemes, with the CM scheme 

reigning over the VM scheme in terms of reduced static current. However, one important 

aspect that is needed to be considered is its robustness against process variations. The DC 

voltage levels at both driver output and the input are dependent on Vth, thus any variation in 

Vth will directly affect the performance of the pre-emphasis technique, especially the noise 

margin. 

2.3.2.8. MJ Driver Circuit 

MJ driver is a low-swing driver based on the UDLD driver, which provides a symmetrical 

low swing through the use of diode-connected transistors pairs at the output as shown in 

Figure 2.30. The driver circuit also provides high driving capability through the use of 

multipath technique where two separate paths are provided for assisting low-to-high and 

high-to-low transitions at the output. The upper half of the circuit is in charge of the rising 

transition whilst the lower half of the circuit is for the falling transition. The combination of 

these two paths and the feedback path through G6 provides for large output currents and fast 

switching of the output during transitions. In [60], the MJ driver is compared against another 
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diode-connected driver called the DDC driver, which shows significant improvements in 

speed and power consumption. An important advantage of this driver over other low-swing 

driver circuits discussed so far is its ability to provide high speed signalling with low power 

consumption without additional circuitry or wires, resulting in small area overhead. 

Subsequently, the MJ driver provides stable voltage swing, as a result, is less prone to noise 

especially supply voltage noise.  
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OUT

 

Figure 2.30: The MJ driver circuit with diode-connected configuration [60]. 

2.4. Summary 

Several important aspects of power consumption have been discussed and some related 

models are introduced to assist in modelling a low-power on-chip signalling circuits for this 

thesis. Several low-power signalling schemes are introduced and categorized into full-swing 

and low-swing signalling. All the signalling schemes mentioned in this chapter are described 

and analysed in order to understand their features and abilities to provide low-power and 

high-speed signalling. Subsequently, the salient characteristics of the signalling schemes are 

summarised in Table 2.1, for future use and reference for designing a low-power and high-

speed on-chip signalling scheme. 
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Table 2.1: Qualitative comparison of low-power on-chip signalling schemes. 

 A B C D E F G H I J K 

Low swing   X X X X X X X X X 

Extra Vdd     X X X     

Reference voltage    X X X      

Multiple Vdd   X X X X      

Low power X X X X X X X X X X X 

Low delay X  X X X  X X X X X 

Good SNR  X X X X  X X X X X 

Area penalty X X X   X X  X X  

Low-Vth device    X        

Extra timing     X X      

High leakage 

current 

  X   X  X    

Receiver-

dependency 

  X X X       

Long-channel 

Transistor 

       X  X  

Extra capacitor X           

Interconnect  Se Se Se Se Se Se/Di Di Se Di Se/Di Se 

 

Keywords: 

A: Bootstrapping technique G: Differential voltage mode signalling 

B: Parallelism technique H: Single current mode signalling 

C: Multiple voltage technique I: Differential current mode signalling 

D: Static source driver J: Driver pre-emphasis technique 

E: NMOS only push-pull driver K: MJ driver 

F: Charge sharing bus   

Se: Single-ended signalling Di: Differential signalling 

Most of the signalling schemes summarised in Table 2.1 address low power applications but 

not all schemes provide high speed signalling such as schemes employing parallelism 

techniques and charge sharing bus techniques. The full-swing signalling schemes such as 
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those that employ parallelism and bootstrapping techniques can provide low power 

implementations but are slightly less efficient compared to power savings ability provided by 

the low-swing signalling methods. However, the main issue faced by the low-swing 

signalling schemes is the area penalty. The necessity to accommodate extra Vdd supplies, 

reference voltages, low-Vth devices, extra timing and multiple Vth contribute to the increase 

in area overhead and complexity. Subsequently, several low-swing signalling schemes also 

incorporate long-channel transistors which can caused increase in delay of overall scheme. 

The main problem with the differential low-swing signalling schemes are the increase in the 

number of wires which adds to the area overhead. Even though this issue can be traded off 

with the noise rejection and significant power reduction, the increase in the number of wires 

can significantly affect the complexity of the schemes especially if additional circuitry such 

as multiple Vdd supplies and extra timing circuitry are required. The most important aspect 

that can be highlighted here is that process variation analysis is often not included in their 

analysis, which is significantly important as process variation can adversely affect the 

performance of the signalling schemes. 

Table 2.1 indicates that the MJ driver circuit (K), has the best attributes compared to the 

other signalling schemes. This is because the scheme provides low power and high speed 

signalling without the use of extra circuitry such as extra Vdd and reference voltages. In 

addition, the scheme has a good SNR as well as low leakage currents. The MJ driver employs 

a simple inverter at the receiver end, which also minimises the area overhead. The 

differential current mode signalling also has similar attributes to the MJ driver, however, 

suffers from area penalty due to the doubled number of wires. Furthermore, sense amplifiers 

are usually incorporated in the differential current mode signalling schemes, which increases 

the area penalty.  

Another candidate that is also has comparable attributes with the MJ driver is the driver pre-

emphasis technique. Even though extra circuitry such as extra Vdd supplies, multiple Vth and 

reference voltages are not required for driver pre-emphasis techniques, which can increase 

overall complexity, the schemes still suffer from area penalty due to the double number of 

wires used for differential pre-emphasis driver scheme and the use of a sense amplifier for 

both single-ended and differential pre-emphasis driver schemes. Subsequently, the use of 

long-channel transistors may affect the overall throughput of the scheme as the driver pre-

emphasis technique significantly dependent on the long-channel transistors. 
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The low-swing signalling schemes proposed in this work also incorporate diode-connected 

configuration at the output as they can provide low-power and high-speed signalling due to 

its high driving capability without the use of a sense amplifier, long-channel transistors and 

even additional number of wires, similar to the MJ driver circuit. The proposed scheme is 

able to further reduce the signal swing in order to have significant power reduction whilst 

still maintaining high speed performance and good SNR.  

The most important aspect that can be highlighted here is that process variation analysis is 

often not included in the analysis, which is significantly important as process variation can 

affect the performance of the signalling schemes. In addition to process variation, the impact 

of temporary faults such as crosstalk and single event upset are important issues to consider. 

Analysis on process variation as well as temporary faults will be discussed in the later 

chapters, addressing the robustness of the proposed low-swing signalling scheme against 

variability and external disturbances. 
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Chapter 3 

 

LOW-SWING SIGNALING SCHEMES INCORPORATING A DIODE-

CONNECTED CONFIGURATION 

 

3.1. Background 

Delay and power dissipation have been important issues for quite some time due to the 

aggressive scaling used in integrated circuit design. The ever increasing energy consumption 

of an integrated circuit is mainly due to the interconnect wires and the associated driver and 

receiver circuits. The need for high speed on-chip signalling with low power is increasingly 

in demand.  Low swing signalling schemes are known to provide both high speed and low 

power to global on-chip applications as discussed in Chapter 2. Most of the low-swing 

signalling schemes are also immune to noise as they have good SNR. However, the low-

swing signalling schemes discussed in Chapter 2, have a large penalty in area and complexity 

as they require additional circuitry such as internal voltage generators and low-Vth devices. 

Most of the schemes also incorporate multiple Vdd and reference voltages which increase the 

overall circuit complexity. As shown in Table 2.1, the low-swing signalling circuit called the 

MJ driver scheme [1] has the best attributes over the other low-swing signalling techniques 

in terms of low power, low delay, good SNR and low area overhead.  

The MJ driver is classified as a diode-connected driver, other driver circuits in this category 

are the UDLD [2] and DDC [3] drivers, which will be discussed in this chapter. The VM pre-

emphasis driver scheme [4] introduced in Chapter 2, also incorporates a diode-connected 

configuration. This configuration is efficient in providing a high speed signalling due to its 

high driving current capability, especially if placed at the output, as in the case of the MJ 

driver and the VM pre-emphasis driver described in Chapter 2. Subsequently, this 

configuration also provides lower voltage swing at the output, which directly leads to lower 

power consumption. However, the issue with this type of configuration is its adaptability to 

process variation [3], as well as the issue with leakage currents. Consequently, this means it 

is of the utmost importance to address these issues when designing a diode-connected driver 

or any type of low-swing driver, as well as obtaining low power consumption and 

maintaining high speed signalling. 
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Therefore in this work, a low-swing signalling scheme which incorporates the diode-

connected configuration is proposed. The proposed driver circuits, namely the nLVSD and 

the mLVSD drivers, which have similar characteristics to the MJ driver, will be discussed in 

this chapter. The nLVSD and mLVSD circuits will be analysed in terms of power 

consumption and performance; the common problematic issues, such as noise and leakage 

power consumption, encountered by other diode-connected driver schemes will also be 

addressed.  

This chapter continues with an overview of the performance metrics of a low-swing 

signalling scheme in Section 3.2. The structure and components of the low-swing signalling 

scheme incorporating diode-connected configuration is introduced in Section 3.3 together 

with its main components (driver, interconnect, receiver) which are detailed in separate sub-

sections. The driver subsection will concentrate on the diode-connected configuration, which 

includes a background review on the structure and circuit operations, which leads to the 

proposed driver circuits. Brief introductions on the interconnect and the receiver design will 

also be included. Lastly, an outline of the performance analyses that will be undertaken are 

described, which includes the comparison between the DDC (dynamic diode-connected), MJ 

and the proposed driver schemes in terms of power consumption, delay, area overhead and 

noise immunity. The power consumption and delay of the driver schemes are analysed 

against several contributing factors such as the load capacitance, supply voltage, operating 

temperature and frequency. 

 

3.2.  Performance Metrics Of Low-Swing Signalling Schemes 

The work in this thesis involves a comparison between four diode-connected driver schemes 

in terms of their performance on long interconnect. Consequently, to make a fair comparison 

between the schemes, the same interconnect architecture is used. For each of the schemes 

under test, the following metrics will be considered. 

a) Dynamic power consumption 

The dynamic switching energy of a wire is a function of wire capacitance, load capacitance, 

supply voltage and voltage swing, which is shown in Equ.3.1 [5]; 
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                                                                            .                      (3.1) 

While the dynamic power consumption can be calculated by using Equ.3.2, which is a 

product of energy and switching frequency. 

                                                                                                                        (3.2) 

b) Design complexity 

The design complexity of a signalling scheme can be measured in terms of its area overhead 

and the use of additional Vdd or low-Vth devices.  

c) Delay 

Delay can be approximated by the Sakurai‟s equation [6] shown below. 

                                             
                                        (3.3) 

where    and    are the interconnect resistance and capacitance per unit length,   ,     is 

the output resistance of the driver, and    is the load capacitance. The output resistance of a 

MOSFET is a nonlinear function of the supply voltage. A closed form expression for     is 

given below [7]. 

                                                           
 

 

   

     
   

 

 
                                              (3.4) 

where, 

                                                     
 

 
                

     
 

 
                             (3.5) 

and 

                                                                    
    

                                                      (3.6) 

Where, Idsat = saturation drive current, Vdsat = saturation source drain voltage, W/L = 

transistor aspect ratio, tox = gate oxide thickness, λ = channel length modulation, proportional 

to the increase of channel length. 

CL can be calculated through the equation for the driver delay, which is approximately 

equivalent to 0.7RdrCL. The driver delay, tp, can be determined by using a circuit simulation 
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package, for example, SPECTRE. The delay can also be obtained by measuring from the 

50% Vdd point of the signal input of the driver to corresponding point on the signal at the 

end of the line, i.e. the signal input of the receiver, as shown in Figure 3.1. 

d) Energy-Delay-Product and Power-Delay-Product 

Both metrics can be used to analyse both power and speed performance. Energy-Delay-

Product (EDP) is a product of total energy consumption and propagation delay while Power-

Delay-Product is defined as a product of the average power consumption and propagation 

delay. These metrics are usually used in determining optimized widths of a device. EDP is 

preferable since it is independent of the operating frequency, which simplifies the 

optimization process and can be applied at any signal rate. 

e) Waveform integrity 

Waveform integrity can be measured in terms of slew rate and signal overshoot. An ideal 

signal is a step function, switching instantaneously between 0 and Vdd. However, this model 

is only an approximation to the actual switching waveforms, which in reality have a non-zero 

slew rate and possible signal overshoots. 

Vdd

VoutVin

Delay

Overshoot

Slew rate 

(V/t)

Voltage

TimeUndershoot

90%

10%

 

Figure 3.1: Performance metrics for on-chip interconnect analysis [8]. 
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Slew rate is defined as the ratio of voltage to time (V/t) required for the signal to change 

from 10% to 90% of its final value. Due to limited driver strength and lossy interconnect 

condition, switching in reality has a finite slew rate, which delays signal stabilization and 

transportation. As circuit speed increases rapidly, slew rates need to be well controlled. 

Furthermore, high speeds may also lead to signal overshoot, either above Vdd or below 

ground (undershoot), as shown in Figure 3.1. 

f) Reliability 

Reliability is measured in terms of signal-to-noise (SNR) ratio, which is defined as  

                                                                     
     

  
                                                     (3.7) 

The worst-case noise analysis for reliability measurement has been summarised in [9]. The 

overall noise is considered to be generated from two main sources categorized as either 

proportional noise sources or independent noise sources, as shown below, 

                                                                                                                         (3.8) 

The proportional noise sources (    ) are proportional to the magnitude of signal swing 

such as crosstalk and the signal-induced power supply noise. The signal-induced power 

supply noise     is estimated to be 1% and 5% of the signal swing for differential and 

single-ended signalling, respectively. The crosstalk coupling coefficient, KC is a ratio 

between coupling capacitance and interconnect load capacitance as shown in Equ.3.9, where 

CC is the coupling capacitance, CW is the interconnect capacitance and CL is the fan-out 

capacitance. The crosstalk attenuation is estimated to be 0.05 for a static driver circuit. 

Therefore, when considering the effect of crosstalk noise, KN = AttnCKC +     where AttnC is 

crosstalk noise attenuation.  

                                                      
  

        
                                           (3.9) 

    comprises independent noise sources such as receiver input offset, receiver sensitivity 

and signal-unrelated power supply noise. The receiver input offset, RX_O and receiver 

sensitivity, RX_S are dependent on the receiver, which involves changes in the receiver‟s 

switching threshold voltage in respect to process variations. The signal-unrelated power 

supply noise, PS is assumed to be 5% of the magnitude of the power supply. The power 
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supply attenuation coefficient, Attn is defined as the change in the switching threshold 

voltage in respect to the supply voltage variation whilst the transmitter offset, TX_O results 

from the parameter mismatch between the transmitter and receiver. Equ.3.8 can subsequently 

be expanded to include these noise parameters, as shown in Equ.3.10. 

                                                                                                  (3.10) 

The power supply attenuation coefficient, Attn is measured by the changes in receiver 

switching threshold voltage due to the change of the supply voltage, as shown in Figure 

3.2(a). Receiver input offset, RX_0 and receiver sensitivity, RX_S can be measured as shown 

in Figure 3.2(b) where the worst case difference of the threshold voltage is measured at every 

simulated process corner.  

OUT

IN

ΔVtho

ΔVdd

Rx_O

Rx_S

OUT

IN

 

(a) (b) 

Figure 3.2: The measurement of (a) power supply attenuation coefficient, and (b) receiver 

input offset and sensitivity [9]. 

 

3.3. The Low-Swing Driver Signalling Schemes 

Long global interconnects are usually associated with long propagation delay and on-chip 

power consumption, mainly due to its parasitic components. Most circuits apply low voltage 

techniques to mitigate problems with power consumption and propagation delay.  However, 

driving large capacitive loads limits the performance of CMOS circuits, especially at low 

voltages. The most effective technique for global interconnects to achieve power reduction 

and delay efficiency is by reducing the voltage swing of the signal propagating along the 

wire; however, this will require a fast low voltage swing driver circuits. Low swing 

signalling schemes consist of a low voltage swing driver and a low power level restorer 
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(output buffer) at the receiver end, as shown in Figure 3.3. Each of the main components 

(driver, interconnect, receiver) of the scheme requires careful detailed design in order to 

obtain the objective of having a low power and fast signalling scheme for global 

interconnects.  For this work, the design of a diode-connected driver circuit will be focused 

on, followed by the interconnect model and suitable receiver design. 

 

Figure 3.3: The architecture of low swing signalling scheme.  

3.3.1. Diode-connected driver structure 

Basically, power consumption is a product of switching frequency, load capacitance, supply 

voltage and voltage swing. The voltage swing should be as low as possible in order to reduce 

the power consumption. The challenge is in retrieving back the original signal or how to 

convert the low swing back to the full rail signal swing. In order to retrieve the original 

swing, an efficient receiver circuit is required which can add to the complexity of the low 

swing scheme and can occupy a large area overhead. In addition, the reduced voltage swing 

increases the delay through the long interconnect wires. Therefore, extra strong drivers are 

needed to drive the high capacitance nodes in order to maintain the required speed. As 

mentioned before, a strong driver circuit which can produce a low signal swing without the 

requirement for additional circuitry or a complicated receiver circuit is incorporated in the 

diode-connected configuration used in the MJ driver circuit. Therefore it is essential to 

understand the concept of diode-connected configuration first in order to design a new and 

improved version of the MJ driver. 

A. Diode-connected configuration 

In the diode-connected configuration the drain terminal of a device is shorted to the gate 

terminal, subsequently the drain saturation current, Idsat, which flows through the MOSFET 

device increases exponentially with the increase in the output voltage. The diode-connected 

configuration for both NMOS and PMOS devices are as shown in Figure 3.4(a) and the I-V 
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characteristics for n-channel device is shown in Figure 3.4(b). The I-V characteristics for this 

configuration are qualitatively similar to a p-n junction diode or MOS diode, which is mostly 

used as a component in a current mirror or a means of creating a voltage drop in level 

translation circuit. 

Vdd
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+

+
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V

V

I

V
 

(a) (b) 

Figure 3.4: Diagrams of (a) diode-connected configuration for CMOS devices and I-V 

characteristics for n-channel diode-connected configuration [10]. 

The I-V characteristic of the MOS device is described by the large signal equation for drain 

current in saturation as in Equ.3.11. The connection of the gate to the drain guarantee 

operation in the saturation region, which means that Vds is in charge of ID and thus, the 

channel transconductance becomes a channel conductance. 

                                                 
   

  
          

 
 

 

 
         

 
                         (3.11) 

The nature of this configuration is that it is able to control the output to a certain voltage 

level and not allow that voltage to increase beyond a given limit. Basically it compresses the 

input voltage into a smaller output voltage; hence a low swing signal is produced. At low 

voltage levels, Idsat can be reduced significantly to freely change the value of the output 

voltage with little or no impedance loading [11]. For deep submicron processes, the 

resistivity of the interconnect is significant and over-driving the interconnect by actively 

driving the interconnect beyond the low swing limits will help in decreasing the propagation 

delay [12]. The amount of over-drive is determined by proper transistor sizing. 
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B. Low-swing driver application 

As mentioned previously, the diode-connected configuration is used in current mirror circuits 

and additionally, due to its nature in limiting voltage output to a certain level, it can also be 

applied as a high-to-low voltage level converter, which is essential in low-swing driver 

circuits. The concept of a diode-connected configuration incorporated in the MJ driver, was 

adapted from an Up-Down Low Swing Voltage Driver (UDLD) [2] shown in Figure 3.5, 

where the output voltage swing is based on the value of the threshold voltage, Vth. However 

in the MJ driver the resulting symmetrical output swing is between Vthp and Vdd–Vthn.  

OUT
IN

Vdd

 

Figure 3.5: Circuit diagram of the UDLD driver [2]. 

Another adaptation of this driver configuration is a dynamic diode-connected driver which is 

presented in Figure 3.6. The dynamic diode-connected (DDC) driver is similar to the MJ 

driver in terms of its advantages compared to other low-swing drivers as it does not require 

any additional circuitry or power supplies to provide efficient power and delay performances. 

The DDC driver comprises 4 output transistors (DDC-P, DDC-N) which switch in three 

different modes; active, diode-connected and turn-off. When the DDC driver is turned on or 

in active mode, it provides a high drive capability to quickly charge or discharge the 

interconnect. When the transistors are switched to diode-connected mode, the voltage swing 

on the interconnect is limited, which offers lower impedance than the source follower giving 

improved noise immunity. The DDC driver is compared with a conventional CMOS driver in 

[3] in terms of energy consumption, delay and noise immunity. As expected, the DDC driver 

excelled in lower energy consumption and delay compared to the conventional CMOS driver 
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but due to its sensitive nature to variations in power supply, device parameters and loading 

condition, its noise immunity is 36% less compared to the conventional CMOS driver. 

Vdd

OUT

Vdd Vdd

IN

DDC-P

DDC-N

 

Figure 3.6: Circuit diagram of the DDC driver [3]. 

As mentioned previously, the MJ-driver also incorporates diode-connected configuration 

which has several advantages over other low-swing driver circuits [3], [9], [13-16]. The 

name MJ originates from the driver‟s designer called Juan A. Montiel-Nelson. The MJ driver 

is said to have better energy-delay performance compared to the DDC driver as it provides a 

larger driving current during the logic transitions. It also provides improvement in terms of 

robustness and sensitivity to power supply variation [1].  

The MJ driver shown in Figure 3.7 relies on a multipath technique which includes a feedback 

inverter, G6, and two feedback paths at gates G2, G3, G7 and G8. The multipath technique 

involves only one operational path during each transition. This means the upper half of the 

driver is only operational during the rising transition while the lower half is active during the 

falling transition. However, with the use of the multipath technique, the MJ driver is 
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considered to be redundant in terms of area as only half of the circuit is needed to be 

operational during each rising and falling transition.  
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OUT

  

Figure 3.7: Circuit diagram of the MJ driver [1]. 

Consequently the objectives of any new design, whilst maintaining the low voltage swing 

capability of the MJ driver must not only eliminate its disadvantages but also reduce the 

power consumption and propagation delay of the circuit. These objectives can be achieved 

through the nLVSD driver shown in Figure 3.8, and also the mLVSD driver shown in Figure 

3.10. Both names are obtained through designer‟s initial N and M. Both drivers are similar to 

the MJ driver in terms of their use of diode-connected configuration but the MJ driver is 

lacking in some aspects. This is further explored where the nLVSD driver is firstly discussed 

which is followed by the mLVSD driver. 

Although the nLVSD driver design is based on the MJ driver, it differs as seen in Figure 3.7 

and Figure 3.8, in its simplicity which results in a smaller footprint. The nLVSD driver 

employs similar diode-connected transistor pairs at the output but instead of their inputs 

depending on the output of the feedback inverter and the two feedback paths, the inputs of the 

diode-connected transistor pairs (LP2, P2D, LN2, N2D) in the nLVSD driver are 

symmetrically switched to be controlled by a set of drivers, INV4 and INV5. INV4 is an 
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upsized driver while INV5 is a downsized driver, which limits the maximum voltage level at 

Vpy and the minimum voltage level at Vny. The values of Vpy and Vny can be adjusted by 

changing the size of both drivers. The voltage swing of the MJ driver is measured between 

Vdd-Vth and Vth but a lower swing can be achieved by the nLVSD driver through INV4 and 

INV5 drivers as it swings between Vpy-Vth and Vth-Vny, where Vpy  Vdd and Vny  GND. 

Subsequently, lower power consumption can be achieved through the nLVSD driver. This 

circuit also differs from the MJ driver as both paths, i.e. (INV3, NAND, INV4) and (INV3, 

NOR, INV5) are active at the same time during both logic transitions. Consequently every 

component is active or involved for every transition, minimising possible noise as both paths 

are switching in the same direction; and minimizing leakage power as each component is 

actively switching to avoid any static power. Additionally, the implementation of the diode-

connected transistor pairs at the output provides a larger driving current during the switching 

transitions, which results in faster signalling and better energy-delay-product. 
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Vdd

Vpy

Vny

INN

Figure 3.8: Circuit diagram of the nLVSD driver. 

In order to cancel out the leakage current effects and improve the noise immunity, a leakage 

control transistor [17] is placed at the driver output. The leakage control transistors LCP2 and 

LCN2, function by controlling the gate terminal of one transistor, by the source of the other. 
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For any input combination, one of the leakage control transistors is always near the cut-off 

voltage which consequently increases the resistance of the path from Vdd to ground, 

subsequently leading to a decrease in the sub-threshold leakage currents. Transistors LCP1 

and LCN1 are used to provide direct static path between the input and output of the driver 

when the input is stable or no transition activity is detected. These devices (LCP1, LCP2, 

LCN1, LCN2) provide an efficient mechanism to minimise the leakage current without 

affecting the delay and power consumption. Initially, without the leakage control device, the 

nLVSD driver has a comparable lower leakage power compared to the dynamic power 

consumption. Additionally, it can increase robustness and reliability of the driver. This 

results in the increase in transistor count, which amounts to the same transistor count as the 

MJ driver. However, since minimum sized transistors are used for the leakage control device, 

the nLVSD driver has approximately 50% smaller area than the MJ driver. This is shown in 

Table A1.5, in Appendix I, where the total active areas for all diode-connected drivers, which 

are to be evaluated, are recorded. The channel widths for transistors in the diode-connected 

drivers; namely, the nLVSD, mLVSD, DDC and MJ drivers are also recorded in Appendix I. 

The technology used for the transistors are from UMC CMOS 90nm with BSIM4V4.3.0 

(Cadence SPECTRE v.5.0.33) model. The circuit netlist for the nLVSD and mLVSD drivers 

are also included in Appendix I. The active areas as well as the channel widths for the drivers 

as well as the receiver have been optimized based on their energy-delay performances, which 

are calculated for a 10mm interconnect. 

The circuit operation of the nLVSD driver is best explained in terms of its signal voltage 

waveforms as shown in Figure 3.9, where they are obtained through Cadence Virtuoso 

Analog Design Environment.  
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Figure 3.9: Signal waveforms of the nLVSD driver. 

As been mentioned before, INV4 and INV5 are sized to provide a maximum voltage of Vpy 

and a minimum voltage of Vny. In this case, the sizes of INV4 and INV5 are configured so 

that Vpy swings from Vdd/2 to Vdd and Vny from Gnd to Vdd/2. As INN is set to „1‟, Vpy 

and Vny are set at Vdd/2 and Gnd. Vpy will not fully turn on LN2, making it slowly 

discharge, however Vny will fully turn on LP2, making the output voltage swing to 

approximately Vpy. When INN switches from high to low, Vpy and Vny rise to Vdd and 

Vdd/2 respectively. This will turn on LN2 and turn off P2D. As INN approaches „0‟, LN2 

will slowly discharge while N2D holds the charge as Vny has not yet reached beyond the 

threshold voltage in order to activate it, creating a slow discharge at the output. Finally as 

INN reaches „0‟, Vny reaches beyond the threshold to activate N2D and LN2 is fully 

activated through Vpy, which creates a diode-connected configuration at the output giving the 

output value of Vthn. For a rising input transition, the same sequence is applied where the 

output swing of Vsn = Vdd- |Vthp| is obtained. During the operation of the nLVSD driver, 

the leakage control transistors do not play a significant role other than reducing the leakage 

power, which in this instance is 10% compared to MJ driver. 

From Figure 3.9 it is seen that this circuit has the limitation of producing a very low 

amplitude voltage swing, this can have a significant effect on its noise immunity as most 

noise components are dependent on the size of the voltage swing. Therefore, a new diode-
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connected driver is proposed which improves in terms of the amplitude of the signal swing 

and provides an efficient energy-delay performance, including low leakage power 

consumption, and most importantly, with higher noise immunity. The new low-swing driver 

is known as the mLVSD driver, as shown in Figure 3.10. The mLVSD driver will still 

incorporate all of the essential components of diode-connected driver as in the nLVSD circuit 

except for the leakage control transistors, which will be replaced with a pair of pass 

transistors, connecting the input to the output through the diode-connected transistors pairs. 

The leakage power consumption for this driver is expected to be as low as the nLVSD driver 

as the pass transistors also provide a direct connection from the input to the output of the 

driver. The voltage swing of the mLVSD driver is higher compared to the nLVSD driver 

(Vsm > Vsn) since the output voltage swing is no longer dependent on INV4 and INV5, or 

limited by the value of Vpy and Vny, but instead follows the changes in the input to the pass 

transistor pairs. Thus the output swing will no longer range from Vpy-Vth and Vth-Vny but 

encapsulates the same voltage swing range as the typical diode-connected driver, e.g. UDLD 

circuit, which is from Vthn to Vdd-|Vthp|.  
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Figure 3.10: Circuit diagram for the mLVSD driver. 
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Even though the circuit structure of the mLVSD driver is similar to the nLVSD driver 

especially at the diode-connected transistor pairs, there is an increase in the amplitude of the 

output voltage swing (Vsm) as can be observed from Figure 3.11. The signal waveforms in 

Figure 3.11 indicate that the output voltage swing is still symmetrical similar to the 

waveforms of the nLVSD driver but the output transistors will only be diode-connected when 

INN is „0‟ giving the voltage swing a magnitude of Vthn. The p-channel diode-connected 

transistor pairs will never be diode-connected as its input will never reached below the 

threshold voltage, thus resulting in an output signal swing of magnitude Vdd/2. Thus, the 

output swing is smaller than the UDLD and DDC drivers but higher than the nLVSD driver. 

In order to fully understand the changes in the circuit operation of the mLVSD driver, signal 

waveforms in Figure 3.11 are used to highlight the difference between the mLVSD and 

nLVSD drivers in terms of its voltage swing. These signal waveforms are also obtained 

through Cadence Virtuoso Analog Design Environment. When INN = 0, Vny swings to 

Vdd/2 which activates N2D as it is above the threshold value. The n-channel pass transistor is 

turned on as Vpy = Vdd, which activates LN2 as Vdn = INNpt = 1. Since both LN2 and N2D 

are activated, the diode-connected configuration is formed at the output, providing an output 

voltage of Vthn. During a rising transition, INNpt approaches 0, which causes Vny to change 

from Vdd/2 to Gnd. This also shows that Vdn and Vdp decrease with INNpt. When INNpt 

reaches 0 as INN =1, Vny = 0 activate the p-channel pass transistor providing Vdp with value 

of |Vthp| while Vpy switched from Vdd to Vdd/2. Both LN2 and N2D are turned off while 

P2D cannot be completely turned on as Vpy is not low enough and will never be fully turned 

on since Vpy only swings from Vdd/2 to Vdd. This results in the output with a magnitude of 

Vdd/2 as only LP2 is turned on, and not equal to Vdd-|Vthp| as the output is not diode-

connected. 
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Figure 3.11: Signal waveforms of the mLVSD driver. 

3.3.2. The on-chip interconnect model 

New diode-connected drivers have been proposed and detail descriptions of their structures 

have also been discussed. However, the driver alone will not be enough to design a low 

power and high speed signalling scheme. Additionally, an effective interconnect model is 

required in order to perform timing and signal integrity analyses; the model needs to 

encapsulate the electrical parameters of the interconnect layout and technology information 

such as the width and length of the interconnect, and related dielectric parameters. The 

electrical parameters are necessary so that they can be combined with other circuit 

components for overall performance evaluation. In practice these can be obtained through 

parasitic extraction.  

The interconnect can be presented by an RC or RLC equivalent circuit. Since interconnect 

inductance is usually negligible at low clock speeds, on-chip interconnect is modelled only 

with RC components. However, as the circuit operation reaches gigahertz range, the 

inductance effect becomes more significant in signal integrity analysis such as signal 

overshoot and reduced slew rate. On the other hand, by incorporating interconnect 

inductance into the model the subsequent computation becomes very expensive. Therefore, it 
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is important to only include interconnect inductance when it is necessary. The importance of 

L can be determined by evaluating the following time constants [8]: 

1. Driver input signal slew rate, tr 

2. Time of flight for a transmission line, tf =            

3. Elmore delay for an RC line, te =                

Interconnect should be modelled as an RLC line if it satisfies the following conditions [18], 

[19]: 

1. tf  >  te : In this condition, the inductance effect will lead to a longer signal delay. 

2. tr < 2tf : 2tf is the time required for a signal to travel the round trip from the driver to 

the end of the line, which implies that when the switching is fast enough, the 

signalling is affected by the reflected signal. 

Although, inductance effects are increasingly significant for modelling on-chip interconnects, 

the RC equivalent circuit is still sufficiently accurate to model the majority of situations. 

Thus, for this work, only the RC equivalent circuit is employed in timing and signal integrity 

analyses in evaluating the performances of diode-connected driver schemes, giving 

reasonable accuracy and saving on computational time.  

The conventional interconnect model usually employs a lumped RC segment however this 

model lacks the accuracy to model high-performance interconnect significantly with the 

increase in circuit operating frequency. An alternative to the lumped RC model is a 

distributed RC model. The distributed resistance and capacitance are approximated with a 

number of lumped elements, as shown in Figure 3.12. The distributed RC circuit is 

represented as N distributed RC lumped elements of proportionally less resistance and 

capacitance. As the number of segments approaches infinity, the lumped approximation will 

converge with the true distributed circuit. 
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Figure 3.12: An equivalent approximation of N-segment distributed RC circuit [10]. 



88 
 

L-model π-model T-model

2
R

2
C

2
R

C
2

C

R

C

R

 

Figure 3.13: Standard approximations of distributed RC model [10]. 

There are three standard approximations to the distributed model, which are the L-model, T-

model and π-model, as shown in Figure 3.13. The L-model is a poor model for distributed 

interconnect as it requires a large number of segments for accurate results. The π-model is 

preferable compared to the L-model as only a small number of segments as required, for 

example, three segments are sufficient to obtain approximately 97% accuracy level [6]. The 

T-model is comparable to the π-model but is only useful for circuits which contain more 

nodes and requires more time to solve [10]. Thus, it is a common practice to use the π-model 

for distributed interconnects, as shown in Figure 3.14. 
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Figure 3.14: The π3 RC interconnect model. 

The interconnect capacitance, Cw can be calculated using Equation 2.3 to 2.5 in Chapter 2, 

whilst the resistance can be obtained through Equ.3.12 [8]. 

                                                                    
   

  
                                                         (3.12) 

Where ρ is the metal resistivity, le is the interconnect length, while w and t, are the 

interconnect width and thickness respectively. The interconnect model for this work is 

calculated to comprise a 480.6Ω resistor and a 1.745pF capacitor to represent an interconnect 

length of 10mm using nominal values of interconnect parameters recorded in Table 3.1 at 

90nm technology. An extra load capacitance, Cl of 0.25pF per mm length of interconnect  is 

distributed along the wire to represent the fan-out. 
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Table 3.1: Nominal values of interconnect parameters. 

Parameters Nominal values 

Interconnect width, w 0.56µm 

Interconnect thickness, t 0.81µm 

Interlayer Dielectric height, h 0.94µm 

Metal resistivity, ρ 21.8nΩ.m 

Dielectric permittivity,  k 3.25 

 

3.3.3. The low-swing level converter receiver 

Receivers usually comprise 2 stages; the first stage consists of a signal conditioning or 

sampling circuit while the second stage provides the gain. The second stage which provides 

the gain needed by the system is usually carried out by a clocked regenerative amplifier; 

however simple inverter chain can also be used at this stage. 

The low-power high-speed level restorer used for signal conditioning is a device which 

resembles a Schmitt Trigger, as shown in Figure 3.15. This level converter has the same 

characteristics as the Schmitt Trigger and provides a fast signal detection speed compared to 

a standard inverter. The Schmitt Trigger receiver, also known as the ScTr level converter, 

can turn a slowly varying input signal into a clear digital output signal. It provides a 

significant improvement in terms of delay and power consumption due to its fast transitions 

at the output by suppressing the direct-path currents. Even though it consumes slightly more 

area than a simple inverter, better power and delay performance is readily traded off against a 

small increase in area. The Schmitt Trigger receiver is followed by a simple inverter chain to 

provide gain for the scheme. The inverter chain is minimally sized. The receiver inverters are 

implemented with a channel width Wn = 0.27μm and Wp = 0.81μm. 
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Figure 3.15: The ScTr level-converter configuration. 

The input to inverter A is the output of the level converter. When the input equals 0, the 

feedback loop biases the PMOS transistor (PM) in the conductive mode while NMOS 

transistor (NM) is off. The input signal effectively connects to an inverter consisting of a 

pull-up network of PM and PMOS device of inverter A whilst the pull-down network 

comprises only the NMOS device of inverter A. This results in changes in the effective ratio 

of the level converter, where the switching threshold is moved upwards. When the input 

switches, NM is activated while PM is turned off. The extra pull-down device provided by 

NM speeds up the transition and thus provides a sharp output signal, thus resembling the 

operation of a Schmitt Trigger, it is very useful in an noisy environment, thus improving the 

reliability of the nLVSD driver scheme. 

 

3.4. Performance Analyses To Be Undertaken 

In order to address the efficiency of the proposed driver schemes their performances in terms 

of speed and power consumption, as well as EDP and leakage currents are tested against 

several design parameters such as the interconnect length, supply voltage, operating 

temperature and frequency. The noise analysis will be included in order to compare the 

signal to noise ratio between the driver schemes. These analyses will be undertaken on the 

DDC, MJ, nLVSD and mLVSD driver schemes. When performing the timing and signal 

integrity analyses the overall circuit shown in Figure 3.16 is used. 
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Figure 3.16: An implementation of driver schemes for performance analysis. 

3.4.1. The Power and Performance Analysis of the Low-Swing Signalling Schemes 

The performance of the driver schemes will be analysed and compared with respect to the 

main design parameters, namely delay, power consumption, EDP, leakage currents, area 

overhead and signal to noise ratio. The four schemes will incorporate the same Vdd, 

operating frequency and interconnect structure.  It is assumed that UMC 90nm CMOS 

process is used to implement the design.  The interconnect is implemented in Metal 1 layer 

for these analyses. 

This analysis will be performed by increasing the length of the interconnect, from 1 to 

10mm, between the driver and receiver and repeating the signal delay and power 

consumption calculations. It is expected that by increasing the interconnect length, the signal 

delay will also be increased as delay is dependent on the interconnect length as shown in 

Equ.3.3. The signal delay is also dependent on the driver strength, which is due to the high 

driving current of the driver. An efficient line driver will be able to propagate a signal at a 

high speed on long interconnects without increasing the size of the driver.  

3.4.2. Comparison Analysis of the Leakage Currents for the Low-Swing Signalling 

Schemes 

For submicron technologies, the dominant leakage mechanism is the sub-threshold leakage 

current, which needs to be addressed as the low-swing signalling schemes used in this work 

are implemented using 90nm technology where leakage currents are increasingly becoming 

more significant. Consequently, circuit temperature is linearly dependent on the power 

consumption, as it increases when power consumption is high. Since the leakage current 

increases with the increase in temperature, thus the comparative analysis involving leakage 

currents is carried out to the effects of temperature. Thus for this analysis, the leakage 

currents of the low-swing signalling schemes; namely, the nLVSD, mLVSD, DDC and MJ 

driver schemes are measured for a range of temperatures from 12°C to 55°C.  
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3.4.3. Noise Analysis Comparison of Low-Swing Signalling Schemes 

Noise analysis is important in designing a low-swing signalling scheme as it is expected to 

have higher noise due to the low noise margin. However, if any mismatch between the driver 

and the receiver, in terms of process parameters such as the threshold voltage, can be reduced 

or avoided, better noise immunity can be achieved with high signal to noise ratio. However, 

increases in power consumption can significantly affect the signal integrity as it causes 

deviation of a node voltage from its nominal value, increasing the possible mismatch 

between the driver and receiver. 

 

3.5. Summary 

This chapter has introduced the concept of diode-connected configuration which has been 

applied to several low-swing drivers such as the UDLD, DDC and MJ-drivers. The 

advantages and disadvantages of these drivers were discussed, leading to the design of the 

nLVSD and mLVSD drivers. Both of these drivers incorporate diode-connected 

configurations at the output, in order to achieve low power and high speed performance. 

Additionally, both proposed drivers also have smaller areas compared to the existing diode-

connected drivers even though they incorporate leakage control mechanism in their driver 

circuits. Leakage control transistors are implemented in the nLVSD driver circuit whilst the 

mLVSD driver incorporates a pair of pass transistors providing direct static paths between 

the input and output of the drivers when the input is stable or no transistor activity is 

detected. The mechanism aids in further reducing the leakage current of the low-swing 

signalling schemes. Subsequently, the configuration used in the mLVSD driver results in a 

higher amplitude output signal swing compared to the nLVSD. Due to its lower voltage 

swing, the nLVSD driver is expected to consume less power than the UDLD, DDC and MJ 

drivers but negatively affects its noise immunity capability due to the reduced noise margin. 

Therefore, the mLVSD driver is introduced which has a higher voltage swing compared to 

the nLVSD driver but lower than that of the UDLD, DDC and MJ drivers. 

In order to analyze the performance of these diode-connected drivers, similar interconnect 

model and receiver design will be used. A distributed π-model for interconnect and a Schmitt 

Trigger level converter are introduced. Different type of analyses are also introduced in 

preparation for performance analyses of the DDC, MJ, nLVSD and mLVSD driver schemes 
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against wire length, supply voltage, operating temperature and frequency, and noise. The 

overall results will be discussed in Chapter 6 where the proposed driver schemes are 

expected to have better performance compared to other diode-connected driver schemes. 

In this chapter, the effect of crosstalk is not yet considered. In order to design an efficient 

low-swing interconnect scheme, every aspect of interconnect problems needs to be 

considered. Therefore, in the next chapter, background review on crosstalk is introduced 

which includes problems associated with crosstalk and possible methods in mitigating these 

problems. Chapter 4 will also discuss the effect of crosstalk on the diode-connected driver 

scheme in on-chip signalling application.  
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Chapter 4 

 

ANALYSIS OF THE ROBUSTNESS OF LOW-SWING SIGNALLING 

SCHEMES TO EXTERNAL DISTURBANCES 

 

4.1. Background 

The reliability of electronic system has become a major issue as the advances in 

semiconductor technology continually reduce devices dimension. As device geometries 

shrink circuit packing densities increase and circuit application become more susceptible to 

transient and intermittent faults caused by, for example, crosstalk, noise and the effects of 

neutron and alpha-particle strikes. Crosstalk problems have increased due to higher packing 

densities of devices and interconnect, changes in the aspect ratio of interconnects and 

reduced supply voltages. Increases in the susceptibility to effects of particle strikes (single 

event upsets) have resulted from the reduction in node capacitances. Transient and 

intermittent faults are classified as non-permanent faults as they are created by temporary 

changes in environmental conditions; this is in contrast to permanent faults resulting from 

irreversible physical changes in the structure of a circuit due, for example, to shorted or open 

interconnect. 

Several studies have shown that the non-permanent faults are the pre-dominant cause of 

malfunctions experienced by present day computer systems [1]. It is considered that these 

faults may account for 80% or more of the failures in digital systems [2,3]. With the 

introduction of new technologies in order to achieve low power and high performance with 

low cost or area, the problem with the non-permanent faults is becoming more significant. 

Consequently in this work, in order to assess the reliability of low-swing signalling schemes, 

it is necessary to consider the main factors that can affect the signal integrity of the 

interconnects. It is important to include the reliability analysis with respect to occurrence of 

non-permanent faults early in design stage to improve system robustness and explore the 

subsequent tradeoffs [4]. 

The chapter begins with a brief introduction to the types of temporary faults which can occur 

in VLSI circuits, namely transient faults and intermittent faults, caused by, for example, SEU 

and crosstalk respectively. The methodology adopted for the analysis of each type of fault is 
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subsequently discussed followed by the results and discussion of the analysis of the effects of 

SEU and crosstalk on the performance of low-swing signalling schemes. 

  

4.2. Temporary Faults 

Faults in VLSI circuits can be classified as either permanent faults, which affect the 

functionality of the circuit permanently such as short or open interconnect; and non-

permanent faults, which occur randomly and are temporary. A non-permanent fault is a non-

destructive fault and falls into one of two categories [5]: 

a) Transient fault, which is caused by environmental conditions such as temperature, 

voltage fluctuation, cosmic rays and alpha particles. 

b) Intermittent fault, caused by non-environmental conditions such as loose connections, 

critical timing, power supply noise, resistive or capacitive variations or couplings and 

noise in the system. 

Recent studies [6] have shown that the likelihood of the appearance of transient and 

intermittent faults is growing in systems manufactured using deep submicron technologies. 

Subsequently, the likelihood of these faults due to process variations is also growing, which 

is the reason that they are becoming important reliability concerns for future technology 

nodes. It is known that single event upsets from transient faults have emerged as a key 

challenge in microprocessor design, resulting from a single particle hit whilst failure from 

intermittent faults caused by crosstalk is increasingly become a great concern as it can 

provide functional and timing failure to the VLSI circuits. Thus, in order to meet the system 

reliability requirements, it is necessary to consider these faults in the analysis of the 

robustness of a circuit. 

 

4.3. Impact Of Transient Faults On Low-Swing Signalling Schemes 

The reliability operation of VLSI circuits is necessary to avoid catastrophic consequences 

especially for system operating under adverse environmental conditions. Information in 

electronic circuits is stored and propagated through a collection of electrical charges [7]. Any 

event which upsets these charges can cause errors in the circuit output. These errors are 
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called transient faults, soft errors or single event upsets and arise from energetic particles, 

such as neutrons from cosmic rays and alpha particles from packaging material generating 

electron-hole pairs as they pass through a semiconductor device [8]. Higher VLSI integration 

and lower Vdd have been contributing factors to higher rates of occurrence of particle 

induced transients which results in higher soft error rates (SER). 

Traditionally memories have been the most affected by SEU because small transistor sizes 

are used to increase memory density, resulting in lower capacitance and hence higher SERs 

[9]. However, memories can be protected by error detecting or correcting codes. Due to 

extensive technology scaling, it has been observed that unprotected combinational logic 

circuit is becoming more vulnerable to radiation-induced transient faults [10,11]. 

4.3.1. Single Event Upsets (SEU) - Introduction 

An SEU is a radiation induced fault in an integrated circuit. The effect of an SEU is to change 

the behaviour of the digital circuits in some unexpected manner, often producing incorrect 

results. Since an SEU does not reflect a permanent failure of the device, it is termed soft or 

transient. 

As previously mentioned, the two primary types of radiation causing this effect are alpha 

particles from packaging and device materials, and neutrons originating from cosmic rays. 

When an energetic particle strikes a sensitive area such as the area near the reverse biased 

drain junction in a transistor, electron-hole pairs are generated, such as shown in Figure 4.1. 

The amount of energy to create the electron-hole pairs is recorded at 3.6eV for silicon, where 

for an energy of 1MeV, the charge generated by a particle strike is 44.5fC. Since a circuit 

node in 90nm technology can store between 1 to 10fC, a particle with an energy of 1MeV 

can alter the logic value stored on the node. This shows that with every new technology 

node, circuit susceptibility to the effects of particle strikes increases. The minimum energy of 

a particle to create a voltage transition of sufficient strength to change logic value on a node 

is given by Equ.4.1. 

                                                                                                                       (4.1) 

where Qcrit, critical charge, is the amount of charge necessary to trigger a change in the 

logical level. 
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Figure 4.1: An illustration of how alpha particles strike a MOSFET device. 

From the previous comparative analysis discussed in Chapter 3, low-swing signalling 

schemes have better or improved performance in terms of delay and power consumption, as 

well as robustness against noise. In order to ensure that the signal integrity of the low-swing 

signalling schemes, their reliability against any type of fault needs to be evaluated. Since 

radiation-induced faults such as an SEU have received significant attention in recent years, 

especially in deep submicron regime, it is important to investigate the performance of the 

low-swing signalling schemes using circuit design approach.  

4.3.2.  Measurement and Modelling of an SEU 

Modelling of an SEU at the circuit level is commonly done using a current source at the 

impacted node and a measurement of Qcrit. Qcrit is an important parameter in measuring the 

SEU sensitivity of a circuit node [12]. In order to measure Qcrit, a current source is used to 

model the current pulse created by the ion strike. The current source is modelled in the form 

of double exponential waveform described by Equ.4.2. 

                                                
     

       
     

  

  
      

  

  
                                     (4.2) 

This is the most commonly used model where the two timing parameters (   and   ) 

representing the rising and falling time constants of the exponentials. This model has been 

widely used in the literature to find not only the Qcrit but the SEU introduced by ion strikes 

in combinational logic [13]. 

For this work, the most sensitive nodes on the low-swing driver need to be located, in order 

to place the current source, thus all nodes on the low-swing driver were tested against the 

SEU, by observing the changes in the output voltage swing. Preliminary results show that the 

most sensitive nodes in these circuits are located in the digital part of the low-swing drivers, 

which are, for example, inside the box area of the mLVSD driver circuit shown in Figure 4.2. 
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In this instance a current source is placed at node A, which is the most sensitive, therefore for 

other low-swing driver circuits, i.e. the nLVSD, DDC and MJD-driver, current sources are 

similarly placed.  

 

Figure 4.2: Circuit implementation of SEU analysis. 

In order to analyse the robustness of these low-swing driver circuit against an SEU, the 

circuits are implemented in 90nm UMC technology with the same Vdd, operating 

temperature and frequency. The sensitivity towards SEU is measured in terms of Qcrit by 

varying the bias current. The low-swing driver scheme with the highest critical charge is then 

analysed to investigate the impact of different parameters such as Vdd, operating frequency 

and bias current on the SEU tolerance of the driver scheme.  

For different operating frequencies of 0.5, 1 and 2GHz, the output voltage swing is swept 

from 0.25V to 0.5V. Since for a low-swing driver, the output voltage swing is linearly 

correlated with the Vdd, thus, the voltage swing can be changed indirectly by changing the 

value of Vdd. Therefore, Vdd is varied from 0.6V to 1V where 0.6V is chosen as the 

minimum Vdd as to ensure that the signal integrity of the driver is still intact. Subsequently, 

the bias current is swept from 30µA to 500µA with a constant Vdd and operating frequency. 
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This step is repeated for other values of Vdd. Through these analyses, the effects of Vdd, bias 

current (Ibias) and operating frequency on Qcrit can be observed.  

4.3.3. SEU Analysis – Results and Discussion 

In this work, SEU analysis is performed for all low-swing signalling schemes, namely, 

nLVSD, mLVSD, MJD and DDC driver schemes. However, in order continue with further 

analysis of the impact of different parameters affecting SEU tolerance of the low-swing 

driver scheme, the low-swing driver with the highest critical charge is chosen as candidate. 

The result for the comparison analysis is shown in Figure 4.3. These results were obtained 

using Cadence Virtuoso Analog Design Environment, where a range of bias currents was 

inserted to the driver circuit such as shown in Figure 4.2 together with the corresponding 

critical charge calculated using Equ.4.2. This process was repeated for every driver circuit to 

be tested. 

 

Figure 4.3: Comparison of critical charge between low-swing signalling schemes. 

Figure 4.3 indicates that the mLVSD driver is the best candidate to be tested for SEU 

tolerance as it has the highest critical charge compared to other low-swing drivers. 

Subsequently, the result also shows that the critical charge for the nLVSD driver is almost 

the same as the mLVSD which indicates that both of the proposed low-swing drivers have 

better SEU tolerance compared to the DDC and MJ drivers. Therefore, the mLVSD driver is 
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chosen to be the candidate to be tested for this analysis by using Cadence Virtuoso Analog 

Design Environment. Firstly, the impact of bias current on the SEU tolerance of the mLVSD 

driver is tested at fixed temperature of 25°C, varying Vdd from 0.6V to 1V and operating 

frequency from 0.5GHz to 1GHz. This is also carried out using Cadence Virtuoso Analog 

Design Environment. The results are presented in Figure 4.4. 

 

(a) 

 

(b) 

Figure 4.4: Critical charge against bias current for different output voltage at (a) 0.5GHz and 

(b) 1GHz. 

Figure 4.4 indicates that by increasing the bias current, there is no effect towards Qcrit as the 

operating frequency is increased from 0.5 to 1GHz. A larger bias current implies larger 

transistor size and as a result larger capacitances to hold charge and consequently greater 
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immunity to an SEU. In Table 4.1, the amount of increase in Qcrit is shown for different 

values of Vdd at an operating frequency of 0.5GHz when moving from 30µA to 500µA. It 

can be seen that the value of Qcrit increases between three and six times as the supply 

voltage is reduced from 1 to 0.6V. 

 

Table 4.1: Qcrit improvement with current bias for  

different Vdd at 0.5GHz 

Vout(V) 

Qcrit(fC) 

at Ibias 

= 30uA 

Qcrit(fC) 

at Ibias 

= 500uA 

Increase 

in Qcrit 

0.6 48.67 279.21 x5.74 

0.8 61.18 282.26 x4.61 

1 83.43 295.78 x3.55 

 

It is expected that as the bias current increases, Qcrit increases, which implies that the effect 

of an SEU on the circuit can be minimized if larger bias current is applied. However, this 

might have a significant effect on the power consumption, which increases linearly with the 

bias current. Since, a key objective of the low-swing driver schemes is reducing power 

consumption, thus, the trade-off between bias current and power consumption needs to be 

considered if this method is used. 

 SEU tolerance can also be improved by increasing the voltage swing or in this case the 

voltage supply. The improvement in SEU tolerance by increasing Vdd is shown in Figure 4.5. 

Qcrit increases with Vdd due to better margin on the effective voltage (Vgs – Vth) of the 

diode-connected transistors at the output. This is similar to increasing noise margin of the 

circuit. Therefore, with a higher voltage swing, more charge is needed to upset the affected 

node, or change the output. The improvement in Qcrit is shown in Table 4.2 when varying 

Vdd from 0.8V to 1V with constant bias current at an operating frequency of 0.5GHz. 

Improving the SEU tolerance by changing the values of Vdd will still increase the power 

consumption, even though the bias current is constant, but since low-swing application is 

used, the increase in power consumption is insignificant compared to the improved SEU 

tolerance of the low-swing driver scheme. However, one factor that needs to be considered is 

the driver size as the increase in Vdd with constant bias current will lead to increase in an 

output resistance of the driver. 
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Table 4.2: Qcrit improvement with Vdd  

for different bias currents at 0.5GHz 

Bias 

current 

(µA) 

Qcrit(fC) 

at Vdd = 

0.8V 

Qcrit(fC) 

at Vdd = 

1V 

Increase 

in Qcrit 

30 12.51 19.47 X1.56 

50 26.42 31.98 X1.21 

100 59.79 94.55 X1.58 

 

Figure 4.5: Critical charge against supply voltage for different bias currents at 0.5GHz. 

Another method in improving SEU tolerance is by increasing the operating frequency or data 

rates. The mLVSD driver is simulated at 0.5, 1 and 2GHz, varying Vdd from 0.6 to 1V. At 

frequency below 1GHz, Qcrit is independent of the operating frequency.  This means there is 

enough time for SEU to upset a node. At higher frequencies, the ionization time constants are 

independent of the operating frequency, thus at some points, they will become larger than the 

operating frequency. Therefore, more energy is required for an SEU to have an effect in this 

short period of time, which makes the circuit less sensitive to radiation at high frequencies. 

The dependability of Qcrit on operating frequency is shown in Figure 4.6. 
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Figure 4.6: Critical charge against operating frequency for different Vdd values at bias 

current of 500µA. 

The improvement in Qcrit by increasing the operating frequency is shown in Table 4.3. Qcrit 

increases by about 1.2 times when the frequency increases from 1 to 2GHz at a constant Vdd 

of 1V.  

Table 4.3: Qcrit improvement with operating frequency  

for different bias currents at 1V. 

Ibias(uA) 

Qcrit(fC) at 

frequency 

= 1GHz 

Qcrit(fC) at 

frequency = 

2GHz 

Increase 

in Qcrit 

10 87.6 88.99 x1.02 

70 214.13 264.18 x1.23 

500 328.14 396.27 x1.21 

 

Based on the results obtained, as the bias current increases, the critical charge increases as 

well, this is due to an increase in transistor sizes. The larger the transistors, the larger their 

capacitances, which in turn increase the value of the critical charge. The results also show 

that Qcrit can increase up to 6 times as the bias current changes from 30 to 500µA. However, 

this improvement in SEU tolerance is at a cost of an increase in power consumption. Beside 

from the bias current, Vdd is also swept to observe the impact on Qcrit. As Vdd increases, the 

output voltage swing increases as well, this in turn increases Qcrit, consequently making the 

node more tolerant to SEU. The results also show that Qcrit is increased to more than 1.6 

times when Vdd is increased from 0.8 to 1V at bias currents of 30 and 500µA respectively. 

Increasing Qcrit by increasing Vdd adds to the power consumption, even though the bias 
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current is unchanged. However, by using the low-swing drivers, the increases in power 

consumption is insignificant to the improvement achieved this technique.  

The mLVSD driver scheme was simulated varying the frequency from 0.5 to 2GHz in order 

to observe the dependability of Qcrit on speed. The results indicate that Qcrit is independent 

of operating frequency until it reaches a frequency threshold, which is 1GHz in this case. 

When this threshold is reached, Qcrit increases with the operating frequency, Qcrit is almost 

1.2 times greater at 2GHz than at 1GHz. 

Having analysed and discussed different design methods in mitigating problems with SEUs, 

as well as identifying the robustness of the diode-connected driver circuits against SEUs, the 

next section will explore the impact of intermittent faults, namely, the crosstalk, on the low-

swing signalling (nLVSD, mLVSD, MJ and DDC) schemes. 

4.4. Effect Of Crosstalk On The Reliability Of Low-Swing Signalling Schemes 

As the feature sizes have been shrinking with process technology scaling, the spacing 

between adjacent interconnect lines keeps decreasing in every process node. While the lateral 

width of interconnect wires has been scaled down significantly, their vertical height has not 

been scaled in proportion, which leads to a very rapid increase in the amount of coupling 

capacitance between the wires. In [14] it was reported that coupling capacitance accounts for 

more than 85% of the total interconnect capacitance in the 90nm technology node. More 

aggressive technology scaling will lead to an increase in the overall contribution of the 

coupling capacitances to the total interconnects capacitance. Subsequently, as technology 

advances, there will be an increase in chip frequency and a decrease in voltage margin, which 

will exacerbate the impact of crosstalk noise on interconnect delay. All the above trends 

consolidate the needs to include crosstalk effect in the reliability analysis of VLSI circuits. 

Crosstalk is due to capacitive coupling, where the switching characteristics of an interconnect 

line is affected by the simultaneous switching of lines that are in close physical proximity, as 

illustrated as in Figure 4.7. When line A switches, it tends to bring its neighbouring line B 

along with it on account of capacitive coupling. If line B is supposed to switch 

simultaneously, this may increase or decrease the switching delay. If B is not supposed to 

switch, crosstalk causes noise on line B. The impact of crosstalk depends on the ratio of CC to 

the total capacitance. Crosstalk is very important in long interconnects as the load 

capacitance no longer dominates being replaced by the coupling capacitance. 
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Figure 4.7: Capacitances between adjacent neighbours and ground. 

4.4.1. Crosstalk Noise Effects 

Crosstalk noise is introduced as line B partially switches when line A switches, where line B 

is supposed to remain constant. In this case, line A is known as the aggressor line while line 

B is the victim. If the victim is floating, the circuit can be modelled as a capacitive voltage 

divider to compute the victim noise as shown in Figure 4.8(a). Note that ΔVa is normally 

Vdd, and ∆Vv is voltage changes across the victim line. 

                                                              
  

      
                                                       (4.3) 

If the victim line is actively driven, the driver will supply current to oppose and reduce the 

victim noise. The drivers are modelled as resistors as shown in Figure 4.8(b). The peak noise 

becomes dependent on the time constant ratio, k of the aggressor to the victim line [15].  

                                                                 
  

      

 

   
                                             (4.4) 

where   
  

  
 

          

          
. 

Larger or faster drivers oppose the coupling effects faster and resulting in a noise voltage that 

is a smaller percentage of Vdd. During the noise event, the victim transistor is in linear region 

whilst the aggressor is in saturation. For equal sized drivers, this means Ra is 2 to 4 times Rv, 

with greater ratios arising from more velocity saturation [15]. 

victim

aggressor

Cc

Cgv ΔVv

ΔVa

 

(a) 
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(b) 

Figure 4.8: The circuit model when coupling to (a) a floating victim line and (b) driven 

victim line [16].  

When analysing the effects of noise, the term „noise width‟ is used as a measure of the length 

of time that the value of the noise voltage is larger than a given threshold and is generally 

used to represent the speed of the noise. The capacitive crosstalk noise can be illustrated as in 

Figure 4.9, where it shows that the peak noise amplitude, Vpeak is not the only metric used to 

characterize noise. Even if Vpeak exceeds a certain threshold, the receiver may still be 

immune to noise in certain cases such as when the noise has a very narrow width and the 

receiver capacitance is large, which means that the noise is too fast to trigger a low 

bandwidth receiver.  

Noisepeak 

(Vpeak)

Threshold 

voltage

Noise width

Time  

Figure 4.9: Characterizations of crosstalk noise [17]. 

4.4.2. Crosstalk Delay Effects 

If a wire and its neighbour are both switching, the direction of the switching affects the 

amount of charge that must be delivered. The charge delivered to the coupling capacitor is 
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Q=CcΔV where ΔV is the change in voltage between lines A and B, referring back to Figure 

4.8. If line A switches but line B does not, then ΔV=Vdd. The total capacitance effectively 

seen by A is just the capacitance coupling to ground, Cg and to line B, Cc. If lines A and B 

switch in the same direction, ΔV=0. Hence no charge is required and Cc is effectively absent 

for delay purposes. If lines A and B switch in the opposite directions, ΔV=2Vdd, twice as 

much charge is required. Equivalently, the capacitance can be treated as being effectively 

twice as large switching through Vdd alone. 

The effective coupling capacitance can be interpreted in the form of a switching factor (s.f). 

The idea of the switching factor is based on the Miller effect across the coupling capacitance 

as described previously. In order to approximate Cc as a ground capacitance with only one 

switching node, the effective Cc should be calculated as follows [16]: 

                                                                                                                          (4.5) 

                                                                   
   

    
                                                      (4.6) 

where ΔV is the voltage change during the overlapping period of voltage switching. 

According to these equations, s.f can be summarised in Table 4.4. Note that ↑,↓ and – denote 

0-to-1, 1-to-0 and no transitions respectively. 

Table 4.4: Effective crosstalk capacitance  

for different transitions. 

Transitions ↑↑or↓↓ ↑-or↓- ↓↑or↑↓ 

ΔV 0 Vdd 2Vdd 

s.f 0 1 2 

Cceff 0 Cc 2Cc 

 

If a three wire bus is used such as shown in Figure 4.10, the same analysis can be applied for 

the second aggressor line. If the crosstalk capacitances between the victim and both 

aggressor lines are identical, the total effective Cc can be calculated as follows: 

                                                                                                                               (4.7) 

                                                                                                                            (4.8) 

where ρ is a coupling factor, a sum of switching factors for both cases. 
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Figure 4.10: Circuit structure for a three-wire bus[18]. 

4.4.3. Methods of crosstalk mitigation 

There are several common methods of mitigating problems with crosstalk and they can be 

grouped into two categories, i.e. physical design techniques such as driver sizing, 

interconnect geometry optimization and shielding, and circuit techniques such as repeater 

insertion. Signal delay is a strong function of the physical interconnect structure such as wire 

length, width and spacing. In addition, the magnitude of the coupling noise is strongly 

dependent on how close the wires are placed and the neighbouring transition activity, which 

is determined by the driver strength and load capacitance. 

4.4.3.1. Driver sizing 

If the victim driver is large, its effective conductance increases, allowing it to hold a signal 

on an interconnect line more steadily. On the other hand, if an aggressor driver is larger, the 

amount of noise it can induce on a victim is increased. Therefore, increasing the driver size 

has a two-fold impact on crosstalk, which is the noise on the wire with the large driver is 

decreased but the induced on noise neighbouring lines will increase. 

4.4.3.2. Interconnect geometry optimization 

The most effective way in reducing the interconnect delay is by increasing the interconnect 

width as wider lines generally have less delay. This is because when the width is increased, 

the reduction of resistance occurs faster than the increase in total capacitance, which is 

dominated by coupling capacitance. The two dominating considerations of capacitive 

crosstalk are coupling capacitance and neighbouring switching condition which means that 

the effective way of reducing noise is to increase the spacing between lines.  
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4.4.3.3. Shielding 

The capacitive coupling effects can be avoided if the adjacent lines do not switch. The 

coupling can be eliminated by shielding critical signals with power or ground wires on one 

(half-shielding) or both sides (shielding). Shielding can also be combined with data 

duplication as shown in Figure 4.11(d). Figure 4.11 shows how shielding technique works in 

a three wires bus. Aside from eliminating capacitive coupling, this technique can also be 

used to remove any associated delay uncertainty. The use of power or ground lines as shield 

wires within high speed buses is the most commonly used design technique to limit signal 

line coupling but at the cost of an increased routing area. 

  

(a) (b)  

  

(c) (d) 

Figure 4.11: Shielding techniques; (a) unshielded lines, (b) half-shielded lines, (c) shielded 

lines and (d) shielded and duplication lines [17]. 
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4.4.3.4. Repeater insertion 

Repeater or buffer insertion is a key solution for reducing the large delay of long 

interconnects but with the penalty of increased chip area and power consumption. the 

technique breaks down long interconnects and insert drivers or repeaters in between the 

resulting segments, essentially reducing the delay dependence on wire length from a 

quadratic to linear function and thus greatly alleviating the delay problem of long 

interconnects. Additionally, it improves signal slew rate at the far-end receiver due to the 

regenerative nature of CMOS drivers. 

With the exception of the first and last segments of the interconnects, the buffers or repeaters 

are usually inserted at uniform intervals because in practice the driver and receiver sizes may 

not be the same as the buffer size. For RC interconnects, the most commonly used expression 

to calculate the optimal number of buffers, k, and optimal buffer size, h, is that of Bakoglu 

[19]. The optimal number of buffers is calculated as: 

                                                            
       

         
                                                       (4.9) 

where Rdr and Cin are the output resistance and input capacitance of a minimum size buffer, 

whilst Rw and Cw are wire resistance and capacitance. The optimal size of the buffer can be 

calculated as follows: 

                                                               
     

     
                                                        (4.10) 

Breaking down the interconnect into shorter segments, makes it more immune to noise. This 

technique reduces the parallel length of interconnects which strongly affects the crosstalk 

noise. The crosstalk noise is suppressed by the regenerative nature of the buffer.  

The placement of the buffer on adjacent lines can be staggered to minimize the impact of 

coupling capacitance on delay and crosstalk noise as shown in Figure 4.12. The buffers are 

offset so that each gate is placed in the middle of its neighbouring gates‟ interconnect loads. 

The effective switching factor is limited to 1 due to the presence of potential worst-case 

simultaneous switching or adjacent wires for only half the length of the victim line, while the 

other half of the victim line will experience the best case neighbouring switching activity due 

to symmetry. Repeater or buffer insertion is an effective method of reducing crosstalk noise 
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and delay uncertainty but it does however require an increasingly larger area and power, 

which are limited in how much they can improve the reliability. 

Conventional 

repeaters
Staggered 

repeaters  

Figure 4.12: Types of repeater insertion [17]. 

4.4.4. Crosstalk Analysis – Results and Discussion 

The impact of crosstalk on delay and the reliability of low-swing signalling scheme for 90nm 

process technology has been studied using the circuit model shown in Figure 4.10, where the 

interconnect lines are driven by low-swing drivers and are terminated by low power level 

restorers as receivers. The aim of this analysis is to investigate the impact of crosstalk on 

delay and reliability of a low-swing signalling scheme. The mLVSD driver scheme is chosen 

as a candidate, as this has been proven to have better overall performance from the results 

obtained previously. Therefore the mLVSD drivers are incorporated into the bus design 

whilst the Schmitt Trigger receivers are used at the receiver end. In addition to the impact of 

crosstalk on delay and reliability, the effect of crosstalk on the energy consumption of low-

swing signalling scheme was also included; the analysis will include impact of crosstalk 

avoidance methods discussed previously. In the analysis, a fixed interconnect length of 

10mm is used. 

Table 4.5 summarises all possible transitions on a 3-wire bus according to their failure 

characteristics. The transition states are categorized into their types of failure, which are then 

divided into different crosstalk cases, for both crosstalk delay and noise. 
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Table 4.5: Data transitions analysed for crosstalk delay and noise[18]. 

Failure mechanism Transition Failure modes 

None 
000,001,010,011,100,101,110,111,↓00, 

00↓,↓01,10↓,↓0↓,11↑,↑11,01↑,↑10, ↑1↑ 

 

Crosstalk 

delay 

Case 1 ↑↑↑,↓↓↓ 

Timing 

Case 2 0↑↑,↑↑0,0↓↓,↓↓0,1↓↓,↓↓1,1↑↑,↑↑1 

Case 3 

↓↑↑,↑↑↓,↑↓↓,↓↓↑, 

0↑0,1↑1,0↑1,1↑0, 

0↓0,1↓1,0↓1,1↓0 

Case 4 1↑↓,0↑↓,↑↓1, ↑↓0, 1↓↑,0↓↑,↓↑1, ↓↑0 

Case 5 ↓↑↓,↑↓↑ 

Crosstalk 

noise 

Case 1 ↓0↑,↓1↑,↑0↓,↑1↓ 

Functional Case 2 ↑00, ↑01,10↑,00↑,↓10,01↓,↓11,11↓ 

Case 3 ↓1↓,↑0↑ 

 

The transitions above are classified into different types of failure modes based on its 

behaviour. For example in the case of timing failure mode, ↓↑↑ from Case 3, the effective 

coupling capacitance is calculated to be 3Cc where Cc is the coupling capacitance. This is 

calculated using Table 4.4 where ↓↑ equals to 2Cc and ↑↑ equals to Cc where the total equals 

to 3Cc, indicating increases in delay as delay is a function of effective capacitance as well as 

interconnect resistance. In case of functional failure mode, ↓1↓ Case 3 is taken as an example 

where this is one of the worst cases possible. It shows both transitions on the aggressor wires 

which can change the value of the victim wire in the middle, causing false data 

transmission[18]. 

Timing failure caused by crosstalk delay for Case 5 is expected to be higher compared to 

Case 2 as it increases with the potential crosstalk activity. The functional failure due to 

crosstalk noise is measured in terms of peak voltage of the noise, which is expected to 

increase from Case 1 to Case 3. The impact of cross avoidance methods on crosstalk delay 

and noise are measured and analysed for each case. The tools used for this analysis is 

Cadence Virtuoso Analog Design Environment. The analysis is applied for every single 

transition in each case in order to achieve accuracy in the results. 
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4.4.4.1. The Impact of Shielding 

The shielding method can apply either power or ground wires to the existing bus to reduce 

the impact of crosstalk on delay and reliability of the system. In this analysis, ground wires 

are used instead and placed as illustrated in Figure 4.11, where different types of shielding 

methods are implemented, i.e. shielding, half-shielding, shielding and duplication. These 

shielding methods are applied for each case, as shown in Table 4.5, in analysing the impact 

of crosstalk delay and noise. 

The results in Figure 4.13 show that half-shielding is not very efficient in mitigating the 

problem with crosstalk, mainly due to its inability to provide complete protection from 

crosstalk-induced static noise. Duplication and shielding was found to have the best 

performance as it eradicates static noise induced by capacitive coupling which makes the 

low-swing bus resilient to functional failures. Subsequently, this method reduces the 

coupling capacitance, which in turn reduces the crosstalk delay. 
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(b) 

Figure 4.13: Impact of shielding methods on (a) crosstalk delay and (b) crosstalk glitch. 

4.4.4.2. The Impact of Wire Spacing 

Wire spacing can also be employed to reduce crosstalk delay and noise as shown in Figure 

4.14. This is because by increasing the distance between the adjacent wires, will lead to a 

reduction in its interwire capacitance, i.e. coupling capacitance, which in turn reduces both 

the delay and the peak voltage of crosstalk glitches.  
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(b) 

Figure 4.14: Impact of increase wire spacing on (a) crosstalk delay and (b) crosstalk glitch. 

4.4.4.3. The Impact of Buffer Insertion 

The total length of interconnect used for this analysis is 10mm. Buffer design used 

incorporates both the low-swing device and level restorer conceived from the mLVSD driver 

scheme which is then redesigned by removing few unnecessary gates in the digital part of the 

driver to reduce the area consumption as well as delay.  The delay of the buffer, shown in 

Figure 4.15, is measured at 26.2ps which gives the optimum length of interconnect for 

minimized delay, calculated using Equ.4.9 and Equ.4.10, to be approximately 2.5mm. 

Therefore in this analysis, the maximum number of buffers that can be used for the 10mm 

length of interconnect is 3. A three wire bus shown in Figure 4.10 comprising low-swing 

signalling schemes is tested against crosstalk effect for three cases; no buffer, 1 buffer and 3 

buffer  insertions. A uniform buffer insertion method is implemented in this analysis using 

Cadence Virtuoso Analog Design Environment as measurement tool. 
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Figure 4.15: Buffer circuit used in the crosstalk analysis. 

Buffer insertion proved to be efficient in mitigating problems with crosstalk as shown in 

Figure 4.16. The method reduces the length of the interconnect which in turns significantly 

reduces the interconnect delay, due to the reduced dependency of the wire length on wire 

delay from quadratic to a linear function.  Additionally, buffer insertion is also effective in 

reducing the peak voltage of crosstalk noise due to the reduced parallel length of 

interconnects and the regenerative nature of the buffer, which suppresses the noise along the 

interconnect.  
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(b) 

Figure 4.16: Impact of buffer insertion methods on (a) crosstalk delay and (b) crosstalk 

glitch. 

4.4.4.4. Comparative Analysis of Crosstalk Avoidance Techniques 

The comparative analysis is necessary in order to observe the impact of different design 

methods in mitigating the crosstalk effect. The crosstalk delay and noise are compared on the 

low-swing signalling bus with different design techniques, namely: wire spacing, shielding 

and buffer insertion. The Cadence Virtuoso Design Environment is again used to assist in 

this analysis. The results in Figure 4.17 indicate that shielding has the best performance as it 

achieves less crosstalk delay and glitches. However, when design parameters such as power 

consumption and area cost need to be considered, shielding is not the best choice in 

mitigating the problems with crosstalk. As shown in Figure 4.18, low-swing bus with 

shielding consumes more energy than the normal low-swing bus. This can also be said for 

buffer insertion method, which, in addition to high energy consumption, also requires larger 

area. As different applications have different reliability requirements, the best design is the 

one which can achieve the target performance with the minimum area and power overheads. 

Since the key objective of the low-swing signalling scheme is to have low power and area 

cost, the wire spacing method is the best technique as it achieves the reliability objective at 

minimal area and power cost. 
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(a) 

 

(b) 

Figure 4.17: (a) Crosstalk delay and (b) noise for different crosstalk avoidance methods 
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Figure 4.18: Impact of crosstalk avoidance methods on energy consumption. 

 

4.5. Summary 

Background reviews on the impact of an SEU and crosstalk effects on the performance of 

low-swing signalling schemes have been introduced. Several important factors such as 

design methods or parameters that can be implemented into the design scheme for mitigating 

problems with SEU and crosstalk effects have also been discussed. A comparative analysis 

for all four low-swing signalling schemes, namely: the nLVSD, mLVSD, DDC and MJ 

driver schemes have been carried out in order to investigate their reliability against SEUs and 

crosstalk effects. The results indicate the proposed low-swing signalling schemes (nLVSD 

and mLVSD) have better performance and greater immunity to SEUs. 

In terms of SEU tolerance, the results indicate that although by introducing a high bias 

current into the design which will increase the critical charge and hence improve the 

reliability towards SEUs, the power consumption is significantly increased. Another method 

in reducing the impact of SEU is by increasing Vdd or the operating frequency but the 

improvement is less significant than employing high bias current. Therefore, a good trade-off 

between the two design parameters need to be found in order to meet reliability target with 

minimal power overhead. 

Several design methods to mitigate the problems with crosstalk, namely: wire spacing, buffer 

insertion and shielding, have been discussed. The results show that all three methods are 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

E
n

er
g
y
 c

o
n

su
m

p
ti

o
n

 (
p

J
) 

Normal Shielding Wire spacing Buffer insertion 



121 
 

efficient in reducing the crosstalk delay and noise. However, the comparative analysis 

between these methods indicates that shielding has the best performance overall but at a cost 

of power and area. Therefore, in order to meet the reliability requirement as well as obtaining 

minimum power and area cost, wire spacing is found to be the best design solution in this 

case. 

Reliability analysis for the low-swing signalling schemes against non-permanent faults have 

been performed clarifying that the proposed driver schemes have the best performance 

overall. However, another important reliability issue which needs to be considered in the 

analysis is the effects of process variation. Therefore, the reliability of the low-swing 

signalling schemes against process variation will be investigated in the next chapter. 
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Chapter 5 

 

THE EFFECTS OF PROCESS VARIABILITY ON LOW-SWING 

SIGNALLING SCHEMES 

 

5.1. Background 

The salient aspect that can be highlighted from the comparison of the low-swing signalling 

schemes in Table 2.1 is the absence of a process variation analysis when considering the 

performance of each scheme, this is a significant omission as process variation can affect the 

performance of the signalling schemes. Process variations considered in this study are 

random intra-die variations affecting device and interconnect parameters, for example, 

fluctuations in threshold voltage, oxide thickness, wire spacing and thickness. These 

variations are classified as random as they result from the unpredictability of the 

semiconductor fabrication process; countering their effect is deemed to be the most 

significant challenge to driver circuit design especially in VDSM (Very Deep Sub-Micron) 

technologies. Environmental variations such as supply voltage and temperature are also 

considered as they are important for power consumption considerations [1]. 

The chapter begins with an introduction to process variability analysis which highlights the 

type of variations that are common in the nano-metre regime. The statistical methods which 

are used in the analyses are introduced comprising corner based analysis, Monte Carlo 

analysis and the Design of Experiment (DoE). These methods are briefly discussed in terms 

of advantages and disadvantages, which highlights the reason of employing DoE in this 

work. The work flow for analysing the effects of process variability on low-swing signalling 

schemes is also introduced and is divided into 2 sets of experiments, namely; the single 

signalling without considering crosstalk effects, and signalling with crosstalk effect; this is 

followed by the results and a discussion on the outcomes of the analysis.  

 

5.2. Introduction To Variability 

The variations in process and design parameters have significantly increased due to the rapid 

scaling of CMOS technology which leads to severe variability in circuit performance and 
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functionality in the nano-metre regime [2-4]. Variability can be defined as the deviation of 

parameters from their desired values due to the limited controllability of a process; every 

process has some level of uncertainty. As device sizes continue to scale down into the deep 

submicron regime, manufacturing tools are less reliable in their control of design parameters. 

Process variation usually arises from limitations imposed by the layers of physics, imperfect 

tools and properties of materials that are not fully understood [5]. 

5.2.1. Taxonomy of variation 

For deep submicron technologies, a combination of device physics, die location dependence, 

optical proximity effect, micro loading in etching and deposition may lead to heterogeneous 

and non-monotonic relationship among process parameters [6]. Without detailed 

understanding of the individual contribution, the resulting process variations might be 

considered to be completely random and large. However, better understanding of the specific 

contributions to their distribution reveals that process variations are composed of both 

systematic and random parts. Variations are said to be systematic when the changes in 

parameter values are due to known and predictable causes, whilst random variations are due 

to the inherent unpredictability; for example in the semiconductor fabrication process 

fluctuations in channel doping, gate oxide thickness and inter-level dielectric (ILD) 

permittivity. As random variations cannot be compensated for and are difficult to minimize, 

this type of variability may pose the most significant challenge to design an adequate 

yielding nano-metre scaled integrated circuits [7]. 

While die-to-die (D2D) and wafer-to-wafer variations are more random in nature, within 

wafer and within die variations are more spatial or location dependent. D2D or inter-die 

variations are the difference in the value of a parameter across nominally identical die and 

are typically accounted for in circuit design as a shift in the mean of some parameter value 

equally across all devices or structure on any one chip [6]. Within die (WD) or intra-die 

variations are deviations which occur spatially within any one die. In contrast to D2D 

variations, WD variations contribute to the loss of matched behaviour between structures on 

the same chip. With the WD variations, one is concerned with individual transistors, 

interconnects or any geometric or electrical parameters of the circuit, and how these vary, 

differentially from their designed or nominal values. 
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In this work, the robustness of the low-swing driver schemes against variability needs to be 

tested as it can significantly influence the circuit performance. WD variations can affect each 

transistor differently resulting in for example, devices, within close proximity, having 

different values of Vth. In this case, variability analysis of WD variations is chosen for this 

work as the effects are more closely related to the circuit design. 

Several categories of variability have been introduced such as WD and D2D variations, and 

systematic and random variations. These categories of variability can further be divided into 

two sources of variations, which are physical and environmental variations. Environmental 

factors include Vdd and temperature of the chip or across the chip, whilst physical factors 

include arise in structural device and interconnect variations which are essentially permanent.  

5.2.1.1. Physical Variation 

Physical variations are caused by processing and masking limitations which results in 

random or spatially varying deviations from designed parameter values. Physical variations 

can be categorized as either device and interconnect variations. There are also two forms of 

variation in both categories as they are further divided into geometric and electrical 

parameters for the device, and geometric and material parameters for the interconnect. 

a) Device geometric variations 

This type of variation relates to the physical structure of transistors and other devices such as 

resistors and capacitors in the circuit. These variations include film thickness and lateral 

dimensional variations. Film thickness variation includes gate oxide thickness which is 

critical but usually relatively well controlled. Other intermediate process thickness variations 

such as poly or spacer thickness can impact on channel length but are rarely modelled. 

Meanwhile, variations in the lateral dimensions such as length and width of transistors 

typically arises due to photolithography proximity effects such as systematic pattern 

dependency and plasma etch dependencies which can affect layout density and aspect ratio. 

b) Device electrical parameter variations 

Both device geometry and electrical parameter variations are important in variability analysis 

but one often focuses more on electrical parameter variations. This is because in many cases, 

the electrical parameters are often directly extracted and modelled. Related examples of the 
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electrical parameter variations are the threshold voltage and leakage current variations. The 

most important electrical parameter is the threshold voltage. In addition to geometric sources, 

mobile charge in the gate oxide can introduce a bias dependent variation which can 

sometimes be approximated at 10% of the threshold voltage of the smallest device in a given 

technology. Besides the threshold voltage variation, another electrical parameter that can be 

significantly affected is the subthreshold leakage current. It may vary substantially and can 

be impacted by shallow trench isolation structure and stress imperfections due to oxidation 

and chemical mechanical planarization (CMP), which is used to remove the deposited 

Copper on the etched oxide trenches [8].  

c) Interconnect geometry variations 

Similar to devices, dimensional as well as material property deviations can be important 

source of variations in interconnect structures. The main example of interconnect geometric 

variation parameters are interconnect width and spacing, metal thickness and dielectric 

thickness. Deviations in the width of the patterned line arise primarily from photolithography 

and etch dependencies. At the smallest dimension or at a lower metal layer, the importance of 

the proximity and lithographic effects may be significant. Deviations in line width can 

directly impact on line resistance, as well as the capacitance, and can also result in difference 

in line spacing. This can affect the magnitude of line-to-line coupling within the layer which 

can affect crosstalk and signal integrity. 

In conventional metal interconnect, the metal thickness is usually well controlled but can 

vary from wafer to wafer or across the wafer. However, in dual damascene process [8], 

dishing and erosion can significantly impact the final thickness of the patterned lines, with 10 

to 20% of deviation depending on particular patterns [3]. Another type of thickness that can 

be affected by variability is the dielectric thickness. The thickness of deposited and polished 

oxide films can also suffer from substantial deviations. The CMP process can introduce 

larger variations across the die, resulting from the density of raised topography in different 

regions across the chip [9,10].  

d) Interconnect material parameter variations 

The most common examples of this type of variation are the contact and via resistance, and 

metal resistivity and dielectric constant. The contact and via resistance are related to good 

ohmic contact which can be sensitive to etching and cleaning processes with substantial D2D 
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variations. Meanwhile there is possibility of an occurrence of the metal resistivity variation 

on D2D basis but is usually well controlled. Similarly the dielectric constant is also well 

controlled although it may vary depending on the deposition process. 

5.2.1.2. Environmental Variation 

Environmental variations are caused by variations in Vdd and temperature, which vary with 

the operation of the circuit. This type of variation, while possible to model during the design 

phase is difficult to compensate for, as it is not always present. Therefore, in order to counter 

these types of variations, circuit designers usually focus on minimizing the variation itself, 

such as assuring that there is no voltage drop along power line of greater than 10% of Vdd, 

rather than changing the whole circuit. However physical variations are usually treated as a 

statistical number with the appropriate distribution such as a Gaussian model, this is different 

from environmental variations which are treated as corners of the operating conditions rather 

than random parameters.  

Environmental variations are acknowledged as important as the physical variations. This is 

because the environmental variation is potentially a very significant source of performance 

loss in future technology trends. For example, when Vdd is scaled down, the power 

consumption is reduced which directly increases the delay sensitivities. This in turn may 

limit the efficacy of Vdd scaling for low power applications. Vdd will continue to scale 

modestly by 15%, not by the historic 30% per generation, due to difficulties in scaling Vth, 

and to meet the transistor performance goals [5]. Therefore, the role of Vdd should be 

correctly analysed in variation aware design. Besides Vdd, temperature also plays a 

significant role in meeting performance goals as the physical parameter variations are mostly 

temperature dependent with higher temperatures causing performance degradation. Thus, this 

is the reason why the environmental variations are also included in the variability analysis. 

5.2.2. Variability Analysis - Methodologies and Work Flow 

There are several statistical analysis tools that are used to perform variability analysis on 

CMOS circuits, or more specifically for this work, on low-swing driver schemes. The most 

common methods are the corner based analysis, Monte Carlo analysis and the Design of 

Experiment (DoE) method. Brief introductions to these methods are discussed below 

together with their advantages and disadvantages. This is followed by work flow outline that 
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is used in this thesis to analyse the robustness of the performance of low-swing driver 

schemes against variability. 

5.2.2.1. The Corner Analysis 

Corner based analysis can be assumed as an adaptation of the theory of Design of 

Experiments to circuit design, assuming that each process variation has a minimum and a 

maximum value. If there are n variables, there are 2
n
 possible combinations or corners of 

their extremes. An example of the structure of this analysis is shown in Figure 5.1, where all 

eight corners build up a cube with a nominal value is set in the middle of the cube.  

 

Figure 5.1: Corner based analysis model [11]. 

Since the cube represents the limits of the process, it is anticipated that any particular die will 

lie somewhere within this cube as far as the values of these particular process and design 

variables are concerned. If the design fulfils the specification in all eight corners, it will fulfil 

the values anywhere in the cube. However, it is important to make the appropriate trade-offs 

to ensure that this is indeed the case. 

The fundamental problem with corner analysis is that it lacks the fuzziness that real 

processes exhibit. When queried about the possible values of one process parameter in 

particular process, a statistical distribution will always be presented, not a minimum or 

maximum value. The statistical information is usually in the form of a probability density 

function (Gaussian, Uniform and Poisson) and its measures of central tendency (mean, µ) 

and dispersion (standard deviation, σ). A synthesis tool is required to translate this statistical 

information about process and design variables to statistical information about design 
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specifications. However, applying this approach on this analysis method requires an 

astronomical number of samples. An efficient alternative is to statistically sample the process 

space with a large number of samples. This is the basis of the Monte Carlo method. 

5.2.2.2. The Monte Carlo Analysis 

Monte Carlo analysis is a straightforward statistical approach to characterize within die 

variability. This analysis requires multiple simulations of the test circuit, randomly varying 

the parameters of interest within their expected distributions with each simulation. For 

example, in this analysis, a set of N random numbers, where each set representing both 

process and design parameters, is generated on the basis of the statistical properties of each 

parameter. A simulation is then performed using these random numbers as the values of the 

process and design variables, and is repeated N times. The value of N can be small, around 

100 or even 1000, however, the higher the value of N, the more accurate the analysis will 

become. 

As shown in Figure 5.2, the input for the Monte Carlo analysis is a set of statistical 

distributions for the process and design parameters whilst the output is a set of statistical 

distributions for various designs specifications of interest, which are generated using, for 

example, the SPICE circuit simulator. In this example the inputs are gate-oxide thickness and 

threshold voltage whilst the outputs for these inputs are delay and power consumption. For 

the analysis carried out in this research, the Monte Carlo tool inside Cadence Virtuoso 

Analog Design Environment was used where 1000 runs are chosen for improved accuracy. 

SPICE

ENGINE

Vth

Tox

Delay

Power 

consumption

Inputs Outputs  

Figure 5.2: Methodology of Monte Carlo analysis to account for performance parameters in 

respect to the process parameters of interest [11]. 
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Even though the Monte Carlo analysis is statistically efficient in terms of its data accuracy 

compared to the corner based analysis; it, however, requires larger amounts of computing 

resources as it is expensive and time consuming to run the simulation, as it usually requires 

many runs for a given set of input values in order to achieve accurate results. Thus, a more 

efficient and user friendly statistical analysis tool is required. Therefore, the method of 

Design of Experiment analysis is adopted in this work due to its computational efficiency 

over the Monte Carlo analysis. 

5.2.2.3. The Design of Experiment (DoE) Analysis 

The statistical design of experiments (DoE) is an efficient procedure for planning 

experiments so that the data obtained can be analyzed to yield valid and objective 

conclusions. In an experiment, one or more process variables (factors) are changed in order 

to observe the effect that the changes have on one or more output variables (responses). It is 

widely used in multidisciplinary design to create approximations of the output. This method 

is much more efficient to run and gives a functional relationship between design factors 

(input, x) and responses (output, y). An experimental design formally represents a sequence 

of experiments to be performed and expressed in terms of factors or design variables set at 

specified levels. It is represented mathematically by a matrix X where the rows represent the 

experimental runs and the columns denote the particular setting for each factor for each run 

[12].  

The procedure begins with determining the objectives of an experiment and selecting the 

process factors for the study. The statistical theory underlying DoE generally begins with the 

concept of process models. 

The best way is to begin with a process model of the box type with several discrete or 

continuous input factors that can be controlled, and one or more measured output responses 

as can be seen in Figure 5.3. Experimental designs are used to derive an approximation 

model linking the outputs and inputs, which generally contain first and second order terms. 

The experiment often has to account for a number of uncontrolled factors that maybe discrete 

such as different machine or operators, or continuous such as temperature or humidity. 
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Figure 5.3: A box type example of a process model for DoE [13]. 

The empirical models which fit to the experimental data take either linear or quadratic forms 

where a linear model with two factors (x1 and x2) is as shown below: 

                                                                                                      (5.1) 

Where y is response for given levels of the main effects (x1 and x2) and ε is the experimental 

error. The x1x2 term is included to account for a possible interaction effect between x1 and x2. 

The constant β0 is the response of y when both main effects are zero.  

A quadratic form is a second order model which adds two more terms to the linear model 

namely,       
  and      

  to build a model as shown below: 

                                                
       

                                (5.2) 

This model is typically used in response surface DoE with suspected curvature. 

Before the type of design of experiment is selected, the design objectives need to be 

determined. There are four types of design objectives that are mainly used in DoE, namely, 

comparative, screening, response surface method and regression model objectives. The four 

design objectives are summarised in Table 5.1 with their functions respectively.  
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Table 5.1: Types of design of experiments with their functions. 

Designs Functions 

Comparative 

 Choose between alternatives with narrow scope, 

suitable for initial comparison 

 Choose between alternatives with broad scope, suitable 

for confirmary comparison 

Screening 

 To identify which factors or effects are important 

 2 to 4 factors = full factorial 

 >3 factors, starts with as small design as possible 

 Trying to extract the most important factors from a 

large list of initial factors (fractional factorial design) 

Response surface modelling 

 To achieve one or more of the following objectives: 

- Hit a target 

- Maximize or minimize a response 

- Reduce variation by locating a region where the 

process is easier to manage 

- Make a process robust 

Regression modelling  To estimate a precise model , quantifying the 

dependence of response variables on process inputs 

The comparative objective is used when it needs to be decided whether one important factor 

among the other factors under investigation is significant or whether or not there is a 

significant change in the response for different levels of that factor. The screening objective 

is used when it is required to select or screen out important main effects from the many less 

important ones. The response surface method objective is used to estimate the interaction and 

quadratic effects of factors to be investigated. The process involves finding optimal process 

settings, troubleshooting process problems and making a process more robust against 

external and non-controllable influences. The final design objective is the regression model 

objective when it is required to model a response as a mathematical function of a few 

continuous factors and it is used as a guideline to build a good model parameter.  

For each design objective, except the regression model objective, several DoE methods can 

be used depending upon the number of factors as shown in Table 5.2. Each of the DoE 

methods is briefly described below. 
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Table 5.2: Summary of design methods for each type of design objectives. 

Number of factors Comparative 

objective 

Screening objective Response surface 

method objective 

1 1-factor completely 

randomized design 
- - 

2 – 4 Randomized block 

design 

Full or fractional 

factorial 

Central composite 

design 

5 or more Randomized block 

design 

Fractional factorial 

or Plackett-Burman 

Screen first to 

reduce number of 

factors 

For a single factor, the comparative objective is usually used which incorporates 1-factor 

completely randomized design. For two to four factors, all three objectives can be applied, 

the randomized block design is used for comparative objective; the full or fractional factorial 

design for screening purposes and the central composite design (CCD) to fulfil response 

surface method objective. For five or more factors, the same design method is used for 

comparative objective, whilst fractional factorial or Plackett-Burman design is used for 

screening. However for response surface method objective, it is required to screen first in 

order to reduce the number of factors before proceeding with CCD. For the research work in 

this thesis, the response surface method objective is selected with the Plackett-Burman and 

CCD designs incorporated into the design of experiments. 

5.2.2.3.1. 1-factor completely randomized design 

This design compares the values of a response variable based on the different levels of the 

main factors. For completely randomized design, the levels of the main factors are randomly 

assigned to the experimental units. 

5.2.2.3.2. Randomized block design 

This design involves one factor or variable that is of primary interest but there are also 

several secondary factors that may affect the measured result but are not of primary interest. 

An important technique called blocking can be used to reduce or eliminate the contribution to 

experimental error caused by these factors. Basically, this design involves blocking factors 

followed by randomization. Blocking is used to remove the effects of a few of the most 

important secondary variables whilst randomization is then used to reduce the contaminating 

effects of the remaining secondary variables. 
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5.2.2.3.3. Full factorial design 

The most basic experimental design is full factorial design. The most common designs for 

the full factorial are the 2
k
, which are used to evaluate main effects and interactions, and 3

k
 

designs for evaluating main and quadratic effects and interactions, for k is number of factors, 

which is equal to 2 and 3 levels respectively. The most common experimental design is the 2-

level design because it is ideal for screening design, being simple and economical.  

The two-level design uses +1 and -1 notation to denote the high and the low levels 

respectively for each factor. The use of +1 and -1 for the factor settings is called data coding. 

This aids in the interpretation of the coefficient fits to any experimental model. The centre 

point for this design is zero. 

5.2.2.3.4. Fractional factorial design 

This design is where not all factor level combinations are considered and the designer can 

choose which combinations are to be excluded. Thus, only an adequately chosen fraction of 

the treatment combinations is required for the complete factorial experiment is selected to be 

run. Even if the number of factors in a design is small, the 2
k
 runs specified for a full factorial 

can quickly become large. In order to counter this problem, only a fraction of the runs 

specified by the full factorial design is used. Properly chosen fractional factorial designs for 

two-level experiments have the desirable properties of being both balanced and orthogonal. 

A design is said to be balanced when each factor has the same number of levels. The 

fractional factorial design only focuses on fractions of two-level designs because the two-

level fractional designs are the most used in engineering. 

5.2.2.3.5. Plackett-Burman design 

This design is a two level fractional factorial design used for screening experiments, where 

only a few specifically chosen runs are performed to investigate just the main effects, 

assuming all interactions are negligible when compared with few important main effects. The 

Plackett-Burman designs can be performed efficiently for 25 runs or more. These designs 

accept up to 47 factors, which sometimes can be narrowed down to 10 factors or less. 

In the research work Plackett-Burman design was carried out on 31 device and interconnect 

parameters associated with the low-swing driver schemes described in Chapter 3. Through 
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Plackett-Burman screening the main effects or factors has been reduced to 12 as listed in 

Table 5.3. The device parameters include the threshold voltage, Vtho, gate-oxide thickness, 

tox and other parameters such as carrier mobility, µo and effective gate length, Leff, whilst 

the interconnect parameters consists of resistivity, ρ, interconnect dimensions (width, w; 

spacing, s; thickness, t; interlayer dielectric height, h) and the inter-level metal insulator 

permittivity, εk. Environmental factors such as Vdd and temperature are also included in the 

variability analysis. As the main parameters have been identified through the Plackett-

Burman design, the next step will involve an implementation of these parameters on the RSM 

design. 

Table 5.3: The main parameters of variability. 

Device parameters Interconnect parameters 

Vth εk 

tox ρ 

Leff s 

µo w 

Vdd t 

Temp h 

 

5.2.2.3.6. Central composite design (CCD) 

CCD is a two level factorial or fractional factorial design, augmented by centre points and 

axial points [13]. The centre points are where all values of the factors are in mid-range whilst 

the axial points are positioned at mean, ±α for each factor, where α is the variation in the 

factor , which gives the estimation of the curvature of the response surface. For k input 

factors, CCD requires (2
k
 + k + 1) experimental runs to build a second order model of the 

output parameters. The desirable features of this design are their orthogonality, where there is 

minimal variance of the regression coefficients, and rotability, which means equal precision 

of estimation in all directions.  

The experimental design consists of devising a set of experiments in which the range of input 

parameters can be altered systematically between three levels (-1, 0, +1) which represent (-

3σ, 0, +3σ) variations respectively. The circuit output of interest is measured and calculated 

at each of the design points to build mathematical models of the output. For the 12 input 

parameters used for this analysis, DoE (CCD) technique is computed by using Minitab, 
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indicating 154 experiments is required, where the experiment points for each parameter is 

recorded in Appendix II. 

5.2.2.4. Work Flow for Variability Analysis implementing DoE method 

The work flow for the variability analysis used in this thesis is summarised below: 

a) Modelling the parasitic elements of the circuit 

Assuming that the interconnection between driver and receiver in the signalling scheme is 

implemented using top layer metal to be realised using UMC 90nm technology. Two sets of 

experiments for the variability analysis were carried out, the first set comprised a single line 

signalling scheme, hence without any crosstalk effects, and the second a three-wire signalling 

arrangement with crosstalk effects. The parallel line structures are placed between two 

grounded shields. The resistive and capacitive parasitic elements of the interconnect are 

calculated using Equation 2.3 to 2.5 and Equ.3.12. 

b) Identify sources of variation 

In the previous section, the main parameters for the variability analysis have been identified 

and narrowed down to 12 factors with the aid of the Plackett-Burman analysis. The main 

factors are shown in Table 5.4 with their 3σ variations, these values are in agreement with 

those used previously [2,14]. 

Table 5.4: Parameter values and 3σ variations. 

Technology 90nm 

Device parameters ±3σ 
Interconnect 

parameters 
±3σ 

Vth 30% εk 3% 

tox 10% ρ 30% 

Leff 16.7% s 20% 

µo 10% w 20% 

Vdd 10% t 10% 

Temp (12-70)°C h 10% 
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c) Design of the statistical experiment 

DoE techniques are employed in the variability analysis of the two interconnect schemes in 

order to build a first order polynomial approximation for the first set of experiment whilst a 

second order polynomial approximation is used for the design metrics of interest in the 

second set of experiments. For the first set of experiments, the design metrics are delay and 

power consumption whilst the second experiment is focused in crosstalk delay and crosstalk 

glitches. For the 12 input parameters used for this analysis, DoE (CCD) technique used here 

requires 154 experiments which are summarised in Appendix II. 

d) Record circuit response at each design point 

In order to obtain the circuit response for each design point, simulations are carried out using 

the circuit analyzer (SPECTRE) in Cadence Virtuoso Analog Design Environment. The 

design metrics of interest were measured and calculated in each experiment. 

e) Generate polynomial approximations for the circuit output 

The polynomial approximations are obtained through statistical software called Minitab. 

There are two types of polynomial approximations, which are coded and uncoded. The input 

factors in the coded approximation have normalized values of (-1, 0, +1) which represent (µ-

3σ, 0, µ+3σ), where µ and σ are mean and standard deviations of the input parameters to be 

tested. The input factors for the uncoded ones have the actual mean values, which can be 

difficult to analyse. Therefore, the coded polynomial approximation is used instead. 

The following sections outline the results obtained from the methodologies used, which were 

previously discussed, to analyse the impact of variability on the performance of the low-

swing signalling schemes. Design models for the low-swing signalling schemes are also 

discussed for each set of experiments.  

 

 

 

 



138 
 

5.3. The Impact Of Variability On The Performance Of The Low-Swing Signalling 

Schemes 

As mentioned previously, two set of experiments were undertaken which comprised a single 

signalling scheme without considering crosstalk effects and the second, a three-wire 

signalling with crosstalk effects.  

5.3.1. Analysis of effect of process variation on the performance of the low-swing driver 

schemes. 

The impact of intra-die process variations on delay and power consumption of low-swing 

signalling schemes for 90nm process technology has been studied using the circuit model 

shown in Figure 5.4, where an interconnect line is driven by a low-swing driver and is 

terminated by a low power level restorer as a receiver. The effect of process variations on the 

low-swing signalling schemes was determined using a 1000 run Monte Carlo simulation. The 

parameters to be varied are shown in Table 5.4. In the analysis, a fixed 10mm length of 

interconnect is used. 

 

Figure 5.4: Circuit model of low-swing signalling scheme. 

In addition to the Monte Carlo analysis, another set of experiments was undertaken to 

establish individual parameter sensitivities. In this case, all parameters were varied 

individually in the range of ± 3σ whilst maintaining other parameters at their nominal values. 

This experiment was carried out using Design of Experiments (DoE) techniques [13] to 

highlight the importance of each variable towards the power and speed performances.  
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5.3.1.1. Monte Carlo Analysis 

Figures 5.5 and 5.6 show, for the nLVSD and mLVSD driver schemes respectively, the 

distribution of the delay and dynamic power consumption for a 10mm line length in 90nm 

technology for 1000 Monte Carlo runs. It can be seen that for the nLVSD driver scheme, the 

delay is normally distributed with the peak at 923.8ps with the distribution of 10.1% over 

1000 runs; the dynamic power is normally distributed with a peak of 0.2361mW with the 

distribution of 10.9% over 1000 runs. The delay and dynamic power variability is 4.17% and 

3.26% respectively. Meanwhile, the mLVSD driver scheme also has normal distributions for 

both the delay and dynamic power with peaks at 890.9ps and 0.3963mW with 10.7% and 

8.8% distributions over 1000 runs respectively. The delay and dynamic power variability for 

the mLVSD driver scheme is 3.96% and 4.23% respectively. A similar analysis was 

undertaken for the DDC and MJ-driver schemes. Table 5.5 shows the mean and standard 

deviations of the performance parameters analysed for all four schemes.  

 

                                    (a)                                                                     (b) 

Figure 5.5: Histograms of (a) delay and (b) power consumption of the nLVSD driver scheme. 
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                                    (a)                                                                     (b) 

Figure 5.6: Histograms of (a) delay and (b) power consumption of the mLVSD driver 

scheme. 

The lowest delay for the 10mm line occurs with the mLVSD scheme which also has the 

lowest standard deviation; the nLVSD scheme is 3.6% slower than the mLVSD scheme and 

has a standard deviation which is almost 5% greater than the mLVSD scheme. However the 

nLVSD scheme has 44% improvement in terms of power consumption and also deviates 

about 23% less than the mLVSD scheme. This indicates that the mLVSD scheme excels 

overall in terms of delay but the nLVSD scheme is better overall in terms of power 

consumption due to its lower swing. However, both proposed schemes are better in 

performance compared to DDC and MJ-driver schemes as well as more robust when exposed 

to process variations.  

Table 5.5: Performance metrics of low voltage swing signalling schemes. 

Technology 90nm 

Driver scheme nLVSD-driver mLVSD-driver MJ-driver DDC-driver 

 Mean σ Mean σ Mean σ Mean σ 

Delay(ps) 923.8 4.17% 890.9 3.96% 969.1 4.72% 1721 4.8% 

Power  

Consumption 

(mW) 

0.236 3.26% 0.396 4.23% 0.436 5.05% 0.465 5.88% 

 

Both of the proposed driver schemes are more robust compared to the DDC and MJ-driver 

schemes in terms of delay and dynamic power variations. However, when comparing the 

nLVSD and mLVSD performances against variability, both schemes complement each other 
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as shown in Table 5.5. Although mLVSD scheme has less deviation in delay compares to 

nLVSD scheme but in terms of dynamic power variation, it deviates more. In order to 

distinguish the best driver scheme in terms of robustness against variability, SNR is chosen 

to be the deciding design metric as it comprises components that associate with process 

variations such as receiver sensitivity and receiver input offset. The results for all four 

schemes are shown in Table 5.6, which indicates that the mLVSD driver scheme is the most 

robust against noise and process variation among all four schemes.  

Table 5.6: Noise comparisons between low-swing signalling schemes. 

Schemes Rx_O(V) Rx_S(V) Vnoise(V) SNR 

mLVSD 0.04 0.02 0.15 1.58 

nLVSD 0.04 0.02 0.13 1.29 

MJD 0.05 0.03 0.17 1.41 

DDC 0.08 0.05 0.2 1.03 

5.3.1.2. Design-of-Experiment (Central Composite Design) Analysis 

From the previous Monte Carlo analysis and the power-delay comparison between the four 

driver schemes, the results obtained indicate that the proposed driver schemes, namely, the 

mLVSD and nLVSD perform better than DDC and MJ-driver schemes in terms of delay and 

power consumption, even under process, voltage and temperature variations. To gain a better 

understanding of which process parameters have the greatest impact on performance, the 

mLVSD-driver scheme was further analyzed as this had a better performance profile than the 

other 3 driver schemes. The analysis was performed using Design-of-Experiment method 

together with Plackett-Burman analysis to distinguish the most significant parameters among 

the process variations. A statistical tool called Minitab can both perform DoE and Plackett-

Burman analysis. Based on the number of known process parameters, statistical models for 

both analyses were created. With delay and power consumption as the outputs for these 

analyses, both outcomes are simulated using Cadence Spectre based on the inputs given by 

the statistical models. These data are then processed by Minitab. For Plackett-Burman 

analysis, the results from Minitab are presented in Figure 5.7 for both device and 

interconnect parameters and will be discussed in the following subsections. 



142 
 

 

                                        (a)                                                                    (b) 

Figure 5.7: The results of Plackett-Burman analysis on (a) device and (b) interconnect 

parameters. 

5.3.1.2.1. The effect of device variation 

First, an individual parameter sensitivity analysis on the delay and power consumption for a 

10mm line was undertaken by varying the device parameters, shown in Table 5.4 along with 

Vdd, individually with the other device parameters at their nominal value. Figure 5.8(a) 

shows the dependence of delay for a 10mm line at 90nm technology on the threshold voltage 

(Vtho), oxide thickness (tox) and supply voltage (Vdd). Scaling down the threshold voltage 

will greatly affect the delay. This can be seen in Figure 5.8(a), where there is a steep decrease 

in delay as the threshold voltage is reduced. For a MOSFET transistor, either operating in a 

saturated or non-saturated mode, the driving current is directly proportional to Vgs-Vtho; thus 

if the threshold voltage is reduced, the driving current will rise, which leads to faster 

switching speed.  

Furthermore, from Figure 5.8(a) it is seen that the effect of tox towards delay is similar to 

Vtho, with a slightly decrease as tox is reduced. From a performance point of view, a thinner 

gate oxide is preferred if the reliability concerns can be met. A thinner gate oxide also leads 

to shallower junction depth, providing greater control over short channel effects affecting the 

threshold voltage of the transistor, resulting in smaller gate delay and faster device 

performance. Gate oxide thickness, tox, as well as contact potential, 2ΦF are the major 
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influences that contribute to changes in threshold voltage. Therefore, any changes in gate 

oxide thickness will also change the threshold voltage. This indicates the high correlation 

between tox and Vtho towards propagation delay.  

 

(a) 

 

(b) 

Figure 5.8: Effect of device variability on (a) delay and (b) power consumption. 
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The dependence of power consumption for a 10mm line at 90nm technology on tox, Vtho and 

Vdd is shown by Figure 5.8(b). The trend in power consumption with tox, Vtho and Vdd are 

completely opposite to the trend in delay; in this instance the power consumption has a 

negative correlation with tox and Vtho; and the variation in delay according to tox and Vtho, 

as shown in Figure 5.8(a), is higher than that of power consumption for ±3σ values. Figure 

5.8(b) also shows, as expected, that the power consumption is very sensitive to variation in 

Vdd due to the quadratic relationship. The variation in power consumption due to Vdd 

variability is almost double the variation due to tox and Vtho.  Overall, Figure 5.8 shows the 

classic delay-power trade-off that is used by designers for the optimization of one parameter 

by relaxing the other. 

5.3.1.2.2. Sensitivity towards interconnect variation 

A similar procedure to analyse the effect of process variations on device performance was 

performed on the interconnect. The interconnect parameters εk and ρ will not be included in 

the analysis, although they contribute significantly to the interconnect values as shown in 

Figure 5.7(b). This is because both these parameters are usually well controlled [3]. 

Focussing on the interconnect dimensions, w, s and t which are the most significant 

parameters that could affect both delay and power consumption. The essential components of 

interconnect are its resistance,    and capacitance,   . The effect of variations in w and t on 

   and    is shown in Figure 5.9. 

Figure 5.9 describes the variation in wire capacitance and resistance as the width and 

thickness varies at +20%, while the wiring pitch (s + w) remains constant. The direction of 

the graph indicates the relationship between    and     with w and t. When w and t 

increase, the interconnect resistance decreases while the interconnect capacitance increases, 

when w and t decrease the converse occurs. The significant change in resistance and 

capacitance variations are reflected in the delay, where the variation in the wire resistance is 

significantly greater than the wire capacitance. Thus, considering the delay in the form of 

time constant       , the fluctuation in delay is between -16.7% and 9.1% to the ±20% 

variation in w and t. 
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Figure 5.9: The effect of variations in interconnect width and thickness on its resistance and 

capacitance. 

From Figure 5.10, there are 3 cases; s=w, s=2w and s=3w in which the 3σ variation of Cw 

and delay were measured for each case. The 3σ variation is interpreted as a percentage of 

variation from the means. For each case, the results were computed using the Monte Carlo 

tool in Cadence Virtuoso Analog Design Environment where the 3σ variation for the delay 

and Cw were retrieved from the histograms produced by the tools. Figure 5.10 indicates, as 

the interconnect spacing increases, the variation of    decreases. This indicates that the 

effect of    on delay becomes smaller as the spacing becomes wider. The variation of    is 

independent of the interconnect spacing. When the interconnect spacing becomes wider, the 

variation of    is unchanged while the variation of    becomes smaller, which indicates 

that    has more impact on delay than   , thus the variation of delay also increases. In the 

case of s = w, when w and t fluctuate between +20% and -20%, delay varies between -10% 

and 19%, whilst in the case of s = 6w, delay varies between -16% and 30%. 
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Figure 5.10: Variations in delay and interconnect capacitance to the effects of width and 

thickness due to the increase in spacing. 

The interconnect variation can also influence the power consumption as shown previously in 

Figure 5.7(b). Although the physical parameters εk and ρ have a significant effect on power 

consumption and delay, they are unlikely to be altered during the fabrication process. 

Consequently the only interconnect parameters to be subjected to process variation are s, w 

and t. The variability in wire resistance and capacitance correlate with one another to 

variations in delay as shown in Figure 5.11(a). However the variation in power consumption 

has the greatest contribution from changes in wire capacitance as shown in Figure 5.11(b). 

From Figure 5.12, the analysis on the interconnect variation indicates a high variation of 

power consumption with regards to interconnect spacing and thickness, as its ±20% variation 

contributes to about 6% and 5% respectively to the variability in power consumption. 

However, interconnect width has a small effect on power consumption as it only causes 

about 1% variability in power consumption. 
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(a) (b) 

Figure 5.11: The variation on (a) delay and (b) power consumption in terms of interconnect 

parasitic components. 

 

 

Figure 5.12: Effect of interconnect variability on power consumption. 
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5.3.2. Analysis and modelling of the crosstalk effects on the mLVSD driver scheme. 

For simplicity, in the following analysis, 8 sources of variations were considered, namely, 

supply voltage, temperature, threshold voltage, effective gate length, metal wire resistivity, 

wire width, wire thickness and inter-layer dielectric thickness. The wire width and spacing 

are assumed to be negatively correlated, letting w be the independent variable. The same 

goes for Vth as it is used instead to represent both Vtho and tox. The variables were listed 

previously in Table 5.4 with their 3σ variations. The wire width used in this analysis is the 

minimum wire width in 90nm technology.  

5.3.2.1. Impact of variability on crosstalk delay 

Figure 5.13 shows the interconnect structure used in the analysis of the impact of process 

variation on crosstalk effects. The DoE (CCD) method outlined previously is used in this 

analysis to build a linear model based on Equ.5.1. In this instance the linear model of the 

delay of the middle (victim) line in Figure 5.13 is given by Equ.5.3. 

                                                                                                      (5.3) 

where x is a variation parameter, which in this case are Vdd, Temp, Leff, Vth, ρ, w, t and h, 

and β is a regression coefficient. 

 

Power/ground 

shields

Power/ground 

shields

Aggressor 1

Aggressor 2

Victim 

 

Figure 5.13: Circuit structure for variability analysis on crosstalk effects. 

In the previous chapter, several design methods have been discussed in mitigating the 

problems associated with crosstalk delay. The same methods are also considered in the 

variability analysis of crosstalk delay, namely, buffer insertion and increased wire spacing. 
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Subsequently, general models for a 10mm interconnect were generated for the following 

cases: minimally spaced wire (s = wmin) with no buffers, minimally spaced wire with 3 

buffers and 3 times minimally spaced wires (s = 3wmin) with no buffers. The accuracy of 

these models was validated using R
2
 fits analysis, which was found to be above 99% for all 

considered cases. R-squared (R
2
) is the percentage of the response variable variation that is 

explained by its relationship with 1 or more variables. In general, the higher the value of R
2
 

the better the model fits the data. R
2
 is always between 0 and 100%. It is also known as the 

coefficient of determination or multiple determinations (in multiple regressions). 

Similar models are also generated for each crosstalk cases as shown in Table 5.7 indicating 

effective crosstalk capacitances for different crosstalk cases. Notes that ↑, ↓ and – imply 0-to-

1, 1-to-0 and no transitions respectively. 

Table 5.7: Effective crosstalk capacitance for different 

Crosstalk cases [15]. 

Crosstalk case Transitions 

Effective 

Coupling 

Capacitance 

1 ↑↑↑, ↓↓↓ 0 

2 
↑↑–, –↑↑ 

↓↓–, –↓↓ 
1 

3 

–↑–, –↓– 

↓↑↑, ↑↓↓ 

↑↑↓, ↓↓↑ 

2 

4 
↓↑–, –↓↑ 

–↑↓, ↑↓– 
3 

5 ↓↑↓, ↑↓↑ 4 

 

As expected, delay sensitivity to variation parameters increases from Crosstalk Case 2 to 5 

due to the increase in effective crosstalk capacitance.       in Figure 5.14 till 5.16 

represents delay sensitivity over the variation parameters, where the results were obtained 

through Minitab. From Figure 5.14, the results indicate that both Vdd and ρ have the highest 

impact on crosstalk delay variations as both of these parameters have the most significant 

association with delay as discussed previously in Section 5.3.1.2. Delay is linearly dependent 

on the wire resistance as well as being negatively correlated to Vdd. Subsequently this result 

also shows that delay sensitivity to wire parameter variations has a very high data 

dependency due to the changes in the effective crosstalk capacitance for each different case. 
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This dependency can be reduced by incorporating 3 buffers as shown in Figure 5.15, by the 

significant decrease in delay sensitivity to wire parameter variations. By increasing the wire 

spacing, the dependency of delay sensitivity on wire parameters can also be reduced but not 

as much as using the buffer insertion method as shown in Figure 5.16; however, this method 

can be used to reduce the delay sensitivity to device parameters. This is because by 

increasing the wire spacing, contributing to the decrease in delay by reducing the wire 

capacitance without affecting its resistance, which causes the contribution of the driver 

circuitry to the overall delay to be reduced. 

 

Figure 5.14: Delay sensitivity to variability of minimally spaced wire with no buffer. 

 

-200 

-150 

-100 

-50 

0 

50 

100 

150 

200 

250 

Vdd Temp Vth Leff ρ w t h 

d
D

/d
x
 

Variation parameters 

Crosstalk Case 2 

Crosstalk Case 3 

Crosstalk Case 4 

Crosstalk Case 5 



151 
 

 

Figure 5.15: Delay sensitivity to variability of minimally spaced wire with 3 buffers. 

 

 

Figure 5.16: Delay sensitivity to variability of a 3 times minimally spaced wire with no 

buffer. 

In addition to the first order or linear model generated, a second order or non-linear model of 

the crosstalk delay can also be generated. This model comprises interaction and quadratic 

effects between parametric variations, where its polynomial approximation is as shown in 
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Equ.5.2. The results obtained through Minitab for the non-linear model are presented in 

Figures 5.17 to 5.20, where the coefficients indicated in these figures represent regression 

coefficients (β), referring back to Equ.5.3 

A comparison between second order and linear coefficients from Figure 5.14 indicates that 

the linear coefficients are more significant. Subsequently most of the non-linear effects can 

be ignored as they have very little impact on the model accuracy. However, as can be seen in 

Figure 5.17 the quadratic effect of Vth is relatively large representing the only significant 

parameter from the device parameter variations while from the interconnect parameters, the 

quadratic effects of wire width and dielectric thickness are found to be significantly large. 

This is because of the dependency of voltage swing on Vth, which can affect the delay 

significantly, and the quadratic effects of w and h contribute to the changes in effective 

crosstalk capacitance, hence deviations in crosstalk delay. Additionally, the interaction 

between Vdd and ρ also contribute to the large coefficients for delay sensitivity. From Figure 

5.14, both Vdd and ρ are the most significant parameters to affect delay sensitivity, thus their 

interaction will have large impact on the delay sensitivity. 

 

Figure 5.17: Interaction and quadratic coefficients of device and environmental parameter 

variations. 
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Figure 5.18: Interaction coefficients of device and wire parameter variations. 

 

 

Figure 5.19: Interaction and quadratic coefficients of wire parameter variations. 
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Figure 5.20: Interaction coefficients of wire and environmental parameter variations. 

5.3.2.2. Impact of variability on crosstalk glitch 

The DoE (CCD) technique was employed in this analysis to build a polynomial 

approximation of the crosstalk glitch induced on the middle line in Figure 5.13. There are 

three types of crosstalk glitches resulting from: 

Case 1: the switching of two aggressor wires in different directions 

Case 2: the switching of one aggressor wire 

Case 3: the switching of two aggressor wires in the same direction 

However, the crosstalk glitch resulting from the switching of two aggressor wires in different 

directions is ignored as its impact is considered insignificant, thus only cases 2 and 3 are 

considered in this analysis. 

In order to investigate the sensitivity of the glitch to parametric variations, linear models of 

crosstalk glitch in each case are generated for minimally spaced wire with no repeaters. The 

polynomial approximation of the linear model as shown in Equ.5.1 is used to represent the 

crosstalk glitch is given by Equ.5.4. 
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                                                                                                      (5.4) 

where G represents the crosstalk glitch, xi represents variation parameter which in this case 

are Vdd, Temp, Leff, Vth, ρ, w, t and h,  and βi is regression coefficient for each variation 

parameter respectively. R
2
 was found to be around 99% for all cases.  

From Figure 5.21, the results indicate sharp increases in crosstalk glitch sensitivity to all 

variation parameters in Cases 2 and 3.       in Figure 5.21 and 5.22 represents glitch 

sensitivity over the variation parameters, where the results were obtained through Minitab. 

Crosstalk glitch sensitivity to wire parameter variations has a very high data dependency 

especially w, which is one of the main contributors to effective crosstalk capacitance. 

However, changes in Vdd have also a sizeable contribution to the overall variations. These 

results are supported by their linear relations to the crosstalk glitch, as shown below [16]: 

                                                       
  

          
                                        (5.5) 

where CC is the effective crosstalk capacitance, Rvictim is the wire resistance of the victim line 

and taggressor is the switching slew rate of the aggressor line.  

 

Figure 5.21: Crosstalk glitch sensitivity to variability of a minimally spaced wire with no 

buffer. 
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The next step is to investigate the impact of buffer insertion and wire spacing on crosstalk 

glitch sensitivity to variation parameters. The same linear model is used for the crosstalk 

glitch of Case 2 with the same interconnect geometry but with s = 3wmin for wire spacing 

analysis, and s = wmin with 3 buffers for buffer insertion analysis. A comparison of the results 

is shown in Figure 5.22. The decrease in the crosstalk glitch sensitivity is more significant 

through the wire spacing method as it is known to be the most effective way in reducing 

crosstalk noise. Increasing the distance between the adjacent wires will result in reduction of 

crosstalk capacitance and thus the crosstalk glitch. With buffer insertion, the crosstalk glitch 

sensitivity to the wire parameter variations is reduced but there is a slight increase in 

dependency towards the device parameter variations. This is due to the use of buffers which 

contribute to the increase in the crosstalk glitch dependency of Leff, which is contributed by 

the driving capability of the low-swing driver and buffers. 

 

Figure 5.22: The impact of wire spacing and buffer insertion on crosstalk glitch sensitivity to 

variability. 

For cases 2 and 3 second order models for the crosstalk effects on the centre (victim) line in 

Figure 5.13 were generated using Minitab to observe the interaction and quadratic effects on 

the crosstalk glitch variations. The accuracy of these models was validated using R
2
 fit 

analysis which was found to be more than 99% for all cases. For this analysis, a 10mm 

minimally spaced wire with no repeaters was considered. The results are as shown in Figures 

5.23 to 5.26. The coefficients stated in Figure 5.23 to 5.26 represent the regression 
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coefficients (β) for each variation parameters, which in this case are the interaction and 

quadratic effects of the process parameters. A comparison was made between the second 

order models and the linear models shown in Figure 5.21. The comparison clearly indicates 

that the linear coefficients are more significant. The non-linear effects can totally be ignored 

as they will not have a significant impact on the model accuracy.  

 

Figure 5.23: Interaction and quadratic coefficients of device and environmental parameter 

variations. 
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Figure 5.24: Interaction coefficients of device and wire parameter variations. 

 

Figure 5.25: Interaction and quadratic coefficients of wire parameter variations. 

 

 

Figure 5.26: Interaction coefficients of wire and environmental parameter variations. 
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5.4. Summary 

In this chapter, a detailed introduction to variability which highlights the type of variations 

that are common in the nano-metre regime was given. The statistical methods which are used 

in the process variation analysis are introduced comprising corner based analysis, Monte 

Carlo analysis and the Design of Experiment (DoE). These methods were briefly discussed in 

terms of advantages and disadvantages, which highlight the reasons for employing DoE 

analysis in this work. The work flow for the DoE analysis was also introduced and is divided 

into 2 sets of experiments, namely; the single signalling without considering crosstalk 

effects, and signalling with crosstalk effects. The responses for the first set of experiment are 

delay, power consumption and SNR whilst crosstalk delay and glitch are the output responses 

for the second set. 

The first set of experiments involved a Monte Carlo analysis and followed by DoE. All four 

low-swing signalling schemes (mLVSD, nLVSD, MJD and DDC) were used for the Monte 

Carlo analysis, where the results indicate that the proposed driver schemes, i.e. the mLVSD 

and nLSVD driver schemes are more robust compared to DDC and MJ-driver schemes. The 

mLVSD driver scheme has less deviation in delay compared to the nLVSD driver scheme 

but the nLVSD driver scheme is more robust in terms of power consumption. However, the 

mLVSD driver scheme has a better performance profile due to its robustness against noise 

variability.  

To gain a better understanding of which process parameters had the greatest impact on 

performance, the mLVSD-driver scheme was further analyzed as this had a better 

performance profile among all low-swing signalling schemes tested in this work. In terms of 

device variations, the most significant parameters are tox and Vtho, and Vdd representing the 

environmental variation. The trends in power consumption with tox, Vtho and Vdd are 

completely opposite to the trend in delay. This means that the variations in tox and Vtho have 

positive correlations with the delay but negatively correlate with the power consumption. The 

same scenario also applies for Vdd as its variation causes an increase in variability of power 

consumption but a decrease in delay variation. The positive correlation between Vdd and 

power consumption is due to its quadratic relationship. The negative correlation of Vdd with 

regards to delay is due to the driving current, which decreases when Vdd decreases, which 

results in slower circuit. This has opposite effect on Vtho and tox, as the driving current 

increases with the reduction of both these parameters, resulting in faster circuit. 
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Similar trends can also be seen for interconnect variations. Firstly, the most significant 

parameters regarding interconnect are s, w and t. As w and t increase,    decreases while    

increases, which overall causes the delay to decrease. The results also show that the delay 

variation increases when the spacing becomes wider but the delay itself is decreasing. 

However, this has an opposite effect on power consumption, as the variation in power 

consumption increases with w and t, but decrease with interconnect spacing. 

Further analysis was carried out to investigate the impact of variability on crosstalk effects of 

the mLVSD driver scheme. Both linear and non-linear models were generated for crosstalk 

delay and glitch. The results indicate that the delay and glitch sensitivities have a high data 

dependency towards Vdd and wire parameter variations. This dependency can be reduced 

through buffer insertion and wire spacing with latter method being most effective for 

reducing delay disparity whilst wire spacing is found to be the most effective method in 

reducing variability in crosstalk glitch production. Results from the second order models 

indicate that most of the non-linear effects can be ignored as they do not impact significantly 

on the model accuracy. However, few parameter contributions such as the quadratic effects 

of Vth, w and h and interactions between Vdd and ρ should be considered as they can be 

regard as significant to the crosstalk delay sensitivity compared to the linear coefficients.  

Through this work, both of the proposed driver schemes, namely the mLVSD and nLVSD 

drivers have proven to be more robust and reliable compared to other diode-connected 

drivers, namely, the MJ and DDC driver circuits, tested in this work, in terms of low power, 

high speed and robustness against process variation. The most influential process parameters 

in device and interconnect variations have also been identified permitting fabrication process 

choice to be made depending on whether the main design criteria is performance or power 

consumption. This can also be applied to the variability analysis on the crosstalk effects as 

the most significant variables as well as their interactions and quadratic coefficients have 

been identified which aids in distinguishing the right process choice on whether the response 

of interest is crosstalk delay or glitch. 
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Chapter 6 

 

CONCLUDING REMARKS 

 

6.1. Discussions 

A major issue in the design of high performance processors is their subsequent power 

consumption, which is a function of the operating frequency. The cost of packaging a circuit 

which consumes more than 50W, exceeds the cost of fabricating the circuit. In addition many 

circuits contain long global interconnects; these necessitate in the use of high power line 

drivers if their delay is not to compromise the performance of the circuit. Unfortunately, the 

use of technology scaling to satisfy market demands for increased functionality per unit area 

aggravates the interconnect delay problem. 

Dynamic power consumption of a circuit is proportional to the switching activity of the 

circuit, load capacitance, the square of the supply voltage and the clock frequency [1]. 

Techniques adopted to reduce power consumption are thus directed at decreasing one or 

more of these factors; however since the power consumption is proportional to the square of 

the supply voltage most techniques are centred on voltage reduction provided high circuit 

performance is not a major design objective. Unfortunately, using reduced power supply 

voltages can impair the performance of the line drivers for global interconnect unless low-

swing signalling techniques are adopted. 

Low power consumption can be achieved while maintaining a high-speed signalling by using 

a low voltage swing on the interconnections. With the interconnect capacitance, operating 

frequency and supply voltage remaining the same, lower on-chip power consumption can be 

achieved using specially designed driver and receiver circuits which are used to convert the 

full rail-to-rail swing to low voltage swing, and vice versa. These circuits are the essential 

components of the low-swing signalling scheme.  

There are several low-swing signalling schemes that employ a differential signalling method 

such as those that implement the differential current mode technique [2,3] and driver pre-

emphasis technique [4]. There are also several single-ended signalling schemes which offer 

improvements in terms of both the performance and power consumption. These signalling 

schemes have been qualitatively compared in Table 2.1, which highlights their 
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characteristics, advantages and disadvantages. This table is important for future use or 

reference when designing low-power and high-speed on-chip signalling scheme. 

The main problems with the differential signalling method are the area penalty and the 

complexity of the schemes. Their active area increase is due to the doubling of the number of 

wires while the increase in their circuit complexity is caused by additional circuitry such as 

the internal voltage generator for static source driver [5] and voltage regulator for differential 

voltage mode signalling schemes [6]. The single-ended signalling schemes have the 

advantage over the differential schemes in terms of the number of wires used but most of the 

schemes are too dependent on reference voltages and low-Vth devices such as the static 

source driver and NMOS only push-pull driver schemes [5]. Both of these methods also 

require multiple power supplies at both the driver and the receiver ends. The main issue with 

the multiple power supplies technique is the layout placement and the timing analysis. With a 

single power supply, timing analysis is simpler as it can be performed for single performance 

point based on a characterized library. However for multiple power supplies, the timing 

analysis has to be performed separately for each Vdd, which makes it more complex. In 

addition, both low and high Vdd cells need to be separated because the transistors have 

different n-well voltages [7,8], which increases the complexity of the circuit. 

Table 2.1 indicates that the MJ driver scheme (K), has the best attributes compared to the 

other signalling schemes. This is because the scheme provides low power and high speed 

signalling without the use of extra circuitry such as extra Vdd and reference voltages. In 

addition, the scheme has a good SNR as well as low leakage currents. The MJ driver employs 

a simple inverter at the receiver end, which also minimises the area overhead. The differential 

current mode signalling also has similar attributes to the MJ driver, however, suffers from 

area penalty due to the doubled number of wires. Furthermore, sense amplifiers are usually 

incorporated in the differential current mode signalling schemes, which increases the area 

penalty.  

Next section will starts off with comparison analyses and discussion between the diode-

connected driver schemes, namely, the nLVSD, mLVSD, MJ and DDC driver schemes. The 

design parameters that are to be compared are area overhead, delay, power consumption, 

leakage currents and noise immunity. This is followed by the summaries of the reliability 

analysis against the process variations and environmental disturbances (SEU and crosstalk), 

and concluded with required future works in this area. 
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6.1.1. The implementation of the proposed driver schemes for the on-chip signalling 

application 

The MJ driver is classified as a diode-connected driver, other low-swing drivers that 

incorporate this configuration, such as UDLD and DDC were discussed in Chapter 3. The 

VM pre-emphasis driver scheme [9] introduced in Chapter 2 also incorporates a diode-

connected configuration. This configuration is efficient in providing a high-speed signalling 

due to its high driving current capability, especially if placed at the output, as in the case of 

the MJ driver and the VM pre-emphasis driver. Subsequently, this configuration also 

provides lower voltage swing at the output, which directly leads to lower power 

consumption. However, the issue with this type of configuration is its noise immunity and 

adaptability to process variation [10], as well as the issue with leakage currents.  

From the discussion in Chapter 3, the MJ driver is considered to be redundant in terms of 

area as only half the circuit is needed to be operational during each rising and falling 

transition. Consequently the objectives of any new design, whilst maintaining the low 

voltage swing capability of the MJ driver must not only eliminate its disadvantages but also 

reduce the power consumption and delay of the circuit. These objectives can be achieved 

through the nLVSD and mLVSD drivers which are based on the MJ driver but they differ in 

their simplicity, which results in a smaller footprint. The active area for the MJ driver is 

measured at 51.34µm
2
 whilst both the nLVSD and mLVSD drivers are measured at 

25.52µm
2
 and 23.4µm

2
 respectively. This shows that both the proposed drivers are 

approximately 50% smaller than the MJ driver. Both proposed drivers have smaller areas 

compared to the MJ driver even though they incorporate leakage control mechanism in their 

driver circuit. Leakage control transistors are implemented in the nLVSD driver circuit whilst 

the mLVSD driver incorporates a pair of pass transistors providing direct static paths 

between the input and output of the drivers when the input is stable or no transistor activity is 

detected. The mechanism aids in further reducing the leakage current of the low-swing 

signalling scheme. 

In order to address the efficiency of the proposed driver schemes, their performances in terms 

of speed and power consumption were analysed and the common problematic issues, such as 

noise and leakage currents, encountered by other diode-connected driver schemes were 

addressed. Therefore, comparative analyses were carried out for the nLVSD, mLVSD, DDC 
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and MJ driver schemes with the Schmitt Trigger level converter is implemented as the 

receiver. 

6.1.2. Comparative analysis of the low-swing signalling schemes 

The performance of the low-swing signalling schemes were analysed and compared with 

respect to the main design parameters, namely delay, power consumption, energy-delay-

product and signal to noise ratio. The first design parameter considered was the overall delay 

of the driver schemes. The analysis was performed by increasing the length of the 

interconnect, from 1 to 10mm, between driver and receiver and determining the value of 

signal delay. A plot of the delay against interconnect length is shown in Figure 6.1. 

 
Figure 6.1: The comparison of delay between the low-swing signalling schemes for different 

range of interconnect length. 

The initial rate of increase in delay of all driver schemes is quite similar with the MJ driver 

scheme showing a slight performance advantage up to 5mm interconnect length. This is 

followed by the nLVSD, mLVSD and DDC driver schemes. Thereafter the delay curve of the 

MJ driver scheme crosses over and starts to diverge from the proposed driver schemes and 

following the curve of the DDC driver scheme, showing a rapid increase in delay. For a 

10mm length of interconnect the delay of the MJ and DDC driver schemes are 42% and 49% 

greater than the nLVSD scheme, whilst the mLVSD driver scheme is 46% and 53% faster 

than the MJ and DDC driver schemes, respectively. Thus for relatively short interconnect 
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length (<6mm) the MJ driver scheme has better delay characteristics but with only small 

percentage, thereafter the nLVSD and mLVSD driver schemes show distinct performance 

advantages as the interconnect length increases, with the mLVSD driver scheme having a 

slight performance advantage over the nLVSD driver scheme, approximately 3% reduction 

in delay. This is due to the pair of pass transistors incorporated in the mLVSD driver, which 

helps in speeding up the switching process. 

Regarding the power consumption, Figure 6.2 shows that the nLVSD driver scheme is better 

than the mLVSD, MJ and DDC driver schemes over the full range of interconnect lengths 

considered. Thus, the nLVSD driver scheme has significant improvement in power 

consumption not only for global interconnects but also for shorter wire applications. This is 

due to its lowest voltage swing compared to other low-swing signalling schemes. This is 

followed by the mLVSD driver scheme with 34% increase in power consumption compared 

to the nLVSD driver scheme, and 7% improvement compared to the MJ and DDC driver 

schemes. At 10mm line length, the nLVSD driver scheme produces 43% improvement in 

power consumption compared to the MJ and DDC driver schemes.  

 

Figure 6.2: The comparison of dynamic power consumption between the low-swing 

signalling schemes for different range of interconnect length. 

In order to analyse both the speed and power consumption for all low-swing signalling 
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delay-product (PDP) can be used. EDP is preferable since it is independent of the operating 

frequency, which simplifies the optimization process and can be applied at any signal rate. 

Figure 6.3 indicates that the MJ driver scheme has a similar EDP characteristic to the 

nLVSD driver scheme at an interconnect length of 2mm; thereafter, it increases with the 

EDP curve of the mLVSD driver scheme until it crossover at 5mm and starts to increase 

rapidly, following the EDP curve of the DDC driver scheme, with a slight 10% decrease in 

EDP. 

 

Figure 6.3: The comparison of energy-delay-product between the low-swing signalling 

schemes for different range of interconnect length. 

The nLVSD driver scheme has the best EDP characteristic with 33% reduction compared to 

the mLVSD driver scheme throughout the length of the interconnect. Even though, the 

mLVSD driver scheme has a higher EDP than the nLVSD driver scheme it has a 56% and 

71% improvement compared to the MJ and DDC driver schemes, respectively. Conclusively, 

the proposed driver schemes have the best EDP characteristics compared to the MJ and DDC 

driver schemes. Subsequently, overall, the nLVSD and mLVSD driver schemes produce 

significant improvements in both power consumption and delay compared to the DDC and 

MJ driver schemes, again demonstrating its suitability for their use with both long and short 

interconnects lengths. 
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Another design metric that need to be analysed for low-swing signalling schemes is the 

leakage currents. In nanometer scaled CMOS circuits, beside the dynamic power dissipation, 

energy dissipation can result from various forms of leakage currents such as gate-oxide 

tunnelling, sub-threshold leakage and junction tunnelling leakages. For submicron 

technologies, the dominant leakage mechanism is the sub-threshold leakage current, which 

needs to be addressed as the low-swing signalling schemes used in this work are 

implemented using 90nm technology where leakage currents are increasingly becoming more 

significant. Consequently, circuit temperature is linearly dependent on the power 

consumption, as it increases when power consumption is high. Since the leakage current 

increases with the increase in temperature, thus the comparative analysis involving leakage 

currents is carried out to the effects of temperature. Thus for this analysis, the leakage 

currents of the low-swing signalling schemes; namely, the nLVSD, mLVSD, DDC and MJ 

driver schemes are measured for a range of temperatures from 12°C to 55°C, as shown in 

Figure 6.4. Note that the result for the DDC driver scheme is not displayed in Figure 6.4, as 

the leakage currents of the DDC driver scheme has more than four times the increase in the 

leakage current of all the low-swing signalling schemes shown in Figure 6.4, thus it is 

discarded in this analysis. 

 
Figure 6.4: Comparison of leakage currents of the mLVSD scheme with the nLVSD and MJ 

schemes at different temperature range. 
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The results from Figure 6.4 show that the proposed driver schemes have almost constant 

leakage currents throughout the temperature range whilst the MJ driver scheme has twice the 

increase in leakage currents when the temperature increases from 12°C to 70°C. 

Conclusively, with the use of the leakage control mechanism in the driver, the leakage 

currents for the proposed driver schemes are considerably reduced and little affected by the 

changes in temperature. 

Even though the proposed driver schemes have been shown to have the best attributes in 

terms of delay, both dynamic and leakage power consumption, as well as reduced area cost, 

one important aspect that needs to be addressed is the reliability of the driver schemes. 

Therefore, the reliability of driver schemes are analysed with respect to their signal to noise 

ratio using the approach outlined in [5]. The noise margin is affected by changes in the Vtho 

of the devices and their mismatch and the device sizing between driver and receiver in 

response to process variations. The variability in Vtho can adversely affect the noise margin. 

Mismatch between driver and receiver should be avoided in order to avoid this noise margin 

penalty. Therefore a reliability analysis has been performed for low-swing signalling 

schemes, namely, the mLVSD, nLVSD, MJ and DDC driver schemes at an interconnect 

length of 10mm, in order to highlight this issue, which has been summarised in Table 6.1. 

Table 6.1: Noise analysis of low-swing signalling schemes at Vdd = 1.0V. 

Driver 

Schemes 

Vs 

(V) 
KNVS 

RX_0 

(V) 

RX_S 

(V) 

PS 

(V) 
Attn 

TX_0 

(V) 

   

(V) 
SNR 

MJ 0.4913 0.016 0.05 0.03 0.05 0.5 0.05 0.166 1.48 

DDC 0.5259 0.018 0.06 0.04 0.05 1.0 0.06 0.225 1.17 

nLVSD 0.3444 0.008 0.04 0.02 0.05 0.5 0.03 0.124 1.39 

mLVSD 0.4695 0.014 0.04 0.02 0.05 0.5 0.04 0.139 1.69 

The     (signal-induced power supply noise) is estimated to be 5% of the signal swing for 

single-ended signalling [11]. The crosstalk coupling coefficient, KC is a ratio between 

coupling capacitance and interconnect load capacitance as shown in Equ.3.9, where CC is the 

coupling capacitance, CW is the interconnect capacitance and CL is the fan-out capacitance. 
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For this work, CC is calculated at 66.63fF/mm, Cw is at 174.47fF/mm whilst CL is at 

250fF/mm using equations 2.3 to 2.5, which gives the value of Kc as 0.14.  

The crosstalk attenuation, Attnc is estimated to be 0.05 for a static driver circuit. The voltage 

swing for all four driver schemes is measured at the interconnect of 10mm. The power 

supply attenuation coefficient, Attn is measured by the changes in receiver switching 

threshold voltage due to the change of the supply voltage, as shown in Figure 3.2(a). 

Receiver input offset, RX_0 and receiver sensitivity, RX_S can be measured as shown in 

Figure 3.2(b) where the worst difference of the threshold voltage is measured at every 

simulated process corners. The noise voltage, VN can be calculated using Equations 3.8 to 

3.10 in Chapter 3. 

Table 6.1 indicates that all diode-connected driver schemes tested here have good SNR since 

their SNR values exceed 1. Even though all the SNR values are above 1, the mLVSD scheme 

has better performance compared to other driver schemes and including the nLVSD driver 

scheme, in terms of reliability. The SNR of the mLVSD driver scheme is 22% and 14% 

higher compared to the nLVSD and MJ driver schemes, respectively. Even though the 

nLVSD driver scheme has the best EDP characteristic compared to other low-swing 

signalling schemes it has smaller SNR compared to the mLVSD and MJ driver schemes but 

with a 19% higher SNR than the DDC driver scheme. This is probably due to the lower 

voltage swing that the nLVSD driver scheme has, which can significantly affect the noise 

margin. 

Based on this comparative analysis, it can be concluded that even though the nLVSD driver 

scheme has the best attributes in terms of delay, power and leakage consumption, its poor 

reliability against noise can compromise the signal integrity of its signalling scheme. 

However, it can be added that both the proposed driver schemes; namely, the nLVSD and 

mLVSD driver schemes have the best power and performance characteristics compared to 

the MJ and DDC driver schemes. 

Further discussion on the performance of the low-swing signalling schemes with respect to 

the effect of process variation and environmental disturbances will be continued in the next 

section. The potential design parameters and methods to improve the reliability of the low-

swing signalling schemes against the process variation as well as environmental disturbances 

are also summarised in the following section. 
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6.1.3. Impact of external disturbances and process variation on low-swing signalling 

schemes 

As device dimensions are being reduced through the advances in semiconductor technology, 

the effects of process variations are an important issue which needs to be addressed as it is a 

salient factor in determining the reliability, performance and functionality of circuits. In 

addition to process variation, several studies have shown that temporary faults such as those 

resulting from SEU and crosstalk may have been responsible for 80% or more of the failures 

in digital systems [12,13]. The most important aspect that can be highlighted here is that 

issues regarding process variation and temporary faults are often not addressed in the 

reliability analysis, which is significantly important as they can affect the performance of the 

signalling schemes. Therefore, in this work, in order to assess the reliability of the low-swing 

signalling schemes, these issues were addressed and discussed in Chapters 4 and 5. 

A comparative analysis for all four low-swing signalling schemes, namely, the nLVSD, 

mLVSD, DDC and MJ driver schemes were carried out in Chapter 4, in order to investigate 

their reliability against SEUs and crosstalk effects. The overall results indicate the proposed 

low-swing signalling schemes (nLVSD and mLVSD) have better performance and greater 

immunity to crosstalks and SEUs. Comparison analysis on the crosstalk effect were analysed 

for the low-swing signalling schemes, namely, the nLVSD, mLVSD, MJ and DDC driver 

schemes. The impact of crosstalk on the reliability of the driver schemes are analysed in the 

form of KN (coupling noise sources). The results indicate that both proposed driver schemes 

have smaller KN, which means more robust to crosstalk effect compared to the MJ and DDC 

driver schemes. The nLVSD driver scheme has approximately 30% and 39% less KN 

compared to the MJ and DDC driver schemes respectively whilst the mLVSD scheme is 4% 

and 9% more robust in terms of crosstalk than the MJ and DDC driver scheme respectively. 

Additionally, the nLVSD driver scheme has shown to be 26% more robust than the mLVSD 

driver scheme. The DDC driver scheme suffers the most from the crosstalk effect as it has 

5% more KN than the MJ driver scheme. 

In another aspect of robustness against temporary faults, the impact of SEU on the low-swing 

signalling scheme were also analysed which shows that both proposed driver schemes have 

better SEU tolerance compared to the MJ and DDC driver schemes. SEU tolerance was 

measured in the forms of critical charge; larger the critical charge, the stronger the SEU 

tolerance of a driver scheme is. The mLVSD driver scheme has the highest critical charge 
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with 5%, 33% and 47% more compared to the nLVSD, MJ and DDC driver schemes. Even 

though, the nLVSD driver scheme is less tolerance towards SEU compared to the mLVSD 

driver scheme, it is 26% and 40% more robust towards SEU effect than the MJ and DDC 

driver schemes. The DDC driver scheme is the most affected by SEU with 11% less critical 

charge than the MJ driver scheme. 

Further analysis was carried out to determine the design strategies that can reduce the impact 

of SEU on the low-swing signalling schemes. The results indicate that the impact of a SEU 

can be reduced significantly by having high bias currents in the circuit design. Although by 

introducing a high bias current into the design which will increase the critical charge and 

hence improve the reliability towards SEUs, the power consumption is significantly 

increased. Another method in reducing the impact of SEU is by increasing Vdd or the 

operating frequency but the improvement is less significant than employing high bias current. 

Therefore, a good trade-off between the two design strategies need to be found in order to 

meet reliability target with minimal power overhead. 

Additionally, several design methods to mitigate the problems with crosstalk, namely, wire 

spacing, buffer insertion and shielding, were also discussed. The results show that all three 

methods are efficient in reducing the crosstalk delay and noise. However, the comparative 

analysis between these methods indicates that shielding has the best performance overall but 

at a cost of power and area. Therefore, in order to meet the reliability requirement as well as 

obtaining minimum power and area cost, wire spacing is found to be the best design solution 

in this case. 

In addition to the reliability analysis against temporary faults carried out in Chapter 4, the 

reliability analysis against the effect of process variations were also addressed in Chapter 5. 

Results from the variability analysis carried out in Chapter 5 have shown that with 

percentages variation in process parameters as stated in Table 5.4, the lowest delay for the 

10mm line occurs with the mLVSD scheme which also has the lowest standard deviation. 

Meanwhile, the nLVSD scheme is 3.6% slower than the mLVSD scheme and has a standard 

deviation which is almost 5% greater than the mLVSD scheme. However, the nLVSD 

scheme has 44% improvement in terms of power consumption and also deviates about 23% 

less than the mLVSD scheme. This indicates that the mLVSD scheme excels overall in terms 

of delay but the nLVSD scheme is better overall in terms of power consumption due to its 

lower voltage swing. However, both proposed schemes have shown to be more robust than 
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the DDC and MJ driver schemes when exposed to process variations. The results showed that 

the MJ driver scheme deviates approximately 18% and 35% more in delay and power 

consumption respectively compared to the proposed schemes. The DDC driver scheme 

suffered the most from the effect of process variation as it showed that the scheme has 

approximately 20% and 57% more variations in delay and power consumption compared to 

the nLVSD and mLVSD driver schemes. From these results, it indicates that the proposed 

driver schemes are more robust against process variation but the mLVSD driver scheme is 

found to have the best performance overall when noise factors due to process variations such 

as the receiver sensitivity and receiver offset are accounted for to determine the most robust 

low-swing signalling scheme. 

To gain a better understanding of which process parameters had the greatest impact on 

performance of the low-swing signalling scheme, the mLVSD driver scheme was further 

analyzed as this had a better performance profile among all low-swing signalling schemes 

tested in this work. In terms of device variations, the most significant parameters are tox and 

Vtho, and Vdd representing the environmental variation. The trends in power consumption 

with tox, Vtho and Vdd are completely opposite to the trend in delay. This means that the 

variations in tox and Vtho have positive correlations with the delay but negatively correlate 

with the power consumption. The same scenario also applies for Vdd as its variation causes 

an increase in variability of power consumption but a decrease in delay variation. The 

positive correlation between Vdd and power consumption is due to its quadratic relationship. 

The negative correlation of Vdd with regards to delay is due to the driving current, which 

decreases when Vdd decreases, which results in a slower circuit. The Vtho and tox have 

opposite effect on delay as the driving current increases with the reduction of both these 

parameters, resulting in faster circuit. 

Similar trends can also be seen for interconnect variations. Firstly, the most significant 

parameters regarding interconnect are s, w and t. As w and t increase,    decreases while    

increases, which overall causes the delay to decrease. The results also show that the delay 

variation increases when the spacing becomes wider but the delay itself is decreasing. 

However, the increase in interconnect spacing has an opposite effect on power consumption, 

as the variation in power consumption increases with w and t, but decrease with interconnect 

spacing. 
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Further analysis was carried out to investigate the impact of variability on crosstalk effects of 

the low-swing signalling schemes. Both linear and non-linear models are generated for 

crosstalk delay and glitch. The results indicate that the delay and glitch sensitivities have a 

high data dependency towards Vdd and wire parameter variations. This dependency can be 

reduced through buffer insertion and wire spacing with the latter method being the most 

effective difference in delay whilst wire spacing is found to be the most effective method in 

reducing variability in crosstalk noise. Results from the second order model indicate that 

most of the non-linear effects can be ignored as they are insignificant to provide an impact on 

the model accuracy. However, a few coefficients such as the quadratic effects of Vth, w and h 

and the interaction between Vdd and ρ should be considered as they can be regarded as 

significant to the crosstalk delay sensitivity compared to the linear coefficients. 

6.1.4. Summary 

The driver schemes proposed in this work have been shown to be more robust and reliable 

compared to existing low-swing signalling schemes reviewed in this work, in terms of low 

power, better signal integrity and robustness against process variations and temporary faults, 

the mLVSD driver scheme having the best overall attributes. The most effective design 

parameters or methods that can be implemented in the design of low-swing signalling 

schemes, in order to improve their robustness against the temporary faults have been 

identified, which is important for future use in designing low-power and high-speed on-chip 

signalling schemes to be used in sensitive environments. The most influential process 

parameters in device and interconnect variations have also been identified permitting 

fabrication process choices to be made depending on whether the main design criteria is 

performance or power consumption. This can also be applied to the variability analysis on 

the crosstalk effects as the most significant variables as well as their interactions and 

quadratic coefficients have been identified which aids in distinguishing the right process 

choice on whether the response of interest is crosstalk delay or glitch. 
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6.2. Conclusions  

Due to the aggressive scaling in the integrated circuit design, the global interconnect delay 

has adversely been affected, which subsequently reduces the system performance. This 

problem can be mitigated by employing line drivers but with the cost of incurring high power 

consumption. Consequently, there is a need for a high speed on-chip signalling scheme. 

Low-swing signalling techniques can provide high speed signalling with low power 

consumption and hence can be used to driver global on-chip interconnect. Most of the 

proposed low-swing signalling schemes are immune to noise as they have good SNR. 

However, they tend to have large penalty in area and complexity as they require additional 

circuitry such as voltage generators and low-Vth devices. Most of the schemes also 

incorporate multiple Vdd and reference voltages which increase the overall circuit 

complexity.  

As shown in Table 2.1, the MJ driver scheme, a diode-connected driver circuit, has the best 

attributes over other low-swing signalling techniques in terms of low power, low delay, good 

SNR and low area overhead. The MJ driver is a low-swing driver which incorporates a diode-

connected configuration at the output, providing a high speed signalling due to its high 

driving capability. However, this configuration also has its limitations; it has issues with its 

adaptability to process variations, as well as issues with leakage currents. The proposed 

driver schemes (nLVSD and mLVSD) can overcome these limitations as well as improving 

performance and achieving lower power consumption. By incorporating diode-connected 

configuration at the output and leakage control mechanism in the driver circuit, there are vast 

improvements to be made in power consumption and delay, as well as in leakage current and 

SNR. 

Both of the proposed driver schemes have less delay and low power consumption compared 

to other diode-connected driver schemes. The results indicate that the nLVSD and mLVSD 

driver schemes are approximately 46% and 50% respectively, faster than other diode-

connected driver schemes. In terms of power consumption, the nLVSD and mLVSD driver 

schemes produce 43% and 7% improvement, respectively, compared to other diode-

connected driver schemes. In addition to these results, both proposed driver schemes have 

low leakage currents compared to both the MJ and DDC drivers having two and four times 

increase in leakage currents compared to the proposed driver circuits. 
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The proposed driver schemes have shown to have the best attributes in terms of delay, power 

consumption, and leakage currents as well as reduced area cost. With regard to the noise 

immunity, the mLVSD driver scheme is the most robust as its SNR is 22%, 44% and 14% 

higher compared to the nLVSD, DDC and MJ driver schemes, respectively. On the other 

hand, the nLVSD driver scheme has 6% lower SNR compared to the MJ driver scheme, even 

though it is 19% more robust than the DDC driver scheme. However, since its SNR is still 

above 1, its improved performance and reduced power consumption, as well other 

advantages it has over other diode-connected driver schemes can compensate for this 

limitation. 

Regarding the robustness to external disturbances, both proposed driver schemes are more 

robust to crosstalk effects as the nLVSD and mLVSD driver schemes are approximately 35% 

and 7% more robust than other diode-connected drivers. Furthermore, the mLVSD driver is 

5%, 33% and 47% more tolerant to SEUs compared to the nLVSD, MJ and DDC drivers 

respectively, whilst the MJ and DDC drivers are 26% and 40% less tolerant to SEUs 

compared to the nLVSD circuit. This also indicates that the mLVSD is more SEU tolerant 

compared to the nLVSD driver scheme but less robust against crosstalk. 

In terms of process variations, both proposed driver schemes are more robust than the MJ 

and DDC circuits. The MJ driver scheme deviates by approximately 18% and 35% more in 

delay and power consumption whilst the DDC driver scheme deviates by approximately 20% 

and 57% more in delay and power consumption in comparison to the proposed schemes. The 

nLVSD driver scheme has a standard deviation of delay which is almost 5% greater than the 

mLVSD driver but in terms of power consumption, the nLVSD scheme deviates by about 

23% less than the mLVSD scheme.  

The above results indicate that the proposed driver schemes have the best attributes 

compared to other diode-connected drivers showing significant improvements in delay, 

power consumptions, leakage currents and area overhead as well as robustness against 

process variations and environmental disturbances. However, in comparing the nLVSD and 

the mLVSD schemes, each scheme has an advantage over the other, which shows in a way 

they can compensate for each other based on the required performance goals.  
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From the above, it is considered that this work has contributed to the state of the art in the 

design of low-swing signalling circuits. However, as outlined below, further work is required 

in this area. 

 

6.3. Future Works  

There are several ideas or applications in which the low-swing signalling schemes proposed 

in this work can be used. There are a few suggestions such as increasing bandwidth or 

incorporating Silicon-on-Insulator technique into the design to further improve the 

performance and reduce power consumption of the proposed schemes. Subsequently, the 

proposed driver circuits can be implemented in applications such as multi-level signalling or 

adaptive signalling schemes to observe their abilities to provide improvements in delay and 

power consumption as well as reduced leakage currents and increased robustness against 

external disturbances and process variations, in the existing applications. 

6.3.1. Increase bandwidth or operating frequency 

The diffusive and dispersive effects of signals travelling over RC dominated on-chip 

interconnects limits both the transmission data rates and propagation latency in long global 

interconnects within microprocessor circuits [14]. A static driver with a low-impedance 

current sensing repeater is one of the techniques used to overcome this problem; it has a 

higher interconnect bandwidth compared to the full-swing voltage sensing schemes, but at 

the expense of increased power dissipation due to the current mode signalling. The proposed 

driver schemes in this work have been shown to have a significant improvement in power 

consumption at a maximum operating frequency of 1GHz. Larger operating frequencies are 

required to achieve high signal bandwidth

However, as the operating frequency reaches beyond 1GHz, disruption in signal data can 

occur, which disrupts the efforts in increasing the signal bandwidth using the proposed 

drivers. As the demand for high data bandwidth becomes more important in the deep 

submicron regime, it is essential to modify the proposed driver circuits by incorporating 

additional mechanisms which enable them to transmit high data bandwidth with low power 

consumption on the global interconnect lines.  
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6.3.2. Multi-level signalling application 

The multi-level signalling system [15] operates in current mode and consists of a transmitter, 

receiver and decoder where the transmitter encodes the two signal bits into four current 

levels and transmits them. The receiver compares the transmitted currents with the reference 

currents, which converts the four current levels into thermometer codes. The decoder then 

recovers the original signal. This approach is known to provide high bandwidth and 

comparable delay to the buffer insertion techniques, it also reduces the number of 

interconnect wires as with this technique, multiple bits can be transmitted on a single wire. 

However, this approach does have its limitations as it relies on matching and proper sizing of 

the driver and receiver transistors and is thus prone to the effects of process variations. 

The proposed drivers can be incorporated into this system as they have been shown to be 

more robust against process variations and matching-related noise, and at the same time, the 

bandwidth of the proposed driver schemes can be improved with this system. Subsequently,  

the proposed drivers having a diode-connected configuration at the output can easily be 

transformed to encapsulate similar functions as current mirrors changing the driver from 

operating in voltage mode to current mode. Since the system requires constant difference 

between the current levels produced by the drivers for the system to function properly, the 

modified part of the proposed drivers can be tuned to achieve this. This can be carried out by 

changing the size of the diode-connected transistors at the output of the drivers, giving off 

different current levels for each driver. However, it is important to make the necessary 

changes in the proposed receiver circuit in order to avoid any mismatch between them. 

6.3.3. Implementation of the designs using Silicon on Insulator (SoI) Technology 

Silicon-on-Insulator (SOI) is a semiconductor fabrication technique which uses pure crystal 

silicon and silicon oxide for integrated circuits. This technology is useful in the area where 

there are increased effects of process variation and reduced immunity of SEUs. It has 

attracted attention to be the next force behind technology scaling due to its capability to 

provide more speed, less power consumption and enhanced scalability as demanded by future 

CMOS generations. Comparing the bulk CMOS and SOI technologies, SOI can work at a 20 

to 35% higher speed than standard CMOS, as well as having 2 to 4 times less power 

consumption when running under the same operating conditions. Another advantage of this 

technology is the suppressed short channel effects, which means that the SOI device has a 
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steeper sub-threshold slope which in turn can be translated into higher driver current and 

lower source/drain leakage current. 

Although driver schemes proposed in this work employ a bulk CMOS technology they have 

shown vast improvements in speed, power consumption, leakage current and robustness to 

process variations and SEU. It is expected that by implementing this in SOI, this will result in 

more speed, less power consumption and leakage current and greater robustness against 

process variations and SEU effects than the current implementation. Subsequently, as SOI 

technology can be used to achieve these advantages, the complexity or area overhead of the 

proposed driver circuits can be reduced as the circuitry or mechanisms that were incorporated 

into the circuit design to reduce leakage currents and provide faster signalling can be 

removed, as they will no longer be necessary. 

6.3.4. Adaptive signalling schemes  

Previously, the results have shown that a trade-off is required between power consumption 

and delay, as well as between performance or power consumption and noise immunity for the 

proposed driver schemes, especially in the case of the nLVSD driver. This is because with 

the proposed driver schemes, low power consumption can be achieved and high speed 

signalling can be maintained with the low voltage swing but at the cost of noise immunity, 

even though it can still be considered as reliable, as the SNR is still above 1. However, it is 

necessary to improve the noise immunity of the proposed drivers especially the nLVSD 

circuit whilst maintaining low power consumption and high speed signalling. This can be 

done by employing an adaptive mechanism which varies the voltage swing, as well as an 

error protection mechanism which adaptively selecting error coding methods such as parity, 

Hamming and Berger codes, based on the noise levels and detected energy consumption. 

Typically, an adaptive signalling scheme is used to dynamically control the driver swing and 

the corresponding receiver threshold by applying dynamic voltage scaling to the 

interconnects in order to reduce the power consumption on the interconnect. Subsequently, 

the variable voltage swing can impact on the speed at which the driver is able to charge and 

discharge the load capacitance, thus the maximum reliable operating frequency is reduced 

with lower swings, thus also requiring an adaptive scheme for speed. However, if the 

proposed driver schemes are implemented, the adaptive scheme for speed can be discarded as 
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the proposed driver schemes have faster signalling even with lower voltage swings. 

Therefore, high operating frequency can still be achieved when using low voltage swing. 

However, operating with lower voltage swings makes the communication more sensitive to 

several noise sources. In order to cancel this effect, an error detection encoding at the source 

and Automatic Repeat Request (ARQ) strategy can be implemented [16]. It is known that 

error detection schemes with retransmission are less costly in terms of energy consumption 

than error correction schemes. A controller is required which decides on the voltage swing to 

be used and also to explore the design space for safe operating points. Inputs such as 

bandwidth requirements and channel reliability are required for controller. 

Another adaptive scheme that can be incorporated into the system is adaptive error protection 

scheme. Different coding methods have different capabilities to detect errors induced by 

different noise sources. While the coding scheme adopted can be designed for the worst case 

noise scenario, such an approach will be inefficient in terms of both energy and performance. 

Therefore it is necessary to design a system with self-embedded intelligence that can vary the 

coding technique based on the noise behaviour, and switch to the least powerful error 

detection scheme that can maintain the undetected error rates below specified levels, while 

energy consumption can be minimized while maintaining required protection levels. 

It would be beneficial to consider the two adaptive schemes as complementary and devise 

schemes that combine voltage scaling and code adaptation. Such a combination is relevant 

given that a number of different coding schemes can be implemented simultaneously; the 

number of supply voltages or voltage swing range is typically limited in real systems. 
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APPENDIX I 

 

A1.1 The diode-connected drivers and their transistors sizing 
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Figure A1.1: The nLVSD driver circuit. 

Table A1.1: Channel widths for transistors in the nLVSD driver. 

Transistor Type Width (µm) Transistor Type 
Width 

(µm) 

M1 P 12.5 M13/M14 P 3.46 

M2 N 4.05 M15/M16 N 2.77 

M3/M7 P 1.39 M17/M20 P/N 5.54 

M4/M8 N 0.69 M18/M19 N/P 0.2 

M5 P 2.77 M21/M23 P/N 20.25 

M6 N 1.39 M22/M24 P/N 5.54 

M9/M10 P 2.77 M25/M26 P 0.81 

M11/M12 N 3.46 M27/M28 N 0.27 
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nLVSD driver netlist (UMC CMOS 90nm): 

// Library name: variability_analysis         

// Cell name: VA_invx5 
    

  

// View name: schematic 
    

  

subckt VA_invx5 ou1 ou2 
    

  

    X5N (ou2 ou1 0 0) n_10_sp l=L w=195n sa=300n sb=300n nf=1 mis_flag=1 \ 

        sd=0 as=59.5f ad=59.5f ps=1u pd=1u m=1 
  

  

    X5P (ou2 ou1 vdd! vdd!) p_10_sp l=L w=5.54u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=1.3296p ad=1.3296p ps=11.56u pd=11.56u m=1   

ends VA_invx5 
     

  

// End of subcircuit definition. 
    

  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_invx6 
    

  

// View name: schematic 
    

  

subckt VA_invx6 od1 od2 
    

  

    X6N (od2 od1 0 0) n_10_sp l=L w=5.54u sa=240n sb=240n nf=1 mis_flag=1 \ 

        sd=0 as=1.3296p ad=1.3296p ps=11.56u pd=11.56u m=1 
 

  

    X6P (od2 od1 vdd! vdd!) p_10_sp l=L w=195n sa=300n sb=300n nf=1 \   

        mis_flag=1 sd=0 as=59.5f ad=59.5f ps=1u pd=1u m=1 
 

  

ends VA_invx6 
     

  

// End of subcircuit definition. 
    

  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_nor 
    

  

// View name: schematic 
    

  

subckt VA_nor in inn\-2 od1 
    

  

    NRN1 (od1 inn\-2 0 0) n_10_sp l=L w=2.77u sa=300n sb=300n nf=1 \   
        mis_flag=1 sd=0 as=831f ad=831f ps=6.14u pd=6.14u 
m=1 

 
  

    NRN2 (od1 in 0 0) n_10_sp l=L w=2.77u sa=300n sb=300n nf=1 mis_flag=1 \ 

        sd=0 as=831f ad=831f ps=6.14u pd=6.14u m=1 
  

  
    NRP1 (net15 in vdd! vdd!) p_10_sp l=L w=3.46u sa=240n sb=240n nf=1 
\   
        mis_flag=1 sd=0 as=830.4f ad=830.4f ps=7.4u pd=7.4u 
m=1 

 
  

    NRP2 (od1 inn\-2 net15 vdd!) p_10_sp l=L w=3.46u sa=240n sb=240n nf=1 \ 
        mis_flag=1 sd=0 as=830.4f ad=830.4f ps=7.4u pd=7.4u 
m=1 

 
  

ends VA_nor 
     

  

// End of subcircuit definition. 
    

  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_invx2 
    

  

// View name: schematic 
    

  

subckt VA_invx2 inn\-1 inn\-2 
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    X2N (inn\-2 inn\-1 0 0) n_10_sp l=L w=1.385u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=332.4f ad=332.4f ps=3.25u pd=3.25u m=1   

    X2P (inn\-2 inn\-1 vdd! vdd!) p_10_sp l=L w=2.77u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=664.8f ad=664.8f ps=6.02u pd=6.02u m=1   

ends VA_invx2 
     

  

// End of subcircuit definition. 
    

  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_invx3 
    

  

// View name: schematic 
    

  

subckt VA_invx3 in inn 
    

  
    X3N (inn in 0 0) n_10_sp l=L w=690n sa=240n sb=240n nf=1 mis_flag=1 
\   

        sd=0 as=165.6f ad=165.6f ps=1.86u pd=1.86u m=1 
 

  

    X3P (inn in vdd! vdd!) p_10_sp l=L w=1.385u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=332.4f ad=332.4f ps=3.25u pd=3.25u m=1   

ends VA_invx3 
     

  

// End of subcircuit definition. 
    

  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_nand 
    

  

// View name: schematic 
    

  

subckt VA_nand inn inn\-1 ou1 
   

  

    NDN1 (ou1 inn net4 0) n_10_sp l=L w=3.46u sa=240n sb=240n nf=1 \   
        mis_flag=1 sd=0 as=830.4f ad=830.4f ps=7.4u pd=7.4u 
m=1 

 
  

    NDN2 (net4 inn\-1 0 0) n_10_sp l=L w=3.46u sa=240n sb=240n nf=1 \   
        mis_flag=1 sd=0 as=830.4f ad=830.4f ps=7.4u pd=7.4u 
m=1 

 
  

    NDP1 (ou1 inn vdd! vdd!) p_10_sp l=L w=2.77u sa=300n sb=300n nf=1 
\   
        mis_flag=1 sd=0 as=831f ad=831f ps=6.14u pd=6.14u 
m=1 

 
  

    NDP2 (ou1 inn\-1 vdd! vdd!) p_10_sp l=L w=2.77u sa=300n sb=300n nf=1 \ 
        mis_flag=1 sd=0 as=831f ad=831f ps=6.14u pd=6.14u 
m=1 

 
  

ends VA_nand 
     

  

// End of subcircuit definition. 
    

  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_invx1 
    

  

// View name: schematic 
    

  

subckt VA_invx1 in inn\-1 
    

  

    X1N (inn\-1 in 0 0) n_10_sp l=L w=4.05u sa=240n sb=240n nf=1 \   
        mis_flag=1 sd=0 as=972f ad=972f ps=8.58u pd=8.58u 
m=1 

 
  

    X1P (inn\-1 in vdd! vdd!) p_10_sp l=L w=12.5u sa=240n sb=240n nf=1 \   
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        mis_flag=1 sd=0 as=3p ad=3p ps=25.48u pd=25.48u m=1 
 

  

ends VA_invx1 
     

  

// End of subcircuit definition. 
    

  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: new_lvsd_driver 
    

  

// View name: schematic 
    

  

I115 (net0417 net0169) VA_invx5 
   

  

I36 (net0318 net0238) VA_invx5 
   

  

I68 (net0256 net0324) VA_invx5 
   

  

I116 (net0417 net0175) VA_invx6 
   

  

I35 (net0318 net0242) VA_invx6 
   

  

I69 (net0247 net0279) VA_invx6 
   

  

I79 (net0253 net0249 net0247) VA_nor 
   

  

I80 (net0126 net0249) VA_invx2 
   

  

I82 (net0126 net0251) VA_invx3 
   

  

I81 (net0126 net0253) VA_invx3 
   

  
I83 (net0251 net0249 net0256) 
VA_nand 

   
  

I113 (net0134 net0126) VA_invx1 
   

  

V5 (net0134 0) vsource dc=v_amp type=pwl delay=0 edgetype=linear \   

        val0=v_amp val1=0 period=2n rise=5.00f fall=5.00f freq=500M \   

        ampl=500.0m sinephase=10n sinedc=0 wave=[ 0 1 500.0p 1 500.005p 0 \ 
        1.059995n 0 1.06n 1 1.5n 1 1.500005n 0 1.999995n 0 2.0n 1 2.56n 1 
\   
        2.560005n 0 3.059995n 0 3.06n 1 3.56n 1 3.560005n 0 3.999995n 0 
\   

        4.0n 1 4.5n 1 4.500005n 0 ] 
    

  

PM42 (net0268 net0415 vdd! vdd!) p_10_sp l=L w=5.4u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=1.296p ad=1.296p ps=11.28u pd=11.28u m=1   

PM41 (net0260 net0169 vdd! vdd!) p_10_sp l=L w=20.25u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=4.86p ad=4.86p ps=40.98u pd=40.98u m=1   
PM36 (net0260 net0175 net0169 net0169) p_10_sp l=L w=5.54u sa=240n sb=240n 
\ 

        nf=1 mis_flag=1 sd=0 as=1.3296p ad=1.3296p ps=11.56u pd=11.56u m=1 

PM35 (net0417 net0268 vdd! vdd!) p_10_sp l=L w=5.4u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=1.296p ad=1.296p ps=11.28u pd=11.28u m=1   

PM3 (net0318 net0305 vdd! vdd!) p_10_sp l=L w=5.4u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=1.296p ad=1.296p ps=11.28u pd=11.28u m=1   

PM0 (net0313 net0242 net0238 net0238) p_10_sp l=L w=5.54u sa=240n sb=240n \ 

        nf=1 mis_flag=1 sd=0 as=1.3296p ad=1.3296p ps=11.56u pd=11.56u m=1 

PM1 (net0313 net0238 vdd! vdd!) p_10_sp l=L w=20.25u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=4.86p ad=4.86p ps=40.98u pd=40.98u m=1   

PM2 (net0305 net0362 vdd! vdd!) p_10_sp l=L w=5.4u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=1.296p ad=1.296p ps=11.28u pd=11.28u m=1   

PM32 (net0249 net0279 net0280 net0249) p_10_sp l=L w=2.7u sa=240n sb=240n \ 

        nf=1 mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u m=1   
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PM31 (net0314 net0324 vdd! vdd!) p_10_sp l=L w=20.25u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=4.86p ad=4.86p ps=40.98u pd=40.98u m=1   
PM30 (net0314 net0280 net0324 net0324) p_10_sp l=L w=5.54u sa=240n sb=240n 
\ 

        nf=1 mis_flag=1 sd=0 as=1.3296p ad=1.3296p ps=11.56u pd=11.56u m=1 

PM40 (net0181 net0177 vdd! vdd!) p_10_sp l=L w=2.7u sa=240n sb=240n nf=1 \ 
        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u 
m=1 

 
  

PM39 (out net0181 vdd! vdd!) p_10_sp l=L w=5.4u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=1.296p ad=1.296p ps=11.28u pd=11.28u m=1   

PM38 (net0177 net0308 vdd! vdd!) p_10_sp l=L w=2.7u sa=240n sb=240n nf=1 \ 
        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u 
m=1 

 
  

PM37 (net0177 net0177 vdd! vdd!) p_10_sp l=L w=270n sa=240n sb=240n nf=1 \ 
        mis_flag=1 sd=0 as=64.8f ad=64.8f ps=1.02u pd=1.02u 
m=1 

 
  

NM40 (net0417 net0268 0 0) n_10_sp l=L w=2.7u sa=240n sb=240n nf=1 
\   
        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u 
m=1 

 
  

NM39 (net0260 net0169 net0175 net0175) n_10_sp l=L w=5.54u sa=300n sb=300n 
\ 
        nf=1 mis_flag=1 sd=0 as=1.662p ad=1.662p ps=11.68u pd=11.68u 
m=1   

NM34 (net0260 net0175 0 0) n_10_sp l=L w=20.25u sa=300n sb=300n nf=1 \ 

        mis_flag=1 sd=0 as=6.075p ad=6.075p ps=41.1u pd=41.1u m=1   
NM33 (net0268 net0415 0 0) n_10_sp l=L w=2.7u sa=240n sb=240n nf=1 
\   
        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u 
m=1 

 
  

NM2 (net0305 net0362 0 0) n_10_sp l=L w=2.7u sa=240n sb=240n nf=1 \   
        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u 
m=1 

 
  

NM0 (net0313 net0242 0 0) n_10_sp l=L w=20.25u sa=300n sb=300n 
nf=1 \   

        mis_flag=1 sd=0 as=6.075p ad=6.075p ps=41.1u pd=41.1u m=1   

NM1 (net0313 net0238 net0242 net0242) n_10_sp l=L w=5.54u sa=300n sb=300n \ 
        nf=1 mis_flag=1 sd=0 as=1.662p ad=1.662p ps=11.68u pd=11.68u 
m=1   

NM3 (net0318 net0305 0 0) n_10_sp l=L w=2.7u sa=240n sb=240n nf=1 \   
        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u 
m=1 

 
  

NM30 (net0249 net0324 net0325 net0249) n_10_sp l=L w=2.7u sa=240n sb=240n \ 

        nf=1 mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u m=1   
NM29 (net0314 net0325 net0279 net0279) n_10_sp l=L w=5.54u sa=300n sb=300n 
\ 
        nf=1 mis_flag=1 sd=0 as=1.662p ad=1.662p ps=11.68u pd=11.68u 
m=1   

NM28 (net0314 net0279 0 0) n_10_sp l=L w=20.25u sa=300n sb=300n nf=1 \ 



188 
 

        mis_flag=1 sd=0 as=6.075p ad=6.075p ps=41.1u pd=41.1u m=1   

NM38 (out net0181 0 0) n_10_sp l=L w=2.7u sa=240n sb=240n nf=1 mis_flag=1 \ 

        sd=0 as=648f ad=648f ps=5.88u pd=5.88u m=1 
  

  
NM37 (net0181 net0177 0 0) n_10_sp l=L w=1.35u sa=240n sb=240n 
nf=1 \   
        mis_flag=1 sd=0 as=324f ad=324f ps=3.18u pd=3.18u 
m=1 

 
  

NM36 (net0177 net0308 0 0) n_10_sp l=L w=1.35u sa=300n sb=300n 
nf=1 \   

        mis_flag=1 sd=0 as=405f ad=405f ps=3.3u pd=3.3u m=1 
 

  
NM35 (net0177 net0177 0 0) n_10_sp l=L w=135n sa=300n sb=300n nf=1 
\   

        mis_flag=1 sd=0 as=53.5f ad=53.5f ps=1u pd=1u m=1     
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Figure A1.2: The mLVSD driver circuit. 

 

 

 

Table A1.2: Channel widths for transistors in the mLVSD driver. 

Transistor Type Width (µm) Transistor Type 
Width 

(µm) 

M1 P 12.5 M13/M14 P 3.46 

M2 N 4.05 M15/M16 N 2.77 

M3/M7 P 1.39 M17/M20 P/N 5.54 

M4/M8 N 0.69 M18/M19 N/P 0.2 

M5 P 2.77 M21/M23 P/N 20.25 

M6 N 1.39 M22/M24 P/N 5.54 

M9/M10 P 2.77 M25 P 2.7 

M11/M12 N 3.46 M26 N 2.7 
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mLVSD driver netlist (UMC CMOS 90nm): 

// Library name: variability_analysis         

// Cell name: VA_invx1 
    

  

// View name: schematic 
    

  

subckt VA_invx1 in inn\-1 
    

  

    X1N (inn\-1 in 0 0) n_10_sp l=L w=4.05u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=972f ad=972f ps=8.58u pd=8.58u m=1 
 

  

    X1P (inn\-1 in vdd! vdd!) p_10_sp l=L w=12.5u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=3p ad=3p ps=25.48u pd=25.48u m=1 
 

  

ends VA_invx1 
     

  
// End of subcircuit 
definition. 

    
  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_nand 
    

  

// View name: schematic 
    

  

subckt VA_nand inn inn\-1 ou1 
   

  

    NDN1 (ou1 inn net4 0) n_10_sp l=L w=3.46u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=830.4f ad=830.4f ps=7.4u pd=7.4u m=1 
 

  

    NDN2 (net4 inn\-1 0 0) n_10_sp l=L w=3.46u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=830.4f ad=830.4f ps=7.4u pd=7.4u m=1 
 

  

    NDP1 (ou1 inn vdd! vdd!) p_10_sp l=L w=2.77u sa=300n sb=300n nf=1 \   

        mis_flag=1 sd=0 as=831f ad=831f ps=6.14u pd=6.14u m=1 
 

  

    NDP2 (ou1 inn\-1 vdd! vdd!) p_10_sp l=L w=2.77u sa=300n sb=300n nf=1 \ 

        mis_flag=1 sd=0 as=831f ad=831f ps=6.14u pd=6.14u m=1 
 

  

ends VA_nand 
     

  
// End of subcircuit 
definition. 

    
  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_invx3 
    

  

// View name: schematic 
    

  

subckt VA_invx3 in inn 
    

  

    X3N (inn in 0 0) n_10_sp l=L w=690n sa=240n sb=240n nf=1 mis_flag=1 \   

        sd=0 as=165.6f ad=165.6f ps=1.86u pd=1.86u m=1 
 

  

    X3P (inn in vdd! vdd!) p_10_sp l=L w=1.385u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=332.4f ad=332.4f ps=3.25u pd=3.25u m=1   

ends VA_invx3 
     

  
// End of subcircuit 
definition. 

    
  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_invx2 
    

  

// View name: schematic 
    

  
subckt VA_invx2 inn\-1 inn\-
2 
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    X2N (inn\-2 inn\-1 0 0) n_10_sp l=L w=1.385u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=332.4f ad=332.4f ps=3.25u pd=3.25u m=1   

    X2P (inn\-2 inn\-1 vdd! vdd!) p_10_sp l=L w=2.77u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=664.8f ad=664.8f ps=6.02u pd=6.02u m=1   

ends VA_invx2 
     

  
// End of subcircuit 
definition. 

    
  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_nor 
    

  

// View name: schematic 
    

  

subckt VA_nor in inn\-2 od1 
    

  

    NRN1 (od1 inn\-2 0 0) n_10_sp l=L w=2.77u sa=300n sb=300n nf=1 \   

        mis_flag=1 sd=0 as=831f ad=831f ps=6.14u pd=6.14u m=1 
 

  

    NRN2 (od1 in 0 0) n_10_sp l=L w=2.77u sa=300n sb=300n nf=1 mis_flag=1 \ 

        sd=0 as=831f ad=831f ps=6.14u pd=6.14u m=1 
  

  

    NRP1 (net15 in vdd! vdd!) p_10_sp l=L w=3.46u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=830.4f ad=830.4f ps=7.4u pd=7.4u m=1 
 

  

    NRP2 (od1 inn\-2 net15 vdd!) p_10_sp l=L w=3.46u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=830.4f ad=830.4f ps=7.4u pd=7.4u m=1 
 

  

ends VA_nor 
     

  
// End of subcircuit 
definition. 

    
  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_invx6 
    

  

// View name: schematic 
    

  

subckt VA_invx6 od1 od2 
    

  

    X6N (od2 od1 0 0) n_10_sp l=L w=5.54u sa=240n sb=240n nf=1 mis_flag=1 \ 

        sd=0 as=1.3296p ad=1.3296p ps=11.56u pd=11.56u m=1 
 

  

    X6P (od2 od1 vdd! vdd!) p_10_sp l=L w=195n sa=300n sb=300n nf=1 \   

        mis_flag=1 sd=0 as=59.5f ad=59.5f ps=1u pd=1u m=1 
 

  

ends VA_invx6 
     

  
// End of subcircuit 
definition. 

    
  

  
      

  

// Library name: variability_analysis 
   

  

// Cell name: VA_invx5 
    

  

// View name: schematic 
    

  

subckt VA_invx5 ou1 ou2 
    

  

    X5N (ou2 ou1 0 0) n_10_sp l=L w=195n sa=300n sb=300n nf=1 mis_flag=1 \ 

        sd=0 as=59.5f ad=59.5f ps=1u pd=1u m=1 
  

  

    X5P (ou2 ou1 vdd! vdd!) p_10_sp l=L w=5.54u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=1.3296p ad=1.3296p ps=11.56u pd=11.56u m=1   

ends VA_invx5 
     

  
// End of subcircuit 
definition. 
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// Library name: variability_analysis 
   

  

// Cell name: mlvsd 
     

  

// View name: schematic 
    

  

C17 (out 0) capacitor c=CL 
    

  

NM30 (net190 net60 net61 net190) n_10_sp l=L w=2.7u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u m=1 
 

  

NM29 (net74 net61 net132 net132) n_10_sp l=L w=5.54u sa=300n sb=300n nf=1 \ 

        mis_flag=1 sd=0 as=1.662p ad=1.662p ps=11.68u pd=11.68u m=1   

NM35 (net86 net86 0 0) n_10_sp l=L w=135n sa=300n sb=300n nf=1 mis_flag=1 \ 

        sd=0 as=53.5f ad=53.5f ps=1u pd=1u m=1 
  

  

NM36 (net86 net36 0 0) n_10_sp l=L w=1.35u sa=300n sb=300n nf=1 mis_flag=1 \ 

        sd=0 as=405f ad=405f ps=3.3u pd=3.3u m=1 
  

  

NM37 (net90 net86 0 0) n_10_sp l=L w=1.35u sa=240n sb=240n nf=1 mis_flag=1 \ 

        sd=0 as=324f ad=324f ps=3.18u pd=3.18u m=1 
  

  

NM38 (out net90 0 0) n_10_sp l=L w=2.7u sa=240n sb=240n nf=1 mis_flag=1 \ 

        sd=0 as=648f ad=648f ps=5.88u pd=5.88u m=1 
  

  

NM28 (net74 net132 0 0) n_10_sp l=L w=20.25u sa=300n sb=300n nf=1 \   

        mis_flag=1 sd=0 as=6.075p ad=6.075p ps=41.1u pd=41.1u m=1   

PM32 (net190 net132 net133 net190) p_10_sp l=L w=2.7u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u m=1 
 

  

PM37 (net86 net86 vdd! vdd!) p_10_sp l=L w=270n sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=64.8f ad=64.8f ps=1.02u pd=1.02u m=1 
 

  

PM38 (net86 net36 vdd! vdd!) p_10_sp l=L w=2.7u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u m=1 
 

  

PM39 (out net90 vdd! vdd!) p_10_sp l=L w=5.4u sa=240n sb=240n nf=1 \   

        mis_flag=1 sd=0 as=1.296p ad=1.296p ps=11.28u pd=11.28u m=1   

PM40 (net90 net86 vdd! vdd!) p_10_sp l=L w=2.7u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=648f ad=648f ps=5.88u pd=5.88u m=1 
 

  

PM30 (net74 net133 net60 net60) p_10_sp l=L w=5.54u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=1.3296p ad=1.3296p ps=11.56u pd=11.56u m=1   

PM31 (net74 net60 vdd! vdd!) p_10_sp l=L w=20.25u sa=240n sb=240n nf=1 \ 

        mis_flag=1 sd=0 as=4.86p ad=4.86p ps=40.98u pd=40.98u m=1   

V5 (net170 0) vsource dc=v_amp type=pulse delay=0 edgetype=linear \   

        val0=v_amp val1=0 period=1n rise=5.00f fall=5.00f freq=500M \   

        ampl=500.0m sinephase=10n sinedc=0 wave=[ 0 1 500.0p 1 500.005p 0 \ 

        1.059995n 0 1.06n 1 1.5n 1 1.500005n 0 1.999995n 0 2.0n 1 2.56n 1 \   

        2.560005n 0 3.059995n 0 3.06n 1 3.56n 1 3.560005n 0 3.999995n 0 \   
        4.0n 1 4.5n 1 4.500005n 
0 ]           
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Figure A1.3: The MJ driver circuit. 

Table A1.3: Channel widths for transistors in the MJ driver. 

Transistor Type Width (µm) Transistor Type 
Width 

(µm) 

M1 P 12.5 M17 P 0.2 

M2 N 4.05 M18 N 5.54 

M3/M4 P 2.77 M19 P 3.46 

M5/M6 N 3.46 M20 N 4.85 

M7 P 2.77 M21 P 1.39 

M8 N 1.39 M22 N 0.69 

M9/M10 P 3.46 M23 P 2.77 

M11/M12 N 2.77 M24 N 0.2 

M13 P 5.54 M25 P 51.93 

M14 N 0.2 M26 P 23.54 

M15 P 1.39 M27 N 2.98 

M16 N 0.69 M28 N 19.39 
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Figure A1.4: The DDC driver circuit. 

 

 

 

Table A1.4: Channel widths for transistors in the DDC driver. 

Transistor Type Width (µm) Transistor Type 
Width 

(µm) 

M1/M2 P/N 0.27 M7 P 27 

M3 N 5.4 M8/M9 N/P 0.5 

M4 P 2.7 M10 N 54 

M5 P 0.27 M11/M13 P/N 20.25 

M6 N 1.35 M12/M14 P/N 5.54 
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Table A1.5: Total area of the diode-connected drivers. 

Drivers Area 

nLVSD 25.5 

mLVSD 23.4 

MJ 51.3 

DDC 36.9 
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APPENDIX II 

 

A2.1. R-squared 

R-squared (R
2
) is percentage of response variable variation that is explained by its 

relationship with 1 or more variables. In general, the higher the R
2
, the better the model fits 

the data. R
2
 is always between 0 and 100%. It is also known as the coefficient of 

determination or multiple determinations (in multiple regressions). 

Plotting observed values by fitted values graphically illustrates R
2
 values for regression 

models. Theoretically, if a model could explain 100% of the variance, the fitted values would 

always be equal to the observed values and therefore all the data points would fall on the 

fitted regression line. 

 

A2.2. Experiment points for CCD technique for Statistical Analysis 

The table shows the process parameters involved in this analysis where (-1,0,+1) represents 

(-3σ,0,+3σ). The statistical analysis was carried out using statistical tool called Minitab. 

Experiment 
No. Vdd Temp Vth Leff p w t h 

1 -1 1 -1 1 -1 -1 1 1 

2 1 1 1 1 -1 1 -1 1 

3 -1 -1 1 1 -1 1 -1 1 

4 1 1 1 -1 1 1 1 -1 

5 0 0 0 0 0 -1 0 0 

6 -1 1 -1 -1 1 1 1 -1 

7 -1 1 -1 -1 -1 -1 -1 1 

8 -1 1 1 1 1 -1 1 1 

9 1 -1 1 1 1 1 -1 1 

10 -1 1 -1 -1 1 -1 1 1 

11 1 -1 1 1 1 -1 -1 -1 

12 1 0 0 0 0 0 0 0 

13 -1 1 -1 -1 1 1 -1 1 

14 -1 1 -1 1 1 1 -1 -1 

15 -1 -1 1 1 -1 -1 -1 -1 

16 -1 1 -1 -1 -1 1 -1 -1 

17 1 1 1 -1 1 -1 1 1 

18 1 1 1 -1 -1 1 -1 -1 

19 1 -1 -1 1 1 -1 1 -1 
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20 0 0 1 0 0 0 0 0 

21 -1 1 1 1 -1 -1 1 -1 

22 1 1 -1 -1 1 1 -1 -1 

23 1 1 1 -1 -1 -1 -1 1 

24 -1 1 1 1 1 1 -1 1 

25 1 -1 -1 -1 -1 -1 1 -1 

26 0 0 0 0 0 0 0 0 

27 0 0 0 0 0 0 0 0 

28 1 1 -1 1 -1 -1 -1 1 

29 1 -1 1 -1 1 -1 -1 1 

30 -1 1 1 1 -1 1 1 1 

31 -1 1 1 -1 1 -1 1 -1 

32 -1 -1 1 -1 1 1 -1 1 

33 -1 -1 -1 1 -1 -1 -1 1 

34 -1 1 1 1 1 1 1 -1 

35 1 1 -1 1 1 1 1 -1 

36 1 1 -1 1 -1 1 1 1 

37 -1 1 1 1 1 -1 -1 -1 

38 -1 1 -1 1 -1 1 -1 1 

39 1 -1 -1 -1 1 1 -1 1 

40 1 1 -1 -1 -1 1 1 -1 

41 1 1 1 1 -1 -1 1 1 

42 0 0 0 0 0 0 0 -1 

43 1 1 -1 1 1 -1 -1 -1 

44 -1 1 1 -1 -1 1 -1 1 

45 1 1 -1 1 -1 -1 1 -1 

46 1 -1 -1 -1 1 1 1 -1 

47 1 1 1 -1 1 -1 -1 -1 

48 -1 -1 1 -1 1 1 1 -1 

49 1 -1 1 -1 1 1 -1 -1 

50 1 1 1 1 1 1 -1 -1 

51 -1 -1 1 1 1 -1 1 -1 

52 1 -1 -1 -1 1 -1 -1 -1 

53 -1 1 -1 1 1 -1 -1 1 

54 -1 -1 1 1 -1 1 1 -1 

55 -1 -1 -1 -1 1 1 -1 -1 

56 1 -1 1 1 -1 1 1 1 

57 1 -1 -1 1 -1 -1 1 1 

58 -1 -1 1 1 -1 -1 1 1 

59 1 -1 -1 -1 -1 -1 -1 1 

60 0 0 0 0 0 0 0 0 

61 -1 -1 -1 -1 -1 1 -1 1 

62 0 0 0 0 0 0 0 1 

63 -1 1 1 1 -1 1 -1 -1 

64 1 -1 1 -1 -1 -1 1 1 

65 1 -1 1 -1 -1 1 -1 1 
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66 0 0 0 -1 0 0 0 0 

67 1 -1 -1 1 1 -1 -1 1 

68 -1 1 1 1 -1 -1 -1 1 

69 -1 1 1 -1 -1 -1 -1 -1 

70 1 1 1 -1 -1 1 1 1 

71 -1 1 -1 1 -1 1 1 -1 

72 1 -1 1 -1 1 -1 1 -1 

73 -1 -1 1 1 1 1 1 1 

74 -1 -1 1 -1 1 -1 -1 -1 

75 1 1 1 1 -1 1 1 -1 

76 -1 -1 -1 1 1 -1 -1 -1 

77 -1 -1 -1 -1 -1 -1 -1 -1 

78 0 0 0 0 -1 0 0 0 

79 -1 -1 -1 -1 -1 1 1 -1 

80 1 1 -1 -1 -1 -1 1 1 

81 1 -1 1 1 -1 -1 -1 1 

82 0 0 0 0 0 0 0 0 

83 -1 -1 1 -1 -1 1 1 1 

84 0 0 0 0 0 0 0 0 

85 1 -1 1 1 1 1 1 -1 

86 -1 1 -1 -1 -1 1 1 1 

87 1 1 -1 1 1 1 -1 1 

88 0 0 0 0 0 1 0 0 

89 -1 -1 -1 1 -1 1 -1 -1 

90 0 0 0 0 0 0 0 0 

91 -1 -1 -1 -1 -1 -1 1 1 

92 -1 1 1 -1 -1 1 1 -1 

93 1 -1 -1 -1 -1 1 1 1 

94 1 -1 1 1 1 -1 1 1 

95 -1 1 1 -1 1 1 -1 -1 

96 1 -1 -1 1 1 1 -1 -1 

97 1 1 1 1 1 -1 -1 1 

98 -1 -1 -1 1 -1 -1 1 -1 

99 -1 -1 1 -1 1 -1 1 1 

100 -1 1 -1 -1 -1 -1 1 -1 

101 1 -1 1 1 -1 -1 1 -1 

102 1 -1 1 -1 -1 -1 -1 -1 

103 1 1 1 1 1 1 1 1 

104 0 0 0 0 1 0 0 0 

105 1 1 -1 1 -1 1 -1 -1 

106 -1 1 1 -1 1 1 1 1 

107 -1 -1 -1 1 -1 1 1 1 

108 -1 1 -1 1 1 1 1 1 

109 1 -1 1 1 -1 1 -1 -1 

110 1 1 1 -1 1 1 -1 1 

111 1 1 1 -1 -1 -1 1 -1 

112 -1 1 -1 1 -1 -1 -1 -1 

113 0 0 0 0 0 0 0 0 

114 -1 -1 1 1 1 1 -1 -1 

115 1 -1 -1 1 1 1 1 1 

116 0 0 0 1 0 0 0 0 

117 1 -1 -1 1 -1 1 1 -1 
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118 1 1 -1 -1 1 -1 -1 1 

119 1 -1 1 -1 1 1 1 1 

120 -1 1 -1 -1 1 -1 -1 -1 

121 -1 1 1 -1 1 -1 -1 1 

122 1 1 -1 -1 1 1 1 1 

123 -1 -1 -1 -1 1 -1 1 -1 

124 0 0 0 0 0 0 0 0 

125 -1 -1 1 -1 -1 -1 -1 1 

126 -1 -1 -1 -1 1 -1 -1 1 

127 1 -1 -1 1 -1 -1 -1 -1 

128 -1 -1 1 1 1 -1 -1 1 

129 0 0 0 0 0 0 0 0 

130 -1 1 1 -1 -1 -1 1 1 

131 -1 -1 1 -1 -1 -1 1 -1 

132 0 0 0 0 0 0 1 0 

133 -1 0 0 0 0 0 0 0 

134 1 1 1 1 -1 -1 -1 -1 

135 0 0 0 0 0 0 0 0 

136 -1 -1 -1 1 1 1 -1 1 

137 1 -1 -1 1 -1 1 -1 1 

138 1 1 -1 1 1 -1 1 1 

139 1 -1 -1 -1 1 -1 1 1 

140 1 1 -1 -1 -1 -1 -1 -1 

141 0 -1 0 0 0 0 0 0 

142 1 -1 -1 -1 -1 1 -1 -1 

143 0 0 -1 0 0 0 0 0 

144 -1 -1 -1 1 1 1 1 -1 

145 -1 -1 -1 -1 1 1 1 1 

146 1 -1 1 -1 -1 1 1 -1 

147 0 1 0 0 0 0 0 0 

148 -1 1 -1 1 1 -1 1 -1 

149 -1 -1 1 -1 -1 1 -1 -1 

150 1 1 1 1 1 -1 1 -1 

151 0 0 0 0 0 0 -1 0 

152 1 1 -1 -1 1 -1 1 -1 

153 1 1 -1 -1 -1 1 -1 1 

154 -1 -1 -1 1 1 -1 1 1 

 

 


