Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/481
Title: Development of a knowledge-based system for the repair and maintenance of concrete structures
Authors: Moodi, Faramarz
Issue Date: 2001
Publisher: Newcastle University
Abstract: Information Technology (IT) can exploit strategic opportunities for new ways of facilitating information and data exchange and the exchange of expert and specialist opinions in any field of engineering. Knowledge-Based Systems are sophisticated computer programs which store expert knowledge on specific subject and are applied to a broad range of engineering problems. Integrated Database applications have facilitated the essential capability of storing data to overcome an increasing information malaise. Integrating these areas of Information Technology (IT) can be used to bring a group of experts in any field of engineering closer together by allowing them to communicate and exchange information and opinions. The central feature of this research study is the integration of these hitherto separate areas of Information Technology (IT). In this thesis an adaptable Graphic User Interface Centred application comprising a Knowledge-Based Expert System (DEMARECEXPERT), a Database Management System (REPCON) and Evaluation program (ECON) alongside visualisation technologies is developed to produce an innovative platform which will facilitate and encourage the development of knowledge in concrete repair. Diagnosis, Evaluation, MAintenance and REpair of Concrete structures (DEMAREQ is a flexible application which can be used in four modes of Education, Diagnostic, Evaluation and Evolution. In the educational mode an inexperienced user can develop a better understanding of the repair of concrete technology by navigating through a database of textual and pictorial data. In the diagnostic mode, pictures and descriptive information taken from the database and performance of the expert system (DEMAREC-EXPERT) are used in a way that makes problem solving and decision making easier. The DEMAREC-EXPERT system is coupled to the REPCON (as an independent database) in order to provide the user with recommendations related to the best course required for maintenance and in the selection of materials and methods for the repair of concrete. In the evaluation mode the conditions observed are described in unambiguous terms that can be used by the user to be able to take engineering and management actions for the repair and maintenance of the structure. In the evolution mode of the application, the nature of distress, repair and maintenance of concrete structures within the extent of the database management system has been assessedT. he new methodology of data/usere valuation could have wider implications in many knowledge rich areas of expertise. The benefit of using REPCON lies in the enhanced levels of confidence which can be attributed to the data and to contribution of that data. Effectively, REPCON is designed to model a true evolution of a field of expertise but allows that expertise to move on in faster and more structured manner. This research has wider implications than within the realm of concrete repair. The methodology described in this thesis is developed to provide tecĂ˝nology transfer of information from experts, specialists to other practitioners and vice versa and it provides a common forum for communication and exchange information between them. Indeed, one of the strengths of the system is the way in which it allows the promotion and relegation of knowledge according to the opinion of users of different levels of ability from expert to novice. It creates a flexible environment in which an inexperienced user can develop his knowledge in maintenance and concrete repair structures. It is explained how an expert and a specialist can contribute his experience and knowledge towards improving and evolving the problem solving capability of the application.
Description: PhD Thesis
URI: http://hdl.handle.net/10443/481
Appears in Collections:School of Civil Engineering and Geosciences

Files in This Item:
File Description SizeFormat 
Moodi01.pdfThesis52.93 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.