Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/4182
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBinti Kamarudin, Taty Anna-
dc.date.accessioned2019-02-05T16:27:51Z-
dc.date.available2019-02-05T16:27:51Z-
dc.date.issued2018-
dc.identifier.urihttp://hdl.handle.net/10443/4182-
dc.descriptionPhD Thesisen_US
dc.description.abstractCornea is the clear outermost protective layer of the eye which enables transmission of light onto the retina. The corneal epithelium is regenerated by limbal stem cells (LSCs), whose loss/dysfunction results in limbal stem cell deficiency (LSCD). Transplantations of ex vivo expanded autologous LSCs from patient’s healthy eye onto the affected eye have provided a successful treatment for unilateral LSCD. This however is not applicable to patient with total bilateral LSCD, whose both eyes are affected. This thesis investigated the potential of human induced-pluripotent stem cell (hiPSCs) to differentiate into corneal epithelial-like cells as a source of autologous stem cell treatment for patients with total bilateral LSCD, and tested the engraftment of the differentiated cells in LSCD mouse model. Combined addition of bone morphogenetic protein 4 (BMP4), all trans-retinoic acid (RA) and epidermal growth factor (EGF) for the first nine days of differentiation followed by cell-replating on collagen-IV coated surfaces with a corneal-specific-epithelial cell media for an additional 11 days, resulted in step wise differentiation of human embryonic stem cells (hESCs) to corneal epithelial progenitors and mature corneal epithelial-like cells. Differences in the ability of hiPSCs lines to undergo differentiation to corneal epithelial-like cells were observed. These were dependent on the level of endogenous BMP signalling and could be restored via activation of this signalling pathway by a specific TGFβ inhibitor (SB431542). The hESC and hiPSCs-derived corneal epithelial cells were transplanted into a LSCD mouse model where they survived up to 14 days, but failed to provide long term engraftment and corneal surface regeneration. The findings showed a differential ability of hESCs and hiPSCs lines to generate corneal epithelial cells which is underlined by the endogenous BMP signalling pathway activity. However, the engraftment and functionality of the differentiated cells in the LSCD animal model has yet to be improved.en_US
dc.description.sponsorshipMinistry of Education Malaysia and my employer, Universiti Kebangsaan Malaysia in a form of financial assistance and sponsorship. I would also like to acknowledge the Fund for Women Graduates (FfWG), UK organisation for awarding me with financial assistance during the final stage of my study.en_US
dc.language.isoenen_US
dc.publisherNewcastle Universityen_US
dc.titleDifferentiation of human pluripotent stem cells into corneal epithelial like cellsen_US
dc.typeThesisen_US
Appears in Collections:Institute of Genetic Medicine

Files in This Item:
File Description SizeFormat 
Kamarudin, T.A. 2018.pdfThesis15.12 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.