Please use this identifier to cite or link to this item:
Title: Metal debris release from metal-on-metal hip arthroplasty : mechanism, quantification and clinical effects
Authors: Langton, David
Issue Date: 2013
Publisher: Newcastle University
Abstract: Metal on metal (MoM) hip replacements consist of a cobalt-chromium-molybdenum alloy femoral head which articulates against an acetabular cup manufactured from similar material. MoM hip replacements were introduced in the 1980s. It was thought that the overall reduction in volumetric wear as well as the avoidance of polyethylene would lead to greater longevity of these prostheses. There had been isolated reports of adverse tissue reactions with previous generations of MoM devices but it was thought that improved manufacturing technology would eliminate these problems. In the 1990s, the Birmingham Hip Resurfacing (BHR) was developed. The positive mid-term results of this device led to a rapid increase in the use of the BHR throughout the world. For obvious reasons, the enhanced stability large diameter bearings provided proved extremely attractive to surgeons and patients. Manufacturers therefore began to develop total hip replacement systems for patients unsuitable for the resurfacing procedure. These systems used bearings of size 36mm and greater, in Contrast to the existing 28mm Metasul device. From 2005 onwards there began to emerge increasing numbers of reports of local complications in the tissues adjacent to MoM prostheses. These reactions included sterile masses, tissue destruction and osteolysis. The incidence of these tissue reactions was unknown, as were the risk factors for their development. This piece of work sought to quantity the volumetric and linear wear rates of failed MoM hips and to investigate the relationship these wear rates and a number of clinical parameters. These parameters included blood, serum and hip fluid chromium and cobalt concentrations, and the macro and microscopic appearance of periprosthetic tissue at revision surgery. In this way it was hoped that component design, host and surgical factors leading to adverse tissue reactions could be identified and potentially eliminated.
Description: PhD Thesis
Appears in Collections:Institute of Cellular Medicine

Files in This Item:
File Description SizeFormat 
Langton D 2013.pdfThesis55.74 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.