Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/3203
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAl-Sodani, Hussein Abdullah Leftah-
dc.date.accessioned2016-11-07T10:06:37Z-
dc.date.available2016-11-07T10:06:37Z-
dc.date.issued2013-
dc.identifier.urihttp://hdl.handle.net/10443/3203-
dc.descriptionPhD Thesisen_US
dc.description.abstractIn this thesis, two new orthogonal frequency division multiplexing (OFDM) systems are presented. The first scheme proposes a new OFDM system transceiver based on the C-transform, which is termed C-OFDM. Over multipath channels, the C-OFDM achieves 10 dB signal-to-noise ratio (SNR) gain at 10−4 bit-error-rate (BER), in comparison to the OFDM that based on the is discrete cosine transform (DCT-OFDM) and the conventional OFDM schemes. It also reduces the peak-to-average power ratio (PAPR) of the OFDM signal by about 1 dB and in some cases up to 3 dB. In the second scheme, a new fast, orthogonal X-transform is produced. The proposed X-transform is then used in a new OFDM named X-OFDM to greatly reduce the complexity, the PAPR and the BER. The proposed scheme achieves around 15 dB SNR gain in comparison to the conventional OFDM at 10−4 BER and reduces the average PAPR (over 105 OFDM symbol) by about 6 dB for N =1024 subcarriers. Furthermore, in this study, the X-transform is utilized to produce a new Alamouti space-time OFDM (ST-OFDM). The proposed ST-X-OFDM scheme reduces the transmitter complexity and achieves important SNR gain over the conventional ST-OFDM systems. The BER performance of the proposed schemes in the presence of solid-state power amplifiers (SSPAs) is also investigated analytically and by simulation. It shows that the X-OFDM is resilient to the SSPAs nonlinear distortion whereas the C-OFDM may lead to BER impairment in the presence of the SSPA. Furthermore, a coding technique to mitigate the sensitivity of the COFDM scheme to the SSPA is also proposed in this study. In this research, mathematical models for the proposed C-OFDM, XOFDM and ST-X-OFDM, which tightly match the simulation results over a diverse range of transmission scenarios and mapping schemes, are also derived. In addition, the BER performance of the proposed COFDM and X-OFDM schemes in the presence of the carrier frequency offset (CFO), with and without frequency synchronization algorithm, are also investigated. The proposed C-OFDM and X-OFDM schemes are more sensitive to the CFO than the conventional schemes. However, when frequency synchronization algorithm is used, both the proposed schemes retain their significant BER improvement in comparison to the conventional schemes.en_US
dc.description.sponsorshipMinistry of Higher Education and Scientific Research (MOHSR), Iraq and to the Iraqi cultural attach- London for supporting me financially during my study in England.en_US
dc.language.isoenen_US
dc.publisherNewcastle Universityen_US
dc.titleNew OFDM schemes based on orthogonal transforms for mobile communications systems :en_US
dc.typeThesisen_US
Appears in Collections:School of Electrical and Electronic Engineering

Files in This Item:
File Description SizeFormat 
Al-Sodani 13 (3yr 02.10.16).pdfThesis10.7 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.