Please use this identifier to cite or link to this item:
Title: Design and analysis of SRAMs for energy harvesting systems
Authors: Baz, Abdullah Omar Mohammad.
Issue Date: 2014
Publisher: Newcastle University
Abstract: At present, the battery is employed as a power source for wide varieties of microelectronic systems ranging from biomedical implants and sensor net-works to portable devices. However, the battery has several limitations and incurs many challenges for the majority of these systems. For instance, the design considerations of implantable devices concern about the battery from two aspects, the toxic materials it contains and its lifetime since replacing the battery means a surgical operation. Another challenge appears in wire-less sensor networks, where hundreds or thousands of nodes are scattered around the monitored environment and the battery of each node should be maintained and replaced regularly, nonetheless, the batteries in these nodes do not all run out at the same time. Since the introduction of portable systems, the area of low power designs has witnessed extensive research, driven by the industrial needs, towards the aim of extending the lives of batteries. Coincidentally, the continuing innovations in the field of micro-generators made their outputs in the same range of several portable applications. This overlap creates a clear oppor-tunity to develop new generations of electronic systems that can be powered, or at least augmented, by energy harvesters. Such self-powered systems benefit applications where maintaining and replacing batteries are impossi-ble, inconvenient, costly, or hazardous, in addition to decreasing the adverse effects the battery has on the environment. The main goal of this research study is to investigate energy harvesting aware design techniques for computational logic in order to enable the capa- II bility of working under non-deterministic energy sources. As a case study, the research concentrates on a vital part of all computational loads, SRAM, which occupies more than 90% of the chip area according to the ITRS re-ports. Essentially, this research conducted experiments to find out the design met-ric of an SRAM that is the most vulnerable to unpredictable energy sources, which has been confirmed to be the timing. Accordingly, the study proposed a truly self-timed SRAM that is realized based on complete handshaking protocols in the 6T bit-cell regulated by a fully Speed Independent (SI) tim-ing circuitry. The study proved the functionality of the proposed design in real silicon. Finally, the project enhanced other performance metrics of the self-timed SRAM concentrating on the bit-line length and the minimum operational voltage by employing several additional design techniques.
Description: PhD Thesis
Appears in Collections:School of Electrical, Electronic and Computer Engineering

Files in This Item:
File Description SizeFormat 
Baz, A. 14.pdfThesis4.53 MBAdobe PDFView/Open
dspacelicence.pdfLicence43.82 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.