Please use this identifier to cite or link to this item: http://theses.ncl.ac.uk/jspui/handle/10443/4850
Title: Deep neural networks for monaural source separation
Authors: Sun, Yang
Issue Date: 2019
Publisher: Newcastle University
Abstract: In monaural source separation (MSS) only one recording is available and the spatial information, generally, cannot be extracted. It is also an undetermined inverse problem. Rcently, the development of the deep neural network (DNN) provides the framework to address this problem. How to select the types of neural network models and training targets is the research question. Moreover, in real room environments, the reverberations from floor, walls, ceiling and furnitures in a room are challenging, which distort the received mixture and degrade the separation performance. In many real-world applications, due to the size of hardware, the number of microphones cannot always be multiple. Hence, deep learning based MSS is the focus of this thesis. The first contribution is on improving the separation performance by enhancing the generalization ability of the deep learning-base MSS methods. According to no free lunch (NFL) theorem, it is impossible to find the neural network model which can estimate the training target perfectly in all cases. From the acquired speech mixture, the information of clean speech signal could be over- or underestimated. Besides, the discriminative criterion objective function can be used to address ambiguous information problem in the training stage of deep learning. Based on this, the adaptive discriminative criterion is proposed and better separation performance is obtained. In addition to this, another alternative method is using the sequentially trained neural network models within different training targets to further estimate iv Abstract v the clean speech signal. By using different training targets, the generalization ability of the neural network models is improved, and thereby better separation performance. The second contribution is addressing MSS problem in reverberant room environments. To achieve this goal, a novel time-frequency (T-F) mask, e.g. dereverberation mask (DM) is proposed to estimate the relationship between the reverberant noisy speech mixture and the dereverberated mixture. Then, a separation mask is exploited to extract the desired clean speech signal from the noisy speech mixture. The DM can be integrated with ideal ratio mask (IRM) to generate ideal enhanced mask (IEM) to address both dereverberation and separation problems. Based on the DM and the IEM, a two-stage approach is proposed with different system structures. In the final contribution, both phase information of clean speech signal and long short-term memory (LSTM) recurrent neural network (RNN) are introduced. A novel complex signal approximation (SA)-based method is proposed with the complex domain of signals. By utilizing the LSTM RNN as the neural network model, the temporal information is better used, and the desired speech signal can be estimated more accurately. Besides, the phase information of clean speech signal is applied to mitigate the negative influence from noisy phase information. The proposed MSS algorithms are evaluated with various challenging datasets such as the TIMIT, IEEE corpora and NOISEX database. The algorithms are assessed with state-of-the-art techniques and performance measures to confirm that the proposed MSS algorithms provide novel solutions
Description: PhD Thesis
URI: http://theses.ncl.ac.uk/jspui/handle/10443/4850
Appears in Collections:School of Engineering

Files in This Item:
File Description SizeFormat 
Sun Y 2019.pdf3.54 MBAdobe PDFView/Open
dspacelicence.pdf43.82 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.