SOIL REACTION FORCES
ON AGRICULTURAL DISC IMPLEMENTS

Volume II

by

Md. Monjurul Alam
B. Sc. Agric. Engng. (BAU)

A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy in Agricultural Engineering

The University of Newcastle upon Tyne
October 1989
CONTENTS

FIGURES

K-FACTOR CHARTS

CORRECTION FACTOR CHARTS

TABLES

COMPUTER PROGRAMMES
Fig. 2.1 Kinematics of the disc.
Fig. 2.2 Resultant soil reaction forces acting on a vertical disc. (a) A thrust force T, plus a radial force U and (b) a horizontal force R_h plus a vertical force V.
Fig. 2.3 General force relation and soil-force system representation on a disc (A. W. Clyde).
Fig. 3.1 Geometric parameters of the disc.
Fig. 3.2 (a) Disc interface divided into a finite number of narrow tines. (b) Disc interface with basic types of rupture boundary.
Fig. 3.3 Sphere of unit radius.
Fig. 3.4 The effect of attitude angles on the disc setting.
Fig. 3.5 Intersections of (1) horizontal soil surface plane, (2) any vertical plane and (3) disc face plane defined by the disc sphere.
Fig. 3.6 Intersections of (1) horizontal soil surface plane and (2) any vertical plane defined by the disc sphere.
Fig. 3.7 Dimensions of (1) horizontal soil plane and (2) any vertical plane defined by the disc sphere.
Fig. 3.8 Sign convention for θ
Fig. 3.9 Determination of d with respect to disc setting (projection in X-Z plane).

Fig. 3.10 Criteria of the disc rear face scrubbing.
Fig. 3.11 Basic and auxiliary system of co-ordinates for the disc rear face scrubbing analysis.
Fig. 3.12 Width of cut in relation to the disc setting.
Fig. 3.13 Intersections of (1) horizontal soil surface plane, (2) vertical plane in Y-Z and (3) disc face plane defined by the disc sphere.
Fig. 3.14 Disc back-ward scrubbing rake angle, rake length and depth of cut.
Fig. 4.1 (a) Mohr's circle illustrating the two planes of incipient failure; (b) Sokolovski's solution to earth pressure problem.
Fig. 4.2 Main types of slip-line fields; (a) Basic field comprising the Interface (I), Transition (T) and Rankine (R) zones. (b) Small rake angles inducing a stress discontinuity between (I) and (R). (c) Large rake angles with soil boundary wedge (W) fixed to interface. (d) Small rake angles with wedge or discontinuity for a fully rough interface.
Fig. 4.3 (a) Basic slip-line field and rupture zone.
(b) Mohr's diagram.
Fig. 4.4 (a) The plane of discontinuity OF separates the Interface and Rankine zones. (b) The stress conditions on either side of the discontinuity.

Fig. 4.5 Mohr's diagram for calculating the orientation of the plane of discontinuity.
Fig. 4.6 Boundary wedge formation and influence of direction of motion on wedge geometry. (a) Basic slip-line field showing range of β_t for which it is valid. (b), (c) Boundary wedges when is outside range. (d) Limit of application of analysis when $\beta_t = \left(45^\circ - \frac{1}{2} \varphi\right)$.
Fig. 4.7 The development of boundary wedge with varying rake angle for a fixed horizontal direction of translation ($\beta_0 = 0$).
Fig. 5.1 Forces acting on the soil rupture block in basic passive failure (a) Interface zone (b) Transition zone and half the passive Rankine zone.
Fig. 5.2 Co-hesive and Adhesive forces on the soil block adjacent to the disc concave working surface.
Fig. 5.3 Gravitational forces on the soil block adjacent to the disc concave working surface.
Fig. 5.4 Forces on the soil block adjacent to the disc convex (scrubbing) surface.
Fig. 5.5 Forces acting on the disc interface.
Fig. 5.6 Forces acting on rupture block with a discontinuity.
Fig. 5.7 Special case when $\varphi = 0$. (a) Estimation of θ^+. (b) Minimum value of θ^+.

In the diagram, the figure illustrates the special case when $\varphi = 0$. Figure (a) shows the estimation of θ^+, while Figure (b) demonstrates the minimum value of θ^+.
Fig. 5.8 Effective force calculation using method of slices.
Fig. 5.9 Calculation of the angle η.
Fig. 5.10 Modified rupture block in the vicinity of the bearing capacity conception.
Fig. 6.1. Recording unit comprises of an Oscillograph recorder, amplifiers and an event marker regulator.
Fig. 6.2. Complete test rig.
Fig. 6.3 Dynamometer arrangements between parallel plates.
Fig. 6.4 Design of the test rig extension.
Fig. 6.5 Reaction forces on the side-way positioned dynamometers with respect to the lateral force on the disc.
Fig. 6.6 Disc angle selector.
Fig. 6.7 Disc inclination angle selector.
Fig. 6.8. Disc leg assembly.
Fig. 6.9 Circuit diagram of the event marker regulator.
Fig. 6.10 Nature of the surcharge during disc is in operation.
Fig. 6.11 Computation of Cohesion and Soil internal friction angle from Shear-Box test.
Fig. 6.12 Computation of Aohesion and Soil-Metal friction angle from Shear-Box test.
Fig. 6.13 Computation of Cohesion and Soil internal friction angle from Tri-axial test.
Fig. 6.14 Comparison between the predicted (solid line) and experimental (broken line) results.
Fig. 6.15 Comparison between the predicted (solid line) and experimental (broken line) results.
Fig. 6.16 Comparison between the predicted (solid line) and experimental (broken line) results.
Fig. 6.17 Comparison between the predicted (solid line) and Godwins (1985) experimental (broken line) results.
Fig. 6.18 Variation in Specific resistance with Disc angle

- a/R = 0.84
- R = 600mm
- Alpha = 5 deg
Fig. 6.19 Variation in Projected Width of cut with Disc angle
Fig. 7.1 Force component at interface.
Fig. 7.2 Comparison between K-values for different a/R.
Fig. 7.3 Comparison between K-values for different a/R.
Fig. 7.4 Comparison between K-values for different a/R.
Fig. 7.5 Comparison between K-values for different a/R.
Fig. 7.6 Comparison between K-values for different a/R.
Fig. 7.7 Comparison between K-values for different a/R.
Fig. 7.8 Comparison between K-values for different Depth of Cut.
Fig. 7.9 Comparison between K-values for different Depth of Cut.
Fig. 7.10 Comparison between K-values for different Depth of Cut.
Fig. 7.11 Comparison between K-values for different Depth of Cut.
Fig. 7.12 Comparison between K-values for different Depth of Cut.
Fig. 7.13 Comparison between K-values for different Depth of Cut.
Fig. 7.14 Logarithmic interpolation.
Chart 1. K-factor for Longitudinal-Gravitation Force
Chart 2. K-factor for Longitudinal Cohesive-Adhesive Force
Chart 3. K-factor for Longitudinal Surcharge Force
Chart 6. K-factor for Lateral Surcharge Force
Chart 7. K-factor for Longitudinal-Gravitation Force
Chart 8. K-factor for Longitudinal Cohesive-Adhesive Force
Chart 9. K-factor for Longitudinal Surcharge Force
Chart 15. K-factor for Longitudinal Surcharge Force
Chart 42. K-factor for Lateral Surcharge Force.

Kg.x

Alpha = 20 degree
a/R = 0.817, 0.843, 0.866
R = 650mm
Z = 100mm

K-values (Dimensionless Number)

Disc Angle, Beta (Degree)
Chart 44. K-factor for Longitudinal Cohesive-Adhesive Force.
2.50
2.25
2.00
1.75
1.50
1.25
1.00
0.75
0.50
0.25
0.00

30 35 40 45 50 55 60

Disc Angle, Beta (Degree)

K-values (Dimensionless Number)

K_{qx}

\alpha / R: 0.817, 0.843, 0.866

R: 650mm

Z: 100mm

\phi (Degree)

40

\alpha: 20 degree

Legend:
- \(\Phi_1 \) (Degree)
- \(\alpha/R \): 0.817, 0.843, 0.866
- \(R \): 650 mm
- \(Z \): 100 mm

Kfy
Alpha : 0 degree
a/R : 0.820, 0.844, 0.866
R : 700mm
Z : 100mm
Chart 60. K-factor for Lateral Surcharge Force.
Chart 64. K-factor for Lateral Gravitation Force.
Chart 73. Xi-Values for Correction Equation.
Chart 74. ξ-Values for Correction Equation.
Chart 75. ξ-Values for Correction Equation.
Chart 76. Xi-Values for Correction Equation.
Chart 77. Xi-Values for Correction Equation.
Chart 78. Xi-Values for Correction Equation.
Chart 79. ξ-Values for Correction Equation.
Chart 80. Xi-Values for Correction Equation.
Chart 81. Xi-Values for Correction Equation.
Chart 82. Xi-Values for Correction Equation.
Chart 83. XI-Values for Correction Equation.
Kgy
Alpha : 10 degree
R : 600mm
(0.84 (C), 0.866 (F), 0.888 (I))
R : 650mm
(0.817 (A), 0.866 (D), 0.866 (G))
R : 700mm
(0.820 (B), 0.844 (E), 0.866 (H))

Chart 84. Xi-Values for Correction Equation.
Chart 85. Xi-Values for Correction Equation.
Chart 86. \(\xi \)-Values for Correction Equation.
Chart 87. XI-Values for Correction Equation.
Chart 88. x_1-Values for Correction Equation.
Chart 89. Xi-Values for Correction Equation.
Chart 90. Xi-Values for Correction Equation.
Chart 91. *Xi*-Values for Correction Equation.
Chart 92. Xi-Values for Correction Equation.
Key

\[\alpha = 15 \text{ degree} \]

\[R = 600\text{mm} \]

(0.84 (C), 0.866 (F), 0.888 (I))

\[R = 650\text{mm} \]

(0.817 (A), 0.866 (D), 0.866 (G))

\[R = 700\text{mm} \]

(0.820 (B), 0.844 (E), 0.866 (H))

\(\xi \)-values (Dimensionless Number)

Soil-Soil Friction Angle \(\Phi \) (degree)

Chart 93. \(\xi \)-Values for Correction Equation.
Chart 94. Xi-Values for Correction Equation.
Chart 95. Xi-Values for Correction Equation.
Chart 96. k_{qz} Values for Correction Equation.
Chart 97. ξ-Values for Correction Equation.
Chart 98. Xi-Values for Correction Equation.
Chart 99. Xi-Values for Correction Equation.
Chart 100. Xi-Values for Correction Equation.
Chart 101. Xi-Values for Correction Equation.
Chart 102. Xi-Values for Correction Equation.
Chart 103. Xi-Values for Correction Equation.
Chart 104. X_i-Values for Correction Equation.
Table 1

K-factor for Vertical Gravitation Force (Kgz)

<table>
<thead>
<tr>
<th>(\frac{a}{R})</th>
<th>(\alpha(\degree))</th>
<th>(\phi(\degree))</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.817 0</td>
<td>0</td>
<td>0.439</td>
<td>0.465</td>
<td>0.479</td>
<td>0.482</td>
<td>0.473</td>
<td>0.455</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.465</td>
<td>0.479</td>
<td>0.482</td>
<td>0.473</td>
<td>0.455</td>
<td>0.521</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.479</td>
<td>0.482</td>
<td>0.473</td>
<td>0.455</td>
<td>0.521</td>
<td>0.550</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.482</td>
<td>0.473</td>
<td>0.455</td>
<td>0.521</td>
<td>0.550</td>
<td>0.566</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.473</td>
<td>0.455</td>
<td>0.521</td>
<td>0.550</td>
<td>0.566</td>
<td>0.568</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.455</td>
<td>0.521</td>
<td>0.550</td>
<td>0.566</td>
<td>0.568</td>
<td>0.556</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.521</td>
<td>0.550</td>
<td>0.566</td>
<td>0.568</td>
<td>0.556</td>
<td>0.535</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.550</td>
<td>0.566</td>
<td>0.568</td>
<td>0.556</td>
<td>0.535</td>
<td>0.622</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.566</td>
<td>0.568</td>
<td>0.556</td>
<td>0.535</td>
<td>0.622</td>
<td>0.656</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.347</td>
<td>0.343</td>
<td>0.324</td>
<td>0.293</td>
<td>0.253</td>
<td>0.207</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.343</td>
<td>0.324</td>
<td>0.293</td>
<td>0.253</td>
<td>0.207</td>
<td>0.407</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.324</td>
<td>0.293</td>
<td>0.253</td>
<td>0.207</td>
<td>0.407</td>
<td>0.402</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.293</td>
<td>0.253</td>
<td>0.207</td>
<td>0.407</td>
<td>0.402</td>
<td>0.379</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.253</td>
<td>0.207</td>
<td>0.407</td>
<td>0.402</td>
<td>0.379</td>
<td>0.343</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.207</td>
<td>0.407</td>
<td>0.402</td>
<td>0.379</td>
<td>0.343</td>
<td>0.296</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.407</td>
<td>0.402</td>
<td>0.379</td>
<td>0.343</td>
<td>0.296</td>
<td>0.243</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.402</td>
<td>0.379</td>
<td>0.343</td>
<td>0.296</td>
<td>0.243</td>
<td>0.481</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.379</td>
<td>0.343</td>
<td>0.296</td>
<td>0.243</td>
<td>0.481</td>
<td>0.473</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.313</td>
<td>0.299</td>
<td>0.269</td>
<td>0.228</td>
<td>0.178</td>
<td>0.127</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.299</td>
<td>0.269</td>
<td>0.228</td>
<td>0.178</td>
<td>0.127</td>
<td>0.366</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.269</td>
<td>0.228</td>
<td>0.178</td>
<td>0.127</td>
<td>0.366</td>
<td>0.350</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.228</td>
<td>0.178</td>
<td>0.127</td>
<td>0.366</td>
<td>0.350</td>
<td>0.315</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.178</td>
<td>0.127</td>
<td>0.366</td>
<td>0.350</td>
<td>0.315</td>
<td>0.267</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.127</td>
<td>0.366</td>
<td>0.350</td>
<td>0.315</td>
<td>0.267</td>
<td>0.209</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.366</td>
<td>0.350</td>
<td>0.315</td>
<td>0.267</td>
<td>0.209</td>
<td>0.149</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.350</td>
<td>0.315</td>
<td>0.267</td>
<td>0.209</td>
<td>0.149</td>
<td>0.431</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.315</td>
<td>0.267</td>
<td>0.209</td>
<td>0.149</td>
<td>0.431</td>
<td>0.411</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.291</td>
<td>0.271</td>
<td>0.234</td>
<td>0.186</td>
<td>0.131</td>
<td>0.076</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.271</td>
<td>0.234</td>
<td>0.186</td>
<td>0.131</td>
<td>0.076</td>
<td>0.340</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.234</td>
<td>0.186</td>
<td>0.131</td>
<td>0.076</td>
<td>0.340</td>
<td>0.317</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.186</td>
<td>0.131</td>
<td>0.076</td>
<td>0.340</td>
<td>0.317</td>
<td>0.275</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.131</td>
<td>0.076</td>
<td>0.340</td>
<td>0.317</td>
<td>0.275</td>
<td>0.218</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.076</td>
<td>0.340</td>
<td>0.317</td>
<td>0.275</td>
<td>0.218</td>
<td>0.154</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.340</td>
<td>0.317</td>
<td>0.275</td>
<td>0.218</td>
<td>0.154</td>
<td>0.090</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.317</td>
<td>0.275</td>
<td>0.218</td>
<td>0.154</td>
<td>0.090</td>
<td>0.399</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.275</td>
<td>0.218</td>
<td>0.154</td>
<td>0.090</td>
<td>0.399</td>
<td>0.372</td>
<td></td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table : 2

K-factor for Vertical Cohesive-Adhesive Force (Kcz)

<table>
<thead>
<tr>
<th>(\frac{\delta}{R})</th>
<th>(\alpha(°))</th>
<th>(\phi(°))</th>
<th>(\beta(°))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.817</td>
<td>0</td>
<td>0.443</td>
<td>0.473</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.473</td>
<td>0.510</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.510</td>
<td>0.557</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.557</td>
<td>0.619</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.619</td>
<td>0.699</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.699</td>
<td>0.454</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.454</td>
<td>0.485</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.485</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.523</td>
<td>0.572</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.416</td>
<td>0.386</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.386</td>
<td>0.354</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.354</td>
<td>0.319</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.319</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.283</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.246</td>
<td>0.428</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.428</td>
<td>0.397</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.397</td>
<td>0.363</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.363</td>
<td>0.327</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.412</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.357</td>
<td>0.298</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.298</td>
<td>0.239</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.239</td>
<td>0.179</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.179</td>
<td>0.124</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.124</td>
<td>0.423</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.423</td>
<td>0.366</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.366</td>
<td>0.306</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.306</td>
<td>0.244</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.432</td>
<td>0.353</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.353</td>
<td>0.273</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.273</td>
<td>0.194</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.194</td>
<td>0.121</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.121</td>
<td>0.060</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.060</td>
<td>0.442</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.442</td>
<td>0.362</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.362</td>
<td>0.279</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.279</td>
<td>0.198</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table : 3
K-factor for Vertical Surcharge Force (Kqz)

<table>
<thead>
<tr>
<th>R=650mm</th>
<th>α°</th>
<th>ϕ°</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{R}{\mu}$</td>
<td>0</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>0.817</td>
<td>0.132</td>
<td>0.134</td>
<td>0.150</td>
<td>0.162</td>
<td>0.168</td>
<td>0.168</td>
<td>0.190</td>
<td>0.213</td>
</tr>
<tr>
<td>10</td>
<td>0.167</td>
<td>0.140</td>
<td>0.127</td>
<td>0.111</td>
<td>0.131</td>
<td>0.145</td>
<td>0.213</td>
<td>0.236</td>
</tr>
<tr>
<td>15</td>
<td>0.161</td>
<td>0.123</td>
<td>0.103</td>
<td>0.113</td>
<td>0.115</td>
<td>0.115</td>
<td>0.115</td>
<td>0.115</td>
</tr>
<tr>
<td>20</td>
<td>0.150</td>
<td>0.115</td>
<td>0.115</td>
<td>0.115</td>
<td>0.115</td>
<td>0.106</td>
<td>0.083</td>
<td>0.238</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table 4

K-factor for Vertical Gravitation Force (K_{gz})

<table>
<thead>
<tr>
<th>$\frac{a}{R}$</th>
<th>$\alpha^{(\degree)}$</th>
<th>$\phi^{(\degree)}$</th>
<th>$\beta^{(\degree)}$</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.820</td>
<td>0</td>
<td>0</td>
<td>0.409</td>
<td>0.433</td>
<td>0.446</td>
<td>0.447</td>
<td>0.438</td>
<td>0.421</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0.446</td>
<td>0.447</td>
<td>0.438</td>
<td>0.421</td>
<td>0.485</td>
<td>0.513</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0.447</td>
<td>0.421</td>
<td>0.485</td>
<td>0.513</td>
<td>0.526</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.438</td>
<td>0.421</td>
<td>0.513</td>
<td>0.526</td>
<td>0.513</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.421</td>
<td>0.485</td>
<td>0.526</td>
<td>0.526</td>
<td>0.513</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.485</td>
<td>0.513</td>
<td>0.526</td>
<td>0.526</td>
<td>0.513</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0</td>
<td>0.513</td>
<td>0.527</td>
<td>0.516</td>
<td>0.494</td>
<td>0.580</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0.526</td>
<td>0.516</td>
<td>0.494</td>
<td>0.580</td>
<td>0.611</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0.319</td>
<td>0.312</td>
<td>0.291</td>
<td>0.260</td>
<td>0.220</td>
<td>0.176</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0.312</td>
<td>0.291</td>
<td>0.260</td>
<td>0.220</td>
<td>0.176</td>
<td>0.374</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0.291</td>
<td>0.260</td>
<td>0.220</td>
<td>0.176</td>
<td>0.374</td>
<td>0.366</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0.260</td>
<td>0.220</td>
<td>0.176</td>
<td>0.374</td>
<td>0.366</td>
<td>0.342</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.220</td>
<td>0.176</td>
<td>0.342</td>
<td>0.320</td>
<td>0.304</td>
<td>0.258</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.176</td>
<td>0.342</td>
<td>0.320</td>
<td>0.258</td>
<td>0.206</td>
<td>0.441</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.342</td>
<td>0.320</td>
<td>0.258</td>
<td>0.206</td>
<td>0.441</td>
<td>0.431</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0</td>
<td>0.342</td>
<td>0.320</td>
<td>0.258</td>
<td>0.206</td>
<td>0.441</td>
<td>0.431</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0.342</td>
<td>0.320</td>
<td>0.258</td>
<td>0.206</td>
<td>0.441</td>
<td>0.431</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.286</td>
<td>0.269</td>
<td>0.238</td>
<td>0.197</td>
<td>0.149</td>
<td>0.100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0.269</td>
<td>0.238</td>
<td>0.197</td>
<td>0.149</td>
<td>0.100</td>
<td>0.335</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0.238</td>
<td>0.197</td>
<td>0.149</td>
<td>0.100</td>
<td>0.335</td>
<td>0.315</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0.197</td>
<td>0.149</td>
<td>0.100</td>
<td>0.335</td>
<td>0.315</td>
<td>0.279</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.149</td>
<td>0.100</td>
<td>0.335</td>
<td>0.315</td>
<td>0.279</td>
<td>0.230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.100</td>
<td>0.335</td>
<td>0.315</td>
<td>0.279</td>
<td>0.230</td>
<td>0.174</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.335</td>
<td>0.315</td>
<td>0.279</td>
<td>0.230</td>
<td>0.174</td>
<td>0.117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0</td>
<td>0.315</td>
<td>0.279</td>
<td>0.230</td>
<td>0.174</td>
<td>0.117</td>
<td>0.393</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0.279</td>
<td>0.230</td>
<td>0.174</td>
<td>0.117</td>
<td>0.393</td>
<td>0.370</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0.263</td>
<td>0.240</td>
<td>0.202</td>
<td>0.154</td>
<td>0.101</td>
<td>0.051</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0.240</td>
<td>0.202</td>
<td>0.154</td>
<td>0.101</td>
<td>0.051</td>
<td>0.308</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0.202</td>
<td>0.154</td>
<td>0.101</td>
<td>0.051</td>
<td>0.308</td>
<td>0.281</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0.154</td>
<td>0.101</td>
<td>0.051</td>
<td>0.308</td>
<td>0.281</td>
<td>0.237</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.101</td>
<td>0.051</td>
<td>0.308</td>
<td>0.281</td>
<td>0.237</td>
<td>0.181</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.051</td>
<td>0.308</td>
<td>0.281</td>
<td>0.237</td>
<td>0.181</td>
<td>0.119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.308</td>
<td>0.281</td>
<td>0.237</td>
<td>0.181</td>
<td>0.119</td>
<td>0.060</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0</td>
<td>0.281</td>
<td>0.237</td>
<td>0.181</td>
<td>0.119</td>
<td>0.060</td>
<td>0.361</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0.237</td>
<td>0.181</td>
<td>0.119</td>
<td>0.060</td>
<td>0.361</td>
<td>0.329</td>
<td></td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table: 5

K-factor for Vertical Cohesive-Adhesive Force (Kcz)

<table>
<thead>
<tr>
<th>R=700mm</th>
<th>α(°)</th>
<th>φ(°)</th>
<th>β(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>(\frac{d}{R})</td>
<td>0.820</td>
<td>0.381</td>
<td>0.407</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.439</td>
<td>0.480</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.480</td>
<td>0.533</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.533</td>
<td>0.603</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.603</td>
<td>0.391</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.391</td>
<td>0.417</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.417</td>
<td>0.450</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.450</td>
<td>0.493</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.349</td>
<td>0.320</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.320</td>
<td>0.288</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.288</td>
<td>0.255</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.255</td>
<td>0.220</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.220</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.185</td>
<td>0.359</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.359</td>
<td>0.329</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.342</td>
<td>0.290</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.290</td>
<td>0.236</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.236</td>
<td>0.182</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.182</td>
<td>0.129</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.129</td>
<td>0.082</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.082</td>
<td>0.351</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.351</td>
<td>0.279</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.279</td>
<td>0.207</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.207</td>
<td>0.138</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.138</td>
<td>0.077</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.077</td>
<td>0.031</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table: 6

K-factor for Vertical Surcharge Force (Kqz)

<table>
<thead>
<tr>
<th>$\frac{a}{R}$</th>
<th>$\alpha(\degree)$</th>
<th>$\phi(\degree)$</th>
<th>$\beta(\degree)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>0.820</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.124</td>
<td>0.126</td>
<td>0.140</td>
</tr>
<tr>
<td>5</td>
<td>0.126</td>
<td>0.140</td>
<td>0.152</td>
</tr>
<tr>
<td>10</td>
<td>0.140</td>
<td>0.152</td>
<td>0.158</td>
</tr>
<tr>
<td>15</td>
<td>0.152</td>
<td>0.158</td>
<td>0.177</td>
</tr>
<tr>
<td>20</td>
<td>0.158</td>
<td>0.177</td>
<td>0.200</td>
</tr>
<tr>
<td>25</td>
<td>0.177</td>
<td>0.200</td>
<td>0.221</td>
</tr>
<tr>
<td>30</td>
<td>0.200</td>
<td>0.221</td>
<td>0.242</td>
</tr>
<tr>
<td>35</td>
<td>0.221</td>
<td>0.242</td>
<td>0.263</td>
</tr>
<tr>
<td>40</td>
<td>0.242</td>
<td>0.263</td>
<td>0.279</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.153</td>
<td>0.127</td>
<td>0.115</td>
</tr>
<tr>
<td>5</td>
<td>0.127</td>
<td>0.115</td>
<td>0.099</td>
</tr>
<tr>
<td>10</td>
<td>0.115</td>
<td>0.099</td>
<td>0.113</td>
</tr>
<tr>
<td>15</td>
<td>0.099</td>
<td>0.113</td>
<td>0.123</td>
</tr>
<tr>
<td>20</td>
<td>0.113</td>
<td>0.123</td>
<td>0.231</td>
</tr>
<tr>
<td>25</td>
<td>0.123</td>
<td>0.231</td>
<td>0.218</td>
</tr>
<tr>
<td>30</td>
<td>0.231</td>
<td>0.218</td>
<td>0.201</td>
</tr>
<tr>
<td>35</td>
<td>0.218</td>
<td>0.201</td>
<td>0.181</td>
</tr>
<tr>
<td>40</td>
<td>0.201</td>
<td>0.181</td>
<td>0.157</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.146</td>
<td>0.110</td>
<td>0.091</td>
</tr>
<tr>
<td>5</td>
<td>0.110</td>
<td>0.091</td>
<td>0.097</td>
</tr>
<tr>
<td>10</td>
<td>0.091</td>
<td>0.097</td>
<td>0.095</td>
</tr>
<tr>
<td>15</td>
<td>0.097</td>
<td>0.095</td>
<td>0.087</td>
</tr>
<tr>
<td>20</td>
<td>0.095</td>
<td>0.087</td>
<td>0.224</td>
</tr>
<tr>
<td>25</td>
<td>0.087</td>
<td>0.224</td>
<td>0.198</td>
</tr>
<tr>
<td>30</td>
<td>0.224</td>
<td>0.198</td>
<td>0.170</td>
</tr>
<tr>
<td>35</td>
<td>0.198</td>
<td>0.170</td>
<td>0.138</td>
</tr>
<tr>
<td>40</td>
<td>0.170</td>
<td>0.138</td>
<td>0.105</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.133</td>
<td>0.100</td>
<td>0.098</td>
</tr>
<tr>
<td>5</td>
<td>0.100</td>
<td>0.098</td>
<td>0.094</td>
</tr>
<tr>
<td>10</td>
<td>0.098</td>
<td>0.094</td>
<td>0.081</td>
</tr>
<tr>
<td>15</td>
<td>0.094</td>
<td>0.081</td>
<td>0.055</td>
</tr>
<tr>
<td>20</td>
<td>0.081</td>
<td>0.055</td>
<td>0.213</td>
</tr>
<tr>
<td>25</td>
<td>0.055</td>
<td>0.213</td>
<td>0.180</td>
</tr>
<tr>
<td>30</td>
<td>0.213</td>
<td>0.180</td>
<td>0.144</td>
</tr>
<tr>
<td>35</td>
<td>0.180</td>
<td>0.144</td>
<td>0.106</td>
</tr>
<tr>
<td>40</td>
<td>0.144</td>
<td>0.106</td>
<td>0.071</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table 7

K-factor for Vertical Gravitation Force (Kgz)

<table>
<thead>
<tr>
<th>(R=600\text{mm})</th>
<th>(\alpha(\circ))</th>
<th>(\phi(\circ))</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{\varphi}{R})</td>
<td>0</td>
<td>0</td>
<td>0.481</td>
<td>0.509</td>
<td>0.524</td>
<td>0.526</td>
<td>0.516</td>
<td>0.496</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0</td>
<td>0.509</td>
<td>0.524</td>
<td>0.526</td>
<td>0.516</td>
<td>0.496</td>
<td>0.573</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0.524</td>
<td>0.526</td>
<td>0.516</td>
<td>0.496</td>
<td>0.573</td>
<td>0.605</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0.526</td>
<td>0.516</td>
<td>0.496</td>
<td>0.573</td>
<td>0.605</td>
<td>0.621</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.516</td>
<td>0.496</td>
<td>0.573</td>
<td>0.605</td>
<td>0.621</td>
<td>0.622</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.496</td>
<td>0.573</td>
<td>0.605</td>
<td>0.621</td>
<td>0.622</td>
<td>0.609</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.573</td>
<td>0.605</td>
<td>0.621</td>
<td>0.622</td>
<td>0.609</td>
<td>0.584</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0</td>
<td>0.605</td>
<td>0.621</td>
<td>0.622</td>
<td>0.609</td>
<td>0.584</td>
<td>0.687</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0.621</td>
<td>0.622</td>
<td>0.609</td>
<td>0.584</td>
<td>0.687</td>
<td>0.724</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0</td>
<td>0.395</td>
<td>0.391</td>
<td>0.372</td>
<td>0.339</td>
<td>0.296</td>
<td>0.246</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0.391</td>
<td>0.372</td>
<td>0.339</td>
<td>0.296</td>
<td>0.246</td>
<td>0.464</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.372</td>
<td>0.339</td>
<td>0.296</td>
<td>0.246</td>
<td>0.464</td>
<td>0.460</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.339</td>
<td>0.296</td>
<td>0.246</td>
<td>0.464</td>
<td>0.460</td>
<td>0.437</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.296</td>
<td>0.246</td>
<td>0.464</td>
<td>0.460</td>
<td>0.437</td>
<td>0.398</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0</td>
<td>0.246</td>
<td>0.464</td>
<td>0.460</td>
<td>0.437</td>
<td>0.398</td>
<td>0.347</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0.464</td>
<td>0.460</td>
<td>0.437</td>
<td>0.398</td>
<td>0.347</td>
<td>0.289</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0.349</td>
<td>0.334</td>
<td>0.303</td>
<td>0.259</td>
<td>0.206</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.344</td>
<td>0.303</td>
<td>0.259</td>
<td>0.206</td>
<td>0.150</td>
<td>0.409</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.303</td>
<td>0.259</td>
<td>0.206</td>
<td>0.150</td>
<td>0.409</td>
<td>0.392</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.259</td>
<td>0.206</td>
<td>0.150</td>
<td>0.409</td>
<td>0.392</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0</td>
<td>0.206</td>
<td>0.150</td>
<td>0.409</td>
<td>0.392</td>
<td>0.355</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0.150</td>
<td>0.409</td>
<td>0.392</td>
<td>0.355</td>
<td>0.303</td>
<td>0.342</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.325</td>
<td>0.303</td>
<td>0.264</td>
<td>0.212</td>
<td>0.153</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.303</td>
<td>0.264</td>
<td>0.212</td>
<td>0.153</td>
<td>0.093</td>
<td>0.380</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.264</td>
<td>0.212</td>
<td>0.153</td>
<td>0.093</td>
<td>0.380</td>
<td>0.355</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0</td>
<td>0.212</td>
<td>0.153</td>
<td>0.093</td>
<td>0.380</td>
<td>0.355</td>
<td>0.309</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0</td>
<td>0.153</td>
<td>0.093</td>
<td>0.380</td>
<td>0.355</td>
<td>0.309</td>
<td>0.248</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0</td>
<td>0.093</td>
<td>0.380</td>
<td>0.355</td>
<td>0.309</td>
<td>0.248</td>
<td>0.179</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0</td>
<td>0.380</td>
<td>0.355</td>
<td>0.309</td>
<td>0.248</td>
<td>0.179</td>
<td>0.109</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0</td>
<td>0.355</td>
<td>0.309</td>
<td>0.248</td>
<td>0.179</td>
<td>0.109</td>
<td>0.446</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0</td>
<td>0.309</td>
<td>0.248</td>
<td>0.179</td>
<td>0.109</td>
<td>0.446</td>
<td>0.416</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table 8

K-factor for Vertical Cohesive-Adhesive Force (K_{cz})

<table>
<thead>
<tr>
<th>R=600mm</th>
<th>α<sup>(°)</sup></th>
<th>φ<sup>(°)</sup></th>
<th>β<sup>(°)</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>R=R<sup>2</sup></td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>0.840</td>
<td>0</td>
<td>0.469</td>
<td>0.500</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.500</td>
<td>0.539</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.539</td>
<td>0.590</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.590</td>
<td>0.655</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.655</td>
<td>0.741</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.741</td>
<td>0.478</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.478</td>
<td>0.511</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.511</td>
<td>0.552</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.552</td>
<td>0.605</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.477</td>
<td>0.447</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.447</td>
<td>0.414</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.414</td>
<td>0.379</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.379</td>
<td>0.343</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.343</td>
<td>0.306</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.306</td>
<td>0.490</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.490</td>
<td>0.459</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.459</td>
<td>0.426</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.426</td>
<td>0.389</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.455</td>
<td>0.398</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.398</td>
<td>0.337</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.337</td>
<td>0.275</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.275</td>
<td>0.212</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.212</td>
<td>0.152</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.152</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.467</td>
<td>0.409</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.409</td>
<td>0.346</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.346</td>
<td>0.282</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.476</td>
<td>0.393</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.393</td>
<td>0.309</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.309</td>
<td>0.224</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.224</td>
<td>0.146</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.146</td>
<td>0.078</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.078</td>
<td>0.488</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.488</td>
<td>0.403</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.403</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.316</td>
<td>0.229</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
<table>
<thead>
<tr>
<th>$\frac{d}{R}$</th>
<th>$\alpha^{(o)}$</th>
<th>$\phi^{(o)}$</th>
<th>$\beta^{(o)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.840</td>
<td>0</td>
<td>0.098</td>
<td>0.108</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.108</td>
<td>0.130</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.173</td>
<td>0.151</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.151</td>
<td>0.142</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.173</td>
<td>0.138</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.138</td>
<td>0.119</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.167</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.123</td>
<td>0.108</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table: 10

K-factor for Vertical Gravitation Force (Kgz)

<table>
<thead>
<tr>
<th>ϕ</th>
<th>$\alpha(^\circ)$</th>
<th>$\phi(^\circ)$</th>
<th>$\beta(^\circ)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>0.843</td>
<td>0</td>
<td>0.415</td>
<td>0.443</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.443</td>
<td>0.478</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.478</td>
<td>0.523</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.523</td>
<td>0.581</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.581</td>
<td>0.658</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.658</td>
<td>0.424</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.424</td>
<td>0.453</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.453</td>
<td>0.490</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.490</td>
<td>0.536</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.377</td>
<td>0.347</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.347</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.316</td>
<td>0.282</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.282</td>
<td>0.247</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.247</td>
<td>0.212</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.212</td>
<td>0.387</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.387</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.357</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.325</td>
<td>0.290</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.369</td>
<td>0.316</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.316</td>
<td>0.261</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.261</td>
<td>0.204</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.204</td>
<td>0.149</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.149</td>
<td>0.098</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.098</td>
<td>0.380</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.380</td>
<td>0.325</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.325</td>
<td>0.268</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.268</td>
<td>0.209</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.378</td>
<td>0.303</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.303</td>
<td>0.227</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.227</td>
<td>0.155</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.155</td>
<td>0.090</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.090</td>
<td>0.039</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.039</td>
<td>0.388</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.388</td>
<td>0.311</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.311</td>
<td>0.233</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.233</td>
<td>0.158</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table 11

K-factor for Vertical Cohesive-Adhesive Force (Kcz)

<table>
<thead>
<tr>
<th>$\frac{R}{R}$</th>
<th>α°</th>
<th>ϕ°</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.843</td>
<td>0</td>
<td>0.093</td>
<td>0.102</td>
<td>0.124</td>
<td>0.144</td>
<td>0.160</td>
<td>0.186</td>
<td>0.186</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.102</td>
<td>0.124</td>
<td>0.144</td>
<td>0.160</td>
<td>0.186</td>
<td>0.186</td>
<td>0.168</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.124</td>
<td>0.144</td>
<td>0.160</td>
<td>0.186</td>
<td>0.186</td>
<td>0.186</td>
<td>0.195</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.144</td>
<td>0.160</td>
<td>0.186</td>
<td>0.168</td>
<td>0.195</td>
<td>0.225</td>
<td>0.225</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.160</td>
<td>0.186</td>
<td>0.195</td>
<td>0.225</td>
<td>0.254</td>
<td>0.281</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.186</td>
<td>0.168</td>
<td>0.195</td>
<td>0.225</td>
<td>0.254</td>
<td>0.281</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.186</td>
<td>0.225</td>
<td>0.254</td>
<td>0.281</td>
<td>0.302</td>
<td>0.302</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.225</td>
<td>0.254</td>
<td>0.281</td>
<td>0.302</td>
<td>0.302</td>
<td>0.302</td>
<td>0.302</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.225</td>
<td>0.254</td>
<td>0.281</td>
<td>0.302</td>
<td>0.302</td>
<td>0.302</td>
<td>0.302</td>
</tr>
</tbody>
</table>

10	0	0.155	0.134	0.124	0.111	0.104	0.109	0.109
	5	0.134	0.124	0.111	0.104	0.109	0.199	0.234
	10	0.124	0.111	0.104	0.109	0.234	0.225	0.225
	15	0.111	0.104	0.109	0.234	0.225	0.225	0.212
	20	0.104	0.109	0.234	0.225	0.225	0.212	0.195
	25	0.109	0.234	0.225	0.212	0.195	0.195	0.174
	30	0.234	0.225	0.212	0.195	0.174	0.174	0.148
	35	0.225	0.212	0.195	0.174	0.148	0.243	0.236
	40	0.212	0.195	0.174	0.148	0.243	0.236	0.236

15	0	0.155	0.123	0.104	0.083	0.085	0.079	0.079
	5	0.123	0.104	0.083	0.085	0.079	0.236	0.236
	10	0.104	0.083	0.085	0.079	0.236	0.212	0.212
	15	0.083	0.085	0.079	0.236	0.212	0.185	0.154
	20	0.085	0.079	0.236	0.212	0.185	0.154	0.121
	25	0.079	0.236	0.212	0.185	0.154	0.121	0.089
	30	0.236	0.212	0.185	0.154	0.121	0.089	0.252
	35	0.212	0.185	0.154	0.121	0.089	0.252	0.229
	40	0.185	0.154	0.121	0.089	0.252	0.229	0.229

20	0	0.148	0.107	0.091	0.083	0.072	0.072	0.052
	5	0.107	0.091	0.083	0.072	0.052	0.230	0.230
	10	0.091	0.083	0.072	0.052	0.230	0.197	0.197
	15	0.083	0.072	0.052	0.230	0.197	0.197	0.160
	20	0.072	0.052	0.230	0.197	0.160	0.121	0.121
	25	0.052	0.230	0.197	0.160	0.121	0.081	0.081
	30	0.230	0.197	0.160	0.121	0.081	0.050	0.050
	35	0.197	0.160	0.121	0.081	0.050	0.251	0.251
	40	0.160	0.121	0.081	0.050	0.251	0.217	0.217

* K-values calculated for the depth of 100mm
Table: 12

K-factor for Vertical Surcharge Force (Kqz)

<table>
<thead>
<tr>
<th>R=650mm</th>
<th>$\frac{a}{R}$</th>
<th>$\alpha(°)$</th>
<th>$\phi(°)$</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0.662</td>
<td>0.708</td>
<td>0.766</td>
<td>0.842</td>
<td>0.942</td>
<td>1.075</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.708</td>
<td>0.766</td>
<td>0.842</td>
<td>0.942</td>
<td>1.075</td>
<td>0.677</td>
<td>0.725</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.766</td>
<td>0.842</td>
<td>0.942</td>
<td>1.075</td>
<td>0.677</td>
<td>0.725</td>
<td>0.786</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.842</td>
<td>0.942</td>
<td>1.075</td>
<td>0.677</td>
<td>0.725</td>
<td>0.786</td>
<td>0.864</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.942</td>
<td>1.075</td>
<td>0.677</td>
<td>0.725</td>
<td>0.786</td>
<td>0.864</td>
<td>1.102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>1.075</td>
<td>0.677</td>
<td>0.725</td>
<td>0.786</td>
<td>0.864</td>
<td>0.966</td>
<td>1.102</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.677</td>
<td>0.725</td>
<td>0.786</td>
<td>0.864</td>
<td>0.966</td>
<td>1.102</td>
<td>0.688</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.725</td>
<td>0.786</td>
<td>0.864</td>
<td>0.966</td>
<td>1.102</td>
<td>0.688</td>
<td>0.740</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.786</td>
<td>0.864</td>
<td>0.966</td>
<td>1.102</td>
<td>0.688</td>
<td>0.740</td>
<td>0.708</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.725</td>
<td>0.708</td>
<td>0.690</td>
<td>0.669</td>
<td>0.647</td>
<td>0.622</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.708</td>
<td>0.690</td>
<td>0.669</td>
<td>0.647</td>
<td>0.622</td>
<td>0.745</td>
<td>0.728</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.690</td>
<td>0.669</td>
<td>0.647</td>
<td>0.622</td>
<td>0.745</td>
<td>0.728</td>
<td>0.708</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.669</td>
<td>0.647</td>
<td>0.622</td>
<td>0.745</td>
<td>0.728</td>
<td>0.708</td>
<td>0.686</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.647</td>
<td>0.622</td>
<td>0.745</td>
<td>0.728</td>
<td>0.708</td>
<td>0.686</td>
<td>0.662</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.622</td>
<td>0.745</td>
<td>0.728</td>
<td>0.708</td>
<td>0.686</td>
<td>0.662</td>
<td>0.635</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.745</td>
<td>0.728</td>
<td>0.708</td>
<td>0.686</td>
<td>0.662</td>
<td>0.635</td>
<td>0.768</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.728</td>
<td>0.708</td>
<td>0.686</td>
<td>0.662</td>
<td>0.635</td>
<td>0.768</td>
<td>0.708</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.708</td>
<td>0.686</td>
<td>0.662</td>
<td>0.635</td>
<td>0.768</td>
<td>0.708</td>
<td>0.750</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.763</td>
<td>0.713</td>
<td>0.653</td>
<td>0.584</td>
<td>0.505</td>
<td>0.413</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.713</td>
<td>0.653</td>
<td>0.584</td>
<td>0.505</td>
<td>0.413</td>
<td>0.784</td>
<td>0.784</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.653</td>
<td>0.584</td>
<td>0.505</td>
<td>0.413</td>
<td>0.784</td>
<td>0.784</td>
<td>0.731</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.584</td>
<td>0.505</td>
<td>0.413</td>
<td>0.784</td>
<td>0.731</td>
<td>0.669</td>
<td>0.598</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.505</td>
<td>0.413</td>
<td>0.784</td>
<td>0.731</td>
<td>0.669</td>
<td>0.598</td>
<td>0.515</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.413</td>
<td>0.784</td>
<td>0.731</td>
<td>0.669</td>
<td>0.598</td>
<td>0.515</td>
<td>0.420</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.784</td>
<td>0.731</td>
<td>0.669</td>
<td>0.598</td>
<td>0.515</td>
<td>0.420</td>
<td>0.808</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.731</td>
<td>0.669</td>
<td>0.598</td>
<td>0.515</td>
<td>0.420</td>
<td>0.808</td>
<td>0.753</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.822</td>
<td>0.737</td>
<td>0.637</td>
<td>0.523</td>
<td>0.392</td>
<td>0.248</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.737</td>
<td>0.637</td>
<td>0.523</td>
<td>0.392</td>
<td>0.248</td>
<td>0.248</td>
<td>0.842</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.637</td>
<td>0.523</td>
<td>0.392</td>
<td>0.248</td>
<td>0.248</td>
<td>0.842</td>
<td>0.754</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.523</td>
<td>0.392</td>
<td>0.248</td>
<td>0.842</td>
<td>0.754</td>
<td>0.651</td>
<td>0.533</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.392</td>
<td>0.248</td>
<td>0.842</td>
<td>0.754</td>
<td>0.651</td>
<td>0.533</td>
<td>0.399</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.248</td>
<td>0.842</td>
<td>0.754</td>
<td>0.651</td>
<td>0.533</td>
<td>0.399</td>
<td>0.252</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.842</td>
<td>0.754</td>
<td>0.651</td>
<td>0.533</td>
<td>0.399</td>
<td>0.252</td>
<td>0.866</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.754</td>
<td>0.651</td>
<td>0.533</td>
<td>0.399</td>
<td>0.252</td>
<td>0.866</td>
<td>0.775</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.651</td>
<td>0.533</td>
<td>0.399</td>
<td>0.252</td>
<td>0.866</td>
<td>0.775</td>
<td>0.420</td>
<td></td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
<table>
<thead>
<tr>
<th>$\frac{R}{b}$</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.844</td>
<td>0 0.351 0.374 0.404 0.442 0.491 0.557</td>
<td>5 0.374 0.404 0.442 0.491 0.557 0.358 0.383</td>
<td>10 0.404 0.442 0.491 0.557 0.358 0.383 0.414</td>
<td>15 0.442 0.491 0.557 0.358 0.383 0.414 0.414</td>
<td>20 0.491 0.557 0.358 0.383 0.414 0.453 0.414</td>
<td>25 0.557 0.358 0.383 0.414 0.453 0.504 0.504</td>
</tr>
<tr>
<td>10</td>
<td>0 0.314 0.286 0.255 0.223 0.190 0.157</td>
<td>5 0.286 0.255 0.223 0.190 0.157 0.157 0.157</td>
<td>10 0.255 0.223 0.190 0.157 0.157 0.157 0.157</td>
<td>15 0.223 0.190 0.157 0.157 0.157 0.157 0.157</td>
<td>20 0.190 0.157 0.157 0.157 0.157 0.157 0.157</td>
<td>25 0.157 0.157 0.157 0.157 0.157 0.157 0.157</td>
</tr>
<tr>
<td>15</td>
<td>0 0.303 0.254 0.203 0.152 0.104 0.610</td>
<td>5 0.254 0.203 0.152 0.104 0.610 0.312 0.312</td>
<td>10 0.203 0.152 0.104 0.104 0.312 0.312 0.312</td>
<td>15 0.152 0.104 0.104 0.312 0.261 0.208 0.208</td>
<td>20 0.104 0.061 0.312 0.261 0.208 0.156 0.156</td>
<td>25 0.301 0.261 0.208 0.156 0.106 0.063 0.322</td>
</tr>
<tr>
<td>20</td>
<td>0 0.307 0.239 0.171 0.108 0.085 0.018</td>
<td>5 0.239 0.171 0.108 0.055 0.018 0.018 0.018</td>
<td>10 0.171 0.108 0.055 0.018 0.018 0.018 0.018</td>
<td>15 0.108 0.055 0.018 0.018 0.018 0.018 0.018</td>
<td>20 0.055 0.018 0.018 0.018 0.018 0.018 0.018</td>
<td>25 0.018 0.018 0.018 0.018 0.018 0.018 0.018</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table: 14

K-factor for Vertical Cohesive-Adhesive Force (Kcz)

<table>
<thead>
<tr>
<th>$\frac{a}{R}$</th>
<th>$\alpha(\degree)$</th>
<th>$\phi(\degree)$</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.844</td>
<td>0</td>
<td>0.091</td>
<td>0.099</td>
<td>0.119</td>
<td>0.136</td>
<td>0.150</td>
<td>0.173</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.099</td>
<td>0.119</td>
<td>0.136</td>
<td>0.150</td>
<td>0.173</td>
<td>0.180</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.119</td>
<td>0.136</td>
<td>0.150</td>
<td>0.173</td>
<td>0.180</td>
<td>0.185</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.136</td>
<td>0.150</td>
<td>0.173</td>
<td>0.180</td>
<td>0.185</td>
<td>0.212</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.150</td>
<td>0.173</td>
<td>0.180</td>
<td>0.185</td>
<td>0.212</td>
<td>0.238</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.173</td>
<td>0.160</td>
<td>0.185</td>
<td>0.212</td>
<td>0.238</td>
<td>0.262</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.160</td>
<td>0.185</td>
<td>0.212</td>
<td>0.238</td>
<td>0.262</td>
<td>0.281</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.185</td>
<td>0.212</td>
<td>0.238</td>
<td>0.262</td>
<td>0.281</td>
<td>0.142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.212</td>
<td>0.238</td>
<td>0.262</td>
<td>0.281</td>
<td>0.142</td>
<td>0.173</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.142</td>
<td>0.121</td>
<td>0.111</td>
<td>0.098</td>
<td>0.090</td>
<td>0.091</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.121</td>
<td>0.111</td>
<td>0.098</td>
<td>0.090</td>
<td>0.091</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.111</td>
<td>0.098</td>
<td>0.090</td>
<td>0.091</td>
<td>0.215</td>
<td>0.204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.098</td>
<td>0.090</td>
<td>0.091</td>
<td>0.215</td>
<td>0.204</td>
<td>0.190</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.090</td>
<td>0.091</td>
<td>0.215</td>
<td>0.204</td>
<td>0.190</td>
<td>0.172</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.091</td>
<td>0.215</td>
<td>0.204</td>
<td>0.190</td>
<td>0.172</td>
<td>0.151</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.215</td>
<td>0.204</td>
<td>0.190</td>
<td>0.172</td>
<td>0.151</td>
<td>0.125</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.204</td>
<td>0.190</td>
<td>0.172</td>
<td>0.151</td>
<td>0.125</td>
<td>0.223</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.190</td>
<td>0.172</td>
<td>0.151</td>
<td>0.125</td>
<td>0.223</td>
<td>0.215</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.140</td>
<td>0.109</td>
<td>0.090</td>
<td>0.070</td>
<td>0.069</td>
<td>0.059</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.109</td>
<td>0.090</td>
<td>0.070</td>
<td>0.069</td>
<td>0.059</td>
<td>0.213</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.090</td>
<td>0.070</td>
<td>0.069</td>
<td>0.059</td>
<td>0.213</td>
<td>0.189</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.070</td>
<td>0.069</td>
<td>0.059</td>
<td>0.213</td>
<td>0.189</td>
<td>0.161</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.069</td>
<td>0.059</td>
<td>0.213</td>
<td>0.189</td>
<td>0.161</td>
<td>0.131</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.059</td>
<td>0.213</td>
<td>0.189</td>
<td>0.161</td>
<td>0.131</td>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.213</td>
<td>0.189</td>
<td>0.161</td>
<td>0.131</td>
<td>0.098</td>
<td>0.068</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.189</td>
<td>0.161</td>
<td>0.131</td>
<td>0.098</td>
<td>0.068</td>
<td>0.228</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.161</td>
<td>0.131</td>
<td>0.098</td>
<td>0.068</td>
<td>0.228</td>
<td>0.204</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.131</td>
<td>0.093</td>
<td>0.077</td>
<td>0.067</td>
<td>0.054</td>
<td>0.032</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.093</td>
<td>0.077</td>
<td>0.067</td>
<td>0.054</td>
<td>0.032</td>
<td>0.205</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.077</td>
<td>0.067</td>
<td>0.054</td>
<td>0.032</td>
<td>0.205</td>
<td>0.172</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.067</td>
<td>0.054</td>
<td>0.032</td>
<td>0.205</td>
<td>0.172</td>
<td>0.136</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.054</td>
<td>0.032</td>
<td>0.205</td>
<td>0.172</td>
<td>0.136</td>
<td>0.098</td>
<td></td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.032</td>
<td>0.205</td>
<td>0.172</td>
<td>0.136</td>
<td>0.098</td>
<td>0.061</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.205</td>
<td>0.172</td>
<td>0.136</td>
<td>0.098</td>
<td>0.061</td>
<td>0.029</td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.172</td>
<td>0.136</td>
<td>0.098</td>
<td>0.061</td>
<td>0.029</td>
<td>0.225</td>
<td></td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.136</td>
<td>0.098</td>
<td>0.061</td>
<td>0.029</td>
<td>0.225</td>
<td>0.190</td>
<td></td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table : 15

K-factor for Vertical Surcharge Force (Kqz)

<table>
<thead>
<tr>
<th>(\frac{d}{R})</th>
<th>(\alpha(°))</th>
<th>(\beta(°))</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.844</td>
<td>0</td>
<td>0.613</td>
<td>0.655</td>
<td>0.709</td>
<td>0.779</td>
<td>0.872</td>
<td>0.996</td>
<td>0.996</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.655</td>
<td>0.709</td>
<td>0.779</td>
<td>0.872</td>
<td>0.996</td>
<td>0.627</td>
<td>0.671</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.709</td>
<td>0.779</td>
<td>0.872</td>
<td>0.996</td>
<td>0.627</td>
<td>0.671</td>
<td>0.728</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.779</td>
<td>0.872</td>
<td>0.996</td>
<td>0.627</td>
<td>0.671</td>
<td>0.728</td>
<td>0.786</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.872</td>
<td>0.996</td>
<td>0.627</td>
<td>0.671</td>
<td>0.728</td>
<td>0.786</td>
<td>0.800</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.996</td>
<td>0.627</td>
<td>0.671</td>
<td>0.728</td>
<td>0.786</td>
<td>0.800</td>
<td>0.895</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.627</td>
<td>0.728</td>
<td>0.800</td>
<td>0.895</td>
<td>0.996</td>
<td>0.627</td>
<td>0.671</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.671</td>
<td>0.728</td>
<td>0.800</td>
<td>0.895</td>
<td>1.021</td>
<td>0.638</td>
<td>0.686</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.728</td>
<td>0.800</td>
<td>0.895</td>
<td>1.021</td>
<td>0.638</td>
<td>0.686</td>
<td>0.728</td>
</tr>
</tbody>
</table>

	10	0.663	0.643	0.619	0.593	0.563	0.534	0.529
	5	0.643	0.619	0.593	0.563	0.534	0.529	0.628
	10	0.619	0.593	0.563	0.529	0.628	0.660	0.660
	15	0.593	0.563	0.529	0.628	0.660	0.660	0.636
	20	0.563	0.529	0.628	0.660	0.660	0.636	0.608
	25	0.529	0.628	0.660	0.660	0.636	0.608	0.576
	30	0.628	0.660	0.660	0.636	0.608	0.576	0.540
	35	0.660	0.660	0.636	0.608	0.576	0.540	0.702
	40	0.636	0.608	0.576	0.540	0.702	0.680	0.680

	15	0.692	0.637	0.573	0.499	0.444	0.317	0.317
	5	0.637	0.573	0.499	0.444	0.317	0.317	0.710
	10	0.573	0.499	0.414	0.317	0.710	0.654	0.654
	15	0.499	0.414	0.317	0.710	0.654	0.587	0.587
	20	0.414	0.317	0.710	0.654	0.587	0.587	0.511
	25	0.317	0.710	0.654	0.587	0.587	0.511	0.423
	30	0.710	0.654	0.587	0.511	0.423	0.323	0.323
	35	0.654	0.587	0.511	0.423	0.323	0.732	0.732
	40	0.587	0.511	0.423	0.323	0.732	0.732	0.673

	20	0.740	0.651	0.548	0.430	0.329	0.298	0.158
	5	0.651	0.548	0.430	0.329	0.298	0.158	0.758
	10	0.548	0.430	0.298	0.158	0.758	0.666	0.666
	15	0.430	0.298	0.158	0.758	0.666	0.560	0.439
	20	0.298	0.158	0.758	0.666	0.560	0.439	0.304
	25	0.158	0.758	0.666	0.560	0.439	0.304	0.160
	30	0.758	0.666	0.560	0.439	0.304	0.160	0.779
	35	0.666	0.560	0.439	0.304	0.160	0.779	0.685
	40	0.560	0.439	0.304	0.160	0.779	0.685	0.779

* K-values calculated for the depth of 100mm
Table: 16

K-factor for Vertical Gravitation Force (Kgz)

<table>
<thead>
<tr>
<th>$\frac{a}{R}$</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.419</td>
<td>0.446</td>
<td>0.482</td>
<td>0.528</td>
<td>0.587</td>
<td>0.665</td>
</tr>
<tr>
<td>0.866</td>
<td>5</td>
<td>0.446</td>
<td>0.482</td>
<td>0.528</td>
<td>0.587</td>
<td>0.665</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.482</td>
<td>0.528</td>
<td>0.587</td>
<td>0.665</td>
<td>0.424</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.528</td>
<td>0.587</td>
<td>0.665</td>
<td>0.424</td>
<td>0.454</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.587</td>
<td>0.665</td>
<td>0.424</td>
<td>0.454</td>
<td>0.492</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.665</td>
<td>0.424</td>
<td>0.454</td>
<td>0.492</td>
<td>0.539</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.424</td>
<td>0.454</td>
<td>0.492</td>
<td>0.539</td>
<td>0.601</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.454</td>
<td>0.492</td>
<td>0.539</td>
<td>0.601</td>
<td>0.681</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.492</td>
<td>0.539</td>
<td>0.601</td>
<td>0.681</td>
<td>0.425</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.408</td>
<td>0.379</td>
<td>0.347</td>
<td>0.279</td>
<td>0.244</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.379</td>
<td>0.347</td>
<td>0.314</td>
<td>0.279</td>
<td>0.244</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.347</td>
<td>0.314</td>
<td>0.279</td>
<td>0.244</td>
<td>0.419</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.314</td>
<td>0.279</td>
<td>0.419</td>
<td>0.389</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.279</td>
<td>0.244</td>
<td>0.419</td>
<td>0.389</td>
<td>0.357</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.244</td>
<td>0.419</td>
<td>0.389</td>
<td>0.357</td>
<td>0.322</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.419</td>
<td>0.389</td>
<td>0.357</td>
<td>0.322</td>
<td>0.287</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.389</td>
<td>0.357</td>
<td>0.322</td>
<td>0.287</td>
<td>0.250</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.357</td>
<td>0.322</td>
<td>0.287</td>
<td>0.250</td>
<td>0.430</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.408</td>
<td>0.353</td>
<td>0.389</td>
<td>0.178</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.353</td>
<td>0.295</td>
<td>0.314</td>
<td>0.178</td>
<td>0.123</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.353</td>
<td>0.295</td>
<td>0.314</td>
<td>0.178</td>
<td>0.242</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.389</td>
<td>0.357</td>
<td>0.322</td>
<td>0.183</td>
<td>0.243</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.322</td>
<td>0.287</td>
<td>0.250</td>
<td>0.430</td>
<td>0.126</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.287</td>
<td>0.250</td>
<td>0.430</td>
<td>0.126</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.430</td>
<td>0.349</td>
<td>0.267</td>
<td>0.187</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.349</td>
<td>0.267</td>
<td>0.187</td>
<td>0.114</td>
<td>0.053</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.267</td>
<td>0.187</td>
<td>0.114</td>
<td>0.053</td>
<td>0.430</td>
</tr>
</tbody>
</table>

K-values calculated for the depth of 100mm
Table: 17

K-factor for Vertical Cohesive-Adhesive Force (Kcz)

<table>
<thead>
<tr>
<th>(\frac{h}{R})</th>
<th>(\alpha(\degree))</th>
<th>(\phi(\degree))</th>
<th>(\beta(\degree))</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>0.866</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.042</td>
<td>0.059</td>
<td>0.088</td>
</tr>
<tr>
<td>5</td>
<td>0.059</td>
<td>0.088</td>
<td>0.117</td>
</tr>
<tr>
<td>10</td>
<td>0.088</td>
<td>0.117</td>
<td>0.143</td>
</tr>
<tr>
<td>15</td>
<td>0.117</td>
<td>0.143</td>
<td>0.162</td>
</tr>
<tr>
<td>20</td>
<td>0.143</td>
<td>0.162</td>
<td>0.111</td>
</tr>
<tr>
<td>25</td>
<td>0.162</td>
<td>0.111</td>
<td>0.145</td>
</tr>
<tr>
<td>30</td>
<td>0.111</td>
<td>0.145</td>
<td>0.182</td>
</tr>
<tr>
<td>35</td>
<td>0.145</td>
<td>0.182</td>
<td>0.221</td>
</tr>
<tr>
<td>40</td>
<td>0.182</td>
<td>0.221</td>
<td>0.259</td>
</tr>
<tr>
<td>0.866</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.148</td>
<td>0.134</td>
<td>0.129</td>
</tr>
<tr>
<td>5</td>
<td>0.134</td>
<td>0.129</td>
<td>0.121</td>
</tr>
<tr>
<td>10</td>
<td>0.129</td>
<td>0.121</td>
<td>0.108</td>
</tr>
<tr>
<td>15</td>
<td>0.121</td>
<td>0.108</td>
<td>0.100</td>
</tr>
<tr>
<td>20</td>
<td>0.108</td>
<td>0.100</td>
<td>0.230</td>
</tr>
<tr>
<td>25</td>
<td>0.100</td>
<td>0.230</td>
<td>0.226</td>
</tr>
<tr>
<td>30</td>
<td>0.230</td>
<td>0.226</td>
<td>0.218</td>
</tr>
<tr>
<td>35</td>
<td>0.226</td>
<td>0.218</td>
<td>0.207</td>
</tr>
<tr>
<td>40</td>
<td>0.218</td>
<td>0.207</td>
<td>0.190</td>
</tr>
<tr>
<td>0.866</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.162</td>
<td>0.134</td>
<td>0.117</td>
</tr>
<tr>
<td>5</td>
<td>0.134</td>
<td>0.117</td>
<td>0.098</td>
</tr>
<tr>
<td>10</td>
<td>0.117</td>
<td>0.098</td>
<td>0.082</td>
</tr>
<tr>
<td>15</td>
<td>0.098</td>
<td>0.082</td>
<td>0.075</td>
</tr>
<tr>
<td>20</td>
<td>0.082</td>
<td>0.075</td>
<td>0.246</td>
</tr>
<tr>
<td>25</td>
<td>0.075</td>
<td>0.246</td>
<td>0.226</td>
</tr>
<tr>
<td>30</td>
<td>0.246</td>
<td>0.226</td>
<td>0.201</td>
</tr>
<tr>
<td>35</td>
<td>0.226</td>
<td>0.201</td>
<td>0.173</td>
</tr>
<tr>
<td>40</td>
<td>0.201</td>
<td>0.173</td>
<td>0.140</td>
</tr>
<tr>
<td>0.866</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.162</td>
<td>0.123</td>
<td>0.099</td>
</tr>
<tr>
<td>5</td>
<td>0.123</td>
<td>0.099</td>
<td>0.081</td>
</tr>
<tr>
<td>10</td>
<td>0.099</td>
<td>0.081</td>
<td>0.068</td>
</tr>
<tr>
<td>15</td>
<td>0.081</td>
<td>0.068</td>
<td>0.052</td>
</tr>
<tr>
<td>20</td>
<td>0.068</td>
<td>0.052</td>
<td>0.249</td>
</tr>
<tr>
<td>25</td>
<td>0.052</td>
<td>0.249</td>
<td>0.216</td>
</tr>
<tr>
<td>30</td>
<td>0.249</td>
<td>0.216</td>
<td>0.180</td>
</tr>
<tr>
<td>35</td>
<td>0.216</td>
<td>0.180</td>
<td>0.140</td>
</tr>
<tr>
<td>40</td>
<td>0.180</td>
<td>0.140</td>
<td>0.099</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
<table>
<thead>
<tr>
<th>$\frac{d}{R}$</th>
<th>$\alpha^{(\circ)}$</th>
<th>$\varphi^{(\circ)}$</th>
<th>$\beta^{(\circ)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.866</td>
<td>0</td>
<td>0.624</td>
<td>0.667</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.722</td>
<td>0.794</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.794</td>
<td>0.888</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.888</td>
<td>1.015</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>1.015</td>
<td>0.634</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.634</td>
<td>0.680</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.680</td>
<td>0.738</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.738</td>
<td>0.813</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.738</td>
<td>1.040</td>
</tr>
</tbody>
</table>

10	0	0.717	0.703
	5	0.703	0.689
	10	0.689	0.673
	15	0.673	0.639
	20	0.656	0.737
	25	0.639	0.723
	30	0.737	0.691
	35	0.723	0.673
	40	0.708	0.653

15	0	0.765	0.720
	5	0.720	0.666
	10	0.666	0.603
	15	0.603	0.531
	20	0.531	0.448
	25	0.448	0.787
	30	0.787	0.739
	35	0.739	0.683
	40	0.683	0.543

20	0	0.826	0.747
	5	0.747	0.654
	10	0.654	0.546
	15	0.546	0.423
	20	0.423	0.285
	25	0.285	0.848
	30	0.848	0.670
	35	0.670	0.558
	40	0.670	0.432

* K-values calculated for the depth of 100mm
Table: 19

K-factor for Vertical Gravitation Force (Kgz)

<table>
<thead>
<tr>
<th>R=650mm</th>
<th>α(°)</th>
<th>β(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>R/R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>0.866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.453</td>
<td>0.479</td>
</tr>
<tr>
<td>5</td>
<td>0.492</td>
<td>0.492</td>
</tr>
<tr>
<td>10</td>
<td>0.492</td>
<td>0.480</td>
</tr>
<tr>
<td>15</td>
<td>0.480</td>
<td>0.458</td>
</tr>
<tr>
<td>20</td>
<td>0.458</td>
<td>0.542</td>
</tr>
<tr>
<td>25</td>
<td>0.542</td>
<td>0.571</td>
</tr>
<tr>
<td>30</td>
<td>0.571</td>
<td>0.585</td>
</tr>
<tr>
<td>35</td>
<td>0.585</td>
<td>0.584</td>
</tr>
<tr>
<td>40</td>
<td>0.585</td>
<td>0.584</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.353</td>
<td>0.344</td>
</tr>
<tr>
<td>5</td>
<td>0.344</td>
<td>0.320</td>
</tr>
<tr>
<td>10</td>
<td>0.320</td>
<td>0.285</td>
</tr>
<tr>
<td>15</td>
<td>0.285</td>
<td>0.240</td>
</tr>
<tr>
<td>20</td>
<td>0.240</td>
<td>0.191</td>
</tr>
<tr>
<td>25</td>
<td>0.191</td>
<td>0.416</td>
</tr>
<tr>
<td>30</td>
<td>0.416</td>
<td>0.405</td>
</tr>
<tr>
<td>35</td>
<td>0.405</td>
<td>0.377</td>
</tr>
<tr>
<td>40</td>
<td>0.377</td>
<td>0.334</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.317</td>
<td>0.296</td>
</tr>
<tr>
<td>5</td>
<td>0.296</td>
<td>0.261</td>
</tr>
<tr>
<td>10</td>
<td>0.261</td>
<td>0.214</td>
</tr>
<tr>
<td>15</td>
<td>0.214</td>
<td>0.160</td>
</tr>
<tr>
<td>20</td>
<td>0.160</td>
<td>0.107</td>
</tr>
<tr>
<td>25</td>
<td>0.107</td>
<td>0.372</td>
</tr>
<tr>
<td>30</td>
<td>0.372</td>
<td>0.348</td>
</tr>
<tr>
<td>35</td>
<td>0.348</td>
<td>0.306</td>
</tr>
<tr>
<td>40</td>
<td>0.306</td>
<td>0.250</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.289</td>
<td>0.261</td>
</tr>
<tr>
<td>5</td>
<td>0.261</td>
<td>0.217</td>
</tr>
<tr>
<td>10</td>
<td>0.217</td>
<td>0.162</td>
</tr>
<tr>
<td>15</td>
<td>0.162</td>
<td>0.104</td>
</tr>
<tr>
<td>20</td>
<td>0.104</td>
<td>0.050</td>
</tr>
<tr>
<td>25</td>
<td>0.050</td>
<td>0.339</td>
</tr>
<tr>
<td>30</td>
<td>0.339</td>
<td>0.306</td>
</tr>
<tr>
<td>35</td>
<td>0.306</td>
<td>0.254</td>
</tr>
<tr>
<td>40</td>
<td>0.254</td>
<td>0.190</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table: 20

K-factor for Vertical Cohesive-Adhesive Force (Kcz)

<table>
<thead>
<tr>
<th>$\frac{a}{R}$</th>
<th>$\alpha(°)$</th>
<th>$\phi(°)$</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.866</td>
<td>0</td>
<td>0</td>
<td>0.362</td>
<td>0.386</td>
<td>0.417</td>
<td>0.456</td>
<td>0.507</td>
<td>0.576</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.386</td>
<td>0.417</td>
<td>0.456</td>
<td>0.507</td>
<td>0.576</td>
<td>0.367</td>
<td>0.393</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.417</td>
<td>0.456</td>
<td>0.507</td>
<td>0.576</td>
<td>0.367</td>
<td>0.393</td>
<td>0.425</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.456</td>
<td>0.507</td>
<td>0.576</td>
<td>0.367</td>
<td>0.393</td>
<td>0.425</td>
<td>0.467</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.507</td>
<td>0.576</td>
<td>0.367</td>
<td>0.393</td>
<td>0.425</td>
<td>0.467</td>
<td>0.520</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.576</td>
<td>0.367</td>
<td>0.393</td>
<td>0.425</td>
<td>0.467</td>
<td>0.520</td>
<td>0.590</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.367</td>
<td>0.393</td>
<td>0.425</td>
<td>0.467</td>
<td>0.520</td>
<td>0.590</td>
<td>0.369</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.393</td>
<td>0.425</td>
<td>0.467</td>
<td>0.520</td>
<td>0.590</td>
<td>0.369</td>
<td>0.397</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.425</td>
<td>0.467</td>
<td>0.520</td>
<td>0.590</td>
<td>0.369</td>
<td>0.397</td>
<td>0.425</td>
</tr>
</tbody>
</table>

10	0	0.339	0.311	0.280	0.248	0.215	0.181
	5	0.311	0.280	0.248	0.215	0.181	0.348
	10	0.280	0.248	0.215	0.181	0.348	0.319
	15	0.248	0.215	0.181	0.348	0.319	0.288
	20	0.215	0.181	0.348	0.319	0.288	0.255
	25	0.181	0.348	0.319	0.288	0.255	0.220
	30	0.348	0.319	0.288	0.255	0.220	0.186
	35	0.319	0.288	0.255	0.220	0.186	0.358
	40	0.288	0.255	0.220	0.186	0.358	0.328

15	0	0.334	0.283	0.230	0.176	0.125	0.078
	5	0.283	0.230	0.176	0.125	0.078	0.343
	10	0.230	0.176	0.125	0.078	0.343	0.291
	15	0.176	0.125	0.078	0.343	0.291	0.236
	20	0.125	0.078	0.343	0.291	0.236	0.181
	25	0.078	0.343	0.291	0.236	0.181	0.128
	30	0.343	0.291	0.236	0.181	0.128	0.080
	35	0.291	0.236	0.181	0.128	0.080	0.354
	40	0.236	0.181	0.128	0.080	0.354	0.300

20	0	0.337	0.266	0.195	0.127	0.069	0.026
	5	0.266	0.195	0.127	0.069	0.026	0.347
	10	0.195	0.127	0.069	0.026	0.347	0.273
	15	0.127	0.069	0.026	0.347	0.273	0.200
	20	0.069	0.026	0.347	0.273	0.200	0.130
	25	0.026	0.347	0.273	0.200	0.130	0.071
	30	0.347	0.273	0.200	0.130	0.071	0.026
	35	0.273	0.200	0.130	0.071	0.026	0.357
	40	0.200	0.130	0.071	0.026	0.357	0.282

* K-values calculated for the depth of 100mm
Table : 21

K-factor for Vertical Surcharge Force (Kqz)

<table>
<thead>
<tr>
<th>$\frac{a}{R}$</th>
<th>$\alpha(\degree)$</th>
<th>$\beta(\degree)$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>40</td>
</tr>
<tr>
<td>0.866</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.048</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.063</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.115</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.139</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.155</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.144</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.178</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.137</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.122</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.117</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.212</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.206</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.197</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.147</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.119</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.102</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.083</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.067</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.057</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.201</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.176</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.144</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.107</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.084</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.051</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.033</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.222</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.189</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.153</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table: 22

K-factor for Vertical Gravitation Force (Kgz)

<table>
<thead>
<tr>
<th>$\frac{d}{R}$</th>
<th>$\phi(\circ)$</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.866</td>
<td>0</td>
<td>0.422</td>
<td>0.446</td>
<td>0.457</td>
<td>0.457</td>
<td>0.445</td>
<td>0.424</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.446</td>
<td>0.457</td>
<td>0.457</td>
<td>0.445</td>
<td>0.424</td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.457</td>
<td>0.457</td>
<td>0.445</td>
<td>0.424</td>
<td>0.504</td>
<td>0.531</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.457</td>
<td>0.445</td>
<td>0.424</td>
<td>0.504</td>
<td>0.531</td>
<td>0.543</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.445</td>
<td>0.424</td>
<td>0.504</td>
<td>0.531</td>
<td>0.543</td>
<td>0.542</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.424</td>
<td>0.504</td>
<td>0.531</td>
<td>0.543</td>
<td>0.543</td>
<td>0.526</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.504</td>
<td>0.531</td>
<td>0.543</td>
<td>0.542</td>
<td>0.526</td>
<td>0.499</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.531</td>
<td>0.543</td>
<td>0.542</td>
<td>0.526</td>
<td>0.499</td>
<td>0.608</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.543</td>
<td>0.542</td>
<td>0.526</td>
<td>0.499</td>
<td>0.608</td>
<td>0.638</td>
</tr>
</tbody>
</table>

10	0	0.321	0.311	0.286	0.251	0.207	0.161
	5	0.311	0.286	0.251	0.207	0.161	0.379
	10	0.286	0.251	0.207	0.161	0.161	0.379
	15	0.251	0.207	0.161	0.379	0.366	0.336
	20	0.207	0.161	0.379	0.366	0.336	0.294
	25	0.161	0.379	0.366	0.336	0.294	0.243
	30	0.379	0.366	0.336	0.294	0.243	0.188
	35	0.366	0.336	0.294	0.243	0.188	0.450
	40	0.336	0.294	0.243	0.188	0.450	0.433

15	0	0.286	0.264	0.227	0.181	0.130	0.080
	5	0.264	0.227	0.181	0.130	0.080	0.335
	10	0.227	0.181	0.130	0.080	0.335	0.309
	15	0.181	0.130	0.080	0.335	0.309	0.266
	20	0.130	0.080	0.335	0.309	0.266	0.212
	25	0.080	0.335	0.309	0.266	0.212	0.152
	30	0.335	0.309	0.266	0.212	0.152	0.094
	35	0.309	0.266	0.212	0.152	0.094	0.396
	40	0.266	0.212	0.152	0.094	0.396	0.365

20	0	0.259	0.229	0.185	0.132	0.077	0.030
	5	0.229	0.185	0.132	0.077	0.030	0.303
	10	0.185	0.132	0.077	0.030	0.303	0.268
	15	0.132	0.077	0.030	0.303	0.268	0.216
	20	0.077	0.030	0.303	0.268	0.216	0.154
	25	0.030	0.303	0.268	0.216	0.154	0.090
	30	0.303	0.268	0.216	0.154	0.090	0.035
	35	0.268	0.216	0.154	0.090	0.035	0.357
	40	0.216	0.154	0.090	0.035	0.357	0.315

* K-values calculated for the depth of 100mm
Table 23

K-factor for Vertical Cohesive-Adhesive Force (Kcz)

<table>
<thead>
<tr>
<th>$\frac{a}{R}$</th>
<th>ϕ</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.866</td>
<td>0</td>
<td>0.316</td>
<td>0.337</td>
<td>0.364</td>
<td>0.399</td>
<td>0.444</td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.337</td>
<td>0.364</td>
<td>0.399</td>
<td>0.444</td>
<td>0.504</td>
<td>0.321</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.364</td>
<td>0.399</td>
<td>0.444</td>
<td>0.504</td>
<td>0.321</td>
<td>0.344</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.399</td>
<td>0.444</td>
<td>0.504</td>
<td>0.321</td>
<td>0.344</td>
<td>0.372</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.444</td>
<td>0.504</td>
<td>0.321</td>
<td>0.344</td>
<td>0.372</td>
<td>0.408</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.504</td>
<td>0.321</td>
<td>0.344</td>
<td>0.372</td>
<td>0.408</td>
<td>0.455</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.321</td>
<td>0.344</td>
<td>0.372</td>
<td>0.408</td>
<td>0.455</td>
<td>0.516</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.344</td>
<td>0.372</td>
<td>0.408</td>
<td>0.455</td>
<td>0.516</td>
<td>0.323</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.372</td>
<td>0.408</td>
<td>0.455</td>
<td>0.516</td>
<td>0.323</td>
<td>0.348</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.285</td>
<td>0.258</td>
<td>0.228</td>
<td>0.198</td>
<td>0.166</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.258</td>
<td>0.228</td>
<td>0.198</td>
<td>0.166</td>
<td>0.135</td>
<td>0.293</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.228</td>
<td>0.198</td>
<td>0.166</td>
<td>0.135</td>
<td>0.293</td>
<td>0.265</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.198</td>
<td>0.166</td>
<td>0.135</td>
<td>0.293</td>
<td>0.265</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.166</td>
<td>0.135</td>
<td>0.293</td>
<td>0.265</td>
<td>0.235</td>
<td>0.203</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.135</td>
<td>0.293</td>
<td>0.265</td>
<td>0.235</td>
<td>0.203</td>
<td>0.171</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.293</td>
<td>0.265</td>
<td>0.235</td>
<td>0.203</td>
<td>0.171</td>
<td>0.138</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.265</td>
<td>0.235</td>
<td>0.203</td>
<td>0.171</td>
<td>0.138</td>
<td>0.301</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.235</td>
<td>0.203</td>
<td>0.171</td>
<td>0.138</td>
<td>0.301</td>
<td>0.273</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.276</td>
<td>0.228</td>
<td>0.180</td>
<td>0.132</td>
<td>0.087</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.228</td>
<td>0.180</td>
<td>0.132</td>
<td>0.087</td>
<td>0.048</td>
<td>0.284</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.180</td>
<td>0.132</td>
<td>0.087</td>
<td>0.048</td>
<td>0.284</td>
<td>0.235</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.132</td>
<td>0.087</td>
<td>0.048</td>
<td>0.284</td>
<td>0.235</td>
<td>0.185</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.087</td>
<td>0.048</td>
<td>0.284</td>
<td>0.235</td>
<td>0.185</td>
<td>0.135</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.048</td>
<td>0.284</td>
<td>0.235</td>
<td>0.185</td>
<td>0.135</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.284</td>
<td>0.235</td>
<td>0.185</td>
<td>0.135</td>
<td>0.089</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.235</td>
<td>0.185</td>
<td>0.135</td>
<td>0.089</td>
<td>0.050</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.185</td>
<td>0.135</td>
<td>0.089</td>
<td>0.050</td>
<td>0.292</td>
<td>0.242</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.275</td>
<td>0.210</td>
<td>0.146</td>
<td>0.088</td>
<td>0.041</td>
<td>0.041</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.210</td>
<td>0.146</td>
<td>0.088</td>
<td>0.041</td>
<td>0.041</td>
<td>0.283</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.146</td>
<td>0.088</td>
<td>0.041</td>
<td>0.041</td>
<td>0.283</td>
<td>0.216</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.088</td>
<td>0.041</td>
<td>0.041</td>
<td>0.283</td>
<td>0.216</td>
<td>0.150</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.041</td>
<td>0.283</td>
<td>0.216</td>
<td>0.150</td>
<td>0.091</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.011</td>
<td>0.283</td>
<td>0.216</td>
<td>0.150</td>
<td>0.091</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.283</td>
<td>0.216</td>
<td>0.150</td>
<td>0.091</td>
<td>0.042</td>
<td>0.011</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.216</td>
<td>0.150</td>
<td>0.091</td>
<td>0.042</td>
<td>0.011</td>
<td>0.292</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.150</td>
<td>0.091</td>
<td>0.042</td>
<td>0.011</td>
<td>0.292</td>
<td>0.223</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
<table>
<thead>
<tr>
<th>$\frac{a}{R}$</th>
<th>$\alpha(\degree)$</th>
<th>$\phi(\degree)$</th>
<th>$\beta(\degree)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.866</td>
<td>0</td>
<td>0.052</td>
<td>0.065</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.065</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.089</td>
<td>0.113</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.113</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.134</td>
<td>0.148</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.148</td>
<td>0.114</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.114</td>
<td>0.142</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.142</td>
<td>0.173</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.173</td>
<td>0.205</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0.128</td>
<td>0.112</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.112</td>
<td>0.105</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.105</td>
<td>0.095</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.095</td>
<td>0.081</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.081</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.071</td>
<td>0.196</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.196</td>
<td>0.188</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.188</td>
<td>0.178</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.178</td>
<td>0.163</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0.133</td>
<td>0.106</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.106</td>
<td>0.089</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.089</td>
<td>0.070</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.070</td>
<td>0.054</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.054</td>
<td>0.042</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.042</td>
<td>0.202</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.202</td>
<td>0.180</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.180</td>
<td>0.154</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.154</td>
<td>0.125</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0.129</td>
<td>0.093</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.093</td>
<td>0.071</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.071</td>
<td>0.048</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.048</td>
<td>0.037</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.037</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.019</td>
<td>0.198</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.198</td>
<td>0.166</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.166</td>
<td>0.130</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.130</td>
<td>0.092</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table: 25

K-factor for Vertical Gravitation Force (Kgz)

<table>
<thead>
<tr>
<th>$\frac{\alpha}{R}$</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.888</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.497</td>
<td>0.525</td>
<td>0.539</td>
<td>0.538</td>
<td>0.524</td>
<td>0.499</td>
</tr>
<tr>
<td>5</td>
<td>0.525</td>
<td>0.539</td>
<td>0.538</td>
<td>0.524</td>
<td>0.499</td>
<td>0.598</td>
</tr>
<tr>
<td>10</td>
<td>0.539</td>
<td>0.538</td>
<td>0.524</td>
<td>0.499</td>
<td>0.598</td>
<td>0.630</td>
</tr>
<tr>
<td>15</td>
<td>0.538</td>
<td>0.524</td>
<td>0.499</td>
<td>0.598</td>
<td>0.630</td>
<td>0.644</td>
</tr>
<tr>
<td>20</td>
<td>0.524</td>
<td>0.499</td>
<td>0.598</td>
<td>0.630</td>
<td>0.644</td>
<td>0.642</td>
</tr>
<tr>
<td>25</td>
<td>0.499</td>
<td>0.598</td>
<td>0.630</td>
<td>0.644</td>
<td>0.642</td>
<td>0.623</td>
</tr>
<tr>
<td>30</td>
<td>0.598</td>
<td>0.630</td>
<td>0.644</td>
<td>0.642</td>
<td>0.623</td>
<td>0.591</td>
</tr>
<tr>
<td>35</td>
<td>0.630</td>
<td>0.644</td>
<td>0.642</td>
<td>0.623</td>
<td>0.591</td>
<td>0.725</td>
</tr>
<tr>
<td>40</td>
<td>0.644</td>
<td>0.642</td>
<td>0.623</td>
<td>0.591</td>
<td>0.725</td>
<td>0.762</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.394</td>
<td>0.385</td>
<td>0.361</td>
<td>0.323</td>
<td>0.275</td>
<td>0.222</td>
</tr>
<tr>
<td>5</td>
<td>0.385</td>
<td>0.361</td>
<td>0.323</td>
<td>0.275</td>
<td>0.222</td>
<td>0.466</td>
</tr>
<tr>
<td>10</td>
<td>0.361</td>
<td>0.323</td>
<td>0.275</td>
<td>0.222</td>
<td>0.466</td>
<td>0.456</td>
</tr>
<tr>
<td>15</td>
<td>0.323</td>
<td>0.275</td>
<td>0.222</td>
<td>0.466</td>
<td>0.456</td>
<td>0.426</td>
</tr>
<tr>
<td>20</td>
<td>0.275</td>
<td>0.222</td>
<td>0.466</td>
<td>0.456</td>
<td>0.426</td>
<td>0.380</td>
</tr>
<tr>
<td>25</td>
<td>0.222</td>
<td>0.466</td>
<td>0.456</td>
<td>0.426</td>
<td>0.380</td>
<td>0.324</td>
</tr>
<tr>
<td>30</td>
<td>0.466</td>
<td>0.456</td>
<td>0.426</td>
<td>0.380</td>
<td>0.324</td>
<td>0.261</td>
</tr>
<tr>
<td>35</td>
<td>0.456</td>
<td>0.426</td>
<td>0.380</td>
<td>0.324</td>
<td>0.261</td>
<td>0.556</td>
</tr>
<tr>
<td>40</td>
<td>0.426</td>
<td>0.380</td>
<td>0.324</td>
<td>0.261</td>
<td>0.556</td>
<td>0.543</td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.354</td>
<td>0.333</td>
<td>0.296</td>
<td>0.245</td>
<td>0.188</td>
<td>0.129</td>
</tr>
<tr>
<td>5</td>
<td>0.333</td>
<td>0.296</td>
<td>0.245</td>
<td>0.188</td>
<td>0.129</td>
<td>0.417</td>
</tr>
<tr>
<td>10</td>
<td>0.296</td>
<td>0.245</td>
<td>0.188</td>
<td>0.129</td>
<td>0.417</td>
<td>0.392</td>
</tr>
<tr>
<td>15</td>
<td>0.245</td>
<td>0.188</td>
<td>0.129</td>
<td>0.417</td>
<td>0.392</td>
<td>0.347</td>
</tr>
<tr>
<td>20</td>
<td>0.188</td>
<td>0.129</td>
<td>0.417</td>
<td>0.392</td>
<td>0.347</td>
<td>0.288</td>
</tr>
<tr>
<td>25</td>
<td>0.129</td>
<td>0.417</td>
<td>0.392</td>
<td>0.347</td>
<td>0.288</td>
<td>0.220</td>
</tr>
<tr>
<td>30</td>
<td>0.417</td>
<td>0.392</td>
<td>0.347</td>
<td>0.288</td>
<td>0.220</td>
<td>0.151</td>
</tr>
<tr>
<td>35</td>
<td>0.392</td>
<td>0.347</td>
<td>0.288</td>
<td>0.220</td>
<td>0.151</td>
<td>0.494</td>
</tr>
<tr>
<td>40</td>
<td>0.347</td>
<td>0.288</td>
<td>0.220</td>
<td>0.151</td>
<td>0.494</td>
<td>0.464</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0.324</td>
<td>0.294</td>
<td>0.247</td>
<td>0.188</td>
<td>0.125</td>
<td>0.066</td>
</tr>
<tr>
<td>5</td>
<td>0.294</td>
<td>0.247</td>
<td>0.188</td>
<td>0.125</td>
<td>0.066</td>
<td>0.380</td>
</tr>
<tr>
<td>10</td>
<td>0.247</td>
<td>0.188</td>
<td>0.125</td>
<td>0.066</td>
<td>0.380</td>
<td>0.345</td>
</tr>
<tr>
<td>15</td>
<td>0.188</td>
<td>0.125</td>
<td>0.066</td>
<td>0.380</td>
<td>0.345</td>
<td>0.290</td>
</tr>
<tr>
<td>20</td>
<td>0.125</td>
<td>0.066</td>
<td>0.380</td>
<td>0.345</td>
<td>0.290</td>
<td>0.221</td>
</tr>
<tr>
<td>25</td>
<td>0.066</td>
<td>0.380</td>
<td>0.345</td>
<td>0.290</td>
<td>0.221</td>
<td>0.146</td>
</tr>
<tr>
<td>30</td>
<td>0.380</td>
<td>0.345</td>
<td>0.290</td>
<td>0.221</td>
<td>0.146</td>
<td>0.077</td>
</tr>
<tr>
<td>35</td>
<td>0.345</td>
<td>0.290</td>
<td>0.221</td>
<td>0.146</td>
<td>0.077</td>
<td>0.448</td>
</tr>
<tr>
<td>40</td>
<td>0.290</td>
<td>0.221</td>
<td>0.146</td>
<td>0.077</td>
<td>0.448</td>
<td>0.406</td>
</tr>
</tbody>
</table>

* K-values calculated for the depth of 100mm
Table 26

K-factor for Vertical Cohesive-Adhesive Force (Kcz)

R = 600mm

<table>
<thead>
<tr>
<th>(\alpha(°))</th>
<th>(\phi(°))</th>
<th>(\beta(°))</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{a}{R})</td>
<td>0.888</td>
<td>0</td>
<td>0.371</td>
<td>0.396</td>
<td>0.428</td>
<td>0.468</td>
<td>0.522</td>
<td>0.592</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>0.396</td>
<td>0.428</td>
<td>0.468</td>
<td>0.522</td>
<td>0.592</td>
<td>0.373</td>
<td>0.399</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>0.428</td>
<td>0.468</td>
<td>0.522</td>
<td>0.592</td>
<td>0.373</td>
<td>0.399</td>
<td>0.434</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>0.468</td>
<td>0.522</td>
<td>0.592</td>
<td>0.373</td>
<td>0.399</td>
<td>0.434</td>
<td>0.477</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>0.522</td>
<td>0.592</td>
<td>0.373</td>
<td>0.399</td>
<td>0.434</td>
<td>0.477</td>
<td>0.533</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>0.592</td>
<td>0.373</td>
<td>0.399</td>
<td>0.434</td>
<td>0.477</td>
<td>0.533</td>
<td>0.606</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>0.373</td>
<td>0.399</td>
<td>0.434</td>
<td>0.477</td>
<td>0.533</td>
<td>0.606</td>
<td>0.666</td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>0.399</td>
<td>0.434</td>
<td>0.477</td>
<td>0.533</td>
<td>0.606</td>
<td>0.666</td>
<td>0.733</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>0.434</td>
<td>0.477</td>
<td>0.533</td>
<td>0.606</td>
<td>0.666</td>
<td>0.733</td>
<td>0.806</td>
</tr>
</tbody>
</table>

10	0	0.368	0.340	0.310	0.278	0.245	0.211	0.211
	5	0.340	0.310	0.278	0.245	0.211	0.211	0.211
	10	0.310	0.278	0.245	0.211	0.211	0.211	0.211
	15	0.278	0.245	0.211	0.211	0.211	0.211	0.211
	20	0.245	0.211	0.211	0.211	0.211	0.211	0.211
	25	0.211	0.211	0.211	0.211	0.211	0.211	0.211
	30	0.211	0.211	0.211	0.211	0.211	0.211	0.211
	35	0.211	0.211	0.211	0.211	0.211	0.211	0.211
	40	0.211	0.211	0.211	0.211	0.211	0.211	0.211

15	0	0.365	0.313	0.258	0.203	0.149	0.099	0.099
	5	0.313	0.258	0.203	0.149	0.099	0.099	0.099
	10	0.258	0.203	0.149	0.099	0.099	0.099	0.099
	15	0.203	0.149	0.099	0.099	0.099	0.099	0.099
	20	0.149	0.099	0.099	0.099	0.099	0.099	0.099
	25	0.099	0.099	0.099	0.099	0.099	0.099	0.099
	30	0.099	0.099	0.099	0.099	0.099	0.099	0.099
	35	0.099	0.099	0.099	0.099	0.099	0.099	0.099
	40	0.099	0.099	0.099	0.099	0.099	0.099	0.099

20	0	0.371	0.297	0.221	0.150	0.086	0.036	0.036
	5	0.297	0.221	0.150	0.086	0.036	0.036	0.036
	10	0.221	0.150	0.086	0.036	0.036	0.036	0.036
	15	0.150	0.086	0.036	0.036	0.036	0.036	0.036
	20	0.086	0.036	0.036	0.036	0.036	0.036	0.036
	25	0.036	0.036	0.036	0.036	0.036	0.036	0.036
	30	0.036	0.036	0.036	0.036	0.036	0.036	0.036
	35	0.036	0.036	0.036	0.036	0.036	0.036	0.036
	40	0.036	0.036	0.036	0.036	0.036	0.036	0.036

* K-values calculated for the depth of 100mm
Table : 27

K-factor for Vertical Surcharge Force (Kqz)

<table>
<thead>
<tr>
<th>R=600mm</th>
<th>α(°)</th>
<th>φ(°)</th>
<th>β(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>35</td>
<td>40</td>
<td>45</td>
</tr>
<tr>
<td>0.888</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>-0.019</td>
<td>0.003</td>
<td>0.037</td>
</tr>
<tr>
<td>5</td>
<td>0.003</td>
<td>0.037</td>
<td>0.073</td>
</tr>
<tr>
<td>10</td>
<td>0.037</td>
<td>0.073</td>
<td>0.108</td>
</tr>
<tr>
<td>15</td>
<td>0.073</td>
<td>0.108</td>
<td>0.139</td>
</tr>
<tr>
<td>20</td>
<td>0.108</td>
<td>0.139</td>
<td>0.038</td>
</tr>
<tr>
<td>25</td>
<td>0.139</td>
<td>0.038</td>
<td>0.076</td>
</tr>
<tr>
<td>30</td>
<td>0.038</td>
<td>0.076</td>
<td>0.118</td>
</tr>
<tr>
<td>35</td>
<td>0.076</td>
<td>0.118</td>
<td>0.163</td>
</tr>
<tr>
<td>40</td>
<td>0.118</td>
<td>0.163</td>
<td>0.211</td>
</tr>
</tbody>
</table>

10						
0	0.123	0.115	0.115	0.112	0.104	0.090
5	0.115	0.115	0.112	0.104	0.090	0.198
10	0.112	0.104	0.090	0.198	0.199	0.197
15	0.104	0.090	0.198	0.199	0.197	0.190
20	0.090	0.198	0.199	0.197	0.190	0.178
25	0.198	0.199	0.197	0.190	0.178	0.160
30	0.199	0.197	0.190	0.178	0.160	0.192
35	0.197	0.190	0.178	0.160	0.192	0.197
40	0.197	0.190	0.178	0.160	0.192	0.197

15						
0	0.147	0.124	0.111	0.094	0.074	0.057
5	0.124	0.111	0.094	0.074	0.057	0.225
10	0.111	0.094	0.074	0.057	0.225	0.208
15	0.094	0.074	0.057	0.225	0.208	0.187
20	0.074	0.057	0.225	0.208	0.187	0.161
25	0.057	0.225	0.208	0.187	0.161	0.131
30	0.225	0.208	0.187	0.161	0.131	0.098
35	0.208	0.187	0.161	0.131	0.098	0.231
40	0.187	0.161	0.131	0.098	0.231	0.216

20						
0	0.154	0.120	0.097	0.073	0.051	0.034
5	0.120	0.097	0.073	0.051	0.034	0.235
10	0.097	0.073	0.051	0.034	0.235	0.204
15	0.073	0.051	0.034	0.235	0.204	0.169
20	0.051	0.034	0.235	0.204	0.169	0.131
25	0.034	0.235	0.204	0.169	0.131	0.090
30	0.235	0.204	0.169	0.131	0.090	0.050
35	0.204	0.169	0.131	0.090	0.050	0.249
40	0.169	0.131	0.090	0.050	0.249	0.219

* K-values calculated for the depth of 100mm
SUBROUTINE BISECT(XL,XU,FUNC,Y,IFLAG)

Procedure for locating the root Y in interval XL,XU
Flag Values: 0=Solution Found; 1=No Solution;
2=Number of iterations exceeded

XACC=1.0E-04
FMID=FUNC(XU)
F=FUNC(XL)
IF(F*FMID.GE.0.0)THEN
 IFLAG=1
 Y=0.0
 RETURN
ENDIF
IF(F.LT.0.0)THEN
 Y=XL
 DX=XU-XL
ELSE
 Y=XU
 DX=XL-XU
ENDIF

DO 10 J=1,40
 DX=DX/2.0
 XMID=Y+DX
 FMID=FUNC(XMID)
 IF(FMID.LT.0.0) Y=XMID
 IF(ABS(DX).LT.XACC.OR.FMID.EQ.0.0)THEN
 IFLAG=0
 RETURN
 ENDIF
10 CONTINUE
IFLAG=2
RETURN
END

SUBROUTINE BRAC(FX,BL,BU,NB)

Search for 2 roots and brackets values found

DIMENSION BL(2),BU(2)
NB=0
X=0.0
INT=18
DX=361.0*ARSIN(1.0)/(90.0*FLOAT(INT))
FP=FX(X)
 *
 DO 10 I=1,INT
 X=X+DX
 FC=FX(X)
 IF(FC*FP .LT. 0.0) THEN
 NB=NB+1
 BL(NB)=X - DX
 BU(NB)=X
 END IF
 *
 FP=FC
 IF(NB .EQ. 2) RETURN
 10 CONTINUE
 RETURN
 END
 *
 **
 SUBROUTINE BRAC1(FY,BL,BU,NB)
 * Search for 2 roots and brackets values found
 *
 DIMENSION BL(2),BU(2)
 NB=0
 Y=0.0
 INT=18
 DY=361.0*AR SIN(1.0)/(90.0*FLOAT(INT))
 FP=FY(Y)
 *
 DO 10 I=1,INT
 Y=Y+DY
 FC=FY(Y)
 IF(FC*FP .LT. 0.0) THEN
 NB=NB+1
 BL(NB)=Y - DY
 BU(NB)=Y
 END IF
 *
 FP=FC
 IF(NB .EQ. 2) RETURN
 10 CONTINUE
 RETURN
 END
 *
 **
 FUNCTION FB1(T)
 COMMON /FC/XC,YC,ZC/FCC/R1,R2,D,E/FCCC/R3
 X=R1*COS(T)
 Y=R1*SIN(T)
 FB1=(X-XC) * (X-XC) + (Y-YC)*(Y-YC)+
 + (D-ZC)*(D-ZC) - R3*R3
 RETURN
 END
 *
 **
 FUNCTION FB2(T)
 COMMON /FC/XC,YC,ZC/FCC/R1,R2,D,E/FCCC/R3
 X=R2*COS(T)
 Z=R2*SIN(T)
 FB2=(X-XC) * (X-XC) + (E-YC)*(E-YC)+
 + (Z-ZC)*(Z-ZC) - R3*R3
 RETURN
FUNCTION FB3(T)
COMMON /FC/XC,YC,ZC/FCC/R1,R2,D,E/FCCC/R3
Y=COS(T)
Z=SIN(T)
FB3=XC*XC + (Y-YC)*(Y-YC)+
+ (Z-ZC)*(Z-ZC) - R3*R3
RETURN
END

SUBROUTINE SCRUB (ATHETA,XO,YO,ZO,NS,NE)
Search for co-ordinate points on the disc edge
Status: 0=Scrubbing, 1=Non scrubbing
State: 2=Point above the soil surface
3=Point below the soil surface

REAL ATHETA(40),XO(40),YO(40),ZO(40)
INTEGER NS(40),NE(40)
COMMON /FC/XC,YC,ZC/FCC/R1,R2,D,E/FCCC/R3/SCR/ALPHA,BETA,RADN

TH=ASIN((D-ZC)/R3)
DO 200 N=1,40
SPACE=2.50*RADN
THETA=TH+SPACE*FLOAT(N-1)
ATHETA(N)=THETA/RADN
X=R3*COS(THETA)*SIN(BETA)+R3*SIN(THETA)*SIN(ALPHA)*COS(BETA)
Y=R3*SIN(THETA)*SIN(ALPHA)*SIN(BETA)-R3*COS(BETA)*COS(THETA)
Z=-R3*SIN(THETA)*COS(ALPHA)
XO(N)=XC-X
IF(XO(N).LE.1.0E-04.AND.XO(N).GT.0.0) THEN
XO(N)=0.0
ELSE
ENDIF
YO(N)=YC-Y
ZO(N)=ZC-Z
IF(XO(N).LE.0.0) THEN
NS(N)=0
ELSE
NS(N)=1
ENDIF
IF(ABS(ZO(N)-D).LE.(1.0E-02).AND.ABS(ZO(N)-D).GT.0.0) THEN
ZO(N)=D
ELSE
ENDIF
IF(ZO(N).GE.D) THEN
NE(N)=3
ELSE
NE(N)=2
ENDIF
200 CONTINUE
RETURN
END

SUBROUTINE PASFOR(PG,PC,PQ,PT,AF,IFLAG,APSI,AEPS,AAMU,DELTA,
BETAX = ABETAX * RADN
PHI = APHI * RADN
DELTAX = ADELTAX * RADN

IF (PHI .GE. 1.0E-06) CDEL = ASIN (SIN (DELTAX) / SIN (PHI))
IF (PHI .LT. 1.0E-06) CDEL = ASIN (AD / C)

ACDEL = CDEL / RADN
PSI = 45.0 * RADN + PHI / 2.0
APSI = PSI / RADN
EPS = 45.0 * RADN - PHI / 2.0
AEPS = EPS / RADN

AMU = (CDEL + DELTAX) / 2.0
AAMU = AMU / RADN
THP = PSI + AMU
ATHP = THP / RADN
THN = PSI - AMU
ATHN = THN / RADN
FP = TAN (PSI)

ALPHRD = 90.0 * RADN - AMU
BETAW = AMU - EPS + ALPHAR - 90.0 * RADN
AALPRD = ALPHRD / RADN
ABETAW = BETAW / RADN
ZETA = ALPHAR + AMU
OMEGA = (ZETA - ASIN (SIN (PHI) * SIN (ZETA))) / 2.0
AOMEGA = OMEGA / RADN

IF (PHI .GE. 1.0E-06) THEN
AD = C * TAN (DELTAX) / TAN (PHI)
ELSE
RADHS = 2.5 / 3.0
AD = C * RADHS
END IF

IF (ALPHAR - ALPHRD .GT. 1.0E-06) GO TO 109
IF (OMEGA - ALPHAR .LT. 1.0E-06) GO TO 203
GO TO 204

109 IF (BETAX - BETAW .GT. 1.0E-06) GO TO 201
GO TO 202

201 DELTA = DELTAX
IFLAG = 2
ADELM = ADELTAX
KT = 1

206 ETA = ALPHAR - EPS - THN
RS = RL * SIN (THP) / COS (PHI)
\[T = RL \sin(THN)/\cos(PHI) \]
\[U = RS \exp(ETA \tan(PHI)) \]
\[V = U \sin(\varepsilon) \]
\[F = U \cos(\varepsilon) \]
\[D_1 = V/2.0 \]
\[D_2 = 2.0 \times V/3.0 \]
\[D_Q = F/2.0 \]
\[D_5 = RS \cos(PHI)/2.0 \]
\[D_4 = 2.0 \times RS \cos(PHI)/3.0 \]

\[F_1 = 2.0 \times C \times V \times FP \]
\[F_2 = \Gamma \times V \times FP \times FP/2.0 \]
\[F_1D = Q \times V \times FP \times FP \]
\[W_1 = F \times V \times \Gamma/2.0 \]
\[AM = -3.0 \times \tan(PHI) \]
\[\beta_01 = \varepsilon + \eta \]
\[AMW_1 = \Gamma \times U \times U/(3.0 \times (AM \times AM + 1.0)) \]
\[AMW_2 = \exp(AM \times \eta) \times (AM \cos(\beta_01) + \sin(\beta_01)) \]
\[AMW = AMW_1 \times AMW_2 \]

\[IF (\text{PHI.LT.1.0E-06}) \text{ GO TO 600} \]
\[AMC = C \times (U - RS/RS)/2.0 \text{ TAN(PHI)} \]

600

601

202

\[THF = 180.0 \times \text{RADN} - (\text{ALPHAR} - \text{BETAX}) \]
\[KT = 3 \]
\[THN = (\text{ALPHAR} - \text{BETAX}) + PHI - 90.0 \times \text{RADN} \]
\[RH03 = PHI + 2.0 \times (\text{ALPHAR} - \text{BETAX}) \]
\[\text{ANG} = \sin(PHI) \times \cos(RH03)/(\sin(PHI) \times \sin(RH03) - 1.0) \]
\[\text{DELTAM} = \text{ATAN} (\text{ANG}) \]
\[\text{ADELM} = \text{DELTAM} / \text{RADN} \]
\[\text{DELR} = \text{DELTAM} / \text{DELTAX} \]

\[\delta = \text{DELTAM} \]
\[\text{IFLAG} = 3 \]

Rupture Surface with a Boundary Wedge *Type 3*
GO TO 206

* Rupture Surface with a Discontinuity *Type 2*

203 RH04=180.0*RADN-ALPHAR+OMEGA-THP
IFLAG=0
KT=2
T=RL*SIN(ALPHAR-OMEGA)/SIN(RH04)
U=RL*SIN(THP)/SIN(RH04)
V=U*SIN(OMEGA)
F=U*COS(OMEGA)

W3=GAMMA*(F*V+RL*T*SIN(THP))/2.0
A2=C*T
AF=C*RL
QF=Q*F
RH05=(THP-PHI-PHI)
RH06=(THP-PHI+ALPHAR)
ADELM=ADELTA
DELT=DELTAX

F1=2.0*C*V*FP
F2=GAMMA*V*V*FP*FP/2.0
F1D=Q*V*FP*FP
PG=(W3*SIN(RH06)-F2*COS(RH06))/SIN(RH05)
PC=(A2*COS(PHI)+AF*COS(THP-PHI)-Fl*COS(RH06))/SIN(RH05)
PQ=(QF*SIN(RH06)-F1D*COS(RH06))/SIN(RH05)
RDIST=2.0*F/Z

GO TO 205

* Rupture Surface with a Rankine Wedge *Type 4*

204 F=Z/TAN(EPS)
IFLAG=1
KT=4
G=Z/TAN(ALPHAR)-F

U=Z/SIN(EPS)
F1=2.0*C*Z*FP
F1D=Q*Z*FP*FP
F2=GAMMA*Z*Z*FP*FP/2.0
W4=GAMMA*F*Z/2.0
W5=GAMMA*G*Z/2.0
A3=U*C
Q1=F*Q
Q2=G*Q
AF=C*(Z/SIN(ALPHAR))
RHOR=PHI+2.0*(EPS-ALPHAR)
DELTAM=ATAN(SIN(PHI)*COS(RHOR)/(1.0-SIN(PHI)
+ *SIN(RHOR)))
ADELM=DELTAM/RADN
DELR=DELTAM/DELTAX
DELT=DELTAM
DELTAM=PHI*DELR
RH07=PSI-ALPHAR-DELTAM
RH08=ALPHAR+DELTAM
RH09=EPS-ALPHAR-DELTAM

PG=(W4*COS(PSI)+F2*COS(EPS))**COS(RH07)
W5*COS(RH08)
PC=(F1*COS(EPS)-A3*SIN(PHI))*COS(RH07)
+ A3*SIN(RH09)-AF*SIN(DELTAM)
PQ=(Q1*COS(PSI)+F1D*COS(EPS))*COS(RH07)
+ Q2*COS(RH08)
RDIST=(G+2.0*F)/Z

OUTPUT OF CALCULATED DATA:

205 PT=PG+PC+PQ
RETURN
END

**
MAIN PROGRAMME
**

DIMENSION DE1(2),DE2(2),BB1(2),BB2(2)
DIMENSION C1(40),C2(40),C3(40),C4(40),GG1(2),GG2(2)
REAL ATHETA(40),XO(40),YO(40),ZO(40),AL(11),AZ(11)
INTEGER NS(40),NE(40)
COMMON /FC/XC,YC,ZC//CC/R1,R2,D,E//CCC/R3
+ /ISCR/ALPHA,BETA,RADN//PSF1/ABETAX,ADELTA,APHI,RADHS
+ /PSF2/C,AD,GAMMA,Q//PSF3/ALPHAR,RL,Z
EXTERNAL FB1,FB2,FB3
RADN=ARSIN(1.0)/90.0

501 FORMAT(3F10.0)
502 FORMAT(2F10.0)
503 FORMAT(F10.0)
504 FORMAT(‘/’ ,3X,’Alpha’ ,4X,’Beta’ ,6X,’a’/’ ,2F8.2,F7.3)
505 FORMAT(‘/’ ,3X,’AlphaD’ ,2X,’BetaD’/’ ,2F8.1)
506 FORMAT(‘/’ ,5X,’No Solution in Specified Range’)
507 FORMAT(‘/’ ,23X,’C’,23X,’D’,22X,’E’,13X,’FLAGS’)
508 FORMAT(‘/’ ,6X,’D’ ,3(9X,’X’ ,6X,’Y’ ,6X,’Z’),
+ 5X,’D’,3X,’E’)
509 FORMAT(‘/’ ,F7.3,3(3X,3F7.3),3X,2I3)
510 FORMAT(‘/’ ,23X,’A’,22X,’B’,13X,’FLAGS’)
511 FORMAT(‘/’ ,6X,’E’,2(9X,’X’,6X,’Y’,6X,’Z’),
+ 5X,’B’,6X,’R’,4X,’ALPHAR’,4X,’Z’,4X,’L’)
512 FORMAT(‘/’ ,F7.3,2(3X,3F7.3),3X,13X,2F5.3)
513 FORMAT(‘/’ ,3X,’Scrubbing’)
514 FORMAT(‘/’ ,3X,’P’,10X,’PX’,8X,’PY’,8X,’PZ’,7X,’LAMDAR’,
+ 4X,’GAMAR’,4X,’DELTAR’)
515 FORMAT(F10.3,6(F10.3))
516 FORMAT(‘/’ ,7X,’C’,5X,’PHI’/’ ,F8.2,F8.1/
+ ’/’ ,7X,’Z’,3X,’ALPHAR’,4X,’BETA’/’ ,F8.2,2F8.1/
+ ’/’ ,7X,’Q’,3X,’GAMMA’/’ ,2F8.2/
+ ’/’ ,7X,’AD’,3X,’DELTA’/’ ,F8.2,F8.1)
517 FORMAT(‘/’ ,5X,’PSI’,5X,’EPS’,6X,’MU’/’ ,3F8.1/
+ ’/’ ,5X,’DEL’,5X,’TH’,5X,’TH’/’ ,3F8.1/’)
518 FORMAT(‘/’ ,’BASIC RUPTURE SURFACE’)
519 FORMAT(‘/’ ,’BOUNDARY WEDGE MOB. FRICT.’, ’/’,
+ F8.1,’ BETA LIM. =’ ,F8.1)
520 FORMAT(‘/’ ,’BASIC DISCONTINUITY’/
+ ’/’ ,’OMEGA’= ,F6.2,’ ALPHD’= ,F6.2)
521 FORMAT(‘/’ ,’RANKINE DISCONTINUITY’)
522 FORMAT(‘/’ ,7X,’P*G’,7X,’P*C’,7X,’P*Q’,8X,’P’/’ ,4F10.3)
523 FORMAT(‘/’ ,4X,’PCX’,5X,’PCY’,5X,’PCZ’,5X,’PGX’,5X,’PGY’,
+ 5X,’PGZ’,5X,’PQX’,5X,’PQY’,5X,’PQZ’/’ ,9F8.3)
Input Data:

```
101 READ(5,501) AALPHA, A, D
102 READ(5,502) C, AD
103 READ(5,503) GAMMA
104 READ(5,503) ABETAX
105 READ(5,503) AQ
106 READ(5,503) APHI
107 READ(5,503) ADELTA
108 READ(5,503) CONST
```

Data Reduction:

```
R1=SQRT(1.0-D*D)
R3=SQRT(1.0-A*A)

DO 300 N=1,10
  SPACE=(90.0*RADN)/9.0
  BETA=SPACE*FLOAT(N-1)
  ABETA=BETA/RADN
  ALPHA=AALPHA*RADN
  PHI=APHI*RADN
  TNA=TAN(ALPHA)
  TNB=TAN(BETA)
  DALPHA=ATAN(TNA/(SQRT(1.0+TNB*TNB)))
  DBETA=ATAN(TNB/(SQRT(1.0+TNA*TNA)))
  ADA=DALPHA/RADN
  ADB=DBETA/RADN
  Q=AQ*COS(BETA)
  WRITE (6,504)AALPHA,ABETA,A
  WRITE (6,505)ADA,ADB
```

Co-ordinates of the Disc Centre and Intersection Points:

```
XC=A*COS(DBETA)*COS(ALPHA)
YC=A*COS(DALPHA)*SIN(BETA)
ZC=A*COS(DBETA)*SIN(ALPHA)
```

```
CALL BRAC(FB1,DE1,DE2,NB1)
T1=DE1(1)
T2=DE1(2)
T3=DE2(1)
T4=DE2(2)

CALL BISECT(T1,T3,FB1,QE,ME)
CALL BISECT(T2,T4,FB1,QD,MD)
XD=R1*COS(QD)
YD=R1*SIN(QD)
ZD=D

XE=R1*COS(QE)
YE=R1*SIN(QE)
ZE=D

WRITE(6,507)
WRITE(6,508)
WRITE(6,509)D, XC, YC, ZC, XD, YD, ZD,
+ XE, YE, ZE, MD, ME
WRITE(6,510)
```
* WRITE(6,511)
*
R=1.0
PCX=0.0
PCY=0.0
PCZ=0.0
PGX=0.0
PGY=0.0
PGZ=0.0
PQX=0.0
PQY=0.0
PQZ=0.0
*
DO 200 I=1,11
SPACE=ABS(YE-YD)/10.0
IF(YD.GE.YE) THEN
E=YD-SPACE*FLOAT(I-1)
ELSE
E=YE-SPACE*FLOAT(I-1)
ENDIF
*
B=ABS(YE-YD)/10.0
S=D*D+E*E
IF((1.0-S).LT.1.0E-06) THEN
WRITE(6,506)
GOTO 200
ELSE
XA=SQRT(1.0-S)
YA=E
ZA=D
ENDIF
*
R2=SQRT(1.0-E*E)
CALL BRAC(FB2,BB1,BB2,NB2)
T5=BB1(1)
T7=BB2(1)
CALL BISECT(T5,T7,FB2,QB,MB)
*
IF(I.EQ.1.0 .OR. I.EQ.11.0) THEN
XB=XA
YB YA
ZB=ZA
ELSE
XB=R2*COS(QB)
YB=E
ZB=R2*SIN(QB)
ENDIF
*
IF((ZB-D).LT.1.0E-03) THEN
AL(I)=0.0
AZ(I)=0.0
ALPHAR=0.0
END IF
IF(I.LT.2.0) THEN
GOTO 200
ELSE
AL(I)=SQRT((XA-XB)**2+(YA-YB)**2+(ZA-ZB)**2)
AZ(I)=ZB-D
ENDIF
RL=(AL(I)+AL(I-1))/2.0
\[Z = \frac{(AZ(I) + AZ(I-1))}{2.0} \]
\[ALPHAR = \text{ASIN}(Z/RL) \]
\[ALR = \text{ALPHAR/RADN} \]

* WRITE (6, 512) E, XA, YA, ZA, XB, YB, ZB, MB, R2, ALR, Z, RL, Q

CALL PASFOR(PG, PC, PQ, PT, AF, IFLAG, APSI, AEPS, AAMU, DELTA, AMU,
+ BETAX, ACDEL, ATHP, ATHN, ADELM, ABETAW, AOMEGA, AALPRD)

* WRITE (6, 517) APSI, AEPS, AAMU, ACDEL, ATHP, ATHN
* WRITE (6, 516) C, APHI, Z, ALR, ABETAX, Q, GAMMA, AD, ADELTA
* IF (IFLAG.EQ.2) THEN
* WRITE (6, 518)
* GOTO 401
* ELSEIF (IFLAG.EQ.3) THEN
* WRITE (6, 519) ADELM, ABETAW
* GOTO 401
* ELSEIF (IFLAG.EQ.0) THEN
* WRITE (6, 520) AOMEGA, AALPRD
* GOTO 401
* ELSEIF (IFLAG.EQ.1) THEN
* WRITE (6, 521)
* ENDIF
* 401 WRITE (6, 522) PG, PC, PQ, PT

* Force Calculation on the Concave
* Contact section:

\[Y = E + B / 2.0 \]
\[Y1 = E + B \]
\[Y2 = E \]
\[UC = Z / 2.0 \]
\[R4 = \sqrt{(1.0 - Y**2)} \]
\[RD = \sqrt{(R4**2 - (RL/2.0)**2)} \]
\[RDD = \sqrt{(RD**2 + (RL/6.0)**2)} \]
\[TH1 = 2.0 * \text{ATAN}((RL/2.0)/RD) \]
\[TH2 = \text{ASIN}(RD/RDD) \]
\[TH3 = 90.0 \times \text{RADN} - TH2 \]
\[RCL = TH1 \times R4 \]
\[PCA = PC \times \text{COS}(PHI)/\text{COS}(DELTA) \]
\[PQR = PQ \times \text{COS}(PHI)/\text{COS}(DELTA) \]
\[PGR = PG \times \text{COS}(PHI+TH3)/\text{COS}(DELTA) \]

* Components of Pc:

\[PCX1 = PCA \times \text{SIN}(DELTA+ALPHAR) + AD \times RCL \times \text{COS}(ALPHAR) \]
\[PCZ1 = PCA \times \text{COS}(DELTA+ALPHAR) - AD \times RCL \times \text{SIN}(ALPHAR) \]
\[PCR1 = \sqrt{PCX1**2 + PCZ1**2} \]
\[THC = \text{ATAN}(PCZ1/PCX1) \]
\[Y = E + B / 2.0 \]
\[UC = Z / 2.0 \]
\[RC = \sqrt{(1.0 - (UC+D)**2)} \]
\[CNU = \text{ASIN}(\text{ABS}(Y/RC)) \]
\[PCE = PCX1 \times \text{COS}(CNU) \times B \]
\[FCXE = PCE \times \text{COS}(CNU) \]
\[FCZE = PCZ1 \times B \]
\[IF (Y . LE. 0.0) THEN \]
\[PCYE = -PCE \times \text{SIN}(CNU) \]
\[ELSE \]
\[PCYE = PCE \times \text{SIN}(CNU) \]
\[ENDIF \]
Components of Pg:

\[\begin{align*}
\text{THG} &= 90.0 \times \text{RADN-DELTA-ALPHAR} \\
\text{PGX} &= \text{PGR} \times \cos(\text{THG}) \times B \\
\text{UG} &= 2.0 \times Z / 3.0 \\
\text{RG} &= \sqrt{1.0 - (\text{UG} + D)^2} \\
\text{GNU} &= \arcsin(\text{ABS}(Y/\text{RG})) \\
\text{PGE} &= \text{PGX} \times \cos(\text{GNU}) \\
\text{PGXE} &= \text{PGE} \times \cos(\text{GNU}) \\
\text{PGZE} &= \text{PGR} \times \sin(\text{THG}) \times B \\
\text{PGYE} &= \text{PGE} \times \sin(\text{GNU}) \\
\end{align*} \]

Components of Pq:

\[\begin{align*}
\text{THQ} &= 90.0 \times \text{RADN-DELTA-ALPHAR} \\
\text{PQX} &= \text{PQR} \times \cos(\text{THQ}) \times B \\
\text{QNU} &= \text{CNU} \\
\text{PQE} &= \text{PQX} \times \cos(\text{QNU}) \\
\text{PQXE} &= \text{PQE} \times \cos(\text{QNU}) \\
\text{PQZE} &= \text{PQR} \times \sin(\text{THQ}) \times B \\
\text{PQYE} &= \text{PQE} \times \sin(\text{QNU}) \\
\end{align*} \]

Output calculated data:

\[\begin{align*}
\text{PCX} &= \text{PCX} + \text{PCXE} \\
\text{PCY} &= \text{PCY} + \text{PCYE} \\
\text{PCZ} &= \text{PCZ} + \text{PCZE} \\
\text{PGX} &= \text{PGX} + \text{PGXE} \\
\text{PGY} &= \text{PGY} + \text{PGYE} \\
\text{PGZ} &= \text{PGZ} + \text{PGZE} \\
\text{PQX} &= \text{PQX} + \text{PQXE} \\
\text{PQY} &= \text{PQY} + \text{PQYE} \\
\text{PQZ} &= \text{PQZ} + \text{PQZE} \\
\end{align*} \]

200 CONTINUE

WRITE(6, 523) PCX, PCY, PCZ, PGX, PGY, PGZ, PQX, PQY, PQZ

FPX = PCX + PGX + PQX
FPY = PCY + PGY + PQY
FPZ = PCZ + PGZ + PQZ

Scrubbing Identification:

CALL SCRUB(ATHETA, X0, Y0, Z0, NS, NE)

J = 0
DO 500 K = 1, 40
IF (NS(K) .EQ. 0 .AND. NE(K) .EQ. 3) THEN
 J = J + 1
ELSE
 GOTO 500
ENDIF
500 CONTINUE

* Q=0.0
 BFX=0.0
 BPY=0.0
 BPZ=0.0
 BPRXE=0.0
 BPRYE=0.0
 BPRZE=0.0
 IF(J.LT.2.0) THEN
 GOTO 400
 ELSE
 ENDIF

* CALL BRAC1(FB3,GG1,GG2,NB3)
 T9=GG1(1)
 T11=GG2(1)
 CALL BISECT(T9,T11,FB3,QG,MG)

XG=0.0
YG=COS(QG)
ZG=SIN(QG)

XF=0.0
YF=SQRT(1.0-D**2)
ZF=D

DO 900 M=1,5
 SPACE=ABS(YF-YG)/5.0
 B=ABS(YF-YG)/5.0
 YM=YF-SPACE*FLOAT(M)
 RM=SQRT(1.0-YM**2)
 THR1=ATAN(SQRT(RM**2-D**2)/D)
 ALRD=90.0*RADN-(180.0*RADN-THR1)/2.0
 ALRR=180.0*RADN-ALRD

* Force Calculation for the Scrubbing Contact Area (above
 the limiting value ALPWN)

CALL PASFOR(PG,PC,PQ,PT,AF,IFLAG,APSI,AEPS,AAMU,DELTA,AMU,
+ BETAX,ACDEL,ATHP,ATHN,ADELM,ABETAW,AOMEGA,AALPRD)
ALPWN=(135.0*RADN-PHI/2.0)+BETAX+AMU
 IF(ALPWN.LT.ALRR) THEN
 ALPHAR=180.0*RADN-(45.0*RADN-PHI/2.0)
 RLR=(RM-D)/SIN(ALRD)
 RL=RLR/(2.0*SIN(45.0*RADN-PHI/2.0))
 Z=RLR/(2.0*TAN(45.0*RADN-PHI/2.0))
 ENDIF

CALL PASFOR(PG,PC,PQ,PT,AF,IFLAG,APSI,AEPS,AAMU,DELTA,AMU,
+ BETAX,ACDEL,ATHP,ATHN,ADELM,ABETAW,AOMEGA,AALPRD)
WRITE(6,517) APSI,AEPS,AAMU,ACDEL,ATHP,ATHN
WRITE(6,516) C,APHI,Z,ALR,BETAX,Q,GAMMA,AD,ADELM
 IF(IFLAG.EQ.2) THEN
 GOTO 402
 ELSEIF(IFLAG.EQ.3) THEN
 WRITE (6, 519) ADELM,ABETAW
 GOTO 402
 ELSEIF(IFLAG.EQ.0) THEN

WRITE(6,520) AOMEGA,AALPRD
GOTO 402
ELSEIF (IFLAG.EQ.1) THEN
WRITE(6,521)
ENDIF
402 WRITE(6,522) PG,PC,PQ,PT

DELTA=ADELTA*RADN
AC=C*RL
PT=PG+PC
W=(RLR*Z*GAMMA)/4.0
PV=2.0*COS(45.0*RADN-PHI/2.0)*(PT+AC)-W
PR=PV/COS(Delta+ALRD)
PH=PR*COS(ALRR-90.0*RADN-DELTA)
BPCZE=-PV*B

VR=(RM-D)/2.0
BRR=SQRT(1.0-(VR+D)**2)
BCNU=ASIN(ABS(YM/BRR))
BPRXE=PH*COS(BCNU)*B
BPRYE=-PH*SIN(BCNU)*B
ELSE
ALPHAR=ALRR
RL=RLR
Z=RM-D

* Force Calculation for the Scrubbing Contact Area (below
the limiting value ALPWN) :

CALL PASFOR(PG,PC,PQ,PT,AF,IFLAG,APSI,AEPS,AAMU,DELTA,AMU,
+ BETA,BETAX,ACDEL,ATHP,ATHN,ADELM,ABETAW,AOMEGA,AALPRD)
WRITE(6,517) APSI,AEPS,AAMU,ACDEL,ATHP,ATHN
WRITE(6,516) C,APHI,Z,ALR,ABETAX,Q,GAMMA,AD,ADELTA
IF (IFLAG.EQ.2) THEN
GOTO 403
ELSEIF (IFLAG.EQ.3) THEN
WRITE(6,519) ADELM,ABETAW
GOTO 403
ELSEIF (IFLAG.EQ.0) THEN
WRITE(6,520) AOMEGA,AALPRD
GOTO 403
ELSEIF (IFLAG.EQ.1) THEN
WRITE(6,521)
ENDIF
403 WRITE(6,522) PG,PC,PQ,PT

RMD=SQRT(RM**2+(RL/6.0)**2)
TH4=ACOS(RM/RMD)
BRCL=AD*RM*TH1
BPCA=PC*COS(PHI)/COS(DELTA)
BPGR=PG*COS(PHI-BTH2)/COS(DELTA)

* Components of Pg:

BTHG=90.0*RADN-DELTA-ALPHAR
BPGX1=BPGR*COS(BTHG)*B
VG=2.0*Z/3.0
BRG=SQRT(1.0-(VG+D)**2)
BGNU=ASIN(ABS(YM/BRG))
BPGE = BPGX1 * COS(BGNU)
BPGE = BPGE * COS(BGNU)
BPGZE = BPGR * SIN(BTHG) * B
BPGYE = -BPGE * SIN(BGNU)

Components of Pc:

BPCX1 = BPCA * SIN(DELTA + ALPHAR) + BRCL * COS(ALPHAR)
BPCZ1 = BPCA * COS(DELTA + ALPHAR) - BRCL * SIN(ALPHAR)
BPCR1 = SQRT(BPCX1 ** 2 + BPCZ1 ** 2)
BTHC = ATAN(BPCZ1 / BPCX1)

VC = Z / 2.0
BRC = SQRT(1.0 - (VC + D) ** 2)
BCNU = ASIN(ABS(YM / BRC))
BPCE = BPCX1 * COS(BCNU) * B
BPCXE = BPCE * COS(BCNU)
BPCZE = BPCZ1 * B
BPCYE = -BPCE * SIN(BCNU)

ENDIF

Output calculated data:

WRITE(6, 523) BPCXE, BPCYE, BPCZE, BPGXE, BPGYE, BPGZE
BPX = BPX + BPCXE + BPGXE + BPRXE
BPY = BPY + BPCYE + BPGYE + BPRYE
BPZ = BPZ + BPCZE + BPGZE + BPRZE

900 CONTINUE

FINAL OUTPUT CALCULATED DATA:

400 PX = (FPX + BPX) * CONST
PY = (FPY + BPY) * CONST
PZ = (FPZ + BPZ) * CONST
P = SQRT((PX ** 2) + (PY ** 2) + (PZ ** 2))
ALAMDR = ACOS(ABS(PX / P))
BLAMDR = ALAMDR / RADN
AGMAR = ACOS(ABS(PY / P))
GAMAR = AGMAR / RADN
ADELTR = ACOS(ABS(PZ / P))
DELTAR = ADELTR / RADN

WRITE(6, 514)
WRITE(6, 515) P, PX, PY, PZ, BLAMDR, GAMAR, DELTAR

300 CONTINUE
110 STOP
END
SUBROUTINE BISECT(XL,XU,FUNC,Y,IFLAG)
 Procedure for locating the root Y in int XL,XU
 Flag Values: 0=Solution Found; 1=No Solution;
 2=Number of iterations exceeded

 XACC=1.0E-04
 FMID=FUNC(XU)
 F=FUNC(XL)
 IF(F*FMID.GE.0.0)THEN
 IFLAG=1
 Y=0.0
 RETURN
 ENDIF
 IF(F.LT.0.0)THEN
 Y=XL
 DX=XU-XL
 ELSE
 Y=XU
 DX=XL-XU
 ENDIF

 DO 10 J=1,40
 DX=DX/2.0
 XMID=Y+DX
 FMID=FUNC(XMID)
 IF(FMID.LT.0.0) Y=XMIN
 IF(ABS(DX).LT.XACC.OR.FMID.EQ.0.0)THEN
 IFLAG=0
 RETURN
 ENDIF
 10 CONTINUE
 IFLAG=2
 RETURN
END

SUBROUTINE BRAC(FX,BL,BU,NB)
 Search for 2 roots and brackets values found

 DIMENSION BL(2),BU(2)
 NB=0
 X=0.0
 INT=18
 DX=361.0*ARSIN(1.0)/(90.0*FLOAT(INT))
FP=FX(X)
DO 10 I=1,INT
 X=X+DX
 FC=FX(X)
 IF(FC*FP.LT.0.0) THEN
 NB=NB+1
 BL(NB)=X - DX
 BU(NB)=X
 END IF
FP=FC
IF(NB.EQ.2) RETURN
10 CONTINUE
RETURN
END

FUNCTION FB1(T)
COMMON /FC/XC,YC,ZC/FCC/R1,R2,D,E/FCCC/R3
X=R1*COS(T)
Y=R1*SIN(T)
FB1=(X-XC) * (X-XC) + (Y-YC) * (Y-YC) +
 (D-ZC) * (D-ZC) - R3*R3
RETURN
END

FUNCTION FB2(T)
COMMON /FC/XC,YC,ZC/FCC/R1,R2,D,E/FCCC/R3
X=R2*COS(T)
Z=R2*SIN(T)
FB2=(X-XC) * (X-XC) + (E-YC) * (E-YC) +
 (Z-ZC) * (Z-ZC) - R3*R3
RETURN
END

SUBROUTINE SCRUB(ATHETA,XO,YO,ZO,NS,NE)
* Search for co-ordinates of points of the disc edge,
* status and state. Status: O=Scrubbing, l=Non scrubbing
* State: 2=Point above the soil level
* 3=Point below the soil level
*
REAL ATHETA(40),X0(40),Y0(40),Z0(40)
INTEGER NS(40),NE(40)
COMMON /FC/XC,YC,ZC/FCC/R1,R2,D,E/FCCC/R3/SCR/ALPHA,BETA,RADN
TH=ASIN((D-ZC)/R3)
DO 200 N=1,40
 SPACE=2.50*RADN
 THETA=TH+SPACE*FLOAT(N-1)
 ATHETA(N)=THETA/RADN

 X=R3*COS(THETA) * SIN(BETA) + R3*SIN(THETA) * SIN(ALPHA) * COS(BETA)
 Y=R3*SIN(THETA) * SIN(ALPHA) * SIN(BETA) - R3*COS(BETA) * COS(THETA)
 Z=-R3*SIN(THETA) * COS(ALPHA)

 XO(N)=XC-X
 IF(XO(N).LE.1.0E-04.AND.XO(N).GT.0.0) THEN
X0(N)=0.0
ELSE
ENDIF
Y0(N)=YC-Y
Z0(N)=ZC-Z
*
IF(X0(N) .LE.0.0) THEN
NS(N)=0
ELSE
NS(N)=1
ENDIF
*
IF(ABS(Z0(N)-D) .LE.(1.0E-02) .AND.ABS(Z0(N)-D) .GT.0.0) THEN
Z0(N)=D
ELSE
ENDIF
IF(Z0(N).GE.D) THEN
NE(N)=3
ELSE
NE(N)=2
ENDIF
200 CONTINUE
RETURN
END

SUBROUTINE PASFOR(PG,PC,PQ,PT,AF,IFLAG,APSI,AEPS,AAMU,DELTA,+ ACDDEL,ATHP,ATHN,ADELM,ABETAW,AOMEGA,AALPRD)
COMMON /SCR/ALPHA,BETA,RADN/PSFI/ABETAX,ADELTA,APHI,RADHS + /PSF2/C,AD,GAMMA,Q/PSF3/ALPHAR,RL,Z
*
Data Reduction
*
BETAX=ABETAX*RADN
PHI=APHI*RADN
DELTAX=ADELTA*RADN
*
IF(PHI.GE.1.OE-06) CDEL=ASIN(SIN(DELTAX)/SIN(PHI))
IF(PHI.LT.1.OE-06) CDEL=ASIN(AD/C)
ACDEL=CDEL/RADN
PSI=45.0*RADN+PHI/2.0
APSI=PSI/RADN
EPS=45.0*RADN-PHI/2.0
AEPS=EPS/RADN
AMU=(CDEL + DELTAX)/2.0
AAMU=AMU/RADN
THP=PSI+AMU
ATHP=THP/RADN
THN=PSI-AMU
ATHN=THN/RADN
FP=TAN (PSI)
*
Limits and Discont. Angles
*
ALPHRD=90.0*RADN-AMU
BETAW=AMU-EPS+ALPHAR-90.0*RADN
AALPRD=ALPHRD/RADN
ABETAW=BETAW/RADN
ZETA=ALPHAR+AMU
OMEGA=(ZETA-ASIN(SIN(PHI)*SIN(ZETA)))/2.0
AOMEGA=OMEGA/RADN

* Constrained Adhesion Requirement *

IF (PHI.GE.1.0E-6) THEN
AD=C*TAN(DELTAX)/TAN(PHI)
ELSE
RADHS=2.5/3.0
AD=C*RADHS
END IF

* Rupture Block Type Identification *

IF (ALPHAR-ALPHRD.GT.1.0E-06) GO TO 109
IF (OMEGA-ALPHAR.LT.1.0E-06) GO TO 203
GO TO 204
109 IF (BETAX-BETAW.GT.1.0E-06) GO TO 201
GO TO 202

* Basic Rupture Surface * Type 1 *

201 DELTA=DELTAX
IFLAG=2
ADELM=ADELTA
KT=1
206 ETA=ALPHAR-EPS-THN
RS=RL*SIN(THP)/COS(PHI)
T=RL*SIN(THN)/COS(PHI)
U=RS*EXP(ETA*TAN(PHI))
V=U*SIN(EPS)
F=U*COS(EPS)

D1=V/2.0
D2=2.0*V/3.0
DW=2.0*F/3.0
DQ=F/2.0
D5=RS*COS(PHI)/2.0
D4=2.0*RS*COS(PHI)/3.0

F1=2.0*C*V*FP
F2=Gamma*V*V*FP*FP/2.0
F1D=Q*V*FP*FP
W1=F*V*GAMMA/2.0
AM=-3.0*TAN(PHI)
RHO1=EPS+ETA
AMW1=Gamma*U*U*U/(3.0*(AM*AM+1.0))
AMW2=EXP(AM*ETA)*(AM*COS(RHO1)+SIN(RHO1))
+ -AM*COS(EPS)-SIN(EPS)
AMW=AMW1*AMW2
IF (PHI.LT.1.0E-06) GO TO 600
AMC=C*(U*U-WS*RS)/(2.0*TAN(PHI))
GO TO 601
600 AMC=C*RS*RS*ETA
601 QF=Q*F
F4=(F2*D2+W1*DW+AMW)/D4
F5C=(F1*D1+AMC)/D5
F5Q=(F1D*D1+QF*DQ)/D5

W2=GAMMA*RL*T*SIN(THP)/2.0
A2=C*T
AF=C*RL
RHO2=THP-PHI-PHI
RHOW=THP+ALPHAR-PHI

PG=(W2*SIN(RHOW) + F4*COS(PHI))/SIN(RHO2)
PC=(AF*COS(THP-PHI) + (F5C+A2)*COS(PHI))/SIN(RHO2)
PQ=F5Q*COS(PHI)/SIN(RHO2)
RDIST=2.0*F/Z
GO TO 205

* * Rupture Surface with a Boundary Wedge *Type 3*

THP=180.0*RADN-(ALPHAR-BETAX)
KT=3
THN=(ALPHAR-BETAX)+PHI-90.0*RADN
RH03=PHI+2.0*(ALPHAR-BETAX)
ANG=SIN(PHI)*COS(RH03)/(SIN(PHI)*SIN(RH03)-1.0)
DELTAM=ATAN(ANG)
ADELM=DELTAM/RADN

DELTA=DELTAM
IFLAG=3
GO TO 206

* * Rupture Surface with a Discontinuity *Type 2*

RHO4=180.0*RADN-ALPHAR+OMEGA-THP
IFLAG=0
KT=2
T=RL*SIN(ALPHAR-OMEGA)/SIN(RH04)
U=RL*SIN(THP)/SIN(RH04)
V=U*SIN(OMEGA)
F=U*COS(OMEGA)
W3=GAMMA*(F*V+RL*T*SIN(THP))/2.0
A2=C*T
AF=C*RL
QF=Q*F
RHO5=(THP-PHI-PHI)
RHO6=(THP-PHI+ALPHAR)
ADELM=ADELTA
DELTA=DELTAX

F1=2.0*C*V*FP
F2=GAMMA*V*V*FP*FP/2.0
F1D=Q*V*FP*FP
PG=(W3*SIN(RHO6)-F2*COS(RHO6))/SIN(RHO5)
PC=(A2*COS(PHI)+AF*COS(THP-PHI)-F1*COS(RHO6))/SIN(RHO5)
PQ=(QF*SIN(RHO6)-F1D*COS(RHO6))/SIN(RHO5)
RDIST=2.0*F/Z

GO TO 205

* * Rupture Surface with a Rankine Wedge *Type 4*

F=Z/TAN(EPS)
IFLAG=1
KT=4
G=Z/TAN(ALPHAR)-F
U = Z / SIN(EPS)
F1 = 2.0 * C * Z * FP
F1D = Q * Z * FP * FP
F2 = GAMMA * Z * FP * FP / 2.0
W4 = GAMMA * F * Z / 2.0
W5 = GAMMA * G * Z / 2.0
A3 = U * C
Q1 = F * Q
Q2 = G * Q
AF = C * (Z / SIN(ALPHAR))
RHOR = PHI + 2.0 * (EPS - ALPHAR)
DELTAM = ATAN(SIN(PHI) * COS(RHOR) / (1.0 - SIN(PHI) + *SIN(RHOR)))
ADELM = DELTAM / RADN
DELTA = DELTAM
DELTAM = PHI
RH07 = PSI - ALPHAR - PHI
RH08 = ALPHAR + PHI
RH09 = EPS - ALPHAR - PHI
PG = (W4 * COS(PSI) + F2 * COS(EPS)) * COS(RH07) + W5 * COS(RH08)
PC = (F1 * COS(EPS) - A3 * SIN(PHI)) * COS(RH07) + A3 * SIN(RH09) - AF * SIN(PHI)
PQ = (Q1 * COS(PSI) + F1D * COS(EPS)) * COS(RH07) + Q2 * COS(RH08)
RDIST = (G + 2.0 * F) / Z

OUTPUT OF CALCULATED DATA:
205 PT = PG + PC + PQ
RETURN
END

* MAIN PROGRAMME *

DIMENSION DE1(2), DE2(2), BB1(2), BB2(2)
DIMENSION C1(40), C2(40), C3(40), C4(40)
REAL ATHETA(40), XO(40), YO(40), ZO(40), AL(11), AZ(11)
INTEGER NS(40), NE(40)
COMMON /FC/XC, YC, 2C/FCC/R1, R2, D, E/FCCC/R3 + /SCR/ALPHA, BETA, RADN/PSF1/ABETAX, ADELTAM, APHI, RADNS + /PSF2/C, AD, GAMMA, Q/PSF3/ALPHAR, RL, Z
EXTERNAL FB1, FB2
RADN = ARSIN(1.0) / 90.0

501 FORMAT(3F10.0)
502 FORMAT(2F10.0)
503 FORMAT(F10.0)
504 FORMAT(/' ', '3X,' Alpha', '4X,' a', '5X,' d', '5X,' z', + 5X,' Q'/' ',F8.2, F4F7.3)
505 FORMAT(/' ', '3X,' AlphaD', '2X,' BetaD'/' ', 2F8.1)
506 FORMAT(/' ', 5X,' No Solution in Specified Range')
507 FORMAT(/' ', '23X,' C', '23X,' D', '22X,' E', '13X,' FLAGS')
508 FORMAT(/' ', 6X,' D', '3(9X,' X', '6X,' Y', '6X,' Z'), + 5X,' D', '3X,' E')
509 FORMAT(/' ', 'F7.3, 3(3X, 'F7.3, 3X, 2I3)
510 FORMAT(/' ', '23X,' A', '22X,' B', '13X,' FLAGS')
511 FORMAT(/' ', 6X,' E', '2(9X,' X', '6X,' Y', '6X,' Z'),
* 5X,'B',6X,'R2',4X,'ALPHAR',4X,'Z',4X,'L')
512 FORMAT(' ',F7.3,2(3X,3F7.3),3X,I3,2X,5F7.3)
513 FORMAT(' ',3X,'Scrubbing')
514 FORMAT(' ',3X,'P',10X,'PX',8X,'PY',8X,'PZ',7X,'LAMDA',
+ 4X,'GAMA',4X,'DELTAR')
515 FORMAT(F10.3,6(F10.3))
516 FORMAT(' ',7X,'C',5X,'PHI',',',F8.2,F8.1/
+ ' ',7X,'Z',3X,'ALPHAR',4X,'BETA',',',F8.2,2F8.1/
+ ' ',7X,'Q',3X,'GAMMA',',',2F8.2/
+ ' ',7X,'AD',3X,'DELTA',',',F8.2,F8.1)
517 FORMAT(' ',5X,'PSI',5X,'EPS',6X,'MU',',',3F8.1/
+ ' ',5X,'TH+',5X,'TH-',',3F8.1/)
518 FORMAT(' ',7X,'P*G',7X,'p*C',7X,'P*Q',7X,'P'
+ ' ',5X,'PCX',5X,'PCY',5X,'PCZ',5X,'PGX',5X,'PGY',
+ 5X,'PGZ',5X,'PQX',5X,'PQY',5X,'PQZ',9F8.3)
519 FORMAT(' ',7X,'Kgx',4X,'Kcy',4X,'Kqy',4X,'Kcz',4X,'Kqz')
* 526 FORMAT(F7.1,10F7.3)

Input Data :

101 READ (5,501) AALPHA,A,D
102 READ (5,503) C
103 READ (5,503) GAMMA
104 READ (5,503) ABETAX
105 READ (5,503) Q
106 READ (5,503) APHI
107 READ (5,503) ADELTA
108 READ (5,503) CZ
109 READ (5,503) RSP

Data Reduction :

R1=SQRT(1.0-D*D)
R3=SQRT(1.0-A*A)
WRITE(6,504) AALPHA, A, D, CZ, Q
WRITE(6,524) APHI, ADELTA, C, GAMMA
WRITE(6,525)

DO 300 N=8,13
SPACE=(90.0*RADN)/18.0
BETA=SPACE*FLOAT(N-1)
ALPHA=AALPHA*RADN
PHI=APHI*RADN
TNA=TAN(ALPHA)
TNA=TAN(BETA)
DALPHA=ATAN(TNA/(SQRT(1.0+TNB*TNB)))
DBETA=ATAN(TNB/(SQRT(1.0+TNA*TNA)))
A=DALPHA/RADN
ADB=DBETA/RADN
WRITE(6,504) AALPHA, ABETA, A
WRITE(6,505) ADA, ADB
R9 = (D/COS(ALPHA)) - A*TAN(ALPHA)
W = 2.0 * (SQRT(R3^2 - R9^2)) * COS(BETA) * RSP

Co-ordinates of the Disc Centre and Intersection Points:

XC = A*COS(DBETA)*COS(ALPHA)
YC = A*COS(DALPHA)*SIN(BETA)
ZC = A*COS(DBETA)*SIN(ALPHA)

CALL BRAC(FB1, DE1, DE2, NB1)
T1 = DE1(1)
T2 = DE1(2)
T3 = DE2(1)
T4 = DE2(2)

CALL BISECT(T1, T3, FB1, QE, ME)
CALL BISECT(T2, T4, FB1, QD, MD)
XD = R1*COS(QD)
YD = R1*SIN(QD)
ZD = D

XE = R1*COS(QE)
YE = R1*SIN(QE)
ZE = D

WRITE(6, 507)
WRITE(6, 508)
WRITE(6, 509) D, XC, YC, ZC, XD, YD, ZD,
+ XE, YE, ZE, MD, ME
WRITE(6, 510)
WRITE(6, 511)

R = 1.0
PCX = 0.0
PCY = 0.0
PCZ = 0.0
PGX = 0.0
PGY = 0.0
PGZ = 0.0
PQX = 0.0
PQY = 0.0
PQZ = 0.0

DO 200 I = 1, 11
SPACE = ABS(YE - YD)/10.0
IF(YD.GE.YE) THEN
E = YD - SPACE*FLOAT(I-1)
ELSE
E = YE - SPACE*FLOAT(I-1)
ENDIF

B = ABS(YE - YD)/10.0
S = D*D + E*E
IF((1.0 - S).LT.1.0E-06)THEN
WRITE(6, 506)
GOTO 200
ELSE

99
XA = SQRT(1.0 - S)
YA = E
ZA = D
ENDIF

R2 = SQRT(1.0 - E*E)
CALL BRAC(FB2, BB1, BB2, NB2)
T5 = BB1(1)
T7 = BB2(1)
CALL BISECT(T5, T7, FB2, QB, MB)

IF (I.EQ.1.0.OR.I.EQ.11.0) THEN
XB = XA
YB = YA
ZB = ZA
ELSE
XB = R2*COS(QB)
YB = E
ZB = R2*SIN(QB)
ENDIF

IF ((ZB - D) .LT. 1.0E-03) THEN
AL(I) = 0.0
AZ(I) = 0.0
ALPHAR = 0.0
ENDIF

IF (I.LT.2.0) THEN
GOTO 200
ELSE
AL(I) = SQRT((XA-XB)**2 + (YA-YB)**2 + (ZA-ZB)**2)
AZ(I) = ZB-D
ENDIF

RL = (AL(I) + AL(I-1))/2.0
Z = (AZ(I) + AZ(I-1))/2.0
ALPHAR = ASIN(Z/RL)
ALR = ALPHAR/RADN

WRITE (6,512) E, XA, YA, ZA, XB, YB, ZB, MB, R2, ALR, Z, RL, Q

CALL PASFOR(PG, PC, PQ, PT, AF, IFLAG, APSI, AEPS, AAMU, DELTA, +
ACDEL, ATHP, ATHN, ADEL, ABETAW, AOMEGA, AALPRD)

WRITE (6,517) APSI, AEPS, AAMU, ACDEL, ATHP, ATHN
WRITE (6,516) C, APHI, Z, ALR, ABETAX, Q, GAMMA, AD, ADELTA
IF (IFLAG.EQ.2) THEN
WRITE (6,518)
GOTO 401
ELSEIF (IFLAG.EQ.3) THEN
WRITE (6,519) ADEL, ABETAW
GOTO 401
ELSEIF (IFLAG.EQ.0) THEN
WRITE (6,520) AOMEGA, AALPRD
GOTO 401
ELSEIF (IFLAG.EQ.1) THEN
WRITE (6,521)
ENDIF
401 WRITE (6,522) PG, PC, PQ, PT

* Force Calculation on the Concave Contact Section:
\[Y = E + B / 2.0 \]
\[Y_1 = E + B \]
\[Y_2 = E \]
\[UC = Z / 2.0 \]
\[R4 = \sqrt{1.0 - Y^2} \]
\[RD = \sqrt{R4^2 - (RL/2.0)^2} \]
\[RDD = \sqrt{RD^2 + (RL/6.0)^2} \]
\[TH_1 = 2.0 \cdot \text{ATAN}((RL/2.0)/RD) \]
\[TH_2 = \text{ASIN}(RD/RDD) \]
\[TH_3 = 90.0 \cdot \text{RADN} - TH_2 \]
\[RCL = TH_1 \cdot R4 \]
\[PCA = PC \cdot \text{COS}(\Phi)/\text{COS}(\Delta) \]
\[PQR = PQ \cdot \text{COS}(\Phi)/\text{COS}(\Delta) \]
\[PGR = PG \cdot \text{COS}(\Phi + TH_3)/\text{COS}(\Delta) \]

Components of \(P_c \):

\[PCX_1 = PCA \cdot \text{SIN}(\Delta + \text{ALPHAR}) + AD \cdot RCL \cdot \text{COS}(\text{ALPHAR}) \]
\[PCZ_1 = PCA \cdot \text{COS}(\Delta + \text{ALPHAR}) - AD \cdot RCL \cdot \text{SIN}(\text{ALPHAR}) \]
\[PCR_1 = \sqrt{PCX_1^2 + PCZ_1^2} \]
\[THC = \text{ATAN}(PCZ_1/PCX_1) \]

Components of \(P_g \):

\[THG = 90.0 \cdot \text{RADN} - \Delta - \text{ALPHAR} \]
\[PGX_1 = PGR \cdot \text{COS}(THG) \cdot B \]
\[PGZ_1 = PGR \cdot \text{SIN}(THG) \cdot B \]
\[UG = 2.0 \cdot Z / 3.0 \]
\[RG = \sqrt{1.0 - (UG + D)^2} \]
\[GNU = \text{ASIN}(ABS(Y/RG)) \]
\[PQE = PGX_1 \cdot \text{COS}(GNU) \]
\[PGXE = PQE \cdot \text{COS}(GNU) \]

Components of \(P_q \):

\[THQ = 90.0 \cdot \text{RADN} - \Delta - \text{ALPHAR} \]
\[PQX_1 = PQR \cdot \text{COS}(THQ) \cdot B \]
\[PQZ_1 = PQR \cdot \text{SIN}(THQ) \cdot B \]
\[GNU = CNU \]
\[PQE = PQX_1 \cdot \text{COS}(GNU) \]
\[\text{PQXE} = \text{PQE} \cdot \cos(\text{QNU}) \]

\begin{verbatim}
* IF(Y.LE.0.0) THEN
PQYE=-PQE*SIN(\text{QNU})
ELSE
PQYE=PQE*SIN(\text{QNU})
ENDIF
*
* Output calculated data:
PCX=PCX+PCXE
PCY=PCY+PCYE
PCZ=PCZ+PCZE
PGX=PGX+PGXE
PGY=PGY+PGYE
PGZ=PGZ+PGZE
PQX=PQX+PQXE
PQY=PQY+PQYE
PQZ=PQZ+PQZE
200 CONTINUE
* WRITE(6,523)PCX,PCY,PCZ,PGX,PGY,PGZ,PQX,PQY,PQZ
FPX=PCX+PGX+PQX
FPY=PCY+PGY+PQY
FPZ=PCZ+PGZ+PQZ
*
* Scrubbing Identification:
*
CALL SCRUB(\text{ATHETA},X0,Y0,Z0,\text{NS},\text{NE})
DO 500 K=1,40
IF(NS(K) .EQ.0.AND.NE(K) .EQ.3) THEN
WRITE(6,513)
GO TO 110
ELSE
GOTO 500
ENDIF
500 CONTINUE
*
* Final output calculated data:
*
400 PX=FPX
PY=FPY
PZ=FPZ
P=SQRT((\text{PX}**2)+(\text{PY}**2)+(\text{PZ}**2))
ALAMDR=ACOS(ABS(PX/P))
BLAMDR=ALAMDR/RADN
AGAMAR=ACOS(ABS(PY/P))
GAMAR=AGAMAR/RADN
ADELTR=ACOS(ABS(PZ/P))
DELTAR=ADELTR/RADN
*
* K-factor Determination:
*
AKGX=(PGX*RSP/W)/(\text{GAMMA}*(CZ**2))
AKCX=(PCX*RSP/W)/(\text{C}*[CZ])
AKQX=(PQX*RSP/W)/(\text{Q}*[CZ])
AKGY=(PGY*RSP/W)/(\text{GAMMA}*(CZ**2))
AKCY=(PCY*RSP/W)/(\text{C}*[CZ])
AKQY=(PQY*RSP/W)/(\text{Q}*[CZ])
AKGZ=(PGZ*RSP/W)/(\text{GAMMA}*(CZ**2))
AKCZ=(PCZ*RSP/W)/(\text{C}*[CZ])
AKQZ=(PQZ*RSP/W)/(\text{Q}*[CZ])
\end{verbatim}
* WRITE(6,514)
* WRITE(6,515) P, PX, PY, PZ, BLAMDR, GAMAR, DELTAR
WRITE(6,526) ABETA, RSP, AKGX, AKCX, AKQX, AKGY, AKCY, AKQY, AKGZ, AKCZ
*
300 CONTINUE
110 STOP
END
PROGRAMME : P3

* **
SUBROUTINE EXPFIT(A,B,C,ESQ, N,X,Y, IFLAG,ITER)
* This algorithm will fit a curve defined by the equation y = a*exp(b*x) + c to specified sets of x and y. Flag other than zero implies set number of iterations have been exceeded.
* Ref; CACM No. 275
*

DIMENSION X(N), Y(N)
IFLAG=0
EPS=0.001
LMAX=40

* Computation of initial estimate :

B=2.0*Aalog((Y(N) - Y(N-1))*(X(2) - X(1)))/
 + ((Y(2) - Y(1))*(X(N) - X(N-1)))/
 + (X(N) + X(N-1) - X(2) - X(1))
A= (Y(N) - Y(N-1))/((X(N) - X(N-1)) +
 EXP((B(X(N) + X(N-1)))/2.0)*B)
M=(N+1)/2
C=Y(M) - A*EXP(B*X(M))
ESQ=0.0

DO 200 I=1,N
 ESQ=ESQ + (Y(I) - C -A*EXP(B*X(I)))**2
200 CONTINUE

* Computation of corrections :

ITER=0
SAVE=0.0
DO 201 L=1,LMAX

ITER=ITER + 1
SEX1 =0.0
SEX2 =0.0
SXIEX1=0.0
SXIEX2=0.0
SX2EX2=0.0
SYI=0.0
SYIEX1=0.0
SXYEX1=0.0

DO 202 I=1,N
 EX1=EXP(B*X(I))
 EX2=EX1*EX1
 XIEX1=X(I)*EX1
 XIEX2=X(I)*EX2
 XI2EX2=X(I)*XIEX2

*
SEC1 = SEC1 + EX1
SEC2 = SEC2 + EX2
SXIEX1 = SXIEX1 + XIEX1
SXIEX2 = SXIEX2 + XIEX2
SX2EX2 = SX2EX2 + XI2EX2
SYI = SYI + Y(I)
SXIEX1 = SYIEX1 + Y(I) * EX1
SXYEX1 = SXYEX1 + Y(I) * XIEX1

202 CONTINUE

*
D11 = SEC2
D12 = SXIEX2 * A
D13 = SEC1
D22 = SX2EX2 * A * A
D23 = SXIEX1 * A
D33 = N

*
E1 = -SEC2 * A - SEC1 * C + SYIEX1
E2 = -SXIEX2 * A * A - SXIEX1 * C * A + SXYEX1 * A
E3 = -SEC1 * A - N * C + SYI

*
DEL11 = D22 * D33 - D23 * D23
DEL12 = D13 * D23 - D12 * D33
DEL13 = D12 * D23 - D13 * D22
DEL22 = D11 * D33 - D13 * D13
DEL23 = D12 * D13 - D11 * D23
DEL33 = D11 * D22 - D12 * D12

DEL = D11 * DEL11 + D12 * DEL12 + D13 * DEL13

*
U = (E1 * DEL11 + E2 * DEL12 + E3 * DEL13) / DEL
V = (E1 * DEL12 + E2 * DEL22 + E3 * DEL23) / DEL
W = (E1 * DEL13 + E2 * DEL23 + E3 * DEL33) / DEL

*
A = A + U
B = B + V
C = C + W
ESQ = 0.0

*
DO 203 I = 1, N
ESQ = ESQ + (Y(I) - C - A * EXP(B * X(I))) ** 2
203 CONTINUE

*
IF (L .EQ. 1) GO TO 700
IF (ABS (SAVE - ESQ) .LT. EPS) THEN
GO TO 701
ELSE IF (L .LT. LMAX) THEN
GO TO 700
ELSE
GO TO 702
END IF

*
700 SAVE = ESQ
201 CONTINUE
702 IFLAG = 1
701 RETURN
END

* Main Programme
*
DIMENSION XX(20), YY(20), YC(20), DIFF(20)
* 500 FORMAT(' ', 13X,'a',13X,'b',13X,'c',9X,'Stat Error', + 4X,'F', 4X,'I'/3E14.4,5X,E14.4,2I5) 501 FORMAT(' ',13X,'x',13X,'y',12X,'Yc',10X,'Diff') 502 FORMAT(' ', ',',4E14.4) 503 FORMAT(' ', '/ ', 'Group Index No.=',I3) 100 READ (5,'(I3)') MM 101 READ (5,'(I3)') NN IF(NN .LT. 0) THEN NROUTE=ABS(NN) GO TO (100,102), NROUTE END IF 102 STOP END