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Abstract 

Systems Biology- the study of interactions between components of biological systems, 
and how these can produce new functions and behaviours, is beginning to produce a 
more comprehensive understanding of biology.  

Its development is enabling many new opportunities, including the discovery 
and development of more effective and targeted therapeutics for a range of different 
conditions. It was in this context that this investigation began, with focus placed upon 
identifying therapeutic targets in Bacillus subtilis that could be used to limit the 
development and spread of infection, so called anti-infective targets. 
Using an in silico data driven Systems Biology approach, our industrial collaborators, e-
Therapeutics predicted pairs of genes from B. subtilis that could act as anti-infective 
targets when targeted together. This investigation was tasked with the development and 
testing of experimental models and approaches that could be used to validate these 
potential targets.   

In a separate collaboration with the Integrative Bioinformatics Group at 
Newcastle University, a functional interaction network model for B. subtilis- 
SubtilNet2, was generated and tested. Compiled from a range of experimental, 
bioinformatical and literature based sources, it represented all known functional 
interactions known to occur within B. subtilis. This network was applied to investigate 
the selection of the predicted targets, and determine any biological basis for the 
experimental results seen. A single predicted target acting by itself was confirmed to be 
successful. 

As a second component to this investigation, Systems Biology was used to 
complement traditional hypothesis driven research, specifically the possibility of 
directed targeting and channelling of substrates between two biosynthetic pathways. 
This was explored by studying the synthesis of carbamoyl phosphate (CP), an 
intermediate in both the arginine and uracil biosynthetic pathways. Typically, 
prokaryotes encode a single heterodimeric carbamoyl phosphate synthetase (CPS) that 
is used by both the arginine and pyrimidine biosynthetic pathways. B. subtilis and its 
close relatives are unique in encoding arginine- and uracil-specific copies of this 
enzyme. Moreover, the genes encoding the respective arginine (carA and carB) and 
uracil (pyrAA and pyrAB) specific CPSs are clustered with the other genes in their 
respective pathways (e.g. argC,J,B,D-carA,B-argF and pyrB,C,AA,AB,K,D,F,E) This 
degree of clustering is not found in bacteria with single CPSs.  

Experimental and SubtilNet2 analysis approaches were developed to express and 
individually test for the presence of any interaction between the subunits of each 
systems CPS’s, as well as to other components within associated gene clusters. The 
presence or absence of interaction would be used to determine if CP produced by one 
system could be shared with the opposite system.  If it couldn’t, could the unusual 
cluster of genes seen to surround each CPS be used to encode a macromolecular 
complex structure with a single point of entry and exit to channel CP and other 
substrates within a biosynthetic system? 

A failure despite repeated attempts and strategies to produce soluble CPS 
subunits and other biosynthesis proteins, when expressed independently of one another, 
suggested a need for the presence of other members of each pathway. SubtilNet2 testing 
of these components and their functional associations didn’t identify any distinct groups 
or systems being supplied with system specific CP, however this is more likely to result 
from limitations of the associated approaches, rather than genuine a biological property. 
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1. Introduction  

In this chapter will be described both broad and specific aspects that relate and underpin 

the investigation that has been conducted, these include:  

• The choice of organism as well as specific biological properties and systems 

contained within it will be discussed, both in a broad sense as well as key 

aspects that relate to the ensuing investigation. 

• The concepts behind using mathematics to represent and analyse complex 

systems such as those found within biological systems, in attempts to gain 

unparalleled comprehensive understandings of the studied systems will be 

discussed. 

• How the use of integrated mathematical/biological approaches in research could 

allow the development of a more comprehensive understanding of biological 

systems and organisms, with the range of benefits that this would produce.  

• This approach will be applied to two separate fields- the identification of new 

drug targets, together with compound design and development, and the 

investigation of the arginine biosynthetic pathway, its function and unique 

organisation.  

• The specific aims and objectives of the investigation.  

1.1 Bacillus subtilis  

1.1.1 Model Gram-positive bacterium and industrial workhorse  

Bacillus subtilis is an aerobic, endospore-forming rod shaped non-pathogenic 

bacterium, typically found in the upper layers of soil and in associated watercourses 

(Priest, 1989). It is capable of oxidizing a wide range of organic compounds and has 

relatively simple growth requirements. B. subtilis belongs to the genus Bacillus, which 

contains more than 50 validly described species (Claus, 1989) including both 

pathogenic and non-pathogenic strains. B. subtilis, is the most extensively studied 

Gram-positive bacterium and used as a laboratory model organism for the study of 

pathogenic members of this group as well as other Gram-positive bacteria (Zweers et 

al., 2008).  
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The members of the genus Bacillus have a long history of exploitation by man, from 

their use in food preservation, in producing the fermented soybean product natto 

(Zweers et al., 2008) and Chungnkook-Jang (Kim et al., 2004), to their applications in 

industry, to produce high value and high volume (>20g/L-1) (Harwood & Cranenburgh, 

2008) biochemicals such as antibiotics, vitamins, pesticides and hydrolytic enzymes 

(Harwood, 1992). 

1.1.2 Genetic amenability and molecular tools   

B. subtilis was the first Gram-positive bacterium to be sequenced (Kunst et al.1997 

(Kunst et al., 1997)), identifying 4,100 genes encoded within a 4.2 Mbp chromosome. 

Complimenting this sequencing data is more than 50 years of extensive research into 

many aspects of the biochemistry, physiology and genetics of the organism (Zweers et 

al., 2008). This has defined B. subtilis as the archetypal model for all Gram-positive 

bacteria, with knowledge second only to that of Escherichia coli (E. coli) (Harwood & 

Wipat, 1996). This combined wealth of information has strengthened both commercial 

and research interest using this organism, particularly in Japan and Europe that are 

generating storing and analysing “omic-size” datasets. This existing comprehensive and 

continually expanding body of knowledge means that B. subtilis represents an ideal 

organism to study using Systems Biology approaches.  

The two driving forces for early extensive studies on B. subtilis were its ability to 

sporulate, providing insights into cellular differentiation and its intricate controls, and 

its amenability to genetic modification (Harwood & Wipat, 1996). B. subtilis grows 

rapidly on a simple salts medium and has the innate ability to be transformed by large 

pieces (up to 8.5Kb) of extracellular double stranded (ds)DNA (Dubnau, 1991). Under 

conditions of nutrient starvation, competence genes encoding an efficient DNA uptake 

system become expressed (Dubnau, 1991). Double-stranded (ds) DNA from the 

surrounding environment becomes internalised and, providing it has homology with the 

chromosome, is able to integrate into the B. subtilis chromosome (Provvedi & Dubnau, 

1999). Extracellular (ds)DNA uptake and integration occurs in four stages (Dubnau, 

1991): 
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1)  Expression of adhesion proteins that facilitate attachment of extracellular 

(ds)DNA to the cell surface.  

2)  Fragmentation and partial digestion of the (ds)DNA to generate single stranded 

(ss)DNA. 

3)  Internalisation of the (ss)DNA. 

4)  Recombination between homologous regions of the internalised (ss)DNA and 

the chromosome.  

1.1.3 Gene regulation and metabolism 

1.1.3.1 Introduction  

Bacteria have the ability to adapt rapidly and reversibly to a variety of changes in their 

internal and external environments (Nicholl, 2002). The ability to selectively express a 

large repertoire of gene products allows them to survive and function in the face of 

major changes in their environment (Lopez-Maury et al., 2008). Controlling and 

coordinating the expression of this repertoire of genes is essential for both survival, and 

to limit the amount of energy expended in expressing required genes. Because of the 

importance of coordinating gene expression, the bacterium has evolved a variety of 

complex regulation systems.  

One of the most important levels at which regulatory systems function is that of 

transcription. A model proposing the control of gene transcription was developed by 

François Jacob and Jacques Monod (Jacob & Monod, 1961) termed the operon model, 

following work on lactose metabolism in E. coli. The model was later found to be 

widely applicable to many prokaryotes, and describes the ability to control the 

expression of collections of genes by a single stimulus. 

1.1.3.2 Operon structure  

The term operon collectively defines a fundamental transcriptional unit (Bergman et al., 

2007) within a bacterial genome. It contains a cluster of co-expressed “structural” genes 

and their regulatory sequences, often functionally related and required by the cell for a 

particular process or pathway (Bergman et al., 2007) (Figure 1.1). It has been estimated 

that ~50% of all bacterial genes are located within an operon (Brouwer et al., 2008). 

Operons are identified by an upstream promoter or promoters and a downstream 
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transcription terminator (Figure 1.1). When transcribed into messenger (m)RNA, 

individual genes, encoding enzymatic or structural components of the cell, are defined 

by an upstream ribosome binding site and associated start codon, and a downstream 

stop codon (Hartl & Jones, 2008). 

Depending on the environment, individual operons may be constitutively expressed or 

selectively expressed or repressed. This is facilitated by activator and/or repressor 

molecules produced in response to a specific stimulus (Klug et al., 2005). During 

repression, a repressor molecule will bind to an operator-a sequence downstream of the 

promoter, to either impede the binding or movement of RNA polymerase. During 

activation of an operon, an activator molecule will bind to an activator binding site, 

facilitating the binding of RNA polymerase to the promoter.  

Figure 1.1: The operon structure. A graphical representation of operon structure. 
Several genes (A-D) are co-transcribed from the promoter region (red) to the terminator 
region (pink) in response to a specific signal. Repressors and activators of transcription 
bind to the operator (green) and activator (blue) respectively.  

1.1.3.3 Operon function  

Several theories exist as to the purpose of operons, with it generally being accepted that 

their main role is to facilitate the co-regulation of its structural genes (Price et al., 

2006). Operons can contain a few or several genes, and can be under the control of the 

same regulatory mechanism (Klug et al., 2005). They may be constitutively or 

conditionally activated or repressed by the binding or removal of their cognate activator 

or repressor from the operator region upstream of the first structural gene. This 

ultimately affects the manner in which RNA polymerase binds to the promoter and 

initiates transcription. 

B C D

Structural genesPromoter Operator Terminator

A 

Activator binding site 
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A single polycistronic (m)RNA strand is transcribed for each operon in prokaryotes 

(Lengeler, 1999), and to which are bound numerous ribosomes along its length (Klug et 

al., 2005) (Figure 1.2). Translation is initiated even before transcription is completed 

and consequently, these two processes are intimately coupled in bacterial systems. The 

simultaneous processing of several structural genes allows their translated products to 

come into close proximity with each other (Dandekar et al., 1998), providing an 

efficient and targeted mechanism for protein complexes to interact This has led to the 

proposal that the maintenance of operon structures throughout evolution may be as 

much to do with the formation of such complexes as with the conventional view that 

they are required for co-ordinated gene expression.  

Figure 1.2: The localisation of (m)RNA and translated protein from the ribosome.

A graphical representation of translated (m)RNA and close proximity of resultant 
mature protein, to immature protein.  

1.1.3.4 Co-ordinated operon function  

Operons distributed around the chromosome can be co-transcribed with one another 

under particular conditions. Operons that become transcribed with one another in 

response to a stimulatory signal are referred to as stimulons (Lengeler, 1999; Cases & 

de Lorenzo, 2005). Operons under the regulatory control of the same protein are known 

as regulons (Lengeler 1999; Cases & de Lorenzo, 2005). In this manner, the multiple 
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control of genes required for a biological function, can be achieved efficiently and 

rapidly, even when separated from one another within the chromosome.  

1.1.4 Arginine biosynthesis introduction 

L-arginine is a metabolically versatile amino acid (Lu, 2006), that is used as a building 

block in proteins, as well as a source of carbon, nitrogen and energy through its 

conversion in a range of catabolic processes (Lu, 2006). Due to the essential nature of 

this amino acid and its multifunctional role, many bacteria have developed uptake 

mechanisms allowing it to be assimilated from the environment (Celis et al., 1973; 

Poolman et al., 1987; Wissenbach et al., 1995). Bacteria have also developed an ability 

to biosynthesise arginine from L-glutamate, the most abundant amino acid found within 

bacterial cells (Commichau et al., 2008). The complex way in which arginine 

biosynthesis is controlled and regulated is considered to be a model of gene expression 

and regulation with investigations upon it dating back to the 1950’s (Cunin et al., 1986; 

Maas, 1991). 

1.1.4.1 The arginine biosynthetic pathway 

Arginine is synthesised from L-glutamate in eight enzymatic steps that are under 

complex regulation, ensuring that pathway genes are only ever induced in the absence 

of exogenous arginine (Figure 1.3) (Cunin et al., 1986). The first four stages involve the 

acetylation of L-glutamate and its derivative products (Vogel, 1953) using the enzymes 

ArgJ/A, ArgB ArgC and ArgD the purpose of which is thought to prevent glutamate 

from being used in proline biosynthesis (Caldovic & Tuchman, 2003). The end of this 

stage yields N-acetylornithine. Prokaryotes can then follow one of two routes, a linear 

or cyclical pathway to produce arginine, differing in the deacetylation method of N- 

acetylornithine (Sakanyan et al., 1996). This represents step 5 of the pathway.  

In the linear route (used typically by members of the Enterobacteriaceae and the 

archaean genus Sulfolobus (Casteele et al., 1990)), the deacetylation of N-

acetylornithine is performed by acetylornithine deacetylase (ArgE), to produce ornithine 

and acetate.  The acetyl group required to acetylate glutamate for the beginning 4 steps 

of arginine biosynthesis is supplied by acetyl-CoA (Sakanyan et al., 1996).  

In the cyclical route (the most efficient and the pathway typically used by most 

prokaryotes (Caldovic & Tuchman, 2003) including members of the genus Bacillus 
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(Sakanyan, 1992)) the acetyl group is recycled by its transfer from acetylornithine to 

glutamate, via the enzyme ornithine acetyltransferase (ArgJ) (Sakanyan et al., 1993).  

The final 3 steps in the arginine biosynthesis pathway is common to both the linear and 

cyclical pathways. A carbamoyl phosphate moiety is transferred to the five amino group 

of ornithine, to generate citrulline via ornithine transcarbamylase (ArgF) (Bringel et al., 

1997). Citrulline is converted to argino-succinate by argininosuccinate synthase (ArgG) 

before being converted to arginine by argininosuccinate lyase (ArgH). 
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Figure 1.3: The arginine and pyrimidine biosynthetic pathways in 

prokaryotes
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1.1.4.2 Carbamoyl phosphate synthetase 

Carbamoyl phosphate (CP) is a small energy rich compound (Cunin et al., 1986), 

produced using the enzyme carbamoyl phosphate synthetase (CPS) and the substrates L-

glutamine, bicarbonate and MgATP (Thoden et al., 1997). Carbamoyl phosphate is 

central to the synthesis of arginine and pyrimidines in both prokaryotic and eukaryotic 

organisms. 

Most prokaryotes employ a single CPS for all carbamoyl phosphate requirements. 

Bacillus and other closely related genera employ two distinct CPS designated CPS-A 

and CPS-P (Nicoloff et al., 2000). Utilising identical substrates, they differ only with 

respect to the pathways to which they supply carbamoyl phosphate to. CPS-A provides 

CP to the arginine biosynthetic pathway, and CPS-P to the pyrimidine biosynthetic 

pathway.  

CPS has been the subject of intense study for more than 40 years because of its 

interesting catalytic properties, large size and important metabolic role (Holden et al., 

1999). X-ray crystallographic studies of the E. coli CPS (Thoden et al., 1997) has 

identified it as having an �,ß-heterodimeric structure, comprising of a large and small 

subunit with the ability to interconvert to an (�,�)4-heterooctamer, depending on the 

presence of specific effector molecules (Kim & Raushel, 2001; Powers et al., 1980). 

The small subunit of the structure of CPS contains an aminotransferase domain that 

generates an ammonium ion from glutamine (Matthews & Anderson, 1972). The two 

domains of the large subunit catalyse the production of carbamoyl phosphate from 

delivered ammonium, bicarbonate and MgATP.  

Analysis of CPS from several other organisms has identified similar sizes of 160 kDa 

and shown to catalyse the same set of intermediate reactions (Meister, 1989). 

1.1.4.3 Metabolic channelling  

The production of CP occurs in four separate reactions (Figure 1.4). The presence of 

bicarbonate on an active site within the large CPS subunit causes the enzyme to be 

activated through the hydrolysis of a single MgATP to produce carboxyphosphate. The 

aminotransferase domain of the small subunit catalyses the hydrolysis of a single 

molecule of L-glutamine. This produces an ammonium ion that launches a nucleophilic 

attack on carboxyphosphate to produces carbamate. This conducts a nucleophilic attack 
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on another molecule of MgATP via a second active site within the large CPS subunit to 

produce CP.  

The intermediate products produced in the production of CP are highly reactive and 

unstable. Carboxyphosphate, with a half life of 70 ms (Sauers, 1975), is rapidly 

hydrolysed to carbon dioxide and inorganic phosphate (Purcarea et al., 2001), while 

carbamate, with a half life of just 28 ms (Wang et al., 1972), is rapidly decomposed to 

ammonia and carbon dioxide. To prevent decomposition and loss of these energetically 

costly intermediates, CPS has evolved a molecular transport channel to direct these 

intermediate products to the various active sites within the enzyme (Miles et al., 1999; 

Thoden et al., 1997). This mechanism of “metabolic channelling”, prevents  contact of 

the unstable intermediates with other cellular environments and competing systems, 

while reducing the transit time is not limited to CPS, and has been observed in other 

enzymes including tryptophan synthase (Hyde et al., 1988) and glutamine 

phosphoribosyl pyrophosphate amidotransferase (GPATase)(Krahn et al., 1997).  

The X-ray crystallographic studies of E. coli CPS has identified a 96� intermolecular 

channel connecting the three domains of the enzyme (Thoden et al., 1997). The first 

section of the channel connects the active site of the small subunit with the 

carboxyphosphate producing active site of the large subunit and is called the ammonia 

channel (Kim et al., 2002). The connection of the carboxyphosphate active site with the 

carbamate synthesising active site occurs by a carbamate channel (Kim et al., 2002). 
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Figure 1.4: The four reactions of carbamoyl phosphate synthetase. The four 
separate reactions that occur in carbamoyl phosphate synthetase to produce carbamoyl 
phosphate.  

1.1.4.4 Metabolic channelling in a wider context 

The analysis of the distribution of arginine and pyrimidine biosynthetic genes in 

different organisms has revealed two distinct conformations. Organisms utilising a 

single CPS such as E. coli show some clustering in these genes (Mountain et al., 1986), 

which remain separate from the single CPS (Figure 1.5). Organisms utilising two 

separate CPS have a greater degree of gene clustering, with distinct clusters that 

associate with individual biosynthetic systems. In B. subtilis the majority of biosynthetic 

genes for both the arginine and pyrimidine biosynthetic pathways are clustered around 

CPS-A and CPS-P respectively (Mountain et al., 1986) (Figure 1.5).  

The presence of two CP producing and utilising systems within a single organism could 

suggest that the produced CP may be being targeted to specific systems, especially as 

the duplication of CPS is potentially costly both in terms of efficiency and energy 

expenditure to the bacteria. The analysis of the closely related Lactobacillus plantarum

possessing two separate CPS with the degree of biosynthetic gene clustering 

surrounding each reduced (Bringel et al., 1997; Nicoloff et al., 2004), identified an 

inability for CP to be shared when produced by the arginine biosynthetic pathway but 
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an ability for it to be shared when produced by the pyrimidine biosynthetic pathway 

(Nicoloff et al., 2000). 

The presence of separate CPS and arrangement of the biosynthetic gene clusters 

surrounding individual CPS could imply the channelling of CP from distinct CPS 

through a macromolecular complex that is formed by the enzymes involved within the 

biosynthetic system and having a single entry and exit point. This would prevent 

substrates and intermediates from entering a central pool, (a view that has recently been 

challenged by evidence suggesting bacterial cells have cytoskeletons capable of higher 

order structures (Carballido-Lopez & Errington, 2003)) where they can be used by the 

next enzyme of a pathway or be lost to an unassociated pathway. The formation of 

macromolecular complexs would also allow the efficient and timely delivery of 

substrates to each componant of the biosynthetic system.  

Figure 1.5: Arginine and pyrimidine biosynthetic gene organisation in E.coli and 

B. subtilis. CPS-A represents the carbamoyl phosphate synthetase genes of the arginine 
biosynthetic system, surrounded by other components of the arginine biosynthetic 
system in B. subtilis. CPS-P represents carbamoyl phosphate synthetase genes of the 
pyrimidine system, surrounded by other components of the pyrimidine biosynthetic 
system in B. subtilis. CPS represents the carbamoyl phosphate synthetase genes of the 
arginine/pyrimidine system in E.coli. 

B. subtilis 

Arginine biosynthetic 
genes 

Pyrimidine biosynthetic 
genes 

E. coli 

Arginine biosynthetic 
genes 

Pyrimidine biosynthetic 
genes 
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1.2 Systems Biology introduction  

Biology is a complex field. To fully understand the properties, behaviours and 

mechanisms of biological systems, analysis must focus upon investigating complete 

systems and how their properties and behaviours originate as a property of their 

constituent components.  

Systems Biology is an approach that can be used to investigate this field (Kitano, 2002a; 

Kitano, 2002b), through the integration of experimental and computational analysis, in a 

process of iterative refinement.  

1.2.1 Complex systems  

A complex system is one that is made up of many interacting parts, that can be 

conveniently represented as a network (Proulx et al., 2005). The components and their 

interactions with one another lead to large scale behaviours and properties that can’t 

easily, if at all, predicted  by investigating individual components (Mitchell, 2002). 

These properties are said to be “emergent” (Kitano, 2002b).  

The investigation and analysis of such systems and how they produce emergent 

properties is of great interest, due to their abundance and influences on the world around 

us. Incorporating technical knowledge from many different fields, including 

cybernetics, general systems theory, chaos theory, non-linear dynamics, mathematics, 

and physics (Ahn et al., 2006). Its investigation has the potential to allow the 

understanding and prediction of the behaviour and properties of such systems. 

Examples of complex systems are common and widespread, both man-made and 

natural, exceptionally large and intricately small. The World Wide Web, stock markets 

and society are examples of the former (Barabasi, 2009), while ecosystems and the 

climate are examples of the latter (Mitchell, 2002).  

The types of emergent behaviour and properties that distinguish complex systems from 

simply “complicated systems” include: 

• An ability to self-organise (Coffey, 1998), (Finnigan, 2005): Patterns form 

within the system through interactions internal to the system without 

intervention from external directing influences (Camazine et al., 2001).   
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• A non-linear organisation (Coffey, 1998): In contrast to a linear organisation 

where a single perturbation affect only neighbours of the target, a single 

perturbation in a complex system may be propagated so that it affects 

multiple components.   

• An order/chaos dynamic (Janecka, 2007): As a complex system increases in 

size its behaviour becomes less predictable.  

1.2.2 Modelling complex systems  

With the realisation that much of the behaviour of complex systems is attributable to the 

emergent properties, rather than individual isolated parts, research has come to focus on 

a systems level approach to understanding complex systems (Kitano, 2002a). Systems 

level analysis and understanding of multiple interacting systems, containing potentially 

many thousands of components and interactions, requires a robust, accurate and rapid 

approach to analysis, beyond that of normal human capabilities. Recent advances in 

computer technology now make this achievable (Kitano, 2002a).  

To perform systems level analysis, components and their interactions must be 

represented in a form that is conducive to computational analysis, and that will allow 

the production of a two dimensional abstract network model, often termed as graphs 

(Figure 1.6). This approach is dependent on the availability of sufficient quantities and 

categories of quantitative data (Kitano, 2002b) about the components and interactions –

that lend themselves very well to mathematical analysis, ultimately producing a 

graphical representation of the system under study.   

The construction of graphs uses nodes to represent components of complex systems, 

and lines (or edges) to represent interactions between them (Ferrell, 2009). In many 

fields, including biology, multiple data sets and collection techniques are used. The 

weight and the direction of connection between interactions can be annotated to edges 

to fulfil specific requirements of analysis.  

The most common systems level models of complex systems are static “snap shots” of 

what is occurring within the network at the time from which measurements were taken. 

Network models that display dynamic properties exist, but because of the complexities 

in constructing and simulating them they are generally considerably smaller than their 

static counterparts (Albert, 2007; van Riel, 2006).  
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Figure 1.6: A graph model and its components. The nodes representing gene/gene 
products and edges representing the functional association between the nodes. B, The 
compilation of nodes and edges as would be seen in a typical complex system. This 
figure represents one of the first attempts of a protein  interaction map for 
Caenorhabditis elegans (C. elegans) (Li et al., 2004).  

These networks can take on specific spatial arrangements (topology) (Figure 1.7), 

dependent upon the subject being modelled and can include: 

• Ordered networks: Chains, grids, and lattice topologies. Nodes are associated 

with one another in an ordered and regular structure (Figure 1.7A). This 

topology facilitates the study of the behaviours of small groups of nodes, 

without the complexities of large integrated networks (Strogatz, 2001).  

• Random networks: Node association is random, as is the generated structure 

(Figure 1.7B)(Strogatz, 2001).�

• Small world networks: A middle ground between ordered graphs and random 

graphs, representing many real world networks (Strogatz, 2001). These graphs 

have regular network topologies, but some of the connections between nodes are 

replaced with random links (Figure 1.7C )(Watts & Strogatz, 1998).  

Edge  

Node 

A B 
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• Scale free networks:  A version of a small world network topology,  possessing 

many of its features in addition to some increased attachment to  individual 

nodes- that are collectively known as hubs (Figure 1.7D )(Strogatz, 2001). In 

this topological configuration, there is an increased probability of picking a 

random node that is connected to a hub, than one that is not. This topology is 

commonly seen in biological systems (Albert & Barabasi, 2002).  

Figure 1.7: The different network topologies. A graphical view of different network 
topologies.  A, An ordered regular lattice network topology. B, A random network 
topology with random edges between nodes. C, A small world network topology with 
some random edges. D, A scale free network topology with some preferential 
attachment to “hub” (yellow) nodes.    

The scale free topology (Figure 1.7D) lends itself well to resisting adverse changes, a 

property known as robustness (Callaway et al., 2000; Csete & Doyle, 2002). The 

network can resists the random removal of nodes with little detrimental effect to the 

underlying functioning of the system. Instead data is transmitted through hubs and to 

other nodes, which does not occur in random networks. Because of this property, scale 

free networks are found in situations where when random errors occur, it is imperative 

for the system to continue functioning, (e.g. biological systems and the World Wide 

Web (Barabasi & Oltvai, 2004)). This network topology however is very susceptible to 

A B C 

D 
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disruption when highly connected nodes are targeted (Kitano, 2002a), causing 

destruction of the network, a weakness not shared by a random network topology. 

The degree distribution (P(k)), a measure of the probability of selecting a particular

node with a particular number of edges (k) (Barabasi & Oltvai, 2004; Petermann & 

Rios, 2004) differs between network topologies. When plotted as histograms, random 

networks display a bell shaped distribution profile (Figure 1.8A)(Albert, 2005). Nodes 

picked at random have an average number of edges, with the exception of a few that 

have more and less and are represented by the sides of the curve. Scale-free networks 

display a power law distribution (Albert & Barabasi, 2002; Joyce & Palsson, 2006), 

where most nodes have only a few links. A few nodes have a very large number of 

links, which are called hubs, and connect the other nodes together (Barabasi & Oltvai, 

2004; Hu et al., 2005). The Probability of selecting a node with few edges is high, and 

nodes with greater numbers of edges decreases even as the network expands (Figure 

1.8B). This can occur as a result of preferential attachment of nodes to hubs as well as 

by the standard growth of the network (Barabasi & Albert, 1999).  

Figure 1.8: The degree distribution of random and scale free graph topologies. A, 
The degree distribution profile of a random network topology. B, The degree 
distribution profile of a scale-free network topology. k represents the number of edges 
and P(k) represents the probability of selecting a node with an expected number of 
edges. The degree distribution follows a bell shaped curve for a random networks, and a 
power law distribution for scale networks.     
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1.2.3 Complex network analysis  

The generation of network models can be studied using a variety of statistical and 

mathematical tools, which look into the connections of nodes within the network. From 

these measurements, predictions can be made as to functions and characteristics that 

may possibly be produced.  

There are many different analysis techniques available, with interest in this research 

field popular and varied, leading to constant developments. For the purpose of this 

investigation attention will be focused upon those adopted for use in this investigation. 

For a review of other potential methods, the reader is directed to the following 

publications (Barabasi & Oltvai, 2004; Mason & Verwoerd, 2007; Strogatz, 2001).

• Degree: A measurement of the number of  “edge” interactions a node has within 

a network (Diestel, 2005). A node that has a high degree, could suggest multiple 

interactions and possible participation in many different reactions.  

• First neighbour network: A network generated from all nodes sharing an 

interaction with the target node. The nodes that share this interaction could 

potentially be functionally related, and could give indications as to the function 

of unknown nodes by their associations with well characterised nodes and their 

interactions.    

• Clustering/module analysis: Clustering also known as modularity, refers to a 

set of nodes that appear to be more highly connected to one another than to the 

rest of the network (Mason & Verwoerd, 2007). The identification of clusters 

within the network and their interactions could indicate the presence of 

underlying systems. 

• Local cohesive co-efficient; The local cohesive co-efficient, describes the local 

cohesiveness of a node or set of nodes to other local nodes within the network 

(Albert, 2005; Mason & Verwoerd, 2007), potentially indicating the presence of 

a cluster. These values are given as a ratio. Values close to and including one, 

indicates that the node and close surrounding area of that node is highly 

connected. Values approaching and including zero, indicate less of a connection 

with surrounding nodes.  

• Path: The path describes the set of edges that are traversed when connecting any 

two nodes together (Diestel, 2005). 
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• Path length; The path length describes the number of edges that are traversed 

between target nodes (Narsingh, 2004). If the path length is less than the average 

for the network, it could indicate a potential pathway between nodes. 

• Shortest path; Describes the path of the least number of edges linking two 

nodes together. Multiple shortest paths may exist, and they could indicate the 

default pathway associations between nodes.     

1.2.4 Systems Biology, the study of complex systems in a biological context  

The adoption of a systems level approach to improve our understanding of biological 

systems began with the recognition of the limitations of traditional classical approaches. 

Molecular biology has traditionally adopted a reductionist approach, where the 

individual components of a system are considered outside the context of the entire cell. 

To develop an understanding of the entire system, research would first focus on 

individual components, trying to reconstruct the biological system to which it belonged 

in what has become known as a “bottom up” approach (Bruggeman & Westerhoff, 

2007; Kitano, 2000). Although such an approach has been successful in explaining the 

chemical basis of numerous living processes, its limitations for analysing the enormous 

complexity of biological systems are being increasingly recognised to provide few 

insights into observed emergent properties (Van Regenmortel, 2004). Bottom up 

approaches are beginning to be complemented by systems level approaches that 

attribute specific behaviours and properties to emergent properties of the whole system 

(Little et al., 1999), replacing the traditional approach, with that of a “top down” 

holistic approach (Kitano, 2000). Currently both of these complementary approaches 

are being applied as the technology and methods for the latter are developed and tested.  

The first attempts to apply complex systems theory to biology was taken in the 1960’s 

(Short, 2009). However the experimental techniques and approaches available at the 

time produced insufficient quantitative data to make this approach viable, and interest 

was lost.  With the emergence of various technological and methodological advances, 

particularly  in computational biology and high-throughput technologies that have 

focused  (Galperin & Ellison, 2006), (Alm & Arkin, 2003) on genomics and proteomics 

(Kitano, 2002a), interest has been revived (Ahn et al., 2006; Short, 2009). These 

advances have provided researchers with “omic” scale quantitative data sets and the 

means by which to process, model and analyse them. 
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The application of Systems Biology, to biological systems analysis will not only 

increase our current knowledge of biological processes and systems, but will continue to 

alter the ways in which research is conducted, shifting from traditional hypothesis to 

data driven experimentation approaches.  

1.2.4.1 Functional interaction network models, an integrated approach  

The relationships between genes and the proteins they encode within biological systems 

can be mapped as “traditional” graphs, using physical, functional or genetic data sets, 

with the coverage and accuracy of the produced graph reliant on the collected data 

(Hallinan & Wipat, 2007).  

Functional interaction networks, have been developed to complement these “traditional” 

graphs (Lee et al., 2004). Using a variety of integration techniques, data from multiple 

sources can be combined, to make the best predictions from multiple data sources 

overcoming the discussed limitations (Hallinan & Wipat, 2007) and giving insights that 

may previously not have been seen (Halinnan et al., 2009). Such graphs represent a 

more accurate and better represention of the system that they model.    

1.2.4.2 Probabilistic functional networks  

Through the course of typical research, researchers acquire a mass of quantitative data, 

with often only a small proportion being used, the rest simply residing in archives, and 

databases as a multitude of different data formats. These large dataset collections have 

often been produced using diverse collection techniques, which have analysed multiple 

different aspects of organisms, making them ideal to generate comprehensive functional 

interaction networks. This task is being aided by new technologies and methods that are 

allowing the integration of the collections of data that are in different formats. 

As an example of integrating data sets together, functional interaction networks that are 

themselves probabilistic (PFIN) – assigning probability of the reliability as to a given 

functional association can be produced. These networks allow the prediction of 

functional interactions between node and node products within the network, despite 

absences in known functional properties for node and node products. PFINs have been 

compiled for several Bacillus species (Craddock, 2008). 

Craddock, investigated the secreted proteins (secretome) of 11 Bacillus species, both 

pathogenic and non pathogenic. A number of protein families were found to be either 
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common to all tested species or specific. A number of protein families with unknown 

functions were identified, from which a more detailed investigation was conducted. 

To aid in determining the function of these unknown secreted protein families, data 

integration, modelling and analysis frameworks collectively termed SubtilNet were 

developed and applied to all the species studied.  SubtilNet integrated 11 data sources, 

spanning genetic, biochemical and computational fields, using the approach adopted by 

Lee (Lee et al., 2004). This data was then scored and weighted using a probabilistic 

Bayesian approach (Needham et al., 2006), producing a PFIN. This PFIN was used to 

analyse the uncharacterised secreted protein families, determining  their association 

with known genes and their products and then by using a “guilt by association” 

approach (Oliver, 2000) determining their function.  

1.2.4.3 Examples of Systems Biology generated models  

Systems Biology approaches have been used to simulate small and large scale systems, 

with examples including bacterial chemotaxis (Hansen et al., 2008) feedback circuits 

(Oda et al., 2005), signal transduction pathways (Bhalla & Iyengar, 1999; Schoeberl et 

al., 2002)  and simplified models of cell cycles (Chen et al., 2000).  

Attempts to create larger scale systems include, E. coli (Butland et al., 2005) and 

Helicobacter pylori (Rain et al., 2001) to virtual organs that represent essential features 

in silico (Bassingthwaighte et al., 2009; Bassingthwaighte, 2000). The Physiome 

project, led by Denis Noble has produced one such example. Integrating multiple 

generated models produced from genetics and physiology data to produce a virtual 

human heart model (Noble, 2002). This has allowed for the prediction of drug side 

effects (Noble, 2005) and aid in the design of Ranolazine (Noble, 2008), an FDA 

approved anti-angina medication. 

In another such example the drugs company Pfizer is applying Systems Biology in an 

attempt to model diabetes, so that it can develop treatments to it, as well as to other 

insulin resistant diseases. 
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1.3 Therapeutic compound discovery  

1.3.1 Introduction 

Illness is often attributed to the malfunction of a limited number of components within a 

biochemical pathway, and the interconnectedness of this pathway to others, results in 

wide spread knock on effects and the symptoms associated with illness.  

Over the last century, numerous approaches have been used to discover and develop 

therapeutic compounds. These include the screening of vast repositories of artificially 

synthesised compounds against multiple targets in a trial and error approach, as occurs 

in many pharmaceutical establishments, the identification and isolation of active 

compounds from traditional effective herbal preparations, or the development of 

existing licensed compounds for new applications (Butcher et al., 2004; Davidov et al., 

2003), following the discovery that side effects produced were desirable in other 

conditions and applications.  

Successful candidates although producing desired effects, also often produce a plethora 

of undesirable effects, such as cellular toxicity, sub-optimal pharmacokinetics or cross 

reactions with other medications/biological systems. These side effects are a result of 

the non specific nature of the identified therapeutic compound, binding to and 

interfering with other biochemical pathways and systems (Hood & Perlmutter, 2004; 

Tatonetti et al., 2009). As a consequence of this, manufacturers develop and modify 

these compounds in such a way as to produce a compromise between desired effects, 

while trying to limit and where possible remove observed side effects while maintaining 

effectiveness. It is because of this approach that current therapeutic design is subject to 

multiple stages of testing prior to certification, and use by the mainstream user.   

1.3.2 Compound evaluation, certification and marketing  

The identification, development and marketing, of successful therapeutic compounds 

involve multiple stages (Figure 1.9), beginning with the identification of potential 

therapeutic candidates. These candidates enter an optimisation stage where they are 

chemically altered, to improve their drug-like qualities. Successfully modified 

candidates become known as lead compounds, and proceed to the next stage of 

development, pre-clinical testing. In this stage lead compounds undergo a 

comprehensive set of analyses with respect to pharmacokinetics and dynamics, toxicity, 

teratogenicity, and carcinogenicity. This is conducted in a range of models systems that 
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increases in complexity giving the developer indications as to their likely biological 

activity and behaviour in clinical contexts. The time taken to proceed through these 

three stages of testing can range in time up to 10 years (Sindelar, 2002).   

The lead compounds successfully passing pre-clinical testing stages enter a first phase 

of clinical trials, typically lasting up to six years (Sindelar, 2002). Here the compound is 

tested in 20-80 healthy volunteers to establish safety, tolerability and pharmacokinetics. 

This analysis is then repeated in 20-80 mildly symptomatic volunteers, while at the 

same time initial studies into the efficacy of the compound are carried out.  

Compounds that pass the first clinical stage of testing enter a second phase of clinical 

trials, lasting approximately two years. This stage determines the efficacy and optimal 

dose of the lead compound after it’s tested on 100-300 symptomatic volunteers. It is 

during this stage that existing drugs that are applying for certification for new 

applications enter testing. 

Compound passing the second stage of clinical trials enter into the third and final 

clinical stage, lasting up to 4 years (Sindelar, 2002). During this stage evidence of the 

long term efficacy of the compound on 1000-3000 volunteers is determined and 

provided to licensing bodies.  

The final stage of therapeutic compound development involves post market research 

which is aimed at monitoring the use of the drug for additional benefits/side effects and 

its suitability for use for other conditions.   

Figure 1.9: The steps involved in drug development. The developmental stages 
involved in the identification, and development of new therapeutic drugs.
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1.3.3 Systems Biology and its application to therapeutic target discovery  

The development of a new drug requires significant investments of time and capital. 

From initial compound testing to market takes on average 12 years, at a cost around 800 

million dollars (DiMasi et al., 2003), and with no guarantees of success. Due to this and 

the failure rates within the developmental process, pharmaceutical companies have 

always tried to predict and restrict the number of compounds entering the later, more 

costly developmental stages of drug development. 

Typically 5000 candidate compounds will enter initial testing stages, with only one 

successfully licensed as a therapeutic compound (Carroll, 2007). This licensed 

compound must then be competitive enough to generate the developing company a 

profit of at least $500 million a year (Rawlins, 2004) to cover developmental costs. If 

successful, a drug can earn many times the capital spent on its development, protected 

for a minimum of 20 years by trade-related intellectual property rights (TRIPS). 

Lipitor® (Atorvastatin), a cholesterol lowering compound, earned its developers, Pfizer, 

$12.4 billion US (2008) and Avastin® (Bevacizumab) a monoclonal antibody 

preparation used to treat a range of cancers, earned its makers, Genentech, $2.6 billion 

US (2008). 

With these factors in mind, developers are reluctant to focus on the development of new 

drugs for unproven targets and/or for unprofitable medical conditions tending to focus 

on compounds and conditions that are clinically well understood and with a high 

probability of being financially successful (Rawlins, 2004). 

Realising the causes of illness results from the malfunction of specific components 

within a highly connected system, system biology is attempting to identify these 

individual targets, and allowing the development of compounds specifically to them, 

leaving surrounding targets and systems unaffected by them. This task has been aided 

by the discovery that many biological networks have a scale-free topology, and are 

composed of a few highly connected hub nodes which could potentially: 

• Identify targets for future drug design 

• Identify mechanisms that contribute to system  

• Provide insights into how drug resistance develops    
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This approach will ultimately reduces the development time, produces more efficient, 

targeted and successful compounds with fewer side effects, reduced development costs 

and produce highly detailed evidential analysis, prior to any expensive laboratory 

testing.   

The successful adoption of a complete system level analysis to drug design is still many 

years away. In the short term, systems level analysis will facilitate a better 

understanding of current drug action, particularly for the surprising large number drugs 

where their mode of action is poorly understood. This improved knowledge will also 

provide insights into how their activity can be improved, but ultimately, the wet lab 

approach to therapeutic design could be replaced with an entirely in silico approach. 

This has the potential to considerably reduce of the time taken to produce and licence a 

drug as well as holding out the prospect of developing new compounds/targets for 

currently un-studied/non profitable conditions as well as tailored genetic medications. 

1.3.4 Systems Biology’s benefits and limitations to future therapeutic target and 

compound discovery  

As technology develops, so too does our understanding of key areas of biology. The 

technology and knowledge already acquired is slowly being adopted by researchers and 

pharmaceutical companies for use in system level approaches that compliment existing 

research methods. A paradigm shift will only be made when there is a more 

comprehensive adoption of systems level approaches for tackling the more recalcitrant 

challenges in biology that currently defies resolution by conventional approaches.  
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1.4 Aims and objectives 

The following are the aims and objectives of this investigation: 

• To develop and implement a testing method that can be used  to validate gene 

candiates, identified by e-Therapeutics using a data driven approach, that could 

act as potential therapeutic targets. 

• To develop and validate a functional interaction network, that can then be used 

to identify and analyse possible linkages between the identified candidates. 

• To use the newly generated network to develop possible explanation for the 

experimental observations seen. 

• To use a hypothesis driven approach to question the chromosomal organisation 

of genes involved in arginine and pyrimidine (uracil) biosynthesis in B. subtilis, 

and wether this leads to the targetting of individual system produced CP. 

• To use the functional interaction network to investigate the arginine and 

pyrimidine biosynthetic pathways with respect to the questions raised by 

experimental analysis. 



                   

Chapter 2 

Experimental Materials and Methods 
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2. Experimental Materials and Methods 

2.1 Media and buffers 

2.1.1 Luria-Bertani (LB) media (Sambrook et al., 1989) 

Per litre: 5g yeast extract, 10g sodium chloride, 5g tryptone was added to 900 ml of 

deionised water. The pH was adjusted to 7.0 with either sodium hydroxide (NaOH), or 

hydrochloric acid (HCl) and the volume made up to 1 litre with deionised water. The 

medium was autoclaved at 15 psi.  

2.1.2 LB agar  

As 2.1.1 but with 10g bacteriological agar added to the final volume of LB, before 

being autoclaved at 15psi.  

2.1.3 LB for salt shock experiments 

All LB was made to 1 litre as described in 2.1.1 with the quantity of NaCl replaced with 

those shown in table 2.1 to produce the final concentrations of 5,9,13,17,21 and 25 % 

(w/v).  

Table 2.1: NaCl quantities to produce specific % NaCl (w/v) LB 

NaCl (g/litre) % (w/v) 

50 5 

90 9 

130 13 

170 17 

210 21 

250 25 
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2.1.4 Tris-Borate-EDTA (TBE) buffer (5 x stock)  

Per litre: 53.9g Tris-base, 27.5g boric acid and 3.75g ethylenediaminetetraacetic acid 

(EDTA) was added to 800 ml of deionised water. The pH was adjusted to 8.0 using 

HCl, and the volume made up to 1 litre with deionised water.  

2.1.5 Glycerol solution 80% (v/v) 

Per 200 ml: 40 ml of deionised water was added to 160 ml of 100% glycerol (v/v). The 

mixture was autoclaved at 15 psi. 

2.1.6 Minimal salts solution (5 x stock)(Bron, 1990) 

Per 200 ml: 2 g (NH4)2SO4, 14.8g of  K2HPO4, 5.4g of  KH2PO4, 1.9g of Na3C6H5O7

and 0.2g of MgSO4.7H20 was added to 180 ml of deionised water. The pH was adjusted 

to 7.0 and the volume made up to 200 ml with deionised water. The mixture was 

autoclaved at 15 psi.  

2.1.7 Minimal growth medium (Bron, 1990)  

Per 200 ml: 40 ml 5 x minimal salts solution, 2.5 ml glucose (40 % w/v), 400 µl 

tryptophan (10 mg/ml), 200 µl ammonium iron citrate (2.2 mg/ml) and the volume 

made up to 200 ml with deionised water, before being filter sterilised.  

2.1.8 Starvation media (Bron, 1990) 

Per 200 ml: 40 ml 5 x minimal salt solution, 2.5ml glucose (40 % w/v), and the volume 

made up to 200 ml with deionised water, before being filter sterilised.   

2.1.9 Glucose solution 40% (w/v)  

Per 10 ml: 4g glucose added to deionised water and the volume made up to 10 ml. The 

solution was filter sterilised and stored at 4oC. 

2.1.10 Phosphate buffered saline (PBS) (10 x stock)  

Per litre: 1.44g of Na2HPO4, 8g of NaCl, 0.2g of KCl and 0.24g of KH2PO4  added to 

800 ml deionised water. The pH was adjusted to pH 7.4 with HCl, and the volume made 

up to 1 litre with deionised water. The mixture was autoclaved at 15 psi. 
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2.1.11 Casamino acid solution 20% (w/v) 

Per 10 ml: 2g Casamino acid, added to deionised water and the volume made up to 10 

ml. The mixture was filter sterilised and stored at 4oC. 

2.1.12 Calcium chloride solution (0.1M) 

Per litre: 11.1g CaCl2 added to deionised water and made up to a final volume of 1 litre. 

The mixture was autoclaved at 15 psi.  

2.1.13 Magnesium chloride solution (0.1M) 

Per litre: 12.6g MgCl2 added to deionised water and made to a final volume of 1 litre. 

The mixture was autoclaved at 15 psi. 

2.1.14 Magnesium sulphate solution (1M) 

Per 10 ml: 1.2g MgSO4 added to deionised water and made to a final volume of 10 ml. 

The mixture was autoclaved at 15 psi. 

2.1.15 Lysosyme solution (20 mg/ml) 

Per 1 ml: 20 mg of lysosyme was added to 1x TE buffer with the volume being made up 

to 1 ml. It was then filter sterilised. This solution was prepared fresh.

2.1.16 Tryptophan solution (10 mg/ml)  

Per 10 ml: 100 mg tryptophan added to deionised water and made to a final volume of 

10 ml. The mixture was filter sterilised and stored at 4oC. 

2.1.17 TE buffer (10 x stock) 

Per litre: 12.2g Tris-base and 3.0g EDTA was added to 800 ml of deionised water and 

the pH adjusted to 7.4 using HCl. The solution was made up to 1 litre and autoclaved at 

15 psi. 

2.1.18 Xylose solution 50% (w/v)  

Per 20 ml: 10g xylose added to deionised water and made up to a final volume of 20 ml. 

The mixture was filter sterilised and stored at 4oC.
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2.1.19 IPTG solution (0.1M)  

Per 10 ml: 238mg IPTG added to deionised water and made up to a final volume of 10 

ml. The mixture was filter sterilised and stored at 4oC. 

2.1.20 Ammonium iron citrate solution (2.2mg/ml)  

Per 10 ml: 22 mg ammonium iron citrate was added to deionised water and made up to 

a final volume of 10 ml. The mixture was filter sterilised, wrapped in foil to protect 

from light and stored at 4oC.  

2.1.21 Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) 

running buffer (10 x stock)  

Per litre: 30g Tris-base, 144g glycine and 10 g SDS was added to deionised water and 

made up to a final volume of 1 litre.    

2.1.22 SDS resolving gel buffer (4 x stock)  

Per litre: 180g Tris-HCl and 4g SDS was added to deionised water and made up to  a 

final volume of 1 litre. 

2.1.23 SDS stacking gel buffer (4 x stock) 

Per litre: 60g Tris-HCl and 4 g SDS was added to deionised water and made up to a 

final volume of 1 litre.  

2.1.24 Comassie stain  

Per litre: 250 ml CH3OH (HPLC) and 70 ml glacial acetic acid was added to deionised 

water  and made up to a final volume of 1 litre, to which a 0.1% serva blue tablet was 

added and the solution filtered through Whatman #1 filter paper.  

2.1.25 SDS-PAGE de-stain  

Per litre: 250 ml CH3OH (HPLC) and 70 ml glacial acetic acid was added to deionised 

water and made up to a final volume of 1 litre. 

2.1.26 Antibiotics  

All antibiotic used in this investigation and their concentration are described in Table 

2.2. Antibiotics were filter sterilised and stored at -20oC. 
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Table 2.2: Antibiotics and working concentrations used in this investigation  

Antibiotic Stock Concentration 
Working  

Concentration   
(µg/ml) 

Ampicillin  (Amp) 100 mg/ml in sterile 
deionised water 

50 

Lincomycin  (Lm) 1 mg/ml (100% 
ethanol) 

25 

Erythromycin (Em) 25 mg/ml in ethanol 
(50% v/v) 

0.3 

Nalidixic acid (Na) 10 mg/ml in sterile 
deionised water 

300 

Vancomycin (Vm) 10 mg/ml in sterile 
deionised water 

2.0 

Streptomycin (Str) 10 mg/ml sterile 
deionised water 

80 

Kanamycin (Km) 2 mg/ml sterile 
deionised water 

10 

Tetracyclin (Tet) 10 mg/ml in 
methanol 50% (v/v) 

2.5 

Rifampicin (Rif) 4 mg/ml in methanol 
50% (v/v) 

0.06 

Chloramphenicol (Cm) 10 mg/ml in ethanol 
70% (v/v) 

7 



2. Experimental Materials and Methods                                                                         34                   

  

2.1.2.8 Bacterial strains 

Table 2.3: Bacterial strains 
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2.1.2.9 Plasmids 

Table 2.4: Plamsids 
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2.2 Maintenance 

2.2.1 Strain maintenance 

All strains were streaked onto fresh LB agar plates with the appropriate antibiotic and 

inducer if applicable (1mM IPTG/1% (w/v) xylose), and incubated overnight at 37�C. 

The following day a single colony was inoculated using a wire loop into 5 ml LB media 

containing appropriate antibiotics and grown overnight at 37�C with shaking at 200 

rpm. The following day 750 µl was removed and added to 750 µl 80% (v/v) glycerol 

and frozen at -80�C.  

2.2.2 Maintenance of genomic, plasmid and primer DNA  

B. subtilis genomic and plasmid DNA was stored in sterile 1 x TE buffer at 4�C. 

Primers were supplied lysophilised and were re-hydrated to a final concentration of 100 

mM with sterile double deionised water and stored at -20�C. Working stocks were also 

produced at a concentration of 20mM and maintained at 4�C. 

2.3 Molecular Methods  

2.3.1 Isolation of chromosomal DNA 

The extraction of chromosomal DNA was performed using the Qiagen DNeasy blood 

and tissue kit. A single colony of B .subtilis was inoculated into 10 ml of LB with 

appropriate antibiotics in a 250 ml conical flask and grown overnight at 37�C with 

shaking at 200 rpm. The following day, 3 ml of culture was removed and distributed to 

two micro-centrifuge tubes. Tubes were centrifuged at 11,000 g for 10 minutes and the 

supernatent removed.  

Lysosyme (20mg) was dissolved in 1 ml of 1 x TE buffer and filter sterilised. 180 µl of 

this solution was used to resuspend a bacterial pellet and then this mixture used to 

resuspend the remaining pellet. The sample was incubated for 30 minutes at 37�C, after 

which 25 µl of proteinase K was added, together with 200 µl of buffer AL. The mixture 

was incubated for 30 minutes at 56�C, after which time 200 µl ethanol was added and 

mixed by vortexing. The mixture was then transferred to a separate DNA binding spin 

column and centrifuged at 6,000 g for 1 minute, discarding the flow through. 500 µl of 

AW1 buffer was added to the spin column and centrifuged for 1 minute at 6,000 g 

discarding the flow through. 500 µl AW2 buffer was added to the spin column and 

centrifuged at 11,000 g for 3 minute discarding the flow through. Finally, the spin 



2. Experimental Materials and Methods                                                                         40                   

column was transferred to a fresh micro-centrifuge tube, 100 µl of AE buffer added and 

centrifuged for 1 minute at 6,000 g. This was repeated a second time. The eluted 

chromosomal DNA was then stored at -20�C.     

2.3.2 Isolation of plasmid DNA 

Plasmid isolation was performed using a Promega Wizard Plus SV miniprep DNA 

purification system. 10 ml of LB in a 250 ml conical flask with the appropriate 

antibiotic added was inoculated with a single tested colony of E. coli containing the 

plasmid, and incubated overnight at 37�C with shaking at 200 rpm. The following day, 

3 ml of the overnight culture was pelleted in two micro-centrifuge tubes at 11,000 g for 

5 minutes. Single pellets were suspended with 250 µl of resuspension solution and then 

this mixture used to resuspend the remaining pellet. 250 µl of cell lysis solution was 

then added, and the sample inverted 4 times. 10 µl alkaline protease solution (25 µg/ul) 

was added, the sample inverted 4 times and incubated at room temperature for 5 min. 

350 µl neutralising solution was added, the sample, inverted 4 times and pelleted in a 

micro-centrifuge tube at 11,000 g for 10 min. The supernatant was carefully removed 

ensuring the pellet was not disturbed, and decanted to a spin column. The spin column 

was centrifuged at 11,000 g for 1 min and the flow through discarded. 750 µl wash 

solution was added to the spin column and centrifuged at 11,000 g for 1 min. The flow 

through was discarded and the column washed again. The spin column was placed in a 

sterile micro-centrifuge tube to which 100 µl of nuclease free water and 11 µl of 10 x 

TE buffer was added and incubated at room temperature for 1 minute. The column was 

then spun at 14,000 g for 1 minute and the eluted plasmid DNA stored at -20�C.   

2.3.3 Polymerase chain reaction   

The polymerase chain reaction (PCR) was used to amplify specific regions of DNA.  In 

this investigation, PCR was used for both cloning and rapid diagnostic testing. The 

primers used in PCR reactions were designed  to have a G+C content of less than 50%, 

a length of no less than 20 base pairs and to have melting temperatures (Tm) of no more 

than 5�C difference between complementing pairs.  Primers were designed by hand and 

checked for compatibility, melting temperature and secondary structures on the Sigma-

Aldrich website (www.Sigma-Aldrich.co.uk).  



2. Experimental Materials and Methods                                                                         41                   

2.3.4 Standard PCR 

For the production of genomic material used in the production of knockout (KO) 

strains, PCR reactions were conducted using Taq polymerase (NEB) in a 50 µl reaction 

mixture (Table 2.5). PCR was conducted over 30 cycles with the reaction conditions 

specified in Table 2.6.  

Table 2.5: PCR reaction mixture  

Table 2.6: KO PCR conditions (over 30 cycles)  

Reagent Amount (�l per 50 �l) 

Forward Primer (20 �M) 5 

Reveres primer (20 �M) 5 

dNTP (10 mM) 1 

B. subtilis chromosomal 

DNA 

5 

ddH20 28 

10 x Taq buffer 5 

Taq polymerase  1 

Temperature (�C) Time (Min) 

Phase pMUTIN 4 pSG1164 pMUTIN pSG1164 

Initial denaturation 95 95 5 5 

Denature 94 94 1.5 1.5 

Anneal 52 49 1.5 0.5 

Extension 68 72 2 1 

Soak 4 4 - - 
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For the production of genomic material for heterologous protein production, PCR was 

conducted using the proof-reading polymerase enzyme Platinum®� Pfx polymerase 

(Invitrogen) as per reaction mixture in Table 2.7 and reactions conditions in Table 2.8.  

Table 2.7: PCR reaction mixture for the production of heterologous proteins  

Table 2.8: Heterologous protein production PCR conditions (over 30 cycles) 

Reagent Amount (�l per 50�l) 

10 x Platinum®�Pfx

amplification buffer 

5 

MgSO4 (50 mM) 1 

dNTP mixture (10 mM)  1.5 

Platinum®�pfx polymerase 1 

B. subtilis chromosomal 

DNA 

5 

ddH20 33 

Forward primer (10mM) 0.75 

Reverse primer (10mM) 0.75 

Phase Temperature (�C) Time (Min) 

Initial denaturation 94 2 

Denature 94 15 

Anneal 55 30 

Extend 68  1 per kb 

Soak 4 - 
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2.3.4.1 Primers for KO experiments 

Table 2.9: Primers for KO experiments 
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2.3.4.2 Primers for arginine and pyrimidine (uracil) biosynthetic system 

investigation 

Table 2.10:  Primers for arginine and pyrimidine (uracil) biosynthetic system 

investigation 
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2.3.5 Colony PCR 

A rapid diagnostic PCR method was used for the validation of construct or mutant 

status. A single colony from an LB plate was resuspended in 20 µl of sterile double 

deionised water in a 1.5ml micro-centrifuge tube and placed in a 100�C water bath for 

10 minutes. Samples were then centrifuges at 11,000 g for 5 minutes and the 

supernatant used in the Taq PCR reaction in place of genomic DNA.  

2.3.6 Gel electrophoresis  

The visualisation and sizing of PCR products and plasmids was performed by gel 

electrophoresis. Samples were mixed with 6 x loading dye (Promega) and loaded onto 

0.8% agarose gels (100 ml 1 x TBE, 0.8g agarose and 5µl of ethidium bromide) against 

Promega 1 kb and 100 bp standards. The gel was electrophoresed at 70V for 50 

minutes.  

2.3.7 Purification of DNA  

DNA was purified from agarose gel using the Qiagen QIAquick PCR purification Kit.  

DNA containing gel fragments were excised from the agarose gels and weighed within 

a micro-centrifuge tube. Three gel volumes of GC buffer were added to the fragment 

and heated to 50�C until the fragment had melted. The samples were vortexed 

intermittently as per the manufacturer’s instructions. Once melted, a single gel volume 

of isopropanol was added to the gel mix and vortexed. The mixture was transferred to a 

DNA binding column and centrifuged at 11,000 g for 1 minute, The flow through was 

discarded, 500 µl of QG buffer added and the spin column centrifuged at 11,000 g for 1 

minute. The flow through was again discarded, 750 µl of PE buffer added and the spin 

column centrifuged at 11,000 g for 1 minute. Following the removal of the flow 

through, the spin column was dried by centrifuging at 11,000 g for 1 minute and 

transferred to a fresh micro-centrifuge tube where 50 µl of EB buffer was added, the 

sample incubated for 1 min and centrifuged for 1 min. The eluted DNA was stored at      

-20�C.      
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2.3.8 Cloning   

2.3.8.1 Restriction digest 

Restriction digests of both plasmids and amplified chromosomal DNA was designed to 

generate overlapping ends. The reactions were conducted sequentially using restriction 

endonucleases (NEB) in a final volume of 40 �l at 37�C for 3 hours.  Digestion 

reactions involving chromosomal DNA were inactivated by heating (where a suitable 

restriction endonuclease had been used) to 80�C for 20 min. Digested DNA not suitable 

for heat inactivation together with all plasmid digestions were subjected to gel 

electrophoresis, and the required fragments purified from the gels by the DNA 

purification procedure (2.3.7). The composition of the digestion mixture is shown in 

Table 2.11.   

Table 2.11: Restriction digest reaction mixture  

Reagent Volume (�l) 

Restriction enzyme 1 

(20 Units/�l) 

1 

Restriction enzyme 2 

(20 Units/�l) 

1 

DNA  

(30 ng/�l) 

20 

Buffer 4 

10 x Bovine serum 

albumen (BSA) 

4 

Sterile double deionised 

water 

10 
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2.3.8.2 Ligation reaction  

Purified linearised plasmid and insert DNA were quantitated and ligated together in a 

vector to insert ratio of 1:4 with T4 DNA Ligase (Promega). The reaction mixture was 

incubated overnight at 4�C. The composition of the ligation mixture is shown in Table 

2.12.  

Table 2.12: T4 DNA ligase reaction mixture  

Reagent Volume (�l) 

T4 DNA Ligase 

(2 units/�l) 

1 

10 x T4 DNA Ligase 

buffer 

1 

Insert Calculated according 

to size 

Vector  100 ng 

Sterile double 

deionised water 

To a final reaction 

mixture volume of 

10�l  

2.3.9 E. coli transformation   

2.3.9.1 Generation of chemically competent E. coli cells 

E. coli was treated chemically to induce competency. 100 ml of LB in a 250 ml conical 

flask was inoculated from an overnight culture and grown to mid-exponential phase 

(OD600nm 0.5).  Cells were pelleted for 5 minutes at 3,000 g and 4 oC and the supernatent 

discarded. Cells were resuspended in 25 ml of ice cold 0.1M MgCl2 and left to incubate 

on ice for 10 minutes. Cells were then pelleted at 3,000 g and 4 oC for 5 minutes, and 

the supernatent discarded.  Cells were resuspended with 12.5 ml of ice cold CaCl2 and 

incubated on ice for 30 minutes. Cells were pelleted at 3,000 g and 4 oC for 5 minutes 

before being resuspended in 2 ml of ice cold CaCl2 containing 15% (v/v) glycerol. This 
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solution was distributed into 100µl aliquots in sterile micro-centrifuge tubes, snap 

frozen in liquid nitrogen and stored at -80oC.  

2.3.9.2 Transformation of chemically competent E. coli cells  

Frozen competent E. coli cells (100 µl) were thawed on ice. Once thawed the 10 µl of 

ligation mixture was added to the cells, mixed gently and returned to ice for a further 30 

min. The mixture was heat shocked at 42�C for 45 seconds and returned to the ice for a 

further 2 min. 900 µl of LB broth was added to each aliquot of transformed cells and 

incubated for 90 min at 37�C with shaking at 200 rpm, before being plated on to LB 

media containing a selective antibiotic.  

2.3.10 B. subtilis transformation  

2.3.10.1 Generation of competent B. subtilis cells (Bron, 1990)   

B. subtilis becomes naturally competent towards the end of exponential growth phase in 

response to nutrient starvation. Cells from a single colony on a standard LB plate were 

inoculated in to 10 ml of minimal medium in a 250 ml conical flask and grown 

overnight with shaking at 200 rpm at 37oC for 18 hours. The following day 1.4 ml of 

overnight culture was added to a 250 ml conical flask containing 10 ml of fresh minimal 

medium. This was grown at 37oC with shaking at 200 rpm for 3 hours after which time 

11 ml of starvation medium was added. The culture was grown for a further 3 hours 

after which 2.49 ml of 80% (v/v) glycerol was added and 1 ml aliquots removed and 

distributed to sterile micro-centrifuge tubes, snap-frozen in liquid nitrogen and stored at 

-80oC. 

2.3.10.2 Transformation of competent B. subtilis cells (Bron, 1990) 

10µl of plasmid DNA was added to 400 µl of competent B. subtilis cells and incubated 

for 1 hour at 37oC with shaking at 200 rpm, before being plated on to selective 

antibiotic LB plates.   

2.4 Screening and validation of transformants  

2.4.1 Validation of pMUTIN4 and pSG1164 KO mutants   

Chromosomal DNA was used in a diagnostic PCR to confirm the authenticity of all 

putative KO’s. This was done when the single mutations were generated with either 

pMUTIN4 or pSG1164, and after the single mutations were combined in a single cell to 
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generated double mutants. The primer pairs used for the validation of mutations 

involved a forward primer that annealed to either the Pspac, or Pxyl promoters of the 

pMUTIN4 or pSG1164 plasmids respectively, and the reverse primer used to generate 

the insert. Clones positive for this initial screen were then confirmed with a primer pair 

that annealed to sequences flanking the insert.  Each insert, as well as areas outside of 

insert integration were used to perform PCR reactions on chromosomal DNA extracted 

from B. subtilis mutants confirming the presence of inserts as well as their orientation. 

2.5 Analysis of therapeutic targets  

2.5.1 Sample preparation for high-throughput analysis  

To maximise the reproducibility of data from the high-throughput analyses, the 

generated mutants were prepared ready to be tested in a high-throughput manner in the 

following way. Mutant strains were streaked from glycerol stock onto fresh LB agar 

containing the appropriate inducer (1mM IPTG/1% (w/v) xylose), and grown overnight 

at 37oC. The following day a single colony from each mutant was inoculated into 3 ml 

of LB in a test tube with loose fitting lid, containing the appropriate inducer and grown 

overnight for 18 hours. The following day the cultures were diluted 10-fold and the OD 

determined at 600 nm. The OD was used to determine the amount of the overnight 

cultures required to inoculate 20 ml pre-warmed LB containing inducer in 250 ml flasks 

to an OD of 0.01. Cultures were grown at 37oC with shaking at 200 rpm in a water bath 

until an OD of 0.5.  12 ml of cultures were removed and added to 4 ml of ice-cold 80 % 

glycerol (v/v). A multi channel pipette was then used with pre-cooled tips to aliquot 250 

µl of culture to pre-cooled PCR tubes and stored at -80 oC. 

2.5.2 Sample preparation for low-throughput analysis  

Mutant strains were streaked from glycerol stock onto an LB agar containing the 

appropriate inducer (1mM IPTG/1% (w/v) xylose) and grown overnight at 37oC. The 

following day a single colony from each mutant was used to inoculated 3 ml of LB 

containing inducer and grown overnight for 18 hours with shaking at 200 rpm at 37oC. 

Pre-warmed 250 ml conical flasks containing 25 ml of LB broth, and inducer, were 

inoculated with overnight cultures to an OD of 0.01, and the cultures grown to an OD of 

0.5. 5ml were then added to 1ml of ice-cold 80% glycerol (v/v). The suspension was 

mixed by vortexing, divided into 600 µl aliquots and frozen at -80oC.  
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2.5.3 High-throughput mutant testing  

96 well microplates were prepared within a 37oC environment. All items of equipment 

were pre-warmed and the transport of materials and samples to and from the preparatory 

environment to the pre-warmed microplate reader was done using insulated boxes. The 

inducers xylose (1% w/v) and IPTG (1mM) were added to 2 x 30 ml of pre-warmed LB 

media and a third 30 ml of pre-warmed LB containing both inducers all in 250 ml 

conical flasks. From these 140 µl aliquots were added to each well of a 96 well micro 

plate with the exception of the wells in row H (control). To these wells 150 µl of LB 

was added. Prepared suspensions of the mutants were removed from the -80oC freezer 

and warmed to 37oC for 20 minutes in a water bath with samples being gently vortexed 

every 5 minutes. 10 µl aliquots of the mutant suspension were added to each well using 

a multi-channel pipette, with each row containing a different mutant and ensuring that 

no air bubbles were present. A gas permeable membrane was applied to the microplate 

with a brayer, and transferred to a pre-warmed (37oC) microplate reader. 

For the analysis of mutant responses to various stressors, samples were stopped at the 

end of cycle 12, corresponding to the mid-exponential growth phase. The microplate 

was removed from the reader, transferred to the 37oC incubator and the gas permeable 

membrane removed.  A 50 µl solution comprising pre-warmed LB broth containing 

inducer and stressor at 4 x the required final concentration was added to each of the 

wells including the control. A new gas permeable membrane was applied and the plate 

returned to the microplate reader. This procedure was conducted within 8 minutes. In 

the case of addition of the stressor heat to the samples, 50 µl of LB with appropriate 

inducer was added to each well during the second stage before being returned to a 45 oC 

microplate reader. In the case of NaCl stressor addition, 50 µl of 1, 5, 9, 13, 17, 21 and 

25 % (w/v) pre-warmed NaCl LB with appropriate inducer was added, to produce the 

final concentrations 1, 2, 3, 4, 5, 6, 7 % (w/v) repectivly in a final 200 µl volume of  

LB.  

2.5.4 Low-throughput mutant testing 

A 600 µl aliquot of the previously prepared and frozen mutant culture was removed 

from the -80oC freezer and thawed in a 37oC water bath for 10 minutes. After 

incubation, the aliquot was added to 25 ml of pre-warmed LB in a 250 ml conical flask. 

The culture was incubated at 37oC in a shaking water bath. At an OD of 0.3 (mid-
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exponential phase), the designated stressor was applied to the appropriate concentration 

and growth monitored regularly until the sample entered stationary phase. 

2.5.5 Microscopy 

 2.5.5.1 Slide preparation and mounting  

Poly-L-lysine (35µl 0.01%) was applied to each well of a glass slide, and incubated for 

2 minutes. The poly-L-lysine was aspirated and slides allowed to air dry. 15 µl of 

culture was transferred to the surface of the slide, left in place for 1 minute, allowing the 

attachment of cells after which the remaining liquid was aspirated. The slide was air 

dried and then 2 µl of 50% glycerol (v/v) was applied to the surrounding area of each 

well and a cover slide applied. 

2.5.5.2 DAPI staining  

25 ml LB broth in a 250 ml conical flask was pre-warmed to 37ºC in a shaking water 

bath at 200 rpm and inoculated with 600 µl of previously thawed cells (2.6.4) and 

grown to an OD of 0.3. A 100 µl sample was removed immediately prior to the addition 

of stressor and then again every 10 min for 40 min after addition. 500 µl of ice-cold 

phosphate buffered saline (PBS) was added to each sample and the cells pelleted by 

centrifugation (13,000 g, 5 min, 4ºC). The supernatant was removed, and the pellet 

resuspended in 100 µl of ice cold PBS and 1 µl DAPI stain (100 µg/ml) added. The 

mixture was incubated for 5 minutes on ice, after which time the cells were mounted 

onto a poly-L-lycine-treated microscope slide (2.5.5.1).  

2.5.5.3 Vancomycin staining  

25 ml LB broth in a 250 ml conical flask was pre-warmed to 37ºC in a shaking water 

bath at 200 rpm and inoculated with 600 µl previously thawed cells and grown to an OD 

of 0.3. Fluorescent vancomycin was added to a concentration of 1 µg/ml combined with 

standard vancomycin (1 µg/ml) to produce a final concentration of 2 µg/ml. 
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2.6 Production of heterologous proteins  

2.6.1 pMAL expression system  

The pMAL expression vector is designed for the high-level production of recombinant 

proteins fused to a maltose binding protein (MBP)-derived affinity tag. The fusion of 

target proteins to MBP has been shown to increase their solubility (Kapust & Waugh, 

1999) and for this reason the pMAL system was chosen to express components of the 

arginine and pyrimidine biosynthetic pathways. Gene sequences were inserted into the 

pMAL-p2X vector, down stream and in frame with the malE gene encoding the MBP.  

The resulting expressed protein would be fused to the MBP affinity tag (di Guan et al., 

1988; Maina et al., 1988), allowing for affinity purification on an amylose resin column.  

Following affinity purification, the protein of interest would be cleaved from the MBP 

using the protease factor Xa (Kellermann & Ferenci, 1982) which targets a recognition 

site located on the linker between the expressed protein and the MBP. 

E. coli cells containing recombinant expression vectors were grown overnight in 5 ml 

LB in tubes with loose fitting lids at 37oC with ampicillin (100 µg/ml) and shaking at 

200 rpm. 1 ml from this culture was used to inoculated 100 ml LB with ampicillin (100 

µg/ml) in a 250 ml conical flask. The culture was grown at 37oC to 0.5 OD with shaking 

at 200 rpm. Fresh ampicillin was added (100 µg/ml) to the culture at reaching an OD of 

0.5 and before being split into 10 ml aliquots in tubes with loose fitting lids. IPTG was 

added to each individual culture to a final concentration of 1 mM, 0.3mM or 0mM 

respectively and cells grown at 37oC with shaking. Two 1ml aliquots were removed 

before the addition of IPTG and every 2 hours thereafter for 4 hours. Cells were 

centrifuged at 13,000 g  for 5 min, the supernatant removed and samples frozen at -

20oC.   

2.6.2 Screening and validation of heterologous proteins 

2.6.2.1 SDS-PAGE gel preparation (Laemmli, 1970)  

10 % (w/v) polyacrylamide resolving gels were cast from the following 20 ml solution. 

5 ml 4 x SDS-PAGE running buffer, 5 ml 40 % (w/v) acrylamide, 10 ml deionised 

water, 100 µl ammonium persulphate (10 % w/v) and 10 µl TEMED. The solution was 

pipetted between two 1 mm glass plates and overlaid with 1 ml isopropanol. The gels 

were left to polymerise for 2 hours, then washed with deionised water removing the 

isopropanol. The resolving gel was overlaid with 2 ml of stacking gel produced from the 
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following (10 ml). 2.5 ml 4 x SDS stacking gel buffer, 1.25 ml 40 % acrylamide (w/v), 

6.25 ml deionised water, 60 µl ammonium persulphate (APS) (10 % w/v) and 30 µl 

TEMED.  Combs were inserted and the gels allowed to polymerise for a further 2 hours.  

2.6.2.2 SDS-PAGE sample preparation  

Each 1 ml aliquot of frozen culture pellet samples was resuspended in 1ml ice cold 1 x 

SDS-PAGE running buffer, and sonicated for 10 seconds before incubating on ice for 

30 seconds. The sonication treatment was repeated and the sample stored on ice. A 20 

µl sample of sonicated suspension was removed from each time-point sample and added 

to 4 µl of loading dye and labelled “whole cell extract”. The remaining sonicated 

mixture was centrifuged at 14,000 g for 10 minutes at 4oC and 20 µl of the resulting 

supernatant added to 4 µl of loading dye and labelled “soluble cell extract”.  

2.6.2.3 Running and visualisation of SDS-PAGE gels 

Protein samples for SDS-PAGE analysis were loaded as a time series with the whole 

cell extracts being run along side the equivalent soluble cell extracts. A Bio-Rad 

precision plus protein standard was included for size estimations. Samples were 

electrophoresed in 1 x SDS-PAGE running buffer at 80 V until the loading dye had 

reached the bottom of the stacking gel at which point the voltage was increased to 150 

V and electrophoresis continued until the marker dye had reached the bottom of the 

resolving gel. The gel was immersed in Coomasie blue stain overnight to fix and stain 

the proteins. The following day the gel was immersed in de-staining solution which was 

regularly changed until the bands were visible against a clear background. 
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3. Therapeutic target selection  

At the start of this investigation, discussions were held with our industrial partner, e-

Therapuetic’s, with respect to potential pairs of genes that could act as anti-infective 

targets when targeted together. These pairs of genes were identified using in-house data 

driven computational approaches. This chapter describes these pairs and an iterative 

experimental approach that was designed to test the validity of their predictions. In 

parallel with this, in silico models were developed to also allow computational analysis 

(Chapter 5).  

3.1 Introduction to the e-Therapeutics network 

Traditionally, many antimicrobial drugs have been designed to target a limited number 

of essential components within the metabolism of micro-organisms. Because cellular 

metabolism contains critical steps, biological systems have developed mechanisms to 

resist these compounds and improve the robustness of their metabolic pathways. The 

resulting mechanisms limit the use of pathway-blocking compounds, reducing or 

abolishing their effectiveness.  

More recently, in silico Systems Biology approaches that allow a data-driven 

approached to biological research have been developed. This has allowed the 

identification of multiple, seemingly non-essential components within metabolic 

systems, that when targeted together are capable of generating effective system wide 

responses. Using such an approach to develop therapeutic compounds produces more 

focused responses, expands the number of potential targets available, while at the same 

time reducing the side effects associated with traditional approaches of compound 

development. An added benefit of using this approach is a reduced likelihood of an 

organism developing resistance (Kitano, 2002a) to such developed compounds. As there 

is such a large repertoire of potential targets, the organism must take time to develop 

methods to negate the effects of targeting them. 

e-Therapeutics plc is a drugs discovery and development company, based in the United 

Kingdom and India. Using an in silico Systems Biology approach, the company has 

developed new technologies for identifying new drug targets and predicting their effects 

in a range of organisms. In particular, they have analysed the potential effects of 

existing licensed drugs, both individually and in combination, to identify novel 
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applications. Adopting this approach, targets and therapeutic compounds can be 

discovered, tested and optimised in considerably less time than conventional screening 

approaches, with reduced costs and licensing implications. Currently, this approach has 

led to the development of compounds to treat asthma, a novel-mechanism 

antidepressant, antibiotics to treat MRSA, and a cancer chemotherapy treatment that 

works at safe doses in a very short period of time.

e-Therapeutics construct and simulate complete biological networks, and apply network 

analysis to determine how best to perturb the network and achieve particular biological 

behaviours. From these simulations, non-essential components that significantly 

contribute to these behaviours, either individually or in combination, can be identified. 

Therapeutic compounds that act upon these components, both new and novel, are 

discovered, developed and optimised before continuous and rigorous multi-stage testing 

and (re)licensing for the new application.  

3.2 Proposed therapeutic target gene candidates 

Using the above described approach and proprietary confidential algorithms, e-

Therapeutics have predicted the following non-essential (Kobayashi et al., 2003) gene 

pairs in B. subtilis that when targeted together could produce notable effects on the 

growth of B. subtilis. These could then have the potential to be used as new anti-

infective drug targets: 

Pair 1  

• ybfS; also known as gamP and yzfA (Lechat et al., 2008), encodes a suspected 

glucosamine-specific enzyme IICBA component of the phosphotransferase 

system (PTS) (The universal protein resource (UniProt) 2009; Reizer et al., 

1999).  

• ywdH; also known as ipa-58r (Lechat et al., 2008) encodes a broad spectrum 

aldehyde dehydrogenase (The universal protein resource (UniProt) 2009; 

Kanehisa & Goto, 2000).  

Pair 2

• yvgQ; also known as cysL (Lechat et al., 2008) encodes the ß-subunit of a 

sulphite reductase ( The universal protein resource (UniProt) 2009; Kanehisa & 

Goto, 2000; Lechat et al., 2008; van der Ploeg et al., 2001). 
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• luxS; also known as ytjB (The universal protein resource (UniProt) 2009; Lechat

et al., 2008), encodes an S-ribosylhomocysteine lyase, involved in the 

production of auto-inducer 2 protein (The universal protein resource (UniProt) 

2009; Kanehisa & Goto, 2000; Lechat et al., 2008).  

Pair3  

• ycdH; also known as adcA (The universal protein resource (UniProt) 2009; 

Lechat et al., 2008), encodes a probable high-affinity zinc ATP binding cassette 

(ABC) transporter that is transcriptionally repressed by zinc (The universal 

protein resource (UniProt) 2009; Lechat et al., 2008). 

• yndH; encodes an uncharacterised hypothetical protein (Kanehisa & Goto, 

2000; Lechat et al., 2008). Basic local alignment search tool (BLAST) indicates 

a very close similarity to other uncharacterised hypothetical genes within other 

Bacillus species (Lechat et al., 2008).   

Pair 4  

• yacL; encodes an uncharacterised protein (The universal protein resource 

(UniProt) 2009; Kanehisa & Goto, 2000) that has been shown to contain the 

protein domains TRAM, HIN and PIN (Kanehisa & Goto, 2000). BLAST 

analysis indicates a close similarity to similar uncharacterised genes within 

Bacillus species.  

• fbaB; also known as iol J and yxdL (Lechat et al., 2008) encodes a 6-phospho-5-

dehydro-2-deoxy-D-gluconate aldolase (The universal protein resource 

(UniProt) 2009; Kanehisa & Goto, 2000; Lechat et al., 2008).  

Pair 5 

• yjcH; encodes a hydrolase (Lechat et al., 2008). It has also been shown to posses 

the protein domains associated with two alpha/beta hydrolase folds and esterase 

domain (Kanehisa & Goto, 2000). BLAST analysis indicates a close similarity 

to other uncharacterised genes as well as esterase’s within Bacillus species.   

• abnA; encodes an arabinan-endo 1,5-alpha-L-arabinase (The universal protein 

resource (UniProt) 2009; Kanehisa & Goto, 2000; Lechat et al., 2008). 
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Pair 6  

• cheB; also known as cheL (The universal protein resource (UniProt) 2009; 

Lechat et al., 2008), encodes a methyl-accepting chemotaxis  protein (MCP). It 

is a glutamate methylesterase (The universal protein resource (UniProt) 2009; 

Kanehisa & Goto, 2000; Lechat et al., 2008). 

• licT; encodes a transcriptional anti-terminator of the BglG family (The universal 

protein resource (UniProt) 2009; Kanehisa & Goto, 2000; Lechat et al., 2008). 

3.3 Development of a testing method for validating selected targets 

3.3.1 Approach  

The aim of this investigation was to determine the influence of inactivating target genes 

of B. subtilis individually and in combination. Initial experiments would involve 

inactivating genes individually and determining any changes to the phenotype produced 

under a range of different stress conditions. Following this, the target genes would be 

inactivated in combination and their phenotypes would be tested under the same stress 

conditions. This approach would then enable the comparison of the effects of both 

single and double gene targets inactivation and assess their potential as therapeutic drug 

targets.    

3.3.2 KO mutants  

The inactivation of target genes in B. subtilis was achieved by the interruption of gene 

sequences using an integration vector, producing KO mutants. Vectors were designed to 

integrate into the target gene sequence via a single crossover homologous 

recombination event. Two compatible integration vectors were used to generate the KO 

mutants, pMUTIN4 and pSG1164. These vectors encode different antibiotic markers to 

facilitate the selection of developed KO mutants in later experiments.  

Most B. subtilis genes are organised into polycistronic transcriptional units (Vagner et 

al., 1998), and the interruption of an upstream gene would separate downstream genes 

from their natural promoter. This could have the potential to produce undesirable effects 

and phenotypes through downstream polar effects that could affect this investigation. 

Consequently, both vectors encode different inducible promoters that can be used to 

ensure the expression of genes downstream of the target gene.



3. Therapeutic Target Selection and Experimental Testing Approaches                        60    

3.3.2a pMUTIN4 

The pMUTIN integration plasmid was developed by Valérie Vagner and colleagues at 

the French National Institute of Agricultural Research (INRA) in the late 1990s (see 

appendix). Its inception was due to the specific requirements of the international 

functional analysis consortium (18 European and 12 Japanese laboratories) aimed at 

characterising all genes encoded by the B. subtilis chromosome (Vagner et al., 1998). 

The groups within the consortium used pMUTIN to inactivate each gene systematically 

and under a range of different growth conditions (Vagner et al., 1998) study its effect on 

cell fitness. Based on pBR322 (Kaltwasser et al., 2002), a well-established E. coli

cloning vector (Bolivar et al., 1977), pMUTIN is not able to replicate autonomously in 

B. subtilis and can only be stably maintained in this bacterium following integration via

a homologous recombination event at the site of the target gene.  

Four versions of the pMUTIN vector have been constructed (pMUTIN 1-4), ranging in 

size from 8.3 to 8.6 Kbp.  They differ with respect to their internal terminator 

sequences, the sequences of the multiple cloning site and repressor/operator sites used 

to control the expression of a controllable promoter. All versions encode: 

• An E. coli-active ColE1 origin of replication  

• A ß-lactamase gene (ApR) for selection in E. coli

• An erythromycin resistance gene (EmR) for selection in B. subtilis

• A modified E. coli lacZ reporter gene with a B. subtilis optimised 

ribosome binding site allowing transcriptional fusions and the monitoring 

of gene expression 

• A Pspac IPTG-inducible promoter (Jana et al., 2000) and associated “tight” 

repressor encoded by lacI.  

3.3.2b pSG1164�

The pSG1164 integration plasmid, was developed by Peter Lewis and Adele Marston, at 

the Sir William Dunn School of Pathology, University of Oxford (Lewis & Marston, 

1999) (see appendix ). Developed to replace existing integration vectors that had been 

used to fuse fluorescent tags to B. subtilis proteins for microscopic analysis.  pSG1164 

encodes a gfpmut1 gene that produces a high fluorescence version of the standard green 
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fluorescent protein (GFP) (Cormack et al., 1996). pSG1164 is a 5.5 kb plasmid, based 

on the pRD96 integration vector (Daniel et al., 1998). It encodes: 

• A xylose-inducible Pxyl promoter 

• An E. coli-active ColE1 origin of replication  

• A ß-lactamase gene (ApR) for selection in E. coli

• A chloramphenicol acetyltransferase gene (CmR) for selection in              

B. subtilis

In this investigation the gfpmut1 gene was surplus to requirements and its expression 

may have produced unwanted side effects. As the gene was bordered by two XbaI 

restriction endonuclease sites, these were used to generate a version of pSG1164 

(pSG1164� - 4.8 Kbp) that had the gene removed (Figure 3.1).  

Figure 3.1: An agarose gel showing the digestion and removal of the gfpmut1 gene 

from the pSG1164 plasmid. Lane 1, 1kb ladder. Lane 2, 100bp ladder. Lane 3, 
Undigested pSG1164. Lane 4, Digested pSG1164 (now linearised) using XbaI
restriction endonuclease. Also present within this lane is the excised gfpmut1 gene.   

3.3.3 KO mutant construction and validation 

The target genes were each designated to one of the integration vectors and used to 

generate the respective KO mutant (Table 3.1).    

pSG1164�
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Table 3.1: Table indicating target genes and destination integration vector   

A DNA sequence of approximately 500 bp, homologous to the 5’ end of each candidate 

gene was amplified by PCR with terminal restriction sites. These were ligated into 

appropriately digested integration vectors. The target sequence of each clone was 

generated using primer pair A (Figure 3.2). The resulting recombinant plasmids were 

transformed in to E. coli and selected for by plating onto LB containing ampicillin. 

Plasmid DNA was isolated from several recombinant colonies and the presence and 

orientation of the insert in the vector determined using primer pair B (Figure 3.2). In 

this case the forward primer was specific for the integration vector promoter, while the 

reverse primer was insert specific and the same as that used to generate the insert 

fragment. A single verified clone was used to transform B. subtilis, selecting either with 

erythromycin/lincomycin (pMUTIN4) or chloramphenicol (pSG1164) antibiotics. The 

putative recombinant clones were checked for integration into the correct candidate 

gene using a vector-specific forward primer and a target-specific reverse primer located 

outside the original amplified insert- primer pair C (Figure 3.2). After the construction 

and confirmation of single KO mutants (Figure 3.3), double mutants were constructed. 

Chromosomal DNA was isolated from the pMUTIN4 generated KO mutant, and 

transformed into the appropriate pSG1164 generated single KO mutant to generate a 

double KO mutant (Figure 3.3). Double mutants were selected for using 

lincomycin/erythromycin and retested with primer pairs C (Figure 3.2) to confirm the 

presence of both plasmids (Figure 3.3).    

pSG1164 pMUTIN4 pSG1164/pMUTIN4

ybfS ywdH ybfS/ywdH 

luxS yvgQ luxS/yvgQ 

ycdH yndH ycdH/yndH 

fbaB yacL fbaB/yacL 

yjcH abnA yjcH/abnA 

cheB licT cheB/licT 
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Figure 3.2: A graphical representation of the construction of KO mutants. A, 
Target gene on the bacterial chromosome together with its native promoter and 
downstream genes. B, Cloning of a 500 bp complementary fragment of the target gene 
and its integration into the integration vector. C, Disruption of the target gene with the 
integration vector, containing antibiotic selection markers (Ab1+Ab2) and inducible 
promoter.  
The primer pair locations required to validate the produced KO mutants are Primer pair 
A, A forward primer for the beginning and reverse primer for the end of the inserted 
sequence. Primer pair B, A forward primer for the inducible promoter contained within 
the integration vector (Pxyl/Pmut), and a reverse primer for inserted sequence. Primer pair 
C, A forward primer for the inducible promoter contained within the integration vector 
and a reversible primer for a region outside of the integration site.
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Figure 3.3: Agarose gels showing the stages in the construction of single and double KO 

mutants. Primer pairs are represented as A, B or C under each image.  Primer pair A represents 
insert sequence. Primer pair B represents forward primer for the inducible promoter contained 
within the integration vector, and a reverse primer for inserted sequence. Primer pair C represents 
forward primer for the inducible promoter contained within the integration vector and a reversible 
primer for a region outside of the integration site represents. Gel A, yjcH KO-abnA KO. Gel B, 
cheB KO-licT KO. Gel C, fbaB KO-yacL KO. Gel D, luxS KO-yvgQ KO. Gel E, ybfS KO-ywdH

KO. Gel F, ycdH KO-yndH KO.    

A B

C
D

E
F
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3.4 Phenotype testing  

e-Therapeutics supplied combinations of target genes, which were predicted to combine 

synergistically to increase susceptibility to stress. These combinations were to be 

subjected to a range of different stress’s to test these hypotheses.  

3.4.1 Stressors 

To determine the effect of inactivating candidate gene, both singly and in combination, 

the growth phenotypes of the various B. subtilis mutants were to be compared with that 

of the wild-type under a range of different stress conditions. The aim was to determine 

whether the absence of a target gene function, either on its own or in combination with 

its cognate partner, could result in an increased susceptibility to a particular stress. The 

stresses to which the KO mutants were to be exposed covered a broad range of 

metabolic processes (Table 3.2).  

Table 3.2: The areas of metabolism affected by each stressor  

Stressor Area of metabolism tested 

Growth with/without inducer Downstream polar effects 

Nalidixic acid DNA replication 

Rifampicin mRNA synthesis 

Kanamycin Protein synthesis 

Streptomycin Protein synthesis 

Tetracycline Protein synthesis 

Vancomycin Cell wall synthesis 

Paraquat Oxidative stress  

Heat Heat shock  

NaCl Osmotic shock  
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3.4.2 Stressor concentration   

In order to conduct a meaningful comparative investigation, it was necessary to 

determine an appropriate working concentration of the various stressors. Using data 

from previous investigations, a range of stressor concentrations was established. These 

were tested against the wild-type grown to mid exponential phase (OD 0.3) in LB 

medium. The aim was to identify a stressor concentration that would affect the normal 

growth profile noticeably without leading to growth inhibition or cell death, and allow 

any increased sensitivity of the mutant to a stress to be observed. 

The suggested concentrations used in experiments to inhibit growth varied (Table 3.3), 

and was dependent on strain, growth and testing conditions. The list described is not 

exhaustive. Table 3.4 describes the final stressor concentrations used in the final 

investigation.    

Table 3.3: Suggested growth inhibiting concentrations of different stressors 

Stressor Suggested growth inhibiting concentration 

Nalidixic acid 
2 µg/ml (Rodriguez-Martinez et al., 2008) 

25-75 µg/ml (Schujman et al., 2001) 
300 µg/ml + (Vazquez-Ramos & Mandelstam, 

1981) 

Rifampicin 
0.06 µg/ml (Bandow et al., 2002) 
0.125 µg/ml (Hutter et al., 2004) 

Kanamycin 
1.25 µg/ml (Goldthwaite et al., 1970) 

2.5 µg/ml (Schirner et al., 2009) 
8 µg/ml (Rahman et al., 2007) 

Streptomycin 
1000 µg/ml (Goldthwaite et al., 1970) 

12.5 µg/ml (Balasubramanian et al., 2006) 

Tetracycline 
1-2 µg/ml (Andrews & Wise, 2002) 

6.5 µg/ml (Coonrod et al., 1971) 

Vancomycin 
0.1-0.5 µg/ml (Mota-Meira et al., 2000) 

0.4-0.5 µg/ml  (Schirner et al., 2009) 
1 µg/ml (Mascher et al., 2004) 

Paraquat 
0.4 mM (personal communication S. Pohl) 

NaCl 
6% (w/v)(Hoper et al., 2006)  
4% (w/v)(Hecker et al., 1988) 
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The range of stressor concentrations (Table 3.3) was used to establish a starting point 

from which further investigations would be conducted to refine this value, to those that 

would be used in this investigation (Table 3.4).   

The way in which wild type B. subtilis reacted to the different stressors varied both with 

respect to the cell growth profile and the time taken for the stressor to have an effect.  

 3.4.2.1 Nalidixic acid  

The concentration of nalidixic acid chosen for this investigation was 300 µg/ml (Figure 

3.4A). This concentration resulted in a decreased culture density of wild type B. subtilis

during both exponential and early stationary phase when compared to untreated wild 

type B. subtilis. Increasing the concentration of nalidixic acid to 600 µg/ml resulted in a 

steady decline in culture density.  

3.4.2.2 Rifampicin 

The concentration of rifampicin chosen for this investigation was 0.06 µg/ml (Figure 

3.4B). This concentration resulted in a decrease in culture density of wild type B. 

subtilis during both exponential and early stationary phase when compared to untreated 

wild type B. subtilis culture density.   

3.4.2.3 Kanamycin 

The concentration of kanamycin chosen for this investigation was 10 µg/ml. The effect 

of concentrations below this on wild type B. subtilis, were not clearly distinguishable 

from the untreated wild type B. subtilis (Figure 3.4C) culture density. 

3.4.2.4 Streptomycin 

The concentration of streptomycin chosen for this investigation was 80 µg/ml (Figure 

3.4D). Lower concentrations produced wild type B. subtilis culture densities 

approximating, unstressed wild type B. subtilis.  The 80 µg/ml concentration reduced 

the growth rate and total yield.  

3.4.2.5 Tetracycline 

The concentration of tetracycline chosen for this investigation was 2.5 µg/ml, a 

compromise between the culture densities generated by applying a concentration of 

between 1.25 µg/ml and 5 µg/ml to wild type B. subtilis, both of which appeared similar 
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(Figure 3.4E). The culture densities produced using a concentration of 10 µg/ml 

tetracycline was significantly different from the previous concentrations, and was not 

used. Using a final concentration of 2.5 µg/ml, there was a decline in culture density in 

the transition into stationary phase, but with a final culture density in stationary phase 

comparable to untreated B. subtilis.  

3.4.2.6 Vancomycin 

The concentration of vancomycin chosen for this investigation was 2 µg/ml. The 

kinetics of inhibition by vancomycin was different from that of the other antibiotics in 

that growth was initially inhibited, but growth resumed after cycle 45-50 (Figure 3.4F). 

Lower concentrations of vancomycin (e.g. 1 µg/ml) produced no discernable differences 

in growth profile when compared to the untreated control. A concentration of 4 µg/ml 

caused an irreversible decline in culture density when compared to untreated wild type 

B. subtilis.   

3.4.2.7 Paraquat 

The concentration of paraquat chosen for this investigation was 2.4 mM paraquat 

(Figure 3.4G), (despite being suggested a concentration of 0.4mM).  This concentration 

caused the growth profile of wild type B. subtilis to enter stationary phase at an OD that 

was lower than that of untreated wild type B. subtilis. The concentration of 4.8mM 

caused the growth profile to decline after its addition while lower concentrations e.g. 

1.2 mM had only minimal effects on growth profile. 

3.4.2.8 Temperature 

The temperature to which wild type B subtilis would be exposed was 45 oC, the 

maximum temperature achievable using the microplate reader. A slight overall 

difference in culture density while in stationary phase was seen between wild type B. 

subtilis grown at 37oC to that grown at 45 oC (Figure 3.4H). 

3.4.2.9 NaCl 

The NaCl concentration chosen for this investigation was 5% (w/v). NaCl 

concentrations between 2% and 5% caused a notable difference in the growth profile as 

the cells entered stationary phase, while higher concentrations of 6% and 7% (w/v) 

showed similar but more profound affects (Figure 3.4I).  
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Figure 3.4: Graphs to show the determination of stressor concentrations to be used 

in this investigation. Red arrow indicates the growth profile of wild type B. subtilis

with no stressor applied. The blue arrow indicates the concentrations of stressor selected 
for this investigation. A, Nalidixic acid. B, Rifampicin. C, Kanamycin. D, 
Streptomycin. E, Tetracycline. F, Vancomycin.  

0.01

0.1

1

10

10 15 20 25 30 35 40 45 50 55

Time (cycle)

O
D

 (
6

0
0

n
m

)

Wild type  
no vancomycin

0.5 µg/ml

1.0 µg/ml

4 µg/ml

2 µg/ml

F Vancomycin concentration gradient 

Time (cycle)

O
D

 (
60

0 
nm

) 

0.01

0.1

1

10

10 15 20 25 30 35 40 45 50 55

Time (cycle)

O
D

 (
6
0
0
n
m

) 75 ug/ml

150 ug/ml

300 ug/ml

600 ug/ml

Wild type no nalidixic acid 

        Nalidixic acid concentration gradient  A 

Time (cycle)

O
D

 (
60

0 
nm

) 75 µg/ml

150 µg//ml

300 µg//ml

600 µg//ml

Wild type  
no nalidixic acid 

0.01

0.1

1

10

10 15 20 25 30 35 40 45 50 55

Time (cycle)

O
D

 (
6
0

0
n
m

)

Rifampicin concentration gradient  B 

0.01 µg/ml

0.02 µg/ml

0.04 µg/ml

0.08 µg/ml

Wild type  
no rifampicin

Time (cycle)

O
D

 (
60

0 
nm

) 

0.01

0.1

1

10

10 15 20 25 30 35 40 45 50 55

Time (cycle)

O
D

 (
6
0
0
n

m
) 1.25 ug/ml

2.5 ug/ml

5 ug/ml

10 ug/ml

Wild type no kanamycin

Kanamycin concentration gradient  C 

Time (cycle)

O
D

 (
60

0 
nm

) 1.25 µg/ml 

2.5 µg/ml

5 µg/ml

10 µg/ml

Wild type  
no kanamycin

D  Streptomycin concentration gradient  

0.01

0.1

1

10

10 15 20 25 30 35 40 45 50 55

Time (cycle)

O
D

 (
6
0
0
n
m

)

10 ug/ml

20ug/ml

40ug/ml

80ug/ml

Wild type no streptomycin

10 µg/ml

20 µg/ml

40 µg/ml

80 µg/ml

Wild type  
no streptomycin

Time (cycle)

O
D

 (
60

0 
nm

) 

E 
Tetracycline concentration gradient  

0.01

0.1

1

10

10 15 20 25 30 35 40 45 50 55

Time (cycle)

O
D

 (
6
0
0
n
m

) 1.25 ug/ml

2.5 ug/ml

5 ug/ml

10 ug/ml

Wild type no tetracycline

1.25 µg/ml

2.5 µg/ml

5 µg/ml

10 µg/ml

Wild type  
no tetracycline

O
D

 (
60

0 
nm

) 

Time (cycle)



3. Therapeutic Target Selection and Experimental Testing Approaches                        70    

Figure 3.4 (continued): Graphs to show the determination of stressor 

concentrations to be used in this investigation. Red arrow indicates the growth profile 
of wild type B. subtilis with no stressor applied. The blue arrow indicates the 
concentrations of stressor selected for this investigation. G, Paraquat. H, Heat shock. I, 
NaCl. 
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Table 3.4: The stressors concentrations determined for this investigation. 

3.4.3 Experimental approach  

The targeting of a single or a few essential components within a biological system as 

most modern therapeutic compounds aim to do, results in definable phenotypic 

behaviours, that may not be directly attributed to the therapeutic compound, but rather a 

side effect of its use. The phenotypic behaviour produced using Systems Biology 

approaches and the targeting of non-essential genes, produces a cumulative phenotypic 

effect. The greater the number of targets the more visible the phenotype produced 

(Figure 3.5). Because this investigation relies on the targeting of two targets 

simultaneously particularly sensitive methods are required to analyse the phenotypic 

properties produced.  

Stressor Concentration  

Nalidixic acid 300 µg/ml 

Rifampicin 0.06 µg/ml 

Kanamycin 10 µg/ml 

Streptomycin 80 µg/ml 

Tetracycline 2.5 µg/ml 

Vancomycin 2 µg/ml 

Paraquat 2.4 mM  

Heat 45oC 

NaCl 5 % 
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Figure 3.5: The phenotypic effects of cumulative gene targeting. A graphical 
representation showing the scale of phenotypic effects seen when multiple genes are 
simultaneous targeted by stressor.  

Due to the number of mutants involved, and the time required to analyse the influence 

of each mutation both alone and in combination, a three-stage approach was developed 

to screen for altered growth phenotypes (Figure 3.6). This approach could be scaled up 

if necessary to test thousands of potential gene combinations. In stage one, a high-

throughput computer-controlled approach was used.  The influence of a particular 

stressor on the growth kinetics of all candidate genes of one vector type was determined 

in a 96 well plate in a microplate reader at 37°C with shaking. Once the influence of the 

genes was determined individually, the influence of the combined mutations was 

determined. Samples were analysed in triplicate and the data averaged. In stage two, 

samples that deviated significantly from the control were reanalysed, along with their 

cognate partners, using a low-throughput manual approach. In stage three, samples that 

continued to show differences to control samples were analysed in further detail.   
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Figure 3.6: The multi-stage focusing experimental approach. The focusing approach 
adopted in this investigation to identify and validate potential therapeutic target 
candidates. 
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4. Therapeutic targets and arginine and pyrimidine (uracil) biosynthetic system 

analysis 

This chapter discusses the accuracy and validity of using an automated high-throughput 

approach to test candidate genes as potential therapeutic targets. Details of how the 

high-throughput approach was tailored to these investigations are discussed, as well as 

the results obtained. Candidates identified by high-throughput analysis were 

subsequently analysed by further low-throughput approaches, mimicking the conditions 

of the high-throughput stage, together with more specific phenotypic testing. 

The results obtained through this testing are discussed and evaluated in the context of 

the identification of successful therapeutic targets. 

This chapter also describes the experimental and computational approaches taken to 

investigate the arginine and pyrimidine biosynthetic pathways, their genetic 

organisation and potential interaction with one another through a hypothesis driven 

approach to experimentation.  

4.1 High-throughput therapeutic target testing  

4.1.1 Microplate reader validation  

4.1.1.1 Determination of data consistency with respect to well location  

The consistency and accuracy of measurements taken across a 96-well microplate by a 

computer controlled microplate reader was validated prior to its use. To conduct this 

validation, multiple 96-well plates were completely filled, with each well containing 

200 µl of sterile LB from the same batch (unpublished protocol). The optical density 

(OD) for each well across the plate was measured and repeated several times, with the 

values being averaged, compiled and then plotted on a graph (Figure 4.1) against 

position. This allowed the identification of any position upon the plate that was 

producing inconsistent results, and could be avoided during further testing.     
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Figure 4.1: A graphical representation of the distinct areas and consistency of 

measurement of a 96 well plate using a microplate reader. A, Distinct areas of 96 
well plate. B, The plotted results of OD consistency, testing the distinct regions of the 
96 well plate with a microplate reader. A line of best fit has been applied, and indicated 
samples were achieving an OD of 0.6 +/- 0.05, with no anomalous results occurring 
from any specific region of the plate.  

Repeated experimentation determined that there were no significant variations in 

observed measurements across the plate, with only small OD variations of +/- 0.05, 

which could be attributable to minor changes in aliquot volume or physical limitations 

associated with measurements taken by the microplate reader. Sample repetition, and 

averaging of the results obtained would reduce these variations.  

4.1.1.2 Sample repetition  

To provide an accurate representation of the behaviour of the mutants, and to avoid the 

minor variations identified tests on each mutant pair with a specific stressor were all 

carried out on the same plate, and then duplicated on a separate plate with samples 

loaded at different locations. 

The 96-well plate was split into thirds (Figure 4.2). Each double mutant and its 

constituent single mutants were tested in parallel on the same row. Each mutant was 

loaded into four adjacent wells, and the data for each mutant/growth combination was 

averaged. Also on the plate was a control of wild type B. subtilis and a row of blanks.  
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Figure 4.2: Mutant layout on 96 well plates. A graphical representation of the mutant 
layout on 96 well plates. Blue represents a single mutant of a pair. Green indicates the 
second single mutant of the pair. Pink indicates the combined double mutant. Each 
candidate combination was tested in four wells from which an average was taken, 
before being repeated on a separate plate, and in different well positions.   

4.1.1.3 The influence of using a semi-permeable sealing membrane 

All investigations with the microplate reader were conducted over a period of eight 

hours at a temperature of 37oC.  Due to the small volume used in the 96 well plates of 

200 µl, and the time taken to conduct each experiment, it was necessary to establish the 

extent of evaporation that was likely to occur during this time. A preliminary 

investigation was performed to determine the loss of culture volume during a typical 

experiment. All 96-wells were filled with 200 µl of LB and subjected to an eight hour 

microplate reader cycle at 37oC. On completion 20 random wells were selected, and the 

volume of LB remaining within them measured and averaged.   

The average volume loss was 9.25%. The experiment was repeated after covering the 96 

well plate with a Breatheasy® membrane, - a breathable membrane designed to prevent 

evaporation. The average volume loss per well was reduced to 2.75%, consequently all 

following experiments were performed using a Breatheasy® membrane.    
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4.1.1.4 Microplate reader accuracy  

To determine the comparability between growth curves obtained from high and low-

throughput analyses, the ODs obtained from the microplate reader (high-throughput 

analysis) and from a conventional spectrophotometer (low-throughput analysis) were 

compared. An overnight culture of B. subtilis was diluted with LB media in 20% 

increments. The OD of a single sample was measured using two independent Biochrom 

ultrospec II spectrophotometers, before being distributed as 200 µl aliquots onto a 96 

well plate which was measured using the FLUOstar OPTIMA microplate reader. The 

values generated were plotted and compared (Figure 4.3).  

Figure 4.3: A graph to show the comparison of 2 Biochrom Ultraspec II 

spectrophotometers against a FLUOstar OPTIMA microplate reader. Various 
dilutions of overnight culture were measured and compared in the ultrospec II #1 
spectrophotometer  (Blue). Ultrospec # 2 spectrophotometer (Red) and FLUOstar 
OPTIMA plate reader (Green), for consistency of result.  
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The analyses indicated that the OD measurements obtained from the microplate reader 

and ultrospec spectrophotometer were comparable. Values at the lowest dilutions varied 

slightly between the equipment, but were not deemed to be significant, and not in the 

ranges, required to conduct this investigation.  

4.1.1.5 Determination of the optimal time of stressor addition 

The timing of the application of stressor to the mutant strains to maximise its effect was 

confirmed by experimentation. The point of mid-exponential phase- an OD of 0.3, was 

chosen as the point at which stressors would be applied to have maximum effect.  

To produce comparative data, all experiments were started from an identical OD of 

0.01. This OD was chosen because it would allow sufficient generations of growth of 

the mutants to allow them to adapt to the growth conditions prior to the addition of 

stressor. The point at which mid exponential point occurred within the microplate reader 

program was determined by plotting the growth of wild type B. subtilis grown from an 

inoculum with a starting OD of 0.01 in the microplate reader (Figure 4.4). This point 

was found to occur at approximately 1 hour and 33 minutes after the start of the 

program, at the end of microplate reader cycle 12. 

Figure 4.4: A graph to determine the cycle number at which mid-exponential point 

is reached in the microplate reader. A B. subtilis culture was grown for 8 hours, being 
measured continuously to determine the mid exponential point. This was reached at the 
end of cycle 12 (0.3 OD). 
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4.2 High-throughput analysis of potential therapeutic targets 

The growth profiles of the single and double mutants of the potential drug targets 

suggested by e-Therapeutics were analysed using the high-throughput testing approach 

and the results discussed below. 

4.2.1 Growth with and without inducer  

The growth profiles of mutants were analysed both in the presence and absence of the 

inducers, xylose or IPTG, required for the activation of their inducible promoters 

(Figure 4.5). The inducers were added at mid exponential phase, equivalent to the time 

at which the stressors would be added. This test was designed to identify any 

downstream polar effects in the single mutants that could potentially influence the 

behaviour of the double mutants. This test also ensured that both sets of mutants created 

with either pSG1164 or pMUTIN4, were not adversely affected by the inducer of each 

other (Figure 4.6), a situation that would occur in the testing of double mutants.  

The control experiments designed to establish the influence of inducers on the mutants 

(Figure 4.5) showed that neither had a significant influence on their growth profiles. 

This indicated that the mutants were not being affected by the removal of the function 

of any genes downstream and in the same operon as the target genes. The testing of 

growth of single mutants in opposite inducers (Figure 4.6), indicated that there was no 

influence on growth profiles also.   
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Figure 4.5: Graphs to show the growth profile of pSG1164/pMUTIN4 and 

pSG1164-pMUTIN4 mutants with and without inducer. A,pSG1164 mutants 
with xylose (1% w/v). B, pSG1164 mutants with no xylose. C, pMUTIN4 KO 
mutants with IPTG (1mM). D, pMUTIN4 KO mutants with no Inducer.  
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Figure 4.5 (continued): Graphs to show the growth profile of 

pSG1164/pMUTIN4 and pSG1164-pMUTIN4 mutants with and without 

inducer. E, pSG1164-pMUTIN4 KO mutants with xylose (1% w/v). F, pSG1164-
pMUTIN4 KO mutants with no inducer.  

Figure 4.6: Graphs to show the growth profile of pSG1164 and pMUTIN4 KO 

mutants grown in opposite inducer. A, pSG1164 mutants treated with IPTG (1mM). 
B, pMUTIN4 mutants treated with xylose (1% w/v). 
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4.2.2 Growth kinetics following a challenge with nalidixic acid 

The growth profiles of each of the mutants (single and double) were determined and 

analysed after the addition, during mid-exponential phase, of the stressor nalidixic acid 

at a sub-inhibitory concentration of 300 µg/ml (Figure 4.7). 

Figure 4.7: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO and 

pSG1164-pMUTIN4 KO mutants exposed to the stressor nalidixic acid. Nalidixic 
acid was added to mutants at the mid-exponential growth phase to a final concentration 
of 300 µg/ml. A, Single KO mutants generated using the integration vector pSG1164. 
The red arrow indicates abnormal cheB KO growth profile under these conditions. B, 
Single KO mutants generated using the integration vector pMUTIN4. The red arrow 
indicates an abnormal growth profile for yvgQ KO under these conditions. C, Double 
KO mutants generated using both the pSG1164 and pMUTIN4 integration systems. The 
red arrow indicates a slight abnormal growth profile in cheB KO-licT KO mutant under 
these conditions.    
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The growth profiles of each of the cheB KO and ycdH KO mutants exhibited a slight 

reduction in the OD in the stationary phase when compared to wild type B. subtilis 

treated in the same way. This behaviour was not observed by their respective double 

mutants. The growth profiles of the other mutants tested were found to be 

indistinguishable from the wild type B. subtilis. 

4.2.3 Growth kinetics following a challenge with rifampicin  

The growth profiles of each of the mutants (single and double) were determined and 

analysed after the addition, during mid-exponential phase, of the stressor rifampicin at a 

sub-inhibitory concentration of 0.06 µg/ml (Figure 4.8). 

Figure 4.8: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO and 

pSG1164-pMUTIN4 KO mutants exposed to the stressor rifampicin. Rifampicin 
was added at mid-exponential growth phase to a final concentration of 0.06 µg/ml. A, 
Single KO mutants generated using the integration vector pSG1164. B, single KO 
mutants generated using the integration vector pMUTIN4. C, Double KO mutants 
generated using both the pSG1164 and pMUTIN4 integration systems. 
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Figure 4.8 (continued): Graphs to show the growth profiles of pSG1164/pMUTIN4 

KO and pSG1164-pMUTIN4 KO mutants exposed to the stressor rifampicin.

Rifampicin was added at mid-exponential growth phase to a final concentration of 0.06 
µg/ml. C, Double KO mutants generated using both the pSG1164 and pMUTIN4 
integration systems. 

The growth profiles of all mutants tested were found to be indistinguishable from wild 

type B. subtilis.  
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4.2.4 Growth kinetics following a challenge with kanamycin 

The growth profiles of each of the mutants (single and double) were determined and 

analysed after the addition, during mid-exponential phase, of the stressor kanamycin at 

a sub-inhibitory concentration of 10 µg/ml (Figure 4.9).

Figure 4.9: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO and 

pSG1164-pMUTIN4 KO mutants exposed to the stressor kanamycin. Kanamycin 
was added at the mid-exponential growth phase to a final concentration of 10 µg/ml. A, 
Single KO mutants generated using the integration vector pSG1164. The red arrow 
indicates an abnormal growth profile of cheB KO under these conditions. B, Single KO 
mutants generated using the integration vector pMUTIN4. C, Double KO mutants 
generated using both the integration vectors pSG1164 and pMUTIN4.  



4. Experimental Analysis of Gene/Protein Interactions                                               87

0.001

0.01

0.1

1

10

10 15 20 25 30 35 40 45 50 55 60

Time (cycle)

O
D

 (
6

0
0

n
m

)

ycdH ko

cheB ko

ybfS ko

luxS ko

yjcH ko

fbaB ko 

Wild type 

pSG1164 generated single KO mutants with 

streptomycin (80 µg/ml) A 

ycdH KO

cheB KO

ybfS KO

luxS KO

yjcH KO

fbaB KO

Wild 
type

0.001

0.01

0.1

1

10

10 15 20 25 30 35 40 45 50 55 60

Time (cycle)

O
D

 (
6

0
0

n
m

)

yndH ko

licT ko

ywdH ko

yvgQ ko

abnA ko

yacL ko

Wild type 

pMUTIN4 generated single KO mutants with 

streptomycin (80 µg/ml) B 

yndH KO

licT KO

ywdH KO

yvgQ KO

abnA KO

yacL KO

Wild 
type

Time (cycle) 
Time (cycle) Time (cycle) 

O
D

 (
60

0 
nm

)

O
D

 (
60

0 
nm

)
The growth profile of the cheB KO mutant exhibited a variation between single mutant 

phenotype and wild type B. subtilis when treated in the same way. The culture density 

of the cheB KO mutant was lower in stationary phase with an OD of 0.7 compared to 

wild type B. subtilis with an OD of 1.0, a difference that remained throughout the 

experiment.  Interestingly, this behaviour was not seen in the case of the double mutant 

or any of the other mutants, which were all found to be indistinguishable from wild type 

B. subtilis. 

4.2.5 Growth kinetics following a challenge with streptomycin  

The growth profiles of each of the mutants (single and double) were determined and 

analysed after the addition, during mid-exponential phase, of the stressor streptomycin 

at a sub-inhibitory concentration of 80 µg/ml (Figure 4.10). 

Figure 4.10: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO 

mutants exposed to the stressor streptomycin. Streptomycin was added at mid- 
exponential growth phase to a final concentration of 80 µg/ml. A, Single KO mutants 
generated using the integration vector pSG1164. The red arrow indicates abnormal 
growth profile for cheB KO under these conditions. B, Single KO generated mutants 
generated using the integration vector pMUTIN4. 
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Figure 4.10 (continued): Graph to show the growth profile of pSG1164-pMUTIN4 

KO mutants exposed to the stressor streptomycin. Streptomycin added at mid-
exponential growth phase to a final concentration of 80 µg/ml. C, Double KO mutants 
generated using both pSG1164 and pMUTIN4 integration vectors. 

The growth profile of the cheB KO mutant exhibited a slight reduction in OD in the 

stationary phase when compared to wild type B. subtilis treated in the same way. This 

behaviour was not observed in the respective double mutant. The growth profiles of the 

other mutants tested were found to be indistinguishable from wild type B. subtilis. 
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4.2.6 Growth kinetics following a challenge with tetracycline  

The growth profiles of each of the mutants (single and double) were determined and 

analysed after the addition, during mid-exponential phase, of the stressor tetracycline at 

a sub-inhibitory concentration of 2.5 µg/ml (Figure 4.11).   

Figure 4.11: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO and 

pSG1164-pMUTIN4 KO mutants exposed to the stressor tetracycline. Tetracycline 
added at mid-exponential growth phase to a final concentration of 2.5 µg/ml. A, Single 
KO mutants generated using the integration vector pSG1164. The red arrow indicates an 
abnormal growth profile for cheB KO under these conditions. B, Single KO mutants 
generated using the integration vector pMUTIN4. C, Double KO mutants generated 
using the integration vector pSG1164 and pMUTIN4. 
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The growth profiles of the cheB KO exhibited a slight reduction in the OD in the  

stationary phase when compared to wild type B. subtilis treated in the same way. This 

behaviour was not observed in the respective double mutant. The growth profiles of the 

other mutants tested were found to be indistinguishable from wild type B. subtilis. 

4.2.7 Growth kinetics following a challenge with vancomycin  

The growth profiles of each of the mutants (single and double) were determined and 

analysed after the addition, during mid-exponential phase, of the stressor vancomycin at 

a sub-inhibitory concentration of 2 µg/ml (Figure 4.12).

Figure 4.12: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO 

mutants exposed to the stressor vancomycin. Vancomycin added at mid- exponential 
growth phase to a final concentration of 2 µg/ml. A, Single KO mutants generated using 
the integration vector pSG1164. The red arrow indicated an abnormal growth profile for 
cheB KO and ycdH KO. B, Single KO mutants generated using the integration vector 
pMUTIN4.  
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Figure 4.12(continued): Graph to show the growth profile of pSG1164-pMUTIN4 

KO mutants exposed to the stressor vancomycin. Vancomycin added at mid-
exponential growth phase to a final concentration of 2 µg/ml. C, Double mutants 
generated using both pSG1164 and pMUTIN4. The red arrow indicates an abnormal 
growth profile for cheB KO-licT KO and ycdH KO-yndH KO.   

The growth profiles of the mutants indicated that the single cheB KO and ycdH KO 

mutants showed significant differences to wild type B. subtilis when treated with 

vancomycin. The culture density of wild type and remaining mutants continued to 

increase after the addition of vancomycin to an OD of 0.7, before declining rapidly to an 

OD of 0.4, and eventually re-establishing growth at a slower rate. The OD of the cheB

KO single and double mutant continued to increase after the addition of vancomycin to 

an OD of 0.6 before declining rapidly and more severely than the other mutants to an 

OD of 0.06 before re-establishing growth at a considerably reduced growth rate. In 

contrast to the other mutants ycdH KO single and double mutants, does not show a 

change in OD following the addition of vancomycin, instead its growth kinetics were 

similar to the wild type without the addition of this antibiotic.  

These behaviours of the double mutants reflected those seen in the single mutants to 

broadly the same extent, indicating that the behaviours seen were due to the dominant 

single mutants.  
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4.2.8 Growth kinetics following a challenge with paraquat 

The growth profiles of each of the mutants (single and double) were determined and 

analysed after the addition, during mid-exponential phase, of the stressor paraquat at a 

sub-inhibitory concentration of 2.4 mM (Figure 4.13). 

Figure 4.13: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO and 

pSG1164-pMUTIN4 KO mutants exposed to the stressor paraquat. Paraquat added 
at mid-exponential growth phase to a final concentration of 2.4mM. A, Single KO 
mutants generated using the integration vector pSG1164. The red arrow indicates an 
abnormal growth profile for cheB KO under these conditions. B, Single KO mutants 
generated using the integration vector pMUTIN4. C, Double mutants generated using 
the integration vectors pSG1164 and pMUTIN4. The red arrow indicates an abnormal 
growth profile for cheB KO-licT KO. 
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The growth profile of the cheB KO mutant exhibited a significant reduction in culture 

density in the stationary phase from an OD of 1.0 for wild type B. subtilis treated in the 

same way, to an OD of 0.8. This behaviour was also observed in the respective double 

mutant. The growth profiles of the other mutants tested were found to be 

indistinguishable from wild type B. subtilis.   

4.2.9 Growth kinetics following a challenge with heat shock 

The growth profiles of each of the mutants (single and double) were determined and 

analysed after subjection to the stressor heat shock-increasing the temperature from 

37oC to 45oC at mid exponential phase (Figure 4.14). 

The growth profiles of each of the single cheB KO and ycdH KO mutants exhibited a 

slight reduction in culture density when compared to wild type B. subtilis treated in the 

same way. This behaviour was not observed by their respective double mutants. The 

growth profiles of the other mutants tested were found to be indistinguishable from wild 

type B. subtilis. 

Figure 4.14: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO and 

pSG1164-pMUTIN4 KO mutants exposed to the stressor heat. Heat to a final 
temperature of 45oC was added at mid-exponential growth phase from a normal growth 
temperature of 37oC. A, Single KO mutants generated using the integration vector 
pSG1164. The red arrow indicates an abnormal growth profile for both cheB KO and 
ycdH KO. B, Single KO mutants generated using the integration vector pMUTIN4.  
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Figure 4.14 (continued): Graphs to show the growth profiles of 

pSG1164/pMUTIN4 KO and pSG1164-pMUTIN4 KO mutants exposed to the 

stressor heat. C, Double mutants generated using the integration vectors pSG1164 and 
pMUTIN4. 
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4.2.10 Growth kinetics following a challenge with high salt concentrations 

The growth profiles of each of the mutants (single and double) were determined and 

analysed after the addition, during mid-exponential phase, of the stressor NaCl to a sub-

inhibitory concentration of 5% (w/v) (Figure 4.15).

Figure 4.15: Graphs to show the growth profiles of pSG1164/pMUTIN4 KO 

mutants exposed to the stressor NaCl, NaCl added at mid-exponential phase to a final 
concentration of 5% (w/v). A, Single KO mutants generated using the integration vector 
pSG1164. The red arrow indicates an abnormal growth profile for cheB KO. Graph B, 
KO mutants generated using the integration vector pMUTIN4. C, Double KO mutants 
generated using the integration vectors pSG1164 and pMUTIN4. 
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The growth profiles of the single cheB KO exhibited a significant reduction in culture 

density in the stationary phase (OD 0.8) when compared to wild type B. subtilis treated 

in the same way (OD 1.0). This behaviour was not observed in the respective double 

mutant. The growth profiles of the other mutants tested were found to be 

indistinguishable from wild type B. subtilis. 

4.2.11 High-throughput analysis of therapeutic target summary 

The use of the high-throughput approach produced clear, consistent and unambiguous 

data. Only a few of the mutants exhibited a difference in their growth profile when 

treated with the various stressors compared to wild type B. subtilis (Table 4.1). The 

mutant with the most notable and consistent differences was the cheB KO with 

differences also being observed in its double mutant counterpart. The response of the 

cheB mutant was particularly noticeable in response to the stressor vancomycin. The 

single mutant ycdH KO and its double mutant also displayed variation in growth profile 

when exposed to the stressor vancomycin and heat. Double mutants that displayed 

variation could be attributed to variations displayed in its single constituent mutants 

From these results in contradiction to the predictions of e-Therapeutics, there were no 

indications that the combination of mutations resulted in growth profiles, or any other 

behaviour indicative of the discovery of a potential therapeutic target. The behaviour of 

those single KO mutants described however would require further analysis.    
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Table 4.1: Summary grid of all mutants both single KO and double KO and their 

response to stressor. � Denotes a difference seen to wild type under the same stressor. 
X indicates no difference to wild type under the same stressor.    

4.3 Low-throughput therapeutic target results 

The mutants identified as having a different growth profile to that of the wild type B. 

subtilis (Table 4.1) were retested in a low-throughput approach, using the same stressors 

and concentrations and inducers. The mutants were grown in 25 ml aliquots within 250 

ml conical flasks in a shaking water bath at 37ºC. The cultures remained in the water 

bath during sampling to avoid temperature fluctuations which could have affected the 

investigation. The mutants were grown from a starting OD of 0.01 and the stressor 

applied at an OD of 0.3. Growth and sampling continued until the overall response of 

the cultures was determined. This was repeated three times for each mutant, and the 

data averaged.   

Mutant(s) (KO) 

A/B (Single mutants) 

A-B (Double mutant) 

Stressor 

ybfS/ywdH 

ybfS-ywdH 

luxS/yvgQ 

luxS-yvgQ 

ycdH/yndH 

ycdH-yndH 

fbaB/yacL 

fbaB-yacL 

yjcH/abnA 

yjcH-abnA 

cheB/licT 

cheB-licT 

Inducer/no inducer X X X X X X 

Nalidixic acid X �� X X X ��

Rifampicin X X X X X X 

Kanamycin X X X X X ��

Streptomycin X X X X X ��

Tetracycline X X X X X ��

Vancomycin X X �� X X ��

Paraquat X X X X X ��

Heat X X �� X X ��

NaCl X X X X X ��
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4.3.1 Growth kinetics following a challenge with nalidixic acid  

Strains with the luxS and yvgQ mutations, singly and in combination (Figure 4.16A),

and the cheB and licT mutations, single and in combination (Figure 4.16B), were 

stressed with nalidixic acid to a final concentration of 300 µg/ml. This low-throughput 

testing and analysis revealed that there were no differences between the growth profiles 

of the yvgQ and luxS single KO mutants, or the luxS-yvgQ double KO mutant in 

response to nalidixic acid, when compared to wild type B. subtilis treated in the same 

way. The same observations were made with the single cheB KO and licT KO mutants 

as well as the cheB-licT KO double mutant.   

Figure 4.16: Low-throughput testing of single and double mutants with the 

stressor nalidixic acid. A, The growth profile of single KO mutants luxS, yvgQ and 
double KO mutant luxS KO-yvgQ KO in comparison to wild type B. subtilis when 
subjected to the stressor nalidixic acid (300 µg/ml). Also displayed are unstressed 
mutants/ wild type. B, Growth profile of single KO mutants cheB, licT and double 
mutant cheB KO-licT KO in comparison to wild type B. subtilis when subjected to the 
stressor nalidixic acid (300 µg/ml). Also displayed is a sample growth curve for the 
unstressed mutants and wild type. 
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4.3.2 Growth kinetics following a challenge with kanamycin  

Strains with the cheB and licT mutations, singly and in combination (Figure 4.17), were 

stressed with kanamycin to a final concentration of 10 µg/ml. This low-throughput 

testing and analysis revealed that there were no differences between the growth profiles 

of either the single cheB KO and licT KO mutants or the double cheB KO-licT KO 

mutants when compared to wild type B. subtilis treated in the same way.   

Figure 4.17: Low-throughput testing of single and double mutants with the 

stressor kanamycin. The growth profile of the single KO mutants cheB and licT and 
the double KO mutant cheB KO –licT KO in comparison to wild type B. subtilis when 
subjected to the stressor kanamycin (10 µg/ml). Also displayed is a sample growth 
curve for the unstressed mutants and wild type. 

4.3.3 Growth kinetics following a challenge with streptomycin 

Strains with the cheB KO and licT KO mutations, singly and in combination (Figure 

4.18), were stressed with streptomycin to a final concentration of 80 µg/ml. This low-

throughput testing and analysis revealed that there were no differences between the 

growth profiles of either the single cheB KO and licT KO mutants or the double cheB

KO-licT KO mutants when compared to wild type B. subtilis.   
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Figure 4.18: Low-throughput testing of single and double mutants with the 

stressor streptomycin. The growth profile of the single KO mutants cheB and licT and 
the double KO mutant cheB KO-licT KO in comparison to wild type B. subtilis when 
subjected to the stressor streptomycin (80 µg/ml). Also displayed is a sample growth 
curve for the unstressed mutants and wild type. 
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Figure 4.19: Low-throughput testing of single and double mutants with the 

stressor tetracycline. The growth profile of the single KO mutants cheB and licT and 
the double KO mutant cheB KO-licT KO in comparison to wild type B. subtilis when 
subjected to the stressor tetracycline (2.5 µg/ml). Also displayed is a sample growth 
curve for the unstressed mutants and wild type. 
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double cheB KO–licT KO was minimal, leading to the conclusion that the removal of 

the function of cheB is not influenced by the presence of the licT lesion. These 

observations were similar to those made with the same mutants in the high-throughput 

analysis.  

Figure 4.20: Low-throughput testing of single and double mutants with the 

stressor vancomycin. A, The growth profile of single KO mutants ycdH, yndH and 
double KO mutant ycdH KO-yndH KO  in comparison to wild type B. subtilis when 
subjected to the stressor vancomycin (2 µg/ml). Also displayed are unstressed mutants/ 
wild type. B, The growth profile of single KO mutants cheB, licT and double KO 
mutant cheB KO-licT KO in comparison to wild type B. subtilis when subjected to the 
stressor vancomycin (2 µg/ml). Also displayed is a sample growth curve for the 
unstressed mutants and wild type. 
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Figure 4.21: Low-throughput testing without inducer of single and double mutants 

with the stressor vancomycin. The growth profile of single KO mutants cheB, licT and 
double KO mutant cheB KO-licT KO without inducer in comparison to wild type B. 

subtilis when subjected to the stressor vancomycin (2 µg/ml). Also displayed is a 
sample growth curve for the unstressed mutants and wild type. 

.

4.3.6 Growth kinetics following a challenge with paraquat  

An initial low-throughput analysis of mutants with paraquat at the same concentration 

used in the high-throughput experiments (2.4mM), produced a rapid decline in growth, 

that was now unsuitable for the investigation. Because of this, the concentration was 

reduced to 0.4mM, allowing the investigation to continue. 

Strains with the cheB KO and licT KO mutations, singly and in combination (Figure 

4.22), were stressed with paraquat at a final concentration of 0.4mM. This revealed that 

there were no differences between the growth profiles of either the single cheB KO and 

licT KO mutants or the double cheB KO-licT KO mutants when compared to wild type 

B. subtilis.  
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Figure 4.22: Low-throughput testing of single and double mutants with the 

stressor paraquat. The growth profile of the single KO mutants cheB and licT and the 
double KO mutant cheB KO-licT KO in comparison to wild type B. subtilis when 
subjected to the stressor paraquat (0.4mM). Also displayed is a sample growth curve for 
the unstressed mutants and wild type. 

.  

4.3.7 Growth kinetics following a challenge with heat  

Strains with the cheB KO and licT KO mutations, singly and in combination (Figure 

4.23A), together with strains ycdH KO and yndH KO mutations, singly and in 

combination (Figure 4.23B) were stressed with heat to a final temperature of 45ºC. This 

low-throughput testing and analysis revealed that there was no difference between the 

growth profiles of either the single mutants or double mutants when compared to wild 

type B. subtilis treated in the same way.   
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Figure 4.23: Low-throughput testing of single and double mutants with the 

stressor heat. A, The growth profile of the single KO mutants ycdH, yndH and double 
KO mutants ycdH KO-yndH KO when subjected to 45ºC. Also displayed are unstressed 
mutants/wild type. B, The growth profile of the single KO mutants cheB, licT and cheB-
licT double KO mutant when subjected to 45ºC. Also displayed is a sample growth 
curve for the unstressed mutants and wild type. 

4.3.8 Growth kinetics following a challenge with NaCl 

Strains with the cheB KO and licT KO mutations, singly and in combination (Figure 

4.24), were stressed with NaCl to a final concentration of 5% (w/v). This low-

throughput testing and analysis revealed that there were no difference between the 

growth profiles of either the single cheB KO and licT KO mutants or the double cheB

KO-licT KO mutants when compared to wild type B. subtilis treated in the same way.  
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Figure 4.24: Low-throughput testing of single and double mutants with the 

stressor NaCl. The growth profile response of the single KO mutants cheB and licT and 
the cheB KO-licT KO double mutant in comparison to wild type B. subtilis when 
subjected to the stressor NaCl (5% w/v). Also displayed is a sample growth curve for 
the unstressed mutants and wild type. 

4.3.9 Low-throughput analysis of therapeutic target summary  

The mutant that consistently displayed a growth profile that was different from the wild 

type in both high- and low-throughput analyses was cheB KO (Table 4.2). Analysis of 

the single and double mutants indicate that the altered profiles are the result of the cheB 

lesion, since the double mutant behaves in a manner that is identical to that of cheB

rather than the licT single mutants. Moreover, the potential influence of genes 

downstream of cheB was ruled out by determining the growth profiles in the presence 

and absence of inducer, xylose (cheB) and IPTG (licT) indicating that the altered 

behaviour was due to the cheB (Figure 4.19B and Figure 4.20).  

0.01

0.1

1

10

60 110 160 210 260 310

Time (minutes)

O
D

 (
6

0
0

n
m

) cheB ko

licT ko

cheB ko-licT ko

Wild type 

Mutants/wild type no stress

cheB KO

licT KO

cheB KO-licT KO

Wild type 

Mutants/wild type no stress

Low-throughput testing of cheB KO, licT KO and cheB 

KO-licT KO mutants with NaCl (5% w/v)

Time (minutes) 

O
D

 (
60

0 
nm

)



4. Experimental Analysis of Gene/Protein Interactions                                               107 

Table 4.2: Summary of the results of low-throughput testing on mutants identified 

in the high-throughput testing stage. X indicates no difference to wild type B. subtilis

exposed to the same stressor. The appearance of gene name beside a stress indicates the 
gene that is responsible for the susceptible of B. subtilis to the stressor.  

4.4 Additional small scale analyses  

The effects of vancomycin on the growth profile of the cheB mutant warranted further 

investigation, to determine the underlying mechanism for the results seen. This was 

performed as part of an additional program of low-throughput experimentation.  

4.4.1 General characteristics.  

The growth profile of cheB mutant was identical to that of wild type B. subtilis, in the 

absence of vancomycin when grown in LB. This suggested that the absence of the CheB 

protein has little or no affect in nutrient medium. The motility of the cheB KO mutant 

was compared with that of wild type B. subtilis through exponential and stationary 

phase using light microscopy.  In comparison with the wild type, the swimming 

behaviour of the mutant was not altered during late exponential phase – like the wild 

Mutant(s) (KO) 

A/B (Single mutants) 

A-B (Double mutant) 

Stressor 

ybfS/ywdH 

ybfS-ywdH 

luxS/yvgQ 

luxS-yvgQ 

ycdH/yndH 

ycdH-yndH 

fbaB/yacL 

fbaB-yacL 

yjcH/abnA 

yjcH-abnA 

cheB/licT 

cheB-licT 

Nalidixic acid X X X X X X

Kanamycin X X X X X X�

Streptomycin X X X X X X�

Tetracycline X X X X X X�

Vancomycin X X X� X X cheB 

Paraquat X X X X X X�

Heat X X X� X X X�

NaCl X X X X X X�
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type, the mutant swam with a similar bias between tumbles and straight runs. These 

results are consistent with the previously described phenotype of cheB mutants (Kirsch

et al., 1993; Zimmer et al., 2002).  

4.4.2 Wall synthesis                                                                                             

Bacterial cell walls are composed primarily of peptidoglycan, a polymer of alternating 

N-acetylmuramic acid and N-acetylglucosamine. Attached to N-acetylmuramic acid is a 

pentapeptide chain, that facilitates the cross linking with the glycan chains using the 

enzyme transpeptidase to give the cell wall structural integrity. Vancomycin functions 

by binding to the terminal D-ala-D-ala residues of the pentapeptide chain preventing the 

transpeptidase enzyme from cross linking chains (Walsh, 2000).  As such the cell wall 

becomes susceptible to osmotic lysis.  

To determine whether the behaviour of the cheB mutant was the result of a general 

effect on cell wall synthesis, an investigation was carried out to determine the effect of 

adding ampicillin as a stressor. Ampicillin functions by preventing peptidoglycan cross 

linking through the inhibition of the transpeptidase enzyme directly rather than in the 

case of vancomycin acting upon its substrate. If the cheB mutation was affecting cell 

wall synthesis, the behaviour observed with vancomycin might have been expected to 

apply to ampicillin. 

Preliminary tests were conducted to establish the optimum concentration of ampicillin 

to add to wild type B. subtilis to perturb but not inhibit growth Concentration of 

ampicillin between 0.1 and 0.4 µl/ml were applied Increasing concentrations of the 

antibiotic had increasing significant influences on the growth profile. It was concluded 

that the optimum concentration for use would be 0.1 µg/ml (Figure 4.25). 
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Figure 4.25: The influence of various concentrations of ampicillin on B. subtilis.

Dark blue, No ampicillin (red arrow). Pink, 0.1 µg/ml. Green, 0.2 µg/ml. Turquoise, 0.3 
µg/ml. Purple, 0.4 µg/ml. The blue arrow indicates the selected antibiotic concentration 
for use in further investigations.

When 0.1 µg /ml ampicillin was used to stress the cheB KO, licT KO and cheB-licT KO 

mutants their growth profiles were identical to the wild type, indicating that the 

influence of vancomycin on the cheB mutant was due to a specific rather than a general 

effect on cell wall synthesis (Figure 4.26).  

The addition of ampicillin to growing cultures of both cheB KO and wild type B. 

subtilis produces a slight reduction in both the growth rate and eventual stationary phase 

culture density when compared to untreated wild type B. subtilis. These results suggest 

that the mutation does not have an influence on general cell wall biosynthesis, 

suggesting that the cheB KO mutation is affecting another cellular function
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Figure 4.26: Low-throughput testing of single and double mutants with the 

stressor ampicillin. The growth profile response of the single KO mutants cheB and 
licT and the cheB KO-licT KO double mutant in comparison to wild type B. subtilis 

when subjected to the stressor ampicillin (0.1µg/ml). The growth profiles of the 
unstressed wild type and mutants are also included.

. 

4.4.3 Microscopy 

The influence of vancomycin on the growth profile of the cheB KO mutant and wild 

type was noted in section 4.3.5. To attempt to understand the underlying basis for these 

observations, morphological studies were conducted using phase contrast and 

fluorescence microscopy. Wild type B. subtilis and cheB KO mutants were grown in LB 

at 37ºC and samples removed every 10 minute over a period of 40 minutes, following 

the addition of vancomycin during mid exponential growth (Figure 4.27). Samples were 

mounted and studied using a range of microscopy techniques, designed to identify any 

physical differences that may be present between the samples. 
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Figure 4.27: A graph indicating sample time points for microscopy analysis.

Indicated on the graph are the time points, that samples were removed for microscopic 
analysis after the addition of 2 µg/ml vancomycin. Sample A, 10 minutes post stress 
addition. B, 20 minutes post stress addition. C, 30 minutes post stress addition. Sample 
D, 40 minutes post stress addition. 

4.4.3.1 General morphology  

The appearance of the wild type B. subtilis and cheB KO mutant cells was analysed for 

differences in cell size, morphology and timing of cell division following the addition of 

vancomycin.  Cell size and morphology were similar, but there were indications that the 

timing of cell division was delayed by approximately 10 minutes in the case of the wild 

type (Figure 4.28). The cheB KO mutant stopped forming dividing chains at time point 

A after the addition of vancomycin, with decreasing numbers of bacteria dividing and 

forming chains at time points C and D after the addition of vancomycin.  

These observations are consistent with the growth profiles observed for these sample 

sets, a reduction in growth by approximately 20 minutes after the addition of 

vancomycin before a prominent decline in growth rate occurred.  
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4.4.3.2 DAPI staining of chromosomal DNA 

Following morphological analyses by phase contrast microscopy, samples were stained 

with 4'-6-diamidino-2-phenylindole (DAPI) DNA stain to identify the location and 

condition of the nuclear material when visualised with fluorescence microscopy. The 

results obtained for both sample sets taken at 30 and 40 minutes were typical of 

normally cells preparing to divide with two regions of nuclear material per cell (Figure 

4.28). 

4.4.3.3 Fluorescent vancomycin staining  

With no differences seen on the addition of vancomycin to sample sets, fluorescent 

vancomycin was used in replacement in a ratio of 50:50 with standard vancomycin to a 

final concentration of 2 µg/ml, This enabled the distribution and action of the compound 

to the sample sets to be visualised, indicating any potential differences that may be 

occurring (Figure 4.28). Analysis has indicated the comparable distribution of 

fluorescent vancomycin attachment between cheB KO and wild type B. subtilis sample 

sets. Time points A and B indicated a general binding of fluorescent vancomycin to the 

cell wall, with a larger incorporation of fluorescent vancomycin occurring at time points 

C and D, the point of greatest peptidoglycan synthesis and monomer cross-linking. 
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Figure 4.28: Microscopy comparison and analysis of the cheB KO mutant with 

wild type B. subtilis. cheB KO samples taken at the time points A-D as indicated in 
Figure 4.26 after the addition of 2 µg/ml vancomycin. Samples were initially visualised 
by phase contrast microscopy (grey) after which samples were stained with DAPI 
staining (blue) and visualised using fluorescence microscopy. Samples in a separate 
investigation were treated with a 50:50 mixture of fluorescent vancomycin and standard 
vancomycin to a final concentration of 2 µg/ml (green) and visualised using 
fluorescence microscopy. Scale bars indicate 2µm length. 
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4.4.4 Small scale analysis summary 

To determine wheteher the effect of vancomycin was specific to the compound or was a 

generic response to cell wall synthesis acting antibiotics, experimentation was repeated 

using ampicillin. It was found that all cells tested behaved in the same way as wild type 

B. subtilis, indicating that the effects of vancomycin were specific to the compound. 

Microscopic investigation techniques were then used to investigate for any unique 

properties specific to the cheB KO mutant when compared to wild type B. subtilis.  

The results of such investigations found only a single difference, this being a reduction 

in time taken by cheB KO mutant cells to elongate and divide. This difference was 

initially small, but became more prominent as exponential growth continued. Additional 

observations using DAPI and fluorescent vancomycin staining of the two cell types, 

indicated no difference in nuclear or peptidoglycan chain localisation. 

4.5 The arginine and pyrimidine (uracil) biosynthetic systems  

4.5.1 Introduction  

The arginine biosynthetic pathway shares a common intermediate-carbamoyl phosphate 

with the pyrimidine biosynthetic pathway. It was of interest to discover that the genes 

for key steps in both pathways were clustered together on the chromosome and with 

each pathway having a seemingly dedicated carbamoyl phosphate synthetase (CPS) 

enzyme, where most prokaryotes utilise just one. This organisation and presence of two 

CPS suggested the possibility that pathway intermediates from each individual system 

may be being channelled through distinct multi enzyme complexes to other components 

within the same system, preventing them from entering alternative utilising systems. 

This could explain the clustered organisation of biosynthetic pathway genes and the 

duplication of the CPS enzyme. The aim of this component of the project was to express 

and purify key components of both biosynthetic systems to determine if there could be 

any interrelationship between them.   

4.5.2 Approach 

To study this, a structural and interaction analysis was initiated. Recombinant proteins 

of all key components of both biosynthetic systems were to be isolated in preparation 

for crystallisation and structural analyses as well as protein interaction studies. 
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The study was initiated by cloning the genes encoding both the arginine and pyrimidine 

specific CPS’s as well as the argF gene encoding an ornithine transcarbamylase enzyme 

into the pMAL expression vector to generate affinity tagged fusion proteins. After 

expression in E. coli, these proteins would be purified by affinity chromatography and 

analysed by SDS-PAGE, before being subjected to crystallisation, structural and protein 

interaction analyses.  

4.5.3 pMAL expression system  

The pMAL system has been designed to give controlled expression at high levels of up 

to 100 mg/litre of soluble recombinant proteins within E. coli. Proteins are induced and 

expressed using the strong Ptac promoter and emerge fused to a maltose binding protein 

(MBP) (di Guan et al., 1988; Maina et al., 1988; Riggs, 2001) (see appendix). MBP-

tagged proteins can then be purified using a one-step affinity purification process, after 

which the tag can be cleaved from the protein using a protease specific for the linker 

region located between the recombinant protein and the MBP. 

The ability to perform crystallographic and interaction studies is dependant on the 

production of soluble proteins that can precipitate out to form crystals. Two versions of 

pMAL allow for synthesis and folding of the target protein in either the cytoplasm (c) or 

the periplasm (p) of E. coli. The translocation and subsequent folding of the target 

protein in the periplasm increases the likelihood of the protein being folded into its 

native configuration. The inclusion of MBP within the recombinant protein, not only 

ensures the ability to easily purify expressed proteins easily, but also by its inclusion 

reduces the likelihood of producing insoluble proteins (Kapust & Waugh, 1999). 

4.5.4 Expression vector construction  

Upstream of the multiple cloning site (MCS) of pMAL is the malE gene encoding a 

MBP. The target gene is cloned in-frame with the MBP, separated by a cleavage site on 

the linker between the two sequences. High level expression of the target recombinant 

protein is achieved by using the IPTG-regulated Ptac promoter via the lacl
q encoded 

lactose repressor within the plasmid. A ß-lactamase gene has also been included to 

allow selection of pMAL transformed E. coli cells. 



4. Experimental Analysis of Gene/Protein Interactions                                               116 

Figure 4.29: pMAL expression vector construction. A, Candidate gene to be 
expressed located on the B. subtilis chromosome. Primer pair A, forward and reverse 
primers for the candidate gene. B, Candidate gene integrated into the pMAL expression 
vector. Primer Pair B, forward primer for the MBP and reverse primer for the candidate 
gene  

PCR primer pairs spanning the beginning and end of the target gene were designed 

(primer pair A) (Figure 4.29), with each having a restriction site that was 

complimentary to a restriction site in the MCS of the plasmid. The forward primer was 

designed to ensure that the target gene was in-frame with that of the MBP. The reverse 

primer included an additional stop codon at the end of the gene to ensure minimal 

translational read-through. The PCR was performed using the proof-reading polymerase 

Pfx (invitrogen) to produce full length copies of the target genes together with the 

additional features described (Figure 4.30). 

The genes encoding the proteins ArgF, CarA (carbamoyl phosphate synthetases – small 

subunit) and CarB (carbamoyl phosphate synthetases – large subunit) of the arginine 

biosynthetic system were cloned into pMAL together with the genes encoding PyrAA 

(carbamoyl phosphate synthetases – small subunit) and PyrAB (carbamoyl phosphate 

synthetases – large subunit) of the pyrimidine biosynthetic system. 

The pMAL plasmid and amplified genes were digested with cognate restriction 

endonucleases and ligated, before transforming and selecting in E. coli. Putative 

transformants were subject to a second PCR, this time using the forward primer for the 

malE gene and the reverse primer for the inserted gene (primer pair B), to confirm the 

presence and orientation of insert (Figure 4.29, Figure 4.3).  

A 

B 
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A separate set of sequencing primers ca. 800 bp apart were designed to allow the entire 

gene sequence of the tagged target protein to be confirmed.     

Figure 4.30: Construction stages of pMAL expression strains for the production of 

key arginine and pyrimidine biosynthetic system components. An agarose gel 
photograph of the stages of construction of the various expression strains, used to 
produce recombinant proteins for the analysis of the arginine and pyrimidine 
biosynthetic systems. Lane contents and primer pairs (A/B) are represented under the 
gel photograph. 

4.6 Analysis of the arginine and pyrimidine biosynthetic systems 

4.6.1 Protein expression  

The analysis of potential interactions between components of the arginine and 

pyrimidine biosynthetic systems were to be conducted using the biophysical techniques 

of surface plasmon resonance (SPR) (Boozer et al., 2006; Torreri et al., 2005) and 

isothermal titration calorimetry (ITC)(Velazquez Campoy & Freire, 2005). To perform 

these techniques as well as subsequent crystallisation and structural analyses required 

relatively large quantities of protein, to which the pMAL system was well suited.  

Before these investigations could begin small-scale studies were first performed in the 

E. coli host strain TB1 to verify the presence of recombinant proteins, their expression 

profile and solubility. Each of the constructed recombinants was grown at 30oC in the 

presence of the inducer IPTG (1mM). The inducer was added at mid exponential phase 

and the cultures harvest at two hours and four hours post induction. Samples were 
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centrifuged and the pellet resuspended in gel filtration buffer, before being sonicated. A 

sample of the sonicated mixture was taken as a representation of the whole-cell 

including both soluble and insoluble fractions. The remaining mixture was centrifuged 

and a sample taken of the supernatent representative of the soluble cell fraction. Both 

these samples were then checked for the presence of the recombinant protein by running 

on SDS-PAGE gels, and compared against a protein standard of known size. Uninduced 

samples taken at the same time points were also processed for comparative purposes. 

The recombinant proteins CarA, PyrAA and ArgF were expected to produced bands in 

the size range of between 76 and 81 kDa, while the larger PyrAB and CarB proteins 

were expected to produce bands in the size range of 154 to 160 kDa. These sizes 

included the fused MBP affinity tag of 42 kDa.   

The recombinant proteins CarA, CarB, PyrAA and PyrAB failed to be over expressed 

when compared to both soluble and whole cell fractions of their uninduced counterparts 

(Figure 4.31). The lack of initial evidence for recombinant protein over-expression from 

four of the constructs prompted further investigation. All expression constructs were 

sequenced to ensure the presence, correct orientation and required reading frame of the 

target gene within the pMAL vector and deemed correct. Induction of the recombinant 

plasmids was repeated at lower temperatures (25oC) and with lower inducer 

concentration (0.3 mM IPTG), as well as attempts to over-express the proteins carB and 

pyrAB in an alternative host strain of E. coli (BL21). An attempt was also made to 

express protein carB in the alternative expression vector pGEX but all with no success.  
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Figure 4.31: SDS-PAGE analysis of key proteins in the arginine and pyrimidine 

biosynthetic systems.  Expressed recombinant target proteins CarA, CarB, PyrAA, 
PyrAB from the pMAL expression vector in E. coli strain TBI. Lane 1, BioRad 
molecular size ladder. Lane 2, 2 hours post induction with no IPTG, whole cell fraction. 
Lane 3, 2 hours post induction with no IPTG, soluble fraction. Lane 4, 2 hours post 
induction with 1mM IPTG, whole cell fraction. Lane 5, 2 hours post induction with 
1mM IPTG, soluble cell fraction. Lane 6, 4 hours post induction with no IPTG, whole 
cell fraction. Lane 7, 4 hours post induction with no IPTG, soluble cell fraction. Lane 8, 
4 hours post induction with 1mM IPTG, whole cell fraction. Lane 9, 4 hours post 
induction with 1mM IPTG, soluble cell fraction. The expected size of product is 
indicated on lane 1 of the molecular size ladder with a red arrow. 

CarA CarB PyrAA 

PyrAB 



4. Experimental Analysis of Gene/Protein Interactions                                               120 

The clone expressing the ArgF protein showed evidence of a recombinant protein in the 

whole cell fraction, but a corresponding band was not detected in the soluble or non-

induced cell fraction (Figure 4.32). Attempts were made to produce soluble protein by 

using a variety of growth temperatures from 16-37oC, various concentrations of inducer 

from 0.1-1mM IPTG, and alternative E.coli host strains, namely Bl21 instead of TB1. 

All attempts were unsuccessful, with only the insoluble form of ArgF being produced. 

Figure 4.32: SDS-PAGE analysis of the expressed recombinant protein ArgF.

Expressed recombinant ArgF protein produced by the pMAL expression vector in 
E. coli strain TBI. Lane 1, BioRad molecular size ladder. Lane 2, 2 hours post 
induction with no IPTG, whole cell fraction. Lane 3, 2 hours post induction with 
no IPTG, soluble fraction. Lane 4, 2 hours post induction with 1mM IPTG, whole 
cell fraction. Lane 5, 2 hours post induction with 1mM IPTG, soluble cell 
fraction. Lane 6, 4 hours post induction with no IPTG, whole cell fraction. Lane 7, 
4 hours post induction with no IPTG, soluble cell fraction. Lane 8, 4 hours post 
induction with 1mM IPTG, whole cell fraction. Lane 9, 4 hours post induction 
with 1mM IPTG, soluble cell fraction.  

4.6.2 Summary 

Attempts to express proteins of the arginine and pyrimidine biosynthetic pathways in E. 

coli using the pMAL expression system proved unsuccessful, despite sequencing and 

the use a variety of growth and induction conditions together with host strains. These 

findings could indicate that the problems encountered may be attributed to the 
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insoluble ArgF 
protein 

ArgF 
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recombinant proteins being unstable, toxic to the host, or requiring the co-expression of 

other protein(s). Attempts at producing a soluble form of the only recombinant protein, 

to be produced, ArgF was also unsuccessful, despite attempts to optimise its expression. 

Although insoluble, ArgF could have been denatured to produce a soluble form, using 

urea or guanidine hydrochloride, although it would not be clear as to whether or not it  

would then be possible to re-nature it to an active form.  

The lack of expression of potential interacting partners to ArgF and difficulties 

associated with its solubilisation led to the abandonment of all experiments to 

investigate protein interactions, crystallisation and structural analysis between members 

of the arginine and pyrimidine pathways, and instead emphasis the analysis was shifted 

towards a computational analysis approach. .  

4.7 e-Therapeutics and the arginine and pyrimidine biosynthetic system discussion  

4.7.1 e-Therapeutics target testing   

A temperature controlled shaking microplate reader was evaluated for the high- 

throughput screening of a number of mutants constructed for the evaluation of e-

Therapeutics predicted therapeutic target genes. The reader provided data that was 

sufficiently accurate and consistent for such as screening procedure. Appropriate growth 

and stress induction parameters were established, and all of the mutants constructed 

were analysed to determine their response, relative to wild-type B. subtilis, to a range of 

different stressors, each designed to target a different area of cellular metabolism.   

The implementation of this approach did not identify any gene targets that when 

targeted together as predicted by e-Therapeutics could act as a therapeutic target, 

although it did identify several mutants whose behaviour was significantly differently to 

that of wild type B. subtilis warranting further investigation.  

The cheB KO mutant produced consistently different growth profiles to wild-type B. 

subtilis in the presence of the majority of stressors in the high-throughput investigation 

stage, the main exception being with the stressor rifampicin. The cheB KO mutant 

behaviour was independent of the presence or  absence of its cognate partner gene (licT

KO) mutation.  

The luxS single and double KO mutants, produced different growth profiles to wild type 

B. subtilis when the stressor nalidixic acid was applied, behaviour that was shared also 
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by  the single and double KO mutants of ycdH in response to the stressors heat and 

tetracycline.  

These initial findings were evaluated using a low-throughput approach. Growth 

experiments were repeated in larger culture volumes using mutants and the stressors 

that produced abnormal growth profiles.  Low- throughput analysis failed to confirm the 

high-throughput findings for the ycdH and luxS KO mutants.  

Low-throughput analysis did, however, confirm the abnormal response of the cheB KO

mutant to vancomycin. This unexpected behaviour led to a series of more 

comprehensive low-throughput investigations aimed at identifying the underlying 

mechanisms responsible for the behaviour observed. The cheB KO mutant was 

subjected to sub-inhibitory concentrations of ampicillin, an antibiotic like vancomycin,- 

inhibiting cell wall synthesis and allowing the determination of whether the effects seen 

were specific to the vancomycin compound or a more general response by the cell to 

cell wall stress.  

Since the growth profile of the cheB KO mutant was found to be indistinguishable from 

that of wild-type B. subtilis in the presence of ampicillin, it was concluded that the 

response generated was specific to vancomycin.  

Following treatment with vancomycin, the cheB KO mutant underwent microscopic 

analysis, which identified a reduction in the rate of cell division, placing samples 

approximately 10 minutes behind wild-type B. subtilis treated in the same way. There 

were no differences noted in morphology, localisation of nuclear material or the 

distribution of peptidoglycan within the mutants. As expected (Kirsch et al., 1993; 

Zimmer et al., 2002), deletion of cheB did not result in a change in observable 

swimming behaviour. In conclusion, virtually all of mutants exhibited a growth profile 

in response to the various stresses that was indistinguishable from the wild-type. The 

main exception was the response of the cheB mutation to vancomycin. The high-

throughput and subsequent low-throughput methodology used in this investigation was 

successful in identifying changes in mutants compared to wild type B. subtilis, and 

would be suitable to be applied to larger industrial and research applications that use a 

Systems Biology approach in their investigations. 
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To further the research conducted in this investigation, a series of reporter gene 

transcriptional fusion mutants with an inducible producer could be produced for target 

genes, allowing their transcriptional activity to be modulated and effects studied.  

The identification of the cheB KO mutant, with altered behaviour, identified using wet 

lab approaches, can now be complemented by computer-based modelling and analysis 

to try to determine the underlying biological mechanism for its behaviour.    

4.7.2 Arginine and pyrimidine biosynthetic systems discussion  

The inability to produce soluble recombinant proteins for key components of the 

arginine and pyrimidine biosynthetic pathways to use in biophysical interaction studies 

has prevented the completion of the wet lab studies. During small scale experiments to 

test the production and solubility of recombinant proteins, only a single candidate, argF 

could be expressed but in an unusable insoluble form. Attempts were made to solubilise 

the protein using different biological methods, but without success. All constructs were 

also sequenced and shown to be correct. 

As a result of the problems encountered expressing recombinant proteins, a bacterial 

two-hybrid approach could be adopted in the future for protein interaction studies which 

could prove to be more successful. However, to validate any identified interactions 

using this method would still require the production of recombinant proteins for further 

biophysical analyses and so alternative recombinant protein production strategies, 

possibly using different expression systems could be explored. 

Since it was not possible to conduct experimental investigations on the arginine and 

pyrimidine biosynthetic systems, an alternative computational approach was applied 

instead (Chapter 5).  



  

Chapter 5 

SubtilNet2 Compilation  
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5. SubtilNet2 Compilation 

This chapter describes the methods used to produce a new B. subtilis functional 

interaction network, based on the architecture of a previously generated B. subtilis

functional interaction network, SubtilNet, as well as the analytical programs that would 

be used for its analysis.  

This new network-SubtilNet2 was applied to computationally investigate the predicted 

therapeutic targets supplied by e-Therapeutics, to try and identify any functional 

associations that may occur between them that could make them potential therapeutic 

targets. This analysis follows traditional laboratory analysis of the targets, where 

mutants devoid of target function were produced, combined and tested under a range of 

different stress conditions. As well as SubtilNet2 identifying any potential functional 

associations that may occur between targets, the new network was also used to try and 

discover the molecular basis for the laboratory results obtained. 

In a separate investigation, SubtilNet2 was used to investigate potential interactions and 

their significance that may occur between components of the arginine and pyrimidine 

biosynthetic systems, after the failure of traditional wet lab based approaches. 

5.1 SubtilNet2 

Because of the original SubtilNet network having been developed to investigate the 

range of expressed proteins from multiple Bacillus species, modifications were needed 

to adapt it to the requirements of this investigation. Since the development of SubtilNet 

in 2005, considerably larger high-throughput data sets from which the network is 

constructed have become have become available. This justified the development of an 

entirely new network, adopting many of the concepts and methods developed for the 

original network. This new network, SubtilNet2, was designed specifically so that it 

could be used to investigate e-Therapeutics predicted targets as well as the arginine and 

pyrimidine biosynthetic systems. 

The method of weighting an interaction used in the original SubtilNet, which was based 

on the probability of their being a functional association, has the potential to overlook 

very weak but potentially important interactions for which the evidence was  

insufficient for the assignment of an interaction probability. This was acceptable for the 
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uses to which SubtilNet was applied, namely the analysis of a multiple candidates in a 

wide-reaching collection of multi-species networks.  

In this investigation, where only a few genes and their products were to be studied from 

a single Bacillus species, functional association weighting was removed. This allowed 

for the identification and investigation of all possible associations. With this being the 

case, all identified functional interactions had to be validated by returning to their 

original source.  

5.2 SubtilNet2 data Sources  

The data sources, compiled to produce SubtilNet2, consisted of multiple different data 

types, each representing different analytical aspects of B. subtilis physiology. This 

allowed for the production of a diverse functional interaction network. A decision was 

made to remove many of the original data sets used in SubtilNet, to reduce the amount 

of data that was not specific to the investigation, and that would require extra computing 

and analysis power. In addition to this and according to the “Peaking” effect (Trunk, 

1979), the addition of large volumes of “noisy” data can result in a decrease in the 

accuracy of observed results, this would then have required additional manual 

validation.  

The data sources that were selected for use in this investigation were as follows: 

• Pathway data from the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

(Kanehisa & Goto, 2000). This database contains details genes and the pathways 

to which they are associated in B. subtilis. The data is a collection of manually 

curated and computer compiled data, containing 39,154 interactions.  

• The Database of Transcriptional regulation in Bacillus subtilis DBTBS (Sierro et 

al., 2008). This database contains a collection of experimentally validated gene 

regulatory relations and the corresponding transcription factor binding sites 

upstream of B. subtilis genes. In total it details 1399 interactions.   

• Co-citation data from PubMed (www.ncbi.nlm.nih.gov/pubmed/). This data set 

is the result of the analysis of abstract data from the PubMed online journal site. 

23,624 abstracts for articles containing the term subtilis were downloaded, and 

“mined” for the co-occurrence of the names of all 4,100 genes of B. subtilis. 

This task was performed using a Perl computer script developed by Dr Matthew 
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Pocock of the Integrative Systems Biology group at Newcastle University. The 

result being the identification of 4472 node associations within B. subtilis.  

• The Microbial Protein Interaction Database (MPIDB) (Goll et al., 2008) details 

a total of 99 B. subtilis genetic interactions. The data within MPIDB has been 

manually curated from literature, imported from databases (IntAct (Aranda et 

al.), DIP (Xenarios et al., 2000), BIND (Bader et al., 2001), and MINT (Zanzoni

et al., 2002) and experimental evidence. Data is further supported by evidence 

on interaction conservation, protein complex membership, and 3D domain 

contact (iPfam (Finn et al., 2008), 3did (Stein et al., 2005)).  

These data sets were integrated together, to produce the SubtiNet2 functional interaction 

network.  

SubtilNet2 was computationally analysed using Cytoscape, an open source Java-based 

software package developed by Shannon et al (Shannon et al., 2003), to facilitate the 

visualisation and analysis of biological networks. Datasets were combined into a 

unified, conceptual framework that had the benefit of allowing individual data sets to be 

added or removed (Figure 5.1). This feature allowed researchers to investigate 

functional associations based on particular datasets, or a compilation of them all. 

Figure 5.1: Stepwise data compilation of SubtilNet2. The stepwise integration of data 
sets used to construct SubtilNet2, a functional interaction network for B. subtilis. A, 
MPIDB dataset. B, MPIDB and DBTBS datasets. C, DBTBS, MPIDB and KEGG 
datasets. C, Complete functional interaction network model- DBTBS, MPIDB, KEGG 
and co-citation datasets.   

A B D C 



5. SubtilNet2 Compilation                                                                                             128 

5.3 The network analysis of generated models 

Using SubtilNet2, various network statistical analyses could be performed within the 

Cytoscape environment. This was achieved using a range of plug-in programs 

specifically developed for this purpose. This investigation used the following: 

5.3.1 PeSca 2.0  

The PeSca2.0 Cytoscape plug-in has been developed by Petterlini & Scardoni (Petterlini 

& Scardoni, 2008), to analyse networks for the shortest paths between any two nodes. 

The shortest path between two nodes may indicate the most efficient and likely route of 

transfer between them (Raman & Chandra, 2008; Zhu et al., 2007). Determining the 

exact route that the shortest path takes can identify intermediates that may interact with 

the candidate nodes.  

5.3.2 Molecular complex detection algorithm (MCODE)

The molecular complex detection algorithm (MCODE) (Bader & Hogue, 2003) finds 

highly interconnected regions of nodes (clusters) within generated interaction networks. 

The presence of clusters could give an indication of nodes that are likely to be 

functionally associated, and could potentially be components of larger biological 

systems. 

Based on a node weighting scheme, the connectivity of an individual node is analysed 

and compared to surrounding node connectedness, after which a score is applied.  

After weighting, MCODE focuses on high scoring nodes and recursively moves 

outwards, analysing connected nodes and identifying those that continue to remain 

above a set weight threshold, potentially indicating membership to a highly connected 

region and possible cluster. Clusters within a network are scored and then ranked. The 

score is calculated by multiplying the connectivity of the cluster by the number of nodes 

within the cluster (Bader & Hogue, 2003) . The larger, denser, clusters score higher than 

smaller, more sparse, clusters (Bader & Hogue, 2003). Scores within the SubtilNet2 

network range from 86.902 for the largest, most highly connected cluster to 1 for the 

smallest and least connected cluster. For this investigation the settings by which 

MCODE assigns nodes to clusters- the node score cutoff, was left at its default setting, 

giving a compromise between the speed and accuracy of cluster identification. 
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5.3.3 BiNGO 

BiNGO (Maere et al., 2005), a Java-based Cytoscape plug-in, analyses and visualises 

the over representation of gene ontology (GO) designation within selected groups of 

nodes, giving indications as to the possible biological function of the node groups.  

Analysis is performed using the hypergeometric test – a statistical test that compares the 

proportions of gene ontologies from the analysed network with that of a reference set. 

Conducted at a significance level of 0.05, any ontologies that score a p-value below this 

threshold are deemed to be significantly overrepresented in the analysed network and 

are not simply occurring by chance. As a visual representation of this, the lower the p-

value below this threshold the darker orange the gene ontology term becomes (Figure 

5.2). In order to conduct accurate BiNGO analysis, the latest GO terms were obtained 

for B. subtilis from the European Bioinformatics Institute (EBI) (www.ebi.ac.uk).  

Figure 5.2: A visual representation of the gene ontology of networks generated by 

the BiNGO plug-in. A generated ontology tree and significance scale, for a single 
cluster selected from SubtilNet2 and processed with BiNGO. The darker the orange 
colour associated with gene ontology term, the lower its p-value and greater the 
significance of overrepresentation within the tree.
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5.3.4 Network analyzer  

Network analyzer (Assenov et al., 2008) is a Cytoscape plug-in that produces a 

comprehensive set of topological parameters for generated networks. These include the 

total number of nodes and edges within a network, a networks diameter, the average 

number of neighbours for each node, and characteristic path length.  

5.3.5 System-wide and local node analysis  

Individual nodes of interest can be identified within large interaction networks and, 

from this, the above-described plug-ins can be used to determine any unusual or 

interesting associations that occur. This analysis can be repeated on a smaller and more 

specific scale, where first-neighbour networks of nodes of interest can be produced.  

Analysis of these networks can result in more specific insights into the localised 

properties of the candidate nodes. In the current investigation both approaches were 

combined to produce more comprehensive analyses.  

5.4 SubtilNet2 summary  

The decision to develop SubtilNet2, a new functional interaction network, rather than 

modifying the existing SubtilNet network was the result of many mitigating factors, the 

primary one being its age. Since being constructed in 2005, a number of new and 

appropriate data sets for this investigation have been made publicly available, allowing 

the construction of a more accurate and comprehensive network, on which to conduct 

analyses. This new network would be analysed using the same approaches used in the 

analysis of the original SubtilNet network, and applied to investigate both the predicted 

e-Therapeutic candidates, with respect to their likely functional associations and basis 

for the experimental results seen. Together with this investigation will also be 

performed a SubtilNet2 investigation of the arginine and pyrimidine biosynthetic 

systems, to try to determine any functional associations that may occur between the two 

systems and the significance that this may have. This investigation follows on from 

experimental analysis attempts.  

Analysis in both investigations will initially be conducted using a wide ranging non 

targeted approach, analysing the entire SubtilNet2 network, and looking for general 

properties and features within it. This will be followed by a more focused approach that 

will analyse specific nodes in detail, the systems to which they belong and their likely 
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functional associations. By combining both these approaches, a more comprehensive 

understanding of the nodes and systems being analysed can be made. 



Chapter 6 

SubtilNet2 Application
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6. SubtilNet2 Application  

This chapter initially describes the generation and exploration of the SubtilNet2 

network, using three randomly chosen nodes from different biological systems selected 

from SubtilNet2. These were subjected to various network analysis techniques and 

plug-in tools, with the aim of identifying functional associations with other nodes and 

characteristics that could potentially represent underlying properties and biological 

systems.  

Following the analysis of the three random nodes, combinations of candidate genes 

supplied by e-Therapeutics that were predicted to act as potential therapeutic candidates 

when targeted simultaneously, were investigated using SubtilNet2 and network analysis. 

Potential, possible and plausible functional association occurring between each 

candidate of each pair were suggested, analysed and reconstructed, determining their 

likely validity.   

The laboratory results obtained for each candidate pair were also investigated using 

SubtilNet2 and network analysis techniques- identifying potential associating nodes and 

likely systems to which they belong, and how these could potentially account for the 

laboratory result obtained. 

SubtilNet2 was used in an attempt to analyse the investigation of the organisation and 

functioning of the arginine and pyrimidine biosynthetic systems to determine if 

carbamoyl phosphate produced by each system is directed towards specific reactions 

associated with each system or is used more generally in multiple systems irrespective 

of the producing system.  

6.1 The generated SubtilNet2 network for B. subtilis  

SubtilNet2 was generated from KEGG pathways, PubMed co-citation, DBTBS, and the 

MPIDB databases and displayed within the Cytoscape platform (Figure 6.1A). The 

resulting network was subjected to statistical analysis using the Network analyzer plug-

in. The network was determined to have 2466 nodes, with 45,124 edges, connected in a 

degree distribution profile that suggested a scale free topology (Figure 6.1B) typically 

expected for a biological network.  The network was found to have a diameter of 8 

nodes, and a characteristic path length of 3.4 edges (Figure 6.1C), with each node 
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having an average of 34.6 degrees. Cluster analysis using the default settings of 

MCODE identified a total of 99 clusters within the entire SubtilNet2 network.  

Figure 6.1: SubtilNet2 statistics.  A, The generated SubtilNet2 network, visualised 
using Cytoscape. B, A graph to indicate the degree distribution profile for the generated 
network, with a line of best fit plotted (red). C, A Graph indicating the characteristic 
path lengths within the network and the frequencies at which they appear.    

6.2 SubtilNet2 exploration 

The SubtiliNet2 functional association network together with Cytoscape plug-in tools 

were explored prior to the adoption of SubtilNet2 for the analysis of e-Therapeutics 

predicted candidates and a detailed investigation of the arginine and pyrimidine 

biosynthetic systems.  
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Cluster analysis was performed on SubtilNet2 and three random nodes were selected. 

From these nodes, associating clusters and first neighbour networks were identified 

produced and analysed using the Cytoscape plug-ins- Network analyzer and BiNGO.  

6.2.1 Example 1: Thiamine metabolic pathway 

The node thiE encoding a thiamine-phosphate pyrophosphorylase, involved in thiamine 

metabolism (Kanehisa & Goto, 2000; Lechat et al., 2008) was randomly selected from 

SubtilNet2. Cluster analysis, performed on the entire network found thiE to be present 

within a single fully connected (co-efficient 1.0) cluster, containing an additional 10 

nodes. Originating predominantly from KEGG pathways data, all 10 nodes were found 

to be functionally associated with the thiamine metabolism pathway (Kanehisa & Goto, 

2000). BiNGO analysis of this cluster (Figure 6.2) revealed an over representation of 

the term thiamine and derivative metabolic process (p-value 8.4228E-16) with 7 nodes 

being associated with the term out of a possible 12 nodes present within the entire 

SubtilNet2 network.  

Analysis of the generated first neighbour network of thiE identified 12 nodes. BiNGO 

analysis identified 8 of the 12 nodes as being associated with the ontology term for 

thiamine and derivative metabolic process (p-value 7.0329E-18). When comparisons 

were made as to the nodes present in the first neighbour network and cluster identified 

identical nodes as well as a single extra.         

The conclusion from these finding is that nodes from the identified cluster and first 

neighbour network of a randomly chosen node, have functional associations and over 

representation of gene ontologies that can both be affiliated to the randomly chosen 

node and also make biological sense, in this case the thiamine metabolic pathway. 

These findings can be confirmed, through existing described biological knowledge 

known about a number of the identified cluster and first neighbour nodes (Kanehisa & 

Goto, 2000; Lechat et al., 2008).  
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Figure 6.2: BiNGO analysis of the thiE cluster. A, A Bingo generated ontology tree 
for the thiE  associating cluster, indicating an overrepresentation towards gene 
ontologies relating to thiamine biosynthetic and related process. The darker the 
colourisation of the orange label, the statistically more significant the linkage is. B, 
BiNGO statistical output of generated graphical tree indicating gene presence and 
frequency in cluster.    
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6.2.2 Example 2: Biotin metabolic pathway 

The node bioA encoding a lysine-8-amino-7-oxononanoate aminotransferase involved in 

biotin metabolism (Lechat et al., 2008), was randomly selected from the SubtilNet2 

network. bioA was  found to associate with a single cluster containing 6 nodes, 21 edges 

and which was found to be fully connected (co-efficient 1.0). The origin of these 

produced functional associations came from the KEGG pathways database and co-

citation data.  Of the 7 nodes, 6 were found to be associated with biotin metabolism, and 

represented all 6 nodes known to associate with biotin metabolism. Subsequent BiNGO 

analysis (Figure 6.3) identified the overrepresentation of 5 nodes within this cluster 

associated with the term biotin metabolism (p-value 4.6595E-14).  

Generation and analysis of the first neighbour network for bioA identified 7 nodes and 

28 edges, with 6 of these nodes being associated with the same gene ontology term (p-

value 2.2007E-17). Comparing these nodes with those from cluster analysis, all were 

found to be identical with the extra node identified in the first neighbour network 

discounted through further investigation. 

The findings show that the nodes from cluster and first neighbour network of the 

randomly selected node bioA have both an overrepresentation of the gene ontology as 

well as functional associations that can also be applied to the randomly selected node. 

This is very similar to the biologically determined characteristics of bioA, and cluster 

and first neighbour nodes.   
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Figure 6.3: BiNGO analysis of the bioA cluster. A, A BiNGO generated ontology tree 
for the bioA associating cluster, indicating an overrepresentation towards gene 
ontologies relating to biotin biosynthetic process. The significance level of ontology 
terms increases from yellow to orange, the darker the orange colouration of the label, 
the statistically more significant the linkage is. B, BiNGO statistical output of the 
generated graphical tree indicating gene presence and frequency in cluster. 
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6.2.3 Example 3: Folic acid metabolic pathway 

The node folK representing a 2-amino-4-hydroxy-6-hydroxymethyldihydropteridine 

pyrophosphokinase involved in folic acid biosynthesis (Lechat et al., 2008) was 

randomly selected from the SubtilNet2 network. The cluster to which folk associated 

contained 7 nodes, and was shown to be fully connected (co-efficient 1.0). Analysis as 

to the origins of the functional associations identified indicated the exclusive use of the 

KEGG pathways database where nodes were found to associate with folate 

biosynthesis. BiNGO analysis of this cluster (Figure 6.4) identified 4 nodes with 

functional associations to folate biosynthesis (p-value 9.6018E-12), with a total of 10 

nodes with this same ontology being present in SubntilNet2.  

First neighbour network analysis of folK identified 9 nodes, with an overrepresentation 

of the ontology term folic acid and derivative biosynthetic process associated with 7 

nodes (p-value 3.8408E-17).  Included within theses 7 nodes were 3 not found within the 

original cluster.  

These finding confirm the findings of both the first and second randomly picked node 

examples studied.   
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Figure 6.4: BiNGO analysis of the folK cluster. A, A BiNGO generated ontology tree 
for the folK associating cluster, indicating an overrepresentation towards gene 
ontologies relating to folic acid metabolic processes. The significance level of 
respective ontologies increases from yellow to orange, the darker the orange 
colourisation of the label, the statistically more significant the linkage is. B, BiNGO 
statistical output of the generated graphical tree indicating gene presence and frequency 
in cluster. 
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6.2.4 SubtilNet2 exploration summary 

The generation and visualisation of the SubtilNet2 model using the selected datasets and 

the Cytoscape platform has produced a network from which to explore both the 

predicted e-Therapeutics therapeutic candidates and the arginine and pyrimidine 

biosynthetic systems.  

In preparedness for this task the network and the analysis plug-in tools that were to be 

used were explored. Three random nodes were selected and investigated in the 

following ways: 

• Cluster association and to what degree of connectedness.  

• The generation of first neighbour networks. 

• The functional associations present between nodes of clusters and first 

neighbour networks.  

• Potential overrepresentation of gene ontologies in clusters and first neighbour 

networks. 

By gathering this data, indications of any underlying functional associations that the 

random node may have could potentially be identified. Clusters and first neighbour 

networks that have been analysed in this way, have been found to identify functional 

associations that make biological sense, when compared to existing biological 

knowledge of the nodes contained within them.  

6.3 SubtilNet2 application to e-Therapeutics candidate analysis 

The six candidate gene pairs supplied by e-Therapeutics were analysed using SubtilNet2 

in an attempt to ascertain potential functional associations between each target in the 

pair, as well as to aid in explain the experimental results seen during testing.  

6.3.1 ywdH- ybfS interaction 

6.3.1.1 ywdH background 

The gene ywdH is thought to encode a putative broad spectrum aldehyde dehydrogenase 

(ALDH) enzyme that is used in the oxidisation of aldehydes in multiple biological 

pathways (Kanehisa & Goto, 2000). ALDH are present in all living organisms, and are 

part of a large superfamily of enzymes catalysing the oxidation of aldehydes (Sophos et 

al., 2001). Some ALDHs are specific for individual substrates while others have broad 
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substrate specificity, with all requiring the cofactors NAD or NADP (Perozich et al., 

1999). B. subtilis, to-date, has a recorded 11 ALDH (Sophos & Vasiliou, 2003) that 

show a broad spectrum in their specificity (Sophos et al., 2001). 

6.3.1.2 ybfS background 

The gene ybfS encodes a glucosamine specific enzyme IICBA, of the 

phosphotransferase system (PTS), a complex of proteins allowing the transport, 

phosphorylation, and sensing of various carbohydrates (Postma et al., 1993). ybfS also 

has a secondary function in metabolic and transcriptional regulation of a variety of 

processes (Saier, 2001). Several variations of the PTS mechanism exist, dependant on 

substrate specificity. The system of which ybfS is a component is suggested to take up 

glucosamine from the environment (Reizer et al., 1999). 

The PTS consists of three domains: IIA, IIB, and IIC (Figure 6.5). The first domain, 

IIA, forms a cytoplasmic protein, while the second domain, IIB, forms a hydrophilic 

domain that is fused to IIC, a membrane-spanning hydrophobic domain. The 

combination of the two domains produces a channel through which extracellular 

substrates can pass into the interior of the cell. Powering this system is the transfer of a 

phosphate group provided by the dephosphorylation of phosphoenol pyruvate in a 

stepwise manner through the components of the PTS system. This begins with the 

enzyme I (EI), followed by the phosphocarrier protein (HPr), cytoplasmic protein IIA, 

IIB domain and finally the membrane component IIC. IIC complexes the phosphate 

group with glucosamine to produce a concentration gradient between the inside and 

outside of the cell, which draws glucosamine into the channel.  
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Figure 6.5: The IICBA components of the phosphotransferase system (PTS). The 
PTS system facilitates the diffusion of glucosamine into the cell. IIA, a cytoplasmic 
protein. IIB, contains a hydrophilic domain that fuses with IIC, a membrane spanning 
protein, forming a hydrophilic channel through which extracellular substrates can pass. 
Phosphate groups donated by phosphoenol pyruvate and transported by EI and HPr 
power the system.      

                                                                                                                                                                              



6. SubtilNet2 Application                                                                                            144 

6.3.1.3 Network analysis of ywdH-ybfS using SubtilNet2

The nodes ywdH and ybfS were identified in the SubtilNet2 network, after which cluster 

analysis was performed. No single cluster was identified in which both nodes were 

present. 

Table 6.1: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the ywdH node. 

The node ywdH was identified to a highly connected cluster (Table 6.1) containing 58 

nodes. This cluster contained an overrepresentation of functionally associated nodes of 

the valine, leucine and isoleucine degradation pathway (13 nodes), as well as the 

glycolysis/ gluconeogenesis pathways (10 nodes). The analysis of gene over-

representation within this cluster, identified 32 nodes with the oxidation reduction 

process term (p-value 1.0620E-18). 

Further cluster analysis of the identified cluster, associated the ywdH node to second 

less highly connected cluster of 36 nodes (Figure 6.6). This cluster had functional 

associations to the valine, leucine and isoleucine degredation pathways (11 nodes) and 

an overrepresentation of 19 nodes with ontology terms associated with oxidation and 

reduction reactions (p-value 4.9721E-11). The existing biological data known about the 

nodes contained within these clusters supported these findings.  

ywdH node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

6/99 2/2 N/A 

Functional 
association data 

source 

KEGG           
Co-citation 

KEGG KEGG            
Co-citation 

Clustering            
Co-efficient 

0.944 0.910 N/A 
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Figure 6.6: Clustering of the ywdH node. A, The identified ywdH cluster within the 
whole SubtilNet2 network. B, The sub-cluster to which the ywdH node has been 
identified to. The green arrow indicates the presence of the ywdH node within both 
clusters.   

Table 6.2: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the ybfS node.  

ybfs node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

7/99 3/7 N/A 

Functional 
association data 

source 

KEGG KEGG KEGG 

Clustering            
Co-efficient 

0.907 0.985 N/A 

A 

B 
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The second half to the selected target pair ybfS (gamp), associates with a large, 135 

node highly connected cluster (Table 6.2) with a significant proportion of nodes having 

functional associations to the amino acid metabolism pathways, of cysteine and 

methionine (18 nodes) and, arginine and proline (16 nodes) as well as the 

phosphotransferase pathway.    

Analysis of the representation of gene ontologies within this cluster found that 36 nodes 

were represented with the term amino acid and derivative metabolic process (p-value 

3.8538E-12). Further cluster analysis, reducing the size of the initial cluster to a highly 

connected cluster containing 42 nodes (Figure 6.7), was shown to as having some 

functional association with the phosphotransferase systems (18 nodes). Ontology 

analysis of this cluster revealed the 18 nodes had an overrepresentation of the term 

phosphoenol pyruvate-dependant sugar phosphotransferase system p-value (8.1498E-26). 

The existing biological data known about the nodes contained within these clusters 

again supported these findings. 

Figure 6.7: Clustering of the ybfS node. A, The identified ybfS cluster within the 
whole SubtilNet2 network. B, The sub-cluster to which the ybfS node has been 
identified to. The green arrow indicates the presence of the ybfS node within both 
clusters.  

A 

B 
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Potential functional associations between the pair of candidate nodes was determined by 

analysing the nodes within each cluster for any co-association and then looking at the 

first neighbour network of each target, and doing the same. This identified ybfS to be 

present within the network of ywdH, suggesting a close functional association. The node 

ypqE, encoding a glucose specific phosphotransferase system IIA component that 

allows the uptake of glucose, maltose, N-acetyl-muramic acid, trehalose and arbutin 

(Kanehisa & Goto, 2000), was also found to be co-associated with both networks. 

Shortest path analysis, using the first neighbour networks of ywdH and ybfS nodes, 

found a path with a length of two (smaller than the average calculated for the SubtilNet2 

network (3.4)) connecting the two nodes via the additional nodes malP or yyzE or ypqE

(Figure 6.8A).  

Further manual validation of the intermediate nodes revealed an interchangeable use of 

the node names ypqE, and yyzE. This was also observed for the node name malP which 

was being used interchangeably with ybfS. After compiling these node synonyms, the 

shortest path between the ywdH and ybfS node was found only to be via ypqE. (Figure 

6.8B). 

Figure 6.8: A graphical representation of the SubtilNet2 determined shortest paths 

between ywdH and ybfS nodes. A, Shortest path before manual verification. B, 
Shortest path after manual verification.   

A 

B 

ybfS/ 
malP/ 

gamP 



6. SubtilNet2 Application                                                                                            148 

Both the ywdH and ybfS nodes can be associated with different pathways of a multi 

stage amino sugar metabolism process (Kanehisa & Goto, 2000), ybfS being involved in 

the sensing and uptake of glutamine from the environment, and ywdH with the 

production of acetate and acetaldehyde from acetyl-CoA. Visualising these stages 

(Figure 6.9), together with knowledge of the only identified shortest path intermediate 

ypqE, made it apparent that the fructose metabolism pathway could be used to 

functionally associate the two stages together in a biologically plausible way.  Returning 

to the first neighbour networks of the ywdH and ybfS nodes, identified a number of 

nodes found to be functionally associated with the fructose metabolism pathway, 

potentially providing further evidence to support this conclusion.  

The functional association between ywdH and ybfS nodes could proceeds as follows 

using the shortest path intermediate ypqE. Glucosamine taken up by the cell using ybfS, 

is converted to D-glucosamine-6-P in the early stages of the multi stage amino sugar 

metabolism pathway. While this is occurring, N-acetyl-muramic acid is up taken by 

ypqE and also converted to D-glucosamin-6-P in addition to glucose being up taken. 

Both D-glucosamine-6-P and glucose enter the fructose metabolism pathway where 

they are converted to D-fructose-6-P and eventually glyceraldehyde-3-P, which is 

passed onto the latter stages of the amino sugar metabolism pathway where the ywdH

encoded aldehyde dehydrogenase functions.  

6.3.1.4 Conclusions of laboratory and SubtilNet2 based analysis of ywdH-ybfS

targets 

The insights obtained using SubtilNet2 into the potential functional associations 

between the ywdH and ybfS nodes may provide explanations as to why no discernable 

differences were detected in the growth of mutants removed of these nodes functions 

and subjected to different stresses. When the function of the ybfS node is removed, 

mutants are simply able to uptake glucosamine using an alternative uptake system. It 

has been noted that E. coli, which shares a PTS system specifically for the uptake of 

glucosamine (Tchieu et al., 2001) like B. subtilis, can also utilize the mannose PTS 

system when required (Tchieu et al., 2001). This could be occurring in this 

investigation. Alternatively, B. subtilis has the ability to produce D-glucosamine-6-P, 

the product of ybfS, by up taking and converting N-acetyl muramic acid and fructose 

respectively, both systems utilising distinct uptake pathways. The removal of the ywdH



6. SubtilNet2 Application                                                                                            149 

node from the system may not have had an affect due to the presence of 11 paralogues 

known to exist within the cell, that could function in replacement of ywdH.  

SubtilNet2 has identified potential functional interactions of both target nodes to 

associated pathways of nodes belonging to the fructose metabolism pathway that could 

provide the functional link between the ybfS and ywdH nodes. This analysis, together 

with literature has provided several plausible explanations for the results obtained in 

experimental testing of mutants removed of these node functions.
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Figure 6.9: A schematic diagram of the candidate nodes ybfS and ywdH and the 

pathways that could functionally associate them. Generated using the KEGG 
pathways database, the above schematic diagram describes the possible functional 
association of the ywdH and ybfS nodes via the fructose metabolism pathway. Targets
highlighted with red arrows indicates candidate nodes ywdH and ybfS. Blue arrows 
indicate the nodes predicted to be within the shortest path.  

       Fructose metabolism pathway 

D-Glucosamine-6p

N-Acetyl 
glucosamine-6p

N-Acetyl muramic acid-6p

ypqE

nagA

ybfS

murQ

Glucosamine

N-Acetyl muramic acid

Pyruvate

gapB

D Fructose-1,6 p2

D-Fructose-1p D-Fructose D-Fructose-6p

Glyceraldehyde-3p
Glycerone-p

fbaA

pfkA glpX

gmuE

tpiA

fbaA

fruK

fruA

gamA glmS

Glycerate-3p

Phosphoenolpyruvate

Glycerate-2p

Glycerate-1,3 p2

Acetaldehyde Ethanol

ThPP

2 Hydroxy-
ethyl-ThPP

Dihydro 
lipoamide-E

Lipoamide-E

Acetyl-CoA

Acetate

S-Acetyl 
dihydrolipoamide-E

yfjI

yfcI
yfjH

yfjK

yfjK

ywdH yogA

pykA

eno

yhfR

pgK

Pyruvate  

Multi stage 
amino sugar 
metabolism 

D-Glucose-6p

Glucose  

ypqE 



6. SubtilNet2 Application                                                                                            151 

6.3.2 yvgQ-luxS interaction  

6.3.2.1 yvgQ background 

The gene yvgQ encodes a sulphite reductase (The universal protein resource (UniProt) 

2009; Lechat et al., 2008; van der Ploeg et al., 2001) that is used in the conversion of 

sulphur into the amino acids cysteine, methionine and S-adenosylmethionine (AdoMet). 

In B. subtilis, sulphur, a vital element for the synthesis of proteins and cofactors is 

acquired from both organic and inorganic sources.  

Inorganic sulphate ions are taken up by the cell and activated using the enzymes 

sulphate permease (cysP) and ATP sulfurylase (sat) before being reduced using the 

enzymes APS kinase (cysG) and phosphoadenosine phosphosulphate (PAPS) reductase 

(cysH) to produce sulphite (Albanesi et al., 2005). Organic sulphur containing 

compounds are taken up and converted to sulphite by the sulphonate uptake and 

degradation system ssuBACD (Albanesi et al., 2005).  

Sulphite is reduced to sulphide by the action of sulphite reductase, (yvgQ), before����

�����	
����� ������enters the system and with the action of O-acetylserinethiol lyase 

(cysK) and cysteine synthase (yrhA) to catalyze the conversion of sulphides to L-

cysteine (van der Ploeg et al., 2001). 

L-cysteine can be converted to methionine by the reversible transsulfuration pathway 

(Hullo et al., 2007). The first step converts L-cysteine to L-cystathionine using 

cystathionine synthase (metI), which is then converted to homocysteine using 

cystathionine lyases, (metC) and (patB)(Auger et al., 2002; Auger et al., 2005; Hullo et 

al., 2007), before a final methylation reaction to methionine by methionine synthase 

(metE). AdoMet, a methyl donor to numerous reactions (Chiang et al., 1996) and 

precursor to polyamine synthesis, can then be synthesised from methionine by an 

AdoMet synthase (metK)(Hullo et al., 2007). 

6.3.2.2 luxS background  

The gene luxS encodes an S-ribosylhomocysteine hydrolase that converts S-

ribosylhomocysteine (SRH) to homocysteine, as well as the auto-inducer 2 (AI2) used 

in cell to cell communication (Winzer et al., 2002). 

B. subtilis has the ability to catabolise methionine, using it as a sulphur source if it 

encounters such limitation within its environment. To enable this to happen, methionine 
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is converted to S-adenosyl-L-methionine (AdoMet) via one of two separate pathways  

(Hullo et al., 2007). The first reproduces methionine and ultimately more AdoMet by 

the initial degradation of AdoMet to methylthioadenosine (MTA) by the action of 

spermidine synthase (sped) and AdoMet decarboxylase (speE). This is then degraded to 

adenine and methylthioribose (MTR) by AdoHey/MTA nucleosidase, (mtnN). MTR is  

phosphorylated by methylthioribose kinase (mtnK), to produce MTRP which is 

converted to keto methylthiobutyric acid (KMBA), and then methionine by an 

aminotransferase (mtnE). This pathway is known as the MTR recycling pathway and 

can feed a second pathway, the AdoMet recycling pathway (Hullo et al., 2007).  

AdoMet is converted to homocysteine in a three step process. The initial step removes 

the methyl group from AdoMet and converts it to AdoHey. The second step, catalysed 

by AdoHey/MTA nucleosidase (mtn), converts AdoHey to SRH. The final step, 

catalysed by S-ribosylhomocysteine hydrolase (luxS), converts SRH to homocysteine 

(Hullo et al., 2007).  

Homocysteine can then be used to produce cysteine by feeding sulphur into the forward 

transsulfuration pathway, entering as sulphide using cystathionine lyase and 

homocysteine lyase (yrhB) (Hullo et al., 2007).  It can also produce cysteine using the 

reverse transsulfuration pathway and the enzymes cystathionine synthase, yrhA, 

cystathionine lyase and homocysteine lyase yhrB as well as the intermediate 

cystathionine (Hullo et al., 2007). 

6.3.2.3 yvgQ- luxS network analysis 

The nodes yvgQ and luxS were identified in SubtilNet2 and cluster analysis determined 

that they were not found to be present within the same cluster.  
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Table 6.3: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the yvgQ node 

The node yvgQ was found to associate with a highly connected cluster (Table 6.3) 

containing eight nodes (Figure 6.10), with three nodes showing functional associations 

with the cysteine and methionine metabolic pathways and three nodes with an 

association with other sulphur metabolic pathways. 

The representation of gene ontologies within the cluster showed 8 nodes with a bias to 

the term cysteine biosynthetic processes (p-value 7.1278 E-20). Separate biological 

analysis of these associating cluster nodes confirmed these findings. Attempts to 

disclose any further sub clusters within the original identified cluster resulted in non 

being found. 

   

Figure 6.10: Clustering of the yvgQ node. 

yvgQ node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

21/99 N/A N/A 

Functional 
association data 

source 

KEGG N/A KEGG 

Clustering            
Co-efficient 

1.0 N/A N/A 
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Table 6.4: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the luxS node 

The node luxS was found to associate with a highly connected cluster (Table 6.4) which 

had 135 nodes with predominant functional associations to metabolism pathways of the 

amino acids, proline (8 nodes) arginine (7 nodes) and methionine (11 nodes). An 

overrepresentation of gene ontologies associated with cell communication was found to 

be present on 47 of the cluster nodes (p-value 1.5944E-21). Further clustering analysis of 

the original luxS cluster found it to be connected to a second fully connected cluster 

with 11 nodes and functional associations to cysteine and methionine metabolism 

pathways (Figure 6.11). This cluster had 5 nodes over represented by the ontology term 

of amino acid and derivative metabolic process (p-value 8.3622E4). These findings 

provide evidence to existing biological properties known about the nodes contained 

within the clusters.  

luxS node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

7/99 1/7 N/A 

Functional 
association data 

source 

KEGG N/A KEGG 

Clustering            
Co-efficient 

0.907 1.0 N/A 
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Figure 6.11: Clustering of the luxS node. A, The identified cluster of the luxS node 
within the whole SubtilNet2 network. B, The sub-cluster to which the luxS  node has 
been identified to. The green arrow indicates the presence of the luxS node within both 
clusters.   

The first neighbour networks of both yvgQ and luxS were compiled and compared in 

search of co-associating nodes. Three were found, metA, metC and yrhB. On comparing 

these nodes with those identified in the shortest path analysis between the yvgQ and 

luxS nodes, all three were re-identified, together with an additional four nodes yrhA, 

cysE, metI and cysK. (Figure 6.12). These nodes were shown to contribute in producing 

a shortest path length of two.  

Figure 6.12: A graphical representation of SubtilNet2 determined shortest paths 

between the yvgQ and luxS nodes. 

A

B
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The seven identified intermediates nodes present within the shortest pathway, encoded 
the following:  

• metC: The enzyme encoded by this gene has both a cystathionine ß-lyase, 

activity-converting L-cystathionine to homocysteine, as well as a cysteine 

desulfhydrase activity, converting cysteine to sulphide (The universal protein 

resource (UniProt) 2009; Hullo et al., 2007). This gene can link the activity of 

luxS with that of yvgQ in that it processes substrates into products also produced 

by luxS and yvgQ.�

• yrhB: The enzyme encoded by this gene is a cystathionine �-lyase (Finn et al., 

2008), and has homocysteine �-lyase activity as well as a cysteine desulfhydrase 

activity in vitro (Hullo et al., 2007). It is a member of the transsulfuration 

pathway and also the cysteine synthesis pathway, both of which link the 

products of yvgQ and luxS. �

• yrhA: The enzyme represented by this node is a cystathionine �-synthase (The 

universal protein resource (UniProt) 2009; Hullo et al., 2007), producing 

cystathionine from homocysteine and involved in the transsulfuration pathway 

(Hullo et al., 2007). This enzyme has a low OAS -lyase activity in vitro (Hullo

et al., 2007), and converts o-acetyl serine into cysteine using sulphides. This 

gene links the activities of the node luxS with yvgQ, in that it processes the 

products produced by each. �

• cysE: The enzyme represented by this node is a serine O-acetyltransferase ( The 

universal protein resource (UniProt) 2009; Hullo et al., 2007), that transfers the 

acetyl group from acetyl-CoA to serine, to produce OAS. OAS is combined with 

the products from the reactions of both luxS and yvgQ nodes.   �

• metA: The enzyme encoded by this gene is a homoserine O-succinyltransferase  

that catalyses the production of O-acetyl-L-homoserine from acetyl-CoA and L-

homoserine (The universal protein resource (UniProt) 2009; Kunst et al., 1997) . 

This enzyme does not act upon any direct products or reactions of luxS or yvgQ, 

but is involved within the pathway between the conversion of homocysteine and 

cysteine to which both luxS and yvgQ contribute. 

• metI: The enzyme encoded by this gene is a cystathionine �-synthase (Hullo et 

al., 2007), catalysing the production of cystathionine from cysteine. This 
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enzyme does not act upon any direct products or reactions of luxS or yvgQ but is 

involved within the pathway between the conversion of homocysteine and 

cysteine to which both luxS and yvgQ contribute. 

• cysK: The enzyme encoded by this gene is an OAS lyase that converts OAS into 

cysteine (Finn et al., 2008). This only affects the products of yvgQ and not 

directly those of luxS, but it is a member of a pathway to which both are 

involved.   

All seven of the intermediate nodes identified have been shown to be components of 

either the cysteine synthesis pathway to which yvgQ participates, the AdoMet/ 

methionine recycling pathway to which luxS participates or a transsulfuration pathway 

that converts cysteine to homocysteine and vice versa, linking the products of both 

pathways together. This provides evidence of very plausible biological associations that 

could link the nodes of yvgQ and luxS. 

6.3.2.4 Conclusions of laboratory and SubtilNet2 based analysis of yvgQ-luxS 

targets 

The experimental testing of individual and combinations of KO mutants of yvgQ and 

luxS genes resulted in no discernable differences in growth and stress response when 

compared to wild type B. subtilis treated in the same way. SubtilNet2 provided potential 

explanations for these results. Using intermediate nodes, identified in shortest path 

analysis, the target nodes could be functionally associated to one another in a very 

plausible biological manner using the transsulfuration pathway (Figure 6.13).     

The removal of the function of the yvgQ node, prevented the conversion of sulphides to 

sulphites, and eventually cysteine.  However, cysteine can also be assimilated from the 

environment, with several uptake systems characterised (Burguiere et al., 2004). 

Cysteine can also be produced from methionine, homocysteine or cystathionine taken 

from the environment  and able to function via the transsulfuration pathway. 

In relation to luxS, the removal of this nodes function may not have produced 

phenotypic effects, as the product produced by it, homocysteine can be up-taken from 

the environment, or supplied from cystathionine via the transsulfuration pathway. 
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The insights given by SubtilNet2 allowed the construction of a pathway schematic for 

both yvgQ and luxS nodes.  

Figure 6.13: A schematic diagram of the candidate nodes yvgQ and luxS and the 

pathways that could functionally associate them. Generated using the KEGG 
pathways database, the above schematic diagram describes the possible functional 
association of the yvgQ and luxS nodes via the, transsulfuration pathway. Targets 
highlighted with red arrows indicates the candidate nodes yvgQ and luxS. Blue arrows 
indicate the nodes predicted to be within the shorted path. 

6.3.3 licT–cheB interaction  

6.3.3.1 licT background 

The gene licT encodes a transcription anti-terminator that is used to allow B. subtilis to 

utilise aryl-β-glucosides as a carbon source in conditions of nutrient limitation(Kruger 

& Hecker, 1995; Tobisch et al., 1997). This transcription anti-terminator binds to 
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specific sequences within transcribed (m)RNA termed ribonucleic anti-terminator 

(RAT) sequences (Schnetz et al., 1996), allowing transcription to proceed, beyond a 

terminator sequence and allow the production of components necessary for a PTS 

system to uptake aryl-β-glucosides (Schnetz et al., 1996).  

When B. subtilis is in an environment with preferred carbohydrate sources, the action of

licT is repressed, a process known as catabolite repression (Gorke & Stulke, 2008; 

Lindner et al., 2002). This ensures the metabolism of preferred carbon sources first, 

before switching to alternatives. When in an environment of preferred carbon sources, 

no binding of anti-terminator to the RAT sequences occurs and the transcription of 

components that allow the PTS to transport and utilise aryl-β-glycoside is turned 

off(Schnetz et al., 1996). 

The repression of licT occurs as two regulatory domains known as phosphotransferase 

regulated domains (PRD) become phosphorylated by donated phosphates from the 

components PEP, HPr and enzyme I of the PTS which are taking up preferred 

carbohydrates (Lindner et al., 2002) (Figure 6.14). 

The licT gene is found within and regulates the bglPH operon (Le Coq et al., 1995) 

containing bglS, which encodes an extracellular �-glucanase (Murphy et al., 1984) , 

bglP, encoding an aryl-�-glucoside specific enzyme IICBA and regulator of licT

(Lindner et al., 2002), and bglH encoding a 6-P-�-glucosidase (Le Coq et al., 1995).  

Figure 6.14: A graphical representation of the transcription anti-terminator 

protein LicT, and its various domains. 
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6.3.3.2 cheB background 

Bacteria use chemotaxis to move within an environment towards gradients of attractants 

and down gradients of repellents (Sierro et al., 2008). In the absence of stimulant B. 

subtilis swim in a tumbling motion, beating its flagella in a clockwise direction and 

allowing it to sample its immediate vicinity. Upon sensing a stimulant/repellent, the 

direction of flagella rotation changes to an anticlockwise movement, causing the 

bacteria to swim in a smooth and focused way towards the stimulant 

cheB is encoded within a 26kb fla/che operon (Lechat et al., 2008; Lindner et al., 2002), 

that contains an additional 30 genes encoding chemotaxis, and flagella hook basal body 

assembly complex components (Finn et al., 2008). The gene encodes a glutamate 

methylesterase (Kanehisa & Goto, 2000). This is involved in the adaptation response of 

chemotaxis receptors, to ensue that B. subtilis can continue to sense increasing 

concentrations of stimulant, even when in environments in which they may already be 

high. This is achieved by cheB aiding to reset the chemotaxis receptor (Saulmon et al., 

2004; Wadhams & Armitage, 2004).  

The mechanism of chemotaxis relies upon a two component signal transduction system, 

(Fabret et al., 1999). The environment is sensed by transmembrane methyl chemotactic 

proteins (MCP)(Zimmer et al., 2000) located upon the poles of the bacteria (Gestwicki

et al., 2000). In response to triggering of the receptor by stimulant, a conformational 

change in receptor shape occurs (Saulmon et al., 2004). These changes are detected by 

an auto-phosphorylating histidine kinase, CheA, connected through coupling proteins 

CheW and CheV to the receptor. CheA up-regulates its behaviour, phosphorylating a 

response regulator, CheY, that then acts upon the flagella motor mechanism, to alter the 

direction of flagella movement (Saulmon et al., 2004). This changes  from a default 

clockwise direction (Bischoff & Ordal, 1992) that causes a tumbling swimming motion 

allowing bacteria to sense surrounding environments, to an anticlockwise direction, 

causing smooth and straight swimming and allowing bacteria to move towards or away 

from stimulant (Figure 6.15). 

For B. subtilis to continue to sense and respond to changes in stimulant concentrations 

even while still within the presence of a stimulant, its receptors must be “reset”, 

reducing the amount of CheA-P and CheY-P to pre-stimulus levels (Saulmon et al., 
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2004; Wadhams & Armitage, 2004). This process, known as adaptation occurs in B. 

subtilis by three proposed mechanisms (Rao et al., 2008): 

• The methylation and demethylation of selected glutamic acid residues (Saulmon

et al., 2004) on MCP that has potential effects on CheA activity (Rao et al., 

2008).  

• The phosphorylation of the coupling protein CheV, suspected to couple 

reactions between the MCP and CheA (Rosario et al., 1994).  

• The application of the phosphatase CheC (Rao et al., 2008) and FliY (Szurmant

et al., 2003)  to reduce the  levels of CheA-P and CheY-P. 

CheB participates in the demethylation component of the adaptation response (Rao et 

al., 2008), after its first activated by CheA-P. It rapidly (Rao et al., 2008) demethylates 

selected glutamate residues on MCP (Saulmon et al., 2004), CheD a receptor deamidase 

(Kristich & Ordal, 2002) contributes. A suspected complex pattern of shuffling and 

addition of methyl group to the receptor then occurs using the methyltransferase, CheR, 

resetting the receptor (Rao et al., 2008). During this process CheD also deamidates 

glutamine residues on the MCP (Kristich & Ordal, 2002), enabling specific MCP’s to 

begin functioning and others to sense attractants at specific concentrations (Kirsch et 

al., 1993).  
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Figure 6.15: A graphical representation of the bacterial chemotaxis sensory 

system. MCP, Methyl accepting chemotactic protein. CheY, Response regulator. CheV, 
Coupling protein. CheC, Receptor deamidase/ phosphatase. CheR, Methyltransferase. 
CheA, Histidine kinase. CheW, Coupling protein. CheB, Glutamate methylestaerase. 
CheD, Receptor deamidase.   
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6.3.3.3 licT-cheB network analysis  

The initial investigation of licT and cheB using SubtilNet2 and cluster analysis found 

that the nodes were not present within the same cluster. 

Table 6.5: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the licT node 

The analysis of licT found it not to be associated with a single cluster identified in 

SubtilNet2 (Table 6.5).  

Table 6.6: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the cheB node. 

licT node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

N/A N/A N/A 

Functional 
association data 

source 

N/A N/A KEGG 

Co-citation 

DBTBS 

Clustering            
Co-efficient 

N/A N/A N/A 

cheB node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

2/99 1/3 N/A 

Functional 
association data 

source 

KEGG KEGG KEGG 

Clustering            
Co-efficient 

0.959 0.99 N/A 
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A 
B 

The node cheB with a very highly connected cluster of 134 nodes (Table 6.6) has 

functional associations to pathways containing two component systems (81 nodes). 

Within this cluster, the gene ontology term signal transduction was overrepresented by 

53 nodes (p-value 2.2399E-43). On further cluster analysis (Figure 6.16), a smaller 

cluster of 88 nodes was produced containing cheB that was more highly connected than 

the previous network (Table 6.6). These nodes showed a functional association with 

pathways involving the ribosome and had 56 nodes over representing the gene ontology 

for translation (7.2788E-62).   

Figure 6.16: Clustering of the cheB node. A, The identified cheB cluster within the 
whole SubtilNet2 network. B, The sub-cluster to which the cheB node has been 
identified to. The green arrow indicates the presence of the cheB  node within both 
clusters.   

First neighbour networks generated for each candidate revealed no co-associated nodes 

being present. The shortest path between the cheB and licT node was investigated, and  

determined to contain 5 possible intermediate nodes, penP, bglS, bglP, des and sacB 

generating a path length of between two and three (Figure 6.17): 
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Figure 6.17: A graphical representation of SubtilNet2 determined shortest paths 

between the licT and cheB nodes. 

The intermediate nodes predicted were shown to encode the following:  

• penP: Encodes a �-lactamase precursor (Finn et al., 2008) that is subsequently 

used to hydrolyse �-lactam rings.  

• bglS: Encodes an extracellular endo-beta-1,3-1,4 glucanase enzyme that 

hydrolyses the cell walls of lichen (Lechat et al., 2008). 

• bglP: Encodes a phosphotransferase system (PTS) � -glucoside-specific enzyme 

IIBCA component (Lechat et al., 2008).  

• des: Encodes a fatty acid desaturase, used in controlling the synthesis of 

unsaturated fatty acids from saturated phospholipid precursors to allow the 

bacterium membrane to adapt and remain fluid during reductions in external 

temperature (Aguilar et al., 1998).

• sacB: Encodes a levansucrase that converts sucrose to levan, a fructose polymer 

(Ortiz-Soto et al., 2008).  

None of the intermediate nodes within the shortest path could be found to completely 

functionally associate with both cheB and licT. There were confirmed functional 

associations between the cheB, penP and sacB nodes, as well as licT, bglS and bglP

nodes, but no functional association between des, bglS and penP nodes or bglP and 

sacB nodes for any of the candidates. 

The node des, as well as representing a legitimate node within SubtilNet2, also 

represents an artefact from the mining of co-citation data used to produce the SubtilNet2 

licT

bglP sacB

cheBbglS penP

des
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network. The titles and abstracts of papers in this case have contained the names 

Laboratoire de Génétique “des” Microorganismes and also licT, bglS and bglP(Le Coq

et al., 1995). The mining program interpreted this as a fuctional association and linked 

them as such, when in actual fact they represent no functional association. This has also 

been found to occur with the nodes bglS with penP and bglP with sacB, in which 

described functional association are simply the result of the use of the gene names 

within abstracts that describe the similarities in structures with one another (Hess & 

Graham, 1990; Kruger & Hecker, 1995). 

When data sets are mined computationally, errors such as these are likely to occur. As 

automatic mining programs develop and the possibilities to take context into account, 

these incidences are likely to be reduced. This method, despite its errors, allows the 

incorporation of large amounts of existing valuable data, which otherwise would need to 

be manually entered into the network or excluded all together. As the number of data 

sources increase and integration methods develop these common errors will produce 

fewer noticeable results.  

It has been noted that the PTS system can control the fla/che system in E. coli and B. 

subtilis, guiding the cell towards carbohydrate sources that it can utilise (Bachem & 

Stulke, 1998; Deutscher et al., 2006). Given the need to search for nutrients and the 

known activity of licT and its control and regulation of itself and other components 

required for carbohydrate uptake, it is reasonable to assume that there could be a 

functional association with cheB. Further specific analysis of SubtilNet2 for this 

possibility did not demonstrate any such associations, although bearing in mind that the 

network does not represent all functional associations this could remain a possibility.  

6.3.3.4 Conclusions of laboratory and SubtilNet2 based analysis of licT-cheB 

targets 

The testing of combinations of single and combined licT and cheB KO mutants when 

exposed to different combinations of stressors showed only a single difference in 

response when exposed to vancomycin compared to wild type B. subtilis treated in the 

same way. This was attributed to the single cheB KO mutant with its behaviour not 

found to be influenced by its combination with the licT KO, and despite this behaviour 

re-appearing on testing of the double KO mutant. Using SubtilNet2 the observed results 

for all mutants were analysed, and there were found to be no functional association 
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between the two target nodes. This example emphasises the importance of manual 

validation of data from which functional associations are predicted, and some of the 

potential limitations of using such an approach.  

The removal of function of the cheB node within laboratory investigations may not have 

produced other observable results, due to the conditions of growth. Its removal may also 

have had little direct effect upon the underlying systems involved in the stress response. 

The removal of licT node function which also produced no observable effects could be 

attributable to other mechanisms known to exist within B. subtilis that are able to able to 

utilise �-glucosides (Kruger & Hecker, 1995), replacing the function of the licT node. In 

addition to this, the testing of mutants in complex media containing carbohydrate 

sources more preferential than �-glucosides would cause the natural inactivation of licT 

by the catabolite repression process (Lindner et al., 2002).  

6.4.13 Additional cheB analysis-using microarray techniques.  

The removal of the node cheB’s function and the resulting mutants response to 

vancomycin, was unusual, and unexpected. Further laboratory investigation failed to 

uncover an explanation for these results. First neighbour network analysis was 

conducted on the cheB node in an attempt to uncover likely underlying mechanisms 

responsible for these behaviours, that could be further explored.  

The cheB node belongs to a highly connected cluster containing 81 nodes (Figure 6.18), 

with the majority of functional associations identified from the KEGG pathways 

database with a few instances from MPIDB and co-citation data. A total of 64 nodes 

from the cluster were found to be functionally associated with two component systems. 

BiNGO analysis identified 35 nodes with an overrepresentation of the ontology term 

associated with signal transduction (p-value 3.8023E-28). Further clustering of the first 

neighbour network identified cheB as associating with a cluster of 67 nodes with 

functional association with signal transduction. BiNGO analysis identified a large 

proportion of these nodes, 28, being functionally associated to pathways involving two 

component signal transduction systems (p-value 3.0221E-30 ). 

Discovering these facts has led to the use of microarray analysis from which to further 

study the cheB node and its associating systems.  Currently ongoing, cheB KO mutants 

together with wild type B. subtilis were exposed to 2 µg/ml vancomycin from which 
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samples were obtained pre and at 10 and 60 minutes post addition of stressor. These 

were then analysed for differences in gene expression using microarray technology.  

Identified nodes of interest from the original clusters will be used as a starting point in 

this investigation and specifically monitored for differences in gene expression between 

wild type B. subtilis and the cheB KO mutant. These results will be analysed using 

SubtilNet2, increasing the speed of analysis and helping to realise any underlying 

functional associations as well as their potential significance. In addition to this, any 

other interesting results displayed by additional non-cluster specific nodes will also be 

investigated in the same manner. The results and potential insights obtained using this 

approach will be used to determine the course of any potential future investigations. 

Figure 6.18: The first neighbour network of the cheB node. The first neighbour
network of the cheB node consisting of 81 associating nodes. The green arrow indicates 
the cheB node.



6. SubtilNet2 Application                                                                                            169 

6.3.4 fbaB-yacL interaction  

6.3.4.1 fbaB background  

The gene fbaB encodes a 6-phospho-5-dehydro-2-deoxy-D-gluconate aldolase enzyme 

that converts 6-phospho-5-dehydro-2-deoxy-D-gluconate to dihydroxyacetone 

phosphate and 3-oxopropanoate (Yoshida et al., 2008). This enzyme catalyses step six 

of seven steps in the degradation of myo-inositol.  The products produced as part of this 

pathway are acetyl-CoA, produced from 3-oxopropanoate and glyceraldehydes 3-

phosphate produced from dihydroxyacetone phosphate (Finn et al., 2008).  

6.3.4.2 yacL background  

The gene yacL encodes a putative membrane protein that shows similarities to those 

from other Bacillus species. It possesses PIN, HIN and TRAM protein domains 

(Kanehisa & Goto, 2000) and could function within a pili retraction system (Lechat et 

al., 2008): 

• PIN domains are named after their homology with the N- terminal domain of the 

pili biogenesis protein (Wall & Kaiser, 1999). They are part of a large family of 

proteins found in over 300 eukaryotes, bacteria and archaea, and initially 

thought to function in signalling (Noguchi et al., 1996). Recent bioinformatics 

analysis has suggested that the domain has an exonuclease function (Clissold & 

Ponting, 2000).  

• HIN domains have no known function. They are found in one or two 

copies per protein, and are found to follow the PAAD/DAPIN domain (Finn et 

al., 2008; Liu et al., 2003).   

• TRAM protein domains are predicted to be RNA-binding domains 

(Anantharaman et al., 2001) and may perform a nucleic acid binding role (Finn

et al., 2008). 

6.3.4.3 fbaB-yacL network analysis  

Cluster analysis of SubtilNet2 did not identify any cluster to which both the fbaB node 

and yacL node were associated. 
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Table 6.7: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the fbaB node 

fbaB was found to associate with a highly connected 7 node cluster (Table 6.7) 

containing 6 nodes with a predominate functional association to carbohydrate 

metabolism pathways, specifically inositol phosphate (The universal protein resource 

(UniProt) 2009; Kanehisa & Goto, 2000; Lechat et al., 2008). 

Attempts to investigate this cluster with the BiNGO plug-in were unsuccessful. Further 

clustering analysis identified a second sub cluster to which fbaB node was found to be 

fully connected containing 6 nodes and 15 edges (Figure 6.19). All 6 nodes showed 

functional associations with the Inositol phosphate pathway.  Attempts to BiNGO 

analyse the sub cluster also failed. 

fbaB node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

31/99 1/2 N/A 

Functional 
association data 

source 

KEGG 

Co-citation 

KEGG KEGG 

Co-citation 

Clustering          
Co-efficient 

0.933 1.0 N/A 
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A 

B 

Figure 6.19: Clustering of the fbaB node. A, The identified fbaB cluster within the 
whole SubtilNet2 network. B, The sub-cluster to which the fbaB node has been 
identified to. The green arrow indicates the presence of the fbaB node within both 
clusters.   

Table 6.8: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the yacL node. 

The node, yacL was found not to be present within any cluster in SubtilNet2 (Table 

6.8).  

 A generated first neighbour network for both nodes did not reveal any co-associated 

functionally associated nodes. Shortest path analysis from SubtilNet2 identified a 

shortest path length of 4 nodes with the nodes, mmsA, tpiA, aldY amd sigB acting as 

intermediates in the path connecting the fbaB and yacL nodes (Figure 6.20). 

yacL node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

N/A N/A N/A 

Functional 
association data 

source 

N/A N/A KEGG 

Clustering            
Co-efficient 

N/A N/A N/A 
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fbaB yacL 

mmsA

tpiA 

aldY sigB 

Figure 6.20: A graphical representation of SubtilNet2 determined shortest paths 

between the fbaB and yacL nodes.  

With an unknown characterised function for the yacL node, speculation as to its 

functional association to fbaB were be made. Due to a lack of cluster membership, its 

first neighbour network was instead analysed. This was found to contain only a single 

node sigB that was functionally associated via transcriptional regulation. SigB is used in 

widespread stress responses in B. subtilis suggesting that yacL may also be part of a 

stress response.  

Shortest path analysis between the yacL and fbaB nodes identified the following 

intermediate nodes associated with a path length of 4:  

• mmsA: Encodes a methylmalonate-semialdehyde dehydrogenase that is involved 

in the final step (7/7) of the metabolism of myo-inositol, converting 3-

oxopropanoate into acetyl-CoA (Yoshida et al., 2008).  

• tpiA: Encodes a triosephosphate isomerase, that converts dihydroxyacetone 

phosphate  to glyceraldehyde 3 phosphate (Kanehisa & Goto, 2000).  

• aldY: Encodes a putative aldehyde dehydrogenase (Lechat et al., 2008). In 

sequence comparisons with closely related species- B. anthracis and B. cereus

there was found to be 45.7 % and 45.1 % identity from sequence alignment with 

a glyceraldehyde-3-phosphate dehydrogenase (Finn et al., 2008). 

• sigB: Encodes an RNA polymerase sigma factor that is induced under conditions 

of general stress. It promotes the attachment of transcription factors to promoter 

sites, inducing systems to negate the effects of stress (Finn et al., 2008) such as 

the node aldY.  
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Functional associations have been found between the fbaB node and mmsA and tpiA

nodes. This is due to membership of the inositol phosphate metabolism pathway. In this 

pathway fbaB converts 6-phospho-5-dehydro-2-deoxy-D-gluconate to either malonic 

semialdehyde or dihydroxacetone phosphate (Finn et al., 2008). These products are then 

converted by either mmsA or tpiA to acetyl-CoA and glyceraldehyde-3-P respectively 

(Kanehisa & Goto, 2000). These products enter the glycolysis and gluconeogenesis 

pathway, where aldY is thought to function under the control of sigB in conditions of 

ethanol and other such stresses (Petersohn et al., 1999), with yacL found to be co-

transcribed with sigB (Sierro et al., 2008). 

6.3.4.3 Conclusions of laboratory and SubtilNet2 based analysis of fbaB- yacL

targets 

Existing biological knowledge, together with network analysis could not identify any 

functional associations between the target nodes or any likely underlying biological 

mechanisms that could have been responsible for a lack of phenotypic difference seen 

with mutants devoid of node function and wild type B. subtilis tested under different 

stress conditions.

B. subtilis can use myo-inositol as a carbon source (Kanehisa & Goto, 2000), and will 

induce the enzyme fbaB amongst others required for its degradation in conditions that 

require it. During this investigation, the growth and stress conditions may not have been 

suitable for its induction, and so any phenotype due to its removal may not have been 

seen. Should the investigation have tested the mutant in conditions using myo-inositol 

as a sole carbon source, the experimental phenotype that may have resulted, together 

with that when combined with a mutant devoid of yacL function may have been 

different. Exact speculation as to the combined mutant phenotype, has been hampered, 

with no function, or functional associations known about the yacL node, apart from 

being co-transcribed with sigB.  

No significantly different phenotypes were obtained when yacL function was removed 

from B. subtilis and compared to standard wild type B. subtilis under different stress 

conditions. This could suggest that either the system(s) to which yacL associates, has 

the potential to use a redundant system, or the function of the node may not produce a 

phenotypic effect under the testing conditions used.  
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6.3.5 abnA-yjcH interaction  

6.3.5.1 abnA background 

The gene abnA encodes an arabinan-endo 1,5-alpha-L-arabinase. This enzyme catalyzes 

the hydrolysis of the alpha-1,5-linked L-arabinofuranoside backbone polysaccharides 

found in plant cell walls (Finn et al., 2008). The transcription of abnA is repressed in the 

presence of glucose and induced by arabinose and arabinan in the growth environment 

(Raposo et al., 2004).   

6.3.5.2 yjcH background  

The gene yjcH encodes an as yet uncharacterised putative hydrolase (Lechat et al., 

2008). 

6.3.5.3 abnA-yjcH network analysis 

The abnA node was not found to be within any clusters when SubtilNet2 was subjected 

to cluster analysis (Table 6.9).  

Table 6.9: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the abnA node. 

abna node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

N/A N/A N/A 

Functional 
association data 

source 

N/A N/A KEGG 

Clustering            
Co-efficient 

N/A N/A N/A 
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Table 6.10: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the yjcH node. 

The node yjcH was found to be absent from SubtilNet2 entirely (Table 6.10). BLAST 

searches were conducted to determine if there were any other nodes likely to be 

confused for it and attempts were made to find potential associating systems using 

SubtilNet2, but due to its uncharacterised nature and potential to be used in multiple 

reactions, little network analysis could be conducted upon it. In an additional effort to 

characterise this node and any potential functional associations that it may have had in 

particular with abnA, the first neighbour network of abnA was investigated for the 

presence of any hydrolase enzymes. Two nodes were found in this network that had this 

property, abfA and xsa. These encoded two alpha-L-arabinofuranosidase that are 

involved in the hydrolysis of non-reducing alpha-L-arabinofuranoside residues in alpha-

L-arabinosides (Finn et al., 2008). BLAST searches conducted upon their coding 

sequences revealed that they were not mistaken for the yjcH node.  

6.3.5.4 Conclusions of laboratory and SubtilNet2 based analysis of abnA-yjcH  

targets 

With a lack of biological knowledge and characterisation of the yjcH node and a lack of 

presence within the SubtilNet2 network, analysis could not be conducted as to the 

effects that its removal would have. As such speculation as to the potential underlying 

biological systems that could be affected could not be known. The effect of combining 

the removal of this node together with the removal of the function of the abnA node 

could also not be known. Despite this, the experimental testing of both single and 

yjcH node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

N/A N/A N/A 

Functional 
association data 

source 

N/A N/A N/A 

Clustering            
Co-efficient 

N/A N/A N/A 
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combinations of mutants lacking their functions under a range of different stresses did 

not reveal any phenotypic differences when compared with wild type B. subtilis treated 

in the same way. The use of complex growth media during stress testing of mutants 

could have potentially suppressed any phenotypic effects that would have been seen by 

the removal of the abnA node. The lack of phenotypic difference of the removal of the 

yjcH node function both individually and when combined with abnA could suggest, the 

use of redundant system, a lack of node requirement during a stress response, or simply 

being a member of a non critical system. 

6.3.6 yndH-ycdH interaction  

6.3.6.1 yndH background  

The gene yndH encodes a conserved hypothetical protein (Lechat et al., 2008). The 

UniProt database (Finn et al., 2008) identifies it an as an as yet uncharacterised protein. 

BLAST searches indicate a link to uncharacterised hypothetical proteins with no 

functional annotation.    

6.3.6.2 ycdH background  

The gene ycdH has been suggested to encode a Zn(II)-binding lipoprotein (Lechat et al., 

2008), a solute binding component of an ATP binding cassette, associated with Zn (II) 

uptake (Gaballa & Helmann, 1998) and one of three such systems with B. subtilis 

(Gaballa et al., 2002). It has also been suggested that the gene encodes a Mn (II) solute 

binding protein involved in the ATP binding cassette for Mn (II) uptake (Bunai et al., 

2004).  

There is some evidence that ycdH is controlled by the zinc uptake repressor (Zur), being 

repressed in the presence of zinc (II) (Gaballa et al., 2002), giving greater weight to the 

speculation that this gene is involved with the uptake of zinc from the environment.  

6.3.6.3 yndH-ycdH network analysis  

From the global SubtilNet2 cluster analysis there were no clusters identified in which 

both candidate nodes were present together.  
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Table 6.11: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the yndH node. 

The node yndH was not present within the SubtilNet2 network (Table 6.11). BLAST 

searches of the coding sequence of the node did not reveal any other node that was 

likely to be associated with it.  

Table 6.12: Network analysis properties obtained for cluster, sub-cluster and first 

neighbour network of the ycdH node. 

The node ycdH was identified in the SubtilNet2 network, and was found to be within  

a highly connected cluster (Table 6.12) containing 114 nodes with 100 nodes (Figure 

6.21) representing a functional association to multiple pathways using ATP Binding 

cassettes. Gene ontology analysis of the cluster identified 111 nodes as being associated 

with the ontology terms associated with transport (p-value 1.0408E-76). These findings 

yndH node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

N/A N/A N/A 

Functional 
association data 

source 

N/A N/A N/A 

Clustering            
Co-efficient 

N/A N/A N/A 

ycdH node Cluster Sub-cluster First neighbour 

network

MCODE cluster 
ranking 

1/99 N/A N/A 

Functional 
association data 

source 

KEGG N/A KEGG 

Clustering            
Co-efficient 

0.945 N/A N/A 
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suggest that the ycdH belong to the systems speculated for it.  Further clustering 

analysis identified no additional sub-clusters.  

Figure 6.21: Clustering of the ycdH node. The identified ycdH cluster within the 
whole SubtilNet2 network.  

6.3.6.4 Conclusions of laboratory and SubtilNet2 based analysis of yndH-ycdH

targets  

A lack of data available for the nodes yndH and ycdH, prevented their local properties 

as well as potential functional associations from being investigated. This prevented the 

understanding of behaviours and potential functional associations exhibited during 

laboratory experimentation. Cluster analysis did show that the cluster to which the ycdH 

node associated with did have functional associations with ATP binding cassettes, 

adding weight to speculations of involvement in the Zn uptake system. As our 

knowledge of these nodes increases, and their functional associations better defined, it 

should be possible to improve our understanding of the experimental data. 

6.4 Arginine and pyrimidine (uracil) biosynthetic system analysis using SubtilNet2  

6.4.1 Arginine and pyrimidine biosynthetic systems 

The arginine and pyrimidine biosynthetic system both require CP. The majority of 

organisms utilise a single CP producing enzyme CPS, however B subtilis utilises a 

separate CPS for each systems designated CPS-A supplying the arginine biosynthetic 

system and CPS-P, supplying the pyrimidine biosynthetic system. Analysis of the gene 

organisation of both systems indicates the clustered organisation of genes encoding 
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systems associated with each CPS (see 1.1.4.4). In organisms possessing a single CPS, 

these genes are found to be distributed widely amongst the chromosome.  

An investigation was begun to determine if CP produced by each CPS containing 

system was specific to individual reactions within the cell, or could be used by the 

opposite system. If it couldn’t, this could potentially suggest the presence of a 

macromolecular complex to channel CP, together with other substrates in each 

biosynthetic system, preventing them from becoming available to enter other pathways. 

This could account for the unusual arrangement of genes found to surround each 

biosynthetic systems CPS.  

Attempts were made in the laboratory to express both the large and small subunits, that 

form the CPS from each biosynthetic system, to try and combine them in an opposite 

configuration (Figure 6..22) and to see if they would produce CP and to which system if 

any it would be targeted to. CLUSTAL W sequence alignment analysis (Thompson et 

al., 1994)  had already revealed each subunit to share 55% homology to its partner in 

the opposite biosynthetic system. As this was being explored attempts were also made 

to express a few genes found within the gene clusters surrounding each CPS, to see if 

they had associations with specific CPS and add evidence to the theory of the presence 

of a macromolecular complex. 

Both of these attempts failed, due to either a failure to produce the required protein or 

the protein being produced in an unsuitable form. Instead the investigation was 

conducted using SubtilNet2 in a computational approach. Potential functional 

associations with each CPS producing system were identified, allowing the destination 

of each systems produced CP to be predicted and determining if there was any 

specificity to them.    
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Figure 6.22: A graphical representation of the laboratory analysis of CPS  

originating from the arginine and pyrimidine biosynthetic systems. 

6.4.2 SubtilNet2 analysis   

The carA and carB nodes were identified in SubtilNet2, from which first neighbour 

networks were produced, and network analysis conducted. All nodes within the two 

networks associated with these two nodes were then cross checked with one another, 

checking for overlaps.  This was repeated for the pyrAA and pyrAB nodes after which 

the node lists from both systems were checked against one another. This would allow 

the identification of functional associations either unique to each system, suggesting 

specificity, or more generalised shared functional associations. 

Network analysis of the first neighbour network of the carA node, representing the 

small subunit of the CPS for the arginine biosynthetic systems contained 66 nodes that 

were determined to be functional associated (KEGG and co-citation data). 46 nodes 

were found to have an association with the pyrimidine metabolism pathway. BiNGO 

analysis of the first neighbour network nodes showed an overrepresentation of the 

ontology term for nucleobase, nucleoside and nucleotide metabolism (p-value 3.2208E-

21). Cluster analysis indicated the presence of two clusters, the first containing 42 nodes 

had functional associations with the pyrimidine metabolism pathway (40 nodes). 

BiNGO analysis revealed 40 nodes associated with the term nucleobase, nucleoside and 

nucleotide metabolism (p-value 1.0461E-23). The second identified cluster containing 22 

nodes, had 18 nodes functionally associated to the pathway of alanine, aspartate and 

carA 

carB pyrAB 

pyrAA 
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pyrAA carA 

pyrAB 
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glutamate metabolism and 14 nodes associated to the ontology term linked to amino 

acid and derivative metabolic processes (p-value 3.3184 E-11). 

Network analysis of the first neighbour network of the carB node, representing the  

large subunit of the CPS for the arginine biosynthetic system, contained 65 nodes 

associated through the pyrimidine metabolic pathway with data taken from KEGG. 

Subsequent cluster analysis identified two clusters, the first containing 41 nodes, had 40 

nodes functionally associated to pyrimidine metabolic pathways. BiNGO analysis 

identified 40 nodes with the gene ontology term associated to nucleobase, nucleoside 

and nucleotide (p-value 1.0461E-23). The second cluster containing 23 nodes had an 

overrepresentation of 14 nodes associated to the gene ontology term amino acid and 

derivative metabolic processes (p-value 3.3184 E-11). 

The analysis of both first neighbour node networks for carA and carB identified the 

presence of almost identical nodes, varying only by the additional node argF in the 

carA first neighbour network. The results of clustering also produced identical results, 

with two sub networks that contained the identical number of nodes and 

overrepresentation of the same gene ontology, although this represented pyrimidine 

biosynthesis rather than the expected arginine biosynthesis. Despite this, these findings 

suggest biologically plausible functional association relationships between the two 

given the existing knowledge of carA and carB nodes.  

The first neighbour network analysis of pyrAA contained 64 nodes, functionally 

associated to pyrimidine metabolism pathways (46 nodes) by KEGG pathways and co-

citation data. BiNGO analysis showed the first neighbour network of pyrAA to have an 

overrepresentation (44 nodes) of the ontology term nucleobase, nucleoside and 

nucleotide metabolic process (p-value 7.1612E-15). Cluster analysis of the generated 

first neighbour network identified 2 further sub-networks. The first containing 42 nodes, 

with functional associations to pyrimidine metabolism (40 nodes) and the 

overrepresentation (40 nodes) of the ontology term associated with nuclease, nucleoside 

and nucleotide metabolic processes (p-value 1.0461E-23). The second cluster with 22 

nodes had 20 nodes associated with alanine, aspartate and glutamate metabolism and an 

overrepresentation (20 nodes) associated with the term amino acid and derivative 

metabolic process (p-value 3.3184 E-11). 
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The first neighbour network of pyrAB contained 64 nodes, with 36 nodes functionally 

associated to the pyrimidine metabolic pathway by KEGG pathways and co-citation 

data. This first neighbour network had an over representation (27 nodes) of the ontology 

associated with nucleobase, nucleoside and nucleotide metabolic processes (p-value 

1.1872E-21). Cluster analysis of the generated first neighbour network identified two 

further sub networks. The first, 42 nodes in size had functional associations with the 

pyrimidine metabolism pathway (36 nodes) and an over representation (40 nodes) with 

the ontology nucleobase, nucleoside and nucleotide metabolic process (p-value 

1.0461E-23). The second 22 node cluster, had overrepresentation (14 nodes) of the 

ontology term amino acid and derivative metabolic process (p-value 3.3184 E-11). 

The overlap of shared nodes present in the first neighbour networks of pyrAA and 

pyrAB was identical, as found to occur with the carA and carB networks. The clustering 

behaviour and overrepresentation of gene ontologies within these networks was also 

found to be identical. These finding together could indicate a functional association 

between pyrAA and pyrAB that is biologically plausible and would agree with 

previously described functional associations of the pyrAA and pyrAB nodes. 

When the nodes present within the first neighbour networks of carA and carB, were 

compared with those of the pyrAA and pyrAB networks they were found to be almost 

identical with the exception of the argC and argF nodes missing from the pyrAA and 

pyrAB first neighbour networks. This initially suggested a biologically plausible 

association between the components and associated nodes of both the arginine and 

pyrimidine biosynthetic systems, indicating the likely sharing of produced CP. However 

further analysis of the implied functional interactions evidence, generated 

predominantly from KEGG pathways data, has identified the use of the CPS enzymes 

interchangeably in both described systems. This is as a result of the way in which data is 

integrated into the KEGG pathways database, which relies upon enzyme commission 

number (E.C) that describes the enzymes activity and substrate.  

Both CPS components of the arginine and pyrimidine biosynthetic system perform the 

same function, with the same substrate and so share the same E.C designation number 

(E.C.6.3.5.5 (Kanehisa & Goto, 2000)). KEGG distinguishes between enzymes of a 

system based upon this E.C number, and so when it is shared, errors such as those seen 

occur.  This issue has also occurred for the assignment of gene ontologies which is 

based upon associated biological processes, cellular components and molecular functions in 
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a species independent manner (Ashburner et al., 2000). This occurrence has made the 

separation and identification of systems that may be associated to individual CPS 

impossible, and comes as a result of efforts to try and adapt and integrate existing data 

to new systems biology applications. 

6.4.3 Arginine and pyrimidine biosynthetic system summary 

A laboratory investigation was initiated to determine wether CP produced by the 

arginine biosynthetic system could be shared with the pyrimidine biosynthetic system. 

If it couldn’t, this could suggest that the unusual cluster of genes found to surround each 

CPS may be being used to encode a macromolecular complex structure to channel CP 

and other substrates within a biosynthetic system. 

To test this hypothesis we attempted to identify interactions within and between 

pathway components using biophysical techniques such as SPR and ITC. This required 

the production of microgram quantities of the target proteins for key components of the 

arginine and pyrimidine biosynthectic pathways  

Attempts to express the subunits failed, and so a computer investigation was launched 

using the newly developed SubtilNet2 network. This approach focused on the analysis 

of closely associating systems for each CPS. From this, any associating systems 

common to both biosynthetic systems could be identified that could indicate the sharing 

of CP or it may instead indicate a lack of associating systems, suggesting the potential 

for a macromolecular complex. 

The first neighbours of each subunits of each CPS were generated and cluster analysis 

performed. Each first neighbour network produced identical clusters that had over 

representation of the same ontologies nucleobase, nucleoside and nucleotide metabolic 

process and amino acid and derivative metabolic processes and a predominate number 

of nodes associated with pathways involved in pyrimidine metabolism. Analysis of the 

exact nodes present within these first neighbour networks for individual CPS subunits 

identified identical nodes as being present with the addition of argF in the arginine 

biosynthetic system. Comparisons made between both CPS systems identified almost 

identical nodes with the absence of argC and argF from the pyrimidine biosynthetic 

system. These findings, as well as suggesting potential functional associations amongst 

components of the same biosynthetic system also suggest a lack of unique systems 
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associated with either biosynthetic system, potentially indicating the sharing of CP 

irrespective of the system producing it. 

The unusual gene ontology overrepresentation produced in the cluster analysis of the 

arginine biosynthetic system was further analysed. Looking into the exact nature of 

functional associations predicted by SubtilNet2, revealed the predominate use of the 

KEGG pathways database. Further analysis of individual associations within the 

database particularly for carA and carB, revealed their interchangeable use with pyrAA

and pyrAB. This can be attributed to the way in which KEGG designates enzyme to 

pathways, and is based upon E.C number, which both CarA/B and PyrA/B components 

share (E.C.6.3.5.5 (Kanehisa & Goto, 2000)). The same was also found for the gene 

ontology applied to both carA and carB, which was identical to that of pyrAA and 

pyrAB. Because of this, the generated associating systems are inaccurate and the 

conclusion originally made before this was known using the SubtilNet2 network must 

be discounted. 

The adoption of greater number of data sources, manual checking and better assignment 

of gene ontology terms in the future, should eliminate these inaccuracies from 

occurring, an indication of what needs to be achieved in the future to adopt systems 

biology approaches, and the problems associated with using existing data sources. 

6.5 SubtilNet2 discussion  

6.5.1 General discussion  

The initial exploration of the generated SubtilNet2 functional network to test the 

visualisation and analysis properties of the plug-in tools, called for the selection of three 

random nodes, with the intention of applying network analysis techniques to analyse 

them, determining likely biological properties and functional associations. 

Cluster analysis was first performed on each randomly selected node, identifying 

associating clusters and the exact extent of its association. Nodes associating with the 

randomly selected node and within the cluster were identified and there functional 

association with one another analysed. This was followed by the analysis of gene 

ontology representation of the individual clusters identifying occurrences of 

overrepresentation that could provide clues to potential underlying biological 

function/property associated with the cluster and its nodes.   
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Following the analysis of these clusters first neighbours of the randomly chosen nodes 

were made into their own network (first neighbour networks) and subjected to the same 

analysis.  

This has demonstrated that all three randomly chosen nodes were fully connected to 

individual clusters, which showed significant overrepresentation in gene ontologies 

associated with the randomly selected node. Functional association investigations of the 

nodes present within these cluster, found them to share similarities to known functional 

associations of the randomly selected node. Similar results were obtained when 

analysing the first neighbour networks of random nodes in this way. 

6.5.2 e-Therapeutics candidate targets  

Of all six provided e-Therapeutics candidate pairs target pairs experimentally tested, 

non were found to act as potential therapeutic targets when combined. Using 

SubtilNet2, they were investigated, to determine any probable functional interactions 

between one another using a network analysis approach, and if this could be used to 

explain the biological behaviour observed during experimental testing.   

None of the predicted target nodes could be associated with the same cluster, instead 

associating with either separate clusters or none at all. First neighbour network analysis 

of both target nodes, found the majority have common associating nodes, which were 

commonly found to be included within the shortest path analysis. Shortest path analysis 

identified several biologically plausible functional associations between nearly all 

targets nodes upon which it could be conducted, however in some cases this represented 

only a small association and could also have been the result of coincidence, and 

completely unrelated. Not forgetting that this investigation has focused upon the 

shortest path analysis as the most likely association between nodes however, there are 

likely to be other longer pathways through which functional associations could occur 

and which have not been listed here.  

The following are biologically plausible functional associations between candidate 

pairs, predicted by SubtilNet2: 

• The ywdH-ybfS candidate pair are both components of a multistage amino sugar 

metabolism pathway and can be functionally associated with one another in a 
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biologically plausible way using the fructose metabolism pathway, with the 

suggested ypqE intermediate node identified from shortest path analysis.  

• The yvgQ-luxS candidate pair components of either the cysteine synthesis 

pathway or methionine and AdoMet recycling pathway can be linked with one 

another using the sulphur transsulfuration pathway. Nodes from both first 

neighbour networks of yvgQ and luxS have been identified as belonging to these 

pathways, suggesting a functional associations between the two candidate nodes. 

• The licT-cheB candidate pair components of the allowing the utilisation of aryl-

β-glucosides as a carbon source under conditions of carbohydrate limitation, and 

chemotaxis towards attractants respectively. These systems could not be 

functionally associated with one another, using the SubtilNet2 predicted 

intermediates. These intermediates were discovered to be a result of how the 

network had been produced, and were not relevant. However further analysis 

into the systems of licT and cheB suggested a strong possible functional 

association through the combined use of a PTS.  

• The fbaB-yacL candidates have been shown to have a functional association 

through co-transcription of nodes present with the first neighbour networks of 

yacL and membership to the inositol phosphate pathway of intermediate nodes 

present in the first neighbour network of fbaB. 

The target nodes, yjcH-abnA and yndH-ycdH could not be functionally associated. This 

is not to suggest that there is no functional association, but rather a current inability to 

analyse the target nodes, through poor functional association characterisation or a lack 

of node presence within SubtilNet2. Attempts made to speculate any potential 

functional interaction based upon the limited information available or closely 

associating nodes, could still not be made.   

During the network analysis of the functional associations between the target nodes, 

several suggestions as to associating systems, properties and their underlying biological 

functions that could account for the experimental phenotype observed when removing 

their function singly and in combination could be made. It was noted on several 

occasions, that the conditions under which some nodes and their associated systems 

would have been active were not compatible with the growth conditions used. This 

could have prevented any experimental effect being seen on the removal of the node 
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function. Future investigations would take this into account and conduct 

experimentation with these conditions in mind. 

6.5.3 Further analysis of cheB  

Following the experimental identifying of the mutant cheB KO as acting differently to 

wild type following the addition of vancomycin stressor. Network analysis using the 

newly developed SubtilNet2 network was used to direct and focus a new round of 

experimentation involving the testing of mutant and wild type gene expression after the 

addition of vancomycin using microarrays, to attempt to discover the underlying 

biological basis for the behaviours exhibited.  

Finding insights into how candidate nodes interact with one another and the likely 

associating systems has made predicting in some cases the causes for the experimental 

results obtained easier, identifying associating and redundant systems to the  

modifications made.   

The first neighbour network identifying the most closely functionally associating nodes 

to cheB was constructed and nodes contained within it identified. This was subjected to 

network analysis identifying potential clusters and likely associated biological systems. 

These identified nodes were then monitored in the microarray experiments. All results 

obtained were analysed using the SubtilNet2 network to try and identify the underlying 

biological basis for the results obtained. 

6.5.4 Arginine and pyrimidine biosynthesis  

Following the attempted laboratory analysis of interactions between components of the 

arginine and pyrimidine biosynthetic system in attempts to identify the destination or 

produced CP, a computational analysis approach was adopted using the newly 

developed SubtilNet2 and network analysis, to attempt to track the utilising biological 

systems. The results of network analysis initially indicated the probable sharing of 

produced CP by both the arginine and pyrimidine biosynthetic systems, as the network 

analysis identified identical associating nodes, and clusters to both systems. Further 

analysis of the suggested functional interactions and there suggested source indicated a 

problem with this interpretation of the KEGG pathways, and gene ontology data used. 

Because of the way in which it they are compiled the identification of specific 

associations with additional systems unique to themselves systems could not be 
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identified. This resulted in a premature conclusion that, both the arginine and 

pyrimidine biosynthetic systems were likely sharing their produced CP, which would 

negate a need for a mechanism to channel CP between these systems. 

These findings have again identified the problem of poor characterisation of functional 

association/ lack of node presence within the SubtilNet2 network, as has been found 

with the testing of the therapeutic candidates. This problem will continue to be present 

as existing data sources, which were never intended to be used in such a way continue 

to be used for Systems Biology. The immediate implications of this with regard to this 

investigation is that it doesn’t allow the identification of potential macromolecular 

complexes or otherwise within the biosynthetic systems of arginine and pyrimidine. 

This represents a wider problem associated with the generation of accurate and 

representative biological models from limited numbers of data sources.  

The almost exclusive use of the KEGG pathways database to functionally associate 

nodes together continues to remain an issue, as by using multiple data sources, the 

limitations encountered may have been avoided. With the lack of other high-throughput, 

high coverage data sources available for B. subtilis this was taken into account before 

conclusions of any biologically plausible functional associations were made. 

In the interval of waiting for research and technology to develop to allow better 

integration of existing datasets, developments need to be made into new technologies 

and standards specifically for use in Systems Biology approaches, allowing predictions 

to become potentially more accurate and reliable. In the mean time SubtilNet2 and other 

such developed systems and approaches should be used as a guide only. 

Given the limitations discussed, SubtilNet2 has made the analysis of functional 

associations in B.subtilis more rapid and provided focus for subsequent microarray 

experimentation, while also providing valuable insights and starting points for further 

analysis. As more data sets become integrated into the network, together with 

developments in integration and analysis techniques of existing data, the problems 

encountered in this investigation should become more infrequent, and it is hoped that 

SubtilNet2 will be developed to be able to predict functional associations, based on 

surrounding nodes.  



  

Chapter 7 

Conclusions
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7. Conclusions 

This chapter summarises and integrates the results of the experimental and 

computational analyses of e-Therapeutics candidates and the arginine and pyrimidine 

biosynthetic systems.  It also includes a more general summary of the field and its 

potential benefits and limitations over a range of time scales. 

7.1 e-Therapeutics candidates 

The simultaneous targeting of multiple non-essential genes within a biological system, 

looking for a synergistic therapeutic effect, has the potential to become an established 

method from which future therapies may develop. Producing therapeutic compounds 

that function in this way, could replace traditional approaches that focus on very 

specific interactions with a few essential biological components, often exhibit side 

effects and, in the case of antimicrobials, have the potential to develop resistance. In 

contrast, the adoption of the specific targeting of multiple components within a 

biological system holds out the prospect of delivering effective drugs with better 

efficacy and reduced side effects and resistance. 

This investigation has focused upon the validation of gene combinations, generated 

using data driven methods, selected as having the potential to be used as therapeutic 

targets within the model Gram positive bacteria B. subtilis. These predictions were 

made by our industrial collaborators at e-Therapeutics, after producing and testing a 

proprietary in silico B. subtilis interactome model.  

These predictions were tested using a strategy that involved the production of a series of 

knockout mutants. The mutants were subjected to a range of sub-inhibitory stresses, 

each designed to target a different areas of cellular metabolism. The aim was to 

determine whether the disruption of combinations of genes would make them more 

susceptible to the stress than observed with single gene disruptions, and thereby 

indicating if the targeting of combinations of genes could identify novel potential 

therapeutic targets. 

A multi-staged approach was developed to test the candidate genes. Initial tests used a 

high throughput approach, with potential growth affects confirmed by re-testing using 

low throughput approaches. This multi-stage approach was designed in such a way as to 

ensure that candidate genes could be tested individually and in combination, as well as 
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avoiding downstream polar effects. This technique could be complemented in future 

investigations with the creation of transcriptional fusion mutants where the transcription 

of a gene of interest can be varied. This approach would complemet the standard 

knockout analysis used to identify potential candidates for further study. 

In total 4500 separate growth curves were produced and analysed throughout the course 

of this investigation. As technology develops, it is anticipated that more rapid, sensitive 

and highly automated phenotypic assays systems with be developed to facilitate the 

testing of vast numbers of potential candidates combinations, an approach that could 

have applications in other Systems Biology projects.   

With these new technologies and the information gathered, it is anticipated that methods 

for large-scale automated and continuous model will facilitate in silico predictions that 

can be rapidly evaluated in the laboratory. The results will then be fed back into the 

model for further and more accurate in silico predictions. Such model 

development/experimental interactions will continue to a point at wich in silico 

predictions rival the accuracy of laboratory experimentation.  

As efforts are under way to develop these new approaches so too are efforts to improve 

the integration and modelling techniques for the vast amounts of heterogeneous data 

that is currently being made available. This will facilitate the production of more 

comprehensive, accurate and representative biological models, and should overcome 

many of the limitations encountered in this investigation regarding poorly represented 

or absent data.  

The high throughput stage identified eight potential candidate target genes that, when 

inactivated, showed variations in their growth phenotypes when compared with the  

wild type. These candidates were subjected to a low throughput analysis stage where 

only a single target gene, cheB, continued to demonstrate a significantly different 

phenotype. Throughout the high throughput testing, the cheB mutant produced 

consistently different growth phenotypes when exposed to most of the applied stresses. 

However during the low throughput testing, the only stress that produced a consistently 

different growth phenotype was vancomycin. It was established that this behaviour was 

specific to the cheB lesion and was not affected by its cognate partner, licT, or any 

genes downstream and in the same transcriptional unit as cheB. 
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In conclusion the laboratory experiments established that none of the combinations of 

predicted gene targets exhibited synergistic effects with respect to a variety of stresses 

and are therefore unlikely to be suitable targets for the development of novel therapeutic 

/antimicrobial compounds. The phenotypic testing did reveal that the cheB mutant 

exhibited an unexpected altered growth profile in the presence of sub-inhibitory 

concentrations of vancomycin. The influence of vancomycin on cheB, a gene involved 

in demethylating chemotactic proteins, warrants further investigation, and to this end 

DNA array experiments are currently being undertaken.  

7.2 Development and application of SubtilNet2 for the verification of e-

Therapeutics drug candidates  

In an alternative approach to the validation of the e-Therapeutics targets, a computer-

based approach was adopted. In collaboration with the Integrated Bioinformatics Group 

at Newcastle University, an in-house functional interaction model, SubtilNet2, was 

developed. In the absence of the original proprietary algorithms developed by e-

Therapeutics, it was not possible to compare these two models in terms of their 

structures, only in terms of their outcomes.

SubtilNet2 was constructed using a combination of four distinct data sources.  These 

were used to model potential functional interactions between B. subtilis genes and their 

products. Before the application of SubtilNet2 and associated statistical tools to the 

potential therapeutic candidates, exploration of the network identified several nodes that 

were consistent with already well understood biologically systems. SubtilNet2 was then 

used to explore associations between the therapeutic targets predicted by e-Therapeutics 

in attempt to explain the experimental results, as well as acting as a point from which to 

continue further investigations.  

Computational investigation of the supplied therapeutic targets with SubtilNet2 and 

associated statistical tools suggested possible associations between the individual targets 

within each of the pairs ywdH-ybfS, yvgQ-luxS and fbaB-yacL. However these targets 

were only found to associate via long, multiple-step, biosynthetic pathways or 

processes. In contrast, it was not possible to analyse three candidate pair combinations, 

abnA-yjcH, yndH-ycdH and cheB-licT, due to insufficient information on the functional 

associations between nodes. 
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Following the experimental approach, SubtilNet2 provided an alternative data-driven 

approach with which to validate the therapeutic candidates predicted by e-Therapeutics. 

Both approaches came to the same conclusion, namely that the proposed candidate pairs 

did not have the capacity to act as therapeutic targets. The behaviour of one of the gene 

candidates, namely cheB encoding a chemotactic demethylating protein, did prove to 

exhibit an unexpected growth phenotype when exposed to vancomycin, indicating a 

greater susceptibility to this compound. Investigations to determine the exact cause of 

this behaviour have proved to be inconclusive and we are awaiting the analysis of DNA 

array data. SubtilNet2 identified 81 genes/gene products that are associated with cheB

and these will be used as the starting point in the analysis of the microarray data. It is 

expected that the availability of SubtilNet2 will reduce the time needed to complete this 

analysis.  

To continue this investigation, the data sources utilised by SubtilNet 2 will need to be 

updated to improve its predictability and accuracy, and this is likely to be possible using 

data currently being generated by the EU-funded BaSysBio project and the 

multinational Bacell SysMo projects. Once this is done it would be more appropriate to 

adopt a probabilistic method for producing the functional network, circumventing 

current problems associated with data coverage.  

7.3 Arginine and pyrimidine (uracil) biosynthetic system analysis 

The second component to this study was to investigate aspects of the arginine and 

pyrimidine biosynthetic system in relation to hypothesis driven questions as to its 

organisation and function. Carbamoyl phosphate is a central component in the 

biosynthesis of arginine and pyrimidines. In most organisms a single carbamoyl 

phosphate synthetases supplies CP for both systems. B. subtilis and close relatives 

encode two separate CP producing enzymes, one associated with the arginine 

biosynthetic pathway and the other with the pyrimidine pathway. Moreover, the genes 

associated with these pathways are clustered on the chromosome, together with the 

genes encoding their cognate CPS. The presence of two CPS enzymes, and the 

clustering of the genes encoding the system components has led us to propose that the 

enzymes in these pathways may form a multi-enzyme complex that channels pathway 

substrates. Such a cellular organisation would have a significant influence on current 

areas of our understanding of systems modelling and would have implications for the 
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likely efficiency of pathways developed along synthetic biology principles.  It would 

also reveal new insights into the evolutionary pressure that have maintained operon 

structures in prokaryotic organisms. 

The challenge of these studies was to determine whether components of the arginine 

biosynthetic system could interact with themselves and/or with components of the 

pyrimidine biosynthetic system. The CPSs of both systems were used as the starting 

point. CPSs are heterodimeric enzymes and therefore it was interesting to determine 

whether active enzymes could be reconstituted from subunits of the different pathways. 

Our approach was to purify the four proteins and to analyse all-against-all interactions 

by surface plasmon resonance and isothermal titration calorimetry. However, attempts 

to isolate active CPS subunits and associated pathway enzymes were largely 

unsuccessful, despite rigorous extensive modifications to the expression protocols. 

ArgF, encoding ornithine carbamoyl phosphatase was successfully expressed but was 

insoluble. Attempts to solubilise this protein were unsuccessful and it is possible that it 

may need to be co-expressed with other pathway components to produce a soluble 

version of this protein. In retrospect, it would have been useful to have adopted a two-

hybrid approach to the analysis of these pathways. 

In the absence of purified components on which to carry out physical interaction 

studies, a computational approach was undertaken using the newly generated 

SubtilNet2.  The SubtilNet2 analysis showed that the arginine and pyrimidine pathway 

components formed clusters within a single node that included the two CPS enzymes. 

However, further analysis revealed that, because of the reliance in the KEGG and 

BiNGO databases of EC enzyme nomenclature for identifying pathway enzymes, the 

CPS were being used interchangeably even though they share only 55% identity. As a 

result it was not possible to determining potential cross talk between the pathways with 

any confidence.  

Once again, the use of a computational approach for the analysis of hypothesis driven 

research has identified some of the potential problems that face Systems Biology. In this 

component of the investigation, the source of data providing most of the associations 

was that of the KEGG pathways database. During the manual validation of the 

associations suggested by SubtilNet2, it was noted that the data source did not 

distinguish between common components within individual systems. This results in the 

inaccurate representation of exactly which genes associate with which system, and for 
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this investigation makes it impossible to clearly distinguish between components and 

their products. This highlights the need to validate all of the data suggested by the 

network and represent a fundamental problem of network analysis that need to be 

addressed by annotators. This problem can only be overcome by improving the quality 

of the supplied data as well as a greater and more diverse number of data sources 

applied to the model, removing the dependency inherent when only limited numbers of  

data sources are available.   

In a separate investigation conducted in the Harwood group, a two-hybrid approach was 

used to investigate potential interactions between key components of the arginine and 

pyrimidine biosynthetic pathways. Initial results have shown that there is interaction 

between the components CarA and CarB of the arginine systems and PyrAA and PyrAB 

of the pyrimidine system, which was to be expected. However, an important observation 

was the absence of interactions between CarA/B or PyrAA/AB. Interestingly there was 

an interaction between ArgF and PyrB, tow enzymes with a common evolutuionary 

history. Such observations are still preliminary and require further investigation using 

biophysical methodologies.   

7.4 The major benefits and limitations of Systems Biology 

The emerging field of Systems Biology has the potential to revolutionise many aspects 

of bacteriology including drugs discovery and metabolic engineering. Systems Biology 

holds out the prospect of using large datasets to develop a comprehensive understanding 

of the complex network of interacting systems that control the behaviour of bacteria. 

With this improved understanding comes the prospect of manipulating these systems for 

the benefit of human kind. The long term objective is to develop an in silico model that 

accurately predicts bacterial behaviour in response to changes in their environment, 

reducing the need to conduct time-consuming laboratory investigations and speeding up 

the acquisition of new knowledge. In the shorter term, this developing technology is 

able to complement traditional approaches by suggesting important points to be 

considered within individual investigations. 

In order to meet the eventual goal of using Systems Biology as an in silico-based 

approach to experimentation, the complexities and problems associated with this task, 

need to be understood and solved in a progressive manner. As part of the progressive 

development of this technology, current attempts to generate in silico models are based 
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on using existing data collected over the last decade and in databases that were created 

for other purposes. This data is usually non-standardised both with respect to their 

collection and analytical approaches, causing difficulties when compiling the data into 

forms suitable for network analysis. It is only very recently that dedicated Systems 

Biology databases have been established with appropriate metadata.   

Rather than discounting the diverse sources of existing data, methods are continually 

being developed for processing and integrating this data. However, in light of these data 

issues, current models provide only a limited representation of system behaviour and are 

limited to being used to complement traditional hypothesise-driven approaches. This 

should be complemented by a progressive shift in experimentation to one focused on the 

development of systems rather than component-based knowledge. Simple predictive 

models should be constructed and validated experimentally, with the results being 

reapplied to the original model in an iterative manner to improve the predictability of 

the model. Once predictions from the model are shown to be accurate, and the 

fundamental principles of the approach established, the need for experimental validation 

will be considerably reduced.  

In the current work, an experimental approach failed to verify the initial predictions of 

potential therapeutic targets. However, it should be born in mind that the original 

predictions were made in 2006 when both the available technology and data for the 

construction of networks were limited. During the course of these investigations, the re-

application of a Systems Biology approach to the existing data did provided a starting 

point for analysing potential relationships between the original gene candidates. The 

network analysis also allowed us to predict the reasons for the failure of these 

candidates to influence growth.  

7.5 The future of Systems Biology  

In the short term, the developing field of Systems Biology is likely to provide informed 

choices for traditional hypothesis-driven laboratory-based experimentation, 

incorporating currently available data using developing integration methods. The 

incorporation of the resulting data, and other data sources, with improve the accuracy 

with which the predictions can be made. In the medium term, a shift will occur to a 

more system-wide experimental approach in which standardised experimentation and 

integration methods will be driven by modellers.   This will increase the complexity of 
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the models, and interaction between the experimental and modelling approaches should 

lead to the ultimate longer term goal of establishing a truly functional in silico model 

that is highly predictive of actual bacterial behaviour. 

As Systems Biology moves the medium to the very long term long term, it will begin 

influence a wide variety of practical applications. One of the most promising is that of 

the design of combinatorial therapeutic drugs that are able to target of multiple gene 

targets. Such drugs would be expected to be highly effective in inhibiting the bacterium, 

have reducing the rates of resistance and less pronounced side effects. Adopting this 

approach could provide a wider range of potential drug targets, limited only by the 

number of genes within the organism.  

Looking at the wider applications of this technology, it provides the prospect of a more 

complete understanding of the fundamental principles that underpin biology and with it 

the ability to profoundly influence many aspects of biology The principles and 

discoveries made using a systems’ approach are already beginning to be used to help 

establish new fields of biology such as Synthetic Biology. For example, the importance 

of chromosomal gene context, gained from insights in the arginine/pyrimidine 

biosynthetic pathways of B. subtilis, could help determine the success of such 

approaches.  
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pMUTIN4 plasmid map (Vagner et al., 1998) 
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