Digital Tabletops and Collaborative Learning

Thesis by
Ahmed N. S. Kharrufa

In Partial Fulfillment of the Requirements
for the Degree of
Doctor of Philosophy

Newcastle University
School of Computing Science
Newcastle University
Newcastle upon Tyne, UK

2010
Abstract

People collaborate around tables at home, school and work. Digital tabletop technology presents an opportunity to bring computer support to these traditional face-to-face collaborative settings. This thesis principally addresses the challenge of designing digital tabletop applications for small group learning in the classroom and makes contributions in two distinct, but closely related areas: (i) interaction techniques for digital tabletops; and (ii) the design and evaluation of a digital tabletop-based system for supporting collaborative learning. A review of previous literature combined with a preliminary observational study on collaboration around traditional tables identifies a number of requirements for tabletop interaction. These include the need for fluid interaction techniques that allow control of interface object attributes when these objects are moved between tabletop territories. Attribute gates are proposed as a solution to this problem through utilizing a novel, crossing-based, interaction technique. A recognition of the territorial focus in existing interaction techniques, and their limiting assumption that users work at relatively fixed locations around the table, led to the identification of another challenge, supporting the mobility of users around the shared workspace of the table. TANGiSOFT is presented as a hybrid tangible-soft keyboard designed specifically for applications that require mobile users with moderate text entry requirements. The investigation of the potential of tabletop technology to support collaborative learning was carried out through the design, development, and evaluation of Digital Mysteries. From an interaction design perspective, the design aimed to utilize the unique affordances of tabletops in terms of combining the benefits of traditional tables and digital technology. From a learning perspective, the design aimed to support higher-level thinking skills, feedback, reflection, and metacognition by focusing on activities that promote these skills and supporting effective collaboration. The evaluation of Digital Mysteries demonstrated that the design was successful in encouraging the targeted learning activities. The design process and validation of Digital Mysteries embody a significant contribution to the development of our understanding of digital tabletop technology at the application level, and collaborative learning applications in particular. This understanding is summarized in the form of general guidelines for designing collaborative learning applications for digital tabletop technology.
Publications arising from this thesis

The following published papers are based wholly or in part on work contained in this thesis (note my change of surname used in publications from Sulaiman to Kharrufa in 2009)

To the memory of my father, Prof. Najib S. Kharrufa.
Thank you for implanting in me the passion for learning.

To my wife, Zena. Thank you for your patience, understanding, and support.
Most of all, thank you for overlooking my chaotic desk for more than three years.
Acknowledgements

First, I would like to thank my supervisors, professors Patrick Olivier and David Leat for their guidance and support. Special thanks to Professor Olivier for being my academic mentor as well as my supervisor and for putting so much effort in reviewing the thesis to make sure it is presented in the best way possible.

I would also like to thank Diwan Software Ltd. for sponsoring this research. I owe my deepest gratitude to Dr. Ibrahim Allawi, Majed Allawi, and Adil Allawi for making this research possible and for their continual support, and encouragement.

Thanks are also due to Anne de A'Echevarria and Anna Reid for helping in arranging and conducting the studies at the Bedlingtonshire Community High School. Special thanks to Anna Reid for conducting some of the studies by herself in order to provide the most natural setting for the studies without the presence of external observers. I am thankful to the administration of Bedlingtonshire Community High School where all the case studies for mysteries were conducted, and of course special thanks to the students who participated in the studies.

I would also like to acknowledge the contribution of Promethean Limited for providing the multi-pen Activboards. Thanks are also due to Doug Lamond for turning these Activeboards into nice looking tables.

From Space 2 in Culture Lab, special thanks to Phil Heslop for helping with many of the studies and for proof reading the thesis, and to Guy Schofield for helping with the art work and video demonstration for Digital Mysteries. Thanks are also due to Tom Bartindale, James Thomas, and Jon Hook for their help in conducting some of the studies; and to Robyn Taylor for lending me her voice for the video demonstrations. I am grateful to Rafid Abdullah for his help in the final stages of submitting the thesis. I would also like to extend my thanks to everyone in Space 2 for providing help whenever needed.

Finally, I would like to show my gratitude to my family, and specially my mother, for their encouragement and support. I would also like to thank my friends who, despite being scattered all around the globe, showed their cyber-encouragement through the Internet.
Contents

Abstract ii

Acknowledgements v

1 Introduction 1
 1.1 Overview ... 1
 1.2 Research context .. 3
 1.2.1 Collaboration ... 3
 1.2.2 Collaborative learning ... 3
 1.2.3 Computer support .. 4
 1.2.4 Computer support for collaborative learning 4
 1.2.5 Single display groupware 5
 1.3 Theories on CSCW .. 6
 1.3.1 Activity theory .. 7
 1.3.2 Distributed cognition ... 8
 1.4 Digital tabletops .. 9
 1.4.1 Traditional tables as tools for collaboration 9
 1.4.2 Digital tabletops as tools for collaboration 10
 1.4.3 Design challenges for digital tabletops 12
 1.5 Research objectives .. 12
 1.6 Results and contributions .. 13

2 Literature Review 15
 2.1 Introduction .. 15
 2.2 Work practices around tables 16
 2.2.1 Spatial considerations ... 18
 2.2.1.1 Space and location 18
 2.2.1.2 Orientation ... 21
 2.2.1.3 Ownership and access rights 22
 2.2.1.4 Scale .. 22
 2.2.1.5 Table size, group size, and the issue of reach 23
3.8 Discussion ... 69

4 TANGISOFT ... 72

4.1 Introduction .. 72

4.2 Motivation .. 73

4.3 Activity theory, tangible and two-handed interaction . 77

4.4 Design ... 78

4.4.1 Direct-touch input 78

4.4.2 The keyboard as a tangible tool 79

4.4.3 Printed layout on paper 79

4.4.4 Paper augmentation 79

4.4.5 Comments on the design 79

4.5 Related work .. 80

4.6 Implementation .. 82

4.7 Exploring the use of TANGISOFT 84

4.7.1 Observations and analysis 86

4.8 Discussion ... 94

5 Tabletops and Learning - Digital Mysteries 96

5.1 Theoretical background 97

5.1.1 Cognitive skills 97

5.1.2 Metacognition, reflection, and feedback 98

5.1.3 Collaboration 101

5.1.4 Ill-defined and well-defined tasks 102

5.2 Mysteries .. 103

5.3 Computer support 106

5.3.1 The added value of technology 106

5.3.2 Tabletops and computer supported collaborative learning 108

5.3.3 Evaluating the benefits of computer support 109

5.4 Distributed cognition as a design framework 110

5.4.1 The Tools .. 111

5.4.2 Representation states 111

5.5 Mysteries: from Paper to Digital 112

5.5.1 First iteration: design 112

5.5.2 First iteration: trials and observations 114

5.5.2.1 General layout and externalization 114

5.5.2.2 Breakdown moments 115

5.5.2.3 Common observations between paper and Digital Mysteries ... 116

5.5.3 Second iteration: design 116
7.5 Recommendations for future research .. 176

Bibliography ... 180

A Mysteries data .. 194

A.1 Will Kyle skip school on Friday? and why? 195
 A.1.1 The slips ... 195
 A.1.2 The meta-data ... 200
A.2 Why did Vicky get clamped? .. 201
 A.2.1 The slips ... 201
 A.2.2 The meta-data ... 202
A.3 Who killed king Ted? ... 203
 A.3.1 The slips ... 203
 A.3.2 The meta-data ... 207
A.4 Should Annie leave Windy Creek or should she stay? And why? 208
 A.4.1 The slips ... 208
 A.4.2 The meta-data ... 210
A.5 Why did Oliver decide to join up? .. 211
 A.5.1 The slips ... 211
 A.5.2 The meta-data ... 214
A.6 Why is the village shop in Hensford closing? 215
 A.6.1 The slips ... 215
 A.6.2 The meta-data ... 218
A.7 Who was responsible for the death of Alice White? 219
 A.7.1 The slips ... 219
 A.7.2 The meta-data ... 222
List of Figures

1. Working around digital and traditional tables. ... 1
2. The structure of an activity within the community. .. 8

2.1 The division of the table space into personal, public and storage spaces. 18
2.2 Working individually with papers positioned near table edges. 19
2.3 Collaborating: leaning forward with papers, including personal ones, pushed slightly toward the centre... 19
2.4 Public document position. .. 20
2.5 Orientation and reorientation. .. 21
2.6 Leaning backward: idle-state. .. 28
2.7 Special handling of the public document. ... 28
2.8 Gestures: The use of stylised actions to indicate a state transition. 29
2.9 Throwing the public document to another participant 30

3.1 Activity levels: a good user interface element helps shift more actions into operations, which helps the user to focus on the higher level activity. 50
3.2 Setting attributes using traditional contextual menus. 50
3.3 The steps for setting attributes using Grid Gates. 52
3.4 The steps for setting attributes using Polar Gates. 55
3.5 The steps for setting only the read-only attribute. The user passes through the space between the other attribute values to keep the original settings. 56
3.6 The steps for setting attributes using Polar Gates. 57
3.7 Making use of the memory feature of Polar Gates. 57
3.8 A worst-case scenario for setting a sequence of attributes using a grid gate. 59
3.9 A graph showing the indexes of difficulty for steering and targeting. 61
3.10 The path for setting a sequence of attributes using Polar Gates. 61
3.11 Configuration of the multi-pen surface and the two participants for the user study. 64
3.12 Receiver errors (by participant) for each interaction technique. 66
3.13 Average timings for the sender task for each attribute setting (by interaction technique). 67
3.14 Average timings for each participant (by interaction technique). 68
<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.15</td>
<td>A modified version of polar gate that allows setting scale attributes in the inner ring, and applying rotation to an object by rotating the outer ring.</td>
</tr>
<tr>
<td>3.16</td>
<td>A modified, one-level, version of Polar Gates that is used with Digital Mysteries.</td>
</tr>
<tr>
<td>4.1</td>
<td>The TANGIsoft direct-touch keyboard.</td>
</tr>
<tr>
<td>4.2</td>
<td>A student entering text using a rotated soft keyboard from the side of the table while working on Digital Mysteries.</td>
</tr>
<tr>
<td>4.3</td>
<td>Writing the word the using Quikwriting (Perlin, 1998), SHARK (Zhai and Kristensson, 2003), and Dasher (Ward et al., 2000) techniques.</td>
</tr>
<tr>
<td>4.4</td>
<td>The two layouts used in BubbleTYPE (Hinrichs et al., 2008).</td>
</tr>
<tr>
<td>4.5</td>
<td>The adaptive keyboard proposed by Hinrichs et al. (2008).</td>
</tr>
<tr>
<td>4.6</td>
<td>The SLAP keyboard (Weiss et al., 2009).</td>
</tr>
<tr>
<td>4.7</td>
<td>Alternative designs for the tangible keyboard.</td>
</tr>
<tr>
<td>4.8</td>
<td>The calibration process.</td>
</tr>
<tr>
<td>4.9</td>
<td>Text copying application.</td>
</tr>
<tr>
<td>4.10</td>
<td>The soft keyboard used in the study.</td>
</tr>
<tr>
<td>4.11</td>
<td>Number of rotation actions for each participant.</td>
</tr>
<tr>
<td>4.12</td>
<td>Number of translation actions for each participant.</td>
</tr>
<tr>
<td>4.13</td>
<td>Users with the same static behaviour.</td>
</tr>
<tr>
<td>4.14</td>
<td>Users with same dynamic behaviour.</td>
</tr>
<tr>
<td>4.15</td>
<td>Users who showed different behaviour in terms of rotation only.</td>
</tr>
<tr>
<td>4.16</td>
<td>Users who showed different behaviour in terms of both location and orientation.</td>
</tr>
<tr>
<td>4.17</td>
<td>Static users: enduring higher cognitive load to avoid physical movement.</td>
</tr>
<tr>
<td>4.18</td>
<td>Dynamic users: same dynamic behaviour for both tangible and soft keyboard.</td>
</tr>
<tr>
<td>4.19</td>
<td>(Left) TANGIsoft: moving near the phrase and rotating the keyboard. (Right) Soft keyboard: the position and rotation of the keyboard is kept relatively constant.</td>
</tr>
<tr>
<td>5.1</td>
<td>Moseley et al.’s (2005) integrated model for understanding thinking and learning.</td>
</tr>
<tr>
<td>5.2</td>
<td>Sample slips of the Windy Creek mystery. The mystery contains 20 slips, and the question is “Should Annie leave Windy Creek or should she stay? And why?”</td>
</tr>
<tr>
<td>5.3</td>
<td>Slip manipulation icons for the first version of Digital Mysteries.</td>
</tr>
<tr>
<td>5.4</td>
<td>A screen capture for the first version of Digital Mysteries showing slips in normal size (which is not always readable) and one enlarged slip in the middle.</td>
</tr>
<tr>
<td>5.5</td>
<td>Paper Mysteries: first iteration (at the final stage of solving the mystery for the two groups).</td>
</tr>
<tr>
<td>5.6</td>
<td>Digital Mysteries: first iteration (at the final stage of solving the mystery).</td>
</tr>
<tr>
<td>5.7</td>
<td>Slip manipulation with a crossing-based polar menu.</td>
</tr>
<tr>
<td>5.8</td>
<td>The three display sizes for a slip.</td>
</tr>
<tr>
<td>5.9</td>
<td>The polar menu and the tools introduced in version 2 of Digital Mysteries.</td>
</tr>
<tr>
<td>Section</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>5.10</td>
<td>The group, note, and sticky tape cognitive tools.</td>
</tr>
<tr>
<td>5.11</td>
<td>The introductory dialogs that are displayed at the beginning of each stage.</td>
</tr>
<tr>
<td>5.12</td>
<td>A screen capture showing the statistics dialog, grouped slips, the participation pie chart at the top left corner, and the soft keyboard.</td>
</tr>
<tr>
<td>5.13</td>
<td>A custom made tabletop with a Promethean Activboard embedded inside it.</td>
</tr>
<tr>
<td>5.14</td>
<td>The grouping stage showing the group rating traffic light.</td>
</tr>
<tr>
<td>5.15</td>
<td>A sample xml file that is included with each mystery to provide meta-data about the mystery.</td>
</tr>
<tr>
<td>5.16</td>
<td>Grouping feedback.</td>
</tr>
<tr>
<td>5.17</td>
<td>The manipulation tools, cognitive tools, and commands provided at the final version of Digital Mysteries.</td>
</tr>
<tr>
<td>5.18</td>
<td>Sequence evaluation dialog.</td>
</tr>
<tr>
<td>5.19</td>
<td>Feedback upon selecting the piles layout.</td>
</tr>
<tr>
<td>5.20</td>
<td>Feedback upon selecting the linear layout.</td>
</tr>
<tr>
<td>5.21</td>
<td>The answer dialog requires the students to write down their answer and independently confirm it, opening space for discussion to agree on one answer.</td>
</tr>
<tr>
<td>5.22</td>
<td>Reflection stage control dialog.</td>
</tr>
<tr>
<td>6.1</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 1, trial 1: Windy Creek.</td>
</tr>
<tr>
<td>6.2</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 1, trial 2: Oliver Hopkins.</td>
</tr>
<tr>
<td>6.3</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 1, trial 3: The Village Shop.</td>
</tr>
<tr>
<td>6.4</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 1, trial 4: Alice White.</td>
</tr>
<tr>
<td>6.5</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 2, trial 1: Windy Creek.</td>
</tr>
<tr>
<td>6.6</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 2, trial 2: Oliver Hopkins.</td>
</tr>
<tr>
<td>6.7</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 2, trial 3: The Village Shop.</td>
</tr>
<tr>
<td>6.8</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 2, trial 4: Alice White.</td>
</tr>
<tr>
<td>6.9</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 3 solving Windy Creek mystery.</td>
</tr>
<tr>
<td>6.10</td>
<td>Screenshots at the end of the grouping and sequencing stages for group 4 solving Windy Creek mystery.</td>
</tr>
</tbody>
</table>
6.11 Screenshots at the end of the grouping and sequencing stages for group 5 solving Windy Creek mystery. ... 148
6.12 Screenshots at the end of the grouping and sequencing stages for group 6 solving Windy Creek mystery. ... 149
6.13 Examples of discussions around grouping (group 1 solving Windy Creek). 155
6.14 Examples of discussions around naming a group (group 2 solving Windy Creek). 155
6.15 Examples of discussions around grouping (group 4 solving Windy Creek). 156
6.16 Discussion around creating notes (group 1 solving The Village Shop). 156
6.17 Examples of how the act of creating a note attracts attention of the other students. . 156
6.18 Discussion around the type of the sticky tape to use to mark a relation between two slips. ... 156
6.19 Screen-shot for group 4 as they select the finish command and respond to the sequence evaluation dialog. ... 158
6.20 The reflection dialog showing the short duration of stage one (group 2, trial 3). 159
6.21 Discussions during the reflection stage and their effect in subsequent trials (group 2, trial 3). ... 160
6.22 A sample of the type of reflective discussions made possible by the reflection stage (group 1, trial 2). ... 160
6.23 An estimate of the participation level of each student based on the time the pen was being dragged on the table (each member’s participation as a proportion of the group as a whole). ... 162
6.24 Image of a trial illustrating how students worked from all sides of the table, used orientation, and leaned on the table. ... 164
6.25 Discussion about the strategies to use at stages 2 and 3 for group 1, (trial 1) while solving “Windy Creek” mystery. ... 165
7.1 A basic visualization showing users’ actions with time. ... 170
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Summary of the reviewed literature and the main conclusions.</td>
<td>45</td>
</tr>
<tr>
<td>4.1</td>
<td>Number of rotation and translation actions for each participant for the tangible and the soft keyboards.</td>
<td>86</td>
</tr>
<tr>
<td>6.1</td>
<td>Group names, notes, and the answers for groups 1, 2, and 3 solving Windy Creek mystery: Should Annie leave Windy Creek or should she stay? and why?</td>
<td>150</td>
</tr>
<tr>
<td>6.2</td>
<td>Group names, notes, and the answers for groups 4, 5, and 6 solving the Windy Creek mystery: Should Annie leave Windy Creek or should she stay? and why?</td>
<td>151</td>
</tr>
<tr>
<td>6.3</td>
<td>The number of attempts, the groups created, and the answers for the six groups solving Windy Creek mystery: Should Annie leave Windy Creek or should she stay? and why?</td>
<td>152</td>
</tr>
<tr>
<td>6.4</td>
<td>The number of attempts, the groups created, and the answer for groups 1 and 2 while solving the rest of the mysteries.</td>
<td>153</td>
</tr>
<tr>
<td>6.5</td>
<td>Number of groups and notes created, and the corresponding number of discussion activities.</td>
<td>154</td>
</tr>
<tr>
<td>6.6</td>
<td>Features of digital mysteries compared to desktop and paper realizations.</td>
<td>166</td>
</tr>
</tbody>
</table>
Chapter 1

Introduction

1.1 Overview

Collaboration around tables is a common activity that people perform while studying, having meetings, brainstorming, and when they engage in a number of other group activities. Digital tabletop technology has recently attracted significant interest from human-computer interaction researchers as it presents the opportunity to bring computer support to these traditional face-to-face collaborative settings. This research is principally concerned with digital tabletops technology and specifically its support for small group collaborative learning (Figure 1.1).

Research on digital tabletops started with the pioneering work of Wellner in 1993. Wellner introduced the concept of digital tabletops by building a single-user table (the DigitalDesk) that introduced a number of novel interaction ideas for tabletop computing such as projecting digital contents on of the table surface, capturing hand movements to interact with these digital contents, and allowing for digitising parts of the table surface using high-resolution cameras. Subsequent research has focused on understanding specific aspects of interaction at digital tabletops such as the use of space (e.g. Scott, 2003; Scott et al., 2004), orientation (e.g. Kruger et al., 2003; Wigdor and Balakrishnan, 2005), table size and reach (e.g. Ryall et al., 2004; Toney and Thomas, 2006b), and group dynamics (e.g. Morris et al., 2006a; Tang et al., 2006). Early applications were generally small and developed with the goal of exploring the specific aspects of the interaction that was
being investigated (Kruger et al., 2002). Only in recent years has more substantial research at the application level started to emerge, and more specifically applications addressing problem solving and learning (e.g. Piper et al., 2006; Hilliges et al., 2007; Rick and Rogers, 2008; Piper and Hollan, 2009; Morgan and Butler, 2009). Nevertheless, work on both the interaction techniques and the applications level is still far from complete and there are a number of aspects that merit further investigation.

This thesis reports a number of contributions in two distinct, but closely related areas: (i) interaction techniques for digital tabletops, and (ii) the design and evaluation of a digital tabletop-based system for supporting collaborative learning. A state-of-the-art review and a preliminary observational study on collaboration around traditional tables gave rise to a number of requirements for tabletop interaction (Chapter 2). These included the need for fluid interaction techniques that allow control of interface object attributes such as the orientation, scale, and access rights when these objects are moved between tabletop territories. I introduce Attribute Gates, a novel crossing-based interaction technique, as a solution to this problem (Chapter 3). In practice the territorial focus of many tabletop interaction techniques makes a limiting assumption that users work at relatively fixed locations (around the table). In recognition of this limitation, this research places a particular emphasis on supporting mobility of users around a shared working space (tabletop). Working around a shared space, according to findings of Tang et al. (2006), is more suited to tightly coupled collaborative work than a partitioned space with a personal area allocated for each user. The support of users’ mobility brings into focus another problem: the need for a light-weight, mobile, text entry technique. I present TANGISOF which is a hybrid tangible-soft keyboard designed specifically for applications that require mobile users with moderate text entry requirements (Chapter 4).

The second broad area of contribution of the thesis relates to the potential of tabletops to support collaborative learning. I investigate this issue through the development of Digital Mysteries, a digital adaptation of the mysteries paper-based learning tool (Chapter 5). A thorough iterative design and evaluation process is used to develop the Digital Mysteries collaborative learning application with the goal of exploiting the unique affordances of digital tabletops (Chapters 5 and 6).

A distinctive characteristic of this research, both in its interaction techniques design and collaborative learning application development, is its strong and explicit reliance on applicable theory. As this research explores the potential of the digital tabletop as a new tool for collaborative learning, distributed cognition and activity theory, with their strong emphasis on the use of tools, are chosen as theoretical frameworks for analysis and design of different aspects of this work.

I approach this research as a computer scientist and interaction designer. This perspective influences how I address the problem of supporting learning, and how I translate human-computer interaction and learning theories into practice. A consequence of this is that the support for collaborative learning, and the validation of the success of this support, are not realized by targeting learning per-se; but by targeting, and validating, the activities that encourage and increase the probability of effective learning as identified by theories of collaborative learning (Chapters 5 and 6).
1.2 Research context

This research into digital tabletops technology and its support for collaborative learning is grounded in both pragmatic definitions for collaboration and collaborative learning, and a perspective on how digital technology supports collaboration in general, and collaborative learning specifically.

1.2.1 Collaboration

In general terms, collaboration and cooperation refer to the act of working with one or more members of a group to create a common outcome (Bannon and Schmidt, 1989). Although the difference between the terms collaboration and cooperation is not very well established within human-computer interaction, I follow Roschelle and Teasley (1995) and Dillenbourg (1999) in using the term cooperation to refer to the horizontal division of work, that is, where work is divided into sub-tasks that are completed individually and then assembled together; and collaboration to refer to the vertical division of work, that is, where work is done by all the group members together synchronously. In learning sciences the stress is on collaborative work related to co-construction of knowledge and mutual engagement (Lipponen, 2002) and this is made clear in the widely quoted definition of collaboration provided by (Roschelle and Teasley, 1995, pp.70) “Collaboration is a coordinated, synchronous activity that is the result of a continued attempt to construct and maintain a shared conception of a problem”. Definitions of collaboration, however, are generally not specific as to the value of parameters such as the number of people involved in the collaboration (i.e. two or more), whether the participants are co-located or distant, and the time span of the activity (i.e. as short as minutes, or as long as years). In the context of tabletop research, the term collaboration is used to refer to co-located settings involving small groups of two to five users, synchronously collaborating with a time span from a few minutes to a few hours.

1.2.2 Collaborative learning

Collaborative learning is used as an umbrella term to cover all activities involving collaboration within an educational or problem solving context (Dillenbourg, 1999). The benefits of collaboration for learning are well established (Roschelle and Teasley, 1995; Chickering and Ehrmann, 1996; Boyle, 1997; Dillenbourg, 1999; Stahl, 2006). The second principle of Chickering & Gamson’s seven principles of good practice (Chickering and Gamson, 1987) states that:

Learning is enhanced when it is more like a team effort than a solo race. Good learning, like good work, is collaborative and social, not competitive and isolated. Working with others often increases involvement in learning. Sharing one’s own ideas and responding to others’ reactions sharpens thinking and deepens understanding.

When people collaborate within an educational context, they engage in certain learning group activities that do not occur in individual learning contexts, for example, explanation to others,
disagreements, and mutual regulation. Consequently, these group activities trigger group learning mechanisms, such as knowledge elicitation and internalization; in addition to triggering learning mechanisms that usually occur in individual learning, such as induction, deduction, and compilation (Dillenbourg, 1999). Collaborative learning involves these group activities that do not occur in individual learning. Dillenbourg (1999) noted that although these extra learning mechanisms occur more frequently in collaborative learning than in individual learning, there is no guarantee that they will occur. Computer support can play an important role in increasing the probability that such useful group learning activities will occur. This approach to computer supported collaborative learning (the focus on useful group activities) releases application designers from the obligation to immerse themselves in learning theory, and affords a more practical approach to designing software that supports collaborative learning.

1.2.3 Computer support

Situations involving activities engaged in by more than one person and supported by computers, are described by the term Computer Supported Cooperative Work (CSCW). Though the term cooperation (and not collaboration) is used, it refers to the broader definition of any jointly undertaken activity, regardless of the type of division of labour, social status, or the type of task distribution across time and space (Bannon and Schmidt, 1989). Johansen (1998) categorized four kinds of CSCW systems in terms of time and space:

1. Same time (synchronous), same place (e.g. meeting support tools)
2. Same time, different-places (e.g. video conferencing)
3. Different time, different-places (e.g. e-mail)
4. Different time, same place (e.g. Internet-based corporate workflow systems)

Only categories (1) and (2) conform to the definition of collaboration introduced in Section 1.2.1. Of these, only (1) applies to co-located settings. In the context of digital tabletops learning research, it is possible to use an even more restrictive definition of CSCW which limits the type of work to learning.

1.2.4 Computer support for collaborative learning

Computer supported collaborative learning (CSCL) focuses on how technology can support and enhance peer interaction and group-based learning, and facilitate sharing and distribution of knowledge and expertise (Lipponen, 2002). A distinguishing characteristic of CSCL research is that it is mainly conducted in real world, such as schools, rather than laboratory controlled experiments that are the reserve of traditional HCI (Lipponen, 2002). Initial research in the field of CSCL distinguished two classes of computer support: tools to facilitate face-to-face collaboration
around a computer between students in small groups; and the provision of a networked environment for collaboration through computers (Crook, 1994). However, recent research in CSCL has mostly been confined to networked environments where the learners collaborate synchronously or asynchronously, co-located or distant, but rarely in face-to-face settings (Hilliges et al., 2007; Lehtinen, 2003). In fact, CSCL and face-to-face collaboration are often presented as mutually exclusive (Resta and Laferriere, 2007). Moreover, CSCL tends not to emphasize small groups (i.e. 2-5 learners) despite the realities of modern classroom organization and teaching practices. Stahl (2006) refers to such group sizes as the “engine of knowledge building”, and contrasts this with the two prevalent metaphors of learning (Sfard, 1998), the acquisition metaphor (relating to the individual) and the participation metaphor (relating to the community), both of which overlook the small group.

While there is a general consensus as to the benefits of collaboration for learning (Roschelle and Teasley, 1995; Chickering and Ehrmann, 1996; Boyle, 1997; Dillenbourg, 1999; Stahl, 2006), regardless of whether it is supported by technology or not, the benefits that computer support brings to collaborative learning is still under debate (Lipponen, 2002; Lehtinen, 2003). Since the value of collaborative learning is undisputed, with face-to-face collaboration considered the most natural and valuable form, then it is hardly surprising that the benefits of CSCL, which largely excludes face-to-face collaboration, are not as well established.

Nevertheless, Resta and Laferriere (2007) report a number of positive outcomes arising from CSCL, including the development of higher order thinking skills; increased student satisfaction with the learning experience; improved productivity; and improved academic achievement. Digital tabletops have the unique potential to bring computer support to face-to-face collaborative learning. More generally, applications that bring people physically together around a single display while undertaking a collaborative task are referred to as single display groupware.

1.2.5 Single display groupware

Stewart et al. (1999) used the term single display groupware (SDG) to refer to technologies that physically bring small groups together and enhance their interaction as opposed to networked collaborative settings. They explored how technology designers can improve collaboration by explicitly designing computer support for collaboration at a single display, with a view to enabling and enriching multi-user interactions; reducing or eliminating conflict; encouraging peer learning and teaching (by eliminating competition and enabling multiple-synchronous input); and strengthening communication skills. Such settings, nevertheless, bring new challenges as allowing multi-synchronous input may give rise to new conflicts and frustrations, lead to reduced collaboration because of the ability to work in parallel, and increase task completion times since it is more difficult to enforce a leadership structure. Such concerns, and principally that of reduced collaboration as a result of multiple input channels, have been investigated by a number of researchers.
and will be discussed in greater details in Chapter 2.

My work narrows the scope of SDG to those of large, horizontal displays. Rogers and Lindley (2004) compared collaboration in two classes of large-display settings: vertical and horizontal interactive display surfaces. They investigated how the physical affordance of each setting encourages or discourages certain behaviours (social affordances). Rogers and Lindley considered the conventional way for people to work in a co-located group to be around a table with technology and paper-based materials. They argued that unless for making presentations, the shoulder-to-shoulder style of collaboration around whiteboards puts people in a different physical workspace than the one they feel comfortable with and usually leads to one person taking control over the collaborative session (see also Everitt et al., 2006; Kruger et al., 2002, 2003). On the other hand, the horizontal surface of the table affords face-to-face collaboration, which brings a democratic quality to the interactions (i.e. socially comfortable). Their final conclusion was that the physical affordances of tabletops, compared to vertical surfaces, encouraged group members to exchange more roles, explore more ideas, and enhanced awareness, thus making it more productive for collaboration and sharing of work.

1.3 Theories on CSCW

The study of group and organizational work has a number of associated theories, frameworks, and descriptive methods. In relation to the analysis and design of collaborative systems, the most relevant to CSCW are conversation analysis (Wooffitt, 1990; Mazur, 2004; Norman and Thomas, 1991), situated action (Nardi, 1995), activity theory (Kuutti, 1995; Bødker, 1989; Kaptelinin, 1995; Fjeld et al., 2002; Halverson, 2002; Nardi, 1995), and distributed cognition (Hollan et al., 2000; Rogers and Ellis, 1994; Norman, 1993; Halverson, 2002; Nardi, 1995). Conversation analysis (CA) was developed for the detailed analysis of tacit organized reasoning procedures that inform the production and recognition of naturally spoken language. CA examines a wide range of phenomena including how conversations start and end, how turn taking is structured, and the semantics of corrections (Wooffitt, 1990; Norman and Thomas, 1991). Interaction with, and through, artefacts (including technology) was not part of the original method, yet CA has been utilized in HCI research in two areas (Mazur, 2004): using CA to analyse computer mediated communication (CMC) such as e-mail, digital video conferencing, and chats (Mazur, 2004); and using CA to analyse interaction, to inform interface design, where the interface itself is considered as a conversational partner (Norman and Thomas, 1991). By contrast, theories such as situated action (Nardi, 1995) emphasize the activity of people as they emerge in moment-by-moment reactions to the environment. The unit of analysis of SA is the relation between the individual and the environment. On the other hand, CA’s focus is entirely on the conversation and thus technology (and other aspects of the environment) can only be included in the analysis by considering it as a
conversational partner or medium. Rogers and Ellis (1994) argued that existing frameworks developed without reference to cognitive, social and organizational dimensions of the interaction, do not present an adequate means of studying the dynamics of collaborative activities. This observation is particularly salient for frameworks related to technology enhanced collaborative learning. Two theories that explicitly address the cognitive, social and organizational aspects are activity theory (AT) and distributed cognition (DC). Nardi (1995) contrasted the applicability of situated action, activity theory, and distributed cognition for system design. While the focus of her work was on demonstrating the advantages of activity theory and its similarities to DC, she highlighted the weaknesses of the situated action model, in terms of disregarding persistent structures such as the artefacts, institutions and cultural values, and ignoring the subjective elements and motives of the people involved in the activity. On the other hand, Halverson (2002) compared AT and DC, and pointed out that neither of these theories alone address all the factors that need to be considered in the analysis and design of CSCW systems. Both Nardi and Halverson agree on the broad similarities between the two theories and the (rather superficial) differences. However, as described in Section 1.3.1 and Section 1.3.2 the theories have meaningful differences in terms of the aspects of the activity, environment, tools and setting that they bring into focus (and those that they obscure). Therefore I have used both AT and DC for analysis and design, and I introduce relevant aspects of each theory as required throughout the thesis.

After reviewing digital tabletop literature, it was rather interesting to note that most of the researchers approached the analysis and design of their systems based on traditional groupware design guidelines and on notes taken from observational studies on the use of traditional tables, rather than relying on recent theories of CSCW like DC and AT.

1.3.1 Activity theory

Activity theory (AT) (Kuutti, 1995; Bødker, 1989; Kaptelinin, 1995; Fjeld et al., 2002; Halverson, 2002; Nardi, 1995) focuses on human activity as the basic unit of analysis. An activity is described as the minimal meaningful context which is directed to an object in order to transform it into an outcome. The inclusion of context in the definition of the activity is to imply that one should not study individual actions in isolation, but include the effects of artefacts, community, rules, division of labour, and history, and consider these as part of the activity. In this sense, AT considers the activity to be the context (Nardi, 1995). An activity is bounded to a goal or an object and therefore it is possible to differentiate between activities according to their objects. It is performed by a subject (human) whose motivation lead to the initiation of the activity. Motivation is important in AT as it is the driving force behind the activity and is considered to be the factor that makes a group work together rather than competing against each other. The object is usually transformed during the course of the activity into the desired outcome. The object and the outcome are not necessarily physical entities, they could be design concepts, plans, or ideas. The artefact plays an important role in AT. It mediates between the subject and the object. As with the object, an artefact
is not necessarily a physical tool, and in some cases the mediation can be done through language only. An activity may be conducted by a group, which in turn works within a community. The group and the community affect the way the activity is carried out, and thus must not be neglected. Moreover, it is also important to look at the history, not only of the activity, but also of tools and their uses. Activities and tools develop over time and have mutual effect on each other. Activities help in creating and transforming tools, and as tools develop, they impact upon people and the way they carry out activities. The tool can even be viewed as an embodiment of cultural and experiential aspects of a group activity as its form and use is usually the result of many years of development. Figure 1.2 is an annotated version of Kuutti’s (1995) illustration of the basic structure of an activity.

1.3.2 Distributed cognition

In the theory of distributed cognition (DC) (Hollan et al., 2000; Rogers and Ellis, 1994; Norman, 1993; Halverson, 2002; Nardi, 1995) the main unit of analysis is the functional system. A functional system consists of the people and the resources used, and their relationship to each other within the work environment. This unit of analysis is not bound by spatial or social factors, but rather by the functional relations of the elements involved. This may expand the unit in space and time regardless of other considerations such as roles and social status of the people involved. DC focuses on understanding interactions between people and technology to explain how cognition is distributed in the work setting. This distribution may be across members of the working group, across people and external resources, and across time (Hollan et al., 2000). A DC analysis of a
certain work practice must include the functional system, the inputs and outputs of the functional system, the intermediate representational forms leading to the final outcome, the goal, the background of the activity, the available resources, and any environmental factors that contributes to the accomplishment of the task (Perry, 2003.)

The approach used by DC to understand these interactions between people and technology is to study the transformations undergone by representation states during the whole process. DC shows a clear emphasis on representation states and the importance of representation states to cognition. Representation states are not bound to material things, they may be mental representations in the minds of people, audio representations expressed by conversations, or physical movements like gestures. Representation states are transformed by tools. An idea in the mind may be transformed into a sketch by the use of paper and a pen. By describing a representation to another using the phone as a tool, for example, the representation is transformed to an audio presentation. DC theory in this regard considers tools and humans as equals in the functional system. DC also pays attention to the historical and cultural factors that have given rise to the current work practice. People make use of past experiences in carrying out their tasks and in improving the tools used for the task. People from different cultures may carry out the same task differently using different tools and this is an important factor to consider in DC. Cognitive activities refer to the computations taking place while representation states are propagated across media (i.e. individual memory, paper, or computer display) (Rogers and Ellis, 1994). Analysis of group work is put in the heart of the theory. Although a functional system may consist of one person, the general case involves a group and not simply a single individual. By taking the cognitive approach, DC recognizes the importance of knowledge building and knowledge propagation among the group. Lehtinen (2003) observed that designing applications that allow the use of cognitive tools and multiple representation forms, helps learners by reducing cognitive processing load, thereby allowing them to take on more challenging problems than otherwise possible. DC, like AT, focuses on the importance of identifying breakdown situations and the importance of such situations to learning and sharing knowledge among group members (Rogers and Ellis, 1994; Norman, 1993).

1.4 Digital tabletops

1.4.1 Traditional tables as tools for collaboration

Traditional tables are still the preferred way for small groups of people to meet and collaborate (Kruger et al., 2002; Shen et al., 2003; Scott et al., 2004). Both DC and AT draw our attention to the table as a tool with unique affordances that aid in collaborative task completion and collaborative learning. These include the following:

Social affordance: The social affordances of tables provide the most convenient collaborative work environment by allowing people to have fluid, face-to-face, barrier free, communication.
This also means that tables provide a good collaborative learning environment which sets pre-
conditions that allow for activities that are conducive to learning, such as conversation, argumenta-
tion, and collaborative object creation (Kruger et al., 2002, 2003; Morris et al., 2004; Scott et al.,
2004; Shen et al., 2003).

Large horizontal space: DC theory draws attention to the importance of space in the reduction
of cognitive load on humans (Hollan et al., 2000; and Norman, 1993). The large horizontal surface
of the table allows people to spread, pile, and organize materials so as to offload some of the
cognitive effort. Moreover, the surface of a table allows people to structure and mediate group
collaboration (Tang, 1991; Kruger et al., 2003; Scott, 2003; Scott et al., 2004).

Physical support: The horizontal surface of the table allows people to lean on it and place paper
and other objects on top of it (Kruger et al., 2002).

Prior experience: Tables are tools that have been developed and used over thousands of years
and thus carry with them certain cultural assumptions. For example, the shape of the table, whether
round, square, or rectangular and where people sit or stand around it give rise to a number of cul-
turally determined assumptions as to its use. In general, round tables usually imply equality of the
participants, as opposed to rectangular tables where people sitting at the ends often have higher
social status than people on the sides (Pease, 1981; Kruger et al., 2002). Moreover, coordination
and interaction among people working around tables are governed by well established social pro-
tocols (“standards of polite behaviour” (Kruger et al., 2002, 2003; Morris et al., 2004; Scott et al.,
2004; Shen et al., 2003)) that in most cases are enough to prevent conflicts and lead to productive
collaboration.

1.4.2 Digital tabletops as tools for collaboration

Simply put, a digital tabletop is a table enhanced with functionality furnished by a computer,
or in other words a digital table can be thought of as a horizontal computer display that allows
multiple-synchronous pen-based, or touch sensitive input. The concept of computer support usu-
ally implies desktop-like digital functionality such as Internet access, the ability to search stored
data, and support for display and interaction with multimedia. Although these are characteristics
of computer support, they are not the features that distinguish digital tabletops from other forms
of digital technology, or that can make a difference in supporting group work and group learning.
The digital benefits of tabletops that I have sought to explore and exploit are as follows:

Preserving past experience: As a tool, digital tabletops satisfy one of the main design goals
recommended by DC theory in that they preserve the physical interactions that people are familiar
with. Most people have significant experience in using and interacting around tables (Scott
et al., 2004). Supporting traditional tables with digital technologies allows designers to leverage people’s past experience and assumptions of tables. This is significantly different from many current collaborative technologies (e.g. networks or shared computer displays) which force people to collaborate within less familiar physical and technical settings.

Direct manipulation: In tabletop interaction techniques, the action space and the perception space coincide, allowing for literally direct manipulation of objects. This stands in contrast to traditional desktop interaction where a user performs actions using an input device, such as a mouse, and perceives output on a different space (the screen). A number of researchers have pointed out the importance of matching these two spaces and the shortcomings of forcing users to use two spaces (Fjeld et al., 2002; Hutchins et al., 1985; Sluis et al., 2004).

Structuring the task: Computer support allows us to impose structure on a collaborative task. This can be as simple as subdividing a large task into smaller manageable subtasks. Structuring has proven particularly useful in the learning context, for example, in enforcing learning scenarios (Dillenbourg, 1999; Boyle, 1997; Jermann et al., 2001).

Structuring the interaction: Computer support makes it possible to enforce roles and interaction rules between collaborators. Relying on social protocols alone to coordinate interaction and resolve conflicts around tables, is not always sufficient, and a technologically mediated intervention is sometimes required (Morris et al., 2004). Structured interaction can also be utilized to increase the probability of useful learning activities, such as the promotion of explanation and disagreement (Dillenbourg, 1999; Jermann et al., 2001).

Logging: Computer support allows for archiving of collaborative work sessions for future reference or for supporting reflection (Nunes et al., 2003; Collins and Brown, 1988). Logging can also be used for post-hoc evaluation of a groups’ interaction with a tabletop system, by researchers and designers, teachers and facilitators, or the learners themselves.

Feedback: Computer support allows the provision of feedback on different parameters of tabletop use, including levels of interaction by participants, results and progress (Hattie and Timperley, 2007; Dillenbourg, 1999; Jermann et al., 2001). Providing appropriate and timely feedback is widely considered to be one of the most valuable means of supporting teaching and learning (Hattie and Timperley, 2007; Hattie, 2005).
1.4.3 Design challenges for digital tabletops

As large, horizontal, interactive surfaces with simultaneous multi-user input, digital tabletops impose software design challenges that dramatically differ from those of groupware, or shared displays with a single input channel. These differences can be grouped into three categories:

Digital tabletop requirements shared with all SDG settings: Following Stewart et al. (1999):
(1) The support of multiple simultaneous inputs by the user interface introduces challenges with respect to both accessing user interface controls (Morris et al., 2006b) (e.g. menus and dialogs) and common user interface objects (Scott et al., 2003; Tang et al., 2006) (e.g. a design plan); (2) The provision of private or shared feedback on users’ actions (Morris et al., 2006a); and (3) The provision of a shared navigation space (Tang et al., 2006). This list is by no means comprehensive as there are still a number of other issues arising form multi-user simultaneous interaction such as the obscuration of display areas by interface components being viewed by others (Ryall et al., 2004; Zanella and Greenberg, 2001; Tse et al., 2004) and possible conflicts in copy/paste or undo operations.

Requirements of large surfaces: A number of requirements are shared between large interactive whiteboards and digital tabletops: (1) The provision of mechanisms to allow users to reach distant objects and user interface elements (Morris et al., 2006b; Ryall et al., 2004; Baudisch et al., 2003; Gei, 1998); and (2) Making distant areas of the display visible (Ryall et al., 2004).

Requirements of horizontal surfaces: The horizontal orientation is unique to tabletops and gives rise to a numbers of unique requirements relating to the management of (1) orientation (Kruger et al., 2003; Wigdor and Balakrishnan, 2005; Vernier et al., 2002); and (2) use of space. Depending on the nature of the target application and the user group, there can also be issues that arise if the interactive surface is divided into territories (Scott, 2003; Scott et al., 2004).

Although addressing these issues poses a significant challenge, the face-to-face nature of interaction at digital tabletops minimizes the effects of a number of core concerns that have been identified in CSCW research and practice, including awareness, and coordination (Rogers and Lindley, 2004).

1.5 Research objectives

The principal objectives of this research are as follows:

1. To gain an understanding of the use of traditional tabletops in learning contexts and identify primary design requirements for applications to support learning around tabletops. I approached this objective by reviewing literature related to collaboration around tables in
addition to conducting observational studies of people collaborating around traditional tables in educational contexts. I used distributed cognition theory as the framework for the analysis supported by the knowledge gained from the literature reviewed.

2. To identify weaknesses and propose solutions for tabletop interactions that have not yet been fully addressed by previous research. Based on the understanding gained from the previous investigation and while working on the other research objectives, I identified, and proposed solutions for two issues in interacting with digital tabletops that have not been thoroughly addressed by other researchers: (a) a practical and fluid way for setting the attributes of orientation, scale, and access rights while moving objects between territories, or generally any number of attributes in one fluid action; and (b) the problem of text entry with tabletops (in particular for more mobile users).

3. To explore how digital tabletop technology can support face-to-face collaborative learning, and the potential of this new technology in bridging the gap between face-to-face collaboration and CSCL.

4. To build and evaluate a full-scale application that puts the understanding and interaction designs developed into practice. I achieved this objective by following an iterative design process and making design choices that are fully grounded in theories of HCI and learning.

5. To propose a set of design guidelines for tabletop learning applications based on the findings of my research.

1.6 Results and contributions

My Principal contributions are in the development of tabletop interaction techniques and tabletop learning application design. For interaction techniques, I introduce Attribute Gates, and TANGISOFT. Attribute Gates is a novel crossing-based interaction technique that allows a number of attributes to be set in one fluid movement. This technique is devised to address a specific problem for tabletop interaction, the modification of scale, rotation, and access right attributes while moving objects between tabletop territories. Modified versions of this technique have other uses as demonstrated in the final Digital Mysteries application. TANGISOFT addresses the problem of text entry. It is a hybrid tangible–soft keyboard specifically designed for mobile users around tabletops and allows tangible, two-handed, direct-touch interaction.

On the application level, I introduce Digital Mysteries as a successful adaptation of the paper-based mysteries learning tool. I present a theory-grounded iterative design process and show how the reliance on theory can help both in making the right design choices, and in simplifying the validation of the design goals. The development process and validation of Digital Mysteries significantly contributes to the development of our understanding of digital tabletop technology.
at the application level, in particular for applications targeting learning. My theory-driven design approach and validation technique should help designers and software engineers both to develop and validate successful learning applications without the need for expertise in pedagogical theory, and to overcome the difficulties associated with measuring learning. Finally, I conclude with a number of guidelines for designing collaborative learning applications for digital tabletops that focus on promoting useful collaboration and higher level thinking for the students.

A distinctive characteristic of this research is its focus on the use of the tabletop space as one large shared space acted on by mobile users. In contrast to the recommendation made by Hinrichs et al. (2005) that large display interfaces should not be designed to assume fixed spaces but should support mobile users at the display, most of the previous tabletop research and design guidelines make the assumption that users work from fixed positions (a limitation sometimes imposed by the hardware setting used), doing tasks that require the division of the tabletop space into territories. I found that many of the recommendations given for such settings do not hold for shared collaborative spaces. While my work started with an observational study that used such a setting, and started with proposing interaction techniques for such settings, during the course of my research, my design priorities shifted to the provision of a shared space setting with truly mobile users.

In presenting the context and contributions of my research, I have organized the thesis as follows: Chapter 2 reviews previous digital tabletop work. The first part of the review, which is related to different partial aspects of tabletop research, is contextualized within an observational study conducted on a number of students doing a learning-related collaborative task around a traditional table. This allowed me to address all aspects of interaction including verbal and nonverbal communication and the tools used in the collaboration. The second part of the review considers design guidelines for tabletop systems at different levels of abstraction. Finally, I review complete tabletop systems, in particular those related to learning and problem solving.

Chapters 3 and 4 describe two novel interaction techniques developed in response to particular challenges for collaborative work at digital tabletops. Chapter 3 presents the Attribute Gates technique, both Grid Gates and Polar Gates, and demonstrate how activity theory can be used to inform the design of digital tabletop interaction techniques. Chapter 4 describes TANGISOF Text entry technique and shows how such hybrid designs can satisfy the goals of maintaining direct-touch interaction and the provision of mobility and two-handed interaction.

Chapter 5 introduces tabletops’ support for collaborative learning. It also introduces Paper Mysteries as the learning tool of choice to be adapted to tabletop technology and introduces both the desired learning goals and theories to be employed to guide the design and validation process. This chapter then describes the iterative design process that I followed with a detailed description of the features of the final design. Chapter 6 provides validation of the final design and how it satisfies the targeted learning outcomes. Finally, Chapter 7 presents a set of design guidelines for tabletop learning applications and suggests a number of issues and directions for future research on the support of collaborative learning at digital tabletops.
Chapter 2

Literature Review

2.1 Introduction

Research into digital tabletops started with Wellner’s pioneering work on the DigitalDesk in 1993 (Wellner, 1993). Instead of making the computer analogous to a physical desk by using the *desktop metaphor*, Wellner suggested that the desk should be enhanced to provide digital functionalities. Although the DigitalDesk supported the connection of two systems remotely to allow for remote collaboration, its main focus, however, was on single user interaction with physical desks rather than face-to-face collaboration around tables. Nevertheless, the introduction of the DigitalDesk was the starting point for digital tabletops research, their benefits, and potential applications for both single, but mostly multi-user co-located interaction. Wellner’s DigitalDesk used top projection, and two cameras, one for capturing the whole table space and detecting user input (through hand movements), and the other for providing a small high resolution capture region in which views could be digitized. This configuration equipped the DigitalDesk with three important characteristics: (1) electronic images could be projected onto the desk and onto physical paper documents; (2) image processing enabled input from both pens and bare fingers; and (3) the system was able to capture paper documents placed in the hi-resolution camera zone. Although DigitalDesk did not address the issue of face-to-face co-located collaboration, it supported many advanced functions that remain active topics of investigation including tangible interaction, the augmentation of tangible objects (in this case paper) with digital data, and support for two-handed interaction.

This chapter presents a review of the main directions that tabletop research has taken since Wellner’s initial proposal. It is worth mentioning at this point that when I started this research in early 2007, it was possible to explicitly include almost all the literature related to tabletop interaction in a review of the field. However, with the introduction of the “Interactive Tabletops and Surfaces” conference in 2006 (and other smaller research events on digital tabletops) the number of tabletop related publications increased significantly. Consequently, this review of tabletop research only addresses topics in tabletop interaction more narrowly associated with the problem of designing collaborative learning applications for digital tabletops. The review is divided into
four parts: part one covers work practices around traditional tables and how research on digital tabletops has translated these practices into digital interaction techniques; part two addresses the literature related to general design guidelines for tabletop applications; part three reviews full systems that have targeted learning rather than simpler archetypal tasks, such as image sharing and browsing; and part four discusses existing tabletop hardware. Throughout this review, unless otherwise specified, the term table is used to refer to traditional tables, and the term tabletops to refer to digital tabletops.

2.2 Work practices around tables

Understanding the factors that make existing collaboration at a table so effective is central to the design of new tabletop technology. Tang (1991) called for interface designers to “observe how people collaborate then build software that facilitates collaboration based on those observations, giving the users the ‘tools’ that are ‘naturally’ defined in face-to-face interaction”. Bly (1988), followed by Tang (1991), made careful observations on how people collaborate in design tasks around tables in face-to-face settings with the aim of informing the design of distributed collaborative technology. These widely cited observations informed much of the subsequent research (e.g. use of the table space (Scott et al., 2004), orientation (Kruger et al., 2003), and collaborative coupling (Tang et al., 2006)). With respect to the table space, Tang and Bly found that the ability to share the drawing space on the table improves the collaborative experience and structuring of the group activities, as compared to other distant settings (telephone link and media link). Activities around the drawing surface, and the close proximity allowed for by the table space, play a role in focusing attention, drawing collaborators together, aiding in the expression of ideas, promoting a high degree of awareness, improving coordination, and allowing for parallel interaction on the drawing space. In addition, Tang observed that the spatial orientation among collaborators and the drawing space also played a role in coordination and in defining regions and ownership on the surface. With respect to the process of the collaborative task, they observed that the process itself contained more information than is contained in the final output. The process usually involved rapid switching between activities, and that the use of gestures during the process, as afforded by the table setting, played an important role in collaboration by adding to the content of the discussion.

While Bly (1988) and Tang (1991) made general observations on collaboration around tables with the aim of informing distributed collaborative environments, recent observational studies that aimed at informing tabletop design were narrow in scope and focused on certain aspects of collaboration or targeted tasks which might readily translate into digital equivalents, such as sharing photographs. For this reason, my initial goal was to conduct an observational study of a more general scope into how people collaborate around traditional tables. This was not undertaken in the expectation of making new findings, but rather to help in better understanding the previous
studies and to provide a context that manifests the relations between these studies. Literature related to work practices around traditional and digital tables is provided within the context of this observational study, which was designed to make visible the widest range of tabletop work practices.

Summary creation study: The task for the study was to collaboratively summarize a five page document. This activity was undertaken in three distinct stages: in stage 1 participants were asked to read and annotate their documents individually (20 minutes allocated); in stage 2 the participants, as a group, were asked to combine their notes onto a single new clean copy of the original document (20 minutes allocated); and in stage 3, as a group, participants were asked to use the annotations from the new version of the document to write a single summary of between 20-30 lines (10 minutes allocated). To motivate the group, participants were told that they would have to make a 5-minute presentation based on their summary. Two groups participated in the study, one group of three male students, and another group of three male students and one female student. All participants were volunteer postgraduate research students with no specific knowledge of collaborative interaction (age range 24-30 years). The participants knew each other well and were members of the same university laboratory. The study was conducted around a round table with four chairs. Three cameras were used to record video and sound throughout the study from three different angles and distances. All participants were provided with a copy of the document that was the subject of the study activity, a highlighter pen, a writing pen, and a set of Post-it notes. Each group was also provided with a set of blank pages with which to create the final summary. The instructions were given at the place of the study just before starting the task, and participants were given enough time to read the instructions before starting.

I chose distributed cognition (DC) and activity theory (AT) to inform the analysis (Chapter 1). Halverson (2002) compared the theories underpinning analysis techniques to pairs of dark glasses that when used, bring some objects into focus and obscure others. DC helped in defining the broad scope of the analysis to include in addition to the tools and how they transformed representation states; the use of space (orientation included) and its role in cognition; and other factors that we broadly classified as communication, including aspects of conversation, body position, how documents are handled in public space, gaze, and gestures. AT, on the other hand, helped in analysing some fine-grained interactions using the notions of actions and operations as explained in the analysis.

The observations are divided into three categories: spatial considerations, communication (verbal and non-verbal), and tools. For each category I first present the observations from the study to set the context, followed by literature that explains and expands on these observations, and conclude with accounts from the literature that address the corresponding design implications.
2.2.1 Spatial considerations

Spatial considerations include issues that relate to the table space and objects in this space. The table space issues include its size and how the space is divided. Issues related to objects in the space are either directly related to space like an object’s location and orientation, or indirectly related to space like an object’s ownership and scale which are linked to its location and orientation.

Figure 2.1: The table was divided into personal spaces in front of each participant, storage spaces to the left of the personal spaces, and a public space in the middle (Stage 3: writing the summary).

2.2.1.1 Space and location

Table space plays an important role in structuring group activities (Bly, 1988; Tang, 1991; Scott et al., 2004). Scott et al. (2004) thoroughly examined how this table space was used and partitioned and the role that this partitioning plays in the collaborative process. Participants in this study, in correspondence with the findings of Scott et al., divided the space into three areas: the spaces directly in front of them were used as personal spaces (as identified by Tang (1991); Vernier et al. (2002); Kruger et al. (2003)), the space in the middle of the table as a public (group) space for collaborative tasks (as identified by Kruger et al. (2003); Vernier et al. (2002)), and the space to the left of their personal spaces as storage spaces. This was apparent through all the stages of the task (Figure 2.1). The position of paper on the table was related to how the table was
divided. When a participant was working individually on a local copy, papers were placed in the personal space, near the edges of the table (Figure 2.2). When collaborating, even the local copies of the documents were pushed slightly toward the centre (Figure 2.3). On the other hand, the public document was mostly placed in the central area when it was the subject of discussion, but it was pulled toward a participant, in a position that is almost between the public and the personal space, when that participant needed to work on it. As an example, Figure 2.4 shows a participant making the first annotation at the beginning of the collaboration stage (Stage 2); he worked on the public document in the public space (Figure 2.4(a)) until no other participant showed clear interest in participating directly in writing; only then did he pull the document closer to his space and changed its orientation to suit him better (Figure 2.4(b)).

Figure 2.2: Working individually with papers positioned near table edges (Stage 1: annotating the local copies).

Figure 2.3: Collaborating: leaning forward with papers, including personal ones, pushed slightly toward the centre (Stage 2: annotating the public document).

Scott et al. (2004) carried out a detailed analysis on the use of space at traditional tables through two observational studies, the first in a casual setting with three different collaborative games tasks, and the second in a formal setting involving a layout planning task. Their analysis showed that (1) personal spaces are used to ease comprehension, as a reserve area for personal
Figure 2.4: Public document position: (a) at the very beginning of stage 2, and (b) after a short period of time at the same stage.

use and for personal artefacts, and as areas for trying out things that might later be moved to the public space; (2) group territory comprises the rest of the space and is used to perform the principal collaborative tasks, such as providing assistance and sharing resources either by handing them off to others, or by leaving them there for others to take at a later time; and (3) storage territories, which are more problematic to characterize in that they sit above the other areas, are usually mobile in nature, and have accessibility properties that depend upon their location. As their name implies, storage areas are for storage and for grouping of items that may need to be moved together. They may also inherit some functional properties from the territory that they lie within. The partitioning of the table space, and the act of moving objects between these partitions are found to be important factors in helping people coordinate their tasks and social interaction.

Beside using the table space to form territories, it is possible to understand the way people use the space in each of these territories, and more generally the use of space in everyday activities (Kirsh, 1995). A table space can be used to serve three functions: to simplify choice (e.g. putting important objects in more accessible places than less important ones), to simplify perception (e.g. clustering objects in space into groups of similar properties so they are easier to keep track of), and to simplify internal computation (e.g. actually trying different letter arrangements in Scrabble, rather than doing the computations internally). Krish also explained the role of space in making thinking visible (externalization) and highlighted the importance of such external representations in supporting cognition. He argued that people have developed better skills in dealing with external representations than with internal ones: “Space is a resource that must be managed, much like time, memory, and energy. When we use space well we can often bring the time and memory demands of our tasks down to workable levels. We can increase the reliability of execution, and the number of jobs we can handle at once” (Kirsh, 1995, pp.32). This notion of distributing cognition between internal and external representation, and the role of space as a tool
that helps in forming new representational states, is an important aspect of distributed cognition theory.

2.2.1.2 Orientation

Unlike vertical displays, the horizontal surface of a table has no intrinsic orientation, and the orientation given to objects on its surface creates potential problems for collaborative work. Orientation played an important role in collaboration in our observational study. The public document was re-oriented on a number of occasions, in particular, between the two participants who were most actively engaged in the discussions. Papers in the public area were either rotated towards one of the two active participants or placed at an orientation that was accessible to both participants (Figure 2.5). In some instances, where only a short reference was required, the document was not reoriented, and participants just moved or turned their heads to ease reading. However, it was obvious that the actions of orienting the documents were carried out to serve more than one intention throughout the collaborative process.

![Figure 2.5: Orientation and reorientation: (a) shows orientation of the public document in public space (stage 3: writing the summary); (b) shows orientation of a local copy to initiate communication (stage 2: annotating the public document).](image)

Tang (1991) recognized the important role that spatial orientation among collaborators and the drawing space played in both coordination and the definition of regions and ownership. The most thorough investigation on the use of orientation on tables can be found in the work of Kruger et al. (2003). Through a video analysis of a puzzle solving task conducted by pairs of adults sitting on opposite sides of a traditional table, Kruger et al. showed that orientation played a critical role in people’s comprehension, coordination, and communication. For comprehension, people use orientation to ease reading for themselves or others, to simplify carrying out certain tasks, and to get an alternative perspective. For coordination, people may use orientation to coordinate turn-taking and to establish personal spaces, group spaces, and to define ownership of objects. Finally, for communication, people use orientation to initiate intentional communication. It was
also observed that the use of orientation to initiate communication or define ownership of objects was so well understood that it was rarely accompanied by additional communication (e.g. speech or gesture).

The effect of orientation on readability of text in tabletop displays is another important avenue of investigation. The effect of orientation on tasks, such as reading small pieces of text, and searching for labels, was found to be less dramatic than expected (Wigdor and Balakrishnan, 2005). For this reason there is not a pressing requirement to sacrifice useful design features for the sake of orienting text for optimal readability. In support of this conclusion, observations from the summary creation study and from other researchers (Ryall et al., 2006; Morris et al., 2006b) also showed that people often interact with, and comprehend, short textual information at odd orientations without reorienting it towards themselves.

2.2.1.3 Ownership and access rights

Participants moved documents between their personal spaces and the central public space, and oriented them towards themselves and towards others depending on whether they were working on the documents individually or discussing them publicly. This demonstrated a strong relation between the location and orientation of objects, and their ownership and access rights.

When people (and specifically adults) work from fixed positions, with the table space divided into territories, they rarely, if at all, attempt to access objects placed in another person’s personal territory (Ryall et al., 2004). Sharing of resources is usually mediated by the use of the public space. Private documents, that are not meant to be seen by others, are kept away from the table (e.g. in a briefcase). This behaviour is not enforced by any external restriction but is dictated by social protocols (Scott et al., 2004; Shen et al., 2003; Kruger et al., 2003). Ownership, and consequently the access rights of objects, are not a visible attributes like location and orientation, but ones that can be determined by one or more of the following factors: (1) orientation of the object, that is, if an object is oriented towards oneself then this is a claim of ownership, and if it is oriented toward the public space or another person, then it is declared as accessible (Kruger et al., 2003; Ringel et al., 2004); (2) location of the document with respect to personal, public and storage spaces (Scott et al., 2004; Ringel et al., 2004); and (3) in the case of digital documents, by its scale (Ringel et al., 2004; Shen et al., 2003).

2.2.1.4 Scale

In working with physical objects around a traditional table (unlike digital tabletops) there is no control over the scale of objects placed on the table, apart from newly created writings or drawings. Therefore, the summary creation study did not reveal any observations in this regard. Nevertheless, scale of objects is an important attribute that can relate to its position on the table. People often draw or write text in a smaller scale in their personal areas than in public ones (Tang, 1991).
Accordingly, Shen et al. (2003) suggested changing the scale of the document as a method of controlling ownership so that when the document is made small it is made personal, and when enlarged it is made public.

2.2.1.5 Table size, group size, and the issue of reach

Table size, group size, and the area of reach for people working around the table can affect the size and shape of personal territories, which consequently affects the size and shape of the other territories (Scott et al., 2004; Toney and Thomas, 2006a,b). From the perspective of reach (Toney and Thomas, 2006a,b), the table is divided physically and psychologically into two main areas: a reachable area (which is further subdivided into a working space near the body and within bimanual reach, and a storage space a bit farther out); and the rest of the table (the area beyond reach). Applying this to a group around a table, it was observed that the group space is formed by the intersection of all the users’ reachable spaces. The summary creation study was conducted around a round table with two groups of either three or four participants. The table had a diameter of 1.5m which left enough room for the participants to divide the table into personal, storage, and public spaces. Estimating that the personal territories occupied a depth of 40-50cm of the table space, this left an inner circle of about 50-70cm for the public area. Had the table been any smaller, there would have not been extra space in the middle for the public document, and had it been any larger there would have possibly been reach and interaction problems. This means that, as a general rule, any size that leaves space for partitioning with reasonable overlap between reachable areas in the public space can be considered appropriate.

Ryall et al. (2004) investigated the effects of table size and group size on different aspects of interaction around digital tabletops using a poetry assembling task on a multi-touch table. Their findings can be categorized into table size related, group size related, and their combined effects. The table size was found to have no effect on the speed of completing the task or the distribution of work. Group size, on the other hand, did have a significant affect where larger groups were significantly faster then smaller groups, yet they were more suspicious of one another and felt a greater need to emphasize one’s contribution to the task. Group size also greatly affected how the shared resource were positioned, oriented, and used; and the way in which the group moved between parallel and collective modes (i.e. the coupling style). Finally, in the combined effect, it was found that a smaller table did not penalize larger groups and a larger table did not penalize smaller groups; subjects’ perceived an effect of the table size on the task but not the effect of group size; and that small variations in the task design (distribution of resources) affected the distribution of labour and strategy that the group employed.

Another observation was that subjects seemed reluctant to reach for objects near other participants. Ryall et al. (2004) did comment that this observation conflicted with the findings of Bly (1988) which stated that many interactions occurred on shared clusters in the design space, and explained this difference by the fact that their task was divisible, while Bly’s task was not. Based
on this distinction, Ryall et al. came to the conclusion that whether a task is divisible or not had an affect on group behaviour. My observations from the summary creation study confirmed the observation of Ryall et al., but observations from the Digital Mysteries studies (which was not divisible, see Chapters 5 and 6) agree with that of Bly’s. This does seem to reinforce the conclusion that whether the task is divisible or not affects such behaviour, but this difference is probably more accurately attributed to whether the task was designed to be carried out by people sitting in fixed positions, and thus forming personal spaces, or designed to be carried out by people standing and moving freely around the table, with the possibility for tight coupling in certain sub-tasks. The task conducted by Ryall et al. was a group activity to assemble target poems, and since the setting required participants to carry out the task sitting in fixed positions around the table, personal spaces were implicitly formed. If the same task was to be carried out by participants standing around the table with the freedom to move around, one might expect the same task to result in moments of deep coupling with participants working on shared clusters in the design space.

2.2.1.6 Implications on digital tabletops design

Most research contribution relating to the design implications of space-related issues address only one or two of the object attributes discussed above (location, orientation, ownership, and scale). Nevertheless, the findings and recommendations presented can be generalized to apply to all the attributes. For example, many of the design recommendations regarding orientation also apply to location, ownership and scale, and so on. For this reason I have chosen to group all research concerned with such space-related issues into one section and, in some cases, traded being specific about what each paper targets with unifying the findings and recommendations to present them in a more useful form.

Proposed design guidelines for supporting territoriality and different object attributes are divided into system level and territory level guidelines. On the system level (Scott, 2003; Kruger et al., 2003), systems must allow for

- free and lightweight techniques for the adjustment of territory sizes, default attributes, and attributes of items regardless of the default value,
- easy override of default actions associated with each territory, and
- the provision of clear feedback of actions.

At the territories level (Scott et al., 2004), territories should provide

- visibility and transparency of action (i.e. in contrast to using laptops as personal territories),
- functionality in the appropriate locality, and
- the ability to group items and tools.
Kruger et al. (2003) in their investigation of the issue of orientation, made the important observation that only slightly more than half the rotations resulted in alignment with the general orientation of the associated territory, and the remaining rotations were arbitrary. Generalizing, this suggests that if a system supports automatic settings for objects’ attributes depending on their location, it must also allow for easy lightweight override of this automatic behaviour.

Shen et al. (2003) and Scott et al. (2004) discussed the issue of ownership and access rights of objects. Shen et al. suggested three modes of object sharing: private (not visible, not accessible), personal (visible, not accessible), and public (visible and accessible). The original owner of the document should maintain explicit control about distribution and replication of the document even when it is placed in the public space. The system should make such ownership information clearly visible. The ownership attribute is rather different from location, orientation, and scale, in that it is not an inherently observable attribute. Providing explicit ownership information on tabletop content can provide context by increasing awareness about others contributions. When moving an object between territories, it is desirable to be able to set whether the object’s accessibility is changed, or whether a copy of the object should be created. Adding such options, consequently, may interfere with the fluidity of collaboration due to the extra actions required to specify the required setting. The issue of fluidly changing the different attributes of objects while moving them between tabletop territories is the subject of Chapter 3, where the Attribute Gates interaction technique is proposed as a solution.

The importance of being able to fluidly change the access rights of documents was emphasized by Ringel et al. (2004) who proposed four techniques: release, relocate, reorient, and resize. The release technique is based on the timing of holding and releasing a document between two users. For the relocate technique the document’s access rights change with changes in its location between personal and public spaces; for reorient it depends on its orientation on the table; and for resize it depends on its size with the accessibility changing from personal to public when the size of the document increases above a specified threshold. A user study showed that the relocate technique was both the most efficient technique and was perceived to be the easiest to use. This finding can be extrapolated to hypothesize that relocate could be a more efficient way to control the other attributes of orientation and scale depending on the settings of the targeted territory. This is, to a certain extent, what Vernier et al. (2002) suggested in their work on visualization techniques for circular tabletop interfaces where they gave a number of suggestions regarding orientation and scale. For orientation they worked on two levels, a global level at which all the table space is rotated, and a document level at which individual documents can be rotated automatically as they are relocated either in the direction of the centre of the table, or to face a certain magnet point. As for scaling, they proposed two modes depending on whether users are working independently or are sharing objects: a central focus mode for sharing where documents are larger in the middle and smaller at the edges, and a black hole mode for working independently where documents get smaller the closer they get to the middle of the table.
Other research on tools has sought to resolve issues related to managing space coordination, and attribute settings of groups of objects simultaneously (Storage bins (Scott et al., 2005), Table-Trays (Pinelle et al., 2008), and interface currents (Hinrichs et al., 2005)). These three techniques allow for adding/removing items, and for manipulating the location, size, and orientation of the container region. They help in managing the space by allowing for partitioning the workspace and reducing clutter; and help in coordination by facilitating group interaction, and sharing and access of resources. Interface currents were intended as group or storage spaces, and were principally designed to solve the problems of reach, access, and sharing of objects by providing regions (pools) or paths (streams) that rotate/flow in a controlled speed and direction (similar to Lazy Suzan tables and conveyor belts). Storage bins are similar to pool shaped interface currents. They have the ability to change their shape, but without the flow effect, and are basically aimed to provide mobile storage mechanisms. TableTrays, on the other hand, have fixed rectangular shapes and, in addition to providing storage, provide more functionality by allowing cut/copy/paste operations that enable the transfer and replication of contents. All of these techniques were found to be useful in facilitating task coordination and group interaction, managing the workspace, reducing clutter, and easing access and sharing of resources. The three techniques addressed the issues of orientation and scale differently. For example and with regards to rotation, storage bins used the rotate and translate mechanism (Kruger et al., 2005), interface currents depended on the flow effect for orientation, and TableTrays supported rotation by twisting the stylus around the z-access. Storage bins and interface currents automatically resized contents when dropped inside them, while Table-Trays depended on manual resizing and provided an option to restore the size of an item that had been manually resized while in the tray to its original size when taken out of the tray.

Another important issue that is related to utilizing table space and the location of objects on that space is the placement of controls (such as menus and buttons) on the table, and whether these should be centralized and shared in the public space or replicated for each user (Morris et al., 2006b). Using a picture labelling application in two modes, one that used centralized polar menus in the public area and another that used replicated copies of rectangular menus placed on the edges of the table in front of each of four users, Morris et al. found that users overwhelmingly preferred the replicated controls over the centralized ones. Two explanations for this were suggested, firstly, that users showed aversion to the physical proximity with team mates’ hands that the shared centralized design imposed (Ryall et al. (2006) also reported that people using direct touch tables showed concerns about their arms or hands accidentally bumping with one another), secondly, users had a preference to leave the central area of the table clear for other collaborative tasks rather than filling it with controls. Based on these findings, and the type of task involved, it was recommended that applications should provide a set of controls for each user, and that these controls should be placed on the edges near the user if possible, or allow for controls to be moved as the user requires. This recommendation, assumed users working from fixed positions, yet for mobile users, a contextual-menu, or a centralized menu option would seem to be more appropriate.
2.2.2 Communication

Collaboration around tables is different from collaboration at other devices, mainly because of the unrestricted, face-to-face style of work that tables afford. This style of collaboration leaves open a space for direct human interaction and a greater reliance on verbal and non-verbal communication channels. To understand how people collaborate, it is thus necessary to observe not only the actions that are directly related to the accomplishment of a task, but also hidden aspects of communication, or even the absence of actions, that might have contributed (Hollan et al., 2000). My observations included conversation, body position, gaze and gestures.

2.2.2.1 Conversation

Inevitably, conversation was the principal means of collaboration. Notably, most of the conversation took place between two participants in each group who undertook the majority of the work. Following Morris and Winograd (2004), it is possible to categorize the different types of conversation in collaborative tasks according to whether they are related to the details of the task, planning of the task, or management of the resources at hand. Talk that is related to annotating or summarizing (details of the task) was the main component of conversation, though at the beginning of each stage participants spent some time discussing how to proceed. In stage 2, the initial discussion was about who was going to do the actual annotation, and for stage 3, it was about who was going to dictate and who was to do the transcription. Because of the small group size, the small number of shared resources, and the size of the table used, no conflicts or explicit coordination effort were expected or observed. Access was simply coordinated through the usual “standards of polite behaviour” (Morris et al., 2004).

2.2.2.2 Body position

Posture at the table conveyed implicit information about the coupling styles of participants. During stage 1, while working individually, all participants at some stage adopted an upright posture, and leaned slightly on the table (Figure 2.2). During collaboration, all participants leaned more significantly toward the centre of the table (Figure 2.3). The contrasting position of leaning backward indicated task completion, or disengagement from the task (Figure 2.6). Interesting postures were observed while handling the public document when placed in the public space (Figure 2.7) during attempts to increase the awareness of others of the type and location of action.

2.2.2.3 Gaze and gesture

Three of the functions of gaze that are identified by Knapp and Daly (2002) were observed during the collaborative stages: (1) information gathering; (2) looking at the face of another person to establish an obligation to interact or to signal turn-taking (regulating the flow of communication);
and (3) looking at others after making a suggestion in an anticipation of a non-verbal reply (monitoring feedback). Deictic gestures (i.e. pointing) played a major role in promoting awareness and coordination. Participants pointed to the public copy, to their local copies, and to a lesser extent, to the local copies of other participants to attract focus to a certain page or a certain position on a page (Figure 2.5). Certain actions were exaggerated to draw attention to the participant’s status or change of status. For example, aligning pages and/or capping the pen in a particularly demonstra-
tive manner to declare a completion of a task (Figure 2.8), and tapping on the table with the pen or fingers to indicate involvement in the task. Gestures and actions were also used in coordinating turn-taking (Tang, 1991). In one case a participant even threw the public document to another participant across the table informing him that it was his turn (Figure 2.9).

Figure 2.8: Gestures: The use of stylised actions to indicate a state transition.

Gutwin and Greenberg (2000) and Pinelle et al. (2003) considered such verbal and non-verbal behaviours to be part of the low level actions and interactions that must be carried out to complete a shared task, and called them the mechanics of collaboration. Gutwin et al. divided group work into task related work (which applies to individual work as well as group work), and team related work. Team related work can be further categorized according to whether it relates to social and group dynamics, or the mechanics of collaboration. Our interest in this section is in the mechanics of collaboration, which can be either communication or coordination (see the updated categorization (Pinelle et al., 2003)). Communication can be explicit or implicit through the gathering of information. Some of the actions discussed previously, such as verbal, gestural, and manifested (exaggerated) actions, fall into explicit communication; while actions intended to increase ones awareness about the process by observing other people in the group, their activities, and changes made to objects in the space fall into implicit communication (i.e. information that is communicated through observation and not stated explicitly). Coordination is required when
managing access to resources or when transferring objects. When such coordination is not done physically, it will be through one of the communication techniques discussed, such as verbally, through body position and movements, or using gaze and gestures. The mechanics of collaboration identify observable, low-level interactions that can help in analysing collaboration and breaking it down into specific actions that can be evaluated one at a time.

2.2.2.4 Implications on digital tabletops design

The variety of functions served by verbal and non-verbal communication highlights the importance of enabling barrier free communication between collaborators around a table. Gutwin and Greenberg (2000) considered the degree to which a groupware system supports the mechanics of collaboration to be a measure of its usability. They suggested the mechanics of collaboration as a discount evaluation method for shared-workspace distributed groupware systems. Traditional tables provide a barrier-free communication environment with natural support for awareness and verbal and non-verbal actions (Rogers and Lindley, 2004; Tung, 1991; Bly, 1988). Therefore, groupware systems based around tables rank high in their support for the mechanics of collaboration. Digital tabletop interaction designers must take care not to introduce features or obligations on users that hinder these channels of communication (e.g. visual or auditory barriers). Poten-
tial visual barriers include the use of personal devices such as laptops in front of each participant. The presence of the vertical screen can affect both explicit communication by hiding some of the communicative gestures, such as pointing (Scott et al., 2003), and implicit communication by reducing awareness about others, their activities, and changes made to objects on these personal screens or on areas obscured by these screens. Auditory interference can be introduced when providing public or private audio feedback. For example, private instructions provided through headphones negatively affect implicit communication (information gathering) and may result in responses on the part of the receiver that are distracting and unintelligible to collaborators. Moreover, private and public feedback that is not timed appropriately contribute to breakdowns in the interaction (Morris, 2006; Scott et al., 2003).

The analysis so far has been guided by distributed cognition theory to bring into focus different aspects of the interaction. As mentioned in section 2.2, it is useful to apply activity theory (AT) for the detailed analysis of the verbal and nonverbal behaviour to lead to the same conclusions regarding the provision of the barrier-free communication environment. Verbal and non-verbal behaviour of users can be categorized into conscious actions that serve a specific goal and subconscious operations that result in as reactions to different conditions (refer to section 1.3.1). According to AT, subconscious operations transform into conscious actions because of breakdowns in the process or when a tool that is used in the interaction brings focus to itself rather than to the process. Consequently, it is possible to study the categories of actions and their frequency, and how the introduction of new circumstances (such as introducing personal devices or audio feedback) affect the distribution and frequency of actions and operations. As an example, observing a person’s gesture and reacting to it is usually done subconsciously, but if the gesture was obscured by a visual barrier forcing the observer to take an intentional action to observe it, such as moving aside or explicitly asking the action initiator to repeat or explain what they have done, then this is an indication to a breakdown in the interaction process which requires a modification to the design. A similar analysis can be applied to the provision of audio feedback and whether it leads to breakdowns in the process that shift subconscious operation to conscious actions or not.

2.2.3 Tools

Tools or artefacts (Norman, 1993) play an important role in any collaborative process serving both as cognitive tools and tools to support coordination. Distributed cognition places a significant emphasis on tools (Hollan et al., 2000) and equates them to humans as agents in the cognitive process. Tools are also important to other analytical frameworks such as Activity Theory (Halverson, 2002) which considers them as mediators between the subject (the human) and the object (the desired outcome). The tools in this study were the table, the pens and highlighters, and the papers (the document and the summary page). The participants’ use of their hands is also considered under this heading.
2.2.3.1 Table, pens and highlighters

The table itself provided physical support for the participants and the collection of tools. Its relatively large size allowed for the division of its surface into territories and allowed participants to freely move and spread their pages in different spatial arrangements. The pens were used for more than just writing and on a number of occasions they were used to indicate the participants’ state or state transition. As already discussed, an exaggerated action of uncapping and capping the highlighter was used to mark the start or end of an action; and holding the pen advertised the participants continued engagement in an activity even when that activity did not require them to write anything. The pens were also used as pointing devices and for coordination, for example, handing the pen or highlighter to another participant to request action.

2.2.3.2 Hands and bimanual action

Although, as expected, all the annotation and writing was performed with the participants’ dominant hands, non-dominant hands were used frequently to hold documents close to participants while reading, to move and rotate the documents, flip pages, and to set pages in suitable positions and orientations while writing and annotating. For two-handed operations, one hand is typically used as the anchor for the action of the other (Guiard, 1987; Buxton and Myers, 1986). Such differentiation between the use of the dominant and non-dominant hands has the potential to inform the design of input devices suitable for the types of tasks carried out by each hand. In contrast to desktop and laptop systems, the coincidence of the action and perception spaces of digital tabletops means that they have a particular potential to support bimanual input (Balakrishnan and Hinckley, 1999). Whether using the hands, pens or both, the two inputs can have the same reference frame. The potential to support bimanual action can reduce cognitive load for low-level manipulation tasks thereby helping users focus on high-level tasks (Hinckley et al., 1998; Leganchuk et al., 1998). Techniques specifically designed for bimanual input (e.g. ToolGlass (Bier et al., 1993)) have the potential to facilitate fluid tool switching.

2.2.3.3 Paper (documents and summary page)

The way in which people use paper while reading, annotating, and writing, individually and collaboratively around a table, is likely to impact significantly on the design of effective digital tabletops. As physical objects, the sheets of paper played an important role in task coordination where participants pushed or oriented one or more sheets towards another as a request for action. As already described, one participant even threw the document across the table to another person as a request to take action (Figure 2.9). The fact that paper is easy to move, navigate through, spread and spatially arrange, are major advantages over electronic document alternatives (O’Hara and Sellen, 1997). Paper documents also have an inherit ability to support the promotion of awareness. Others
can easily observe and comprehend actions taken on, and with, paper, and be aware of the owner’s actions and intentions.

2.2.3.4 Implications on digital tabletops design

Interaction with tangible objects, like paper, on traditional tables is carried out through hands and tools, such as pens. With digital tabletops, on the other hand, interaction can be through pens, touch, and mice, and in each of these cases interaction can be through single or parallel input. The interaction objects are mostly digital, and in some cases tangible. Moreover, interaction can be one-handed, or two-handed depending on the input technology used. Due to this variety in input options, there are a number of issues that need to be addressed: (1) the affordance of two handed interaction on digital tabletops as compared to two-handed interaction with physical objects; (2) the support of tangible interaction on digital tabletops; and (3) the effects of the type of input technology, and whether it supports single or parallel interaction, on different aspects of the interaction.

2.2.3.5 Two-handed interaction

Useful insights can be drawn from Terrenghi et al.’s (2007) study of the affordances of manipulating physical versus digital media on a tabletop. For their investigation, Terrenghi et al. used a tabletop system that used bottom projection and a camera to support of multi-touch input. The system allowed for manipulating digital objects using physical interaction metaphors in terms of rotation and translation and did not support scaling as this is not possible in the physical world. Participants were given puzzles as well as photo sorting tasks in both physical and digital settings with digital objects made to resemble the physical ones in terms of size and high resolution. While, as expected, people performed the same subtasks in both cases (getting an overview of content, comparing objects, focusing on objects and so on), the means by which these subtasks were carried out differed. The most relevant findings were that participants predominantly used one-handed interaction with digital media, although bi-manual interaction was allowed, and that even when both hands were used, they were used in a symmetric manner. This was in contrast to the way participants handled the physical media where they used both hands in an asymmetric manner in correspondence with previous findings in bimanual interaction (Guiard, 1987). It is important to point out that some of these differences in handling digital and physical objects may have been caused by the novelty of the technology as the study was conducted over very short periods (less than 10 minutes), or limitations of the implementation employed. This can be inferred from the fact that users reported high level of frustration when using the digital version, particularly for the puzzle task which required the manipulation of small objects. The reason for this frustration, which may have had strong implications on the differences in behaviour observed around digital and physical objects, was not reported and therefore it remains unknown whether
the difference in behaviour were caused by the specifics of the implementation, the novelty of the technology, or merely as a result of interacting with digital media. Nevertheless, it is still useful to consider the recommendation that simply allowing two-handed interaction on the tabletop may not always be enough, and that different techniques must be provided in the digital case to achieve the same task with physical media. Terrenghi et al. suggested either supporting techniques that require asymmetric two-handed interaction like ToolGlass (Bier et al., 1993) or allowing for hybrid physical-digital user interfaces. The inability to translate all aspects of tangible interaction to the digital world has lead other researchers to focus on bringing tangible interaction to digital tabletops rather than trying to enforce physical characteristics into virtual objects.

2.2.3.6 Tangible interaction

Bricks (Fitzmaurice et al., 1995) and MetaDesk (Ullmer and Ishii, 1997) were two pioneering attempts in bringing graspable (Fitzmaurice et al., 1995), or tangible (Ullmer and Ishii, 1997) characteristics to user interfaces and both were demonstrated as part of a physical desk setting (ActiveDesk and MetaDesk). Bricks aimed at utilizing the richer handling afforded by physical objects as compared to virtual ones like facilitating two-handed interaction, spatial reasoning, parallel position and orientation, and collaborative use. This was through physical controls (small physical bricks) that played the role of physical handles to operations like selection, resizing, moving and rotation. MetaDesk, in addition to the brick-like physical controls, introduced more complex tangible user interface components like a passive lens (a transparent wooden frame augmented with digital data), and active lens (a movable small display in a 3D space), trays (menus), and instruments (other widgets like sliders) with the aim of shifting from traditional user interfaces to ones with more tangible characteristics. Further work on tangible user interfaces for tabletops proceeded in different directions, such as improving the tracking technology (Patten et al., 2001), or introducing tangible musical interfaces (Jordà et al., 2007; Bartindale et al., 2009). Some research even involved enabling the table to move certain tangible objects on its surface with the aim of studying how mechanical constraints can be used to control the digital computations reflected by the positions of these movable objects (Patten and Ishii, 2007). A modern version of Bricks and MetaDesk is realized by the Slap widgets (Weiss et al., 2009) which are transparent silicon widgets that can be visually tracked by the table and augmented with any type of digital data. The sample Slap widgets demonstrated were knobs, buttons, sliders, and a keyboard.

2.2.3.7 Interaction techniques

A number of researchers investigated the impact of different input technologies on the nature of interaction around shared displays (Ha et al., 2006; Marshall et al., 2008; Hornecker et al., 2008; Forlines et al., 2007; Müller-Tomfelde and Schremmer, 2008). For tabletops, single mouse, multiple mouse, and direct touch (stylus or fingers) inputs have been explored. Ha et al. (2006) focused
on how direct (touch and stylus) and indirect (mice) input differed in relation to the naturalness of interactions, ergonomics, territoriality, gestures, and awareness of intentions and actions. Their main findings were that direct touch supported more natural interaction and increased coordination compared to mouse input. However, direct touch was more tiring and could have reach problems for large interfaces. Marshall et al. (2008) studied the effects of different types of input (touch/mice) and the number of inputs (single/multi) on physical interaction and verbal participation. In simple terms, they found that multi-touch surfaces increased physical interaction equity, but had no impact on verbal participation. Finally, Hornecker et al. (2008) found that multi-touch interaction improved awareness, compared with multi-mouse interaction, and lead to more fluid interaction. They also observed that even though multi-touch interaction gave rise to more action interference (than multi-mouse) these were usually quickly resolved and did not cause breakdowns in the interaction. It is interesting that although no existing tabletop system uses mice as the input technique, these papers compare mice with direct input techniques. A comparison between stylus input and touch input, which are the two dominant input techniques for current tabletop systems, and a combination of stylus and touch would have been much more useful to tabletop system designers in providing guidelines for choosing a suitable technology for a specific context. Brandl et al. (2008) investigated pen and touch input but in two handed interaction where they experimented with touch and touch, pen and pen, and pen and touch, and their results suggested that pen and touch (pen for the dominant hand, and touch for the non-dominant hand) is superior in terms of speed, accuracy, and user preference.

While the previous work established many benefits of multi-touch over multi-mouse, other research (Birnholtz et al., 2007; Do-Lenh et al., 2009; Hornecker et al., 2007) compared multi-input in general (touch or mice) with a single access point (single-touch or one mouse) on a shared display. Their results supported the concerns of Stewart et al. (1999) regarding the support of parallel interaction: although multi-access points lead to more equitable interaction, they also lead to more parallel work, and that single mouse interaction lead to higher quality discussions than multi-access points. Moreover, while multi-input encouraged shy people to participate and reduced the dominance of one person, it reduced the effect of learning from the higher achievers. Unlike Birnholtz et al. (2007) and Do-Lenh et al. (2009) whose results were based on adult users, Harris et al. (2009); Rick et al. (2009a) compared multiple-touch and single-touch collaborative interaction by children (7-10 years) and reported different findings. Using OurSpace, a layout design application, Harris et al. and Rick et al. reported that the equity and frequency of interaction were found to be the same in both single- and multi-touch, and that the type of discussions, rather than their quality, was what varied between the two conditions. In the multi-touch condition discussions were found to be more task focused, and in single-touch condition conversations were more focused on turn-taking and coordination. Single-touch, however, was reported to promote higher awareness of action in some cases. Such findings may reflect negatively on tabletop systems, but one should keep in mind that these findings are based on studies that compared working on basically the same
application but with single or multiple inputs. To utilize the advantages of table tops, applications should be designed to utilize all their unique affordances and integrate built-in rules that reduce possible negative effects. A fair comparison can only be made with applications that are designed to best utilize the unique features of both settings – such comparisons have yet to be conducted.

Conclusions as to the comparative advantages of touch and stylus interaction with tabletops can be drawn from the observations reported by Ryall et al. (2006) on people using direct-touch tabletop systems in the wild (in a variety of contexts). The relevant findings can be categorized into input-technique-related issues, and issues related to the physical set-up of the table. For the former, it was observed that some people were hesitant to touch the table at the same time as others, particularly at the start of an interaction among group members that did not know each other. Users, and in particular adult users, were concerned that their arms or hands might accidentally bump with those of others (a similar observation was reported by Morris et al. (2006b)). Touch-based tables suffered the problems of accidental touch, the low finger resolution, and hygiene-related concerns. Moreover, even though the tables used supported multi-touch, users used single-finger interaction in a manner similar to the more familiar stylus or touch-screen interfaces. As a result, some people preferred to use a stylus (or other input devices) as an alternative to touch input. In relation to the physical setup of the table, Ryall et al. found that people tended to lean on the table with their elbows. Therefore, and to keep interaction on the table natural, they stated the importance of allowing for this behaviour either by providing a suitable elbowroom around the edges, or by ignoring this class of touches. Finally, the size, height, and the shape of the table, and whether users were required to stand or sit around the table were found to greatly impact on the characteristic of users’ interactions and therefore these factors must be taken into account when designing a tabletop system for a specific task.

In addition to work exploring interaction tools and techniques, there is a large body of research that addresses more specific issues as to detailed aspects of different interaction techniques. For example, mechanisms for controlling the translation and orientation of objects using a single point of touch input (Kruger et al., 2005), improving handoff techniques for digital objects on the table (Jun et al., 2008), making use of the contact shape information on direct-touch surface to mimic the physical world and allow for a level of tangible interaction (Cao et al., 2008; Wilson et al., 2008), supporting flicking gestures using computer vision (Sato et al., 2008), and many others.

2.3 Work on design guidelines

A number of researchers have explicitly suggested general design principles and guidelines for designing digital tabletop systems (Wallace and Scott, 2008; Scott et al., 2003; Morris, 2006). There is little overlap between these proposals as they address distinct issues, often at different levels of abstraction. Wallace and Scott adopted the most abstract position and concerned themselves with
the factors that are external to the table itself, and how they should reflect on the software user interface, the physical form, and connectedness. These included social and cultural factors, type of activity, duration or temporal factors, ecological factors, and the motivation behind the activity; which in simple terms are answers to the questions of who, what, when, where, and why? The effect on the user interface is primarily reflected in its complexity and the type of interaction techniques it utilizes.

With regard to the physical form, these external factors affect the dimensions, shape, angle of display and the aesthetic design of the table. For connectedness, the guidelines make reference to the awareness of the system of external devices and the connectability of these devices to the system, or between themselves through the system. For example, for infrequent users in a formal setting, the user interface should be as simple as possible to reduce the possibility of making mistakes and causing embarrassment, and it should also allow for connecting and using personal devices for working on private data. For professional users who are expected to use the table frequently, a more sophisticated user interface can be used. Likewise, a table in a coffee shop has different ergonomic requirements than that in an office or a classroom.

Scott et al.’s widely cited guidelines (Scott et al., 2003) are less abstract, and can be summarized as follows:

- Supporting interpersonal interaction: The system should not cause conversation or visual breakdowns while the users are interacting. Natural interaction can also be supported with an appropriate and friendly physical design for the table.

- Supporting fluid transition between activities: This can be in terms of software tools, or hardware/software tools as in switching between using a physical keyboard and a stylus.

- Supporting transitions between personal and group work: Dividing the table space in personal and public areas is suggested as a way to support this.

- Supporting transitions between tabletop collaboration and external work: Work generated externally should be easy to incorporate in the tabletop environment and vice versa.

- Supporting the use of physical objects: Physical objects include pen, paper and/or tangible objects augmented with digital data.

- Providing shared access to physical and digital objects: Shared access to physical and digital objects should be provided where it helps in maintaining group focus and facilitates awareness.

- Form and configuration: Consideration should be paid to the appropriate arrangement of users and the table shape and size, in relation to the task at hand.

- Supporting simultaneous user actions: Parallel interaction should be allowed by all users, rather than restricting access to one user at a time.
The recommendations of Morris (2006) are at the lowest level of abstraction and can be categorized as relating to regions, clutter reduction, access permissions, group dynamics, working style, and usability metrics. Her design recommendations can be summarized as follows:

- **Regions**: Provide a central area for sharing resources, visually distinguish different tabletop regions, place user controls on the table edges, and allow for structuring the space like providing regions for trash.

- **Clutter reduction**: Consider the use of individual targeted audio as an alternative to visual representations when appropriate, and provide personal storage areas that can be closed and restored in a fluid manner.

- **Access permissions**: Provide means for fluidly controlling the access rights of documents, and if possible make these access rights visible to increase awareness.

- **Group dynamics**: Provide private and public, audio and visual feedback to increase awareness and regulate participation levels, consider the location of controls as this also has an effect on participation, enforce a structure on the interaction as this can help users with special needs, and prevent individual users from executing global level actions that affects others.

- **Work style**: Provide private audio feedback to help facilitate smooth transitions between tightly and loosely coupled activities, and provide global controls that can only be executed collaboratively to increase team spirit.

- **Usability**: Focus on design issues that are related to promoting effective collaboration rather than speed and efficiency.

2.4 Tabletops and learning

Early research on digital tabletops focused on specific issues like the use of orientation, space, and interaction techniques. Applications developed in these initial explorations of the design space were rather simple and focused at specific interface issues. From 2006 onwards, contributions at the application level began to emerge, some of which specifically investigated learning support and problem solving using digital tabletop interfaces (Piper et al., 2006; Rick and Rogers, 2008; Rick et al., 2009a; Piper and Hollan, 2009; Morgan and Butler, 2009; Do-Lenh et al., 2009; Fleck et al., 2009). All these contributions motivated the use of tabletops in terms of their unique characteristic of bringing computer support to face-to-face style of collaboration, the higher levels of engagement of users (compared to other media), and the potential benefits of new types of educational applications based on tabletops. However, there have been relatively few studies that have incorporated explicit educational goals, grounded in pedagogical theory, and conducted in realistic
settings. Rather than focusing on the sorts of issues educational practitioners and researchers are concerned with, such as comprehension and higher level thinking skills, tabletop learning research has to date tended to be exploratory in nature, focusing on specific applications, such as layout design and the physical manipulation of virtual objects (Piper and Hollan, 2009; Do-Lenh et al., 2009).

Rick et al. (Rick and Rogers, 2008; Rick et al., 2009b) adapted a desktop learning application to a multi-touch surface. In their work, they used learning theory to motivate the transformation from desktop to tabletop, guide the design process, and inform the evaluation. Their collaborative learning application (DigiTile) aimed at helping children with age range (9-12) to collaboratively learn about fractions. The implementation used a small (81cm diagonal) DiamondTouch table (Dietz and Leigh, 2001) and required its two users to sit next to each other at one side of the table. Their system used a standard menu bar at the top and a set of replicated toolbars on each side with a shared area in the middle. The design targeted a number of important educational concepts, such as allowing for different perspectives of the data, supporting learning by doing, and encouraging collaboration. With respect to collaboration, they experimented with two different ways of allocating resources between participants: shared resources with each child having a full set of the required resources on her side, or split resources with each child having only half of the required resources. The evaluation of the system was based on pre- and post-tests. The results showed significant improvement in knowledge about fractions after using DigiTile, but no significant difference between the different resource allocation strategies. Rick et al. (2009b) reported an interesting observation related to the distribution of work on multi-touch surfaces (refer to section 2.2.3.7), where they observed that even though parallel interaction was permitted in DigiTile, the more difficult the task was, the more the children worked jointly on solving it. While in their work Rick and Rogers (2008) specifically raised a question regarding adapting applications to new media, “could the new application benefit significantly from the move to the new interface?”, their implementation still had a number of similarities to a desktop setting with its shoulder-to-shoulder style of interaction, fixed horizontal orientation, and a menu bar for initiating commands. Allowing for simultaneous direct touch interaction on a horizontal surface, does enforce a different style of interaction than that with a single (desktop) computer display, but the applications still leaves many of the tabletop characteristics (the new interface) un-utilized.

Piper et al.’s (2006) work on SIDES targeted a very specific audience, adolescents with Asperger’s syndrome in social group therapy. The aim of the application was to encourage the practice of effective group work skills, such as negotiation, turn-taking, active listening, and perspective taking. This involved four players seated in fixed positions around a tabletop each with a similar set of voting tools that generate action level events only when all of the participants pressed them simultaneously. Enforcing collaboration in this manner mitigated against individual decisions and encouraged social interaction. The pedagogical design was based on constructivist learning theory and on Vygotsky’s theory (Vygotskiï et al., 1978) that learning is a social process
with roots in social interaction. Through an account of an iterative design process starting with interviews, and moving to paper prototypes, Piper et al. demonstrated that such a tabletop game provided a motivating experience which helped member of this challenging user group learn effective group work skills. When the computer enforced the coordination rules, the emphasis of the therapist’s role changed to being one of helping the clients reflect on the activity and tie it to their experiences in real life. While the application was carefully designed to utilize the affordances of the technology in coordinating collaboration, generalizing the reported observations must be done with care due to the specific nature of the targeted audience.

Morgan and Butler (2009) assessed the potential impact of multi-touch technology on cognition and learning using three theories: social-cultural theory (for dialog and collaborative layer); distributed cognition (DC) theory (for shared digital workspace layer); and situated cognition (for the cognitive activity context). In DC, they considered the tabletop as the mediating artefact because it holds a representation of the current state of the solution to the problem and as in Hilliges et al. (2007), they referred to the table’s characteristic of preserving this state and thus freeing cognitive load from the students. The preservation of the representation state is, however, not the only thing to shape the cognitive activity, but also the tools available and the structures that control the collaborative process. Mediating artefacts can be considered as tools that regulate activity by organizing a division of task and coordinating collaboration. Morgan and Butler proposed concept mapping and story boarding applications for the purpose of their investigation. The proposed designs were based on the concepts of working from fixed positions, the division of tasks, and roles assignment. While highlighting the importance of identifying students to allow for monitoring contribution, Morgan and Butler also discussed the difficulties in doing that with multi touch tables and suggested solutions based on area of interaction and the division of tasks and roles.

Do-Lenh et al. (2009) investigated the effect of tabletops with tangible interfaces on collaborative learning. They compared a concept mapping task performed around a traditional computer display using one mouse/keyboard for input, with a tabletop application that supported tangible interaction, and measured the differences between individual and group learning gains. Based on pre-tests and post-tests, their results showed no significant effect on individual learning gains, but also showed that groups using the traditional computer setting learned significantly more from their partners than in tabletop setting. Their analysis of the results showed that the traditional computer setting with its one point of access helped in transferring knowledge from more achieving to less achieving students, and thus such a setting might be preferable in cases where the level of initial knowledge between group members is significantly different. They justified this in that, for tabletop conditions, high-expertise students failed to dominate the conversation and thus had less positive effect on their partners. This indicates that the equal level of participation afforded by tabletops, if not utilized correctly, may have negative effects on group learning in groups with variant levels of initial knowledge. On the other hand, such equal level of participation is considered to be an advantage if the goal is to reduce the effect of dominant students. Finally the analy-
sis showed that collaboration in tabletop condition was mixed between explanation, group work, and individual work, while in computer case there was a division of roles and more coordinated collaboration.

Piper and Hollan (2009) focused on tabletops as a studying tool for pairs of students (undergraduates in this case) and compared it to studying on paper. Their main goal was to investigate two issues: the effect of large, horizontal, multi-user displays on cognition and social activities in shared studying environments; and the pedagogical benefits gained from tabletops beyond the motivating context that they provide. Piper and Hollan distinguished their work from others by firstly focusing on the effect of using digital tabletops versus paper on study practices, like participation and cooperation, rather than focusing on the application, which was intentionally made as simple and as basic as possible; and secondly by studying the interaction over multiple-sessions to observe behavioural patterns over time and ensure that the observed behaviours are not results of first time use. With regard to the second point, they brought into focus the effect of novelty of the medium and observed its effect in causing much off-task behaviour; and pointed out a shortcoming of other research that made conclusions based on first-time encounter with such a new medium. As mentioned, the application used was very basic and mirrored the tools that students need while reading from paper. Each student had her own draw and erase buttons in addition to some commands in a shared menu. Their findings showed that students with paper material made more detailed notes and worked serially, while students with the tabletop display repeated activities more, worked in parallel, and performed better on exams. They also stated the potential of tabletop technology in logging students interaction during the session for later use by the teacher or the students, and the potential of providing scaffolding by the application. Finally, and although their task involved two users only, they indicated that that the size of the DiamondTouch table used (81cm diagonal) proved to be rather small.

Both Do-Lenh et al. (2009) and Piper and Hollan (2009) used basic applications for the tabletop versions that, other than allowing parallel interaction, were not specifically designed to utilize the affordances of the technology, and did not arise from an iterative design process that might have addressed any observed shortcomings. Conclusions based on such limited implementations cannot be generalized as comments on the potential of tabletop technology to support collaborative learning, but can provide useful insights on some aspects of such support (those that are particular to the implementation).

The OurSpace application (Fleck et al., 2009; Rick et al., 2009a; Harris et al., 2009) was implemented and used to investigate different aspects of collaborative interaction and collaborative learning for children around tabletops. While the focus in Rick et al. (2009a) and Harris et al. (2009) was on issues of contrasting single touch and multi touch (see Section 2.2.3.7) and the use of space, the focus in Fleck et al. (2009) was on examining the coupling of verbal interaction and physical action in collaborative learning tasks around tabletops. The OurSpace application was implemented on a DiamondTouch table (81cm diagonal), and was designed to allow groups
of three children (aged 7-10) to plan their classroom layout. The hardware and the software design forced the children to work from fixed positions around three sides of the table. The investigation uncovered that physical and verbal aspects work in parallel during collaboration and highlighted the importance of gesturing while talking for the learning process. They also found evidence that such physical disagreements as blocking and undoing each others work, which might appear as negative behaviour, could actually lead to learning when interpreted as parallels of verbal negotiation. In light of these findings, Fleck et al. stated that quantitative comparative studies (e.g Do-Lenh et al., 2009; Piper and Hollan, 2009; Rick et al., 2009b) may miss some aspects of the interaction that are significant to the learning process. They also argued against designs that enforce territoriality and restrict access to certain resources as these will reduce the positive learning outcomes that may result from physical interference. Finally, with regards to single versus multi-touch input, they stated that even when children were allowed unrestricted parallel interaction, collaborators could still manage periods of effective collaboration. These results emphasized the important context that the tabletop setting provides to collaborative learning when it is designed to provide unrestricted physical, visual, and auditory setting.

Among the issues discussed by Piper and Hollan (2009) is that of embodied cognition, that is the engagement of our bodies and how this might help, or constrain, how we reason about abstract concepts. They categorized the act of tracing an answer graph with a finger as embodied cognition, and their analysis showed that such a process could have attributed to the better results gained from interacting with tabletops due to the richer understanding and internalization of abstract concepts resulting from such embodied cognition. Fleck et al. (2009) also uncovered the importance of combining verbal with physical action around the table for collaborative learning applications and argued against enforcing restrictions in the form of fixed territorial design or limiting access to resources. Before that, Tang et al. (2006) highlighted the importance of using gestures while collaborating around traditional tables and the important role gestures play in collaboration by adding to the content of the discussion. Despite such findings, all the settings in the reviewed research that targeted learning and problem solving assumed participants working from fixed positions accompanied by different levels of enforced territoriality and restricted access to resources, a limitation imposed either by the hardware (such as the case with DiamondTouch tables), or by the case study design itself. Furthermore, while face-to-face style of collaboration is a distinguishing feature of tabletop interaction over shoulder-to-shoulder style of traditional SDG systems, the settings used in Rick and Rogers (2008), Piper and Hollan (2009), and Do-Lenh et al. (2009) required users to sit side by side to overcome problems of orientation or limited table size. This means that although findings from such studies can be generalized to other tabletop settings, questions remain as to the impact of the un-utilized benefits of using a shared space, freedom of movement around the table, and face-to-face interaction, particularly in relation to awareness of the actions of others.
A number of other researchers targeted educational aspects of tabletops for kindergarten children or early primary levels where the focus is on playing or learning basic skills, such as reading (Khandelwal and Mazalek, 2007; Sluis et al., 2004; Cappelletti et al., 2004). The problem space for children of this age differs from that targeting older students (Sluis et al., 2004).

2.5 Tabletop hardware

The two most common tabletop technologies that are used in many tabletop systems are DiamondTouch tables (Dietz and Leigh, 2001), and the FTIR technology (Han, 2005). DiamondTouch tables technology uses location dependant electric fields which are capacitively coupled through the users and chairs (or floor mats) to receivers that can identify the location of the touch and the user. This technology supports multiple touch points from a single user and allows for multi-users to interact simultaneously with the system with the advantage of being able to distinguish between users. The table requires front projection, and can tolerate physical objects being put on its surface. DiamondTouch tables come mainly in two display sizes 81cm and 107cm. Due to their ability to distinguish between users, and the limited number of commercially available tabletop alternatives, many researchers used DiamondTouch tables in their exploratory studies (e.g. Piper et al., 2006; Rick and Rogers, 2008; Piper and Hollan, 2009; Wigdor et al., 2007). Nevertheless the technology does have some limitations specially when used with young children who tend to put both of their hands on the table during the interaction, and who frequently place their feet incorrectly on the mat (Mansor et al., 2008). To be able to distinguish between users, DiamondTouch tables require that users complete a circuit by sitting on their chairs or standing on a special mat, but this also means that users cannot move freely around the table or change their positions; that is why all systems that used this technology assumed users with fixed positions and therefore demonstrated a strong notion of territoriality.

The other multi-touch technique is known as FTIR (short for frustrated total internal reflection) (Han, 2005). In the original system implemented by Han (2005), a sheet of acrylic (6.4mm thick) is edge-lit by infrared light. The phenomena of total internal reflection keeps the light trapped within the sheet, except at points where the fingers touch the table causing the light to scatter out through the sheet in the opposite direction. The scattered light is detected by an infrared video camera and, with the use of simple image processing, the points of touch are extracted. Since its introduction as a technology for multi-touch tabletops, FTIR is increasingly being adopted by researchers (e.g. Morgan and Butler, 2009; Weiss et al., 2009; Kaltenbrunner and Bencina, 2007) as it became easy and inexpensive to build multi-touch tabletops and in different form factors. FTIR tabletops use rear-projection and can be built for any size. The main problem with tabletops based on this technology is that it is not possible to distinguish between the users touching the table.
For the purpose of this research, I chose a pen-based tabletop technology as it combines the features of distinguishing between users, and allowing for free unrestricted movement around the table. The table used was a pre-production prototype of the multi-pen horizontal Promethean Activboard. Activboard uses passive electromagnetic digitizing technology located underneath a solid front projection surface which allows people to safely lean on it, giving it the affordances of a real physical table. The digitizing technology is a specially designed electromagnetic grid which allows high level of accuracy by cross-checking three separate sets of co-ordinates. This electromagnetic grid reacts to a battery-free, wire-free mouse pen. The pen looks and feels like a real pen and, through the use of time multiplexing, the system can read and distinguish input from three pens simultaneously.

2.6 Summary

The recent increase in the number of studies investigating applications and interaction techniques for digital tabletops reflects the importance of this technology and its potential to support face-to-face collaboration. A look at previous research also reveals the wide scope of issues that relate to this technology. These range from fine details of interaction techniques with the tabletop surface, to general aspects of human behaviour related to group collaboration around the technology. Such a wide scope of issues requires extensive investigation, and the relative novelty of the technology means that our understanding of the technology is still in its infancy, particularly in relation to full scale applications deployed “in the wild”.

Table 2.1 summarizes the issues reviewed in this chapter an highlights the main conclusions. Previous research has been more concerned with applications that require a division of the table space than those requiring a shared space. Consequently, more research is focused on territoriality and working around the table from fixed positions, than on working on shared spaces with no constraints on users’ movements. Other researchers have decided to avoid the problem of orientation that arises from working around a horizontal surface by designing applications that require users to work next to each other on one side of the table. When this setting is combined with a relatively small table (e.g. Piper and Hollan (2009) and Rick et al. (2009b) where the table size was 81 cm in diagonal), it will force users to work in close proximity to each other in a shoulder-to-shoulder desktop-like setting rather than the face-to-face setting uniquely afforded by the tabletop. Based on observations of unstructured collaborative use of tabletops, Ryall et al. (2006) observed that a table size of 107 cm diagonal is a good minimum size, and that a size of 80 cm diagonal lead to conflicts in the process. Yet, the tables used in the studies of Rick et al. (2009b), Piper and Hollan (2009), and Fleck et al. (2009) had an 81 cm diagonal dimension. It should be noted that although this observation was not based on rigorous investigation, and that as they reported, behaviour between adults and children differs, it does indicate possible disadvantages of using small tables for collaborative tasks. It would be useful to investigate the effects of users working next
Table 2.1: Summary of the reviewed literature and the main conclusions.

<table>
<thead>
<tr>
<th>Work practices around tables</th>
<th>Main implications on design</th>
</tr>
</thead>
<tbody>
<tr>
<td>spatial considerations</td>
<td></td>
</tr>
<tr>
<td>Space and location</td>
<td>1) Allow for creation and managing of flexible territories.</td>
</tr>
<tr>
<td>Orientation</td>
<td>2) Objects should have default, territory-associated attributes that are easy to override using light-weight interaction techniques.</td>
</tr>
<tr>
<td>Ownership and access rights</td>
<td></td>
</tr>
<tr>
<td>Scale</td>
<td></td>
</tr>
<tr>
<td>Table size, group size, and reach</td>
<td></td>
</tr>
<tr>
<td>Communication</td>
<td></td>
</tr>
<tr>
<td>Conversation</td>
<td>1) Do not introduce visual or auditory barriers. 2) Do not limit freedom of movement around the table.</td>
</tr>
<tr>
<td>Body position</td>
<td></td>
</tr>
<tr>
<td>Gaze and gesture</td>
<td></td>
</tr>
<tr>
<td>Tools</td>
<td></td>
</tr>
<tr>
<td>Table, pens, and highlighters</td>
<td>1) Consider the support of tangible, two-handed interaction. 2) Balance between supporting single and parallel interaction.</td>
</tr>
<tr>
<td>Hands and bimanual actions</td>
<td></td>
</tr>
<tr>
<td>Paper</td>
<td></td>
</tr>
</tbody>
</table>

Work on design guidelines

Conclusion: a number of design guidelines exist, but they do not cover the design of collaborative learning applications.

Tabletops and learning

Conclusion: none of the reviewed work combines utilizing all the affordances of tabletops, the use of an iterative design process, considering the effect of repeated use, and allowing freedom of movement around the table.

Tabletops hardware

Conclusion: for the current technology, only pen-based tabletops allow for the identification of users without imposing restrictions on their movement.

to each other, and proximity in general, on the use and understanding of gestures, which has been shown in Section 2.2.2 and from the work of Tang et al. (2006) and Fleck et al. (2009) to play an important role in communication. If, as one might expect, such a setting does prove to restrict non-verbal communication, then conclusions about tabletop technology drawn from studies using it should be generalized with care.

Recently, an increased interest is becoming evident in multi-touch tabletops, as reflected in the increased adoption of FTIR technology and the commercial products, such as Microsoft Surface (Microsoft, 2010) and SMART Table (SMART, 2010). These technologies have the significant disadvantages of not being able to distinguish between users and the small screen sizes (76cm for Microsoft surface, and 71cm for Smart Table). This trend reflects a shift away from a main feature of tabletop technology in support of collaborative learning, and that is being able to identify users and consequently to provide appropriate feedback and regulate collaboration. The use
of small surfaces and applications that require users to work from one side of the table, also fail to exploit the advantage of large horizontal surfaces in supporting face-to-face collaboration.

Consequently, throughout this research, my approach in addressing some of the identified gaps in tabletop research has been on emphasizing the importance of utilizing the unique characteristics of tabletops through designs that are well grounded into theories of interaction design and collaborative learning. Attribute Gates (Chapter 3) present an alternative to using traditional contextual menus by using crossing-based interaction (a technique specially suited to direct-touch surfaces), to integrate changing object settings with movement action. The design of Attribute Gates also takes into consideration its use in a collaborative environment and thus is designed to promote awareness of action. TANGIsoft (Chapter 4) focuses on the issue of text-entry on tabletops and introduces a tool that is a hybrid between a soft and a tangible keyboard with the main goal of utilizing two-handed interaction and allowing for free movement around the table while using the tool. TANGIsoft is particularly useful for problems with shared space or when the application provides one text-entry tool to be exchanged between users where ease of moving and handling the tool (shareability) is a main requirement. Digital Mysteries (Chapters 5 and 6) is a full application designed to investigate the support of tabletops for collaborative learning. Digital Mysteries can be distinguished from other applications targeting learning on tabletops in the way it aims to utilize all the affordances of the technology. Digital Mysteries falls into the shared-space category of application. It was implemented and validated using a large table (with effective display size of $165cm \times 120cm$) where students are allowed to move freely around the table without any restrictions imposed by the technology and the software implementation on visual and auditory communication. The application was designed to be orientation independent and used a modified version of the Polar Gates technique (described in Chapter 3) as an interaction technique. The use of pen-based interaction allowed for the identification of different students at the table (by the pen they were using) and thus the design encouraged effective collaboration by providing participation level feedback and balanced between allowing parallel interaction and single point interaction. In the design and evaluation of Digital Mysteries, I sought to overcome the shortcomings of previous research targeting the support of the technology for collaborative learning. This was done by carefully selecting the type of problem for the investigation, relying on theories of interaction design and learning in the design, improving the design through an iterative design process, and making conclusions based on a thorough qualitative analysis for groups of different ability levels and with repeated use of the application to overcome the novelty effect of the technology.
Chapter 3

Attribute Gates

3.1 Introduction
When people work around a digital tabletop, the tabletop’s surface is typically divided into personal, public, and storage territories (Scott, 2003; Scott et al., 2004). The different types of use and privacy requirements of these territories impose different values for the attributes of scale, orientation, and access rights of objects placed inside them. For example, an object placed in a personal territory is usually scaled up to an appropriate size for the task at hand, set to have full access rights, and oriented towards the owner of that personal territory. When the object is moved to the public space to be discussed with others, it might be made even larger, set to read-only, and oriented away from the owner. Likewise, when an object is moved to a storage area, it is usually scaled down, and set to have access rights and orientation depending on whether the storage area is personal or public. The large number of attribute value combinations needed reflects the varied nature of the objects used and work performed at tables. It has been suggested that the values of these attributes could be set automatically depending on defaults values set to each territory (Vernier et al., 2002; Kruger et al., 2003; Scott, 2003; Ringel et al., 2004). For example, objects are oriented automatically in the direction of the centre of the table, and are scaled down when placed in the public area. It must be noted that this division of the tabletop space mostly applies to settings that require people to work around a table from fixed position as opposed to settings that allow people to work and move freely around the table.

A number of techniques have been proposed for setting each of these attributes. For orientation, these include automatic rotation (following the default orientation of the corresponding territory), manual rotation, or the use of rotate-and-translate techniques (Kruger et al., 2003, 2005; Scott, 2003; Vernier et al., 2002). Proposals for scale also include two automatic modes that scale up or down with respect to the centre of the workspace (depending on whether users are sharing objects or working independently), a fish-eye mode which scales objects up as they get closer to the middle of the table, and a black hole mode which reduces the size of objects the closer they get to the middle of the table (Vernier et al., 2002). Similarly, when objects are moved
between territories, their access rights can change between fully accessible or read-only, or a copy of the original object can be created (Morris, 2006; Ringel et al., 2004; Shen et al., 2003).

Input techniques for digital tabletops are either pen- or finger-based. Neither of these input methods are well suited to traditional point-and-click techniques developed originally for mouse input. Point-and-click interaction has a tendency to segment any operation into a series of discrete actions. This contrasts with pen input, which encourages a fluid, stroke-based style of interaction (Apitz and Guimbretière, 2004). Crossing-based interfaces have been proposed as an alternative to point-and-click techniques for pen-based input (Accot and Zhai, 2002). For example, the CrossY application for tablet PCs (Apitz and Guimbretière, 2004), and the Interactive Mural for interactive whiteboards (Winograd and Guimbretière, 1999). The FlowMenu (Guimbretière and Winograd, 2000) developed initially for the Interactive Mural has also been used in digital tabletop systems where it was found to be an improvement on traditional point-and-click based context menus (Scott, 2003). Other characteristics of tabletops, that have implications on their interface components, include their large-horizontal surface and the multi-user interaction. Attribute Gates are designed to reflect all these special characteristics.

Attribute Gates\(^1\) (Figure 3.1) are user interface elements designed to be used for pen- or finger-based interaction on large horizontal interactive surfaces to set a sequence of scale, orientation, and access right attributes in one fluid operation.

![Figure 3.1: Grid Gates (left): the dashed curve shows the user crossing two gates (read-only, and rotate and translate) and heading for the third (reduce size). Polar Gates (right): the dashed curve shows the user crossing to a gate in the inner ring (read/write) and rotating the ring towards a gate in the second ring (manual rotate) and moving outward to the third (reduce size)](http://portal.acm.org/citation.cfm?id=1449726&dl=&coll=portal)

The motivation of Attribute Gates came from the need to change a number of different settings when moving objects between territories on the table (e.g. Kruger et al., 2003; Vernier et al., 2002;)

\(^{1}\)A video about Attribute Gates can be found at http://portal.acm.org/citation.cfm?id=1449726&dl=&coll=portal
The design of Attribute Gates was inspired both by the notion of task levels in activity theory, and by crossing-based interfaces. The collaborative nature of digital tabletops requires components to promote the mutual awareness of users. This is a particular concern for multi-user environments, yet is often ignored in the adaptation of desktop interface components to tabletops. Promoting awareness is another requirement that affected the design of both the interaction and the spatial aspects of Attribute Gates. Moreover, the spatial properties of Attribute Gates have been optimised through the application of targeting and steering laws derived from Fitts’ law (Fitts, 1954) and consideration of the large horizontal surface of a digital tabletop on which they are intended to be used. I have designed two types of Attribute Gates, grid and polar, and have conducted a number of user studies to evaluate users’ performance, in terms of speed, accuracy and mutual awareness, compared to traditional contextual menus.

3.2 Motivation

As discussed in Chapter 2, Kruger et al. (2004) and Scott (2003) suggested a number of design guidelines for the rotation of objects on digital tabletops. These emphasized the importance of supporting both lightweight free rotation techniques, and automatic rotation performed by the system. Morris’s (2006) guidelines for designing digital tabletop systems included a requirement for providing a means of dynamically changing objects’ access rights on the tabletop, and recommended making these access rights visible to increase awareness, thereby enabling users to regulate participation levels and prevent confusion. Kruger et al. (2004) noted that even for systems that support automatic orientation, there are many situations in which users need a different orientation to the system’s default and Scott (2003) generalized this recommendation to incorporate scaling. It is possible to hypothesize that a similar generalization can be made about the access rights settings.

Despite the fact that it has been made clear by a number of researchers that a tabletop interface must provide default settings for the attributes of orientation, scale, and access rights, and allow for lightweight techniques for manually controlling them and override the system’s defaults, only a few actual methods by which this can be achieved have been proposed. Scott (2003) presented an approach to rotation whereupon moving an object, the system automatically shows a preview of the proposed action. The user could then invoke a context menu (Scott actually used a FlowMenu (Guimbretière and Winograd, 2000)) offering options to accept-the-default, ignore-the-default, free-rotate, or rotate left, top, bottom, or right. This technique only addresses the rotation attribute and lacks the fluid and lightweight characteristics that are desirable. Indeed, the lack of practical alternatives means that tabletop application designers, who are not interested in developing their own interaction techniques, have little option but to adopt traditional desktop-based user interface elements (most likely contextual menus).

A user moving an object from her personal space to the public space, for example, might reasonably wish to set its attributes to read-only, manual rotate, and enlarge. To use a traditional
contextual menu to set the values of these attributes would typically incorporate three distinct commands: (access-rights, scale, and rotation) with sub-commands for the different settings of each attribute (assuming a discrete set of values for each). So a user would need to do the following:

1. Right-click on the object; select access-rights from the contextual menu; then select the read-only subcommand (Figure 3.2(left)).

2. Right-click a second time on the object, select rotation from the contextual menu, then select the manual rotate subcommand (Figure 3.2(middle)).

3. Right-click a third time on the object; select scaling form the contextual menu; then select the enlarge subcommand (Figure 3.2(right)).

4. Start moving the object to the public space.

Thus the user needs to select a total of six commands and subcommands to change the attributes. This is at best off-putting, and at worst encourages the user to settle for inappropriate defaults. The provision of a means for setting the orientation, size, and access right attributes in one fluid operation, integrated with the act of moving objects between tabletop territories, is the principal design goal of Attribute Gates.

Figure 3.2: Three menu invocations are required for setting the read-only, manual-rotate, and enlarge attribute values using traditional contextual menus with each menu invocation involving selecting a submenu, then the desired command. The selected command disappears as soon as it is selected leaving a very short opportunity for others to make note of the selection.

The access rights attribute, unlike the orientation and scale attributes, is usually only visible when a user browses an object’s properties. Thus, Morris (2006) recommended that access-rights be made visible to reduce confusion. While this is a possible option for system designers, the design of Attribute Gates, however, seeks to promote awareness about the action of setting this attribute, as well as the other attributes.

Finally, in creating a user interface component specifically for digital tabletops, I have sought to exploit the unique characteristics of large horizontal surfaces that use pen or finger input. With the large footprint of the digital tabletop, and the coincidence of the action and perception spaces, targeting objects and steering along deliberate paths is considerably easier than on a tablet PC (Accot and Zhai, 2001), or mouse-based desktop or laptop computers.
3.3 The conceptual basis of Attribute Gates

There is a substantial theoretical and empirical interaction design literature that can be used to both explain the role and utility of Attribute Gates, and configure their spatial layout and dimensions. Attribute Gates were designed to both optimise the targeting and steering effort in combination with the operationalization of actions proposed by activity theory.

3.3.1 Activity theory and chunking

Activity theory (Kuutti, 1995; Bødker, 1989; Kaptelinin, 1995; Fjeld et al., 2002; Halverson, 2002; Nardi, 1995) is a useful framework for analysing physical and co-located collaborative interaction settings. The definitions of activity, action, and operation, the task levels they represent, and the transition between them, forms the basis of the following analysis (Figure 3.3). Activity is defined as the minimal meaningful context that is directed to an object in order to transform it into an outcome. It is the basic unit of analysis, driven by a motive, and is carried out by a series of actions. An action is a conscious act with a direct defined goal that usually consists of a number of operations. An operation is the subconscious act that might once have been an action done consciously, but with practice and repetition became a routine act (was turned into an operation). Thus, when a person with little experience of using a QWERTY keyboard wants to type text, locating each letter is an action in itself. However, when this user gains experience, typing becomes a series of operations performed subconsciously.

Individuals new to a certain activity need to think about every step of the process. Such a process is undertaken through a series of well thought out actions, with clear specific intentions behind each. In such cases, no operations are involved and focus shifts from the high-level task to trivial low-level tasks. After practice and repetition, appropriate actions are performed subconsciously, and this transformation to operations (in users’ heads) allows them to focus on higher level tasks. As more actions are turned into operations, it becomes easier to stop worrying about the details and concentrate on the desired outcome as the individual will subconsciously trigger the appropriate sequence of operations depending on the conditions at hand. Kaptelinin (1995) observed that by looking at whether a subject’s behaviour, in a specific situation, is oriented toward a motive, a goal, or is in response to a specific condition, one can better understand and predict the subject’s behaviour. Moreover, activity theory brings into consideration such issues as whether the user’s focus is on the tool or the goal (the tools must keep its user’s focus on the goal and not draw attention to itself). So if a user wants to move an object between two territories and change its attributes, the tool to change these attributes should not capture the user’s attention (as is the case with having to select six command/subcommands in contextual menus).

In simple terms, activity theory tells us that good user interface components should move actions into operations, or at least allow for this move as experience increases. Buxton’s (1995) work on chunking is strikingly similar to activity theory. In discussing the differences between
the levels of detail that novices and experts attend to, he describes how for novices, finding a character on the keyboard or remembering the name of a command, requires valuable cognitive resources (which can be performed by experts automatically). Where activity theory describes the progression from novice to expert in terms of carrying out more actions as operations, Buxton’s notion of chunking refers to the amount of a problem that can be performed automatically (i.e. as an operation) and thus he proposes gluing a number of subtasks into one task (chunk). According to Buxton, the three subtasks required to select a command from a contextual menu (right-click to show the contextual menu, moving the pointer to the required command, then clicking on the command) can be glued together if a simple modification is made where the user presses and holds the right button, moves to the desired command, then releases the mouse button. In this case the muscular tension of pressing the mouse button is the glue. Such gluing brings subtasks into one chunk that corresponds more closely to the user’s model of the task.

3.3.2 Crossing-based interfaces

Accot and Zhai (2002) proposed crossing as an alternative to point-and-click interfaces, especially for pen-based interaction. Crossing allows the initiation of a command by simply crossing a specific target (i.e. an object at a spatial location) without the need to point or click on interface components. Accot and Zhai found that target crossing could be more efficient, or at least as efficient, as pointing. They provided a number of guidelines for designing crossing-based interfaces and recommended that whenever possible, the target to be crossed should be orthogonal to the direction of movement. Selecting a command using the crossing technique, unlike point and click,
is one indivisible task. By appropriately positioning commands, it is possible to issue (cross) multiple commands in one operation, thus satisfying the design recommendations suggested by activity theory (e.g. Kuutti (1995))

Although crossing-based interfaces were originally proposed for pen-input, they are similarly appropriate for finger-based interaction. This is particularly true for finger-based interaction with large surfaces, where the size of the interactive surface can comfortably tolerate the size of finger-tips (as compared to pen-input).

3.3.3 Targeting and steering

Attribute Gates use the crossing principle. Setting attributes involves steering between elements and crossing others. The layout of these elements may be optimised (to increase ease of use and efficiency) by the application of targeting and steering laws derived from Fitts’ law (Fitts, 1954). A number of variations of Fitts’ original law have been introduced to address different aspects of user interface design. Accot and Zhai (1997) extended Fitts’ law through the introduction of an equation to calculate the time required for steering inside a path and validated the accuracy of the equation experimentally. Assuming a path of fixed width W and of length D, the time (T) required to move inside that path is

$$T = a + b \left(\frac{D}{W} \right)$$ \hspace{1cm} (3.1)

In equation (3.1), a and b are empirically determined constants that are characteristic of a user, and the ratio D/W is the index of difficulty. Steering time has a linear relation with the ratio D/W, unlike Fitts’ original formulation, in which the targeting time has a logarithmic relation to D/W. Accot and Zhai have demonstrated how this law can be used to estimate the time required to select and navigate through commands in a multi-level menu structure. Although an earlier investigation of steering tasks had been conducted by Drury (1971), it was for the study of vehicle guidance tasks in linear and circular paths, and consequently had to include such extra parameters as the risk factor. The function proposed by Accot and Zhai is simpler and more relevant to the task at hand.

3.4 Attribute Gates: interaction

One or more of the scale, orientation, and access rights attributes are likely to be required to be changed when moving an object between territories. Attribute Gates make the process of setting a sequence of such attributes a fluid operation integrated with the movement, thus requiring no shift of focus from the main activity. Gates are laid out so as to group and position mutually exclusive attributes together; spatially sequence different groups; and allow users to set an attribute simply
by crossing it while a document or an object is being dragged towards its destination. The design
of the gates makes use of two key characteristics of digital tabletops:

- The coincidence of action and perception space which provides the user with a sense of
 control over the operation.

- The large surface area of the table which allows the user to easily move across the desired
 attributes without the need for careful manoeuvring.

Furthermore, integrating attribute value assignment with movement (which is the key element)
means that users are not forced to change their focus or type of action, or perform additional
actions (such as right clicks). Two types of Attribute Gates are proposed, each of which has
different spatial characteristics: Grid Gates and Polar Gates.

3.4.1 Grid Gates

In Grid Gates, each group of mutually exclusive attributes is placed in a row. Each attribute is
represented by a thin rectangular area, and the rectangles are separated by empty space. The
overall layout is a grid of rectangles (Figure 3.4).

For example, to move an object from the personal space to the public space, and set its at-
tributes to *read-only*, *manual rotate*, and *enlarge*, the user needs to press and hold on the object
for half-a-second (this duration was chosen on the basis of informal experimentation) to display
the Grid Gates (Figure 3.4(1)). Next the user needs to pass the dragging point through (over)
the required gates. In this case these are the *read-only* (Figure 3.4(2)), *manual rotate* (Figure
3.4(3)), and finally *enlarge* gates (Figure 3.4(4)). When the object is positioned as required, and
as soon as the user releases pen pressure, the gates disappear. If the user wants to set only one
or two attributes, she can pass through the empty space of the other rows, or row, to maintain the
default values (Figure 3.5). Also, if the user wants to change one of the attributes after setting
it, and before the gates disappear, she can re-cross the new required setting (passing through the
empty spaces for the others attributes). A user can still move an object without displaying the
gates if none of its attributes are to be changed by dragging the object normally without the initial
half-a-second pause

3.4.2 Polar Gates

In Polar Gates, groups of mutually exclusive attributes are arranged in concentric rings (Figure
3.6). An important behaviour of the polar gate is that when a ring is rotated, it rotates the inner
rings only, leaving the outer rings unchanged. By not resetting the orientation of the rings between
activations, the polar gate effectively “remembers” its last setting.

Reconsidering our example for Polar Gates, to move an object from personal space to public
space, and set its attributes to *read-only*, *manual rotate*, and *enlarge*, the user starts by pressing and
Figure 3.4: The steps for setting the read-only, manual-rotate, and enlarge attribute values using Grid Gates. The gates appear when the user presses and holds on the object for half-a-second before starting to move it, and disappears when the object is released.

holding on the object for half-a-second. This displays the polar gate centred around the pen’s tip. The user then steers towards the read-only gate (Figure 3.6(1)), rotates the ring towards the manual rotate gate (Figure 3.6(2)), moves over that gate (Figure 3.6(3)) then rotates the ring towards the enlarge gate (which will rotate the inner ring also as in Figure 3.6(4)). When passing over the enlarge gate (Figure 3.6(5)) the user can rotate the outer ring, and consequently the entire pattern, in the direction of the public space and then continue moving the object to its final destination (Figure 3.6(6)). The gate disappears when the user releases the pen pressure (when the object is in its desired location).

When another object is to be moved, and the polar gate is displayed again, it shows the most recently used setting (by that user), with the segments aligned in the direction of the last targeted location. If the user wants to move another object to the public space using the most recent setting, she simply needs to move in a straight line towards the public space, and thus passing through the same set of attributes as the previous time (Figure 3.7). An empty segment is added to each ring allowing the user to keep whatever default value has been assigned to the object (functionally, this
corresponds to moving through the empty space within Grid Gates). As with the Grid Gates, a user can move an object without displaying the gates by dragging it to its new position without the initial half a second pause.

3.4.3 Promoting awareness

The requirement to promote awareness, while attributes are set, is met by the combined effects of keeping the gates visible throughout the movement process, clearly marking the gates that are set, and the gates’ relatively large footprint (Figures 3.4 and 3.6). Moreover, to increase awareness of the access rights attribute, it is included as the first row in Grid Gates and the first ring in Polar Gates, the result of which is that the selected setting for the access rights attribute remains visible for a longer period than scale and rotation. This distinguishes Attribute Gates from other interaction techniques, for example a contextual menu, in which the reference to the selected setting disappears immediately after the selection leaving very little opportunity for collaborators to make note of the assigned attribute (Figure 3.2).
3.4.4 Putting activity theory into practice

Two main concepts of activity theory inspired and guided the design of Attribute Gates (Kaptelinin, 1995; Kuutti, 1995):
1. A good user interface design should keep the focus of the user on the main goal at hand. According to AT, a goal is achieved by carrying out a certain action. Any other sub-actions that are not central to the goal, but that need to be carried out to achieve this goal (as reactions to the current condition of the system), should be integrated with the main action whenever possible, in a manner that does not shift the users focus away from the main goal.

2. When a certain sequence of actions is regularly repeated, it is usually internalized by the user. A good user interface design should make use of this fact and, using the notion of AT, shifts such sequence of actions into operations.

When the goal of a user is to move an object between two territories, setting all, or some, of the attributes of scale, orientation, and access rights is just a sub-action that should not place demands on a user’s attention. Therefore, as the main action in this case is movement, the design of Attribute Gates integrated the setting of these attributes inside this action and the three attributes can be set while the object is being moved toward its final destination by utilizing the concept of a crossing-based interface.

With respect to internalizing actions (or changing actions into operations) with repeated use, the two types of Attribute Gates proposed make use of this concept in two different ways. Grid Gates has a fixed layout which, with repeated use, is internalized by the user. This means that the user can set different attribute combinations using an internalized, gesture-like movement that only
requires minimal visual attention. On the other hand, Polar Gates do not have a fixed layout, but instead has a memory feature by which it remembers the last attribute setting combination. This is achieved by aligning the selected settings, so they can later be crossed in one straight movement towards the final destination (Figure 3.7). With Polar Gates, the internalization of the repeated action is embedded in the interaction technique itself and “repeated” here refers to consecutively repeated actions, and not long term repeated use. Providing the two design options, Grid Gates and Polar Gates, with one focusing on long term repeated use, and the other on consecutive repeated action, gives designers the freedom to choose between two different alternatives depending on the requirements of the application at hand.

3.5 Attribute Gates: spatial configuration

Selecting a sequence of attributes using Grid Gates involves a number of targeting and steering operations. Figure 3.8 shows the steps required to select a sequence of gates. The worst-case scenario involves movement between attributes located at opposite extremes of the grid. Using the laws of targeting and steering derived from Fitts’ law (Accot and Zhai, 1997, 2001; Fitts, 1954), it is possible to optimise the layout of Grid Gates so as to reduce effort and increase efficiency.

![Figure 3.8: A worst-case scenario for setting a sequence of attributes using a grid gate.](image)
The layout parameters for the grid gate are the width \(w\) which is the target for Fitts’ law, the row height \(h\) which is the path width for the steering law, and the maximum horizontal distance between the first and the last gate \(d\) in Figure 3.8. The width of the empty space between two adjacent gates is set equal to the width of the gate \(w\) because when no gate is to be set in a specific row, this empty space will itself be the target. This makes \(d\) equal to \(4w\) (one full gate, two empty spaces, and two half gates). It is possible to make use of similar calculations made by Dixon et al. (2008) for optimising crossing based dialogs where one of their cases closely resembles moving through path 2 and crossing target 3 (Figure 3.8). When the row height is small, the dominating factor becomes the steering index of difficulty for which

\[ID_{steering} = \frac{pathlength}{pathwidth} = \frac{4w}{h} \] \hspace{1cm} (3.2)

On the other hand, increasing the distance between rows eventually makes the targeting law the dominant factor, with an index of difficulty

\[ID_{targetting} = \log_2 \left(\frac{A}{W} + 1 \right) \]
\[= \log_2 \left(\frac{\sqrt{h^2 + (4w)^2}}{w} + 1 \right) \]
\[= \log_2 \left(\frac{\sqrt{\left(\frac{h}{w} \right)^2 + 16 + 1}}{w} \right) \] \hspace{1cm} (3.3)

Dixon et al. (2008) found that a path width of 40 pixels (with 0.24mm pixel pitch) is the width at which dominance switches between steering and targeting. This was for a target width of 18 pixels, which in our case corresponds to a \(w/h\) ratio of about 0.5. Figure 3.9 shows a plot of the indices of difficulty for steering and targeting based on equations (3.2) and (3.3) for different \(w/h\) ratios. From the graph it is clear that an increasing \((w/h)\) ratio decreases the targeting index of difficulty, and when the ratio exceeds approximately 0.25 further increases do not have a significant effect on the targeting index of difficulty. On the other hand, the steering index of difficulty increases linearly with this ratio. Based on Dixon et al. (2008), we find that when the \(w/h\) ratio is about 0.5 the steering law starts to dominate, and steering starts to slow down the task. From this, we can conclude that a \(w/h\) ratio of between 0.25 and 0.5, in other words a row height twice to four times the gate width, should give the best performance.

We can use the same reasoning to select the layout parameters for Polar Gates. Selecting attributes using Polar Gates also involves a sequence of targeting and steering operations (Figure 3.10). The dominating factor for both targeting and steering is the width of the ring \(w\). Increasing \(w\) does not affect targeting as it increases the distance and the target width at the same time. Therefore the effect of \(w\) on steering, and not targeting, needs to be considered. Increasing \(w\)
increases the width for steering but at the same time increases the rings’ circumferences and hence increases the distance. The steering law can be used to understand how \(w \) affects the steering index of difficulty.

The distance for steering a full ring of index \(i \) from its centre is
\[d = 2\pi \left(r_0 + (i - 1) w + \frac{w}{2} \right) \]

(3.4)

Where \(r_0 \) is the inner radius for the first ring. The index of difficulty is given by

\[\frac{d}{w} = 2\pi \left(\frac{r_0 + (i - 1) w + \frac{w}{2}}{w} \right) = 2\pi \left(\frac{r_0}{w} + i - 0.5 \right) \]

(3.5)

This shows that although increasing the width increases the distance, its overall effect is to reduce steering time. \(r_0 \) should also be made as small as possible.

In summary, for Grid Gates, it is better to make the distance between rows between two and four times the gate’s (the target) width, and for Polar Gates it is better to keep the inner radius small and to use a large ring width (i.e. increase \(w \) in Figure 3.10). In both cases these improvements increase the overall size of the gates, so there must be a limit on how large the gates should be.

Accot and Zhai (2001) have studied the impact of scale on steering tasks and their general conclusion was that best performance is achieved when the size is large enough to utilize all parts of the upper limb (i.e. arm, hand, and fingers) but not so large so as to place most of the effort required on the arms only, or so small as to place most of the effort required on the fingers only. Their studies were conducted using a graphics tablet with size of 455 mm \(\times \) 303 mm. With digital tabletops, unlike tablets, it is possible to increase the size to a degree that utilizes the arm, hand and fingers. Increasing the size also increases awareness about the attributes being selected, but one should be careful not to make the gates too large that they slow down the performance (i.e. not to place most of the effort on the arms only (Accot and Zhai, 2001)), or take up too much of the display space.

The initial design for the gates was driven by aesthetic considerations. This involved using a narrow gap between rows and focusing on wide gates, similarly for Polar Gates, the inner area was made rather large, with narrower rings and a smaller overall size to reduce the gate’s footprint. After applying the steering and targeting laws, it became clear that these were poor design decisions. Applying these guidelines, and doing some initial tests, demonstrated noticeable improvements in the usability of the gates.

3.6 Related work

Accot and Zhai (2002) investigated crossing-based interfaces as an alternative to point-and-click interfaces, and showed that the time required for goal crossing was shorter, or at least the same, as for point-and-click. These studies were conducted using a tablet input device connected to a desktop PC (with a standard display). In this setting the action and perception spaces are different – this is not the case for digital tabletops and tablet PCs. Accot and Zhai suggested a number of crossing-based interactions such as using directional goal crossing to turn a switch on or off depending on the crossing direction, performing double clicking by crossing a goal twice,
checking a number of options in one go if they are placed in a sequence (this is similar to the Grid Gates).

CrossY (Apitz and Guimbretière, 2004) is a crossing-based drawing application designed for tablet PCs. It introduced a number of new ideas on how to utilize the crossing technique in a complete application by investigating the aspects of expressiveness, fluid command composition, efficiency, and visual footprint. In terms of expressiveness an attempt was made to mimic all the standard point-and-click user interface components like buttons, scrollbars, menus, dialog boxes, and other windows management tools. Crossing was used to perform a range of operations including setting the pen width and colour, find and replace, and scrolling. Apitz and Guimbretière emphasized the unique and fundamental support of crossing based interfaces in allowing for fluid command composition. Initial user studies on the application showed that users found the interface to be intuitive and better suited for the application at hand than point-and-click. The crossing technique was found to be as expressive as the point-and-click technique, yet more flexible by incorporating shape and direction of the strokes.

The concept of showing commands in a polar layout and activating them by passing over them is not completely new. A number of contextual polar menus have been previously suggested: Pie menu (Hopkins, 1991) was the first to introduce the concept of menu items positioned around a circle to utilize the two-dimensional surface of interaction. The targeted command is identified by its relative direction to the point of click, however, in the original version activation of the command was achieved by clicking and not crossing. The assumption that with continual use, users would internalize the positions of the commands leading to improved performance, is an important concept behind the design of pie menus. Many variations of pie menus have been proposed, some of which present only minor variation (i.e. flavours (Hopkins, 1991)) while others introduced new types of menus. All the variations address the issue of improved performance with use and moving from visual search for the command, to a directional based, gesture-like style of interaction. Marking menus (Kurtenbach, 1993) build on pie menus and allow the selection of a command by drawing a mark in its direction. A more complicated sequence of commands and subcommands is activated by more complicated, zig-zag like, marks. Control menus (Pook et al., 2000) extend this concept by allowing the setting of attributes of a selected command based on the direction and distance of movement, for example, selecting a zoom command then the zoom value. FlowMenu (Guimbretiére and Winograd, 2000), unlike the others, is specifically designed for pen-input on large, originally vertical, interactive surfaces. FlowMenu also builds on the marking menu but focuses on combining command selection, text and data entry (usually parameters of the selected command) into single fluid strokes. FlowMenu was used with CrossY (Apitz and Guimbretière, 2004) and was also used by Scott (2003) in a digital tabletop interface. Many of the menu types mentioned relate to the notions of the crossing-based interface, the polar layout, and that it is possible to make a number of consecutive menu selections without the pen having to leave the active surface. However, the number of consecutive command selections always involved
commands and sub-commands and not sets of mutually exclusive commands. If we imagine using *FlowMenu* to set the scale, rotation, and access right attributes, for example, we would still need to use the menu three times, once for each attribute.

3.7 Evaluation

I designed a user study to compare ease of use, performance, and mutual awareness for the two types of Attribute Gates with standard contextual menus on a pen-based digital tabletop. The study was conducted with a pre-production prototype of the multi-pen Promethean Activboard (Figure 3.11). As with other studies of tabletop interface elements, I used a mixture of precision and timing measures, as well as reflection by our participants, both to document users’ experience of Attribute Gates and to contrast their use with standard interface elements.

![Figure 3.11: Configuration of the multi-pen surface and the two participants for the user study. The sender is on the left, and the receiver is on the right. The small dialog box to the left of the sender (which was shielded from the receiver) shows the required settings for the current object.](image)

The application used in the study involved two users, the sender (the user on the left in Figure 3.11) and the receiver (the user on the right in Figure 3.11). To the left of the sender, the application provided a prompt as to the attributes to be applied to the current object. This involved setting three values for each of the following attributes:
• Access rights (read-only/read-write/duplicate).

• Orientation (manual/to-centre/rotate-and-translate).

• Scale (enlarge/no-change/shrink).

The sender’s task was to apply these settings to the current object, and place the object in one of three locations in the public space in the centre of the table according to the value of the scale attribute. The Attribute Gates and the contextual menu appeared when the sender pressed and held the pen tip on the object for half-a-second (as already described, this duration was chosen on the basis of informal experimentation). The gates disappeared when the pressure on the pen tip is released. The contextual menu disappeared after the selection of each subcommand.

Orientation and scale settings have a direct effect on the appearance of the object, unlike the access rights settings. For this reason, the receiver’s task was to monitor the value of the access rights attribute applied by the sender, and to move the object from the shared space to a second set of locations (in her personal space) according to the observed value of this attribute. With Attribute Gates, the access rights attribute set by the sender stays visible as long as the gate is visible, unlike the case with contextual menus where the menu disappears after clicking on the required setting. As can be seen in Figure 3.11, in front of the receiver are four square-shaped areas. Three of these correspond to the three access rights settings available for the sender, and a question mark labels the fourth area. The receiver was asked not to guess the value of an attribute. In cases where she was unsure of the value, she should put the object in the area labelled with the question mark. A barrier was placed on the tabletop to prevent the receiver from seeing the access right setting prompt provided to the sender (not shown in Figure 3.11). Although senders and receivers worked in parallel, they were asked neither to support nor hinder each other.

Each sender/receiver pair was required to perform the experiment on three sets of 10 objects, using a different attribute assignment interaction technique for each set (grid gate, polar gate, and contextual menu in different order for each participant). The actions required by a sender depended on the attribute assignment. That is, for Grid and Polar Gates, different attribute value combinations require different ranges of movement. Consequently, the sequence of attribute values to be assigned was repeated for each interaction technique. Three of the setting combinations (for object 2, 6 and 7) were deliberately set to values that were the same as their predecessor. This allowed for the exploration of the potential benefit of the self-configuring characteristic of the Polar Gates.

Eight sender-receiver pairs of experienced computer users took part in the study. The pairs were allowed to practice the task using all three of the interaction techniques without a time limit. When they felt confident with all the techniques they commenced the study (practice times varied between 4 and 10 minutes). The training and trial sessions were both supervised. I measured the following properties for each trial (i.e. for each assignment of attribute values):
1. Time taken for the sender to apply the setting, measured from the initial selection of the object to the placement of the object in the central public space.

2. Sender’s accuracy in assigning the attribute values.

3. Accuracy of the receiver’s judgement as to the value of the access right attribute (the value actually set by the sender).

3.7.1 Accuracy (sender)

Results of the study show that the senders accurately assigned the attributes using all the techniques, with only one user making a single erroneous assignment.

3.7.2 Awareness (receiver)

When senders used the Attribute Gates, receivers demonstrated greater awareness of the sender’s choice of access rights attribute value. Figure 3.12 shows the distribution of errors across the participants for each interaction technique. Only one receiver made one error under the Attribute Gates conditions. By contrast, in the contextual menu condition nearly 19% of trials resulted in

![Figure 3.12: Receiver errors (by participant) for each interaction technique.](image)
either an incorrect judgement by receivers, or the receivers indicated that they were unsure of
the access right attribute value. These cases were distributed across 6 of the 8 receivers, which
indicates that it is related to some aspect of the interaction technique (rather than the participants
themselves).

3.7.3 Performance

An analysis of variance showed that participants performed the sender’s task significantly faster
using Attribute Gates (Figure 3.13). The average times in seconds for completing the task for each
type were as follows: Grid Gates=5.9, Polar Gates = 7, and contextual menus=13.1. Comparing
between Grid Gates and contextual menus showed $F_{1,18} = 67.9, p = 1.60E − 07$; and between
Polar Gates and contextual menus $F_{1,18} = 32.3, p = 2.15E - 05$.

![Figure 3.13: Average timings for the sender task for each attribute setting (by interaction tech-
nique). Each bar represents the average time of the eight participants for setting the indicated
object.](image)

There was not a significant difference between the Polar Gates and the Grid Gates ($F_{1,18} =
2.2, p = 0.16$). Grid Gates, on average, led to a slightly better performance than the Polar Gates
(Grid Gates=5.9 seconds and Polar Gates = 7 seconds) except for the cases of repeated attribute
assignments of object indices 2, 6, and 7 (Figure 3.13). Object index 2 repeated the settings of
object index 1, and object indices 6 and 7 repeated the settings of object index 5. For these cases, the participants made use of the Polar Gates memory feature and hence just had to pass through a straight line to repeat the previous settings, performing slightly faster than for the Grid Gates. Figure 3.14 shows the average time for each participant for setting all the attributes using each of the interaction techniques. This clearly shows that the performance of participants when using the contextual menus was consistently worse.

3.7.4 Participant views

In an unstructured interview with the participants, they were asked for their comments and preferences. Despite the relatively poor performance of participants with the contextual menus, two participants expressed a preference for these, including one participant whose performance with the Attribute Gates was faster than any other participant. This may have been due to the fact that these two participants felt more familiar with the use of contextual menus despite the fact that they performed better with the new techniques. The remaining participants, however, preferred Attribute Gates with varying preferences between the grid and polar layouts. A number of partic-
participants identified that the projection from above, and the resulting obscuration of attributes made the Polar Gates harder to use.

3.8 Discussion

The two configurations of Attribute Gates were developed in response to the analysis of the requirements of an interaction technique to integrate the action of setting multiple attributes with the movement of objects between territories in tabletop interfaces. Attribute Gates are motivated by the notion of task levels in activity theory and crossing-based interfaces. Their spatial configuration was optimised using targeting and steering laws derived from Fitts’ law.

Both Polar and Grid Gates are crossing-based interfaces that allow users to concurrently move interface objects and set their attributes in one smooth action. Conventional design wisdom for tabletop interfaces would suggest that, in the absence of readily accessible toolbars and system menus, contextual menus should be used to set object attributes. An evaluation of both forms of Attribute Gates demonstrated significant advantages over standard contextual menus in terms of user performance and mutual awareness.

Polar Gates and Grid Gates differ in a number of ways. Firstly, Grid Gates maintain the spatial location of the gates themselves. Although not examined in our study, a prolonged evaluation may demonstrate an additional benefit as users internalize these positions and use more automatic free flowing strokes. While faster setting of attributes may impinge on mutual awareness, bystanders will gain similar familiarity with these positions and movements.

Polar Gates, deliberately maintain the configuration of last use with a view to exploiting the fact that attribute combinations are often repeated for a specific user engaged in a particular task. The benefit of this persistence of state was demonstrated in the user study, for which the Polar Gates slightly outperformed the Grid Gates for repeated states, with no observed negative impact on mutual awareness.

A final observation is that the use of a physical metaphor in Polar Gates (manipulating the concentric rings) encouraged users’ steering behaviour. In simple terms, the mechanism of the Polar Gates was more readily understood by users. Though the metaphor of the Grid Gates was clear, the freedom of movement afforded between gates resulted in Grid Gates requiring more practice time than for Polar Gates. Another important advantage of Polar Gates is that they are orientation independent. This is an important feature characterizing components specifically designed for tabletops where users around the table view components from different angles.

There is a number of possible enhancements to Polar Gates, such as the use of a temporary switch gate which if passed through, marks the current action as temporary and should not be remembered. This is useful when a single temporary setting is required while repeatedly applying identical settings. Also, it is possible to add gates to save and load different settings where an
outer ring can contain gates like save setting1, save setting2 and so on, paired with an inner ring with load setting1, load setting2.

Although designed for the specific problem of setting access rights, orientation, and scale when moving objects between territories, Attribute Gates have broader applicability. They can be used to set any sequence of mutually exclusive attributes in one fluid stroke. Polar Gates differ from other polar menus (Hopkins, 1991; Guimbreti`ere and Winograd, 2000; Pook et al., 2000) in a number of respects: they introduce the concept of a number of concentric rings to allow for multi-level mutually exclusive commands to be set in one stroke, which is made possible by the use of the rotatable rings. Polar Gates are also distinct in their incorporation of a memory feature by which the last configuration is preserved. As will be seen in Digital Mysteries application in Chapter 5, a two-ring version of the Polar Gates is used. The inner ring controls the scaling of objects with four options (enlarge, iconify, normal, and keep) and an outer ring directly controls rotation. The outer ring only corresponds to one command (Figure 3.15) and rotating the ring will rotate the object, acting like a rotation control knob. This setting allows the participants to scale and rotate an object in one fluid action, and it was found to be very easy to use by the many children who took part in Digital Mysteries studies. Moreover, although the original design of the Attribute Gates integrates setting attributes with object movement, the modified version used in Digital Mysteries, due to its different requirements, did not involve moving the object as the dragging point moved.

Figure 3.15: A modified version of polar gate that allows setting scale attributes in the inner ring, and applying rotation to an object by rotating the outer ring.

As previously described, the orientation independence of Polar Gates makes them very appropriate to use with the tabletop’s horizontal surface. Even a one-level polar menu with the memory feature can have a significant benefit (Figure 3.16). A user using a menu with four scale commands (e.g. left for normal size, right for maximize, down for iconify, and up for no-change), will
internalize this setting and start changing the scale by directional movements without looking at the actual commands. Now if the user moves her location to another side of the table, she just needs to re-orient the polar menu the first time it is activated from the new location to maintain the relative directions according to her new position. The menu will remember this orientation until it is re-oriented again and thus allows for directional interaction even for settings with mobile users.

Figure 3.16: A modified, one-level, version of Polar Gates that is used with Digital Mysteries. Rotating the ring in this version is only useful when the user changes her position around the table.
Chapter 4

TANGiSOFT

4.1 Introduction

The majority of computer supported activities require some amount of text entry by the user. This requirement varies from word-processors that are first and foremost a means of text-entry and editing, to web-browsers that intermittently require input of a URL, text for search queries, or online form entries. Yet, despite the important role of text entry, very little research has been conducted on text entry methods for digital tabletops (Hinrichs et al., 2007). Many text-entry techniques have been proposed for small mobile and pen-based devices, but these have very different characteristics, and thus requirements, from tabletops. Tabletops have the unique characteristics of being large-horizontal displays that support direct-touch and multiple, simultaneous, co-located users. While work related to text entry on other devices is useful, different techniques specifically tailored to the different contexts of use of tabletops are still required.

An extensive literature search yielded only three techniques, BubbleType (Hinrichs et al., 2008), an adaptive text input interface proposed by Hirche et al. (2008), and the SLAP keyboard (Weiss et al., 2009) which are identified to have specifically been designed for tabletops. Each of these proposals has a different type of use and users, and is not generally applicable to the full gamut of tabletop applications. Indeed, it is clear that no text entry technique is suitable for all tabletop applications, for example, while a physical keyboard might seem like the best choice for applications requiring extensive text entry, it is not the best choice for applications that require frequent switching between direct interaction (with the table) and short text entry tasks. Likewise, while the soft keyboard maintains direct touch interaction and combines it with other desirable features such as being collapsible and digitally flexible, it is not suited for applications requiring extensive text entry, and does not allow for the level of user mobility required in some applications.

I have designed a new input device, the TANGiSOFT keyboard (Figure 4.1) that is a hybrid of a physical and a soft keyboard. The TANGiSOFT keyboard seeks to combine the separate advantages of tangible and direct-touch interaction. The design reflects the general context-related considerations stated by Wallace and Scott (2008), the special requirements for text-entry techniques for digital tabletops (Hinrichs et al., 2007), and follows the guidelines set out by Scott et al. (2003)
relating to interpersonal interaction, fluid transition between activities, use of physical objects, and multi-user concurrent interaction. In simple terms, the device is a piece of paper with a printed keyboard layout that can be tracked by the system. Text is entered by direct-touch on the printed keys. The tangible qualities include the ability to move the keyboard by hand and the presentation of a virtual digital layout physically. The soft (virtual) characteristics include the direct-touch interaction and augmentation of the printed keys by projected digital information (highlighting).

Figure 4.1: The TANGIsoft direct-touch keyboard. Users handled the tangible keyboard in two different ways. The grey projection indicates the position of the pen, and the blue projection demonstrates the possibility of highlighting the next predicted keys.

4.2 Motivation

Ryall et al. (2006), Wigdor et al. (2007), Hinrichs et al. (2007, 2008), and Hirche et al. (2008) have discussed the issue of text-entry on digital tabletops. By observing users’ experience while interacting with multi-touch tabletop applications in four different real-world contexts, Ryall et al. (2006) made note of the challenges of using bare fingers for text entry and identified the issues resulting from the use of virtual keyboards and graffiti-style input. For example, although virtual keyboards were feasible, they were tedious to use in some instances, and that graffiti-style input was impractical when large amounts of text entry were required because people tended to draw large, and clumsy shapes with their fingers. Therefore, Ryall et al. suggested the use of auxiliary input sources such as wireless keyboards and PDAs. By contrast, Wigdor et al. (2007) observed a single tabletop user in a conventional office setting and found that the soft keyboard was adequate and did not impact the content of the composed text. Maintaining the direct touch interaction was a significant factor in this, as compared to using a physical keyboard which disrupts the interaction style. Despite the contradicting observations, both studies recommended that the requirements for text entry at the tabletop need further exploration. Hinrichs et al. (2007) carried out this further exploration and proposed a set of desirable characteristics for digital tabletops regarding text entry and a corresponding set of evaluation criteria.

Context of use is an important factor in the design of applications or interaction techniques for tabletop systems. As summarized in Chapter 2 (Section 2.3), Wallace and Scott (2008) provided
general guidelines as to the effects of the context of use on the design of the user interface components’ complexity and interaction, the physical form, and connectedness of tabletop systems in general. The factors considered in the context of use were social and cultural factors, type of activity, duration of the activity, ecological factors, and motivational factors. Their guidelines are based on answers to the questions of who?, what?, when?, where?, and why?. Hinrichs et al. (2007) used a similar context-based analysis approach to investigate specifically the issue of text-entry on tabletops. Their guidelines were based on answers to the questions of what?, who?, how?, and how often (when)? and provided an evaluation criteria on that basis. Their criteria depended on the visual appearance, performance, environmental factors, and simultaneous interaction.

These criteria have a particular relevance for my work and therefore I will explain each in more detail.

Visual appearance: Visual appearance is important because it can influence the performance of text-entry. It can be defined in terms of the overall character arrangement (e.g. rectangular, or circular) and the character layout (where specific characters are located within the general arrangement – QWERTY as apposed to Dvorak (Dvorak et al., 1936) for example).

Performance: Two qualities affect performance: efficiency (speed, accuracy, and visual and cognitive attention), and ease of learning. These two factors often conflict with each other.

Environmental factors: Some of the tabletop specific factors that affect text entry include space requirements (the footprint of the keyboard which if large can cause clutter, and collapsibility\(^1\)), rotatability (the ability to enter text from different angles), direct-touch interaction (a text entry should, if possible, maintain direct-touch interaction and maintain fluid transition between activities), and mobility (a text entry technique should not hinder people’s ability to move freely around the table and enter text from any location and orientation).

Simultaneous interaction: A text entry technique should allow for simultaneous interaction by allowing shareability (i.e. ease of handing-over or acquiring the device) or duplicability of the text entry device depending on the specific application requirements.

My research into tabletop interaction was conducted in the context of the application of digital tabletops in the education of 12-14 year old children. When working on Digital Mysteries, students frequently need to type in words or short phrases while manipulating virtual paper slips. I observed how children used Digital Mysteries and, based on the previous criteria, identified a set of requirements for the text entry technique to be used. The application is intended to be used by children for short sessions (an average of one hour per session) in possibly weekly or even monthly sessions. Since text entry is not the main activity, and when required is only for short

\(^1\)collapsibility of an object refers to the ability to minimize the area it occupies on the surface.
phrases, the text entry technique to be used needs to prioritise ease of learning and familiarity over efficiency.

Moreover, the design of Digital Mysteries requires one keyboard for all students (to encourage collaboration) rather than one for each. Therefore, space requirement is not a main concern in the design as long as the input device does not clutter the interface, yet this one input device needs to be easily sharable between students. The application supports, and even encourages, students to move around the table and thus the text entry technique must not hinder mobility and must allow for text-entry from any angle (Figure 4.2).

Finally, maintaining direct touch interaction is essential as students frequently need to enter short amounts of text and thus they frequently need to switch between their main task and text entry. Allowing quick switching between tasks (or in other words maintaining direct-touch interaction), efficient use of space, rotatability, mobility, and shareability, are desirable characteristics shared with many collaborative tabletop applications (Hinrichs et al., 2007).

Figure 4.2: A student entering text using a rotated soft keyboard from the side of the table while working on Digital Mysteries.

Having identified the requirements for the specific application at hand, it is possible to evaluate the common devices and techniques for text entry according to the criteria established by Hinrichs et al. (2007).

Physical keyboards: Despite being the preferred choice for applications requiring significant amounts of text entry, physical keyboards are external, usually large, devices that rank low in their
support for mobility, rotatability, and shareability. Moreover, as external devices, they do not allow for the fluid transition between activities required (Hinrichs et al., 2007).

Mobile devices with physical keyboards: Due to their mobile nature, PDAs and mobile phones with embedded physical keyboards can be considered as text entry devices that are rotatable and shareable. Nevertheless, they do not maintain the direct-touch interaction style, and require a level of familiarity that depends on the text entry technique they adopt. A factor that was not included by Hinrichs et al. (2007), is the degree to which use of a device promotes awareness. Making students aware of each other’s intentions and actions is important to the collaborative learning process. Text entry using such devices can easily go unnoticed if attention is not being paid to the person entering the text, or to where the text is being inserted in the display.

Handwriting: As the most familiar text entry method, handwriting does not require any learning (although this depends on the ages of children concerned) and does not have limitations with respect to mobility. Handwriting maintains direct touch interaction but has the disadvantage of being the slowest text entry technique (with speed range of 15-25 WPM (MacKenzie and Soukoreff, 2002)). Moreover, for digital tabletops, the low input resolution of these devices can have a negative impact on the accuracy and speed of handwriting recognition (Hinrichs et al., 2007).

Gestural alphabets: A number of gestural alphabets, such as Graffiti (Blickenstorfer, 1995), have been developed to increase the speed and accuracy of handwriting. In the design of such gestural alphabets efficiency (speed and accuracy of entry) is traded with ease of learning.

Soft keyboards: Graphically rendered keyboards maintain direct-touch interaction and can, to some degree, be implemented to support mobility, rotatability, shareability, and collapsibility. However, soft keyboards make significant demands on users in terms of their visual attention, and exhibit worse text entry performance (speed and accuracy) than physical keyboards due to the lack of tactile feedback and the use of single-touch in some implementations.

Gesture-based keyboards: These are quite uncommon and usually present novel techniques that require considerable amount of learning and getting used to. Examples of such techniques are Quikwriting (Perlin, 1998), SHARK (Zhai and Kristensson, 2003), and Dasher (Ward et al., 2000). In Quikwriting, letters are arranged in zones around a central resting area. Text entry is done by dragging the stylus from the resting area to one of the outer zones then to a second outer zone or back to the central area (Figure 4.3(a)). SHARK augments an optimised stylus based keyboard by gestures. Each word has a unique movement pattern (shorthand symbol) determined by the optimised keyboard layout (Figure 4.3(b) shows the keyboard layout, and the shorthand symbol for the word the). While novice users will need the keyboard for visual guidance, expert users can rely only on shorthand gesturing. Dasher, combines adaptive language modelling with
a dynamically modified display. The initial state shows all the letters on the right of the display. After the user moves the stylus towards the first letter in the word, the technique makes it easier to select the next most probable letters as shown in Figure 4.3(c).

![Figure 4.3: Writing the word the using: (a) Quikwriting (Perlin, 1998), (b) SHARK (Zhai and Kristensson, 2003), and (c) Dasher (Ward et al., 2000) techniques.](image)

This comparison of text entry solutions highlights the fact that no existing technique meets the requirements of all applications. From this observation came the idea of designing a keyboard that aims at making use of the advantages of soft keyboards specifically in terms of familiarity and direct-touch interaction, and add to it tangible characteristics that will improve its support for mobility, rotatability, and shareability (as recommended by other design guidelines on tabletops and two-handed interactions (Scott et al., 2003; Terrenghi et al., 2007)).

4.3 Activity theory, tangible and two-handed interaction

Mobility refers to both the ease of changing the location of the keyboard and its orientation, and implies support for shareability as it will be easy to hand-over and acquire the keyboard. One of the main goals of the proposed design was to allow for a high level of mobility. With a soft keyboard, the user has to perform a sequence of drag and rotate operations to place the keyboard in an appropriate location and orientation, and, as with other direct manipulations, this is usually done with the dominant hand. Through the lens of activity theory, this sequence of drag and rotate operations interrupts and shifts the focus away from the main text-entry activity. With two-handed interaction, the non-dominant hand is usually used to set the frame of reference for the dominant hand. For example, when writing on a sheet of paper, the non-dominant hand is usually used to position the paper and orient it in relation to the dominant hand which controls the writing instrument (O’Hara and Sellen, 1997; Guiard, 1987; Buxton, 1994). By allowing the non-dominant hand to set the location and orientation of the keyboard, we can address the mobility problem and reduce the cognitive load for low-level manipulation tasks, thereby helping users focus on the main tasks (Buxton and Myers, 1986; Hinckley et al., 1998; Leganchuk et al., 1998).
As it turns out, simply allowing two-handed interaction for a soft keyboard does not seem to solve the problem as it was observed that people continue to dominantly use one hand when interacting with virtual objects (Terrenghi et al., 2007). This has been attributed to the lack of tangibility of virtual objects; the virtual nature of a soft keyboard appears not to afford non-dominant hand manipulation.

Physical affordances are significantly richer than their virtual counterparts (Fitzmaurice et al., 1995; Terrenghi et al., 2007; Rekimoto et al., 2001). These include the facilitation of people’s sophisticated skills for manipulating objects, in this case two-handed concurrent position and orientation control. Such capabilities are particularly salient in tabletop settings due to the large horizontal space within which users may orient themselves differently at different times during the same session. Fitzmaurice et al. (1995) highlighted a number of advantages of tangible interface elements that we sought to exploit in TANGIsoft, including

1. encouraging two-handed-interaction,
2. making interface elements more direct and manipulable,
3. exploiting our experience of working with physical objects,
4. taking advantage of spatial reasoning skills, and
5. affording multi-person, collaborative use.

Adding tangible characteristics allows bimanual use of TANGIsoft. Positioning the keyboard at the right location and orientation is carried out as a one subconscious operation not affecting the main text-entry activity.

4.4 Design

The principal design choices TANGIsoft were

1. the use of direct-touch input,
2. the design of a keyboard as a tangible tool (allowing for two-handed interaction),
3. the use of a printed, rather than virtual keyboard layout, and
4. the augmentation of the physical paper with projected digital information.

4.4.1 Direct-touch input

The overhead of switching between tasks, in this case any task and a writing task, must be kept to a minimum. Observations of users performing tasks on traditional and digital tables have highlighted both the fluent mix of activities and frequent rapid switching between tasks such as drawing
and writing (Tang, 1991; Bly, 1988; Scott et al., 2003). Such fluid transitions are hindered by the need to change between a direct-touch interaction and the use of a physical keyboard for text entry. Maintaining direct-touch input for text entry is an important component in the facilitation of fluid transitions between activities at the tabletop (Scott et al., 2003; Hinrichs et al., 2007).

4.4.2 The keyboard as a tangible tool

The use of soft keyboards in digital tabletop systems often requires users to change the location and orientation of the keyboard, in particular, foregrounding and backgrounding (or hiding) it when switching between tasks. Such move, rotate and display operations, when performed unimanually, are executed sequentially thereby impose a significant additional load on the user. By contrast, bimanual interaction with objects allows for such task performance at a natural level of chunking, thereby leveraging significant cognitive advantages (Leganchuk et al., 1998; Hinckley et al., 1998; Buxton and Myers, 1986). Full utilization of such bimanual interaction can only be made possible by adding tangible (or graspable) qualities (Fitzmaurice et al., 1995; Terrenghi et al., 2007; Rekimoto et al., 2001).

4.4.3 Printed layout on paper

Instead of using a projected layout as in soft keyboards, TANGiSOFT uses a printed keyboard and users press on the printed keys to input a character. Using the printed layout increases the tangible character of the device (as compared to simply having a physical handle on a virtual keyboard). The use of printed media allows very high resolution display of the characters, which addresses the characteristically low resolution of most existing tabletop projection systems.

4.4.4 Paper augmentation

Casting a keyboard as a tangible tool does not preclude the incorporation of additional digital properties. In particular, the flat paper layout allows the projection of digital information over the physical layout. Digital augmentation of the printed keyboard allows us to highlight the key that the stylus is moving over, and change the highlighting as that key is pressed. This provides important feedback to the user as to which key is actually being pressed and improves accuracy. The digital information augmented on the keyboard can even be in the form of highlighting for the predicted next possible characters which might be useful in some cases.

4.4.5 Comments on the design

The distinctive design feature of TANGiSOFT is the hybrid design that gives tangible affordances (like two-handed manipulation) to virtual techniques (like soft-keyboards), yet maintains the direct-touch interaction. The conceptual design of TANGiSOFT is layout independent. That is, although the QWERTY layout was used in the trials, due to its familiarity to most people, there is nothing
intrinsic to the design that prevents the use of other layouts, or even certain types of gesture based keyboards such as SHARK (Zhai and Kristensson, 2003). Therefore, issues of efficiency are not addressed here as efficiency is largely dependant on the used layout. In the case of a QWERTY keyboard layout, TANGISOFT becomes as familiar as a traditional soft keyboard and as efficient.

4.5 Related work

Since the pioneering work of Wellner (1993) on the DigitalDesk, a wide range of design issues for tabletops have been explored and guidelines for designing collaborative systems on digital tabletops proposed (Scott et al., 2003; Morris, 2006; Wallace and Scott, 2008). Only a small number of projects have considered the problem of text entry for tabletops (Ryall et al., 2006; Wigdor et al., 2007). Indeed, the analysis of Hinrichs et al. (2007) is the only systematic account of the problems and requirements of text entry on digital tabletops, and it establishes a criteria for evaluating existing approaches. The only text entry techniques designed specifically for digital tabletops are BubbleType (Hinrichs et al., 2008), the adaptive text input interface proposed by Hirche et al. (2008), and the SLAP keyboard (Weiss et al., 2009).

BubbleType is designed for a walk-up-and-use scenario in a public space. This means that people with diverse computer expertise and ages are expected to use the table, mostly for short periods of time. Such contextual factors require the text entry technique to be approachable (i.e. invites people to use it), as easy to use as possible, and even fun. The visual appearance of the technique and its integration within the overall application was also an important factor in the design. After an iterative design process that started with a circular layout, then a number of curved branches, the final design comprised two possible layouts, BubbleQWERTY and BubbleCircle (Figure 4.4). BubbleQWERTY, which followed the QWERTY layout, was found to be more comfortable to use than the circular layout and thus was the design adopted in the initial trials. Although designed for two-handed interaction, the keyboard could still be used with one finger or even in pen-based tabletop interfaces. The initial trials showed that people did not have difficulty using the keyboard as it was basically a fancy looking soft keyboard using the familiar QWERTY layout, but it also showed that most people typed on the keyboard using one finger rather than two hands. The design of BubbleType targeted a very specific context of use. Moreover, the design fixed the keyboard position and did not allow it to be moved or rotated. Thus, while the design process of BubbleType demonstrated good design practises following the guidelines stated by Hinrichs et al. (2007), BubbleType was not intended as a general solution to the problem of text entry for tabletops and it did not actually introduce any new interaction design concepts.

The approach to text entry proposed by Hirche et al. (2008) was designed specifically for two-handed text entry on multi-touch multi-finger tables. The technique relies on a small number of buttons with prediction and hints to minimize finger movement and draws on aspects of a 10-key phone keypad. The main motivations were to overcome the problem of locating keys on the flat
and featureless surface of the tabletop and to reduce the visual attention required during typing. The proposed keyboard adapts its position, size, and orientation based on the initial placement of the fingers when the keyboard is activated. No formal results for performance and ease of learning have been reported, but due to its novelty, a certain level of practice is required. The technique specifically targets multi-touch multi-finger tables and is not appropriate for single touch and pen-based tabletops.
Weiss et al.’s (2009) SLAP widgets, which allow a tangible cast of transparent silicon to be augmented with digital information, shares some of the tangible-virtual design qualities of TANGISOF. A SLAP keyboard (Figure 4.6) is in fact one of the proposed widgets introduced with the aim of maintaining the tactile nature of physical keyboard yet allow for digital information to be projected on the transparent keys. As part of a widget set, however, this work does not provide any detailed analysis as to the usability of the SLAP keyboard. Like the adaptive keyboard, the SLAP keyboard was designed exclusively for multi-touch interaction.

![Figure 4.6: The SLAP keyboard (Weiss et al., 2009)](image)

Approaches to text entry, and direct touch in particular, in settings other than tabletops have been thoroughly studied, including the use of optimized keyboard layouts (MacKenzie and Zhang, 1999), improving text entry with prediction (Magnien et al., 2004), gestural alphabets (Goldberg and Richardson, 1993; Blickenstorfer, 1995), and gesture based techniques (Zhai and Kristensson, 2003; Perlin, 1998; Ward et al., 2000). The hybrid design of TANGISOF can still be used with many of these direct-touch techniques to enhance them with tangible characteristics.

4.6 Implementation

TANGISOF has been developed for a top-projected (1024 × 768 resolution) pre-production prototype of the multi-pen horizontal Promethean Activboard. As explained in Section 2.5, Activboard uses a technology that allows people to safely lean on it, giving it an important affordance of a real physical table. The table reacts to a battery-free, wire-free mouse pen which looks and feels like a real pen and, through the use of time multiplexing, the system can read and distinguish input from three pens simultaneously.

For TANGISOF, one pen is used for the actual direct touch interaction, and the sensors from two other pens are used for tracking. A QWERTY layout is printed on a piece of paper and tracked with these two sensors (Figure 4.7).

The TANGISOF keyboard needs to be calibrated, and this is done by first placing it in a vertical position (Figure 4.8(left)) to establish the width and position of the keyboard with respect
Figure 4.7: Two alternative designs for the tangible keyboard were tested. Placing the sensors at opposite ends of the keyboard (increasing the distance between them) reduced both alignment errors and sensor-sensor interference.

to the tracking pens for vertical orientation. In the second step (Figure 4.8(right)) the keyboard is placed horizontally and the width and height are calibrated for horizontal orientation.

Figure 4.8: The calibration process: step 1 (left) sets the vertical values; step 2 (right) sets the horizontal values.

Figure 4.7 shows the different possible configurations of the sensors. During implementation, it was found that placing the sensors in close proximity gives rise to a level of interference that results in inaccurate location readings. Placing sensors on opposite sides of the keypad reduces both the impact of error inherent in the tracking, as well as the interference between the sensors.
As already explained, the proposed design does not concern itself with the specifics of the possible keyboard layouts. Nevertheless, the choice of an optimal keyboard size cannot be made completely independently of the layout to be used. In considering Fitts’ law (in the optimization of keyboard size) I came to a similar conclusion as to that of MacKenzie and Zhang (2001) and that is increasing key size to make targeting easier, involves a proportional increase in the overall keyboard size, and thus the travelling distance to reach keys, leading to an index of difficulty that is independent of the key size and keyboard size. MacKenzie and Zhang measured the speed for two keyboard sizes (10cm and 18cm from keys ‘Q’ to ‘P’) and found no significant difference in speed, although the error rate was significantly higher for the smaller keyboard. Another factor to consider in determining the size of a keyboard designed for digital tabletops is the overall area that the keyboard occupies. Since tabletops are multi-user environments it is inappropriate to have the keyboard of one user covering a large area of either the shared space or a user’s personal space.

The initial size of the keyboard as used in the pilot studies was 11.8 × 4.0cm. The final design, however, was made larger (20.0 × 6.8cm) to reduce both interference and sensitivity to small alignment errors, and in response to recommendations from more than 10 participants who participated in the pilot studies. Users who tried the small prototype indicated that the smaller keyboard required too much directed effort to target the required keys (which corresponds with the findings of MacKenzie and Zhang (2001)). Finally, the printed area of a key was reduced to a size smaller than the actual hit area to guide the users to target the central region of a key thereby increasing TANGIsoft’s robustness to small errors in alignment. The final keyboard design was pasted on card and laminated to give it a more rigid, tool-like, physical quality.

Although I implemented TANGIsoft on a top-projected pen-based tabletop, the keyboard can be used with bottom projected and touch-based surfaces. This can be done by printing the keyboard layout on a semi-transparent paper that can be tracked by the system. If the semi-transparent layer prevents-touch interaction, the tangible part then should only consist of a handle that can be manipulated using the non-dominant hand, and attach to this handle a virtual keyboard layout. This does reduce the overall tangible sense of the keyboard but it still allows for bi-manual interaction.

4.7 Exploring the use of TANGIsoft

The main design hypothesis for TANGIsoft was that the tangible character and two-handed interaction afforded by the keyboard promotes mobility. This makes TANGIsoft more suited to digital tabletops than a traditional soft keyboard. This is particularly true for tasks that require users to physically move around the table, or when the text entry tool is a shared artefact and is frequently exchanged between users.

In designing an observational study to evaluate the design, I ran a number of pilot studies to explore the relationship between the nature of applications and the mobility requirements they
place on users. One application required participants to label a number of images spread across the table. The images were movable, and participants mostly moved the images close to them and entered very short labels. Another set-up required participants to copy multi-sentence paragraphs of text placed at different fixed locations on the table. Due to the length of the text to be copied in each instance, participants were forced to move the keyboard (both tangible and soft keyboard) near to the location of the source paragraph. The eventual design was positioned between these two extremes.

The task used in the final observational study required participants to copy short phrases of 3-5 words located and oriented differently across the tabletop. 14 short phrases had to be copied in a fixed order, requiring participants to shift between relatively distant locations on the table. The orientations of the phrases ranged from 0° to 180° (Figure 4.9). When faced with this task, the hypothesis was that participants would be more likely to move the keyboard if the action was sufficiently lightweight.

Ten participants (8 males and 2 females, ages between 22 and 35 years, all experienced computer users) were observed using TANGiSOFT and a soft keyboard. Subjects were trained on both keyboards until they reported feeling comfortable with the interaction technique (training sessions ranged from 5 to 10 minutes). The study application logged the location and orientation of the keyboard as each phrase was entered. Sessions were also filmed to allow for evaluation of the use of the non-dominant hand and handling styles when moving and typing.

To allow for a fair comparison between the two techniques I implemented a special soft keyboard that could be dragged from its border and rotated from its for corner. This differs from the
standard (non-rotatable) soft keyboards in both Windows or the Activboard software suite. The soft keyboard used a similar layout to that printed on the tangible keyboard (Figure 4.10).

Figure 4.10: The soft keyboard used in the study.

4.7.1 Observations and analysis

I analyzed the logs for each of the participants and calculated the number of times each participant moved or rotated the keyboard. I counted rotations that were equal to or greater than 3° and the translations that were equal to or greater than 3 pixels (on the tabletop translations of 3 pixels usually corresponded to deliberate actions). Table 4.1 and figures 4.11 and 4.12 present the results.

<table>
<thead>
<tr>
<th>Subject</th>
<th>Initial angle</th>
<th>Rotations Tngbl</th>
<th>Rotations Soft</th>
<th>Translations Tngbl</th>
<th>Translations Soft</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>0</td>
<td>7</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>4</td>
<td>-6</td>
<td>0</td>
<td>14</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>0</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>0</td>
<td>6</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>0</td>
<td>13</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>8</td>
<td>29</td>
<td>0</td>
<td>11</td>
<td>13</td>
<td>4</td>
</tr>
<tr>
<td>9</td>
<td>-2</td>
<td>0</td>
<td>10</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>11</td>
<td>0</td>
</tr>
</tbody>
</table>

Although it is tempting to perform significance tests on the mean values, a careful examination of the distribution of the data suggests that a more holistic analysis is more appropriate. I considered the data itself in Table 4.1 (Figures 4.11 and 4.12), the video recordings of participants’ behaviour, and the plots of the position and orientation of the keyboard for each sentence (Figures
4.13, 4.14, 4.15, and 4.16). My analysis of the data revealed three qualitatively distinct categories of users (and user behaviour):

- **Same static behaviour (static users).** This type of user fixed the position and orientation of both keyboards (soft and tangible) throughout the whole session (Figure 4.17). The first two participants in Table 4.1 exhibited this behaviour, and Figure 4.13 shows their position and orientation graphs for the keyboard location and orientation for each of the phrases.

- **Same dynamic behaviour (fully dynamic users).** This type of user translated and rotated both keyboards (soft and tangible) to similar degrees, and even moved around the table
while carrying out the tasks (Figure 4.18). Three participants demonstrated this behaviour (participants 3, 4, and 5 – Figure 4.14).

- **Different behaviour.** Users whose behaviour changed between the tangible and the soft key-
boards (Figure 4.19). Of the 10 participants who participated in the study, five demonstrated this difference in behaviour either in relation to both translation and rotation (participants 8, 9, and 10 – Figure 4.16), or in relation to rotation only (participants 6 and 7 – Figure 4.15).

Figure 4.13: Users with the same static behaviour. The left figures are for the tangible keyboard, and the right figures for the soft keyboard. Light rectangles indicate the position of the phrases to copy. Dark rectangles indicate the position of the keyboard (rectangles are not drawn to scale).
Figure 4.14: Users with same dynamic behaviour. The left figures are for the tangible keyboard, and the right figures for the soft keyboard. Light rectangles indicate the position of the phrases to copy. Dark rectangles indicate the position of the keyboard (rectangles are not drawn to scale).
Figure 4.15: Users who showed different behaviour in terms of rotation only. The left figures are for the tangible keyboard, and the right figures for the soft keyboard. Light rectangles indicate the position of the phrases to copy. Dark rectangles indicate the position of the keyboard (rectangles are not drawn to scale).
Figure 4.16: Users who showed different behaviour in terms of both location and orientation. Light rectangles indicate the position of the phrases to copy. Dark rectangles indicate the position of the keyboard (rectangles are not drawn to scale).

These results show that the type of user is more significant than the characteristics of the text entry technique. If a user prefers not to move while working, she may go to extraordinary lengths to avoid changing her position at the table. The two participants in this category rotated their heads (Figure 4.17) and endured significant cognitive load in trying to understand rotated phrases. At the other extreme are users who are dynamic by nature almost regardless of the physical effort required.
Figure 4.17: *Static users*: enduring higher cognitive load to avoid physical movement.

Figure 4.18: *Dynamic users*: same dynamic behaviour for both tangible and soft keyboard.

Figure 4.19: (Left) TANGI\textsc{SOFT}: moving near the phrase and rotating the keyboard. (Right) Soft keyboard: the position and rotation of the keyboard is kept relatively constant.

(Figure 4.18). The third category of users, who will move if it is afforded by the tool at hand, are the most appropriate category for which to assess the benefits of tools such as TANGI\textsc{SOFT}. The affordances of TANGI\textsc{SOFT} as a tangible tool meant that it required less effort to move it around,
and thus transformed participants from static users of the soft keyboard to dynamic users of the tangible keyboard.

Another interesting finding was that for the first phrase, which was horizontal and not rotated, all users kept the soft keyboard in its default (also horizontal) orientation and started typing. For the tangible keyboard, 6 out of the 10 participants started typing the first phrase with an orientation that ranged from -6° to 29° CCW. This small adjustment of the tangible keyboard puts it at a more comfortable orientation for text entry. In this single observation an advantage of the tangible keyboard over the soft keyboard was observed in terms of ease of movement and the amount of effort required to put the tangible keyboard in the most appropriate position.

None of the users moved or rotated the soft keyboard more than the tangible keyboard. This lead to conclude that the tangible characteristics of TANGISOFT, and its affordances for two-handed interaction, did promote mobility. This result was more marked for rotation as with tangible keyboard translation and rotation are carried out as one integrated action. By contrast, for the soft keyboard, re-positioning was carried out as a series of translate actions followed by rotate actions. Some users had to repeat the translate-rotate actions sequence a number of times to position the keyboard as desired and many ignored the rotation action (probably to reduce overall effort). This demonstrates that the design of the tangible keyboard allowed for chunking (Buxton and Myers, 1986) two actions (or in some case longer sequence of actions) into one, thereby satisfying our design goal.

After the study the participant were asked a number of direct questions as to their preferences:

1. Which keyboard was easier to move around the table?
2. What is your preferences as to the size of the tangible keyboard: smaller, this size, or larger?
3. Did you feel that looking at the printed keyboard layout of the tangible keyboard was more comfortable for your eyes than looking at the soft keyboard layout?

For question (1), concerning mobility, 7 out of 10 rated the tangible keyboard as easier to move than the soft keyboard. One participant commented that it “could just be pushed or pulled and rotated at the same time instead of needing to drag the pen”. One participant rated the two keyboards the same as he did not move either of them, and only two participants considered the soft keyboard to be easier to move around. Of these two participants one commented that “Both are easy to move - but the fact you don’t need to hold the soft keyboard in place means the ease of use is overall greater/better”. These results correspond with previous findings as to the advantages of two-handed interaction (Leganchuk et al., 1998; Buxton and Myers, 1986; Hinckley et al., 1998).

Regarding the size of the keyboard, 9 of the 10 participants felt the tangible keyboard was the appropriate size, and only one suggested that a larger size would be better.

Concerning the difference between the projected and printed keys, 5 of 10 participants reported that the printed layout was more comfortable to look at, for example: “generally easier to read,
less pixelated so letters were clearer, shadows of my hand didn’t affect the tangible keyboard”; and “The tangible keyboard is obviously far better to look at especially when scanning for a key or quickly glancing. However soft keyboard was still usable”. Two participants felt that there was no difference between the keyboards, and three described that the soft keyboard was better, for example: “The material of the tangible keyboard seemed to diffuse the light, where I could see through the edges of the soft keyboard” and “the soft keyboard was better for the length of time I used it for – but this may alter after hours of use”.

The final set of observations is related to how the participants handled TANGIsoft. Most participants held the tangible keyboard with their non-dominant hand, pressing their fingertips on the round blank area to the left of the keyboard. They kept their hand in this position while typing to prevent the keyboard from slipping, and pushed and rotated the keyboard in one action to the next location. In some cases, the keyboard was held by its lower edge instead of the left blank area. One participant used two hands to move the keyboard, with each hand holding one of the two handles. Two other participants used the two hands in only isolated cases. 9 of the 10 participants fixed the keyboard while typing using their non-dominant hand, and only one participant did not (instead keeping his non-dominant hand free). This same participant moved the keyboard using his left non-dominant hand holding the keyboard by its left handle. Finally, when moving the keyboard to distant locations, one participant pushed the keyboard away such that it slid across the tabletop.

4.8 Discussion

The analysis shows that TANGIsoft was successful in converting the conscious action of putting the keyboard in an appropriate position to a subconscious operation. As a result, and with the maintenance of direct-touch interaction, text entry can be more readily integrated into the larger task at hand, making it an appropriate tool for applications requiring mobility and frequent text entry. Moreover, TANGIsoft successfully addressed all of its principal design goals: ease of learning, the maintenance of direct-touch interaction, use of space, rotatability, mobility, and the provision of simultaneous interaction.

From observations of both the pilot and main studies, and from discussions with the participants in these studies, TANGIsoft proved to be easy to learn and use since it did not introduce new concepts and utilized the participants’ previous experience of using soft keyboards. Direct-touch was maintained by the hybrid design and the use of a printed layout removed the limitation of the projector resolution (especially true for large projected surfaces). Although a component of the rationale for the printed layout was to allow for smaller keyboards than is possible with current projector resolutions (or large tables), the pilot studies showed that users did not prefer small sized keyboards because hitting the correct keys was harder. So for the final study a larger
keyboard (20.0 × 6.8 cm) was used which the participants’ confirmed was the appropriate size (though this is also a function of the resolution of the tracking technology).

The case studies showed that TANGISOFT promoted mobility and afforded fluid translation and rotation with the non-dominant and dominant hands alike. Additionally, it is possible to have as many tangible keyboards as the tracking technology admits. TANGISOFT supports pushing, pulling, and sliding on the surface, so even if one keyboard is to be shared among many users, it is easy to move a tangible keyboard around the surface of the table. For these reasons, I claim that TANGISOFT does satisfy the design criteria and affords for more fluid interaction than soft keyboards.

The implementation of TANGISOFT can be modified for different tabletop technologies. For example, the tangible layout can be tracked using visual tracking. The layout can be printed on transparent card to maintain transparency for back-projected keyboards. For tabletop technologies that are touch-based and cannot sense finger tapping on a physical card, it is possible to track a tangible handle but project the keyboard layout on the surface and not use a physical card. This way, many of the tangible characteristics can be maintained. Although projecting the layout on the table surface (and not a card) may reduce some of its tangible characteristics, and the benefit of having a high resolution layout, this can give the keyboard some other soft keyboard characteristics such as being collapsible, scalable, and having ability to dynamically change layout.

The concepts of the hybrid-design can be implemented not just for text entry but can be generalized to work with other control pallets, such as the ToolGlass (Bier et al., 1993). Changing commands in the pallet can be achieved either by maintaining a blank surface on which any content can be projected (to maintain the full tangible characteristics), or by using a tangible handle only, and projecting the content on the adjacent surface directly.

Two conclusions, pertaining to tangible interaction in general (and not just text entry), can be drawn from the results of this design study. Firstly, that it is the nature of the user that is the dominant factor in determining the style of use in terms of mobility and two-handed interaction. Some users exhibit consistently static or dynamic behaviour regardless of the tool. Only for certain classes of users, does the difference in behaviour become apparent. However, this does not mean that the other classes of users do not make use of the affordances of TANGISOFT. Indeed, as can be seen from the responses of such users to the mobility questions, they did appreciate the extra mobility afforded even if the effect of such tools on their behaviour was not observable.

Secondly, Terrenghi et al. (2007) explored two-handed interaction with physical and digital photos and came to the conclusion that although the digital photos afforded two-handed manipulation, people dominantly used one hand with the digital photos, and two hands with the physical ones. Their recommendation of hybrid physical and digital designs over a purely digital one aligns with our findings. One can therefore reasonably contend that the benefits gained by TANGISOFT, in terms of mobility and better integration with higher level tasks, cannot be simply achieved by allowing two-handed interaction with a soft keyboard.
Chapter 5

Tabletops and Learning - Digital Mysteries

A distinguishing characteristic of tabletop technology is its natural support for face-to-face collaboration. From a learning perspective, my approach for investigating the support of tabletops for learning is to focus on higher level thinking skills, reflection, and metacognition, all of which benefit greatly from being practised in a collaborative environment. Improvement in learning is achieved by designing for encouraging effective learning activities, and validation is carried out by verifying the occurrence of such activities. This is in contrast with approaches to designing learning applications by targeting basic, measurable, thinking skills and performing pre- and post-tests to validate the effectiveness of the application.

As we move toward the design of intelligent machines, rigor is absolutely essential. It can’t be the cold, objective rigor of the engineer, for this focuses only on what can be measured as opposed to what is important. (Norman, 2007, pp. 173)

On the other hand, from a computing science perspective, I am seeking to utilize certain affordances of tabletops: multi-synchronous input, direct-touch interaction, the large-horizontal surface, and the barrier free face-to-face style of collaboration. The aim is to produce a model for learning applications that is specific to tabletops and one that is not a direct adaptation from other computer-based settings. Simply allowing parallel input for desktop applications, such as drawing applications, puzzle solving or map browsing, and running them on a multi-touch table does not transform them into true collaborative learning applications.

In this chapter, I first discuss the theoretical background to thinking skills, focusing on metacognition, reflection, and the provision of feedback. This is followed by a discussion that links collaboration to these skills. I end this introduction to the theory of thinking skills with a classification of learning tasks and their relation to thinking skills which paves the way for selecting the type of tasks that are appropriate to the targeted educational and technological setting. I have chosen the Paper Mysteries collaborative learning tool (Section 5.2) as the learning task for carrying out this investigation. Using an iterative design process, I moved from Paper Mysteries through three
iterations to Digital Mysteries, which was evaluated in 22 trials conducted at a school over an 18 month period. A distinctive feature of this work is that the design process, the design choices, and the implementation framework are all thoroughly grounded in theories of both collaborative interaction and learning.

5.1 Theoretical background

5.1.1 Cognitive skills

![Strategic and Reflective Thinking Diagram](image)

Figure 5.1: Moseley et al.’s (2005) integrated model for understanding thinking and learning

Different researchers define and categorize cognitive skills differently (e.g. Moseley et al., 2005; Schraw et al., 2006; Kitchener, 1983). I have chosen the model introduced by Moseley et al. (2005) as it is both the result of an extensive review and evaluation of 35 different frameworks and taxonomies for understanding thinking, and is aligned with my focus on higher-level thinking skills, reflection and metacognition. This model divides thinking into two layers, the cognitive skills, and the strategic and reflective thinking (Figure 5.1). Cognitive skills are consequently divided into three categories: information gathering, building understanding, and higher level (productive) thinking. These three categories are considered to be the pre-monitored, basic cognitive skills on which knowledge of the world is built (Kitchener, 1983). The upper-layer of strategic and reflective thinking corresponds to metacognition and reflection. As can be seen in Figure 5.1, the model distinguishes the skills in this layer from the lower layer cognitive skills in that they can be employed at any of the three phases of the lower layer. The mysteries learning tool chosen, and the design of the digital version, target most of the learning skills in this model with focus on the productive learning skills, as well as the higher layer metacognitive and reflection skills. I will revisit this model in sections 5.2, 5.5.3.3, and 5.6 to show the strong correspondence
it has to the stages students should progress through in solving Paper Mysteries and the structure enforced by the design of Digital Mysteries.

5.1.2 Metacognition, reflection, and feedback

Metacognition is used to refer to “the knowledge about and regulation of one’s cognitive activities in the learning process” (Veenman et al., 2006, pp. 3). It is considered to be the higher-order agent that monitors and controls the cognitive system, and be part of that system at the same time. Metacognition can be categorized into two classes (Veenman et al., 2006; Schraw et al., 2006): metacognitive knowledge and metacognitive regulation skills. Metacognitive knowledge involves knowing about ourselves as learners (like our memory limitations); about the learning strategies that we have found useful for different situations (like note-taking, summarizing, and how to memorize a list of words); and knowing about the level of understanding about a subject, or performance and strategy during a learning task. This knowledge, however, is not necessarily accurate. Metacognitive skills, on the other hand, refer to the ability to plan, monitor, and control one’s actions during a learning task and acts as the feedback mechanism that regulates and guides progression towards the successful completion of a task. According to Veenman et al. (2006, pp. 6), evidence of metacognitive behaviour can be observed in such verbalization as “this is difficult for me, let’s do it step by step” or “wait, I don’t know what this word means.” Or it may be inferred from planned behaviours such as doing things step-by-step.

Researchers of metacognition found, as reported by Veenman et al. (2006), that while intellectual ability uniquely accounts for 10% of variance in learning, metacognitive skills accounts for 17%, and both predictors share 20% of variance in learning for students of different ages and backgrounds, and for different tasks. The implication for this, as Veenman et al. point out, is that an adequate level of metacognitive skills can compensate for students’ cognitive limitations. Such skills can be instructed by (1) embedding metacognitive instructions into learning tasks design, (2) making students aware of the usefulness of these skills, and (3) prolonged training on these skills to guarantee their application.

Reflection, on the other hand, is considered by some researchers to be “the ultimate expression of education” (Boyle, 1997), as it helps in making students aware of their thinking process (metacognition) and problem solving strategies (Boyle, 1997; Collins and Brown, 1988; Baker and Lund, 1997). With reflection, students can derive abstractions about their thinking process and compare it with their earlier performances, or to the performances of others. This enables them to identify weaknesses and areas for improvement that greatly increase the benefits gained from any problem solving process. If mistakes and weaknesses in problem solving are not highlighted and discussed, students are likely to repeat them in later attempts. This is where feedback comes into play. Feedback is defined by Hattie and Timperley (2007, pp. 81) as the “information provided by an agent (e.g. teacher, peer, book, parent, self, experience) regarding aspects of one’s performance or understanding”, and considered it to be “among the most critical influences
on student learning.” In education literature, the terms “reflection” and “feedback” are sometimes used interchangeably. While Hattie and Timperley (2007) considered information provided by oneself as feedback (which, in many cases, can be considered as an act of reflection); others, like Collins and Brown (1988) considered the process of providing information by a teacher regarding the performance of a task and how to improve it, as reflection. I use the term feedback to refer to information provided by an external agent (e.g., teacher, peer, technology, book, parent, experience) which can usually lead to self-reflection; and use reflection for the personal act of thinking back on a process or a task, whether induced by an external or internal agent.

Hattie and Timperley (2007) identified three important questions that should be targeted by feedback (and consequently by reflection) regarding a learning task:

- What are the goals?
- What progress is being made toward the goals?
- What activities need to be undertaken to improve the progress?

According to Hattie and Timperley, the answers to these questions improve learning when there is a difference between what the learners understood, and what they were supposed to understand, which as a consequence may lead to increased effort, motivation, or engagement to reduce this gap. While from the work of Collins and Brown (1988), Nunes et al. (2003), and Baker and Lund (1997) on reflection, I identified three types of reflective feedback in terms of “when” and “how” this reflective feedback is provided (post-activity, inter-activity, and part-of-activity); Hattie and Timperley (2007) identified three important types of feedback (and consequently reflection) in terms of the level of feedback (related to task, process, or self-regulation).

Task related feedback involves information about how well a task is being accomplished, such as pointing out correct/incorrect answers and what more/different information is required. This type of feedback is more powerful when learners have incorrect interpretations rather than simply a lack of understanding and, if provided properly, may lead to the development of more effective and efficient strategies for processing and understanding material. Process related feedback involves the actual processes that learners use in accomplishing the task, such as their strategies in error detection/correction, and the provision of reflective feedback that can lead to reworking, restrategizing, or knowledge reconstruction. The advantage of process-level feedback over task level is in its role in enhancing deeper learning. The self-regulation related feedback relates to how learners monitor, direct, and regulate their actions towards achieving their learning goals. Its importance comes from the fact that it leads learners to seek, accept, and accommodate feedback information, making them better learners.

In terms of when and how reflective prompts are provided, and from literature on reflection, I have identified three classes: post-activity, inter-activity, and part-of-activity. These can target any or all of the task-, process-, or self-regulatory levels. Post-activity refers to the provision of
a “playback” of a certain problem solving activity after the completion of the task in order to identify strengths and weaknesses in the process (Collins and Brown, 1988). Collins and Brown categorized four types of post-activity-reflection:

Imitation: The feedback agent here is typically a teacher who imitates what the student did highlighting the correct and incorrect aspects and the critical moments in the process. An obvious weakness in this approach is its dependence on the accuracy of the teacher’s imitation, and how confident the student is about the teacher’s imitation.

Replay: A conventional video playback of the process. If supervised by a teacher (as with imitation) correct and incorrect aspects and critical moments in the process can be highlighted.

Abstracted replay: Recordings of only critical aspects of the process, and possibly from different perspectives. This type is particularly useful when too much data is involved, thus an abstract replay helps in keeping the student’s focus on the important aspects of the process. The important issue here is in finding out the right level and type of abstraction.

Spatial reification: This is a form of a static visualization of the process that displays time spatially allowing the student and the teacher to identify critical aspects and moments of the process quickly.

Although it is clear that a teacher could use video playback to provide the first two types of reflection support, it is difficult to envisage how this might be integrated into a real-world classroom context. However, other digital technologies, have the potential to play a very useful role in providing all four classes of support.

Inter-activity reflective feedback refers to the induction of moments of reflection (that is, the opportunity to pause and think about a certain action or decision) during the activity (Nunes et al., 2003). Nunes et al. identified the types of activities that allow the integration of reflection support to be those that comprise problems that do not have a direct path leading to the solution and involve multiple steps and strategies. This is basically because problem solving inherently requires reflection to make decisions about which steps to take as well as why and when they must be employed. The benefit of such multi-stage, multi-path types of problems is that they admit the observation of the problem solving process itself, and the construction of a set of common error patterns. This potentially makes it possible for a digital system to identify problems and intervene at appropriate times (usually at the boundaries between steps). Nunes et al. suggested that such tasks should be followed with activities that encourage students to think about (reflect on) their overall problem solving process so as to maximize the benefit gained by the learner from the session. This can be achieved through any combination of the types of reflection that Collins and Brown (1988) identified.
Part-of-activity reflection involves designing tasks to include reflective interactions as part of the activity. In collaborative learning, such interactions include explanation, justification, and evaluation, which are more likely to occur in collaborative tasks than in individual learning (Baker and Lund, 1997; Dillenbourg, 1999), with peers normally playing the role of the feedback agent. The type of problems specified by Nunes et al. (2003) can still apply to collaborative problem solving tasks, with the additional requirement that the task be chosen to allow a space for the above types of reflective interactions to occur.

Reflection and metacognition correspond to the “strategic and reflective thinking” element of the model suggested by Moseley et al. (2005). As can be seen in Figure 5.1, these skills can be employed on any of the three basic categories of cognitive skills; and feedback can be considered as the mechanism that helps in triggering reflective thinking and metacognition.

In addition to cognition, and metacognition, other researchers (e.g. Kitchener, 1983; Schraw et al., 2006) add a third type which Kitchener (1983) referred to as epistemic cognition (or metametacognition). Kitchener considered epistemic cognition to be the highest monitory cognitive level that individuals invoke to monitor the epistemic nature of problems, and is affected by individuals’ knowledge of the limits, certainty, and criteria of knowing. While, according to Kitchener (1983), metacognition leads one to chose and use the different cognitive skills to accomplish a given task, epistemic cognition leads one to interpret the nature of the problem in the task and to consider the limits of any strategy in solving that task. Epistemic cognition is affected by the personal underlying epistemic beliefs which range from absolutism to relativism. Absolutism, which is common among adolescents, is grounded in the belief that knowledge is absolute and that the truth of any claim can be determined with absolute certainty. By contrast, relativism is grounded in the recognition that interpretation of knowledge and truth depends on the context (Kitchener, 1983; Schraw et al., 1995). Epistemic cognition is not a skill that can be easily taught or encouraged by technology, but it is worth noting that many researchers consider it an aspect of metacognition (Kitchener, 1983).

5.1.3 Collaboration

In Chapter 1 (Section 1.2) I talked about collaboration in terms of division of labour and how collaboration can be supported by computers. In this subsection, I discuss collaboration from a pure learning perspective. Learning, as several prominent theories have argued, is fundamentally a social activity (Roschelle and Teasley, 1995) making collaboration a natural rich environment for learning. The benefits of collaboration, and specifically between groups of peers cannot be overemphasized (Schraw et al., 2006; Soller, 2001; Boyle, 1997; Roschelle and Teasley, 1995; Stahl, 2006; Dillenbourg, 1999; Chickering and Ehrmann, 1996; Lehtinen, 2003). Peer collaboration, in addition to maintaining students’ motivation, encourages verbal communication, externalization of ideas (explaining and justifying opinions and reasoning), negotiation, and asking each others questions. Such activities prompt for reflection, metacognition, and self-regulation. Schraw et al.
(2006) emphasized the advantage of collaboration between peers as opposed to teacher-student collaboration as the former enable students to discuss strategies in the novice’s zone of proximal development.

The construction, transmission and comprehension of explanations during group work are important processes in the acquisition of knowledge (Ploetzner et al., 1999; Dillenbourg, 1999; Schraw et al., 2006; Soller, 2001). This is because the individual providing an explanation has to make explicit to others some assumptions which otherwise remain implicit, and, during explanation, may identify some missing knowledge. Such missing knowledge can subsequently be filled by deductive and/or inductive learning mechanisms (Ploetzner et al., 1999). Further more, when an individual is explaining to others, partners may identify further missing knowledge or inconsistencies, require further clarification, or present an alternative point of view. While these extra activities resulting from group discussions might lead to the assumption that explaining to others is more beneficial than explaining to oneself, Ploetzner et al. (1999) found no empirical evidence that supports this hypothesis. I do argue, however, that students reading individually do not usually build explanations for themselves, in contrast to collaboration, where the setting forces the students to build such explanations, resulting in benefits to both the student explaining, and the students receiving the explanation. Such group activities, which occur as a result of collaboration, trigger group learning mechanisms that do not usually occur in individual learning settings, including knowledge elicitation, grounding (creating common ground between collaborators), internalization (from social plane to inner plane), and the reduction of cognitive load (due to the division of the task) (Dillenbourg, 1999).

It is important to mention that, while talk is considered as the most important resource for collaboration, students are not wholly dependant on it in building and maintaining their shared understandings. Non-verbal actions, and specially gestures, do also play an important role in presenting new ideas and signalling acceptance of the ideas of others (Roschelle and Teasley, 1995). For this reason, Roschelle and Teasley (1995) identified the computer’s role in supporting collaborative learning to be that of mediating and providing motivation for collaboration, without negatively impacting on learners’ ability to talk and observe each other’s gestures.

5.1.4 Ill-defined and well-defined tasks

The choice of the right type of collaborative learning tasks for any learning situation is important. The relation between the type of task and the thinking skills used for accomplishing it has been investigated by a number of researchers (Kitchener, 1983; Schraw et al., 1995; Nunes et al., 2003). Two basic types of tasks can be readily identified (Kitchener, 1983; Schraw et al., 1995): well-defined tasks, and ill-defined tasks. According to Kitchener, well defined problems are defined as “problems for which there are absolutely correct and knowable solutions” (Kitchener, 1983, pp. 223), and hence they are constrained by having only one correct final solution, and that the solution is guaranteed by following a specific procedure. Ill-defined problems, on the other hand,
are defined as “problems for which there are conflicting assumptions, evidence, and opinion which may lead to different solutions” (Kitchener, 1983, pp. 223). Schraw et al. (1995) investigated the relation between the type of problem and learners’ thinking skills and concluded that the performance of learners on well-defined tasks was not related to their performance on ill-defined tasks; and that the epistemic beliefs of the learners (absolutism and relativism, as discussed briefly in Section 5.1.2) significantly impact on their performance on ill-defined tasks, but not on well-defined ones. Learners holding the assumption that knowledge is absolute fail to recognize the possibility of more than one correct solution for ill-defined tasks and try to solve such tasks using the same strategies they use for well-defined ones.

As previously explained in Section 5.1.2, Nunes et al. (2003) suggested multi-step ill-defined problems to allow for inter-activity reflection at step boundaries. At such points, past decisions can be reflected upon, and upcoming decisions considered in advance. Moreover, ill-defined collaborative tasks have been found to encourage part-of-activity reflection better than individual learning tasks, due to the important feedback provided by peers in this type of problem solving (Baker and Lund, 1997; Dillenbourg, 1999). If we are to design an application for fostering higher level-thinking, reflection, and metacognition, and one that affords opportunities for providing useful feedback, we must carefully choose learning tasks that are ill-defined, inherently collaborative tasks, rather than well-defined ones.

5.2 Mysteries

Mysteries is a learning tool that “provides evidence of pupils’ cognitive processes through the observation and analysis of pupils’ manipulation of data slips to solve the mystery” (Leat and Nicholas, 2000, pp. 103). Mysteries falls into the collaborative, ill-defined category of problems. With its design and open question, mysteries aims to promote higher-order thinking skills, reflection, and metacognition; and consequently serves as an assessment tool for these skills.

Paper Mysteries are usually solved by groups of two to four students. The information of the mystery is often presented in 15-30 slips of paper (Figure 5.2) with one open question (e.g. “Should Annie leave Windy Creek or should she stay? And why?”), which may be supplemented by closed questions (e.g. “Has the population of Windy Creek increased or decreased since 1939?”). Students are encouraged to use as much of the data as possible in formulating their answer. The data in these slips can relate to a wide range of matters such as geographic, physical, and human aspects of the subject, and normally includes the following:

- A narrative thread, which is usually about people doing things or things happening to people to capture students’ attention.

- Contextual place/time information (referred to as trigger factors).
Figure 5.2: Sample slips of the Windy Creek mystery. The mystery contains 20 slips, and the question is “Should Annie leave Windy Creek or should she stay? And why?”

- Abstract information that is more challenging for the students to incorporate in their explanation.
- Irrelevant information (referred to as red herrings). Students do not always identify the red herrings as such, and they are included with the intention of increasing the openness and ambiguity of the task.

Leat and Nicholas (2000) reported that researchers investigating the process of solving mysteries and the quality of written work about the mystery, found a relationship between the way in which the students manipulated the mystery slips and the quality of their written work. This lead to the conclusion that the very process of moving and grouping the data slips reflected the cognitive processes of the students. It was also found that mysteries worked best when the task did not have a single right answer and when the teacher played a role in supporting groups and individuals who struggled to make progress. With many groups (but not all), the task of solving the mystery was divided into three stages clearly marked by sudden changes in the way data was organized. This, in some cases, was accompanied by a change of thinking before data items were moved. Although a particular group can miss a stage, compress stages or work on two stages simultaneously, the stages that students normally progress through are as follows:
The display (reading) stage: At this stage students familiarize themselves with the data. This is done in a number of ways such as distributing the slips among the students and reading them aloud in turns before laying them on the table, or just spreading them out on the table. The main goal of this stage is to comprehend the data items. The thinking skills used in this stage relate to those in the information gathering element in Figure 5.1.

The setting (grouping) stage: In this stage, the students usually organize the data into groups with common characteristics. The variety of strategies adopted in making the associations may reflect the cognitive abilities of the students. In general, Leat and Nicholas (2000) found that the number of data items which the groups fail to attach a meaning to was inversely related to overall ability level of the group; all groups, regardless of their achievement level, created a reject pile; and that lower achieving groups tended to jump into conclusions at this stage and usually formed large reject piles. In this stage, students are encouraged to find interpretations of data items that go beyond their literal meaning. The accumulation of meaning attached to each item is reflected in the physical manipulation of data items to form groups. The skills used in this stage relate to those in the building understanding element in Figure 5.1.

The sequencing and webbing stage: Not all groups demonstrate this stage. However, the majority of the groups start to identify relations between sets of data items and between single items. In some cases these relations are laid out in simple linear sequences comprising a casual explanation. More able groups constructed relations that are non-linear, webbed patterns representing multiple inter-relationships. In this stage, and in looking for relations between the data slips, students use inferences that interpolate and extrapolate beyond the given data. The skills used in this stage relate to those in the productive thinking element in Figure 5.1.

Some groups of higher achieving students progress to two additional stages that are more difficult to clearly distinguish from the webbing stage, these are the reworking and the abstract stages. In the reworking stage some groups start to rework their layout and reconsider slips from the reject piles. In the abstract stage the physical manipulation ceases, but as a result of having internalized the information content of the data items, discussion continues to explore new relationships and hypotheses.

Leat and Nicholas (2000) also used a stimulated recall session, conducted after the task, in which a video recording for the session is played back to students and they are asked to comment on what they were doing and thinking as they worked. This serves to both assess, and raise students’ awareness of, metacognitive skills. This stage corresponds to the reflective thinking skills in Figure 5.1.

In summary, “With mysteries, the physical act of moving a data item to join another to form part of a set, a casual chain or a link between factors has to be explained to the group and often justified. Reasoning has to be externalized, creating the conditions for shared reasoning” (Leat and
Nicholas, 2000, pp. 117). This means that, the process of solving mysteries encourages students to use, and make visible, higher-order thinking skills; making it possible for teachers to observe the development of understanding by the students during the process.

Based on observations of students’ difficulties at certain stages of solving mysteries, a number of specific cases have been identified, and interpretations and possible interventions proposed (see Leat and Nicholas (2000) for a detailed description of these). For example, when it is observed during the setting (grouping) stage that students are unable to group data items, one possible explanation is that students have inability to identify more important characteristics to inform classification and an inability to utilize prior knowledge. Possible interventions include helping students identify common characteristics between slips by giving them examples, and refreshing students’ memory of past learning. Another example is when students end the sequencing stage with unsorted groups of slips, this can be interpreted as an inability of the students to identify sequences of events or causal relationships, and a possible action to take is to ask students about what happened before or after a certain event in the mystery.

5.3 Computer support

5.3.1 The added value of technology

The previous sections provide a technology-independent background on learning skills, types of learning problems and their relation to learning skills and collaboration. Technology can play an important role in developing learning skills and improving the quality of collaboration. With regards to feedback and reflection, for example, (Collins and Brown, 1988, pp. 4) emphasized the importance of computer support as “a powerful, motivating, and as yet untapped tool for focusing the students’ attention directly on their own thought processes”. Based on the well established benefits of feedback, reflection, and metacognition to learning (Section 5.1.2), one of the main goals of the design of the digital version of mysteries was to provide adequate reflective feedback at the right points in time within the process. Moreover, although solving a paper mystery includes a degree of externalization of thinking (as reflected by the layout of paper slips on the table), in order to make students attend to their thinking process strong support is required from the teacher throughout the process, ideally followed by a stimulated recall (video playback) session. This is unlikely to be a practical option in most classroom settings and is an area where digital technology, and in our case digital tabletop technology, has the potential to make a significant impact (Nunes et al., 2003; Collins and Brown, 1988). With computer support it is also possible to enforce a structure to learning tasks. When students are faced with a large problem solving task, instructional design principles based on behavioural learning theory emphasize the importance of dividing the tasks into smaller intermediate targets (Boyle, 1997). Teaching students to divide the task of solving a mystery into smaller sub-tasks with distinguished sub-goals, helps in shaping the students’ problem solving behaviour and encourages them to transfer this approach to solving
other problems. Computer support allows the enforcement of a structure on the task to help achieve this desired behaviour. Structuring the task also plays an important role in inter-activity reflection by making it possible to provide feedback and reflective feedback prompts at appropriate moments in the process.

Another obvious potential contribution that digital technology can make to learning practices is in the provision of coaching. Based on Vygotsky’s theories (Vygotskiï et al., 1978), the two primary processes in coaching are scaffolding and fading (Boyle, 1997). Contrary to my previous discussion of feedback, which is indeed considered as part of scaffolding, scaffolding support in coaching is used to refer to things from the teacher’s perspective, rather than that of the learner. In other words, with regard to coaching and scaffolding, we are interested in the roles that technology can play to reduce the load on the teacher (rather than the student). The concept of scaffolding is strongly related to Vygotsky’s notion of the Zone of Proximal Development (ZPD). The ZPD refers to the difference between what a child can achieve alone and what she can achieve under the guidance of an adult or in collaboration with more able peers. The term scaffolding refers to this guiding role of the adult, which normally includes acquiring and maintaining the child’s interest, establishing and maintaining focus on the task goals, providing a structure to the task, highlighting the important features that a child might overlook, demonstrating how to achieve goals, and helping in controlling frustrations by children when faced with complex tasks (Leat and Nicholas, 2000; Stahl, 2006). Fading is a closely related term and refers to the progressive reduction in the level of support, to the point where a child can solve the problem alone.

One of the key issues in computer support is the provision of scaffolding at the right time (Stahl, 2006). Applications must identify breakdowns and provide suitable information accordingly. Information provided at the wrong time is perceived as an undesirable interruption and will more likely be ignored. The design of Digital Mysteries takes this into consideration and makes use of the enforced task structure by providing tips only when students perform a task incorrectly and at stage boundaries. Consequently, such tips will not appear for more able students, or more precisely, such support will fade as the students improve their problem solving strategies. It is important, however, to balance between providing structure and support for low achieving students, and avoiding gratuitous structure and interruptions for higher achieving students.

When it comes to supporting collaboration, although the parallel interaction afforded by tabletops is likely to lead to more equitable participation, this may not always be desirable. In some cases, single point interaction can promote higher quality discussions; and while multi-input encourages shy learners to participate and reduces the dominance of one member of a group, it reduces the likelihood of lower achieving students learning from the higher achievers (Birnholtz et al., 2007; Do-Lenh et al., 2009; Hornecker et al., 2007). The design of Digital Mysteries targets this issue by striking a balance between parallel and single input, increasing the awareness of participation levels, and forcing collaboration at certain moments in the interaction.
Computer support can also play an important role in making the students’ cognitive processes more accessible to interpretations by themselves, and by external observers. Stahl (2006) considered the study of group cognition to be considerably easier than studying individual cognition since students in a group “must display to each other enough that everyone can judge where there are agreements and disagreements, conflicts or misunderstandings, confusions and insights” (pp. 222). Although his primary focus was on network-based environments (synchronous and asynchronous), Stahl’s account of group cognition manifests the concept of externalization as a catalyst for useful learning. This view on the positive consequences of collaboration in making learner’s thinking accessible is also shared by a number of other researchers (e.g. Roschelle and Teasley, 1995; Lehtinen, 2003; Van Der Linden et al., 2000). The implication for tabletop technology is that the more an application encourages and helps students externalize their thinking, by making it visible on the table or through discussion, the greater the probability that students will need to explain their thinking, thereby promoting the positive learning mechanisms introduced in Section 5.1.3. Consequently, a fundamental motivation underpinning the design of Digital Mysteries is the provision of tools for the students that encourage them to make visible on the table (i.e. visible to others) as much of their thinking as possible.

5.3.2 Tabletops and computer supported collaborative learning

As argued in Section 1.2.4, the current paradigm of CSCL research excludes face-to-face collaborative settings and instead focuses on synchronous, or asynchronous networked environments (Hilliges et al., 2007; Lehtinen, 2003). This demonstrates a significant shift from early research conducted in the 1990s (Crook, 1994; Roschelle and Teasley, 1995) where the role computers could play as tools for supporting small groups collaborating around shared computer displays was investigated. Tabletop technology provides an opportunity to reintegrate the challenge of providing computer support for face-to-face collaborative learning within CSCL research.

The class of computer support that I seek to explore was best described by Stahl (2006) and can be summarized as follows: the focus is on the group rather than the individual; the activity is that of constructing new knowledge rather than on working on, or transmission of known facts; learning is supported by computers rather than taking place in isolation; the interaction is collaborative and not competitive or accidental; and finally its orientation is on discussion, debate, argumentation, and deep understanding and not on drills or practising elementary facts.

My goal is to utilize the unique affordances of tabletops that distinguish the technology from traditional computer-based learning settings in the following:

- Supporting learners’ thinking skills in particular their higher order thinking skills, metacognition and reflection. This is achieved by:

 - Selection of an appropriate class of collaborative task. I have selected Paper Mysteries which is inherently a collaborative task that focuses on higher level thinking skills and
metacognition. At the same time, mysteries satisfies the criteria suggested by Nunes et al. (2003), Baker and Lund (1997), and Dillenbourg (1999) for supporting interactivity and post activity feedback and reflection opportunities.

- Supporting reflection, which (with the help of the supervisor) can make the students aware of their metacognitive skills.

- Supporting activities and behaviours which, according to the theories of learning, increase the probability that useful learning mechanisms occur. For example, encouraging externalization and structuring the task.

- Providing useful and timely feedback to the students.

- Reducing the level of support required from teachers and classroom assistants by the provision of scaffolding and fading.

- Encouraging effective collaboration by switching between multi-synchronous input, single input, and enforced collaboration, in addition to visualizing participation levels.

The design also ensures that it does not impose any restrictions on the students’ non-verbal communication. This is achieved by selecting a technology that does not limit the students’ movement (i.e. force students to sit or stand in fixed positions as in the DiamondTouch table (Dietz and Leigh, 2001)), and by using interaction techniques that are orientation independent and that can be used from any location.

5.3.3 Evaluating the benefits of computer support

Studies investigating the impact of thinking skills (Higgins et al., 2004; McGuinness, 1999) showed clear evidence of their positive effect on students’ achievements in both curriculum and non-curriculum measures. These studies emphasized the need to teach thinking skills in the curriculum with a metacognitive prospective, and to encourage collaborative learning. Higgins et al. (2004) made the important point that the improvement in the students may not be immediately apparent, and that there may be a significant delay before the effects start to be reflected in tests and exams. Crook (1994) made similar claims in relation to the evaluation of the impact of computer technology within education, that such evaluation should go beyond input-output tests and should be measured within the broader patterns of use. Accordingly, I chose not to base the evaluation of the developed tabletop application on pre-test and post-test learning measures. Instead I sought to validate that the application satisfies its design goals in encouraging activities that utilize and teach thinking skills (e.g. encourage externalization of thought and therefore increase the opportunities for useful discussions); encouraging collaboration; and providing reflective feedback.
5.4 Distributed cognition as a design framework

Digital Mysteries is a collaborative learning tool used by a small group of students working around a digital tabletop. This group of students is usually supervised, and possibly assessed, by a teacher. The elements involved in this case include the students, the tabletop, and the teacher. The desired outcome is not just the final solution of the problem, but also the building of knowledge during the process. To inform the design of such a complex system, it is not possible to think in terms of traditional HCI design guidelines, or even digital tabletop design guidelines as these mostly focus on the interaction aspects of the design and overlook the cognitive, social, and organizational aspects that are involved (Rogers and Ellis, 1994). Looking at this system from the perspective of distributed cognition theory (described in Section 1.3.2) (Hollan et al., 2000; Rogers and Ellis, 1994; Norman, 1993; Halverson, 2002; Nardi, 1995), on the other hand, brings into focus the functional system, its inputs and outputs, the intermediate representational forms, the goal and background of the activity, the available resources, and any environmental factors that contribute to the accomplishment of the task (Perry, 2003). When designing a system for a classroom, we cannot realistically control the people or the environment, but we can control the elements of the resources that include the tools, and the representation states involved. The aim is that with a good design, the system will positively affect the people and the work environment leading to better interactions and enhanced learning. Distributed cognition theory (DC) was therefore used to guide the design and evaluation of Digital Mysteries. Halverson (2002) highlighted the weak descriptive power of DC, compared to such theories as activity theory, which limits its rhetorical force when used to communicate a work setting or an implementation that is guided by the theory. He also highlighted the difficulty in applying the theory to actual settings. Therefore, even thought the effect of DC on the design of Digital Mysteries might not be very clear, its underlying concepts motivated different aspects of the design and evaluation of the application. Among the aspects of DC that had direct influence on the design are

- Making use of the concepts of externalization, representation states, and cognitive tools to think of how it is possible to design tools that encourage students to externalize their thinking into persistent representations states that are more accessible to external observes, and that can be logged by the system.

- The importance of utilizing the space, in this case the tabletop surface, to share the cognitive load. As discussed in Section 2.2.1.1, the space can be used to simplify perception, choice, and internal calculations, and also to structure and mediate collaboration. Therefore, DC highlights the importance that the persistent representations states be ones that are manipulable on the table surface.

- The importance of looking beyond the tangible outcomes of the process, and to look at the verbal and non-verbal behaviour of the people involved during the process as an important
part in the collaborative process (verbal and non-verbal behaviour of people around tables from a DC perspective is discussed in Section 2.2.2). Maintaining barrier-free visual and verbal communication channels, and allowing students the freedom of movement around the table, were therefore other main design goals of Digital Mysteries.

The concepts of cognitive tools and representation states had direct implications on the design of Digital Mysteries and are therefore discussed in more details below.

5.4.1 The Tools

Digital Mysteries was developed for a top-projected prototype, multi-pen, horizontal Promethean Activboard (1024 × 768 resolution) specially developed for the application. Activboard uses a solid front projection surface which students can (and do) safely lean on, giving it many of the physical affordances of a real table. The board reacts to three battery-free pens that look and feel like normal whiteboard pens. The two principal physical tools involved in Digital Mysteries are the table and the pens. In designing the application we anticipated its use on either a pen-based or a touch-based platforms. Consequently, for the pen-based Activboard we focused on maintaining direct touch interaction and the use of an interaction technique suitable for both pen-based and touch-based input.

The social affordances of traditional tables as outlined in Section 1.4.1 underpin the collaborative learning environment. These affordances establish the conditions for effective learning activities, including conversation and argument, by allowing people to have fluid, face-to-face, barrier free communication. The horizontal surface of the table allows physical support and provides a space that can be used to reduce cognitive load (Hollan et al., 2000). Moreover, tables allow people to use the surface to structure and mediate group collaboration (Tang, 1991; Kruger et al., 2003; Scott et al., 2004). Implementing Digital Mysteries in a traditional computer setting whether using a desktop computer, an interactive whiteboard, or even a network based solution means sacrificing many or all of these qualities. The unique advantage of digital tabletops is that they maintain many of the benefits of traditional tables, yet allow for the addition of digital functionalities afforded by traditional desktop settings, such as structuring the task, logging, and feedback, in addition to digital functionalities afforded only by tabletops such as multi-synchronous input and direct-touch interaction (see Section 1.4.2). As well as the pen and table as physical tools, the design of Digital Mysteries uses a number of virtual tools (e.g. grouping, post-it note, and sticky tape tools) to satisfy the design goal of externalization (these are discussed in detail in the following sections).

5.4.2 Representation states

The approach used by DC to understand interactions between people and technology is to study the transformations of representation states during the process. DC places a clear emphasis on
representation states and their importance to cognition. Representation states are not necessarily bound to material objects, but may be mental representations, audio representations expressed in conversation, or physical movements such as gestures. Representation states are transformed by tools. Thus a mental representation may be transformed into a written note on a piece of paper. The concept of cognitive tools, and how they can be used to make mental representations accessible to interpretations, played a significant role in shaping the design of the externalization tools for Digital Mysteries.

5.5 Mysteries: from Paper to Digital

An iterative design process was used in the development and refinement of Digital Mysteries. In the first exploratory study, I monitored students solving both a Paper Mysteries problem and a very basic digital version of the paper task. Based on observations from the first set of trials and using theories and concepts of learning, collaborative learning, and computer supported learning, a second version of Digital Mysteries was developed for which I used distributed cognition as a framework to translate these theories and concepts into digital features and functionalities. The third digital version was a refinement of the second version and was an incremental response to the different issues that arose from the analysis of the application in use and the behaviour of the students that used it.

5.5.1 First iteration: design

The first stage in the iterative design process included an exploration of how students solved a paper mystery “in the wild” (i.e. in a real school) and how this might differ from their use of a very basic digital version of mysteries. The digital version was in effect a direct digital translation of Paper Mysteries with a basic set of features for moving, rotating, and resizing the digital versions of the paper slips. These actions were all performed by clicking or dragging on icons located at the corners of the slips (Figure 5.3). To overcome the projector’s low resolution, slips were by default displayed at a relatively small size (so that all the slips would fit on the display) but this led to the text on some of the slips being too small to read. The application provided an enlarged size for each slip at which scale all the details were clearly legible (Figure 5.4 shows the slips with the one in the centre in enlarged size). The application also allowed learners to draw on the background with the pen. While in most Paper Mysteries all the slips contained purely textual information, the mystery used in these trials contained some slips that were enriched with pictures in addition to text, with a view to making the mystery more visually engaging. The same slip designs were used in both the paper and the digital versions, but in the case of the digital version, and for slips with a lot of details, only the enlarged size showed all the details clearly.
Figure 5.3: Slip manipulation icons for the first version of Digital Mysteries.

Figure 5.4: A screen capture for the first version of Digital Mysteries showing slips in normal size (which is not always readable) and one enlarged slip in the middle.
5.5.2 First iteration: trials and observations

Two paper-based trials, and two digital trials, were conducted with four different groups of three students each, aged 11-13 years. The duration of the sessions ranged from 45-60 minutes. The main goals of these trials were to understand the general behaviour of students in solving mysteries, identify breakdowns in the process, examine how well the layout of the slips reflects the thinking of the students (level of externalization), and to make general observations to guide the initial design. Observations were made on the basis of repeated viewing of video recordings of the sessions.

5.5.2.1 General layout and externalization

The layout of the paper slips during the process of solving the mystery reflected little of what the students were thinking. Paper slips were scattered into a small number of piles and adjacent slips. It was not clear whether paper slips next to each other formed a sequence, a pile that was intentionally organized in this way, a red herring pile, or simply a bunch of unattended slips (Figure 5.5). In a discussion with the students after the trial, one student said “we read them lots and we had them in our heads so we were moving them around in our heads.” Students frequently used terms like “these” and “those” to refer to the groups (which were not named) and unless the other students were paying attention to associated deictic gestures, misunderstandings occurred. This also meant that the teacher could not understand the layout without closely monitoring the students' behaviour, or explicitly (and repeatedly) asking them about it, for example, consider the following exchange at the end of one of the sessions:

teacher: tell me a bit more of what this bit is about?
student: that’s about the car
teacher: and what this bit is about?
student: about the dangerous corridor

For the digital version, the layout was also not readily understandable to an external observer. Students created only one or two collections of slips in each session and created numerous scribbled annotations on the table for which original references were quickly lost as slips were subsequently manipulated (Figure 5.6). This also meant that it was not easy for the teacher to know what the students were doing and she had to ask them to explain their actions so as to identify when scaffolding was needed.

teacher: what are you trying to do right now, are you trying to link them?
student: just try getting them into groups and then we will start linking them
5.5.2 Breakdown moments

For the paper version, when discussing paper slips that were part of a sequence or a group, and due to the slips’ small size, students felt the need to pick the slips up to bring them into focus. In one case a group lost the red herrings pile and had to re-examine the groups to locate it. In another case an accidental movement scattered the layout and students had to re-work it again.
For the digital version students made use of the ability to write and mark areas on the background. They drew circles around grouped slips, named the groups, drew lines and arrows to connect slips, and wrote short notes. However, drawing on the background lost its value (and caused confusion) when the group or some of its slips were moved, leaving empty circles, or connecting lines that either pointed to empty space, or to the wrong slips. Drawing was a light-weight action, but did not prove to be useful as the drawing action, whether for writing or drawing lines, went unnoticed by other students and did not result in discussion. Nevertheless, a clear need to define relations, distinguish groups, and mark slips with certain comments was established.

From an interaction perspective, we noted that students had difficulty in targeting the small icons on the corners of the slips to resize or rotate them. Point-and-click did not appear to be an appropriate type of interaction.

5.5.2.3 Common observations between paper and Digital Mysteries

For both the Paper and Digital Mysteries, it was clear that the students did not have suitable tools to encourage and help them externalize their thinking. There was no clear distinction between the reading, grouping, and webbing and sequencing stages that higher achieving students usually go through in solving Paper Mysteries. Students started grouping as they were reading, and paid little attention to the (most important) webbing and sequencing stage. Other than some small sequences, many slips were not considered to be part of the solution. One group using the Digital Mysteries did not perform any sequencing and stated their conclusion as soon as they finished grouping. The digital version added little to the learning experience, and in both cases students had to be monitored very closely by the teacher in order to understand what they were doing and to assess their level of thinking. This left little opportunity for students to reflect on their work (a task that had to be driven entirely by the teacher).

Regarding equity of participation, without careful continuous observation of the groups, it was difficult to know if group members were participating equally, if a group member was dominating, or if a group member was under participating. As for utilizing the physical affordances of the table, in both the digital and paper cases students lent on the table much of the time and moved around it as they worked. Maintaining the ability to lean on the table and not restricting the students’ mobility were thus considered among the design goals for the second version.

5.5.3 Second iteration: design

5.5.3.1 Interaction technique

The initial trials identified the difficulty that students had in targeting small icons using a point-and-click-like interaction technique. The crossing-based polar gates introduced in Chapter 3 (see Section 3.4.2) on the other hand, proved to be easy to learn and use, and were thus incorporated in the second iteration. I used a modified form of the polar gates technique (Figure 5.7) as a unified
interaction technique for all slip manipulations and tool selection. I also noted that in the first trial of the Digital Mysteries, students used the enlarged size to both read the slips and as a way of attracting the attention of other students (i.e. a role similar to picking up a paper slip to bring it into focus). When a slip is enlarged it occupies a large area of the table’s surface making it easy for all the students to read the slip and discuss it (this was a clear advantage of the digital version over Paper Mysteries). I also noted that students iconified slips both when they felt they were not important, or when they had internalized their contents. Manual resizing to other than the iconic, normal, and enlarged sizes was very rarely used. I therefore decided to support only three sizes for the slips: iconic size, normal size (readable but not always showing the full details), and an enlarged size (full details), and removed support for manual resizing (Figure 5.8). Starting with this stage, all the slips in a digital mystery, must now contain some visual clues (images or backgrounds) that help the student uniquely identify slips even when they are displayed as icons and their textual contents are not readable. This also helps in making the mystery more interesting and engaging for the students (compared to purely text-based slips).

5.5.3.2 Externalization and cognitive-tools

Guided by distributed cognition theory, in the second iteration I sought to create a set of cognitive tools that would help transform students’ internal representation states to forms observable on the table. In particular I wanted to make specific the groups and relations that the students are thinking of in addition to allowing the students to externalize other thoughts in the form of textual notes. For this I added a grouping tool, a relation tool, and a post-it note tool (Figures 5.9 and 5.10). The grouping tool was introduced to make the action of grouping more explicit by eliminating cases in which students just pile up slips without thinking explicitly of what the piles represent. The use of the tool also makes clear the difference between attended and unattended slips at the grouping stage. By selecting the grouping tool, the application creates an empty group and asks
Figure 5.8: The three display sizes for a slip: iconic, normal, and enlarged: (a) the clock in the iconic size serves as a clue to the slip; (b) the normal size shows all the details in this case; (c) the enlarged slip serves to attract attention, and in some cases to show extra details.

for a name to be assigned to this group. When the group dialog box appears, a soft keyboard is maximized, and the application stops all other interaction so as to focus all the students’ attention on the activity of creating the new group. Groups are represented by semi-transparent, re-sizeable, rectangular areas. A slip is made part of a group by dragging it inside the group area. The grouping tool, thus, is used to help in building a representation state that emphasizes the students’ analysis and classification skills.

The relation tool allows students to mark tightly related slips or to build a sequence. When selected, a small sticky-tape-like shape is created on the table. If the sticky tape is placed on two adjacent slips, it becomes clear that these two slips are related. Slips that have been associated together by the grouping tool or the relation tool are moved and rotated together. The relation tool is introduced to help in building a representation that emphasizes reasoning and models of causation which require higher level skills than those utilized using the grouping tool. The post-it note tool aims to encourage students to record their thoughts for themselves and for others. When the post-it tool is selected, a small post-it-like rectangle appears on the table and the soft keyboard is enlarged. Notes can be manipulated (rotated, re-sized, grouped, or sticky taped to another slip) just like normal slips. The group, sticky tape, and note tools, in addition to prompting for building
different representations of the same problem, and in making the thinking of the students visible on the table, create a space for discussion, explanation, and disagreement around the act of creating and using them.

5.5.3.3 Structuring the task

When a group of higher achieving students solve a paper mystery, they typically do so in three stages: reading the slips, grouping the slips, and putting the slips in branched sequences (Leat and Nicholas, 2000). The last two stages correspond to two different perspectives of the problem, or in terms of DC theory, two different representation states for the problem; the first in terms of relations and categories and the second is in terms of time sequences and models of causation. These transformations help the students clarify and elaborate on their reasoning. Moreover, reading and understanding the slips in stage one, grouping and organizing the slips in stage two, and finding
time and cause-and-effect relations in stage three correspond to the three main categories of cognitive skills classified by Moseley et al. (2005): information gathering, building understanding, and productive thinking (Figure 5.1). The second iteration of the Digital Mysteries design aims to emphasize these tasks, and enforce these different representation states, by dividing the application into stages. This division enforces a structure on the task which in turn has its own learning benefits (Dillenbourg, 1999; Boyle, 1997; Jermann et al., 2001). For each stage, the application displays a set of clear and simple instructions about what is required from the students, and how to proceed to the next stage (Figure 5.11 shows the modified instruction dialogs that appear at the beginning of each stage for the third version of Digital Mysteries).

The reading stage starts with all the slips displayed as icons and does not provide any tools other than the slip manipulation tools. When the application detects that all the slips have been enlarged at least once, it assumes that all the slips have been read and moves on to the next (grouping) stage. The grouping stage makes three externalization tools available: the grouping tool, the sticky tape tool, and the post-it note tool. Other tools are provided: a save/restore tool, a help tool, and a participation meter tool. The grouping stage ends when all the slips have been grouped. Two pre-defined groups are provided: a red-herrings group and a background information group. Empty groups, sticky tapes, and post-it notes may be deleted by throwing them into a trash area.

When the last ungrouped slip is placed into a group, the application moves to the final sequencing and webbing stage. This stage does not provide new tools, and what is required from the students at this stage is to use the same tools (mostly the sticky tape tool) to arrange the slips in a branched sequence layout that reflects their reasoning – showing the sequence of events and cause-and-effect relations. This stage finishes when the students agree amongst themselves that they have completed the task. The aim of the save/restore tool is to allow students to store their current layout, try other layouts, and revert to the previously saved layout if desired. The help tool provides grouping tips if used during the second stage, and sequencing or general mystery-related tips if used during the third stage. Finally the participation meter shows pie charts indicating the proportion of the different actions that is due to each student, these include slip manipulation, grouping related actions, notes related actions, and relation related actions (Figure 5.12). With regard to slip manipulation, each act of movement, rotation, or resizing of a slip is counted as one action. For grouping, each act of creating/deleting a group, adding a slip to a group or removing a slip from a group is counted as one action. Similarly for notes, each act of creating/deleting a note or modifying note content is counted as one action. Finally for relations, each act of creating a relation, or modifying a relation by adding or removing a sticky tape is counted as one action.

5.5.3.4 Supporting collaboration

As discussed in Section 5.3.1, Digital Mysteries aims to strike a balance between providing single and multiple access points, in addition to forcing moments of collaboration and increasing collaboration awareness. The application allows multiple-synchronous input for normal slip ma-
Figure 5.11: The introductory dialogs that are displayed at the beginning of each stage. This Figure shows the simplified version of the dialogs as used in the final version of Digital Mysteries.
nipulation, but when the “create new group” command is selected (by any student) the application disables all kinds of slip manipulation interactions, and displays a single soft keyboard on the screen. Here the aim is to attract all the students’ attention to the act of selecting a group name, therefore creating opportunities for discussion and negotiation and preventing such important acts from going unnoticed. Moreover, when any of the introductory, help, or statistics dialogs appear, they show three “OK” buttons one for each student. A dialog does not close until each of the students presses his/her corresponding button to ensure that all students fully read (and agree on) the contents (Figure 5.12). Finally, throughout the task, the application shows a general participation meter, a pie chart at the top left corner of the screen (Figure 5.12) that shows the percentage of participation of each students based on the total time the pen of each students is dragged over the table. Although this is not a very accurate measure, it serves as a general indicator to the level of participation of each student, and therefore can also be considered as a tool that promotes reflection on the group process.
5.5.3.5 Scaffolding, feedback and reflection

Scaffolding, as discussed in Section 5.3.1, includes the provision of feedback and therefore the induction of reflection on the side of the students. To recap, scaffolding includes maintaining the students’ interest and focus on the task goals, providing structure to the task, highlighting important aspects during the process, explaining how to achieve goals, and controlling frustration. Maintaining students’ interest in the task can be achieved by the mere presence of technology. Using new technology, in particular digital tabletops, was found to play a significant role in maintaining students’ interest and motivation to complete a given task (Piper and Hollan, 2009; Do-Lenh et al., 2009). The structure enforced on the task, in addition to serving the goals discussed in Section 5.5.3.3, can also be considered part of the scaffolding that would normally be provided by the teacher. Moreover, dividing the task into stages, allows for the provision of simple instructions at the beginning of each stage which can serve to maintain the students’ focus on the final goal and sub-goals, and highlights the important aspects in the process. Finally, the provision of help upon request aims to support the students at moments of frustration.

5.5.4 Second iteration: trials and observations

For the trials of the second iteration prototype, the Activboard hardware was integrated into a large custom made table (Figure 5.13). The table was made large enough (185 cm × 140 cm, and active display area of 160 cm × 120 cm) and rigid enough to provide the same physical affordances as a normal collaborative table. The table was installed in a local high school where I ran six sets of trials with six groups of three students (age range 11-13 years). Three new mysteries, of different levels of difficulty, were created for this purpose and assigned to groups based on advice from the teacher and her knowledge of the achievement levels of the students. The trials at this stage aimed at validating the design decisions, spotting weaknesses in the design, evaluating the interaction technique, and provide guidelines for the final design. All the trials where video recorded and the analysis was conducted by repeatedly watching the recorded sessions and reflecting on them. A fully detailed analysis is reserved for the final design.

5.5.4.1 Interaction technique

Students did not have any difficulty learning and using the interface, including the crossing-based polar gates interaction technique. With directions from the teacher, students typically spent 5-10 minutes to learn about mysteries in general, and features of the Digital Mysteries application in particular. Students worked from all sides of the table, demonstrated a degree of mobility (around the table) and used the orientation technique to rotate slips in different directions. Students even created multiple sticky tapes by repeated crossing without being informed of this capability. No requirements for further improvements on the interaction techniques could be identified.
5.5.4.2 Externalization and task structure

Grouping stage: Students were required to create groups, but no limitations were enforced as to the number and naming of the groups. Consequently, the number of groups created and their assigned names varied significantly between the groups. Four of the six student groups created only one or two new groups, while another group of students created five new groups in addition to the red herrings and background information groups. Group names also ranged from “g1” and “g2”, to more descriptive names such as “reasons 4 being late”. The sticky tape tool was very popular and most students used it with some enthusiasm to associate strongly related slips. Different student groups used notes to different extents, with one group using none and another creating 8 notes during the session. When used, the notes gave a clear picture of what the students were thinking of. However, this was more true for groups identified as higher achieving by the teacher, while low achieving students created fewer groups, used less analytical names, made fewer relations, and wrote fewer notes. This observation showed a clear correlation between the extent of using the tools (level of externalization) and the attainment level of the students.

Sequencing stage: A clear need for improvement in the sequencing stage was made evident by the weak performance of most of the groups in this stage. Only two groups created appropriate sequences (with some branches). One group created a linear sequence without any branching, and
the other three groups did not create any kind of sequence. Two of these three groups created piles of slips with sticky tapes on them, and the third left the slips unattended in their groups. Nevertheless, this showed that the application made the distinction between higher and lower achieving groups (as previously identified by the teacher) readily observable.

5.5.4.3 Collaboration

An examination of the percentages of interaction times for each student for the six groups showed that for two groups two participants dominated the sessions with percentages slightly exceeding 50%. No participant showed a percentage of less than 10% although in two groups two participants came close to (about 12%). Nevertheless, there was no evidence from the video logs of the six sessions that any of the groups seemed to make note, or take account for the participation pie chart. The small size and the location of the participation pie chart is one possible reason for this.

5.5.4.4 Scaffolding, feedback, and reflection

The role that the technology played in maintaining the students’ interest was very obvious. Students expressed their full engagement in the process and their surprise that the task actually lasted 45 to 60 minutes. The instructions given at the beginning of each stage were found to be very useful in maintaining the students focus on what was required from them at each stage, but the need for simplifying the instructions even further was identified (Figure 5.11). The help feature, on the other hand, was not used by any of the groups. Consequently, I specifically asked one of the lower achieving groups who were struggling with the exercise to use the help feature, but the students went over the tips quickly without paying attention to their contents or benefiting from using them.

5.5.4.5 Other observations

None of the groups used the save/restore functions. When the teacher asked the students about their answer to the mystery, they did not seem to fully agree on one and only found the need to discuss a common answer upon the teacher’s request. Finally, the students utilized the physical affordances of the digital table just as they would a normal table. Students lent on the table and moved around it freely during the task.

5.5.5 Third (and final) iteration: design

Most aspects of the tools provided in the second iteration were successful in satisfying the design goals, but still more improvements can be made, particularly for lower achieving groups. The principal goals of the final design were to (1) encourage students to undertake more extensive and explicit grouping of the slips; (2) encouraging students to do proper sequencing and webbing; (3) provide more effective and integrated scaffolding for low achieving groups; and (4) add explicit
support for reflection and help students become more aware of the problem solving strategies they have employed.

Figure 5.14: The grouping stage showing the group rating traffic light.

5.5.5.1 Improvements in the grouping stage

When it occurred, the act of creating a group and giving it a descriptive name was found in many cases to trigger useful moments of discussion. For the new version, students are asked to create at least four new groups in addition to one pre-defined red herrings group. Group names are required to have at least three letters; otherwise, the application reminds the students to use meaningful names. To increase the students' awareness of the quality of their grouping, a traffic-light-like presentation of the quality of the grouping was added, with a rating based on the number of groups that contain two or more slips (Figure 5.14). If the students put all the slips in less than four groups, the application gives feedback in the form of a dialog informing the students that their grouping is not good enough (to induce reflection). The application also provides tips, in the form of a post-it note, as to what other possible groups might be, based on meta-data associated with the mystery (Figures 5.15 and 5.16). The save/restore and participation meter tools from the previous iteration were also removed as they were not used in previous trials, retaining only the grouping, post-it, and sticky tape tools (Figure 5.17). The help tool is also removed and instead,
reflective feedback was provided automatically at the boundary between stages when a need for help is detected.

```xml
<?xml version='1.0' encoding='utf-8'?>
<helpData>
  <theQuestion>
    Should Annie leave Windy Creek or should she stay?
    And why?
  </theQuestion>
  <mustBeTogether>
    <g>3 9 12</g>
    <g>4 8 15</g>
    <g>11 14</g>
  </mustBeTogether>
  <hints>
    <h>
      You can build a sequence about Windy Creek by starting with slip number 16, then slip 7, then slip 1, and continue.
    </h>
  </hints>
</helpData>
```

Figure 5.15: A sample xml file that is included with each mystery to provide meta-data about the mystery. The application makes use of the related groups defined in the “mustBeTogether” element to provide grouping tips. In this sample, slip numbers 3, 9, and 12 are closely linked and are expected to be in one group. The same for the other two group sets (4, 8, and 15) and (11 and 14). Hints on how to start a sequence is taken from the “hints” element.

Figure 5.16: If the students put all the slips into less than 4 groups, they are provided with feedback on how to improve their grouping and a tip in the form of a post-it note on possible relations that have been overlooked by the students.

5.5.5.2 Improvements in the sequencing stage

In addition to the normal sticky tape tool, I added a directional, arrow shaped, sticky tape tool (see Figures 5.10 and 5.17) with the assumption that its shape would more strongly imply a sequence or a cause-effect relation, and that the normal sticky tape would be used only to mark strongly related slips. The provision of two options to relate slips, which aims to encourage students to reflect more on the type of tape to use, is a good example of how DC theory (and its use in interpreting observations of use) can drive tool development. I also added a finish tool (Figure
Figure 5.17: Slip manipulation using the polar menu (a modified version of the Polar Gates – Chapter 3): the inner ring allows for switching between iconic, normal, and large sizes; and the outer ring is used for rotation (left). The group, sticky tape, and note tools available in stage 2 (middle). Group, sticky tape, directional sticky tape, note, participation charts, and finish tools available in stage 3 (right).

Figure 5.18: Sequence evaluation dialog. Students are asked to select a layout that resembles what they have done, and all students have to confirm by pressing their own OK button. Tips are provided if students select the piles or linear sequence option.

5.17) as in the previous versions students had no way of signalling the completion of the final stage. The absence of a way to signal completion of the task, left the process open-ended and the teacher usually had to end the session.

The changes to the sequencing stage were designed to address the observations of the previous prototypes that many students completed the sequencing stage with either a number of piles or a linear (i.e. non-branching) sequence. The layout that the students are encouraged to construct, and which higher achieving students usually build is a branched sequence corresponding to a more complex mental model of causation. When students select the finish tool to end the sequencing stage, they are presented with a dialog showing three images of different layouts: a number of piles, a linear sequence of slips, and a branched sequence (Figure 5.18) and they are asked to
Figure 5.19: Upon selecting the piles layout, students are provided with feedback on how to improve the sequence and a tip in the form of post-it note suggesting a possible sequence to start with.

Figure 5.20: Upon selecting the linear layout, students are provided with feedback on how to improve their layout to a branched one.
select the layout that most resembles their own. Again, each student has to confirm the selection independently. If the layout chosen is not the branched sequence, hints on how to improve the sequence, based on mysteries meta-data, are provided in the form of a post-it note and the application resumes the sequencing stage (Figures 5.19 and 5.20). If the students select the branched sequence, stage three ends. A design decision had to be made here on whether to have an algorithm in the application analyse the layout (piled, linear, or properly branched) and provide tips accordingly, or to leave it up to the students to select among a list of possible layouts. Giving the students the option to do this analysis themselves encourages them to reflect on their solution and opens a space for discussion as to which layout most resembles theirs, making this approach more effective.

Finally, in the second prototype, even when some groups indicated that they had finished the task, it turned out that the students had not actually agreed on a common answer. In the new design, I sought to encourage the students to discuss their answers and settle on a common conclusion by asking the students to write down a single answer and independently confirm it (Figure 5.21).

![Figure 5.21: The answer dialog requires the students to write down their answer and independently confirm it, opening space for discussion to agree on one answer](image)

5.5.5.3 Collaboration

Based on the observations of use of the second prototype that the participation meter (pie chart) did not attract enough attention, I improved the pie chart by doubling its size when the percentage of any of the participants drops below 10% or rises above 50%. Moreover, the pie chart was placed at the centre of the edge the table along which the projector is mounted (i.e. the top edge) rather than in the top-left corner.
The new reflection stage

To support post-activity reflection, as suggested by Collins and Brown (1988) and Nunes et al. (2003), one extra stage (referred to as the reflection stage) was introduced after the students write down and confirm their answer. The stage allows an abstracted replay of the whole session in addition to a simple static representation of the main points. With the supervision of the teacher, feedback on the task, process, and self-regulation levels can be provided aiming at prompting reflection and metacognition on the part of the students to maximize the benefit from the learning experience.

Logging, and consequently playback of the session is designed to provide a certain level of abstraction to the task. A recording of the session is made by logging only the initial and final stages of the actions. That is, when a slip is moved from one point to another, for example, only the initial and final locations are logged and not the whole movement. This allows a very quick playback of the session showing only actions without intermediate movements or idle states (which constitute the vast majority of the duration of a session). This makes it possible to replay a comprehensible recording of a one-hour session in 5 to 10 minutes depending on the selected playback speed.

The reflection stage is controlled using a reflection dialog. The reflection dialog (Figure 5.22) is designed to provide a simple, static visualization of the whole session. The progress bar is divided into three parts, each representing the duration of the corresponding stage, in addition to displaying the actual duration of the stage and the duration of the whole session. The bar also shows bookmarks indicating critical moments in the process (Collins and Brown, 1988) at which the application provided hints to the students during the grouping or sequencing stages. The dialog also shows four screen captures of the layout, at the beginning of the process and at the end of each stage, so that it is possible to quickly get a general sense of how the students progressed. Clicking on any of the images, or the bookmarks, moves the progress bar to that point in the session so the teacher can also quickly identify and facilitate discussion about key moments in the session.

An important feature of the reflection stage is that it is possible to pause the playback at any point in time and manipulate the slips as in a regular session. This allows the teacher and the students to discuss and actually explore different scenarios such as creating an additional group, or modifying a certain sequence. Being able to watch a quick playback of the whole session increases students’ awareness of their problem solving strategy and with proper guidance from the teacher, students can realize their mistakes and work on improving their strategy in later sessions (Collins and Brown, 1988; Nunes et al., 2003). This reflection stage is similar to the stimulated recall session suggested for the Paper Mysteries (Leat and Nicholas, 2000), but with Digital Mysteries, this can be conducted far more easily and flexibly (and without the need for video recording). With the reflection dialog controls, this session becomes an integrated part of the learning experience using the same medium through which the task was performed.
Figure 5.22: Reflection stage control dialog. The four images show the layout at the beginning of the mystery and at the end of each stage. The progress bar distinguishes each stage with a different colour, and the small white arrow on the progress bar highlights an important moment (in this example where a sequencing tip was provided). Clicking on any of the images or the arrows, moves the recording to the corresponding point in time.

5.6 Summary

One of the main objectives of this thesis is to investigate the support of tabletop technology for collaborative learning. I sought to focus on higher-level thinking skills, reflection and metacognition as these benefit greatly from the face-to-face collaborative environment afforded by tabletops. For the purpose of this investigation, I chose the mysteries paper-based learning tool as it satisfied the requirement of the ill-defined collaborative learning tasks that best nurture the targeted learning goals. Through an iterative design process and with the use of the distributed cognition framework with its focus on cognitive tools and representation states, I developed Digital Mysteries as a model for tabletop collaborative learning applications. In addition to making use of the functionalities made possible by digital technology in general, such as enforcing structure to the task, logging, and providing feedback, the design also makes use of the unique features afforded by tabletops such as direct manipulation, structuring the interaction and collaboration, and preserving the face-to-face collaborative nature of traditional tables.

The overall structure enforced on the task corresponds with the thinking skills framework proposed by Moseley et al. (2005). By reference to Figure 5.1 it is possible to see how the stages of reading, grouping, and sequencing correspond to the thinking skills required in each of the three categories of the cognitive skills: information gathering, building understanding, and productive thinking. Moreover, just as the metacognitive and reflective thinking skills are represented in the model as an upper level that spans, and can be used on, all the cognitive skills; the design of Digital Mysteries introduces feedback and reflective prompts at the boundary of each stage to encourage the students to use such higher-level skills throughout the process. The final reflection stage, with its full session playback, also aims to promote reflecting back on all the stages, how the basic skills were used during each stage, and how the use of these skills can be improved in later sessions.

A detailed evaluation of the final design and how well it did satisfy its learning goals is presented in the next chapter. The analysis is based on close examination of video recordings of 12 trials conducted in a school with 6 groups. Two of these groups solved 4 mysteries of increas-
ing levels of difficulty in order to monitor the effect of repeated use and to monitor the groups’ progress.

The final version of Digital Mysteries can be summarized as follows:

Task structure: A structure is enforced on the task dividing it into three stages followed by a reflection stage. Among the main aims of this structuring is to allow for the provision of guiding instructions at the beginning of each stage and feedback and reflective prompts at the end of each stage based on the students' performance during that stage. This allows guidance and feedback to be provided at appropriate, not-interrupting moments in the process.

Stage 1 (reading): During stage one, students are only allowed to manipulate the slips (move, rotate, and resize to iconic, normal and enlarged sizes).

Stage 2 (grouping): This stage introduces three externalization tools: grouping, post-it notes, and sticky tapes. This stage requires students to create at least four groups with descriptive names. A red-herring group is pre-defined and a trash area is provided to allow for deleting empty groups, notes and sticky tapes. Feedback for the quality of the grouping is provided in the form of a traffic signal, and if the students put all the slips in less than four groups, some grouping tips are provided in the form of post-it notes. Only after the students put all the slips in at least four groups, the application proceeds to stage three.

Stage 3 (webbing and sequencing): Stage three introduces an extra externalization tool which is the arrow-shaped sticky tape. The shape of this tape implies time sequence, or cause and effect relations and aims at helping the students in making their thinking in terms of relations more explicit. A finish command is also introduced. When the students select the finish command, they are presented with a sequence evaluation dialog which shows three types of sequences (one more optimal and two less optimal patterns) based on previous observations of common error patterns of students. Tips are provided to the students as to how to improve their sequencing, and the stage resumes till the students reach the desired general layout. After selecting finish and entering an answer that all students have to confirm, the final reflection stage starts.

Reflection stage: This final stages shows a dialog box that represents a quick static representation of the whole session with screen captures at the end of each stage, the duration of each, and marks that indicate important points during the problem solving process. The dialog also allows an abstracted replay of the whole session making it possible to replay the whole session in 5 to 10 minutes. It is also possible to pause the playback at any point in time and manipulate the slips to discuss different alternatives for the solution, so the playback is not just a static video playback, but an interactive one.
Collaboration: In addition to enforcing structure, providing externalization tools, providing feedback and inducing reflection during and after the process; the application encourages productive collaboration. This is done by balancing between allowing multi-synchronous and single input. For example when a group is created, all interaction with the application stops and one soft keyboard is displayed to attract all the students’ attention to this action and to encourage them to discuss the new group. Moreover, all the dialog boxes in the application require confirmation from all the three students. Finally, the application shows a participation pie chart at the top-centre of the screen showing an estimate of the participation level of each student. This pie chart doubles in size when it detects a high level of inequality in participation (domination or under-participation of one student).

With its structure, externalization, and feedback tools, the application aims at making the students’ thinking and problem solving process visible on the table to induce and encourage reflection and productive discussions, and to make it easy for a teacher to quickly assess the thinking and performance of the students.
Chapter 6

Evaluating Digital Mysteries

In Chapter 5, I explained the educational theory that underpins the design of Digital Mysteries, the iterative design process used, and the features of the final version of the application. This chapter describes the detailed evaluation of the final design with respect to both learning and interaction.

The evaluation is based on the results of 12 trials conducted in a school with six groups of students (three students per group). Two of these six groups had participated in previous trials that used earlier versions of Digital Mysteries. The age of the participating students ranged from 11 to 14 years. Each of the six groups took part in a trial using Windy Creek mystery: “Should Annie leave Windy Creek or should she stay? And why?” (Appendix A.4), and to explore the impact of extended use of the application, I chose one higher achieving group and one lower achieving group (based on discussions with their teacher) and had these groups solve three additional mysteries of increasing levels of difficulty (Oliver Hopkins (Appendix A.5), the village shop (Appendix A.6), and Alice White (Appendix A.7)). These repeated trials were conducted over a two-week period, with a 1-3 day period between each session. All sessions were video recorded and the analysis was performed through careful observations of the videos (and many repeated viewings) with a focus on key aspects of the interaction. A training period that ranged from 5-10 minutes preceded first-time use of the application. Students were trained in the use of the digital tabletop, the interaction techniques, and the application. Although I was physically present for the first trial for each of the six groups (in some case accompanied by the teacher), the repeated trials (groups 1 and 2) were conducted by the teacher alone to approximate a more natural classroom setting.

6.1 Evaluation

As emphasised in Chapter 5, the evaluation of Digital Mysteries is not based on pre- and post-test measures of learning but on the identification and accumulation of certain observable outcomes that result in as a consequence of the design (Section 5.3.2). Consequently, the evaluation is based on finding evidence that the application was successful in achieving the following:
1. making the students’ thinking more accessible to interpretations through the use of the externalization tools provided and the task structure enforced by the design;

2. increasing the probability of useful discussions through the use of the externalization tools;

3. providing useful and timely feedback that prompts reflection and raises awareness of the concept of metacognition;

4. being a sustainable learnable tool from which students benefit from repeated use;

5. encouraging useful and equitable collaboration;

6. facilitating mobility and encouraging collaborative interaction through the deployment of adequate and easy to use interaction techniques.

Any application that can be demonstrated to meet these goals, which according to learning theories have well established positive effects on learning, has a convincing evidence based as to its benefits for learning. However, it is important to keep in mind that the overarching goal is not Digital Mysteries itself, but to establish the potential of digital tabletop technology to support face-to-face collaborative learning. The aim is that the design of Digital Mysteries, and the design process, exemplify a general approach for designing problem-based tabletop collaborative learning applications. Another (less explicit) goal is to encourage researchers and developers to focus on designing for useful learning activities rather than simply measurable ones.

The purpose of this chapter is not to evaluate the mysteries activity as a learning tool, but rather to evaluate the design choices of Digital Mysteries. This chapter also introduces design recommendations that can be derived from the evaluation. While these recommendations are distributed throughout this chapter (at appropriate points), Section 7.4 re-introduces these as a single coherent set of guidelines. In the following evaluation, the samples of dialogues reported relate only to discussions that resulted as a direct consequence of the design of Digital Mysteries and do not include discussions that relate to solving mysteries (whether digital or paper) in general. This other class of discussions that did not arise as a consequence of the design, even when they related to the solution of the mystery and included activities that might result in learning, were likely to have occurred anyway.

6.2 Externalization: making thinking visible

Figures 6.1 to 6.12, and the data in tables 6.1 and 6.2, indicate that a lot of information about the thinking of the students while solving the mystery can be extracted from the clearly marked named groups, the notes, and the two types of sticky tapes. Figures 6.1 to 6.12 show screenshots at the end of the grouping and the sequencing stages for all the trials. From these figures it is possible to see only the general layouts. Tables 6.1 and 6.2 show the group names, the contents of
the notes, and the final answers for each group while solving Windy Creek. Tables 6.3 and 6.4, on the other hand, show the number of attempts for the grouping and sequencing stages, the names of the groups created, and the final answers for all the mystery trials.

While actual assessment of the attainment levels of the different groups is not required as part of the evaluation of Digital Mysteries, it is worthwhile exploring the role of the application in making such an assessment easy for the teacher. For the grouping stage, for example, the quality of the grouping can be readily identified as the groups are clearly distinguished and named, and in some cases groups are explained with associated notes (e.g. Figure 6.3 for group 1, trial 3). The figures make clear the extra amount of information made available through the use of the cognitive tools compared with what can be extracted from paper mysteries. As for the overall solution, contrasting the final layout and the written answers of group 1 (Figure 6.1, Table 6.1) and group 3 (Figure 6.9, Table 6.1), for example, make clear the difference in the achievement levels of these two groups. While group 3 failed to build a proper sequence even with the provision of hints from the application and the supervisor, group 1 built a webbed sequence without requiring any external support from the supervisor. The sequence of group 1 shows how students used the arrow shaped sticky tape to mark cause and effect but used the normal sticky tape for normal relations. The sequence is also split into a left section that relates to the reasons to stay and a right section that relates to the reasons to leave as marked by the two notes at the top of the sequence. Students in group 3 on the other hand, kept the slips in their groups and put a number of both types of sticky tapes randomly on the slips. While the written answer of group 1 “we think that she should leave because she can always visit family and friends if she moves and she could get a better job and car if she moves. Plus this means that she would not be wasting her education” takes into account family, friends, career, education, and how a better job can help her buy a car; the written answer of group 3 “she should move because it is hot there” ignored all the important facts and focused only on the weather issue. These two groups demonstrate that even with the enforced structure on the task, enforcing the creation of a minimum of four groups, and clear instruction and feedback prompts on how to build a proper webbed sequence, the design did not marginalize the difference between the ability levels of the different groups.
Figure 6.1: Screenshots at the end of the grouping and sequencing stages for group 1, trial 1: Windy Creek.
Figure 6.2: Screenshots at the end of the grouping and sequencing stages for group 1, trial 2: Oliver Hopkins.
Figure 6.3: Screenshots at the end of the grouping and sequencing stages for group 1, trial 3: The Village Shop.
Figure 6.4: Screenshots at the end of the grouping and sequencing stages for group 1, trial 4: Alice White.
Figure 6.5: Screenshots at the end of the grouping and sequencing stages for group 2, trial 1: Windy Creek.
Figure 6.6: Screenshots at the end of the grouping and sequencing stages for group 2, trial 2: Oliver Hopkins.
Figure 6.7: Screenshots at the end of the grouping and sequencing stages for group 2, trial 3: The Village Shop.
Figure 6.8: Screenshots at the end of the grouping and sequencing stages for group 2, trial 4: Alice White.
Figure 6.9: Screenshots at the end of the grouping and sequencing stages for group 3 solving Windy Creek mystery.
Figure 6.10: Screenshots at the end of the grouping and sequencing stages for group 4 solving Windy Creek mystery.
Figure 6.11: Screenshots at the end of the grouping and sequencing stages for group 5 solving Windy Creek mystery.
Figure 6.12: Screenshots at the end of the grouping and sequencing stages for group 6 solving Windy Creek mystery.
Table 6.1: Group names, notes, and the answers for groups 1, 2, and 3 solving Windy Creek mystery: *Should Annie leave Windy Creek or should she stay? and why?*

<table>
<thead>
<tr>
<th>Group 1</th>
<th></th>
</tr>
</thead>
</table>
| **Groups** | 1. for
2. against
3. family for
4. business for leaving
5. for and against |
| **Notes** | reasons for leaving
reasons for staying |
| **Answer** | we think that she should leave because she can always visit family and friends if she moves and she could get a better job and car if she moves. plus this means that she would not be wasting her education. |

<table>
<thead>
<tr>
<th>Group 2</th>
<th></th>
</tr>
</thead>
</table>
| **Groups** | 1. stay
2. leave
3. arizona
4. no money |
| **Notes** | |
| **Answer** | leave to get a better job and shall be able to get a car so she will be able to visit her family |

<table>
<thead>
<tr>
<th>Group 3</th>
<th></th>
</tr>
</thead>
</table>
| **Groups** | 1. move
2. dont
3. maby move
4. maybe stay
5. notes |
| **Notes** | well if it is hot she will suffer and if she goes 2 a cold place it is sometimes hot so where can she go
maby stay for the boy ranch for her boyfriend and to see her family but will be dangerous because it is sunny and suffers allergies caused mainly by the sun. |
| **Answer** | she should move because it is hot there. |
Table 6.2: Group names, notes, and the answers for groups 4, 5, and 6 solving the Windy Creek mystery: *Should Annie leave Windy Creek or should she stay? and why?*

<table>
<thead>
<tr>
<th>Group 4</th>
<th>Groups</th>
<th>Notes</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. were lives</td>
<td>this all tells you about where she lives and who with.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. education</td>
<td>this is the population in 1370</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. hobbies</td>
<td>this tells you about the weather and her allergies.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. relationships</td>
<td>this is where shops are</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5. weather</td>
<td>this tells you her hobbies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6. population</td>
<td>this tells you that she wants to have a good education</td>
<td></td>
</tr>
<tr>
<td></td>
<td>7. shops</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>we think she should stay because she is with all of her family and she has a good education and job and she loves where she lives.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 5</th>
<th>Groups</th>
<th>Notes</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. arizona</td>
<td>arizona sounds like its busy, maybe she doesn’t like busy towns/villages/cities/countries.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. reasons to move</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. reason to stay</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. reasons neither to stay or to go</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>she should go because there are alot more activities to do and more shops</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Group 6</th>
<th>Groups</th>
<th>Notes</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1. stay</td>
<td>this is to show the things to stay at Windy Creek</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. moving</td>
<td>things why she should move</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. not sure</td>
<td>good activities</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. distance</td>
<td>better education</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>different allergies</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>more things to stay for</td>
<td></td>
</tr>
</tbody>
</table>
Table 6.3: The number of attempts, the groups created, and the answers for the six groups solving Windy Creek mystery: Should Annie leave Windy Creek or should she stay? and why?

<table>
<thead>
<tr>
<th>Group</th>
<th>Attempts</th>
<th>Groups</th>
<th>The answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grp1,T1</td>
<td>1</td>
<td>2</td>
<td>we think that she should leave because she can always visit family and friends if she moves and she could get a better job and car if she moves, plus this means that she would not be wasting her education.</td>
</tr>
<tr>
<td>Grp2,T1</td>
<td>2</td>
<td>1</td>
<td>leave to get a better job and shall be able to get a car so she will be able to visit her family</td>
</tr>
<tr>
<td>Grp3</td>
<td>1</td>
<td>2</td>
<td>she should move because it is hot there</td>
</tr>
<tr>
<td>Grp4</td>
<td>1</td>
<td>3</td>
<td>we think she should stay because she is with all of her family and she has a good education and job and she loves where she lives.</td>
</tr>
<tr>
<td>Grp5</td>
<td>1</td>
<td>1</td>
<td>she should go because there are alot more activities to do and more shops</td>
</tr>
<tr>
<td>Grp6</td>
<td>2</td>
<td>4</td>
<td>more things to stay for</td>
</tr>
</tbody>
</table>
Table 6.4: The number of attempts, the groups created, and the answer for groups 1 and 2 while solving the rest of the mysteries.

<table>
<thead>
<tr>
<th>Group</th>
<th>Attempts</th>
<th>Groups</th>
<th>The answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Why did Oliver decide to join up?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grp1,T2</td>
<td>1</td>
<td>1</td>
<td>1. oliver 2. agnes 3. miscellaneous 4. family 5. tommy 6. work/war</td>
</tr>
<tr>
<td>Grp2,T2</td>
<td>1</td>
<td>1</td>
<td>1. stay 2. leave 3. family 4. money</td>
</tr>
<tr>
<td>Why is the village shop in Hensford closing?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grp1,T3</td>
<td>1</td>
<td>2</td>
<td>1. money 2. owners of shop 3. putting them out of business 4. keeping them in business 5. keep in and out of business</td>
</tr>
<tr>
<td>Grp2,T3</td>
<td>1</td>
<td>2</td>
<td>1. no customers 2. the other shop has more customers 3. theft 4. awards 5. good for customers</td>
</tr>
<tr>
<td>Who was responsible for the death of Alice White?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grp1,T4</td>
<td>1</td>
<td>1</td>
<td>1. leather 2. illnesses 3. work related 4. death river 5. family</td>
</tr>
<tr>
<td>Group 2, T4</td>
<td>1</td>
<td>2</td>
<td>1. leather 2. the river where she died 3. family 4. work</td>
</tr>
</tbody>
</table>
6.3 Promoting discussions

<table>
<thead>
<tr>
<th>Students’ group</th>
<th>No. of groups</th>
<th>No. of group discussions</th>
<th>No. of notes</th>
<th>No. of note discussions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1, T1</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Group 1, T2</td>
<td>6</td>
<td>6</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Group 1, T3</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Group 1, T4</td>
<td>6</td>
<td>1</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>Group 2, T1</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 2, T2</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 2, T3</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 2, T4</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Group 3</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Group 4</td>
<td>8</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Group 5</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Group 6</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>60</td>
<td>51</td>
<td>28</td>
<td>21</td>
</tr>
</tbody>
</table>

Table 6.5: Number of groups and notes created, and the corresponding number of discussion activities.

Table 6.5 presents a quantitative analysis of the number of groups and notes created during each mystery trial, and the number of associated discussions. The sticky tape actions are not included here because they were used very often during stage three and it is not possible to identify discussions that are directly related to them. From the table, we see that of the 60 groups created (counting groups that were created, temporarily used, then deleted), 51 (85%) were accompanied by some form of discussion regarding the group and its name. Also, of the 28 notes created, 21 (75%) were accompanied by discussions regarding the contents of the note. Figures 6.13, 6.14, and 6.15 show sample conversations from three different groups around the act of creating a group, naming it, or putting a slip into it. The conversations demonstrate the importance of assigning names to groups in promoting valuable discussion.

Figures 6.16 and 6.17 show sample discussions related to creating notes. Again, these conversations demonstrate how the act of creating a note attracted the attention of other group members and promoted discussion. Using the sticky tapes to mark relations also created space for discussions. For example, in one case a student pointed to two slips linked with a sticky tape and asked “Why are they related?” Moreover, having an arrow shaped sticky tape increased the space for (i.e. increases the probability of) such discussions where in a number of cases students displayed the commands menu and discussed which type of tape to use (e.g. Figure 6.18). All these examples demonstrate that, in addition to making the students’ thinking visible on the table, the externalization tools (groups, notes, and the sticky tapes) served to promote discussion and created space for disagreements and the need to provide explanations.
The previous discussion established the success of the application in encouraging externalization and the benefits of such externalizations in making students’ thinking more accessible to observers. The sample conversations provided, give a good indication as to the type of active discussions that can arise as a consequence of such externalizations. Consequently, encouraging externalization should be considered as a main design recommendation for collaborative learning applications (Refer to section 7.4 “Encourage externalization”)

Student 1: **Put that one in ‘red herrings’?**
Student 2: **What does that one say, I don’t remember.**
Student 1 makes the slip larger.
Student 1 and student 2 read the slip content aloud.
Student 3: **It’s kind of a reason to go because she doesn’t want to waste her education but she loves**
Student 1: **It could be for staying.**
Student 2: **It’s kind of in the middle.**
Student 3: **Or make another group like for I don’t know.**
Student 2: **Like pie, like overlapped and it goes in the middle.** and makes circular gestures with the pen.
Student 3: **Let’s make a group and put it in the middle. What shall we call it?**
Student 2: **For and against.**
Student 2: **That’s population. What will that be, for or against? The population being really small.**
Student 1: **I don’t know.**
Student 2: **The population getting small. That’ll be bad because there hardly be any business.**
Student 3: **Yeh.**
Student 2: **That’ll be against.**

Figure 6.13: Examples of discussions around grouping (group 1 solving Windy Creek).

After the students are provided with a hint that indicated some related slips that could be put in one group, they had the following discussion for selecting a name for the group for these slips.
Student 1 enlarged the first slip referred to in the hint.
Student 2: **She can’t afford.**
Student 1 minimises the slip and enlarges the second one.
Student 2: **So she can’t go to her best friend.**
Student 1 minimises the second slip and enlarges the thrid.
Student 3: **And near the cinema.**
Student 2: **Yeh, she can’t afford a car so she can’t go there and she can’t go there.**
Student 3: **So how about this could be**
Student 2: **Can’t afford.**
(Laughing)
Student 3: **No we can’t put, can’t afford.**
Student 2: **Emm, no money.**
Student 3: **Yeh, no money.**

Figure 6.14: Examples of discussions around naming a group (group 2 solving Windy Creek).
Student 1 (pointing to a slip): Could that be education?
Student 2: That's like a hobby.
Student 3: It's a hobby. Do you want me to make a thing for the hobby?
Student 3 creates a group and names it 'hobbies'.
Student 1 creates a group and names it '1122'.
Student 2: Shouldn't we put like em (pause) so we know what's it's about and stuff than 1122?
The group is deleted, and student 2 creates a new group.
Student 2: We are going to call it, where she lives.

Figure 6.15: Examples of discussions around grouping (group 4 solving Windy Creek).

After a long discussion about a slip about getting robbed and another about insurance and whether this keeps them in or out of business, the students linked the two slips with a sticky tape and student 2 wrote: “getting robbed would put them out of business but since they have insurance it keeps them in business”.
Student 2: Does that make sense?
Then the students linked the note to the two slips with another sticky tape.
Student 1: We need one for that. What was that one about? (pointing to one of the slips)
Students 2: A farm shop that was opened then closed.
Student 1 types while student 2 dictates Farm shop open but closed a year later.

Figure 6.16: Discussion around creating notes (group 1 solving The Village Shop).

Student 1: (Referring to student 2 by name) is making something.
Student 2: I am making a note.
Student 3: What's the note? Move the note so I can see it.
Student 3 started reading what student 2 was typing.
Mean while, student 2 was typing “well if it is hot she will suffer and if she goes 2 a cold place it is sometimes hot so where can she go”.

Student 1 addressing student 3: What are you typing?
Student 3: Maybe stay for the boy ranch for her boyfriend.
Student 1: Yeh.
Student 3 finished typing the note: “maybe stay for the boy ranch for her boyfriend and to see her family but will be dangerous because it is sunny and suffers allergies caused mainly by the sun.”
Student 3 then read what he wrote to the rest of the group.

Figure 6.17: Examples of how the act of creating a note attracts attention of the other students.

Student 3 pointed to a group of slips and said: I think we should do an arrow here because it is causing allergies.
Student 2: That's what it is.
Student 1: It's not an arrow.
Student 3: It's a sticky tape.
Student 1 then creates an arrow sticky tape and passes it to student 3 to use it instead of the normal sticky tape.

Figure 6.18: Discussion around the type of the sticky tape to use to mark a relation between two slips.

6.4 Feedback, reflection, metacognition, and repeated use

6.4.1 The grouping stage

In solving Windy Creek mystery (“Should Annie leave Windy Creek or should she stay? And why?”, Appendix A.4), which was the first mystery used for all groups, the students of group 2
divided all the slips between two groups only, “stay” and “leave”. After the placement of the last slip in one of these two groups, the application identified that some slips that are classified to be tightly related in the mysteries meta-data (Appendix A.4) are put into different groups. Based on that, feedback in the form of a grouping hint was provided to the student: “Think about slips (3, 9 and 12). They should be in one group. Think about slips (4, 8 and 15). They should be in one group.” The students took the slips mentioned in the hint out of their initial groups, read them aloud, put sticky tapes on them and discussed the relationships between them. They then went on to create two new groups “Arizona” and “no money” (Figure 6.14 shows the discussion for one of these two groups). This demonstrates clear evidence as to how feedback provided by the application can lead students to reflect on and rework their grouping. Moreover, for the next trial with the same group of students, one of the group members said: “Remember four groups not two.” This demonstrates learning from previous trials.

6.4.2 The sequencing stage

Figure 6.19 shows three screenshots during the sequencing stage for group 4. The top figure shows the layout when the group first selected the finish command (thinking that they have finished stage three). By looking at the three images provided in the sequence evaluation dialog (Figure 5.18) the students realized that they had not created a proper sequence, and chose the piled layout option. With the instructions given on how to build an effective sequence, and the tip provided in the form of a post it note on how to start a sequence, students moved to the layout shown in middle capture in Figure 6.19 where they took the slips out of their groups, kept them in piles and put sticky tapes on them. After selecting the finish command for the second time and examining the sequence evaluation dialog again, the students again chose the piled layout realizing that they have still not started building a sequence. At this stage, the students started to feel frustrated and the teacher had to intervene to encourage them and gave them more tips on how to build a proper sequence. This lead to the final layout shown in the bottom figure. While the reasoning behind the final layout was still weak, the students, with the help of the feedback from the sequence evaluation dialog, were able to reflect on their layout and recognized, without teacher intervention, that their solution could have been more complex. It was this kind of reflection that made them realize that they needed further support from the teacher, and if it were not for the feedback from the sequence evaluation dialog, the students would have settled for the layout shown in the top figure.

A similar case occurred in the third trial for group 2 (solving The Village Shop mystery, Appendix A.6) where the group indicated the completion of the sequencing stage with two parallel linear sequences without any type of branching or relation between the two sequences. When the students where asked to identify the layout type for their sequence, they correctly picked the linear layout. After reading the subsequent hint they completely re-worked their layout, demonstrating deeper thinking about the relations between the slips. This resulted in the sequence layout shown in Figure 6.7.
Selected finish the first time: After seeing the sequence evaluation dialog, one student said: “oh my god, so we’ve done totally wrong.” They selected the piled layout and resumed stage 3.

Selected finish the second time: The students realized that their layout is still incorrect. They were a little bit frustrated and selected the piled sequence layout again.

The final layout: After noticing the student’s frustration, the teacher encouraged them and gave them more tips on how to do a proper sequence and they ended up with this layout.

Figure 6.19: Screen-shot for group 4 as they select the finish command and respond to the sequence evaluation dialog.
Another similar case occurred in the first trial with group 1 where they also constructed a linear layout and as a result of the sequence evaluation dialog they moved to a branched structure (Figure 6.2). During the reflection stage, the teacher clicked on the marker that indicated the layout at the first sequencing attempt and asked the students about the difference between the final layout and the first attempt. One of the students replied “On the final one it’s like branches out that links them all together. It’s not just a column of why she should leave. Like linking the reasons together.” Then the student continued by explaining the logic behind the sequence. This is a clear example how the feedback provided by the sequence evaluation dialog can cause students to reflect on their first layout, and improve it.

6.4.3 The reflection stage

Figure 6.20 shows the reflection dialog for group 2 at the end of The Village Shop mystery. From the reflection dialog the teacher immediately noted that the students spent very little time in the reading stage, and Figure 6.21 shows the related discussion. This example demonstrates how the reflection dialog helped the teacher in observing an obvious weakness in the process, that the students moved to the grouping stage without actually reading the slips. It also demonstrates how the students benefited from the discussion in the reflection stage by improving their process in the subsequent trial.

An interesting comment was made by one of the students in group 1 who had used the previous version of Digital Mysteries. When the teacher spontaneously asked her in the reflection stage of trial 1 about how this version differed from the previous one, the student replied “It’s got like more options. It makes you think about how you’ve done it more. Like think about how you link, thought and linked it.” Another example that demonstrates the students becoming aware of the concept of metacognition (arising from use of the application) can be seen in the reflection stage of the second trial of group 1, the higher achieving group. The teacher asked the students which techniques they have used from a list of learning techniques written on the wall of the room. A student replied “Thinking about thinking, because we’ve thought about how we could have thought about it.” Another student said “we’ve already starting getting strategies and build on them”. These comments from the students are evidence that the application was successful.
Teacher: It took you no time to get from there (points to beginning) to there (points to the end of the reading stage).

Student 1: Is that good?
Teacher: You are going to answer that question in a second yourselves.
Student 2: Because we didn't really read them.
Teacher: Didn't really read them?
The teacher explained to them that they should have read them together and how to do it next time.
Same group in the next trial, the students are about to start:
Student 1: Alright let's start reading them.
Student 2: One at a time, one at a time.
During the reflection stage:
Teacher: What did you do differently from yesterday?
Student 1: We did better than yesterday
Student 2: We read one at a time.
Student 1: And we put it aside.
Teacher: What were the effects of doing that? was it better, was it worse?
(all said better)
Student 2: Because we all knew what was going on.
Teacher: So did it help you when you got to your grouping stage?
Student 1: Yes, we were all working as a team.

Figure 6.21: Discussions during the reflection stage and their effect in subsequent trials (group 2, trial 3).

in bringing the students’ attention to their own thinking process and making them aware of the concept of metacognition. Figure 6.22 shows another example, from the second trial of group 1, of the types of reflective discussion made possible by the reflection stage. It demonstrates the quality of thinking of this group and the level of engagement of this group with the application.

The teacher asked the student about their layout, which basically showed two columns one about reasons to stay and one about reasons to go, and if they think that such a layout is better than a tightly interlinked one.
Student 3: It would have been better if you could have like a pie char (she was trying to explain the Venn diagram but she did not know what it was called) because you can have an overlapped area.
Teacher: you can't have the Venn diagram on here but how do you think you might arrange stuff?
Student 2 explained how the Venn diagram would have been useful.
Student 1 then explained how one can make use of the possible grouping tool to present something similar to Venn diagram.

Figure 6.22: A sample of the type of reflective discussions made possible by the reflection stage (group 1, trial 2).

Following each stage individually with reflective-feedback prompts, and the task as a whole with a dedicated reflection stage, was demonstrated to have positive learning outcomes for the students and thus is proposed as a design recommendation for learning applications (Refer to section 7.4 “Follow the task as a whole, and each stage individually, with reflective feedback”). To enable the provision of effective reflection support, and to be able to bring the students’ attention to the points in the process where they did not perform well, the application must support some kind of logging of students’ interactions. The type and amount of the logged data is largely dependant on the application, but it is important that critical moments in the interaction are logged
and marked for future reference (Refer to section 7.4 “Support abstract logging of events and identify critical moments”).

6.4.4 Repeated use

Analysis of the sequence of four trials undertaken by group 1 (the higher achieving group) showed little change in their behaviour, which was good from the outset. Group 1 made use of the feedback from the sequence evaluation dialog in the first trial, where they moved from a linear layout to a branched layout, and again in their third trial where despite having an acceptable layout sequence, the evaluation dialog motivated them to improve it. The group had good problem solving abilities and their focus was entirely on the quality of the solution. However, it is important to note that the enforced structure, the feedback provided, and the enforced collaboration rules had no readily apparent negative impact on the group (i.e., there was no evidence for over-structuring the task or the collaboration).

On the other hand, the design of Digital Mysteries, and the repetitive use seemed to have greater positive effect on the lower achieving group (group 2), and discussions like that in Figure 6.21 show clear evidence of this. The focus of group 2 was on the provision of an appropriate looking layout with a simple underlying logic rather than a higher quality and appropriately elaborate solution. Their strategies in the reading, grouping, and sequencing stages notably improved with each trial. It seems reasonable to believe, therefore, that as they get more comfortable with the strategies to use at each stage, particularly during the sequencing stage, their focus will start to shift more on the quality of the solution.

The observed differences in behaviour between different ability groups, and the improvement in performance of lower achieving groups with use, indicate the importance of designing learning applications that take account of ability level. Moreover, the scaffolding support provided by the application should depend on the performance of the group. Scaffolding should not be provided when it is not required (i.e. for higher achieving groups) and it should fade gradually as the performance of a lower achieving group improves (Refer to section 7.4 “Design for different ability levels”).

6.5 Encouraging equitable collaboration

Figure 6.23 shows the level of participation of each student in the 12 trials conducted (expressed as a percentage of the group as a whole). Apart from group 5 (G5), the participation levels, which were estimated based on the time the pen was being dragged on the table, could be considered acceptable in that no group member overly dominates (i.e. over 50%) or no member substantially under participates (i.e. less than 10%). However three of these trials deserve further discussion.
Figure 6.23: An estimate of the participation level of each student based on the time the pen was being dragged on the table (each member’s participation as a proportion of the group as a whole).

Group 1, trial 4 (G1T4): The four participation figures of group 1 indicate that student 1 (S1) did play an important role in the first three trials, yet Figure 6.23 shows a participation percentage of 19% in the fourth trial. In fact, for most of the session S1’s level of participation was even lower (and the pie chart was as, a result, doubled in size). Having observed that S1 was not participating (it was not clear in this case if it was the pie chart that drew attention to this because it was not explicitly referred to), one of the students (S2) created a group, pushed the keyboard closer to S1 and rotated the keyboard and the group name dialog box towards him, so S1 entered the group name. Later on, S1 created a note, but S2 again pushed the keyboard closer to S1 and rotated the keyboard and the note towards him, which caused S1 to type in the note. In later discussions with the teacher I found that unfortunately S1 was upset in this instance because he had to leave the physical education class to attend the trial. Nevertheless, the other students kept asking him to participate which increased his percentage to 19%. This behaviour to regulate the participation levels on behalf of the students reflects development in the students’ metacognitive regulation skills.

Group 5 (G5): For this group, S1 was a free rider. He did not participate in the session at all apart from isolated comments or actions. When the introduction dialog for stage two appeared showing the participation pie chart for the past stage at the top, and when S2 read the phrase “it is a group activity and everyone should participate”, S2 referred to S1 by name and said in a sarcastic tone “Yeah S1”. Later in the same stage, S2 pointed to the pie chart, which had doubled in size because of the low participation level of S1, and said “You’ve hardly done anything” (Figure 6.11 shows the enlarged pie chart). Although S1 still did not participate, these two cases demonstrate how the pie chart and the instructions given by the application made the students aware of each other’s participation levels.
Group 6 (G6): This group demonstrated a clear example of leadership with S2 leading the session right from the beginning. Nevertheless, S2 was basically giving the other students instructions on what to do rather than doing things himself. Throughout stage 1, it was S3 who was carrying out most of S2’s instructions. This caused the pie chart to double in size after about 10 minutes with S3 going over 50%, S2 little more than 25% and S1 little less than 25%. When the pie chart doubled in size it attracted S2’s attention, so he pointed to the pie chart and said “What we’ll do is, right, that we will try and catch up later because you’ve (referring to S3) got a bit too many. S1, you go until you get even with S3, then I’ll go and make it all even”. When S3 tried to move another slip later, S2 stopped him and asked S1 to do it. S3 however was very active and kept moving slips around which kept his participation percentage high and the pie chart doubled in size in a number of other cases. Each time S2 noticed this, he tried to stop S3 from moving slips and did more work himself as well as frequently asking S1 to participate more. With this group, the participation pie chart, and the fact that it doubled in size when the levels were highly unequal, played an important role in raising the student’s awareness of their participation levels and bringing them closer to equity. Figure 6.12 shows how the pie chart was doubled in size at the end of the grouping stage, and back to normal size at the end of the session.

In addition to the pie chart, the design feature of preventing all types of interaction when a group was being named succeeded in attracting all the students’ attention to this action. Using this technique for all important actions, in addition to having confirmation buttons for each student in all important dialogs, helped in overcoming the disadvantage usually associated with parallel input (that students work too independently). Even though allowing parallel interaction is one of the main advantages of tabletop technologies, application designers should still utilize the ability of the technology to support other modes of interaction and aim to strike a balance between parallel, single, and enforced collaboration (Refer to section 7.4 “Support the appropriate modes of group interaction”).

6.6 Interaction techniques and utilizing the physical properties of the table

The software and hardware design both sought to facilitate students’ free movement around the table and their use of the table’s physical affordances. In addition to using the polar gates technique (which is orientation independent) for all commands, all the objects on the table (slips, notes, sticky tapes, keyboard, and dialogs) were rotatable. Students quickly got used to the crossing based polar menus and a number of the students created multiple sticky tapes by repeatedly crossing the sticky tape tool without being informed of this feature in the training period. Students did make use of the freedom to move around the table with groups 3, 4, 5, and 6 being very mobile and used the table from all sides and even exchanging places on a number of occasions. Groups 1 and 2, on
the other hand, did not move around the table in their first trial but started to move more freely in later trials. This was particularly true of group 2 who were very mobile in their last trial.

Similarly, rotation was used in different degrees by the different groups. Group 1 did not use orientation at all in their first two trials, but started rotating things in a number of occasions in their third and fourth trial, and used orientation to coordinate actions in more than one case in their fourth trial as explained in Section 6.5. Group 2 also did not use orientation in their first trial but started to use it more often in the subsequent trials, and in their fourth trial, they had the full layout rotated by 90 degrees (Figure 6.8-(b)). Groups 3, 4, and 5 used rotation, but group 6 did not use rotation at all. All the groups leaned on the table in a number of occasions, much as they would a regular classroom table or desk. Figure 6.24 shows the students working from the three sides of the table with the student on the right having one of the slips rotated towards him and leaning on the table.

The design of Digital Mysteries was intentionally very different from any standard desktop application, both in that the application filled the whole screen (without a title bar) and traditional toolbars and menus were not used. The goal is to have the students think of the digital tabletop as a new device with its own interaction style, and therefore not enforce on themselves (even if subconsciously) the same restriction imposed by desktop computer technology and applications in terms of fixed orientation, fixed seated positions, and single-user interaction. Indeed, one of the students was surprised to see that the table was actually connected to a laptop that displayed the same contents as the table’s surface.
6.7 Structuring the task

The structure enforced on the task helped students focus more on what is required from them at each stage. In some cases, students discussed the strategy to use at the beginning of a stage (Figure 6.25). The structuring afforded the opportunity to inject feedback at appropriate points in time (i.e. between the stages so as not to interrupt the process). The structuring also proved to be useful in helping the teacher identify weaknesses in the process, for example the case where the teacher identified the short reading stage and that the students had not really read the slips before moving to the grouping stage (Figure 6.21) (Refer to section 7.4 “Structure the task”).

At the beginning of the grouping stage and after reading the instructions.
Student 2: Group them in reasons to stay and reasons to go first and then find more groups.
Student 1: Split them in.
Student 1: Yeh, then find more groups.

At the beginning of the sequencing stage and after reading the instructions.
Student 1 pointed to a slip and said: that one and that one are linked.
Student 2 put a sticky tape on them, and after linking a number of slips with sticky tapes.
Student 2: Shall we put them in order?
Student 1: Would you link them together first?

Figure 6.25: Discussion about the strategies to use at stages 2 and 3 for group 1, (trial 1) while solving “Windy Creek” mystery.

6.8 Conclusion

The examples provided, whether screen captures, tables, or elements of transcripts, all serve to provide strong evidence that the application served its design goals (see Section 6.1). To an external observer, the level of thinking of the students was much more evident while using Digital Mysteries than with Paper Mysteries. The level of intervention required from the teacher was low. In most cases, teacher supervision was only required for 5-10 minutes during the reflection stages. The only exceptions were in the need to provide further scaffolding in how to do proper sequencing for some of the lower achieving groups.

It was also clear that the design was successful in distinguishing the application from traditional desktop applications by utilising the multi-synchronous input and large horizontal surface afforded by tabletops. This was achieved through the following:

1. Providing a rich setting for face to face synchronous collaboration where the application allowed the students to switch between parallel and collaborative work. This was made possible by providing multi-synchronous input for normal slip manipulation, switching to single entry point or enforcing collaboration as appropriate, and providing feedback about participation levels. The benefits of this design were reflected in the generally equitable
levels of participation, the students’ awareness of their levels of participation, and the discussions that were the results of the single entry point during group creation.

2. Allowing for the utilization of the large horizontal space by allowing students to move freely around the table and work from all sides, and also by providing lightweight, orientation-independent, interaction techniques that allowed for rotating all the objects displayed on the surface. The effects of this design were made clear by the high degree of mobility demonstrated by some students who worked from all sides of the table and who used orientation freely. Group 2 in its final trial even used the table from the side, that is having the whole layout rotated by 90 degrees (Figure 6.8-(b)). Students also used the horizontal space combined with orientation for coordination in a number of cases as depicted by Kruger et al. (2003) (an example is given in Section 6.5). This proves that the interaction techniques used were sufficiently light weight and therefore allowed for this type of usage.

Table 6.6: Features of digital mysteries compared to desktop and paper realizations.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Tabletop</th>
<th>Paper</th>
<th>Desktop</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structuring the task</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Externalization tools</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Feedback and reflection prompts</td>
<td>✓</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Face-to-face collaboration</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Multi-synchronous interaction</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Affords mobility</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Utilising the large horizontal space</td>
<td>✓</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Regulating collaboration</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Increasing participation awareness</td>
<td>✓</td>
<td>×</td>
<td>×</td>
</tr>
</tbody>
</table>

Table 6.6 lists the features of Digital Mysteries and how the digital tabletop design allowed the combination of the benefits of what one might expect from a traditional desktop implementation with those of a paper mysteries (in addition to providing some features only possible with digital tabletops).
Chapter 7

Discussion

The overarching focus of this research has been on the support of digital tabletop technology for face-to-face collaborative learning. The main objectives as stated in Chapter 1 were to

1. understand how traditional tables are used in learning contexts, and thus identify basic design requirements for applications aiming at supporting collaborative learning around tabletops;

2. identify, and propose solutions for, some of the issues in tabletop interaction that have not been thoroughly addressed;

3. investigate the potential of digital tabletop technology to support of face-to-face collaborative learning with focus on higher level thinking skills;

4. build a model collaborative learning application for tabletops that utilizes our understanding of the requirements of collaborative learning applications around this technology, and the interaction techniques required for such applications; and

5. propose general design guidelines for collaborative tabletop learning applications.

7.1 Results and contributions

The contributions of this research fall into two categories: interaction techniques, and design of collaborative learning applications.

7.1.1 Interaction techniques

The need for a fluid, light-weight interaction technique to control different object settings while moving objects between tabletop territories was identified while reviewing previous research concerned with tabletop interaction. Attributes Gates (Chapter 3) were introduced as a novel interaction technique to address this issue. Attribute Gates rely on crossing-based interaction and allow the setting of a number of attributes fluidly while moving the object between territories. This was
achieved by integrating the settings of the attributes into the main movement action. The design of Attribute Gates was inspired by the concept of action levels from activity theory. Two types of Attribute Gates were introduced: Grid Gates and Polar Gates. Grid Gates, as the name implies, distributes the different settings in a grid-like layout with each set of mutually exclusive attributes in the same row, while Polar Gates put the different sets of the mutually exclusive settings in co-centric rings. Each of these techniques has different usage advantages. User studies contrasting Attribute Gates with contextual menus (the most common alternative) showed significantly better user performance for Attribute Gates. Moreover, in terms of the awareness of an observer to the action of setting the attributes, Attribute Gates led to comparatively better performance (compared to contextual menus). Although designed to address a specific problem (multiple attribute setting while moving object between territories) Attribute Gates can be modified to suit different applications as was demonstrated in Digital Mysteries.

The second contribution, in terms of interaction techniques, was to address the problem of text entry with digital tabletops. More specifically, the problem of entering moderate amounts of text for applications that require freedom of movement around the table. TANGIsoft, a hybrid soft keyboard with tangible characteristics was shown to be an appropriate design response to this problem (Chapter 4). Studies contrasting the use of TANGIsoft with a soft keyboard shed light on interesting variations in users’ behaviour. The main observation was that users could be divided into three categories according to their mobility levels when interacting with the tabletop:

- **Static users** who work from a fixed location regardless of the location or orientation of the object they need to interact with, and of the interaction technique (i.e. soft or tangible tools).

- **Dynamic users** who move freely around the table to the be near the point of interaction regardless of the interaction technique.

- **Other users** whose behaviour depend on the interaction technique at hand.

When members of this “other” class of users used TANGIsoft for text entry, they moved the keyboard and oriented it so as to enter text from a comfortable position and orientation; but when having to do the same task with the soft keyboard, they kept the location and the orientation of the keyboard fixed. This demonstrated that the hybrid design of TANGIsoft, which allowed for natural two-handed interaction, afforded for more mobility around the table than a pure software alternative. In addition to introducing a new text-entry alternative to be considered for tabletop applications, TANGIsoft increased our understanding of the behaviour of people around tabletop applications and how tangible interaction can affect such patterns of behaviour.

7.1.2 Designing for collaborative learning applications

In addition to general design guidelines for tabletop applications, the review of literature and the exploratory study described in Chapter 2 provided a basic account of the use of traditional tables
in a learning context. Further investigation of the potential support of tabletop technology for collaborative learning was carried out through the design, development, and evaluation of Digital Mysteries. The kind of support that I sought to explore is one that focuses on higher level thinking skills, feedback, reflection and metacognition. This approach, despite being more difficult than targeting basic thinking skills, which can be measured using pre- and post-test measures, was taken because it truly utilizes the unique affordances of digital tabletops in combining the benefits of face-to-face collaboration and technology. Consequently, the evaluation approach used required the identification of evidence that the design encouraged the type of activities that theories of learning have proved to increase the probability of effective learning. On the other hand, the design of Digital Mysteries aims at utilizing the characteristics that are unique to tabletop technology leading to an application that cannot be directly adapted to other settings, such as desktop or networked environments, without losing much of its value.

The analysis of the final version of Digital Mysteries was based on 12 trials conducted in a school setting with six groups of students. Two of these groups used the application in four separate sessions over a two week period. This made it possible to consider the effects of repeated use and exclude effects resulting from the novelty of the technology. The analysis proved that the design was successful in meeting its goals by giving rise to evidences that: the cognitive tools provided by the design encouraged the externalization of thinking which increases the probability of useful discussions; the feedback provided was properly timed and prompted students to reflect on their solution and progress, and increased their awareness of the concept of metacognition; the students benefited from repeated use of the application; the levels of collaboration were generally acceptable and that students were made aware of the their collaboration levels; and, finally, that the interaction design was successful in utilizing the affordances of the technology and allowed students to work freely around the table.

Digital Mysteries represents a significant contribution to the field of interactive tabletops and surfaces by providing the following:

Increased understanding of the technology: The development of Digital Mysteries, in addition to paper based trials, had undergone three iterations with a total of 22 trials, 12 of which were for the final design. These trials significantly add to our understanding of how tabletop technology is used in learning contexts, and provides an additional evidence as to the potential of tabletops to provide unique and appropriate support for collaborative learning. The large amount of interaction data logged by the application in addition to the video recordings constitute a rich corpus for future research. Figure 7.1 represents a simple visualization based on the logged interaction data, and demonstrates the type of information that can be quickly extracted by the teacher and even the students about different aspects of the process.

1This figure is taken from initial work by Ammar Al-Qaraghuli on the visualization of collaborative data logged using Digital Mysteries.
Figure 7.1: A basic visualization showing users’ actions with time. The chart is for group 4 while solving Windy Creek mystery. Among the observations that can be made regarding users’ contribution from this basic visualization is the low level contribution of user 1 with regards to grouping. The chart also shows that the students continued working on the grouping at the beginning of stage three for a long duration before they started building relations. This delay reflects the group’s struggle with how to starting building the sequence (thanks to Ammar Al-Qaraghuli for the figure).
Design guidelines for learning application: The design of Digital Mysteries, with its strong reliance on theories in learning and interaction design, serves as a model for tabletop collaborative learning applications, in particular those centred around the solution of ill-defined tasks. The guidelines given in section 7.4 represent a generalization of our experience in developing learning applications for tabletops.

A new model for evaluating collaborative learning applications: The evaluation approach used represents a shift from the standard pre- and post-test measures that are only appropriate when evaluating basic learning skills (Higgins et al., 2004). The approach of designing for useful learning activities and validating the occurrence of these activities serves two purposes: it allows for the evaluation of higher level skills that are not easily measurable, and it enables technology and design centric researchers (and developers), who are not pedagogy specialists, to design for such useful learning activities without having to concern themselves with the problem of measuring learning outcomes directly.

An optimised model for the design process: The design process for Digital Mysteries represents a model of how collaborative learning applications should be designed. The model can be summarized in three steps: (1) understanding use of paper and/or basic digital version; (2) the design of a fully functional application; and (3) refinement of the design. The design started with exploratory studies of how students use Paper Mysteries, and a literal digital translation. From these studies a full design evolved that covered most of the targeted learning goals. Based on careful analysis of six trials conducted using this version, the design was refined, leading to the final application. Despite the apparently obvious nature of this process, a number of existing studies on the support of tabletops for learning are based on a single exploratory design (e.g. Piper and Hollan, 2009; Do-Lenh et al., 2009).

7.2 Related work

In comparing this research to previous research on tabletop interaction and learning, a number of distinguishing characteristics are apparent: a strong reliance on theory, the conduct of an explicit and documented iterative design process, a study of the effect of repeated use, the use of an application with a shared space and that allowed freedom of movement, and a focus on utilizing the specific affordances of digital tabletop technology.

Most importantly is the strong and explicit reliance on applicable theory both for interaction techniques design and collaborative learning application development. Activity theory and distributed cognition were used for analysis, design, and evaluation of a number of different aspects. In addition, learning theories and models were used to guide the design and evaluation of Digital Mysteries. Moreover, a proper iterative design approach, consisting of one paper and three digital iterations, was followed in developing Digital Mysteries. All trials were conducted in a school
by students (rather than lab-based settings which are common). While some investigations into the benefits of tabletops for learning did go through a proper iterative design approach (e.g. Piper et al., 2006; Harris et al., 2009), others based their conclusions on simple exploratory applications (e.g. Piper and Hollan, 2009; Do-Lenh et al., 2009).

With such a new technology as digital tabletops, it is difficult to make decisive conclusions based on first use of the application by the students due to the novelty effect of the technology. While Piper and Hollan (2009) specifically addressed this issue by basing their conclusions on multiple repeated sessions, the conclusions of a number of other investigations were based on first time usage of the application only (e.g. Do-Lenh et al., 2009; Harris et al., 2009). I evaluated the use of Digital Mysteries with repeated use for two groups of different achievement levels. Each of these two groups performed four trials of increasing levels of difficulty. It was evident that with each repeated use, students started to feel more comfortable with using the application. One way in which this was apparent was in the increased frequency of movement around the table, and increased use of orientation for objects by some students. Students also showed evidence of benefiting from repeated use when it was combined with reflection.

The choice of pen-based tabletop system for all the studies was primarily based on the ability of such systems to identify users without imposing restrictions on their movement around the table. Currently, the only touch-based tabletop system that can distinguish between users is the DiamondTouch table (Dietz and Leigh, 2001) which requires its users to sit or stand on special mats, thus restricting their movement. Other multi-touch systems cannot distinguish between users; consequently, the only way to recognize users in applications designed for such systems is by dividing the table space into territories and assigning a special territory for each user. Therefore, all existing tabletop applications that have been designed to investigate the support of tabletops for learning, assume use from fixed position around the table (e.g. Piper et al., 2006; Harris et al., 2009), or on one side of the table (e.g. Rick and Rogers, 2008; Piper and Hollan, 2009; Do-Lenh et al., 2009). In the design of the TANGISOF text entry technique, I focused on the issues of mobility, the affordability of mobility of tangible user interfaces, and how this relates to human behaviour. Also, the design of Digital Mysteries sought to allow full freedom for students to move around the table. This allowed the students to work in face-to-face or shoulder-to-shoulder settings, switch between these two settings as they saw appropriate, and encouraged them to freely use non-verbal communication to support their discussions.

A final important point relates to conclusions arising from previous research. Do-Lenh et al. (2009) showed that learning from high-expertise peers was better in a desktop application setting than on a tabletop application that allowed parallel interaction. This was attributed to the inability of such students to dominate the conversation as with a normal computer setting. Piper and Hollan (2009) and Harris et al. (2009) also made the observation that the parallel interaction afforded by tabletop technology, might reduce awareness of others actions. Harris et al. even referred to two competing hypotheses as to whether parallel interaction supports better collaboration due to
enabling equitable participation, or whether single point of input is better for collaboration due to enforced turn-taking and increased awareness. However, it is important to note that the tabletop applications used in the exploratory studies that lead to these conclusions were not designed to fully utilize all the affordances of tabletop technology. In fact, the applications used in Do-Lenh et al. (2009) and Piper and Hollan (2009) were intentionally very basic and mirrored paper, or desktop settings rather than utilizing the benefits of tabletops.

If we are to judge whether tabletop technology is useful for collaborative learning or not, it is important to base our conclusions on applications designed to utilize all the advantages that tabletop technology offers. Instead of arguing whether single point of interaction or parallel points of interaction is better, the argument should be how can we best utilize the ability of tabletop technology to switch between these two modes of operation and enforce coordination rules to maximize the effectiveness of collaboration thereby gaining the best of both modes. Tabletop technology also has the distinctive advantage of allowing face-to-face collaboration. This may lead to increased awareness of the non-verbal behaviour of the participants in addition to allowing freedom of movement around the table, yet all the applications referred to earlier, impose fixed positions around the table, or work from one side of the table similar to a desktop setting.

7.3 Limitations of the current research

All the studies in this research were based on a pen-based tabletop. The main reason for this was the ability to distinguish between users and at the same time allow for free movement around the table. Apart from DiamondTouch table (Dietz and Leigh, 2001), multi-touch surfaces cannot identify or distinguish between different users, which deprives applications developed for such surfaces of the ability to regulate collaboration or provide contribution level feedback. While the choice of pen-based technology allowed for the identification of users and provided freedom of movement, it imposed the following restrictions:

- Single touch interaction (due to the use of pen-based input). This prevented the utilization of multi-touch gestures for scaling and rotation. However, using such multi-touch gestures may not always be an advantage considering the extra amount of physical effort required from users. The underlying ergonomic consequences of using single touch combined with interaction techniques such as Attribute Gates, and comparing this to multi-touch gestures on such a large surface could be an interesting subject of future enquiries.

- Although TANGiSOFT was developed to be used with applications that require moderate level of text entry and freedom of movement (i.e. similar to Digital Mysteries), it was not used with Digital Mysteries and a soft keyboard had to be used instead. This is because the tracking mechanism used for TANGiSOFT required two of the three pens allowed by the ActivBoard technology, leaving only one for interaction. It would have been interesting to
observe the use of TANGISOFT in a practical application like Digital Mysteries and observe whether the extra degree of freedom of movement afforded by its design would have lead to more mobile users, or more incidences where the keyboard is used for coordination of action.

Nevertheless, and as far as support for learning is concerned, these limitations affect only the interaction style with the application and not the underlying learning goals.

The final version of Digital Mysteries revealed two limitations in the design which has already prompted future research. First is the small amount of planning undertaken by students for the task as a whole and at the beginning of each stage, particularly for the lower achieving groups. It would be useful to investigate the improvement in the overall performance and students’ problem solving strategies if a dedicated planning stage were added at the beginning of the task, in addition to dedicated planning prompts at the beginning of each stage. In other words, bracket each stage individually, and the task as a whole between pre-task/stage planning and post-task/stage reflective feedback. The second point relates to the quality of the final layout. With the design encouraging students to build suitably branched sequences, the focus of some of the lower achieving groups was on making a properly looking layout, rather than on the reasoning behind this layout. Although observations of repeated use lead to the expectation that students’ performance would improve with each use and more focus would be put on the reasoning, this remains a limitation of the current version that is worth further investigation.

7.4 Design guidelines

From the experience gained in working with digital tabletop technology and specifically with its support for education, general guidelines for collaborative learning applications and specially those for ill-defined tasks has been developed:

- **Structure the task.** Dividing a large task into smaller sub-tasks (or stages) has many advantages as it allows for providing scaffolding instructions and feedback in optimal, non-interrupting manner; provides a space for think back moments (reflection) at the end of each stage and giving students an opportunity to evaluate their progress and, with the help of feedback, identify mistakes; improves students problem solving strategy by teaching them that large problems can be solved by dividing them into smaller manageable problems; and helps in providing different perspectives (or representations) of the same problem.

- **Precede the task as a whole, and each stage individually with a planning stage.** Provide students with different strategy options on how to proceed with the task as a whole or with each stage individually. It is also important to precede the task and the stages with clear guiding instructions and requirements of the overall task and of each stage.
• **Encourage externalization.** Transforming ideas into forms visible to others frequently triggers useful discussions leading to effective learning and collaboration. Students should have a variety of cognitive tools that allow them to express every decision. As an example from Digital Mysteries, providing two options for the relation tool (normal and arrow) created more opportunities for discussion on the type of relation to use. Making the students thinking visible on the table in this way, also helps teachers in evaluating students’ interactions with the application.

• **Follow the task as a whole, and each stage individually, with reflective feedback.** Focus on feedback that provides reflective prompts to students encouraging them to evaluate the strategy used, to evaluate their progress, to identify mistakes, and in some cases to think of possible alternatives to how the task was carried out and even re-work it. Two clear examples of this in the design of Digital Mysteries are the feedback provided by the sequence evaluation dialog, which required the students themselves to evaluate their solution with further feedback given accordingly, and the dedicated reflection stage that followed the task. Digital technology can provide structure and logging which should be exploited in the design of such reflective tools.

Support of the four recommendations above combined with repeated use, can lead to great learning benefits for the students and increases their awareness of the concepts of metacognitive knowledge and metacognitive regulatory skills. These recommendations encourage students to make explicit their strategy and their reasoning for solving the problem at hand, prompt them to reflect on their work and progress, and detect problems in the process which would otherwise go unnoticed. Clear evidence was found as to the benefits of following these guidelines with repeated use of the application.

In addition to these four points, which affect how students proceed in solving the task, other recommendations that are not directly related to the task, but to the application behaviour and regulation of collaboration are as follows:

• **Support abstract logging of events and identify critical moments.** A full real-time playback of a session takes a lot of time and distracts attention from the important aspects in the process. With Digital Mysteries, only results of actions were logged and not the whole movements, and important points (as when feedback was provided regarding grouping or sequencing) were marked. This allowed the teacher to perform a quick playback of the whole session and to focus on the important points in the process.

• **Design for different ability levels.** Provide support and scaffolding based on the students’ performance. This means that the application should behave differently for higher achieving groups than for lower achieving groups, and adapt to the improvement in the groups’ performance. This prevents high achieving students from feeling too constrained, or being
frequently interrupted by the application, and also prevents frustration on the part of low achieving students by providing adequate scaffolding.

- **Support the appropriate modes of group interaction.** Careful reasoning must underpin the choice and use of parallel interaction, single point of entry, and enforced collaboration. There is no reason why applications should either allow full parallel interaction or only support a single point of interaction. A major advantage of digital tabletop technology is in its ability to switch between these two modes of operation in addition to being able to enforce collaboration when needed. The goal is to optimise the application to maximize the effectiveness of collaboration.

A final recommendation is concerned with the choice of the groups to carry out the trials throughout the iterative design process. From my work with students of different ability levels, observation of groups of lower achieving students more readily led to insights that improved the design. This does not mean removing higher achieving groups from the process, but the positive results, that are a common outcome from such groups, should not be used without questioning as evidence of successful design.

7.5 Recommendations for future research

Recent research has started to explore digital tabletops at the application level, and more specifically applications that support learning. Such investigations typically focus on the direct effect of the technology on the group that is using it. As tabletop technology matures and becomes commercially available and affordable (for schools), it is important that the scope of research broadens to include the general impact of tabletops on classroom environments.

The first issue that schools adopting tabletop technology have to consider is whether to have one tabletop in every classroom, or a single collaborative learning lab containing a number of tabletops? The first case implies utilizing tabletop technology to complement the classroom learning experience (in a manner similar to interactive whiteboards), while the second case implies placing the technology as the centre of the learning experience. With the first case, the main questions will relate to how the presence of such technology affects the learning experience and teacher-student interaction in the classroom. This option can work best if the task of collaboration around the table is carried out as one among many other types of group activities; with groups using the technology in an intermittent manner. It is worth noting that Rick et al. (2009b) also reflected briefly on the issues of introducing new technologies into schools and specifically tabletops, and the possible revolutionary effects on learning and pedagogical visions. Rick et al. expressed an optimistic outlook for tabletops and argued that while previous technologies, such as personal computers and interactive whiteboards, did not have the radical impact that was pre-
dicted, digital tabletops, with their inherently collaborative nature and support for small groups, have much to promise.

The second case suggests a classroom with a tabletop for each group of students. A starting point can be to have only one such collaborative laboratory in the school. All the tabletops, in addition to a main classroom computer that connects to a large vertical display, might connect to a local network. With such a networked environment, it is possible to display different visualizations (either privately to the teacher’s display, or publicly on a large vertical display) summarizing different aspects of the groups’ interactions. This makes it easy for the teacher to gain an overview of the performance of the groups and identify the ones that need scaffolding. Moreover, this configuration can be utilized to increasing the students’ awareness of the performance of other groups. This can be either through the large vertical display, or by allowing groups to show, upon request, visualizations of the performance of other groups. With the network connecting groups of students, rather than individuals, a number of new pedagogical questions arise, such as: What are the effects of increasing students’ awareness of the performance of the other groups, and whether this is a desirable feature or not? Is it better to aim at increasing the competitive spirit among groups, or the collaborative spirit? If the aim is to increase the competitive spirit among groups, then knowledge about the performance of other groups can increase motivation. On the other hand, if the goal is to increase the collaborative nature of interaction, then it is possible to provide features that allow students to exchange ideas between tables, or to temporarily swap the displays of two tables so that two groups can look at each other’s work. While a number of researchers investigated different methods for exchanging data between a tabletop and other external devices (e.g. Shen et al., 2003; Streitz et al., 1999), no research that I know of addresses the issue of collaboration over interconnected tables. Indeed, Wellner (1993) and Ashdown and Robinson (2004) allowed features of collaboration, but specifically for remote collaboration between individuals so that each user sees what is displayed on the other users’ desks. The major challenge for addressing the issues above is that such investigations must be carried out in the wild (by students in schools) and not in laboratory environments.

My principal recommendations for extending work that is related to Digital Mysteries lie in two directions: (1) the use of data visualization to support teacher awareness of group and individual learning at tabletops, and (2) the extension of Digital Mysteries to support writing.

One of the key advantages of digital tabletops, over traditional tables, is the ability to log the interactions during the process. With Digital Mysteries, each session results in a rich corpus of interaction data, which is currently being used only for playback of the session in the reflection stage. Such interaction data can be visualized either dynamically, through the process, or as static visualizations at the end of the process. Dynamic is used here to refer to visualizations that reflect, in real-time, certain features of the interaction (an example in Digital Mysteries is the collaboration pie chart that displays the level of participation). Static visualizations refer to ones that represent a summary of different aspects of the interaction with time usually displayed spatially in a way
that gives an overall summary of the interaction or the problem solving process. Visualizations can serve to make clear different aspects of the interaction, and for different types of audience (i.e., for the students themselves or for the teacher). Information about the participation levels, the distribution of work throughout the process (who is doing what), the quality of the solution, and even the types of the thinking skills used can be extracted from the data and visualized. While visualizations that are aimed for the students should be simple, serving as reflection tools for different aspects of the interaction, more complicated visualizations can serve as indicators for the teachers to the amount and type of scaffolding required for the students. It is even possible use data from previous sessions to make visible patterns of change in the students’ behaviour with the repeated use of Digital Mysteries. Figure7.1 shows an example of a basic visualization from the interaction data for a group of students while solving Digital Mysteries.

The second important research direction is in the field of collaborative writing. Each mystery involves a strong narrative thread. By the end of the sequencing stage, students should have built a layout that reflects their understanding of the mystery. Such a layout represents a good starting point for students to write about different aspects related to the mystery. Following the process of solving mysteries with a collaborative writing task has two potential benefits: (1) it can provide a common context for the writing task based on the students’ shared experience in solving the mystery, and (2) it can improve the quality of the solution of the Digital Mysteries itself. When students realise that they will have to write an essay based on their solution, they will pay more attention to the quality of their solution. Indeed, a shortcoming of the current design is that lower achieving students in some cases focus on building a proper looking layout rather than on the actual reasoning behind the layout. This approach uses Digital Mysteries as an introductory phase to later writing tasks. Another approach is to modify the design of Digital Mysteries to support collaborative writing more directly. In this approach the type of data in the mystery slips should be more related to a narrative thread of an essay that the students are to write about than to a problem to solve. Further investigation of this has already started by looking into using Digital Mysteries in combination with a writing technique called writing frames (Lewis and Wray, 1996). Writing frames are defined as “templates consisting of starters, connectives and sentence modifiers which offer children a structure for communicating what they want to say” (Lewis and Wray, 1996, pp.2). A starting point in doing this integration between Digital Mysteries and writing frames can be done with simple modifications on the grouping and sequencing stages. The goal of the grouping stage could be modified so that each group represent a paragraph. For the sequencing stage, the contents of the paragraph are constructed from the slips and notes written by the students which are all linked together using the sticky tape. Then the paragraphs (groups) are linked together using the starters and connective sentences and modifiers obtained using a new dedicated tool. In this way, the aim of the design will be to enable the students to build the structure of the essay in a visual and collaborative manner. As writing frames is not originally a collaborative writing tool, and since

2This figure is taken from the initial work of Ammar Al-Qaraghuli
little is known on how students write collaboratively in face to face settings, it is important to start by observing how students perform collaborative writing tasks along the guidelines suggested using paper, and proceed by following a similar iterative design process to that used in developing Digital Mysteries.

Another, more specific, future research topic that relates to improving Digital Mysteries, is the addition of planning activity to the task as discussed in section 7.3. Planning can be introduced by providing the students with different alternatives as to how to solve the problem. When the students are forced to make such decisions before carrying out the task, they are more likely to become aware of the strategy they are using and of its impact on their performance. The benefits of planning are expected to become more evident with repeated use where the students can try different approaches and draw contrasts between them. As an example in Digital Mysteries, an initial planning stage could give the students the options between dividing the problem into smaller stages (reading, grouping, and sequencing) or combining two or all of the stages. This helps the students in realizing, by practice, the advantages and disadvantages of each approach. An example of pre-stage planning for the reading stage would be to give students options as to whether each slip should be read by all students before moving to the next, or the slips should be divided between the students.

In recent years, and with the growing use of the Internet, the focus of the computer supported collaborative learning (CSCL) community has shifted away from face-to-face collaboration and focused more on distributed networked settings. Digital tabletop technology, if utilized well, can be the tool that will bring the attention of the CSCL research community back to face-to-face technology supported collaborative learning. This work represents a small but significant step toward achieving this goal.
Bibliography

A. Harris, J. Rick, V. Bonnett, N. Yuill, R. Fleck, P. Marshall, and Y. Rogers. Around the table: are multiple-touch surfaces better than single-touch for children’s collaborative interactions? In

M. Lewis and D. Wray. Writing frames. *Reading, UK: Reading and Language Information Centre, University of Reading*, 1996.

Appendix A
Mysteries data

A.1 Will Kyle skip school on Friday? and why?

A.1.1 The slips

1. On Tuesday 9th October, Kyle was late for a lesson for the twelfth time since starting Year 7.

2. Kyle’s Mum works from home. She is quite strict.

3. On Thursday 11th, the caretaker told Mr. Smith that he’d seen Kyle and James in the staff car park on Wednesday afternoon.

4. On Wednesday 10th October, the Head of Year 7 had to go home in a taxi.

5. On Wednesday evening, Kyle’s Mum confiscated his mobile phone during the 10 o’clock news.

6. Three students from Form 10A have been permanently excluded since September.
Kyle likes his Head of Year, Mr. Smith, because he is very friendly and easy to talk to.

At Valley High School, girls are allowed to wear make up.

The sports facilities at Valley High School are much better than at Kyle's previous school.

At lunchtimes, Kyle has started to hang out with much older pupils.

Kyle's form room is at the far end of F corridor. You have to go past 10A's form room to get there.

Four people in Kyle's tutor group are very badly behaved in lessons.

At Valley High School pupils from all year groups can mix together at lunchtimes.

Kyle's ICT teacher has been off sick since the beginning of the term.
Davie Dixon from form 10A, was Kyle’s ‘buddy’ for the first two weeks of term. They had got on really well.

By October, Kyle had made just one good friend—a year 9 student called James Dixon.

Internal memo

From: Mr. Smith, Head of Year 7
To: 7A Form Tutor
Date: Thursday 11 October

Dear All,

Please can you ask Kyle Robinson to come and see me tomorrow morning at 8:30 before school?

Thanks.

School Council Agenda

Date: Friday 12 October
Venue: 7A Form Room, F corridor
Time: 12:30 – 13:00

Item 1: Suggestions for improving F corridor [KR]

Item 2: The Year 7 Arts Week project—shall we invite the graffiti artists again?

Item 3: Discussion—Do Year 7 need a separate teaching block and their own recreation area?
Kyle, meet me in staff car park @ 2.45 pm tomorrow.

Kyle, take the blame or I’ll get Davie to sort u out!!

Only kidding! He probably didn’t see us.

Davie, can u get me a sharp knife?
Incident no. 87:
10 October 2007 Valley High School

At Valley High School, Year 7 students like to express themselves.

Dear Kyle,

I need to finish my website by the end of this week. Saturday will be too late.

Please try to get it done as far.

It pop your cheap in this post as soon as I receive it. Friday please!

Best wishes,

Peter Dakeley
Director, Green Living

This timetable belongs to: Kyle Robinson

<table>
<thead>
<tr>
<th>Week 1</th>
<th>Week 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mon</td>
<td>Tue</td>
</tr>
<tr>
<td>Hu</td>
<td>En</td>
</tr>
<tr>
<td>2</td>
<td>Tx</td>
</tr>
<tr>
<td>3</td>
<td>Tx</td>
</tr>
<tr>
<td>4</td>
<td>Mu</td>
</tr>
<tr>
<td>5</td>
<td>DI</td>
</tr>
</tbody>
</table>
A.1.2 The meta-data

<?xml version='1.0' encoding='utf-8'?>
<helpData>
 <theQuestion>
 Will Kyle skip school on Friday?
 </theQuestion>
 <redherrings>9 27</redherrings>
 <notVeryUseful>18</notVeryUseful>
 <useful>
 2 3 4 5 6 7 8 14 15 19 20 21 22 23 24 25 26 28 29 30
 </useful>
 <mustBeTogether>
 <g>26 8 6 20</g>
 <g>22 5 23</g>
 <g>24 21 25 4 3</g>
 <g>19 7</g>
 </mustBeTogether>
 <hints>
 <h>
 Part of the sequence can be slip (22), then slip (5), then slip (23).
 </h>
 <h>
 Did Kyle read the last message he got from James?
 </h>
 <h>
 Who are the main characters, and what are their relationships?
 </h>
 <h>
 When does Kyle have to deliver the website?
 </h>
 <h>
 It might help to list separately the reasons to go and not to go.
 </h>
 </hints>
</helpData>
A.2 Why did Vicky get clamped?

A.2.1 The slips

1. On Saturday 2nd July 1998 Vicki Adams returned to her car to find it being clamped.

2. Raymond voted Labour in the last election. He would change his mind if he is not allowed to drive his Volvo to work.

3. The government is considering charging supermarkets £100 a year for each parking place.

4. As Vicki has a Nissan Micra, it is cheaper to used it, rather than get the bus.

5. Buzy Buses’ have just had their buses painted yellow and black.

6. Vicki had parked in a solicitors firm’s parking space.

7. Vicki’s brother, Mark, was knocked off his bike on his way to work last year.

8. Dennis Wade, the clamerer, replied that he was just doing his job, there was no need to be personal.

9. Climate expects are worried about the effect of melting of the polar ice caps on low lying countries such as Bangladesh.

10. Between 1974 and 1996 rail and bus fares have gone up by 50%. The costs of motoring have gone down by 3%.

11. Raymond takes his two daughters to their private school on the way to work.

12. About 10% of school children suffer from asthma.

13. Many people prefer to go to the Metro Centre rather than used their local shops.

14. Many new cars have CD players.

15. The share price of Stagecoach, one of the biggest bus companies has gone up a lot in recent years.

16. The government is worried about inflation.

17. Vicki had to pay 100 pound to have the clamp removed.

18. The Minister of transport is very keen to reduce car use. He is considering charging cars which come into town.

19. Sheffield’s ‘Super Trams’ have lost the council a lot of money.

20. Vicki does not feel safe walking home or getting public transport late at night.
A.2.2 The meta-data

```xml
<helpData>
    <theQuestion>
        Why did Vicky get clamped?
    </theQuestion>
    <redherrings></redherrings>
    <notVeryUseful></notVeryUseful>
    <useful></useful>
    <mustBeTogether>
        <g></g>
    </mustBeTogether>
    <hints>
        <h>
            You can start with slip (23), followed by (6), then (30) and build on that.
        </h>
        <h>
            Why did Vicky park for a long period of time.
        </h>
    </hints>
</helpData>
```
A.3 Who killed king Ted?

A.3.1 The slips

1. Experts say,

Living bodies have a temperature of about 38°C. When they die, they go cold. They lose 2 degrees every hour.

2. King Ted likes to bet. On Sunday, Lord Leek seemed keen to bet too.

I bet you 5,000 that you can’t say the 7 times table in 30 seconds.

I bet I can.

I’ll give you two days to practice then...

3. On Saturday night Bob the Robber was in the ‘The Dirty Duck’ pub. He was heard to say...

If I wanted to get my hands on King Ted’s jewels, I know just how I would go about it.

4. King Ted is the ruler of Newland. He shares his castle with Princess Prune and his servants.

5. King Ted always watched his favourite programs.

<table>
<thead>
<tr>
<th>Monday’s Viewing</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00pm</td>
</tr>
<tr>
<td>8:30pm</td>
</tr>
<tr>
<td>9:00pm</td>
</tr>
<tr>
<td>9:30pm</td>
</tr>
<tr>
<td>10:00pm</td>
</tr>
<tr>
<td>10:15pm</td>
</tr>
<tr>
<td>12:30pm</td>
</tr>
</tbody>
</table>

6. A letter from Lord Leek’s bank was found in his rubbish bin.

<table>
<thead>
<tr>
<th>Friday 20th November</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dear Lord Leek, please take note of the following... or else!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Your Earnings</th>
<th>Your Payments</th>
</tr>
</thead>
<tbody>
<tr>
<td>£120.00</td>
<td>£392.00</td>
</tr>
<tr>
<td>£100.00</td>
<td>£320.50</td>
</tr>
<tr>
<td>£100.00</td>
<td>£2500.00</td>
</tr>
</tbody>
</table>
7. King Ted had a weak heart and was easily frightened. He didn’t like the taste of the medicine the doctor had given him.

8. King Ted checked his jewels every night at 9.00pm. Only he knew the code to the safe.
 "It’s the odd number half way between 43 and 55."

9. King Ted always drank his milk when he sat down to watch the news.

10. Newlands football team scored twice as many goals this season as they did last season. Last season they scored six goals against the opposition and two own goals.

11. The police found King Ted’s medicine in Princess Prune’s room.

12. Bob the robber gave the owner of the joke shop £5 and received £2 change. How much was the scary mask?
13. King Ted’s body was found at 11.45 pm on Monday 23rd November by his servant. The police arrived 15 minutes later.

14. Princess Prune would like to rule the country.

15. Bob the Robber was seen on his motorbike at 9.30pm at ‘Dead Man’s’ crossroads. He was driving towards King Ted’s castle.

16. The police found the safe open and King Ted’s jewels were gone.

17. Next to the body, the police found the evening paper, a broken glass and some spilt milk.

18. It was Princess Prune’s job to put King Ted’s medicine in his milk.
19. Map

King Ted’s castle

20 miles

8 miles

Dead Man’s crossroads

Bob the Robber’s house

20. As soon as they arrived, the police measured the temperature of the king’s body. It was...

![thermometer]

35°C

![medicine]

22. Bob the Robber’s motorbike has a top speed of 40 miles per hour.

![motorbike]

23. Lord Leek was seen with ladders and binoculars in the castle gardens at 9.15pm. He was muttering to himself.

7 times 7 = 49
7 times 7 = 49
7 times 7 = 49

24. The police found ladder marks by King Ted’s safe room window.

![room_diagram]
A.3.2 The meta-data

```xml
<?xml version='1.0' encoding='utf-8'?>
<helpData>
  <theQuestion>
    Who killed king Ted?
  </theQuestion>
  <redherrings>10</redherrings>
  <notVeryUseful>4</notVeryUseful>
  <useful>
    1 2 3 5 6 7 8 9 11 12 13 14 15 16 17 18 19 20 21 22 23 24
  </useful>
  <mustBeTogether>
    <g>15 19 22</g>
    <g>8 23 24</g>
    <g>1 13 20</g>
    <g>11 17 18 21</g>
    <g>3 7 12</g>
    <g>5 9</g>
  </mustBeTogether>
  <hints>
    <h>
      You can start with slip (4), then (13), then (20) and build on that.
    </h>
    <h>
      Determine the time of death from the body’s temperature.
    </h>
    <h>
      If Bob the robber was going to the castle. When did he arrive there?
    </h>
    <h>
      What was king Ted watching on TV when he died?
    </h>
    <h>
      How much of the medicine did king Ted drink? Is this amount dangerous?
    </h>
    <h>
      Why was lord Leek keen to bet?
    </h>
  </hints>
</helpData>
```
A.4 Should Annie leave Windy Creek or should she stay? And why?

A.4.1 The slips

There are only 4 stores in Windy Creek - foodstore, hardware, clothes and hairdresser/drugstore. There is also a filling station with a diner/bar.

The summers are hot and sunny. The winters are cold with plenty of snow.

Her boyfriend, who she met at college, lives in Arizona.

Annie’s best friend Bath is married and lives on a ranch 15 miles away.

Half the people in Windy Creek are over 50.

Annie has 3 uncles, 4 aunts, 3 grandparents and 7 cousins in Windy Creek. She loves the family get-togethers.

In 1939 the population was 1370 - there were more shops and a cinema.

She cannot afford a car on what she earns.
She has been offered a job as a trainee manager for a car leasing firm in Tucson, Arizona.

Annie suffers from allergies, especially in summer.

The Windy Creek is a beautiful river. Its water in summer comes from melted snow in the mountains. It is clean and clear and great for swimming.

Annie has been to college and is qualified as a business manager.

There is an elementary school in Windy Creek.

Annie loves skiing, canoeing and backpacking.

The nearest cinema and fashion shops are in Laramie, 80 miles away.

Annie Schmidt lives in Windy Creek, Colorado. 620 people live in the town.
A4.2 The meta-data

<?xml version='1.0' encoding='utf-8'?>
<helpData>
 <theQuestion>
 Should Annie leave Windy Creek or should she stay? And why?
 </theQuestion>
 <mustBeTogether>
 <g>3 9 12</g>
 <g>4 8 15</g>
 <g>11 14</g>
 </mustBeTogether>
 <hints>
 <h>
 You can build a sequence about Windy Creek by starting with slip number 16, then slip 7, then slip 1, and continue.
 </h>
 </hints>
</helpData>
A.5 Why did Oliver decide to join up?

A.5.1 The slips

1. In 1914 Oliver was 17 years old.

2. A private in the DLI got one shilling per day (5 pence).

3. He had lived in the same house in Stanley all his life with his parents and two sisters.

4. The 19th battalion of the DLI were called the “Bantams” for men under 5ft 3 ins tall.

5. Oliver wanted to be a footballer, but he was too small.

6. Oliver paid his mother 2/4d a week (12 pence).

7. Oliver worked on a farm outside Stanley, County Durham.

8. Maisie, Oliver’s 19 year old sister was planning to get married.
Oliver had a girlfriend - Agnes. Other lads thought she was very pretty.

Oliver was an excellent swimmer.

In 1913 Agnes got a job as a 'live-in' servant for a 'posh' house in Newcastle.

There were a lot of 'Kitchener' posters in Stanley in 1914.

Tommy told Oliver that the 19th battalion was stationed in Gateshead.

Oliver was poor at reading and writing.

Oliver was paid 3 shillings a week (15 pence).

During the war Oliver wrote many letters home.
Oliver’s mother had wanted more children, especially boys.

A picture of Edward VII was hung on the wall over the mantelpiece in Oliver’s house.

The son of Agnes’s employer had signed up to be an officer instead of going to Cambridge University.

Oliver’s home was a crowded ‘two up and two down’ in Stanley.

Agnes had been considered clever at school.

The furthest Oliver had ever travelled was to see Newcastle United (at home) with Tommy. He had to save up to do this.

Oliver’s father had fought in the Boer War. He had caught TB and never worked after he came home.

Tommy Fishburn boasted that he was the first soldier to ‘sign up’ in Stanley.
A.5.2 The meta-data

```xml
<?xml version='1.0' encoding='utf-8'?>
<helpData>
  <theQuestion>
    Why did Oliver decide to join up?
  </theQuestion>
  <mustBeTogether>
    <g>2 6 14</g>
    <g>9 13</g>
    <g>4 10 25</g>
  </mustBeTogether>
  <hints>
    <h>
      You can start with the following sequence: 1, 7, 6, 14, and so on.
    </h>
  </hints>
</helpData>
```
A.6 Why is the village shop in Hensford closing?

A.6.1 The slips

There is a voluntary prescription collection service run through the village shop.

Inflation is 3%.

The farm shop only lasted a year.

In 1950 there were 62 people in the village working in agriculture, by 2000 there are only 14.

The village shop was broken into six months ago. £3000 was stolen from the safe and £1200 worth of cigarettes and alcohol was stolen.

The shop passed the EHO inspection.

There is no bank in Hensford.

Car ownership has increased by 20% in the village in the last 15 years. However 30% of households don't own a car.
Mr Read is 60 and Mrs Read is 62 and has arthritis.

The village school has 36 pupils.

The village shop started doing Sunday papers 6 months ago.

The garage on the main road half a mile away has plans to stock basic items of grocery.

Half the council houses in the village have been bought by their tenants.

A farmshop opened one mile away three years ago selling organic meat and vegetables and wholefoods.

Most of the old people in the village get their pensions from the Post Office.

Most families with children have their child allowance paid into their bank accounts.
A superstore opened on the edge of the town, 6 miles away, two years ago.

Prices are roughly 30% cheaper in the superstore.

The village shop has insurance against theft.

The council has put double yellow lines outside the shop.

The village bus service to the local town has been cut from one a day to two a week.

The village has won the county best kept village competition twice in the last ten years.

The village hall has a large car park only 70 metres from the shop.

Two years ago the shopowners Mr and Mrs Ready had a serious row with the Taits who keep the village pub about who was responsible for litter on the village green.
A.6.2 The meta-data

<?xml version='1.0' encoding='utf-8'?>
<helpData>
 <theQuestion>
 Why is the village shop in Hensford closing?
 </theQuestion>
 <mustBeTogether>
 <g>5 19</g>
 <g>3 14</g>
 <g>6 25</g>
 <g>7 18</g>
 </mustBeTogether>
 <hints>
 <h>
 You can start your sequence with slips 18, 17, 8 and so on.
 </h>
 </hints>
</helpData>
A.7 Who was responsible for the death of Alice White?

A.7.1 The slips

One morning in November 1871. The body of Alice White, aged 12, was found in the Cockshaw Burn. She had drowned.

Alice’s brother and sisters all worked by the time they were eight years old.

The Cockshaw burn flows into the River Tyne.

Ever since Medieval times, Hexham had been an important market for sheep and cattle. Once killed their skins were used to make leather.

In 1870, the Gilesgate tannery was cutting down on staff. Business was being lost to larger tanneries in Newcastle. James lost his job.

Cockshaw Burn was full of slimy waste from the tannery. This made the sides of the burn slippery.

Alice had been taught to read by her grandmother. She had high hopes for Alice.

The leather factories were dirty, smelly and dangerous. Dog dung, urine and fat were used.
In 1856 James White had an accident. A scudding knife cut off his leg. He found it difficult to work and his wages went down.

Alice tried to get work as a servant but she had consumption, which gave her a very bad cough. This put people off giving her a job.

In 1853 the Board of Health Report said that the Cockshaw area of Hexham was one of the most unhealthy areas in Britain, because of the pollution and overcrowding. Diseases such as smallpox and typhoid were common.

In 1851 James White worked as a farmer; like his father and grandfather. His wife Catherine made leather gloves at home. James' father had made quite a good living, but there was less work now.

In 1858, the Whites could not afford the rent of their house. They took two rooms in Catherine's mother's house. Their 4 youngest children were born there.

William Ridley, one of the White's neighbours was forced into the workhouse when he took his job as a shoemaker. The family was split up in the workhouse, where conditions were terrible.

James and Catherine White's older children, Robert, James, Catherine and Joseph had died in a smallpox outbreak in May 1855. 55 people died in Cockshaw that month.
17
The Newcastle to Carlisle Railway was opened in the 1850s. This meant that animal skins could be sent to Newcastle quickly and cheaply.

18
In 1841, 40% of the working people in Cockshaw were in the leather industry. By 1871 this had dropped to 5%.

19
The leather industry needed a constant supply of water. Cockshaw had two burns running through the area.

20
In Hexham gloves and shoes were made by hand which was very slow. By 1870, machines for making these had been developed. The machines meant that gloves and shoes could be made more cheaply in factories in large towns.

21
Gloves were made from sheep or goat skins. Before 1830, most gloves were made by hand. 23,000 dozen (dozen = 12) were made in Hexham each year around this time.

22
It was Alice’s job to get water in the morning. She had to walk to the tap, across the bridge, with 2 buckets. She did not like this job.

23
The owners of the Gillage tannery cleaned out the tanning vats early in the morning. To do this they dammed the stream, then let the water out. This could cause flooding downstream.
A.7.2 The meta-data

<?xml version='1.0' encoding='utf-8'?>
<helpData>
 <theQuestion>
 Who was responsible for the death of Alice White?
 </theQuestion>
 <mustBeTogether>
 <g>12 5 20</g>
 <g>23 6</g>
 </mustBeTogether>
 <hints>
 <h>
 Make use of the years to build a sequence.
 A sample sequence: 12, 13, 16, 9,...
 </h>
 </hints>
</helpData>