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ABSTRACT 

The presence of sediment deposits in sewers causes loss of their 
hydraulic capacity. This could eventually lead to various 
operational problems such as surcharging, surface flooding and 
premature operation of overflows with the consequent increase of 
pollution of water courses. 

The present study has covered hydraulics, deposition, erosion and 
sediment transport in channels of circular cross-section, all 
with sediment bed. Throughout the programme comparisons between 
cohesive and non-cohesive sediment results were made. Velocity, 
turbulence and shear stress distributions obtained for various 
bed thicknesses showed dependency on the shape effects (bed 
thickness, bed roughness, flow depth and slope) of the channel. 
Bed shear stresses predicted using Einstein-Vanoni's separation 
technique were comparable to the measured values. 

Initiation of. erosion experiments with uniform non-cohesive 
sediments yielded lower threshold values of mean shear stress 
than those published for wide channels (i. e., Shields' curve). 
However, when sand and cohesive additives (china clay, oil, 
petroleum jelly, etc. ) were used in the experiments a substantial 
increase of the critical shear stress was observed. This increase 
was dependent on the amount and concentration of the cohesive 
additive. 

A link between laboratory ' and field (actual sewer sediment 
behaviour) however, was essential in order to relate the 
experimental results to sewers. As a result of chemical and 
rheological studies (Williams and Williams, 1988) of UK sewer 
samples a synthetic sewer sediment was suggested (Laponite RD 
clay, sand and water in various proportions) for flume testing. 
The experimental results showed that for a given clay-gel 
concentration there is an optimum proportion of sand to clay-gel 
to achieve maximum resistance to erosion. It was found that only 
freshly deposited weak sediments (less cohesive Type C sediment) 
will erode at shear stresses of around 2.5 N/m , whereas slightly 
consolidated (Type A- Crabtree, 1988) sediment will erode at 
around 6 to 7 N/m2. Transport experiments using cohesive and 
non-cohesive sediments resulted in lower shear stresses for 
non-deposition conditions compared to those corresponding to wide 
rectangular channels. 

The study resulted in establishing the hydraulics (though 
limited) of sewers with deposited beds, erosion thresholds of 
non-cohesive (uniform and non-uniform mixtures) sediments and 
cohesive sewer sediment of different degrees of strength. 
Additionally, it has been possible to establish the transport 
rates of cohesive sediments (during high flows) over fixed 
(consolidated) sediment beds likely to be deposited during low 
flows (DWF). This led to a better understanding of erosion and 
transport processes of cohesive sediments. 
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CHAPTER ONE 

INTRODUCTION 

The presence of sediment deposits in sewers has been shown 

(CIRIA, 1987) to occur in many older combined sewer and surface 

water drains. It is suggested that up to 25,000 Km of sewers and 

drains may be affected nationally. Sediment deposition in sewers 

causes loss of their hydraulic capacity, which eventually leads 

to various operational problems such as surcharging, surface 

flooding, premature operation of storm sewage overflows (SSO), 

with the consequent increase of pollution of water courses, etc., 

and'it is estimated that this may cost the' country2 some' £ 60 

millions a year. ' 

It is believed (WRc, 1986) that 'a large 'proportion- of the 

pollutant load discharged" during storm events (operation of SSO) 

is derived from " the erosion ' and re-entrainment of' material that 

has -previously been deposited in the sewer system. Although river 

pollution from SSO is generally infrequent and of a transient 

nature, it often may be of sufficient magnitude (in terms of 

concentration, load and frequency of discharge) to be the 

critical factor limiting the ecology of many urban water courses. 

Therefore there is a need (CIRIA, 1987) for re-examination of the 

current state of knowledge of the processes of sediment movement 

(deposition, re-entrainment and transport) in sewers and of the 

design approaches. 
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An important factor in the design of 'sewerage systems is the 

minimum gradient at which pipes need to be laid. Under the 

current design practice these minimum gradients are determined 

using' the self-cleansing velocity criterion. The British Standard 

Code of Practice CP 8005 (1986) on sewerage recommends the use of 

a' minimum velocity of 0.75 and 1.0 m/s when assuming the sewer'to 

be 'running at half full "and full pipe flow respectively, and 

suggest that this `velocity should be exceeded for a short period 

at least' once `a day. 

Several studies (Macke, 1982, May, 1982, Novak & Nalluri, 1984, 

Mayerle, 1988) have shown that the self-cleansing condition 

cannot simply be defined in terms of a fixed velocity, but there 

is a need to take into account the size, concentration and 

density of sediment, in the system and the diameter of the pipe. 

Several equations that include these new factors have been 

proposed. However, due to the lack of quantitative knowledge 

about the occurrence of sediments in sewers these design methods 

are not widely used. 

Having realized the extent of the sediment associated problems in 

sewers, the Water Research Centre (WRc) and the Water Authorities 

Association (WAA) have set out the framework (WRc-WAA Sewerage 

Rehabilitation Manual, 1986) within' "'which the ' future 

rehabilitation and operational strategies 'will be developed for 

existing sewerage systems in the UK. Their main objective is to 

develop an appropriate level of understanding Of the total 

system. 
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As result of the study of these matters the need for further 

research was indicated .A collaborative research effort was 

initiated by the WRc's River Basin Management (RBM) programme 

with simultaneous work on various areas of the sediment related 

problems in sewers at several institutions in the UK, including 
YJ 

characterization of sewer sediments (WRc), sediment sampling and 

testing (University College of Swansea/WRc), field monitoring on 

the effect of re-entrainment of sediments and field monitoring of 

sediment loads (Dundee Institute of Technology), sediment 

rheology and transport (Swansea/Dundee), laboratory studies to 

clarify scale effects of non-cohesive sediments (Hydraulic 

Research Ltd. ), laboratory studies on the influence of cohesive 

additives (University of Newcastle upon Tyne), sediment and 

pollutants (University of Birmingham), sediment in tanks 

(University of Manchester), etc., which will contribute towards 

the development of an improved sewer flow quality model. 

The present work, which forms part of the RBM programme, financed 

by the Science and Engineering Research Council (SERC), has been 

carried out at the, University of Newcastle upon Tyne. The work 

relates only to the influence of cohesion on the erosion and 

transport of sewer sediments. 

Recent studies on sewer sediment characteristics carried out with 

samples from 
., seven different 

,. 
locations . An the, U. K. 

(Crabtree 1988) indicated that, the pollutant load discharged from 

storm sewage overflows is mostly cohesive in . nature. Therefore 

the results from laboratory 
, studies ; with., non-cohesive sediment 
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may need to be applied with caution to combined sewerage systems. 

The presence of cohesive sediment and intermittent nature of flow 

in sewers cause (see Crabtree 1988) the formation of , stationary 

sediment deposits specially during low flows or Dry Weather Flows 

(DWF). For this reason It was decided to carry, out this study , 
in 

flumes' of circular cross-section with flat sediment beds. The 

sediment bed was formed with uniformly graded sand and a cohesive 

additive. Several additives, such as china clay, 
, 
oil, petroleum 

jelly, laponite clay, etc. were used in the search for a 

synthetic sewer sediment. The main problem was to relate the 

behaviour of the synthetic sewer sediment to the actual sewer 

sediment. 

The main objectives of the present study were: 

1) To identify the influence of cohesive additives to the erosion 

threshold of non-cohesive sediments. 

2) To establish the 
, 

hydraulic parameters and frictional 

characteristics critical to the re-entrainment and transport 

of deposited sediments. 

3) To relate the above performance characteristics to the 

properties of sediments occurring within combined ý sewers. 

In order to achieve these objectives an experimental programme 

with uniform flows was proposed to be conducted In, two smooth 

flumes of circular cross-section (154 and 302 mm diameters) . -with 

flat - sediment beds. In the initial stages of the project 
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non-cohesive (i. e., uniformly graded sands) t sediment experiments 

were carried out, to assess shape effects (compared 
, 

with wide 

channel theory) on the threshold of erosion and on they transport 

capacity of the flow. This provided a basis of comparison for the 

cohesive, sediment studies.. It was, also , necessary, to . measure 

channel roughness, velocity and shear stress distributions 
; and 

turbulence levels in order to characterize the flowF through this 

particular cross-section, and assess its implication on sediment 

movement. 

Chemical and rheological studies (Williams and Williams 1988) 

were carried out with sewer samples collected from different 

locations in the U. K. (Crabtree 1988). As a result a synthetic 

sewer sediment (with similar rheological properties to actual 

sewer sediment) formed by mixing Laponite RD clay, sand and 'water 

was suggested for flume testing in the laboratory. A large number 

of initiation of erosion experiments covering the entire range of 

combinations (varying the concentration of the clay gel and the 

proportion of sand) of the synthetic sewer sediment was carried 

out in the 
. 
154 mm diameter, flume. These mixtures were mimicking 

from freshly deposited (Type C with - low cohesion) to slightly 

consolidated (Type A with high cohesion) sewer 

sediments. Transport experiments over fixed (limit deposition 

condition) and loose (alluvial) -- beds were -carried out using 

non-cohesive sediments as well as the synthetic sewer sediment, 

in order to assess the influence of cohesion in the transporting 

capacity of a flow. 
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The contents of this thesis are organized as follows: 

Chapter 1. is the present introductory summary. Chapter 2 contains 

a brief analysis of the literature on the sediment movement in 

channels (alluvial and rigid . beds, cohesive and non-cohesive 

sediments) considered relevant to the present work. Chapter 3 

shows a detailed ' description of the laboratory equipment and a 

description of the experimental; , procedures adopted during the 

conduction of the laboratory work. In Chapter 4 the main results 

are presented in tabulated and graphic form for the various sets 

of experiments (hydraulic characteristics, initiation of erosion, 

and sediment transport). The experimental data is analysed and 

comparisons are made between the results obtained from cohesive 

and non-cohesive sediment, and between wide channels and channels 

of circular cross-section. Chapter 5 contains further discussion 

and conclusion of the results of each set, of experiments, and some 

recommendations ý for further work are presented. 

Finally there. are 9 Appendixes, which include: 

a) Notation (list of symbols used) 
b) An extensive list of references 

c) Plates (set of photographs from the laboratory) 

d) Velocity profiles , 
data 

e) Turbulence intensity measurements 
f) Initiation ' of erosion, non-cohesive sediment data 

g) Initiation of erosion, synthetic'sewer sediment data 

h) Laser Doppler Velocimetry, operation of the IFA-550 
i) Einstein-Brook-Vanoni's wall separation technique 
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CHAPTER TWO ¶ _. 

SEDIMENT MOVEMENT IN. CHANNEL -, A LITERATURE REVIEW 

2.1 NON-COHESIVE SEDIMENTS 

2.1.1 Alluvial Channels 

2.1.1.1 Rectangular Wide Channels 

Many investigators have studied the problems of sediment movement 

in open channels and only those directly related to the present 

work will be briefly described here. 

a) Threshold - of Motion 

The limiting condition marking the boundary between the state of 

motion and the state of rest of the sediment particles on the bed 

cannot be defined with precision. At any given condition some 

particles will move, others will not, due to the statistical 

nature of the problem. 

In 1936 Shields found that the parameters 
p=PSs -`1)gd the 

" 50 

entrainment function, and Re " 
u"s° 

the Reynolds number of 

the particle, were related so that the plot 
+ Vs. R. falls 

on a, single line (see Fig. 2.1). Based on experimental data 

Shields plotted a curve that separates the state of motion from 

the state of sediment at rest on the bed. The curve represents 

the threshold of motion of an alluvial channel. 
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Although experiments plotted on Shields' diagram (see Fig. 2.1) 

show a fair amount of scatter they support Shields' general 

conclusions and it is widely accepted as a criterion for 

initiation of sediment movement. The curve has the form: 

tioc d u* 
fct( 

-) 
(2.1) 

p(Sq- 1)gd 

where roc is the critical shear stress, -d the particle -size, ps 

the density of the sediment, p the fluid density, v, the kinematic 

viscosity, S9 the, relative density of the., sediments, and 

ux 
F_X; 

._ the shear, velocity. 

ý ,. ý,. 

Sym Description 8, 
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FIGURE 2.1: - SHIELDS' DIAGRAM (Vanoni, 1964) 
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A large proportion of the scatter can be attributed to the 

confusion in the definition of critical shear stress. Many 

investigators simply defined critical conditions at some 

arbitrary point in the critical movement process with no regards 

to the amount of sediment movement. This made the definitions 

very subjective. 

There is no flow stage at which all bed surface particles are 

suddenly placed in motion. On the contrary, bed movement takes 

place gradually over a range of shear stresses as the flow 

velocity is increased. 

Other factors also influence grain movement such as shape and 

size of sediment particles, the degree of exposure to the flow 

and the effect of flow turbulence. 

Sometimes the threshold velocity (VC), which is the mean velocity 

of the flow for incipient motion, is used to define critical 

conditions. 

For Re* > 500 Eq. 2.1 can be written as: 
t oc 

= 0.056 (2.2) 
(p -p)gd 

For loose sediment bed Manning's n can be assumed: 

1= 26 
n d116 

(2.3) 

where d is the particle size in (m). 
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Combining Eqs. 2.2 and 2.3 with Manning's equation yields: - 

V° 
= 1.96 (Ss- 1)1/2 

(d)h/6 
(2.4) 

/ gd 
where VC is the critical velocity, d the particle size, S. the 

relative density of the sediment, and R the hydraulic radius. 

Bogardi (1968) suggested, for critical conditions, the relation: 

Vry0.405 
c=1.7 I d°J (2.5) 

gY°(S9- 1) 

Rearranging the terms, Eq. 2.5 can be expressed in the form: 

V -0.095 
= 1.7 (Ss- 1)1/2 

(4_) 
.ý 

(2.6) 

d 

Grass (1970) showed that for any area of flat bed there will be a 

random , distribution of critical shear stresses. Some bed 

particles are more exposed and easily detached than others. For a 

given flow there will be a random distribution of shear stresses 

(turbulent nature of the flow) acting on the bed. Thus, there are 

two independent distributions of shear stress and when they start 

to overlap the weakest grains will. begin to move. 

/' - 
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0C 

Bed shear stress 
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e 

shear stress distribution 
° 

Value of Y 

FIGURE 2.2: OVERLAP OF THE SHEAR STRESS DISTRIBUTIONS 

(after Grass, 1970) 

Grass (1970) defined quantitatively critical movement in terms of 

the overlap (see Fig. 2.2) of the two distributions as the 

multiple "np" of the sum of the standard deviation of the two 

distributions that separate the two mean values. 

b) Bed Load 

The first approach to the study of the movement of bed sediment 

in channels was published by du Boys in 1679 in which a bedload 

relation was suggested in the form: 

qg = Cs r0 (x - toc) (2.7) 

where to is the mean shear stress, toc the critical shear stress 

for incipient motion and C* a coefficient dependent on sediment 

size. 
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Kalinske (1947) took into consideration turbulent fluctuations of 

the velocity at the bed, which were assumed to be normally 

distributed, and presented the following equation for the 

computation of bed load: 

ud = 10(W )2 (2.8) 
  

where q is the volume rate of sediment transported per unit 

width, u* the shear velocity, and d the sediment size. Even 

though spherical grains were assumed, sometimes non-uniform sands 

were represented by their median diameters. 

Einstein in 1942 developed his well -known formula (Eq. 2.9) based 

on physical reasoning and on dimensional considerations. 

Equation 2.9 relates bed'load transport with properties of the 

grain and of the flow causing the movement. Einstein employed 

statistical reasoning to an even greater extent than Kalinske 

did, and' he finally concluded that, "Is 

= W9d = f1 (2.9) 
W s 

where 4' is known as Einstein bed load function, ws is the' 

particle fall velocity, d is the particle diameter and 
1 
W 

is Shields' entrainment function. This result is very 

similar to that of Kalinske where the latter uses the shear 

velocity (u*) instead of the particle's fall velocity (ws). 
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FIGURE 2.3 BROWN'S CURVE 

Brown (1950) using many experimental data (sand size ranges: 

0.315 mm < dso < 28.6 mm and 1.25 <S<4.2) presented the 

empirical relation: 

=. 40 (w )3 (2.10) 

valid for 0<0.4 

The lower part of the plot (see Fig. 2.3) curves away to the 

asymptote 
w=0.056, 

which represents the threshold condition 

of Shields' data (Eq. 2.2). 

f"40(ý)3 

/ 
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Meyer-Peter and Muller in 1948 presented the formula, 

iR(n'/n)312S 3p (gs 1) 2/3 

0.047(72_ 7) = 0.25/' (2.11) - 
dd 

which is widely used for sand mixtures. Equation 2.11 was obtained 

as the best fit ' of experimental data with sand size ranges: 

0.4 mm < dso <' 28.6 mm and 1.25 < Ss < 4.2, and wide channels, 

where 1' is the specific weight of the sediment, n and n' are 

Manning's total roughness coefficient and grain roughness 

coefficient, respectively, g4' is the bed load rate in, weight per 

unit time per unit width. 

In their computations, Meyer-Peter et al. (1948) kept the 

hydraulic radius constant and divided the energy slope into two 

components. One taking the portion of the energy 'loss, due to 

grain resistance (S') and the other due to bed form (S"), 

S=so +S" (2.12) 

Whereas Einstein divided the hydraulic radius for the same 

reasons keeping the slope fixed as: 

R=R'+R" (2.13) 

Therefore in Eq. 2.11 the term (n'/n)3/2S = S' represents the 

energy loss due to grain resistance, which is responsible for 

sediment transport. 
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Chien in 1954 showed that Eq. 2.11 gives results comparable to 

those of Einstein (see Fig. 2.4), and that it can be written as: 

(4 0.188)3/2 (2.14) 

Graf and Acaroglu (1968) analysed several laboratory (open and 

closed conduits) and field data and obtained the following 

relation (see Fig. 2.5): 

45 = 10.39 (-L)2.52 (2.15) 

with 
CRV 

Im-" 

V (2.16) 

(Sq- 1), Sd3 

known as the transport parameter and 

(S 
q 

1)d 
w=SR (2.1? ) 

as the flow intensity, parameter, where C, is volumetric sediment 

concentration, R the hydraulic radius, V the mean flow velocity, 

S the relative density of sediment, S the channel slope and d 
a 

the particle size. 

Einstein and Meyer-Peter and Muller equations are widely used for 

bed load calculations. However, there are several other equations 

available in the literature such as those of Bagnold (1956), 

Yalin (1963), 
, 
Engelund . and Hansen" (1967), Ackers and White 

(1973), etc., to which the interested reader is referred to. 

.. 
-S 
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c) Bedform classification 

The type of bedform is generally dependent on the flow regime 

(i. e., Froude number) and on the type and size of sediments. Once 

the shear stress is sufficient to cause transport "ripples" will 

start to form on the bed. As the shear 'stress is increased the 

ripples will grow into larger "dunes", which will be migrating 

downstream. Dunes and ripples differ in their relative sizes 

(with respect to flow depth). The random element present in bed 

formation is considerable. Thus individual waves of the bed 

formation (at any'instant) are not identical in ' their size and 

shape and the dimensions of dunes and ripples refer to the 

average (along the channel axis) values. 

A typical bedform sketch is shown in Fig. 2.6 where Yo is the 

normal depth with respect to the average bed level, L is the dune 

length, A is the height of the dunes and V is the mean flow 

velocity. 

Y 
V_` o 

win 
FIGURE 2.6: TYPICAL BEDFORM IN ALLUVIAL " CHANNELS 
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There is a large' number of investigators in the literature who 

have studied bed formation in alluvial channels ' and presented 

relations for their prediction. ' Only a few of them are presented 

here. 

Shields (1936) correlated bed formation with shear stress and 

classified bedforms (see Fig. " 2.7) according to the flow 

intensity parameter and particle Reynolds number. 
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Simons et al. (1963) using experimental and field data suggested 

the use of the stream power (r0V) for the classification of 

bedforms. In Fig. 2.8 the stream power is plotted against the 

fall diameter (obtained from settling experiments) and the 

various types of bed formation are shown. 
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FIGURE 2.8: STREAM POWER V. GRAIN (FALL) DIAMETER 

Yalin (1964) derived a dimensionless expression for bedform as: 

rY1 Yo 
=1 I1 - Yörl for 55 Re < 70 (2.18) 

where A is 
. 
the bedform height, Yer the flow depth for' incipient" 

motion and Yo the uniform flow depth. 
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In 1985 Yalin presented an expression for the length (L)) of the 

ripples: 

L= f(Re*, E) (2.19) 

where E is a dimensionless particle number given by: 

(S - 1) 
ü_ 

V2 
g (d50)3 (2.20) 

From his experiments he obtained a family of curves for each 

value of E. By successive' approximation a coefficient a was 

obtained, for which all data formed a single I pattern (see 

Fig. 2.9), as: 

a=3.38 . 0.2S (2.21) 
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Thus, Eq. 2.19 becomes: 

aä 
= f(aRe (2.22) 

The ripple height may be predicted using Eq. 2.21 and Fig. 2.9, 

for a given sand and flow characteristics. 

Znamenskaya (1969) presented a generalized empirical relation for 

bedforms classification (see Fig. 2.10) 
, 
based on the flow 

characteristics, i. e., the Froude number of the flow, the mean 

velocity of the flow V, and the type of bed material w2. 
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The Froude number was defined as: 

V II 
Fr = (2.23) 

/-9--y" 

where Y0 is, the normal depth with respect to the average bed 

level and V is the mean flow velocity. The plot in Fig. 2.10 

(Znamenskaya, 1969) permits the prediction of the type of 

bedforms, the bedforms steepness (L) and the velocity (c9) at 

which the bedforms travel for any given sand size and flow 

conditions. 

Van Rijn (1984) presented a classification of bedforms using two 

dimensionless parameters (see Fig. 2.11). One is a dimensionless 

particle number, D* given by: 

(S: _ 1)g 1ia 
Dx 

2 
dso (2.24) 

V 

where d5o is the particle mean diameter, v is the kinematic 

viscosity, and S is the relative density of the sediments. The 

other one is a transport parameter, T expressed as: 

T= 

(u*')2 
- 

(uxod 2 

(2.25) 
2 ýu*cr) 

where u*' is the shear velocity related to grain only, and u*cr 

is the critical shear velocity from Shields' diagram. The shear 

velocity is given by: 

91/2 
u*' 

IIV 
(2.26) 

where V is the mean flow velocity, and C' is Chezy coefficient 
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related to grain as: 

12 R 
C' = 18 log 

[3d 
(2.27) 

111 90 

in which Rb is the hydraulic radius of the bed, and d90 is the 

particle diameter of bed material not exceeded by 90% by weight 

of the particles. 
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Van Rijn (1984) after analyzing a large quantity of experimental 

(bedforms) data concluded that the dimensionless grain number D* 

had negligible influence on bedform dimensions. He presented 

best-fit equations for prediction of bedform dimensions as: 

Y 
= 

(d )0.3 5° (1 
0.11 I - e'T121 (25 - T) (2.28) Y l J 

o 

where A is the dune height, Y is the normal depth, d is the 
o 50 

particle mean d iameter, and T is the transport parameter as 

defined in Eq. 2.25. And for dune length an approximate relation 

was given (Van Rijn, 1984) as: 

L= 7.3 Y (2.29) 
o 

where L is the dune length and Y the normal depth. 
' 0 

24 



2.1.1.2 Channels of Circular Cross-section 

a) Sediment Transport 

The mechanism governing the movement of sediment through channels 

of circular cross-section is quite different from that of 

alluvial channels. However, certain similarities are found for 

the case of pipe channels where sediment transport takes place 

over a loose sediment bed (i. e., pipe partly filled with 

sediment). 

There are many investigators in the literature who, have dealt 

with sediment transport in pipes. Most of them studied sediment 

transport under full pipe flow conditions (heterogeneous 

mixtures) for industrial applications such as conveyance *of coal 

and ores, disposal of tailings, ashes, and other waste products, 

transportation of raw materials in industrial processes, etc. 

Acaroglu (1969) observed the. various phases occurring 
., 
during 

transportation of sediment (d =2 mm) in a pipe (see Fig.. 2.12). 

It began with inert sediment. bed for. low velocities, followed by 

initiation of motion for higher velocities, and then by 
, sediment 

transport with bed formation for even higher velocities. A 

further velocity increment caused plane bed, and finally 

suspension (heterogeneous flow) occurred for very high 

velocities. 
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FIGURE 2.12: ENERGY GRADIENT VS. VELOCITY IN PIPES 

(Acaroglu, 1969) 

For full pipe flow conditions Craven (1954) investigated sediment 

movement for various bed thicknesses using two pipe diameters 

5.55" (141 mm) and 2" (51 mm). Sediments utilized were uniform 

quartz sand, sizes 0.25,0.58 and 1.62 mm. He presented a 

relation between sediment thickness ratio (Y /D) and a sediment 

concentration parameter (see Fig. 2.13): 

Q (_) iii 
Z 5.0 (2.30) 

D2.5 
TVP 

where Q. is the absolute volume rate of sediment transport and Q 

is the volume flow rate. Craven concluded that for no deposition 

to occur this parameter (Eq. 2.30) should exceed 5.0. 
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An extension of Craven's investigation was presented by Ambrose 

(1953) who considered the general case of sediment movement under 

open channel flow conditions. In his experimentation in pipes 

with sediment beds cases II (full pipe flow conditions), and. III 

(open channel flow conditions), he employed the same rig and 

sediment as Craven. Ambrose (1953) found a relation between water 

depth ratio and the transport function (see Fig. 2.14): 

QY f( 
g2/5 D2 Q 1/5(S 

_ 1)2 5= Dom) (2.31) 

s$ 

However, the small amount of data limits the application of this 

function. 
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Durand and Condolios (1956) carried out sediment transport 

experiments in pipes with diameters ranging from 40 to 580 mm, 

uniform sand sizes between 0.2 and 25 mm, relative densities 

between 1.6 (plastic) and 3.95 (corondum) and sediment 

concentrations between 50 and 600 g/l. From their experimental 

results they suggested a dimensionless sediment transport 

parameter: 

V2 gd (S'_ j) -3/2 
op = KD 

gD(ss_ 1) 
W2 

(2.32) 

4 

where Kp is an empirical 'coefficient, d, is the particle size, D 

is the pipe internal diameter, S is the sediment relative 

density, and ws is the particle fall velocity. 
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For sands (S8=2.65) Eq. 2.32 becomes: 

V2 gd -3/2 

(2.33) 1) = 176 -j-D-/ 
w 

For, deposited bed conditions the diameter was replaced by the 

hydraulic radius (i. e., R=D). Much of their data was plotted 

(see Fig. 2.15) by Gibert' (1960) for sand (S =2.65). 

Graf and Acaroglu (1968) using total load data from open 

channels, rivers and pipes obtained a general relation (Eq. 2.15) 

between the transport parameter and the flow intensity parameter. 

Equation 2.15 is plotted in Fig. 2.16, together with closed 

conduit data only, for sand sizes ranging between 0.091 to 

2.78 mm and relative density around 2.65. 
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Even though there is some degree of scatter, Eq. 2.15 explains 

well the data for closed conduit flow as it is shown in 

Fig. 2.16. However, as it can be seen in Fig. 2.5, there is less 

scatter for the open channel flow data, which cover a larger 

experimental range. This reflects the fact that Eq. 2.15 was 

derived from a wide range of experimental data from open channel 

flow conditions (field and laboratory studies) as well as from 

closed conduits. 

b) Bedforms 

Bedforms were observed by many investigators during the low flow 

conditions with deposited sediment bed in the conduits. However, 

not many have actually measured the bedforms. A pipe with a 

previously deposited non-cohesive sediment* bed will develop 

various types of bed formations. These will depend on the shear 

stress exerted by the flow, the size of the sediments and the 

rate of sediment transport. 

Once the shear stress is sufficient to cause transport "ripples" 

will start to form on the bed. As the shear stress is increased 

the ripples will grow into larger "dunes", which will be 

migrating downstream. A further increase in the shear stress will 

lead to the formation of larger isolated dunes as the entire 

sediment bed is eroded away. 
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Perrusquia (1988) conducted experiments with various depths of 

sediment bed in a concrete pipe (225 mm diameter) using two sand 

sizes (0.5 and 1.0 mm). The first part of his work dealt with 

plane bed as flow resistance was studied. He concluded that 

Einstein-Vanoni's wall separation technique (Vanoni-Brook, 1957) 

gave satisfactory results. 

In the second part of the work (Perrusquia, 1988) bedforms were 

studied. Several methods for predicting bedform dimensions such 

as those of Engelund and Hansen (1972), Fredsoe (1982) and van 

Rijn (1984), have been shown to be acceptable, with some 

modifications, for estimating bed formation in pipes with a flat 

sediment bed. 

H :. z 
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2.1.2 Rigid Bed Channels - 

Here there is no erosion of the channel boundary. The sediment is 

fed from external sources. Such are the familiar cases of lined 

canals and sewers. 
f 

a) Initiation of Movement 

Pedroli (1963) experimented with two rectangular channels (300 

and 600 mm wide) with rigid smooth beds. Uniform sands 

(S$ = 2.65) were used ranging from 1.1 mm to 11.1 mm in size. The 

volumetric concentration ranged between 2.2x10- and 10-2. For 5 

incipient motion the following equation was obtained: 

(d50) 2/5 
T0C = 0.00144 p4g S1/4 (2.34) 

where zoc is the critical shear stress in (N/m2), d5o is the mean 

diameter in (m), p9 is the density of the sediment in (Kg/m3), 

and S is the channel slope. 

ku 

Novak and Nalluri (1975) conducted initiation of erosion 

experiments in two circular flumes (152 mm and 305 mm diameter) 

and one rectangular flume 305 mm wide. The range of sand size was 

0.6 to 50 mm. The relative density varied between 1.18 (diakron) 

and 11.74 (lead) and the Reynolds numbers between 1.63x104 and 

5 1.61x10. A general equation for the threshold condition was 

given as: 

yc 
= 0.61 (So- 1) 1/2' (A) -0.27 

(2.35) 

�Sa 
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where Vc is the critical velocity for incipient motion, d is the 

particle size, and R the hydraulic radius. 

Eq. 2.35 is plotted in Fig. 2.17 together with Shields' curve 

(Eq. 2.4) and Bogardi's curve (Eq. 2.6) for alluvial channels, 

for comparison. Novak-Nalluri's data fell below the alluvial 

channels curves (Shields' and Bogardi) , as was expected due to 

the lower frictional resistance of smooth rigid boundary and the 

lack of group effect (sheltering, armouring, etc. ). 
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(NOVAK & NALLURI, 1975) 
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b), Sediment Transport with Limit Deposition Condition 

The limit deposition, velocity (VL) 
. refers., to the velocity , 

for 

which, the transported particles ý are just about to deposit, on the 

channel invert. It is the minimum velocity required to prevent 

deposits forming at, a given sediment transport rate. 

Ambrose (1953) carried out an experimental study in smooth pipes 

(50.8 mm' and 152.4' mm diameters) to complement that of Craven 

(1953). Uniform sands sizes 0.25,0.58 and 1.62 mm were used. He 

obtained a transport function (Eq. 2.36) for his Case I for 

"impending" deposition" (limit deposition) and concluded that for, 

Q52.9 
(2.36) 

2/5 D2 Q1/5(S _ 1)2/5 9sa 

where Qs is absolute volume rate of transport, no deposition < 

will occur in the pipe. 

Pedroli (1963) from his experiments in rectangular channels with 

rigid smooth beds suggested a sediment transport' equation, which 

expressed in S. I 

8/5 
ti 

8/5 
7 

units yields: 

g3/5 d1/5 g 

X1/5 
1.6'+ 0.069 

7'ßv 
(2.37) 

where gs is the mass 'rate -of sediment per unit width (Kg/sm), t 

is the shear stress in (Kgf/m2 ), d50 is the particle size in (m), 

u is' the kinematic viscosity of water in (m2/s) ' and 7Is, the 

specific' gravity of the sediment in (Kgf/m3) (old metric units! ). 
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Novak and Nalluri (1975) additionally studied the limit 

deposition criterion 
rin 

their experiments. They, used graded sands 

of uniform size ranging from 0.15 to 2 mm and volumetric sediment 

concentration from 1.7x10-5 to 2.4x10-3. An expression for limit 

deposition criteria, using Einstein's transport and flow 

parameters, was presented: 

10 = 11.6 V-2.04 (2.38) 

Replacing channel slope S by Darcy's equation for head loss, 

S xy2 (2.39) 
8gR 

Eq. 2.38 can be written as: 

VL 
= 0.632 

(R 0.1 5 
Cvo. 325 -0.662 (2.40) 

8g(Se 1)R lJ 

where VL is the limit deposition velocity, CV the volumetric 

sediment concentration, d the particle size, S0 the density of 

the sediment, R the hydraulic radius, and X the overall friction 

coefficient. 

Similarly May (1989) did rearrange Graf-Acaroglu's expression for 

sediment transport (Eq. 2.15) and obtained: 

y=0.732 (A, ) 0.252C0.249 
1-0.624 (2.41) 

/g(S0_ 1)R v 

where R is the hydraulic radius, A the overall friction 

coefficient for the pipe, and V the mean flow velocity. 
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Although Eq. 2.40 was derived for limit, deposition criterion in 

pipes, it shows certain ; similarities to Eq. 2.41, which is 

another form of Graf-Acaroglu's general equation (Eq. 2.15), for 

sediment transport in pipes and open (alluvial) channels. 

In Fig. 2.18 Novak-Nalluri Eq. 2.38 is plotted together with 

Pedroli's data and Graf-Acaroglu Eq. 2.15 for comparison. It is 

apparent that for the same value of flow intensity parameter (w), 

a higher value of transport parameter (0) applies in cases of 

channels of fixed smooth beds. As in the case of alluvial beds a 

great deal of the flow energy is dissipated by the bedforms, the 

sediment transport capacity of the flow is diminished. 

ag 
f= 11.66 to- 2.04 (Eq. 2.38) 
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t 

May (1975) reanalysed Laursen's data (1956) for limit deposition 

criterion in smooth pipes (51 and 152 mm diameters). Sand sizes 

ranged between 0.25 and 1.6 mm. The best-fit relation obtained 

Was: 

v L=7.0 Cv1/3 (2.42) 
2g(Ss- 1)y 

where VL is the mean velocity in the pipe at limit deposition, y 

is the flow depth, CV is 
, 
the volumetric sediment concentration, 

and S. is the relative density of the sediments. 

Robinson and Graf (1972) carried out transport experiments in two 

smooth pipes (102 and 152 mm diameters) flowing full. They used 

two sediment sizes, 0.45 and 0.88 mm. The volumetric sediment 

concentration (C) was varied between 10-3 and 7x10-2. A relation V 
for the limit deposition criterion was obtained as: 

VL 

2g S9- 1)D 

0.928 C 0.105 d0.056 
v 

1- tang 
(2.43) 

where d is the sediment size in (mm), tang is the slope of the 

pipe (0 positive for an upwards sloping pipe), S9 the relative 

density of the sediment, VL the velocity at limit deposition, and 

D the pipe diameter. 

May (1982) conducted tests on limit . deposition criterion at 

Hydraulics Research Ltd. using two smooth pipes (77 mm and 158 mm 

diameters). He - 
employed three sediment sizes, 0.6 mm, 5.8 mm and 
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7.9 mm, and the volumetric sediment concentrations ranged between 

120 and 2110 ppm. He suggested the best-fit equation: 

4 ` 3/2 
Cý = 0.0205 

Äz) (dO os [1 
- 

Vc (g(3_ L1)D) (2.44) J 

L) s 

where D is the pipe diameter, A is the cross-sectional area, R is 

the hydraulic radius of the flow, C is the volumetric sediment 

concentration, VL is the mean velocity in the pipe at limit 

deposition, and VC is the threshold velocity from Novak and 

Nalluri (Eq. 2.35). 

Macke (1982) conducted transport experiments in smooth pipes with 

diameters 192,290 and 445 mm. Two sand sizes were used, 0.16 mm 

and 0.37 mm. He plotted his data (see Fig. 2.19) together with 

the data of other investigators. Two regions are indicated, 

Region I, which relates to the transport of sediments over loose 

(alluvial) beds channels, and Region II, which relates to the 

transport of sediments over fixed bed channels (limit deposition 

criterion). 

For the transport over loose beds Macke (1982) obtained (see 

Fig. 2.19, Region I)) the best-fit Equation: 

Q* =Q pg(Ss- 1)w312 = 0.000164 t3 (2.45) 
So 

where Q* is a sediment transport parameter in IS (S )312J , ws is 

the fall velocity of the particle in (m/s), and xl the mean shear 0 

stress in (N/m2). - 

39 



p I 

--- -- -- - --- -- --- 
_ -- - - __ -! --f 

l( 

. 0.000164 t3 

10- (Eq. 2.45) 

10 2 =_- 

d 

_ 
Legend 

: r.. _, .... _ý___. .. --.. oAMROSE(1957) 

-- 
-_ý 

= CRAVEN(1961) 
ü: _T: _: (1953) DURAND 

10 
-- ---" -_ 4) 

EINSTEIN et el. (1972) 
EO FORRBOTER (1961) 

- °: 

°' 
- -_ _ -_ L" FONR80TER et e1. (1975) 

-' - 
L. ^ý 

° - r FOMRSITER et al, 1981 -" : 
Z- 

t': - _a[- ýKARAKASSONIS (1976) 

3_ -- --_ = Z= Vo Jntersucnungen u LEICH7rEISS-14STITUT 

s 
-O=- '-' --ý. .-d" 608IN508, 'RAF (1972) 

5 
10 

ßi I ; ii sk SAJERMANN ( 1978) 
MACKE (1982) 

]_ __ _ "i : _.: LL 
,.., 

ý"itiA1ýRýý 

i Jtýu I{. it!? D�r. tý 

'' C ti f 

105 
1 01 

i. 
se -a X103 7ise 114101 l]. se . ea101 ] v10 

t= pgRS 
0 

FIGURE 2.19: TRANSPORT PARAMETER VS. MEAN SHEAR STRESS 

FOR PIPES (Macke, 1982) 

-- 

ý. _I. 

Q=0.000164 t3 

(EQ. 2.45).., 

77 

.. 
I 

1'T. 7II ü ('-It 
t . 111 S. 

ý 

Ö 
---- -_- --z -_ 

-- - -- ----- ----- -- 

Legend 
: r.. _, .... -ý___. .. --.. o* 8C5E(1953) 

-- - -_ý 
= CRAVEN(1961) 

_ DURAND (1957) 
-- -- ---"" _-4) EINSTEIN et el. (1972) 

FORRBUTER (1961) 

- -_ _ -_ 
_-_- 

L" FONRBOTER et e1. (1975) 

_ - -- -_ --- r FOHR80TER et al. (1981) 
T 

_ Z - -_-- -_-_ y" KARAKASSONIS (1976) 

- -- --_ = -Z= Vo Jntersucnungen u LEICHTrEISS-14STITUT 
WT_" : ý-. ý. .. " 808IN508, 'RAF (1972) 
ßiI i') *SAUERMANN (1978) 

MACKE (1982) 

H 

.se evý In-1 ise -eviný 1 i. 14 revlnl 23. se ev102 23 

40 



Mayerle (1988) conducted limit deposition experiments using a 

smooth pipe (152 mm diameter flume) and two rectangular flumes 

(311.5 and 462.3 mm wide). He used uniform graded sands ranging 

from 0.5 to 8.74 mm in size with relative density varying between 

2.49 and 2.61. The volumetric sediment , concentrations ranged 

between 1.03x10-5 and 3.03x10-3, and the relative roughness 

(ks/d) varied between 0 and. 0.87. After attempting several data 

correlations he obtained an equation for the smooth circular pipe 

at the limit deposition as: 

yL 
= 14.431D9Tlo. 

s4 [Ri-0-56COv 
. 1e x;. 18 (2.46) 

jb(3 = 1) lJ 

where d is the sediment size, R is the hydraulic radius, CV is 

the sediment volumetric concentration, and X. is Darcy-Weisbach 

friction coefficient with sediment, which can be calculated from 

Colebrook-White equation: 

k 2.51 1= 
-2 log 

($+) 
(2.47) 14.8 R 

sQs 

where Re is the Reynolds number of the flow and ks is 

Nikuradse's equivalent sand roughness with sediment forwhich an 

empirical relation was ' given as: 

k-k0.24 
ss s= 

R 
0.013 

(D 

gr) 
Cv0.40 (2.48) 

with r2 0.21, ka being Nikuradse's equivalent sand roughness 

with clear water. 
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Parameter D9r is the non-dimensional grain diameter defined as: 

g (so- 1) 1/3 

D9r =id (2.49) 
v 

The non-dimensional grain diameter D9r is identical to the 

parameter D* (Eq. 2.24), , used by Van Rijn. (1984) in his 

classification, of_ bedforms. It-, is also equivalent to, Yalin's 

particle number E, (Eq. 2.20) as they are related, by: 

`ID9 
(2.50) 

For rectangular channels Eqs. 2.469'-2.47 and 2.48 become: 

yL 
= 11.59 

(D l_0.14 d -0"43C0.15 
X0.18 

ý- -d(g _ 1)' l 9ýJ lRb) v be 
(2.51) 

with r2 0.93, 

1a =2 log 
k 

11.55 Rf2., 

51 

-ý 

, 
(2.52) 

r xbe b Rebr web 

kbe*- kbe 
= 0.02451D 

10.40 
C 0.44 (2.53) 

R( yr) v 
b 

with r2 0.38, respectively. where VL Is the mean flow velocity 

at limit deposition conditions, Rb is the bed hydraulic radius, d 

Is the particle size, S9 is the sediment relative density, CV Is 

the sediment volumetric concentration, D Is the non-dimensional 
gr 

grain diameter, Abi is the bed friction coefficient with 

sediment, and ksb and k$$b are the equivalent bed roughnesses 

with clear water, and with sediment respectively. 

42 



ý, 
I'ý 

Based on Eqs. 2.46 to 2.53, Nalluri and Mayerle (1989) proposed a 

method for evaluation of the necessary velocities for 
r 

non-deposition in channels of rectangular and circular 

cross-section. 

Kithsiri (1990), using the same experimental facilities as 

Mayerle (1988), extended the range of relative roughness up to 

2.5. He conducted limit deposition experiments using a 

rectangular, flume 311.5 mm wide. He used uniform graded sands 

ranging from 1 to 8.4 mm in size with relative density varying 

between 2.61 and 2.63. The volumetric sediment concentrations 

ranged between '1. x10-5 and 4.3x10-3. Kithsiri (1990) obtained' the 

following equations: 

VL 
4.96(D9r) 

-0.02ýR, J 
l-o. 51Co. o8 a 0.5 (2.54) 

gd(Ss 1) b. V be 

with ' r2 0.966, -and' 

rk99b- k. 
b = 0.0927 D 

0.64 
C 0.61 (2.55) 

R' I sr) 
b 

with r2 = 0.683. where VL. is the mean flow velocity at limit 

deposition conditions, Rb is the bed hydraulic radius, d is the 

particle size, Ss is the sediment relative density, CV Is the 

sediment volumetric concentration, D Is the non-dimensional 
gr 

grain diameter, xbe is the bed friction coefficient with 

sediment, and kob and ksob' are the equivalent bed roughnesses 

with clear water and with sediment respectively. From Eqs. 2.52, 

2.54 and 2.55 the required velocities for non-deposition 

condition in rectangular channels can be estimated. 
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Using his own data Kithsiri proposed a new method based on. 

determining. the minimum shear stress required for non-deposition 

condition. The method is based on the following best fit 

equations: 
Tb 

= 3.24 1Dý 
-0.02 (ld 1.23CO. 

17 )1.98 (2.56) 
p(S 1)gd 9` bv be 

with r2 = 0.966, and I'll 

Tl0.04 d 1.23 F; k -k O. 04 

(S 

b 

1)gd 
= 2.29 

ýD 

gJ(bl 
CO. 16 A1.91 

r b9 s be 

r lR JI V. be Ii d 
Ps 

(2.57) 

with r2 = 0.972 and 

Abe= 0.694 xo. e8 Cvo. 02"D 0.06 (2.58) 
gr 

with r2 = 0.965, where 'rb is the bed shear stress at limit 

deposition conditions, Rb is the bed hydraulic radius, d is the 
R 

particle size, Ss is the sediment relative density, CV is the 

sediment volumetric concentration, D is the non-dimensional 
gr 

grain diameter, Abe is the bed friction coefficient with 

sediment, and ksb and ksob are the equivalent bed roughnesses 

with clear water and with sediment respectively. 

Using Mayerle's data Kithsiri obtained a set of equations for 

determining the minimum shear stress required for non-deposition 

condition as: 

Tb 
= 13.91(D 

)°271d -0 86O. 29 11.36 
P(S 1)8a l 9rRb v bs 

(2.59) 

with r2 = 0.928, and 
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ýiJ. , 1,, ßi: 
ýI 

r 0.29 0.99 -k -1C -0.15 bd0.36 1.68( bee b 

p 

sl 

(Ss `- 1)gd 
= 39.121 D9r) 

(Rb) 
Cv ýbs d, J 

(2.60) 

with r2 = 0.945 and 

A =0.791i 
0 . e2c0 . osD0.02 (2.61) 

big= s-v gr 

with r2 = 0.919, where 'rb is the bed shear stress at limit 

deposition conditions, Rb is the bed hydraulic radius, d is the 

particle size, S2 is " the -sediment relative density, C,, is the 

sediment volumetric concentration, D is the , non-dimensional 
gr 

grain diameter, X1, is the bed friction coefficient -with 

sediment; and ksp and ksob are the equivalent bed roughnesses 

with clear water and with sediment respectively. ,,, a3 

Finally using his own data and Mayerle's data Kithsiri proposed a 

method based on determining the minimum shear stress required for 

non-deposition condition. The method is based on the following 

best fit equations: 

t(0.2! -0.98 29 X (2.62) 
v bi 

b= 12.931 D9ýJ 
(fl-b] 0. 

` P(S- 1)Sd 

with r2 = 0.918, and 

Cl0.22 1.08 k -k - 

(S 

0.14 b 

1)gd 
- 32.03 

(D 
I 

(d 

Dl 

00.35 X1.79( ban Dsl 

P grJ lR Jv be Il dJ 

s (2.63) 

with r2 = 0.929 and 

a=0.851 1 0. e6 c 0.04 D 0.03 (2.64) be v gr 

with r2 = 0.964, where zb is the bed shear stress at limit 

deposition conditions, Rb is the bed hydraulic radius, d is the 
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particle size, Ss is the sediment relative density, CV is the 

sediment volumetric concentration, D is the non-dimensional 
gr 

grain diameter, abs is the bed ' friction coefficient - with 

sediment, and ksb and kssb are the equivalent bed roughnesses 

with' clear' water and with sediment respectively. i' 

The empirical equations for transport over loose (alluvial) beds 

as well as for transport' over fixed beds (limit deposition 

criterion) that have been presented in this chapter show certain 

similarities. "However, " they still differ in their predictions. 

This reflects the difficulties involved in this type of 

experiments. Therefore care` should 'be taken to apply them within 

their respective experimental ranges. 

{, taFý S 

,ýý'.. 

1 
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2.1.3 Sewer Design Considerations 

Once the design discharge for a sewer reach has been estimated a 

pipe diameter and slope have to be selected. The British Code of 

Practice (BS-CP8005) indicates that sewers shall be laid at such 

gradients that will produce high enough cleansing velocities to 

prevent deposition of sediment in the invert of the pipe. The 

self-cleansing velocities (0.75 and 1 m/s, assuming half full 

pipe flow and full pipe flow conditions, respectively) shall 

occur at least once a day. 

In practice two different approaches are used. One approach 

considers the minimum velocity to attain self-cleansing 

conditions, as recommended by the BS-CP8005. The other approach 

considers the minimum shear stress required to prevent 

deposition, as used in some European countries. 

As the main parameter responsible for erosion and transport of 

sediment is the shear stress it seems more appropriate the use of 

the minimum shear stress criterion. Combining Manning's 

resistance equation 

1 2/3 1/2 
V=nR So (2.65) 

with the shear stress equation 

'ro = pgRS0 (2.66) 
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yields for mean velocity: 

Vn R1 
es 

pi 
(2.67) 

and for the shear stress 

Pg V2 n2 (2.68) ýc a 
R1/3 so 

Substituting the hydraulic radius for the diameter (R -D ) in 

Eq. 2.67 the mean velocity (V) has been plotted (see Fig. 2.20) 

against pipe diameter (D) for various mean shear str esses. The 

computations were made assuming concrete pipe (Manning's 

n=0.013) and half full pipe uniform flow. The curves were 

plotted in logarithmic scales to obtain straight lines. 

6.0 N/m2 

4.0 N/m= 
3.0 N/m2 

1 2.0 N/m= 

^ ---- - ---- ----- 1.0 N/m2 N 

0.5 N/m= 

> 

Iý0.1 

0.1 p (m) 1 

FIGURE 2.20: SELF-CLEANSING VELOCITY CRITERION 
Assuming concrete pipe (n 0.013) 
and half full flow (Y /D 1/2) 
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The use of the self-cleansing velocity criterion (0.75 m/s) has 

two drawbacks. First, smaller diameter pipes w ill tend to be 

over-designed (i. e., with shear stresses higher than necessary). 

For example 125 mm pipe (see Fig. 2.20) will have a mean shear 
2 

stress of 3 N/m. And second, larger diameter pipes will be 

under-designed (i. e., with shear stresses lower than required for 

non-deposition conditions). For example a 2.5 m diameter pipe (see 

Fig. 2.20) will only have about 1 N/m. 2 

In Fig. 2.21 the shear stress (t 
0) 

has been plotted (for various 

flow velocities) against pipe diameter (D), assuming concrete 

pipe, n=0.013, and half full uniform flow (Eq. 2.68). 

10 

1.5 m/s 
v 1.2 m/s 

------- -------- 1.0 m/s 

1I0.75 m/s 

NI0.6 m/s 
0 
L 

0.4 m /s 
N 

0.3 m/s 
1 

0.1 
0.1 D Cm)1 

FIGURE 2.21: MINIMUM SHEAR STRESS CRITERION 
Assuming concrete pipe (n = 0.013) 
and half full flow (Y /D = 1/2) 

0 
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In Fig. 2.21 it is apparent that by limiting the shear stress 

flow velocities will depend on pipe diameter. For example, if a 

design shear stress of 2 N/m2 is selected, a 125 mm diameter pipe 

(see Fig. 2.21) will have a velocity of 0.6 m/s, a 400 mm 

diameter pipe 0.9 m/s and a 2.25 m diameter pipe 1 m/s. 

The use of higher self-cleansing velocities (1 m/s) results in 

safer and yet over-designed sewers. A 100 mm diameter pipe will 

have about 5.7 N/m2 in the example (see Fig. 2.20). This does not 

solve the problem of improving sewer design. 

The preceding studies mentioned above made clear that sediment 

concentration is a very important factor in the determination of 

the self-cleansing velocity. However, the British Code of 

Practice does not take sediment concentration into account. 

One application of the results of sediment transport studies is 

in sewer design (without deposition). Sewers are designed under 

the assumption that a sewer carry non-cohesive sediments only. 

However, from field studies (Crabtree, 1989) the presence of 

cohesive additives (fat, bitumen, organic material, etc. ) has 

been observed, which increases the complexity of the problem even 

more. 
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2.2 COHESIVE SEDIMENT STUDIES 

In this section a brief description of the properties of cohesive 

sediments, classification of clay minerals and rheology is 

presented. It is followed by a review of the recent 

investigations published on the initiation and transport of 

cohesive sediments. 

2.2.1 Cohesive Sediment Properties 

Cohesive sediments are characterized by several properties such 

as sensitivity, swelling, consolidation, flocculation, etc., 

which will be explained in this section. Past studies and 

research on sediment transport in pipe and channels were mostly 

related to non-cohesive sediment. Whereas the movement of 

non-cohesive sediment depends on the physical properties of the 

particles such as size, shape and density, in cohesive sediment 

the resistance to erosion depends on the strength of the cohesive 

bond between the particles. The most important factors 

determining cohesive sediment behaviour are its mineral 

composition, water content, degree of saturation and structure or 

fabric. 

2.2.1.1 Classification of clay minerals 

There are two main groups of atomic bonds that hold atoms 

together, primary bonds (ionic, covalent, and hydrogen and 

hydroxyl) and secondary bonds (van der Waals Forces and 

Electric bonds). 
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Almost all minerals with sheeted structure, which are encountered 

in the very fine soil fraction belong to the group known as clay 

minerals. This group can be divided into three classes. 

a) Kaolinites 

The structure of kaolinite is almost a perfect two-layer clay 

lattice based on a single sheet of silica tetrahedrons combined 

with a single sheet of alumina octahedrons. These sheets are held 

together tightly by hydrogen bonds and the structure is 

non-expandable. It has a low cation exchange capacity as 

exchangeable ions are located in the broken edges of the 

kaolinite plates. 

b) Illites 

Illites are characterized by a basic non-expanding three-layer 

clay structure consisting of a sheet of aluminium octahedrons 

between and combined with two sheets of silica tetrahedrons. In 

the octahedral sheet there is partial substitution of aluminium 

by magnesium and iron, and in the tetrahedral sheet there is 

partial substitution of silicon by aluminium. The combined sheets 

are linked together by weak bonding due to potassium ions (the 

only external exchangeable ions) held between them. Illites have 

a small cation exchange capacity. 
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c) Montmorillonite or Natural Smectites 

Montmorillonites are characterized by a neutral three-layer 

structure. In the octahedral sheet there is partial substitution 

of aluminium by magnesium. The space between the combined sheets 

is occupied by water molecules and exchangeable cations other 

than potassium. The great amount of chemical substitution makes 

them very sensitive to their chemical environment and thus very 

important in the equilibria between solids and solution. 

Considerable swelling of montmorillonite can occur due to 

additional water being adsorbed between the combined sheets. The 

structure is held together by van der Waal forces, which are weak 

compared with the primary bonds that hold the atoms in the unit 

layer together. As a result cleavage parallel to the unit layer 

is favoured leading to the formation of the characteristic flakes 

of these minerals. 

2.2.1.2 Structure of clay particle 

A single particle of clay may consist of many sheets piled one on 

another. Clay particles are likely to be plate-shaped or to 

exhibit flat terraced surfaces. These flat surfaces carry 

residual negative electrical charges. However, the broken edges 

of the p lates or the edges of the terraces may carry either 

positive or negative charges, depending upon the environment. 

In clay the largest proportion of the inorganic component is 

crystalline, which is defined by the crystal chemistry. The most 
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important crystalline components (in clay) are the hydrous 

aluminosilicates, which have distinctive properties due to their 

structure, shape and very small particle size. These minerals 

are responsible for most of the qualities that characterize clay. 

A high value of specific surface suggests that a large proportion 

of the total number of atoms making up a particle forms the 

surface of the particle, and that the particles consist, in 

general, of thin plates whose diameter may be as great as several 

hundred times the plate thickness. 

A few water molecules dissociate into ions H+ and hydroxyl OH-. 

Impurities present in water dissociate as well into positively 

charged cations and negatively charged anions. Since the plane 

surface of the clay minerals carry negative electrical charges, 

the cations (including the H+ provided by the water itself) are 

attracted toward the surface of the plates (i. e., are adsorbed by 

the clay mineral). 

Adsorbed ions are not permanently attached to the clay mineral. 

They may be replaced by other ions (i. e., cation exchange). 

Water adjacent to the negatively charged faces of the mineral may 

itself undergo alteration. Depending on the location and nature 

of the adsorbed cation and by the spacing of the crystal lattice 

of the clay mineral, water molecules may become organized into a 

pattern that is known as adsorbed water. Adsorbed water together 

with the adsorbed ions constitute the adsorption complex. 
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2.2.1.3 The Electric Double Layer 

Adsorbed cations tend to accumulate near the surface of the clay 

particle due to the electrostatic attraction by the surface. 

Simultaneously they have a tendency to diffuse away from the 

surface towards the bulk of the solution, where their 

concentration is low. Thus a diffuse atmosphere of counter-ions 

is formed around the clay particle charge having the greatest 

density near the surface and decreasing density with increasing 

distance from it (Van Olphen, 1963). This is what is known as the 

electric double layer (see Fig. 2.22). 

PARTICLE SOLUTION 

-++ 

-++ 
-+ + 
-++- 

__++ 

-++ 
+- 

_+ ++ 

FIGURE 2.22: THE ELECTRIC DOUBLE LAYER 
(Van Olphen, 1963) 

55 



The extension of the double layer in the solution decreases with 

increasing electrolyte concentration. When two clay particles 

carrying double layer approach each other they repel (double 

layer repulsion). Van der Waal forces between the particles must 

be of comparable magnitude in order to compete with the double 

layer repulsion (see Fig. 2.23). 

Double Layer 
Repulsion 
Energy 

Low Conc. 

Conc. 

van der Waals 
Attraction 

Conc. 

PARTICLE SEPARATION 
/van 

der Walls 
Attraction 

FIGURE 2.23: REPULSIVE AND ATTRACTIVE ENERGY AS A FUNCTION 
OF PARTICLE SEPARATION AT THREE ELECTROLYTE 
CONCENTRATIONS (Van Olphen, 1963 

2.2.2.4 Fabric of clay soils 

The orientation in space of the fabric elements of which the soil 

is composed, is sometimes very important to the engineering 

properties of clay. When fabric elements display a mutual 

56 



parallelism they are said to have preferred orientation. This 

may be caused by deposition, growth or deformation. 

According to Terzaghi (1967) some sediments or soils are composed 

of individual grains of silt and flocculated clay arranged in an 

arching skeleton enclosing large voids (honeycomb structure). 

This structure is a consequence of the forces associated with the 

surface of clay acting during sedimentation. 

If clay particles are introduced into distilled water, the 

particles will be kept apart from each other by the repulsive 

force attributable to the negative charge of each particle. As 

the gravity force acting on each particle is negligibly small, 

the particle will either settle down very slowly or remain in 

suspension exhibiting Brownian movement. However, as natural 

water contains electrolytes some of the particles will attract 

and adsorb ions of opposite sign. Such particles can then be 

attracted to others forming up flocs large enough to settle down 

to the bottom by the action of the gravity force (i. e., 

flocculation takes place). 

Sediment deposited by a flowing medium such as water is likely to 

show monoclinic symmetry of fabric. On the other hand sediment 

deposited in a static medium the fabric may be expected to have 

axial symmetry. The chemical composition of the fluid affects 

sediment fabric as well (flocculation, for example). 
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Three different modes of particle association must be considered 

in the flocculating system. Single crystal clay mineral platelets 

may associate in an edge-to-edge, edge-to-face, face-to-face or 

random pattern. Three different combinations of the two double 

layers are involved, and the total van der Waal attraction 

energies are different for the three modes of association. 

Sometimes if the broken ends of the plates forming the particle 

carry positive charges, the particles in the flocs may have an 

edge-to-face structure (Fig. 2.24). In other circumstances the 

flocs may consist of particles in an essentially parallel 

structure (Fig. 2.25). 

ýx\\ 

x/ 

FIGURE 2.24: EDGE-TO-FACE PATTERN OF CLAY PARTICLES 
(Terzaghi, 1967) 
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FIGURE 2.25: PARALLEL PATTERN OF CLAY PARTICLES 

(Terzaghi, 1967) 

Most sediments also contain coarser particles, which alter the 

whole arrangement of the soils. When sediments are kept under 

pressure the water content of the sediments decreases and the 

particles are forced closer together. The soil is said to 

consolidate. If the soil remains in free water and the pressure 

is decreased then the water content and the volume of the 

sediment increases. This is known as swelling. 

Sediment subjected to shear stress (by flowing water, for 

example) will develop a resistance to shear through the 

interference between flocs. This phenomenon is especially marked 

if most of the structure of the clay is arranged in an 

edge-to-face pattern. Resistance also would be offered by the 
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attraction at the contact between the edges and faces of the 

particles. All this interference and attraction constitute the 

shearing resistance of the sediment. 

If a natural sediment is well remoulded, the flocs are disrupted 

and many of the clay particles become oriented in nearly parallel 

arrays. Thus the shearing resistance of the sediment might have 

been substantially reduced. This property is known as 

sensitivity. Some clays have such a high sensitivity that after 

remoulding they assume the character of a viscous fluid. 

2.2.1.5: Rheology of Clay Suspensions 

Rheological properties are very important in the determination of 

sediment behaviour. They are rather indirect criteria for 

determining particle association. 

There are various types of shear stress-strain relationships the 

simplest one being Newtonian Fluids (see Fig. 2.26-curve A) where 

the shear stress is proportional to the rate of deformation, 

Y=u(äy) (2.69) 

where p is the viscosity of the material that is independent of 

the shear stress applied, and (dy) is the rate of shear. 

Many systems display a more complicated flow behaviour. These are 

generally known as Non-Newtonian Fluids. For example in 

Fig. 2.26-curve Ba Yield Stress (Ty) has to be applied before 
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any flow may occur after which there is a linear relation between 

the shear stress and the rate of shear, 

r ty + (äy) (2.70) 

and these systems are defined as ideal Plastics. 

Another very commonly observed behaviour in dispersed systems is 

shown in Fig. 2.26-curve C, which approximates the ideal plastic 

flow and is called Bingham Plastic Flow. By extrapolation of the 

linear part of the curve the Bingham Yield Stress (z 
Yb) 

is 

obtained at the intersection with the shear stress ordinate. This 

Bingham yield stress is somewhat higher than the true measured 

yield stress x 
y. 

A complication arises in dealing with disperse systems (clay 

solutions) as their flow diagrams are dependent on the previous 

shear history of the system. Some systems become more fluid 

(thinner) when stirred, but then slowly recover their original 

consistency (see Fig. 2.27) when left at rest. They are said to 

exhibit thixotropy. 

The reduction of yield stress when stirred suggests that the 

shear causes a breakdown of the particle links of the flocculated 

structure. The recovering of the yield stress after a period of 

rest, shows that the links are re-established by the Brownian 

motion that bring the particles back together. 
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The different modes of association determine (Partheniades, 1965) 

the rheological behaviour of a system. An edge-to-edge or an 

edge-to-face association, for example increases the viscosity and 

rigidity (yield stress) of a concentrated clay suspension. This 

type of association lead to the formation of continuous, linked, 

card-house structures, which extend throughout the total 

available volume as an aqueous gel is formed, which behaves like 

a Bingham system. 
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FIGURE 2.26: SHEAR STRESS VS. RATE OF SHEAR 
(clay solution) 
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FIGURE 2.27: SHEAR STRESS V. RATE OF SHEAR 
(thixotropic solution) 
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2.2.2 Review of Laboratory Investigations on the Movement 
of Cohesive Sediments 

In channels with cohesive sediment bed the values of Shields' 

function (tp) for initiation of erosion are increased by the 

effect of cohesion. Erosion resistance in clay-water complex is 

principally governed by the electro-chemical forces. Thus apart 

from the shear stress caused by the eroding fluid other 

mechanical forces are not very important. 

As more has been learned about soil properties, recently more 

effort is being directed towards the understanding of the 

interaction between water and fine particles, and to determine 

those hydraulic and soil properties, which control cohesive soil 

erosion and deposition. In this brief literature review only a 

general description of some of the main research works on the 

erosion of cohesive sediment (in chronological order) will be 

presented. 

Laboratory research can be classified into two main groups: 

Consolidated clay beds and soft cohesive beds. Although the laws 

governing erodibility for both groups must be the same, the 

theoretical approaches and laboratory procedures can be quite 

different. 

64 



2.2.2.1 Consolidated Clay Beds 

This group includes research on remoulded consolidated clays and 

the objectives are to study scour in terms of a critical shear 

stress and soil properties of the bed. Recently attempts have 

been made to include chemical parameters as it will be shown 

below. The equipment commonly used in these cases are: 

Re-circulating flumes, Submerged water jet and Rotating Cylinder 

Apparatus. 

The earliest attempt to study erosion of cohesive material was 

reported by Dunn (1959). He carried out experiments with 

remoulded consolidated clay samples subjected to erosion by a 

submerged vertical water jet. The shear stress exerted by the 

submerged water jet was measured by a shear plate placed at the 

bottom of the cylinder. The critical shear stress was defined as 

that corresponding to the flow at which the water becomes cloudy 

and no subsequent clearing occurred. Dunn (1959) found a linear 

relation between critical shear stress and vane shear strength. 

The plasticity index, which ranged between 6 and 16, was also 

found (Dunn, 1959) to be good in estimating the critical shear 

stress. 

Another earlier attempt correspond to Smerdon and Beasley (1959) 

who conducted experiments in an open flume with loosely placed 

soil without any strength measurements. They defined the critical 

shear stress as that corresponding to the point when the material 
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was in general motion. By correlating critical shear stress and 

plasticity index the following equation was obtained, 

T=0.0034(PI)0. e4 (2.71) 
oc 

where t 
oc 

is the critical mean shear stress in [lb/ft2] and PI is 

the plasticity Index. The values of critical shear stress 

obtained with Eq. 2.71 are 10 to 15 times smaller than the 

corresponding values obtained by Dunn (1959). 

Moore et al. (1962) experimented with a rotating-cylinder test 

apparatus to study the relative scour resistance of cohesive 

sediments. They found the depth of scour to be proportional to 

the logarithm of time during which erosion took place. Masch et 

al. (1963), using this apparatus defined the critical shear 

stress as the shear stress corresponding to the point at which 

appreciable quantities of sediment came loose from the sample and 

water in the annulus became cloudy. 

Espey (1963) using the same type of apparatus, obtained a range 

of shear stresses at the stage of severe failure between 8.6 and 

96 N/m2, depending on the interpretation of the data. No attempt 

to correlate critical shear stress with soil properties was made. 

Abdel-Rahman (1963) run experiments with artificially compacted 

clay and mixtures of clay and sand in an open flume. His 

objective was to establish a relationship between the mean 
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erosion depth and the mean bed shear stress and relate it to the 

soil shear strength as well. Shear stresses ranged between 0.7 

and 4 N/m2 and the plasticity index was 23 (%). Considering that 

for the same plasticity index Smerdon and Beasley (1959) gave a 

critical shear stress of 0.2 N/m2, it seems that the shear 

stresses applied by Adbel-Rahman (1963) were beyond the critical 

conditions even though he did not define a critical shear stress 

as such. 

Strong erosion was observed (Abdel-Rahman, 1963) at the beginning 

of the experiment with suspended and bed load but the erosion 

rate decreased and finally stopped with time. The time taken to 

reach the state of no erosion did not seem to be dependent on the 

shear stress. The stopping of erosion with time could be a result 

of the laboratory conditions that made the actual shear stress 

acting on the sediment bed diminish with time. Actually 

Abdel-Rahman (1963) does mention the presence of a gluey layer 

developed on the bed surface when reaching the steady state 

condition. 

Enger (1963) carried out experiments in an open recirculatory 

flume, where 8 inches diameter samples were inserted in the 

middle of the flume. He found some relations for the critical 

shear stress and the moisture content at which the soil sample 

was compacted. 
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Lyle and Smerdon (1965) included the void ratio, which is an 

indication of the soil compaction. Their results clearly showed 

an increase in critical shear stress with a decrease in void 

ratio (see Fig. 2.28). The critical shear stress was also found 

to be directly related to the plasticity index. 

Grissinger (1966) attempted to study the influence of some soil 

properties such as, bulk density, antecedent moisture content, 

type and orientation of clay minerals, percentage of clay, and 

water temperature. Instead of defining an arbitrary critical 

shear stress the determination of the soil erodibility was given 

in terms of mass erosion rate. 
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It was found (Grissinger, 1966) that the orientation of the clay 

particles has a pronounced effect on erodibility. Erosion rates 

decrease with increasing degree of orientation. He also observed 

that the erodibility of the soil decreased by increasing the clay 

content, with one exception (montmorillonite) which could be 

attribute d to swelling. 

The antecedent moisture content (prior to testing) was found 

(Grissinger, 1966) to have a sign ificant effect on erodibity on 

all the soil samples tested with the exception of kaolinite. He 

also found erosion rates to i ncrease with increasing water 

temperature, and to decrease slightly with increasing bulk 

density although this last result was not very conclusive. 

Kelly and Gularte (1981) carried out erosion experiments in a 

water tunnel with remoulded illite clay samples, subjected to 

high shear stress. The parameters studied were shear stress, 

salinity, water content, and temperature. The shear stress was 

measured with a shear plate, pH was kept constant (8.5), the 

velocity was measured with a propeller fibre optic current meter 

and a laser photocell was used to measure the amount of material 

in suspension. Their main objective was to test the applicability 

of the Rate Process Theory to the erosion of cohesive soils. 

The Rate Process theory is based on the assumption that atoms and 

molecules make up flow units, which are continuously attempting 

to move but there are some energy barriers, that restrain their 
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movement, separating equilibrium positions. The fact that the 

erosion rates are temperature dependent makes it possible to 

apply the rate process theory. Thus a flow unit needs external 

energy, assumed to come from thermal energy and applied 

potentials, to cross an energy barrier. Therefore, to apply rate 

process theory to the erosion of cohesive soils a deformation 

mechanism was postulated (Kelly and Gularte, 1981). For the case 

of erosion of soil with constant fabric, it was assumed that the 

rate at which flow units cross energy barriers in the direction 

of applied stress is proportional to the rate at which particles 

leave the soil surface, i. e., the rate of erosion. 

Thus the proposed equations are, 

TTET 
ER21 In 2t (2.72) (T2 T1) 

E1 T2 

E 
Vr = (Z 

k_TZ) In 2 (2.73) 
21E 

1 

where E is the activation energy, R is a universal gas 

constant, T is the absolute temperature, e is the erosion 

rate, k is Boltzman's constant, t is the average shear stress, 

and Vf is the flow volume. 

Finally from their experiments Kelly and Gularte (1981) concluded 

that the Rate Process Theory qualitatively described surface 

erosion on cohesive soils. Their results are shown in 

Figs. 2.29 and 2.30. 

70 



10-4 

E 
C) WATER CONTENT 60% 
00 

4 SALINITY 

0 2.5 ppt 
a 5.0 ppt 

V. "7.5 ppt 
da 10.0 ppt E 

10-5 
F4 

C 
0 

W. 
" 

w0 

4 
öd 

10-6 
3.2 3.3 3.4 3.5 3.6 

Inverse of Temperature (1/K)x10 

FIGURE 2.29: (RATE OF EROSION / TEMPERATURE) VS. INVERSE OF 

OF TEMPERATURE) (after Kelly and Gularte, 1981) 

0.15 

Grundite 
00 
%. 0 

1 

Constant velocity 18 cm/s 

ä 0.10 
v 
." a 
f 
to 0 

v ä 0.05 
a 7 

Temperature 

lgC' 
10 Oc 

0 

Time (h) 
01 

eG 

. yh 

eC 
ý, 0 

2 

oG 
n)o 0 

3 

FIGURE 2.30: SUSPENDED MATERIAL VS. TIME 
(after Kelly and Gularte, 1981) 

71 



Kamphuis and Hall (1983) performed experiments with artificially 

consolidated (48 to 350 KN/m2) cohesive sediments in a 

flume-tunnel capable of providing high bed shear stresses (up to 

26 N/rn2). Remoulded pure natural clay samples and clay-sand 

mixture samples were carefully consolidated in a specially 

designed press. Then each sample was placed in the flume and 

tested. The applied shear stress was determined from the velocity 

profile, and a relation between the critical shear stress (ioc in 

N/m2) and the velocity at a height of 3 mm above the bed (u3c in 

m/s) was obtained, 

TOc = 2.93 u3c1.75 (2.74) 

Eq. 2.74 was used instead of determining the velocity profile for 

every case. As in some tests the sample was immediately 

subjected to the critical shear stress and erosion began 

immediately, it was concluded that erosion depended on the shear 

stress and was not highly dependent on prior flow history. 

The erodibility of the clay sample decreased with increasing 

consolidation pressure (see Fig. 2.31). This was explained 

(Kamphuis and Hall, 1983) to be a result of the decrease of the 

inter-particle spacing due to the consolidation pressure, which 

finally increases the inter-particle bonding forces. 

Critical shear stresses were found (Kamphuis and Hall, 1983) to 

be proportional to the shear strength of the soil sample, i. e., 
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unconfined compressive strength (Fig. 2.32) and vane shear 

strength (Fig. 2.33). The unconfined compressive strength, qu in 

(KN/m2), is an indirect measure of the shear strength of a soil, 

whereas the vane shear strength, S in (KN/m2) is a direct 
v 

measure of the shear strength of a soil as the relevant tests are 

performed in situ. Critical shear stresses were also found to 

increase with plasticity index (see Fig. 2.34) and clay content 

(see Fig. 2.31 & 2.34). 
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Raudkivi and Tan (1984) carried out erosion experiments on 

cohesive soils using a "circular couette flow device" (rotating 

cylinder apparatus), with various clays and electrolytes (eroding 

and pore water). The applicability of the rate process theory to 

the erosion of clay was demonstrated. It was concluded that there 

exists a strong dependence of the erosio n rate on the pH-value 

and salt concentration of the electrolyte. 

In Fig. 2.35 it can be seen that the erosion rate increases with 

pH-value. The increase in pH-value causes a compression of the 
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double layer as the edge-to-edge and face-to-face orientation 

become more prominent, thus the double layer repulsion forces are 

larger that the van der Waal forces. 

It was also found (Raudkivi and Tan, 1984) that the presence of 

salt serves to compress the electric double layer of the 

edge-to-face orientation of clay particles that results in closer 

packing of clay particles. This leads to a stronger bonding and a 

higher erosion resistance (see Fig. 2.36). However, by further 

increasing salt concentration an upper limit of erosion 

resistance is reached. After that dispersion may occur depending 

on the type of clay. 
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2.2.2.2 Soft Cohesive Beds 

This type of bed is either a freshly deposited mud or a low 

strength older deposit. Most of these investigations are 

directed towards understanding erosion, transport and deposition 

of fine cohesive sediments in estuaries. 

In order to study deposition and re-suspension the laboratory 

equipment must be such that the flocs are not disrupted by 

mechanical effects (i. e., the pump in a recirculating flume). 

Recent investigators have implemented a special circular 

(annular) flume, where the flow is motivated by a rotating ring 

in contact with the water surface of the flume (Burt et al., 

1985). In this type of flume the flocs are not disrupted, however 

other problems arise with the appearance of secondary currents 

and corrections have to be made in order to apply the results to 

straight channels. 

Partheniades (1965) carried out flume experiments on erosion and 

deposition of fine estuarial cohesive sediments, with water at 

ocean salinity and constant depth. He used San Francisco Bay mud 

as bed material, which is composed of equal amounts of silt and 

clay with traces of sand and some organic matter. Two different 

types of bed were tested. The first one (Fig. 2.37-Series I) was 

a remoulded sample at field moisture content and the second one 

(Fig. 2.37-Series II) was flocculated and deposited in the flume 

directly from suspension at very low flow velocity. 
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Even though the shear strength of the first type of bed was about 

100 times greater than that of the second one, the critical shear 

stresses were observed to be almost the same for both beds (see 

Fig. 2.37) 0.01 Lb/ft2 (0.48 N/m2) and 0.028 Lb/ft2 (1.34 N/m2) 

for Series I and Series II respectively. 

Partheniades (1965,1970) observed that the material is eroded 

from the bed in two different forms: 

a) Erosion that takes place in small clusters of particles, when 

the applied shear stress does not exceed the bulk shear 

strength of the bed. The critical shear stress indicates the 

point at which the erosion rates start to increase very 

rapidly. Thus erosion might occur at very small shear stresses. 

However the critical shear stress will be determined by the 

flow that can carry the smallest eroded particles in 

suspension. 

b) Erosion that takes place in layers, when the applied shear 

stress exceeds the bulk shear strength of the sediment. Then 

rapid mass erosion will take place. 

It was also concluded that surface erosion rates depended 

strongly on the excess of the applied shear stress over the 

critical shear stress, and that the erosion rates are not 

affected by the concentration of suspended sediments. 
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Lambermont and Lebon, (1978) studied erosion of soft cohesive 

soils. Using experimental data from Migniot (1968) and 

Partheniades (1965) they derived expressions for the density 

distribution in sediment layers and for the erosion rate 

respectively, taking into account the action of the turbulent 

flow. From the results of ultra-centrifuge tests it was concluded 

that the density distribution of the sediment layer depends on 

the whole previous deposition and erosion history 

(see Fig. 2.38). 
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A critical sediment density pc was defined (Lambermont & Lebon, 

1978) as the density at a depth X (bed-fluid interface) that 

would be eroded by a given shear stress, applied on the bed. This 

critical density was related to the sediment (Migniot, 1968) 

yield stress ty by the following equation, 

Ty =n pcU (2.75) 

where n and m are constants depending on the sediment 

characteristics. Migniot found m to be close to 5 and n between 

10-t2 and 10- is when Ty is expressed in N/m2 and p in g/1. The 

shear velocity u* was related to the yield shear stress as, 

ei 



u=0.01778 Gm/4 T 1/4 for ts1.5 (2.76) 
yy Gm 

where G is a correction factor, that takes into account the 

decrease in density of the upper region of the sediment layer 

that is in contact with the fluid, whose value was expected to be 

between 1 and 5 and 

u=0.016 Gmi2 x 1/2 for t>1.5 (2.77) 
YY GIn 

The shear stress was expressed as a function of the sediment 

density given by, 

ß 
To = Ei 

(PC) i (2.78) 

where Ei and 0i are constants. 

A differential equation for cohesive sediment bed was formulated, 

and by making several assumptions and simplifications (parabolic 

density distribution, constant coefficients of diffusion and 

sedimentation, temperature gradient in the bed neglected, etc. ) 

an analytical solution for a stationary erosion rate was 

obtained. It was finally shown that the theory agreed very well 

with the erosion experiments of Partheniades (1965). 

Thorn (1981) performed experiments on soft cohesive sediments and 

demonstrated that the critical shear stress is a function of the 

bed density as it is shown in Fig. 2.39. 
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Parchure and Mehta (1985) carried out erosion experiments in a 

circular flume with soft cohesive sediments. An experimental 

procedure involving layer by layer erosion, under a range of bed 

shear stresses of successfully increasing magnitude was employed. 

The main objective was to study the erosion that occurs on the 

top active layer of estuarial beds, where the conditions are 

quite different from that of a uniform flow channel. The 

estuarial bed is formed by deposition of suspended fine particles 

forming layers of different densities. 
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The density of a bed layer is dependent on the depth and on the 

time the layers have been subjected to consolidation pressure. 

Therefore, the critical shear stress will vary with depth of the 

sediment bed. It was found (Parchure and Mehta, 1985) that 

erosion rates were proportional to the square root of the excess 

of applied shear stress over the shear strength of the bed, as it 

is shown in Fig. 2.40. 
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An experimental study of the critical shear stress of cohesive 

sediments was carried out by Otsubo and Muraoka (1988) to relate 

critical conditions with rheological and settling properties of 
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the sediment. Natural and artificial mud samples (Kaolinite, 

bentonite and lake mud from various origins) were tested. 

A tunnel of rectangular cross-section was used to test the 

samples. The threshold conditions were obtained through visual 

observation and from the rise in turbidity. Two critical shear 

stress values were defined (Otsubo and Muraoka, 1988). One was 

TCI (mud particles begin to be dislodged) and the other tc2 

(the sediment bed begins to be disintegrated). Yield stresses 

were obtained using a rotary viscometer. Settling tests were 

carried out for the sediment samples. Critical shear stress was 

found to be dependent on the viscosity and on the yield shear 

strength value (see Fig. 2.41). 
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The two limits of critical shear stress were explained by Otsubo 

and Muraoka (1988) as follows. In the first limit xC l" 
because of 

the turbulence the shear stress occasionally exceeds 'r 
Y 

(at that 

moment some particles are dislodged, i. e., beginning of particle 

movement). The second limit occurs at tc2 when the shear stress 

is almost equal to ty and is acting constantly on the bed causing 

its mass destruction (i. e., the limit of destruction of the bed). 

The two limits were expressed as: 

1 0.56 
tC 

1=0.27 

(TY) 
(2.79) 

0.94 
zc2 = 0.79 

(TY) 
(2.80) 

where ty is the yield stress in N/m2. 

A mathematical model, which simulates the transport of cohesive 

sediment was developed by Nicholson and O'Connor (1986). The 

model solves the complete three dimensional version of the 

diffusion-advection equation. 

In the literature many other models have been presented (Odd & 

Owens 1972, Ariathural & Krone 1976, Ariathural et al., 1977, 

Rodger, 1980, Scarlatos, 1981, Onishi, 1981, Cole & Miles, 1983, 

Nicholson, 1983, Hayter & Mehta, 1984, etc., to which the 

Interested reader is referred to. As these models deal mainly 

with estuarine sediments that are quite different from sewer 

sediments they will not be discussed here. 

86 



2.2.2.3 Concluding remarks 

The study of erosion of cohesive materials is quite complex 

because not only it involves physical parameters such as shear 

stress or shear strength, but also chemical and physical bonding 

of the individual particles. 

As shown in this chapter, arbitrary and subjective criteria were 

established to study and analyse erosion of cohesive sediments. 

In the experimental works described above, for the same 

conditions, different critical shear stress values are predicted 

with variations as great as 30 times. This can be attributed to 

experimental error, variation in experimental techniques, 

interpretation of sediment properties, and especially the 

different criteria used to define the critical shear stress. A 

better criterion is based on the definition of critical 

conditions described in terms of erosion rates. 

However, in the last two decades the inclusion of various clay 

properties such as fabric, inter-particle bonding and clay 

colloid chemistry has brought more light to the understanding of 

the problem. 
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2.3 SEWER SEDIMENTS 

In this section a classification of in-sewer sediments will be 

shown together with their chemical, physical and rheological 

properties. Based on these properties a synthetic sewer sediment 

(for flume studies purposes) will be presented. 

Since both foul sewerage and surface water drainage systems are 

often combined it is necessary to study the complete system. The 

nature of sediment in sewers i s quite complex due to the presence 

of many sources of sediment (grit, road surfacing materials, 

industrial processes, domestic sewage, soil, sand, etc. ), and the 

spatial and temporal variation. 

Because of the intermittent nature of the flow in sewerage 

systems it is nearly impossible to prevent deposition occurring. 

Thus the sediment is conveyed through the system in a series of 

deposition and re-entrainment cycles. 

2.3.1 Classification of Combined Sewer Sediments 

2.3.1.1 Sewer Sediment Types 

A classification of combined sewer sediment based on field 

observation, sampling and analysis of sewer sediment deposits was 

made by Crabtree (1988) at the Water Research Centre (WRc), 

Swindon. The study was carried out at seven locations in the 

U. K., which were known to have significant sediment deposits. 
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TABLE 2.1: CLASSIFICATION OF COMBINED SEWER SEDIMENT 
(after Crabtree, 1988) 

TYPE A coarse, loose, granular, predominantly mineral 
material found in the invert of pipes. 

TYPE B as TYPE A but concreted by the addition of fat, 
bitumen, cement, etc. Into a solid mass 

TYPE C mobile, fine grained deposits found in slack flow 
zones, either in isolation or above TYPE A 
material. 

TYPE D organic pipe wall slimes and zoogloeal biofilms 
found in the invert of fast flowing pipes without 
any other sediment deposits and around the mean 
flow level along the pipe walls. 

TYPE E fine grained mineral and organic deposits found in 
Storm Sewage Overflow (SSO) storage tanks. 
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FIGURE 2.42: COMBINED SEWER SEDIMENT CLASSIFICATION 

TYPICAL SECTION (Crabtree, 1988) 
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Based on observations of the nature and appearance of sewer 

sediment during sampling and on the provenance and location of 

the deposits within the sewerage system five categories of 

sediment were suggested (see Table 2.1 and Fig. 2.42). 

2.3.1.2 Physical Characteristics 

Although particle size analysis of the samples (see Table 2.2) 

did not show a clear distinction between Types A, C and E, a 

general classification was made. The coarsest material was 

Type A. Type C was predominantly silt, clay and fine sands. 

2.3.1.3 Chemical Characteristics 

The results of chemical analysis of the samples showed a high 

degree of variability in pollutant strength within each class. 

However, sediment types could still be ranked according to the 

TABLE 2.2: PHYSICAL CHARACTERISTICS OF SEWER SEDIMENT TYPES 
(Crabtree, 1988). 

Parameter Sediment Type 

Percentage Particle Size A C D E 

rave Mean 33 0 6 9 
(2.0 - 50.0mm) Maximum 90 0 20 80 

Minimum 3 0 1 4 

Sand Mean 61 55 62 69 
(0.063-2.0mm) Maximum 87 71 83 85 

Minimum 3 5 1 1 

Silt and Clay Mean 6 45 32 22 
(< 0.063mm) Maximum 30 73 52 80 

Minimum 1 29 17 1 

Wet bulk density x103 Kg/M3 1.72 1.17 1.21 1.4 
% Total Solids 73.4 27.0 25.8 48.0 
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average pollutant strength as follows: Type D, Type C, Type E and 

Type A In decreasing order. Table 2.3 shows the average polluting 

load of the bulk wet sediment for each class type, expressed in 

terms of both mass and volume of deposits. 

Table 2.3 shows the average associated pollutant loads related to 

the various types of sewer sediments. A relative comparison with 

normal crude sewage is shown in Table 2.4, which illustrates the 

very high pollutant strength of Type D deposits compared with the 

other types. Obviously the total polluting load could only be 

released under extreme flow conditions when all sediment deposits 

are eroded. 

TABLE 2.3: SEWER SEDIMENT TYPE AVERAGE ASSOCIATED POLLUTANT 

LOADS (after Crabtree, 1988) 

Pollutant Parameter SEDIMENT TYPE 

A C D E 

COD mass 16.9 20.5 49.8 23.0 
volume 29.1 24.0 60.3 33.6 

mass BOD 0.3 0.5 0.4 0.4 
0 6 4 hour volume 0.5 0.6 0.5 . 

BOD (ATU) mass 3.1 5.4 26.6 6.2 
Sday 

volume 5.3 6.3 32.2 9.1 

Ammonia (NH -N) mass 0.1 0.1 0.1 0.1 
4 volume 0.2 0.2 0.1 0.2 

Organic Nitrogen mass 0.6 1.0 0.7 0.7 
volume 1.0 1.2 0.8 1.1 

mass = grams per Kg wet bul C sediment. 
volume = Kg of pollutant per m of wet bulk sediment (conc. ). 
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2.3.1.4 Rheological Characteristics 

A rheological study was carried out with samples of sediment 

types A, B, C and E (Williams and Williams, 1988) in order to 

assess the cohesivity of the different types of sediments. 

Determinations of critical yield stresses (xy) were carried out 

on 11 samples of sediment by using applied stress rheometry. The 

critical yield stress corresponded to the yield point (i. e., the 

onset of structural failure). 

TABLE 2.4 RELATIVE POLLUTING LOAD OF THE SEWER SEDIMENT 
TYPES COMPARED WITH CRUDE SEWAGE (on bulk wet 
sediment pollutant load basis - Crabtree, 1988). 

SEDIMENT TYPE 
RELATIVE STRENGTH 

BOD BOD5 
D 4 hour ay 

A 3 8 

C 5 14 

D 4 67 

E 4 16 

Crude Sewage 1 1 

Note: To obtain the relative comparison in Table 2.4 
the values for crude sewage used were: 

BOD+hour = 0.1 g/Kg 

BODSDay = 0.4 g/Kg 

All samples were classed as non-Newtonian substances that 

exhibited elastico-viscous behaviour. The results summarized in 

Table 2.5 are to be interpreted with caution because of the small 

number of samples and the considerable variation of 'ry for 
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different samples reflecting the differences in physico-chemical 

and biochemical properties of those sediment samples. 

TABLE 2.5: VALUES OF CRITICAL YIELD STRESS FOR SEWER 
SEDIMENT SAMPLES (Williams 1988). 

SEDIMENT TYPE ry (N/m2) 

A >800 
A 620 
A 425 
A 400 

B >800 
B >800 

C 98 

E >800 
E >800 
E 200 
E 25 

According to their report (Williams and Williams, 1988) all 

samples presented a degree of cohesion from the weak Type C 

sediment to the highly cohesive Type B material. 

2.3.2 Synthetic Sewer Sediment for Flume Studies 

From their rheological investigations Williams and 

Williams (1988) suggested the use of Laponite clay (synthetic 

smectite collied Laponite RD) for flume studies. Laponite RD clay 

can be mixed with sand to provide the rheological characteristics 
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required of a synthetic sewer sediment (see Table 2.6). Laponite 

clay RD forms thixotropic gels in aqueous systems and has the 

chemical composition: 

Si02 59.5%, MgO 27.3%, MO 0.8%, and Na20 3.8% 

TABLE 2.6: VALUES OF CRITICAL YIELD STRESS (LAPONITE RD- 

SAND-WATER MIXTURES, Williams and Williams, 1988). 

Solids Proportion Density Rigidity Yield 
Conc. (by wei ght) Modulus Stress 

clay sand p G T 
(g/ml) % % (Kg/m3) (N /M2) (N/ym2) 

0.172 2.7 14.5 1042 410 17.5 

0.220 2.5 19.5 1106 220 16.0 

0.278 2.3 25.5 1200 500 23.0 

0.410 2.2 37.8 1300 600 30.0 

0.487 1.9 47.0 1380 1300 43.0 

0.548 1.8 53.0 1440 2300 58.0 

Table 2.6 shows that by appropriate laponite clay-sand-water 

mixture the sewer ranges of T and G are easily reproduced. 
Y 

Therefore it was suggested (Williams and Williams, 1988) to 

conduct erosion experiments in flumes of circular cross-section, 

utilizing these Laponite clay-sand-water mixtures as bed 

material. 
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This synthetic sewer sediment, which mimics the rheological 

properties of some sewer sediments, simplifies the inherent 

complexity of natural sewer sediments. These complexities arise 

from the interaction of physical, chemical and biological 

factors. However, the non-linear dependence of yield stresses on 

solids concentration (Williams and Williams, 1988) has 

implications for the interpretation of flume erosion studies as 

well as for the design of sewers. The variation in density with 

sediment depth (consolidation process) determines that the 

superficial layer of sediment (freshly deposited) is the weakest 

one. Therefore it is not possible to relate the onset of erosion 

with the bulk density of the sediment but with the rheological 

properties of the superficial layer. The current design practice 

of self-cleansing sewer allows for a minimum shear stress between 

2 and 6 N/m2, which would only flush the freshly deposited bed of 

sewer sediment. 

Work on rheological studies of natural cohesive sewer sediment is 

now in progress (Ashley et al., 1988). Their main objective is to 

increase the understanding of the nature and behaviour of sewer 

sediments, and in the long term to integrate in situ rheological 

measurements with the study of local flow field. It is also 

expected to improve mathematical models of sediment behaviour in 

combined sewers, such as MOSQITO, which would be developed into 

an enhanced version of the present sewer flow quality model. 
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CHAPTER THREE 

EXPERIMENTAL EQUIPMENT AND PROCEDURES 

3.1 GENERAL LAYOUT 

The experimental work was carried out in two channels of circular 

cross-section with flat sediment bed one 154 mm and the other 

302 mm in diameter. However most of the work was carried out in 

the 154 mm diameter flume, which could be operated not only 

under open channel flow conditions but also under pressure (i. e., 

full pipe flow conditions), thus increasing the range of shear 

stresses up to 15 N/m2 necessary to cover the range of critical 

shear stresses on cohesive sediment beds. 

3.1.1 The 154 mm diameter flume 

This is a 154 mm diameter flume of circular cross-section and 

20.5 m long (see Fig. 3.1 and plate 1a) with tilting facility, 

the longitudinal slope ranging from zero to 1/200. Channel slope 

can be varied by a screw jack located near the downstream end of 

the flume. The flume has a re-circulating system with an 

independent tank to avoid any possible contamination of the 

laboratory main water supply. 

The upstream half of the flume length, (about 10 m) is used as an 

approach length and in the other 10.5 m there is a false flat bed 

on the invert of the pipe (see Fig. 3.2). 

96 



C y 

w  ', o 

' V 9.4 a) x we 41 
0 

;  ý 
m a) 

ää   
a0 td 0 to 

0 ä 

U 
aº -+ \ 
a cb u a) 

.+ GI W 
W4 c tj 

%0 
N E 

(y M .ý 

o E 
a 
a Ä 

D 
so 0 41 to x -' 
w   

N 
0 

a 
N 

Gý+ 

s4 
0 

O 
>4 

C i U a a 

S a o 

a  ý\ Z 44 
a0 O m 

y S. O 
010 8 ýO 

.. 
. 
Mý\ 

""" a 11 - 
tÖ 11 C7 ++ m 

'n ' 1 a' z 'm 6 4 41 tl v 
h ". 4 

14 

ö Id $4 Id 
.r 
ö : 

ý   
cr) 
v 

a a   
a   
a a 

y 

97 



The sediment bed thickness is varied from 10.6% to 39% of the 

diameter, by a modular system of layers made of uPVC sheets. The 

test section covered 2m (4 m for transport experiments). The 

false bed was artificially roughened by glueing uniform size sand 

of the appropriate size on its surface (using either epoxy resin 

or double sided adhesive tape). 

Access windows 100 mm diameter were opened on the top side of the 

pipe in order to have access to the sediment and to measure bed 

and water level using a set of 9 point gauges located 

(permanently) along the flume approximately every 1m apart and 

supported from a horizontal rail suspended from the laboratory 

ceiling. The accuracy of the readings is +/- 0.1 mm. Bed slope 

and water surface slope can be determined by fitting a straight 

line to the point gauges readings using the least square method. 

3.1.1.1 Measurement of Discharge 

Water discharge was measured by a 90* triangular notch placed 

downstream of the flume using the calibration equation: 

Q= 1.365h2.5 (3.1) 

where Q is the flow rate in (m3/s), and h is the water height 

above the V-notch vertex in (m). The discharge is computed with a 

maximum error of 1.3% (BS 3680). The discharge was regularly 

cross-checked by an orifice plate located in the returning 

pipeline of the re-circulating system. 
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3.1.1.2 Longitudinal Alignment of the flume 

Longitudinal alignment of the 154 mm diameter flume was carried 

out using a surveying theodolite and the necessary adjustment of 

the pipe support levels were made. The levelling then showed the 

longitudinal alignment to be within 0.5 mm of the straight line, 

which was considered acceptable (see Fig. 3.3). However, when the 

flume was filled up with water (full pipe flow condition) the 

levelling of the flume showed a substantial vertical deflection 

(about 12 mm) in the middle of the flume (see Fig. 3.3). 

18.00 

17.50 

17.00 " 

16.50 
E 

16.00 
} 

15.50 

15.00 "_ Flume empty 
ý.. * Flume full 

14.50 

14.00 
0.00 500.00 1000.00 1500.00 2000.00 

X (cm) 

FIGURE 3.3: LEVELLING OF THE 154 mm DIAMETER FLUME 
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This was caused by the large span (17.26 m) between the supports 

of the flume framework. This vertical deflection is not 

acceptable at all because if the flume is in horizontal position 

the upstream half would have a slope of about 0.001 and the 

downstream half a negative slope of about -0.001, which would 

make it very difficult and unreliable to work with uniform flows. 

Therefore a modification of the rig was necessary. Two additional 

sets of support were installed approximatelly at the two third 

points of the flume length (see Fig. 3.1). For each slope setting 

the supports have to be fastened before any water is allowed into 

the flume. Thus no flume slope changes are possible while water 

is running in the flume. Checking the alignment under full pipe 

flow conditions with the additional supports fastened gave 

satisfactory results as the alignment was within +/- 0.5 mm. 

3.1.1.3 Measurement of Sediment Discharge 

Bedload is measured using a sediment trap located at the 

downstream end of the test section (see Fig. 3.2 and Plate 2). 

For very high flows the bedload is measured by collecting the 

sediment in a sieve basket at the downstream end of the flume. 

3.1.2 The 302 mm diameter flume 

This is a modification of a rectangular flume 460 mm wide. A 

302 mm diameter uPVC pipe was installed inside the rectangular 

flume and the necessary modifications were made to seal the 
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entrance to transform the flume into a flume of circular 

cross-section. In the test section (about 3 m) clear perspex pipe 

was installed in order to make visual observations and to use the 

laser Doppler velocimeter (LDV). The flume is 12 m long with 

tilting facility and a maximum longitudinal slope of 1/200 (see 

Fig. 3.4). 

The channel slope is varied by a screw, which displaces the 

flume's wheeled supports (resting on steel wedges). The slope is 

computed from the difference in water level of two cylinders 

fixed at each end of the flume (11.223 m apart) and communicated 

by plastic tubing. The entire length of the flume has a flat 

false bed, with an actual testing section of about 3 m. The false 

bed is made of uPVC sheets, with which bed thicknesses are easily 

changeable. 

3.1.2.1 Measurement of Discharge 

The discharge is measured by using a rectangular notch (with side 

contraction) located at the downstream end of the flume The 

discharge (Q) in (m3/s) is given by: 

Q= (1.777 + 0.245(h+0.0012 ))0.4495(h + 0.0012)3/2 (3.2) 
0.443 

where h is the water level above the crest of the weir in (m). 

The discharge is computed with a maximum error of 1.5% (BS 3680). 

Alternatively there are orifice plates located in each one of the 

two 100 mm diameter supply pipelines for cross-checking purposes. 
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Water surface slope is measured using a point gauge installed in 

a trolley, which can be moved along the entire length of the 

flume on a rail parallel to the flume. The accuracy of the 

readings is +/- 0.1 mm. To move the trolley about and insert the 

point gauge in the slots provided on the top of the pipe proved 

to be quite cumbersome, and in order to speed up measurements 

6 point gauges were installed at fixed position along the flume. 

3.1.2.2 Longitudinal Alignment of the Flume 

Longitudinal alignment of the flume was carried out using a 

surveying theodolite and the necessary adjustment of the pipe and 

rail was made. The levelling was then within +/-1 mm of the 

straight line, which was considered acceptable. There was no 

noticeable vertical deflection when levelling the flume with 

water, as the flume length was only 12 m and the framework was 

solid and very rigid. 

3.1.2.3 Measurement of Sediment Discharge 

Bedload is measured using a sediment trap located downstream of 

the test section (see Fig. 3.4). In the case of very high flows 

the bedload is measured by collecting the sediment in a sieve 

basket at the downstream end of the flume. 
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3.2 ESTABLISHMENT OF UNIFORM FLOW 

3.2.1 The 154 mm diameter flume 

The steps to achieve uniform flow in the 154 mm diameter flume 

are (see Table 3.1): 

a) An approximate channel slope is set using the slope scale at 

the screw jack, and the additional supports of the framework are 

fastened. 

b) Bed level readings are taken using the set of point gauges and 

the actual slope is obtained by fitting a regression line to the 

bed level readings. 

c) The pump is started and the delivery valve is gradually opened 

until the desired discharge is obtained (a discharge scale at the 

triangular notch well, gives a good approximation). 

d) The tall gate opening is adjusted in such a manner as to 

achieve constant depth along the channel, using the set of 

piezometers (which should read the same). Once the flow is in 

equilibrium a reading of the notch level is taken at the point 

gauge well. 

e) Then the readings of the water surface level along the flume 

are taken using the set of point gauges. A maximum and a minimum 

level at each position are taken. Then the surface slope is 

obtained by fitting a straight line to the readings (average). If 

the surface slope (3f) is within 10 % of the bed slope (80) the 
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TABLE 3.1: TYPICAL UNIFORM FLOW COMPUTATION SHEET 

WATER SURFACE SLOPE (24-2-88 b) 

x y 
(an) (mm) Regression Output: 

Constant 145.39 
11850 101.35 Std Err of Y Est 0.7562 
13035 98.95 R Squared 0.9812 
13565 97.35 No. of Observations 9 
13960 94.40 Degrees of Freedom 7 
14360 93.35 
14755 91.45 X Coefficient(s) -0.00363 
15160 89.80 Std Err of Coef. 0.000189 
15610 88.35 
16530 85.60 Surface slope = 0.003632 

FLUME BED SLOPE (24-2-88) 
(slope gauge = 155.0  n) 

Regression Output: 
X Z DEPTH Constant 109.50 

(am) (as) (ate) Std Err of Y Est 0.2300 
R Squared 0.9980 

11850 68.30 33.05 No. of Observations 9 
13035 64.40 34.55 Degrees of Freedom 7 
13565 62.10 35.25 
13960 60.60 33.80 X Coefficient(s) -0.00348 
14360 59.30 34.05 Std Err of Coef. 0.000057 
14755 57.90 33.55 
15160 56.50 33.30 
15610 55.10 33.25 Bed slope = 0.003486 
16530 52.20 33.40 

UNIFORM FLOW COMPUTATIONS 

2.00 (an) 
D= 154.00 (tea) 
E= 18.40 (an) 

So = 0.003486 
Sf = 0.003632 
dif= 4.2 (%) 
S=0.003576 
Y. = 33.90 (an) 
Y/D = 0.22 

(Y+E)/D = 0.34 
T= 18.9 ('C) 
Q 1.43 (! /s) 

0.8284 (N/a2) 
V=0.331 (. /s) 
n 0.0149 

F, = 0.615 
qq 0.0036 (g/. 1n) 

(sand size) 
(circ. cross-sect. flume dia. ) 
(sediment bed thickness) 
(flu. q bed slope) 
(surface slope) 
(Difference) 
(corrected slope) 
(Normal depth) 
(depth ratio) 

(Temperature) 
(Discharge) 
(Mean shear stress) 
(Mean flow velocity) 
(Manning's coefficient) 
(Froude number) 
(Bed load) 
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flow is accepted as uniform. Otherwise the appropriate adjustment 

of the tail gate has to be made and the process repeated. 

f) The effective slope of the quasi uniform flow is computed by 

applying a correction to the flume bed slope based on the 

uniformly varied flow equation, 

(S -S d f) yo (3.3) dx 1- Fr2 

where 3o is the flume bed slope, S. the energy gradient, Fr the 

Froude number of the flow and 
d the water surface slope (S ). 

For uniform flow conditions the three slopes should be equal 

(S = S. = S). Assuming the flow is nearly uniform the effective 

slope can be expressed as: 

Ss So- (so- Sp )(1 - Fr2) (3.4) 

It is apparent in Eq. 3.4 that as the flow approaches uniform 

conditions the correction (So- 3p )(1 - Fr2) becomes smaller as 

the effective slope converges to the channel bed slope (30). 

3.2.2 The 302 mm diameter flume 

In this flume the procedure to achieve uniform flow is more or 

less the same as described above for the 154 mm diameter flume. 

However, as here the point gauges are fixed to the flume 

structure and the bed slope can be varied during operation it is 

much easier to achieve uniform flow conditions. 

107 



3.3 MEASUREMENT OF VELOCITY AND SHEAR STRESS DISTRIBUTIONS 

3.3.1 Velocity Measurements 

Velocity profiles were measured in various sections of the flume 

to check the uniformity of the flows. These measurements were 

also used for the determination of the shear stresses exerted on 

the bed by the flowing water. The velocity profiles were obtained 

using a Pitot tube, several 10 mm propeller current meters, and a 

Laser Doppler Velocimeter (LDV). The latter will be described in 

section 3.4.1. 

3.3.1.1 Pitot Tube 

A pre-calibrated Pitot tube connected to a high precision 

pressure difference reading device (+/- 0.1 mm water column) was 

employed. The internal and external diameters of the Pitot tube 

are 0.8 and 2.3 mm respectively. The velocity is given by: 

14 Ah (3.5) 

where u is the local velocity in (cm/s) and Ah is the 

manometer deflection in [m] of water. 

3.3.1.2 Propeller Current Meter 

In order to speed up velocity measurements several propeller 

current meters (Nixon Ltd. and HR Ltd. ) were used. The propeller 

diameter was 10 mm and the lowest position measured was 7.5 mm 

from the bed. The probes were factory pre-calibrated by means of 
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a towing tank rig, and were regularly cross-checked with the 

Pitot tube. 

The range of velocities varied from 0 to 1.5 m/s (0 to 300 Hz) 

with a maximum absolute error of 0.015 m/s. The readings were 

taken from a digital counter that was set to give 10 seconds 

average. For each position eight readings were averaged 

(i. e., 80 seconds) to obtain the local mean velocity. The 

velocity of a current meter is given by an equation of the form: 

u=aX+b (3.6) 

where u is the local velocity in (cm/s), X is the current meter 

frequency reading in (Hz), and a and b are constants (factory 

calibrated), which are given in Table 3.2. 

TABLE 3.2: CALIBRATION OF CURRENT METER PROBES 

Calibration Constants 

Probe Number N< 45 Hz 45 sN< 270 Hz 

a b a b 

DIXON LTD. 

1398 0.564 4.165 0.538 5.729 

1398a 0.551 3.224 0.510 5.365 

1399 0.566 3.486 0.543 4.483 

1094 0.558 3.064 0.534 4.401 

HR LTD. 

N1(43) 0.474 3.733 0.474 3.733 

N2 0.236 8.778 0.236 8.778 
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The probes are cleaned with distilled water every time they are 

used in order to remove any debris, hairs, etc., which could 

affect their calibration. However, the probes are calibrated 

regularly (twice a year) to maintain the accuracy. 

3.3.2 Measurements of Bed Shear Stress Distribution 

3.3.2.1 Velocity Distribution Method 

Theoretical investigations of Prandtl and von Karman and the 

experimental studies of Nikuradse (1933) on flow through pipes 

led to rational formulae for velocity distribution and hydraulic 

resistance for turbulent flows over flat plates and in circular 

pipes flowing full. As certain similarities exist between 

circular pipes and open channel flow, these formulas can be 

applied to open channel flow by changing the constant to include 

factors such as the free surface effect, the non-uniform shear 

stress distribution along the wetted perimeter, etc., and by 

using the hydraulic radius -in place of the diameter (D = 4R). 

From Prandtl mixing length theory the relation, 

u1 
_- In(y) + constant (3.7) 

u *x 

in which u= is the shear velocity, u the velocity in 

x-direction at y-position, x is von Karman's universal constant 

and r0 the bed shear stress. For open channel flow Eq. 3.7 can be 
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expressed for smooth surfaces, as: 

ur 9yu 1 
5.75 Log I "J (3.8) 

where v is the kinematic viscosity and, for rough surfaces, as: 

u 
= 5.75 Log ý' 2 (3.9) 

where ks is Nikuradse's equivalent sand roughness. For the 

position of maximum velocity (y=h) Eq. 3.9 can be written as, 

umax 
= 5.75 Log 30.2 h) (3.10) 

* 

Subtracting Eq. 3.9 from Eq. 3.10 yields, 

umax- u 
5.75 Log y (3.11) ý 

Equation 3.11 is valid for both, rough and smooth boundaries. 

Because Eq. 3.11 does not include the term k it is easier to 
s 

use. Plotting (umax- u) Vs. 5.75 Log 
y) gives a straight line 

(universal velocity distribution law) and the shear velocity can 

then be obtained directly from the slope of the curve, and thus 

the local bed shear stress. In Table 3.3 (one velocity profile) 

for a typical case of computation of the local bed shear stress. 

The velocity profile and logarithmic velocity distribution for 

the particular case of Table 3.3 are shown in Fig. 3.5. By 

measuring several vertical velocity profiles across the width of 

the flume it was possible to obtain the distribution of shear 

stresses on the bed. 
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TABLE 3.3: TYPICAL SHEAR STRESS DISTRIBUTION COMPUTATION 

VELOCITY PROFILE to obtain Shear Stress 

154 a  diameter circular cross-section flume 
(14-10-88a) X=0 cm (centerline) 

Flume Diameter 154 (en) 
Sand size 2.00 (no) 
Bed Thickness 18.40 (88) 
Slope 0.002350 
Discharge 5.59 (1/s) 
Normal Depth 77.45 (on) 
(Y+E)/D 0.62 
Mean Shear Stress 0.929 (N/a2) 
Mean Velocity 0.512 (a/s) 

Current Meter u=0.510 N+5.365 (48.5<N(267 Hz) 
(#1398-A) (cm/s) (Hz) 

y 
(mm) 

N 
(Hz) 

u 
(M/s) 

umax-u 
(0/s) 

-5.75L0G(y/h) 

7.5 76.64 0.444 0.1331 4.18 
10.0 81.65 0.470 0.1075 3.46 
12.0 86.14 0.493 0.0847 3.01 
14.0 88.93 0.507 0.0705 2.62 
18.0 93.69 0.531 0.0462 1.99 
22.0 96.24 0.544 0.0332 1.49 
30.0 100.96 0.568 0.0091 0.72 
40.0 102.75 0.577 0.0000 0.00 
50.0 99.31 0.560 0.0175 -0.56 
70.0 90.00 0.512 0.0650 -1.40 

Regression Output: 
Constant -0.03473 
Std Err of Y Est 0.001967 
R Squared 0.997406 
No. of Observations 5 
Degrees of Freedom 3 

X Coefficient(s) 0.040327 
Std Err of Coef. 0.001187 

Shear Velocity 

Measured Bed Shear Stress 

Predicted Bed Shear 

Mean Shear Stress 

ut = 0.0403 (a/s) 

tbm = 1.626 (N/. Z) 

Tb=1.386 (N/a2) 

T=0.929 (N/. 2) 
0 
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3.4 MEASUREMENT OF TURBULENT INTENSITIES 

The flow in channels is usually turbulent with large fluctuations 

in velocity that account for much of the dissipation of energy, 

mass transfer and heat transfer in turbulent liquids. Transfers 

of momentum between neighboring pulses of the fluid are very 

important, and it is well known that boundary shear stresses in 

turbulent flow, are much higher than the corresponding shear 

stresses for same fluid in laminar flow. The root mean square 

(RMS) of the velocity fluctuation (u')2 , is a measure of the 

intensity of turbulence in the x-direction. 

With the advent of laser light with its unique properties of 

spatial and temporal coherence it was possible to use the Doppler 

effect to measure velocities of fluids by optical methods. This 

is known as LDV, and it is based on the measure of the rate of 

change-of-phase (i. e., frequency) of the lightwaves after 

scattering from particles moving with the fluid. 

3.4.1 Laser Doppler Velocimeter (LDV 

A TSI LDV equipment with forward scatter mode and single 

component (see Plate 4) was used for measuring turbulence 

intensities. Figure 3.6 shows the LDV with laser source, optical 

system and photodetector. The optical system contains a 

beamsplitter, a prism for directing one of the two beams 

internally, a bragg cell module and front optics. The laser beam 

is split into two parallel beams 50 mm apart. The bragg cell 
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module together with the electronic frequency shifter introduce a 

fixed frequency difference (usually 0.1 MHz) between the two 

beams, the "frequency shift", which is used by the processor to 

distinguish between negative and positive flow directions. Then 

the two parallel beams pass through a 243 mm lens. 
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FIGURE 3.6: LASER DOPPLER VELOCIMETER 
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At each position 50,000 velocity measurements were made in less 

than a minute. These data were logged and saved in floppy disk 

for later analysis using a TSI IFA-550 processor, which could 

compute RMS and do spectra analysis as well (see Fig. 3.7). 

The measurements were taken in the following manner: 

a) The alignment of the flume was checked 

b) The laser equipment was installed in the flume. 

c) A uniform flow was established (see Sec. 3.2) 

d) The crossing point of the laser beams (measuring volume) was 

positioned at the centre of the flume, and the vertical 

position was measured and the positioning scale outside the 

flume was adjusted. 

e) The receiving optics was focused and the Doppler signal was 

checked in the oscilloscope (multiparticle signal 1 to 3 volts 

in amplitude). 

f) Using an IBM compatible computer and the IFA-550 processor a 

set of readings was taken and saved in floppy disk for 

subsequent analysis. 

g) The laser was positioned at a higher position and the process 

from step "e" was repeated. 

After completion of the measurements the raw data (floppy disks) 

were analysed using the IFA-550 processor and the computer, to 

obtain the velocity and turbulence intensity profiles. Sometimes 
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simultaneous measurements of velocity were taken using the laser 

velocimeter and a current meter for cross-checking purposes. 

6 Loser Doppler Anemometry (IFA15S0) 50.000 somples 
154mm diameter flume, smooth bed (E-40.8mm) 
Full pipe flow 0-12.64 I/s. position y-6mm 
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FIGURE 3.7: TYPICAL OUTPUT FROM THE IFA-550 SIGNAL PROCESSOR 
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3.5 DETERMINATION OF THRESHOLD OF MOTION 

3.5.1 Non-cohesive Sediments 

3.5.1.1 Preparation of Sediments 

Uniformly graded sands received from the supplier were 

mechanically separated using BS sieves in order to improve their 

uniformity. From the sand supplied (see Fig. 3.8 and Table 3.4), 

with a mean size of 2.56 mm, two size fractions were obtained, 

one with d50= 2.03 mm, i. e., the material retained between sieves 

1.70 mm and 2.36 mm only (see Fig. 3.9-curve F), and the other 

with d50a 2.86 mm, i. e., the material retained between sieves 

2.36 mm and 3.35 mm only (see Fig. 3.12-curve G). 
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TABLE 3.4: UNIFORM SAND CHARACTERISTICS 

d5o Sieve Size Density Relative Density 

max. - min. Absolute Apparent S 

(mm) (mm) (mm) (Kg/m3) (Kg/m3) 
a 

0.12 0.090 - 0.150 2542 1464 2.54 

0.36 0.300 - 0.425 2484 1618 2.48 

0.51 0.425 - 0.600 2609 1615 2.61 

0.89 0.600 - 1.180 2593 1658 2.59 

1.44 1.180 - 1.700 2574 1544 2.57 

2.03 1.700 - 2.360 2507 1577 2.51 

2.86 2.360 - 3.350 2548 1517 2.55 

4.17 3.350 - 5.000 2479 1575 2.48 
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FIGURE 3.9: UNIFORM SANDS AFTER SEPARATION 
(Each size fraction is limited by two 

consecutive meshes) 

119 



As it was mentioned in Chapter 2 many investigators used 

different criteria for defining critical conditions for 

initiation of motion . However, due to the turbulent nature of 

open channel and full pipe flows, there will always be some 

sediment transport for even the very small shear stresses. 

Therefore, a more scientific approach for defining critical 

conditions is that of relating critical shear stresses to erosion 

rates. In the present laboratory work critical erosion rates were 

defined in terms of a volumetric concentration (C = 10- 
V 

3.5.1.2 Procedure to Determine Critical Conditions 

1) A channel slope was selected for the flume. 

2) The test section was filled with sand (of a given size) and 

levelled with the false bed. 

3) The pump was started and the delivery valve slightly opened. 

4) The flume was slowly filled up with water (tail gate fully 

closed). 

5) The delivery valve was opened to obtain the desired discharge 

and the opening of the tail gate was gradually adjusted until 

a uniform flow was achieved (see Section 3.2). 

6) The sediment trap was opened and the stop watch started. The 

flow was then left running for about 30 minutes. 

7) The bedload sample collected in the trap was removed and put 

in a container into the oven to dry. 
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The sediment trap was further operated to collect two additional 

samples, then the flow was increased and the procedure repeated 

in order to measure the bedload for a higher shear stress. The 

entire process was repeated for higher flows, in order to have 

measurements for at least four shear stresses beyond the critical 

conditions. 

A plot of sediment concentration C versus shear stress was 
V 

prepared (see Fig. 3.10) with the data and the critical shear 

stress was obtained by extrapolation to Cv= 10-. The procedure 8 

described above was repeated for various slopes for each sand 

size. 
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FIGURE 3.10: TYPICAL COMPUTATION OF CRITICAL SHEAR STRESS 
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3.5.2 Cohesive Sediments 

3.5.2.1 Preparation of Cohesive Sediments 

a) Preliminary Experiments 

The same uniform sands mentioned in Sec. 3.5.1.1 were used as 

basic material for the preparation of cohesive sediments. Several 

cohesive additives such as china (kaolinite) clay, petroleum 

jelly (vaseline), gear oil and laponite clay were used. Sand was 

mixed with a small proportion of cohesive additive in order to 

form a sticky substance. The proportion of sand, and the type and 

concentration of the cohesive additive were used as parameters. 

b) Synthetic Sewer Sediment Experiments 

The synthetic sewer sediment (see Sec. 2.3.2) is formed mixing 

Laponite RD clay, sand and water, and the steps for preparing the 

mixture are: 

1) Laponite RD clay powder is dissolved in water to the required 

concentration (18 - 40 g/1) to form a gel (colloidal 

solution). Due to the very fine size of the clay particles 

(0.025 pm) the container where the clay powder is dissolved 

has to be placed in an ultrasonic bath in order to achieve a 

homogeneous solution in a reasonable time (1/2 hour per litre 

of solution). Once the solution is prepared it is left to rest 

for an hour to let it buildup its molecular structure (with a 

clear gel appearance). 
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2) A known weight of sand is placed in a bucket. Then a known 

amount of clay gel is gradually added to the sand to form a 

mixture, which is constantly stirred until the desired 

sand/clay gel proportion is achieved. Then the mixture is left 

in an airtight container for at least one hour before placing 

it into the flume. 

3) The sediment mixture is placed in the test section of the 

flume, and it is levelled with the false bed. Then it is left 

for at least 1 hour before any water is passed through the 

flume. 

3.5.2.2 Determination of Critical Shear Stresses 

a) Open Channel Flow Experiments 

Once the sediment bed was ready for testing the procedure for 

determining critical shear stresses under open channel flow 

conditions is more or less the same as the one described in 

Sec. 3.5.1.2. However, cohesive sediment beds did not show any 

signs of erosion until the shear stresses were very close to 

critical conditions. The procedure was: 

1) A channel slope was selected for the flume (St in Fig. 3.11). 

2) The pump was started and the delivery valve slightly opened. 

3) The flume was slowly filled up with water (tall gate fully 

closed). 

4) The delivery valve was further opened to obtain the desired 

discharge and the tail gate was gradually adjusted until a 
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uniform flow was achieved (see Sec. 3.2). The flow was left 

running for about 30 minutes. 

By increasing the discharge in small increments at a time the 

process was repeated until either the first signs of erosion were 

apparent or the maximum depth of the flume was reached. In the 

latter case the flow was stopped, the flume drained and the slope 

of the flume was increased (S2 in Fig. 3.11). This procedure was 

repeated until the first sign of erosion appeared on the bed. 

Then the sediment trap was operated to obtain the bedload for 

that flow. 

In a similar manner the bedloads for several flows with higher 

shear stresses, were measured. As the shear stresses were very 

high near the critical conditions the sediment trap efficiency 

was considerably diminished. The rapid collapse of the sediment 

bed after exceeding the critical conditions did not allow much 

time to measure sediment rates. Therefore critical conditions had 

to be defined by visual observations most of the time. 

b) Full Pipe Flow Experiments 

Most of the cohesive sediments tested showed very high critical 

shear stresses (see Fig. 3.11), beyond that attained under open 

channel flow conditions. So it was necessary to carry out the 

tests under pressure (i. e., full pipe flow conditions). 
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FIGURE 3.11: TYPICAL COHESIVE SEDIMENT EXPERIMENT 

70 % uniform sand (d = 0.36mm) 
30 % Laponite clay gel (24 g/l) 

To run the test under full pipe flow conditions the following 

procedure was adopted: 

1) The windows on the top of the pipe were sealed with the 

plastic watertight caps. 

2) The pump was started and the delivery valve slightly opened. 

The flume was slowly filled up with water (tail gate fully 

closed). 
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3) The delivery valve was opened to obtain the desired discharge 

and the tail gate was gradually adjusted in such a manner as 

to keep a positive pressure along the flume. Then the flow was 

left to reach equilibrium conditions, and the pressure 

gradient was obtained from the readings of the piezometer 

bank. The flow was left running for about 30 minutes. 

By increasing the discharge in small increments at a time, the 

process was repeated until the first signs of erosion were 

apparent. Then the discharge was still further increased until 

the stage of the collapse of the sediment bed was reached. 
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3.6 TRANSPORT EXPERIMENTS 

3.6.1 Non-cohesive Sediments 

3.6.1.1 Alluvial Beds 

Transport experiments with a loose bed were carried out in the 

154 mm diameter flume. The length of the test section was 

extended to 4 m, and a vibration sand feeder was installed in the 

flume to supply the amount of sediment being transported (see 

Fig. 3.12) at any time to maintain equilibrium conditions. The 

sediment rate is dependent on the frequency of the vibrator, the 

gap between the sand container mouth and the tray, and the 

inclination of the tray. In order to keep the sediment discharge 

constant it was necessary to maintain the level of sand in the 

hopper by refilling it often during operation. 

Transport experiments were carried out for each uniform sand and 

bed thickness configuration under various uniform flow 

conditions. The false bed (uPVC) upstream and downstream of the 

test section was artificially roughened with uniform sand of the 

appropriate size, using double sided adhesive tape, which could 

be easily removed to change the sand size (bed roughness). 

Three different sediment bed thicknesses were set up in the flume 

and various uniform sands were tested. For each run, after 

equilibrium conditions were reached, the flow was stopped (by 

closing the tail gate and the delivery valve) and the channel was 

slowly drained. Then bedforms were measured. 
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FIGURE 3.12: TRANSPORT EXPERIMENTS SET UP 

Non-cohesive sediment (alluvial bed) 
154 mm diameter flume 

The procedure adopted to carry out the transport experiments 

over loose beds was: 

1) The test section was filled up with a given sand and flattened 

in level with the false bed. 

2) Uniform flow conditions (see Sec. 3.2) were set in the flume 

with a shear stress just over the threshold of motion. 

3) The sediment feeder was started and adjusted to supply the 

estimated sediment rate. 
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4) The sediment trap was operated for a few minutes in order to 

assess the sediment rate. Before carrying out transport 

experiments a sand mass-volume curve (see Fig. 3.13) was 

obtained by weighing known volumes of wet sand. By taking a 

sample from the sediment trap if was possible to estimate the 

bedload using the mass-volume relation (see Fig. 3.13). 
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FIGURE 3.13: TYPICAL SAND MASS / VOLUME CURVE 

Then the sand feeder was adjusted accordingly. This was 

repeated until the sediment rate reached equilibrium 

conditions (1/2 hour to 3 hours). The sediment feeding was 

constantly adjusted using the sediment trap information. 
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FIGURE 3.14: TRAVELLING POINT GAUGE FOR BEDFORMS MEASUREMENTS 

5) After running for at least 30 minutes, the flow was gradually 

stopped (by closing the tail gate and the delivery valve) and 

the channel was slowly drained. Then using a travelling point 

gauge inside the pipe (see Fig. 3.14), bedforms were measured 

along the entire test section. 
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In order to measure suspended sediment a water sampler with a 

Pitot tube shape (see Fig. 3.15) was used. The volume of the 

sampler was calibrated using distilled water (9.904 ml at 20"C). 

All samples were obtained from a fixed position (3 mm from the 

flat bed) and then the sample was transferred to a glass 

container and oven dried in order to determine the weight of 

solids in the sample. 

Each measurement consisted in three samples from upstream and 

other three from downstream of the test section, in order to 

assess the suspended sediment load coming from the test section 

(loose sediment bed). However, most of the sediment transport 

seemed to be in form of bedload as there was not any consistent 

difference in readings between the upstream and downstream ends 

of the test section. Therefore suspended sediment measurements 

can be attributed to the small sediment concentration existing in 

the flume water. 
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FIGURE 3.15: SUSPENDED SEDIMENT SAMPLER 

131 



In order to obtain a continuous reading of the suspended sediment 

concentration during the transport experiments an electro-optical 

turbidity meter (based on light attenuation principle) was also 

used. The monitor was previously calibrated using sand-water 

solutions of known concentration. 

The probe consists of a light source (gallium-arsenide light 

emitting diode (LED)) and a sensor (phototransistor), both fitted 

with lenses and positioned side by side in a machined perspex 

holder. The probe is connected by a flexible lead to a control 

unit for signal integration and data logging operations. The 

instrument is based on pulsed light (Smith et al. 1980) thus 

eliminating the ambient light effects. The LED and the 

phototransistor both have a peak response in the near infrared 

light range of about 0.8 pm with narrow bandwidths. A5 mm back 

silvered mirror is positioned at approximately 10 mm in front of 

the LED and sensor pair. 

Suspended sediment loads were also detected on initiation of 

erosion experiments with cohesive sediments. The readings from 

the suspended sediment monitor showed a substantial increase 

during the rapid collapse of the bed. 
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3.6.1.2 Fixed Beds (Limit Deposition Conditions) 

In this set of experiments the test section was covered with a 

uPVC layer (smooth surface) in level with the rest of the false 

bed. Because of the limited time available only one sediment 

thickness (E = 40.8 mm) was used. 

a) Smooth Beds 

The procedure adopted in the tests was to keep a given uniform 

flow in the flume and then increase the rate of sediment supply 

(sediment feeder) In steps, until sand particles begin to form 

deposits on the false bed. Then the sediment supply was slightly 

decreased and left running for a while (10 to 15 minutes). If no 

deposition was observed then the flow condition was taken to be 

at the limit of deposition. Only three sand sizes were tested 

(0.9,2.0 and 5.7 mm) in this flume configuration. 

b) Rough Bed 

The entire false bed was artificially roughened with the 

appropriate uniform sand (0.9 mm) using double sided adhesive 

tape. Similar experiments as described above (Sec. 3.6.1.2 a) 

were carried out. Only one sand size (0.9 mm) was tested under 

this flume configuration. 
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3.6.2 Cohesive Sediments 

3.6.2.1 Cohesive Sediment Bed 

The test section (as in Sec. 3.6.1.1) was filled with the 

synthetic sewer sediment (prepared as described in 

Sec. 3.5.2.2.1 b). A few transport experiments with cohesive 

sediment beds were attempted in the 154 mm diameter flume. 

A special sediment feeder was devised for using in transport 

experiments with cohesive sediment (see Fig. 3.16). This 

apparatus consisted of a steel cylinder, a piston, a slicer and a 

vibrator (rotating cam). The rate of sediment was controlled 

jointly by the displacement rate of the piston and by the energy 

of the vibration. The latter was needed to overcome the friction 

forces between the cylinder walls and the cohesive sediment. For 

a given sediment rate the more cohesive the sediment (i. e., 

higher clay concentrations) the higher vibration frequency was 

required to avoid stoppage. 

Once the cohesive sediment bed was in place a procedure similar 

to that described in a previous section (Sec. 3.6.1.1) for 

transport over loose beds was adopted. However, very small 

bedloads were measured before critical conditions were reached. 

As soon as the critical conditions were exceeded the erosion 

rates increased very rapidly with the appearance of the first 

spots of erosion. Next a violent collapse and destruction of the 

entire sediment bed followed. There was no time to measure 
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sediment rates as the phenomenon took place very rapidly and 

sediment bed was washed away very quickly. 
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FIGURE 3.16: COHESIVE SEDIMENT FEEDER 

Therefore it was not possible to establish equilibrium conditions 

of sediment transport over cohesive sediment beds. It was then 

decided to carry out the transport experiments with cohesive 

sediments over fixed beds only, using the limit deposition 

criterion. 

3.6.2.2 Fixed Bed (smooth) 

The procedure adopted in the tests (similar to that described in 

Sec. 3.6.1.2 a) was to maintain a given uniform flow in the flume 
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and increase the rate of sediment supply (cohesive sediment 

feeder, see Fig. 3.16) in steps, until sand particles begin to 

form deposits on the false bed. Then the sediment supply was 

slightly decreased and the flow was left running for a while (10 

to 15 minutes). If no deposition was observed then the flow 

condition was taken as the limit of deposition. 

Because of the limited time available, only one sand size 

(0.9 mm) and two Laponite clay gel concentration (24 and 30 g/l) 

both at 20% by weight were used to form the cohesive sediment 

beds tested. Transport rates were estimated from the sediment 

trap measurements. The sediment trap collected mainly the sand 

component of the cohesive sediment as most of the clay gel was 

washed away during transport. 
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4.2 HYDRAULIC CHARACTERISTICS 

Experiments for determination of hydraulic characteristics of the 

flow were carried out in both the channels. As the configurations 

of the flumes changed with bed thickness and sediment size, it 

was necessary to study the hydraulic characteristics of the 

various flow conditions. 

4.2.1 Frictional Characteristics (no sediment bed) 

4.2.1.1 Full Pipe Flow Condition 

In this series of experiments the cross-section of the flume was 

kept circular (i. e., no sediment bed) and the flume was run under 

full pipe flow conditions (see Sec. 3.5.2.2b). The pressure 

gradient was obtained from the piezometer bank, with a maximum 

error in the computation of the pressure gradient of about 3.8 %. 

Darcy's equation for head loss can be written in terms of the 

discharge Q as 

n2 g D5 sr 
(4.1) 

8 Q2 

where D is the internal diameter of the pipe, Sr the pressure 

gradient, g the gravitational acceleration and A the friction 

coefficient. 

Colebrook-White equation for turbulent flow (transition zone) is: 

rk2.51 l (4.2) 1= 
-2 log I'+) 

`3.7D Reý 
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where Re is Reynolds' number of the flow (Re= D), 
and ks is 

Nikuradse's equivalent sand roughness. Re-arranging the terms 

Eq. 4.2 can be expressed in the form: 

ks 
(io_1P2 ýrX-') - 

2.51 ) 
(4.3) 3.7 D 

Re ýJ 

Eq. 4.3 was employed to estimate Nikuradse's equivalent sand 

roughness of a given flow. A summary of the results of flow 

resistance experiments under full pipe flow conditions (no 

sediment bed), in the 154 mm diameter flume is shown in 

Table 4.1. Negative values of k come from small experimental 
s 

error in the determination of pressure gradients 

0.1 
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von Karman-Prandtl (Eq. 4.4) 
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FIGURE 4.1: FRICTION COEFFICIENT VS. REYNOLDS' NUMBER 
Full Pipe Flow 
154 mm diameter flume (no sediment bed) 

It was possible to estimate an average value for Nikuradse's 

equivalent sand roughness as 0.009 mm suggesting the pipe to be 

smooth. However, for Re i 200,000 the situation is not very clear. 

139 



Nevertheless, in the sediment movement experiments the values of 

Re where always below 200,000. Therefore the von Karman-Prandtl 

equation for smooth pipe, 

1r2.51 
_ -2 log IJ (4.4) 

111Re yr-O 

was utilized to compare the experimental results. The variation 

of Darcy-Weisbach friction coefficient with Reynolds' number is 

shown in Fig. 4.1 together with Eq. 4.4. The observed values fall 

around von Karman-Prandtl's curve for smooth pipes suggesting the 

flume to be smooth. 

4.2.1.2 Open Channel Flow Conditions 

A series of flow resistance experiments were carried out in the 

flumes (with no sediment bed), under open channel flow 

conditions. In each run uniform flow conditions were established 

(see Sec. 3.2) Expressing the diameter D in terms of the 

hydraulic radius R (for circular pipes D=4 R) Eq. 4.1 can be 

rewritten as, 

8gRSr 

v2 
(4.5) 

where R is the hydraulic radius, 3r is the energy gradient, V is 

the mean flow velocity and A is Darcy-Weisbach's friction 

coefficient. The equivalent sand roughness (Eq. 4.3) then 

becomes: 

. jA 
1 

(4.6) ký 14.8 R 10- M2 1") 
- R2.51 
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Equation 4.6 gives Nikuradse's equivalent sand roughness of a 

representative hypothetical circular pipe (running full) that has 

the same energy gradient at the same discharge, as the open 

channel flow in question. 

These two equations (Eqs. 4.5 and 4.6) were employed in the 

computations of the results of the flow resistance experiments 

under open channel flow conditions (Table 4.2). Average values 

for Nikuradse's equivalent sand roughness were estimated as 

-0.024 mm for the 154 mm diameter flume and 0.038 mm for the 

302 mm diameter flume. 
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FIGURE 4.2: FRICTION COEFFICIENT VS. REYNOLDS' NUMBER 
Open Channel Flow conditions (no sediment bed) 

Figure 4.2 shows the variation of Darcy-Weisbach friction 

coefficient with Reynolds' number. The observed values fall 

around von Karman-Prandtl smooth pipe curve (Eq. 4.4) . However, 
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there is appreciable scatter as the substitution of D by 4R in 

Darcy's equation for head loss yields friction factors for the 

hypothetical equivalent pipe of circular cross-section. 

From the same set of data average values for Manning's roughness 

coefficient, n, were estimated as 0.008 and 0.009 for the 154 mm 

and 302 mm diameter flumes respectively (see Fig. 4.3). These 

values correspond to a smooth boundary channel. The pieces of 

uPVC and perspex pipe making up the 302 mm diameter flume do not 

fit perfectly due to slight differences in their internal 

diameters. This explains why this flume shows higher roughness 

(ka) and Manning's n values than the 154 mm diameter flume. 
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FIGURE 4.3: MANNING'S COEFFICIENT VS. REYNOLDS' NUMBER 
Open Channel Flow (no sed. bed) 

From the experimental results (full pipe and open channel flow 

conditions) it can be concluded that the flume walls are smooth. 
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This supports the assumption of smooth walls (see Fig. 4.4) made 

in the derivation of the equations (see Appendix I) utilized in 

Einstein-Vanoni wall separation technique (Vanoni-Brook, 1957). 

The cross-section is divided into two subsections, one 

corresponding to the rough bed and the other one to the smooth 

walls. As the velocity and headloss are assumed to be equal in 

both subsections, by applying von Karman-Prandtl equation for 

smooth boundary (Eq. 4.4) the friction coefficient for the wall 

can be found. Then by iteration the friction coefficient of the 

bed is obtained. The method is explained in Appendix I. 

4.2.2 Frictional Characteristics (with flat sediment bed) 

4.2.2.1 Full Pipe Flow Conditions 

Friction experiments were carried out in the 154 mm diameter 

flume for each configuration (sediment bed thickness and bed 

roughness) under full pipe flow conditions using clear water. 

Nikuradse's equivalent sand roughnesses and friction coefficients 

were determined. 

flow section smooth wall 

D 

Yo 

E 
rough bed 

sediment bed 

FIGURE 4.4: CHANNEL CROSS-SECTION WITH SEDIMENT BED 
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FIGURE 4.5: FRICTION FACTOR VS. REYNOLDS NUMBER 
Full Pipe Flow, 154mm diameter flume with sediment bed (E'18.4mm) and sand size d&0-0.53mm 

A typical plot of mean and bed friction coefficient against 

Reynolds' number can be seen in Fig. 4.5. The curve representing 

the overall values is more or less parallel to the curve 

representing the separated bed values. This occurs because the 

hydraulic radius remains constant (full pipe flow conditions). 

4.2.2.2 Open Channel Flow Conditions 

Results from friction experiments under open channel flow 

conditions are summarised in Tables 4.4 & 4.5 for the 154 mm and 

the 302 mm diameter flumes respectively. The experiments were 

carried out with clear water for various flume bed 

configurations (see Fig. 4.4). 

As Reynolds number increases, curves of mean and separated values 

of friction coefficient seem to diverge (see Fig. 4.6), due to an 
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increase in water depth with increasing Reynolds number. Each 

flume has smooth walls and fixed rough bed that causes the 

overall friction coefficient to decrease as the water depth 

increases. Thus a larger difference between bed and overall 

friction coefficients (see Fig. 4.7a) is observed for high values 

of Reynolds number, Re and relative depth, (Yo+E)/D. 

0.1 
Separated Values 

"i 

""`. 

Mean Values 

0.01 
-10, 

R. 

FIGURE 4.6: FRICTION COEFFICIENT VS. REYNOLDS NUMBER 
Open Channel Flow, 302mm diameter flume with sediment 
bed (E-47.6mm) and sand size d , -1.6mm 

Whereas several bed thicknesses were implemented in the 154 mm 

diameter flume for the various sets of experiments, only one bed 

thickness was used in the 302 mm diameter flume. The main 

experimental work was carried out in the 154 mm diameter flume. 

The ratio between separated and overall friction coefficient for 

open channel flow conditions, seems to be dependent on water 

depth ratio (Yo+E)/D (see Fig. 4.7a), and bed roughness as it is 
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FIGURE 4.7a: RELATIVE FRICTION FACTOR VS. RELATIVE DEPTH 
Open channel flow in 302mm diameter flume with sediment 
bed (E-47.6mm) and sand size dso-1.6mm 
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FIGURE 4.7b: RELATIVE FRICTION FACTOR VS. RELATIVE DEPTH 
Open channel flow in 154mm diameter flume with sediment bed 
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shown in Fig. 4.7b for the 154 mm diameter, for which several bed 

thicknesses were tested. It is apparent that the larger ratios 

occur for full pipe flow conditions where they can easily exceed 

the value of 2 (see Table 4.3 for sand bed 1.6 mm and bed 

thickness 20 mm). 

4.2.3 Velocity and Shear Stress Distributions 

The shape of the channel flow-section varies considerably with 

sediment bed thickness and flow depth (see Fig. 4.4), and the 

velocity and shear stress distributions are influenced by the 

associated shape effects. Therefore, an attempt was made to 

measure these distributions in one of the flumes. To estimate 

shear stresses the universal velocity distribution law (see 

Sec. 3.3.2.1-Eq. 3.11) was employed. Detailed velocity profiles 

were measured using a combination of Pitot tube, propeller 

current meter and a Laser Doppler Velocimeter (LDV). 

The computation of a typical shear stress distribution is shown 

in Table 4.6 and Figs. 4.8 and 4.9. For each velocity profile in 

the cross-section, the local shear stress is computed as 

explained in Section 3.3.1.1. In Figures 4.11 a and b the 

corresponding shear stress distribution and the velocity contours 

are shown. This is a case of an open channel flow, which is more 

or less two dimensional in spite of small secondary currents (see 

Figs. 4.11 a) observed at the sides of the section near the free 

surface. The shear stress has a maximum at the centreline (see 

Figs. 4.11 b) of the section and decreases towards the sides. 
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FIGURE 4.9: TYPICAL VELOCITY DISTRIBUTION CURVES 
Ooen channel flow in the 154mm diameter flume 

A large number of velocity profiles was measured under both full 

pipe and open channel flow conditions. A summary of the results 

is shown in Tables 4.7 and 4.8 for full pipe and open channel 

flow conditions respectively. However, only four typical cases of 

velocity and shear stress distributions are plotted in Figs. 4.10 

to 4.13 covering the range from narrow depth uniform flow up to 

full pipe (pressurised) flow. For more details on the shear 

stress distribution measurements see Appendix D). 
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FIGURE 4.12: SHEAR AND VELOCITY DISTRIBUTION CURVES 

154mm diameter flume (E=18.4mm) Yo=112.4mm (Yo+E)/D=0.85 
Yo/D=0.73 Q=8.62 1/s So=0.002278 sand size dsoa 0.53mm 

152 



i 

ýý 

1 

_ . 
Iý 

ýý ,l 
., 

.ý ,. 
'I ýý 

,. ý _ý.. 

ý, ýrII /-I1.10 

It 111ä. 
0$ +[ 1_1_. yj ._ 

: 111 t% i 1.00 
0.95 

-" ý" -i 'ý. 0.90 i 
0.80 ,: 

0.70 
_ý 

-100 -50 6 50 

X (mm) 
a) Velocity Contours (m/s) 

6.00 Mean Shear Stress 
--- Predicted Bed Shear Stress 
UA-" Measured Shear Stress 

N 

4.00 

a) 
N 

2.00 

0.00 -i II IT, r-rT, - 
-100 - 

X (mm) 
b) Bed Shear Stress Distribution 

100 

FIGURE 4.13: SHEAR AND VELOCITY DISTRIBUTION CURVES 
154mm diameter flume (E = 18.4mm) Ful Pipe Flow 
(Yo+E)/D =1Q= 15.84 1/s Sr= 0.006754 (smooth bed) 

153 



4.2.3.1 Velocity Distribution 

The isovels for three cases of flow depth i. e., (Yo+E)/D between 

0.47 and 0.85 (see Figs. 4.10a, 4.11a and 4.12a) confirm the 

existence of shape effects in the flumes described above. The 

velocity distribution is two-dimensional for low depths 

((Yo+E)/D ( 0.47). When the ratio (Yo+E)/D is greater than 0.62 

the flow shows three dimensional characteristics. Experiments 

with (Yo+E)/D =1 (pressurised flow) indicate that the velocity 

distribution reverts to two dimensional flow (see Fig. 4.13). 

4.2.3.2 Shear Distributions 

The bed shear stress distributions, no doubt, exhibit the 

influence of shape effects of the channel (see Figs. 4.10 to 

4.15). In the case of the open channel flow condition 

(Yo+E)/D=0.62 (see Fig. 4.11b), the maximum shear stress is 

located at the centre line of the channel. However, the existence 

of small secondary currents is suggested by the shape of the 

velocity contours (see Fig. 4.11a). A similar phenomena can be 

observed in Fig. 4.10 ((Yo+E)/D=0.47), where the maximum shear 

stress is located at the centre line of the flume. Deeper flows 

((Yo+E)/D > 0.62) show the existence of important secondary 

currents, which are apparent in Figs. 4.12a and 4.12b where two 

peaks of shear stress can be seen at both sides of the section. 

Bed shear stress distributions for various flow depths and one 

sediment bed thickness (E-18.4mm) are shown in Fig. 4.14. One 

maximum peak on the centre line with two secondary peaks on the 
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sides are observed for (Yo+E)/D 5 0.47, whereas two main peaks at 

each side of the centreline are observed for 1> (Yo+E)/D > 0.62, 

these two peaks reflect the effects of secondary currents near 

the sides of the section. 
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N 
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Relative shear stress distorted by (Y. +E)/D 

+E)/D - 1.00 

-- 0.80 
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o+E)/D - 0.47 

Yo+E)/D - 0.31 

-1.00 . -0.50 0.00 0.50 1.0 1.50 
Relative Position 

0.00 -}-rT- 
-1.50 

FIGURE 4.14: RELATIVE SHEAR STRESS VS. RELATIVE POSITION 
154 mm diameter flume (E-18.4 mm) 

On full pipe flow conditions one maximum peak is observed at the 

centre line of the flume cross-section. However, secondary 

currents (existence of two smaller peaks) also were observed 

specially for large bed thickness (see Fig. 4.15). Only a limited 

number of velocity and shear stress distribution profiles was 

measured in the largest bed thickness (i. e., E=60.3mm). In this 

case it seems that the flow changes from two dimensional 

characteristics for narrow flow depths (Yo/(D-E) ( 0.37) to three 

dimensional characteristics for greater depths. It must be 

pointed out however, that the sediment bed in this particular 

case is occupying around 39% of the diameter. As the flow became 

deeper secondary currents were observed in both sides of the 
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section. However, more measurements for a wide range of (Yo+E)/D 

are needed to achieve more conclusive results. 

3.00 
Yo+E /D-1.00 ýYo+E 

/D-0.62 

2.00 

1.00 % 

0.00 
-1.50 -1.00 -0.50 0.00 0.50 1.0 

Relative position (X/B) 
1.50 

FIGURE 4.15: RELATIVE SHEAR STRESS VS. RELATIVE POSITION 
Open channel flow in the 154mm diameter flume (E-60.3 mm) 

Shear stress computations from velocity distributions show the 

measured bed shear stresses (r ) exerted on the bed to be much 

higher (see Fig. 4.16) than the computed (i. e., ro - pgRS0) mean 

shear stresses. Bed and mean shear stresses are related by: 

tb = 1.56 to1.21 (4.7) 

which has a correlation coefficient r2=0.96, and it is valid for 

E/D = 0.08 to 0.39. The measured bed shear stresses (Tba) 

compared reasonably well (see Fig. 4.17) with the predicted 

values (tb) by Einstein-Vanoni's separation technique. It must be 

pointed out that the predicted bed shear stress (, rb) is an 

average value for the bed. Thus it is reasonable to expect the 

measured shear to be distributed around the predicted values. 
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4.2.4 Turbulence Measurements 

Turbulence measurements (u-component only) were carried out in 

the 154 mm diameter flume for various uniform open channel and 

full pipe flow conditions ((Yo+E)/D = 1/2,3/4 and 1), and one 

sediment bed thickness (E=40.8mm). The objective of these 

experiments was to assess the effect of turbulence on the 

movement of sediment in the flume. A Laser Doppler Velocimeter 

(see Sec. 3.4 and Plate 4) in forward scatter mode with single 

component was used to measure velocity and turbulence profiles of 

each flow. The measurements were performed at the centre line of 

the flume only because of technical limitations of the laser 

supporting structure and the time availability. 

Turbulence intensities measurements were classified into four 

groups according to their flow characteristics, 

a) Smooth Bed - Open Channel Flow (series S1 to S8) 

- Full Pipe Flow (series SF1 to SF4) 

b) Rough Bed - Open channel flow (series R1 to R6) 

- Full pipe flow (series RF1 and RF2) 

In Tables 4.9 and 4.10 the flow characteristics of the 20 runs 

are summarised. A typical computation of turbulence intensities 

is shown in Table 4.11 and in Fig. 4.18. More details of 

turbulence intensities measurements and computations can be seen 

in Appendix E. 
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Plots of turbulence intensities (ý7u2/ u) (where u is the time 

average velocity and u' is the velocity fluctuation) show their 

dependence on flow depth, bed roughness and slope (see Figs. 4.19 

to 4.23. The near bed turbulence levels over rough boundaries are 

found to be larger than those over smooth boundaries. For example 

in Fig. 4.20 (Yo+E)/D = 3/4) the turbulence intensity near the 

bed attained a value of around 13% on the smooth bed and around 

16% on the rough bed. In Fig. 4.21 (Y 
0 
+E)/D = 1) the values are 

12% and 14.5% for the smooth bed and for the rough bed 

respectively. 

Because of the physical limitations of the glass box used for 

measurements (to avoid the refraction problems inherent to 

circular cross-section flumes) with the LDV it was not possible 
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to obtain turbulence measurements in the upper 20% of the pipe 

diameter (see Fig. 4.21). 

Turbulence levels are found to be higher near the bed for all 

cases (see Figs. 4.19 to 4.23). Turbulence intensities seem to be 

dependent mainly on flow depth and bed roughness. In Fig. 4.23 

full pipe flow cases are shown. It can be seen that the 

turbulence levels are higher in the case of rough beds (RF1 and 

RF2) than those corresponding to the smooth bed cases (SF1 to 

9F4). It also can be observed that the minimum levels of 

turbulence are found around a relative depth (y/Y 
0)=0.5, 

i. e., 

at the centre of the flow section. The maximum levels of 

turbulence are found near the flume bed. Secondary peaks of 

turbulence levels are found near the free surface in case of open 

channel flow, and near the pipe soffit in case of full pipe flow 

conditions. 

On erosion experiments with cohesive sediments (Sec. 4.3.2) the 

sediment bed surface is quite smooth before reaching critical 

conditions but it becomes rougher with the presence of erosion 

spots as the flow approaches critical conditions. The appearance 

of erosion spots causes an increase in turbulence levels, which 

in turn is responsible for the magnification of the erosion spots 

(i. e., increase in k. ). This causes higher turbulence levels 

which further increases the bed roughness and so forth. Finally 

an accelerated destruction of the sediment bed was observed to 

take place (Sec. 4.3.2.2). 
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The appearance of the first spots of erosion is the event that 

triggers off the erosion process. On the sediment bed the weakest 

area that is subjected to the highest transient (turbulence) 

shear stress begins to be eroded i. e., first spots of erosion. 

However, further work is essential to identify fully the effect 

of turbulence on sediment movement. Because of the limited 

available time, this could not be achieved. 
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4.3 SEDIMENT MOVEMENT EXPERIMENTS 

4.3.1 Initiation of Erosion of Non-cohesive Sediments 

4.3.1.1 Selection of parameters 

Initiation of motion of sediment particles can be determined by 

such characteristic parameters as: the water density (p), the 

dynamic viscosity of the water (p), the mean size of the 

particles (d), the flow depth (Y ), the shear velocity of the 
0 

flow (u ), particle shape factor (SF ), channel shape factor 
* P 

(SFc), the density (p)and buoyant specific weight - 7) of the (7 
s 

sediment, in which (7 ) is the spec ific weight of the sediment s 

and (1) is the specific weight of the water. A functional 

relation can be written in the form: 

F{pº pº p, d, Yoº u*º SFpº SFcº(ys- 7)) =0 (4.8) 

Using Buckingham n-theorem with selected basic parameters as, d, 

p and u* (which obviously have independent dimensions). Thus 6 

dimensionless parameters can be found by applying the n-theorem. 

ud 
1ri =ys Re (4.9) 

known as the particle size Reynolds number (R. 
*). 

It reflects the 

influence of viscosity and thus it is a characteristic of the 

relative motion of a grain in fluid. 
2 

n2 = 
P0 

_*7) 
=1 (4.10) 

known as the entrainment function or mobility number (1/gyp). It 
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reflects the influence of the submerged weight. It characterizes 

the ratio of the dynamic forces acting on the grain to grain 

weight. 
Y 

n3 o 
d 

(4.11) 

Y 
known as the flow depth ratio (d-° ). It reflects the influence 

of the flow depth on sediment movement. However, when the product 

RS (hydraulic radius and channel slope) is kept constant 

(i. e., for a given critical shear stress) the shear stress near 

the bed is practically not dependent on flow depth. This is why 

many equations for initiation of erosion do not include the flow 

depth parameter. 

P 

4p= . 4s X (4.12) 

known as the relative density of the sediment (Ss). It 

characterizes the influence of inertia forces, which are important 

to the properties of individual grains. However, as in general 

the interest is focused on mass grain motion S6 is not an 

important dimensionless parameter. 

Ic = SF 
5P 

(4.13) 

known as the shape factor of the particles (SF 
p), 

which is 

another dimensionless variable. In case of uniform size sediment 

(spherical particles, or uniform sand size, for example) the 

particle shape factor is constant (SF of 1). 

n6 = SFB (4.14) 

known as the shape factor of the channel cross-section (SFB). It 

is another dimensionless parameter, which is important in cases 

168 



where the shape of the cross-section changes with flow depth 

(i. e., channels of circular cross-section). 

Two dimensionless parameters T/P (surface width/wetted perimeter, 

see Fig. 4.24) and Yo/P (normal depth/wetted perimeter, see 

Fig. 4.25) can be used to characterize channel shape. In 

Fig. 4.24 the relative flow depth (Yo+E)/D is plotted against T/P 

for various sediment bed thicknesses. The influence of sediment 

bed thickness on the parameter T/P decreases as the relative 

1.20 
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0.80 

0 
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ö 
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E-40.8mm 

0.20 

E- 18.4mm 

0.00 
E-0.00mm 

0.00 0.20 0.40 0.60 0.80 1.00 1.20 
T/P 

FIGURE 4.24: (Yo+E)/D against T/P 
154mm diameter flume with sediment bed 

depth increases. For full pipe flow conditions the parameter T/P 

remains constant (T/P=l) independent of sediment bed thickness. 

Therefore, the channel shape effects would not be well 

represented by the parameter T/P. 
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FIGURE 4.25: (Y. +E)/D againot Y. /P 
154mm diameter flume with sediment bed 

In Fig. 4.25 the relative flow depth (Yo+E)/D is plotted against 

Yo/P for various sediment bed thicknesses. It can be seen that 

the parameter Yo/P is dependent on flow depth and on sediment bed 

thickness. Four curves for various sediment bed thickness (0, 

18.4,40.8 and 60.3mm) are plotted. Each curve has a maximum at 

relative depth (Yo+E)/D - 0.877,0.909,0.936, and 0.961 for 

sediment bed thicknesses 0,18.4,40.8 and 60.3mm respectively. 

Further increases in relative depth results in decreasing values 

of Yo/P. For full pipe flow the values of the parameter Yo/P are 

0.318,0.286,0.25 and 0.22 for sediment bed thicknesses 0,18.4, 

40.8 and 60.3mm respectively. 
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Flow depths near full pipe showed instabilities in uniform flow 

conditions. For this reason the flow depths were limited to 

(Yo+E)/D 5 0.85 (i. e., below the point of maximum Yo/P) in the 

experiments. Thus the parameter Yo/P may be used to represent the 

channel shape effects. Additionally Yo/P was considered to 

analyse the shape effect (Nall uri-Adepo ju, 1984) on resistance to 

flow in smooth open channels of circular cross-section. Therefore 

the parameter Yo/P will be used to characterize shape effects in 

the analysis of the experimental results. The phenomenon of 

initiation of erosion may be described by: 

putudY 
(7s-*1) = f( 

v pes) 
(4.15) 

which is equivalent to Eq. 2.1, presented in Chapter 2: 

ti ud 
Oc- f( (2 (2.1) 

P(Ss- 1)gd 

where no channel shape effects were considered as those studies 

(Shields, 1936) were concerned with wide rectangular channels only. 

In the literature the concept of critical velocity is also used 

to describe incipient motion. The corresponding dimensionless 

parameter (critical Froude number of the particle) can be 

expressed as: 

v (4.16) F= 
dc ' (s. _ 1)gd' 

where VC is the critical velocity for initiation of motion of 

sediment particles. Fdc takes into account the density and size 
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of the particles. A single critical velocity value would be 

expected for each particular sediment. However, for a given mean 

velocity the shear stress exerted on the particles is directly 

proportional to channel slope. Thus one value of Fdc for each 

particle size and channel slope may be expected. The critical 

Froude number of the particle is also likely to be influenced by 

the channel shape (i. e., Yo/P), as it will be shown below. 

4.3.1.2 Uniformly Graded Sands Experiments 

Initiation of erosion experiments under uniform flow conditions 

with non-cohesive sediments were carried out as described in 

Sec. 3.5.1.2. A wide range of uniform sand sizes 

(d5o = 0.12 - 4.1 mm) was used. The objective of these 

experiments was to obtain a basis of comparison for the cohesive 

sediment studies. 

In every experiment a uniform size sand constituted the flat 

sediment bed (modeling deposited sewer sediment bed). Initiation 

of erosion was achieved by small increments of the shear stress 

(maintaining uniform flow conditions). Several bedload samples 

were taken for various flows beyond critical conditions. Critical 

shear stresses were determined by extrapolation to zero bed load 

from the C,, vs. to curves (see Fig. 3.10). A summary of the 

results of these experiments is shown in Table 4.12 a, and in 

Figs. 4.26 and 4.27 (for more details see Appendix F). 

The results suggest that for channels of circular cross-section 

with flat sediment bed critical conditions occur at lower (see 
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Fig. 4.26 and 4.27a) values of mean 

those of Shields for wide channels. 

bed shear stresses (rb) (compute 

separation technique) are found to 

results (see Fig. 4.26 and 4.27). The 

shear stresses (T) than 
0 

However, separated critical 

ed using Einstein-Vanoni's 

be comparable to Shields' 

scatter can be explained by 

the presence of secondary currents and turbulence levels. 

An attempt was made to analyse the influence of channel shape on 

critical shear stress. In Figures 4.28a and 4.28b critical shear 

stresses are plotted against the shape factor parameter Yo/P for 

experiments with bed thicknesses 18.4 and 20 mm respectively. A 

variation in critical shear stress with channel shape is observed 

for flow depths above half full pipe (i. e., larger size sands 

d5o= 2.00,2.56,2.90 and 4.10 mm). Figs. 4.28a and 4.28b suggest 

that for a given sand size the required shear stresses to 

initiate sediment movement are lower for flow depths above half 

full pipe (i. e., smaller channel slopes). 

As it was mentioned before (Sec. 4.2.3) the velocity and bed 

shear stress distributions showed a marked dependence on flow 

depth (see Fig. 4.14). For flow depth above half full pipe there 

are secondary currents that enhance the eroding capabilities of 

the flow. In addition turbulence levels near the bed (rough beds) 

were found to be higher for flows depths above half full pipe 

(see Sec. 4.2.4), which also encourages erosion. The combined 

effects of secondary currents and turbulence is apparent in 

Figs. 4.28a and 4.28b as the points above the half full pipe show 

a decrease in critical shear stress with increasing flow depth. 
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Nevertheless, due to the limited experimental data (3 or 4 slopes 

for each sand size only) it was not practical to fit a general 

relation between the critical shear stress and the shape factor. 

On the other hand, however, smaller sand sizes (i. e. d50= 0.50, 

0.90,1.44 and 1.60) did not show any considerable variation in 

critical shear stress with shape factor. This is because the flow 

depths used in these experiments were below half full pipe flow, 

which suggests that channel shape effects on critical conditions 

are noticeable only for flow depths above half full pipe. 

The influence of sediment bed thickness on critical shear stress 

was studied by determining the critical conditions for two sand 

sizes (0.53 and 0.89 mm) in three bed thicknesses (16.3,40.8 and 

60.3 mm). The critical shear stresses (see Table 4.12a) obtained 

by extrapolation to zero bedload (i. e., C =10-8) did not show any 

consistent dependency on bed thickness. 

This may be due to the experimental error in the sediment rate 

values. As in the initiation of erosion experiments the sediment 

rates commonly measured were quite small, the sediment trap 

required longer measuring times (hours) with the consequent 

variation of water temperature. Even though the bedloads were 

averaged over three different measurements they still represent 

an average value in a given time interval, for the average flow 

conditions. However, as it is shown in Section 4.3.3.2 (Fig. 4.41 

& 4.42), there are indications that the transport rate, for a 

given shear stress, increases with sediment bed thickness. 
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A multiple correlation was performed with the data and the 

entrainment function was found to be best described (see 

Fig. 4.29) by: 

T (T) Y 0. tß Y. El0.38 

P(S- 1)gd = 0.77 (Ib)0.90 
( oD (4.17) 

where rbc is the computed bed shear stress, p is the density of 

the water, S is the relative density of the sediments, g is the 

acceleration due to gravity, d is the particle size, Y0 is the 

normal flow depth, P is the wetted perimeter, Xb is the computed 

bed friction factor, E is the sediment bed thickness and D is the 

channel diameter. Eq. 4.17 is valid for sand sizes 

0.5 5ds4.1 mm, relative density 2.48 rp52.61, and sediment 

bed thickness E/D is 0.12 (tested in the 154 mm diameter flume). 

Eq. 4.17 shows the importance of the channel shape in determining 

the critical conditions. 
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The critical Froude number of the particle (Fdc) was plotted 

against particle Reynolds number (Re*) in Fig. 4.30a. Although 

there is considerable scatter a trend of increasing Fdc with Re* 

can be observed as: 

V 
F=c=1.568 R. 0.077 (4.18) 

dc (Ss- 1)gd 

with r2=0.47, where V is the mean flow velocity for incipient 
c 

motion, Ss is the relative density of the sediment, d is the 

particle size and g the acceleration due to gravity. Equation 

4.18 was derived from experimental data with sand sizes 

0.5 sd50 s 4.1mm, relative density 2.48 sps2.61, and sediment 

bed thickness E/Dcs0.12, in a 154 mm diameter flume. The scatter 

in Fig. 4.30 may be explained by the channel shape, which 

influences critical velocity in a similar manner as it influences 

critical shear stress (previously discussed). 

A better fit-regression was obtained (see Fig. 4.30b) correlating 

the dimensionless velocity with the shape factor (Yo/P) the 

friction factor (X), which shows that the shape factor is 

important in determining critical velocities. The expression 

obtained can be written as: 

VYo. 22 
1.69 0 0.13 (4.19) 

P (fie) 
(S 1)gd 

with r2=0.69, which is valid for sand sizes 0.5 sdso s 4.1mm, 

relative density 2.48 sp52.61, and sediment bed thickness 

E/D O. 12 (tested in a 154 mm diameter flume). 
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4.3.1.3 Graded Sand Beds 

Initiation of erosion experiments were also carried out using 

mixed size sands as detected in type A and type C sediments 

granulometry (see Fig. 4.31). The experimental procedure was 

similar to that described for uniform sands. However, the 

sediments collected in the sediment trap were later separated by 

size fractions and the bedload for each fraction size was 

obtained. The critical shear stress was then determined by 

extrapolation to zero bed load. Because of the very small size of 

Type C sand (d50= 0.12 mm) it was not practical to separate it 

into size fractions. 
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The results obtained for Type A sand are shown in Table 4.12 b. 

A comparison of these results (Table 4.12b) with those obtained 
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using uniformly graded sands suggests the existence of 

interaction between the particles of different sizes (armouring 

and sheltering). The smaller size fractions show higher critical 

shear stresses and the larger size fractions lower critical shear 

stresses than those shear stresses corresponding to their 

respective uniform sizes. 

4.3.2 Initiation of Erosion of Cohesive Sediments 

4.3.2.1 Preliminary Experiments 

The project was initially conceived to study the influence of 

cohesion on the movement of non-cohesive sediment in channels of 

circular cross-section. Therefore erosion experiments were 

carried out in the 154 mm diameter flume using sand with various 

additives such as china clay, oil, petroleum jelly, etc. 

Shields' curve 
ýºaaaa sand d30-0.50 mm 
"""+" sand d3s-2.00 mm 

sand + 5* petroleum jelly 

sand + 14* loponite clay 
0.1 ." 

sand + 10x china cloy 

a ý- sand only 

0.01 
1 10 100 1000 

Re. b 

FIGURE 4.32: SHIELDS' DIAGRAM FOR INITIATION OF UO11ON 
OF SAND WITH COHESIVE ADDITIVES 
154 mm diameter flume (E - 18.4 mm) 
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All open channel flow tests were conducted in a manner similar to 

non-cohesive sediment tests (Sec. 4.3.1.2). However, sediments 

with cohesive additives required much higher shear stresses for 

initiation of erosion than non-cohesive sediments. This caused a 

sharp drop in the efficiency of the sediment trap. Also the mode 

of transport did not allow to establish sediment rates 

systematically. Critical shear stresses were then obtained most 

of the times by visual observation only. 

The presence of cohesion in sediments has a marked influence on 

the incipient motion of the sediment beds (see Fig. 4.32). First 

the critical shear stresses are dramatically increased by several 

orders of magnitude (depending on the type and concentration of 

the cohesive additive). Second the mode of erosion is entirely 

different. Whereas a gradual entrainment process occurred in 

non-cohesive sediment beds, a violent collapse (see Fig. 4.33) of 

the entire sediment bed took place on cohesive sediment beds when 

the corresponding critical conditions were exceeded. It was 

observed that the cohesive sediment bed is eroded in clusters of 

various sizes that behave like non-cohesive sediment particles 

being carried downstream by the flow. 

4.3.2.2 Sewer Sediment Analogues 

The experimental results indicated an increase in critical shear 

stresses with the cohesive strength of the sediments. The type 

and concentration of the cohesive additive determined the 

critical conditions of a given sediment bed (see Fig. 4.32). The 
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interpretation and quantification of this effect in sewers 

depended on the mechanical, rheological and chemical properties 

of the actual sewer sediment. 

An important objective of the project was to relate cohesive 

sediment behaviour in the laboratory to actual sewer sediment. 

However, as no practical information on the actual properties of 

in-sewer sediment was available it was not possible to generalize 

the results obtained with the various additives tested. It is 

necessary to relate the properties of the sediments used in flume 

experiments to the properties of sewer sediments in order to 

extrapolate the flume results. This forced a change in direction 

of the project concerning the selection of an artificial sewer 

sediment, as field and laboratory characterization of sewer 

sediments became essential. 

From their laboratory study of real sewer sediments (see 

Sec. 2.3.2) from various locations in the U. K., Williams and 

Williams, (1988) suggested a synthetic sewer sediment for flume 

studies. This synthetic sewer sediment has rheological and 

chemical characteristics similar to that of actual sewer 

sediments. The sediment is a mixture of Laponite RD clay, sand 

and water (see Sec. 2.3.2). 

Preliminary initiation of erosion experiments were carried out 

using similar synthetic sediment mixtures to those tested at 

Swansea (Williams and Williams, 1988). The test ranges for 
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initiation of erosion experiments were defined as follows: 

Concentration of Laponite clay gel 18 - 40 g/l 

Sand/clay gel ratio 0- 100% by weight 

Sand sizes (d50) 0.12 - 2.9 mm 

A large number of erosion experiments using the synthetic sewer 

sediment for a wide range of combinations was carried out. 

Qmý 
lls$ 

a) First spots of erosion beginning to appear 2 Q= 20.5 1/s, V=1.18 m/s, 'ro = 3.7 N/m 

CýD 4? 'np 

b) First spots of erosion increasing in size 2 Q= 22.2 1/s, V=1.28 m/s, r01 = 4.09 N/m 

c) Bed failure progressing very rapidly ... (bed 
2collapse) Q= 23.3 1/s, V=1.34 m/s, Toe = 4.55 N/m 

Sample: 50% Laponite clay gel (c=25g/1) 
50% Sand (90 - 150pm) 

FIGURE 4.33: TYPICAL EROSION PATTERN OF THE SYNTHETIC SEWER 

SEDIMENT (154mm diameter flume E=18.4mm) 
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The same erosion pattern was observed in all cohesive sediment 

experiments. It started with some isolated spots of erosion, at 

mean shear stress T01 followed by a sudden collapse of the bed 

for a small increment of the shear stress, at shear stress T02 

(see Fig. 4.33 and Plates 6& 7). This process was also 

accelerated by the local turbulence produced by the macro 

roughnesses created by the eroded spots (see section 4.1.4). 

It must be pointed out however, that the cohesive behaviour 

described above was observed only when the cohesive additive was 

present in adequate proportion. Depending on sand size this could 

vary between 5 to 15 % by weight. All sand particles need to be 

wetted by the clay solution before the cohesive bond can develop. 

It was also observed that for low clay concentration and small 

sand size mixtures a very small erosion process was taking place 

well before the appearance of the first spots of erosion and the 

collapse of the bed. This occurred as the surface layer of sand 

was slowly being detached particle by particle. This erosion 

process was only detected by operating the sediment trap for a 

long time. This phenomena could not be easily seen with the naked 

eye and did not seem to have any significance on the collapse of 

the bed. 

The results show that for a given clay gel concentration there is 

an optimum sand/clay-gel proportion (see Figs. 4.34 and 4.36 and 

Tables 4.13 to 4.15) to achieve maximum resistance to erosion. 

Critical shear stresses were found to increase with clay gel 

concentration. Very often the critical shear stresses were beyond 
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the maximum values obtainable under open channel flow conditions 

and the tests had to be carried out under full pipe flow 

conditions (see Sec. 3.5.2.2). 

For a given sand size the mean critical shear stress is found to 

be directly proportional to clay gel concentration. However, 

there seems to be an overall maximum critical shear stress value 

of around 6-7 N/m2 (see Figs. 4.35 and 4.37). 

The upper limit of 40 g/1 of laponite clay gel used as cohesive 

additive in the experiments represents freshly deposited beds in 

sewers with slight consolidation (Type A sediment, Crabtree, 

1988). The clay gel concentration of 18 g/1 mixed with very fine 

sand represents a weak cohesive sewer sediment (Type C sewer 

sediment, Crabtree, 1988) with a maximum mean critical shear 

stress of around 2.5 N/m. 2 

Table 4.16 shows a summary of the results covering the entire 

ranges of sand sizes and clay gel concentration tested. Only the 

optimum proportion (maximum critical shear stress) of sand and 

clay-gel is shown (Table 4.16) for each clay gel concentration 

used (see Figs. 4.35 and 4.37). More details of the individual 

runs can be found in Appendix G. 
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4.3.3 Transport Experiments over Loose Beds 

4.3.3.1 Selection of Parameters 

Conducting a similar dimensional analysis as Sec. 4.3.1.1 the 

relevant dimensionless parameters describing sediment transport 

are selected. The transport of sediment particles by water can 

be determined by such characteristic parameters as: the water 

density (p), the dynamic viscosity of the water (p), the mean 

size of the particles (d), the flow depth (Y 
0 

), the shear 

velocity of the flow (u*), particle shape factor (SFP), channel 

shape factor (SFc), the density (p)8and buoyant specific weight 

(7s- 1) of the sediment, in which (7. ) is the specific weight of 

the sediment and (1) is the specific weight of the water, and the 

bedload (q 
s) 

in volume per unit width per unit time. A functional 

relation can be written in the form: 

F(p"p, pa, d, Yo, u*, SF, SF, (7s-7), q)=0 (4.20) 
pcs 

Buckingham n-theorem was employed with the selected basic 

parameters d, p and u* (which obviously have independent 

dimensions), and 7 dimensionless parameters were found. Thus the 

functional relation can be expressed as: 

2 
Ft 

udp u* 
d° 

P` 
' SF ' SF 

40 
(4.21) 

For similar reasons to that of the previous section 

(Sec. 4.3.1.1) the parameters Yo/d, S., and SF 
P 

can be excluded 

from the analysis and SF 
c 

can be represented by (Yo/P). 
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Thus the functional relation (Eq. 4.21) becomes: 

udp2Yq 
F2 

u V, 
(7 _*1) u 

`d =0 (4.22) 

s. 

q 
in which q* =ud is Kalinske's transport parameter (Kalinske, 

1947). Einstein (1942) in his probabilistic bedload model used 

the dimensionless parameter: 

1/2 

(4.23) 

3 I)d (7s- 

where 0 is the well known Einstein (1942) transport parameter, q. 

is the bedload in volume per unit time per unit width, p is the 

water density, Ys is the specific weight of the sediment, 7 is 

the specific weight of the water and d is the diameter of the 

particles. The bedload qa can be replaced in terms of the 

volumetric concentration C to obtain Eq. 2.16 as: 

CVR 
" (2.16) 

(Ss_ 1)gd3 

The functional relation can then be written as: 
Y 1 F4 RQ*p 

W Pý t=0 (4.24) 

4.3.3.2 Non-cohesive Sediments Experiments 

Transport experiments using sand of various sizes were carried 

out in the 154 mm diameter flume. The bed was formed with loose 

sand and subjected to erosion under uniform flow conditions. 

Dried sand of the proper size was fed from the upstream end of 

the sediment bed at a constant rate using a vibration sediment 
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feeder (see Fig. 3.12). The input sediment rate was adjusted to 

match the rate of transport of the flume. After reaching 

equilibrium conditions (sediment transport) the flow was slowly 

stopped and the channel drained. Then using a moveable point 

gauge (see Fig. 3.14) inside the pipe the bed formation was 

measured along the entire sediment bed. The results obtained are 

summarised in Table 4.17. A comparison of the experimental 

results with those corresponding to wide channel is shown in 

Figs. 4.38 to 4.40. 

In Fig. 4.38 the data is plotted in Kalinske's diagram in terms 

of the dimensionless transport rate (q*) and the relative shear 

stress (z 
c 
/t 

o 
). The data plotted in Fig. 4.38 show considerable 

scatter, which is greatly reduced by using the separated values 

(r ' the and u*b computed employing Einstein-Vanoni's separation b 
technique). The data does follow a definite trend, which can be 

described by: 

i 

Abc = 0.738 ex 
4 -5.61 q' 

(4.25) 

bu *b 
d 

60 

where qe is the bedload in volume per unit time per unit width, 

u*b is the shear velocity related to the bed, and tb and T are 

the bed shear stress of the flow and the critical bed shear 

stress of the particle respectively. Equation 4.25 was derived 

from experimental (uniform open channel flow) data obtained in a 

154 mm diameter flume and it is valid for sand sizes 

0.53 s d5o S 2.9 mm and sediment bed thicknesses 

0.08 5 E/D S 0.391. 
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The data does not agree with Kalinske's curve (see Fig. 4.38), 

because first, Kalinske takes into consideration total load, and 

second his critical conditions are different to the ones used by 

the author. Kalinske defined critical conditions for a rather 

high level of sediment transport (i. e., 
go 

ud-0.25), 
which 

also included suspended loads. This is equivalent to a sediment 

volumetric concentration (C) of about 10- 4 and in the present 

study the critical conditions were defined at C Qr 10-8. 
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"+*++ d3o=0.89mm E=16.3mm xxxxx d3os1.70mm 

100 
eeaea d, o-2.90mm 
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FIGURE 4.39: SEDIMENT TRANSPORT OVER LOOSE BED 
Einstein Bedlood Function (154mm diameter flume) 
Mean values 

1 

The data is plotted (Fig. 4.39) in terms of the transport 

parameter 4o (Eq. 2.16) and the flow intensity parameter, 1º 

(Eq. 2.17) in an Einstein bedload diagram using mean values (t0, 

R, 0 and w). The points fall above Einstein bed-load curve. The 

agreement is not good especially for the low flows. However, when 
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separated bed values (tb, RD, 4b and Wb) are used the data is 

closer to Einstein bed-load curve, but it is still above it. This 

suggests that in channels of circular cross-section with sediment 

bed the transport capacity is greater than in wide rectangular 

alluvial channels under similar hydraulic conditions (see 

Fig. 4.40-a). 

By using the method of least square a power equation was fitted 

to the data as: 

wb = 9.931 0b-0.123 (4.26) 

which has a low correlation coefficient (r2=0.62). The 

subscript b indicates that the values of the shear intensity and 

transport parameters are computed using the values relevant to 

the bed (i. e., Einstein-Vanoni's separation technique). Using a 

logarithmic equation yields: 

Wpb = -2.47 In 0b + 7.4 (4.27) 

which has a better correlation (r2=0.70) as it is apparent in 

Fig. 4.40-a). A curve which resembles Eq. 2.14 (Chien, 1954) can 

also be fitted to the data as: 

1.937 
  (4.28) ýb 

(40 2/3- 0.188)1.644 
b 

which shows a better correlation (r2=0.82) and does represent the 

data better (see Fig. 4.40b). Equations 4.26 to 4.28 were derived 

from experimental (uniform open channel flow) data obtained in a 

154 mm diameter flume and it is valid for sand sizes 

0.53 s dso s 2.9 mm and bed thicknesses 0.08 s E/D s 0.391. 
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The influence of sediment bed thickness on sediment transport is 

illustrated in Figs. 4.41 and 4.42, where the bedload is plotted 

against bed shear stress for the various bed thicknesses used, 

for the sand sizes 0.53 and 0.89 mm respectively. It is apparent 

in Fig 4.41 that for similar levels of shear stress the transport 

rate (weight per unit time per unit width) increases with bed 

thickness. Although in Fig. 4.42 (d 
50 = 0.89 mm) there is not a 

clear distinction between the curves corresponding to bed 

thickness 16.3 and 40.8 mm, the general trend is the same. 

However, as the bedload decreases (towards critical conditions) 

there is not a clear relation between critical shear stress and 

sediment bed thickness as the curves tend to cross and overlap. 
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FIGURE 4. 41: BEDLOAD VS. SHEAR STRESS AND SEDIMENT BED 
THICKNESS 
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4.3.3.3. Bedforms 

a) Classification of Bedforms 

Sand dunes and ripples were observed for the various flow 

conditions (see Plate 8). In spite of the small amount of data 

available an attempt has been made to compare the measured 

bedforms characteristics with other studies (Figs. 4.43 to 4.46). 

In Fig. 4.41 the data is plotted in a Shields' diagram. According 

to Shields (see Fig. 2.7 in Sec. 2.1.1.20) the bedforms are in 

the transition zone between ripples and dunes. Obviously all 

points fall above Shields' curve as the shear stresses exceed the 

critical conditions. 

10 Shields' curve 
««««« 0.53mm 
***** 0.89mm E-16.3mm 
00000 1.70mm 
0"""" 2.90mm 

eoeoe 0.53mm 
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: ripples 
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dunes * Al 0.1 ,"ý 

if 69 

0.01 1 10 100 1000 
Re+b 

FIGURE 4.43: SHIELDS' DIAGRAM - BEDFORMS CLASSIFICATION (Sediment) 
Transport Over Loose Beds (154mm dia. f fume with sediment bed) 
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Ripples and dunes were observed on experiments with sand sizes 

0.53 and 0.89 mm . However with sand sizes 1.7 and 2.9 mm larger 

bedforms were observed; sometimes the whole test section was 

occupied with one or two wavelengths (see Table 4.17). 

antidunes (Eq. 4.29) 

Plane bed 

x 

* " - - lx 

Zi 
- 

_ 
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x 
x 
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no ripples """""2.90mm 
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0.0 0 0.50 1.00 1.50 2.00 2.50 3.0C 

Particle Size (mm) 

FIGURE 4.44: STREAM POWER VS. PARTICLE SIZE - TRANSPORT 
EXPERIMENTS OVER LOOSE BEDS (154mm diameter flume E-16.3mm) 

Fig. 4.44 shows a plot of stream power (rbV) against sand size 

(dso) for a sediment bed thickness of 16.3 mm. In order to 

compare the results with those obtained by Simons et al. (1963) 

(Fig. 2.8), the values were converted to S. I. units (see 

Fig. 4.44). The data fall in the zone of dunes (0.53 and 0.89 mm 

sands) of Simons et al. (1963). However, he uses the median fall 

diameter instead of the mean particle size (d50). The boundary 

(dashed line in Fig. 4.44) delimiting the zone of plane bed 

(after initiation of erosion) from the zone of bedforms (dunes) 
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is given by: 

tbV = (1/5) 10294d (4.29) 

where d is the particle size in (m), tb the bed shear stress in 

(N/m2) and V the mean flow velocity in (m/s). Equation 4.29 was 

derived from experimental (uniform open channel flow) data 

obtained in a 154 mm diameter flume and it is valid for sand 

sizes 0.53 s d5o s 2.9 mm and relative sediment bed thickness 

E/D=0.08. 

The results obtained with 0.53 and 0.89 mm sand, which were 

tested with three different bed thicknesses suggest that the 

boundary between plane bed (after initiation of motion) and dunes 

is dependent on sediment bed thickness. As the bed thickness 

increases the boundary seems to go down towards Simons' values 

(see Fig. 4.44) for wide channels. 

Another classification of bedforms is that of Van Rijn (1988). He 

uses the dimensionless grain number D (Eq. 2.24) and the 

transport parameter T (Eq. 2.25) that were described in 

Sec. 2.1.1.20. The observed values are plotted in Fig. 4.45 and 

it can be seen that for sand sizes 0.89 and 1.7 the limit between 

plane bed (no motion) and dunes is between Ta0.25 and 0.45. 

However, for the smaller sand (d50= 0.53mm) that limit 

corresponds to Ta1.8 and for the larger sand (d5oa 2.9mm) is 

T ai 0.6. This agrees with the observations of Van Rijn (1988). 

Obviously the boundary separating the state of plane bed (no 

motion) and the zone of dunes is dependent on particle size as do 
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the critical conditions for initiation of motion. According to 

Van Rijn classification no ripple should be formed with the 

sands used in the tests. 
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100 

b) Bedforms Dimensions 

Bedforms, as mentioned in Sec. 2.1.1.1-c, consist of 

statistically periodic irregularities, which influence the 

behaviour of the flow and transported material. In spite of the 

limited number of measurements, an attempt was made to quantify 

bedform dimensions in channels of circular cross-section with 

sediment bed. 
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The bedforms height (A) and length (L) given in Table 4.17 are 

the averages values of the measurements made along the flume on 

the entire test section after each run was stopped. After trying 

several correlations an expression for dune height was found as: 

A 0.397 Yo 0.383 
0.09 

Y=1.349 
(Yd1 (p1 

T- (4.30) 

ol 8J lJ 

in which A is the dune height (as defined in Sec. 2.1.1.1-c), Yo 

is the normal depth, d is the particle mean size, P is the wetted 

perimeter and T is van Rijn transport parameter. Equation 4.30 

(see Fig. 4.46a) gave a good correlation (r2=0.959) and was based 

on experiments with uniform sand sizes 0.53 and 0.89mm, for 

0.50 00000 Van Rijn n Prediction 

0 
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FIGURE 4.46a: PREDICTED VS. OBSERVED DUNE RELATIVE HEIGHT 
154mm diameter flume with sediment bed (doo=0.53-0.89mm) 
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relative sediment bed thickness 0.08 s E/D s 0.39, in a 154 mm 

diameter flume. Neither the transport parameter T nor the 

dimensionless grain size D were found to be important in 

determining dune height, which corroborates Van Rijn (1988) 

observations. However, Van Rijn (Eq. 2.28) predicts greater dune 

heights, and this can be explained by the channel shape, as Van 

Rijn's equation was developed for alluvial wide channels. 

For the length of the bedforms the relation obtained was: 

Y 0.78 -0.39 
L= 0.345 

(2 (4.31) 
J 

(-) 

where L is the dune wave length in (m) (as defined in 

Sec. 2.1.1.1-c), Y is the normal depth in (m), d is the particle 
0 

mean size in (m), P is the wetted perimeter in (m) and T is Van 

Rijn dimensionless transport parameter. Equation 4.31 (see 

Fig. 4.46b) gave a correlation coefficient r2=0.84 and was derived 

from experiments with uniform sand sizes 0.53 and 0.89mm, 

relative sediment bed thickness 0.08 s E/D 5 0.39, in a 154 mm 

diameter flume. 

Van Rijn predicted values (Eq. 2.29) are plotted together 

(Fig. 4.46b) with the data for comparison. Except for one case 

Van Rijn predicts greater dune length, which illustrates the 

variation in bedforms between an alluvial wide channel and a pipe 

channel with loose sediment bed. According to Van Rijn dune 

length is only dependent (Eq. 2.29) on flow depth. 
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In pipe channels with sediment bed the size of the sediment and 

the channel shape are found to be important in the determination 

of dune dimensions, height and length. 

In the limited number of transport experiments over loose beds in 

pipe channels some similarities to wide alluvial channels (in the 

mode of transport and bedformation) were observed. In order to 

achieve more conclusive results more experiments, with a wider 

range of bed widths, sediment sizes, and flow depths, are 

required. 
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4.3.3.4 Cohesive Sediments Experiments 

In transport experiments with cohesive sediment a special 

sediment feeder was devised (see Sec. 3.6.2.2, Fig. 3.16 and 

Plate 3). The experimental technique similar to that described 

for non-cohesive sediment transport (Sec. 4.3.3.2) was not found 

to be suitable for the synthetic sewer sediment. The breaking up 

of cohesion once the bed started to erode did not allow the 

establishment of equilibrium conditions of transport. 

During the initial stages of erosion experiments (from A to B in 

Fig. 4.47) the shear strength of the sediments balances the shear 

stress exerted by the flowing water, and no erosion takes place. 
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When critical conditions are reached (point B in Fig. 4.47) the 

structure of the sediment bed suffers a rapid change as clusters 

of particles are removed exposing more area to the eroding flow. 

The new exposed sediment material is remoulded by the turbulent 

flow and as a result the shear strength of the sediment bed is 

highly reduced (point C in Fig. 4.47). It is this deficiency in 

shear strength that causes the sediment bed to be disintegrated. 

Well before reaching critical conditions the shear stress exerted 

on the bed (ti 
0) 

is larger than the critical shear stress (Y 
oc 

) of 

the loose sand (incorporated in the cohesive bed) by several 

orders of magnitude. It is to the (excess) shear stress 

(, ro -t) to which the sand particles are abruptly subjected to, 

once they are detached from the cohesive sediment bed. This is 

the effective shear stress that will move the sand particles once 

the erosion process is started. 

The sand particles are detached from the bed as the cohesive bond 

is lost. The erosion process takes place both in clusters of 

particles and loose particles that are detached from the bed. 

Because of the high (excess) shear stress Cr. -t oc 
) exerted on 

the bed during the critical conditions this process is very 

violent, as observed during the experiments. It was not possible 

to achieve equilibrium conditions of sediment transport. Any 

attempt to supply the necessary amount of sediment at the 

upstream end of the test section, made no difference. The 

sediment was carried in suspension and the sediment bed continued 

to be eroded modifying the geometry of the channel cross-section. 

207 



Therefore in order to maintain a stable sediment bed (i. e. the 

original flume configuration) it was decided to carry out 

transport experiment over fixed false beds. Thus the influence of 

cohesion on sediment transport could be assessed. 

4.3.4 Transport Experiments Over Fixed Beds 

4.3.4.1 Selection of Parameters 

From the previous dimensional analysis (see Sec. 4.3.3.1) several 

dimensionless parameters (Re*, 1/! p , Yo/P , 0) were found to be 

related to the transport of sediment over loose beds. 

Additionally three more parameters are relevant: 

a) The relative particle sand size, d5o/R , which now becomes 

important as the movement of individual particles is relevant to 

the limit deposition criterion. 

b) The sediment volumetric concentration, Cv= gs' b/(p"gQ) where g' " 
is the transport rate of sediment in weight per unit time per 

unit width, Q is the water discharge, p is the density of the 

sediments, b is the channel bed width, and g the acceleration due 

to gravity. 

c) Darcy-Weisbach friction coefficient, X. of the flow with 

sediment. Therefore the functional relation can be written as: 

F 
CRe*, 1 

p°. io, 
d50 

, Cr, 7lsl 0 (4.32) 
J 
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4.3.4.2 Non-cohesive Sediment Experiments 

The limit deposition criterion as discussed earlier (see 

Sec. 2.1.2-b) was employed in these experiments. For a given 

uniform flow sediment was fed to the flow in increasing amounts 

until the point of deposition was reached (see Sec. 3.6.1.2). 

Because of the limited time available, only one bed thickness 

(E = 40.8 mm) in the 154 mm diameter flume was used in the 

experiments. Three sand sizes were tested (0.9,2.0 and 5.7 mm). 

Two sets of experiments were carried out, one with smooth bed 

(see Table 4.18), and the other with artificially roughened bed 

(see Table 4.19). 

In spite of the small size of the data, clear trends can be 

observed in Fig. 4.44. The transport parameter ($) is plotted 

against the flow intensity parameter (ip). A power fitting of the 

form 

- pp-a0b (4.33) 

was attempted, where a and b are constant to be obtained from 

the data. In Table 4.20 the values of the constants for each sand 

size are shown. 

In Fig. 4.48 it can be seen that many observed values fall above 

Graf-Acaroglu's curve (Eq. 2.15) derived from open channels, 

closed conduits and field data. This suggests that the transport 

capacity of flows in channels of circular cross-section (limit 

deposition condition) with a sediment bed is greater than that of 
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similar flows in alluvial channels. This can be explained by the 

difference in bed roughness. In rigid bed channels bed roughness 

is uniform and smaller compared with alluvial beds where bedforms 

also occur. The existence of secondary currents (turbulence) due 

to the channel shape also encourage sediment transport by helping 

to keep the particles in motion. 

In Fig. 4.48 it is apparent that for a given level of shear 

stress, on smooth bed experiments, there is more transport for 

the larger sand. This is due to the greater exposed area of the 

larger particles, which are subjected to the drag forces of the 

flow. The curves corresponding to 0.9 mm sand for rough and 

smooth beds (Fig. 4.48) show a variation in slope, and a decrease 

in transport rate for increasing bed roughness. 

A multi-regression analysis (see Fig. 4.49) was performed with 

the data. The entrainment parameter (11ip) was expressed in terms 

of the volumetric concentration (CV), relative sand size (dso/R) 

and the friction coefficient (), 
s 
). Using the mean values (mean 

shear stress) the equation representing the phenomena is: 

Zd1.32 
°=3.42 C, 0.66 (R -1.32 

(1')0.78 (4.34) 
P(Ss 1)ßd50 

J 

with a correlation coefficient r2 = 0.978 (see Fig. 4.49-a). 
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Using the separated values (computed bed shear stress) the 

equation representing the phenomena becomes: 

Zd so -1.27 1_b1.60 C o. 64 rt 
(ý )o. 62 (4.35) 

ýb P(S: - 1)gdso Rb J ob 

with a correlation coefficient r2 = 0.977 (see Fig. 4.49-b). In 

order to consider the effects of channel shape the parameter 

(Yo/P) is incorporated in the analysis and equations 4.34 and 

4.35 become: 

ý0 
= 1. o1C 0.65 

d511)- 
1.3ý(ý )0.58 

Yo -o' le 
(4.36) 

v(R$) P(S. - Ugdso 

with a correlation coefficient r2 = 0.979, and 

b'0.260 0.63 
d50 '1 . 32(ý 

, 0.35 
Y 0.4 

(4.37) 

_v(RJsbCP, P(ss 1)ödso b 

with a correlation coefficient r2 = 0.983 respectively. The 

inclusion of the parameter (Yo/P) slightly improves the 

correlation. The channel shape influences sediment transport over 

fixed beds in channels of circular cross-section. 
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FIGURE 4.49: SEDIMENT TRANSPORT OVER FIXED BEDS 
Limit Deposition Condition - 154mm diameter flume 
with fixed sediment bed (E=40.8mm). 
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4.3.4.3 Cohesive Sediment Experiments 

Cohesive sediment transport experiments over fixed smooth beds 

were carried out as explained in Sec. 3.6.2.2. The rigid bed 

would represent a consolidated sewer sediment bed, Type B 

sediment (Crabtree 1988). 

The limiting deposition criterion was used in the experiments in 

a similar manner to that explained in the previous section 

(Sec. 4.3.4.2). Only the 154 mm diameter flume was used in these 

experiments. The smooth false bed (E 40.8 mm) was made of uPVC 

sheets. Two different cohesive sediment mixtures were prepared 

using sand size 0.9 mm (80% by weight) and Laponite clay gel 

(20%) at concentration of 24 and 30 g/l respectively. The results 

of these experiments are summarised in Tables 4.21 and 4.22. 

The transport parameter (, 0) is plotted against the flow intensity 

parameter (gyp) in Fig. 4.50. A power curve was fitted to the data 

(using mean values) to obtain: 

VP = 4.63 "-0.332 (4.38) 

with a correlation coefficient r2 - 0.939. For separated bed 

values (computed bed shear stress) the following equation 

(see Fig. 4.50-b) is obtained: 

IF - 4.15 it' 
0 . 322 (4.39) 

with a correlation coefficient r2= 0.882. The coefficients 

obtained for equations 4.38 and 4.39 are very similar to those of 

equation Eq. 4.31 (see Table 4.20) for non-cohesive sediment 
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transport over fixed beds. This suggests that cohesive sediment, 

once in motion, behaves like non-cohesive sediment. 

Shields' function (1/W) was expressed in terms of the volumetric 

concentration (CV), relative sand size (d50/R) and the friction 

coefficient (A 
s 
). Using the mean values (mean shear stresses) a 

multi-regression was performed and the best fit equation 

representing the phenomena was found (see Fig. 4.51-a) to be: 

V 
coefficient (A ). Using the mean values (mean shear stresses) a 

multi-regression was performed and the best fit equation 

C(d -0.34 100.39 s0 0.34 
= 0.17 CI (a )_ (4.40) 

w 
P(S0 1)gdso lVR 

with a correlation coefficient r2 = 0.913. Using the separated 

values (see Fig. 4.51-b) the equation obtained was: 

)-o. 41 (4.41) 1=b=0.96C 0.46 
d (Rb 501 (1 

sb 
P(Ss_ 1)gdso J 

with a correlation coefficient r2 = 0.953. To include the effects 

of channel shape on sediment transport the parameter (Yo/P) is 

incorporated in the analysis and equations 4.40 and 4.41 become: 

d 0.29 Y 0.57 
°=2.70Cýo. 3s( Sol (x')"0.43( p) (4.41) 

P(Ss- 1)8dso 
lJJ 

with a correlation coefficient r2 = 0.914, and 

Z -0.82 
Y -0.07 b-1.15 Co0.46( 

£sol 
(1)-o. 41(p) (4.42) 

p(S 1)gdso 
lbJ 

with a correlation coefficient r2 = 0.953 respectively. 
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FIGURE 4.50: SEDIMENT TRANSPORT OVER FIXED SMOOTH BED 
Einstein bedload dia ram - Limit Deposition Condition 
154mm dia. flume (E=40.8mm) 20x clay gel, 80% sand (0.9mm) 
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FIGURE 4.51: SEDIMENT TRANSPORT OVER FIXED BEDS - ENTRAINMENT 
FUNCTION FOR LIMIT DEPOSITION CONDITION (Cohesive sediments) 
154mm dia. flume (E=40.8mm), 20% clay gel- 80% sand (d50=0.9mm) 
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4.3.4.4 Comparison of the Results 

a) Einstein Bedload Diagram 

The experimental results of the transport experiments (cohesive 

and non-cohesive sediments on loose beds and fixed beds) are 

shown in 40 b 
Vs. 1Pb plots (transport parameter Vs. flow intensity 

parameter) in figures 4.52 to 4.55. 

On transport experiments over fixed beds the limit deposition 

criterion was employed. Figure 4.52 illustrates the influence of 

particle size on sediment transport over fixed beds. The limit 

deposition condition does not allow any deposition to occur in 

the pipe. Thus, the particles are in continuous motion (rolling 

and sliding) on the bed. The drag force exerted by the flowing 

water on each particle is proportional to the particle size (d) 

and to the relative local velocity (ub) of the flow. Obviously 

for larger particles there is a higher local velocity and a 

larger exposed area, and this results in greater transport 

(see Fig. 4.52). 

On rough beds part of the flow energy is spent in overcoming the 

friction between the particles and the rough bed. In alluvial 

channels the bed also has bedforms, which reduces the available 

energy even more. For this reason sediment transport over fixed 

smooth beds is higher than in the case of alluvial (Einstein 

curve) channels (see Fig. 4.52). 
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FIGURE 4.52: TRANSPORT EXPERIMENTS OVER FIXED BEDS 
LIMIT DEPOSITION CONDITION - 154mm diameter flume 
smooth bed (E=40.8mm) non-cohesive sediments 
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FIGURE 4.53: TRANSPORT EXPERIMENTS OVER FIXED BEDS 
LIMIT DEPOSITION CONDITION - 154mm diameter flume 
smooth bed (E-40.8mm) - sand (d3a=0.9mm) + clay gel 
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The influence of cohesion on sediment transport is not very 

noticeable, although in Fig. 4.53 it can be observed that the 

cohesive additive slightly reduces the transport capacity of a 

flow. For the same values of wb , the" values of 4P b 
(sediment 

transport) is thus smaller in the case of sand with clay. 

In the transport experiments with cohesive sediments the cohesive 

additive was observed to be washed off from the particles as soon 

as the sediment entered the flow. The sediment was dispersed by 

the flowing water and it was observed to be transported as loose 

particles. However, the particles surface remains coated with 

cohesive additive for sometime after entering the flow, and this 

affected the transport (see Fig. 4.53). 

_ 
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s**"" non-cohesive (smooth bed) 
Xxxxx 20% clay gel c=24g/I 
, &&A AA 20% clay gel (c=30g/I 

QQOnn non-cohesive (rough bed) 
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to - 
Q. 

II 

10 
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.`» (smooth bed) 

.o 
0 Einstein's curve 

sand only ö 
(rough bed) 

sand + clay gel 

10-I 10'' 1 

fe = CVRn/(9(S. - t)d50 )1/2 

FIGURE 4.54: TRANSPORT EXPERIMENTS OVER FIXED BEDS 
LIMIT DEPOSITION CONDITION - 154mm diameter flume 
(E=40.8mm) - (sand dso=0.9mm) 
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FIGURE 4.55: TRANSPORT EXPERIMENTS GENERAL COMPARISON 

(sand dsa=0.9mm) - 154mm diameter flume (E=40. Smm) 
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I 

The results obtained with the two cohesive additives used did not 

show any clear difference in sediment transport for the two clay 

gel concentrations. As it can be observed (see Fig. 4.54) the 

effects of bed roughness are more noticeable than the effects of 

cohesive additives on the 0.9mm sand. 

Finally in Fig. 4.55 the results for the same sand (d50=0.9mm) 

and the same bed thickness (E=40.8mm) corresponding to loose bed 

experiments are plotted together with the fixed bed experimental 

results. The curve for loose bed shows lower levels of transport 

for higher values of the flow parameter (tp 
b 
). On the other hand, 

for the lower values of 1pb (i. e. higher shear stresses), the 0b 

values are larger (i. e. there is more sediment transport) than 

those corresponding to fixed beds. However, further experiments 

are needed to achieve more conclusive results. 
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b) Minimum Velocities Required for Limit Deposition Condition 

In order to compare the results with those of Mayerle (1988) and 

Kithsiri (1990) multiregression analysis using Mayerle's format 

was carried out. The following equations were obtained: 

VL 
= (ýv)o. 33 

d50 '0.59 
(ý 

s)_O. 
19 (4.43) 

S- 1)8d 
5.99 (D 

9r ` �( 

s so 

with r2=0.978, for mean values, and 

s 

-0.52 0.25 
VL 

7.53 D 0.15 0.32( 
d50 

( 
9r 

)- (C 
V) 

IR (). 
a)' 

(4.44) 
/(S- 1)gd50 ` 

with r2=0.981, for separated bed values. In Fig. 4.56 

equation 4.43 is plotted together with Mayerle's Eq. 2.46 for 

circular channels with no sediment bed. It is apparent that 

Eq. 2.46 (Mayerle, 1988) predicts higher velocities for 

non-deposition condition. This can be explained by the very 

narrow sediment width in Mayerle's experiments, as more velocity 

is required to avoid any deposition in the invert of the pipe. 

However, Mayerle's equation for rectangular channels (Eq. 2.51) 

shows a better agreement with the data (see Fig. 4.57). This means 

that the presence of a sediment bed on the pipe invert makes the 

flow behave like rectangular channel flow. Obviously this is 

dependent on flow depths (shape effects), as for flows above half 

full a different behaviour occurs as seen in Sec. 4.3.3.2. 

Similar results are obtained when using Eq. 2.54 (Kithsiri, 1990) 

for rectangular flume (see Fig. 4.58). 
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FIGURE 4.56: COMPARISON WITH MAYERLE'S EQ. FOR CIRC. CHANNELS 
Transport Experiments Over Fixed Beds in Channels of circular 
Cross-section (D=154mm) with sediment bed (E=40.8mm) 
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FIGURE 4.57: COMPARISON WITH MAYERLE'S EQ. FOR RECT. CHANNELS 
Transport Experiments Over Fixed Beds in Channels of circular Cross-section (D-154mm) with sediment bed (E=40.8mm) 
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FIGURE 4.58: COMPARISON WITH KITHSIRI'S EQ. FOR RECT. CHANNELS 
Transport Experiments Over Fixed Beds in Channels of circular 
Cross-section (D=154mm) with sediment bed (E=40.8mm) 

c) Minimum Shear Stress Required for Limit Deposition Condition 

In order to apply the minimum shear stress criterion to sewer 

design a multiregression was performed with the data, using 

Kithsiri's format, and the following equation was obtained: 

(ß'b)0.5 (445) 
ýb 

6.42 (D )-02s(C )0.64 
d 

p(S1)gdso 

: i_103 

9r VC 
with r2-0.982, where tib is the separated bed shear stress, p is 

the water density, S is the relative density of the sediment, g 
" 

is the acceleration due to gravity, d 
so 

is the mean particle 

size, D 
gr 

is the dimensionless grain size, CV is the volumetric 

224 



sediment concentration, Rb is the hydraulic radius related to the 

bed only, and abs is the separated bed friction factor with 

sediment. In Fig. 4.59 Mayerle's data, as analysed by Kithsirt 

(1990) and represented by Eq. 2.59 is plotted together with the 

author's data for comparison. It can be observed that Mayerle 

(1988) predicts higher values of minimum shear stress for limit 

deposition condition (on average a 29% higher). The same thing 

can be observed when comparing with Kithsiri's Eq. 2.56 for 

rectangular channels (see Fig. 4.60). 

0.20 Tb/P(5. -1)9dso - 6.42(D, )-0*32(G, )0*64(Re/d50)1.03(x,. )o. a 

(r2=0.982) 0 
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o 

(Eq. 4.45) 
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FIGURE 4.59: NON-COHESIVE SEDIMENTS TRANSPORT OVER FIXED BEDS 
LIMIT DEPOSITION CONDITION (154mm diameter flume Ea40.8mm) 
Comparison with Mayerle's results 

The above observations can be explained by the shear stress 

distribution. In case of smooth circular channels (with sediment 

bed separated bed) shear stresses were found to be 50 to 100% 

higher than mean shear stresses. In case of rectangular channels 

with smooth walls the separated bed shear stresses were higher 

than mean shear stress by no more than 20% (Kithsiri, 1990). 
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FIGURE 4.60: NON-COHESIVE SEDIMENTS TRANSPORT OVER FIXED BEDS 
LIMIT DEPOSITION CONDITION (154mm diameter flume E=40.8mm) 
Comparison with Kithsiri's results 
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TABLE 4.1: FULL PIPE FLOW ROUGHNESS EXPERIMENTS 

(NO SEDIMENT BED) 

154 mm diameter flume (smooth boundary) 

Q 

(1/s) 

V 

(m/s) 

T 

C 

RQ Sr lý ks 

(mm) 

1 3.51 0.1884 20.1 2.86E+04 0.000297 0.025251 0.0593 
2 6.58 0.3533 19.9 5.34E+04 0.000841 0.020358 -0.0280 
3 8.27 0.4440 19.2 6.60E+04 0.001410 0.021606 0.0666 
4 9.11 0.4891 19.4 7.31E+04 0.001534 0.019367 -0.0073 
5 11.87 0.6373 19.0 9.43E+04 0.002548 0.018952 0.0144 
6 11.91 0.6394 19.0 9.46E+04 0.002895 0.021383 0.1057 
7 13.41 0.7199 18.7 1.06E+05 0.003290 0.019174 0.0352 
8 13.87 0.7446 18.7 1.09E+05 0.003434 0.018704 0.0237 
9 15.99 0.8585 18.3 1.25E+05 0.003983 0.016324 -0.0253 

10 16.75 0.8993 17.4 1.28E+05 0.004750 0.017741 0.0136 
11 17.51 0.9401 18.8 1.38E+05 0.005096 0.017418 0.0089 
12 18.13 0.9733 18.7 1.43E+05 0.005408 0.017241 0.0073 
13 20.12 1.0802 17.9 1.56E+05 0.006581 0.017035 0.0103 
14 20.95 1.1247 18.5 1.64E+05 0.006912 0.016503 0.0011 
15 21.03 1.1290 18.5 1.65E+05 0.007348 0.017410 0.0227 
16 21.49 1.1537 18.0 1.67E+05 0.007595 0.017234 0.0198 
17 21.66 1.1629 19.5 1.74E+05 0.007669 0.017130 0.0178 
18 23.71 1.2729 18.5 1.86E+05 0.008808 0.016417 0.0076 
19 23.85 1.2804 18.3 1.86E+05 0.008931 0.016453 0.0087 
20 25.13 1.3492 18.9 1.99E+05 0.010045 0.016667 0.0166 
21 25.59 1.3738 18.1 1.99E+05 0.009302 0.014885 -0.0166 
22 26.77 1.4372 19.0 2.13E+05 0.009698 0.014181 -0.0247 
23 27.24 1.4624 18.4 2.13E+05 0.010094 0.014255 -0.0226 
24 28.20 1.5140 18.6 2.22E+05 0.011875 0.015648 0.0024 
25 28.87 1.5499 18.6 2.27E+05 0.011826 0.014868 -0.0098 
26 30.95 1.6616 17.5 2.37E+05 0.013904 0.015210 -0.0005 
27 34.07 1.8291 17.7 2.62E+05 0.015280 0.013793 -0.0169 
28 36.44 1.9564 18.0 2.82E+05 0.018535 0.014627 -0.0021 
29 43.09 2.3134 18.2 3.36E+05 0.019654 0.011092 -0.0325 
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TABLE 4.2: OPEN CHANNEL FLOW ROUGHNESS EXPERIMENTS 

(NO SEDIMENT BED) 

154 mm dia. flume (smooth boundary) 

So Yo 

(MM) 
Q 

(1/5) 

Ra V 

(m/s) 

A k9 

(MM) 
n 

15 4 nm diame ter flu me 

1 0.004701 35.0 2.13 5.14E+04 0.669 0.01711 -0.0685 0.0077 
2 0.004503 42.0 3.29 7.34E+04 0.799 0.01344 -0.0886 0.0070 
3 0.004552 85.5 10.98 1.61E+05 1.034 0.01370 -0.0482 0.0078 
4 0.004552 106.5 14.40 1.82E+05 1.048 0.01478 -0.0244 0.0082 
5 0.005690 59.0 6.31 1.15E+05 0.961 0.01544 -0.0382 0.0079 
6 0.005591 81.0 10.65 1.59E+05 1.073 0.01515 -0.0247 0.0081 
7 0.005591 108.0 15.52 1.88E+05 1.112 0.01619 0.0083 0.0086 
8 0.004998 47.3 3.69 7.98E+04 0.761 0.01815 -0.0156 0.0083 
9 0.005047 59.8 5.82 1.10E+05 0.871 0.01682 -0.0176 0.0083 

10 0.005047 78.8 9.25 1.46E+05 0.965 0.01659 -0.0011 0.0085 
11 0.004998 93.3 12.07 1.70E+05 1.023 0.01609 -0.0015 0.0085 
12 0.003859 49.0 3.4 7.06E+04 0.667 0.01880 -0.0137 0.0085 
13 0.003835 72.3 6.7 1.09E+05 0.775 0.01850 0.0227 0.0089 
14 0.003859 88.5 9.4 1.34E+05 0.848 0.01762 0.0185 0.0088 
15 0.003859 113.0 13.7 1.62E+05 0.932 0.01612 -0.0046 0.0086 
16 0.002128 54.0 3.12 6.14E+04 0.536 0.01736 -0.0662 0.0083 
17 0.002350 71.8 5.6 9.35E+04 0.658 0.01563 -0.0623 0.0081 
18 0.002152 98.3 8.6 1.17E+05 0.689 0.01567 -0.0454 0.0084 
19 0.002152 121.3 11.9 1.37E+05 0.755 0.01385 -0.0688 0.0080 
20 0.002721 45.0 2.3 5.01E+04 0.510 0.02116 0.0079 0.0089 
21 0.002721 61.0 4.1 7.48E+04 0.603 0.01924 0.0031 0.0089 
22 0.002672 81.5 6.8 1.02E+05 0.681 0.01805 0.0038 0.0089 
23 0.002771 101.5 10.2 1.30E+05 0.781 0.01590 -0.0295 0.0085 

Avera ges -0.024 0.008 

JUL mm diame ter flume 

24 0.002000 44.7 2.9 4.86E+04 0.439 0.02257 0.05 0.0093 
25 0.001423 110.3 16.0 1.63E+05 0.676 0.01474 -0.05 0.0086 
26 0.000730 160.5 18.7 1.52E+05 0.484 0.01920 0.15 0.0102 
27 0.000406 252.7 27.0 1.55E+05 0.422 0.01643 0.00 0.0097 

Averages 0.038 0.009 
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TABLE 4.3: FULL PIPE FLOW ROUGHNESS EXPERIMENTS 

(WITH SEDIMENT BED) 

154 mm dia. flume (smooth wall, rough bed) 

Q T V S 71 
b 

k k 
b ý f s 9 

iu/s) C (m/s) (M) own) 

Bed thic kness 18.4 mm 
S id bed 0.53 mm 

1 14.32 17.4 0.8245 0.00568 0.02395 0.04583 0.24 4.73 
2 15.25 17.7 0.8780 0.00630 0.02345 0.04464 0.22 4.38 
3 17.17 18.1 0.9886 0.00779 0.02287 0.04391 0.20 4.23 
4 18.81 18.4 1.0830 0.00904 0.02211 0.04174 0.18 3.61 
5 20.51 18.8 1.1809 0.01066 0.02193 0.04224 0.17 3.81 
6 21.77 19.1 1.2534 0.01189 0.02170 0.04200 0.17 3.77 
7 22.85 19.4 1.3156 0.01299 0.02153 0.04187 0.16 3.76 
8 23.51 19.8 1.3536 0.01368 0.02141 0.04172 0.16 3.73 
9 24.13 20.0 1.3893 0.01420 0.02110 0.04062 0.15 3.41 

10 25.12 20.3 1.4463 0.01492 0.02046 0.03809 0.13 2.73 
11 26.24 20.3 1.5108 0.01647 0.02070 0.03983 0.14 3.22 

A verages 0.175 3.762 

Bed thic ks 12.46 mm 
Sand bed 0.53 mm 

12 11.85 19.0 0.6614 0.00364 0.02443 0.05069 0.26 6.85 
13 14.27 19.5 0.7965 0.00505 0.02335 0.04801 0.22 5.90 
14 16.40 20.0 0.9153 0.00625 0.02191 0.04270 0.16 4.06 
15 17.84 20.3 0.9957 0.00743 0.02198 0.04476 0.17 4.84 
16 19.34 20.5 1.0794 0.00909 0.02289 0.05156 0.22 7.79 
17 20.99 20.5 1.1715 0.01048 0.02241 0.05034 0.20 7.32 
18 23.02 20.5 1.2848 0.01135 0.02018 0.03930 0.12 3.21 
19 24.86 20.5 1.3875 0.01372 0.02091 0.04479 0.15 5.12 

Averages 0.186 5.634 

Bed thic kness 20.0 mm 
Sand bed 1.6 mm 

20 17.04 17.4 0.9904 0.00980 0.02846 0.06837 0.52 15.77 
21 19.40 17.7 1.1275 0.01197 0.02683 0.06292 0.43 12.77 
22 21.73 18.0 1.2630 0.01544 0.02757 0.06792 0.48 15.94 
23 23.57 18.4 1.3699 0.01786 0.02712 0.06692 0.45 15.46 
24 25.85 18.7 1.5024 0.02073 0.02617 0.06377 0.40 13.69 
25 27.59 18.9 1.6035 0.02360 0.02615 0.06450 0.40 14.23 
26 31.34 19.2 1.8215 0.02855 0.02451 0.05854 0.31 10.99 
27 32.78 19.4 1.9052 0.03147 0.02470 0.05990 0.32 11.79 
28 35.39 19.5 2.0569 0.03538 0.02382 0.05674 0.28 10.17 

Averages 0.400 13.424 
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TABLE 4.3: CONTINUATION 

Q T V S A A k k. 
' f b s ob 

(1/s) C (m/s) (mm) (nm) 

Bed thickness 60.3 mm 
Sand bed 0.53 mm 

29 7.18 20.5 0.6052 0.005195 0.03100 0.04883 0.51 3.48 
30 5.32 22.0 0.4484 0.003008 0.03270 0.05127 0.60 3.91 
31 3.67 20.5 0.3093 0.001385 0.03163 0.04521 0.47 2.48 

A verages 0.524 3.291 

Bed thic kness 40.8 an 
Sand bed 0.53 mm 

32 5.21 18.8 0.3550 0.001301 0.02623 0.03535 0.20 1.27 
33 7.46 19.0 0.5083 0.003053 0.03001 0.05016 0.50 4.60 
34 7.59 18.6 0.5172 0.002647 0.02514 0.03555 0.20 1.41 
35 13.08 19.7 0.8913 0.007694 0.02460 0.03860 0.23 2.09 

Averages 0.280 2.344 

Bed thic kness 40.8 mm 
Sand bed 0.00 mm 

36 6.84 18.1 0.4661 0.002013 0.02354 0.02969 0.10 0.63 
37 9.53 18.0 0.6494 0.003206 0.01931 0.02008 -0.01 0.04 
38 12.64 19.2 0.8613 0.005329 0.01825 0.01927 0.00 0.046 
39 16.12 19.0 1.0984 0.008876 0.01869 0.02224 0.03 0.194 

A verages 0.032 0.229 
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TABLE 4.6: TYPICAL SHEAR STRESS DISTRIBUTION 

MEASUREMENT (14-10-88a) 

a) FLOW CHARACTERISTICS 

Flurre Diameter (D )= 154.00 (mm) 
Sard size (d50)= 2.00 (mm) 

Bed Thickness (E = 18.40 (mm) (E/D-0.119) 

Effective Slope (S = 0.002350 

Discharge (Q = 5.59 (1/s) 

Normal Depth (Y )= 77.45 (mm) 
o 

(Y+E)/D = 0.62 
Mean Velocity (V) _ 
Mears Shear Stress (r) _ C 

Predicted Bed Shear- (, rb) _ 
CLrrent Meter : (No 1398-A) 

V=0.509611! + 5.3654 

0.512 (m/s) 

0.929 (N/m2) 

1.386 (N/m2) (separated) 

(48.5 <N <267 Hz) 

[cm/s] [Hz] 

b) VELOCITY PROFILE A: (Position: X=0 centreline) 

y 
(mm) 

N 
(Hz) 

u 
(m/s) 

umax-u 
(m/S) 

umax-u 
r'evr . 

-5.751. og(h 

7.5 76.64 0.444 0.1331 0.1338 4.18 
10.0 81.65 0.470 0.1075 0.1049 3.46 
12.0 86.14 0.493 0.0847 0.0865 3.01 
14.0 88.93 0.507 0.0705 0.0710 2.62 
18.0 93.69 0.531 0.0462 0.0457 1.99 
22.0 96.24 0.544 0.0332 0.0255 1.49 
30.0 100.96 0.568 0.0091 -0.0058 0.72 
40.0 102.75 0.577 0.0000 -0.0347 0.00 
50.0 99.31 0.560 0.0175 -0.0572 -0.56 
70.0 90.00 0.512 0.0650 -0.0911 -1.40 

Regression Output: 

Curve Gradient (Shew Velocity, u )=0.0403 (m/s) 
* 

Correlation Coef. (p2) = 0.9974 

)=1.626 (N/m) Measured Bed Shear Stress (r 
bm 
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TABLE 4.6: CONTINUATION 

c) VELOCITY PROFILE B: X=2 cm from centreline 

Y 
(mm) 

N 
(Hz) 

u 
(m/s) 

umax-U 
(m/s) 

Umax-u 
regr. 

-5.75Log(h ) 

7.5 74.99 0.436 0.1379 0.1395 4.18 
10.0 79.95 0.461 0.1126 0.1111 3.46 
12.0 83.64 0.480 0.0938 0.0931 3.01 
14.0 86.70 0.495 0.0782 0.0779 2.62 
18.0 91.59 0.520 0.0533 0.0531 1.99 
22.0 95.70 0.541 0.0323 0.0333 1.49 
30.0 100.85 0.568 0.0061 0.0027 0.72 
40.0 102.04 0.574 0.0000 -0.0257 0.00 
50.0 99.64 0.561 0.0122 -0.0477 -0.56 
70.0 86.08 0.492 0.0813 -0.0809 -1.40 

Regression Output: 

)=0.03951 (m/s) Curve Gradient (Shear Velocity, u * 
Correlation Coef. (p2) = 0.9991 

) 1.561 (N/m2) Measured Bed Shear- Stress (x 
bm 

d) VELOCITY PROFILE C: X=4 cm from centreline 

Y 
(mm) 

N 
(Hz) 

u 
(m/s) 

umax-U 
(m/s) 

Umax-u 
re9ý" - 

-5.75Log(h ) 

7.5 74.23 0.432 0.1140 0.1143 4.18 
10.0 78.39 0.453 0.0928 0.0914 3.46 
12.0 81.60 0.470 0.0764 0.0770 3.01 
14.0 83.96 0.482 0.0644 0.0647 2.62 
18.0 88.16 0.503 0.0430 0.0448 1.99 
22.0 90.63 0.515 0.0304 0.0289 1.49 
30.0 95.95 0.543 0.0033 0.0043 0.72 
40.0 96.60 0.546 0.0000 -0.0185 0.00 
50.0 94.30 0.534 0.0117 -0.0362 -0.56 
70.0 77.00 0.446 0.0999 -0.0629 -1.40 

Regression Output: 
Curve Gradient (Shear Velocity, u*) = 0.03176 (m/s) 

Correlation Coef. (p2) = 0.9983 

) 1.009 (N/m2) Measured Bed Shear Stress (% 
bm 
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TABLE 4.6: CONTINUATION 

e) VELOCITY PROFILE D: X=5 cm from centreline 

Y 
(mm) 

N 
(Hz) 

U 
(m/s) 

Umax-U 
(m/s) 

Umax-U 
regr. 

-5.75Log(- ) 

7.5 74.93 0.435 0.1019 0.1026 4.18 
10.0 78.75 0.455 0.0824 0.0826 3.46 
12.0 81.55 0.469 0.0682 0.0699 3.01 
14.0 82.78 0.475 0.0619 0.0592 2.62 
18.0 86.55 0.495 0.0427 0.0417 1.99 
22.0 89.38 0.509 0.0283 0.0277 1.49 
30.0 94.05 0.533 0.0045 0.0061 0.72 
40.0 94.93 0.537 0.0000 -0.0139 0.00 
50.0 92.53 0.525 0.0122 -0.0294 -0.56 
70.0 75.21 0.437 0.1005 -0.0529 -1.40 

Regression Output: 

)=0.01279 (m/s) Curve Gradient (Shear Velocity, u * 
Correlation Coef. (p2) = 0.9977 

)=0.777 (N/m2) Measured Bed Shear Stress (x 
bm 

236 



TABLE 4.7: SHEAR STRESS DETERMINATION 

(FULL PIPE FLOW) 

154 mm diameter flume (with sediment bed) 

Bed Pressure Discharge Shear Stress (N/m2) Trans 
Thick- Gradient (1/s) mean be d Pos. 
ness Predict. Measured (cm) 

E S Q d tb tbm X 
(mm) o 

1 12.5 0.001371 6.52 0.5029 1.1437 1.1670 0 
2 12.5 0.004062 12.23 1.4900 3.2644 3.4250 0 
3 12.5 0.006091 15.90 2.2343 4.4809 4.7580 0 
4 12.5 0.011836 22.80 4.3417 9.2219 12.9940 0 

5 18.4 0.006630 15.84 2.4339 4.7379 4.7540 0 
6 18.4 0.002070 8.38 0.7429 1.3477 1.8130 0 
7 18.4 0.000720 4.51 0.2573 0.4908 0.4730 0 
8 18.4 0.003660 11.39 1.3129 2.4721 3.1310 0 
9 18.4 0.001870 7.80 0.6706 1.2651 1.4570 0 

10 18.4 0.009890 19.72 3.5448 6.7865 9.2570 0 

11 18.4 0.006754 15.84 2.422 4.777 4.429 0 
12 18.4 0.006754 15.84 2.422 4.777 3.667 2 
13 18.4 0.006754 15.84 2.422 4.777 3.465 4 
14 18.4 0.006754 15.84 2.422 4.777 2.181 5 

15 40.8 0.001301 5.21 0.4131 0.5570 0.7340 0 
16 40.8 0.003053 7.46 0.9691 1.6191 1.5340 0 

17 60.3 0.005195 7.18 1.4193 2.2358 2.5130 0 

18 60.3 0.003008 5.32 0.8921 1.4716 1.8950 0 
19 60.3 0.003008 5.32 0.8921 1.4716 1.3940 2 
20 60.3 0.003008 5.32 0.8921 1.4716 1.5920 4 

21 60.3 0.001385 3.67 0.3783 0.5408 0.7610 0 
22 60.3 0.001385 3.67 0.3783 0.5408 0.5650 2 
23 60.3 0.001385 3.67 0.3783 0.5408 0.6060 4 
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TABLE 4.8: SHEAR STRESS COMPUTATIONS (OPEN CHANNEL FLOW 
154 mm diameter flume (with flat sediment e 

Bed Normal Effect. Flow Shear Stress (N/m2) Trans 
Thick- Depth Slope rate mean bed Pos. 
ness Predic. Measur. 

E Yo S Q r rbt bw 
x 

(M) (mm) (u/s) o (cm) 

1 60.3 55.0 0.001853 3.06 0.5629 0.6848 0.9540 0 
2 60.3 55.0 0.001853 3.06 0.5629 0.6848 0.8730 2 
3 60.3 55.0 0.001853 3.06 0.5629 0.6848 0.6280 4 

4 60.3 35.1 0.001685 1.53 0.4002 0.4622 0.4990 0 
5 60.3 35.1 0.001685 1.53 0.4002 0.4622 0.3720 2 
6 60.3 35.1 0.001685 1.53 0.4002 0.4622 0.3520 4 

7 60.3 55.6 0.002123 3.63 0.6489 0.7442 0.8730 0 
8 60.3 55.6 0.002123 3.63 0.6489 0.7442 0.7240 2 
9 60.3 55.6 0.002123 3.63 0.6489 0.7442 0.6870 4 

10 40.8 76.1 0.001704 5.07 0.6351 0.7666 0.8590 0 
11 40.8 35.3 0.002088 1.75 0.5102 0.5941 0.4610 0 
12 40.8 35.1 0.002377 2.28 0.5793 0.6063 0.6460 0 
13 40.8 73.9 0.001104 3.75 0.4078 0.5059 0.3760 0 
14 40.8 39.2 0.001104 1.53 0.2900 0.3313 0.1650 0 
15 40.8 35.4 0.001154 1.45 0.2825 0.3058 0.1830 0 

16 20.0 46.5 0.002851 2.53 0.8349 1.1895 1.0810 0 
17 20.0 51.7 0.002808 3.08 0.8806 1.2638 0.9020 0 
18 20.0 66.6 0.002806 4.65 1.0263 1.5521 1.8330 0 

19 20.0 80.8 0.003124 6.19 0.9620 1.3899 1.1980 0 
20 20.0 80.8 0.003124 6.19 0.9620 1.3899 1.2700 2 
21 20.0 80.8 0.003124 6.19 0.9620 1.3899 1.0750 4 

22 20.0 95.1 0.002867 8.02 1.1379 1.7432 2.1230 0 
23 20.0 95.1 0.002867 8.02 1.1379 1.7432 2.8570 2 
24 20.0 95.1 0.002867 8.02 1.1379 1.7432 3.1840 4 
25 20.0 95.1 0.002867 8.02 1.1379 1.7432 1.6900 5 

26 20.0 96.0 0.002830 7.97 1.2060 1.9571 2.2340 0 
27 20.0 52.1 0.002862 3.15 0.9023 1.2974 1.3840 0 
28 20.0 49.0 0.002243 2.47 0.6790 0.9652 0.7420 0 
29 20.0 64.9 0.002184 3.87 0.7877 0.9652 0.7420 0 
30 20.0 86.0 0.002250 5.90 0.9277 1.5115 1.3380 0 
31 18.4 67.2 0.001081 3.05 0.3972 0.5555 0.6210 0 
32 18.4 57.7 0.001607 3.02 0.5396 0.7316 0.9790 0 
33 18.4 60.8 0.001432 3.01 0.4961 0.6926 0.8410 0 

34 18.4 26.8 0.001520 0.76 0.2937 0.3632 0.3500 0 
35 18.4 26.8 0.001520 0.76 0.2934 0.3632 0.2990 3 
36 18.4 26.8 0.001520 0.76 0.2934 0.3632 0.0800 5 
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TABLE 4.9: TURBULENCE MEASUREMENT EXPERIMENTS 

FLOW CHARACTERISTICS - Open Channel Flow 

154 mm diameter flume (E = 40.8 mm) 

Series Slope Yo Yo+E Q V A A 
b (mm) 0 (1/s) (m/s) 

Rough Bed 
R1 0.002462 36.75 0.50 2.06 0.378 0.03463 0.04115 
R2 0.002378 74.10 0.75 5.50 0.502 0.02789 0.03724 
R3 0.001244 44.09 0.55 1.91 0.291 0.03348 0.03993 
R4 0.001312 67.31 0.70 3.64 0.363 0.02838 0.03556 
R5 0.003680 34.90 0.49 2.42 0.469 0.03249 0.03808 
R6 0.003626 78.81 0.78 7.30 0.631 0.02742 0.03813 

Smooth Bed 
S1 0.002466 36.58 0.50 2.15 0.397 0.03143 0.03628 
S2 0.002329 78.69 0.78 6.35 0.549 0.02321 0.02807 
S3 0.001499 36.96 0.50 1.73 0.316 0.03037 0.03393 
S4 0.001361 72.79 0.74 4.26 0.395 0.02561 0.03097 
S5 0.002195 35.49 0.50 2.08 0.396 0.02748 0.02998 
S6 0.002206 73.47 0.74 5.74 0.528 0.02333 0.02767 
S7 0.003507 34.81 0.49 2.57 0.499 0.02725 0.03021 
S8 0.003500 76.37 0.76 8.21 0.729 0.01963 0.02143 

Series Equiv. Sand Manning's Coef. Shear Stress (N/m2) 
RoLKJY*ss n 

(mm) 
Predict Measu- . . ks kab n nb b e. 

Rough Bed 
R1 0.48 1.28 0.01141 0.01280 0.6192 0.7358 1.158 
R2 0.32 1.70 0.01092 0.01324 0.8795 1.1737 1.347 
R3 0.40 1.25 0.01145 0.01288 0.3532 0.4213 0.414 
R4 0.24 1.20 0.01095 0.01273 0.4685 0.5867 0.576 
R5 0.37 0.95 0.01098 0.01221 0.8927 1.0462 1.333 
R6 0.34 2.00 0.01086 0.01353 1.3644 1.8968 1.974 

Smooth Bed 
Si 0.28 0.76 0.01086 0.01195 0.6181 0.7135 0.877 
S2 0.05 0.49 0.00999 0.01134 0.8759 1.0593 0.945 
S3 0.14 0.46 0.01069 0.01151 0.3784 0.4229 0.380 
S4 0.09 0.67 0.01045 0.01186 0.5002 0.6048 0.453 
S5 0.04 0.22 0.01012 0.01073 0.5387 0.5876 0.808 
S6 0.04 0.41 0.00998 0.01119 0.8133 0.9648 1.058 
S7 0.09 0.30 0.01006 0.01077 0.8490 0.9410 1.063 
S8 0.05 0.04 0.00917 0.00973 1.3058 1.4257 1.522 
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TABLE 4.10: TURBULENCE MEASUREMENT EXPERIMENTS 

FLOW CHARACTERISTICS - Full Pipe Flow 

154 mm diameter flume (E - 40.8 mm) 

Series Pressure 
Gradient 

Q 
(I/s) 

V 
(m/s) 

7lb ks 

qmm) 

Rough 
RF1 0.007694 13.08 0.891 0.02925 0.05704 0.45 
RF2 0.002647 7.59 0.517 0.02989 0.05412 0.40 

Smooth 
SF1 0.002013 6.84 0.466 0.02800 0.04675 0.25 
SF2 0.005329 12.64 0.861 0.02170 0.03156 0.04 
SF3 0.003206 9.53 0.649 0.02296 0.03325 0.04 
SF4 0.008876 16.12 1.098 0.01869 0.01909 0.01 

Series k Maming's Coed. Shear- Stress (N/m2) 
9b Mean Bed 

(mm) 
Predict Measur . 

n n tb t 
D 

Rough 
RF1 8.88 0.01000 0.01751 2.4432 5.6642 3.8590 
RF2 7.17 0.01011 0.01685 0.8406 1.8096 1.8649 

Smooth 
SF1 4.46 0.00978 0.01545 0.6395 1.2695 0.7739 
SF2 1.15 0.08610 0.01241 1.6921 2.9262 2.1068 
SF3 1.35 0.00886 0.01273 1.0181 1.7530 1.4745 
SF4 0.02 0.00870 0.00880 2.8184 2.8798 3.5132 
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TABLE 4.11: TYPICAL TURBULENCE INTENSITIES COMPUTATIONS 

a) Flow Characteristics (R6) 

Flume Diameter (D) 
Bed Thickness (E) 
Artificial Roughness 
Flume Slope (So) 
Discharge (Q) 
Normal Depth (Yo) 
Relative Depth (Yo+E)/D 
Mean Velocity (V) 
Temperature (T) 
Mean Shear Stress (to) 
Predicted Bed Shear Stress 

154.00 mm 
40.80 mm 

0.50 mm 
0.003626 
7.30 1/s 

78.81 mm 
0.78 
0.631 m/s 

18.5'C 
1.364 (N/m2) 

(Zb) 1.897 (N/m) 2 

b) Velocity and Turbulence Data 

(1) 

Y 
(nm) 

(2) 

u 
(m/s) 

(3) 

fib 
(m/s) 

( 

TI 
(%) 

(5) 

U-Um ax 
(m/s) 

6) 

Log(Y/h) 
x(-5.75) 

3.0 0.551 0.066 11.98 0.225 7.4809 
6.0 0.570 0.074 12.98 0.206 5.7500 

10.0 0.627 0.066 10.53 0.149 4.4744 
21.0 0.696 0.062 8.91 0.080 2.6216 
30.0 0.762 0.038 4.99 0.014 1.7309 
40.0 0.776 0.029 3.74 0.000 1.0125 
50.0 0.766 0.029 3.79 0.010 0.4553 
66.0 0.737 0.036 4.88 0.039 -0.2380 
76.0 0.733 0.031 4.23 0.043 -0.5903 

To obtain the shear velocity a regression analysis is 
performed between columns 5 and 6. 

Reg-esion output: 

Constant -0.049193 
Std Err of Y Est 0.0110513 
R Squared 0.9881474 
No. of Observations 5 
Degrees of Freecbm 3 
X Coefficient(s) 0.0445794 
Std Err of Coef. 0.0028188 

Shear velocity 
u* = 0.044579 (m/s) 

Bed Sheer Stress 
2 tb= 1.9873 (N/m) 
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TABLE 4.12: INITIATION OF EROSION EXPERIMENTS 

(NON-COHESIVE SEDIMENT) 

154 mm diameter flume E= 18.4 - 20 mm 

dso 

(inn) 
So To 

(N/m2) 
Tb 

(N/m2) 

Re* Re*b 1T 1Tb 

a) Unifar m size sand 

1 0.50 0.000938 0.16 0.21 5.6 6.4 0.02003 0.02636 
2 0.50 0.001201 0.14 0.16 5.4 5.7 0.01825 0.02079 
3 0.50 0.002074 0.14 0.15 5.3 5.5 0.01812 0.01901 

4 0.90 0.001299 0.43 0.66 16.7 20.6 0.03058 0.04694 
5 0.90 0.001963 0.38 0.54 15.7 18.7 0.02703 0.03841 
6 0.90 0.002434 0.44 0.59 16.9 19.5 0.03129 0.04196 

7 1.44 0.001981 0.43 0.55 26.7 30.2 0.01964 0.02513 
8 1.44 0.003398 0.41 0.53 26.0 29.6 0.01873 0.02421 

9 1.60 0.001441 0.53 0.82 32.9 40.9 0.02108 0.03262 
10 1.60 0.002241 0.50 0.71 31.9 38.1 0.01989 0.02824 
11 1.60 0.002802 0.51 0.68 32.1 37.3 0.02009 0.02705 

12 2.00 0.001608 0.62 1.10 44.5 59.2 0.02098 0.03721 
13 2.00 0.001855 0.55 0.73 41.8 48.2 0.01861 0.02470 
14 2.00 0.002660 0.74 1.22 48.6 62.4 0.02504 0.04127 
15 2.00 0.003358 0.57 0.75 42.7 49.0 0.01929 0.02538 
16 2.00 0.003486 0.75 1.11 48.9 59.5 0.02537 0.03755 

17 2.56 0.001317 0.85 1.45 66.6 87.0 0.02187 0.03731 
18 2.56 0.002624 1.06 1.84 74.3 98.0 0.02717 0.04734 
19 2.56 0.003243 1.10 1.92 75.8 100.2 0.02830 0.04940 
20 2.56 0.003872 1.27 2.26 81.5 108.7 0.03268 0.05815 

21 2.90 0.001805 0.84 1.30 75.0 93.4 0.01908 0.02953 
22 2.90 0.002952 0.98 1.48 81.1 99.6 0.02226 0.03362 
23 2.90 0.003962 0.90 1.25 77.7 91.5 0.02044 0.02839 

24 4.10 0.001840 1.23 2.39 128.3 179.0 0.02030 0.03945 
25 4.10 0.002953 1.37 2.23 135.6 172.8 0.02261 0.03681 
26 4.10 0.003762 1.50 2.82 141.8 194.4 0.02522 0.04742 
27 4.10 0.003937 1.26 1.82 130.1 156.2 0.02080 0.03004 
28 4.10 0.004483 1.60 2.95 146.4 198.8 0.02690 0.04961 

b) Mi xed si ze sand 

29 0.90 0.001348 0.53 0.71 20.6 23.9 0.03840 0.05120 
30 1.44 0.001746 0.56 0.77 32.4 37.9 0.04050 0.05510 
31 2.00 0.001793 0.58 0.81 48.1 56.7 0.04190 0.05840 
32 2.90 0.002712 0.75 1.04 75.0 88.7 0.05410 0.07520 
33 4.10 0.002712 0.83 1.23 111.6 135.6 0.05990 0.08840 
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TABLE 4.13: INITIATION OF EROSION EXPERIMENTS 

(SYNTHETIC SEWER SEDIMENT) 

(Laponite Clay-Sand-Water Mixtures) 

Laponite clay gel concentration c= 24 g/1 
154 mm diameter flume E= 18.4 mm (smooth bed) 

Sari! Clay Sand Density Cri t . Shear Stress 
size gel prop. p t 01 

i 
02 

(mm) x % (K9/m3) (N/m2) (N/m2) 

0 100 1618 0.120 0.120 
20 80 1907 0.940 1.233 
25 75 1848 2.555 3.522 

0.36 30 70 1814 3.247 3.513 
35 65 1797 4.044 4.844 
40 60 1757 5.243 5.456 
60 40 1345 2.778 2.945 

0 100 1648 0.160 0.160 
20 80 1920 0.851 0.976 

0.53 30 70 1750 3.300 3.956 
40 60 1618 3.814 3.921 

0 100 1630 0.400 0.400 
15 85 1911 0.408 0.656 

0.89 20 80 1932 1.659 2.599 
30 70 1760 2.723 3.513 
40 60 1603 2.253 2.856 
60 40 1352 1.721 2.359 

0 100 1570 0.430 0.430 
15 85 1816 1.008 1.437 

1.44 20 80 1567 1.591 1.987 
40 60 1607 2.365 2.588 
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TABLE 4.14: INITIATION OF EROSION EXPERIMENTS 

(SYNTHETIC SEWER SEDIMENT) 
(Laponite Clay-Sand-Water Mixtures) 
Sand size 600-1180 um (0.89 mm) 
154 mm diameter flume E= 18.4 mm (smooth bed) 

Clay Clay gel Sand Density Crit. Shear Stress 
conc. prop. prop. P t 01 t 

02 
(0/1) % (wt) t (wt) (Ko/m3) (N/r2) (N/m2) 

0 100 1630 0.245 0.245 
15 85 1911 0.408 0.656 
20 80 1932 2.111 2.599 

24 30 70 1768 2.723 3.513 
40 60 1603 2.253 2.856 
60 40 1352 1.721 2.359 

0 100 1630 0.245 0.245 
20 80 1910 2.033 2.706 

27 30 70 1770 5.178 5.403 
40 60 1611 4.693 5.207 
50 50 1467 3.520 4.194 
60 40 1377 2.186 2.910 

0 100 1630 0.245 0.245 
20 80 1935 1.991 2.910 

30 30 70 1771 4.799 5.266 
35 65 1658 4.592 5.051 
40 60 1585 4.551 5.039 
50 50 1460 2.895 3.335 

0 100 1630 0.245 0.245 
20 80 1916 2.092 2.830 

33 30 70 1766 5.766 6.032 
40 60 1610 5.250 5.599 
50 50 1418 4.702 5.136 

36 30 70 1738 5.773 6.697 

40 30 70 1755 6.325 6.955 

246 



TABLE 4.15: INITIATION OF EROSION EXPERIMENTS 

(SYNTHETIC SEWER SEDIMENT) 

(Laponite Clay-Sand-Water Mixtures) 

Sand size 90-150 um (0.12 mm) 
154 mm diameter flume E= 18.4 mm (smooth bed) 

Clay Clay gel Sand Density Crit. Shear Stress 
conc. prop. prop. P =01 =02 

(u/1) % (wt) % (wt) (Kv/m3) Z (N/m2) (N/m ) 

18 85.5 14.5 1103 1.082 1.428 
74.5 25.5 1191 1.428 1.740 
62.2 37.8 1312 1.485 1.747 
53.0 47.0 1418 2.097 2.541 
47.0 53.0 1480 2.194 2.463 
40.0 60.0 1688 1.959 2.225 

22 85.5 14.5 1121 1.976 2.317 
80.5 19.5 1157 2.028 2.544 
74.5 25.5 1209 2.156 - 
62.2 37.8 1308 2.714 3.568 
53.0 47.0 1408 3.053 3.916 
40.0 60.0 1606 3.300 3.699 
31.6 68.4 1744 3.146 3.486 

25 85.5 14.5 1112 2.159 2.494 
80.5 19.5 - 2.235 2.787 
74.5 25.5 1209 2.289 2.720 
62.2 37.8 1375 2.544 3.092 
50.0 50.0 1449 4.086 4.551 
40.0 60.0 1687 5.305 5.970 
30.0 70.0 1752 3.046 3.623 

247 



TABLE 4.16: SUMMARY OF SYNTHETIC SEWER SEDIMENT EXPERIMENTS 

Laponite clay-sand-water mixtures 

154 mm diameter flume E= 18.4 mm (smooth bed) 

sand clay clay Sand Density Critical Shear Stress 
size conc. prop. prop. 

d c p poi toe 
so 

(mm) (v/l) * (wt) % (wt) (Ka/m3) (N/m2) (N/m Z) 

0.12 18 53 47 1418 2.097 2.541 
22 40 60 1606 3.300 3.699 

(type C) 22 40 60 1581 (1.8) (2.4) 
25 40 60 1687 5.305 5.970 

(type C) 25 40 60 1579 (3.6) (4.6) 

0.89 24 30 70 1768 2.723 3.513 
27 30 70 1770 5.178 5.403 
30 30 70 1771 4.799 5.266 
33 30 70 1766 5.766 6.032 
36 30 70 1738 5.773 6.697 
40 30 70 1755 6.325 6.955 

1.44 30 30 70 1783 4.826 5.501 
33 30 70 1795 5.415 5.842 
36 30 70 1773 5.798 6.476 
40 30 70 1777 6.667 7.327 

2.03 30 20 80 1804 4.059 4.476 
(type A) 30 20 80 1943 (4.9) (5.9) 

33 20 80 1822 4.553 5.787 
36 20 80 1850 4.879 6.050 

(type A) 36 20 80 1967 (6.4) (8.9) 
40 20 80 1805 5.211 7.567 

2.86 33 20 80 1805 4.132 5.203 
36 20 80 1805 4.521 5.548 
40 20 80 1821 4.707 7.726 

NOTE: T01 = first spots of erosion 
toe " bed collapse 
Only optimum sand clay gel ratio values shown. 
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TABLE 4.17: TRANSPORT EXPERIMENTS OVER LOOSE BED 

(NON-COHESIVE SEDIMENT) 

154 mm diameter flume with sediment bed 

E d5o Sa O y z q Bed Formation 
o 2 ý 

(mm) (mm) (1/s) (mm) (N/m ) (o/min (Y, L) 

16.3 0.53 0.001190 0.92 30.3 0.251 0.03 no 
0.001129 1.68 43.4 0.311 1.33 no 
0.000969 2.75 62.2 0.340 2.55 no 
0.001093 2.75 60.0 0.375 5.48 no 
0.001315 4.70 84.8 0.541 20.30 dune (8.7mm, 0.3m) 
0.001697 5.65 92.0 0.720 55.57 dune (12.2mm, 0.4m) 

0.89 0.001550 1.02 32.4 0.344 0.00 no 
0.001449 1.88 46.6 0.420 0.69 no 
0.001530 3.23 62.6 0.538 10.32 no 
0.001561 6.44 100.1 0.678 38.21 dune (7.1mm, 0.3m) 

1.7 0.002984 1.28 30.2 0.629 0.01 no 
0.003081 2.62 45.4 0.877 16.69 no 
0.002043 7.65 102.1 0.891 30.35 wave (10mm, 1.7m) 
0.003055 3.94 58.3 1.029 78.50 not measured 

2.9 0.003731 1.41 32.9 0.832 0.00 no 
0.003096 4.14 60.4 1.065 0.23 no 
0.003073 8.55 95.7 1.320 35.87 no 
0.003777 3.02 49.0 1.134 0.36 no 
0.003855 4.51 60.2 1.324 8.18 not measured 

40.8 0.53 0.001023 1.50 35.9 0.253 0.77 no 
0.001121 1.47 35.7 0.276 0.84 no 
0.001105 3.81 73.1 0.407 10.67 dune (6.8mm, 0.62m) 
0.001814 1.95 39.7 0.481 16.35 dune (4.5mm, 0.30m) 
0.001581 4.66 72.8 0.581 75.59 dune (7.3mm, 0.26m) 

0.89 0.000945 1.25 36.4 0.236 0.00 no 
0.001453 1.49 35.2 0.355 0.08 no 
0.001686 4.61 76.5 0.630 26.32 no 
0.002845 2.21 39.0 0.746 30.99 wave (4.0 mm, 0.3 m) 
0.002579 5.66 80.7 0.976 108.41 dune (11.3mm, 0.64m) 
0.003199 5.47 76.2 1.193 111.39 dune (9.8mm, 0.31m) 

60.3 0.53 0.001902 0.72 19.2 0.292 0.02 no 
0.001762 1.05 23.9 0.319 2.63 no 
0.001725 1.64 33.6 0.399 17.53 dune (4.2mm, 0.15m) 
0.001972 2.39 43.4 0.533 33.36 dune (4.0mm, 0.12m) 

0.89 0.001779 1.54 33.0 0.406 0.98 no 
0.001694 1.61 35.3 0.404 1.41 no 
0.001819 2.32 43.2 0.491 16.01 no 
0.001720 3.69 0 61 0.544 37.41 dune (7.5mm, 0.88m) 
0.002293 2.56 

. 
44.6 0.630 28.96 dune (7.0mm, 1.09m) 
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TABLE 4.18: TRANSPORT EXPERIMENTS OVER FIXED BED 

NO DEPOSITION CONDITION NON-COHESIVE SEDIMENT 

154 mm diameter flume E= 18.4 mm (smooth bed) 

so Yo 

(mm) 

O 

(1/s) 

Yo+E 
D 

Yo 

(N/m2) 

d50 

(mm) 

Qý 

(g/s) 

Cv 

1 0.003526 76.6 8.04 0.76 1.3159 0.9 5.70 2.73E-04 
2 0.003440 35.5 2.75 0.56 0.8444 0.9 1.50 2.10E-04 
3 0.001555 76.2 4.99 0.76 0.5798 0.9 1.05 8.11E-05 
4 0.001605 37.1 1.77 0.51 0.4063 0.9 0.20 4.25E-05 

5 0.003524 76.6 8.04 0.76 1.3159 2.0 6.55 3.25E-04 
6 0.003440 35.5 2.75 0.56 0.8444 2.0 2.40 3.48E-06 
7 0.001555 76.2 4.99 0.76 0.5798 2.0 1.40 1.12E-04 
8 0.001605 37.1 1.77 0.51 0.4063 2.0 0.54 1.22E-04 

9 0.003524 76.6 8.04 0.76 1.3159 5.7 13.50 6.77E-04 
10 0.003440 35.5 2.75 0.56 0.8444 5.7 3.95 5.79E-04 
11 0.001555 76.2 4.99 0.76 0.5798 5.7 2.20 1.78E-04 

TABLE 4.19: TRANSPORT EXPERIMENTS OVER FIXED BED 

NO DEPOSITION CONDITION NON-COHESIVE SEDIMENT 

154 mm diameter flume E= 18.4 mm (k = 2.3 mm) 

So Yo 

(mm) 

0 

(1/s) 

YofE 
D 

to 

(N/m2) 

dso 

(mm) 

48 

"(o/s) 

cv 

12 0.003479 79.1 7.21 0.7785 1.3101 0.9 3.08 1.64E-04 
13 0.003573 61.1 5.36 0.6616 1.2207 0.9 2.90 2.09E-04 
14 0.003596 43.6 3.34 0.5480 1.0136 0.9 1.43 1.65E-04 
15 0.003590 32.0 2.08 0.4727 0.8182 0.9 0.95 1.76E-04 

16 0.002163 36.4 1.97 0.5012 0.5403 0.9 0.43 8.32E-05 
17 0.002032 49.1 3.04 0.5837 0.6165 0.9 0.77 9.70E-05 
18 0.002273 62.1 4.47 0.6681 0.7826 0.9 0.99 8.54E-05 
19 0.002169 81.2 5.99 0.7922 0.8216 0.9 1.04 6.70E-05 
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TABLE 4.20: CONSTANTS IN EQUATION 4.33 

Flume Bed Sand Size Mean Values Separated Values 

a b a b 

smooth 0.9 3.990 -0.389 3- -0.387 
2.0 3.576 -0.526 3.227 -0.524 
5.7 9.010 -0.452 7.960 -0.449 

rough 0.9 2.120 -0.505 1.625 -0.546 

TABLE 4.21: TRANSPORT EXPERIMENTS OVER FIXED BED 

NO DEPOSITION CONDITION COHESIVE SEDIMENT 

20% clay gel c= 24 g/1 
80% sand d=0.9 mm 

154 mm diameter flume E= 40.8 mm (smooth bed) 

So Yo 

(mm) 

0 

(1/s) 

YofE Yo 

(N/m2) 

dso 

(mm) 

qs 

(9/s) 

Cv 

1 0.002169 81.29 6.04 0.79 0.822 0.9 1.54958 9.90E-05 
2 0.002214 68.84 4.92 0.71 0.797 0.9 1.13639 8.91E-05 
3 0.002159 51.43 3.37 0.60 0.673 0.9 0.75889 8.69E-05 
4 0.003599 39.69 2.98 0.52 0.954 0.9 1.69389 2.19E-04 
5 0.003509 54.16 4.68 0.62 1.127 0.9 3.29000 2.71E-04 
6 0.003547 47.80 . 3.92 0.58 1.059 0.9 2.69167 2.65E-04 
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CHAPTER FIVE 

SUMMARY OF CONCLUSIONS AND RECOMMENDATIONS FOR FURTHER WORK 

The, present study has covered hydraulics, initiation of erosion 

and transport of cohesive and non-cohesive sediments in channels 

of circular cross-section with sediment bed. Comparisons were 

made between cohesive and non-cohesive sediment behaviour and 

between wide channels and channels of circular cross-section. 

5.1 HYDRAULIC CHARACTERISTICS 

a) Flow Resistance 

The Colebrook-White formula was used to determine the value of 

the absolute channel roughness (k) in sediment-free conditions, 

from the calculated values of friction factor (Darcy-Weisbach 

formula). The resulting ks values for Re s 200,000 indicated the 

channels to be smooth. 

Flow resistance in full pipe flow conditions for Re S 200,000 

conforms to the von Karman-Prandt equation (see Fig. 4.1) for 

smooth pipes. However, the open channel flow results showed a 

large degree of scatter (see Fig. 4.2). This can be attributed to 

the substitution of D=4R in Darcy-Weisbach and Colebrook-White 

formulae, which assume that the shear stress is uniformly 

distributed around the section. 

In channels of circular cross-section with sediment bed the 

friction factor of the bed (). 
b) 

is dependent on bed roughness, 

bed thickness (E) and on flow depth (Y 
0 

). The relative friction 

253 



factor (ab/a) increases with bed roughness and flow depth 

(Fig. 4.7a). 

There are indications (see Fig. 4.7b) that Xb/I decreases with 

sediment bed thickness. As the sediment bed level increases there 

is a greater bed width and the wall effects are thus diminished. 

This trend is likely to be valid up to 50% of the diameter. For 

sediment bed levels above 50% of the diameter the bed width 

decreases with bed level and a different trend may be expected. 

b) Velocity Distribution 

Velocity distributions over the flat beds of channels of circular 

cross-section are found to be dependent on flow depth (channel 

shape) and bed roughness. Two dimensional flow was observed for 

shallow flow depths and three dimensional flow for deeper flows 

(i. e., (Yo+E)/D 2 0.62, see Fig. 4.14). In full pipe flow 

conditions, the flow was observed to revert to two dimensional 

flow. However, in the largest sediment bed used, the velocity and 

shear stress distributions showed the effects of secondary 

currents even in the full pipe flow case (see Fig. 4.15). 

c) Shear Stress Distribution 

Shear stress distribution measurements corroborated the 

applicability of the Einstein-Vanoni separation technique, which 

gives realistic average values of bed shear stresses. The shear 

stress distribution measurements showed the effects of secondary 

currents as not only one but several peaks were observed across 
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the bed. For 0.626 (Yo+E)/D <1 the maximum values of bed shear 

stress were observed at both sides of the centerline (see 

Fig. 4.14). For full pipe flow conditions the maximum shear 

stress was always located at the centerline of the channel. 

d) Turbulence Intensities 

Distributions of turbulence intensities over the flat bed of 

channel of circular cross-section were found to be dependent on 

flow depth and bed roughness. Maximum levels of turbulence were 

always observed near the bed. The turbulence intensities on rough 

beds are found to be higher than those of smooth beds. Minimum 

levels of turbulence were found near the center point of the flow 

area for deep flow depths and near the water surface for shallow 

flow depths. 

The dependence of turbulence intensity on bed roughness is an 

important feature in the erosion process of cohesive sediment 

beds. An increase in roughness (first spots of erosion) causes an 

increase in the turbulence level, which in turn is responsible 

for the growth of the spots of erosion. This is the phenomena 

that triggers off the collapse of the cohesive bed. 

5.2 INITIATION OF EROSION 

a) Non-cohesive Sediments 

The critical shear stresses for sand particles, in channels of 

circular cross-section with sediment bed, were found to be lower 
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than the corresponding values of wide channels (i. e., Shields' 

curve). However, when bed shear stresses (Einstein-Vanoni 

separation technique) are used there is a better agreement with 

Shields' prediction (see Fig. 4.27). 

The influence of the channel shape on critical conditions is 

noticeable for flow depths above half full pipe. Results from 

experiments using mixed size sands suggest the existence of 

sheltering and armouring of the particles on the bed. 

b) Cohesive Sediments 

Initiation of erosion of cohesive sediment is largely dependent 

on the proportion and concentration of the cohesive additive. The 

erosion studies show that even a low level of cohesion can 

increase the critical shear stress significantly. 

The size of the aggregates (sand size) has no significant effect 

on the critical shear stress of cohesive sediments. For a given 

sand size and laponite clay gel concentration, there is an 

optimum proportion of sand to clay-gel to achieve maximum 

critical shear stress (see Figs. 4.34 and 4.36). 

The synthetic sewer sediment (Laponite clay + sand + water) 

mixtures used to represent freshly deposited sewer sediment with 

slight consolidation (Type A sewer sediment) required a maximum 

critical shear stress of around 6 to 7 N/m2 for complete erosion. 

The Laponite clay gel concentrations in this case ranged from 30 

to 40 g/l and the sand sizes used ranged from 0.89 to 2.86 mm. 
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The synthetic sewer sediment representing the weak cohesive sewer 

sediment (Type C sewer sediment) showed maximum critical shear 

stresses of around 2.5 N/m2. Laponite clay gel concentration, in 

this case, was limited to 18 g/l, and the sand size was 0.12 mm. 

The optimum proportion of clay-gel to sand was 0.47 by weight. 

5.3 SEDIMENT TRANSPORT OVER LOOSE BEDS 

a) Non-cohesive Sediments 

Results from transport experiments showed that in channels of 

circular cross-section with loose sediment bed there is more 

transport (see Figs. 4.39 and 4.40) than for similar flows in 

alluvial channels. Although when using the separated bed values 

the difference is reduced, the channels of circular cross-section 

show still more transport capacity. 

Indications (see Fig. 4.41 and 4.42) are that the transport 

capacity of a uniform flow increases with sediment bed thickness. 

As there is more space (width) for the particles to move, the 

transport process is more effective and as a result a greater 

bedload (sediment rate per unit width) is obtained. However, as 

it was mentioned above, the sediment bed width will start 

decreasing after the sediment bed level exceeds half full pipe. 

As the experiments covered sediment bed thickness only up to 39%, 

it can only be speculated that a different trend may occur for 

sediment bed levels above half full pipe (50%). 
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Bedforms were also observed in the channel of circular 

cross-section with sediment bed. According to various bedform 

classifications (Shields 1936, Simmons 1963 and Van Rijn 1988) 

the measured bedforms correspond to dunes in wide channels. 

Bedform dimensions were found to be dependent on flow depth 

(shape effect) and particle size. 

b) Cohesive Sediments 

A rapid collapse of the bed was observed soon after the critical 

conditions were exceeded. The cohesive sediment was detached from 

the bed in clusters, which were rapidly disunited by the flowing 

water and then behaved like non-cohesive sediment as they were 

transported by the flow. 

The characteristic behaviour (see Fig. 4.47) of the cohesive 

sediment bed when the shear stress exceeds the critical 

conditions, does not make possible the establishment of 

equilibrium conditions of sediment transport. Because the 

cohesive sediment during transport behaves like non-cohesive 

sediment, the actual shear stress during the critical conditions 

is much higher than the required shear stress to initiate this 

"non-cohesive" sediment. Thus the detached cohesive clusters are 

transported very rapidly almost in suspension. 

The same happens to any cohesive sediment being fed into the flow 

at the upstream end of the test section. Thus no deposition is 

possible and the sediment bed is unavoidably disintegrated. 
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A similar phenomenon takes place in sewers during storm events. A 

"first foul flush" of pollutants is generally observed at the 

onset of the storm flow. The cohesive sediments bed (deposited 

during dry weather flow, DWF) is disintegrated as the critical 

conditions are exceeded, and the materials (pollutants) are 

transported downstream and discharged through the storm sewage 

overflows (SSO) to the receiving stream. 

5.4 SEDIMENT TRANSPORT OVER FIXED BEDS 

a) Non-cohesive Sediments 

The results from transport experiments over fixed beds (limit 

deposition condition) showed that in channels of circular 

cross-section with sediment bed there is more transport than in 

alluvial channels (see Fig. 4.48). The results also showed that 

for a given uniform flow sediment transport increases with 

particle size, which can be attributed to the increase in exposed 

area of the particles. 

Bed roughness was also found to affect the transport capacity of 

a given uniform flow as more energy has to be used to overcome 

the higher friction resistance, apart from the increase in 

turbulence intensities, which also dissipate more energy. This 

also explains why there is less transport in alluvial channels 

where there is not only grain roughness but also bed formation. 

Minimum mean velocities to maintain non-deposition condition were 

found to be lower than those of channels of circular 
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cross-section without sediment bed (see Fig. 4.56). 

Minimum mean velocities to maintain non-deposition condition were 

found to be similar to those of channels of rectangular 

cross-section (see Figs. 4.57 and 4.58). 

Minimum shear stresses required to maintain non-deposition 

conditions were found to be lower than those corresponding to 

rectangular channels (see Figs. 4.59 and 4.60). 

b) Cohesive Sediments 

The results from experiments with cohesive sediment show only a 

slight decrease in sediment transport, compared to the 

non-cohesive sediments experiments. This corroborates the 

observations made during the initiation of erosion experiments, 

that the detached cohesive sediment particles behave like 

non-cohesive sediment when transported by a uniform flow in a 

channel of circular cross-section. 

However, only two different cohesive sediment mixtures were used 

in transport experiments. In order to achieve more conclusive 

results more transport experiments, covering a wide combination 

of cohesive sediment mixtures, are needed. 

5.5 RECOMMENDATION FOR FURTHER WORK 

The main objective of the present study was to determine the 

influence of cohesion on sediment movement in channels in order 
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to describe the transition from non-cohesive to cohesive 

behaviour of sediments. A synthetic sewer sediment (Williams and 

Williams, 1988), which is rheologically suitable has been 

extensively investigated in the hydraulics laboratory. 

The point of initiation of erosion was found to be highly 

dependent on the concentration and proportion of the cohesive 

additive (Laponite clay). However, transport experiments with the 

synthetic sewer sediment were not successful due to the drop in 

cohesive strength once the sediment is detached from the bed. 

In order to obtain more conclusive results it is necessary to 

carry out more experimental work such as: 

a) Hydraulics of the circular cross-section with sediment bed 

Further investigation of the velocity and shear stress 

distributions on the channel cross-section are needed in order to 

relate these distributions to sediment movement. Turbulence 

intensities also need to be investigated in depth across the 

entire flow section of the flume. Measurements of Reynolds 

stresses for various bed configurations would be very helpful in 

quantifying the effect of turbulence on sediment movement. 

The relationship between bed shear stress and mean shear stress 

should be studied for a wider range of sediment bed thicknesses. 

Therefore extensive measurements of velocity profiles to 

determine velocity and shear stress distributions are needed. It 

would be interesting to see how the mechanism of deposition takes 
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place just before the pipe is blocked with sediment (i. e., 

sediment bed thicknesses above half full), and how the mechanism 

of erosion (as soon as there is enough pressure gradient) takes 

place in a channel section partially blocked with sediment. 

b) Sediment Movement in Pipe Channels 

Systematic investigation of non-cohesive sediment transport in 

channels of circular cross-section is required in order to obtain 

reliable relations between hydraulic and sediment parameters. 

This should consider several channel bed thicknesses and flow 

depths. 

Initially very low concentration additives (laponite clay gel) 

should be used in order to detect the departure from non-cohesive 

behaviour. The size range of aggregate (sand) should be extended 

to the lower end as Theological tests can only be carried out for 

suspensions with very small particle size. 

Experimental investigations should also contemplate the 

possibility of putting the additive directly into the flume 

water, and see how the initiation of erosion and transport of 

non-cohesive sediments is affected by this change in fluid 

properties. 

Unsteady flow conditions should also be considered in order to 

study the influence of consolidation time, which occurs during 

low flows (DWF). Furthermore as it is essential to relate 
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properly laboratory and field (sewers sediment). Therefore 

parallel studies in real sewers should be carried out for various 

flow dephs and bed configurations. It is also necessary to 

maintain a record of rheological parameters from both laboratory 

and field experiments, so that adequate links can be esbablished 

between laboratory (synthetic sediment) and field (real sewer 

sediment) results. 
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APPENDIX A NOTATION 

A cross-sectional area of the flow 

d50 median diameter of particles in a mixture 
C Chezy roughness coefficient 
C' Chezy roughness coefficient related to grains 
CV sediment concentration by dry volume 

c clay gel concentration 

CB rate of displacement of the bedforms 

D internal diameter of pipe channel 
D, D dimensionless particle number ((S. - 1)g/v2)1/3 d 

gr * 50 
E sediment bed thickness 

Fd Froude number of particle (- V/ (S'-1)gd) ) 

Fdc Froude number of particle for incipient motion 
G rigidity modulus, correction factor density distribution 

g gravitational constant 

g' bedload in weight per unit time per unit width 
h location of maximum velocity in channel section 
KD coefficient in dimensionless transport parameter pD 
ks overall Nikuradse's equivalent sand roughness 
k overall Nikuradse's equivalent sand roughness with sediment ss 
ksb bed Nikuradse's equivalent sand roughness 
Iw Plasticity index 

n overall Manning roughness coefficient 
nb bed Manning roughness coefficient 
P wetted perimeter of the flow 

q* bedload in volume per u nit time and unit width 
Q flow rate 
Qs 

Qs 

transport parameter (= Qspg(S'- 1)w93/2) 

absolute volume rate of sand 
R overall hydraulic radius (A/P) 

R' overall hydraulic radius (A/P) related to grains 
R" overall hydraulic radius (A/P) related to bedforms 

Rb bed hydraulic radius 
RM wall hydraulic radius 
So channel longitudinal bed slope 
S. water surface slope (pressure gradient) 
Ss relative density of sediment (p'/p) 
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SF 
P 

shape factor of particle 

SF 
c 

shape factor of channel 

T transport parameter (= (u 
*'2 

- u*' 
2)AU 

, 2» 

u local velocity 

u 
max 

maximum local velocity 

u' turbulent velocity fluctuation 

u* shear velocity 

u*b bed shear velocity 
V mean velocity 
V0 mean velocity for incipient motion 
VL mean velocity at limit deposition criterion 
Y0 depth of uniform flow 

we settling velocity of particle 

I specific weight of water 

7s specific weight of sediment 
A bedform height 

0 half angle subtended by the water-line at the 

centre of pipe channel 
9o half angle subtended by the sediment bed surface at 

the centre of a pipe channel 

in dimensionless particle number (= ((S - 1)/v2)gd503) 

I overall friction factor (clear water) 
xb bed friction factor (clear water) 
A overall friction factor with sediment transport 

a: 
b 

bed friction factor with sediment transport 

p dynamic viscocity of water 

v kinematic viscosity of water(= p/p) 

p density of water 

ps density of sediment 

tro mean shear stress (= pgRSo) 

r critical mean shear stress 
oc 

tb computed bed shear stress (= pgRbS0) 

T bc critical mean shear stress 

tb= measured bed shear stress 

201 mean shear stress at first spots of erosion 

T02 mean shear stress at collapse of cohesive bed 

tY yield stress 
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v2 g -3/2 

(pa dimensionless transport parameter = Kp 
gD 2 w 

non-dimensional transport parameter (= CvVR / gd50(Ss- 1) ) 

ip non-dimensional shear stress (= ro / (ps- p)gdso ) 
(flow intensity parameter) 
(shear intensity parameter) 

b non-dim. bed transport parameter (= CvVRD / gd3 (SS_ 1) ) 

Wpb non-dim. bed shear stress (= tb / (Ps P)Bd5o ) 
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APPENDIX C 

PLATES 



LIST OF PLATES 

PLATE 1: Flumes of circular cross-section 

a) 154mm diameter flume (L=20.5m) 
b) 302mm diameter flume (L=12m) 

PLATE 2: Sediment trap during operation 

PLATE 3: Cohesive sediment feeder during operation 

PLATE 4: Laser Doppler Velocimeter 

PLATE 5: Synthetic sewer sediment being placed in the flume 

PLATE 6: First spots of erosion appearing on the bed surface (, rol) 

PLATE 7: Bed collapse, erosion progressing very rapidly (T 
02) 

PLATE 8: Bed formation (85% sand (d50=0.12mm) 15% clay gel (18 9 /1) 

PLATE 9: Sediment bed after the collapse ocurred 
Mixture: 85.5% Clay gel (22 g/l), 14.5% Sand (0.12mm) 

PLATE 10: Sediment bed after the collapse ocurred 
Mixture: 53% Clay gel (22 g/l), 47% Sand (0.12mm) 
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APPENDIX D 

VELOCITY PROFILES MEASUREMENTS 



MEASUREMENTS OF VELOCITY PROFILES 

D= 154 mm (with sediment flat bed) 

Bed Normal Energy Discharge Shear Stress (N/m2) Trans 
Thick 
Hess 

Depth G adient mean bed Pos. 

E Y S Q t t t X 
o o b bm 

(mm) (mm) (1/s) (an) 

1 60.3 full 0.005195 7.18 1.4193 2.2358 2.5130 0 

2 60.3 full 0.003008 5.32 0.8921 1.4716 1.8950 0 
3 60.3 full 0.003008 5.32 0.8921 1.4716 1.3940 2 
4 60.3 full 0.003008 5.32 0.8921 1.4716 1.5920 4 

5 60.3 full 0.001385 3.67 0.3783 0.5408 0.6060 0 
6 60.3 full 0.001385 3.67 0.3783 0.5408 0.5650 2 
7 60.3 full 0.001385 3.67 0.3783 0.5408 0.7610 4 

8 60.3 55.0 0.001853 3.06 0.5629 0.6848 0.9540 0 
9 60.3 55.0 0.001853 3.06 0.5629 0.6848 0.8730 2 

10 60.3 55.0 0.001853 3.06 0.5629 0.6848 0.6280 4 

11 60.3 35.1 0.001685 1.53 0.4002 0.4622 0.4990 0 
12 60.3 35.1 0.001685 1.53 0.4002 0.4622 0.3720 2 
13 60.3 35.1 0.001685 1.53 0.4002 0.4622 0.3520 4 

14 60.3 55.6 0.002123 3.63 0.6489 0.7442 0.8730 0 
15 60.3 55.6 0.002123 3.63 0.6489 0.7442 0.7240 2 
16 60.3 55.6 0.002123 3.63 0.6489 0.7442 0.6870 4 

17 40.8 full 0.001301 5.21 0.4131 0.5570 0.7340 0 
18 40.8 full 0.003053 7.46 0.9691 1.6191 1.5340 0 

19 40.8 76.1 0.001704 5.07 0.6351 0.7666 0.8590 0 
20 40.8 35.3 0.002088 1.75 0.5102 0.5941 0.4610 0 

21 40.8 35.1 0.002377 2.28 0.5793 0.6063 0.6460 0 

22 40.8 73.9 0.001104 3.75 0.4078 0.5059 0.3760 0 
23 40.8 39.2 0.001104 1.53 0.2900 0.3313 0.1650 0 

24 40.8 35.4 0.001154 1.45 0.2825 0.3058 0.1830 0 

25 20.0 46.5 0.002851 2.53 0.8349 1.1895 1.0810 0 

26 20.0 51.7 0.002808 3.08 0.8806 1.2638 0.9020 0 

27 20.0 66.6 0.002806 4.65 1.0263 1.5521 1.8330 0 

28 20.0 80.8 0.003124 6.19 1.2569 2.1376 1.1980 0 
29 20.0 80.8 0.003124 6.19 1.2569 2.1376 1.2700 2 
30 20.0 80.8 0.003124 6.19 1.2569 2.1376 1.0750 4 
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MEASUREMENTS OF VELOCITY PROFILES (CONT. ) 
D= 154 mit (with sediment flat bed) 

Bed Normal Energy Discharge Shear Stress (N/m2) Trans 
Thick 
nass 

Depth Gradient mean bed Pas. 

E Y S Q r T X 
o o b bm 

(mm) (mm) (1/s) (cm) 

31 20.0 95.1 0.002867 8.02 1.2191 1.9471 1.5680 0 
32 20.0 95.1 0.002867 8.02 1.2191 1.9471 2.1610 2 
33 20.0 95.1 0.002867 8.02 1.2191 1.9471 2.8960 4 
34 20.0 95.1 0.002867 8.02 1.2191 1.9471 0.6690 5 

35 20.0 96.0 0.002830 7.97 1.2060 1.9571 2.2340 0 

36 20.0 52.1 0.002862 3.15 0.9023 1.2974 1.3840 0 

37 20.0 49.0 0.002243 2.47 0.6790 0.9652 0.7420 0 

38 20.0 64.9 0.002184 3.87 0.7877 0.9652 0.7420 0 

39 20.0 86.0 0.002250 5.90 0.9277 1.5115 1.3380 0 

40 18.4 67.2 0.001081 3.05 0.3972 0.5555 0.6210 0 
41 18.4 57.7 0.001607 3.02 0.5396 0.7316 0.9790 0 
42 18.4 60.8 0.001432 3.01 0.4961 0.6926 0.8410 0 

43 18.4 26.8 0.001520 0.76 0.2937 0.3632 0.3500 0 
44 18.4 26.8 0.001520 0.76 0.2934 0.3632 0.2990 3 
45 18.4 26.8 0.001520 0.76 0.2934 0.3632 0.0800 5 

46 18.4 77.5 0.002350 5.59 0.9287 1.3913 1.6260 0 
47 18.4 77.5 0.002350 5.59 0.9287 1.3913 1.5610 2 
48 18.4 77.5 0.002350 5.59 0.9287 1.3913 1.0090 4 
49 18.4 77.5 0.002350 5.59 0.9287 1.3913 0.7770 5 

50 18.4 105.4 0.002070 7.71 0.9009 1.4674 1.4010 0 
51 18.4 105.4 0.002070 7.71 0.9009 1.4674 1.4750 2 
52 18.4 105.4 0.002070 7.71 0.9009 1.4674 1.2710 4 
53 18.4 105.4 0.002070 7.71 0.9009 1.4674 0.8260 5 

54 18.4 112.4 0.002278 8.62 0.9931 1.6472 1.4710 0 
55 18.4 112.4 0.002278 8.62 0.9931 1.6472 1.5780 2 
56 18.4 112.4 0.002278 8.62 0.9931 1.6472 0.9720 4 
57 18.4 112.4 0.002278 8.62 0.9931 1.6472 0.6870 5 

58 18.4 full 0.006754 15.84 2.422 4.777 4.429 0 
59 18.4 full 0.006754 15.84 2.422 4.777 3.667 2 
60 18.4 full 0.006754 15.84 2.422 4.777 3.465 4 
61 18.4 full 0.006754 15.84 2.422 4.777 2.181 5 
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_MEASUREMENTS 
OF VELOCITY PROFILES 

D= 154 mm (with sediment flat bed) 

Bed Normal Energy Discharge Shear Stress (N/m2) Trans 
Thick Depth Gradient mean bed Pos. 
Hess 

E Yo SQ zo b bm 
x 

(mm) (mm) (1/s) (cm) 

62 18.4 53.5 
63 18.4 53.5 
64 18.4 53.5 
65 18.4 53.5 
66 18.4 53.5 

67 18.4 29.8 
68 18.4 29.8 
69 18.4 29.8 
70 18.4 29.8 

71 18.4 full 
72 18.4 full 
73- 18.4 full 
74 18.4 full 
75 18.4 full 
76 18.4 full 
77 18.4 full 

78 12.5 full 
79 12.5 full 
80 12.5 full 
81 12.5 full 

82 0.0 105.5 
83 0.0 103.8 
84 0.0 103.8 

85 0.0 80.7 
86 0.0 80.3 
87 0.0 80.3 

88 0.0 126.4 
89 0.0 125.9 
90 0.0 123.0 
91 0.0 124.1 

0.002290 3.10 0.7311 1.0171 0.8390 0 
0.002290 3.10 0.7311 1.0171 0.8140 2 
0.002290 3.10 0.7311 1.0171 0.6940 3 
0.002290 3.10 0.7311 1.0171 0.7310 4 
0.002290 3.10 0.7311 1.0171 0.4890 5 

0.002200 1.12 0.4639 0.5778 0.3970 0 
0.002200 1.12 0.4639 0.5778 0.1720 2 
0.002200 1.12 0.4639 0.5778 0.2030 4 
0.002200 1.12 0.4639 0.5778 0.1200 5 

0.006630 15.84 2.4339 4.7379 4.7540 0 
0.002070 8.38 0.7429 1.3477 1.8130 0 
0.000720 4.51 0.2573 0.4908 0.4730 0 
0.003660 11.39 1.3129 2.4721 3.1310 0 
0.001870 7.80 0.6706 1.2651 1.4570 0 
0.003490 11.35 1.2508 2.2005 2.6730 0 
0.009890 19.72 3.5448 6.7865 9.2570 0 

0.001371 6.52 0.5029 1.1437 1.1670 0 
0.004062 12.23 1.4900 3.2644 3.4250 0 
0.006091 15.90 2.2343 4.4809 4.7580 0 
0.011836 22.80 4.3417 9.2219 12.9940 0 

0.002137 8.84 0.9490 - 1.4210 0 
0.002137 8.77 0.9430 - 1.4700 0 
0.002137 8.77 0.9430 - 1.3920 0 

0.002137 5.58 0.8310 - 1.3470 0 
0.002137 5.45 0.8280 - 1.2650 0 
0.002137 5.45 0.8280 - 1.2800 0 

0.002137 12.28 0.9820 - 1.7470 0 
0.002137 12.09 0.9820 - 1.9160 0 
0.002137 12.30 0.9820 - 1.8170 0 
0.002137 12.17 0.9820 - 1.7850 0 
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APPENDIX E 

TURBULENCE INTENSITY DATA 



VELOCITY AND TURBULENCE INTENSITY PROFILES 
Charnel of circular cross-section 
LASER DOPPLER ANEMOI¬TRY R1 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.8 (mm) 
Discharge Q= 2.06 (1/s) 
Slope S= 0.002462 
Mean Shear Stress i= 0.6192 (N/m2) 
Bed Shear Stress 

0 

rbm 1.1580 (N/m2) 
Mean Velocity V= 0.378 (m/s) 
Normal Depth Y = 36.75 (mm) 

o 
(Y+E)/D = 0.50 

Temperature T= 17.8 - 18.4 C' 

_ Y U nax 

(nm) o (m/s) (m/s) (%) (m/s) x5.75 

4.5 0.122 0.335 0.038 11.34 0.164 5.05003 
6.0 0.163 0.357 0.041 11.48 0.142 4.33163 
9.0 0.245 0.391 0.042 10.74 0.108 3.31911 

15.0 0.408 0.452 0.035 7.74 0.047 2.04348 
24.0 0.653 0.477 0.024 5.03 0.022 0.86979 
30.0 0.816 0.490 0.023 4.69 0.009 0.31256 
34.0 0.925 0.499 0.023 4.61 0.000 0.00000 

Regression Q 
Constant 
Std Err of Y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

Jtput 
-0.00832 
0.008177 
0.987356 

6 

4 

Shear velocity 

X Coefficient(s)0.034029 
Std Err of Coef . 0.001925 

ux = 0.034 (m/s) 

Bed Shear Stress 

Tb = 1.158 (N/m2) 
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VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
LASER DOPPLER ANEMOhETRY R2 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 
Discharge Q=5.5 (1/s) 
Slope S=0.002378 

Mean Sh ear Stress r=0.8795 (N/m2) 

Bed She ar Stress 
0 

Ybm= 1.3477 (N//m2) 
Mean Velocity V=0.502 (m/s) 
Normal Depth Y= 74.1 (um) 

(Y+E)/D = 0.746 

Temperature T= 18.4 - 19.0 `C 

2 2 /i' y y u u-u u' u' -Log (y/h) 

-o 
wax 

U 
(nm) (m/s) (m/s) (%) (m/s) x5.75 

4.0 0.054 0.393 0.057 14.50 0.219 6.04413 
8.0 0.108 0.450 0.065 14.44 0.162 4.31320 

14.0 0.189 0.509 0.048 9.43 0.103 2.91574 
24.0 0.324 0.545 0.042 7.71 0.067 1.56976 
34.0 0.459 0.594 0.035 5.89 0.018 0.69997 
45.0 0.607 0.612 0.023 3.76 0.000 0.00000 
55.0 0.742 0.597 0.024 4.02 0.015 -0.50111 
70.0 0.945 0.558 0.027 4.84 0.054 -1.10334 

Regression Q 
Constant 
Std Err of Y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

xtput: 
-0.00026 
0.006795 
0.994821 

6 
4 

Shear velocity 

X Coefficient(s)0.036711 
Std Err of Coef. 0.001324 

u=0.0367 (m/s) 

Bed Shear Stress 

tib = 1.3477 (N/m2) 

E-2 



VELOCITY AND TURBULENCE INTENSITY PROFILES 
Channel of circular cross-section 
LASER DOPPLER ANEMOMETRY R3 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 

Discharge Q=1.91 (1/s) 
Slope S=0.001244 
Mean Shear Stress T = 0.3532 (N/m2) 

Bed Shear Stress 
o 

r 0.4148 (N /im2) 
Mean Velocity V=0.290 (m/s) 

Normal Depth Y = 44.09 (mm) 
a 

(Y+E)/D = 0.55 
Temperature T= 18.5 - 18.8 C' 

- '2 -L ( /h) y yu uu u u og y 
_ Y 

max U 
(mm) o (m/s) (m/s) (X) (m/s) x5.75 

4.0 0.091 0.275 0.026 9.45 0.100 5.03160 
8.0 0.181 0.297 0.028 9.43 0.078 3.30068 

12.0 0.272 0.331 0.027 8.16 0.044 2.28816 
21.0 0.476 0.354 0.026 7.34 0.021 0.89069 
30.0 0.680 0.375 0.017 4.53 0.000 0.00000 
40.0 0.907 0.373 0.019 5.09 0.000 -0.71840 

Regression 0 
Constant 
Std Err of Y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

stput 
0.001711 
0.006391 
0.981572 

5 
3 

Shear velocity 

X Coefficient(s)0.020366 
Std Err of Coef. 0.001611 

u* = 0.02036660 (m/s) 

Bed Sheer Stress 

zb = 0.4148 (N/m2) 

E3 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
LASER DOPPLER ANEMOhETRY R4 

Flume Diameter D= 154 (nm) 

Bed Thickness E= 40.80 (mm) 

Discharge Q=3.64 (11s) ) 

Slope S=0.001312 

Mean Shear Stress x 0.4685 ((N/m2) 

Bed Shear Stress tbw 0.5769 (N/m 
Mean Velocity V=0.363 (m/s) 
Normal Depth Y = 67.31 (mm) 

o 
(Y+E)/D = 0.440 

Temperature T= 18 .8- 18.9 *C 

2 
/ 

7.2 
- -L ( /h) Y Y u U U u c9 r 

_ U max 

(M) o (m/s) (m/s) (%) (m/s) x5.75 

2.0 0.030 0.284 0.045 15.85 0.154 7.48092 
4.0 0.059 0.316 0.035 11.08 0.122 5.75000 
8.0 0.119 0.352 0.035 9.94 0.086 4.01908 

13.5 0.201 0.378 0.030 7.94 0.060 2.71243 
28.0 0.416 0.434 0.028 6.45 0.004 0.89069 
40.0 0.594 0.438 0.020 4.57 0.000 0.00000 
61.5 0.914 0.425 0.020 4.71 0.000 -1.07419 

Regression U 
Constant 
Std Err of Y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

rtput: 
-0.01229 
0.006881 
0.987203 

4 
2 

9-iear velocity 

X Coefficient(s)0.024019 
Std Err of Coef . 0.001933 

u* 0.0240 (nn/s) 

Bed Shear Stress 

rb = 0.5769 (N/m2) 

E-4 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
LASER DOPPLER ANEMONETRY R5 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 
Discharge Q=2.42 (1/s) 
Slope S=0.00368 

Mean Shear Stress -r= 0.8927 (N/m2) 

Bed Shear Stress m 1.3334 (N/m2) T b 
Mean Velocity V=0.469 (m/s) 
Normal Depth Y= 34.9 (mm) 

(Y+E)/D = 0.49 
Temperature T= 17.3 - 17. `C 

- '2 '2 -Lo ( /h) y yu u u u u g y 
_ Y 

wax u 
(mm) o (m/s) (m/s) (X) (m/s) x5.75 

4.0 0.115 0.460 0.060 13.04 0.179 5.19277 
6.5 0.186 0.506 0.050 9.88 0.133 3.98036 
9.5 0.272 0.538 0.046 8.55 0.101 3.03270 

13.5 0.387 0.564 0.044 7.80 0.075 2.15519 
23.0 0.659 0.623 0.032 5.14 0.016 0.82468 
32.0 0.917 0.639 0.028 4.38 0.000 0.00000 

Regression Q 
Constant 
Std Err of Y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

itput: 
-0.01010 
0.004565 
0.995833 

5 
3 

Shear velocity 

X Coefficient(s)0.036515 
Std Err of Ccef. 0.001363 

u* = 0.0365 (m/s) 

Bed Shmar- Stress 

trb = 1.3334 (N/m2) 

E-5 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
LASER DOPPLER ANEMOhETRY R6 

Flume Diameter 

Bed Thickness 

Discharge 

Slope 

Mears Shea- Stress t = 1.3644 (N/m2) 

Bed Shear Stress 
o 

T 1.9749 (N/m2) 
b 

Mean Velocity V= 0.631 (m/s) 
Normal Depth Y = 78.81 (mm) 

o 
(Y+E) /D = 0.78 

Temperature T= 17.3 - 18.0 0C 

Laser Doppler k*mometry (TSI IFA 550) 

angle 11.66 degrees 

Freq. shift 0.1 Miz 

Lens 243 degrees 

Conversion Factor 3.115 (MHz/(m/s)) 

D= 154 (mm) 

E= 40.80 (mm) 
Q=7.30 (1/s) 

S=0.003626 

u /: F; _ '2 - -L ( /h) Y y u u u og y 
0 

wax 

(mm) (m/s) (m/s) (X) (m/s) x5.75 

3.0 0.038 0.551 0.066 11.98 0.225 6.4684 
6.0 0.076 0.570 0.074 12.98 0.206 4.7375 

10.0 0.127 0.627 0.066 10.53 0.149 3.4618 
21.5 0.272 0.696 0.062 8.91 0.080 1.5503 
30.0 0.381 0.762 0.038 4.99 0.014 0.7184 
40.0 0.508 0.776 0.029 3.74 0.000 0.0000 
50.0 0.634 0.766 0.029 3.79 0.010 -0.5572 
66.0 0.837 0.737 0.036 4.88 0.039 -1.2505 
75.0 0.952 0.733 0.031 4.23 0.043 -1.5698 

Regression U 
Constant 
Std Err of Y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

stput: 
-0.00324 
0.012057 
0.985890 

5 
3 

Shear velocity 

X Coefficient(s) 0.044440 

E-6 

u=0.0444 (mIs) 

Bed 9, e Stress 

tb = 1.9749 (N/m2) 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
LASER DOPPLER ANEMOhETRY RH 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (Mm) 
Discharge Q= 13.08 (1/s) 
Slope S=0.007626 
Mean Sh ear Stress 'r = 2.4432 (N/m2) 
Bed Sh ear Stress 

0 
r = 3.859 (N/m2) 
bm 

Mean Velocity V=0.891 (m/s) 
Normal Depth Y= 113.2 (mm) 

(Y+E)/D = 1.00 (full pipe fl ow) 
Teri eratwe T= 19.4 - 19.9 OC 

u - '2 '2 -L ( /h) y y u u u u og y ax w 
u 

(mm) (m/s) (m/s) (x) (mI s) x5.75 

4.0 0.035 0.758 0.110 14.51 0.343 6.76252 
8.0 0.071 0.835 0.104 12.46 0.266 5.03160 

15.5 0.137 0.944 0.088 9.32 0.157 3.37996 
25.0 0.221 1.006 0.071 7.06 0.095 2.18621 
32.0 0.283 1.056 0.067 6.34 0.045 1.56975 
40.7 0.359 1.088 0.060 5.51 0.013 0.96920 
50.0 0.442 1.100 0.044 4.00 0.001 0.45529 
60.0 0.530 1.101 0.047 4.27 0.000 0.00000 
70.0 0.618 1.054 0.056 5.31 0.047 -0.3849 
80.0 0.707 1.027 0.060 5.84 0.074 -0.7183 

Regression Output: Shear velocity Constant -0.0480 
Std Err of Y Est 0.00575 u=0.06212 (m/s) 
R Squared 0.99753 
No. of Observations 5 Shear stress 
Degrees of Freedan 3 

tb = 3.859 (N/m2) 
X Coefficient(0.06212 
Std Err of Coe0.00178 

E-7 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
LASER DOPPLER ANEMOhETRY RF2 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 
Discharge Q=7.59 (1/s) 
Slope S=0.002647 

Mean Shear Stress t=0.8406 (N/m 2) 

Bed Shear Stress 'r '2 1.8649 (N/m 2) 
bm 

Mean Velocity V=0.517 (m/s) 
Normal Depth Y= 113.2 (mm) 

(Y+E )/D = 1.00 
Temperature T= 18.2 - 18.9 OC 

Laser Doppler Anem metry (TSI IFA 550) 

angle 11.66 degrees 

Freq. shift 0.1 MHz 

lens 243 degrees 

Conversion Factor 3.115 (MHz/ m/s) 

u 
2 

/:; -i 

- -Lo ( /h) y y u u u g y 
-T u 

wax 

(ran) o (m/s) (m/s) (X) (m/s) x5.75 

4.0 0.035 0.461 0.061 13.23 0.190 6.3072 
8.0 0.071 0.508 0.060 11.81 0.143 4.5763 

14.3 0.126 0.527 0.054 10.25 0.124 3.1259 
20.0 0.177 0.568 0.050 8.80 0.083 2.2882 
30.0 0.265 0.604 0.049 8.11 0.047 1.2756 
40.0 0.353 0.641 0.033 5.15 0.010 0.5572 
50.0 0.442 0.651 0.036 5.53 0.000 0.0000 
60.0 0.530 0.650 0.029 4.46 0.001 -0.4553 
75.0 0.663 0.640 0.029 4.53 0.011 -1.0125 
84.0 0.742 0.602 0.038 6.31 0.049 -1.2955 

Regression Output: 
Constant SI-tear Velocity 
Std Err of Y Est 0.004177 
R Squared 0.995119 u* = 0.0432 (m/s) 
No. of observations 4 
Degrees of Freedom 2 Bed 9, ear Stress 

X Coefficient(s) 0.043185 tb = 1.8649 (N/m2) 

Std Err of Coef. 0.002138 

E-8 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
(11-12-89) S1 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 
Discharge Q= 2.15 (1/s) 

Slope S= 0.002466 

Mean Shear Stress 'r = 0.618 (N/m2) 

Bed Shear Stress 
0 

t .= 0.878 (N/m2) 
pm 

Mean Velocity V= 0.396 (m/s) 

Normal Depth Y = 36.58 (mm) 
0 

(Y+E)/D = 0.50 

Tetrperattre T= 20.5 ' C 

Yyu u'2 /I'u'2 u-U -Lo9(r/h) 
_ 

sax 

(mm) Yo (m/s) (m/s) (%) (m/s) x5.75 
3.0 0.082 0.347 0.035 10.1 0.174 5.75 
6.0 0.164 0.391 0.042 10.7 0.130 4.02 

10.0 0.273 0.421 0.039 9.3 0.100 2.74 
15.0 0.410 0.471 0.037 7.9 0.050 1.73 
25.0 0.683 0.506 0.024 4.7 0.015 0.46 
30.0 0.820 0.521 0.021 4.0 0.000 0.00 

Regression Output: 
Constant 0.007990 
Std Err of Y Est 0.010691 Shear Velocity 
R Squared 0.971939 

u=0.0296 (M/s) 
No. of Observations 4 
Degrees of Freedom 2 

X Coefficient(s) 0.029630 Bed Shear Stress 

Std Err of Coef. 0.003559 Irb = 0.878 (N/m2) 

E-9 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

channel of circular cross-section 
(12-12-89) S2 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 
Discharge Q=6.35 (1/s) 
Slope S=0.002329 

Mean Sh ear Stress 'r = 0.876 (N/m2) 

Bed She ar Stress 
0 

T m 0.945 (N/m2) 
b 

Mean Velocity V=0.550 (m/s) 
Normal Depth Y= 78.69 (nm) 

(Y+E)/D = 0.78 
Temperature T= 19.1 - 20.3 *C 

- '2 -L ( /h) y y u uu U u o9 y 

o u 
ax m 

(mm) (m/s) (m/s) (%) (m/ s) x5.75 

5.0 0.064 0.495 0.046 9.3 0.157 5.19 
10.0 0.127 0.548 0.049 8.9 0.104 3.46 
15.0 0.191 0.559 0.053 9.5 0.093 2.45 
22.0 0.280 0.611 0.046 7.5 0.041 1.49 
30.0 0.381 0.632 0.040 6.3 0.020 0.72 
40.0 0.508 0.652 0.026 4.0 0.000 0.00 
50.0 0.635 0.647 0.026 4.0 0.005 -0.56 
75.0 0.953 0.612 0.027 4.4 0.040 -1.57 

Regression U 
Constant 
Std Err of Y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

itput: 
0.000955 
0.009343 
0.980036 

6 
4 

Shear Velocity 

u=0.0307 (m/s) 

X Coefficient(s) 0.030736 
Std Err of Coef. 0.002193 

Bed Shear Stress 

Tb = 0.945 (N/m2) 

E-10 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
(15-12-89) S3 

Flume Diameter D= 154 (mm) 

Bed Thickness E= 40.80 (mm) 
Discharge Q=1.73 (1/s) 

Slope S=0.001499 
Mean Shear Stress = 0.379 (N/m2) 

Bed Shear Stress 
0 

t m 0.380 (N/m2) 
b 

Mean Velocity V=0.316 (m/s) 
Normal Depth Y= 36.96 (mm) 

(Y+E)/D = 0.50 

Tempe-ature T= 20.5 'C 

u 02 .2 - -{ ( /h) y y u u u u . 09 Y 

0 
max 

u 

(mm) (m/s) (m/s) (%) (m/s) x5.75 

3.0 0.081 0.279 0.036 12.9 0.122 6.13 
6.0 0.162 0.305 0.034 11.1 0.096 4.40 
9.0 0.244 0.314 0.029 9.2 0.087 3.39 

15.0 0.406 0.339 0.030 8.8 0.062 2.12 
22.0 0.595 0.372 0.027 7.3 0.029 1.16 
30.0 0.812 0.392 0.020 5.1 0.009 0.38 
35.0 0.947 0.401 0.020 5.0 0.000 0.00 

LDA Regression Output: 
Constant 0.0103 Shear. Velocity Std Err of Y Est 0.0097 
R Squared 0.9586 u* 0.0195 (m/s) 
No. of Observations 6.0000 
Degrees of Freedom 4.0000 

Bed Shear Stress 
X Coefficient(s) 0.019501 

x=0.380 (N/m2) Std Err of Coef. 0.002025 b 

E-11 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
(17-12-89) S4 

Flume Diameter D= 154 (mm) 

Bed Thickness E= 40.80 (mm) 

Bed Thickness E= 40.80 (mm) 
Discharge Q=4.26 (u/s) 
Slope S=0.001361 

Mean Shear Stress 'r = 0.500 (N//m2) 
0 

Bed Shear Stress -rbm-2 0.453 (N//m2) 

Mean Velocity V=0.395 (m/s) 

Normal Depth Y= 72.79 (mm) 

(Y+E)/D = 0.74 

Temperature T= 19 - 20.4 'C 

u '2 '2 - -lo ( /n) Y Y u u u u r g 
_- Y 

ax w 

(mm) o (m/s) (m/s) (X) (m/s) x5.75 

3.0 0.041 0.331 0.043 13.0 0.142 7.48 
6.0 0.082 0.361 0.039 10.8 0.112 5.75 
9.0 0.124 0.383 0.039 10.2 0.090 4.74 

15.0 0.206 0.413 0.035 8.5 0.060 3.46 
25.0 0.343 0.436 0.030 6.9 0.037 2.19 
35.0 0.481 0.473 0.017 3.6 0.000 1.35 
50.0 0.687 0.464 0.018 3.9 0.009 0.46 
60.0 0.824 0.452 0.023 5.1 0.021 0.00 

Regression Output: 
Constant -0.0248 Shear- Velocity 

Std Err of Y Est 0.0070 
u=0.0242 (m/s) 

R Squared 0.9811 
No. of Observations 5.0000 
Degrees of Freedom 3.0000 Bed Shea S res 
X Coefficient(s) 0.024193 TDB 0.585 (N/m2) 
Std Err of Coef. 0.001938 

E-12 



VELOCITY AND TURBULENCE INTENSITY PROFILES 
Channel of circular cross-section 
(18-12-89) S5 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 
Discharge Q=2.08 (1/s) 

Slope S=0.002195 
Mean Shear Stress t = 0.539 (N/m2) 
Bed Shear Stress 

o 
T = 0.809 (N/m2) 

bm 
Maw Velocity V=0.396 (m/s) 
Normal Depth Y = 35.49 (mm) 

o 
(Y+E)/D = 0.50 

Temperature T= 18.7 - 19.2 C° 

u .Z _ '2 /'5' -L h y y U U U og(y/ ) 
_ Y 

max U 

(mm) o (m/s) (m/s) (X) (m/s) x5.75 

3.0 0.085 0.359 0.045 12.5 0.146 5.91 
6.0 0.169 0.387 0.042 10.9 0.118 4.18 

10.0 0.282 0.425 0.038 8.9 0.080 2.90 
15.0 0.423 0.450 0.039 8.7 0.055 1.89 
25.0 0.704 0.491 0.030 6.1 0.014 0.62 
32.0 0.902 0.505 0.021 4.2 0.000 0.00 

Regression Output: 
Constant -0.0012 
Std Err of Y Est 0.0022 Shear Velocity 
R Squared 0.9984 

U-0.0284 (m/s) No. of Observations 5.0000 
Degrees of Freedom 3.0000 

X Coefficient(s) 0.028439 Bed S hear Stress 

Std Err of Coef. 0.000652 T = 0.809 (N/m2) 
ba 

E-13 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
(19-12-89) S6 

Flume Diameter D= 154 (mm) 

Bed Thickness E= 40.80 (mm) 
Discharge Q=5.74 (1/s) 
Slope S=0.002196 

Mean Shear Stress 'c = 0.814 (N//m2) 

Bed Shear Stress r = 1.058 (N//m2) 
bm 

Mean Velocity V=0.521 (m/s) 
Normal Depth Y = 74.68 (mm) 

o 
(Y+E )/D = 0.75 

Temperature T= 18.2 - 19.8 'C 

u - '2 '2 -Lo ( /h) yy u u u u g y 
max U 

(mm) (m/s) (m/s) (X) (m/s) x5.75 

3.0 0.040 0.426 0.055 12.9 0.194 7.03 
6.0 0.080 0.476 0.048 10.1 0.144 5.29 

10.0 0.134 0.494 0.054 10.9 0.126 4.02 
15.0 0.201 0.542 0.049 9.0 0.078 3.01 
25.0 0.335 0.583 0.036 6.2 0.037 1.73 
35.0 0.469 0.613 0.030 4.9 0.007 0.89 
50.0 0.669 0.620 0.022 3.5 0.000 0.00 
60.0 0.803 0.603 0.024 4.0 0.017 -0.46 

Regression Output: 
Constant -0.0188 
Std Err of Y Est 0.0100 Shear Velocity 
R Squared 0.9777 

u=0.0325 (m/s) No. of Observations 5.0000 
Degrees of Freedom 3.0000 

X Coefficient(s) 0.032530 Bed Shea r Stress 

= 1.058 (N/m2) Std Err of Coef. 0.002834 c bm 

E-14 



VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
(20-12-89) S7 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 
Discharge Q=2.57 (1/s) 
Slope S=0.003507 

Mean Shear Stress t = 0.849 (N/m2) 
Bed Shear Stress 

o 
T m 1.063 (N/m2) 

b 
Mean Velocity V=0.500 (m/s) 
Normal Depth Y= 34.81 (mm) 

(Y+E)/D = 0.49 

Temperature T= 19 - 20.3 *C 

u '2 - '2 -L ( /h) yy u u u u og y 
_ Y 

max u 
o (m/s) (mm) (m/s) (%) (m/s) x5.75 

3.0 0.086 0.535 0.059 11.0 0.173 5.29 
8.0 0.230 0.612 0.049 8.0 0.096 2.85 

15.0 0.431 0.664 0.049 7.4 0.044 1.28 
25.0 0.718 0.708 0.028 4.0 0.000 0.00 

Regression Output: 
Constant 0.0015 Shear , Ve locity Std Err of Y Est 0.0019 
R Squared 0.9996 u =0 . 0326 (m/s) 
No. of Observations * 4.0000 
Degrees of Freedom 2.0000 

Bed Shea r Stress 
X Coefficient(s) 0.032609 2 
Std Err of Coef. 0.000485 tbm= ) 1.063 (N/m ) 
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VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
(21-12-89) S8 

Flume Diameter D= 154 (mm) 

Bed Thickness E= 40.80 (mm) 
Discharge Q=8.21 (1/s) 

Slope S=0.003500 

Mean Shear Stress 'r = 1.306 (N/m2) 

Bed Show Stress 
0 

t = 1.522 (N/m2) 
bm 

Mean Velocity V=0.729 (m/s) 
Normal Depth Y= 76.37 (mm) 

(Y+E)/D = 0.76 

Teweratire T= 19.6 - 20.9 `C 

- 'Z 'Z -L /h) ( y yu u u u u og y Aax 
U 

(mm) 0 (M/S) (%) (m/s) (m/s) x5.75 

3.0 0.039 0.607 0.073 12.0 0.250 6.47 
10.0 0.131 0.687 0.063 9.2 0.170 3.46 
15.0 0.196 0.749 0.063 8.4 0.108 2.45 
25.0 0.327 0.802 0.063 7.9 0.055 1.17 
40.0 0.524 0.857 0.036 4.2 0.000 0.00 
55.0 0.720 0.846 0.031 3.7 0.011 -0.80 
70.0 0.917 0.810 0.039 4.8 0.047 -1.40 

Regression Output : 
Constant 0.0108 
Std Err of Y Est 0.0171 Shear Velocity 
R Squared 0.9770 

u-0 . 0390 (m/s) 
No. of Observations 5.0000 
Degrees of Freedom 3.0000 

X Coefficient(s) 0.039013 Bed Se Strom 
Std Err of Coef. 0.003458 tbm = 1.522 (N/m2) 

E-16 



VELOCITY AND TURBULENCE INTENSITY PROFILES 
Channel of circular cross-section 
LASER DOPPLER ANEMOtETRY SF1 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 

Discharge Q=6.84 (1/s) 

Slope S=0.002013 

Mean Shear Stress r = 0.6395 (N/m2) 

Bed SF-tear Stress 
0 

r 0.7739 (N/m2) 
b 

Mean Velocity V=0.466 (m/s) 

Normal Depth Y= 113.2 (mm) 

(Y+E)/D = 1.00 (full pipe flow) 

Temperature T= 

u '2 '2 - -% /h) ( y y u u U U y g 
wax u 

(mm) 0 (m/s) (m/s) (X) (r/s) x5.75 

4 0.035 0.379 0.045 11.87 0.205 6.76252 
9 0.080 0.420 0.047 11.19 0.164 4.73748 

15 0.133 0.441 0.043 9.75 0.143 3.46184 
25 0.221 0.496 0.039 7.86 0.088 2.18621 
35 0.309 0.524 0.033 6.30 0.060 1.34598 
45 0.398 0.543 0.033 6.08 0.041 0.71840 
60 0.530 0.584 0.022 3.77 0.000 0.00000 
78 0.689 0.548 0.031 5.66 0.036 -0.65517 

Regressi on Output: Shear ve locity 
Constant 0.027756 
Std Err of Y Est 0.011934 u = 0.0 278 (m/s) 
R Squared * 0.972200 
No. of Observations 6 
Degrees of Freedom 4 Bed Shea r Stress 

X Coeffi cient(s)0.027818 Irbw =0 . 7739 (N/Im 2) 
Std Err of Coef. 0.002352 
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VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
LASER DOPPLER ANEMOIETRY SF2 

Flume Diameter D= 154 (mm) 
Bed Thickness E= 40.80 (mm) 
Discharge Q= 12.64 (1/s 
Slope S=0.0053 

Mean Shea r Stress 'rý 1.692 (N/m 2) 

Bed Shear Stress t = 2.108 (N/m 2) 
bm 

Mean Velocity V=0.861 (m/s) 
Normal Depth Y = 113.2 (mm) 

o 
(Y+E)/D = 1.00 

Temperature T= 18.9 - 19.4 

/: 

.2 - /h) -LO ( y y u V uu U u g y 
_ Y U ýnax 

(mm) o (m/s) (m/s) (X) (m/s) x5.75 

3.0 0.027 0.694 0.075 10.81 0.321 7.4809 
6.0 0.053 0.767 0.077 10.04 0.248 5.7500 

10.0 0.088 0.786 0.083 10.56 0.229 4.4744 
14.0 0.124 0.843 0.071 8.42 0.172 3.6341 
18.0 0.159 0.880 0.062 7.05 0.135 3.0066 
24.0 0.212 0.911 0.062 6.81 0.104 2.2882 
30.0 0.265 0.938 0.067 7.14 0.077 1.7309 
40.0 0.353 1.003 0.060 5.98 0.012 1.0125 
65.0 0.574 1.015 0.047 4.63 0.000 -0.1999 
85.0 0.751 0.923 0.065 7.04 0.092 -0.8698 

Repig-essicn Output: 
constant -0.00 Std Err of Y Est 0.019 
R Squared 0.968 
No. of Observations 8 
Degrees of Freedom 6 

Shear velocity 

u* = 0.0459 (m/s) 

Bed 9-iear Stress 

X CoefficienO. 0459 
Std Err of CO. 0033 

tbm = 2.1077 (N/m2) 
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VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
LASER DOPPLER ANEMOhETRY SF3 

Flume Diameter D= 154 (mm) 

Bed Thickness E= 40.80 (mm) 

Discharge Q=9.7 (1/s ) 

Slope S=0.003572 

Mean Shea r Stress ti = 1.1344 (N/m 2) 

Bed Shear Stress 
0 

'rbw 1.4745 (N/m 2) 

Mean Velocity V=0.661 (m/s ) 
Normal Depth Y= 113.2 (mm) 

0 
(Y+E)/D = 1.00 

Temperature T= 17.4 = 18.6 

2 '2 - -L /h) ( y y u u u u u o9 y 
_ Y u 

ýnax 

(mm) o (M/S) (m/s) (Z) (m/s) x5.75 

3.0 0.027 0.536 0.058 10.82 0.259 7.48092 
6.0 0.053 0.590 0.058 9.83 0.205 5.75000 

10.0 0.088 0.634 0.056 8.83 0.161 4.47437 
14.0 0.124 0.643 0.060 9.33 0.152 3.63413 
18.0 0.159 0.675 0.058 8.59 0.120 3.00655 
24.0 0.212 0.721 0.061 8.46 0.074 2.28816 
30.0 0.265 0.744 0.058 7.80 0.051 1.73092 
40.0 0.353 0.795 0.035 4.40 0.000 1.01252 
65.0 0.574 0.786 0.035 4.45 0.009 -0.19988 
83.5 0.738 0.741 0.047 6.34 0.054 -0.82533 

Regression U 
Constant 
Std Err of Y Est 
R Squared 
No. of Observations 
Degrees of Freedom 

xtput: 
-0.01325 
0.017689 
0.962487 

8 
6 

Shea- velocity 

X Coefficient(s)0.038398 
Std Err of Coef. 0.003094 

u* = 0.03839869 (m/s) 

Bed Shea- Stress 

tbm = 1.4745 (N/m2) 
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VELOCITY AND TURBULENCE INTENSITY PROFILES 

Channel of circular cross-section 
(31-1-90) SF4 

Flume Diameter D= 154 (mm) 

Bed Thickness E= 40.80 (mm) 

Discharge Q= 16.12 (1/s) 

Slope S=0.008876 

Mean Shear Stress tý 2.8187 (N/m2) 

Bed Shear Stress ti 
0 

3.5132 (N/m2) 
D 

Mean Velocity V=1.098 (m/s) 
Normal Depth Y= 36.58 (mm) 

0 
(Y+E)/D = 1.00 

Temperature T= 18.3 - 19.0 0C 

- 
2 '2 /n) -L ( y yu u u u u og y 

- 
wax 

(tun) c (m/s) (m/s) (X) (in/s) x5.75 

3 0.027 0.872 0.092 10.55 0.461 7.4809 
6 0.053 0.946 0.095 10.04 0.387 5.7500 

10 0.088 1.024 0.095 9.28 0.309 4.4744 
14 0.124 1.085 0.100 9.22 0.248 3.6341 
18 0.159 1.117 0.097 8.68 0.216 3.0066 
24 0.212 1.181 0.096 8.13 0.152 2.2882 
30 0.265 1.219 0.089 7.30 0.114 1.7309 
40 0.353 1.293 0.063 4.87 0.040 1.0125 
65 0.574 1.333 0.054 4.05 0.000 -0.1999 
85 0.751 1.234 0.084 6.81 0.099 -0.8698 

Regression Outpu t: 
Constant 0.032389 Ster velocity Std Err of Y Est 0.014362 
R Squared = 0.987327 u 0.0593 (m/s) 
No. of Observations * 6 
Degr ees of Freedom 4 Bed Sh ear Str 

X Coefficient(s) 0.059272 tba = 3.5132 (N/m2) 
Std Err of Coef. 0.003357 
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APPENDIX F 

INITIATION OF EROSION DATA 
NON-COHESIVE SEDIMENT 



TABLE F1: INITIATION OF EROSION EXPERIMENTS 

Sediment Size (d) 0.50 (mm) 
Flume Diameter (D) 154 (mm) 
Sediment Thickness (E) 18.4 (mm) 
Density (p) 2609 (Kg/m3) 
Bed width (B) 99.9 (mm) 

S Y (Yo+E) Q Y T g C 
o o D o b o v 

(mm) (i/s) (N/m2) (N/m2) (g/min) 

1 0.001076 15.80 0.22 0.26 0.135 0.1511 0.00000 0.00E+00 
2 0.000937 26.00 0.29 0.56 0.177 0.2513 0.00094 1.07E-08 
3 0.000937 32.10 0.33 0.88 0.208 0.2451 0.00266 1.93E-08 
4 0.000937 37.90 0.37 1.18 0.236 0.2808 0.25056 1.35E-06 
5 0.001364 15.28 0.22 0.27 0.166 0.1889 0.00058 1.35E-08 
6 0.001228 20.30 0.25 0.43 0.190 0.2214 0.00029 4.33E-09 
7 0.001330 23.87 0.27 0.59 0.234 0.2823 0.00816 8.89E-08 
8 0.001351 33.93 0.34 1.10 0.317 0.3980 0.05248 3.04E-07 
9 0.001356 34.31 0.34 1.12 0.313 0.4046 0.00055 3.12E-09 

10 0.002096 10.12 0.19 0.17 0.179 0.1895 0.00180 6.66E-08 
11 0.002156 14.40 0.21 0.33 0.250 0.2793 0.01727 3.33E-07 
12 0.002073 17.95 0.24 0.51 0.290 0.3198 0.17224 2.16E-06 
13 0.002073 21.20 0.26 0.68 0.332 0.3733 1.34010 1.26E-05 

u Re x u Re T 
* o *b *b b 

(m/s) pg Ss-1 d (m/s) pg Ss-1 d 

1 0.0116 5.19 0.0171 0.0123 5.49 0.0192 
2 0.0133 5.94 0.0224 0.0159 7.08 0.0319 
3 0.0144 6.45 0.0264 0.0157 6.99 0.0311 
4 0.0154 6.86 0.0299 0.0168 7.48 0.0356 
5 0.0129 5.76 0.0211 0.0137 6.14 0.0239 
6 0.0138 6.15 0.0241 0.0149 6.64 0.0281 
7 0.0153 6.84 0.0297 0.0168 7.50 0.0358 
8 0.0178 7.95 0.0402 0.0199 8.91 0.0505 
9 0.0177 7.90 0.0397 0.0201 8.98 0.0513 

10 0.0134 5.97 0.0227 0.0138 6.15 0.0240 
11 0.0158 7.06 0.0317 0.0167 7.46 0.0354 
12 0.0170 7.60 0.0367 0.0179 7.98 0.0405 
13 0.0182 8.13 0.0421 0.0193 8.63 0.0473 
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TABLE Fl: CONTINUATION 

V k$ kab 
(S8_ 1 gd 

(mm) (mm) 

1 0.64 1.28 1.5946 0.05299 0.05931 
2 0.77 2.15 1.9793 0.04591 0.05585 
3 0.23 0.93 2.4386 0.03543 0.04167 
4 0.17 0.87 2.7164 0.03264 0.03884 
5 0.86 1.66 1.7585 0.05622 0.06383 
6 0.66 1.57 1.9899 0.04770 0.05563 
7 0.70 1.86 2.2815 0.04512 0.05433 
8 0.59 2.10 2.8813 0.03867 0.04915 
9 0.60 2.17 2.8680 0.03873 0.04944 

10 0.18 0.36 1.7418 0.04951 0.05240 
11 0.53 1.03 2.2679 0.04960 0.05541 
12 0.20 0.51 2.7258 0.03924 0.04335 
13 0.19 0.57 3.0176 0.03678 0.04137 
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TABLE F2: INITIATION OF EROSION EXPERIMENTS 

Sediment Size (d) 0.89 (mm) 
Flume Diameter (D) 154 (mm) 
Sediment Thickness (E) 20.0 (mm) 
Density (p) 2593 3 (Kg/m) 
Bed width (B) 103.5 (mm) 

So Yo (Yo+E) Q g Cv 
D o o 

(mm) (1/s) (N/m2) (N/m2 ) (g/min) 

1 0.001512 34.82 0.36 0.96 0.3591 0.5246 0.000000 0.00E+00 
2 0.001556 38.66 0.38 1.21 0.3990 0.5902 0.000748 3.98E-09 
3 0.001639 45.05 0.42 1.65 0.4686 0.7144 0.345144 1.35E-06 
4 0.001653 49.95 0.45 2.01 0.5068 0.7857 2.896233 9.25E-06 
5 0.002051 54.53 0.48 2.39 0.6660 1.1189 8.378691 2.26E-05 
6 0.001728 31.80 0.34 0.94 0.3833 0.5344 0.001198 8.21E-09 
7 0.002044 40.18 0.39 1.49 0.5391 0.8091 0.410777 1.78E-06 
8 0.002226 43.31 0.41 1.69 0.6191 0.9737 2.133009 8.09E-06 
9 0.002282 47.43 0.44 2.02 0.6758 1.0863 8.009409 2.55E-05 

10 0.002279 23.90 0.29 0.65 0.4043 0.5357 0.000000 0.00E+00 
11 0.002323 30.35 0.33 1.03 0.4971 0.6857 0.013738 8.56E-08 
12 0.002388 32.59 0.34 1.16 0.5394 0.7631 0.138441 7.64E-07 
13 0.002468 38.76 0.38 1.60 0.6342 0.9343 5.883867 2.37E-05 

t u Re t u Re 
o * b 

pg Ss-1)d (m/s) pg(Ss-1 d (m/s) 

1 0.0258 0.0189 15.06 0.0377 0.0189 14.99 
2 0.0287 0.0200 15.87 0.0425 0.0195 15.51 
3 0.0337 0.0216 17.20 0.0514 0.0206 16.33 
4 0.0365 0.0225 17.89 0.0565 0.0213 16.94 
5 0.0479 0.0258 20.51 0.0805 0.0220 17.48 
6 0.0276 0.0196 15.56 0.0384 0.0183 14.57 
7 0.0388 0.0232 18.45 0.0582 0.0198 15.71 
8 0.0445 0.0249 19.77 0.0700 0.0203 16.11 
9 0.0486 0.0260 20.66 0.0781 0.0209 16.63 

10 0.0291 0.0201 15.98 0.0385 0.0169 13.42 
11 0.0358 0.0223 17.72 0.0493 0.0181 14.37 
12 0.0388 0.0232 18.46 0.0549 0.0185 14.68 
13 0.0456 0.0252 20.01 0.0672 0.0195 15.52 
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TABLE F2: CONTINUATION 

V ks ksb 
s1gA 

alb 

(mm) (mm) ` 

1 3.37 11.74 1.8069 0.06378 0.09323 
2 2.69 10.41 2.0120 0.05659 0.08372 
3 2.24 10.13 2.3037 0.05054 0.07708 
4 1.90 9.60 2.5074 0.04651 0.07211 
5 2.95 16.93 2.6947 0.05261 0.08843 
6 2.41 7.78 1.9485 0.05780 0.08062 
7 2.61 10.64 2.3699 0.05491 0.08261 
8 3.26 14.48 2.4802 0.05823 0.09160 
9 2.96 14.55 2.6670 0.05464 0.08785 

10 2.76 7.11 1.8552 0.06691 0.08867 
11 2.18 6.85 2.2588 0.05618 0.07751 
12 2.37 7.95 2.3520 0.05649 0.07993 
13 2.16 8.59 2.6521 0.05173 0.07624 
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TABLE F3: INITIATION OF EROSION EXPERIMENTS 

Sediment Size (d) 1.44 (mm) 
Flume Diameter (D) 154 (mm) 
Sediment Thickness (E) 18.4 (mm) 
Density (p) 2550 (Kg/m) 3 
Bed width (B) 99.9 (mm) 

S Y (Yo+E) Q Ir 2 g C 
o o D 0 b o v 

(mm) (1/s) (N/m2) (N/m2) (g/min) 

1 0.002126 25.22 0.28 0.82 0.392 0.4869 0.00048 3.84E-09 
2 0.002001 36.22 0.35 1.52 0.487 0.6331 0.00635 2.73E-08 
3 0.002032 40.09 0.38 1.83 0.533 0.7029 0.03862 1.38E-07 
4 0.001981 43.73 0.40 2.11 0.553 0.7339 0.08037 2.49E-07 
5 0.002148 47.28 0.43 2.44 0.633 0.8777 0.45165 1.21E-06 
6 0.003459 10.78 0.19 0.27 0.312 0.3366 0.00000 0.00E-00 
7 0.003505 16.47 0.23 0.53 0.455 0.6235 0.00158 1.95E-08 
8 0.003541 20.65 0.25 0.65 0.555 0.7183 0.02911 2.93E-07 
9 0.003510 23.20 0.27 0.94 0.605 0.7455 0.10633 7.39E-07 

10 0.003509 25.88 0.29 1.13 0.660 0.8304 0.28986 1.68E-06 

u Re T u Re T 
o yýb e 

(m/s) pg(Ss-1)d (m/s) pg Ss-1 d 

1 0.0198 25.44 0.0179 0.0221 28.37 0.0222 
2 0.0221 28.38 0.0223 0.0252 32.35 0.0289 
3 0.0231 29.68 0.0244 0.0265 34.09 0.0321 
4 0.0235 30.22 0.0252 0.0271 34.83 0.0335 
5 0.0252 32.34 0.0289 0.0296 38.09 0.0401 
6 0.0177 22.73 0.0143 0.0183 23.59 0.0154 
7 0.0213 27.44 0.0208 0.0250 32.10 0.0285 
8 0.0236 30.29 0.0254 0.0268 34.46 0.0328 
9 0.0246 31.62 0.0276 0.0273 35.10 0.0341 

10 0.0257 33.02 0.0301 0.0288 37.05 0.0379 
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TABLE F3: CONTINUATION 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

k: k: 
e 

(mm) (mm) 

vaa 
ASs_ 1) gd 

0.79 2.21 1.7943 0.04420 0.05497 
0.56 2.14 2.2086 0.03658 0.04756 
0.51 2.15 2.3685 0.03484 0.04597 
0.44 2.05 2.4672 0.03317 0.04405 
0.57 2.81 2.6109 0.03393 0.04708 
0.34 0.58 1.5137 0.04906 0.05287 

1.8769 
2.13 5.23 1.7841 0.06343 0.08210 
0.71 1.89 2.2622 0.04298 0.05300 
0.72 2.08 2.3968 0.04158 0.05236 
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TABLE F4: INITIATION OF EROSION EXPERIMENTS 

Sediment Size (d) 1.60 (mm) 
F lume Diameter (D) 154 (mm) 
S ediment Thickness (E) 20.0 (mm) 
Density (p) 2602 (Kg/m) 3 
Bed width (B) 103.5 (mm) 

S 
o 

Y 
o 

(Yo+E) Q ti bg D o " 
(mm) (1/s) (N/m2) (N/m2) (g/min) 

1 0.001449 81.48 0.66 4.67 0.5852 0.8890 0.11505 
2 0.001531 77.98 0.64 4.20 0.6066 1.0005 0.06318 
3 0.001515 75.70 0.62 3.96 0.5919 0.9785 0.05294 
4 0.001467 74.19 0.61 3.86 0.5679 0.9115 0.05969 
5 0.001367 55.73 0.49 2.43 0.4501 0.6588 - 
6 0.001396 50.28 0.46 2.00 0.4299 0.6347 - 
7 0.001799 41.93 0.40 1.71 0.4890 0.6905 0.00010 
8 0.001993 46.68 0.43 2.15 0.5837 0.8523 0.02152 
9 0.001841 62.85 0.54 3.48 0.6517 0.9804 0.08677 

10 0.002299 57.00 0.50 3.00 0.7674 1.2441 0.06078 
11 0.002110 35.89 0.36 1.46 0.5123 0.6944 0.00000 
12 0.002469 32.20 0.34 1.28 0.5526 0.7478 0.00578 
13 0.002546 34.89 0.36 1.45 0.6055 0.8468 0.01239 
14 0.002529 37.81 0.38 1.62 0.6381 0.9202 0.01184 
15 0.002511 41.30 0.40 1.92 0.6752 0.9814 0.09055 

U Re t U. Rib T 
* o *b *b b 

(m/s) pg Ss-1 d (m/s) pg Ss-1 d 

1 0.0242 34.56 0.0233 0.0298 42.59 0.0354 
2 0.0246 35.18 0.0241 0.0316 45.19 0.0398 
3 0.0243 34.76 0.0235 0.0313 44.69 0.0389 
4 0.0238 34.04 0.0226 0.0302 43.13 0.0363 
5 0.0212 30.31 0.0179 0.0257 36.67 0.0262 
6 0.0207 29.62 0.0171 0.0252 35.99 0.0253 
7 0.0221 31.59 0.0195 0.0263 37.54 0.0275 
8 0.0242 34.51 0.0232 0.0292 41.71 0.0339 
9 0.0255 36.47 0.0259 0.0313 44.73 0.0390 

10 0.0277 39.57 0.0305 0.0353 50.39 0.0495 
11 0.0226 32.33 0.0204 0.0264 37.64 0.0276 
12 0.0235 33.58 0.0220 0.0273 39.07 0.0298 
13 0.0246 35.15 0.0241 0.0291 41.57 0.0337 
14 0.0253 36.09 0.0254 0.0303 43.34 0.0366 
15 0.0260 37.12 0.0269 0.0313 44.75 0.0390 

C 
V 

1.58E-07 
9.64 E-08 
8.56E-08 
9.91E-08 

3.75E-10 
6.41 E-08 
1.60E-07 
1.30E-07 
0.00E+00 
2.89E-08 
5.47E-08 
4.67E-0S 
3.02E-07 
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TABLE F4: CONTINUATION 

ks kv 
sb s- 1)8 b 

(mm) (mm) ' 

1 0.39 3.55 2.5401 0.02886 0.04386 
2 0.84 7.28 2.3898 0.03378 0.05573 
3 0.93 7.82 2.3243 0.03485 0.05762 
4 0.80 6.41 2.3134 0.03371 0.05414 
5 0.81 4.58 1.9905 0.03611 0.05288 
6 1.16 5.88 1.8387 0.04044 0.05971 
7 1.12 4.75 1.9277 
8 1.12 5.33 2.1523 
9 0.67 4.43 2.4935 

10 1.62 9.95 2.3937 
11 1.02 3.74 1.9731 0.04216 0.05714 
12 1.29 4.32 1.9505 0.04626 0.06259 
13 1.51 5.48 2.0179 0.04736 0.06626 
14 1.70 6.67 2.0628 0.04800 0.06923 
15 1.41 6.04 2.2037 0.04180 0.06423 
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TABLE F5: INITIATION OF EROSION EXPERIMENTS 

Sediment Size (d) 2.00 (mm) 
Flume Diam eter (D) 154 (mm) 
S ediment Thicknes s (E) 18.4 (mm) 
D ensity (p) 2507 (Kg/m) 3 

B ed width (B) 99.9 (mm) 

S Y (Yo+E) Q t t g C 
o o D o b o v 

(mm) (11s) (N/m2) (N/m2) (g/min) 

1 0.003068 14.13 0.21 0.38 0.3502 0.3946 0.00000 0.00E+00 
2 0.003732 25.16 0.28 1.03 0.6860 0.8737 0.00760 4.91E-08 
3 0.003587 30.26 0.32 1.43 0.7619 0.9912 0.06952 3.23E-07 
4 0.003804 22.27 0.26 0.80 0.6341 0.8047 0.00447 3.71 E-08 
5 0.003762 28.76 0.31 1.26 0.7682 1.0181 0.04180 2.21 E-07 
6 0.003673 32.81 0.33 1.59 0.8300 1.1205 0.24999 1.05E-06 
7 0.003770 35.13 0.35 1.81 0.8971 1.2300 0.77081 2.83E-06 
8 0.002043 41.58 0.39 1.85 0.5498 0.7416 0.00271 9.74E-09 
9 0.002016 46.23 0.42 2.28 0.5847 0.7848 0.00798 2.33E-08 

10 0.002055 53.83 0.47 2.91 0.6602 0.9724 0.04356 9.95E-08 
11 0.002796 39.89 0.38 1.62 0.7306 1.2446 0.00000 0.00E+00 
12 0.003576 33.90 0.34 1.43 0.8284 1.3094 0.00356 1.66E-08 
13 0.003226 40.46 0.38 1.94 0.8516 1.4424 0.00559 1.91E-08 
14 0.003079 46.84 0.42 2.43 0.9010 1.0397 0.01043 2.85E-08 
15 0.001830 55.48 0.48 2.25 0.5992 1.1029 0.00030 8.86E-10 
16 0.001671 67.16 0.56 3.05 0.6138 1.1268 0.00023 5.01E-10 
17 0.001616 73.73 0.60 3.58 0.6236 1.3071 0.00121 2.25E-09 
18 0.001561 90.24 0.71 4.56 0.6563 1.7879 0.00108 1.57E-09 
19 0.001713 112.48 0.85 5.62 0.7444 1.1507 0.00203 2.40E-09 
20 0.002536 46.91 0.42 2.07 0.7429 1.2148 0.00066 2.12E-09 
21 0.002427 62.46 0.53 3.20 0.8548 1.5454 0.00180 3.74E-09 
22 0.002143 85.53 0.67 4.96 0.8840 1.7552 0.00618 8.28E-09 
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TABLE F5: CONTINUATION 

U Re t u Re t 
* o xe b 

(m/s) pg(Ss-1 d (m/s) pg(Ss-1 d 

1 0.0187 37.20 0.0118 0.0199 39.49 0.0134 
2 0.0262 53.44 0.0232 0.0296 60.31 0.0296 
3 0.0276 58.07 0.0258 0.0315 66.23 0.0335 
4 0.0252 50.78 0.0215 0.0284 57.20 0.0272 
5 0.0277 56.89 0.0260 0.0319 65.49 0.0344 
6 0.0288 59.35 0.0281 0.0335 68.95 0.0379 
7 0.0300 61.84 0.0304 0.0351 72.41 0.0416 
8 0.0234 41.87 0.0186 0.0272 48.63 0.0251 
9 0.0242 43.18 0.0198 0.0280 50.03 0.0266 

10 0.0257 45.88 0.0223 0.0312 55.68 0.0329 
11 0.0288 51.40 0.0280 0.0353 63.00 0.0421 
12 0.0292 52.11 0.0288 0.0362 64.62 0.0443 
13 0.0300 53.60 0.0305 0.0380 67.82 0.0488 
14 0.0245 43.71 0.0203 0.0322 57.58 0.0352 
15 0.0248 44.24 0.0208 0.0332 59.30 0.0373 
16 0.0250 44.59 0.0211 0.0336 59.94 0.0381 
17 0.0256 45.75 0.0222 0.0362 64.56 0.0442 
18 0.0273 48.72 0.0252 0.0423 75.51 0.0605 
19 0.0270 48.27 0.0247 0.0339 60.57 0.0389 
20 0.0273 48.67 0.0251 0.0349 62.24 0.0411 
21 0.0292 52.21 0.0289 0.0393 70.20 0.0523 
22 0.0297 53.09 0.0299 0.0419 74.81 0.0594 
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TABLE F5: CONTINUATION 

ks kv 
ab S8- 1)gd 

(mm) (mm) 

1 0.66 1.21 1.3612 0.05023 0.05662 
2 1.27 3.28 1.9525 0.04882 0.06219 
3 1.01 2.98 2.1871 0.04284 0.05575 
4 1.74 4.14 1.7343 0.05672 0.07200 
5 1.52 4.37 2.0567 0.04954 0.06566 
6 1.32 4.22 2.2268 0.04543 0.06133 
7 1.30 4.43 2.3462 0.04430 0.06076 
8 0.85 3.20 1.9759 0.03825 0.05159 
9 0.60 2.48 2.1491 0.03412 0.04581 
10 0.65 3.15 2.3113 0.03342 0.04696 
11 3.00 11.32 1.9280 0.06040 0.09077 
12 2.16 9.70 2.1324 0.05060 0.07782 
13 2.05 10.80 2.2636 0.04770 0.07637 
14 3.24 19.95 1.7272 0.05433 0.09427 
15 2.34 18.22 1.8917 0.04633 0.08328 
16 1.80 15.78 2.0058 0.04185 0.07564 
17 1.91 22.59 2.0733 0.04127 0.08222 
18 2.78 49.10 2.0944 0.04595 0.11041 
19 3.35 14.59 1.8132 0.06026 0.09493 
20 2.90 15.01 1.9274 0.05438 0.08893 
21 2.83 20.66 2.1541 0.04996 0.09032 
22 2.04 22.98 2.3802 0.04219 0.08379 
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TABLE F6: INITIATION OF EROSION EXPERIMENTS 

Sediment Size (d) 2.56 (mm) 
Flume Diameter (D) 154 (mm) 
Sediment Thickness (E) 20.0 (mm) 
Density (p) 2548 (Kg/m) 3 

Bed width (B) 103.5 (mm) 

S Y (Yo+E) Qt T g C 
o o D o b o v 

(mm) (1/s) (N/m2) (N/m2) (g/min) 

1 0.001350 46.45 0.43 1.76 0.394 0.5614 0.00000 0.00E+00 
2 0.001543 52.25 0.47 2.19 0.487 0.7426 0.00000 0.00E+00 
3 0.001646 59.93 0.52 2.88 0.567 0.8841 0.00000 0.00E+00 
4 0.001903 74.34 0.61 4.29 0.737 1.2390 0.00000 0.00E+00 
5 0.001763 105.08 0.81 6.54 0.761 1.4027 0.00010 1.00E-10 
6 0.001976 83.84 0.67 5.34 0.807 1.3681 0.00100 1.22E-09 
7 0.002136 92.78 0.73 6.39 0.903 1.5727 0.13594 1.39E-07 
8 0.002584 84.18 0.68 6.10 1.057 1.8411 0.00100 1.07E-09 
9 0.002711 82.69 0.67 5.95 1.101 1.9609 0.25798 2.84E-07 

10 0.002955 73.75 0.61 5.18 1.140 1.9954 0.36140 4.56E-07 
11 0.003098 78.55 0.64 5.90 1.231 2.1778 0.97332 1.08E-06 
12 0.003328 82.94 0.67 6.49 1.353 2.4872 1.77333 1.79E-06 
13 0.003924 60.91 0.53 4.00 1.364 2.4313 - - 
14 0.003853 66.18 0.56 4.50 1.404 2.5828 0.23635 3.43E-07 
15 0.003673 73.00 0.60 5.38 1.410 2.5935 0.73945 8.99E-07 
16 0.003690 76.08 0.62 5.76 1.445 2.6897 1.63896 1.86E-06 

u Re t u Re T 
* * o *b b *b 

(m/s) pg Ss-1) d (m/s) pg Ss-1 d 

1 0.0199 45.39 0.0101 0.0237 54.16 0.0144 
2 0.0221 50.46 0.0125 0.0273 62.29 0.0191 
3 0.0238 54.41 0.0146 0.0297 67.96 0.0228 
4 0.0272 62.06 0.0190 0.0352 80.46 0.0319 
5 0.0284 64.93 0.0208 0.0375 85.61 0.0361 
6 0.0276 63.07 0.0196 0.0370 84.54 0.0352 
7 0.0300 68.67 0.0232 0.0397 90.65 0.0405 
8 0.0322 73.62 0.0267 0.0429 98.08 0.0474 
9 0.0332 75.86 0.0283 0.0443 101.22 0.0505 

10 0.0338 77.19 0.0293 0.0447 102.10 0.0513 
11 0.0351 80.21 0.0317 0.0467 106.67 0.0560 
12 0.0368 84.09 0.0348 0.0499 113.99 0.0640 
13 0.0369 84.40 0.0351 0.0493 112.70 0.0626 
14 0.0375 85.65 0.0361 0.0508 116.16 0.0665 
15 0.0376 85.83 0.0363 0.0509 116.40 0.0667 
16 0.0380 86.89 0.0372 0.0519 118.54 0.0692 
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TABLE F6: CONTINUATION 

v ks kab 
/(Ss_ 1g 

1l 7lb 

(mm) (mm) 

1 1.03 4.75 1.4209 0.04005 0.05705 
2 1.36 7.27 1.5498 0.04168 0.06353 
3 1.11 6.94 1.7483 0.03803 0.05936 
4 1.04 8.67 2.0672 0.03559 0.05983 
5 0.69 9.60 2.2453 0.03111 0.05733 
6 0.76 7.42 2.2696 0.03228 0.05472 
7 0.66 7.53 2.4569 0.03079 0.05367 
8 0.83 8.45 2.5791 0.03266 0.05690 
9 1.02 10.32 2.3935 0.03449 0.06143 

10 1.26 10.98 2.5162 0.03713 0.06499 
11 1.10 10.42 2.6792 0.03528 0.06242 
12 1.20 12.57 2.7866 0.03585 0.06589 
13 2.72 19.02 2.3887 0.04919 0.08771 
14 2.68 20.87 2.4553 0.04801 0.08830 
15 1.86 16.50 2.6392 0.04165 0.07662 
16 1.76 16.59 2.7037 0.04064 0.07565 
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TABLE F7: INITIATION OF EROSION EXPERIMENTS 

Sediment Size (d) 2.90 (mm) 
Flume Diameter (D) 154 (mm) 
Sediment Thickness (E) 18.4 (mm) 
Density (p) 2548 3 (Kg/m ) 
Bed width (B) 99.9 (mm) 

S Y (Yo+E) Q 'r z g C 
o o D o b $ v 

(mm) (1/s) (N/m2) (N/m2) (g/min ) 

1 0.002095 69.98 0.57 4.46 0.787 1.2050 0.00000 0.00E+00 
2 0.002018 78.22 0.63 5.08 0.801 1.2836 0.00258 3.33E-09 
3 0.002083 85.86 0.68 5.91 0.861 1.4078 0.01831 2.03E-08 
4 0.002000 94.05 0.73 6.60 0.852 1.3974 0.01539 1.53E-08 
5 0.001992 104.22 0.80 7.45 0.865 1.4480 0.01704 1.50E-08 
6 0.003365 52.16 0.46 3.40 1.059 1.6148 0.02617 5.03E-08 
7 0.003110 46.65 0.42 2.80 0.908 1.3100 0.00038 8.96E-10 
8 0.003490 58.38 0.50 4.20 1.180 1.8420 0.16747 2.61E-07 
9 0.003394 58.92 0.50 4.21 1.154 1.8007 0.11495 1.79E-07 

10 0.003144 60.21 0.51 4.18 1.083 1.6980 0.18013 2.82E-07 
11 0.002880 63.85 0.53 4.50 1.028 1.5884 0.03015 4.38E-08 
12 0.004432 32.16 0.33 1.71 0.986 1.3629 0.03977 1.52E-07 
13 0.004419 32.15 0.33 1.68 0.983 1.3693 0.01397 5.43E-08 
14 0.003908 32.80 0.33 1.50 0.883 1.2808 0.00141 6.15E-09 
15 0.004216 41.95 0.39 2.71 1.142 1.6407 0.18053 4.36E-07 

u* Re to u*D Re 
*b 

to 

(m/s) pg Ss-1 d (m/s) pg Ss-1 d 

1 0.0280 72.63 0.0179 0.0347 89.88 0.0274 
2 0.0283 73.29 0.0182 0.0358 92.77 0.0292 
3 0.0293 75.96 0.0195 0.0375 97.15 0.0320 
4 0.0292 75.56 0.0193 0.0374 96.79 0.0317 
5 0.0294 76.15 0.0196 0.0381 98.53 0.0329 
6 0.0325 84.25 0.0241 0.0402 104.05 0.0367 
7 0.0301 78.01 0.0206 0.0362 93.72 0.0298 
8 0.0344 88.94 0.0268 0.0429 111.13 0.0418 
9 0.0340 87.96 0.0262 0.0424 109.88 0.0409 

10 0.0329 85.22 0.0246 0.0412 106.70 0.0386 
11 0.0321 83.01 0.0233 0.0399 103.20 0.0361 
12 0.0314 81.32 0.0224 0.0369 95.59 0.0310 
13 0.0314 81.19 0.0223 0.0370 95.81 0.0311 
14 0.0297 76.94 0.0201 0.0358 92.67 0.0291 
15 0.0338 87.50 0.0259 0.0405 104.88 0.0373 
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TABLE F7: CONTINUATION 

v 
j-c 

(mm) (mm) 

ýa 
D 

1 0.51 3.97 2.1678 0.03040 0.04656 
2 0.54 4.95 2.1909 0.03029 0.04853 
3 0.48 5.05 2.3162 0.02915 0.04771 
4 0.39 4.58 2.3619 0.02772 0.04550 
5 0.32 4.56 2.4249 0.02674 0.04476 
6 0.93 5.35 2.2942 0.03656 0.05577 
7 0.76 3.83 2.1414 0.03585 0.05176 
8 0.82 5.38 2.4949 0.03443 0.05375 
9 0.80 5.32 2.4755 0.03421 0.05338 

10 0.80 5.46 2.3980 0.03419 0.04282 
11 0.62 4.47 2.4212 0.03189 0.04929 
12 1.21 4.29 2.0089 0.04459 0.06161 
13 1.33 4.75 1.9734 0.04601 0.06409 
14 2.19 7.96 1.7182 0.05426 0.07882 
15 0.88 4.01 2.3429 0.03778 0.05428 
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TABLE F8: INITIATION OF EROSION EXPERIMENTS 

Sediment Size (d) 4.10 (mm) 
Flume Diam eter (D) 154 (mm) 
Sediment Thicknes s (E) 18.4 - 20 (nm) 
Density (p) 2479 (Kg/m ) 
Bed width (B) 99.9 (mm) 

S Yo (Yo+E) Q Ir 
C b 

g Cv 
o D l " 

(mm) (1/s) (N/m2) (N/m2) (9/min) 

1 0.002739 86.18 0.68 6.97 1.1329 1.7640 0.01754 1.69E-08 
2 0.002246 91.16 0.71 6.92 0.9472 1.4384 0.00254 2.47E-09 
3 0.002297 104.75 0.80 8.11 0.9978 1.6136 0.00010 8.29E-11 
4 0.003118 61.50 0.52 4.51 1.0883 1.5856 0.00010 1.49E-10 
5 0.003262 70.46 0.58 5.63 1.2297 1.8790 0.00215 2.57E-09 
6 0.003256 79.00 0.63 6.65 1.2989 2.0615 0.00847 8.56E-09 
7 0.004142 50.53 0.45 3.65 1.2759 1.8461 0.01945 3.58E-08 
8 0.004281 57.00 0.49 4.44 1.4261 2.1600 0.03668 5.56E-08 
9 0.004522 62.08 0.52 5.14 1.5869 2.5277 0.12538 1.64E-07 

10 0.004027 66.10 0.55 5.62 1.4656 2.2583 0.09740 1.17E-07 
11 0.004234 73.35 0.61 5.82 1.629 3.0195 0.01000 1.16E-08 
12 0.004166 83.31 0.67 7.18 1.697 3.2093 0.13207 1.24E-07 
13 0.003678 74.56 0.61 5.58 1.427 2.6362 0.01000 1.21E-08 
14 0.003792 85.65 0.69 7.01 1.561 3.0064 0.09199 8.82E-08 
15 0.003439 87.34 0.70 7.27 1.426 2.6064 0.00100 9.25E-10 
16 0.004111 102.53 0.80 9.52 1.772 3.5355 0.29435 2.08E-07 
17 0.004647 111.71 0.86 10.80 2.003 4.2772 1.44089 8.97E-07 

u Re Zo u*b Re 
*b 

tb 

(m/s) pg Ss-1 d (m/s) pg(Ss-1 d 

1 0.0337 123.22 0.0191 0.0420 153.75 0.0297 
2 0.0308 112.66 0.0159 0.0379 138.84 0.0242 
3 0.0316 115.64 0.0168 0.0402 147.05 0.0271 
4 0.0330 120.77 0.0183 0.0398 145.77 0.0267 
5 0.0351 128.37 0.0207 0.0433 158.68 0.0316 
6 0.0360 131.93 0.0218 0.0454 166.21 0.0347 
7 0.0357 130.76 0.0215 0.0430 157.29 0.0310 
8 0.0378 138.24 0.0240 0.0465 170.13 0.0363 
g 0.0398 145.83 0.0267 0.0503 184.05 0.0425 

10 0.0383 140.15 0.0246 0.0475 173.96 0.0380 
11 0.0404 147.76 0.0274 0.0549 201.16 0.0508 
12 0.0412 150.81 0.0285 0.0567 207.38 0.0540 
13 0.0378 138.27 0.0240 0.0513 187.96 0.0443 
14 0.0395 144.65 0.0263 0.0548 200.72 0.0506 
15 0.0378 138.23 0.0240 0.0511 186.89 0.0438 
16 0.0421 154.08 0.0298 0.0595 217.67 0.0595 
17 0.0448 163.84 0.0337 0.0654 239.41 0.0719 
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TABLE F8: CONTINUATION 

V ks kib 
s_ 1)g 

a 7ýb 

(mm) (mm) 8 

1 0.43 3.69 1.9240 0.02781 0.04331 
2 0.32 2.90 1.8074 0.02640 0.04009 
3 0.33 3.88 1.8593 0.02626 0.04247 
4 0.56 3.23 1.7902 0.03093 0.04507 
5 0.58 3.96 1.9220 0.03025 0.04624 
6 0.54 4.43 2.0106 0.02926 0.04644 
7 0.85 4.05 1.8058 0.03558 0.05148 
8 0.92 5.09 1.9157 0.03528 0.05345 
9 1.01 6.51 2.0161 0.03546 0.05649 

10 0.66 4.40 2.0565 0.03148 0.04850 
11 1.86 16.85 1.8887 0.04154 0.07700 
12 1.38 14.90 2.0418 0.03707 0.07010 
13 1.79 16.34 1.7789 0.04097 0.07572 
14 1.48 16.67 1.9373 0.03783 0.07285 
15 0.95 10.69 1.9711 0.03340 0.06106 
16 0.95 14.25 2.2179 0.03274 0.06535 
17 1.01 18.27 2.3425 0.03729 0.05325 

F-17 



APPENDIX G 

INITIATION OF EROSION DATA 
COHESIVE SEDIMENTS 



TABLE G-1: INITIATION OF EROSION EXPERIMENTS 

(SYNTHETIC SEWER SEDIMENT) 

(Laponite Clay-Sand-Water Mixtures) 

Laponite clay gel concentration 24 g/1 
154 mm diameter flume Ea 18.4 mm (smooth bed) 

Sand Clay Sand Density Crit. Sheer Stress 
size gel prop. P t 01 t 02 

(mm) % % (Kg/m3) (N/m2) (N/m2) 

0 100 1618 0.120 0.120 
20 80 1907 0.940 1.233 
25 75 1848 2.555 3.522 

0.36 30 70 1814 3.247 3.513 
35 65 1797 4.044 4.844 
40 60 1757 5.243 5.456 
60 40 1345 2.778 2.945 

0 100 1648 0.160 0.160 
20 80 1920 0.851 0.976 

0.53 30 70 1750 3.300 3.956 
40 60 1618 3.814 3.921 

0 100 1630 0.400 0.400 
15 85 1911 0.408 0.656 

0.89 20 80 1932 1.659 2.599 
30 70 1760 2.723 3.513 
40 60 1603 2.253 2.856 
60 40 1352 1.721 2.359 

0 100 1570 0.430 0.430 
15 85 1816 1.008 1.437 

1.44 20 80 1567 1.591 1.987 
40 60 1607 2.365 2.588 
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TABLE G-2: INITIATION OF EROSION EXPERIMENTS (SYNTHETIC 

SEWER SEDIMENT) 

(Laponite Clay-Sand-Water Mixtures) 

Sand size 90-150 um (0.12 mm) 
154 mm diameter flume E= 18.4 mm (smooth bed) 

Clay Clay Sand Density Crit. Shear Stress 
concent. prop. prop. P To t t02 

(S/l) % % (KS/m3) (N/m2) (N/m2) 

18 85.5 14.5 1103 1.082 1.428 
74.5 25.5 1191 1.428 1.740 
62.2 37.8 1312 1.485 1.747 
53.0 47.0 1418 2.097 2.541 
47.0 53.0 1480 2.194 2.463 
40.0 60.0 1688 1.959 2.225 

22 85.5 14.5 1121 1.976 2.317 
80.5 19.5 1157 2.028 2.544 
74.5 25.5 1209 2.156 - 
62.2 37.8 1308 2.714 3.568 
53.0 47.0 1408 3.053 3.916 
40.0 60.0 1606 3.300 3.699 
31.6 68.4 1744 3.146 3.486 

25 85.5 14.5 1112 2.159 2.494 
80.5 19.5 - 2.235 2.787 
74.5 25.5 1209 2.289 2.720 
62.2 37.8 1375 2.544 3.092 
50.0 50.0 1449 4.086 4.551 
40.0 60.0 1687 5.305 5.970 
30.0 70.0 1752 3.046 3.623 
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TABLE G-3', INITIATION OF EROSION EXPERIMENTS (SYNTHETIC 

SEWER SEDIMENT) 

(Laponite Clay-Sand-Water Mixtures) 

Sand size 600-1180 um (0.89 mm) 
154 mm diameter flume E- 18.4 mm (smooth bed) 

Clay Clay Sand Density Crit. Shear Stress 
conc. gel prop. P tot toe 

(g/1) % % (KS/m3) (N/rm2) (N/m2) 

0 100 1630 0.245 0.245 
15 85 1911 0.408 0.656 
20 80 1932 2.111 2.599 

24 30 70 1768 2.723 3.513 
40 60 1603 2.253 2.856 
60 40 1352 1.721 2.359 

0 100 1630 0.245 0.245 
20 80 1910 2.033 2.706 

27 30 70 1770 5.178 5.403 
40 60 1611 4.693 5.207 
50 50 1467 3.520 4.194 
60 40 1377 2.186 2.910 

0 100 1630 0.245 0.245 
20 80 1935 1.991 2.910 

30 30 70 1771 4.799 5.266 
35 65 1658 4.592 5.051 
40 60 1585 4.551 5.039 
50 50 1460 2.895 3.335 

0 100 1630 0.245 0.245 
20 80 1916 2.092 2.830 

33 30 70 1766 5.766 6.032 
40 60 1610 5.250 5.599 
50 50 1418 4.702 5.136 

36 30 70 1738 5.773 6.697 

40 30 70 1755 6.325 6.955 
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TABLE G-4: INITIATION OF EROSION EXPERIMENTS (SYNTHETIC 

SEWER SEDIMENT) 

(Laponite Clay-Sand-Water Mixtures) 

Sand size 1180-1700 um (1.44 mm) 
154 mm diameter flume E= 18.4 mm (smooth bed) 

Cla Clay Sand Density Cr it. Shear Stress 
y 

concent. prop. prop. P toi 
2 

TO2 
2 

(9/1) (Kg/m3 ) ) (N/m ) (N/R' 

0 100 1581 0.335 0.335 
20 80 1832 3.190 3.807 

30 25 75 1867 4.409 5.470 
30 70 1783 4.826 5.501 

40 60 1639 3.791 4.535 

50 50 1445 2.823 3.633 

33 30 70 1795 5.415 5.842 

36 30 70 1773 5.798 6.476 

40 30 70 1777 6.667 7.327 
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TABLE G-5: INITIATION OF EROSION EXPERIMENTS (SYNTHETIC 

SEWER SEDIMENT) 

(Laponite Clay-Sand-Water Mixtures) 

Sand size 1.7 - 2,36 mm (2.0 mm) 
154 mm diameter flume E= 18.4 mm (smooth bed) 

Clay Clay Sand Density Cri t. Shear Stress 
conc ent . prop. prop. P 

3 
T 01 

2 
T 02 

2 (S/l) % % (KS/m ) ) (N/m (N/m ) 

0 100 1551 0.480 0.480 
15 85 1741 3.078 3.859 

30 20 80 1804 4.059 4.476 
25 75 1899 3.648 4.222 
30 70 1788 3.575 4.116 
40 60 1609 3.451 3.841 

33 20 80 1822 4.553 5.787 

36 20 80 1850 4.879 6.050 

40 20 80 1805 5.211 7.567 
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TABLE G-6: INITIATION OF EROSION EXPERIMENTS (SYNTHETIC 
SEWER SEDIMENT) 

(Laponite Clay-Sand-Water Mixtures) 

Sand size 2.36 - 3.35 mm (2.9 mm) 
154 mm diameter flume E= 18.4 mm (smooth bed) 

Clay Clay Sand Density Crit. Shear Stress 
concent. prop. prop. P 

3 
T 

01 2 
t 

02 2 (8/l) % % (KS/m ) (N/m ) ) (N /M 

0 100 1517 0.690 0.690 
10 90 1615 3.726 5.450 
15 85 1720 3.894 5.447 

33 20 80 1805 4.132 5.203 
25 75 1890 3.974 5.176 
30 70 1793 3.506 5.393 

36 20 80 1805 4.521 5.548 

40 20 80 1821 4.707 7.726 
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APPENDIX H 

LASER DOPPLER VELOCIMETER 

H. 1 Introduction 

The advantage of non-intrusive measurement, high accuracy and 

repeatability make the Laser Doppler Velocimetry (LDV) technique 

specially suited for turbulence measurements. 

The distinct properties of the gas laser are the spatial and 
temporal coherence. The spatial coherence describes the ability 

of the light field to form interference fringes in space. The 

temporal coherence on the other hand, describes the purity of the 

laser light. 

e. amsp n. r Moduls front Uns 

Lasm 

Etl- 

FIGURE H. 1: LASER DOPPLER VELOCIMETER REPRESENTATION 

A LDV consists of an optical system and an electronic processor. 
The optical system takes the laser beam and divides it into two 
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beams that intersect each other in the flow under investigation 

(see Fig. H. 1) in what is known as the measuring volume. The 

light scattered from the small particles, moving with the flow 

through the measuring volume, is detected by the optical system 
(photodetector). 

Because of the movement of the particles, the scattered light is 

of another frequency (Doppler effect). After finding the 

frequency shift of the detected signal, the processor converts it 

into velocity. 

H. 2 Theoretical Basis 

The simplest way of explaining the nature of the laser Doppler 

signal is the fringe model. The two intersecting beam make up a 
fringe pattern (see Fig. H. 2). Particles moving across the fringe 

scatter the light and a signal, consisting of light and dark 

regions, is detected. The time difference between the light peaks 

FIGURE H. 2: FRINGE MODEL 

H-2 



is dependent on the velocity of the particles and the fringe 

spacing. The latter being determined by the optical setup, the 

laser light wavelength and the angle between the two incident 

beams. The fringe spacing is given by: 

Sf =2 sin (0/2) (H. 1) 

where A is the laser light wavelength, 0 the angle extended by 

the two incident beams. The Doppler frequency (fp) is given by: 

fD=f'-fi = 
ýý(eo-ei) (H. 2) 

where f and fi are the frequencies of the scattered and incident 

beams respectively, 1 is the velocity vector of the particle 

passing through the measuring volume, and es and ej are the unit 

vectors of the scattered and incident beam respectively. 

By considering the velocity component in the direction of the flow 

fo can be written as: 

fp = 
2Vx 

sin(9/2) (H. 3) 

and the velocity is given by: 

A fo 
Vx = (H. 4) 

2 sin(6/2) 

where 0 and X are known parameters of the system and fD is 

measured from the signal. 

In practical situations there are other factors to take into 

consideration. For instance if there is more than one particle in 

the measuring volume the signal will not be the well defined dark 

and light regions. Or, for example to determine whether the 

particle is moving in the reverse direction, a frequency shift is 

added into one of the incident beams. Thus particles moving in 

one direction will show a Doppler frequency higher than the added 
frequency and particles moving in the opposite direction will 

show a lower frequency. 
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FIGURE A. 3: PROBE VOLUME (ELLIPSOID) 

In a laser beam operating in the fundamental optical mode 
Transverse Electromagnetic Mode (TEM), the measuring volume is an 

ellipsoid (see Fig. A. 3). The TEM means that the laser may be 

focused to the smallest spot and the energy can be concentrated 
in a small measuring volume (i. e., the laser beam has a Gaussian 

intensity distribution). The probe volume parameters according to 

Fig. A. 3 are: 

d 
(H. 5) 2a = 46 

x Cos (0w /2) 

2b=4S =d 
M y 

(H. 6) 

d 
2c = 46 

sin (8/2 
(H. 7) 

where d is the diameter of the laser beam waist, which is 
M 
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given by: 

dw =(4/n)(fa/d2) = (4/n)(fX/(Edi)) (H. 8) 

where f is the focal distance of the optical system, d1 is the 

beam waist diameter, d2 is the expanded beam waist diameter, and 
E is the beam expansion ratio. 

The number of fringes (Nf) is given by: 

4D2 4ED1 
N= U- = n- 

(H. 9) 
r a1 

where D1 is the beams separation at front of lens and D2 is the 

beams separation in the optics. 

The performance of the LDA is described by the same parameters. 

It is related to the calibration constant, to the dimensions of 

the measuring volume and to the number and separation of the 

interference fringe lines in the measuring volume, and to the 

fixed characteristics of the LDA system such as laser beams 

separation, laser wavelength, beam expansion ratio and the 

measuring distance. 

A3 Signal Processing 

The main output of a LDV is a current pulse from the 

photodetector. The velocity information is present in the Doppler 

signal as a frequency modulation of the detector current. Thus 

the signal processing electronics work essentially as a frequency 

demodulator. 

Two extreme type of signal can be encountered in practice. One is 

a quasi continuous signal due to multiple particles passing 
through the measuring volume. The envelope and phase of the 

signal contain random fluctuations as a result of the random 

number and positioning of the particles in the measuring volume. 
On the other extreme there is a burst of signal resulting from a 

single particle transversing the measuring volume. 
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Nevertheless, the processor must be able to detect real time 

information containing high frequency components in the presence 

of wide bandwidth noise (primary shot noise, from reflected and 

ambient light, noise from the photodetector and thermal noise 

from the processor). 

11.4 Processor Used in the Experimental Work 

A signal processor employed was a TSI intelligent flow analyzer 
for Laser Velocimetry model IFA-550. This processor was designed 

to extract velocity information from noisy signals derived from a 
LDA. A new approach for separating the signal from the noise, is 

applied in the operation of the processor. This gives the 

following features: 

a) It makes only "good" (valid) measurements or makes no 

measurements at all. 
b) It operates fully automatically and validates the maximum 

number of data possible. 

c) It can process individual burst of Doppler signal as well as 

continuous signal with multiple changes in phase. 

The processor accomplishes these features by using 
autocorrelation (i. e., autocorrelating the zero-crossings of the 
doppler signal); accurate time measurements (based on a counter 
type processor); and the feed-forward mechanism similar to that 

of a phase-locked-loop. 

Operating principle 
The processor determines the frequency of the Doppler signal 

produced by a LDV system by measuring the duration of eight 

continuous cycles of the Doppler signal. Then it divides the time 

by eight to obtain the period for one cycle of the Doppler signal 

and thus the frequency is determined. The processor then applies 

a special mathematical algorithm to test each zero-crossing of 
the signal. the test determines whether the signal meets the 
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predetermined minimum signal-to-noise ratio and satisfies the 

coherency conditions demanded by the properties of an 

autocorrelation of zero-crossings of Doppler signals. Only when 

16 contiguous half-cycles have been validated by a comparison 

function a valid measurement is output. 

The validated measurement is also fed back to the processor to be 

used as a criterion for measuring the next measurement. A search 
function is also available, which takes over when the processor 
looses the signal. Therefore the processor (IFA-550) gives only 

good measurements, selected according to a predetermined 

signal-to-noise ratio. 

Because the processor operates on the zero-crossing of the signal 
is independent of its amplitude. And very often this means that it 

can validate a higher data rate compared to a 

counter-type-processor. 
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APPENDIX I: 

EINSTEIN-VANONI-BROOK WALL SEPARATION TECHNIQUE 

I. 1. Hydraulic Characteristics of Channels of Circular 

Cross-section with Flat Bed 

a) Geometry of the Cross-section 

The hydraulics of a channel of circular cross-section is 

characterised by the internal diameter (D), the longitudinal 

slope (So), the flow rate (Q), the flow depth (Yo) and the 

roughness of the internal walls (k: ). 

Assuming a channel of circular cross-section with a flat 

deposited sediment bed flowing part full under uniform flow 

conditions (see Fig. I. 1) the geometric properties of the 

cross-section may be expressed in term of the angle 29 and the 

thickness (E) of the deposited bed. 

L 
Figure 1.1: 

T 
Yo 

E 
I 

Channel of circular cross-section 
wit haf lat sediment bed 
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the area is given by, 

D2 D2 A=48- Sin(26) -4 60 - Sin(29o) 
22 

and the wetted perimeter by 

P= D(9 -0+ sin6) 0 

thus, the hydraulic radius is given by: 

R=A/P=D 
28-0 

+ 
Sin(20o)_ Sin(20) 

22 

(I. 1) 

(I. 2) 

(I. 3) 

b) Uniform Flow equations 
In uniform flow the bed slope (S 

0) 
is equal to the energy 

gradient (Sf). Combining Darcy-Weisbach and ColeBrook -White 

equations the following expression can be obtained: 

k 2.51 v 
V=- 32gRSo log $+ (1.4) 

14.8R 2R 32gRSo 

which can be used to compute the mean velocity of a given uniform 
flow . Manning's equation (1890) for uniform flow is 

V=1 8213 So 1/2 (I. 5) 

and Chezy's equation (1768) is: 

VC RS (I. 6) 
0 
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c) Shear stress exerted by the moving fluid 

The basic mechanism responsible for sediment motion is the drag 

force exerted by the fluid flow on individual grains. This is 

the motivating force acting in the direction of flow. The shear 

stress restraining the fluid is distributed round the boundary of 
the cross-section and because of the shape of the cross-section 

and the presence of a free surface (on which the shear stress is 

negligibly small) the shear stress distribution is not uniform 
round the cross-section. 

d) Channel of Composite Roughness 

It is common to find in laboratory flumes that the wall surface 
is not as rough as the bed especially in dealing with sand beds. 

In order to minimize the effect of the wall a correction becomes 

necessary. In the literature several side-wall correction methods 
are available (Einstein 1942, Johnson 1942, Vanoni and Brook 
1957). 

Vanoni and Brook modified Johnson approach based on 
Darcy-Weisbach friction factor and made the following 

assumptions: 

a) The channel cross-section can be divided into two sections 
(bed and wall) with corresponding wetted perimeter Pb and 
PM being the boundary between the two section a surface of 
zero shear. 

b) The mean velocities in the two sections are equal 

c) Each section is considered independently. 

d) The roughness in each section is homogeneous. 
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Assuming the pipe wall to be smooth Colebrook-White expression 
for smooth pipes, 

2 Log Rem (1.7) 

2.51 

can be used. Darcy's equation for head loss can be written as: 

ha V2 
fS= (1.8) 
L°8gR 

the velocity may be expressed as: 

2_8gRS0 (I. 9) 
A 

Reynolds' number of the flow is: 

4RV Re =y (I. 10) 

combining equations 1.9 and I. 10 yields 

V3=8gv 
So R0 

(I. 11) 
4A 

Assuming equal velocities in the cross-section Eq. I. 11 for 
the wall becomes: 

8gvSR 
V3 _o ow (I. 12) 

w4 
M 

and for the bed: 

v_ o eb (I. 13) 
4 ab 

[8guS)R 
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Thus from Eqs. 1.11,1.12 & 1.13 the following expression is 

obtained: 

R R R 
Q ow ob 

A A A 
w D 

(I. 14) 

similarly substituting the corresponding values for the bed and 

for the wall in equation TL9 and equating the velocities yields, 

A AM Ab 
(I. 15) 

PA PM AM Pb Ab 

substituting A= AM + Ab and re-arranging terms equation 1.15 

becomes: 

Pý=PwIw+pbAb (I. 16) 

For a given uniform flow generally the known parameters are: 

V, Sogv PW, Pb, A and A 

and the main unknown 

AbýA RbandRw 

This can be easily solved with a computer program using the above 

equations. With equations 1.7 and 1.14 a value for aM and RQW 

can be found by iteration and then by using equation 1.14 the 

value for Ab is obtained. From Eq. 1.9 the the hydraulic radius 

of the bed can be written as 

Ab v2 
R= (I. 17) 

b 8g So 
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Therefore the shear stress exerted on the bed can be expressed as 

Tb =pg Rb So 
(1.18) 

where Rb is the hydraulic radius corresponding to the channel bed 

(i. e. without the side wall effect). 
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