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Magnetometric techniques for the measurement of initial susceptibility and 

for non-contact sensing of displacement. 

M. P. Cooke, April 1984. 

Part 1 of the thesis describes a new instrument that simultaneously 

measures the real magnetic susceptibility X' and the imaginary magnetic 

susceptibility X". The instrument measures the temperature dependences of 

X' and X" in rock samples between 16°C and 800°C; natural developments are 

working down to -200°C and measuring the anisotropy of susceptibility. 

The instrument's heart is a tuned circuit driven at its natural frequency 

by a 5MHz crystal oscillator. The tuned circuit's inductance is a sample 

coil that encloses-a furnace. The random noise level in the signal for X' 

is 7.4 x l0-13 m3 r. m. s., the noise level in the signal for X" is 2x 10 ̂ 12 

m3 r. m. s. Sample volumes are 0.1 cm3 or less. 

Equations describing the instrument are derived and verified, parti- 

cular attention is paid to the sample coil. Circuit diagrams are included. 

Some results are presented and equations that broadly describe the observed 

temperature dependences of X' and X" are developed. Some methods for 

substantially improving the instrument's performance are outlined. 

Part 2 of the thesis describes a new method for non-contact sensing 

of displacement. A magnet is mounted on the object whose displacement is 

to be measured. The magnet's field is sensed and fed to a 6502 micro- 

processor programmed to display the distance between the magnet and the 

sensor; intervening barriers with a permeability very close to unity do not 

affect the readings. The accuracy is better than 2.0% of full scale 

deflection (FSD) over the useful range of 250 mm and better than 0.1% 

FSD over a range of 110 mm. The magnet's volume is 4.00 mm3 and the 

moment is 3.1 x 10-7 Vbm. Circuit diagrams are presented and a complete 
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software listing is included, the design will work with any magnet and 

magnetometer. There are directions for greatly improving the instrument's 

performance. 
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GLOSSARY OF SYMBOLS 

References 

Papers from journals are identified in the list of references by 

superscripted numbers in brackets, for instance(36) refers to a paper 

on Q multiplication by Harris. Then a book is referred to there are two 

superscripted numbers: the first number identifies the book and the 

second identifies the page in the book, for example 
(9'250) 

points to 

page 250 in Advanced Electronic Circuits by Tietze and Schenk. 

Symbols used in part 1 of the thesis 

Greek symbols have been avoided as far as possible for convenience 

in typing. Unfortunately this means that symbols from the English 

alphabet are often used more than once. Where a symbol has two definit- 

ions, the correct meaning will always be obvious through the context in 

which the symbol is used. 

Symbol Units Meaning 

a FVx A constant in the voltage/capacitance relation- 
ship for the varicap diode 

A The gain of an amplifier 

A m2 A cross sectional area 

b m The length of a sample coil 

B Hz A bandwidth 

B T A magnetic flux density 

B(s) V or A The feedback signal in a feedback system 

c Jm-3 The anisotropy energy of a single domain magnetic 
grain 

C F A capacitance 

C(s) V or A The output of a feedback system 

d m The diameter of a sample 

D m The diameter of a sample coil 
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Symbol Units Meaning 

D The gain of a peak rectifier 

e Fml The permittivity of free space: 8.854 x 10-12 
0 

e The relative permittivity 
r 

E Vm 
1 An electric field strength 

E(s) V or A The error in a feedback system 

f Hz A frequency 

F A filling factor 

g CKg 1 The gyromagnetic ratio: 1.759 x 1011 

G 
-CL-1 

A conductance 

G 
_S"L 

-1 The transconductance of an amplifier 

G(s) A transfer function 

hFE The forward current gain of a bipolar transistor 

H Am-' A magnetic field strength 

HA Am -1 The anisotropy field in a ferromagnet ic specimen 

H(s) A transfer function 

i A An alternativing current 

I A A direct current 

j The square root of -1 

k JK 1 
Boltzmann's constant: 1.381 x 10-23 

K Vrad 
1 

The gain of a phase detector 

K Vm 3 The sensitivity of the new instrument to the real p susceptibility 

K Vm 
3 

The sensitivity of the new instrument to the Q imaginary susceptibility 

K Jm3 The uniaxial anisotropy constant for single domain 
u grains 

K1 Jm 3 An anisotropy constant 

1 m The length of a sample 

L H An inductance 
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Symbol Units Meaning 

m Kg A mass 

M Figure of merit for a sample coil 

M Am-' Magnetization or moment per unit volume 

Mm Am2Kg l 
The specific or mass magnetic moment 

MS Am-' The saturation magnetization per unit volume 

14T Amt The total, or dipole, moment 

n The number of turns on a single laver on rP rnil 

n V/ ( A spot noise voltage generator 

N A noise factor 

N The demagnetizing factor of a magnetic grain 

p A damping factor for a group of coupled electron 
spin vectors. 

P Js-lm-3 Rate of change of energy per unit volume 

q C The charge on one electron: 1.602 x 10-19 

r m A radius 

R M A radius 

R 11 A resistance 

R(s) V or A A stimulus for a feedback system 

s The Laplace transform variable 

s The length, /diameter ratio for a sample coil 

S m The skin depth 

t s Time 

T K An absolute temperature 

TB K A blocking temperature 

-1 u V The gain of a varicap diode 

U Hml The Rayliegh hysterysis constant 

v V An a. c. voltage 

V V A d. c. voltage 
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Symbol Units Meaning 

V m3 A volume 

V m3 The volume of a coil 
c 

V m3 The volume of a sample 
s 

rad s An angular frequency 

J Energy 

X A volume susceptibility 

X The apparent volume susceptibility a 
X The intrinsic volume susceptibility i 

X' The real volume susceptibility 

X" The imaginary volume susceptibility 

XIS m3Kg 
1 

The specific, or mass, susceptibility 

XT m3 The total susceptibility 

z 11 An impedance 

Z V1 The gain of a Q-multiplier 

Hm-1 The total permeability 

0 
Hm -1 The permeability of free space: 1ý ýtý' x 10-ý 

Pr The relative permeability 

Q t1m A resistivity 

(r -lg 1 
XIL A conductivity 

s A magnetic relaxation time for a group of coupled 
electron spin vectors 

s An electrical time constant 

0 rad A phase difference 

V A p-n junction potential 

Symbols used in part 2 of the thesis 

Symbol Units Meaning 

amA separation 

A m2 A cross sectional area 

6. - 
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Symbol Units Meaning 

b A binary bit 

B T A magnetic flux density 

B T A remanent induction 
r 

e V The quantization error 

f Hz A frequency 

fs Hz The sampling frequency 

f(x) m A displacement estimated as a result of 
interpolation 

G(jw) A fourier transform 

G(z) Az transform - 

h bits A look up table entry spacing 

H Hm -l A magnetic field strength 

H Hml A coercive force 
e 

H(z) A digital transfer function 

i(t) The Dirac delta function 

I(t) A train of Dirac delta functions 

k VT-1 The sensitivity of a fluxgate magnetometer 

1 m A length 

L The normalisation factor in the bilinear transform 

M Am A magnetization or moment per unit volume 

MT Amt The dipole moment or total moment 

N The number of bits at the output of an analogue 
to digital converter, or the number of bits at the 
input of a digital to analogue converter 

p(e) The probability density function of the quantization 
error 

r M. A separation 

s The Laplace transform variable 

t s Continuous time 
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Symbol Units Meaning 

TsA discrete time interval 

VVA voltage 

yý rad s An angular frequency 

;; ý s The width of a flat topped sampling pulse 

x bits The output of an analogue to digital converter 

xi bits A collocation point in a look up table 

z The z transform variable 

U0 Hm -l The permeability of free space: Ix 10-7 

0 rad A phase shift. or an angle 

O(t) A clock signal 

COP. RIGETNDA 

Page 22, equations (1.43) and (1.14), replace 

(1 - jvwt) by (1 - jv; T, ) 

Page 27, after equation (1.66), replace X>1 by X. ' «1 

Page 29, equation (2.3), replace poprn2Ab by FoJrn2A/b 

Page 33, equation (2.19), replace W by 4W 

Page 36, table 5, replace Direction by Direct 

Page 43, equation (2.40), replace r0L/Rp by RP/0L 

Page 46, equation (2.48), note that GRf »1 

Page 47, equation (2.52), note that in practice AQ is always 

< 1% and is nearly always <0.1%, thus Q may be regarded 

as constant when calculating aJ 

Page 58, after equation (3.22), replace AV 
p«0.1Vc 

by AVp-* 0.1Vc 

Page 75, last paragraph, replace 5Hz by 51E z 

Page 125, paragraph 2, replace El-Hanary's by El-Hanany's 
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A NE, ': ' RADIO FREQUENCY INSTRUMENT FOR THE MEASUREMENT 

OF INITIAL MAGNETIC SUSCEPTIBILITY. 
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CHAPTER 1 

SOBS OF THE PHYSICS OF SUCE? TIBILITY AT RADIO FREQUENCIES 

1.1 INTRODUCTION 

The first part of this thesis is about a new instrument that 

measures the temperature dependence of susceptibility at an operating 

frequency of 5 MHz. This chapter describes enough of the background 

physics to allow the experimental results produced later to be 

correctly interpreted. It will be seen that the measured susceptibility 

is affected by the sample's temperature, conductivity, shape, size and 

structure; the instrument's operating frequency is important too. 

For convenience and brevity, the term ferromagnetic is meant to 

encompass ferrimagnetic, antiferromagnetic and parasitic-antiferro- 

magnetic materials as well; but distinctions will be made where 

necessary. To give some examples: iron is ferromagnetic, magnetite 

(Fo304) is ferrimagnetic and haematite (a -Fe 203) is parasitic- 

antiferromagnetic. It is assumed that the reader is familiar with 

the origins of ferromagnetism and its relatives, if not, -any of 

references (1), (2), (3), (4) and (10) may be turned to for guidance. 

Unfortunately, these references create some confusion by using three 

different systems of magnetic units. The first job is therefore to 

define the system of magnetic units used in this thesis and to show 

how conversions to the other systems may be made. 

1.2 THE DEFINITIONS AND THE UNITS OF MAGNETIC FLUX, MAGNETIC FIELD, 

SUSCEPTIBILITY AND PERMEABILITY 

The modern system of Sommerfeld S. I. magnetic units is used 

throughout this thesis. Table 1 may be very useful to those who wish 

to make conversions from Sommerfeld S. I. to other systems, the table 

is based on one originally produced by Dr. A. Stephenson. 

The magnetic flux density B is a vector associated with electric 

currents. A current carrying wire that is intercepted by lines of 

L- 
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magnetic flux will experience a deflecting force. If the flux is 

everywhere normal to the wire, then one unit of B is that flux density 

which exerts a force of one newton on one metre of wire carrying one 

amp of current. The units of B that follow from this are PNA-1m-1 

which are commonly known as tesla, T. 

The flux density exists in a medium through which it will produce 

a magnetic field strength H. If the medium contains no magnetizable 

particles - for instance a vacuum, or a very weakly magnetic gas - 

the relation between the field H and the flux density B is 

B= }ioH $ (1.1) 

where po is known as the permeability of free space. The magnetic 

field at the centre of a plane, single turn coil in a vacuum is 

1=B 

2r U 
0 

in which r is the radius of the coil and i is the current in it. 

One unit of H is the field at the centre of a plane coil one metre 

in diameter carrying a current of 1 amp. The units of H are clearly 

Am and those of ) are NA-2 or Hm 1. 
The value of po is17x 10-7 Hm 1. 

Were B exists in a magnetizable medium equation 1.1 has to be 

modified, for the medium's own elemental magnetic dipoles will become 

partially aligned and add to the applied flux. The additional component 

is the magnetization M per unit volume. The total flux density is 

Br BA+p (=po(H +tYi) (1.3) 

where BA is the applied flux density. The units of M are Am 1, 
the 

same as H. Equation 1.3 assumes that the magnetized material is both 

isotropic and infinite in extent. 

The magnetization in a medium is related to the inducing field 

by the medium's susceptibility X such that 
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M 
X =_. (1. )+) 

H 

X is dimensionless and is known as the volume susceptibility; in words, 

it is the ratio of the induced magnetization to the inducing flux 

density that would exist were the magnetized material replaced by a 

vacuum. 

The magnetic permeability » and the relative magnetic permeability 

pr are closely related to X. By definition the total flux in a 

magnetized medium can also be written 

B= H= Pyo H (1.5) 

Recalling equation 1.3 it is apparent that 

Pr H=H+M 

and H can be removed using 1. I to give 

-1+X , (1.6) 
r 

Both u and pr are dimensionless. 

Although X is dimensionless it is sometimes not a convenient 

quantity to use: the total susceptibility XT and the specific, or 

mass, susceptibility XM are more often met with. The first 

relationship is 

XT=XV3 (1.7) 

where V is the volume of material so that XT has the units m3. The 

second relationship is 

XM=XV , m 
1.8 

where m is the mass of material so the units of XM are m3Kg-l. 

1.3 RESTRICTIONS ON THE SAMPLE'S STRUCTURE 

The operating frequency of 5MHz will be seen to have advantages, 

but it does limit the type of sample that can be measured. The purpose 

of this section is to show what the limits on the sample's structure are. 
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The susceptibility of a material is most commonly found by 

noting its response to an alternating magnetic flux. It is important 

that the changes in the flux due to the sample's susceptibility are 

clearly separable from all other sources of change. Unfortunately, 

at the 5 MHz operating frequency the sample's conductivity makes an 

unwelcome appearance through the skin effect and eddy current losses. 

The skin depth 
(1.1236) 

of an electrically conducting body is 

0.5 0.5 
s= 

2e 
=2e (1.9) 

VIP 

IvIlo 

(1 
+ X) 

where 9 is the resistivity of the body and w is the angular frequency 

of the incident electromagnetic radiation. In this application it 

has to be ensured that S is much greater than the dimensions of the 

specimen being analysed, for this ensures that the flux penetration is 

uniform throughout. As an illustration, let's calculate the skin 

depth of a natural sample of pyrrhotite at 5 1Hiz. The susceptibility 

of pyrrhotite can be as high as 0.1 whilst its conductivity can be as 

m and so the sample's low as 1051 m. In the worst case S is 7x 10-fi -5 

dimensions should be <2x l0-4m. 

The eddy currents induced in the sample continually dissipate 

heat and constitute a power loss P. Eddy current losses are discussed 

more fully later in this chapter, for now it is enough to note that the 

losses grow dramatically as the particle size or the measurement 

frequency is increased. 

The problems of flux penetration and power loss can be conveniently 

side stepped by finely dividing a sample and then separating the 

resulting grains. The power loss is automatically reduced because r 

is much smaller and the requirement that 3>> r is much more likely to 

be satisfied. This new instrument is specifically designed to measure 

the susceptibility of samples in which the ferromagnetic content consists 
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of grains well dispersed in a non-conducting, non-magnetic matrix. 

Rocks are nearly always in just this form - the pyrrhotite ore mentioned 

earlier could easily be ground and dispersed in a neutral medium such 

as lithium flouride or aluminium oxide. 

This half of the thesis has a geophysical flavour because rock 

samples have been readily available to test the instrument with, and 

because rock magnetism is an important and well documented area of 

- application. It must be stressed that the new technique is not 

limited to rocks. The instrument will work equally well on any natural 

or synthetic sample having the required structure. 

1.4 THE INITIAL SUSCEPTIBILITY OF AN ARRAY OF FERROMAGNETIC GRAINS 
AT AUDIO FREQUENCIES 

As the title suggests, this section deals with the suceptibility 

that is measured by applying a flux alternating at less than 

'--6 x 104 rads s-1. The foundations are laid here for the next 

section on susceptibility at radio frequencies where the issues 

are much more complicated. Rock samples are used as a model for 

discussion. Rocks usually contain between 1% and 5% by weight of 

ferrimagnetic or antiferromagnetic mineral grains well dispersed in 

a paramagnetic or diamagnetic matrix. In a typical case, the particles 

range from 0. l)im to 10 )lm in size; an extreme range is about 10OÄ 

to 1 mm. It is considered that these particles do not interact 

magnetically. Most rocks and minerals are semiconductors so their 

resistivity decreases with increasing temperature. The most important 

minerals are oxides and sulphides of iron and titanium and they may 

well be mixed. Collinson(2) has written a concise review of the 

compounds that are important to rock magnetism. 

The initial susceptibility of a ferromagnetic substance can 

depend on the magnitude of the applied flux; if the applied flux is 

less than imT the initial magnetic susceptibility is found. Within 

6-- 



8 

this bound the induced magnetization is reversible and the measured 

susceptibility is independent of the applied flux. For comparison, 

the scalar value of the earth's magnetic field at Greenvrich is 

currently about 50J1 T. 

Then a finite body is magnetized by an external field He it 

can be conveniently considered that free magnetic poles are formed at 

the body's ends. These poles produce a demagnetizing field Hd in 

opposition to the magnetization, see figure 1. For a regularly 

shaped body. 

Hcl =NM , (1.10) 
where the demagnetizing factor N depends mainly on the shape of the 

body. The body's internal field Hi is 

H. =H- NM , 
(1.11) 

ie 

and so the intrinsic susceptibility Xi is 

x= 
2ü- (1.12) 

i Hi He - NM 

The experimentally observed susceptibility is 
M X. 

Xa -H1+ NX. 
(1.13) 

ei 

where equation 1.12 has been used to replace M. Equation 1.13 is 

important. Xa is called the apparent susceptibility. When Xi 

is large Xa -+ 1/N, thus Xa is a poor measure of Xi for a strong 

ferrimagnetic such as magnetite. Xi is observed for a material with 

a weak susceptibility such as haematite; haematite is parasitic- 

antiferromagnetic(3,11). 

It is now clear that the demagnetizing factor N makes the 

susceptibility of an array dependent on the shape of the constituent 

grains. Craik(4'22) tabulates N for ellipsoids of revolution. As 

an example, an ellipsoid of dimension ratio 1.5: 1 has a polar axis 

demagnetizing factor Na of 0.233 and an equatorial axis demagnetizing 

factor Nb of 0.383. A sphere has Na = Nb = 0.333. Along the 



Figure 1. The poles created on the surface of a magnetized body. 
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length of a rod, N --. 0. An ideal rock contains many randomly 

oriented, non-interacting grains. Therefore, the demagnetizing 

factor of the rock sample has to be deduced as an appropriate average 

of an individual particle's demagnetizing factors. Stacey(5,71) 

has analysed this problem for ellipsoids of revolution having a 

dimension ratio of 1.5: 1 which is a realistic shape in practice. 

He calculated that the average demagnetizing factor is 0.31. 

Having discussed the effect of the grain's shape on susceptibility, 

it may well be wondered what effect the grain's volume has on 

susceptibility. Large grains are multidomain; that is, they 

subdivide themselves into many adjoining magnetic domains to minimise 

the magnetostatic energy of the notional surface poles(4,164). 

The susceptibility Xi is high because magnetization occurs through 

domain v. -, all motion which is an easy process energetically. 

X. varies only slightly with grain size in this region. Small grains 

that are below a certain critical size 
(4,164) 

are single domain where 

magnetization occurs through domain rotation. Their susceptibility 

is lower than that of multidomain grains. Very small grains are 

superparamagnetic(4'146) and can have larger values of apparent 

susceptibility than multidomain grains 
(6). 

A superparamagnetic 

grain is one whose direction of magnetization can be spontaneously . 

reversed by ambient thermal agitation. The meanings of large, small 

and very small depend on the mineral in question, the shape of the 

grain and the temperature at which susceptibility is measured. 

Collinson(2) gives more detailed information and references on the 

subject. Figure 2 illustrates the variation of susceptibility with 

grain size for a titanomagnetite of composition 0.1+Fe2TiO . 0.6Fe304. 

The data are taken from Day, Fuller and Schmidt(7) who state that the 

behaviour changes from single domain to multidomain at about 1 Pm. 
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The initial susceptibility of a particulate array need not be 

isotropic. For an ellipsoidal particle the demagnetizing factor 

varies according to which axis the flux is applied along. If the 

grains are aligned and the intrinsic susceptibility is high, such 

that Xa --o -1/N, the susceptibility is obviously anisotropic. 

Once more, Collinson(2) may be turned to for a proper account. 

In summary, the initial magnetic susceptibility of a non- 

interacting array of particles is an ambiguous quantity. The hidden 

variables of grain size, grain shape and grain alignment all combine 

to lower the worth of absolute values of initial susceptibility. 

However, changes in the value of a sample's initial susceptibility 

represent a powerful diagnostic tool. Magnetic anisotropy can be 

turned to advantage because it yields information about the sample's 

structure - such as the direction of a sedimentary bedding plane. 

Furthermore, the temperature dependence of a rock's susceptibility 

can indicate which mineral or minerals are present. The new instru- 

ment was developed specifically to monitor the temperature dependence 

of initial susceptibility between room temperature and > 700°C. 

1.5 THE INITIAL SUSCEPTIBILITY OF AN ARRAY OF FERROMAGNETIC GRAINS AT 
RADIO FREQUENCIES 

1.5.1 Introduction 

The ideas introduced in the last section are valid when the 

frequency of the inducing field is low, say less than 10KHz. At 

higher frequencies the susceptibility splits into two components: 

the real susceptibility Xý and the imaginary susceptibility X". 

X' represents the induced motion of domain walls and the rotation of 

domain magnetization. X' is in phase with the applied field. 

X" represents losses in the sample through hysterysis, eddy currents 

and what are for now termed lattice losses. X" is in quadrature to 

the applied field. This section concentrates on the mechanisms that 

contribute to X" and shows which mechanism is most important to an 

array of ferromagnetic grains when the inducing field is very weak. 
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One of the problems in writing this section was that there has 

previously been little geophysical interest in measuring susceptibility 

at high frequencies, so the theory has been taken piecemeal from a 

number of different sources and then collated. One of the most 

useful sources was a text by Smit and v+ijn(8) on the properties of 

ferrites. A ferrite is a member of a group of iron oxides with the 

general formula MO. Fe203, where M is a divalent metal ion such as 

Mn2+, Feg+, Cot+, Nit}, Cut+, Zn2+, Mg 2+ 
or Cd2+. Many magnetic 

materials of geophysical interest are ferrites, magnetite (FeO. Fe203) 

is one example. 

A further problem has been a lack of suitable data with which to 

make illustrative calculations and comparisons. The only ferro- 

magnetic array on which sufficient data were available was compressed 
(3 

carbonyl iron powder' 
98ý 

. It consists of spherical particles of 

Fe(CO)5 pressed together with an insulating binder. A typical 

particle diameter range is 3 pm to 20 
, um but the calculations suppose 

that all the particles are 3pm in diameter. The inital susceptibi- 

lity of the powder is 19, this shows that the magnetic grains cannot 

be considered to be non-interacting; if they were the susceptibility 

would be 1/N =3 as N for a sphere is 0.333. However, this factor 

simply makes the tests stiffer and the ultimate conclusions of this 

subsection more believable. Some data on carbonyl iron and the 

experimental values for the applied flux are included in table 2 

below. 

h_ 
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Table 2A collection of data on carbonyl iron powder together with 

experimental values for the applied field. The data on 

carbonyl iron were found in Chikazumi(3). 

Parameter Value 

Particle radius, r 1.5 x rl0-6 m 
Initial permeability, ) 20 

r 
Saturation magnetization, Ms 1.56 T 

Coercive field, H 1.2 x 103 Am-1 
e 

Hysterysis constant, U 0.013 ) mA-1 
o 

Anisotropy constant for an 
elongated single domain particle, 

m-3 6 5 K i x 10 4. u 
Intrinsic conductivity, o- 10711 1m1 

Frequency of applied flux, f 5x 106 Hz 

Amplitude of applied flux, B 9x 10-7 T 
m 

1.5.2 The Skin Depth 

It was mentioned in section 1.3 that the skin depth ought to 

be greater than the ferromagnetic grain size so that there is an even 

flux penetration, this is also a necessary condition in the following 

subsections on X". Because of the importance of the skin depth, it 

is worth calculating its values in a few examples. The range of examples 

is restricted by the lack of suitable data, but some results for the 

conductivity and permeability of a few natural ores were found in 

P arasnis'll) 
(9 

. The skin depths are calculated using equation 1.9, 

but before they are tabulated mention must be made of an underlying 

assumption. Equation 1.9 is only true if the ratio of the conductive 

current to the displacement current in the medium is much greater 

than one(l'236), that is if 

0 

ee or 

where e0 is the permittivity of free space and er is the relative 

permittivity of the medium. Unfortunately, both er and 
Dare 

fre- 

quency dependent, for they decrease as the frequency at which they are 
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determined increases 
(8Y240) 

. 
No values of e have been seen for 

r 

materials of geophysical interest. The largest value of er that has 

been come across is 1.5 x 105 for Mullard Ferroxcube type A at 1KHz. 

This value has been combined with the examples' conductivities to make 

a conservative test of condition 1.14. The results for the tests 

and the skin depths are given in table 3. 

Table A conservative test of the ratio of the conductive to dis- 

placement current, a-/weder, and of the skin depth for 

various solids of geophysical interest. er is taken as 
5 1.5 x 10 and w=3.14 x 107 rads-l. 

Solid Conductivity 
a-,. -lm-l 

Initial perm- 
eability, JU r 

a-/we er o 
Skin depth S, 

m 

Pyrrhotite 103 - 105 1.001 - 1x 1013 7x 10-4 
ore 1.1 -7 x 10-3 

Pyrite ore 10-1 - 104 1.0001 - 1x 109 2x 10-3 
1.005 -7 x 10-1 

Haematite 10-2 - 101 1.0001+2- 1x 108 7x 10-2 
ore 1.01 -2.25 

Magnetite 10-1 - 102 1.07 - 1x 109 6x 10-3 
ore 15 -7x 10-1. 

Compressed 1.1 x 107 20 1x 1017 1.5 x 10-5 
carbonyl intrinsic 
iron powder 

Two conclusions may be drawn from table 3. The first is that 

the tests on the ratio cr /weoer show that equation 1.9 for 

the skin depth is valid. Secondly, if the reasonable assumption is 

made that the ferromagnetic grains in rock samples have similar pro- 

perties to the ores mentioned above, then the grain sizes, having a 

typical range of 0.1 )i m to 10 ji m, are nearly always very much less 

than one skin depth at a 5MHz operating frequency. 

Table_ 4., also using data from Parasnis(91129) . shows some room 
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temperature conductivities typical of the paramagnetic and diamag- 

netic matrices in which the ferromagnetic grains may be embedded. 

Table The electrical conductivities of some rocks and sediments. 

Material Conductivity cr, f lm 1 

Marble (limestone) <10-12 
Quartz < 10-10 

Rock salt 10-7 - 10-6 

Granite 10-6 -2x 10-4 

Sandstones 2.5 x 10-4 - 2.9 x 10-2 

Morain 2.5 x 10-4 - 1.3 x 10-1 

Limestones 2.5 x 10-3 - 8.3 x 10-3 

Clays 8.3 x 10-3 -1 

The conductivities of the matrices are so low that fears about 

the skin depth in them can be forgotten. 

1.5.3 The hyster}rsis loss 

It is well known that the induced magnetization M(t) in a 
I, 

ferromagnetic material exhibits hysterxsis when responding to an 

alternating flux B(t). The area of the hysterysis loop represents the 

work done per cycle by the inducing flux in overcoming impediments to 

domain wall motion-such as lattice dislocations and interstitial 

impurities. 1T+hen the applied field is small, as is the case when 

measuring initial susceptibility, the hysterssis loop is leaf shaped 

and the energy loss may be calculated. It will be shown that hysteresis 

leads to the appearance of X" in quadrature to the applied field. 

The form of the initial portion of the low field magnetization 

curve is given by(3'296) 

M=XH+1 UH2 
2 

(1.15) 

where X is the initial susceptibility and U is the Rayliegh constant. 

The first term in 1.15 is the reversible, lossless magnetization 
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whilst the second term is the irreversible, lossy magnetization. 

Using 1.15, the leaf like Rayliegh hysteiysis loop in figure 3 is 

described by 

11 + Mm=X(H+Hm) +2 U(H+Hm)2 , (1.16) 

for the ascending branch and 

M-Mm=X(H-Hm) -lU(H-Hm)2 (1.17) 
2 

for the descending branch. Putting M= Mm when H= Hm in 1.16 

yields 

Mm = XHm + UH2. (1.18) 

The loop can now be reformulated to resemble 1.15 by substituting 

1.18 into 1.16 and 1.17. For the ascending branch 

Ma = (X + UHm) H+1 U(H2 - Hm2) , 
(1.19) 

2 

and for the descending branch 

Md = (X + UHM) H-2U (H2 -H 
2) 

. 
(1.20) 

The area of the loop is the hyster'sis loss per cycle, this is given 

by 

+H p- H 
mm 

Wh = Ma* dH + Md. dH, (1.21) 

-H 
J+ H 

mm 

which gives 

Wh UH . 
(1.22) 

3 

Recalling that 

Hm=BJ)oj1r 

the rate of loss of power per 
m 

is given by 

Ph =t Uf(Bm / )Vr)3 ' (1.23) 



Figure 3. The Rayliegh hysterysis loop for low magnetizations. 
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where f is the frequency of the applied flux. Table 2 contains 

data on carbonyl iron powder and on the flux applied by the new 

instrument. Fitting these values into 1.23 gives 

Ph = 5.0 x 10 -6Js-lm 3. 

This result vrill later be compared with results for eddy current and 

lattice losses. 

Now let's examine the magnetization M(t) due to an applied field 

H(t) where 

H(t) =H cos vet . 

Equations 1.19 and 1.20 are now 

(1.21f) 

M(t) = (X + UHm)Hmcos wt 
±U Hm2sin2wt. (1.25) 

2 

Figure 4 gives a pictorial impression of this distortion. The 

sing vt term in 1.25 can be expressed as a Fourier series, when this 

is done equation 1.25 becomes 

M(t) = (X +U Hm) Hm cos wt 
2 

+UH I$ sin wt -8 sin 3wt - ... 
(1.26) 

2m irr 151Y 

Equation 1.26 clearly shows that hysterysis introduces a sin vrt 

component that is in quadrature to the applied flux. This component 

is part of the imaginary susceptibility X". 

1.5.4. The eddy current loss 

When the magnetic flux in a conducting medium changes with time, 

an electromotive force is generated at right angles to the direction 

in which the flux is changing - so there is a resulting flow of eddy 

currents within the material. A simple example of this is drawn in 

figure 5. The eddy currents will continually dissipate energy through 

ohmic heating; the magnetization M(t) ,. %ill therefore lag behind the 

inducing flux B(t). Once again, the energy loss splits the susceptibi- 

lity into real and imaginary parts. The mathematical steps to arrive 



Figure 5. The eddy currents in a homogeneously magnetized cylinder 

oppose the current that induces them. 

+ 

Figure 6. A cylindrical model for calculating eddy current losses when 

magnetization changes through the motion of a single domain 
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at the power loss in the case of a cylinder are well known 
(10,174)(3,321) 

and are not repeated as only the result is needed. The model to which 

the result applies is shown in figure 6. A cylindrical wall of 

radius R separates two antiparallel domains in a rod of radius r0. 

The magnetization of the cylinder as a whole is changing through the 

expansion of the wall. The instantaneous rate of loss of energy per 

unit volume is 

)Z 
ö 

rot [dMi r[. Ll 
1.27) In 

1ý01 
( 

e2 dt 

where (d / dt) is the rate of change of magnetization at the cylinder 

wall and e is the resistivity of the cylinder. Equation 1.27 shows 

that the power loss depends on the size of the wall. If the magnetiza- 

tion is fully reversed, the averaged power loss is 

_r22 YO 
2 

P=o (1.28) 
e2e ca t 

Of course, real domain distributions are far more complicated than 

that considered, so equation 1,28 only gives a rough indication of the 

losses to be expected. 

Equation 1.28 is now going to be used to make a crude estimate 

of P in the test case of compressed carbonyl iron powder. The 
e 

magnetization is forced to change by a driving flux Bmcos wt. 

Since M= XH and B= }poµr 
XB 

b4 =m cos wt (1.29) 
}ýopr 

and 
22222 

CIM = 
Bm }zr 

w sin wt -2 
(1.30) 

[dt] 

Po }ir 

in which X has been replaced by (}'r - 1). Fitting 1.30 into 1.28 

gives 
_ r2ý2B 

2_12 

p0m 
Jr 

e iý. Pr 

(1.31) 
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since sing v averages to 0.5. 

Pe = 4.1 x 10r3Jm 3s 1. 

Taking data from table 2. 

The eddy current losses are 800 times larger than the hysterysis losses 

in this example. 

In both this and the hysterysis analyses it has been assumed 

that M= XH. However, when finding the eddy current losses in the 

- presence of hysterysis the relation ought to have been written as 

M= (X' - jX")H. The same is true when finding hysterysis losses 

in the presence of eddy currents: the result is that the two losses 

are slightly mixed. There is nothing of value to be gained by 

pursuing this more complex argument. 

1.5.5 The lattice loss 

Magnetization occurs through domain mall motion and domain 

rotation. Both mechanisms require the rotation of coupled electron 

spins, this is on the scale of a domain wall width for domain wall 

motion and throughout the whole domain for domain rotation. There 

are two types of losses connected with this rotating electron spin 

vector, one is due to a relaxation mechanism and the other to a rotat- 

ion mechanism. Both losses transfer energy from the spin vector to 

the lattice. The lattice is therefore heated and the driving field 

loses energy. As before, this can be accounted for by introducing 

an imaginary susceptibility X". This subsection shows how the lattice 

losses arise where the magnetization is alternating by domain rotation. 

An estimate is made of how big these losses are for the example of 

carbonyl iron grains. 

To start with, it is best to introduce the magnetic relaxation 

time's . Picture the magnetization vector due to the aligned spins 

of a cluster of atoms. When the applied flux is changed, the vector 
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till move to find a new equilibrium position. This position corres- 

ponds to the optimum balance between the potential energy due to the 

applied flux and the direction dependent magnetostatic energy arising 

from the crystalline field and the demagnetizing field. If the vector 

is ever to settle into this stable position, rather than just precess 

about it, there must be a finite damping factor p. This necessity 

points to a relaxation time's in that the damping prevents the magnetiza- 

tion instantaneously following the applied flux. The magnetic 

relaxation time's is defined as the time that elapses after the 

application of a flux B before the magnetization differs by less than 

l/e from its equilibrium value. 

An equation of motion can be written and solved for a spin vector 

that is free to rotate into parallelism with an applied flux; Anderson 
(10,1a 

gives a good account. Such an analysis interrelates the damping factor 

p, the relaxation timer and the applied flux B. The results are: 

1+ p2 't- _ (1.32) 

op 

where 

wo = ßB = ßyo 3 (1.33) 

w0 is the natural precession frequency in the absence of damping and 

g is the charge to mass ratio of an electron (1.759 x 1011CKgr1). 

In the presence of damping, the spin vector precesses about the applied 

flux at a frequency 

1 r'0 

pt 1+P 
(1.34) 

'. hen p=0, 'C oo and equilibrium is never reached after the 

applied flux is changed, see figure 7a. When p»1, '1 -. p/wo 

corresponding to motion in a viscous medium with a long settling time - 

figure 7b. Between these two extremes p=1 gives critical damping 

with a minimum settling time ' 
min - 2/w In general 0<p«l and 



? inure 7. The motion of a precessing spin vector in response to an applied 

field H. 
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T> 
mini 

figure 7c. These relations are nov: used to formulate the 

resonance and relaxation phenomena. 

Ferromagnetic and ferrimagnetic resonances are studied in 

detail by Smit and ''ijn($'268). They are complex topics with de- 

pendances on macroscopic and microscopic crystal structure, the type 

of magnetization and demagnetizing factors. Fortunately, it is 

adequate for the present purposes to briefly discuss ferromagnetic 

resonance alone. The most important point to be made is that wo in 

equation 1.33 is not, in this instance, related to the applied flux: 

instead, it is related to an internal anisotropy field HA. 

If a ferromagnetic specimen is rotated in an applied field, the 

magnetization tends to remain parallel to an easy direction that is 

specific to the type of crystal lattice. A crystal anisotropy field 

HA lying along the easy direction can be postulated to account for 

this effect, for there is then a torque )i ýA xM tending to keep the 

internal magnetization vector aligned with the easy direction. Let 

K1 be a characteristic anisotropy constant for a crystal with cubic 

crystalline anisotropy(3,138)(4,139), and recall that Ms is the saturat- 

ion magnetization: 

HA 
2K, 

(1.35) 
YoMs 

if K1 is positive and 

HA =-1 (1.36) 
3` ro 's 

if K1 is negative. Equations 1.35 and 1.36 are not valid for 

magnetization by domain wall motion. 

In the presence of HA, the initial magnetization in a very small 

driving flux is due to domain rotation about the easy direction. If 

the driving frequency is equal to the natural precession frequency 

there is a ferromagnetic resonance. The natural precession is driven 
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constant amplitude against the effects of damping and the energy to do 

this is sapped from the driving field. The real susceptibility X' 

drops rapidly as the driving frequency is increased above the precession 

frequency. To be more precise, for regions in the material where the 

applied alternating flux has a component perpendicular to HA the 

resonance frequency is predicted to be 

tiro = pog HA (1.37) 

using 1.33. In the presence of finite damping, the resonance peak 

is broadened and the resonant frequency is shifted(10,188) to 

w 
0 

v, 
r 

= 
(l + p2)0.5 

(1.38) 

Such behaviour would be expected of any resonant system. Experimentally, 

VIr is the frequency at vihich X" peaks and X' falls to half its low 

frequency value. As p <<l it can be seen that wr N ö, putting 1.36 

into 1.37 gives 

4gKl 
wr =-' (1.39) 

3m 
s 

where K1 is negative. Kl can be related to the low frequency rotational 

susceptibility(3'2632 by 

X 
_o_s (1.40) 

2.7 

when Kl is negative. K1 can now be eliminated from 1.39 to give 

2 }1ogMs 
w =- (1. xa) 

3 (Fr 
- 1) 

where )r is the low frequency relative permeability. Exactly the same 

result would be derived were K1 > 0. 

The resonance frequency wr can be predicted quite successfully 

using 1.41. Figure 8(4'183) shows how wr is reduced as Pr increases. 

Inserting data from table 2 into 1.41 gives fr = 153? liz for the spherical 

carbonyl iron grains: this is a reasonable result judging by figure 8. 

The starting point in analysing relaxation losses is the equation 



Figure 8. Permeability spectra for Ni-Zn ferrites, Philips Ferroxcube IV 

grades I-4, showing resonance in anisotropy fields 

Figure 9. 
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of motion(10,194) for the component of magnetization parallel to the 

applied flux when p« 

'C m 
+M =XH 

dt 
(1.1.2) 

For a field of the form H=H cos wt there must be a solution of the 
m 

form M= Mm exp (j(rt - 0)). Equation 1.12 may therefore be written 

as 

jvr't11m exp(j(wt - 0)) + Mm exp(j(svt - 0)) = XHm exp (jwt) 

from which 

M(1 - jwt) ht 
i_ (1+yý2ý ) 

(1.43) 

X is the low frequency susceptibility, it is not the same as X(w) which 

is the susceptibility as a function of frequency. Using 1.43, X(w) _ 

M/H or mm 

X(w) = 
X_(1 - jvrt) (1.44) 
(1+w'r-) 

X(w) is normally split into real and imaginary components 

X(w) = X' - jXºº ' 
(1.1+5) 

such that 

X 
X' _ (1.46) 22 

and 

X� _ 
Xw'u (1.47) 

(1 + w2'ß ) 

The relation between the complex permeability and the complex 

susceptibility is easy to find. At low frequencies 

Pr =1+X , 

and at high frequencies 

hr t- j}lr" -1+ 
(X' 

- jX") 3 

therefore 

pt=X'+1 (1.48) 
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and 

11 V. (1.49) 

Figure 9 shows the variations in 
I and y" that would be predicted 

from 1.46 to 1.49 if'15 was single valued. There is no reason to 

suppose that't does not occupy a range of values in practice. 

If'1 can be estimated for a given case of rotation magnetization, 

the region of relaxation losses can be predicted. Recalling 1.32, 

`yu _ 
(1 +p (1.50) 

wop 

where p is always << 1 and is typically about 0.01(8'102); wr, which 

is very close to wo has already been calculated using 1.41. Combining 

this result with p=0.01 in 1,50 gives t= 1x 10-7. This result 

predicts that the rotation relaxation losses for carbonyl iron will 

peak at f=1/2 Tr'V x" 1.6 laz. 

These simple calculations on the regions of relaxation and 

resonance losses show that resonance in the internal anisotropy field 

can be dropped from consideration, for it occurs at a frequency that 

is very much greater than the operating frequency of 5MHz. Relaxation 

losses, on the other hand, are likely to be important. It should be 

noted that real geophysical materials do not have permeabilities as 

high as carbonyl iron and so the regions of resonance and relaxation 

occur at higher frequencies. Maghemite (ö - Fe203) is a natural oxide 

which resonates in its anisotropy field at about 1.2GHz, this puts 

1/211 T7 at 12 MHz so that relaxation losses would still be important 

to an instrument operating at 5MHz. Figure 10($'289) shows a high 

frequency resonance and a lower frequency relaxation in the permeability 

spectrum of a copper ferrite. 

It is not difficult to connect X" and p" to the power lost to 

the lattice. The change in energy dir' associated with a field H and a 
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change in flux dB is(1'49) 

d7.7 = (H 
. dB) dV 

V- 

In an isotropic medium, 

d; ̀; = fidB 1.52) 

per unit volume. The losses are attributable to : r" and so, 

d'? =H (poy" dH) 

= po X"H. dH . 
(1.53) 

as H= Hm cos A, the power lost per second per unit volume is 

+ T/2 
X11 

Pl ='o Hm cos wt (WH 
m 

cos wt) dt, (1-54) 
T 

- T/2 

that is 

2 
P=1 wX"H ' 

(1.55) 
12Nm 

which is the required result. Using equation 1.17 the final arrange- 

ments are: 
XH2 

Pl =1 
pO 

m22 (1.56) 
2 '1 (1 + 1/w It ) 

and 2 

P1 =1 
Po(ýr 1> Bý 

22 
(1.57) 

2y Lri [1+ 
lýw't' 

The value calculated for`1' and the relevant data in table 2 can be used 

in 1.57 to yield P1 = 1.4 x 10-1 Jm 3s 1 
for carbonyl iron grains at 

5MHz. For comparison, the hysterysis loss was calculated to be 

Ph = 5.0 x 10-6Jm 3s 1 
and the eddy current loss was 4.1 x 10-3Jm 3s-1. 

The conclusion is that the lattice loss dominates. The most serious 

competitor is the eddy current loss, but its importance has been 

exaggerated because natural ferromagnetic grains in a rock matrix are 
7l 

unlikely to have intrinsic conductivities as high as 10rLm 1. 

Some materials have initial permeabilities that are too high to 

be due to domain rotation alone. Domain tall motion is dominant in 
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these cases. Domain walls can exhibit resonance and relaxation 
(3,349)(4,228) 

and these both occur at about 0.01 of the frequency of rotation 
(3,353) 

resonance in the anisotropy field . This is just the same region 

that rotation relaxation is expected to occur in. Vhere lattice losses 

through wall motion are present they are likely to be greater than losses 

due to rotation, so 1.56 and 1.57 can be presumed to represent the mini- 

mum lattice loss. The dynamics of domain malls have not been considered 

in detail because domain rotation is much simpler and yet yields useful 

results. It is worth noting that the hysterysis losses are solely due 

to domain wall motion and that the eddy current losses were calculated 

under the assumption that the domain walls moved. Finally, when wall 

relaxation does occur it obeys 1.56 and 1.57 although `e is now the. ratio 

of the wall's damping factor to its stiffness 
(ll). 

1.5.6 The temperature dependence of the magnetic relaxation time constant. 

The magnetic relaxation time constant 't is temperature dependent 

in both multidomain and single domain particles. For example, '. in 

ferrites exhibits a temperature dependence of the form 
(4,179)(8,292)(12) 

'tý = exp (E JkT) (1.58) 

in which't is the relaxation time at. an infinite temperature and E 
0o m 

is an activation energy. Galt(12) found that values of 't 
CO 

= (1012Hz)-1 

and Em = 0.22 eV fitted experimental data on (NiO)0.75(FeO)0.25Fe203. 

Smit and `'wijn(8,297) tabulate experimental values of Em ranging from 

0.10eV to 0.4OeV for various ferrites. They found that scan range 

from (3x 108 Hz)-1 to (1013Hz)-l. 

The temperature dependence of% in single domain particles has been 

extensively studied(41147)(13) In the absence of an applied field 

the magnetization of a single domain grain is stable through anisotropy. 

For a grain of volume V this stabilising energy takes a maximum value 

of cV/2: c is both shape and stress dependent but it can be calculated 

when only shape anisotropy is important. In reality, the direction 
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of magnetization in a single domain grain fluctuates through thermal 

agitation. ti. hen cV/2 --kT there is a significant probability that the 

magnetization will spontaneously rotate to reversal. 

hereas`t is a relaxation time, in the case of single domain 

grains i/T can be regarded as the probability per second that the 

magnetization will reverse through thermal agitation. With this 

probabilistic point of view in mind, 't is given by(41147) 

1 
exp (cV/2kT) 

, 
(1.59) 

fe 

which is identical in form to 1.58 except that Em is now calculable. 

The factor fe can be identified as a frequency of electron precession, 

it has a constant value of 109 - 1010s-1 just as it does in 1.58. 

For a uniaxial particle c/2 can be replaced by ü, the uniaxial 

anisotropy constant. Equation (1.59) can now be rearranged to 

relate' to the particle's volume V 
KV 

ln't =u- 22. (1.60) 
kT 

By definition, grains with a small enough volume to be flipped at 

random by ambient thermal energy are superparagnetic: a grain may 

be thought to flip randomly when `L the <- the frequency of the applied 

flux. Superparamagnetic grains carry no remanance and have zero 

coercivity. 

1.5.7 The effect of the demagnetizing factor on the real and imaginary 

susceptibilities 

The demagnetizing factor N affects the experimental determination 

of the real and imaginary susceptibilities. The experimentally 

observed susceptibility is 

X. 
X=1 

a 1+NX. 
Y 

(i. ii) 

where X. is now 
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X. = X1' - jX1" . 
(1.61) 

The result of substituting 1.61 into 1.14 is 

x jX 
X'-a jX (1.62) 

a1+N (Xi - Xiý) 

from which 

(1 + NX 
i 

')x 
i'+ 

NX. "2 
xaý _i' (1.63) 

(1 + NX2 + N2Xi112 

and x it 

X.. _I 
(1.610 

a 
(1 + NX2 + N2Xi"2 

Equations 1.63 and 1.61 show that Xi' and Xi" are mixed in Xa 

by the demagnetizing factor. When Xi' » Xi" equations 1.63 and 

1.61+ simplify to 
X. ' 

X'=1 (1.65) 
a (1 + NXi') 

and 
X. " 

x It =1 (1.66) 
a 

(1 + NXi')2 

dhen Xi' »1 the demagnetizing field is ineffective and so 

xaI= xi' , 
(1.67) 

and 

X it = X" 
ai' 
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ruLl. PTFP 9 

THE INFLUENCE OF A MAGNETIZABLE MATERIAL ON THE PROPERTIES OF A 
SOLENOIDAL COIL 

2.1 INTRODUCTION 

Chapter 1 discussed the effect of an applied flux on a 

magnetizable sample. Chapter 2 takes a reverse point of view by ask- 

ing hour the magnetized sample affects the source of the flux. This 

topic is important for it will show what can be measured and it helps 

in deciding how measurements might best be made. 

Samples are most conveniently probed by alternating fields. Such 

fields, and the induced changes in them, are readily distinguished from 

any natural remanent magnetization (n. r. m. ) that may be locked in the 

sample(2). The most obvious means of applying an alternating flux is 

to place the sample in a coil that is energised by an alternating 

current: this is the scheme that was adopted. It will shortly be seen 

that X' affects the inductance of the sample coil, whilst X" increases 

the effective resistance of the sample coil. 

Two existing a. c. susceptibility instruments are briefly outlined, 

both of them were developed to measure the variation of initial suscepti- 

bility with temperature. These devices are used to put the present 

work into a context. 

The high frequency circuits developed for nuclear magnetic resonance 

(n. m. r. ) detection can be elegantly simple and yet very sensitive. Two 

particularly important circuits, the Robinson oscillator and the Rollin 

Q-meter, are mentioned in the light of the present requirements. This 

leads to a description of the principle of the new instrument. 

2.2 HOW THE COIL AND SAhPLE INTERACT 

2.2.1 The field in a solenoidal coil 

This subsection presents some useful formulae on single layered air 
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cored coils. The axial field in the centre of a very long single 

layered solenoid is 

H=nI 
b 

(2. i) 

where n is the total number of turns of the coil, b is the length of the 

coil and I is the current in the coil. For any single layered air cored 

coil, if x is the displacement from the centre of the coil and D is the 

diameter of the coil (see figure lla) then the field anywhere on the 

axis of the coil is(14' 182) 

_ 
In b+ 2x b- 2x 

H 
2b 

[(D2 
+ (b + 2x)2)0'5 

+ 
(D2 + (b - 2x2)0.5 

(2.2) 

Figure llb shows the variation of H along a coil whose length to diameter 

ratio is 0,86, a coil of exactly this shape is used in the Pork described 

in chapters 5 and 6. 

The inductance of a single layered solenoid whose length is long 

compared with its diameter is 

L-U Ur n2 Ab, (2.3) 

where Pr is the relative permeability of the material filling the coil 

and A is the coil's cross sectional area. ViTheeler's formula for the 

inductance of a single layered coil whose length is less than its diameter 

is(l5) 

L322 F 10 Dn (2.4) 
o Pr 747V 

102b + 45 D 

Equation 2.4 is correct to within 3% for 0.25 (b/D) < 1.00. 

2.2.2 The effect of the sample on the solenoidal measuring coil 

If a long, air cored solenoid is filled with magnetizable material, 

the original inductance Lo is changed to 

I 



Figure 11. The magnetic field along the axis of a helical, single layer, 

air cored coil. 

Coil winding 

0 

x 

b 

a. The symbols for equation 2.2, s= b/D = 0.83. 

H, in units of (In/2) 

b. The axial field variation for the coil above 

x, in units of (b/ 2) 
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L1 Pro $ (2.5) 

in which it has been assumed that the relative permeability of air is 

one. Equation 2.5 can be rewritten as 

Ll = (1 + X)L0 , 

so that 

L1 = (1 + (x' - jx")) (2.6) 

at high frequencies. If the solenoid has a d. c. resistance of R 
s 

then the excited, filled coil will have an impedance of 

Rs + jwL1 = Rs + wLö "+ jwL0 (1 + X') , 
(2.7) 

where w is the angular frequency of the exciting current. The effect 

of filling the long solenoid with magnetizable material has been to change 

the inductance by 

AL= X' Lo , (2.8) 

and to increase the d. c. re. sistance by 

0R = X"wL 
0 

AL and AR are both measurable. 

(2.9) 

2.2.3 The measuring coil's filling factor 

Equations 2.8 and 2.9 are only valid when a long core, tightly 

wound around by an energised coil, is fully penetrated by flux. The 

question of flux penetration has already been dealt with in sections 

1.3 and 1.5.2. However; -because the coil was ultimately designed to 

have a good quality factor it was short, not long. Furthermore, the 

inclusion of a furnace within the coil constrained the diameter of the 

sample to be much less than that of the coil. A filling factor F is 

required to account for these points. 

The filling factor is defined to be the ratio of the magnetic 

energy in the sample volume to the total magnetic energy produced by 

coil. If the sample is now required to be much shorter than the measuring 

N 
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coil, * 0.25b, and is placed centrally within it then the flux inside 

the sample is reasonably uniform; equations 2.8 and 2.9 can now be 

rewritten as 

AL= FX'L 

and 

(2.10) 

AR= FXt vLo , 
(2.11) 

where F is the filling factor. The condition that the sample's length 1 

be - 0.25b has been adopted in practice. (The sample's diameter d is 

fixed by the sample tube that fits into the furnace. ) When the 

displacement from the centre of the coil =± b/8, H has decreased by 

only 2.4% from its maximum value. Within these bounds the sample's 

length and homogeneity do not matter because the field is nearly uniform, 

so results from different samples can be compared if desired. If the 

sample is allowed to break these bounds, AL and AR will also depend on 

the sample's length and the distribution of ferromagnetic material within 

the sample: this is most undesirable. The restriction on sample length 

avoids these unwanted dependences at the cost of having to measure 

weaker signals. 

The coil filling factor F is a little considered quantity. Beyond 

its definition, almost no information has been seen about it in the 

literature. The one exception is a paper by Becker and Collett 
(16) 

who have a result for the filling factor of a short, solenoidal coil. 

They give 

F_ 
vs b(b + 0.45D) 

V b2 + D2 
c 

(2.12) 

where VS is the sample volume and Vc is the coil volume. Unfortunately, 

neither the paper itself nor the references it contains give a clue about 

the origins or validity of the result. Later on it will be seen that F 
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is an important design parameter. It is not sensible to design with an. 

equation of uncertain ancestry so the following analysis was carried 

out to either confirm or find an alternative to Becker and Collett's 

result. 

Imagine a sample of length 1 diameter d centrally placed in a coil 

of length b and diameter D having n turns. The restrictions 1 -<b/4 

and d< D/2 are presumed, they are certainly obeyed in the new instrument. 

From the definition of F. the ratio of the magnetic energy in the sample 

to the magnetic energy produced by the coil must be found. The magnetic 

energy produced by an inductance due to ac urrent I is, 

1. LI2 
2 

(2.13) 

The presence of the sample will change the original inductance Lo to a 

new value, 

Ll = Lo(l + Fs) (2.14) 

where X= X' - jX". From 2.4 and 2.14 the total magnetic energy 

generated by the coil is 

103}zo + FX D2 n2 I2 w=. (2.15 
4 ßt7 2 102 b+ 45 D 

The calculation of the energy due to the field within the sample 

is based on 

W=1I H. B dV (2.16) 

2J-- 
recalling 1.62. A sample composed of a distributed ferromagnetic 

powder or randomly oriented rock chippings is isotropic and so 

H. B= HB , 
(2.17) 

therefore 

0YI=2 ji ji" H2VS " 
(2.18 

As far as the sample is concerned, 1r =1+X and so 2.18 is 
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V=1 )10 (1 + X)H2VS 
2 

(2.19) 

As d <D/2 it is reasonable to neglect the variation of the flux 

density at right angles to the coil axis. Since 1 <b/4 

H= In (2.20) 
(D2 + b2)0.5 

to within 2. L%, this can be proven by substituting x=0 and x=± 

b/8 into equation 2.2. Equations 2.19 and 2.20 can be combined to give 

the energy in the sample: 

I2n2 
AY_o (l + X) Vs . 

(2.21) 
2 D2+b2 

Since 

F= 
AW (2.22) 
fir' 

equation 2.21 may be divided by 2.15 to yield 

F=B1+X (2.23) 
l+FX 

where B= 
vs b(b + 0.44D) (2.24) 

V 
(D +b) 

C 

The final step is to rearrange 2.23: 

F2X +F- B(1 + X) =0 (2.25), 

such that 

F= -1 
± (1 + 1ýXB(1 + X))0.5 

. 
(2.26) 

2X 

Let's put 2.26 through a simple test whose result can be predicted. 

In the case of a long solenoid (where b/D »1) filled with magnetizable 

material B=1. Equation 2.26 then becomes 

F= -1 
+ (2X + 1) (2.27) 

2X 

=1 
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if the negative root is ignored for being unrealistic. This is 

exactly the result that would be expected. 

Equation 2.26 may be expanded binomially into a more useful form, 

F=B (1 + x) - xg2 (1 + x)2 + ... (2.28) 
In practice B -- 0.01, therefore if X--<2.5 

F :-B (1 + X) . (2.29) 

This is an important result, for it shows that F is a function of X. 

Therefore, AL and AR in equations 2.10 and 2.11 are not linearly 

dependant on X' or X". However, if X -<O. 1 

FxB , 
(2.30) 

in agreement with Becker and Collett's result. 

To conclude this subsection, when the volume susceptibility is less 

than 0.1 the filling factor is given by equation 2.12. When the 

volume susceptibility is greater than 0.1, but less than 2.5, the filling 

factor is given by 2.29. However, equation 2.29 should be treated with 

caution because the magnetic field over the cross section of the coil 

becomes increasingly distorted as X increases, and this invalidates the 

assumption made to obtain 2.20. 

2.3 COMMENTS ON TV'D EXISTING INSTRUMENTS THAT MEASURE THE TEMPERATURE 
DEPENDENCE OF SUSCEPTIBILITY 

2. .1 Introduction 

The interplay between the rock sample and the measuring coil has now 

been described. This subsection presents a synopsis of two existing 

instruments that recognise and record the induced changes in the coil. 

Both of these instruments had a strong influence on the recent work. 

They also indicate the existing standard of performance and therefore 

the success, or otherwise, of the different ideas on which the new instru- 

ment is founded. 

The first device to be considered makes the measuring coil part of 

a balanced inductive bridge operating at l. 5KHz. A working version of 
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this instrument is available in the department and it is popular because 

it is easy to use. One objective therefore was to combine a similar 

ease of use with an improved sensitivity. As a well tried and trusted 

geophysical tool the bridge was adopted as a reference standard during 

the development of the new instrument. A paper describing this instru- 

ment is included in appendix 3. 

The second instrument described operates at 10 heiz. In this 

instance, the measuring coil is made part of a driven series resonant 

circuit. Inductive and resistive changes in the measuring coil are 

distinguishable using this technique. The instrument is more difficult 

to use than the bridge, but the results it obtains are very interesting. 

In particular, it stimulated an interest in measuring X". 

2.3.2 A 1.5KHz Bridge 
17) 

In use, the bridge is first balanced roughly such that its output 

voltage is close to zero. When a sample is inserted into the measuring 

coil the change in output voltage is closely proportional-to the suscept- 

ibility of the sample; the bridge is linear to -within 1% provided that the 

sample's total susceptibility XT 9.4 x 10-7m3. Calibration is done 

using a standard of known total susceptibility. The temperature depend- 

ence of susceptibility can be monitored continuously simply by feeding 

the bridge's output to an XY chart recorder while the sample is heated in 

the bridge's furnace. 

A block diagram of the bridge is shown in figure 12(17). A pair 

of identical solenoids form two of the bridge's arms, the other arms are 

both resistive and include some provision for balancing adjustments. 

One of the solenoids houses a furnace for measurements up to'l000K, the 

other solenoid houses an insulated container for measurements down to 

77K. Figure 13(17) shows how the furnace and measuring coil are 

amalgamated. The furnace consists of a quartz tube of 8 mm internal 



Figure 12. block diagram of 3tephenson and de Sa's bridge 
(17'. 

Figure 13. A diagram of Sterhenson and de Sa's furnace and measuring 

coil assembly. 

1. Pt-Pt/13/cRh thermocouple 

2. Measuring coil 

3. rater jacket 

4. Furnace Anding 

5. Quartz tube 

6. Supports 

123456 
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diameter wound non-inductively with nichrome wire. Currents of up to 

1A can be passed through the furnace without disturbing the bridge. 

Insulation between the furnace and coil is provided by an air gap and water 

jacket. 

For the purposes of comparison later on, the relevant specifications 

of the instrument are listed in table 5 below. ` 

Table Some details of the l. 5KHz bridge. 

Parameter Value 

Length of sample coil 3.6 x 10-2 m 

Internal diameter of 2.2 x 10-2 m 
sample coil 

Construction of sample 5,000 turns of 32 s. s4. g. 
coil enamelled copper wire 

Flux at the centre of 3.6 x 10^4 T pk. 
the sample coil 

Sample size About 10 mm long by 
4 mm diameter 

Maximum sample 9.7 x 10-7m3 
strength 

Random noise at the ± 1.2 x 10-11 m3 
output 

1 10 11 3 in 1 
Zero drift .3 m m x 

Direction reading? Yes 

2.3.3 A 10 MHz Method(18) 

The high frequency method of Markert, Trissi and Zimmerman is 

very different from the technique just described. Markert et al followed 

a lead given by Petersen(19) in using the high frequency losses of ferromag- 

netic materials to determine their Curie points. Petersen's apparatus 

worked at 8MHz. 

A block diagram of Markert et al's system is reproduced in figure 

14 
(18) 

.A crystal oscillator and a voltage controlled regulator are 

used in conjunction to produce a stable lOMHz signal whose amplitude 

can be automatically controlled. The regulated signal is fed to a buffer 
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and thence to three inductively coupled series resonant circuits. 

As can be seen, the sample is enclosed in a measuring coil in resonant 

circuit three. The measuring coil consists of 3'-z turns of copper 

tubing, water can be made to flow through the tubing to keep the coil 

cool. The signal amplitudes in each of the tuned circuits are peak 

detected and compared with preset reference voltages by differential 

amplifiers. The output of any one of these amplifiers can be fed back 

through an integrating amplifier to form an amplitude control loop, 

the outputs of the other two amplifiers contain information about the 

susceptibility of the sample. The authors describe three different 

measuring techniques, but they do not make clear which their favoured 

method is. One of the methods is outlined below. 

Circuit 1 is tuned to resonance and its detected and differentially 

amplified signal level is fed back to the amplitude regulator. Resonant 

circuit 1 is now acting simply as a 10 MHz voltage source. Circuit 2 

is also set to resonance, but circuit 3 is set off resonance such that 

the amplitude in it is 1 of the maximum possible amplitude. 

In the absence of a sample the current in circuit 3 is 1 30. 
When 

a sample is inserted into the measuring coil the changes AI2 and A13, in 

circuits 2 and 3 respectively, can be measured at the outputs of the 

differential amplifiers. According to the authors, the increase in 

resistance of coil 3 due to the insertion of a sample is given by 

AR 3= Al 
DI2 

- B1 
DI3. 

(2.31 
1 3o 130 

The increase in the measuring coil's inductance is 

DI AI 
w EiL3 = A2 2- B2 ---ý . 

(2.32) 
130 130 

The constants Al, A2, B1 and B2 can be determined by calibration using 
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known samples. 

Figure 15 shows the quartz vessel that the sample is placed in. 

For high temperature measurements the inner quartz tube is evacuated 

and sealed. The whole vessel is heated in a separate furnace and it is 

then removed from the furnace and slid into the water cooled sample coil. 

The changes AI 2 and AI 
3 are simultaneously chart recorded as the 

sample cools down. A plot of A R3 and A L3 against temperature can then 

be produced by a series of calculations using equations 2.31 and 2.32. 

After theoretically analysing their instrument Markert et al found 

that in practice it produced results 30% lower than they had predicted. 

This was because they ignored the coupling factor F by assuming that 

L= X'L 
0 

and 

R=X"wL 
0 

They also assume that the imaginary susceptibility X" is due to Rayliegh 

hysterysis losses, a completely different conclusion was drawn in 

section 1.5. 

Markert et al give two examples of results at elevated temperatures 

and these are reproduced in figures 16a and 16b(18). The two examples 

are in marked contrast. Figure 16a is easy to interpret because it 

has a sharp Curie point(4'37) transition, 16b has a blurred transition 

which Markert et al attribute to a range of close lying Curie points. 

In both cases, the losses exhibit a distinct peak and undergo greater 

changes, as a proportion of their initial value, than the inductive 

components do. It was stated in section 1.4 that one of the most 

important applications of susceptibility measurements lies in finding 

Curie points, the striking changes in figures 16a and 16b show that X" 

could be of much use in this respect. 

To close this subsection, some details of Markert et al's apparatus 

are given in table 6 below. 



Thermocouple 
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Figure 15. A diagram of Markert et al's quartz sample vessel. 



Figure 16. Some results from MMarkert et al's system 
(18) 
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Table 6 Some details of the 10MHz method. 

Parameter Value 

Length of sample coil 4.5 x 10-2 m 

Diameter of sample 7.0 x 10-2 m 
coil 
Construction of sample 3.5 turns of copper 
coil tube. Internal diame- 

ter of tube is 1+ mm, 
external is 6 mm . 

Flux at the centre Not given 
of the sample coil 

Sample size Up to 30 mm long by 
25 mm diameter 

Maximum sample strength Not given 
Random noise in X' - 1.5 x 10-10 m3 
Random noise in X" Not given 
Zero drifts Not given 
Direct reading? No 

2.3.4 Conclusions 

This subsection distils from the preceding comments those features 

that an experimentalist might desire of a new instrument that measures 

the temperature dependence of susceptibility. 

The 1.5KHz bridge of Stephenson and de Sa is about 13 times more 

sensitive to X' than the 10 MHz system of Markert et al. A sensitivity 

at least equal to that of the bridge is desirable as it allows small or 

weak samples to be successfully dealt with. This sensitivity would be 

especially useful when examining synthetic materials which might be in 

short supply. 

The amalgamated furnace and sample coil scheme of Stephenson and 

de Sa is adopted. The advantages are that the rate of heating and 

cooling can be controlled to suit the sample size, and that the coil is 

quite effectively insulated from transmitted heat. The price to be paid 

is a reduced filling factor, and therefore reduced sensitivity, as the 
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coil has to be large enough to accommodate the furnace and water jacket. 

Markert et al are able to evacuate the sample space to minimise the 

risk of sample oxidation during heating. The standard technique of 

sealing the samples in an evacuated quartz tube can be used to the same 

effect in Stephenson and de Sa's arrangement. Changes may occur in a 

heated sample even in the absence of air. If these changes are irrever- 

sible they would be completely missed by an instrument that could not 

observe the susceptibility during heating. 

It is plain from Markert et al's results in figures 16a and 16b 

that both X' and X" are worth measuring. The temperature dependence 

of X" in ferromagnetic materials has received very little attention in 

the past, but X" may be a better indicator of Curie points than X' and it 

may yield other information too. 

Markert et al's apparatus was not automatic as the results it gave 

had to be manually converted to X' and X". It was hoped that the new 

instrument would make available outputs directly proportional to X' and 

X11. 

2.1+ NUCLEAR MAGNETIC SUSCEPTIBILITY SPECTROMETERS 

2.4.1 Introduction 

A nucleus that contains an odd number of protons has a net spin 

dipole moment and therefore an associated magnetic moment and susceptibi- 

lity. This nuclear susceptibility has both real and imaginary parts, 

and since the mid 1940's a lot of time and effort has been expended in 

developing ever more sensitive circuits to measure it. Perhaps the most 

famous of these are the Q-meter circuit of Rollin 
(20) 

, the marginal 

oscillator 
(21) 

the Pound-Knight-Watkins (PKW) marginal oscillator 
(22) 

and the Robinson oscillator(23) with its Faulkner-Holman variant(24) 

This section decides which, if any, of this work can be turned to ad- 

vantage in this project. As the subject is well developed, the decision 
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can be made quickly, and it will lead to a description of the new instru- 

ment's principle in the next section. 

Using the aforementioned circuits to measure the temperature 

dependence of susceptibility is an idea that has been thought of before. 

Thereas the n. m. r. workers used the changes in the losses of a tuned 

circuit to measure the imaginary part of the nuclear susceptibility, the 

geophysical workers used the changes in a tuned circuit's natural fre- 

quency to measure the real part of the electronic susceptibility. de Sa(25) 

utilised a5 MHz marginal oscillator to find the Curie points of ferri- 

magnetic materials at elevated temperatures. He pointed out that his 

method was not sensitive as it was not suitable for initial susceptibilities 

under 0.5. Riedi(26) used aQ meter to measure Curie points at cryogenic 

temperatures. Riedi's apparatus worked at frequencies between 1 MHz and 

10 MHz and he claimed that his method was significantly more sensitive 

than de Sa's. These instruments are not suited to the present purposes 

because they are not sensitive enough, they are not linear and they do 

not attempt to separate X' and X". 

2. lß. 2 Some useful results on parallel tuned circuits 

All of the circuits mentioned for measuring nuclear susceptibility 

place the sample in a coil which forms part of an LC resonant (tuned) 

circuit. This subsection presents some useful results that describe the 

behaviour of a parallel tuned circuit. 

Figure 17 depicts a parallel tuned circuit driven by an alternating 

voltage source through a very large resistance R. The tuned circuit is 

an inductance L in parallel with a capacitance C, it includes the 

unwanted d. c. resistance of the coil R and the shunt resistance of the 
s 

capacitor Rc. For high quality silver mica or polystyrene capacitors 

Rc>1Oll11 so it can be safely neglected. 

The quality factor Q of the tuned circuit is ratio of the reactive 



Figure 17. A parallel tuned circuit, including parasitic resistances, 

driven by a voltage source through an isol, ýting resistance. 

R 

RC 

Figure 18. The impedance and phase characteristics of a parallel tuned 

circuit driven by an alternating current with a frequency 

close to the natural frequency. 

Frequency off resonance, KHz 
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to the dissipative impedance of the coil at the tuned circuit's natural 

frequency w°: 
yr L 

Q_° 

R 
s 

(2.33) 

provided that R is large enough to be ignored - how large will be seen 

shortly. Q values of 100 to 300 may be attained over the frequency 

range 11; UIz to 30MH3z(15), 
(27'21) 

, 

The natural frequency of the tuned circuit is 

wo =1 (1 - 1/Q2) 
0.5 

(2.34) 
LC 

this can be simplified to 

_ (l/Lc)0 5 (2.35) 
0 

with an accuracy of better than 1% provided that Q> 7. The quality 

factor of the tuned circuit determines its bandwidth for 

Q= pro/ 0 wo, (2.36) 

where wo {p 
wo/2 are the half power frequencies. 

The tuned circuit behaves as a real resistance 

Z=Q oL (2.37) 

when the driving frequency w is equal to the natural frequency 0; at 

this frequency the signal across the tuned circuit and the driving signal 

are in phase. It can now be seen that 2.33 is true if R» Q oL At any 

frequency other than w0 the phase of the driven relative to the driving 

current is 

_+ tan-' (@(l -w LC)), 2.38) 

and the impedance of the tuned circuit is reduced to 

IZI = Qwö cos 0. (2.39) 
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These relations are plotted in figure 18 for the case L=1.12uH, 

C= 88OpF and Q= 175. These values belong to the tuned circuit and 

furnace arrangement of the final version of the new instrument. 

Finally, many papers on n. m. r. do away with the coil's series 

resistance Rs and replace it with a parallel conductance G or a parallel 

resistance R 
P 

WL 
Q_o 

R 
S 

It is useful to know that 

1 

Gw L 
0 

wL 0 
R 

P 

(2. '0) 

2.4.3 The Q meter and the Robinson oscillator 

It can quickly be shown that of the four n. m. r. circuits mentioned 

in 2.4.1, the Q meter and the Robinson oscillator are the most promising 

candidates for development. A natural starting point is to ask how 

sensitive these circuits are. The issue is not clear cut, for these 

instruments are primarily used to detect the peaks in X" due to n. m. r., 

X' is of incidental interest to them and it is usually ignored in 

analyses of sensitivity. For the present application X' is of major 

importance, but the noise sources that limit the accuracy to which it 

can be measured are also those that pollute the signal for X". On this 

platform, the results obtained by Wind 
(28) 

can be applied. Wind found 

that the Q meter, the PKW oscillator and the Robinson oscillator are 

equally sensitive, and that all three are more sensitive than the marginal 

oscillator. The marginal oscillator is therefore dropped from further 

consideration. V-ind preferred the Q meter and the Robinson oscillator 

because they are more predictable than the PKW oscillator. The Robinson 

oscillator has been established as the most popular n. m. r. circuit for 

some time(24) and it regularly appears in new designs(29'(30). Because 

of its popularity the Robinson oscillator is carried forward for further 

consideration. , The Q meter is carried forward too. 
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As the Q meter is simplest to understand, it is examined first. 

Referring to figure 19(31) the points P and Q are not connected, and the 

current generator is independent of the input voltage. Assume that 

there is no sample in the coil initially. The tuned circuit is made 

to resonate with the applied a. c. current by adjusting the capacitor C. 

The tuned circuit then acts as a pure resistance so that the experimenter 

observes a signal level 

V= (wö Q)i , 
(2.11) 

where 0= (LC)-0.5. When a sample is inserted into the coil the 

quality factor changes to QS. If X" is significant and X' is negligible, 

as would be the case for a paramagnetic sample in the region of nuclear 

magnetic resonance, the new quality factor is 

yr L 
Q0 SR 

+FwX"L 
s0 

(2.12) 

recalling equation 2.11. The decrease in the observed signal level 

is 

or 

AV= öLi (QS - Q) a 
(2.43 

wL NL 
AV - wLi 0-° (2.44) 

0R +FwX"L R 
s0s 

using 2.42. In practice Fw0X" « Rs and so after some simplification 

V=- QVFX". (2.45) 

The change in signal level is directly proportional to X" if X' is 

not significant. 

If a ferromagnetic sample is inserted into the coil the signal's 

amplitude is affected by X" and X' and the change in amplitude is not 

informative. A further complication is that in practice it is not 

\ 

possible to set the tuned circuit into exact resonance with the applied 



rigure 19. The model used to describe the behaviour of the meter and the 

(31) 
Robinson oscillator 
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Q 

C 

Figure 20. The Robinson oscillator(23). 
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a. A block diagram 
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b. The ideal limiter characteristic 
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alternating current, there is therefore an inital phase difference 0 

between the voltage across the coil and the driving current. When a 

ferromagnetic sample is ins erted into t he coil, the change in the phase 
(31) 

of V is 

/w)(Xt, dO = -FQ(w tan 0- X') cos2 01 (2.46) 
o 

where w is the frequency of the driving current. The change in voltage 
(31) 

across the coil is 

dV = -QVF(wjw)(X" + X' tan 0) cos2o (2.47) 
, 

where 0 is now the sum of the phase differences due to the initial tuning 

error and the detuning effect of X'. These equations show that the 

signal observed using aQ meter is unavoidably a mixture of X' and X" Then 

the sample is ferromagnetic. 

A block diagram of the Robinson oscillator is shown in figure 20a(23) 

Notice that the series resistance of the coil Rs has been replaced by a 

parallel conductance G. The principle behind any electronic LC 

oscillator is to create a negative conductance - G' in parallel with G. 

Once started, oscillations will carry on forever if G-G' = 0. 

The negative conductance has to be non-linear. If, at switch on, 

G- G' <0 the circuit will spontaneously oscillate and the signal level 

will grow. As the level rises, the electronic device generating the 

negative conductance starts to saturate and the average value of the 

negative conductance falls. Yen the average value of the negative con- 

ductance has dropped to the value of the real conductance the amplitude 

stabilises. The non-linearity therefore causes the oscillations to start, 

at a frequency ; zzw 0, 
and then limits their growth. Most marginal 

oscillators allow one transistor to do both jobs, these are classified as 

Van der Pol oscillators which are analysed in detail by Strauss 
(32,721) 

0 

The Robinson oscillator separates the start up and limiting functions 
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into two blocks. The limiter's characteristic is shown in figure 20b, 

it has a gain of VJVi up to limiting. Provided that the total voltage 

gain is greater than the voltage division of the feedback resistor 

and tuned circuit, that is if 

AVo/Vi > GRf , 
(2.48) 

oscillations will occur. The amplitude of oscillation will be 

4V 
V= -- ° (2. if9) 

`ff GR 
f 

A simple theory of operation dealing with ideal limiters and amplifiers 

leads to the conclusion that any change in the amplitude of oscillation is 

due to X", whilst any change in the frequency of oscillation is due to 

X'. Real amplifiers and limiters have frequency dependent gains and phase 

shifts; Hughes and Smith(31) have generalised the theory of oscillators 

to account for this. Referring to figure 19, points P and Q are now 

connected. An input to the current generator of v= Vexp(jvt) leads to 

an output of i=I exp (j(wt + O)). 0 is frequency dependent and allows 

for delays in the amplifier and limiter. I is also frequency dependent. 

Their results for the changes in frequency and amplitude due to a ferro- 

magnetic sample are: 

dw =IF (X" tan fÖ - X`) , 
(2.50) 

.2 
and 

dV = -QVF(Xtt + X' c/2Q) ' (2.51) 

where c is a constant that is roughly equal to one. 

Once again, the observable signals are a mixture of X' and X". 

It is worth showing how important 0 is in 2.50. If both the amplifier 

and limiter have bandwidths of 100 MHz they will each delay a5 MHz signal 

by 0.05 radians, the total delay is therefore 0.1 radians or 3.2 ns. 
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Equation 2.50 should then be written 

dtiw=2F (0. n" -x') . 

In fact, the situation is worse than this because the calculation ignored 

the excess phase shift due to the non-linear behaviour of the limiter. 

2.5 THE PRINCIPLE OF THE NEW INSTRUMENT 

It has been seen that neither the Q meter nor the Robinson oscillator 

. yield signals directly proportional to X' and X". In an unmodified form, 

the Robinson oscillator is the most useful of the two when dealing with 

ferromagnetic samples. However, it is the Q meter that is adopted and 

changed. 

There are three reasons for adopting the Q meter. The first is 

that the unwanted electronic phase shifts are frequency dependent. The 

Q meter at least keeps the phase shifts constant by operating at a fixed 

frequency. Next, the Q meter has not been fully exploited in the past; 

the information contained in the phase difference between the voltage 

across the coil and the driving current has been ignored. Finally, the 

Q meter can be changed to overcome most of its disadvantages. 

The phase difference between the driving and driven signals is 

only zero when the tuned circuit's natural frequency is exactly equal to 

the driving frequency. It is proposed to measure this phase difference 

and to use it as the error signal in a negative feedback system which 

keeps the tuned circuit in exact resonance despite changes in X'. 

Recalling 2.46 

80 = -FQ (w jw) (X" tan 0- X') cos 
2 0, 

the feedback will ensure that w=w, tan 0=0 and cost 0=1, therefore 

djö = FQX' (2.52) 

The phase difference is proportional to X' with no admixture of X". The 

value of (30 rill be represented by the magnitude of the feedback voltage 
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necessary to reduce dO to zero. If the feedback system is linear, 

then the feedback voltage will be linearly proportional to X'. 

Because the tuned circuit is maintained at resonance any change in 

amplitude is due to the change in Q alone. Recalling 2.1+3 

AV = oLi (QS - Q) 

so 
rr (L +p L) yr L 

AV =w Li °-° (2.53) 
0 R+ AR R 

Equations 2.10 and 2.11 are now put into 2.53 to give 

wL (1 + FX') wL 
AV =w Li - (2.5lß) LR0+ 

w LFX" R 
0 

= Qw Li 1+ FX' 
-1, (2.55) 

01+ FQX" 

so 

Xý- AV - FV (2.56) 
1+ FQX"(Zj(" 

Under most circumstances FQX"«1 so that 

L\ V= FV (X I- @X"") . (2.57) 

Comparing equations 2.57 and 2.51 reveals that the new instrument 

will be two times worse than the Robinson oscillator in allowing X' to 

affect the signal for X". This is a price worth paying, for equations 

2.52 and 2.50 show that the new instrument can truly measure X' whereas 

the Robinson oscillator cannot. 

Equation 2.52 is only valid if the circuitry used to measure the 

phase difference introduces no extra phase shifts. By making the 

circuitry symmetric, any delay affecting the signal from the coil will 

also affect the reference signal from the driving oscillator. The two 

therefore cancel and so 2.52 is valid. Similarly, any phase noise in 

the driving oscillator will be common to the reference and the tuned 
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circuit signals and will cancel out at the phase detector. 

Finally, it should be remembered that X' and X" refer to the real 

and imaginary volume susceptibility. For convenience in typing, no 

distinction has been made between the intrinsic and the apparent 

susceptibility. When the two are appreciably different X' and X" 

should be replaced by Xa' and Xa" in the formulae above. 

2.6 THE CHOICE OF OPERATING FREQUENCY 

It has been stated a number of times that the operating frequency 

is to be 5MHz. A number of facts need to be considered to justify this 

choice. 

X' can be most accurately measured at low frequencies, say 

<10KHz, where the complicating effects of rotation relaxation and wall 

resonance/relaxation can be ignored. However, X" is largest and most 

easily measured at high frequencies, say > 50 AIHz. As both X' and X" are 

to be found some compromise has to be made in the operating 

frequency. 

The new instrument is least sensitive to X' in equation 2.57 if 

the Q is large. It will be seen in the next chapter that the signal to 

noise ratio is greatest if the natural Q, as defined in 2.33, is large. 

The highest quality factors for single layered, air cored coils are usually 

obtained at frequencies between 1 and 20MHz(15). The operating fre- 

quency must therefore lie between these values. 

Much of the attraction of Stephenson and de Sa's bridge(17) lay 

in the amalgamation of the furnace and sample coil. The metallic furnace 

winding is bound to degrade the Q of the coil. To minimise this effect, 

the operating frequency should be closer to 1MHz than 20MHz. 

Finally, the experience of previous experimenters in this field can 

be called upon. de Sa(2 worked at 5MHz, Reidi(26) worked between 

1Miz and 10MHz, Petersen(19) worked at 8MHz and Markert et al(18) worked 
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at 101, liz - all of these people met with some success. 

The evidence available indicates that 5MHz is a reasonable choice 

of operating frequency. 
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CHAPTER 3 

THE FIRST VERSION OF AN INSTRUMENT TO MEASURE THE TEIPERATURE DEPENDENCE 
OF INITIAL SUSCEPTIBILITY 

3.1 INTRODUCTION 

Chapters 1 and 2 have largely concentrated on the physics underlying 

the measurement of susceptibility. This chapter and the two that follow 

are concerned with the design, performance and development of the new 

instrument. The purpose of this chapter is to show that the principle 

described in section 2.5 works and to point to a more sophisticated 

embodiment of the same priciple. 

Negative feedback plays an important part in the instrument and 

section 3.2 mentions some of its properties. Armed with this information, 

the description and analysis in sections 3.3 and 3.4 will be quite clear. 

Subsection 3.5 presents some results and compares them with the analysis 

and with a trusted experimental standard. Section 3.6 looks at noise in 

the instrument. 

A research paper on the first version of the instrument has been 

published in the Journal of Physics E: Scientific 
Instruments(33) 

A paper on the intermediate version of the instrument, which is not des- 

cribed in this thesis, was presented at the 1981 United Kingdom Geophysical 

Assembly-Conference held at the. University of Cambridge. 

3.2 A SHORT NOTE ON NEGATIVE FEEDBACK 

Jones(34) has written a useful article on feedback in instrument 

design and Shinners(35) can be turned to for a full account of control 

systems theory. 

The feedback loop illustrated in figure 21 is the most primitive 

possible, yet it has some important properties. The blocks labelled 

G(s) and H(s) might each be a large subsystem with internal feedback 

loops, or just a piece of wire. Whatever the blocks contain, the closed 



Figure 21. A single loop feedback system 

Stimt 
R(s) 

Figure 22. block diagram of the first version of the instrument. The 

numbers are explained in the text. 
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loop transfer function of the feedback syster is 

C(s) 
= 

G(s) (3.1) 
R(s) 1+ G(s)H(s) 

where s is the Laplace transform variable 

s=+ jP (3.2) 

Shinners(35'22) describes the properties of Laplace transforms and the 

advantages of using them. Referring to figure 21, when the switch S1 

is opened the open loop transfer function is 

B(s) 
= G(s)H(s) 

R(s) 
(3.3) 

';; hen S1 is closed a negative feedback loop is formed. The negative 

feedback loop tries to make the feedback signal B(s) equal to the 

input signal R(s) so that the error signal E(s) is zero. If the error 

is to be kept small the open loop gain has to be made large; when this is 

so the closed loop transfer function is 

C(S) 

R(s) H(s) 
(3.4) 

This important result shows that the character of the direct transfer 

function G(s) is not reflected in the output C(s) when the open loop 

gain is large. Therefore, if G(s) is a non-linear transducer that 

measures R(s), a linear feedback device H(s) will force the output C(s) 

to be linearly proportional to R(s) Whatever the characteristic of G(s). 

The problem With negative feedback is that if the signal delay around the 

loop is too large the system can be unstable and useless. The stability 

of the system can be predicted by studying the roots of the characteri- 

stic equation: 

1+ G(s) H(s) =0 (3.5) 

A convenient practical approach is to break the loop at S1 and plot the 

amplitude and phase of G(jw)H(jwv) using a signal generator, a volt- 

meter and a phase meter. This is known as the Bode Diagram technique 
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and it is fully described by Shinners(35,213). 

3.3 A DESCRIPTION OF THE CIRCUIT 

Two feedback loops are used` in the first version of the instru- 

ment. One of them keeps the natural frequency of the tuned circuit 

constant by means of a voltage variable capacitance, the purpose of 

this was explained in section 2.5. The other loop maintains an artifi- 

cially high Q using a voltage controlled negative resistance. The 

effects of this are to minimise the error due to X' in equation 2.57 and 

to keep the signals' amplitudeswithin the system constant. 

The structure of the instrument is shovm in figure 22. A 5.0 1. Hz 

crystal oscillator drives the resonant circuit (1) through a1 Mr isolat- 

ing resistance. The oscillator, a Salford Electrical Instruments type 

QC1223S, has a stable output amplitude and a frequency stability of with- 

in -2p. p. m. over a temperature range of 0°C-55°C. The single layer 

sample coil is wound from silver wire and it has an inductance of 1.3)IH. 

Inside the coil is a water jacket (2) and a furnace (3). The furnace is 

made of non-magnetic nichrome V wire which is bifilar wound onto a 

cylindrical quartz former. This wire is 0.122 mm in diameter, the 

narrowest available gauge is used so that the eddy current losses in the 

furnace are minimised. The water jacket and Refrasil lagging (4. ) 

thermally and electrically isolate the sample coil from the furnace. 

The sample can be heated in its quartz holder (5) to over 700°C. The 

sample's temperature is monitored by a non-magnetic Pt-13Pt/Rh thermo- 

couple (6) against an ice/water reference. The Q multiplier(36) generates 

enough negative resistance to produce an overall Q of 1.1 x 103; more will 

be said about the Q multiplier later. 

An f. e. t. voltage follower passes the signal from the tuned circuit 

to a Plessey SL541B high slew rate operational amplifier. The signal 

then divides to travel along two separate feedback paths. 
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The Q maintaining loop measures the amplitude of the signal coming 

from the amplifier with a peak rectifier. The DC output of the peak 

rectifier represents the Q of the tuned circuit. A fixed reference 

voltage that represents the Q in the absence of a sample is subtracted 

from the rectifier's output. The difference is amplified and fed to the 

voltage controlled negative resistance that is generated by the Q multi- 

plier. The feedback is arranged such that a decrease in the output of 

the peak rectifier, through sample losses, causes an increase in negative 

resistance. The increase in negative resistance causes an increase in 

Q which pushes the output of the peak rectifier back to its old level. 

The phase control loop requires two signal inputs. The first of 

these is the amplified signal from the tuned circuit, this is passed through 

a limiter and thence to the input of a phase detector. The second sig- 

nal is an amplified and limited reference from the crystal oscillator. 

The phase detector turns the relative phases of the two signals into a 

proportionate DC output. The detector's output is subtracted from a 

DC reference signal that represents the initial in phase condition. The 

difference is amplified and passed to a voltage variable capacitance 

formed from two varicap diodes. The feedback is arranged such that an 

increase in inductance, caused by X', is compensated by a decrease in 

capacitance, so keeping the natural frequency fixed. 

The two feedback paths are closed using switches S1 and S2 (figure 

22). The loops' response times are adjusted such that the phase loop 

acts more quickly than the Q loop for this minimises the interaction 

between them. 

A potential weakness of this system is its poor resistance to mechani- 

cal vibration. Vibration can create small changes in the parasitic 

capacities of the leads and the sample coil, it can also alter the in- 

ductance of the sample coil by causing small changes in its dimensions. 
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To fight this problem the shielded oscillator, tuned circuit and f. e. t. 

voltage follower are mounted close together on a rigid platform. The 

platform is contained within a heavy metal case that sits on foam rubber. 

The platform is thus decoupled from the environment. The sample coil is 

made rigid by gluing it to its glass former. When the instrument is in 

use no problems are experienced with mechanical vibrations. 

3.1E. CIRCUIT ANALYSIS 

3 . 4.1 The phase loop 

The phase loop is shown as a feedback system in figure 23. The 

system's output is AV 
p volts in response to the system's input X'. 

The purpose of this subsection is to analytically connect X' to AV 
p . 

The noise sources nl, n2 and n3 are set to zero and S1 is opened. 

X' is coupled by the filling factor F to the inductance L. The fract- 

Tonal increase in inductance is A L/L = FXt and this decreases the 

natural resonant frequency of the tuned circuit by 

Mr 1 AL 
°=-- (3.6) 

w2L 0 

1 
F'X (3.7) 

2 

The tuned circuit's gain converts the change in natural frequency 

into a phase shift, the phase shift can then be measured against the 

crystal oscillator. The gain of the tuned circuit 

calculated in the following way: 

AO dO 
ti- Aw dw 

-1 dw 

dO 

Using equation 2.38 

0.5 

w_1 1_tanf 
LC Q 

i 

pýýA wo can be 

(3.8) 

(3.9) 
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SO 

dR 
=; sec2O. 3.10) 

2, d 

Provided that the change in natural frequency is small 

th w 

d 2Q 

and the gain of the tuned circuit is 

AO 
= 

2Q (3.12) 
Aw w 

0 

From 3.7 and 3.12 the open loop phase shift due to X' is 

A0= -FQX' . 
(3.13) 

The phase shift is measured by a phase detector having a sensiti- 

vity of K, Vrad 
1. The low frequency (< 1Hz) output of the phase 

detector is amplified by A and passed to the varicaps which have a con- 

version coefficient of u, V 1. When S-, is open 

0Vp =- QFKAX' (3.14) 

and the open loop gain is -QKAu. 

By analogy with 3.1 the control system's closed loop gain can 

immediately be written down as 

Avp -QKA 

FX' 1- QKAu 
(3.15) 

The open loop gain is arranged to be much greater than one so that 

AV F 
p--. (3.16) 

xt .u 

A result for u is needed to complete this analysis. The depletion 

capacitance of a varicap is a non-linear function of the applied reverse 

bias voltage. The equivalent circuit of a varicap is shown in figure 

2tß. The junction capacitance C. is associated with parasitic resistances 

Rs and Rp. Rs is usually < 111 whilst Rp is normally > 10 
851 

. 



C. 
J 

Figure 24. The equivalent circuit of a reverse biased varicap diode. 
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Both resistances decrease in importance as the reverse bias voltage Vr 

increases, they are ignored from now on. The behaviour of C is given 

by(37) 

C, 
(v 

r) = 
Jo 

(1 
- VJO)m 

(3.17) 

where Cjo is the capacitance at zero bias, 0 is a built in barrier 

potential and m depends on the nature of the p-n junction. For an 

abrupt junction m=0.5 and for a linearly graded junction m=0.333, 

Note that Vr is negative for reverse bias and positive for forward bias. 

A good estimate of 0 is 0.7V. The form of 3.17 is now simplied to 

(3.18) 
V 

c 

vihere"a`1is a constant of proportionality and Vc = (0.7 -Vd. 

The feedback matches the fractional increase in inductance 

1L/L with a fractional decrease in capacitance -A C/C so keeping the 

product LC constant provided the changes are small. Clearly 

6C 
=u AV (3.19) 

C 

therefore 

1 ac. 

u(Vc) =-- (3.20) 
G av C 

Putting 3.18 into 3.20 produces 

a (3.21) 
u (Vc) =cv l+ m' 

c 

In the absence of a sample Vc = (0-7-V ), in the presence of a sample 

Vc = (0.7 - (Vp + AV 
p 

)). Provided that AV 
p«Vp, u is nearly constant. 

Equation 3.16 can now be filled out, 
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XI a1 ýV (3.22) 

c Vj 
1+mr, o 

c 

It should be recalled that Vc = (0.7 -Vp) where Vp is a fixed offset 

voltage. Vp is proportional to X' to within )f. 3% providing 

AV «0.1Vc. The offset voltage Vp can be removed using a differen- 

tial amplifier so that AV may be directly chart recorded. 

3.4.2 The Q loop 

pith no sample the offset at the Q loop's output is Va, with a 

sample present the output is VQ + AV Q. This subsection shows how 

AVQ is related to X". 

Figure 25 is a block diagram of the Q loop. S, is open and the 
1 

noise sources nl to n4 are set to zero. X" causes an increase in the 

coil's resistance of A RS = FX" 0L, the fractional change in resistance 

is 

AR 
s= FQX" 

R 
s 

(3.23) 

where Q is the initial quality factor. Equation 2.57 shows that the 

resulting change in voltage is 

AV "ý- FVQX" , (3.24. ) 

where V is the voltage across the coil in the absence of a sample. 

X' does affect 3.24, but its contribution is Q times less than that of 

X". As the Q has been multiplied to 1.1 x 103 the effect of X' is 

ignored. Equation 3.21+ assumes that the tuned circuit is driven by a 

current source. This is true in practice because the isolation 

resistance between the crystal oscillator and the tuned circuit is much 

greater than Qw0L; see figure 22. 

The signal across the coil is pre-amplified before peak detection. 

For large enough input levels (> 2V peak to peak) the peak detector's 
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output responds linearly to changes in input amplitude. From figure 

25, when S1 is open 

A VQ = FVQX"A1DA2 ' 
(3.25) 

where D is the gain of the peak detector. The gain of the Q multi- 

plier is 

z_1 
da (3.26) 

Q avQ 

and the open loop gain is VAIDA2Z. 

When S1 is shut the closed loop gain can be written down from 

3.4- to yield 

X11 =1 
dQ Av. (3.27) 

FQ2 dVQ Q 

It was found experimentally that dQ/dVQ was constant over a wide operat- 

ing range, A VQ was therefore proportional to X". 

The action of the voltage controlled Q multiplier merits further 

attention. It will first be shown how a negative resistance is 

generated, then how the resistance affects the Q and finally how the 

resistance may be varied. Figure 26a is a model of the Q multiplier 

block and tuned circuit after the varicaps and isolation resistance 

have been omitted. The active element has infinite input impedance 

and zero output impedance, it has a large current gain and unity voltage 

gain. In reality, the active element is a darlington pair connected as 

an emitter follower. The resistance connected to the output emitter 

terminal is split into two to form a voltage divider. The divider 

ratio can be controlled because one of the resistors, Rv, is voltage 

variable. Positive feedback is taken from the divider to the tuned 

circuit through Rf. The tuned circuit capacitance is formed from two 

capacitors in series. 



Figure 26. The voltage controlled Q) multiplier 
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A diagram of the voltage variable resistance is shown in figure 

26b. As the gate voltage applied to the n-channel f. e. t. is decreased 

the channel resistance rises. The two 470Kn resistances apply feed- 

back from the drain to gate so that the dependence of the channel 

resistance on the drain source voltage is minimised(38,5) . 

An alternating voltage of angular frequency w with an amplitude 

vin is applied to the terminals C and D. An alternating current il 

is generated and the impedance presented to the terminals A and B is 

Z. 
vin 

_ 
v1 +v2 

in 
(3.28) 

il il 

As 

and 

il 
vl = (3.29) 

ýr'C1 

11 + 12 
V2 = (3.30) 

JwC2 

it can be seen that 

11 i2 1 
z. 

in _++ (3.31) 
jr. c 

1 j2 11 jwC2 

Using 3.29 in 3.31 yields 

11 i2 1 
z. _+- (3.32) 

in jwC1 jw-C2 v1 rv2C1C2 

The last term in 3.32 is the negative resistance RN that is needed for Q 

multiplication. Equation 3.32 also shows that the equivalent circuit of 

the Q multiplier is Cl, C2 and RN in series; this is drawn in figure 

26c. The effective Q of the tuned circuit is 

wL 
Qeff -, (3.33) Rs+ RN 
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where Rs is the series DC resistance of the inductance and RN is negative. 

The Q multiplication factor is 

Qeff Rs 

QRs+ RN 
(3.34) 

Then ý 
I-ºRs 

the degree of multiplication becomes very large. Now let's 

see hour RN can be controlled by Rv. As 

V3 - V2 (3.35) 
2 Rf 

and 

v2 = vin °1 ' 3.36) 

equation 3.32 can be rewritten as 

111 (vin- v3) 
zin =+- -ý---- 1- (3.37) 

jv+C1 jvC2 w C1C2Rf vl 

Because vin>v3 and v3 is a function of Rv, it is clear that decreasing 

Rv reduces the amount of negative resistance in the circuit. For small 

amounts of positive feedback 

i2 + il il 

and 

3 14 

so that 

R 
v3 ; z: " v in R1+Rv 

and 
C2 

vl N vin 
C2 + Cl 

Using 3.38 and 3.39 the negative resistance is given by 

1 
1c2+ci 

Rv 
R1-1- 
N 

R2C1C2Rf C2 R1 + Rv 

(3.38) 

(3.39) 

(3.40) 

(3.41) 
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this result gives the dependence of RN on Rv. Values of C1 = C2 = 

1.5nr^, Rf = 1K IL and w=3.11 x 10-7 rad s-1 are used in the Q multi- 

plier. If R1»Rv (f. e. t. saturated) then RN =+0.5 n. and the Q is 

decreased as would be expected. If R1 = Rv then RN = 0.0 1L and the Q 

is not affected as i2 = 0. If R1 « Rv (f. e. t. pinched off) then 

RN =-0.51-L ; however, conditions 3.36 and 3.37 are violated in this 

case so the circuit could never produce as much negative resistance as 

-0.511. Losses in the coil and connecting mires amount to about 0.2 L. 

3.5 RESULTS 

This section provides the proof that the instrument works as pre- 

dicted by sections 2.5,3.4.1 and 3.4.2. The response to both X' and 

X" is shown to be linear to within the accuracy of the measurements. 

Equation. 3.22 is developed so that a calibration factor for X' can be 

calculated, the result comes within 2% of the measured value. A calibrat- 

ion factor for X" is calculated. Measurements of the noise and drift in 

the signals for X' and X" are presented. Two plots produced by the new 

instrument for the temperature dependance of X' are shown to be identical 

to plots produced by a low frequency susceptibility bridge; this is 

reassuring because it indicates that the operating frequency of the new 

instrument is not too high. A summary of the new instrument's performance 

is presented in table 7, this table should be compared with tables 5 and 

6. 

3.5.1 Linearity 

The linearity of the instrument was checked in the following manner. 

Varying masses of powdered magnetite were made up to 50 mg samples by 

dispersing the magnetite in pure LiF. LiF is diamagnetic and gives no 

signal on its own. No more than 20 mg of magnetite was used in any 

sample to ensure that the magnetite was well dispersed. The magnetite 

grains had radii in the range )-. 3 <x <7.7 }im. Each sample was contained 
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in a test tube, it was kept in place at the bottom of the tube by a 

glass wool plug. The samples' volumes varied somewhat as LiF is less 

dense than magnetite. This was not important because the samples were 

each less than a quarter of the length of the sample coil (see subsection 

2.2.3), and because the instrument responds to the volume susceptibility 

which is independant of the samples' volumes. 

Figure 27 shows the mass of magnetite plotted against AV and 

AVQ at room temperature. The linearity of the instrument is seen to be 

within the error of the measurements. 

As a further check on the instrument's operation, a 2.2 mm diameter 

sphere of amorphous graphite was inserted into the sample coil. Graphite 

is diamagnetic, so the phase loop ought not to have been affected, but 

it is a semiconductor so the Q loop should have been affected quite 

strongly. The measured signals were D VQ = -355mV and A Vp = -2mV, 

this should be compared with the results in figure 27. The experiment 

demonstrated that X" was not affecting the output for X'. 

3.5.2 Calibration 

Referring to figure 22, the DC outputs of amplifiers A1 and A2 were 

adjusted to set the Q multiplier and the varicaps to their predetermined 

operating points. The feedback loops were then closed using switches 

S1 and S2. With both loops simultaneously locked a pair of calibration 

factors, p and KQ were found to complete the relations 

XT' = Kp Lp (3.43) 

and 

}CT 11 = xQ L VQ . 
(3.4+) 

The subscript T indicates that the total susceptibility is being referred 

to; see equation 1.7. 

K was found experimentally using a standard sample, it was then 

calculated theoretically from equation 3.22. If the theory was correct 
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the two results v: ould agree. The standard sample consisted of 238 mg 

of paramagnetic FeS04.7H2O, it had a total susceptibility of (1.24 ± 0.02) 

-1O3 x 10m. Inserting it into the sample coil gave a signal of 

AV 
p=- 

(4.9 ± 0.3) x 10-3 V 

from which 

Kp =- (2.53 ± 0.15) x 10-$m3V 1, 

There was a sizeable uncertainty in p because of the weak susceptibility 

of FeSO4'7H20. This substance was chosen because its susceptibility is 

independent of frequency to well above 5MHz and it is a commonly used 

standard. 

Using equation 3.22, p can be expressed as 

K__ ma1V 
pCV 1+ mF s' 

c 

(3.1+5) 

where Vs is the sample's volume. Vs has been introduced because KP in 

equation 3.22 refers to the volume susceptibility, vhereas KP in equation 

3.43 refers to the total susceptibility. The varicap's parameters a and 

m in equation 3.45 were found by fitting equation 3.18 to the manufacturer's 

data. The varicaps were Mullard BB11OG's and it was determined that 

m=0.46 and a= 26.5 pFVO. 
46. The operating offset voltage Vp was 

-4.99V so that VC =+5.69V recalling that VC = (0-7-7 ). The total 

capacitance in the circuit was (0.800 1 0.001)nF. Putting these figures 

together gives 

V 
I{1 = 1.204 x 10-3 S. 

F 

Using equation 2.30 

Vb2+D21 
s_VI I_ 

Fcb+0.45D b 

where Vc is the coil's volume, b is the length of the coil and D is the 

diameter of the coil. The coil's dimensions are b= 43.4 mm and D= 24.5 
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mm, therefore 

.=2.15 x 10-5. 
F 

Finally, the theoretical value for Kp is 

Kp = 2.58 x 10-8m3V-1. 

This result is within 2'/"o' of the value found experimentally and it is well 

inside experimental error, the theory is therefore correct. This result 

also shows that the wire wound furnace and the water in the jacket only 

slightly worsen the coupling factor. Equation 3.22 shows that p will be 

different if Vp, the fixed offset voltage, is altered. Equation 3.21 

shows that the linearity will be better than 4.3% provided that 

P ,<0. lVc. 

KQ is now calculated from equation 3.27: 

1 aQ Vs 

Q2 aV F 
(3.46) 

Q 

- 0.03) dQ/dVQ was measured and was - (152 +- 6)V-1, Q was found to be (1.10 + 

x 103 and Vs/F has been calculated to be 2.15 x 10-5. Using these 

values 

KQ = (2.70 ± 0.15) x 10-9m3V-1 

dQ/dVQ was linear over a range of 1.4V. 

Subsection 1.5.5 has shown that susceptibility is frequency dependent 

and that the effect is more pronounced when the intrinsic susceptibility is 

large. Magnetite has a strong susceptibility, see table 3 in subsection 

1.5.2, it should provide a good indication of how much X' may be decreased 

at 5 MHz compared to low frequencies. A 1.5KHz susceptibility bridge 
(17) 

and the new instrument were both calibrated against the frequency in- 

dependent iron sulphate standard. The total susceptibility of 9.6 mg of 

powdered magnetite well dispersed in LiF was then found on both devices. 
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The low frequency measurement put the total susceptibility at (4.1 
- 0.8) 

x 10-9m3 . The high frequency result was (4.1 + 0.3) x 10-9m3 
. The 

weak susceptibility of the standard was a major source of error, but it 

can be said that the two measurements are in close agreement. It is 

therefore likely that measurements of X' made on the r. f. device will be 

directly comparable with measurements made on low frequency devices. 

3.5.3 Noise and drift 

The noise and drift on both channels were found by monitoring the 

outputs against time on a chart recorder. With a fast chart speed short 

term random noise was recorded. With a slow chart speed long term drift 

was recorded. An analysis of the noise sources and their relative im- 

portance is presented in section 3.6. 

The noise in the phase loop, averaged over 12 intervals of 10 

seconds each, was O. 32mV r. m. s. Using p the noise in P was equivalent 

to 8x 10-12m3r. m. s. Over an interval of 11 minutes the drift in V 

was monotonic at a rate equivalent to 3x 10-11m3min 1. 

The noise in the Q loop, averaged over 6 intervals of 10 seconds 

each, was l. lmV r. m. s. Using KQ the noise in VQ Was equivalent to 

3x 10-12m3r. m. s. Over an interval of 11 minutes the drift in VQ was 

monotonic at a rate of 5x 10-12m3min 1. 

The random noise levels increased by a factor of 2.5 when the furnace 

was running and water was flowing through the jacket. 

3.5.4 Plots of X' against temperature 

Chart recordings of the temperature dependence of the real part of 

the susceptibility were made for a number of samples, two of these re- 

cordings are presented below. The temperature dependences of the same 

pair of samples were also recorded on a 1.5 KHz bridge, these recordings 

are presented too. The chart recordings from the two instruments are 

compared to check that they agree. No recordings of the temperature 

dependence of X" were made at this stage. 
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Figure 28, obtained on the new instrument, is a plot of X' against 

temperature whilst heating a 13.0 mg lump of natural magnetite; the 

trace was very similar on cooling. There is a distinct Curie point at 

(580 ± 3)°C. A proper discussion of the shape of figure 28 is given 

in chapter 6. For now, it is sufficient to compare it with figure 29 

which was produced by heating a 12.9 mg lump of magnetite in the low 

frequency bridge. The two recordings are almost identical. Figure 29 

also puts the Curie point at (580 ± 3)°C; the value that would be ex- 

pected for pure magnetite is 5780C(40). 

Some samples have more than one Curie point because they contain a 

number of magnetizable compounds. An artificial sample was created to 

prove that the new instrument would faithfully pick out multiple Curie 

points. Figure 30 depicts X' against temperature for 9.5 mg of magnetite 

powder mixed with 206 mg of powdered Brazlian haematite, the plot was taken 
30 

on the new instrument. Figure 37a shows the heating trace; the magnetite 

powder oxidised but haematite's Curie point is clearly visible. Figure 
Rb 

shows the cooling trace; only the haematite's Curie transition is 

visible. The transition is smeared because it is difficult to maintain 

a uniform heat throughout a bulky sample while the furnace is running 

close to its limits. This explains why figure 30 puts haematite's Curie 

point at 7100C and not 6750C as expected. 

Figure 31 shows the results of heating and cooling a similar mix- 

ture in the low frequency bridge. The exact composition of the mixture 

was 10.2 mg of magnetite powder mixed with 202 mg of haematite powder. 

The only difference between the figures is a small hump in the oxidation 

of the magnetite in figure 31 that is not present in figure 30. It is 

likely that differences in the rates of heating caused differences in the 

rates of oxidation, this would account for the dissimilarity. 

Table 7 summarises the results presented in this subsection; it 

should be compared with tables 5 and 6. 



Figure 28. A plot of X' against temperature for a 13 mg sample of natural 

magnetite. This result was obtained at 5 MHz. 
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Figure 29. A plot of X against temperature for a 12.9 mg sample of 

natural magnetite. This result ß: as obtained at 1.5 KHz. 
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Figure 30. _. plot of V against temperature for 9.5 mg of powdered 

magnetite mixed with 206 mg of powdered haematite. These 

results were obtained at 5Mz. 
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Figure 31. A plot of X against temperature for a : ýixture of 10.2 mg of 

powdered magnetite and 202 mg of powdered heematite. These 

results were obtained at 1.5 }Hz. 
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Table 7. A summary of the performance of the first version of the 

new instrument. 

Parameter Value 

Length of sample coil, m 1+. 34 x 10-2 

Diameter of sample coil, m 2.45 x 10-2 

Construction of sample coil 10 t urns 16 s. w. g. silver wire 

Flux at centre of sample coil, 
- 6 

T r. m. s. 1.6 x10 

Maximum sample size, m3 2x 10-7 

Operating temperature, °C 16 - 700 

Operating frequency, MHz 5.00 00 

Calibration factor for XT 
3 -1 2 -8 10 m V .5 - x 

Max. input for X, r', m3 1.2 x 10-8 

Noise in XT', m3 r. m. s. 8x 10-12 

Drift in XT, m3 min 
1 3x 10-11 

Cal'bration factor for XT", ý 
-1 2 10-9 m V .7 x 

Max. input for XT", m3 3.8 x 10-9 

Noise in XT", m3 r. m. s. 3x 10-12 

Drift in XT", m3 min 
1 5x 10-12 

Direct reading? Yes 
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3.6 NOISE ANALYSIS 

This noise analysis is directed at improving the instrument by 

identifying the most critical portions of the device. To do this the 

instrument is broken down, as illustrated in figures 23 and 25, and a 

number of independent white noise sources are added in. The most im- 

portant sources are then pointed out and analysed in more detail. This 

leads to some important conclusions about improving the performance in 

future. 

X" is dealt with first. The noise sources n1 to n4 in figure 25 

each generate white amplitude noise. The source n1 accounts for the 

noise generated by the tuned circuit and Q multiplier. The noise fed 

in from the crystal oscillator also contributes to nl, but it is ignored 

as it should be very small compared to the other two constituents. The 

noise generated by the r. f. amplifier is allowed for by n2. The peak 

detector rectifies and smooths the 5MHz signal, it passes undisturbed the 

random fluctuations in a noise bandwidth(41'518) B from d. c. up to 1/Yt 

where'd is the peak detector's RC time constant. The disturbances generated 

within the detector are represented by n3. As the required information 

is now at a low frequency n3 ought to contain a 1/f noise source, but this 

unnecessarily complicates matters. Finally, n4 allows for the noise 

generated by the low frequency amplifier. 

The instrument's signal to noise ratio with respect to X" is now 

going to be found. Qm is defined to be the quality factor after Q multi- 

plication and Q is the natural quality factor of the coil. Referring to 

figure 25: 

and 

d_A 
VQ - n4 

3.47) 
A2 

d- n3 
c=3.48) 

D 
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that is 
AV Q- n4 n3 

c=- (3. x+9) 
DA2 D 

Proceeding in a similar manner, 

a-ZAVQ - QmFX" 

A- nl n3 n2 nl 
--- 

(3.5o) 
VA1DA2 VA1D VA1 V 

As the open loop gain ZVA1DA2 is much greater than one the output signal is 

DV ^: 
[XttFQ1m 

- 
n4 

+ 
n3 

+ 
n2 

+ 
n, 

QZ [ZVADA2 
ZVA1D ZVA 1 ZV (3.51 

The first term on the right hand side is signal whilst the second term is 

noise. As A1, A1D and A1DA2 are each >>l the dominant noise contribution 

is n1 and the signal to noise ratio is 

X"FQ V 
SNR =m 

(3.52) 
nl 

The noise source n1 now has to be investigated. In figure 32, G is 

the tuned circuit's lossconductance, -H is the parallel negative conduct- 

ance and il is the noise current generator for the tuned circuit and Q 

multiplier. The Johnson noise current generated by the tuned circuit 

is 
(23) 

f2 

ill =4 kTG. df 

fl 

(3.53) 

for a small band of frequencies about the resonant frequency. When the Q 

multiplier is taken into account 
'f 

2=4. kTG N. df , 
(3.54) 

fl 
( 

where N is the Q multiplier's noise factor'' 
137. 

The bandwidth of the 



_? igure 32. A moiel to help calculate the noise voltage n1. 

L 

Figure 33. A diagram to show how amplitude noise can create phase noise. 
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system is determined by that of the detector because the detector's 

bandwidth is much less than that of the tuned circuit. The result for 

1 ll is thus 

ill = 4kTGNB . 
(3.55) 

The r. m. s. noise voltage developed across the tuned circuit is 

il 
(3.56) 

GH 

so 
0.5 

n= 
(4kTGNB) 

. 
(3.57) 

1G-H 

! '. hen the top and bottom of 3.57 are multiplied by w0 L the result is 

LýkTBN wL10.5 
= am o (3.58) 

Equations 3.52 and 3.58 can now be combined to give 

0.5 
SUR = X"FV (3.59) 

L 
7BNwö 

Equation 3.59 shows that a good coupling factor and a small bandwidth 

make for a good signal to noise ratio - but this would be expected. 

zuhat might not be expected is that Q multiplication does not improve the 

signal to noise ratio. The natural quality factor is important and should 

be as large as possible. _ 
The signal to noise ratio can also be improved 

by increasing the drive level from the crystal oscillator. 

The noise analysis for X' follows a similar course. Using figure 

23, the signals at point "a" can be related by 

( AV - n3) n2 n7. 
u AV - Fx P (3.60) 

P Q KA Qm @ 

The open loop gain QmKAu »1 so 

FX' 1 n3 n2 nl 

AP=----- (3.61) 
uu QmKA Qm Qm 

The most important noise source is nl, therefore 
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FX IQ 
SIdR =m 

nl 
(3.62) 

To find nl it must first be shown how amplitude noise produces phase 

noise. The noise centred on a frequency f in an interval df may be 

2 0.5 
represented as a single component of frequency fn and amplitude (Vn 

taken over the interval df. The signal and noise components add together 

in the manner shown by figure 33. The noise component has an angular 
2 0.5 

velocity Iw_ 
- w_1 relative to the signal. Provided that V» (V_ ) 

U III 

the maximum change of phase is 

2 0.5 
ýVn 

max v 
(3.63) 

As the noise in the interval df is considered to be sinusoidal the r. m. s. 

phase noise is 

2 0.5 

n, _ 
(Q 02)0.5 

_ 

(Vn ) 
3.61f) 

2V 

The amplitude noise has been shown to be 

0.5 0.5 
rVn 

2= QMF 
Q 

4kTBNwoL 

Q 
(3.65) 

where B is now the bandwidth of the phase detector. Phase noise from the 

crystal oscillator is common to both the signal and reference channels, it 

therefore cancels out at the phase detector. From equations 3.62 and 3.65 

the phase channel's signal to noise ratio is 

Q 0.5 
SNR = FXIV 

IfkTBN öL 
(3.66) 

Most of the comments made about equation 3.59 apply to 3.66 also. In 

particular, equation 3.66 shows once again that it is the natural rather 

11 

than the multiplied Q that is important to the signal to noise ratio. 
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CHAPTER 4 

THE SYSTEM DESIGN FOR THE FINAL VERSION OF THE INSTRUhMENT: A LOCKED 
PHASE LOOP. 

4.1 INTRODUCTION 

A lot of thought was put into the design of the improved instru- 

ment. It seems best to split the description of the resulting device 

into two separate chapters. Chapter 4 concentrates on the instrument's 

large scale make up and chapter 5 deals with the circuit design. This 

chapter is itself split into two sections. Section 4.2 decides upon the 

system's structure. Section 4.3 considers issues relevant to the key 

subsystems. 

4.2 THE NEW SYSTEM 

4.2.1 Reduction to a single feedback loop 

The Q multiplier is dropped because it does not pay its way: 

section 3.6 has shown that Q multiplication does not improve the signal 

to noise ratio. The possibility of using feedback to regulate the tuned 

circuit's Q is lost with the Q multiplier, the instrument is therefore 

reduced to a single feedback loop. There are mixed blessings in this, 

the remaining phase loop is now much more easy to stabilise, but it has 

to be made resistant to the small changes in amplitude created by X". 

An improved method of measuring the amplitude of the signal across 

the tuned circuit is adopted. As the phase loop has to be resistant to 

amplitude modulation anyway, the signal from the 5 MHz crystal driver is 

deliberately amplitude modulated at an audio frequency. The 5 MHz 

carrier is later demodulated using a diode rectifier. The amplitude of 

the recovered audio signal is measured using a phase sensitive rectifier. 

Changes in the audio amplitude are directly proportional to changes in 

the amplitude of the 5MHz carrier. The advantage of this method over 

simple peak rectification is that it virtually eliminates the needs for 

d. c. coupling between stages and for d. c. amplification. 
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4.2.2 Choice of phase loop order 

The phase loop operates by locking the phase of the signal from 

the tuned circuit to the phase of the signal from the crystal oscillator; 

for this reason it is called a locked phase loop from now on. The well 

known phase locked loop 
(42) 

always contains a voltage controlled 

oscillator and this distinguishes it from a locked phase loop. The two 

are nevertheless similar in that they are feedback loops that seek to 

minimise a phase error and they both employ a phase detector, a low pass 

filter and a d. c. coupled amplifier. With this justification, results 

quoted by Gardner(43'127) on optimisation of loop performance are used to 

help determine the structure of the locked phase loop. 

Inserting a sample into the sample coil produces a phase step at the 

loop's input. The optimum loop transfer function for this type of in- 

put is of the form 
(43,138) 

C (S) B (4.1) 
R(s) s+B 

where B is the loop's bandwidth and C(s) and R(s) are defined in figure 

21. This is a first order loop tranfer function, it is optimum in the 

sense that it minimises the mean square loop error 

(MSE) 2=0n2+ Y2ET2 , (i. 2) 

where Ong is the phase jitter due to white noise and Y2ET2 represents the 

allowable total transient error. The loop's bandwidth B is a variable 

that depends on the input's signal to noise ratio. B should decrease 

with worsening input signal to noise ratio and increase with improving 

input signal to noise ratio. Gardner(43' 139 and 125) 
shows that a 

loop that includes a limiter preceded by a bandpass filter automatically 

varies its bandwidth in a near optimum fashion. In this instrument, 

the bandpass filter is the parallel tuned circuit that includes the sample 
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coil and this is followed by a limiter prior to phase detection. 

Because the gain of a first order loop is finite the loop error is 

finite also. Referring to figure 21 the error is 

E(s) = 
R( s) (1.3) 

1+ G(s)H(s) 

so in this case 

E -- -FXI (4.4) 
QKAu 

using figure 23. In practice, the open loop gain is made large enough to 

ensure that the loop error is much too small to matter. 

4.2.3 The phase sensitive rectifier 

The amplitude changes due to X" are likely to be less than 0.1%. 

The first version observed these changes by rectifying the coil's signal 

vrith a diode and the smoothing and amplifying the result. There are 

two major disadvantages to this method. 

The first disadvantage is that the rectifying diodes are temperature 

sensitive. At a constant current the voltage drop across a silicon diode 

decreases by 2.1 mVoC-1. The 5MHz signal applied to the diode peak 

rectifier had been amplified to 3V p-p in first version of the instrument. 

A 0.1% change in this level, allowing for a diode voltage drop of 0.7V, 

gives a 0.8mV change at the output of the peak rectifier: this is less 

than that given by a 0.5°C change in ambient temperature. The temperature 

sensitivity of the diodes is therefore unacceptable. 

The other disadvantage is that of translating a5 Hz signal into 

a d. c. level. At low frequencies, less than 100 Hz say, the spectral 

density of the noise associated with the rectifying diode and d. c. am- 

plifiers has a roughly l/frequency (1/f) characteristic 
(41Y150)(46Y75). 

This means that the amplitude spectrum of the random fluctuations goes 

on increasing in magnitude as the frequency considered decreases. This 

behaviour is knote to be obeyed to frequencies of less-than 1 cycle per 
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month, or 2x 10-7Hz. Attempts to improve the signal to noise ratio 

using a low pass filter are ineffectual against l/f noise. This is well 

illustrated by a simple numerical example. 

Over a1 hour measurement period, the time it takes to heat and cool 

a sample in the furnace, the lowest noise frequency that is likely to 

disturb measurements has a period of about 4 hours. That sets the lower 

frequency limit, labelled fl, to 7x 10-5Hz. The upper frequency limit is 

f2, where f2 is roughly the cut off frequency of the low pass filter on the 

output for X". The combined amplifier and diode noise at the frequency f1 

is represented by a spot noise voltage generator n2(fl). The random 

noise generated in the bandwidth f1 to f2 is given by 

f 

n2(f1). fl 
21 

df = n2(f1). f1ln 
f2 

(4.5) 
f fl 

fl 

The illustration is now completed by finding how much the random noise is 

reduced if the low pass filter's cut off frequency is shifted from lHz 

to O. lHz. For a lHz cut off the total noise output is 9.6n2(f1). fl. 

For a O. lHz cut off the total noise output is 7.3 n2(fl). fl. Reducing 

the upper cut off frequency by a factor of 10 only reduces the total noise 

output by a factor of 1.3. 

The technique adopted overcomes both of these problems. Phase 

sensitive rectification, as it is called, has an extensive amount of litera- 

ture devoted to it. The reviews by Blair and Sydenham(4 
) 

and by Meade 
(45) 

have good bibliographies. 

The application of phase sensitive rectification to this circumstance 

is shown in figure 34.. The oitput of the 5MHz crystal oscillator is 

amplitude modulated by an audio signal. The depth of modulation is small so 

that the audio signal forms an envelope riding on the peaks of the 5MHz 

carrier. After X" has had its effect, the signal from the tuned circuit 
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is demodulated to recover the audio signal. Provided that the diode is 

driven well into conduction, the thermal drift of the diode's internal 

voltage drop has no effect on the amplitude of the detected audio signal. 

This is because differential changes are no,,,,, being sought, the 

drift prone d. c. component from the demodulator is ignored. The reduct- 

ion in the tuned circuit's Q due to X" is now reflected in the reduction 

of the audio signal level. It is sensible to amplify the audio signal 

as much as circuit constraints allow. The modulating frequency needs 

to lie well within the white noise region of the amplifier and, if possible, 

the amplitude detector. 

The signal from the audio oscillator also travels along another path 

as figure 34 shows. The variable phase shifter adds just enough delay 

in the parallel path to compensate for delays in the amplitude modulator 

and subsequent stages. The square wave shaper turns the phase shifted 

output into a switching signal for an analogue multiplier. 

The phase sensitive rectifier multiplies the switching signal and 

recovered audio signal together to produce a d. c. level proportional to 

the amplitude of the latter. 

v0(t) = Vi(t). Vr(t) 

The multiplier's output is 

p (.. 6) 

where Vi(t) is the recovered audio signal and Vr(t) is the switching 

signal: 

+l for 0<t -< T/2 

Vr(t) _ 

-1forT/2<t; T 

This is depicted in figure 35a. The fundamental frequency of the 

switching signal is fr = 1/T. The harmonics of the switching signal are 

mfr, where m=1,2,3 ..... 

To complete the process of phase sensitive rectification, V0 is 

averaged by a low pass filter to produce V0. Tietze and Schenk 
(49,460) 



? figure 35. The operation of the phase sensitive rectifier. 
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show that the response of the phase sensitive rectifier to an input 

vi(t) = Acos(24Tmfrt + %) is 

(2/'rr m) A co sO for m= 2n +1 
Vo =m ('-. 8) 

0 formE2n+1 

where n=0,1,2 ... Because the low pass output filter has a finite 

time constant, the phase sensitive rectifier responds to frequency bands 

centred on the discrete frequencies indicated in equation 4.8. For a 

low pass filter cut off frequency fc, corresponding to its -3dB bandwidth, 

G 
the -3dB width of the bands is 2fc. Figure 35iß shows the filtering 

characteristic. The Q of the filter in the fundamental band is f/2fc, 

this can be made very large indeed. 

The phase sensitive rectifier is an intelligent filter that looks 

only where it knows the signal lies. The rectification takes place at 

frequencies where the noise has a white spectrum, so the output signal to 

noise ratio can be effectively controlled using a low pass filter. The 

only limit to the noise reduction is the length of time the experimenter 

can wait for a result, low pass filter cut off frequencies less than 0.01Hz 

are quite common. 

4.2.4 The final structure 

The structure that was finally settled on is depicted in figure 36, 

the figure is self explanatory. 

). 3 KEY COMPONENTS 

4.3.1 The sample coil 

The sample coil's performance is of paramount importance because it 

is at the start of the processing chain. Equations 3.59 and 3.66 for the 

signal to noise ratio show that the quantity QO'SF has to be maximised, 

Q is the coil's natural quality factor and F is the filling factor. 

Equation 2.30 has shown that 

Vs b(b + O. tD) 
F =- 

Vb+ D2 
c 
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when X' is small. Vs is the volume of the sample, Vc is the volume of 

the coil, b is the length of the coil and D is the diameter of the coil. 

Pollack 
15 

has derived a relationship for the Q of a correctly v., ound 

coil: 

Q 0c 
Db (4.9) 

(102b + 45D) 

In practice, the coil's diameter D is determined not by choice but by the 

furnace with its associated insulation, air gap and water jacket. The 

only dimension that can be varied to maximise QO'SF is the coil's length 

2 
b. For convenience, it is best to work with the product QF. 

2 Vs b(b + 0.44D) 2 Db 
QF oc - 

(4.10 ) 

Lvc b+D (102b + 45D) 

Given that 

Vc = 9rbD2/4 (4.11) 

and that 

102b + 45D = 
1000(b +20.44D) (4.12) 

Tr 

equation ). 10 can be simplified to 

QF2 « 
16vs2 b(b + 0.44D) 

(4.13) 
2 

1000D3 (b2 + D2) 

Although D is fixed, the ratio s= b/D is a variable. Dividing the top 

and bottom of equation 4.13 by D2 gives 

QF 
2 16Vs2 s(s + 0. i+) 

(ß,. 1z1) oc 
10007 (s2+1) 

It is convenient to define a figure of merit M as 
0.5 

M=k 1000D5 QF2 (4.15 

16v 2 
s 

k is an unknown constant of proportionality which allows M to be written 

as 
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s(s+0.44) 
0.5 

M= 10 (4.16) 

(sz + 1) 
2 

M is plotted as a function of s in figure 37. The maximum occurs 

between 0.83 and 0.84, but the maximum is rather broad and small deviat- 

ions from s=0.83 - 0.84 make little difference. The coil for this 

instrument has s=0.86. 

Two other points concerning the quality factor are relevant here. 

The furnace is wound using just a few turns of the narrowest available 

gauge of furnace ,, ire. This minimises the reduction of Q by the furnace. 

Also, the coil is completely enclosed in a metal shield. This shield has 

the dual effect of decreasing the coil's inductance and increasing its 

resistance(47). However, if the ends of the coil are separated by at 

least a coil diameter from the ends of the shield and the coil diameter 

is less than half the shield diameter, then the reduction in Q is less than 

5-8%. In fact, the coil's ends are no closer than 3 coil diameters from 

the ends of the shield and the sides of the coil are no less than two 

coil diameters from the sides of the shield. 

4.3.2 The crystal oscillator 

The job of the crystal oscillator is to provide a sinusoidal signal 

at a very stable frequency with a very stable amplitude. The frequency 

stability of a crystal oscillator is composed of 3 parts 
(48114): 

a. Long term frequency drift through aging of the quartz crystal; 

this is minimised by using a'low crystal drive level. 

b. Medium term frequency stability; this is affected by environmental 

changes such as ambient temperature or supply voltage. 

c. Short term phase noise; this is reduced by using a high crystal 

drive level, a high Q crystal and low noise circuitry. 

Gardner 
(43,100) 

discusses oscillator phase noise generally and gives some 

references on the subject. The amplitude stability of the oscillator 
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may be broken dorm in a similar manner. 

No attempt has been made to design a suitable crystal oscillator. 

Instead, a Plessey SL 1680C crystal oscillator maintaining circuit is used 

and the performance of the resulting oscillator is outlined below. The 

crystal chosen to partner the integrated circuit is a 5.0688 MHz series 

resonant unit with aQ of 1.8 x 105 and an equivalent series resistance of 

21ft. 

The aging of the crystal is negligible because of the very low drive 

level delivered by the 5L1680. The power dissipated in the crystal is 

about 0.2 jiV compared to more common levels of about lOji , to 500 

The rate of aging is less than 15Hz year 
1. 

The circuit ensures that the only contribution to the medium term 

frequency drift is the crystal's temperature coefficient. The temperature 

coefficient is about -0.4 ppm0C-1 over the range 00C - 400 C, this is in- 

significant compared to the temperature coefficient of the tuned circuit. 

The short term phase noise is large for a crystal oscillator because of 

the low crystal drive level. This should not be important because the 

phase noise is common to the coil and reference signals and cancels itself 

out at the phase detector. Data on the SL1680 puts the base band noise 

level at -85dB with respect to the carrier (5MHz) in a 1Hz bandwidth. 

This can be interpreted 
(48,18) 

as a phase jitter of 0.0050 r. m. s. in a 

1 Hz bandwidth. 

The amplitude of the sinusoidal output from the SL1680 is feedback 

stabilised to 0.15 V r. m. s. No further details are given in the specifi- 

cations. 

4.3.3 The radio frequency phase detector 

The job of the locked phase loop is to keep the natural resonant 

frequency of the tuned circuit exactly equal to the frequency of the crystal 

oscillator. The phase detector produces the error signal that the loop 

acts on. If the locked phase loop is to do its job properly, the phase 

detector must fulfil a number of requirements: 
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a. V. 'hen the signals from the tuned circuit and the oscillator are in 

phase the averaged output from the phase detector should be zero 

volts. 

b. The phase detector must be able to sense very small deviations of phase 

from the in phase condition. To put this in perspective, a 0.6 mg 

sample of magnetite gave a lOmV signal on the first locked phase 

loop. This was equivalent to a phase shift of 0.8° or a time 

delay of 0.15 ns. It was anticipated that the new phase detector 

would have to respond to phase shifts smaller than 0.03°, that is to 

time delays of less than 17 ps. 

c. The phase detector has to have good noise rejection properties. 

d. The phase detector has to be insensitive to the amplitude of the input 

signals. 

Egan 
(42,98) 

and Gardner 
(43,106) 

discuss a wide range of phase detect- 

ors. Of these, the multiplying detector is the one that best satisfies 

requirements b and c. The exclusive - OR (XOR) logic gate can be used as 

a multiplying detector if it acts on amplitude limited signals; amplitude 

limiting brings with it resistance to amplitude modulation. The XOR 

multiplying detector can therefore satisfy requirements b, c and d. It 

will shortly be seen that the simple XOR detector can be modified to meet 

requirement a. 

Figure 38a shows a generalised multiplying phase detector, it looks 

very similar to the phase sensitive rectifier of subsection 4.2.3. 'hen 

two sinusoidal waves, cos (wit + 0) and cos wrt, of nearly identical fre- 

quency are applied to the detector the output of-the multiplier is 

V0 =K cos 0 cos(wr - wi)t + cos((wr + w=1)t + 0) (4-17) 
2 

where K is the multiplier's gain. 

In the first instance, let Wr = wi. The filter removes the ripple 



Figure 38. The multiplying phase detector. 
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at 2wr to give 

'. =K cos (4.18) 
av 2 

Remember that j is the phase difference between the signal from the tuned 

circuit and the signal from the crystal oscillator. The output is plotted 

as a function of phase difference in figure 38b. A feedback loop in- 

corporating this detector cannot lock at O=0 because the sign of the 

error signal V 
av 

is interdeterminate. The most likely points of operat- 

ion are f= ±cTT/2 
where the error signal changes sign. Unfortunately, the 

locked phase loop will only work properly if 0=0. 

Having seen what happens when wr = wi, now let wi = wr + pw where 

lW « wr. The averaged output is 

V=K cos O cos A wt (4.19) 
av 2 

The equation shows that noise signals lying close to 5MHz are frequency 

shifted to become low frequency disturbances to the control system. Some 

of these disturbances are eliminated by the low pass filter. Treating 

the phase detector as a band pass filter, it has aQ of w1/2wc where we 

is the cut off frequency of the averaging filter. For the final version 

of the instrument wr = 3.14 x 107 rad s-1 and Zwo = 12.6 rad s-1, therefore 

6 
Q=2.5 x 10. 

When using an XOR gate as a phase detector, the two input signals 

should both be square waves. By analogy with equation 4.18, it is easy 

to see that the XOR detector's characteristic is a triangle wave as in 

figure 38c. 

The disadvantages of the XOR gate are the permanent presence of a 

d. c. offset and the fact that a locked phase loop incorporating it cannot 

lock at 0=0. A circuit has been devised that overcomes the d. c. and 

phase offset problems of the XOR multiplier, it also offers an extended 
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locking range and low drift. The-circuit is shown in figure 39a. The 

amplitude limited reference and tuned circuit signals are both passed to 

divide-by-two flip flops. The tuned circuit's signal has deliberately 

been shifted by 1800 by means of an inverting amplifier. The two 

divided signals are multiplied together, then they are averaged and summed. 

Figure 39b shows the wave forms at each point in the circuit when O=0. 

The new phase detector's characteristic is shown in figure 39c. The 

maximum output is abtut 5 volts because open collector TTL gates are used. 

The gain is 

K=5 9T 
(1.2o) 

which is identical to that of a simple TTL XOR gate. The advantages of 

the new detector are: 

a. a loop incorporating it automatically locks at 0=0 rather than 0_ 

Rr/2, 

b. there is no d. c. offset, 

c. the linear characteristic is extended from9T to 29T rad... 

d. the inputs to the multipliers automatically have the optimum 50% 

duty cycle, and 

e. the d. c. drifts of the multipliers cancel when the loop is in lock. 

The multipliers are on the same chip, at the same temperature and 

they share the same power rail. Their drifts should be nearly 

identical and they therefore cancel at the summing amplifier. 

4.3.4 Sources of drift 

It was expected that measurements of X' and X" against temperature 

would take about 1 hour of continuous chart recording. On this time- 

scale instrumental drift is worthy of consideration. 

The drift in VQ is ultimately fixed by the stability of the amplitude 

control loop in the crystal oscillator, there is no vray of correcting 

this. The drift in Vp reflects slow changes in the natural frequency of 



Figure 39. An improved phase detector. 
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the tuned circuit relative to the much more stable frequency of the crystal 

oscillator. It is possible to minimisethis drift by presuming that it has 

its roots in the temperature stability of the components in the tuned 

circuit. The tuned circuit can be broken down into four components: a 

1.12 yH inductor, the main capacitance of 865pF, a trimmer capacitance of 

l2pF and the voltage variable capacitance. The temperature coefficients 

of each of these are dealt with below. 

The trimmer capacitance has a polypropylene dielectric with a tempera- 

ture coefficient of -200 p. p. m, 
°C-l, The coefficient of the trimmer is 

therefore -2,4 x 10 pF°C-l -3 The effect of this on the natural fre- 

quency of the tuned circuit is found from 

1 AC Af 

2Cf 
(1.21) 

where C is the total capacitance in the circuit and f=5.068MHz. The 

temperature coefficient of the trimmer is thus equivalent to + 7HzoC-l. 

The voltage variable capacitance is a Mullard BB105G. Using the 

manufacturer's data, the combined drifts in the reverse leakage current 

and the junction capacitance are equivalent to 1x 10-3pF°C, or 

-3.5Hz0C-1 in the configuration used. The, crystal's coefficient is 

-2Hz0C-1; the net coefficient of the crystal, the trimmer and the vari- 

cap is + 1.5HzoC-1. 

The temperature dependence of the inductance is found by calculating 

the effects of thermal expansion in its diameter and length. Wheeler's 

formula for the inductance of a coil is 

L 103 D2 n2 (2.4) ýoýr 
WIT 102b + 45D 

where D is the coil's diameter, b is the length of the coil and n is the 

number of turns. The temperature coefficient of the inductance is 
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dl, L dB aL c1D 

d'lij ab d1^ aD dT 

This gives 

(4.22) 

AL 
_L -102 Ab+ (204b/D+45) AD (4.23) 

, 
AT (102b + 45D) AT (102b + 45D) DT 

if the changes Ab and AD are small. The dimensions of the coil in the 

improved instrument are D=2.372 x 10-2m and b=2.04 x 10-2 m, therefore 

1 OL 
= 70.0 AD 

- 32.4 Ab 

L ET AT AT 
(4.24) 

The coil is glued rigidly to a cylindrical pyrex water jacket. The 

coil is easy to stretch or compress along its length, therefore Ab/ AT 

can be found from the thermal expansivity of pyrex: 

1 Ab 
=3x l0-60C-1 

b AT 

The radial expansion coefficient is given by the thermal expansion coefficient 

of copper: 

D_ 16.7 x 10-6oc-1 
D AT 

Fitting these figures into equation 4.24 gives 

1 AL 
_+2.6 x l0-50c-1 

L AT 

which is equivalent to a coil coefficient of -66Hz0C-l. 

The coil is by far the most temperature sensitive component, but it 

may be corrected for by appropriately choosing the dielectrics in the 

main 865pF capacitance. Ceramic capacitors are available with temperature 

coefficients of 0 p. p. m. 0C-1 and -150 p. p. m. 0C-1, whilst silver mica 

capacitors have a coefficient of + 35 p. p. m. °C-l. A combination of 

(470 + 100)pF silver mica with (100 + 150)pF ceramic at -150 p. p. m. °C-1 

. and 45 pF ceramic at 0 p. p. m. C-1 has a net coefficient of + 51 Hz ° C-1 ° 
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This almost cancels the coefficient of the coil. 

The arrangement of these components is shown in figure 40. The 

main capacitance and coil are housed together in a thermally insulated 

environment. This ensures that their temperatures are always identical 

so that the compensation works properly. The insulated environment is 

almost theremostatic for the cater that continuously flows in the jacket 

has beer- found to have a temperature stability of 
1 0.25°C per hour. 

Had the ti%water's temperature stability been a problem, a thermostatted 

water supply could have been used. 

It was anticipated that some sizeable offsets would arise when the 

furnace was running, these were reduced in two ways. First, it was en- 

sured that heat from the furnace did not reach any of the -temperature 

sensitive parts. Second, the mechanical coupling between the coil and 

the furnace was minimised to prevent thermal expansion in the furnace 

distorting the coil. 



Figure 40. Horn the tuned circuit was thermally and electromagnetically 

isolated from the ambient environment. 
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CHAPTER 5 

THE CIRCUITRY FOR THE IMPROVED LOCKED PHASn. LOOF 

5.1 INTRODUCTION 

This chapter describes the circuitry that was developed for the 

improved locked phase loop. Sections 5.2 to 5.!. are devoted to the 

three circuit boards that carry all of the electronic components. Next, 

section 5.5 describes the furnace's construction and characteristics. 

Finally, section 5.6 lists the initial adjustments and presents some photo- 

graphs of the completed instrument. 

Correct grounding and shielding within the instrument are very im- 

portant both for stability and for low noise. The guidelines set out by 

Morrison(50) are followed carefully. 

The correct choice of passive components matters also. Carbon 

resistors are more noisy than metal film resistors 
(46sl49) 

. so l% metal 

film resistors are used throughout. Electrolytic capacitors are avoided 

as far as possible, tantalum capacitors are normally used for decoupling 

power supplies. Ceramic disc capacitors are more noisy than silver mica 

or polystyrene types, but their low parasitic inductance makes them useful 

for r. f. decoupling. 

The circuitry is built entirely on stripboard for rapid construction 

and ease of alteration during development. Unfortunately, stripboard is 

not intended for use above 50KHz. Should other versions of this instru- 

ment be built the use of a properly laid out double sided printed circuit 

board with an earth plane is highly recommended. 

5.2 THE TUNED CIRCUIT DRIVER BO RD 

5.2.1 Generating a 5MHz drive signal 

The circuit that generates the 5MHz drive signal is drawn in figure 

41. The SL1680 crystal oscillator maintaining circuit draws power from 

a simple 6.2V supply, the device has an internal voltage regulator. 
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The SL1680 feeds a sinusoidal 5.068 MHz signal to the outside world from a 

common collector voltage follower which has a standing current of l. 2mA. 

The output resistance R0 of the voltage follower should be dominated by the 

intrinsic resistance re of the output transistor's base emitter junction 
(39,39). 

kT 26 
ti R° re = 

qI 
I 

°° 

inhere I° is in ma and the ambient temperature assumed is 25°C. R° is 

therefore 2211. 

The 5MHz signal is amplified prior to amplitude modulation by a 

common emitter - common collector amplifier. Two low noise transistors 

on a CA 3045 package are used, their low base collector capacitance of 

0.6 pF reduces the Miller effect(39'83) in the common emitter amplifier. 

The noise figure of the amplifying stage is minimised by correctly choos- 

ing the collector current for a source impedance of 22.11.. The necessary 

relationship is138ý. 
(39, 

0.5 

Ic (optimum) 28 
(hfe) 

R 
s 

(5.2) 

where Ic is in mA, hfe is the forward current gain of the transistor and 

RS is the source impedance. Knowing that Rs is 22n- and that hfe is 

between 40 and 100 for these devices, IC (optimum) is between 8. OmA and 

12.7mA. The current through Tl is stabilised at lOmA in practice. T2 

serves as a high input impedance buffer to preserve Ti's gain. 

5.2.2 The audio oscillator and modulator 

Figure 42 shows the circuit that amplitude modulates the 5MHz 

waveform and produces the reference necessary for phase sensitive rectifi- 

cation. The oscillator is a 555 astable multivibrator with its output 

subdivided by 128 from 78.2KHz to 611 Hz. This arrangement reduces the 

phase noise of the 555 by a factor of 128(43,99). It is also a con- 
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venient v, -ay of producing a reference at twice the modulation frequency: 
, 

subsection 5.4.2 shows that this makes phase shifting easy. 

The oscillator and divider run off -4.7V power rails so that the 

divider's output is of the correct polarity for an n-channel f. e. t. 

As the divider is CMOS the output is a saturated 4.7V peak to peak square 

wave. By using the -4.7V rail as a DC reference in the phase sensitive 

rectifier, any drift in the modulating signal's amplitude is self cancell- 

ing and produces no error in X". 

The amplitude modulator is an n-channel BFP. 10 used as a voltage 

variable resistance. To minimise the 2nd and 3rd harmonic distortion 

produced by the modulator, feedback is taken from the drain to the gate 

and a device with a high pinch off voltage is selected(38) .A small 2 

to 6 pF trimmer is included to compensate for a parasitic gate-source 

capacitance of about 5pF. Another n-channel f. e. t. makes the 1.22KHz 

reference signal acceptable to the TTL circuits used in the phase shifter. 

The two output waveforms are shown in figure 43. The drive signal 

to the tuned circuit, in figure 4.3a, is 3.25V peak to peak with a 9% 

modulation depth. The envelope is slightly assymmetric about the OV 

line due to a small amount of 3rd harmonic distortion produced by the 

SL1680 crystal oscillator circuit. Figure 4.3b shows the clean 0.3V to 

5.0V square wave at 1.22KHz that is produced for the phase sensitive 

rectifier. 

5.3 THE SUSCEPTIBILITY SENSING BOARD 

5.3.1 The tuned circuit and the r. f. amplifier 

The arrangement of the tuned circuit, voltage follower and r. f. 

amplifier is illustrated in figure 44. The tuned circuit is isolated in 

its own metal enclosure. The circuitry that buffers, amplifies and 

further processes the signal from the tuned circuit is screened in another 

metal enclosure mounted flush with the first. The two enclosures make a 

very low resistance electrical contact and they are made the reference 



Figure 43. The waveforms produced by the r. f. driver board. 
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ground for whole instrument, low resistance connections are made from here 

to the power supply ground. The circuitry within the composite enclosure 

is grounded at one point only, that being the point at which the tuned 

circuit is grounded(50'0). The modulated 5MHz drive signal enters the 

enclosure in a screened coaxial cable. It is fed directly to a limiting 

amplifier and also through a I7OK sL isolating resistor to the tuned circuit. 

The bulk of the tuned circuit's capacitance is located as close as 

possible to the sample coil. This improves the Q by reducing the resist- 

ance in the path of the electrical current alternating between the induct- 

ance and capacitance. It also improves the filling factor by minimising 

the stray inductance associated with the connecting leads to the capacit- 

ance. Very little electrical energy flows into the adjoining metal chamber. 

The coil is wound with 1.8 mm diameter enamelled copper wire on a 

22.0 mm diameter glass water jacket former. It was shown in subsection 

4.3.1 that the optimum length to diam er ratio of the coil is 0.84. 

The highest possible quality factor is attained by ensuring that(15) 

b 
, n= 

1.414d 
(5.3) 

where n is the number of turns on the coil, b is the length of the coil 

and d is the wire's diameter. In fact, the coil has 8 turns, a length 

of 20.5 mm and a length to diameter ratio of 0.86. Using V; heeler's 

formula, equation 2.4, the inductance is calculated to be 1.15 pH. The 

true value of the inductance is 1.12 pH. rheeler's formula has been used 

to optimise the coil's length to diameter ratio and to calculate the 

filling factor F. The agreement between the predicted and measured 

inductance is reassuring. 

The other capacitors in the tuned circuit are a 2-22pF trimmer, 

a 1-5.5pF trimmer in a bandspread arrangement with a 2.2pF capacitor and 

a linearised varicap feedback capacitance. These capacitors are separated 

from the tuned circuit for convenience in mounting and for access. The 



varicap and its series capacitor are carefully chosen to give a large 

feedback. signal swing combined vith a linearised capacitance - voltage 

characteristic. In the first design the largest sample of magnetite 

(19.4 mg) had caused a shift of 1.0KHz in the tuned circuit's natural 

frequency. The new coil has a filling factor that is 1.8 times larger 

than the original coil, so a shift of 2KHz in the natural resonant fre- 

quency has to be allowed for. Knowing that 

Af 1AC 

f2C 
(x. 21) 

the variable capacitance has to have a maximum shift of 0.7pF available. 

This is arranged using a BB105G varicap and a 5PF silver mica capacitor 

in series. The silver mica capacitor serves three purposes: it makes 

sure that the varicap can never present a DC load to the tuned circuit, it 

limits the maximum change of capacitance to produce a large feedback sig- 

nal swing and it makes the capacitance - voltage characteristic more 

nearly linear. The resulting characteristic is shown on figure 45. 

The slope of the best line of fit between Vr = -4V and Vr = -13V is 7.67 

x 10-2pFV 1. The gain of the feedback capacitance is 

u=-1 
dc 

' 
(3.20) 

C dV 
r 

which is 8.72 x 10-5 since C= 880pF. In operation, the feedback capaci- 

tance is biased to a quiescent level of -5V by the circuit shown in 

figure 46. This circuit is included on the r. f. amplifier board, it has 

a second function of differentially receiving the amplified feedback 

error signal. Note that the IN827 voltage reference diode has a tempera- 

ture stability of 0.001ýo° C-l. 

The voltage across the tuned circuit is buffered by a low noise, n- 

channel BFWT. 10 f. e. t. This stage is self biased. The signal from the 

voltage follower is passed to a Plessey SL560 r. f. amplifier which is 



Figure 45. The variation of the feedback capacitance with the feedback 

voltage. 
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Figure 46. The varicap driver with the bias network. 

+15V +15V 

1K 

A 
62V + 7ý 0.1y 5K 

I47K 

VV 
47K 

47K 

47K // 

47K 

120 

/7n ? l! 
10» 0.01» 

47K 

5p 
r---" 

__ 
470K 

356N 

BB105G 

47; 17T7 
10» 0.01 , 

-15V 



yj 

arranged to have an inverting gain of 8.5 and an output impedance of 

about 2. f2.. The low output impedance is essential for the combined 

input impedance of the succeeding amplitude detector and limiter is 

both small and changing. A variable capacitance connected to the SL560 

is used to roll off the gain above 40MHz. This improves the amplier's 

stability on stripboard and allows small adjustments to the intrinsic 

phase delay. 

The noise factor Nb of the BLV,, 20 is(39'343) 

2 
e 

N ti 1+n (5.4) 
b 4kTRs 

where eng is the spot noise voltage of the BLW, 10 at 5bgiz and Rs is the 

source impedance. As the bandvridth of the phase loop is much less 

than the bandwidth of the tuned circuit, equation 5.4 can be rewritten 

as 

2 
e 

Nb-ý1+ n 
4 kTw LQ 

(5.5) 

Knowing that Q= 175, L=1.12uH and en2=5.6 x 10-17V2 Hz-l, it can be 

calculated that Nb=1.5. 

According to Plessey's data, the noise factor of the SL560 common 

emitter/common collector amplifier is 1.5 when the following conditions 

all hold: 

, a the source resistance Rs is 20011 

b the common emitter amplifier has a collector current of l. lmA, and 

c the emitter is a. c. grounded. 

The BLY10 is selected to obtain a transconductance g of 4.7 x 10-3s' L-1 

at its operating point, it therefore has an output impedance of 1/g = 

213-CL in keeping with the SL560's requirement. The amplifier's collector 

current is correctly set to l. lmA. However, there is an external 

resistance Re of 8311 in series with the emitter. The noise factor Na 
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for the amplifier is now 

R 
Na = 1.5 +e=1.9 . 

(5.6) 
R 

s 

The noise factor of the combined buffer and amplifier is 2.4. 

5.3.2 The amplitude detector 

The amplitude detector, figure 47a, is a more elaborate version of 

the familiar peak rectifier. The germanium 0A91 rectifying diodes are 

biased into slight conduction to improve their detection efficiency. 

The diodes are used as a differential pair. The waveforms shown in figure 

47b are transmitted along a pair of shielded leads to a differential am- 

plifier. The receiving amplifier is thus able to reject any 50Hz break- 

through from the furnace current because it appears as a common mode signal. 

The input impedance of the circuit is about 1+50 s1. 

5.3.3 The limiters 

Originally two CA3045 transistor arrays were used to make a pair of 

limiters, their design was based on the assymmetric differential amplifier 
(49,141) 

They had a high input impedance and a good resistance to am- 

plitude modulation at their inputs. They also had the symmetric limiting 

characteristic that is required to minimise intermodulation between 1/f 
(13 

noise and the 5MH z signal '105). Unfortunately, their wide bandwidth 

left them only marginally stable on stripboard, they were therefore un- 

reliable and they were dropped. These limiters would be stable on a 

printed circuit board with a ground plane and their design is presented 

in section 6.4 on improvements. 

The limiters that are used are shown in figure I8a. Their d. c. 

operating conditions are identical, some small alterations that are needed 

for limiter 1 (see figure 36) are shown in dotted lines. Each limiter is 

built using a CA3045 transistor array. The bias conditions of the common 

emitter limiting amplifier are made thermally stable by taking advantage of 



Figure 47. The amplitude detector. 
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Figure 48. The limiters. 
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the close transistor matching. One transistor is connected as a diode 

such that thermal variations in the base-emitter voltage of the amplifier 

are automatically tracked by the diode, the DC bias current of the am- 

plifier is therefore stable. 

Each limiter is directly connected to a TTL flip flop. TTL recog- 

nises an input less than 0.8V as a logical 0 and an input more than 2.0V 

as a logical 1. The quiescent output of the limiter is set midway between 

these levels so that the flip flop is switched on the zero crossings of 

the input to the limiter. 

The input to limiter 1 is 1.15V r. m. s. and so it is necessary to 

reduce its gain by omitting the O. OluF capacitor. It turns out to be 

necessary to compensate limiter 1 to reduce the phase shift in it. 

Calculationsfbunded on the theory of base compensated video amplifiers 
(51,286) 

indicate that a 68pF capacitor should be placed in parallel 

with the 1K 
-n- 

input resistor. In practice, a 65pF capacitor works best. 

The output waveform, figure J8b, is identical from both limiting am- 

plifiers. Saturation in the common emitter amplifier prevents the output 

having a 50% duty cycle. Saturation also causes the limiters' input im- 

pedance to change with time, the purpose of the lK. n input resistor is to 

shield other circuits from the effects of this. 

5.3.4 The 5 MHz phase detector 

The phase detector that is drawn in figure 49 has already been des- 

cribed in subsection 1.3.3, remember that it relies on the input signals 

being 1800 out of phase for correct operation. The output is differential 

so that any common mode noise is rejected by the amplifier at the receiv- 

ing end of the shielded leads. The gain of the detector can be positive 

or negative depending on the initial states of the JK flip flops, this 

means that the phase loop can provide positive or negative feedback. 

Fortunately there are only two possible states, each with a probability 
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of 0.5 at switch on. A debounced mechanical switch is used to repeatedly 

turn the flip flops off and on until the loop locks correctly, no more 

than two or three attempts are ever needed. An automatic correction 

circuit is described in section 6.4. Finally, advanced low power 

schottky (ALS) TTL is used in the flip flops because of its low gate delay. 

At the time the experimental work was done ALS exclusive - or gates were 

not available. 

5.4 THE LOW FREQUENCY BOARD 

5.4.1 The amplifier for the phase sensitive rectifier 

The differential square wave signals from the amplitude detector, 

each 22mV peak to peak, are summed and amplified to a level of 7.5V peak 

to peak prior to phase sensitive rectification. The circuit used is that 

in figure 50a, it needs little explanation. The l/f noise corner fre- 

quency for the low noise 356N bifet amplifiers is 100Hz; the 6llHz sig- 

nal being amplified is thus well clear of their 1/f noise regions. 

The operational amplifiers' ability to reject noise in their 1 15V 

supplies decreases with increasing noise frequency. Simple low pass 

filters, shown in figure 50b, are included in the amplifiers' taps to the 

power rails to progressively absorb power supply noise above 160Hz. This 

arrangement is used on every operational amplifier in the instrument. 

5.4.2 The phase shifter for the phase sensitive rectifier 
ý 

The 1.22KHz output from the CMOS 4020B divider, figure 42, is sent to 

the TTL 74LS123 monostable circuit in figure 51. The output of the mono- 

stable is normally at a low level, but a positive going transition at the 

input makes the output switch to a high level. The output remains in 

this metastable state for a period't , where 't = 0.45 REXTCEXT, before 

returning to its stable low state. The duration of the metastable state 

can be varied in this configuration using the 100K n multiturn potentio- 

meter. The waveforms at the input and output of the mono stable are drawn 

in figure 52. The required 611Hz reference square wave is generated by 

passing the monostable's output through a 74LS73 JK flip flop configured 
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as a divide by two circuit. Referring once more to figure 52, it can be 

seen that the output of the flip flop is a phase shifted version of the 

modulating signal. 

The phase shifter provides 
1 990 of continuously variable phase 

shift at 611Hz, the switch S2 provides a fixed shift of 0 or 180°. 

5.4.3 The phase sensitive rectifier and averaging filter 

The phase sensitive rectifier drawn in figure 53 is a simplified 

version of that described by Caplan and Stern(52). In the present 

circuit four C140S analogue transmission gates, all contained on a TTL 

compatible DG303 integrated circuit, are used to create a pair of shunt - 

series choppers. These are switched in antiphase by the reference signal 

VR to alternately open or ground the inverting and non-inverting terminals 

on the OP-07D operational amplifier. One problem with CMOS switches is 

that the reference signal leaks into the wanted signal through inter- 

electrode capacitances. However, the switches are well matched so the 

leakage will be a symmetric effect that will be removed by the low pass 

filter. When the switching signal and the analogue signal are in phase 

the output of the OP-07D is like that in figure 35a. 

A d. c. offset voltage is added in to make the averaged output zero 

in the absence of a sample. This offset is derived from the audio 

oscillator's power rail as shown in figure 42. The advantage of this 

scheme is that any drift in the amplitude of the modulating signal is 

automatically cancelled in the phase sensitive rectifier. 

The o-. Atput averaging is performed by a unity gain Bessel filter with 

1 Hz low pass cut off frequency. The Bessel characteristic is chosen 

for its rapid settling and low phase distortion. An excellent discuss- 

ion on the design and analysis of active filters is given by Tietze and 
(9,76) 

Schenk. 

The Analogue Devices OP-07D and 517KH are high quality amplifiers 

chosen for their low offset voltage, low drift and lov, noise. The 5l7KH 
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has an input bias current of lnk which makes it suitable for use with 

fairly high source resistances. 

5.4. J Bode plots for the locked phase loop 

The bode diagram technique is commonly used to help design linear 

feedback control systems. Readers not familiar with Bode diagrams will 

find the text by Shinners(35'213) helpful. Experimentally, the technique 

involves plotting the open loop gain and phase shift as a function of 

frequency. The information so gained is used to ensure that the opened 

phase loop has a frequency response that will guarantee closed loop 

stability. 

Figure 514 shows how the measurements were made. A sinusoidal sig- 

nal was fed to the varicap through the varicap driver, see figure i6. 

The signal caused the natural resonant frequency of the tuned circuit to 

be sinusoidally varied and created corresponding phase changes that were 

measured by the phase detector. The outputs of the two open collector 

exclusive - or gates were filtered, summed and amplified to produce the 

system's open loop response to an input disturbance. The gain of the 

leading differential amplifier was 100/(1+7 + 10 + 2) = 1.7, the following 

amplifier had a gain of 30. The open loop gain, 20 log10(V2/V1) and 

phase shift are plotted as a function of frequency in. figure 55. 

The results_show. that_. the loop had a stable. first order characteri- 

stic up to the point at which the loop gain dropped to unity. After this 

the roll off in gain corresponded to a second, third and ultimately fourth 

order characteristic. The open loop gain had dropped by 3dB at 1.68KHz, 

the unity gain crossover frequency was ). 13KHz. The gain and phase 

response below 4.13KHz is determined by the low pass filter at the output 

of the exclusive-or gates. 

As the first order characteristic had to be retained, see subsection 

4.2.2, it was decided to increase the open loop gain to 100, or 40 dB, 

in order to keep the loop error below 1%, see equation 4.4. The two 
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Figure 55. The Bode plots for the locked phase loop prior to alteration. 
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amplifiers in figure 5L. therefore have to have a combined gain of 1,95+ 

or 65.8dB. The frequency response of the loop then had to be altered to 

keep the loop stable when closed. The simplest way of doing this was to 

insert another first order roll off at some frequency much less than 1.68 

KHz. The exact roll off frequency was decided by adhering to some advice 

given by Tietze and Schenk(9' 
66): 

setting the loop's phase margin to 

65° at the unity gain crossover frequency minimises the loop's settling 

time after a transient input disturbance. This was arranged by insert- 

ing a new RC time constant for which 1/2crr'RC = 7.23Hz. The new unity 

gain crossover frequency was about 723 Hz at which the phase shift due 

to the new time constant was virtually 900 . To this had to be added the 

loop's original phase shift of 25° at 723Hz. The total phase shift was 

therefore 115° giving a phase margin of (180-115) = 65° as required. 

The final arrangement of the phase loop's error amplifier is shown 

in figure 56. It is necessary to alter the low pass filter at the input 

to the differential amplifier. The modification shifts the filter's -3dB 

frequency from 1.68 KHz to 1.73KHz, this leaves the calculations on phase 

margin intact. The dominant time constant is formed using a 22 nF capaci- 

tor in parallel with the 1Mf. feedback resistance on the second amplifier. 

An output was taken from this amplifier to the varicap driver to complete 

the feedback loop. The output is also passed through a 1.0Hz Bessel low 

pass filter 
(49,104) 

to improve the signal to noise ratio to the monitoring 

chart recorder or voltmeter. 

5.5 THE FURNACE 

5.5.1 The furnace's power supply 

The circuit for the furnace's power supply is shown in figure 57. 

A variac controls the furnace current through a 5: 1 step down transformer. 

An LC filter preceding the transformer absorbs mains transient voltages and 

variac wiper noise. The a. c. current supplied to the furnace is symmetric 
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Figure 57. The furnace's power supply. 
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about the system's ground. This means that any undesirable leakage of 

50Hz current through stray capacitances is self cancelling. 

5.5.2 The construction of the furnace 

Figure 58 illustrates the construction of the furnace. The quartz 

furnace tube is supported at its open end by a pyrex collar in an aluminium 

fixing flange. At its closed end it is supported by the water jacket 

using heat resistant refrasil cord wedging. The sample coil is located 

directly over a If cm long heating element. The heating element consists 

of 12 bifilar wound turns of 0.0048" diameter nichrome V wire; bifilar 

winding ensures that no stray 50Hz magnetic field is created. A good 

deal of care is taken over insulation to reduce heat losses and thereby 

minimise the number of turns required by the furnace. The furnace tube is 

wrapped in 3 layers of insulating Refrasil tape. The closed end of the 

quartz tube is filled up to the edge of the sample coil with quartz wool. 

There is a still air gap between the furnace and the water jacket. 

The mounting of the furnace and water jacket inside the metal shield 

is depicted in figure 59a. Heat escaping from the ends of the water 

jacket passes harmlessly through ventilation holes in the shield. The coil 

and capacitors are located inside a thermally insulated compartment as 

mentioned in subsection 4.3.4. A pair of perspex pillars hold the water 

jacket firmly in their yokes: 

5.5.3 Details of the furnace's performance. 

A profile of air temperature against penetration into the furnace, 

at a power consumption of 56W, is shown in figure 59b. The profile's 

plateau was very nearly at the position that samples rested at during heat- 

ing. For a maximum sample size of 0.5 cm the temperature difference be- 

tween the sample's ends is about 12°C at an average temperature of 716°C. 

At lower temperatures the difference shrinks. 

The furnace has been tested at power consumptions of up to 80Yd, 

this consumption produces a temperature of 880 °C at the plateau. The 



Figure 59. More details of the sample coil and furnace. 
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resistance of the furnace varies between 45.411 at room temperature and 

L7.05'L at 880°C. The furnace has a time constant of 67s. 

Both the rater flowing through the jacket and the nichrome heating 

element alter the behaviour of the tuned circuit. In the absence of the 

furnace, filling the jacket with , '. ater causes a 13% drop in Q, a 9% drop 

in the coupling factor F and a shift of 0.15 in the tuned circuit's natural 

frequency. When the jacket is drained of water, inserting the furnace 

causes a 2% drop in Q, a 27o drop in F and a 0.02% shift in natural fre- 

quency. `: 'hen the water and furnace are present the Q of the tuned circuit 

is 175. 

The temperature of the furnace is monitored using a Pt-13ýPt/Rh 

thermocouple in the arrangement shown in figure 60. To keep losses in 

the thermocouple dove to a minimum, the thinnest available wire is used 

and the fused junction is made as small as possible. The wires are 0.245 mm 

in diameter and the fused junction blob is 0.6 mm in diameter. Thermo- 

couple wire 0.1 mm thick can be obtained and this ought to be used in the 

future. 

5.6 THE INITIAL ADJUSTMENTS 

1. The power rails required for the electronic circuitry are + 15V at 

100mA, -15V at 60 mA and + 5V at 75 mA. 

2. The power rail and coolant water supply are switched on and the instru- 

ment is left to stabilise for 1/2 hour. 

3. The locked phase loop is opened by disconnecting the lead from the 

error amplifier to the varicap driver. The bias at the output of the 

varicap driver is set to -5V using the multiturn potentiometer, see figure 

46. 

4. By monitoring the output of the SL560 amplifier with a digital r. f. 

voltmeter, see figure 41+, the tuned circuit is set to exact resonance 

with the crystal oscillator using the trimmer capacitors on the tuned 



Figure 60. r diagram of the sample holder. 

1. The holder. 

2. Quartz sample tube. 

3. The sample 

4. Refrasil lagging. 

5. Pt - 135ý Pt/Rh thermocouple. 
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circuit. 

5. The phase loop's offset error is measured at the output of the 

differential amplifier in figure 56, the error is then reduced to zero 

using the trimmer capacitor on the SL560. 

6. The phase loop is then closed by reconnecting the lead from the error 

amplifier to the varicap driver. 

7. Adjustments 3-6 do not need to be repeated in the future. 

8. The switch S1 on figure 149 is flicked once or twice until the loop 

locks. 

9. The initial adjustments to the phase sensitive rectifier are quite 

simple. The reference signal is moved into phase with the detected sig- 

nal, see figure 51. The output of the phase sensitive rectifier is 

then reduced to zero using the variable d. a. offset, see figure 53. 

Some photographs of the completed instrument are shown in figures 

61a to 61c. 



Figure 61. Some photographs of the completed instrument. 

sensing board. 

a. Details of the sample coil, the furnace and the susceptibility 
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CHAPTER 6 

RESULTS, APPLICATIONS, IMPRO1T: M1E TS AND THE TE'PERATURE DEPENDENCE OF 
SUSCEPTIBILITY 

6.1 INTRODUCTION 

This chapter concludes the description of the new radio frequency 

instrument for measuring the temperature dependence of initial magnetic 

susceptibility. Section 6.2 presents the results that have been obtained 

using the improved locked phase loop, these show a vast improvement over 

the results obtained using the first working version. The temperature 

dependencesof both X' and X" have been successfully measured and a number 

of examples are shot: n. The section is rounded off by an analysis of the 

temperature dependences of X' and X" in terms of magnetic relaxation 

times. 

Section 6.3 discusses the applications of the instrument. It 

points out the information that may be gained from the high temperature 

dependence of susceptibility. It also describes the uses to which room 

temperature measurements of susceptibility may be put. A number of pro- 

mising applications have not been tried out. However, modifications to 

the coil and capacitors are all that is required to measure the low 

temperature dependence of susceptibility and the anisotropy of susceptib- 

bility. The ways towards realising these untried applications are pointed 

out. 

Since completing the experimental work a number of circuit refine- 

ments have been thought of, these are outlined in section 6.4. Finally, 

section 6.5 is the conclusion to chapter 6 and to this part of the thesis. 

6.2 RESULTS 

The tests and results are set out below in the same order that they 

were for the first version in section 3.5, this facilitates direct com- 

parison between the two instruments. All of the measurements have been 

made with the coolant water flowing and with the furnace in place. 
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6.2.1 Linearity 

The linearity was checked using two sets of test tube samples. The 

first set consisted of varying masses of magnetite dispersed in LiF, these 

had been made up for the first version. The magnetite grains had radii 

between 4.3J and 7.7p. The second set was a new series of haematite 

samples each dispersed in LIP. The radii of the haematite grains were 

less than 40). Y, hereas magnetite was one of the strongest ferromagnetic 

materials likely to be met in rock magnetism, haematite was one of the 

weakest. The two sets made a good pair to test the large and small scale 

behaviour of the instrument. A pure LiF control sample gave a signal of 

-13mV. 
1 

The results for the real part of the susceptibility, X', are shown 

in figures 62 and 63. Here, the change in the feedback voltage P is 

plotted against the mass of ferromagnetic material. The plots prove that 

the instrument is linear in its response to X'. 

The variations in VQ for the imaginary part of the susceptibility, 

X", are not shovin. 19.4Tg of magnetite gave a signal of AV Q= -10.4mV 

and 24.4 mg of haematite gave a signal of -1. OmV. When compared to 

A VP. the changes AVQ at room temperature are thought too small to be 

useful. 

6.2.2 Calibration 

Calibration factors K3 and K4 are needed to complete the relations 

p 
(6.1) XT' = K3 AV 

and 

XT" _ K4 AV Q, 
(6.2) 

where the subscript T indicates that the total susceptibility is being 

referred to. 

The phase loop was calibrated using the paramagnetic salt 

MnC12.4H20. This substance had an 87/Z larger susceptibility than the 

FeS04.7H2O that vas used to calibrate version 1.112.8 mg of 



'figure 62. The changes in VP for varying masses of magnetite powder. 

AVP, v 

5.0 

4.5 

4.0 

3.5 

3.0 

2.5 

2.0 

1.5 

1.0 

0.5 

0-0 -f- 
0.0 2.0 4-0 6.0 8-0 10-0 12.0 14.0 16.0 16.0 20-0 

Mass of magnetite powder, mg 



PT-- - 

ti 
a) 

ö 

a) 

+-3 
Cd E 
a> 
Cd 

0 
ca 
a) 
m 
U) 
Cd 

r. 

ro 

0 4-4 

C_ 

0 
. ri 

ca 
ao 
Cd 
U 

a) 

H 

Ki 

co 
., l w 

> 
E' 

a 
> 
4 

0 
N 

C? 
CV 
N 

0 
ö 
N 

9 
CD 

0 

0 

I? 
N 

0 
ö 

C? 
CD 

0 

0 
s 

O 

N 

1° 0 
0 

cn 
r 
L' 
aw 

v 
3 
O 
Cl. 

a 
4- 

E 
v 

O 

N 

OOOOOp 
10 Ul mN a-- 



105 

MnCl2. LFH20 had a total susceptibility of 1.07 x 10-lOm3, it gave a signal' 

of Vp = -(72.1 
± 0.7)mV. The measured calibration factor for the 

phase loop was therefore 

K3 = -(1.480 
± 0.014) x 10-9m3V 1. 

It is instructive to compare the measured value of K3 with the value 

predicted from circuit parameters. Subsection'3.5.2 showed that the two 

values agreed well for version 1. Using equations 3.21 and 3.45, 

V 
K3 =us 

F 
(6.3) 

The gain of the linearised feedback varicap was calculated in subsection 

5.3.1: 

u= -8.72 x lo-5v 1. 

The sample volume Vs divided by the coupling factor F is 

Vs 
= Vc b2 + D2 1 (2.30 

Fb+0.4.5D b 

where VC is the volume of the coil, b is the length of the coil and D is 

the diameter of the coil. The length of the coil is 

b= (2.05 1 0.05) cm 

and 

D= (2.38 1 0.02) cm . 

This gives 

Vs= 
(1.41 1 0.04) x 10-5m3 

F 

However, there is an (11 1 1)% decrease in F through the combined effects 

of the water and sample coil, and an effective 1ö decrease in F through the 

finite closed loop gain. The corrected value for V/F is thus 

VS 
= (1.62 ± 0.06) x 10-5, m3 

F 
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Finally, the theoretical value for K3 is 

K3 =uS= -(1.41 
± 0.05) x 10-9, m3V 

1. 

F 

The measured value of K3 is 

K3 =- (1.480 ± 0.014) x 10-9, m3V 
1 

The two results agree well. 

The value of Vs/F can be used to find K4 for the imaginary signal. 

A similar procedure was adopted for version 1. From equation 3.24 

A VQ -- FVoQX" , 

where AV 
Q is the change in output from the phase sensitive rectifier on 

inserting a sample and V0 is the output of the phase sensitive rectifier 

prior to nulling in the absence of a sample. This is rearranged to give 

, m3 XT.. _VS1 AV 
Q F VOQ 

so that 

(6.4) 

V1 
x4 =S (6.5) 

FVQ 
0 

The best value for V/F is (1.70 ± 0.02) x 10-5, m3 which is calculated 

from the measured values of K3 and u. V0 is 11.617V and Q is 175 ± 1. 

This gives 

K4 = -(8.4 
1 0.1) x 10-9m3V 1. 

It is simple to calculate the maximum values of XT' and XT" that the 

instrument can cope with. Referring to figure 45, XT' is dealt with 

first. The quiescent voltage for the varicap is -5V, but applied levels 

doom to -13V are within the linear region. This puts the locked phase 

loop's linear operating range at 8V or 1.18 x 10-8m3. 

If the filtered output of the phase sensitive rectifier is not nulled 

it stands at 11.6V. Sample losses due to XT" cause this level to drop. 

The limit of the allowable drop is the operational amplifier's linear 
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working range: this is about -12V. The maximum operating range is 

therefore 23.6 V or 2.0 x 10-7m3. 

6.2.3 Noise and drift 

The noise and drift on both channels were measured by monitoring 

their outputs against time on a chart recorder. Vith a fast chart speed, 

short term random noise was recorded. With a slower chart speed, longer 

term drift was recorded. 

Two 30 second recordings were made to find the r. m. s. noise in X', 

portions of these recordings are shown in figure 64. A room temperature 

measurement took 10 seconds typically; the two traces were used to 

estimate the random noise over this time span. The traces were divided 

into 10 second segments and the value of the output was noted at 1/2 

second intervals within the segment. The standard deviation of these 

values was taken as the r. m. s. noise within the segment. The standard 

deviations for the six segments were averaged to produce the estimate that 

the random noise amplitude was 0.5mV r. m. s. This corresponds to a noise 

level of 7.4 x 10-13m3 r. m. s. in XT'. A distinct change in output level 

can be seen near the beginning of trace a in figure 64, more will be made 

of this shortly. 

It is interesting to note that 0.5mV r. m. s. corresponds to a phase 

noise level of (3.4 x 10-4)o r. m. s. at the operating frequency of 5.068MHz. ' 

This level is fourteen times less than the (5 x 10-3)o r. m. s. fluctuations 

in the phase of the signal from the crystal oscillator, see subsection 

4.3.2. The assumption that the crystal oscillator's phase noise cancels 

out at the 5 MHz phase detector is therefore proven. 

Two 5.5 minute recordings were made of the phase loop's output. 

The drift in each was estimated by noting the output's value at six second 

intervals and then finding the slope of the least mean square error line of 

fit. Results of -0.26 mV minute-' and + 0. I2mV minute 
1 

were thus obtained. 
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Of these, + 0.42 mU minute-1 was used to give an estimate of 6.2 x 10-103 

minute-1 for the drift in the signal for XT 

The recording whose drift was - 0.26mV minute-' is shown in figure 

65. It shows distinct shifts in output of the type already seen in 

figure 61a. These shifts, appearing and disappearing at random intervals 

in time, are knovin as popcorn or burst noise. The most likely source of 

the popcorn noise was the TTL circuitry in the 5MHz phase detector. 

The random noise and drift in the channel for XT" was measured in 

the same way as that for XT'. The averaged random noise was 0.22mV 

r. m. s., equivalent to 2x 10 m. A portion of a short term noise re- -12 3 

cording is shown in figure 66. The amplitude noise is equivalent to 

random variations in Q of 3.3 x 10-3 r. m. s. in a natural Q of 175. The 

random noise can be reduced by increasing the phase sensitive rectifier's 

time constant, see figure 53. The drift in X" was 0.54mV min-' or 

5x 10-12m3minute 1. The main source of noise and drift in XT" must have 

been the SL1680C crystal oscillator maintaining circuit. 

The short term. random noise levels were completely unaffected by the 

furnace current. For steady furnace currents the drifts were also un- 

changed, but changing the current induced a marked drift. Figures 67a and 

b show typical examples of the drift in the signals for XT' and XT" as the 

furnace is heated to 700 °C and is slowly brought back to room temperature. 

A complete cycle takes about 80 minutes. Two drift mechanisms are evident 

in the figures: the first is the drift with time that has already been 

discussed, the second is a drift with temperature that is discussed below. 

It is likely that two mechanisms are contributing to the drift with 

temperature. The first is that the water jacket on which the coil is 

wound will be distorted in a complex manner as the furnace temperature is 

raised. The reason for this is that whilst the water jacket's outer tube 

is kept cool by the flowing water, the inner tube is heated up by the 
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Figure 67. The temperature induced drifts. 

a. The drift in the signal for XT' over a heating and cooling cycle 

lasting 80 mins. 

b. The drift in the signal for XT" over a heating and cooling cycle 

lasting 80 minutes. The heating and cooling curves have been 

separated for clarity. 
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furnace - see figure 58. The second mechanism is that the sample coil 

does get slightly warmer as the furnace gets hotter, this will increase 

the coil's resistance and decrease its Q. The effects of both mechanisms 

could be reduced by winding the coil on a former that does not touch the 

water jacket. The price to be paid is a decrease in the filling factor 

F, but this should be no Y: orse than 3O%. 

Looking in more detail at figure 67a, a series of blips are evident 

on the trace. These correspond to points at which the Variac in figure 

57 was used to alter the furnace current. These blips will disappear if 

an electronic controller is used to continuously and smoothly vary the 

furnace current. 

6.2. ) .F Comparing the improved locked phase loop with the first version. 

This subsection shows how much effect the improvements described 

in chapters 4 and 5 have had on the locked phase loop's performance. 

Table 8 lists the values found for noise, drift and so on. 

10 
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Value 
Parameter 

First Version Final Version 

Length of sample coil, m 4.34 x 10-2 2.05 x 10-2 

Diameter of sample coil, m 2.15 x 10-2 2.38 x 10-2 

Construction of sample coil 10 turns 8 tu rns 
16 s . w. g. Ag 15 s . w. g. Cu 
wire 

-6 
wire 

-6 Flux at centre of sample 1.6 x 10 0.5 x 10 

coil, T r. m. s. 
3 -7 -8 Maximum sample volume, m 2.6 x 10 8x 10 

Operating temperature range, 
°C 16 - 700 16 - 800 

Operating frequency, Mz 5.000 5.063 

Calibration factor for X ', -2.5 x 10-8 -1.5 x 10-9 
T 

mil 

Maximum input for XT', m3 1.2 x 10-8 1.2 x 10-8 

Noise in XT', m3 r. m. s. 8.2 x 10-12 7.4 x 10-1'3 

Drift in XT', m3 min-' 3x 10-11 6.2 x 10-13 

Calibration factor for 2.7 x 10-9 8.4 x 10-9 

X 1,1 m3V 
1 

T 
Maximum input for 3.8 x 10-9 2.0 x 10-7 
X ", m3 T 2 10-12 
Noise in XT", m3 r. m. s. 3x -12 10 x 

-12 10 
Drift in XT", m3 min 

1 5x 10-12 
5x 

Direct Reading? Yes Yes 
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Dealing with XT' first of all, it is clear that there has been a 

very substantial improvement in all quarters. The only factor that has 

not been improved is the maximum value of XT' that can be handled, the 

original value is adequate for the samples that are likely to be met. 

The results for XT" are disappointing. There is only a slight 

improvement in performance and that is a 33% decrease in the random noise 

level. The improvement in maximum input level is no advantage at all, the 

range of version 1 had been satisfactory. The nub of the problem here is 

the wideband amplitude noise generated by the SL1680 crystal oscillator 

maintaining circuit. Section 6.4 has some useful suggestions to make. 

Table 9 compares the improved locked phase loop to the instruments 

of Stephenson and de Sa(17) and Markert et al 
(18) 

with regard to the noise 

and drift in XT'. Markert et al do not give enough information to permit 

a comparison of performances with respect to XT". 

Table A brief comparison of the improved locked phase loop to the 

instruments of Stephenson and de Sa(lz) and Markert et al 
(18) 

. 

0 

Instrument 
Parameter 

Version 2 Stephenson & de Sa Markert et al 

Noise in XT', 7.14- x 10-13 1.3 x 10-11 3x 10-10 
m3r. m. s. 

Drift in XT', 6.2 x 10-13 1.3 x 10-11 Not given 
m3 min-1 

Frequency of 5.068 x 106 1.5 x 103 1x 107 
operation, Hz 

Field in sample 
coil, Am-1 r. m. s. 0.4. 200 Not given 

The noise level of the improved locked phase loop is seventeen times 

lower than the low frequency bridge of Stephenson and de Sa, and it is 

400 times lower than the r. f. tuned circuit techniiue of Markert et al. 

6.2.5 Plots of XaT' and X T" against temperature 

This subsection shows plots of XaT' and XaT" against temperature for 
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a series of föur samples. The subscript "a" is used to denote the 

apparent susceptibility that was discussed in sections 1.4 and 1.6. For 

convenience in typing, the extra subscript "T" for total susceptibility 

is omitted from now on. The first two samples to be discussed are lode- 

stone (magnetite ore) and haematite. 

Figures 68a and b show the variations in the real and imaginary 

susceptibility of a 14.0 mg sample of lodestone. The sample's real 

susceptibility Xa' prior to heating was 5.03 x 10-9m3. Figure 68a shows 

that Xa' had risen by a factor of 1.05 by the time the sample reached the 

Curie transition. Xi' rose more than this, but the rise was masked by 

the magnetic grains' demagnetizing factors - see equations 1.63 and 1.65. 

The appearance of a peak in susceptibility immediately before the Curie 

transition is known as the Hopkinson effect, this effect is discussed in 

the next subsection. The Curie temperature was taken to be the point of 

intersection of lines produced from the Curie transition and from the trace 

just above the transition. The Curie temperature was determined to be 

(567 + 2)°C on-both the heating and the cooling paths. The close agree- 

ment shows that the rate of change of the furnace's temperature was slow 

enough for the thermocouple to accurately register the sample's temperature. 

The complete cycle, from 12°Cto 603°C and back again, took about 1 hour. 

The susceptibility had decreased slightly at the end of the run because 

heating in air oxidised the sample's outer skin to haematite. 

Figure 68b shows the thermal variation of Xa' for the lodestone sample. 

For clarity the cooling curve alone has been reproduced, the heating curve 

was identical. Below the sharp peak in Xa" at the Curie temperature, the 

losses continually decrease with decreasing temperature. The drop in the 

magnitude of Xa" at the Curie transition was 5.8 times its absolute value 

at room temperature. The transition put the Curie temperature at 

(568 ± 2) C, this is in agreement with the result from figure 68a. 



Figure 68. The temperature dependence of susceptibility for a 11.0 mg 

sample of lodestone. 

a. The real part of the apparent total susceptibility 

b. The imaginary part of the apparent total susceptibility 
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The contrast between figures 68a and 68b provides clear evidence that 

Figure 68b is genuinely tracing Xa". There is no way that the trace in 

figure 68b can be ascribed to a detuning effect due to Xa', for Xa" des- 

cribes a sharp spike whereas Xa' undergoes a rectangular step transition. 

Furthermore, the small growth in Xa' caused an increase in the coil's Q 

whereas the dramatic rise in Xa" represented a decreasing Q. Petersen's(19) 

results on the temperature dependance of Xa" for lodestone are shown inset 

in figure 68b. The results are identical even though Petersen used a 

completely different technique. 

The temperature dependences of the real and imaginary susceptibili- 

ties of a 101.4 mg sample of haematite are shown in figures 69a and b. 

The radii of the haematite grains were known to be less than 40 pm. Starting 

with figure 69a, the real susceptibility prior to heating was 3.48 x 10-10m3. 

In contrast to figure 68a the Hopkinson peak was very pronounced for the 

susceptibility had increased by a factor of 3.1 just below the Curie point. 

The Curie point was (673 ± 2)°C. Once again, the transitions on heating 

and cooling overlapped. The complete run from 16°C to 698°C and back 

again took 80 minutes. A sizeable offset was visible after the Curie 

point. A small portion of this, about 3x 10-11 m3, Ms due to the 

formation of paramagnetic Fe203, the rest was the result of the tempera- 

ture induced drift. The return cooling path below the transition was 

different from the heating path. This cannot be completely accounted for 

by the drift's hysterysis, but it can be explained as follows. Vhen the 

haematite passed through the Curie point its magnetic domains were des- 

troyed. When the haematite was subsequently cooled it is likely that the 

domains did not reform exactly as they were and so their combined suscepti- 

bility had a different temperature dependence. The relationship between 

temperature, susceptibility and magnetic structure is discussed in more 

detail shortly. 

Figure 69b shows a sharp peak in losses as the haematite cooled 



Figure 69. The temperature dependence of susceptibility for a 101.4 mg 

sample of haematite. 

a. The real part of the apparent total susceptibility. 

b. The imaginary part of the apparent total susceptibility. 
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through its Curie point. For the sake of clarity, only the cooling 

trace has been reproduced because the hefting trace was identical. 

The magnitude of the transition, 2.5 x 10-10m3, was seven times larger 

than the room temperature value of Xa". Figure 69b put the Curie 

point at (673 ± 2)°C in agreement with figure 69a. One significant 

difference between the traces of Xa" for lodestone and haematite was 

that the losses in haematite only increased significantly when quite close 

to the Curie point, whereas those for lodestone had increased gradually 

all the way up from room temperature. 

The results for another two samples are presented no,,,,,, each sample 

consisted of chippings from a 1" rock drill core. Probably between 

i% and 5% by weight of the chippings viere useful ferromagnetic grains, 

the rest was the non-magnetic matrix in which the grains were suspended. 

These samples are more complicated than the lodestone (magnetite) and 

haematite just seen. Some comments are made on the traces for Xa' but 

not on the traces for Xa" because these are not so clear. The shapes of 

all the curves are discussed in more detail in the following subsection. 

Figures 70a and b are the heating and cooling curves for British 

tertiary dyke NZ5.21E. Its susceptibility Xa' prior to heating was 

4.29 x 10-10m3. This had increased by a factor of 2.0 just below the 

Curie point at (506 } 2)°C. From the very different shape of. the cooling 

curve, it is evident that some physical change took place above the Curie 

point. 

Figures 71a and b are the heating and cooling curves for sample 

33-3-100, site 524, leg 73 of the Deep Sea Drilling Project. The mineral's 

concentration was about 6% by weight and the ferromagnetic grain sizes 

fell in the range (50-300)pm. The sample's DC room temperature suscepti- 

bility was 1.65 x 10-5m3Kg 
1, 

this measurement had been made v. 2th a trans- 

lation balance(53) 



Figure 70. The temperature dependence of susceptibility for a 91.1 mg 

sample of NV 5.21E. 

a. The real part of the apparent total susceptibility. 

b. The imaginary part of the apparent total susceptibility. 
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Figure 71. The temperature dependence of susceptibility for a 104 mg 

sample of 33-3-100. 

a. The real part of the apparent total susceptibility. 

b. The imaginary part of the apparent total susceptibility. 
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ý: easurements on a quantity of this sample using the nev: instru- 

ment put the room temperature susceptibility at 1.56 x 10-9m3 or 

1.5 x 10-5 m3 Kg 
1. 

Bearing in mina that the rock sample was unlikely 

to be homogeneous, the result from the new instrument at 5.068 MHz was 

in good agreement with that from the DC translation balance. On heat- 

ing, the peak real susceptibility v; as 1.5 times the room temperature 

susceptibility. The Curie transition was quite complex as it had two 

distinct slopes and a long tail off. The Curie point was taken to be 

the end of the tail at which the susceptibility finally disappeared, this 

was (301 ± 101C. On cooling from 6880C two new Curie points appeared 

shoring that chemical changes had taken place. 

6.2.6 An investigation into the shapes of the traces for X'T and X "(T) 
a 

It has been seen that the temperature dependence of susceptibility 

amounts to more than a simple transition at the Curie point. The traces 

have characteristic shapes that must contain information about the magnetic 

structure of the sample. The purpose of this subsection is to mention 

some work that has already been done on explaining the temperature de- 

pendence of susceptibility, and then to propose an extension to this work 

by piecing together some of the ideas mentioned in chapter 1. One of the 

proposal's advantages is that it unifies the treatment of X' and X". 

An important component in any discussion on the temperature depend- 

ence of susceptibility is the notion of superparamagnetism. Superpara- 

magnetism has already been mentioned in chapter 1 but a brief reminder of 

what it means is worthwhile. In essence, below a temperature known as the 

blocking temperature single domain grains have a susceptibility due to 

stable rotation magnetization. Above the blocking temperature the single 

domain grains become superparamagnetic and have a much stronger suscepti- 

bility because of the magnetization's ability to completely flip in sym- 

pathy with the applied field. Following the lines of an argument set out 

by Stephenson 
(6) 

, the blocking temperature TB of a grain of volume V which 
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is amongst a randomly oriented array of uniaxial single domain grains is 

T=KUV1 Bk 22 + ln't 
m 

(6.6) 

Ku is the grains' uniaxial anisotropy constant, k is Boltzmann's constant 

and '-C 
M. 

is a time constant associated with the method of measuring 

susceptibility. Equation 6.6 follows from equation 1.70. Using equation 

1.50, if the magnetizing field is oriented at an angle 0 to a uniaxial 

grain's easy direction the rotational initial susceptibility is 

hi 2 
U 

X=O sin2 r 2K 
u 

(6.7) 

in which his is the saturation magnetization of a grain. For the assembly 

of non-interacting randomly oriented grains the composite susceptibility is 

X 
)IOM s2 

r 3K 
u 

(6.8) 

since < sin2j = 2/3. Above the blocking temperature the susceptibility 
10 

of the random assembly of superparamagnetic grains is 
(6) 

Xs= 
)Vds2 

(6.9) 
3kT 

T There are three points to make about these results. Firstly, the ratio 

of the susceptibility of a grain when it is just above the blocking tem- 

perature to when it is just below the blocking temperature is 

XKV 
S_u (6.10) 

xr kB 

= 22 + In 
m 

(6.11) 

from equation 6.6. At an operating frequency of 5 MHz 'tm = 
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(2ITT x5x 106 )-1 = 3.18 x 10-8, thus 

x 
=4.71+-. 

x r 

In words, the susceptibility of a random array of superparamagnetic 

uniaxial grains drops by a factor of 4.7 as it cools through the block- 

ing temperature when the measurement frequency is 5MHz. The second 

point is that the susceptibility drops off as l/T above the blocking 

temperature. The third point is that a real sample contains a range of 

grain sizes so that at any given temperature some grains will be above 

their blocking temperatures and others will be below. For an operating 

frequency of 5Miz the blocking volume VB at a temperature T is 

VB = 
kT (4.7) 

. 
(6.12) 

K 
u 

Relations 6.6 to 6.12 show that the temperature dependence of 

susceptibility for a random array of single domain uniaxial grains may vary 

in quite a complex manner. They also show that the variation depends on 

the distribution of grain sizes, the uniaxial anisotropy constant and the 

frequency of measurement. These concusions provide some insight into 

the behaviour of real samples. Equation 6.13 may be stretched to explain 

the rise in the intrinsic susceptibility of multidomain grains just below 

the Curie temperature Tc; as Tr Tc, Ku -4-0 so VB becomes very big 

and even large multidomain grains will become superparamagnetic. However, 

these superparamagnetic susceptibilites are not always large as Ms2 in 

equation 6.9 may be close to zero. 

The work that has been seen on understanding the temperature depend- 

ence of susceptibility has been wholly concerm d with the real part of the 

susceptibility at frequencies of 5 KHz or less where X"; -- 0. 

Radhakrishnamurty and Likhite(54) propose three different categories for 

X(T) traces, these are illustrated in figure 72. They considered the 



Figure 72. Idealised categories for X'(T) traces, after Radhakrishnamurty 

and L"ikhite(54). 
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Hopkinson or H type curve, figure 72a, to be characteristic of multi- 

domain materials. Examples of H curves for X'(T) have been presented 

in figures 68a and 69a. The second category was that of single domain 

materials. If a material contains purely single domain grains that 

are too large to be superparamagnetic at room temperature, it will ex- 

hibit a rising susceptibility as it is heated. This is because more and 

more grains will be passing through their blocking temperatures. Ultimate- 

ly, the material's susceptibility will start to decrease because of the l/T 

dependence of Xs- see equation 6.9. Figure 72b depicts an ideal single 

domain (SD) curve. Figure 71a would probably have been of this type had 

it not been chemically altered by heating. Finally, the quasi single 

domain (QSD) category, figure 72c, was proposed to account for samples 

undergoing physical alteration on heating. A physical alteration might 

be a change in mechanical stress or a change in grain shape. Figure 70a 

is a beautiful example of a QSD curve. 

Dunlop(55) taps a similar vein of thought in a paper on the thermal 

enhancement of magnetic susceptibility. He also notes that samples with 

braod ranges of blocking temperatures exhibit broad peaks in susceptibility, 

whilst samples with a narrow range of blocking temperatures exhibit sharper 

peaks. A recent review by Dunlop(56) contains a number of references if 

more information on superparamagnetism and blocking temperatures is re- 

quired. 

Stephenson 
(6)(13) 

has calculated the temperature dependence of 

susceptibility for random arrays of uniaxial grains with various grain 

size distributions. However, he limits his analysis to temperatures well 

below the Curie point where the uniaxial anisotropy constant can be con- 

sidered to be independent of temperature; furthermore, he does not deal 

with the imaginary component of susceptibility. at follows is an attempt 

to add to Stephenson's work by modelling the behaviour of the real and 

imaginary susceptibility of uniaxial single domain grains right up to the 
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Curie point. No ettenpt is made to account for chemical or phase changes 

in the sample and only the low field initial susceptibility is considered. 

The uniaxial grains are assumed to be fine enough for hysterysis and eddy 

current losses to be ignored; see equation 1.57 and the succeeding 

comments. 

The starting point for the model comes from equations 1.46 and 1.47: 

x 
0 x'(T) (1.46) 

(i 277 
+w) 

and 

X WT 
X.. (T) _0 (1.47 

(1 + ß, 
2'r 2) 

X is the intrinsic d. c. susceptibility of the random array of uniaxial 
0 

single domain grains, w is the operating angular frequency and 'e is the 

grains' magnetic relaxation time constant which is defined in subsection 

1.5.5. Both X0 and'r are temperature dependent. The next step is to 

represent X0 properly. Above the blocking temperature w"t <<1 and the 

grain is superparamagnetic. Substituting wt <<1 into equation 1.46 

shows that X'(T); z-, X 
o 

above the blocking temperature; this indicates that 

equation 6.9 for the superparamagnetic susceptibility is the correct form 

to choose for X The intermediate results are therefore - 0 

pö is(T)2V 1 
x'(T) _ (6.13) 

3kT 1+I 

and 
»ö is(T) 

3kT 1+ ýv2'e 
2 

where V is the volume of a grain. 

The temperature dependance of T, for a single domain uniaxial particle 

was discussed in subsection 1.5.5: 
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1 -fl 

e xD 
u 

fe L kT 
(6.15) 

in which fe is a frequency of electron precession. Craik(4,147) puts 

fe at about 109, this is in reasonable accord with Stephenson 
(6) 

who takes 

lnfe to be 22; Stephenson's value is used throughout the following 

calculations. It is assumed that fe is independent of temperature. 

Ku is not independent of temperature, but in some cases its variation 

can be linked to the temperature dependence of Ms. Chapter 1 made a 

number of calculations on the magnetic behaviour of an array of carbonyl 

iron grains, this array is considered again. The grains in the array 

are small enough to be single domain and they are taken to be ellipsoidal 

in shape. The uniaxial anisotropy constant for an elongated single 

domain grain is given by(3,361) 

Ku =1pPd52 , 
(6.16) 

4 

therefore 

1 bi 
s 

(T) 2 

Ku(T)" }iö 
s(0) 

2 (6.17 
4 ms(0ý 

Note that for polycrystalline iron the temperature dependence of Ku is 

given by(3,151)(10,132) 

Ku (T) m (T) 10 

Ku(0) Ms(0) 

Experimental data on the temperature dependence of MS for iron were taken 

(57) 
from a paper by Tyler. Table 2 contains a note of the saturation 

magnetization for carbonyl iron at room temperature: DOMS = 1.56T. 

Equations 6.13 and 6.14 for X'(T) and X"(T) are not yet complete 
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because they do not allow for a rotational susceptibility. 

FZ 
0M2 Xr=S (6.8) 

3K 
u 

below the blocking temperature. To correct this a new term will be 

added to equation 6.13: 

2 

X 
Fo s 

(T)2 s; ß2. 
(6,18) 

r 3Ku(T) 1+ w2'ý2 

The extra factor in Xr' is simply a means of making Xr disappear above 

the blocking temperature. Below the blocking temperature w't >>l and 

Xr' -* Xr ; 

above the blocking temperature w`C «1 and 

X' --" 0 
r 

which is as it should be. 

for X" is negligibly smal 
2 

XI(T) =1 
MS 

3K u 

No addition needs to 

1 when wT » 1. The f 

-w2"t 22+ 
PoVIis 

2 

1+ w2'ß 
2 

3kT 

be made to equation 6.14 

final equations are: 

1 
(6.19) 

l+ 22 

and 
2 

w't 
XII (T) =°S 2- 2' (6.20) 

3kT 1+w 't 

where 

Ku (T) = 5.2 x 105 
MS (T ý2 

(6.17) 
Ms(0) 

and 

KV 
2.8 x 10-10 exp u (2.15 

kT 
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The graphs in figures 73,74 and 75 show the results of calculations 

for grains with volumes equal to spheres of radii 1 nm, 3 nm and 10 nm. 

The graphs shoe, a number of features that are observed in practice even 

though real samples contain a distribution of grain sizes. 

In figures 73 and 74 the blocking temperature is not close to Curie 

temperature. It can be seen that X' tails off only gradually as the 

Curie temperature is approached. This is also seen on figures 70a and 

71a. Figures 73 and 74 show that X" exhibits a strong peak at the blocking 

temperature and is small elsewhere. This is also observed in figure 71b. 

Figure 70b exhibits broader peaks; this may be because it contains a 

larger range of grain sizes or because its blocking temperature is further 

from the Curie temperature, it may be a combination of both reasons. In 

figure 75 the blocking temperature is close to the Curie temperature, the 

behaviour of X' and X" is very -similar to that shown in figures 69a and 

69b. 

The model shows that X" tends to underestimate the Curie point of 
10 

single domain materials. Petersen(19) appears to believe that the de- 

crease in losses on the high temperature side of their peak can be used 

to measure the Curie point. This is true, but the model suggests that 

X' is better sustained than X" up to the Curie point; X' is likely to be 

the more accurate indicator. Markert et a1(18) seem to believe that the 

peak in X" corresponds to the Curie point. This is wrong, the peak in 

X" corresponds to the blocking temperature, or the average blocking tempera- 

ture for a real sample. There samples are multidomain the peak and the 

succeeding decrease in X" are very close to the Curie point. Even then, 

it is no easier to measure the Curie point using X" than it is using V. 

In summary, there are only disadvantages in using X" rather than X' to 

measure Curie temperatures. This conclusion is contrary to the beliefs 

of Petersen(19) and Markert et al 
(18). 
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The model that has been developed is realistic because it allows X' - 

and X" to vary continuously as a grain passes through its blocking tempera- 

ture; Stephenson's model predicts a discontinuous jump at the blocking 

temperature. One way in which the new model differs from the measure- 

ments is that it predicts that X" should peak before X', neither figure 70 

nor figure 71 support this. It would be interesting to apply the model 

to a sample with a distribution of grain sizes. Stephenson's paper(13) 

on the distribution of single domain iron grains in lunar dust contains a 

good example to experiment with. Stephenson found that lunar dust from 

the Apollo 11 mission had a susceptibility that was constant to within 

1 10% from -196°C to 100°C. He deduced that the iron grains had volumes 

V ranging from <1.1 x 10-25m3 to >1.3 x 1Ö-23m3 with a distribution 

n(V)« V 2. Starting with these deductions, a computer could be pro- 

grammed to find out whether the model predicted a fairly constant X' be- 

tween -196°C and 400°C. 

6.3 APPLICATIONS 

The purpose of this subsection is to mention the applications of 

the new instrument and to show how versatile it is. The instrument has 

a number of good features: it is very sensitive to X', it separates X' 

and X" and yields voltages linearly proportional to each, it applies an 

alternating field so it is unaffected by any natural remanent magnetiza- 

tion in the sample, it measures the true initial susceptibility because 

it applies an extremely low field, it is easily screened from electro- 

magnetic interference because its operating frequency is 5E'Hiz, it requires 

no special mounting to shield it from mechanical vibration, it has no 

moving parts, it is compact and its performance can still be substantially 

improved. The subsection is broken into two halves. The first half 

concentrates on the applications of the instrument in its present form. 

The second half describes applications requiring small changes to the 
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arrangement of the sample coil and capacitor, these apnlicmtions have not 

been tried. 

6.3.1 Applications that require no modifications 

6.3.1.1 The volume fraction Vf 

The susceptibility of many rocks is due almost entirely to the 

ferrimagnetic minerals they contain. Knowing a sample's susceptibility 

and the mineral type it is possible, with a restriction, to estimate the 

amount of the mineral that is contained in the sample. As the susceptibi- 

lity is determined not only by the mineral type, but also by the grain 

size, grain shape and internal stresses the method is restricted to use 

within a particular group of rocks where these extra factors are likely 

to be similar. The apparent susceptibility of the rock sample is: 

Xr 
X, _V1 af1+ NXir 

(6.2) 

where Xa' is the volume susceptibility and the volume fraction Vf is 

_v V olume of ferrimagnetic mineral (6.22) 

volume of the rock sample 

Equation 6.21 is only true when Vf <<1 which it is in most cases. Even 

if Xi' is not known, the variations of Vf amongst a group of rocks can be 

found, 

6.3.1.2 The Koenigsberger ratio a 
n 

A convenient definition of the Koenigsberger ratio is 
(2) 

Q= 
1ö in. 

r. m. 
n X'B 

e 

(6.23) 

where Li 
n. r. m. 

is the natural remanent magnetization acquired in the earth's 

field Be and X' is the volume susceptibility. It is most applicable to 

igneous rocks where it gives the ratio of a rock's permanent magnetization 

to the magnetization induced in it by the earth's field. The instrument's 
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contribution lies in accurately measuring X'. Collinson(2) discusses 

the use of Qn as an indicator of the stability of n. r. m. Qn is of most 

utility in the interpretation of geometric field intensity variations 

where it measures the relative contributions of induced and remanent 

magnetization in the underlying rocks. Parasnis(9,13) mentions Qn in 

this context and tabulates a number of examples. 

6.3.1.3 Finding the average resistivity or the average size of weakly 

magnetic, electrically conducting grains 

When a sample is only weakly magnetic and yet is a reasonably good 

conductor, induced eddy currents are the dominant source of power loss. 

This fact is exploited in El-Hanary's technique(58) for finding the 

average grain size of metallic powders if the metal's resistivity is 

known. Conversely, if the grain size of the powder is known the resisti- 

vity of the metal can be found. By heating the samples the temperature 

dependence of resistivity can be found too. 

The technique involves mixing the metallic, or perhaps semi-conducting,. 

powder with an inert powder such as LiF to prevent the electrically con- 

ducting grains clogging together. The mixture is inserted into the sample 

coil and the reduction in quality factor is measured. One obvious restri- 

ction is that the skin depth in the conducting grain has to be larger than 

the radius of the grain. If the restriction is observed the change- 

A(1/Q), where 

6(1/a) =1-1 (6.21) 
Qsampie Qoriginal 

is given by 
(58) 

2 -1 
A(1/Q)-0.2 V 1+0.45b+ 

VDD 
2c4- [- 

x1 -- a (6.25) 
S 105 s 
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V is the total volume of the conducting grains, Vc is the volume of the 

sample coil, b is the length of the coil, D is the diameter of the coil, 

a is the average radius of the conducting grains and S is the skin depth 

given by equation 1.9. The factor (V/Vc) is meant to represent the 

coil's filling factor F, it would be better to replace this with equation 2.24. 

To experiment with this technique an amorphous diamagnetic graphite 

sphere was made. The idea was to insert it into the sample coil and 

compare the change in Q predicted by theory with that found in practice. 

The radius of the sphere was 0.55 mm and its resistivity was taken as 

1.1, x 10-511 m(59). The change A(1/Q) predicted by 6.26 was 4x 10-5, 

the measured change was also 4x 10-5. The good agreement has to be 

treated with caution because of the uncertainty in the true resistivity 

of amorphous graphite. 

6.3.1.4 Identifying magnetic minerals in rocks through their Curie points 

Magnetic minerals can be identified through their characteristic 

Curie points. While the method is not as exact as chemical or X-ray 

analysis it is nonetheless very useful. Mineral identification through 

Curie points works best if the samples are sealed in evacuated quartz 

capsules to prevent oxidation. The method is simple to use. Nagata(40) 

gives experimental results which show that the Curie temperatures of 

minerals in the titanomagnetite solid solution series, xFe2Ti04. (1 - x) 

Fe304, vary almost linearly with x from T° = 578°C (x = 0) to Tc = 

- 170°C (x = 1). For the haematite - ilmenite series, yFeTiO3. (1 - y) 

c Fe203, the Curie temperatures vary almost linearly with y from 

T= 675°C (y = 0) to Tc = -205°C(y = 1). 
c 

The Curie point of the natural lodestone in figure 68a was (568 

2)°C; this indicates, as expected, that it was almost pure magnetite. 

The Curie point of the haematite in figure 69a was (673 } 2)°C as it 

should have been. 
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6.3.1.5 Using the term er-ture dependence of susceptibility to uncover 
the domain structure of magnetic minerals 

This has already been discussed at length in sectie. ns 6.2.5 and 

6.2.6. Once again, it is best if the samples under investigation are 

enclosed in evacuated quartz containers. X" is of use here because it 

peaks at the dominant blocking temperature. 

6.3.2 J. rplications that require alterations to the tuned circuit 

6.3.2.1 i, -easuring the temperature dependence of susceptibility from 
77K to 300E 

There is a considerable amount of interest in measuring susceptibility 

at low temperatures. Many Curie points occur in the range 77-3001: and the 

shapes of the susceptibility curves harbour information on domain structure. 

One advantage of working at low temperatures is that rock samples do not 

undergo chemical changes. Both magnetite and haematite undergo structural 

phase transitions in this temperature range and these can be located 

through anomalies in the susceptibility. Creer(60) discusses these 

transitions whilst Stephenson and de Sa(17) and Markert et al(18) have 

examples of the low temperature dependence of susceptibility. 

The alteration necessary is very easy to carry out and stems from 

the scheme used by Stephenson and de Sa(17). At present the axis of 

the sample coil is horizontal so that the sample holder can be slid slowly 

into the sample tube until the best signal is obtained. The axis of the 

sample coil nor: needs to be vertical and the closed end of the sample tube, 

see figure 58, has to be brought closer to the sample coil. The sample 

holder will therefore be slotted into a glass well and the bottom of the 

well will locate the s=mple in the centr-, l region of the coil where the 

field is mot nearly uniform, see figure llb. 

The sample under investigation would be wrapped in a little ball of 

cotton wool and pushed to the bottom of a test tube container. ". hen in 

place in the coil, the sample would be cooled by ropoing liquid nitrogen 
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onto it. After the liquid nitrogen had boiled off, the sample woul-: start 

to : arm and the temperature dependence of susceptibility would be measured. 

The Refrasil furnace lagging would prevent the sarple warming too quickly; 

if the rate of warming was too slow, a small current could be passed through 

the furnace. The thermally insulating housing around the sample coil, see 

figure 59, will protect the coil from cold vapours. The stater jacket, 

the air gap and the Refrasil will prevent the coil cooling by conduction. 

Vith this simple change of orientation the instrument r; ould be 

easier to use, because the sample would always locate itself properly, and 

the one arrangement would serve for low temperature, room temperature and 

high temperature measurements. 

6.3.2.2 Measuring anisotropic susceptibility 

If the magnetic grains in a rock sample are not randomly oriented 

but are aligned in some vay, then the rock sample will have an anisotropic 

susceptibility. Natural processes that can cause alignment are lava 

flows in igneous rocks, stream floe: in sediments and geological stresses. 

The interest in anisotropy therefore lies in the inform tiön it contains 

about the alignment mechanisms. 

Anisotropy measurements are usually made on cyclindrical rock samples 

with height to diameter ratios bet'een 0.85 and 1. A typical diameter is 

2.51 cm. For this appli^ation, the requirement is to build a large sample 

coil in which the rock cylinder can be oriented as required. The coil 

must be large enough to spread a uniform field over the sample. A suitable 

coil would be 10 cm long by 4 cm ride, this ould give no more than 1.1v 

variation in field strength over the sample. V. nding the coil. in 1.8 mm wire 

would result in an inductance of 14 Y. I-I. The parallel tuning capacitance 

therefore needs to be reduced to 7OpF. The filling factor would be 

improved to 0.06 from its present value of 0.01. Taking this in con- 

junction with the larger sample volumes it is clear that the range of 

measurement for X' has to be increased drastically. Fortunately, the 
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reduction in the value of the tuning capacitors autom tically improve. -. this 

range 12.5 times. It is °orth noting that this modification simplifies 

the measurement of volume susceptibilibity because the volume of a rock 

core is easily found; it is therefore easier to measure the Koenigsberger 

ratio and the volume fraction. 

6.4 IMPROVEMENTS 

Various rays of refining the instrument's performance have already 

been mentioned in this chapter and in chapter five. For convenience 

these points are collected together below and some new ideas are added 

for good measure. 

6.4.1 Alterations to the furnace and sample coil 

It was suggested in subsection 6.2.3 that the sample coil ought to be 

wound on a separate glass sleeve concentric with, but mechanically isolated 

from, the water jacket. This will stop the inductance of the sample coil 

being altered by the thermal distortion of the water jacket, it will also 

improve the thermal insulation between the furnace and sample coil. 

Careful construction should limit the drop in the filling factor to about 

30. Of course, the thermal insulation of the sample coil's compartment 

and the temperature compensation of the coil by the capacitors are still 

necessary measures. The purpose of a sleeve that is separate from the 

water jacket is to isolate the tuned circuit from the furnace, the purpose 

of the insulation and compensation is to protect the tuned circuit from 

changes in the ambient air temperature. Tith regard to temperature compens- 

ation, it appears that the temperature coefficient of silver mica 

capacitors is unpredictable. Polystyrene capacitors have a temperature 

coefficient that is more predictable but is too large unless they are 

combined with other capacitors which have a lower temperature coefficient; 

the use of high quality air dielectric capacitors ought to be considered. 

It would be sensible to mount the sample coil, former and water-jacket 
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such that their axis was vertical and not horizontal. The reasons for 

this have just been explained in subsection 6.3.2.1. 

Eddy current losses in the furnace and thermocouple could be 

significantly reduced by using thinner wire for each, this would improve 

the quality factor of the tuned circuit. At present the nichrome wire used 

in the furnace is 0.122 mm in diameter, this might be decreased to 0.0813 

mm diameter. The thermocouple wire is 0.245 mm in diameter, this could 

be shrunk to 0.1 mm. 

6.4.2 General electrical improvements 

All of the circuitry should be mounted on double sided copper printed 

circuit boards. One side of the printed circuit board should be used as 

the earth plane, the other should be used for connections between com- 

ponents. Holes should be drilled in the circuit board such that the 

components can be mounted on the earth plane side. To prevent the com- 

ponents' leads shorting to the earth plane, a small area of copper should 

be removed from around the holes on the earth plane side of the board; 

this is simple to do using a drill with a countersinking tool. The earth 

plane should be cleared away from any trimmer capacitors belonging to the 

tuned circuit. 

The crystal oscillator with its amplifier and audio modulator should 

be mounted in a screened compartment adjoining the tuned circuit compart- 

ment. The oscillator and modulator should have their own regulated and 

filtered power supply. The radio frequency phase detector should also be 

mounted in its own screened compartment and should have its own regulated 

power supply. 

The unregulated power lines to the radio frequency portions of the 

instrument should be passed between compartments using feedthrough capaci- 

tors. The precautions described in chapter 5 concerning decoupling and 

grounding should be observed. 
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6.4.3 r loner noise, self correcting phase detector 

Examples of what is believed to be popcorn noise from the 5'dlz phase 

detector have been shown in figures 64 and 65. Subsection 6.2.6 men- 

tioned that one of the most likely sources of the popcorn noise is the 

pair of 74LS136 exclusive - OR gates. Replacing these and the 2.2 Kn 

collector resistors with a pin compatible high speed C; ̀OS 714HC86 should 

substantially reduce the problem. The 74HC86 is a quad exclusive - OR 

gate. It was never intended for low noise analogue circuitry, but its 

output vill limit at the OV and 5V supply lines. If the 5V supply line 

is carefully filtered and is separate from the supply to the rest of the 

digital circuitry, then the amplitude noise from the modified phase de- 

tector should be considerably less than that from the original phase de- 

tector. 

The phase loop can have positive or negative gain depending on the 

initial states of the flip flops in the phase detector, see figure 49. 

If the gain should be positive it has to be manually corrected by using a 

de-bounced switch to reset the flip flops. An automatic correction 

circuit has recently been devised, it is illustrated in figure 76. When 

the loop gain is positive the phase loop feedback signal is driven into 

saturation at 
± 13V. V. hen the absolute value of the feedback signal is 

12V the output of the comparator goes high to -+---5V. -= -. Thia. turns the 

l. e. d. "in lock" indicator off and causes the output of a TTL monostable 

circuit to go from +5V to 0V. This disables the dividers for a period 

determined by the monostable delay. During this period the loop error 

voltage will settle to zero and the input to the monostable will return to 

the low state. ,, hen the output of the monostable switches to its normal 

state of +5V the flip flops are enabled and there is a 50% chance of the 

loop locking. The mechanism continues to act until the loop successfully 

locks. Experience with the de-bounced switch has shown that two or 

three attempts always suffice, the automatic correction circuit should 
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Figure 76. An untried automatic correction circuit for the 5 MHz phase 

detector. 
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therefore achieve lock mithin one second. 

6.1.4 Improvements to the analogue radio frequency circuits 

A linear active detector for r. f. demodulation is shown in figure 

77a. The circuit's advantages are that it is a good linear detector for 

small changes in a strong signal and it has a high input impedance. If 

the circuit is designed correctly, transistor T2 is turned off by a positive 

voltage that is small compared to the amplitude of the signal Vin. . '. hen 

T2 is turned off the circuit acts as a linear half rave detector and the 

current through R2 increases as Vi1/Rl. The detector's characteristic 

is shorn in figure 77b, the noise performance is discussed by Robinson 
(46,200). 

The r. f. amplifier and demodulator shown in figure 78 was designed by 

Robinson(29). The optimum source resistance for the lowest noise is about 

6K. n; the 6K XL impedance presented by the tuned circuit is therefore ideal 

and the amplifier can be expected to have a noise factor of somewhat less 

than 1.3. The amplifier's gain is 20. The signal across the tuned 

circuit should be between 50 and 100 mV p. p. 

The circuit of an improved limiting amplifier is shown in figure 7. 

The output of the amplifier has been designed to drive a TTL logic gate, 

the maximum sting is ± 1.1V about a quiescent level of 1.4V. It comes 

much closer to the ideal symmetric limiter than the predecessor described 

in subsection 5.3.3. The transistor QA can never enter saturation so there 

is no delay due to charge storage in QA's collector. The emitter degenerat- 

ion resistors improve the amplifier's linearity. The transistors on the 

Plessey SL 3145C array have fT's of 2.5GHz, this is a considerable improve- 

ment on the RCA 3045 array. The limiter's gain is 5.5, it is likely that 

an extra amplifier between the tuned circuit amplifiers and the limiter will 

be needed. 

The Plessey SL1680C is a very convenient crystal oscillator maintain- 

ing circuit, but the amplitude noise and harmonic distortion in its output 



Figure 77. An improved amplitude demodulator. 
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Figure 78. An improved tuned circuit amplifier with an amplitude demodulator. 
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Figure 79. An untried design for an improved limiting amplifier. 
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are too high. The harmonic distortion can be removed by incorporating a 

tuned amplifier into the circuit shown in figure 41. The effects of the 

amplitude noise and drift can be removed by closing an amplitude control 

loop around the r. f. amplifier. If the control loop is carefully designed, 

the low frequency amplitude noise can be reduced almost to that of an 

external voltage reference. The control loop also makes a convenient 

point to introduce amplitude modulation for subsequent phase sensitive 

rectification. 

6.5 CONCLUSION OF CHAPTERS 1 TO 6 

Chapters 1-6 have described the evolution of a brand new means of 

measuring susceptibility. Operating at 5 MHz the instrument separates 

and measures both the real and the imaginary parts of a sample's initial 

magnetic susceptibility. The instrument is sensitive and versatile. 

Most of the experiments so far made with it have been concerned with the 

temperature dependence of susceptibility between room temperature and 

800°C. 

Chapter 1 assembled the information needed to understand how the 

initial susceptibility is affected by sample size and shape and by the 

frequency of the applied magnetic field. The chapter commenced by defin- 

ing the system of magnetic units used throughout this thesis, this was 

necessary because there are three systems in common use. Calculations of 

the skin depth in various materials were used to show that 5MH z is a 

reasonable operating frequency if samples are restricted to those consist- 

ing of fine ferromagnetic grains in an inert matrix; rock samples fall 

into this category. It was shorn that magnetic grains have internal de- 

magnetising factors which create an apparent susceptibility Xa that is 

always less than the intrinsic susceptibility X It was also explained 

that the grains could be multidomain, single domain or superparamagnetic 

depending on the constituent material, the temperature, the grain size and 
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the frequency of the applied field. At radio frequencies, magnetic 

power losses in the sample become significant and cause the susceptibi- 

lity to split into real and imaginary components. Three sources of 

power loss were considered: the hysterysis loss, the eddy current loss 

and the lattice loss. These losses were estimated for an array of 

carbonyl iron grains and it was seen that the lattice loss was most im- 

portant, although the grains are very good electrical conductors the eddy 

current loss was only second in importance. It seems to be generally 

assumed that either hysterysis or eddy current losses dominate. The 

magnetic relaxation time that underlies the lattice loss was discussed 

in some detail. The time constant used to decide whether single domain 

particles are superparamagnetic or not was identified as an example of a 

magnetic relaxation time. Finally, a result was produced to account for 

the effect of the demagnetizing factor on the real and imaginary suscepti- 

bility. 

Having discussed susceptibility from the sample's point of view, 

chapter 2 focussed attention on how the susceptibility might be sensed. 

A simple air cored coil was chosen both to. apply the field and to measure 

the sample's response. It was shown that the real part of the suscepti- 

bility increased the inductance of the coil and the imaginary susceptibility 

increased the resistance of the coil. A very useful expression for the 

coil's magnetic filling factor was derived, the derivation has not been 

seen elsewhere and the result does not seem to be widely known. Two 

existing instruments were introduced as a yardstick to judge the new instru- 

, ment by. One was a 1.5F'diz(17) bridge measuring the real susceptibility 

alone whilst the other, a series of 10 ? Iz inductively coupled tuned circuits 
(18) 

, measured both the real and imaginary susceptibilities. 'Results from 

the 10 MHz instrument indicated that the imaginary susceptibility was a 

potent tool for identifying Curie points. Y"hen searching for an improved 

approach to measuring the real and imaginary susceptibility, work on nuclear 

--q- 



magnetic resonance vas examined and found to be promising. The popular 

'Robinson oscillator was rejected in favour of the unpopular Q-meter; the 

Q-meter had a lot of room for development and an elegant potential for 

separating the real and imaginary susceptibilities. The principle of a 

new instrument was then described and the choice of a 51'+Hz operating 

frequency was explained. 

Chapter 3 described the first working version of the instrument 

which consisted of two feedback loops acting on a driven tuned circuit. 

The sample was placed in an air cored coil which formed the inductance of 

the tuned circuit. One of the feedback loops used a voltage controlled 

capacitance to keep the natural frequency of the tuned circuit fixed, this 

loop's feedback voltage was a signal for the real susceptibility. The 

other feedback loop used a voltage controlled Q-multiplier to keep the sig- 

nal amplitude across the tuned circuit constant, this feedback voltage was 

a signal for the imaginary susceptibility. The voltage controlled Q- 

multiplier was shown to be equivalent to a voltage controlled negative 

resistance. A theory of oper: _tion was developed for both loops. 

Calibration showed that the theory was correct and that the linearity was 

within the error of measurement. Plots of the temperature dependence of 

the real susceptibility were shown for magnetite and haematite. The per- 

formance of this version was as good as the 1.5 i iz bridge and 10 times 

better tan the 10 ; iriz instrument. Finally, a study of noise sources was 

carried out with the object of improving the new instrument's design. A 

research paper on some of this work was published in J. Phys. E: Sci. Instrum. 

(33); 
a paper on it was presented at the 1981 United Kingdom Geophysical 

Assembly. 

Chapter 4 described the system design for an improved instrument. 

The theory of phase locked loops was drawn upon to decide that the loop 
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controlling the tuned circuit's natural frequency ought to be first order. 

The amplitude loop gras iispensed with. The amplitude of the signal across 

the tuned circuit was to be measured by phase sensitive rectification follow- 

ing audio fregency amplitude modulation at the crystal oscillator, the 

theory and advantages of this method were discussed. Using the result for 

the coil's filling factor and the conclusions of the noise analysis, 

optimum sample coil dimensions were derived. Drift within the phase loop 

was discussed and the sample coil was pinpointed as the major source. 

The temperature coefficient of the sample coil's inductance was calculated 

and a method of compensation was explained. A novel type of multiplying 

phase detector was described. The output of the detector is 0 volts for 

0o phase difference, whereas for other multiplying detectors the output is 

0 volts at 900 phase difference. This characteristic is very desirable 

and means that the detector should find use in many other applications. 

After the system design, chapter 5 presented the electronic circuit 

design. The complete set of circuit diagrams and explanations will allow 

the instrument to be reproduced by other interested Yorkers. The linearity 

of the remaining feedback loop was rtonsiderably improved. The construct- 

ion and performance of the furnace eras described in detail. Finally, the 

initial adjustments to the completed instrument were listed and some photo- 

graphs of it were displayed. 

Results for the final ve_-sion viere presented in chapter 6. The 

performance with respect to the real susceptibility was considerably improved: 

random noise was reduced 11 fold and drift was reduced by a factor of 48. 

The improvement in performance with respect to the imaginary susceptibility 

was disappointing, there was a 33% reduction in random noise and the drift 

was unchanged. The blame for the small improvement was allotted to ampli- 

tude noise in the crystal oscillator. The results of the calibration tied 

up with theory once more. Some very interesting plots of the temperature 
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depeniences of the real and ir. gina: "y susce t±bility viere Shown for 

magnetite, haematite an? " tv: o other saiples. The shapes of these 

plots viere discussed and related to the sa_. Tples' internal magnetic 

ephenson's account of the temperature depend- domain structures. 3t 
ý6ý 

ence of the lov: frequency susceptibility of an array of uniaxial single 

domain grains was extended by including the effects of the temperature 

dependent r magnetic relaxation time. These new equations give a con- 

tinuous transition from rotational to superparamagnetic behaviour, 

3tephenson(6) predicts a step transition. The equations naturally account 

for the temperature dependence of the imaginary susceptibility. They in- 

dicate that the imaginary susceptibility should peak at the blocking 

temperature; they also indicate that the imaginary susceptibility is not 

a good marker for Curie points and this is contrary to the impression given 

. The temperature dependence of 
(by 

Markert et al18ý and by Petersen 
(l9) 

an array of single domain carbonyl iron grains was calculated. The results 

were similar to what had been observed for samples which were believed to 
10 

have predominantly single domain grains. A number of applications were 

discussed, some of these have not been tried but they require nothing more 

than a simple modification to the sample coil and parallel capacitance. 

As it stands, the instrument will measure Curie points in the range 200C to 

8000C for mineral identification, it will yield'informatiöri on-blocking 

temperatures and domain structures, it will determine the volume fraction 

of the ferromagnetic mineral in a sample, it can help determine the 

Koenigsberger ratio and it can find the resistivity or the size of the grains 

in we. -: kly magnetic samples. It was shown that it is possible to measure 

Curie points from -200°C to 800°C merely by turning the sample coil up- 

right. If the sample coil is enlarged, then it is possible to measure 

anisotropic susceptibilities. Lastly, a number of ways of significantly 

reducing noise and drift and some useful modifications to the phase detector 

were described. 
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PART 2 

A NEV' INSTRUMENT FOR NON-CONTACT MAGNETIC SH1SING OF 

DISPLACEMENT. 
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CHAPTER 7 

THE 1-TASUREh+IäNT PRINCIPLE, SOME BACKGROUND INFORMATION AND THE CHOICE 
OF MAGNET AND MAGNETOMETER. 

7.1 INTRODUCTION 

This new instrument for non-contact sensing of displacement 

exploits the fact that the field from a permanent magnet varies 

with distance. In principle, if the total moment of the magnet is 

known, and if the field from the magnet is measured using a magneto- 

meter, then the displacement between the magnet and magnetometer can 

be calculated. This principle is not new, but it has never been 

popular because of the non-linearity of the field/displacement 

characteristic. Analogue function circuits, for instance the National 

Semiconductor LH0094, are not suited to low frequency (<10Hz) 

linearisation because they are noisy and drift prone. Digital 

linearisation has been prohibitively expensive in the past. On 

top of this, magnetic materials with a very strong magnetization, 

for an adequate signal to noise ratio combined with reasonable magnet 

volume, have often lacked the stability necessary for use in adverse 

environments. 

The problem of non-linearity has previously been tackled using 

special magnet configurations which manage to produce linear field 

displacement characteristics over a few millimetres or so. The 

magnetometer's sensor has to be attached to the object whose dis- 

placement is to be measured. This is a clumsy arrangement because 

the fixed magnets restrict access to the moving object, also because 

the object is shackled by the wires necessary to the magnetometer's 

sensor and finally because the range of useful operation is so limited. 

Wieder 
(64,99) 

describes an unusually good magnetostatic quadrupole 

which generated an almost linear field gradient over a distance of 

80 mm. More typically, other arrangements described by the same 
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author can be used to measure displacement over a±2 mm range to 

an accuracy of 1.5%. 

The current availability of strong and stable magnetic materials, 

sensitive magnetometers and low cost microcomputers injects a new 

life into this technique. The instrument to be described makes 

accurate and continuous non-contact measurements of displacement 

along a single axis. In this arrangement, the magnetometer is fixed 

and a small permanent magnet is attached to the moving object. As 

can be seen from figure 80, it is the nature of the link to the moving 

object that gives each type of displacement transducer a set of 

unique properties. The only link in this case is a magnetic field. 

The only force on the moving object is that needed to accelerate a 

magnet weighing about 3 grammes. DC magnetic fields pass un- 

attenuated through many solid materials, for instance: brass, lead, 

copper, silver, aluminium, glass, plastic, rater, wood, flesh and 

many others.. Furthermore, the accuracy is immune to oil, grease, 

dirt, smoke and many other environmental pollutants. The frequency 

response is limited only by the magnetometer or by the skin depth of 

the material between the magnet and magnetometer. No other tech- 

nique can lay claim to all these attributes. 

At the moment, the accuracy is better than 2% of full scale 

deflection (FSD) over the entire useful range of 250 mm and better 

than 0.1% FSD for displacements less than 110 mm. A research 

paper on the instrument has been published in the Journal of Physics 

(65) 
E: Scientific Instruments 

The design and development of the hardware and software are 

described in chapters 8 and 9. The resulting instrument will work 

with any choice of magnet and magnetometer. Chapter 10 discusses the 

performance of the instrument together with some improvements. The 

remainder of this chapter first puts the new technique in context by 



Figure 80. The basic sections of a displacement transducer. 
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mentioning other methods of non-contact sensing of displacement. 

It then discusses the factors affecting the choice of magnet and 

magnetometer. 

7.2 OTHER METHODS FOR NON-CONTACT SENSING OF DISPLACEMENT 

This section mentions some of the better known methods of non- 

contact sensing of displacement. These methods fit into the broad 

categories of inductive, capacitive, ultrasonic and optical. A 

review by Garratt(66) and a readable book by Sydenham(67) give more 

details and an extensive list of references. A review by Hugill(68) 

is also useful. 

Non-contact inductive transducers can be subdivided into variable 

reluctance, variable mutual inductance and variable Q types. They 

all require a. c. excitation: driving amplitudes between 2 and 15 

V r. m. s. at frequencies between 1 and 10 KHz are common. The variable 

mutual inductance type is known as a linear variable displacement 

transformer (LVDT). It consists of a solenoid tapped half way along 

its length within which moves a ferromagnetic core. The centre- 

tapped solenoid is often excited by a separate primary coil. As 

the core moves relative to the winding the alternating flux cutting 

each half of the solenoid varies, this creates an imbalance in the 

amplitude of the induced voltages from the two halves. The amount of 

imbalance is linearly related to the core's displacement from the 

coil's centre. For a non-contact LVDT, the core is attached to the 

moving object. The core is free to move along the axis of the coil, 

but the coil itself prevents any motion perpendicular to the axis. 

Typically, this type of LVDT has a range of 50 mm with a resolution 

of 2 N, m and a frequency response of 500 Hz. The linearity is often 

better than 0.5% FSD and the temperature coefficient is about 0.005% 

FSD°C-l. A small LVDT with a range of 0.2 mm could have a resolution 
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of about 5 nm. 

Non-contact variable reluctance transducers come in two types. 

The first type uses a pair of electrically separate coils that are 

physically joined end to end as a differential pair. Once again, a 

ferromagnetic plunger is attached to the object whose displacement is 

to be found. As the plunger moves within the excited coils the flux 

paths change and so the coils' inductances alter. This is known as 

a variable leakage path (VLP) sensor and its performance is similar 

to that of the LVDT. The second type is the non-contact reluctance 

transducer which allows a displacement to alter a short air gap in 

an otherwise high permeability circuit. The air gap is between a 

ferromagnetic plate attached to the moving object and a fixed coil 

wound on a ferromagnetic pot core. As the air gap between the pot 

core and the plate alters the inductance of the coil varies non- 

linearly. This transducer typically has a5 mm range with a 5% 

of FSD linearity if a separate linearisation circuit is used. The 

temperature stability is about 0. FSD °C-l. An electrical system 

incorporating it would have a frequency response of about 500 Hz and 

a resolution of 2 Ftm. 

After part 1 of this thesis, the principle of the variable Q 

inductive transducer should be readily appreciated! The moving 

object should have a highly conducting surface, or have one attached 

to it. Magnetic flux lines passing from a fixed sensing coil into 

the moving surface induce eddy currents which reduce the Q of the 

coil. The Q of the coil is a non-linear function of the coil to 

surface displacement. The range can be up to 50 mm with a resolut- 

ion of 5 rm and a frequency response of 104 Hz. The linearity is 

within about 2% of FSD when using a linearisation circuit. The 

temperature coefficient is about 0. eo FSD°C-1. 
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Capacitive transducers also require an a. c. excitation but the 

driving voltages required are somewhat larger than those applied to 

the inductive types. The non-contact capacitive transducer relies 

on the capacitance between two plates being inversely proportional to 

their separation. The working range is limited to about 5 mm 

with a resolution of 12rm. They can be made linear to about 1% of 

FSD. Their temperature coefficient is typically. -0. C and 

their frequency response is up to 3 KHz. 

Inductive and capacitive transducers are perhaps the most 

popular means of non-contact sensing of displacement. Their resolut- 

ion depends on their range of operation, a larger range goes with a 

lower resolution. None of the devices mentioned exert any static 

force on the moving object, this can be a very important advantage. 

With the exception of the LVDT and the VLP, the existing non-contact 

inductive and capacitive transducers are more susceptible to inter- 

ference and changes in ambient temperature than the contacting types. 

This is because they cannot be used in differential circuits in which 

unwanted signals and dependances can be made to cancel. A disadvant- 

age of the LVDT and VIP devices is that they cease to work if the 

object moves laterally. The other devices continue to work, albeit 

at a reduced accuracy, and do not restrain the object in any way. 

The new transducer stands out from the pack for it has a 

superior working range and a unique ability to penetrate barriers. 

The variable reluctance and variable Q transducers share this 

ability only to a limited extent because they are forced to rely on 

a. c. fields: a1 KHz magnetic field has a skin depth of only 7 

mm in lead. Their operating frequencies can be lowered, but the 

penalty is a reduced sensitivity. Provided the object is not moving 
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too quickly, the new transducer has no such limitation for the magnetic 

field varies at a very low frequency: a 0.1 Hz magnetic field has a 

skin depth of 700 mm in lead. 

Ultrasonic sensors can measure displacement if the propagation 

velocity of a longditudinal wave in the intervening medium is known. 

The displacement is found from the transit time of the transmitted 

waves, a resolution of 2rm is possible. Mehrdadi et al(69) describe 

a means of finding the level of irregular surfaces by timing the 

arrivals of ultrasonic echoes from the surface. 

Optical systems, such as laser interferometers, have resolutions 

that are independant of range together with an inherent linearity. 

A dual frequency laser interferometer, which requires a reflector 

to be attached to the object, can have a1 nm resolution over a 

range from a few millimetres to hundreds of metres. The disadvantages 

of interferometers are that they are very expensive, they can be 

bulky and, because of their precision optics, they are sensitive to 

changes in temperature, humidity, pressure and also to vibration. 

Television cameras can be used to gauge displacement. They 

have an accuracy of about 0.1% of the image size independent of the 

intermetiate optical scaling used. A pair of cameras can make three 

dimensional assessments. There is quite a lot of interest in this 

technique because measurements can be made on objects inside isolation 

chambers simply by letting windows into the protective walls. The 

new transducer has applications in this area, especially if its range 

can be increased: it will shortly be seen that the range can be 

considerably increased. 

7.3 THE PERMANENT MAGNET 

From now on, the new transducer is called the field gradient 

transducer. Two important players in the performance of the field 
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gradient transducer are the permanent magnet and the magnetometer. 

This section discusses the behaviour of the magnet and suitable 

magnetic materials. 

Ideally, a permanent magnet would produce a very large field 

from a small volume and it would be completely unaffected by 
r 

extraneous demagnetizing fields, changes in temperature and the 

passage of time. The diagram in figure 81 shows a BH energy 

product curve with its parent demagnetization curve, it also shows a 

minor hysterysis loop associated with magnet stabilisation. As a 

start in explaining the diagram, assume that a permanent magnet is 

magnetized to saturation and then the magnetizing field is removed. 

When the demagnetizing field is zero, as would nearly be the case for 

a toroidal magnet, the resulting flux density Br is the residual 

induction. He is the demagnetizing field, or coercive force, that 

reduces the induction to zero. When the magnetizing field is 

removed and the demagnetizing field is not zero, as in the case of 

a bar magnet, the magnet acquires a state that is displaced from 

Br on the demagnetizing locus; this is the state C' in figure 81. 

At this point the flux density in the magnet is B' and the total 

flux generated is B'A, where A is the cross sectional area of the 

magnet. The magnetomotive force per unit length of the magnet is 

H', so the total magnetomotive force applied to the air circuit 

surrounding the magnet is H'l where 1 is the length of the magnet. 

The total energy developed in the air circuit is (B'A) H'1). The 

natural magnet quality factor is BH which measures the magnetic 

energy available per unit volume of magnet. The magnet should be 

operated at the point where BH is at its maximum, this gives the 

optimum compromise between the flux generated and the resistance to 

demagnetization. 
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A transient external demagnetizing field, &H , will shift the 

operating point from C' to Q. When the field is removed the 

operating point will return to C" rather than C'. However, if 

H is reapplied the operating point will return to Q and then go 

back to C" rohen AH disappears. This process is used to stabilise 

the permanent magnet. Deliberately applying a demagnetizing field 

AH reduces the energy product BH, but it means that transient ex- 

ternal fields less than &H cannot permanently alter the magnet. 

In the present context, this means that the displacement transducer's 

calibration can be made lasting and reliable. 
O i\ ,o 

Sintered sanarium cobalt, Sm Cos, has jthe argest BH energy 

products of any permanent magnet material currently available(70)' 

(71) 
It has a remanent induction of 0.99-1.05T and a coercive 

force of 710-800 KAm 1. The maximum energy product is 190-220 

KJm73. It may be stabilised by heating at 100°C in a reverse field 

of about 400 KAm 1, this reduces the remanent induction by roughly 

1%(ý). The closest competitor is probably Alcomax III. 

Alcomax III has a superior remanent induction of 1.25T but a far 

inferior coercive force of 50 KAm 
1 

and a maximum energy product of 

only 45 KJm 3. 
Vacomax 200 has a reversible temperature coefficient 

of -0.036%°C-1 from 20°C to 100°C and -0.045%°C-1 from 20°C to 250°C. 

A cylindrical magnet is the most suitably shaped for use with 

a field gradient transducer. The magnet is set to its operating 

point by correctly choosing the length to diameter ratio. A length 

to diameter ratio of about 0. z(70) sets SmCo5 to its maximum BH 

operating point. A pair of formulae exist for the magnetic field 

H from a slender cylindrical magnet. In this case, the magnet is 

not slender but the formulae are useful nonetheless. The terms 

used in the formulae are defined in figure 82. The magnet's magnetiz- 



Figure 82. A diagram to define the terms used in calculating the field 

from a bar magnet. 
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ation per unit volume is M. If the magnet's circular end faces 

are each uniformly magnetized they are equivalent to point poles 

of magnitude MA. By superposition the field at C is 

HC = MP 1-1 (7.1) 
(r-1/2)2 (r+1/2)2 

which simplifies to 

He _ (j) 2r (7.2) 
(r2_12/4)2 

Similarly the field at D is 

g (MAl). 1 (7.3) 
D (a2+12/4)15 

Equations 7.2 and 7.3 break down close to the magnet because internal 

demagnetizing fields ensure that the magnetizations of the end faces 

are not uniform. 

This section is concluded by recording the details of the 

magnet that was used to test the principle of the field gradient 

transducer. The mahnet used ms an offcut of a larger SmCo5 

magnet, it was used because it was immediately available. Its 

dimensions were 11 mm x 9.8 mm x if mm and its volume was 430 mm3. 

It was magnetized parallel to its longest dimension with a dipole 

moment of 2.46 x 10-1Am2. A magnet made of Vacomax 200 with an 

identical dipole moment and properly dimensioned for the maximum BH 

product would have a diameter of 12.5 mm, a length of 5 mm and a 

volume of 618 mm3. 

7.4 THE CHOICE OF MAGNETOMETER 

- The job of 'the magnetometer is to convert the magnetic field 

impinging on its sensor into a voltage. The five most popular 

magnetometer mechanisms in current use are proton precession., 

optically pumped alkali vapour, Hall effect, fluxgate and super- 

conducting quantum interference (SQUID). The types suitable for 

use in the field gradient transducer are picked out below. There 

is no attempt to explain how the magnetometers work, references to 
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review papers are given instead. 

A suitable magnetometer would have an ability to follow 

changing fields (a bandwidth of, say, 5Hz or more), low noise, wide 

dynamic range and a vector response. The last feature allows 

differential sensor pairs to discriminate against interfering 

environmental fields. The magnetometer must also be stable with 

time and temperature to facilitate monitoring of displacement over 

long periods. With these requirements, the proton precession(72) 

and optically pumped alkali vapour(72) magnetometers can be dropped 

from consideration. Neither has a vector response and the fre- 

quency responses of both are very poor. 

Hall effect devices 
(64) 

do have a vector response and they have 

an excellent frequency response. Their rather severe temperature 

dependence can be corrected for. Wilson and Jones(73) describe a 

Hall effect magnetometer with feedforward temperature compensation. 

Their magnetometer has a bandwidth of 70KHz and a resolution of 

lote. By sacrificing the bandwidth, this resolution could be im- 

proved by employing phase sensitive rectification. 

The fluxgate magnetometer' is the best suited to the task 

in hand. The most stable fluxgate magnetometer is the feedback type 

where the sensor is used as a null sensing device within a-field" 

cancelling coil. The bandwidth is up to about 500Hz which is more 

than adequate. Noise levels in the 0.01Hz to 10Hz frequency range 

can be from lOpT r. m. s. to a few nT r. m. s. The temperature 

stability can be better than 30 x 10 
6 

of FSD°C-l. The long term 

amplitude stability depends on the stability of the instrument's 

sensitivity and offset. As an example, Primdahl(74) measured 

± 3.5nT peak fluctuations in a fixed high field over a period of 
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90 days. 

Geomagnetic noise is of the order of lOpT r. m. s. in a 1Hz 

bandwidth centred on 1Hz and of the order of lOnT r. m. s. at 
(75) 

O. O1Hz. To this may be added the contributions of electrical 

machines, electrical switches, electrical furnaces and other inter- 

fering noise sources (such as underground electric trains in the 

case of these experiments). Man made noise may be many orders of 

magnitude greater than geomagnetic noise. It is clear that en- 

vironmental noise, rather than magnetometer noise, will limit the 

performance of the field gradient transducer in most instances. 

Fortunately, differential fluxgate magnetometers, called'gradio- 

meters, are available. A pair of sensors mounted in opposition 

can be made to detect the field gradient due to a nearby source and 

reject the uniform field of a distant source. In this application, 

the gradient from the permanent magnet will be detected and inter- 

fering fields will be ignored. 

Figure 83 shows the relative responses of single and differential 

sensor magnetometers to an axial dipole. The distance between the 

leading sensor and the dipole is r, and the separation between the 

differential sensors is a. If the sensitivity of the magnetometer 

is k. VT-1 and the dipole moment is MT, Am 
, then the output for a 

single sensor is 

Output (single) = µo MT 2k .I (7.4) 

r3 

the output of the gradiometer is 

Output (grad) =o MT 2k rý -1 

r3 (1 +a/r) 3 
(7.5) 

These responses are plotted as a function of r/a assuming that r 
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remains fixed. Twin sensor gradiometers can be obtained either by 

buying a pair of matched feedback sensors(76) and constructing the 

necessary electronics, or by remounting two of the probes from a 

triaxial fluxgate unit(77). 

The ultimate performance would be obtained using a SQUID 

gradiometer(75) which can achieve noise levels of about 2x 10-13 

Tm Hz 2. At present, these are too bulky and too costly for 

their use to be justified in many field gradient transducer applicat- 

ions. 

The field gradient transducer was developed using a fluxgate 

magnetometer that had been designed for another application, it 

was used because it was immediately available. The magnetometer's 

performance was far from ideal as it was a single sensor device and 

it had a rather high noise level, these points should be borne in 

mind. The magnetometer's sensitivity was 1.5 x 10-4 VT 1, it had 

a noise level of 40nT r. m. s. over a DC-2Hz bandwidth in its working 

environment. It had a drift of about t 70nT per hour and a linear 

range of 900F. Its unfiltered bandwidth was 10Hz. It is 

worth contrasting this performance with that of a PV'iB unit from 

Domain Micro-Systems 
(77). 

Their device has 1.8rß r. m. s. noise per 

channel over a DC-lOHz bandwidth. In the differential mode, the 

noise will be 2.5nT r. m. s. If the probes were separated by 

25 cm a magnet identical to that used in these experiments would 

give the transducer a useful range of 2.3 m and a bandwidth of 

10Hz. The magnetometer used produced a useful range of 0.25 m at 

a bandwidth of 1Hz. 
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CHAPTER 8 

H RRD''ARE FOR THE NON-CONTACT DISPLACE! NT TRANSDUCER 

8.1 INTRODUCTION 

Chapters 8 and 9 describe the hardware and software designed 

for the non-contact displacement transducer. The objective was to 

produce and test a working instrument to prove that the principle 

described in section 7.1 was practical. The resulting hardware 

and software will work independently of the choice of magnet and 

magnetometer. The instrument vent through a number of stages of 

development. Ultimately, the boundaries between hardware and soft- 

ware become blurred in the cause of more rapid operation. Section 

8.2 explains the hardware's function using a block diagram of the 

penultimate version of the instrument. This provides a framework 

to which the details of the finalised circuitry can be attached in 

section 8.3. 

It v; -ill be assumed that the reader has some knowledge of the 

theory of analogue signal sampling and reconstruction, of the signal 

distortion that occurs in practice and of the z transform. For 

those who wish to use it, appendix 1 provides a short, self contained 

account of these topics. 

8.2 THE FUNCTION OF THE HARDWARE 

A block diagram of the penultimate hardware configuration is 

shown in figure 84. The samarium cobalt magnet is mounted on a 

perspex carriage which moves along the line AB. The sensor of 

the feedback'fluxgate magnetometer and the magnetic dipole are 

fixed in permanent alignment with the axis of motion. This arrange- 

ment eliminates the unwanted orientational dependance and ensures 

that the magnetometer generates the strongest possible signal. 

To improve the limited dynamic range of the analogue to digital 



Figure 84. A block diagram of the penultimate version of the hardware. 
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converter (ADC) a switched gain amplifier (SGA) follows the magneto- 

meter. : hen the magnet is close to the fluxgate probe, and the 

magnetic field is large, the microcomputer selects a gain of 2.00 

so that the amplifier's output does not overload the ADC. When 

the magnet is distant and the magnetic field is weak a gain of 16.0 

is selected. The higher gain makes sure that the ADC's quantizat- 

ion noise (see appendix 1) is well below the magnetometer's noise, 

in this way none of the information in the weak field is wasted. 

The gain of the SGA is altered by using CMOS analogue switches to 

cý`n Z 
swsthe gain-setting resistors about an operational amplifier. 

The amplified signal from the magnetometer is digitized at 

the request of the microcomputer. The ADC takes 32 samples each 

second, this puts the aliasing frequency (see appendix 1) at 16Hz. 

Signals above 16Hz would be folded below it as aliasing noise. 

The magnetometer has a 3dB response roll off at 12Hz. A 6th order 

low pass Chebyshev filter, with a 0.5dB passband ripple and a 3dB 

attenuation at 7.0 Hz, is used to suppress the unwanted frequency 

components in the magnetometer's output. The Chebyshev filter's 

desirable amplitude characteristics outweigh its poor phase per- 

formance (see appendix 1). 

How the microcomputer handles the data from the ADC forms the 

content of chapter 9. In brief, the microcomputer uses each new 

sample as a pointer in an inbuilt displacement calibration table. 

Stored values in the vicinity of the pointer are combined with the. 

sample by an interpolation routine to produce a new result for the 

displacement. The result is digitally filtered and then sent to an 

alphanumeric display and a digital to analogue converter (DAC). 

The display is updated only twice a second to prevent it flickering 

too rapidly, the DAC is updated 32 times a second so that the 

analogue output to the chart recorder traces the magnet's motion 
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correctly. Strictly speaking, a low pass reconstruction filter is 

required to smooth the analogue output samples. In this case the 

filter is obviated by the chart recorder's ovn time constant. 

The microcomputer used in this version is the Rockwell AIM 65 

equipped with an 8 kilobyte monitor program. The input/output 

ports to the slave circuitry are all part of one R6522 versatile 

interface adaptor (VIA). The 32Hz sample clock, which orchestrates 

information flow through the instrument, is included on the VIA as a 

programmable timer. The R6502 microprocessor is programmed using a 

mnemonic representation of machine code. A high level language 

such as BASIC could be used, but this would be at the expense of the 

instrument's bandwidth. : hen it comes to short program execution 

times, a general purpose high level language cannot compete with 

carefully tailored machine code routines. 

The publication(65) described the instrument in this penultimate 

form. One of the main reasons for developing the hardware and soft= 

ware further can be understood by examining the program cycle times. 

Sampling at 32Hz, the software executed 32 complete cycles every 

second. One cyle in each half second sent a result to the display 

and the DAC. The other 30 cycles sent a result to the DAC only. 

A cycle that sent a result to the display took 29ms giving a maximum 

possible sampling rate of 34.5Hz. A software cycle that did not 

send a result to the display took only 4.7 ms. The huge disparity 

was due principally to the 23ms taken by the display subroutines in 

the AIM 65's monitor. If the display operation could be reduced 

to a few its the displacement transducer's bandwidth could be 

quadrupled, this would open up a broader range of applications. 

Another reason for change was that the microprocessor had to 

use the VIA as an intermediary when communicating with the SGA, 

ADC and DAC. This was much slower than direct communication using 
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the microprocessor's address and data busses. Finally, the AIM 65 

was too sophisticated and versatile for the job it had to do. 

Most of its circuitry and stored software was wasted, this made it 

unnecessarily bulky and power hungry. 

8.3 THE DESIGN OF THE HARDWARE 

This section describes the final combination of microcomputer 

and input/output circuitry. The combination is compact and efficient, 

it makes full use of the computing power of the microprocessor. A 

block diagram and microcomputer memory map are shown in figures 85 

and 86. Note that the hexadecimal numbers 0... 9, A, B, C, D, E, F 

represent the decimal numbers 0-15. The hexadecimal notation used 

in figure 86 is a handy way of identifying memory addresses. A 16 

bit binary number, corresponding to 16 address lines, can be represented 

as four hexadecimal (base 16) numbers. As an example 91A816 

1001,0001,1010,10002 = 37,28810' 

8.3.1 The microcomputer board 

The CUBIT(78) microcomputer board was chosen for the instrument. 

The CUBIT uses the R6502 microprocessor so software and hardware 

could be developed and tested on the more sophisticated AIM 65 and 

then transferred to the CUBIT. The CUBIT is constructed on a 

100 mm x 160 mm Eurocard. 

Figure 87 is a circuit diagram of the CUBIT taken from the 

manufacturer's data sheet. The 6502 microprocessor, IC4, is governed 

by a DlH z clock. Two antiphase square waves, 0l and 02, are generated 

from the clock's signal by the microprocessor. The 6522 versatile 

interface adaptor (VIA) incorporates the 16 bit counter / timer 

which is used to generate the sample clock. The board can house up 

to 4 kilobytes of random access memory (RAM) as IC6-IC13. Less than 

1 kilobyte of RAM is required so IC6 and IC10 alone are inserted. 

The permanent program is stored in a2 kilobyte 2716 erasable 
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Figure 86. A hardware memory map. 
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programmable read only memory (EPROM), IC14. The areas of memory 

in which the Rid, EPROM and VIA are addressed can be altered using 

a pair of sliding switches. 

The microprocessor communicates with other devices through the 

address and data busses. The direction and synchronisation of data 

flow is determined by the microprocessor's control lines. When the 

WTI line is high, the microprocessor reads an 8 bit data word in the 

location selected by the 16 bit address bus. When R/77 is low, 

the microprocessor overwrites the selected location. The two anti- 

phase clock signals Oland 02 split each microsecond into two 

intervals. In the first interval, the microprocessor adjusts its 

address and control busses to select a location and to inform the 

location whether it is to be read or overwritten. During the second 

interval, data passes from source to destination. If the location 

addressed cannot work this quickly, then logic belonging to the 

location can pull the RDY line low and put the 6502 into suspended 

animation. The location releases the RDY line when it has finished. 

The microprocessor can be made to respond to external events 

through its non-maskable interrupt (NMI), interrupt request (IRQ) 

and reset (RST) lines. RST is used to make the instrument start 

properly-when power is turned on. It can also halt the microprocessor 

in its tracks and make it go back to the beginning of the stored 

program. Yhen power is switched on, the operation is as follows. 

RST has to remain low while the power lines establish themselves. 

When RST goes high the microprocessor waits 6 clock cycles (6rts) 

before it does anything. It-then automatically reads the locations 

FFFD16 and FFFC16 for it knows that these locations hold the start- 

ing address of the stored program. The microprocessor jumps to 

the start of the program and commences execution. 
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The CUBIT board makes nearly all of the address data and 

control lines accessible in a 64 pin DIN 24612 socket. Three 

extra lines are connected to unused pins on the socket. These 

lines are 01 (pin 3 on IC4), R/ (pin 3 on IC15) and SELECT PAGE - 

9116 (pin 11 on IC3). The latter pin went low whenever the 

addressed location was in the range 910016 to 91FF16. 

Figure 88 shows a worst case timing diagram for read/write 

cycles using a l1liz clock. The diagram is valid for loads of up 

to 130 pF in parallel withl TTL input on each data, address and 

control output line. The lines are all TTL compatible. The input 

output board Which is described next has to keep within these times 

if the instrument is to function properly. 

8.3.2 Microcomputer to input/output board bus drivers and input/ 

output device select 

The worst case timings of figure 88 are only true if the micro- 

processor's output line drivers are not loaded by more than 130 pF 

in parallel with 1 TTL input. At the design stage, the capacitative 

loading of an input/output board is an unknown quantity. For 

safety, all of the necessary address, data and control lines are 

buffered using LS TTL transmitter and transceiver chips. With these 

buffers the system could be considerably expanded should this ever 

be required. The intrinsic delays in the buffers are small enough 

to be ignored. When the transmitter and transceiver chips are not 

selected their outputs enter a high impedance state. 

All of the input/output devices are located in page 9116 of 

the microprocessor's address space, this has been shown on figure 

86. A 74L S138 three to eight decoder is activated by the 

SELECT PAGE 9116 line from the CUBIT. When activated, the decoder 

pulls one of the 8 output lines low to alert an input/output device 

that it is required. As two of the eight outputs are unused, two 



Figure 88. Worst case timings for a 1MHz 6502. 
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more devices could be added to the input/output board in future. 

A circuit diagram for this bus interface and decoding section is 

shown in figure 89. 

8.3.3 The input/output board 

8.3.3.1 The thumbwheel switches 

A pair of hexadecimal thumbwheel switches are included to 

allow an operator to manually input data or instructions to the 

microprocessor. Chapter 9 will show how the switches are used to 

select a sampling rate and to choose between calibration or measuring 

displacement. The circuit diagram is shown in figure 90a. 11, hen 

asked to do so, the 74LS244 forces the switch settings onto the data 

bus. At other times the outputs of the 74LS244 are in a high 

impedance state. Note that the switch settings are the inverse of 

what the hexadecimal numerals on the thumbwheels show, this has to 

be accounted for by the software. 

Figure 90b shows the input/output board's power rail decoupling 

and the push-to-RESET switch. A ). 7K pull up resistor for the switch 

is mounted on the CUBIT board. 

8.3.3.2 The switched gain amplifier 

The circuit diagram of the switched gain amplifier is shown 

in figure 91. The gain can be altered manually, when calibrating 

the instrument, or by software when making measurements of dis- 

placement. An l. e. d. is lit when the gain is high, this is an aid 

when testing the software. A gain of 16 or 2 is selected using a 

CMOS dual analogue switch to pick one of the two input resistors to 

0A3. It is important that the ratio of the gains is as close to 

8 as possible. In practice the gains are 1.997 t 0.001 and 

15.97 1 0.01, their ratio is 8.002 1 0.006. When the inputs to 



Figure 89. Microcomputer to input/output board interface buffer. 
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Figure 91. The switched gain amplifier. 
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0A2 are grounded, the offset at the output of the succeeding 

anti-alias filter is 8.9 mV when the gain is 16 and 8.7 mV when the 

gain is 2. With a gain of 16 the noise and drift at the output of 

the anti-alias filter is less than 0.15 mV over a period of an hour. 

The magnetometer has a sizeable zero offset of -200 mV, this 

is probably due to d. c. magnetic fields in the laboratory. The 

fluxgate's signal is added to a d. c. level from OAl to remove this 

offset. OA1 can generate adjustable bipolar output levels of 

400 mV. 

8.3.3.3 The anti-alias filter 

The circuit diagram of the anti-alias filter is shown in figure 

92a, its frequency response is shown in figure 92b. Tietze and 

Schenk 
(49,76) 

describe the procedure with which the filter was 

designed. 

8.3.3.4 The analogue to digital converter 

The Analogue Devices AD574K is a 12 bit successive approximat- 

ion analogue to digital converter with a typical conversion time of 

35ps. It is contained in a 28 pin dual-in-line package and it is 

microprocessor compatible. A full description of its operation and 

timing requirements are given in the maker's data book 
(79). 

The 

configuration of the AD574K is shown in figure 93, one or two notes 

on it are made below. 

The signal from the anti-alias filter is received by a unity 

gain differential amplifier. The anti-alias filter and switched 

gain-amplifier are contained in a screened enclosure that is separate 

from the enclosure housing the digital electronics. The signal 

from the filter is sent along a coaxial cable whose screen is grounded 

at the filter's enclosure. The common mode rejection ratio of 

differential amplifier makes it possible to receive the signal with- 



Figure 92. A 6th order low pass Chebyshev anti-alias filter. The 

passband ripple is 0.5 dB, the cut off frequency is 7Hz. 
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out creating a hum loop. An incidental advantage is that the 

amplifier's low output impedance prevents errors being created by 

a changing ADC input impedance during a conversion cycle. 

In the configuration shown, the ADC handles unipolar input 

voltages between OV and 10V. The magnitude of one least significant 
12 bit (LSB) is 10/2 = 2.4I W. The tristate data output lines of 

the AD574K are connected directly to the data bus. The ADC appears 

in locations 918016 and 918116 in memory-space. The microprocessor 

initiates a conversion cycle by trying to store its accumulator at 

918016. After a maximum wait of 35Ns the digitized result is 

ready for processing. The most significant 8 bits of the result 

are contained in 918016, the least significant 4 bits are in 918116' 

The ADC is not able to make its data available quickly enough to fit 

in with the microprocessor's read cycle, see figure 88. To get 

over this problem, some extra circuitry was designed to make the 

microprocessor stop and wait for lps before carrying on as normal. 

Under normal circumstances the output of NAND gate 3 is low, the 

RDY line is therefore high and the microprocessor busily executes 

instructions. When the ADC is addressed and . is high, the 

output of NAND gate 3 goes high and the RDY line is forced low which 

stops the microprocessor. NAND gate 3 also forces the flip-flop's 

J and K inputs high putting the flip-flop into its toggle (T 2) 

mode. When 01 goes high again, about 1 ps later, Q toggles from 

low to high and the read cycle is completed successfully. 

8.3.3.5 The liquid crystal display 

The four digit liquid crystal display is driven by an Intersil 

ICM 7211 MIPL CMOS display decoder/driver. The operating and 

timing requirements are described in the manufacturer's data sheet(80). 



ro 
V V 

C C 
Q1 T 
y N 

. 4- 
-I-. 

- " N N 
0 Ql fp cn 

D 
J 'D 

I I'! I ' 
_ 

I I I l 
_ _ _ 

t 

r 

E 

f 

O 

O 

3- 

O 
d 

c9 
E 

a, 

u 
N 
ä 
N 

I 



160 

The ICM 7211 MIPL is microprocessor compatible and appears as a 

location in memory space. The wiring diagram is shown in figure 

94.. When the device is addressed and OW is low the states of the 

data lines Do to D5 are stored. Lines Do to D3 specify the 

hexadecimal number that is to be displayed, lines D4 and D5 tell 

which position the number is to be displayed at. It requires four 

write cycles to completely alter the display. An alternating back- 

plane output is fed to four CMOS exclusive - OR gates. These 

gates determine which of the three decimal points and colon are to 

be made visible. Closing the appropriate switch turns a_symbol on, 

opening the switch turns the symbol off. 

8.3.3.6 The digital to analogue converter 

An analogue output for a chart recorder is created using a 

10 bit microprocessor compatible National Semiconductor DAC 1000 

digital to analogue converter (DAC). The operation and timing 

requirements are described in the manufacturer's data book(81). 

The DAC is arranged to appear at locations 918916 and 918k16 in 

memory, see figure 95. The analogue output is updated by first 

writing the least significant 8 bits into 918916 and then writing the 

most significant 2 bits into 918k16. The second write operation 

causes the 10 bit word to be turned into an analogue level within 

3ps. A National Semiconductor LH0071 generates a 10.24V reference 

voltage. The magnitude of 1 LSB is 10.24/210 = 10mV. The invert- 

ing voltage to current converter turns a full scale input of 03FF16 

into a full scale output of -10.23V. - 

8.3.4 Comments 

The major reason for designing this specialised hardware was 

the potential reduction in software cycle time. Running almost 

identical software, the maximum cycle time using the AIM 65 was 29 ms 
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whereas the maximum cycle time on the new hardware was 6.0 ms, 

a 180% improvement in efficiency. A point not to be dismissed 

lightly is that a Cubit microcomputer board is about , -4 of the price 

of an AIM 65. The other reason for the design was the urge to build 

a more compact instrument. The photographic plates in figures 96 

and 97 show that this object was achieved too. Figure 96 shows the switched 

gain am lifier plus filter and the microcomputer. Figure 97 shows 
cQýn ýný, S 

the ids of the digital and the analogue enclosures. It can be 

seen that the microcomputer is constructed on two main boards. 

The lower of the two is the microprocessor board and the upper board, 

with its rider, is the input/output board. 



Figure 96. The innards of the analogue and digital enclosures. 

Figure 97. The appearance of the switched gain amplifier and filter 



162 

CHAPTER 9 

SOFTWARE FOR THE NON-CONTACT DISPLACEMENT TRANSDUCER 

9.1 INTRODUCTION 

This chapter describes the software for the non-contact 

displacement transducer. The chapter is split into two parts. 

The first part is devoted to general aspects of the software design 

and the second part describes the program itself. The program 

code is listed and annotated in appendix 2. The code will run 

only on a 6502 microprocessor, but the description and flowcharts 

that define the code will much simplify the task of implementing 

the program on another microprocessor. 

9.2 AN OVERVIEW OF THE SOFTWARE DESIGN 

9.2.1 The 6502 microprocessor 

The 6502 has enjoyed a lot of success and it is currently 

used in many microcomputers. It is an old device in microprocessing 

terms, but it has worn well and it is still being built into new 

designs. Enhanced CMOS versions of it have appeared and these 

guarantee that it will remain popular for some years to come. 

Figure 98 shows the model of the 6502 that is used by the programs. 

Figure 99 lists the memory addressing modes that are available and 

figure 100 displays the microprocessor's instruction set. All 

three figures are taken from Rockwell International data sheets. 

A few notes on the 6502's features are made below. 

The 6502 has an efficient pipelined architecture. Many in- 

struction execution cycles consist of fetching an instruction from 

memory, decoding the instruction and then fetching the data or address 

on which the instruction is to operate. Pipelining means that 

instruction decoding and data, or address, fetching are going on 

simultaneously. This makes the best use of the slow address and 



Figure 98. r 6502 programming model. 
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Figure 99. A list of memory addressing modes. 

The R 6500 features 13 addressing modes. The 
first byte of each instruction is the operation code 
specifying both the instruction and the addressing 
mode. The addressing modes are summarized below. 
" ACCUMULATOR ADDRESSING -A one byte 

instruction, operating on the accumulator. 
" IMMEDIATE ADDRESSING - The operand is in 

the second byte of the instruction. 
" ABSOLUTE ADDRESSING - The second and 

third bytes of the instruction specify the effective 
address in 65K bytes of addressable memory. 

" ZERO PAGE ADDRESSING - Allows shorter code 
and execution times by assuming a zero page 
address. 

" INDEXED ZERO PAGE ADDRESSING (X orY, in- 
dexing. ) -Zero page addressing used with an index 
register. 

" INDEXED ABSOLUTE ADDRESSING (X or Y, in- 
dexing) - Absolute addressing used with X or Y 
index registers. 

" IMPLIED ADDRESSING -The register containing 
the operand is implicitly stated in the operation code. 

" RELATIVE ADDRESSING - Used only with branch 
instructions. The second byte is an "Offset" added 
to the contents of the program counter. 

" INDEXED INDIRECT ADDRESSING - Uses an 
indirect zero page address indexed by X to fetch 
the effective address. 

" INDIRECT INDEXED ADDRESSING - Uses a zero 
page address to fetch the effective base address 
to be indexed by Y. 

" ABSOLUTE INDIRECT- Used only with JMP, the 
second and third bytes point to a two-byte effective 
address. 



Figure 100. The 6502 instruction set. 
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data busses and reduces program execution times. 

The 6502 is a memory mapped device. This means that there 

are no specific input/output instructions to activate devices which 

communicate with the outside world. Instead, displays, keyboards 

and so on appear as addresses in memory - this has already been 

seen in the hardware design. The advantages of -this scheme are 

that it is simple and that the full power of the microprocessor can 

be brought to bear on input/output data handling. Klingman 
(82,282) 

has more to say on the matter. 

Microprocessors spend much of their time simply moving data 

from place to place, this makes the flexible memory addressing 

modes on the 6502 very valuable. Some of these modes may be indexed. 

The index is stored in an internal register and it is then used as 

a memory pointer with a variable offset from a fixed memory address. 

By incorporating indexed addressing within an instruction loop that 

increments the index, large chunks of memory may be moved or pro- 

cessed with a minimum of effort from the programmer. The zero 

page addressing mode is useful because it assumes that an address 

is somewhere within the first 256 bytes of memory. This assumption 

eliminates one of the two memory fetch cycles of direct addressing, 

thus both execution time and memory consumption are reduced. 

Klingman(82,267) discusses addressing modes in some detail. 

Referring to figure 98, the status register contains test 

flags that may be set or reset depending on the microprocessor's 

recent history. These flags allow conditional program branching 

and they are the source of a computer's power. The 6502 has a 

powerful set of flags. Of particular interest is the break (BRK) 

command flag. The flag is set if a BRK instruction in software 

forces the microprocessor to interrupt what it was doing. This 
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instruction and its signalling flag aid software debugging. Using 

a software development system, matters may be arranged such that 

on detecting a software BRK instruction the microprocessor prints 

out the contents of its key registers. The designer can then check 

whether the microprocessor is running the course he hoped it would. 

9.2.2 Software development 

The Rockwell AIM 65 microcomputer was used as a 6502 software 

development system. The AIM 65's monitor permitted the use of 

mnemonic instruction names rather than the less comprehensible 

machine code symbols. The monitor also provided simple software 

debugging aids and took care of a keyboard, a display, a printer and 

a cassette tape recorder. The hardware input/output board described 

in chapter 8 was designed to be plugged directly into the AIM 65's 

address, data and control busses. When the software had been 

developed and checked, the input/output board was unplugged from 

the AIM 65 and connected to the CUBIT microcomputer board. The 

completed software was loaded into an EPROM which was inserted into 

a socket on the CUBIT board. The instrument was then complete. 

Writing a fairly large program in a low level language is 

complex and prone to error. Leventhal 
(83,238) 

weighs up the in- 

gredients of good programming discipline. The software was written 

by first defining the task on a large scale and then breaking it 

down into a number of modular units. A master flowchart was drawn 

up to define the order in which these modules were to be performed. 

Then each module was itself closely defined and broken down into a 

detailed flowchart that could be turned into mnemonic program code. 

The modules were tested and debugged separately because this limited 

the complexity of the problems encountered. Assembling the modules 

into one program was quite easy because the structure imposed by the 



165 

master flowchart ensured that each module worked happily with its 

neighbours. Three programming rules were observed as far as 

possible: 

1. Each conditional test should have a definite result. 

2. Unconditional jumps should be avoided. 

3. Each module should have just one entrance and one exit. Ow 

If followed to the letter, rules 2 and 3 ensure that there is only 

one path between any two system states S1 and S2, corresponding to 

points P1 and P2 in the programme. Rule 1 ensures that this path 

will be clearly marked. 

9.2.3 The master flowchart V 

A set of flowchart symbols are defined in figure 101. 

Before describing the master flowchart, it is worth recalling that 

a calibration curve of the magnetometer's output against the magnet's 

displacement is stored as a table in memory. Though the exact 

co-ordinates of the curve are known only at a few points along 

its length, the curve between these points will be recovered by 

interpolation. If the magnet and magnetometer are ever changed, 

all that has to be altered is the calibration table. The instru- 

ment must therefore provide calibration facilities. 

The master flowchart is shown in figure 102. When the reset 

button is pushed, or power is switched on, the microprocessor jumps 

to the start of the program. The program first makes the micro- 

processor initialise its status register and store spaces. The 

settings of the two thumbwheel switches are then examined. One 

thumbwheel switch indicates the user's choice of sampling rate, the 

other switch tells whether the displacement or calibration mode has 

been selected. There is considerable room for expansion here because 

up to 16 sample rates and 16 programs could be decided between, but 
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two of each is sufficient to show the principle. The switches 

could also be used to pass calibration data to the microprocessor. 

Subroutine 1 compensates for long term drifts in the analogue 

circuitry or changes in the ambient magnetic environment. The 

subroutine assumes that the magnet is sited at its maximum useful 

displacement. The analogue gain is automatically set to 16 and the 

digitized output of the magnetometer is averaged over 256 samples. 

This average is compared with the expected output that was obtained 

while calibrating the instrument. The difference represents a 

shift in offset and is accounted for in subsequent calculations. 

The offset pertaining to a gain of 2 is exactly 1/8 of the previous 

result. 

Assuming that the displacement mode is selected, the function 

of subroutine 2 is to find the best amplifier gain and to check that 

valid measurements can be made. The choice of gain is based upon 

the magnetometer's output, a weak signal requires a high gain and a 

strong signal requires a low gain. The high-to-low and low-to- 

high gain thresholds are offset to produce hysterysis, see figure 

103. This prevents random noise causing repeated changes of gain 

when the magnetometer's output is close to the gain transition region. 

A delay is added to allow the analogue filter to settle after a 

change in gain. Subroutine 2 also checks that the magnet is in a 

valid measurement range by seeing if the magnetometer's output is 

too large or too small. If either of these conditions is detected, 

the operator is informed accordingly. No measurements will be made 

until the condition is rectified; when it is rectified measurements 

recommence automatically. 

The program now has a valid sample which subroutine 3 can use 

to make a new estimate of displacement. The subroutine first 

selects either the high gain or the low gain calibration table. 



Figure 103. A diagram relating the actions of subroutine 2 to 

displacement. 
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It calculates an offset into the table chosen and picks out the rele- 

vant displacement data. Newton's second order forward difference 

interpolation method is then used to calculate the displacement. 

The new estimate of displacement is placed into a 16 bit 

digital filter. The filter attenuates the high frequency noise 

components and determines the instrument's bandwidth. The filter 

has the amplitude characteristic of a second order low pass Chebychev 

filter with 0.5dB ripple in the passband. Its -3dB cut off fre- 

quency is f/32 Hz where fs is the sampling frequency; the 

dependence of a digital filter's cut off frequency on the sampling 

rate can be useful. 

It now remains to display the filtered result before re- 

peating the cycle. The most significant 10 bits of the binary 

result are sent to the DAC in each cycle. This permits a proper 

reconstruction of the magnet's motion. The liquid crystal display 

is updated once every 16 cycles. An algorithm is used to convert 

the result from binary to binary coded decimal (BCD) before it is 

passed to the display. The instrument now loops back to make 

another measurement. 

Now let's go back to the middle of the program to see what 

happens if the user wants to calibrate the instrument. The program's 

course is similar to that just described. The user manually sets 

the amplifier's gain and then moves the magnet through--a: series of 

lknown 
displacements. The instrument, now acting as a voltmeter 

with a filter, gives the value of the magnetometer's output at 

each position. This generates a calibration table which can be 

loaded into an EPROM. 

The reader may be wondering why the digital filter was placed 

after the interpolation subroutine rather than before. To answer 

', t 

this, consider what happens if the filter is placed before the 
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interpolation subroutine. A change in the amplifier's gain will 

then present the digital filter with a voltage step. This would 

be a nuisance because of the filter's poor settling behaviour. 

More subtly, the magnet velocity that could be successfully followed 

would be greater at large displacements than at small displace- 

ments. For a given magnet velocity, the rate of change of magnet- 

ometer output increases dramatically as the displacement decreases. 

The slew rate of the filter is fixed and is increasingly less able 

to follow the accelerating change at its input. Both problems 

have been avoided by placing the filter after the subroutine. 

There are two more points to make about this. As the filter is used 

to generate data for the look up table and then to filter data from 

the look up table, it must have a d. c. gain that is very close to 

unity to avoid creating systematic errors. Secondly, the random 

noise from the magnetometer should have a Gaussian probability density 

function and therefore a zero mean value. After interpolation to a 

non-linear characteristic, the noise will no longer have a Gaussian 

probability density function and will not have a zero mean. 

Passing the interpolated noise through a linear filter will therefore 

create an offset. Fortunately, for normal noise amplitudes the 

conversion looks sufficiently linear for the offset to be well below 

the accuracy of the arithmetic. 

Finally, it is interesting to compare the speed of a BASIC 

program with one written in mnemonic code. The digital filter 

subroutine was written in both languages. The BASIC version had 

an execution time of 71.2 ms, the mnemonic version was 29.1 times 

faster at 2.45 ms. The pains taken to write everything in mnemonic 

code were well rewarded. 

9.3 DETAILS OF THE SOFTWARE DESIGN 

The detailed description of the software is broken down into 
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smaller sections called modules and larger sections called sub- 

routines. In the main, these correspond to the contents of the 

blocks on the master flowchart. The last piece to be presented 

is the controller routine which corresponds to the master flowchart 

itself. A listing of the code is given in appendix 2. 

It will be remembered that memory referencing instructions 

have shorter execution times if the location they address is in 

page 0 -the first 256 bytes of memory. To exploit this, all of 

the microprocessor's temporary arithmetic and control stores are 

located in page 0. There is no shortage of store space so each 

location is devoted to just one variable. A page 0 memory map is 

shown in figure 101+, the labels will be given meanings as this 

section progresses. All addresses are given in hexadecimal. 

9.3.1 The analogue to digifäl conversion module 

The subroutine assumes that the counter/timer Ti in the 6522 

versatile interface adaptor has been configured by the controller 

routine to run continuously as a sample clock. At the beginning 

of each cycle T1 sets a flag in the 6522's interrupt flag register 

at address 900D. This subroutine waits until the flag is set, it 

then initiates a conversion and leaves the microprocessor to 

twiddle its thumbs while the ADC does its job. It next clears 

the flag ready for the following cycle. The most significant 8 

bits of the result are taken from 9180 and loaded into 0001. The 

least significant ! bits are taken from 9181 and loaded into 0000. 

The 12 bit result in 0001 and 0000 has four unwanted trailing zeros. 

These are removed by shifting the result four spaces to the right. 

The module is now done. A flowchart is shown in figure 105. 

9_3.2 The binary to BCD conversion module 

ý, 

The purpose of this module is to convert a 12 bit binary 
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number in 0005 and 0004 into a two byte binary coded decimal (BCD) 

number in 0003 and 0002. The algorithm used is described in detail 

by Peatman(84'40). An 8 bit binary number BNUM has a decimal 

value of 

BNLTIA=b7 x27+b6 x26+b5 x25+ .... (9.1) 

where bl refers to a bit. Equation 9.1 can be rewritten as 

BNUM = ((((((b7 2+ b6)2 + b5)2 + b4)2 

+ b3)2 + b2)2 + bl)2 + bo . (9.2) 

If equation 9.2 is evaluated with the microprocessor set to its 

decimal mode, a BCD result DNUM is automatically formed. The same 

principle applies to turning a 12 bit BNU2d into a4 digit DNUM. 

Apart from this module, the microprocessor always uses binary 

arithmetic as this is far more efficient on a binary machine. 

The flowchart is shown in figure 106. 

9.3.3 An unsigned binary multiply module 

The purpose of this module is to multiply two unsigned 16 bit 

numbers to produce a 32 bit result. The module will be required 

by the filter and the interpolation subroutines. The program is 

based on an algorithm described by Peatman(84'7). Referring to 

the model of the algorithm in figure 107a, the multiplier is placed 

in C', D' and the multiplicand in E', F'. The-four bytes-A', B', -C' 

and D' are shifted right as a block. The least significant bit of 

D' is now in the microprocessor's CARRY slot. If CARRY =1 the 

multiplicand in E', F' is added to A', B'. If CARRY =0 there is 

no addition and A', B', C', D' are rotated once more. After 16 

repetitions the 32 bit result resides in A', B', C', D'. The 

multiplicand remains unaltered in E', F'. The flowchart is shown 

in figure 107b. 



Figure 106. The binary to BCD conversion module. 
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9.3.4 The analogue filter's settling delay module 

This module is called by the microprocessor when it has just 

changed the analogue gain. The module gives the analogue filter 

time to settle down. The microprocessor simply counts out 35 

clock cycles and then carries on where it left off. In retrospect, 

this module would have been better if it had accounted for the 

sample rate. It ought to count out more cycles on a fast sample 

rate than on a slow sample rate. 

9.3.5 The analogue offset subroutine 

This subroutine allows for drifts in the analogue circuitry 

or changes in the ambient magnetic field. When the instrument is 

calibrated the fluxgate offset compensation (figure 91) is used 

to adjust the output of the ADC to 128 bits with the magnet at its 

maximum useful displacement and with the gain at 16. When the 

offset subroutine is entered, the microprocessor assumes that the 

magnet is at its maximum displacement and it sets the gain to 16. 

In synchronism with the sample clock, it collects and averages 

256 readings from the ADC. This operation takes upto 8 seconds, so 

the microprocessor writes DOFF, for device offset, on the display 

to let the user know what is going on. The average of the 256 

readings is compared with the original result of 128 bits. The 

difference between the two represents the high gain's offset, the 

low gain's offset is exactly 1/8 of this result. Fluxgate. offset 

changes of upto 
} 19.5 mV can be accounted for. A flowchart is 

shown in figure 108. 

9 . 3.6 The gain setting and range checking subroutine 

The purpose of this subroutine is to choose the correct gain 

and to check that the magnet is not too far away or too close. The 



Figure 108. The analogue offset subroutine. 
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operation of the subroutine has been explained in some detail in 

subsection 9.2.3 and figure 103. For clarity, the flovichart 

in figure 109 is less detailed than the preceding flowcharts. 

All of the decisions in figure 109 are based on the current value 

of the gain and the output of the ADC. The decisions are summarised 

in table 10 below. 

Table 10 The gain setting and range checking subroutine's decision 

table. 

ADC output, 
x bits(base 10) 

Current 
gain 

Action 

x> 3,839 Low Signal "Too Close" 

384--x33,839 Low Gain OK 

x <384 Low Change to high gain 

x-3,711 High Change to low gain 

5x<3,711 High Gain OK 

x< 5 High Signal "Too Far" 

9.3.7 Calibration data fetching subroutine 

This subroutine needs little description. Upon command it 

simply fetches a sample from the ADC so that the instrument can be 

calibrated. 

9.3.8 Field to distance interpolation subroutine 

Before describing the interpolation subroutine, the reasons 

for using interpolation need to be mentioned. It might be thought 

that a calculation using the (displacement)-3 law of a magnetic 

dipole would be more direct and save calibration. However, this 

law does not work well in practice because the magnet is not a 

point dipole and the fluxgate sensor is far from the invisible 

point receiver assumed when deducing the law. Anyway, the dipole 

law would be of no value if a gradiometer were used (see equation 

7.5), whereas an interpolation approach is unaffected by the choice 



Figure 109. The gain setting and range checking subroutine. 
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between single and differential sensors. Further, calibration 

and interpolation permits non-linearities in the magnetometer 

and allows for fixed magnetizable objects distorting the field from 

the magnet. Finally, computers are much more efficient at using 

look up tables than they are at calculating cube roots; the best 

way of calculating a cube root would be to use interpolation within 

a pre-calculated look up table. Calibration with interpolation is 

an accurate, flexible and efficient means of turning a magnetometer's 

output into a measured displacement. 

Calibration generates a table of values relating the magneto- 

meter's output x to the magnet's displacement f(x). There are two 

overlapping tables because there are two values of gain. 

Interpolation is used to estimate f(x) when x is not equal to one 

of the tabulated values. The tabulated values are called pivotal 

values or collocation points, in this case the pivotal values are 

evenly spaced in x. Interpolation is based on the assumption that 

at the x value of interest the original function f(x) can be 

approximated by some polynomial p(x) whose value at x can be 

calculated. A polynomial pn(x) of degree n is uniquely determined 

by its values at (n+l) points. Therefore a second order inter- 

polation method requires 3 pivotal values. In general, a poly- 

nomial pn is required such that 

pn(xc) = fo, pn (xl) = fl ,.... pn(xn) = fn 1 (9.3) 

where 

fo f(x ), 
...... f= f(x 

0onn 

are the pivotal values of f in the table. 

There are many different methods of interpolation 
(85,774), (86,87). 

They can be broken down into forward, backward and central difference 
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methods depending on how the necessary pivotal values are distributed 

around the argument x. The choice of method was decided by the 

form of the calibration table and the nature of the task in hand. 

Imagine that pm is to be calculated for some argument xnx <x n+l 
in 

which the xn are pivotal points. A forward difference method 

estimates f(x) by fitting pm(x) to xn' xn+l """ xn+m' A back- 

ward difference method fits pm(x) to xn-m+l' xn-m+2' .... xn'xn+l' 

A central difference method, such as Everett's formula 
(85,776) 

, uses 

pivotal values spread evenly about x and for any order n is naturally 

more accurate than either of the two previous methods. Vhich 

method ought to be used? Look at figure 110. If the interpolat- 

ion polynomial is of order greater than 1 neither the central nor 

the backward methods can estimate f(x) when x is between pivotal 

values 1 and 2. Both methods throw away 64 mm of the high gain 

table's range of 204 mm. A forward method of order greater than 

1 cannot estimate f(x) when x is between points 30 and 31, but it 

loses only 1 mm for this. A forward difference formula is clearly 

the one to use. 

Newton's forward difference interpolation formula is 

c(c - 1) 2 
f(X)'; Pn(x) = fo +cA+ 

G" 
D f0 (9.4) 

+ c(c - 1)(c - 2) L 3fo + .... .. + c(c - 1)... (c -n+ 1) nf03, 

n. 

where 

x° "X< Xl < X2 , 

and h= xn+l - xn 

x=x+ ch 

C= xh xO O<c<h 

A f° = f(x1) - f(x°) , 

A2 f° = (f(x2) - f(xl)) - (f(xl) - f(x°)) 
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Taking the first two, three or four terms in 9.4 gives interpolation 

to first, second or third order respectively. The error of 

interpolation is reduced by increasing the order of interpolation 

and by decreasing the increment h. Unfortunately, the first 

suggesticn increases computation time and the second increases the 

calibration effort. If f(x) is known, it is possible to calculate 

an upper bound to the interpolation error for any order and for any 

tabular increment(86'87ý, To give a feeling for the accuracy of 

the technique, let's assume that the field/displacement characteristic 

is that of a true dipole: 
0.33 

I ±oMT2k 
r.: ý 

V 

from equation 7.4. MT is the dipole moment of the magnet, k is the 

sensitivity of the magnetometer, V is the output of the magneto- 

meter and r is the displacement. For convenience )ioMT2k is set 

to 1,000. Table 11 is a portion of the look up table that would be 

generated if the spacing in V was 1 volt. 

Table 11. Example look up table with 1 Volt spacing. 

V r=f (V) 

1 10.0000 
2 7.9370 
3 6.9336 
4 6.2996 

Table 12 shows the accuracy of Newton's first, second and third order 

methods of forward interpolation when estimating f(l. 5). 
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Table 12 Comparing the interpolated values with the true value of 

f(1.5) for a1 volt spacing 

f(V) Error, % 

True value 8.7358 
1st order 8.9685 + 2.66 
2nd order 8.8361 + 1.15 
3rd order 8.7929 + 0.65 

Table 13 is a portion of the look up table that would be generated 

if the spacing in V was halved. 

Table 13 Example look up table with 2 volt entry spacing 

V f (V) 

1.25 9.2832 
1.75 8.2983 
2.25 7.6314 
2.75 7.1377 

Table 14, when compared with table 12, clearly shows the advantage of 

reducing the spacing between pivotal points. 

Table 14 Comparing the interpolated values with the true value 

of f(1.5) for a2 volt spacing. 

f (V) Error, % 

True value 8.7358 
1st order 8.7907 +0.62 
2nd order 8.7510 +0.17 
3rd order 8.7419 +0.07 

It was decided that 2nd order interpolation should be used. This 

was a suitable compromise between execution time and accuracy. Seim 
(87) 
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describes how 2nd order interpolation may be implemented with an 8080 

microprocessor. A f'e,;, relevant points are made below. 

The algorithm that is implemented is 

f(x)_. f(xn) + (x-xn) A 
h(xn) + (x-xn)(x-xn+l) A2f (xn 

(9.5) 
2h2 -- 

where xn <: x< xn}l. The table's spacing h is arranged to be 2n bits as 
(87) 

suggested by Seim. This makes the divisions by h and h2 in 

equation 9.5 very simple, for division by 2n corresponds to n right 

shifts. An offset into the table has to be calculated, this acts 

as a pointer to the correct pivotal values for the input value of 

x bits. The spacing h is 128 bits. The maximum ADC output is 

4096 bits, so there are 32 pivotal values (32 x 128 = 4096) in each 

of the high and low gain look up tables. Each pivotal value is 

two bytes long and so the table offset pointer is given by 

Offset pointer = 
ADC output value x2 (9.6) 

12 

The table's values are pulled out using indexed indirect addressing. 

The address of the first entry in the high or the low gain look up 

table is contained in addresses 0013 and 0012. The choice of 

table is fixed by the gain setting and range checking subroutine 

which alters the contents of 0013 appropriately. The microprocessor 

adds the table offset to the address in 0013 and 0012 to form the address 

of xn, the first of the three pivotal values needed. The algorithm 

is arranged such that any numbers multiplied together are both 

positive. This ensures that the unsigned binary multiply routine 

can be used. 

The final form of the algorithm is 
(f(xn) - f(xn+l)) 

I `,? q rc+1 `1. 

nß - k--n. - xn 
128 

((f(xn) - f(xn+1)) (f(xn+1) - f(Xn+2))) 

- (x - xn)(xn+l - x) 
32,768 

(9.7) 
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where 

n= ADC output/128 

and 

table pointer = 2n. 

The flowchart is shown in figure 111. 

9.3.9 The digital filter subroutine 

The digital filter improves the instrument's signal to noise 

ratio by reducing the instrument's bandwidth. Digital filters 

have powerful advantages in that their bandwidths are proportional 

to the sample rate and the filters' characteristics can be changed 

simply by altering some numerical constants. The instrument's 

sample rate is software controlled and the operator can select 

bandwidths of 1Hz or 5Hz. The lHz bandwidth rejects the most 

ambient noise giving the best estimates of displacement when the 

magnet is far away. The 5Hz bandwidth allows a more rapidly mov- 

ing magnet to be followed. 

In the earliest versions of the instrument a moving average 

filter vas used. Acting on the results from the interpolation 

subroutine, a new output was produced by finding the mean of the 

current and several previous results. The filter was a simple 

non-recursive estimator for d. c. signals(88.987) . In this case 

the signal was not d. c. but varied with time, this made the fre- 

quency response of the filter important. This topic is dealt with 

below. 

A model of the filter is shown in figure 112a. The blocks 

labelled z-1 represent a time delay of T seconds - see appendix 1. 

The current output ym is formed from the present and (n - 1) pre- 

vious input samples: 

n-1 

Ym =I Xm 
_j 

(9.8) 

n 
j=0 
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Using the z transform (see appendix 1) the filter's transfer function 

is 

H(z) = 
Y(z) n 

z-n (9.9) 
X(z) n 

j=0 

From the formula for the sum of a geometric progression 

11-z -n 
H(z) = (9.10) 

n1- z'1 

The frequency response is now found by substituting 

(9.11) z= exp(jwT) 

which gives 

H(jw) _11- 
exp( - njwT) . 

(9.12) 

n1- exp( - jwt) 

After multiplying top and bottom by exp(jnwT/2) and then by 

exp(jwT/2) and simplifying, the result is 

H(jw) = exp (-(n - 1) jwT/2) . nsi sin(uýT'//22)), 
(9.13) 

which is the frequency response of the moving average filter. 

The modulus of the frequency response is 

IH(w)( 
_ 

sin(nlrw/ws) 
s (9.14) 

nsin 7t w ws 

where ws is the sampling frequency in rads-l. The argument 

is 

A= -tan-' 
sin((n - 1)w1(/vrs) (9.15 
cos n-1wif rrs 

In practice, n was set to 16 and the sampling frequency was 32Hz 

i. e. Ws = 2«Y. 32 rads-l. The amplitude characteristic of the 

filter, figure 112b, was very poor; it had no well defined pass- 

band or stopband and its high frequency attenuation was weak. 

An improved filter design was sought. Non-recursive filters 

can have excellent amplitude and phase characteristics and they 

are quite easy to design(88'33)(63'102). Unfortunately they are 

not suited to real time filtering with a microprocessor because of 



Figure 112. A non-recursive estimator. 
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the large amount of time consuming computation they require. 

Recursive filters 
(88,45)(63,121) 

are rather like analogue filters 

in that they employ feedback and can therefore be unstable. 

They are well suited to real time filtering but they are more diffi- 

cult to design than non-recursive filters. Standard analogue filters, 

such as the Chebyshev and Butterworth types, are optimal in the sense 

that they achieve their desired aims using the minimum possible 

number of poles and zeros. For a digital filter the aim, once 

again, is to minimise the number of poles and zeros to reduce the 

amount of calculation required to produce each new output value. 

Simulating the analogue characteristics in the digital domain is 

therefore a sensible and powerful approach to digital filtering. 

There are a number of ways of digitally simulating continuous 

systems 
(63'155) 

but the bilinear transformation is one of the most 

popular when it comes to filter design. The purpose of the 

bilinear transform is to map the analogue frequency range 

O< f< oo into the useful' digital range 0< fs < f/2 (see appendix 

1). The spectrum of the transforming function 

H(z) = 
(z - 1) (9.16) 
(z+1) 

is found by setting z= exp(jvsT) with the result 

H(jw) = 
exp(jwT) -1 (9.17) 
exp(jwT) +1 

Multiplying top and bottom by exp(-jwT/2) gives 

H(jw) =j tan(W'T/2) (9.18) 

or 

H(jw) =j tan(w'Tr/ws) , 
(9.19) 

where w is the frequency in the analogue domain and w' is the 

transformed frequency in the digital domain. As w -. 00, w'-iw5/2 

or f' -sf/2; as vi -. 0, w'-. O also. The transform in 9.16 does 
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indeed map the analogue frequency range 0<f< oo into the digital 

range 0, f'< f /2. What is more, it actually improves the 

amplitude characteristics of the analogue low pass filters by giving 

the digital versions flatter passbands and sharper cutoffs(63'19). 

On the other hand, phase/frequency characteristics are seriously 

distorted so Bessel filters ought not to be modelled in this way. 

Tietze and Sehenk(49,380) describe digital filter design using the 

bilinear transform in some detail. 

It was decided that a second order Chebyshev filter should be 

simulated. The filter was to have < 0.5dB ripple in the passband 

and a cut off frequency of lHz for a sampling frequency of 32Hz. 

A general second order analogue transfer function is 

2 

H(s) = 
do + d1s +d2s 

(9.20) 

cc +c1s+c2s 

in which s is the Laplace transform variable. The transfer function 

of an analogue second order Chebyshev filter with a lHz cut off and 
(I9, 

0.5dB ripple is76) 

H(s) =1 (9.21) 
1+1.3614s + 1.3872s 

A general second order digital transfer function is 

D+Dz+D z2 
H(z) =0121 (9.22) 

CO +C1Z+C2Z 

the transfer function of a second order low pass digital filter is 

1+ 2z+ z2 
H(z) = Do 2 

(9.23) 
CO + C17 +z 

Tietze and Schenk 
(49,382) 

use a modified transform 

s=L 
z-1 

7 
(9.21E. ) 

z+1 

where 

L= cot(1T f0T) (9.25) 

and f0 is the desired cut off frequency. The factor L ensures that 

the cut off frequency of the digital copy coincides with that of 
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the analogue master. Using equations 9.20,9.22 and 9.24 the 

unknown constants in 9.23 can be identified as 

Ddo 
- d1L + d2L2 

° co +C+ c2L2 

co c1L + c2L2 
C= 

0 c° + c1L +c2L 

and 
2(co - c2L2) 

C1 = 
co + c1L + c2L2 

Using 9.21 and 9.25 the constants are 

Do = 6.3548 x 10-3 

Co = 8.2432 x 10-1 

and 

ý1 = -1.7989 

(9.26) 

(9.27) 

(9.28) 

The cascade second order structure that had to be built into 

the software is illustrated in figure 113a. The modified version 

that is used is shown in figure 113b, the modifications are 

designed to improve the filter's accuracy. The form shown in 113b 

has an accuracy of 0.5 bit in 409610 bits. The maximum allowable 

step function input is 0 to 365010 bits; any more than this and 

the filter overloads itself through overshoot as it cannot cope 

internally with numbers larger than 409510. The filter does not 

recognise numbers less than 1010 bits. The multiplication constants 

are stored to 17 bits accuracy by splitting them into integer and 

fractional parts. For instance, -C1 is stored as 

-C1 = 1.7989 =1+0.7989 . 
The position of the decimal point is accounted for by correctly 

ordering the calculations. On this point, the sequence of calculat- 

ions has to be very carefully arranged to prevent internal overflows. 

It is also arranged that any numbers to be multiplied are always 

positive so that the unsigned binary multiply module can be used. 



Figure 113. The second order recursive 1o'; pass filter. 
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Figure 114. The performance of the second order low oass recursive Chebyshev 
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The internal store spaces are 32 bits long to take the full result 

of a 16 x 16 bit multiplication. Finally, the number at K in 

113b has to be reduced from 32 to 16 bits so care is taken to 

minimise round off noise. 

The calculated frequency response is shown in figure llIa, 

it is far superior to that shown in figure 112b. The actual step 

response for an input of 3,644 bits is shown in figure 11kb, this 

was used to check that the filter was performing properly. Table 

15 compares the rise time, delay time and overshoot of the analogue 

filter with that of the digital model given a sampling frequency of 

32Hz. The analogue data comes from Tietze and Sehenk(49'80). 

Table 15 Comparing the analogue and digital filters' step 

responses at a sampling rate of 32Hz. 

Parameter Analogue filter Digital filter 

Rise time, 10%-90% O. 338s O. 344s 

Delay time, O 50ö 0.251s 0.250s 

Overshoot, % 10.7 10.9 

The comparison shows that the digital filter performs properly. 

The flowchart is given in figure 115. 

9.3.10 The controller routine 

This has already been discussed in subsection 9.2.3. Table 

16 shows how the thumbwheel switches on the face of the instrument 

are used to control it. 

Table 16 The thumbwheel switch settings. 

Sample Bandwidth 
Switch 1 Switch 2 Mode 

rate, Hz Hz 

0 0 Voltmeter 32 1 
0 1 Displacement 32 1 
1 0 Voltmeter 160 5 
1 1 Displacement 160 5 



Figure 115. The digital filter subroutine. 
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9.3.11 The reset vector 

Z', hen the power is turned on, or when the reset button is pushed, 

the microprocessor automatically examines memory locations FFFC16 

and FFFD16 to see where the program starts. The beginning of the 

code for the controller routine is the start of the program. 
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ru AP NP -1 n 

CALIBRATION, RESULTS, APPLICATIONS AND IMPROV3cMSNTS. 

This chapter completes the description of the field gradient 

displacement transducer. It shows first how the transducer was 

calibrated. Then, a graph of the transducer's measurement error is 

presented and explained. This is followed by a short discussion on 

the effects of magnet-sensor alignment errors. Then, the performance 

of the instrument is quickly summarised prior to short sections on 

improvements and applications. 

10.1 CALIBRATION 

The method of calibration has to be accurate so that the per- 

formance of the instrument is not obscured by other sources of error. 

The needs, therefore, are for a precise means of setting a displacement 

and for an independent and accurate means of measuring displacement. 

The displacement was set using a ready built test jig. The 

jig was constructed entirely of brass and aluminium so it was non-magnetic. 

It had a sliding bed driven by a screw thread and a laterally fixed 

bed whose height was adjustable. The permanent magnetic dipole, 

glued to a perspex carriage, was mounted on the sliding bed such that 

the dipole vas aligned with the direction of travel. The tube shaped 

fluxgate probe was mounted on the other bed such that the tube's axis 

was coincident with the dipole's axis. Using this arrangement the probe 

to magnet separation could be controlled precisely; in addition, the 

magnetometer's output was maximised and the alignments were stable. 

A cathetometer was used to measure the positions of the tip of the 

probe and the leading edge of the magnet to 0.02 mm accuracy. 

The cathetometer was situated 1.5 m from the magnetometer's probe, 

this was far enough for the magnetometer not to be influenced in 

any measurable way. The complete arrangement is drawn in figure 116. 
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iio special precautions were taken to reduce environmental magnetic 

noise. 

The instrument was put into the calibration (voltmeter) mode and 

the amplifier gain was manually set to x16. The magnet, on its 

carriage, was moved away from the probe until the magnetometer's output 

was reduced to 128 bits according to the instrument's display. This 

probe-magnet separation was noted. The process was repeated in steps 

of 128 bits, this formed a list of 32 displacements (128 x 32 = 212) 

for the high gain look up table. The gain was then switched to x2 

and, starting from 128 bits, another 32 displacements were obtained 

to form the lot gain calibration table. Both tables were converted 

into 16 bit binary code and stored in the microcomputer's memory. 

The calibration error worsened at large displacements because of the 

reduction in the magnetometer's signal to noise ratio. The limited 

resolution of the cathetometer became a significant calibration error 

at small displacements. The low gain look up table was contained in 

memory locations FE7F16 to FEBE16. The high gain look up table was 

contained in locations FEBF16 to FEFC16. Each 16 bit entry was split 

into two bytes, the least significant byte was always placed one 

location lower than the most significant byte. A log-log plot of 

the magnetometer's output against probe-magnet displacement is shown 

in figure 117. The plot curves strongly and demonstrates that calculating 

displacement using the dipole field. laut would be inaccurate. 

10.2 PERFORMANCE 

10.2.1 Accuracy 

Having completed the calibration it was possible to find out how 

accurately the instrument measured displacement. For this test the 

digital filter subroutine was temporarily arranged to follow the gain 

set and range check subroutine. The reason was that the displacements 

were stored to 0.01 mm resolution, so a displacement of 250 mm was 
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represented as 25,000 bits. The filter could not handle numbers this 

large, but it had no problems with the ADC output which was obtained 

from the gain set and range check subroutine. After this test the 

displacements were re-entered to 0.1 mm accuracy and the filter was 

put back to its original position folloAng the field to distance 

interpolation subroutine. 

The magnet was set to a series of known displacements using the 

cathetometer. At each setting the microcomputer's displayed estimate 

was noted and the instrument's error was found. Figure 118 is a 

plot of the non-contact measurement error against magnet displacement. 

The uncertainty in the true displacement was 
± 0.04 mm, this is 

represented by the broken curves above and below the axis. At large 

displacements of about 200 mm the interpolation error was dominant. 

This error could have been reduced using closer spaced entries in the 

high gain calibration table. The ultimate limit to the reduction of 

interpolation error was the quantization error of the ADC. At the 

maximum displacement of 266 mm, a change of one least significant bit 

corresponded to 0.7 mm, or 0.26% of 266 mm. At the mimimum displacement 

of 18 mm, a change of one least significant bit corresponded to 

4.5pm or 0.025% of 18 mm. The quantization error was always less 

important than the random noise when the gain was 16. The error bars 

on figure 118 show the effects of the random noise compared to the 

interpolation error. Random noise errors, like interpolation errors, 

shrank in significance as the displacement decreased. At small 

displacements of about 40 mm or less, the most important errors were 

those of the method used to test performance. The method exaggerated 

an underlying increase in calibration error that was itself caused by 

limited cathetometer resolution. 

10.2.2 The effects of probe-magnet misalignment 

Correct mechanical alignment is important to any displacement 
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transducer. The purpose of this subsection is to make some short 

calculations to see ho.: the performance is affected by misalignment. 

Equation 7.4 is sufficiently accurate to make estimates of error. 

One point to make is that misalignment is not disastrous providing it is 

unchanged during and after calibration. Two simple alignment errors 

are discussed below. 

Considered first is the effect of rotating the axis of the magnet' 

relative to the axis of the probe, this is shown in figure 119. If 

the dipole moment is MT then the field at any point (r, 8) in a plane 

containing the dipole at the origin can be specified by the components 

H 
UT cos 9 

= (lo. l) r r3 
and 

M sin A 
He =T 

(10.2) 

r3 

The fluxgate's sensor is strongly directional. In this example the 

H8 component is completely ignored giving 

2kM cos 8 
V= 

yoT 
(10.3 

where k is the magnetometer's sensitivity and V is the voltage at its 

output. If the error is present during and after calibration the 

magnetometer's signal to noise ratio is worsened by 

V(9) 
= cos 6 

V(0) 
(lo. 4) 

A constant rotational alignment error of 8o worsens the signal to noise 

ratio by i%, but it does not prevent the instrument working properly. 

If the magnet's rotation is not present during calibration, but 

occurs afterwards, there will be a measurement error. The micro- 

computer, unaware of the magnet's rotation away from the calibration 



Figure 119. Diagrams used to help calculate the effects of magnet-probe 

misalignment. 
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alignment, treats the decrease in field as an increase of Ar in 

displacement. Assuming the alignment at calibration was correct: 

V(Ar)=1-3 6r 

11(r) r 

if Ar/r« 1. Equations 10.5 and 10.4 may be combined to give the 

erroneous increase in estimated displacement due to a magnet rotation 

(10.5) 

of 8 radians after calibration: 

cos9 =1_3 
r 

or 
Ar 62 

r6 
(10.6) 

if 0 is small. A rotation of 0,14 radian, or 8°, causes the estimate 

of displacement to be increased by 0.3%. 

The second error to be considered is a sideways shift of the 

axis of the magnet relative to the axis of the sensor, this is shown 

in figure 1l9b. ?: hen the field at the sensor is resolved onto the 

sensitive direction, the signal from the magnet is 

V(a) 12 cost 0+ sing 6 (10.7) No T (r2 +a )1.5 

using equations 10.1 and 10.2. Next, 

V(a) = ky; 1 
Yo T (r2 +a 

2)1.5 

[iý 
r2 

ýr2 + a2) 

__ 
2r2 + a2 ) po T (r2 + a2)2.5 

10.8 

Substituting a= xr into 10.8 gives 

rt3 
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ý 
V(X) =Po 

kt: 
12+x2 (10.9) 

r3 (1 + X22.5 

Assuming that x«1 the binomial theorem can be used to give 
r kM 

V(xý .oT 
(2 + x2)(1: - 2.5x2) 

r3 

or 2 

V(a) 
»o? 

31ST 
1- 2-a 2. 

# (10.10 

rr 

Finally, the required result is 

V(a) a2 1-22. - (10.11) 
V(0) r 

For a fixed shift a'the reduction in the magnetometer's signal to 

noise ratio is more serious at short distances than at long distances. 

If the shift is present before and after calibration the instrument 

will still work properly. If the shift occurs after calibration the 

microcomputer would interpret the reduction in field as an increase 

in displacement A r. 

Ar2a2 
2 

r 3r 

Using equations 10.5 and 10.11 

0 (10.12) 

For example, if the instrument was correctly estimating an aligned 

displacement of 10.00 cm, a sideways shift of 1 cm would cause it 

to revise its judgment to 10.07 cm. 

10.2.3 Other points 

The effect of the digital filter is shown-in figure 120. Figure 

120a shows the unfiltered noise at the output of the field to displace- 

ment interpolation subroutine with the magnet set to a displacement of 

240 mm. Figure 120b shows the output of the digital filter when the 

noise in 120a is passed through it. 



? ivu--e 120. The effect of the digital filter on noise, 

2390 

2385 

E 2380 
E 

2375 O 

X 
2370 

. t-- 

4) 2365 
E 
a 

2360 

N 2355 
O 

2350 

2345 

2340 

0 20 40 60 80 100 120 140 160 180 200 220 240 260 

Time, sample periods 

a. Unfiltered signal at the output of the field to displacement inter- 

polation subroutine. 

2390 

2385 

E 2380 
E 

2375 

2370 
4- 

N 2365 
E 
v 

2360 

CL 
yr 2355 

D 

2350 

2345 

2340 

0 

b. The filtered signal. 

20 40 60 80 100 120 140 160 180 200 220 240 260 

Time, sample periods 



Figure 121. The signal from the Tj. C as the magnet vas pushed by hand 

from its minimum to its maximum displacement. 
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Figure 121 shows the trace from the DAC as the magnet was pushed 

by hand from its maximum to its minimum displacement. The effect of 

the delay in the gain change and range checking subroutine can be 

seen quite clearly. A change of one least significant bit at the 

output of the DAC represented 0.4 mm change in displacement. It 

was quickly confirmed that interposing flesh, aluminium or wood between 

the magnet and probe did not affect the instrument's reading. 

10.3 A SUM&TL. RY OF THE PERFORMANCE AT PRESENT 

The only link between the sensor and the object whose displace- 

ment is to be found is the field from a permanent magnet. This is 

a great advantage for steady magnetic fields pass unattenuated through 

many solids and liquids such as: certain stainless steels, brass, 

lead, copper, silver, aluminium, glass, plastic, wood, water, oil and 

flesh. The instrument may be made to work over a small range with 

high resolution or a longer range with lower resolution: the choice 

is fixed by the magnitudes of the gains in the switched gain amplifier. 

At the moment, the instrument is made to work to the maximum 

limit of its range. The maximum range is determined by the noise 

level at the output of the magnetometer and by the moment of the 

permanent magnet. The single probe fluxgate magnetometer that is 

used has a noise level of 4.0 nT r. m. s. in its working environment over 

a DC-2Hz bandwidth. The magnet's dipole moment is 2.46 x 10-1 Amt. 

It is normal to quote performance in terms of the full scale deflection 

(FSD). The minimum measurable displacement is 18 mm and the maximum 

measurable displacement is 266 mm, this gives a full scale deflection 

of 248 mm. The instrument has an accuracy of better than 2.0% FSD 

over the v; hole working range and better than 0.1% FSD over 18-130 mm. 

In the range 18-80 mm the measured accuracy is better than 0.02% FSD. 

There are two selectable bandwidths of 1.0Hz and 5.0Hz, these 

correspond to sampling frequencies of 32 Hz and 160 Hz respectively. 
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The maximum software cycle time is 6.0 ms. 

The temperature stability of the permanent magnet determines that 

of the instrument. The SmCo5 magnet has a temperature coefficient of 

about -0.0ij°C-1 from 20 °C to 100°C. Using equation 10.5, this puts the 

instrument's temperature coefficient at about -0.013i% of reading 0C-1. 

Amongst other things, the next section will show how the software 

cycle time can be reduced to 3.7 ms. It should be recalled that the operat- 

ing range of the instrument can be improved by a factor of 9 using a flux- 

gate gradiometer - see section 7.4. The hardware and software are 

independent of the choice of magnet and magnetometer. Table 17 compares 

the performance of the field gradient transducer to some of the non- 

contact transducers mentioned in section 7.2. 

10.4 I1ýPROVE:, IENTS 

A number of improvements--are listed below. The first three alter 

only the analogue circuitry and require little effort. Afterwards, some 

additions to the digital hardware are recommended and a suggestion is made 

for further work in digital filter design. 

10.4.1 The fluxgate magnetometer 

The undesirable effects of alternating and steady magnetic fields in 

the environment can be minimised using a fluxgate gradiometer which responds 

only to changes in the local field gradient. This makes it worthwhile 

employing a more sensitive magnetometer to gain a substantial increase in 

working range and a reduction in magnet volume. This point was discussed 

in section 7.4 and it was shown that a commercially available triaxial 

fluxgate magnetometer, used as a gradiometer, could increase the working 

range from 0.25 m to 2.3 m at the same time as increasing the bandwidth 

from d. c. -1 Hz to d. c. -10 Hz. 

10.4.2 The switched gain amplifier 

The switched gain amplifier proved to be very useful and it is worth 
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extending it. Using a quad single-pole-single-throti"; CMOS analogue 

sv, itch, such as the DG 303, the amplifier might be given gains of 2,8, 

32 and 128. This drastically extends the dynamic range of the 12 bit 

ADC so that full advantage can be taken of the improved magnetometer. 

Used properly, the amplifier would reduce quantization error to in- 

significance and much reduce interpolation error - see tables 12 and 

14. The price for all this is a simple extension to the gain changing 

and range checking routine and using a high quality amplifier, such as the 

Analogue Devices AD OP-07 AH, instead of the LF 356. 

10.4.3 The anti-alias filter 

The anti-alias filter should be put in front of the switched gain 

amplifier for this would eliminate the settling delays needed when chang- 

ing the gain. Assuming that a 6th order filter is still to be used, the 

filter's operational amplifiers must be of high quality to prevent large 

temperature dependent drifts at the output of the switched gain amplifier. 

The Analogue Devices 'AD OP-07 AH and Linear Technology LT 1002 are suitable 

operational amplifiers; the worst case drift at the output of the switched 

gain amplifier would be - 1.9 x 10 °C 1 
so that a change of - 6.50C is 

equivalent to - 1/2 a least significant bit at the ADC. 

It will shortly be demonstrated that the sample rate of the digital 

hardware can be improved. One of the ways this might be exploited is to 

use an anti-alias filter with a more gentle cut off and much less phase 

distortion: a sixth order Bessel filter is an obvious choice. A more 

intriguing possibility is a filter with the minimum possible settling 

time for a given noise bandwidth. Grimbleby 
(89 ) 

describes such a filter 

and presents adaptable 3rd and 5th order designs. 

10.4.1 Additions to the digital hardware 

One very useful addition would be a hardware multiplier because it 

is much faster than multiplication in software. Tietze and Schenk 
(49,287) 

show that an expandable multiplier may be built quite easily from 
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TTL 74181 controllable adder circuits; high speed CMOS versions of these 

circuits should become available. It is estimated that a1 MHz 6502 

in conjunction with an 8x8 bit multiplier could perform a 16 x 16 bit 

multiplication in 120us. In the worst case, a 16 x 16 bit multiplication 

currently takes 770us in software. Given that there are 6 multiplicat- 

ions per software cycle, it is estimated that the cycle time could be re- 

duced from 6.0 ms to 3.7 ms. 

The second addition saves labour.. At the moment, recalibration 

requires the EPROM to be erased by exposure to strong ultraviolet light 

and then reprogrammed on a special machine. Random access memory that 

retains it contents when power is turned off has recently become available. 

An example is the Mostek MK 48Z02 which will store 2 kilobytes for 10 

years in the absence of power, yet it behaves just like ordinary static 

random access memory. If it were used instead of EPROM the operator could 

enter and permanently store new calibration tables through the instrument's 

thumbwheel switches, there would be no need for extra equipment and no 

need to dismantle the instrument. 

Finally, it is possible to replace the current 1 MHz 6502 with a 

2 or 3 MHz version. This may require faster memory and more use of the 

RDY control line (section 8.3.1) when communicating with input/output 

devices. This gives the system a potential sampling rate of about 700 

Hz. 

10.4.5 The digital filter 

A sampling rate of 270 Hz can be attained by adding a hardware 

multiplier to the present digital system. This allows the instrument a 

bandwidth of upto 8 Hz with the current digital filter coefficients. 

It is perfectly reasonable to alter the filter coefficients to extend the 

bandwidth to 20 Hz or so, this should be adequate for most applications. 

One other way of exploiting the extra processing power is to make 

the digital filter more sophisticated without losing bandwidth. The 
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instrument's purpose is to estimate a displacement. In the presence of 

white noise, the optimal linear estimator that produces the least mean 

square error is the Kalman digital filter. An article by Sorenson(90) 

provides a useful introduction to Kalman filtering whilst Schwartz and 

Shaw 
61,274) 

treat the topic in more depth. 

10.5 J%. PPLICATIONS 

There are many applications for this displacement transducer and a 

few of them are named below. The only link between the sensor and the 

object whose displacement is to be found is a magnetic field. The method 

is therefore ideally suited to situations where a displacement or thick- 

ness is to be measured, but some non-magnetizable barrier prevents the 

use of optical instruments, variable capacitance or reluctance techniques, 

ultrasonics, X-rays and radioactive sources. Industrially, the instru- 

ment might be used to check the thickness or length of pieces of plastic, 

glass, wood, wads of paper, aluminium struts, brass tubes and so on; it 

is worth remembering that the instrument is not affected by dirt, grease 

or water. Medically, it can measure distances- through the human body. 

It makes continuous measurements so it could monitor breathing or the 

flexing of a muscle. In the laboratory it could measure displacements 

within a lead lined radiation chamber, or a stainless steel vacuum 

chamber, from outside the chamber. 

Even without barriers, the instrument is a useful displacement 

transducer. It is entirely automatic and can produce long term records 

on a chart recording or, v,. 'ith a simple modification, in a permanent 

digital memory. As the instrument uses a microprocessor, it could 

easily be adapted to control a system on the basis of displacement measure- 

ments. One final suggestion is that it could measure diameters of rotat- 

ion by attaching the magnet to the outer edge of the rotating body. If 

the magnitude of the magnetic field were passed to the microprocessor it 

could easily calculate the difference between maximum and minimum dis- 

placements. 
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APPENDIX 1 

AN INTRODUCTION TO THE THEORY OF SA?,? -LING AND RECONSTRUCTING 
ANALOGUE SIGNALS 

A1.1 INTRODUCTION 

This appendix is aimed at those who have little or no knowledge 

of the theory of digital signal processing. It is hoped that 

the appendix will clarify and underpin the design work in chapters 

8 and 9. Fuller explanations and more general treatments are to 

be found in Schwartz and Shaw(61), Lynn(62) and Stearns(63). 

Analogue signals are continuous in amplitude and in time. 

Amplitude and time can be repeatedly subdivided into finer and 

finer steps, the practical limit to subdivision is the signal's 

background noise level. By contrast, a digital signal is discrete 

in amplitude and in time: amplitude is represented as an integer 

multiple of an indivisible unit called the bit and time exists only 

as integer multiples of the host system's clock period T. To tap 

the signal processing por. er of a computer an analogue signal must be 

converted into a flow of digital samples. This appendix shows how 

the analogue to digital transformation may be brought about and how 

the analogue signal may be subsequently recovered. It is assumed 

that the reader is familiar with the Fourier series and the Fourier 

transform. 

A1.2 The ideal sampling and reconstruction process 

As a start, let's consider an ideal sampling and reconstruct- 

ion process where the sampled signal's amplitude remains continuous 

but time now exists as integer multiples of a sample period T. 

The aim is to produce a simple model of the sampling process. By 

comparing the spectra of the original and sampled signals, it will 

be possible to find out how often the analogue wavefrom, has to be 

sampled to ensure that none of its information content-is lost. 

The look at the ideal model will be concluded by examining the pro- 

cess of reconstructing the original analogue waveform. 
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The mathematical sampling tool is the Dirac delta function i 

which is defined such that 
S 

-ý 

(t) 
. dt =1. (1) 

i(t) is a pulse of infinite height, infinitessimal width and unit 

area that exists only at t=0. It may be visualised as a pulse 

containing one unit of energy. The Fourier transform of the delta 

function is 
+oo 

G(jw) = i(t)exp(-jwt). dt . 
(2) 

-0, 
As i(t) exists only at t=0 this integral is simple, 

G(jw) =1. (3) 

This result shows that the delta function is a linear superposition 

of an infinite number of unit amplitude cosine waves over a 

continuum of frequencies from w=0 to w =00 . 

Consider what happens if an analogue signal f(t) is multiplied 

by a delta function. In the time domain, an instantaneous snapshot 

is taken of the function f(t) at t=0 because the product f(t). i(t) 

exists only at t=0. However, the product is useless as it stands 

because it has an infinite height and an infinitessimal width. 

Integration solves this problem for the energy of the product is 

finite and is numerically equal to f(t) at t=0: 

f(t)i(t). dt = f(t) «1 

-oo 

k=0 

at t= mT vihere m=0,1,2 ..... . 

Looked at in the frequency domain, the delta function is allowing its 

uniform spectrum to be weighted by the spectrum of f(t). 

The analogue waveform must be sampled regularly if its variation 

over a period of time is to be recorded. Figure Al shows diagramatically 

what needs to be done. Mathematically, a train of delta pulses has 

to be created. This is simply done using i(t - mT) which is defined 

such that 



Figure Al. Sampling an analogue signal. 
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Time 

a. The analogue signal... 

Voltage 

Time 

b. ... multiplied by a regular train of delta pulses..... 

Energy 

Time 

c. .... produces the sampled data. 
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i(t - mT). dt =1 (5) 

at t= mT where m=0,1,2 

It is informative to compare the spectrum of a train of delta functions 

with that of a single delta function. Let I(t) represent the train 

of delta functions. The pulses are regular with a period T so they 

can be represented by a Fourier series composed of a fundamental 

frequency 

w=2n (6a) 
T 

and its harmonics 

2Trn (6b) 
nT 

Therefore 
ao 

I(t) = cnexp(J(2'n'n/T)t) ' (7) 

n =-CO 

in which the coefficients are 

+ T/2 

cn =T I(t)exp(-j(2Trn/T)t). dt. (8) 

-T, /2 

As I(t) exists only at t=0 in the interval -T/2 to +T/2 

C =T . (9) 

That is, the delta pulse train consists of an infinite set of cosine 

harmonics of w= 217 /T each of amplitude l/T. As shoviin in figure 

A2, its appearance in the time domain is identical to its appearance 

in the frequency domain. 

The next step is to find the Fourier transform of the sample 

set, for this will lead to Shannon's sampling theorem. If the 

sampled data is labelled f(t) then 



Figure 2. 
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b. A train of delta pulses in the frequency and time domains. 
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f(t) = f(t)I(t). 

Using equations 7 and 9 in equation 10 gives 

f(t) =1 f(t)exp(j(2rr4/T)t) 
T 

n=-ý 

The Fourier transform of f(t) is F(jw): 

+oo 

F(jnw) = f(t)exp(-jvrt). dt 

-00 

+C%Q r+0o 

(lo) 

(11) 

(12) 

=T exp(-jvrt). dt 
T 

n__ý 

ý_cof(t)exp(j(2Tfn/T)t) 

(13) 

Using the standard identity 

+00 

f (t)exp(-at)exp(-jv, t). dt = F(jv. + a), 

- DO 

where a> 0, it can be seen that 

+ 00 

F(jw) =1 

n=-ý 

F(jw - j2rrrn/T). 

(ii) 

(15) 

Equation 15 shows that the Fourier transform of a sampled data set 

consists of an infinite number of regularly spaced Fourier transforms 

of the analogue signal. The spacing is 2 tt /T radians. This 

result comes as no surprise having seen figure A2b. 

Provided that the analogue waveform contains no component 

frequencies higher than IT /T rad s-1 the repetitive spectrum of the 

sample set poses no problems. If the analogue signal has components 

at frequencies higher than Tr/T rad s-1 then the shifted analogue 

spectra overlap. The regions of overlap are knoym as aliased 

frequency spectra. When aliasing occurs the original analogue 

waveform can no longer be recovered. An example of aliasing is 

shown in figure A7. Shannon's sampling theorem follows from these 
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conclusions: 

a continuous signal which contains no significant components 

above w rad s 
may in principle be recovered from its sampled 

version if the sampling interval is less than 1'f /w seconds. 

Next comes a statement on aliasing: 

given a sampling period of T seconds, frequency components at 

u and u+ ß/T Hz, where n=0, 
+ 1,2,3 -----, are indistinguishable 

because they have the same sample values. 

For instance, if the analogue signal were a sine wave at exactly 

half the sampling frequency the sample set would be identical to that 

of a DC level, and any reconstruction procedure would be bound to 

interpret the sample set as a DC level. 

Now that the principle of unambiguous sampling has been seen, 

how can the analogue signal be reconstructed? An outline of this 

operation can be seen in figure A3. In the frequency domain the 

difference between the sample set and the analogue signal is that the 

sample set contains frequencies above IT /T rad. s-1 and that the spec- 

trum is weighted by a factor l/T. Passing the sample set through 

a perfect low pass filter with a step cut off frequency at IT /T rad 

s-1 and a gain of T therefore recreates the analogue signal. 

Numerically this may be achieved by interpolation between the 

sampling points using 'Výhittaker's cardinal function 
(63,62) 

. For a 

set of N values taken at a rate of 1,! T Hz, Yirhittaker's cardinal 

function to recreate f(t) is 

N- 1 

f*(t) =f 
sin((ýrf/T)(t - nT)) (16) 

n (ir/T)(t - nT) 
n=0 

fn is the nth value within the sample set. Notice that f*(t) = f(t) at 

the sampling points: only the nth term can be non-zero if t= nT 

in equation 16. 



diagram, illustrating the recovery of f(t) from: (t). 
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a. The sample set f (t). 
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e. The recovered analogue signal f* (t). 
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A1.3 Practical sampling an3 reconstruction errors 

system for digitally processing an analogue waveform is shown 

as a block diagram in figure A4. The purpose of this section is to 

show how the performance of a practical real-time processing system 

differs from the ideal system just discussed. 

A1.3.1 The quantization error 

Digital systems cannot deal with the continuous amplitude 

distribution of an analogue signal. Instead, the amplitude is 

represented as an integer and there is a quantization error incurred 

by doing this. T-hen instructed by the sample clock, the sample and 

hold circuit (SH) stores the instantaneous value of the analogue 

signal. The stored value is converted to a digital sample by the 

analogue to digital converter (ADC). The details of the operation 

and design of ADC's are discussed by Tietze and Schenk 'ý7) 
(9 

The resolution of an ADC is one least significant bit (LSB), the 

ADC's output for a full scale analogue input is 2N LSB's where N 

may range from 3 to 18 depending on the price and conversion speed 

of the ADC. The maximum quantization error is ± 1/2 LSB, but the 

error usually lies within these bounds. The distribution of the 

quantization error in a typical set of samples is shove in figure A5. 

It is not difficult to calculate the r. m. s. amplitude of the 

quantization error. For a sufficient number of samples the quantiza- 

tion error is a random variable that may be treated as random noise. 

The errors are uniformly distributed in the range 
± 1/2 LSB provided 

that 1 LSB is a small fraction of the maximum output (2N LSB). 

The root mean square error is given by 
(63,15) 

Ve r. m. s. = 2-N 22 = VLSB/ 12, (17) 

where VLSB is the voltage represented by 1 LSB. For any ADC, the 

maximum output signal to noise ratio for a sinusoid can now be 

calculated. For a full scale sinusoidal input swing the r. m. s. output 
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signal voltage for an N bit converter is 

(18) V r. m. s. =1 (2 -V s 20.5 2L SB 

The signal to noise ratio is 
V r. m. s. 

OR = 20 log Is 
10 V r. m. s. e 

that is 

SNR = (6N + 1.8)dB . 

A1.3.2 The finite aperture time 

(19) 

A real sample and hold circuit cannot take instantaneous sample 

values of the analogue waveform. Instead, there is an aperture time 

during which the SH records the waveform's amplitude by storing some 

of the waveform's energy on an input capacitance C. Because the 

waveform comes from a source of output impedance R there is an inbuilt 

RC time constant which ensures that the aperture time is finite. 

RC time constants in this form act as low pass filters and it is there- 

fore not surprising that high frequency components on the incoming 

waveform are attenuated. The finite aperture time can be reasonably 

modelled by changing the delta sampling pulse to a flat topped sampling 

pulse of width V, and height T/W. The spectrum of the sample set is 

then weighted by the Fourier transform of the sample pulse: 

F(jw) _ 
sin(v /2) 

vAl1/2 

(20) 

where w is any frequency component of the sample set. The weighting 

function is illustrated in figure A6. The function's importance lies 

in showing that Shannon's sampling theorem may be too lax in practice 

for there to be minimal distortion of the sampled data set. 

Al. 3.3 Aperture jitter 

Phase noise in the sample clock produces an uncertainty AT in 

the sample period, this creates an error AV in the sampled voltage. 
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In the case of a sine wave with a peak value Vm and a frequency w, 

the worst jitter error occurs when a sample is taken close to the 

sinusoid's zero crossings. At the zero crossings, 

Av ý21ý = vrVm , 
et 

the jitter error is therefore 

AV =ATAT. (22 ) 

If this error is to be kept smaller than the amplitude of 1 LSB, 

labelled VLSB, the restriction on the uncertainty in the sample 

period is 

AT< 
VLSB 

(23 
wV m 

A1.3.4 The anti-alias filter 

It is desirable to reduce the sampling rate as far as is 

possible in keeping with the sampled data system's purpose. One 

way of doing this is to use a low pass filter prior to the SH to 

remove any analogue signal frequencies above the range of interest. 

The sampling frequency can then be reduced without any worries 

about high frequency noise, or useless high frequency signals, 

causing aliasing distortion in the useful signal. This low pass 

filter is known as an anti-aliasing filter. 

Practicable anti-alias filters do not have an infinitely steep 

cut off and so some aliasing noise is inevitable. The best that 

can be done is to keep the amplitude of this noise less than the 

magnitude of 1 LSB. The filter brings in its wake the penalty of 

phase distortion. In general, the better the filter's performance 

in the frequency domain the worse its performance in the time domain. 

These points are illustrated in figure A7. 

Choosing a sampling frequency requires a knowledge of the filter's 

frequency characteristics, the likely amplitude of the unwanted fre- 

quency components and the amount of phase distortion that is acceptable. 
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A1.3.5 Digital to analogue conversion 

The ideal reconstruction of an analogue signal requires that 

pulses of energy, each with an infinitely short duration and an 

infinite height, be passed through a perfect low pass filter. 

After the discussion on analogue to digital conversion, the problems 

here are obvious. 

The digital to analogue converter (DAC) turns what is usually a 

binary number into any one of 2N discrete analogue levels. The 

design of DAC's is discussed by Tietze and Schenk(49'411). It is 

common practice to update the output of the DAC once every sample 

period, the output remains constant in between times. The output 

pulses therefore have a width of T seconds which creates an undesirable 

spectrum weighting function of 

F(jw) = 
sin(vT/2) 

v, T/2 
(2tß) 

Finally, the perfect analogue reconstruction filter cannot be 

built. Once again, the sampling rate of the system has to be high 

enough to allow the reconstruction filter to sufficiently attenuate 

the high frequency components without significantly affecting the 

useful components. 

A. 1.4 The z. transform 

The z transform is perfectly adapted to sampled. data signals. 

The definition of the transform is: 

z= exp(sT) (25) 

where s is the Laplace transform variable o-+ jw. Therefore, 

z= exp(Q-T)exp(jvT) 

= exp o- T) coswT +j exp o T) sinwT. (26) 

z is commonly described as a shift operator, multiplying by z represents 

a time advance of T seconds and dividing by z represents a time delay 

of T seconds. The z transform of a sequence of samples is just 
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the samples' complete spectrum, or the response of the digital system, 

may be described by just one set of z plane poles and zeros. A pole 

or zero at the point a-+ jw in the s plane maps to r= exp(a T) 

and 8= WT in the z plane. 

By way of illustration, the data set 

G(z) = z-1 + r3ti-2 + r32z-3 + r33z-4... (30) 

is more conveniently written as 

G(z) =1 
(31) 

(z-r3) 

This function corresponds to a pole at z= r3 in the z plane. If 

r3< 1 the sequence in equation 45 decreases as t- 00. Thus, 

poles within the unit circle represent stable sequences. This would 

be expected as the inside of the unit circle is the counterpart of 

the left hand side of the s plane. For r3 >1 the pole lies outside 

the unit circle and the sequence grows without limit as t -) 00. 

The spectrum of the sequence is found by substituting jar for z so that 

G (jw) = (exp(jiT) - r3)-l . 
(32) 

This expression represents a vector drawn from the pole to a frequency 

w on the unit circle. As vv is increased from 0 tooo the unit circle 

is traced out repeatedly by the vector. The changes in the vector's 

modulus and argument then give the magnitude and phase spectra - see 

figure A8 b. 

This concludes the appendix. 
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. FPE 'DIX 2 

AN ANNOTATED LISTING OF Tiýý: SOFTi''ARE FOR THE DISFLACE', MIT TR"ISDUCER 

This appendix gives a complete listing of the software code for a 

6502 microprocessor. All addresses and numbers are hexadecimal. The 

symbol £ is used to denote immediate data as opposed to a page zero 

address. A general hardware memory map is given in figure 86, a de- 

tailed page zero memory map is given in figure 101. Details of the 

microprocessor's registers and instructions can be found in figures 98, 

99 and 100. The code corresponds to the flowcharts and explanations 

given in section 9.3. 

ANALOGUE TO DIGITAL CONVERSION MODULE 

HEXADECIMAL 
ADDRESS LIBEL INSTRUCTION COMMENTS 

F800 ADCONV LDA £40 Wait for sample 
F802 TEST BIT 900D clock's instruction to 
F805 BEQ TEST start - Tl interrupt. 

F807 STA 9180 Initiate conversion. 

F80A LDX £03 Wait for 34 us 
F80C WAIT NOP 
F80D DEX 
F80E BNE WAIT 

F810 LDA 9001 Clear TI interrupt. 

F813 LDA 9180 Put m. s. 8 bits in 01 
F816 STA 01 
F818 LDA 9181 Put l. s. 4 bits in 00 
F81B STA 00 

F81D LSR 01 Remove 4 trailing 
F81F ROR 00 zeros of result 
F821 LSR 01 
F823 ROR 00 
F825 LSR 01 
"'827 ROR 00 
F829 LSR 01 
F82B ROR 00 

F82D RTS End of subroutine. 
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BIN RY TO BCD CO? VERSIO 'ti: ODULE 

HEXADECIMAL LABEL INSTRUCTION CO'. MENTS 
ADDRESS 

F82E BINBCD LDA £00 Set DNUhi =0 
F830 STA 02 
F832 STA 03 
F834 LDX LOC Set INDEX = 121 
F836 SED Set DECIMAL moäe 

F837 ASL 04 Shift 12 bit BNUM left 

F839 ROL 05 4 times such that MS Bit 
F83B ASL 04 will enter CARRY on 
F83D ROL 05 next shift left. 
F83F ASL 04 
F841 ROL 05 
F843 ASL 04 
F845 ROL 05 

F847 NXTBIT CLC Double DNUM. Note 
F848 LDA 02 that shifting left is 
F84A ADC 02 no good for decimal 
F81+C STA 02 mode numbers. 
F84E LDA 03 
F850 ADC 03 
F852 STA 03 

F854 ASL 04 Shift BNUM left 
F856 ROL 05 CARRY 4- MS Bit 

F858 LDA 02 Add CARRY to DNUM 
F85A ADC 00 
F85C STA 02 
F85E LDA 03 
F860 ADC 00 
F862 STA 03 

F864 DEX Decrement index. 
F865 BNE NXTBIT Index = 0? If not, go 

back to NXTBIT 
F867 CLD Clear DECIMAL mode. 

F868 RTS End of subroutine. 
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16 BIT UNSIGNED BINARY MULTIPLY MODULE 

HEXADECIMAL LABEL INSTRUCTION COMMENT ADDRESS 

F869 MLTPLY LDX £11 Set INDEX = 17 
F86B LDA £00 Set At = B' =0 
F86D STA OB 
F86F STA OA 
F871 CLC Clear CARRY 

F872 CCHECK BCC ROTATE 

F874 
F875 
F877 
F879 
F87B 
F87D 
F87F 

F881 
F883 
F885 
F887 

ROTATE 

CLC 
LDA 06 
ITC OA 
STA OA 
LDA 07 
ADC OB 
STA OB 

ROR OB 
ROR OA 
ROR 09 
ROR 08 

If CARRY = 0, branch to 
ROTATE 
Clear CARRY for addition 
Add MULTIPLICAND (E' 

, F' 
to A', B'. 

Rotate At, B', C', D'. LS Bit 
of D' enters CARRY. 

F889 DEX Decrement INDEX 
F88A BNE CCHECK If INDEX #0 branch to 

CCHECK. 
F88C RTS End of subroutine 

ANALOGUE FILTER SETTLING DELAY MODULE 

HEXADECIMAL LIBEL INSTRUCTION COMMENT 
ADDRESS 

F88D DELAY LDX £23 Set INDEX = 35 

F88F REPEAT LDA £40 Has Ti set interrupt yet? 
F891 CLKTST BIT 900D If not, go back to 
F894 BEQ CLKTST CLKTST and try again 

F896 LDA 9004 Reset Ti interrupt 

F899 DEX Decrement INDEX 
F89A BNE REPEAT Counted out 35 cycles? 

If not, go back to REPEAT. 
F89C RTS End of subroutine. 
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THE NALO"UE OFFSET SUBROUTINE 

HEXADECIMAL 
ADDRESS LABEL INSTRUCTION COMMENT 

F89D OFFSET STA 91A0 Set gain HIGH; first set 
F8AO STA 91A8 it lour and then toggle it 

F8A3 LDA £OF Put D OFF (Device 
F8A5 STA 9190 OFF set) on display. 
F8A8 LDA £1F 
F8AA STA 9190 
F8AD LDA £20 
F8AF STA 9190 
F8B2 LDA £3D 
F8B4 STA 9190 

F8B7 JSR DELAY Call DELAY module to let 
analogue filter settle 

F8BA LDY £FF Set INDEX = 25510 

F8BC NEVSMP JSR ADCONV Call ADC module to get 
an offset sample 

F8BF CLC Add offset into TOTAL 
F8CO LDA OC 
F8C2 ADC 00 
F8C4 STA OC 
F8C6 LDA OD 
F8C8 ADC 01 
F8CA STA OD 

F8CC DEY Decrement index 
F8CD BNE NEV7SMP Index = 0? If not, get 

another sample. 
F8CF LDA OD High gain offset = TOTAL/256 
F8D1 STA OF Store high gain offset 

F8D3 LSR A Low gain offset 
F8D4 LSR A TOTAL 
F8D5 LSR A =+3 
F8D6 CLC 2048 
F8D7 ADC £03 
F8D9 STA OE Store low gain offset 

F8DB LDA £01 Set GAIN TEST bit 
F8DD STA 14 
F8DF RTS End of subroutine 

l. 
ý; 
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THE GAIN CHECKING AND ? A. GE SETTING SUBROUTINE 

HE'-ADECIMIAL L BEL INSTRUCTION CO1WE'NT ADDRESS 

F8EO GRCHK JSR ADCONV Call ADC module 

F8E3 
F8E5 
F8E7 

F89 
F8EA 
F8EC 
FREE 
F8FO 
F8F2 
F8F2 

F8F6 
F8F7 
F8F9 
F8FB 
F8FD 
F8FF 

LOGHIN 
OFFLO 

_L 
DA 201 

BIT 14 
BNE HIGAIN 

SEC 
LDA 00 
SBC OE 
STA 10 
LDA 01 
SBC £00 
STA 11 

S Load GAIN TEST bit 
If gain HIGH, branch to 
high gain section. 

As this is low gain section, 
remove the low gain offset 
and store result at 11,10. 

CHKRLO SEC 
LDA 10 
SBC £FF 
LDA 11 
SBC £OE 
BMI CHKGLO 

F901 TCLOSE LDA £00 
F903 STA 9189 
F906 STA 918A 
F909 LDA ROC 
F90B STA 9190 
F90E LDA £1C 
F910 STA 9190 
F913 LDA £OC 
FF915 STA 9190 
F91B LDA £3C 
F91A STA 9190 

Is signal ( OE, FF? 
Yes: next question. 
No: magnet too close, 

tell operator. 

As magnet is too close 
put CCCC on display 
and zero deflection on 
D. A. C. 

F91D JI"iP GRCHK Jump back to start of 
subroutine. 

F920 CHKGLO SEC Is signal >,, 01,80? 
F921 LDA 10 Yes: stick with lour gain. 
F923 SBC £80 No: change--tö high gain. 
F925 LDA 11 
F927 SBC £01 
F929 BPL GROKLO 
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HEX DECIMAL 
: "DDRESS 

LABEL INSTRUCTION C0M ENT 

F92B CHGGLO STA 91A8 Toggle gain 
F92E LDA £01 Set GAIN TEST bit. 
F930 STA 14 
F932 JSR DELAY Allow analogue settling 
F935 J1, T GRCHK Go back to start of 

routine 
F938 GROKLO LDA £7F Identify low gain look-up 
F93A STA 12 table. 
F93C RTS Exit gain and range check 

routine. 
F93D HIGAIN SEC This is the high branch. 
F93E OFFHI LDA 00 Remove the high gain offset 
F940 SBC OF from the signal. 
F942 STA 10 
F944 LDA 01 
F94.6 SBC £00 
F948 STA 11 

F94A CHKRHI SEC Is signal> 00,05? 
F94B LDA 10 
F91FD SBC £05 Yes: next question. 
F94F LDA 11 No. magnet TOO FAR, tell 
F951 SBC £00 operator. 
F953 BPL CHKGHI 

F955 TFAR LDA £E8 As magnet is too far 
F957 STA 9189 put FFFF on display 
F95A LDA £03 and put 1000 on D. A. C. 
F95C STA 918A 10 

F95F LDA £OF i. e. 1 bit on D. A. C. 
F961 STA 9190 = 0.4. mm 
F964 LDA £1F 
F966 STA 9190 
F969 LDA £2F 
F96B STA 9190 
F96E LDA £3F 
F970 STA 9190 

F973 JMP GRCHK Jump back to start of this 
subroutine. 
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HEXADECIMAL 
ADDRESS LABEL INSTRUCTION COMMENT 

F976 CHKGHI SEC Is OE, 7F> signal? 
F977 LD_ £7F 
F979 SBC 10 Yes: stick with high gain 
F97B LDA rOE No: change to low gain. 
F97D SBC 11 
F97F BPL GROKHI 

F981 CHGGHI STA 91A0 
F981+ LDA £00 
F986 STA 14 
F988 JSR DELAY 
F98B JMP GRCHK 

F98E GROKHI LDA £BF 
F990 STA 12 
F992 RTS 

Set low gain. 
Reset GAIN TEST bit. 

Delay for analogue settling 
Jump back to start of 
this subroutine. 
Identify high gain look up 
table. 
Exit gain and range check 
subroutine. 

CALIBRATION DATA FETCHING SUBROUTINE 

HEXADECIMAL ýT 
ADDRESS LABEL INSTRUCTION CO t, R, T 

F993 FETCH JSR ADCONV Get sample and store 
F996 LDA 00 in output of 
F998 STA 21+ interpolation subroutine 
F99A LDA 01 
F99C STA 25 
F99E RTS Leave this subroutine. 
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'"HE FIELD TO DISTANCE INTERP OLATION SUBROUTINE 

HE DECIirýý_L LABEL INSTRUCTION COL :i v''T ADDRESS 

F99F INTERF LDA 11 Get MS Byte (ADC output 
FgAl STA 15 - analogue offset. ) 

F9A3 LDA 10 Get LS Byte of above. 
F9A5 ROL A Put bit 7 into CARRY 
F9A6 ROL 15 Get X/128 
F9A8 ASL 15 Get (X128) x2 
F9A? LDY 15 Store in Y Register for 

indexed indirect address- 
ing 

F9AC LDA 10 
F9AE AND £7F Find X-Xi Know that last 
F9BO STA 16 7 bits of Xj are zero and 

that upper 9 bits of two 
variables are identical. 

F9B2 LDA (12), Y Find and store f. 
F9B1} STA 17 
F9B6 INY 
F9B7 LDA (12), Y 
F9B9 STA 18 

F9BB LDA 16 Xi +1 -X is two's 
F9BD EOR £7F complement of X-X. 
F9BF CLC 
F9CO ADC £01 
F9C2 STA 19 

F9C/+ INY Find and store fi 
+1 

F9C5 LDA (12), Y 
F9C7 STA 1A 
F9C9 INY 
F9CA LDA (12), Y -- - 
F9CC STA 1B 

F9CE INY Find and store fi 
+2 

F9CF LDA (12), Y 
F9D1 STA lA 
F9D3 INY 
F9D11. LDA (12), Y 
F9D6 STA 1B 

F9D8 SEC Find and store 
F 9D9 LDA 17 
F9DB SBC 1A -hf i+ 1f i+ 1f i+ 2 
F 9DD STA 1E 
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HEXADECIMAL 
ADDRESS LABEL INSTRUCTION COMMENT 

F9DF LDA 18 
F9E1 SBC 1B 
F9E3 STA 1F 

F9E5 SEC 
F9E6 LDA IA 
F9E8 SBC 1C 
F9EA STA 20 
F9EC LDA 1B 
F9EE SBC 1D 
F9FO STA 21 

F9F2 SEC 
F9F3 LDA 1E 
F9F5 SBC 20 
F9F7 STA 22 
F9F9 LDA 1F 
F9FB SBC 21 
F9FD STA 23 

F9FF LDA 17 
FA01 STA 24 
FA03 LDA 18 
FA05 STA 25 

FA07 LDA 16 
FA09 STA 06 
FAOB LDA £00 
FAOD STA 07 
FAOF LDA 1E 

Find and store 

ýfi+ 
1 

fi 
+1 

fi 
+2 

Find and store 

A2fi =- Aft - (- Afi 
+ 1) 

TOTAL=f. 

Put (x - Xi) in multiplicand 

Put -A fi in multiplier. 

FAll STA 08 
FA13 LDA 1F 
FA15 STA 09 
FA17 JSR h1TPLY Call MULTIPLY subroutine, 

gives Pl. 
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HE: ADECI `AL" 
ADDRESS LABEL INSTRUCTION C01MII, IENT 

FATA ASL 08 Find P1/128 by 
nIC ROL 09 B', C' shifting A' D' left 
FAZE ROL OA , , 

once and reading B', C'. 
: 20 ROL OB Pi 

FA22 SEC TOTAL = TOTAL - 
FA23 LDA 2L 128 
FA25 SBC 09 
FA27 STA 2lß. 
4u29 LDA 25 
: FA2B SBC OA 
rA2D STA 25 

FA2F LDA 16 ) in multiplicand. Put (x -x 
FA31 STA 06 i 

FA33 LDA £00 
FA35 STA 07 
FA37 STA 09 Put (x - X) in multiplier 
FA39 LDA 19 i+1 

FA3B STA 08 
FA3D JSR ? LZTPLY Call MULTIPLY subroutine, 

gives P2. 

FA40 LDA 22 Put 2f in multiplicand. 
FA42 STA 06 P2 is already in multiplier. 
FA144 LDA 23 
FA46 STA 07 
FA48 JSR MLTPLY Call ir: ULTIPLY to get P3. 

FA4B ROL 09 Shift left once and read A', B' 
2 FA4D ROL OA equivalent to dividing by 2h 

FALB' ROL OB P3 
FA51 SEC TOTAL = TOTAL - 
FA52 LDA 21+ 2h2 
FA54 SBC OA 
FA56 STA 24 
FA58 LDA 25 
FA5A SBC OB 
FA5C STA 25 

FASE RTS Leave this subroutine 
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THE DIGITAL FILTER SUBROUTINE 

HEXP. DECIM. IAL 
ADDRESS LIBEL INSTRUCTION COMMENT 

FA5F FILTER LDA £OF Put 32 D into 
FA61 STA 06 'ýTIPLI0AND 
FA63 LDA £34 
FA65 STA 07 

FA67 LDA 26 Put X from XSTORE 
FA69 STA 08 into MULTIPLIER 
FA6B LDA 27 
FA6D STA 09 

=A6F JSR 'ý": LTFLY 

FA72 LDA OB 
FA74. STA 2B 
FA76 LSR A 
FA77 STA 2F 
FA79 LDA OA 
FA7B STA 2A 
FA7D ROR 
FATE STA 2E 
FA80 LDA 09 
FA82 STA 29 
FA84 ROR A 
FA85 ST-ti 2D 
FA87 LDA 08 
FA89 STA 28 
FA8B ROR A 
FA8C STA 2C 

Call MULTIPLY: 32Do. X 

Get MS byte of 2A 

Generate MS byte of A 

Get LS byte of 2A 

Generate LS byte of A 

FARE LDA £06 Put C into 
FA90 STA 06 MULTIPLICAND. 
FA92 LDA £D3 
FA9! STA 07 

FA96 LDA 40 Put K into MULTIPLIER. 
FA98 STA 08 
FA9A LDA 41 
FA9C STA 09 
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HEXADECIMAL L.. BEL INSTRUCTION COMMENT 
_DDRESS 

FA9E JSR MIJTPLY .K Call MULTIPLY: C 
o 

FAA1 SEC Find and store 
F: ß_2 LDA 08 -B=Cö -A 
FAAI} SBC 2C 
F_A6 STA 30 
FAAB LDA 09 
FML SBC 2D 
FAAC STA 31 
FA A. E LDA 0A 
FABO SBC 2E 
FAB2 STA 32 
FA. BI. LDA OB 
FAB6 SBC 2F 
FAB8 STA 33 

FABA LDA E84 Start to find 
FABC STA 06 F= 2A - Cl K- (-E). 
FABE LDA £CC Put (-Cl -1) into 
FACO STA 07 T. M- TIPLICAND. 

FAC2 LDA 40 Put K into MULTIPLIER. 
FAC4 STA 08 
FACE LDA 41 
FAC8 STA 09 

FACA JSR MLTPLY Call MULTIPLY: (-CI -1). K 

FACD CLC Find and store 
FACE LDA 28 F=F+ 2A - (C1 + 1) K 
FADO ADC 08 
FAD2 STA 38 
FADL. LDA 29 
FADE ADC 09 
FAD8 STA 39 
FADA LDA 2A 
FADC ADC OA 
FADE - -STA 3A 
FAEO LDA 2B 
FAE2 ADC OB 
FAE4 STA 3B 
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HEXIkDECIMAL LB^L 
ADDRESS 

INSTRUCTION COI,.! ENT 

FAE6 SEC Find and store: 
FAE7 LDA 38 F=F- (-E). 
FAE9 SBC 34 
FAEB STA 38 
FAED LDA 39 
FAEF SBC 35 
FAF1 STA 39 
FAF3 LDA 3A 
FAF5 SBC 36 
FAF7 STA 3A 
FAF9 LDA 3B 
FAFB SBC 37 
FAFD STA 3B 

FAFF CLC Nov, complete calculation 
FBOO LDA 40 of F: 
FB02 ADC 3A F=F+K. 
FB04 STA 3A 
FB06 LDA 41 
FBO8 ADC 3B 

BOA STA 3B 

FBOC LDA 24 Get a new value of 
FBOE STA 26 X from INTERPOLATION 
FB10 LDA 25 routine, put into 
FB12 STA 27 XSTORE. 

FB14 LDA 38 
FB16 STA 3C Transfer: 
FB18 LDA 39 
FB1A STA 3D G=F 
FB1C LDA 3A 
FB1E STA 3E 
FB20 LDA 3B 
FB22 STA 3F 



222 

17EKADECIIrIrL 
ADDRESS LABEL INSTRUCTION CW-24 NT 

FB24 LDA 30 
FB26 STA. 31i Transfer: 
FB28 LDA 31 
FB2A STS 35 -E = -B. FB2C LDA 32 
FB2E STA 36 
FB30 L DA 33 
FB32 STA 37 

FB34 CLC 
FB35 LDA 2C 
FB37 ADC 3c 
FB39 LDA 2D 
FB3B ADC 3D 
FB3D TAX 
FB3E LDA 2E 
FB40 ADC 3E 
FB42 STA 40 
FB44 LDA 2F 
FB46 ADC 3F 
FB1.8 STA 41 

FB4. A CPX . £80 
FB1. C LDA 4.0 
FB4E ADC £00 
FB50 STA 4.0 
FB52 STA 04 
FB54 LDA 41 
FB56 ADC £00 
FB58 STA 41 
FB5A STA 05 

FB5C LSR 05 
FB5E ROR 04. 
FB60 LSR 05 
FB62 ROR 04 
FB64. LSR 05 
FB66 ROR 04. 
FB68 LSR 05 
FB6A ROR 04 

Find: K =G+A. 
First add lower two 
bytes to check for 
CARRY to upper two 
bytes. Store result. 

Check to see if lower 
two bytes > £10,00. 

If so, add 1 to upper 
two bytes of K. Store 
result in BIPIBCD input. 

Find: Y=K, /16. 
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i: EXADECII: AL 
ADDRESS LABEL INSTRUCTION COMMENT 

FB6C LDA 04 Check for round up 
FB6E ADC £00 
FB70 STA 04 
FB72 LDA 05 
FB74 ADC £00 
FB76 STA 05 

FB78 LDA 05 
FB7A STA 07 
FB7C LDA 04 
FB7E STA 06 
FB80 LDA £60 
FB82 STA 08 
FB81 LDA £66 
FB86 STA 09 

FB88 JSR MMLTPLY 

FB8B LDA OA 
FB8D STA 42 
FB8F LDA OB 
FB91 STA l-3 

Put Y in MULTIPLICIVID. 

Put 0.4.10 in LNLTTIPLIER. 

Call MULTIPLY. 

Store in DAC slot. 

FB93 RTS Leave this subroutine. 
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THE SOFTTAR , CONTROLLER 

HEXADECI? LAL 
ADDRESS LABEL INSTRUCTION COMMENT 

FB94 CON'T'RL CLD Set BINARY ':: ODE. 
FB95 SEI Block external interrupts 
FB96 LDX £FF Locate stack at 01FF 
FB98 TXS 

FB99 LDA £00 Clear X register. 
FB9B TAX 
FB9C CLEAR STA OO, X Clear page 0 store 
FB9E INX spaces. 
FB9F CPX £44 
FBA1 BNE CLEAR 

FBA3 LDA £C0 Enable Tl's interrupt. 
FBA5 STA 900E Ti free running, output on 
FBA8 STA 900B PB7. 

FBAB LDA 9198 Get switches, invert to 
FBAE FOR £FF recover settings and store. 
FBBO STA 44 

FBB2 AND £10 Test most significant 
FBB4 BNE FAST switch nibble. 
FBB6 SL0V LDA £12 If = 1, set FAST sample 
FBB8 STA 900/+ rate. Otherwise, set 
FBBB LDA £7A SLOE (32Hz) sample 
FBBD STA 9005 rate. 
FBCO JMP MODE Jump to MODE test. 

FBC3 FAST LDA £6A Set 160 Hz sample. 
FBC5 STA 9004 rate. 
FBC8 LDA £18 

--FBCA STA 9005 

FBCD 1,10DE LDA £FE STORE MSB base 
FBCF STA 13 address. 

FBDl JSR OFFSET Call OFFSET subroutine. 
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HEXADECIMA 
ADDRESS 

L LABEL INSTRUCTION COMMENT 

FBD4 LOOP LDA 44 Test least significant 
FBD6 AND Ml switch nibble. If = 1, 
FBD8 BNE DISTCE do DISPLACE'M'ENT. 

FBDA CALBRT JSR FETCH Otherwise, do 
FBDD JSR FILTER VOLTMETER. 
FBEO J: MT DACONV 

FBE3 DISTCE JSR GRCHK DISPLACEMENT operation. 
FBE6 JSR INTERP 
FBE9 JSR FILTER 

FBEC DACONV LDA 42 Output result on DAC. 
FREE STA 9189 
FBF1 LDA 43 
FBF3 STA 918A 
FBF6 INC 1+5 Increment loop counter 

FBF8 LDA 45 Done 16 times? 
FBFA ChIP £10 No: go back again. 
FBFC BNE LOOP Yes: display. 

FBFE DSPLAY LDA £00 Clear counter. 
FCOO STA 45 Call BIN-BCD conversion. 
FC02 JSR BINBCD 

FC05 LDA 02 Display LSD. 
FC07 AND £OF 
FC09 STA 9190 
FCOC LDA 02 Display next digit. 
FCOE SEC 
FCOF ROR A 
FC10 LSR A 
FC12 LSR A 
FC13 STA 9190 

FC16 LDA 03 Display next digit. 
FC18 AND £OF 
FC1A ORA £20 
FC1C STA 9190 
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HEXADECIMAL 
ADDRESS LABEL INSTRUCTION COMMENT 

FC1F LDA 03 Display MSD 
FC21 SEC 
FC22 ROR A 
FC23 SEC 
FC2I RDR A 
FC25 LSR A 
FC26 LSR A 
FC27 STA 9190 

FC2A JMP LOOP Return for next cycle 
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SOME RELEVANT FJ P RS 

A simple method for the 
measurement of the temperature 
variation of initial magnetic 
susceptibility between 77 and 
1000 K 

A Stephenson and Ade Sa 
D partmcnt of Gcophysks and Planetary Physic, School of 
Physics. Uni%crsity of Ne'scastlc upon Tync 

gis receired 8 August 1969 

Abstract Two identical multi"la}cred solenoids each 
enclosing a water jacket are used in an a. c. bridge circuit so 
that inclusion of a sample in either coil produces an out of 

balance signal proportional to the susceptibility of the 

sample. This signal is then amplified with low noise field 

effect transistors, converted to direct current with a phase 
sensitise detector, and displayed against temperature on an 
XY recorder. The water jacket of one solenoid contains a 
furnace capable of reaching 700"c. while the other contains 
a cooling assembly for use between liquid nitrogen and room 
temperature. The temperature variation of susceptibility 
allows determination of Curie and transition temperatures. 

I Introduction 
Magnetic susceptibility is detincd by the equation K=J 11 

shere J is the intensity of magnetization and 11 is the effective 
magnetic field within the sample. 11 differs from the applied 
field If. by an amount /1n known as the demagnetizing field. 
Thus 11=11, -Ili. This equation may also be written as 
11=11, -NJ where N is known as the demagnetizing factor 

and depends on the shape of the sample. (N=47: 3 for a 
sphere. ) Thus the true susceptibility differs from the apparent 
susceptibility K. by a factor of I+ VK, i. e. 

K 
K'_ 

I+ NK" 

It is thus the apparent susceptibility which is measured by 

this apparatus and by those mentioned below. For minerals 
if low susceptibility. however. %%here . VK4 I, the true suscepti- 
, ility is measured. 

Apparatus for low field susceptibility measurements on 
rocks at room temperature has been described previously by 
Girdler (1961) who used air cored coils in a transformer 
bridge and by Collinson er at (1963) who used a pair of 
high permeability ferrite cores. The latter method is, however. 
not suitable for temperature measurements because the ferrite 

cores are extremely sensitise to microphony and small 
temperature changes. The method described here uses a 
conventional inductance bridge with air cored coils (Dc 
Vries and Livius 1966) to minimize the above sources of 
instability. One coil is used for measurements abose room 
; mpcrature and the other for low temperatures. The apparatus 
as originally devised for measurements on small single 

. rvstal titanomagnetite samples (about 20 mg) crown by one 
of the authors (Hauptman and Stephenson 1965). 

For high temperature measurements the sample may either 
be heated in the correct ers micturc for the equilibrium 
oxygen pressure or it may be placed in a sealed quartz tube. 
Alternatively the furnace may be evacuated. The field in 
which the sample is measured is 2-5 Oe ('W Am 1) rms. 
2 The heating assembly 
For measurements between room temperature and 700 e the 
arrangement shown in figure I is used. The coil of resistance 
=)") Ii consists of 5000 turns of 32 swg copper wire on a 

persper former. It has an internal diameter of 2.2 cm and is 

of length 36cm. Immediately within the coil, which is 

screened with 80 mesh copper gauze, is a Pyrex glass water 
jacket «hick encloses a small furnace consisting of a narrow 
walled quartz tube, 8 mm internal diameter. Hound non- 
inductively with Nichrome sire. This is heated by an alter- 
nating current of up to IA which does not cause any disturb- 

ance to the bridge. After balancing the bridge, the sample 

Figure 1 The heating assembly. 1, platinum-platinum113 "; 

rhodium thermocouple; 2, coil; 3, water jacket; 
4, furnace-winding; 5, quartz tube; 6, supports 

to be measured is placed within the tube and moved until the 

out of balance signal reaches a maximum. A platinum- 

platinutnJl3 rhodium thermocouple is then placed in 

contact with the sample. Because of this juxtaposition of 

thermocouple and sample, the small size of the sample, and 

the low thermal inertia of the system. fast heating and cooling 

rates can be employed (typically, ten minutes to reach 700'c). 

Figure 2 shows a typical result on a sintered pellet of 

magnetite powder of mass 5.7 mg and total susceptibility 
3.7 x IO+a cm3 Oe't (5-8 fit m2). The Curie point can be 

determined to within about ±3 degc. 
3 The cooling assembly 
For low temperature measurements down to liquid nitrogen 

tempet ature 177 ail. the second coil is used -the coil containing 

the furnace being used as a reference. The arrangement used 
is shown in figure 3. 
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Figure 2 Vatiat:: t of initial susceptibility of a magnetite 
sintered pellet of mass 5-7 mg betneen room temperature 
and the Curie point 

Within the coil is a water jacket which contains an inner 

closed-end, thin-Nailed tube which is used to hold the sample. 
Betseen this tube and the water jacket is a thin layer of 
expanded polystyrene insulation, about i mm thick. This 

ensures that the rate of cooling of the water in the jacket is 
low enough to prevent freezing. On the outside surface of the 
inner tube, in contact ss ith the polystyrene, is a non-inductively 
wound thin Nichrome wire heating coil. The sample to be 

cooled. e. g. a small crystal, is embedded in a sphere of Plasti- 

cinewhichholdsthecopper-constantanthermocouplejunction 
in contact with it. A plug of cotton wool is placed above the 
sample to minimize temperature inhomogencities. A powder 

Figure 3 The low temperature assembly. 1, copper- 
constantan thermocouple; '_, coil; 3, Hater jacket; 4, heating 
coil; 5, inner glass tube: 6, expanded polystyrene insulation; 
7, Plasticine sphere containing sample; 8, cotton wool plugs; 
9, liquid nitrogen feed funnel; 10, wooden box enclosing 
both low temperature and heating assemblies 

maybe placed in an open-ended capsule with the thermocouple 
junction embedded in it. The method of cooling is to pour 
liquid nitrogen slossly into the funnel. By this means the 
temperature can be slo«Iy lowered to 77 K. at which point 
the funnel is removed. Any liquid nitrogen left at the bottom 
of the tube is then allosced to boil off after sshich the tempera- 
ture begins to rise as heat is conducted through the poly- 
styrene insulation from the slater jacket. When the tempera- 
ture has risen to about -80 Ca small current is passed 
through the heating coil, schich then continues to increase the 
temperature to room temperature. A typical cooling and 
heating cycle takes about 20 min. 

During this operation Kith the low and high temperature 
assemblies are enclosed in a wooden box, as shown, so that 
the cold air produced by the liquid nitrogen cannot reach the 
coils and cause a drift of the zero. Figure 4 sho"s a typical 
result on a synthetic magnetite crystal of mass 66 mg. The 
low temperature transition exhibits eery little hysteresis and 
can be measured with an accuracy to about ±2dcgc. 
4 Electronic circuits 
The method used is shown in figure 5. A 1.5 kIlt thermistor 
controlled \Vicn's bridge oscillator dries the bridge througý 
an isolating transformer T. The two identical solenoids form 

two arms of the bridge while the other two are made of 
resistors, one of which has provision for fine adjustment. A 

ib 
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Figure 4 Loµ temperature variation of initial susceptibility 
of a synthetic magnetite crystal of mass 6.6 mg 

high impedance detector is used consisting of a low noise 
field effect transistor tuned amplifier. The amplifier is converted 
to dec. output using a phase sensitive detector. A square wave 
reference voltage Nith an adjustable phase is derived from the 
oscillator and enables the in phase component of the signal. 
proportional to the susceptibility, to be displayed on a digital 

voltmeter or a pen recorder. For good linearity the amplitude 
of the input signal is controlled by an attenuator. 
5 Linearity and sensitility 
For a bridge consisting of elements of equal impedance Z. 
the out of balance signal is equal to LS'4(I+8/2) provided 
that the impedance of the source of electromotive force E 
is zero and that of the detector is infinite. These approxima- 
tions may be made in practice. 8 is the fractional change ire 
impedance of one of the elements due to the presence of 
sample. Thus for &2< I, the off balance signal will be propor- 
tional to S. and. provided that b is alssays less than 002. the 
deviation from linearity of the bridge output never exceeds 
I%. In practice such an output corresponds to a sample of 
total susceptibility 7-5 x 10-2 o cm3 Oe't (1-2 pH m2) for a 
cylindrical sample of dimensions 10 nvn length and 4 mm 
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Figure 5 Block diagram of elec conics 
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diameter. Samples stronger than this must be reduced in size 
if a linear output is required. The linearity may be improved 
by a factor of up to 2 by using a high value of Z. Z where Z, 
is the impedance of the source. In this case, hosseser. care 
must be taken to avoid distortion of the ssaveforrn due to 
loading. The noise at the output is equivalent to a total 
susceptibility of about ±I- I0-" o cmt Oe-t (16 als m') for 
the above size of sample. the time constant of the output 
circuit beine about 0'_ s. The zero drift user the measuring 
time of about 20 min is typically less than .0x 10" c cm' 
Oe -1 ON all m-). 

The proportionality heetsscen the output and the susccpti" 
bility s%as checked by using knnon amounts of magnetite 
powder dispersed in a matrix of AI O; and made into pellets 
of uniform size. 
6 Conclusion 
In addition to being used to determine the temperature sari- 
ation of initial susceptibility, absolute measurements at room 
temperature may be obtained on very weak samples by remo- 
ving the water jacket from the loss temperature assembly 
and inserting a much larger sample of the weak material 
than otherssise possible. Because the field within the coil is 
fairly homogeneous. the sensitivity is only weakly dependent 
on the size of sampic and thus the noise level remains at about 
±1x10-6acm3Oet 116 an m=1 for a sample of volume 
10 cm3, sshich is about the maximum usable size. For accurate 
measurements of the susceptibility, rccalibration with a 
paramagnetic salt in a container the same size as the sample 
may be carried out. The apparatus is especially useful for the 
determination of Curie points since a much sharper transition 
occurs for many samples than by other methods such as the 
measurement of saturation magnetization for example. Since 
it is easy to orientate specimens, the temperature variation of 
the susceptibility in a particular direction may be obtained 
for anisotropic materials. 
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Abstract A method of displaying simultaneously the real 
and imaginary parts of the complex initial susceptibility 
of rocks and rock powders is described. A Q-multiplier in 
conjunction with two feedback loops separates distinctly 
and linearly the contributions of the real component, X' 
and imaginary component X" of a given sample. 
Temperature variations of susceptibility may also be 
studied using a furnace. In the absence of the furnace the 
sample's coupling factor and hence the signal-to-noise 
ratio of the instrument is substantially enhanced. At 
present the noise level of the X' loop is equivalent to 
±5 x 10-12 m3 and that of the X' loop is equivalent to 
± 1.4 x 10-11 m3 with the furnace in position. The sample 
volumes are 0.2 cm3 or less. 

I Introduction 
The variation of initial magnetic susceptibility with frequency 
is of some geophysical interest. It has been predicted (Vincenz 
1965) that the apparent Ac susceptibility of rock samples 
should decrease with increasing frequency of measurement. 
The expected decrease, for a random assembly of magnetite 
particles, is about I% per decade although there is some 
disagreement about this (Blathal and Stacey 1969). Wilson's 
results (1978) appear to show that rocks yielding unreliable 
palaeomagnetic information exhibit a relatively large decrease 
in apparent susceptibility of about 2.5% per decade. In this 
context, it is X' that is of interest and so it is important to 
separate X' from X". These two components have opposite 
trends with increasing frequency. 

In his investigation, Wilson used a marginal oscillator from 
I kHz to 10 MHz. The wide range was an advantage as it 
made any change in X' more apparent. However, the results 
are difficult to interpret when looking for small changes 
(Hughes and Smith 1971). de Vries and Livius (1966) and 
htarkert ei a( (1974) built devices that truly separate X' and 
X'. The former built a wide range Ac bridge (200 Hz up to 
I MHz) which was sensitive but of very complex construction. 
The device built by the latter was not suitable for use at more 
than one frequency. 

The instrument to be described distinguishes between X' 
and X", is linear and requires no balancing. It can be used 
over a wide frequency range although the present results 
pertain to a fixed frequency of 5 MHz. A later section outlines 

the instruments development for wide range use and sug- 
gests some applications for X'. At present, the drift and 
random noise levels are comparable with those of existing AC 
instruments e. g. Stephenson and de Sa (1970). 

2 Principle of operation 
The sample is inserted into an air-cored coil where it is 

subjected to a5 MHz radio frequency field having a peak 
magnetic intensity of about 1.8 A m-t. The induced motion of 
domain walls and rotation of domain magnetisation generates 

an internal field in phase with the applied field. This is repre- 
sented by X'. Another component is introduced in quadra- 
ture to the applied field through hysteresis and eddy current 
losses. This is represented by X'. 

Kneller (1962) has shown that X' changes the inductance, 
L of the air cored coil. X' acts as an increase in the coil's 
series resistance, R. The sample's susceptibility may be written 

X=X'-jx-. (1) 

When the sample is inserted into the coil, the changes in L 

and Rare 

and 

2 
AR 

N1A 
pW {YX" (2) 

AL= 
(N1A 

0l+ýý X, (3) 

where FV=angular frequency (rads-1), A=cross sectional 
area of the coil (m2), (=length of coil (m), N=number of 
turns in coil, , 1=coil-sample coupling factor, µo=4n x 10-7 H 

rrrt. 
The relative permeability of air has been taken to be unity. 
The crystal oscillator (figure 1) drives the tuned circuit at 

its resonant frequency Wo through aI h1f2 series resistance. 
Under these conditions, signals from the oscillator and tuned 
circuit are in phase and the tuned circuit looks like a real 
resistance Z=(WsL) Q where the quality factor, Q is WoL/R. 
Clearly, X' produces a phase shift by altering the resonant 
frequency of the tuned circuit. X' alters the voltage divider 
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Figure 1 Simplified circuit illustrating principle of 
operation. 

ratio between the tuned circuit and the I Mfg resistance 
producing a decrease in signal amplitude. Although Q is a 
function of L and R the effect of a change in L is neglected. 
In a typical case this means that AR is underestimated by 8% 

or less (see appendix 1). The Q is made large (about tos) 

such that Woe=(LC)'1(1-11Q') reduces to Wu'=(LC)-1. 
This means that a small change EsQ can not affect Wo and so 
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cannot induce an unwanted phase shift. Finding the magni- 
tudes of X' and X' for a given sample reduces to monitoring 
a phase shift, from a change in L and an alteration in ampli- 
tude, from a change in Q. This is done using two closed feed- 
back loops, which act in such a way that the tuned circuit is 
restored to its initial state. The feedback therefore prevents 
undesirable mixing of X' and X'. 

3 Practical implementation (figure 2) 
A 5.0 MHz crystal oscillator drives the resonant circuit (I) 
via aI AM13 isolating resistance. The oscillator has a stable 
amplitude and a frequency stability of better than one part 
in 103. The single layer sample coil is made of 16 swn silver 
wire, it has an inductance of 1.3 H. Inside the sample coil 
is a water jacket (2) and non-inductively wound furnace (3) 
made of 40 swc nichrome wire. The water jacket and lagging 
(4) thermally isolate the sample coil from the furnace. The 
furnace can heat the sample in its holder (5) to over 700'C. 
The sample's temperature is monitored by the Pt-13% 
Pt/Rh thermocouple (6). The Q-multiplier (Harris 1951) 
produces an overall Q of 1.1 x 103. 

The amplitude of the voltage across the resonant circuit is 
examined using a voltage follower, an ttr amplifier and a peak 
rectifier. The oc output of the peak rectifier, representing the 
Q of the resonant circuit, is subtracted from a nc reference 
voltage representing the initial Q. This generates an error 
signal which is amplified and applied to an rET used as an volt- 

age variable resistance. The variable resistance serves as the 
control element of the Q-multiplier. Concurrently, a phase 
comparator gives a oc voltage proportional to the phase 
difference between the crystal oscillator and the resonant 
circuit signals. The output is subtracted from a Dc reference 
voltage representing the initial, in phase, condition. Wave- 
shaping circuitry ensures that the phase error voltage is not 
sensitive to the amplitudes of the two signals being compared. 
This error voltage is amplified and passed to a voltage variable 
capacitance formed from two varicap diodes. The varicaps 
compensate for the increase in the coil's inductance by redu- 
cing the parallel capacitance, so keeping the product LC 
constant. 

The two feedback loops are closed via switches Si and Sz. 
The loop response times are adjusted such that the phase loop 
responds faster than the Q loop. This ensures that the loops 
are independent. The two output signals are taken via 
voltage followers. 

Quantitatively it can be shown (see appendices t and 2), 

X' xA to within 4.5 Y. provided 

X'(8.1±0.5)x 10-9 m3 

X'x. XV1 to within 8 °%, provided 

X'<-(3.4±0.3) x 10-1 m3 

where AV=change in control voltage to the varicaps, 
A Vr=change in control voltage to the FET. 

7M 

Ptnse reference 
wUage 

Figure 2 Block diagram of circuitry: t, resonant LCR 
circuit; 2, water jacket; 3, non-inductively wound furnace; 

4, thermal lagging; 5, sample holder; 6, Pt-Pt/Rh 
thermocouple; 7, varicaps. 
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4 Calibration and linearity 
The oc outputs of amplifiers Al and A2 are adjusted to set the 
Q-multiplier and the varicaps to their predetermined operating 
points. The feedback loops are then closed via switches St 

and S2. 
A glass tube containing 238 mg of FeSOs 7H: O having a 

total susceptibility (1.24±0.02)x 10-10 m3 is inserted into the 
sample coil. The change in the phase control voltage, A V, is 

noted and the calibration factor KI is calculated from 

X'=Kt-1 V. (4) 

This gives 

Kt =(2.52±0.15) x 10-8 ml V-t 

The uncertainty in Kt is principally caused by FeSO4 7H2O 
having a weak susceptibility. This substance is used because 
its susceptibility is independent of frequency to well above 
5 MHz and it is a commonly used standard. This permits 
results from different instruments or different frequencies to 
be compared. 

An indirect procedure is adopted to find a calibration factor, 
K2 for the Q loop. Using equation (18) from appendix 2, 

, =(a . 
V'cz/ \XP NHA'No). 

(5) 

Combining equation (5) with equation (12) from appendix I 

X-=IL (2Q yz; z)(, 
)AV, 

(6) 

where Bis the open loop` rate of change of Q with respect to 
Vr and a is a constant connected with the varicaps. 

Finally, 

X'= (7) 

(X'/SV) is found whilst calibrating the phase loop and the 
other constants are easily measured giving 

K2=(2.4±0.2)x 10-' m3 V-t. 

The linearity of the instrument is checked in the following 
manner. Samples of powdered magnetite are made up to 
constant mass (50mg) by dispersing the powder in pure LiF. 
LiF gives no signal on its own. The maximum amount of 
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Figure 3 Changes in Vt and V for varying masses of 
magnetite powder. 

magnetite used is about 20 mg to ensure that it is well dis- 
persed in all the samples. 

Figure 3 shows the mass of magnetite plotted against A V, 
and . V, at room temperature. The linearity of the instrument 
is seen to be within the error of the measurements. 

5 Performance and future work 
The noise in V is equivalent to X'= ± 1.4 x 10-11 ma and the 
drift is 3x 10-11 m3 per minute. The noise in Vr is equivalent 
to X'= ±5 x 10-12 m3 and the drift is 5x 10-12 m3 per 
minute. When the water jacket and furnace are running the 
noise level increases by a factor of 2.5. On removing the 
furnace, the coupling factor, and therefore the noise level, 
improves by a factor of 3.0. In future, the furnace will be run 
from a DC supply to reduce the 50 Hz noise that it generates. 
Figure 4 shows a plot of X' against temperature for 13.0 mg 
of natural magnetite. The Curie point occurs at (580±3)'C 
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Figure 4 X-Y plot of X' against temperature for a 
13.0 mg sample of natural magnetite. 
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Figure 5 X-Y plot of X' against temperature for a 
mixture of 9.5 mg of powdered magnetite and 206 mg of 
powdered Brazilian haematite during (a) heating and 
(b) cooling. 
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and the Hopkinson peak shows up plainly. Figure 5 depicts 
X' against temperature for 9.5 mg of powdered magnetite 
mixed with 206 mg of powdered Brazilian haematite. When 
heating the sample, figure 5(a), the magnetite oxidises but 
the haematite's Curie point is visible. On cooling the sample, 
figure 5(h) shows only the haematite Curie transition. The 
transition is smeared because it is difficult to maintain a 
uniform heat throughout a relatively bulky sample while 
running the furnace close to its limits. This explains why 
figure 5 puts the haematite's Curie point as 710 C and not 
675'C as expected. 

X" is a source of useful information. For instance. El- 
lianany (1973) shows that if conducting grains are dispersed 
in a nonconducting matrix then the aserage grain size can be 
found from X". This is true pro%idcd that the grains' perme- 
ability is close to unity and that their radii are smaller than 
the RF skin depth. More importantly, Curie transitions are 
associated with maxima in X'. Petersen (1967) suggests that 
this is useful when examining materials that exhibit a number 
of Curie points lying close together. Markert et of (19741 
have obtained some interesting results in this respect. 

Useful information can be obtained by observing the ther- 
mal variation of X' and X" at low temperatures. It is intended 
to extend the useful temperature range to 77 K. 

The instrument is readily adaptable for use at different 
frequencies: the processing circuitry is broadband, so that 
only the oscillator frequency and resonant circuit would 
need tobe altered. By using a square wave to drive the resonant 
circuit, a master crystal oscillator could easily be subdivided 
to produce different drive frequencies. 

Acknodledgmcnts 
The authors wish to thank Dr DW Collinson and colleagues 
for their valuable comments. One of us (NI PC) is indebted 
to the NERC for their financial support. 

Appendix 1- Relating A Vr to X' 
The resistance in series with the sample coil after Q multi- 
plication is R. On inserting the sample the increase in resist- 
ance is AR and the increase in inductance is AL. This alters 
the Q such that 

Q-AQ=1lu(L+AL) (8) 
(R+AR) 

As . 
XR/R is small and accepting for the moment that the 

losses dominate 

JQ/Q=AR/R. (9) 

It was found experimentally that neglecting AL caused AR 
to be underestimated by 8% for a magnetite sample with grain 
radii in the range 4.3<r<7.7 pm. This error decreases with 
increasing conductivity and with the square of the grain size; 
the experimenter may well have control over the latter 
parameter. 

The Q loop acts such that AQ -. 0_ In this case 

1Q=BýVý (10) 

"fiere 0 is the open loop rate of change of Q with respect to 
Vf and is a constant. 

From equations (9) and (10) 

AR=RBQVr 0 1) 

Recalling equation (2) 

X, 
lb'(NZAlloo)(i)). 

wt. (12) 

Limits on X" are placed by the region of linear control of 
the Q-multiplier. The linear range was found to be 

A V1 1.4 V. 

Appendix 2 -Relating AV to X' 
When a sample is inserted into the sample coil the phase loop 

acts on the varicaps such that the product LC is kept constant. 
As AL/LG I this can be expressed as 

9L/L=JCIC (13) 

where AC is the decrease in resonant circuit capacitance. 
The relation between a varicap's capacitance, Cv and the 

applied reverse bias voltage V is 

C=ýQ,, F (14) 

where a is a constant of proportionality. 
In compensating for an increase in inductance V changes 

to (1 +A )andso 

i 
v. ' 2-(v +av )', z (15) 

((i+w/vJ"=-( 

Expanding to first order 

a . 
AVG I 

1C=2 
Vc'. z 

(I+ 
V /2V 

(16) 

AV, =0.06 V for the largest sample of magnetite and to 
4.5 j or better over the range examined 

AC a AV 
(17) 

C 2C VV'; 2 

Recalling equations (3) and (13). 

X, = 
(a 1LIA 

Ve. (18) 
2C K-11 - NAýo 
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non-contact measurements of displacement has never been 
popular because of the inherent non-linearity. Analogue 
linearisation techniques are not suited to low frequencies 
(<IO Hz) and digital linearisation has been prohibitively 
expensive. In addition, magnetic materials with a strong 
magnetisation. for an adequate signal-to-noise ratio and 
reasonable magnet volume. have often lacked the stability 
necessary for use in adverse environments. 

The present availability of strong and stable magnetic 
materials. sensitive magnetometers and low-cost microcom- 
puters makes this technique feasible. The method described 
makes accurate and continuous non-contact measurements of 
displacement along a single axis. 

Received 8 February 1982. in final form 31 March 1982 

Abstract. The new method of non-contact measurement of 
linear displacement described in this paper utilises the large 
changes in the field of a permanent magnet with distance. The 
output of a magnetic field detector is fed to a microprocessor 
programmed to display the distance between the magnet and the 
detector directly. The maximum measurable displacement is 
limited by the size of the permanent magnet and the noise level 
of the detector. 

In the present version of the instrument, the accuracy is 
better than 2.0% of full-scale deflection (FSO) over the entire 
useful range of 250 mm and better than 0.1% Fsn for 
displacements less than 110 mm. 

1. Introduction 
Combining a magnetometer and permanent magnet to make 

SGA 
Lov - ; Gss 
hUer 

2. Principle of operation 
A small magnet is attached to the object whose axial 
displacement is to be measured. The probe of a magnetometer 
and the magnetic dipole are both permanently aligned with the 
axis of motion, thereby eliminating any orientational 
dependence. The voltage output of the magnetometer is passed 
to an analogue-to-digital converter (ADc) and collected by a 
microcomputer. Here the effects of unwanted environmental 
fields are removed, leaving the signal due to the magnet alone. 
The unknown displacement, up to 250 mm, is then calculated 
using a pre-recorded calibration table and the result is displayed 
directly. The hardware and software to be described show how 

the technique was verified. 

3. Hardware 
A samarium-cobalt magnet, with a volume of 400 mm' and a 
total moment of 3.1 x 10-' Wb m. is mounted on a perspex 
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Figure 1. Block diagram of hardware for non-contact measurement of displacement. SGA stands for Switched Gain Amplifier. 
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carriage which moves along AB (see figure 1). The magnetic 
field sensor is a feedback fluxgate magnetometer that was 
originally developed for another application. It has a noise level. 
in its working environment. of 40 nT RMS over a2 Hz 
bandwidth. Commercial feedback fluxgate magnetometers are 
available with, for example. noise levels of 0.3 nT RMu over a 
10 Hz bandwidth. In general. feedback magnetometers are 
much more stable than open-loop types (Primdahl 1979) and 
this is important in monitoring displacement over long periods. 

To improve the dynamic range of the Affe. a switched-gain 
amplifier (sc. v) follows the magnetometer. When the magnet is 
close to the fiuxgate probe. a gain of 2.00 is selected so that the 
amplifier's output does not overload the aoc. When the magnet 
is distant. a gain of 16.0 is chosen. This ensures that the 
quantisation noise does not significantly degrade the weak signal 
from the magnetometer. The sew is constructed using giros 
analogue switches to swop the gain-setting resistors about an 
operational amplifier. 

The , xoe sampling frequency is 32 Hz. giving an aliasing 
frequency of 16 Hz (Stearns 1976). Signals above 16 Hz would 
be folded below it as aliasing noise. The magnetometer has a 
3 dB response roll-off at 12 Hz. A sixth-order, low-pass 
Chebyshev filter, with a passband ripple of 0.5 dB and a3 dB 
attenuation at 7.0 FIz (Tietze and Schenk 1978, ch. 3). is 
effective in suppressing unwanted signal components. The 
Chebyshev filter's desirable amplitude characteristics outweigh 
its poor phase performance. 

The processed signal from the magnetometer is digitised at 
the request of the microcomputer. There are two control lines to 
the Aoc. Oire line passes the order to hold and convert a sample: 
the other line alerts the microcomputer when conversion is 
complete, after about 25 Ns. The microcomputer then picks up 
the data available on twelve parallel input lines and performs the 
relevant calculations. 

The new result is sent to an LED display and an analogue 
output for a chart recorder. The analogue output is updated 
32 times per second using data sent out serially by the 
microcomputer. The data are converted back to a parallel 
format and passed to an eight-bit digital-to-analogue converter 
(Dad). The resolution of 255: 1 is adequate for most chart 
recorders: more accurate results can be taken from the display. 
Strictly, a low-pass reconstruction filter is required to smooth 
the output samples. In this case, the filter is obviated by the 
chart recorder's own time constant. 

The microcomputer used is the Rockwell AIAt-65 equipped 
with an 8k monitor. The input/output ports are all part of one 
R6522 versatile interface adapter (via). The 32 Hz sample 
clock, which orchestrates information flow through the 
instrument, is also included on the vtA as a programmable timer. 
There should be no problem in using a different microcomputer 
provided that it can be programmed at the assembler level. A 
high-level language such as enstc could be used, but this would 
be at the expense of the instrument's bandwidth. In terms of 
short program execution times, a general-purpose. high-level 
language cannot compete with carefully tailored assembler level 
routines. 

4. Software 
A calibration curve of the magnetometer's processed output 
against the magnets displacement is stored as a table in the 
memory. Though the exact coordinates of the curve are known 
only at a few points along its length, the curve between these 
points can be recovered by interpolation. Each calibration is 
specific to the magnet and magnetometer used and so the 
software incorporates a calibration facility. The hardware and 
software described will work for any choice of magnetometer 
and magnet. 

Figure 2 shows a simplified flowchart of the program used. 
First, the vu is configured to handle the Aoc, the DAC and the 
switched gain amplifier. One of the VIA *S timers is set to 
continuously generate 32 interrupts per second. No sample can 
be taken unless this sample clock gives permission via an 
interrupt. 

Subroutine I compensates for long-term drifts in the 
analogue circuitry or changes in the ambient magnetic 
environment. The subroutine assumes that the magnet is sited at 
its maximum useful displacement. The analogue gain is 
automatically set to x 16 and the digitised output of the 
magnetometer is averaged over 256 samples, or 8 s. This 
axerage is compared with the expected output obtained whilst 
calibrating the instrument. The difference represents a shift in 
offset and is accounted for in subsequent calculations. The offset 
pertaining to a gain of x2 is exactly I th of the previous result. 

The function of subroutine 2. shown in more detail in figure 
3. is to find the best amplifier gain and to check that valid 
measurements can be made. The choice of gain is decided on the 
basis of the magnetometer's output; thus a weak signal requires 
a high gain and a strong signal requires a low gain. The high-to- 
low and low-to-high thresholds are offset to produce hysteresis 
(see figure 4). This prevents random noise causing repeated 

Find analogue offset Subroutine 1 

Find correct gain 
Check magnet in range Subroutine 2 
Fetch scmpte from "oc 

Put new sample into title 

Execute filter routine 

Get new filto output 

Use output to find data 
in calibration table, Subroutine 3 
rater late 

Send result to co[ 

Increment sample counter 

LN0 16 samples ? YES 

Clear sample counter 

Send result to 
LEO d, sploy 

Figure 2. Simplified software fl owchart for non-contact 
measurement of displacement. 
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Figure 3. Detailed software flowchart for subroutine 2. 

Display reads 
'too close' \ 

16 
\ 

0 toy leads 
'too far' 

E 

E 
a2 

0 40 60 120 160 200 240 280 
Magnet displacement (mn ( 

Figure 4. Diagram relating the actions of subroutine 2 to the 
magnet's displacement. 

changes of gain when the magnetometer's output is in the gain 
transition region. A delay is added to allow the analogue filter to 
settle after a change of gain. Subroutine 2 checks whether the 
magnet is in a valid measurement range by seeing if the 

magnetometer's output is too large or too small. If either of these 
conditions is detected. the operator is informed accordingly. No 

measurements will be made until the condition is rectified. 
The program now has a valid sample which it places into a 

16-bit digital filter. The filter has the amplitude characteristic of 
a second-order. low-pass Chebyshev filter with 0.5 dB ripple in 

the passband and an attenuation of 3 dB at 1.0 Hz. It is 

modelled on its analogue counterpart using the bilinear 

transform (Tietze and Schenk 1978, ch. 12). The bandwidth of 
the filter, and hence the instrument, is easily altered by changing 
the sampling rate. 

Subroutine 3 (figure 2) uses the filter output to make a new 
estimate of displacement. This subroutine first selects either the 
high-gain or the low-gain calibration table. It calculates an offset 
into the table chosen and picks out the relevant displacement 
data. Newton's second-order forward-difference method is used 
to make the interpolation (Seim 1978). A 16 x 16-bit binary 

multiply routine is required both here and in the filter above 
(Peatman 1977). 

At the moment, a change in gain presents the digital filter 

with a voltage step. This is a nuisance because of the filter's poor 
settling behaviour. More subtly, the magnet velocity that can be 

successfully followed is greater at large displacements than at 
small displacements. For a given magnet velocity, the rate of 
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change of magnetometer output increases dramatically as the 
displacement decreases. the slew rate of the filter is fixed and is 
increasingly less able to follow the accelerating change at its 
input. Both problems could be avoided by placing the filter after 
subroutine 3 (figure 2). The oce'riding advantage of the present 
arrangement is that the filter is used in the same manner when 
aiding calibration as it is when aiding measurement of 
displacement. 

It only remains to display the new result before recycling. 
The most significant eight bits of the binary result are sent to the 
DAC in each cycle. This permits a proper reconstruction of the 
magnets motion. The LED display is updated once every 16 
cycles. or every half second as each cycle takes end or a second 
(unless the gain is changed or the magnet is out of range). An 
algorithm (Peatman 1977) is used to convert the result from 
binary to binary-coded decimal before it is passed to the display. 

The scheme for calibrating the instrument is simple to 
understand. When the instrument is instructed to start, it 
ir..: aediately checks a switch to see whether the calibration or 
displacement measurement mode is selected. If the former mode 
is required. the software simply omits calling subroutines 1.2 
and 3. In place of subroutine 2 it inserts a magnetometer data- 
fetch instruction that is synchronous with the sample clock. The 
amplifier gain can be set manually as well as through software. 
The instrument, acting as a voltmeter with a filter, can now be 
calibrated easily. 

5. Calibration and performance 
The magnet. on its guided carriage. ran along the line AB (figure 
1) to maximise the magnetometer output for any given 
displacement- A cathetometer was used to measure the positions 
of the tip of the fiuxgate probe and the edge of the magnet to 
±0.02 mm. The cathetometer was situated 1.5 m from the 
probe: it did not influence the magnetometer in any measurable 
way. No special precautions were taken with regard to ambient 
magnetic noise in the environment. 

The instrument was put into the calibration mode and the 
amplifier gain was set to x 16. The magnet carriage was moved 
away from the probe until the magnetometer's output was 
reduced to 128 bits. according to the instrument's display. This 
probe-magnet separation was noted. It was used in future as a 
reference displacement for calculating changes in offset through 
changes in the ambient magnetic field or analogue circuitry 
drifts. The magnet was next moved towards the probe until the 
display read 256 bits and again the displacement was noted. 
This process was repeated in steps of 128 bits. thereby forming a 
list of 32 displacements (128x32=2" bits) for the high-gain 
calibration table. The gain was then switched to x2 and. 
starting from 128 bits, another 32 displacements were obtained 
to form the low-gain calibration table. Both tables were 
converted into I6-bit binary code and stored in the micro- 
computer's memory. The calibration error worsened at large 
displacements because of the reduction in the magnetometer's 
signal-to-noise ratio. The limited resolution of the cathctometer 
became a significant calibration error at small displacements. 

It was now possible to find how accurately the instrument 
measured displacement. Using the cathetometer, the magnet was 
set at a series of known displacements. In each case, the 
microcomputer's display was noted and the instruments error 
was found. Figure 5 is a plot of the non-contact measurement 
error against magnet displacement. The error is shown as a 
percentage of the true displacement set with the cathetometer. 
The uncertainty in the 'true' displacement was ±0.04 mm. and 
this is represented by the broken curves above and below the 
displacement axis. 

At larger displacements of about 200 mm. the interpolation 

error was dominant. This error could have been reduced using 
closer spaced entries in the high-gain calibration table. The 
ultimate limit to the reduction of interpolation error was the 
quantisation error of the Aoc. At the maximum displacement of 
266 mm. a change of one least significant bit corresponded to 
0.7 mm or 0.26% of 266 mm. At the minimum displacement of 
18 mm, a change of one least significant bit corresponded to 
4.5 pm or 0.025% of 18 mm. The quantisation error was always 
less important than the random noise when the gain was x 16. 
The error bars on the plot show the effects of the random noise 
level compared with the interpolation error. Random noise 
errors, like interpolation errors, shrank in significance as the 
displacement decreased. 

At smaller displacements, about 40 mm, the errors in the 
method used to test performance were most important- The 
method exaggerated an underlying increase in calibration error 
that was itself caused by limited cathetometer resolution. 

It is normal to quote performance in terms of the full-scale 
deflection (Fso). The minimum measurable displacement was 
18 mm and the maximum measurable displacement was 
266 mm. giving a full-scale deflection of 248 mm. This 
instrument had an accuracy of better than 2.0% Fsn over the 
whole working range and better than 0.1% pso over the range 
18-130 mm. In the range 18-80 mm, the measured 
performance was better than 0.02% Fso. 

The maximum execution time of a software cycle was 29 ms 
(see figure 2); the sampling rate of 32 Hz was therefore 
reasonable. A cycle that excluded sending a result to the display 
took 4.7 ms. Subroutines resident in the AIM-65's monitor took 
23 ms to display a new binary-coded decimal result. It was 
assumed that these subroutines were efficiently written and so 
no attempt was made to improve on them. Clearly, a special- 
purpose display could increase the maximum possible sampling 
rate dramatically. 

6. Applications and improvements 
The only link between the sensor and the object whose 
displacement is to be found is a magnetic field. The method is 
therefore ideally suited for experimental situations where a 
displacement or thickness is to be measured or monitored 
without the use of optical instruments, variable capacitance or 
reluctance techniques, ultrasonics, x-rays or radioactive sources. 
Dc magnetic fields pass unattenuated through copper, lead, 
aluminium, glass, flesh and many other materials. 

846 

Figure S. A plot of non-contact measurement error against 
magnet displacement. The broken curves show the bounds of 
uncertainty in the true value of the displacement. 



Li) 

A new method ofnon-contact measurement of linear displacement 

The effects of undesirable AC and oc magnetic fields in the 
environment can be minimised using a differential 8uxgate 

magnetometer which would only respond to changes in the local 
field gradient. This makes it worthwhile employing a more 
sensitive magnetometer. allowing an increase in working range 
and a decrease in magnet volume. 

The dynamic range of a 16-bit ADC would make the 
switched-gain amplifier redundant. This would eliminate the 
annoying delays necessary when changing gains. It would also 
reduce quantisation error. 

Improved calibration would guarantee a better performance 
at small displacements. A better approach to interpolation and 
closer spaced calibration table entries would improve 

performance at large displacements. 
It is intended to construct a software-compatible. purpose 

designed microcomputer system in which the nie. one and 
display decoder/driver will be connected directly to the system's 
bus. This will allow a maximum sampling rate of 200 Hz. It will 
then be realistic to improve the phase characteristics of the 
analogue and digital filters so that motion of the magnet can be 
followed with a minimum of distortion. 
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