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Abstract 

Abstract 

A spatial data clearinghouse is an electronic facility for searching, viewing, 

transferring, ordering, advertising, and disseminating spatial data from numerous 

sources via the Internet. Governments and other institutions have been implementing 

spatial data clearinghouses to minimise data duplication and thus reduce the cost of 

spatial data acquisition. Underlying these clearinghouses are geoportals and 
databases of geospatial metadata. A geoportal is an access point of a spatial data 

clearinghouse and metadata is data that describes data. The success of a 

clearinghouse's spatial data discovery system is dependent on its ability to 

communicate the contents of geospatial metadata by providing both visual and 

analytical assistance to a user. The model currently adopted by the geographic 

information community was inherited from generic information systems and thus to 

an extent ignores spatial characteristics of geographic data. Consequently, research in 

Geographic Information Retrieval (GIR) has focussed on spatial aspects of web- 

based data discovery and acquisition. 

This thesis considers how the process of GIR from geoportals can be enhanced 

through multidimensional visualisation served by web-based geographic data 

sources. An approach is proposed for the presentation of search results in ontology- 

assisted GIR. Also proposed is an approach for the visualisation of multidimensional 

geographic data from web-based data sources. These approaches are implemented in 

two prototypes, the Geospatial Database Online Visualisation Environment 

(GeoDOVE) and the Spatio-Temporal Ontological Relevance Model (STORM). A 

discussion of their design, implementation and evaluation is presented. The results 

suggest that ontology-assisted visualisation can improve a user's ability to identify 

the most relevant multidimensional geographic datasets from a set of search results. 
Additional results suggest that it is possible to offer the proposed visualisation 

approaches on existing geoportal frameworks. The implication of the results is that 

multidimensional visualisation should be considered by the wider geographic 
information community as an alternative to historic approaches for presenting search 

results on geoportals, such as the textual ranked list and two-dimensional maps. 
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Chapter 1: Introduction 

Chapter I Introduction 

1.1 Context 

1.1.1 Geographic Data Infrastructure 

Geographic information through maps has been collected for several centuries; 
however, it is clear that there is more geographic information being collected since 

the turn of the millennium than at any other time in history. The significant increase 

in the amount of geographic information is due to the technological advances that 

have been made in the past few decades in space and airborne geographic data 

collection. Longley et al. (2001) define geographic data as linking a place, a point in 

time and some descriptive property. Technologies for geographic data collection 
have advanced against a backdrop of other improvements in digital data sharing and 
dissemination. 

In response to the growing cost of geographic data collection, initiatives were started 
by world governments to create Spatial Data Infrastructures (SDI) -a collection of 

technologies, policies, and frameworks for facilitating the availability and 

accessibility geographic data. SDIs are therefore meant to provide mechanisms for 

the discovery, retrieval, evaluation and application of geographic data. In addition to 

reduced data collection costs, an SDI is essential for providing affordable, timely and 

effective public services. The first recognisable National SDI (NSDI) was initiated 

by an Executive Order 12906 by former United States President Bill Clinton in 

1994(FDGC, 2005). This was as a result of the realisation that the US government 

was spending approximately four billion dollars on geographic data annually. In the 

United Kingdom, the cost of geographic data acquisition is estimated to be about 400 

million euros. Consequently, the Office of The Deputy Prime Minister (ODPM) is an 

active supporter of the SDI initiative (AGI, 2006). 
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Figure 1.1 Total number of spatial data clearinghouses globally from 1994 to 2002 (adapted 
from Crompvoets et al., 2004) 

"A spatial data clearinghouse is defined as an electronic facility for searching, 

viewing, transferring, ordering, advertising and/or disseminating spatial data from 

numerous sources via the Internet and, as appropriate, providing complementary 

services" (Crompvoets et al., 2004: pp. 665). A clearinghouse adopts a distributed 

information systems architecture, where the data is not held centrally but is retrieved 

on-demand. Data producers and software vendors make known what products they 

have available and how the data can be accessed. The data is described in terms of its 

quality, spatial and thematic specifications allowing potential customers to evaluate 

its potential for addressing a particular information need. This form of descriptive 

information about data is called metadata and is discussed later in this chapter. A 

recent innovation in the development of clearinghouses has been the incorporation of 

listings of 'wanted' datasets. These listings allow geographic information users to 

advertise a particular need for information; allowing vendors to respond with 

possible solutions for their needs. 

Since the inception of the first SDI, the number of national spatial data 

clearinghouses has been steadily increasing with approximately 67 countries having 

implemented a web-accessible clearinghouse and 13 countries in the process of 
implementation (Crompvoets et al., 2004). Figure 1.1 shows the accumulation of 
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national spatial data clearinghouse from a global total of one in the year 1994 to 67 

by the year 2002, however it excludes the intra-organisational clearinghouses that 
have been implemented and managed within each country. Intra-organisational 

clearinghouses are created by local authorities, companies and other organisations 

within a country. They are therefore not national clearinghouses. For example, the 

United States has over 180 clearinghouse nodes referenced by the national spatial 
data clearinghouse, Canada has over 80 clearinghouse nodes within its territory and 

they are also referenced by the national clearinghouse, and the United Kingdom has 

approximately 10 published clearinghouse nodes (FDGC, 2005). 

Currently the global network of national clearinghouses makes available over 250 

000 semi-structured descriptions of geographic information resources (Crompvoets 

et al., 2004). Unstructured content is also available from websites with geographic 

references, for example, the Newcastle City Council website or the Newcastle United 

Football Club. Other contributions to the global collection of web-based geographic 
information resources have been the publication of mapping application 

programming interfaces (API) by popular media companies such as Microsoft, 

Yahoo! and Google. The geographic information community has adopted their APIs 

for offering maps on different kinds of issues, for example, transportation, travel, 

recreation and leisure. It can thus be expected that these factors will contribute to the 
increase in the number of geographic information resources available on the Internet. 

1.1.2 Geoportals 

A user accesses a spatial data clearinghouse through a geoportal -a website that 

acts as a gateway to geographic content on the Internet (Tait, 2005). Therefore, a 

geoportal is effectively the interface of a spatial data clearinghouse, as illustrated in 

Figure 1.2. The illustration shows that a GIS service provider publishes his products 

on a geoportal. A GIS user then searches for the services on a geoportal. If any 

relevant services are available, these are discovered by the GIS user, after which he 

then consumes the services by using them in a GIS application. Whereas historically, 

geoportals focussed on publishing geographic data and associated metadata, recent 

advances in web-based technology have allowed geoportals to offer web-based 
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geospatial processing as well. Although discovered through a geoportal, such web- 
based processing is made accessible through both a web browser and a desktop GIS. 

Key: 
GIS 

Service 
Provider 

Publish Consume 

A relates to B 
through function F 

Search GIS 
Geoportal 

ý4 
User 

Discover Client 

Figure 1.2 The role of a geoportal in an SDI (adapted from Maguire and Longley, 2005) 

Maguire and Longley (2005)'cldssify geoportals into two main groups, namely 

catalogue and application geoportals. Catalogue portals create and maintain indexes 

of descriptive information about available geographic information resources. They 

offer a web-based interffice that allows users to query the indexes remotely. They are 

therefore primarily intended for data discovery and are generally targeted towards 

wide audiences. Application geoportals combine geographic information services to 

provide advanced GIS functions for addressing specific tasks. Tang and Selwood 

(2005) suggest an additional type of geoportal, called an enterprise geoportal, which 
incorporates web-mapping and location services into an existing business web site. 

This thesis is mainly concerned with catalogue geoportals and the methods through 

which they enable data to be discovered. 

1.1.2.1 Architecture 

A geoportal is typically made up of several components. To ensure interoperability 

between the different components and associated software, international standards 
have been developed to provide a standardised interface for communication between 

components. The functionality offered by each component is referred to as a service 
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and an architecture that adopts this form of structure is illustrated in Figure 1.3. The 

architecture has the following benefits: 

9 It allows for the integrated use of components from different vendors, 

communicating through established protocols. 

* Components operate independently of one another and consequently, errors 

are isolated within each component. 

* As data is disseminated through a web service, the publisher or originator can 
impose their own access constraints on the data, for example, maximum 

permissible resolution on previewed imagery. 

o Data is delivered in standardised file formats, making it interoperable with 

several GIS. 

Considering the three-tier architecture illustrated in Figure 1.3, at the lowest level of 

a geoportal model is a data management tier. This tier includes geographic and non- 

geographic database management systems (DBMS). By definition, geographic 

databases include data referenced to locations on the earth; for example, census, 

flood, weather and geological datasets.. The data is stored as vector, raster or tabular 

content. Querying of the DBMS and meta-database systems is carried out using the 

Structured Query Language (SQL) or a similar language such as the Reverse Polish 

Notation (RPN). In addition to these databases, the data management tier also 

includes repositories of geographic metadata, described in more detail later in this 

chapter. 

The middle tier of the architecture includes a series of web services. These offer 

functionality for accessing, querying and retrieving information from the data 

repositories and presenting it to the user via the top-level portal services. The middle- 

tier services of a geoportal include the data, portrayal and catalogue services. 

Technologies used for communication between components in this tier and others, 
include the Geography Markup Language (GML), Simple Object Access Protocol 

(SOAP), Web Service Description Language (WSDL), Web Map Service (WMS) 

and Web Feature Services (WFS) specifications. These technologies ensure 
interoperability between components by providing a standardised interface between 

5 



Chapter 1: Introduction 

web services and clients. A more detailed discussion of web services is offered in 

Chapter 4. 

Geoportal 
C) 71 

Portal 
Services 10 

------------------- ------------------------ ------------------------- 4 

WE MEL- 

Portýrayal Services Catalogue Services Data Services 

------------------- ------------------------ ------------------------- 4 

Distributed Distributed Distributed 
geographic geographic geographic 

ýý7 data metadata data and 
FD styles 

Figure 1.3 Service-based framework for geoportals (adapted from Rose, 2004) 

At the highest-level within the geoportal architecture are portal services. These are 

primarily the user-interface components of the geoportal. There is an increasing 

demand for these services to be graphical to ensure adequate portrayal of maps and 

other geographic information. Initiatives such as the European Union INSPIRE 

framework have included 'view services' as requirements for conformant geoportals 

(Commission of the European Communities, 2004). Within the INSPIRE framework, 

4view services' refer to web mapping and other visualisation components. Other 

national geoportals have also implemented clients for viewing data and other content, 
for example the United States Geospatial One Stop (GOS) and the India SDI 

(Sivakuma et al., 2004). 
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Components Environments Functions 
Web Portal HTML, HTTP, XSL, 

XML, JSP, ASP 
Search, Map Viewer, Publish, 

Administrate 
Java Beans, NET Query, Gazetteer, Mapping, Edit, 

Geocoding 

Geographic Web 
Services 

XML, SOAP, 
WSDL, WMS, WFS, 

GML 

Query, Map render/feature, 
Transaction, Geocode 

DBMS 

Geographic 
& Tabular 

Data 

SQL Raster, Vector, Tabular 

Figure 1.4 A techno-centric view of a geoportal architecture (adapted from Tait, 2005) 

Services may be classified into portrayal, portal, data and catalogue services (Rose, 

2004). The classification is illustrated in Figure 1.3 and includes, 

Portal Services: Effectively the user-interfaces for administration, searching, 

mapping, and publishing functionality on a geoportal. Components providing these 

services include map viewers, discovery clients, access and management clients. 

Portrayal Services: Provide operations for processing and rendering geographic 

content. These include maps (rendered geographic data) and styling services 

(providing cartographic information such as symbols and colours). 

Data Services: Primarily used for the delivery of geographic content and services. 

These include gazetteer, feature and coverage services. 

Catalogue Services: Used to advertise and locate geographic information resources. 
These include data discovery, service registry, service discovery, metadata entry and 

update components. 

This classification identifies almost all components, including viewers, as services. 
The classification is based on the Open Geospatial Consortium (OGC) Service 
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Architecture Abstract Specification. The OGC is an international body of academic, 

governmental and commercial organisations that aims to improve interoperability 

between different GIS systems. An alternative architecture, illustrated in Figure 1.4, 

places web services as the interface layer between the data management components 

and the portal components (Tait, 2005). Although the two models differ in the names 

given to the component groups, it is evident that the same functionalities are 
identified as being key to geoportal composition. The latter figure is basically a more 

techno-centric illustration of the architecture. 

1.1.2.2 Geospatial-One-Stop :A Case Study 

One of the most recognisable geoportals is Geospatial-One-Stop (GOS), the national 

geoportal of the United States. GOS hosts over 100 000 geographic information 

resources, 1400 of which are live image services, published by over 500 information 

providers. Tang and Selwood (2005) report that GOS was handling over 600 visitors 

per day in 2004. Each visitor could define an information need by selecting an area 

of interest or entering a keyword, then knding A request for any relevant resources 

through the geoportal. The response from a search is a list of records describing 

available resources, in most cases accompanied by a link to a live map that can be 

viewed using a simple web map client. The web map client on GOS implements 

standard geospatial specifications and can therefore support several geographic data 

servers. It is also possible to save the composition of the live map, such that it can be 

shared between different users of GOS. 

Currently in its second major version, GOS offers data, news and information 

categorised into several topics (channels) including for example administrative 
boundaries, agriculture, atmosphere, biology, business, cadastral, demographic, 

elevation, environment, facilities, geology, health, inland water, locations, oceans, 

transportation, utilities imagery and basemaps. A team of experts, known as channel 

stewards, manages and groups resources into each of these topics. This increases the 

likelihood of discovering relevant content. The channel stewards are also tasked with 

seeking contributions from people in their fields of interest. In response to special 

events, the stewards are tasked with creating temporary channels targeted towards 

those events. For example, a special channel called 'GIS for the Gulf was set up to 
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assist emergency management teams responding to hurricanes Katrina and Rita 

(Tang and Selwood, 2005). The special channels comprised information on 
topography, cadastre, emergency services, weather conditions and flood levels in the 

rivers and tidal stations. 
System Components 

GIS Portal 
Components 

Spatial Management 
Components 

ESRI Products 

GIS Portal Application 

Tool Components 
(ArcWeb App Objects) 

ArcIMS Java Connector 

ArclMS 
Application/Spatial Servcr 

Web technologies 

HTML, HTTP, JSP, 
XSLT, XML 

Java Beans, Serviets 

TCP/IP, Sockets 

ArcSDE 

RDBMS 

Data Management 
Components 

Data 

JDBC, SQL 

Figure 1.5 Architecture of The GIS Portal Toolkit by ESRI (adapted from ESRI, 2004) 

GOS is implemented using ESRI ArcSDE (a spatial data engine that offers spatial 

capabilities to conventional relational database engines) and ArcIMS (an internet 

map server for viewing web maps and publishing geographic metadata) (ESRI, 

2004). Since the development of the first version of GOS, ESRI has exported the 

technology to other SDI projects including the European Union INSPIRE and the 
Indian NSDI projects. The composite product has been named the ESRI GIS Portal 

toolkit and its architecture is illustrated in Figure I. S. The illustration identifies the 

web technologies employed in implementing the aforementioned ESRI products. 

1.1.3 Geographic Metadata 

A fundamental component of a data discovery system is the repository of metadata. 
Metadata is defined as descriptive information about data; that can be queried to 
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search for data and resources using space, time and thematic attributes (Maguire and 
Longley, 2004). The data is organised in fields that have been formalised thus 

making it possible for information communities, including the geographic 
information community, to share metadata records. Each metadata record describes 

any aggregate of information: for example, it can be used to describe a single dataset, 

a collection of datasets or even a component of a dataset. It allows users to find out 

what data is available, where to find the data, how to access the data and whether it 

meets their specific requirements. This section is concerned with geographic 

metadata and how it is disseminated. 

1.1.3.1 Standards 
The most widely-adopted geographic metadata standard is the Content Standard for 
Digital Geospatial Metadata (CSDGM), published by the US Federal Geospatial 
Data Committee (FGDC). Although this standard is US-specific, most of its elements 
are still applicable in other parts of the world. Special interest communities have 
implemented their own profiles of the CSDGM. The profiles make it possible for 

communities to search for data using properties that are specific to their domain 

whilst also allowing users from other domains to search the metadata collections 
using those fields that are common amongst all user groups. Example profiles of the 
CSDGM include the Biological and Shoreline (Bathymetric) profiles (FDGC, 2005). 

An alternative standard for geographic metadata, ISO19115, was published by the 

technical committee for geographic information of the International Organisation for 

Standardisation (ISO). The ISO 19115 can also be extended through the creation of 

profiles to allow countries to implement their own specific metadata elements. 
Unsurprisingly, the ISO standard adopts several fields from the CSDGM, for 

example the title, abstract, spatial referencing system and others (ISO, 2003). 

However, some of the fields have been renamed for example, the spatial domain 

(CSDGM) was renamed as the geographic extent (ISO 19115). 

Both the ISO 19115 and the CSDGM define hundreds of attributes and attribute 
dimensions(Podolak and Dems'ar, 2004). We identify the title, abstract, topic 

category, geographic extent, publication and creation dates as being searchable 

10 



Chapter 1: Introduction 

attributes as they collectively describe the spatial, temporal and thematic scope of a 
dataset. We therefore discuss them further. First, the date of publication or creation 

offer temporal descriptions of the dataset. Temporal descriptions are particularly 
important as the historic role of spatial data clearinghouses is to archive data. 

Unfortunately, both the ISO 19115 and the CSDGM allow free-text entry of dates. 

This means an entry such as "before 2001" or "after 2004" is considered valid. This 

results in significant variability in temporal metadata, increasing the possibilities of 
incorrect temporal computations. 

The title provides a single-line description of the contents of the dataset. The abstract 

provides a brief narrative of the contents of the dataset. It expands on the information 

provided by the title by i) specifying whether the dataset is part of a larger collection, 
ii) providing an explanation of the scientific concept behind the dataset, iii) naming 

which other datasets complement this dataset if it is part of a larger collection, iv) 

providing a textual description of the location and spatial coverage of the dataset. 

Both the title and the abstract are specified in 'free text', that is, there are no 

restrictions to the values of the fields. In addition to the title, metadata includes 

information on the topic of a dataset. The topic category describes the contents of the 
dataset using a set of predefined themes. This provides a high-level classification 

scheme that enables developers to implement unsupervised data discovery as all the 

topics or themes are standardised. 

Figure 1.6 Inaccuracy of the spatial operations involving bounding rectangles. 

The geographic extent, referred to as the spatial domain in the CSDGM, provides an 

absolute positioning of the spatial footprint of the dataset. This field is usually 
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represented by a Minimum Bounding Rectangle (MBR) of the contents of the 

dataset, aligned to a geographic coordinate system. However, topological operations 

using MBRs offer only approximations of spatial relationships (Papadias and 

Theodoridis, 1997). For example, although the linear feature in Figure 1.6 does not 
intersect the hexagonal parcel, its MBR does. Spatial operations offered by 

traditional geographic data discovery systems were based on MBRs as they provided 

very fast computations of intersections. Further, an MBR reduces the effort needed in 

creating the actual metadata as only the bounding coordinates East, West, South and 

North are required during metadata entry. Advances in the development of spatially- 

enabled Relational DBMS (RDBMS) that can handle Minimum Bounding Polygons 

(MBP) offer new possibilities for geographic data discovery systems. An MBP is a 

convex hull of all coordinates in a geographic dataset. 

This subsection has presented two geographic metadata standards and identified 

some of their main metadata fields. The fields provide a geographic reference, a 

textual and temporal description of a dataset. Other studies discussing geographic 

metadata include Podolak and Denigar (2004), Nogueras-Iso et al., (2004) and Hodge 

(2001). The next subsection describes the approaches for geographic metadata 
dissemination. 

1.1.3.2 Metadata Dissemination 

Metadata fields of both standards can be grouped according to generic packages such 

as identi/lIcation or data quality information. These packages are listed in Table 1.1. 

The packages help organise information and form a basis for storing metadata in a 

DBMS. Two types of database servers have been adopted within the geographic 
information community for metadata dissemination; relational database engines and 
Z39.50 servers (FDGC, 2005). Relational database engines such as Microsoft SQL 

Server, MySQL, PostgreSQL and others allow clients to remotely invoke SQL 

queries on a database server. Queries are invoked subject to permissions assigned to 

users by the Database Administrator (DBA). For retrieval-only purposes, a DBA 

need only allow remote users to invoke SQL select statements. Further, relational 
databases allow for strict data typing and entry of values (i. e. not null). Strict data 
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typing ensures that dates and fields are input in a specified format, for example 

'YYYY/MM/DD'. The not null SQL constraint can be used to ensure that mandatory 

metadata fields are filled. 

CSDGM IS019115 

Identification Information 0 Identification Information 
Data Quality Information 0 Data Quality 
Spatial Data Organization 0 Spatial Representation 
Information information 
Spatial Reference Information 0 Units of Measurement 
Entity and Attribute Extent Information 
Information Reference System 
Distribution Information Information 
Metadata Reference Metadata Extension 
Information Information 

Distribution Information 
Citation and Responsible 
Party Information 
Content information 
Constraint Information 
Portrayal Catalogue 
Information 
Maintenance Information 
Application Schema 
Information 

Table 1.1 Packages of the CSDGM and the IS019115 

The second database server used for metadata dissemination involves use of the 

Z39.50 protocol for Information Retrieval, also known as the IS023950 standard. 

This standard is widely used by the geographic information community (FDGC, 

2005). Z39.50 servers receive queries from clients and return records that satisfy the 

query. The records are returned as text-only documents, in contrast to result sets from 

RDBMS which may contain different types of objects encoded as byte streams. 

Many current metadata, schemes implemented in Z39.50 systems use XML or its 

superset SGML (Standard Generalized Mark-up Language) (Hodge, 2001). To obtain 

statistics on the types of servers implemented, we examined over 400 nodes on the 
FGDC Clearinghouse Registry. The registry lists each Z39.50 node with its 

connection parameters, spatial footprint covered and several other properties. As 
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shown in Figure 1.7, the results suggested that the CNIDR Z39.50 server is the most 

popular for spatial data clearinghouses. A possible reason is its inclusion in the 

freely-downloadable Isite software available from the FGDC website (FDGC, 2005). 

Unsurprisingly, the ArcIMS metadata server is also widely-implemented. ArclMS is 

a web mapping product from ESRI, the leading global GIS vendor. 
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Figure 1.7 Popularity of Z39.50 metadata servers listed on the FGDC registry 

Two main architectures for metadata dissemination incorporating the aforementioned 

database servers include cross-system search and metadata harvesting (Hodge, 

2001). Cross-system discovery architectures allow various clients to access a 

distributed network of servers to search for records. Metadata harvesting is an 

automated scheduled process for collecting new and updated metadata from a wide 

variety of geographic metadata collections (ESRI, 2004). The former approach has 

the advantage of decentralisation, allowing the client to search up-to-date records. 

However, the approach relies on referenced servers being available at the time of a 

user's search. This is in contrast to the latter approach, which stores a copy of each 

metadata record on a centralised server, thereby ensuring that the metadata is 

available at the time of search. The latter approach has the advantage that the 

metadata is well structured as it is harvested and processed prior to searching. The 

disadvantage is that because metadata harvesting is a scheduled process, the 
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metadata records are accurate only to the last time the harvesting was performed, 

typically ovemight. 

1.1.4 Summary 

The introduction has examined the technological backdrop within which the research 

presented in this thesis takes place. Three primary technological components of an 
SDI are identified: the spatial data clearinghouse, geoportal and geographic 

metadata. These are singled out because of their key role in geographic data 

discovery. Architecture for integrating all these technologies within a service-based 
framework is also presented. The introduction presents a survey from a related study, 
by Crompvoets et al. (2004), into the increasing implementation of spatial data 

clearinghouses. Their results, illustrated in Figure 1.1, suggest that there is growing 
interest in geographic data discovery and that metadata servers are indeed playing an 
important role in data dissemination. An additional survey examining over 400 

geographic metadata servers was also presented. 

1.2 Problem Statement 

As geographic information resources on the Internet increase, a major challenge 
facing the Geographic Information community is how to enable a user to efficiently 
find and retrieve the most relevant resources for geographic tasks. Traditional 

approaches for presenting the results of geographic search do not adequately 
illustrate the degrees of relevance of geographic datasets (Beard and Sharma, 1997, 

G6bel et al., 2002). Consequently, important resources are not discovered during 

searches, leading to higher data acquisition costs. A new framework that effectively 
illustrates the relevance of multidimensional geographic datasets, and allows a user 

to examine each dataset in greater detail, is needed. To increase the possibility of 

acceptance within the Geographic Information community, the new framework 

should incorporate some of the existing approaches. 
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1.3 Research Questions 

The hypothesis of this thesis is: 

Geoportals offering ontology-assisted multidimensional visualisation services 

can allow users to discover and retrieve more relevant geographic information 

resources than those that do not offer these services. 

This hypothesis can be divided into the following research questions: 

e What are the limitations of existing approaches in the visualisation of 

candidate datasets during geographic data discovery? 

e How can ontology be used to support visualisations of geographic search 

results? 

9 From search results, how can a multidimensional geographic dataset be 

visualised in greater detail to determine its relevance? 

9 Could the suggested approaches be incorporated into a conventional 

geoportal? 

* What effect would the suggested approaches have on the perfonnance of a 

geoportal? 

This study therefore aims to provide a new framework for the development of 

geoportals that uses ontology-assisted multidimensional visualisation approaches to 

improve geographic data discovery and offer interoperable delivery of heterogeneous 

geographic datasets. It is envisioned the framework will enable users to, more 

effectively and efficiently, find and retrieve geographic datasets that are relevant to 

their information needs. To ensure applicability in an international setting, the 

proposed model will be developed from open-source technologies as proprietary 

technologies may prove expensive for potential user communities. Further, open- 

source development would offer the possibility of incorporating any relevant projects 
from the tens of thousands of other open-source projects available online (Gayle and 
Rainer, 2005). 
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1.4 Methodology 

This research comprises of the following three main parts: 

Analysis: An analysis of the 'state of the art' in geographic data discovery and 
dissemination sets this study in context. This includes a consideration of the 

concepts, standards, technologies and other issues involved in the discovery and 
delivery of geographic data. This aspect of the study addresses the research question 

"what are the limitations of existing approaches in the visualisation of candidate 
datasets during geographic data discovery? ". 

Implementation: This aspect of the study proposes two visualisation approaches that 

address the research questions "how can ontology be used to support visualisations 

of geographic search results? " and "how can a multidimensional geographic dataset 

be visualised in greater detail to determine its relevance? ". The proposed 

visualisation approaches are then implemented in prototypes that include i) a web- 
based ontology-assisted visualisation tool for searching a geospatial data 

clearinghouse ii) a web-based tool for multidimensional geo-referenced visualisation 

and data delivery iii) a geoportal that integrates all other tools developed in this study 
into a single system. 

Evaluation: A variety of evaluation studies are carried out to assess the effect of the 

proposed visualisation approaches as applied to GIR. The effect of the proposed 

approaches is reflected by the retrieval performance and usability of the implemented 

prototypes. The evaluation studies, therefore, address the research questions "could 

the suggested approaches be incorporated into a conventional geoportal? " and "what 

effect would the suggested approaches have on the performance of a geoportal? ". 
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1.5 Scope of the Thesis 

This thesis centres on the development of mechanisms for the web-based discovery 

and delivery of multidimensional geographic information. Since geographic 
information can be disseminated on the internet in a variety of forms, this thesis 

limits its handling of geographic information resources to geographic datasets and 

associated metadata conforming to the International Standards IS019125 and 
ISO 19115 respectively; the former standard being the Simple Features model (ISO, 

2004) and the latter, the geographic metadata standard (ISO, 2003). As the tools 

developed within this study for handling these geographic information resources are 
intended for different purposes, they are evaluated separately and independently of 

one another. 

A major consideration in this thesis is the transferability of proposed models to 

existing SDI. As a result, the experimental work uses 'real-world' geographic data 

collections collected from national spatial data clearinghouses and mapping agencies. 
Different data publishers have created some of these collections manually; 

consequently they may contain errors in accuracy of content. For example, some 

metadata records have erroneous geographic footprints. Errors in metadata may 

cause some datasets to be missed during searches, or irrelevant datasets to be 

included in specific search results. Although, these errors in metadata content are 

undesirable, they are an inescapable element of geographic (meta)data created 

manually. 

1.6 Organisation of the Thesis 

Subsequent chapters are organised as follows: 

Chapter 2 describes the state-of-the-art in Geographic Data Discovery and 
Geographic Information Retrieval (GIR). In particular, the chapter discusses 

concepts within GIR including ranking, relevance and ontology-assisted queries. 
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Chapter 3 introduces the concepts of information and data visualisation, with 

reference to geographic data. An approach for presenting the results of a geographic 

search is proposed. Also, an approach for web-based visualisation of geographic 
datasets is proposed. A discussion of real-time computer graphics is also offered. 

Chapter 4 introduces concepts in the web-based delivery of multidimensional 

geographic data. Two delivery mechanisms are examined, in particular, through 

connection to a spatially-enabled Relational Database Management System and 

through connection to service-based data delivery system. 

Chapter 5 describes the design and implementation of the two visualisation 

prototypes presented in this thesis. The chapter also describes how they are 
incorporated into an existing geoportal framework. 

Chapter 6 provides an evaluation of the two prototypes presented in this study. The 

chapter also presents observations from usability studies of the completed geoportal 
framework. 

Chapter 7 highlights the contributions of the study, presents the conclusions and 

suggests some possible areas for further research. 
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Chapter 2 Geographic Information Discovery and 
Retrieval 

The aspect of Geographic Information Science (GISc) that studies spatial data 

discovery is referred to as Geographic Information Retrieval (GIR). Bucher el al. 
(2005: pp 1) define GIR as "the retrieval of geographically and thematically relevant 
documents in response to a query of the form <theme, location>, where the spatial 

relationship may either implicitly imply containment or explicitly be selected from a 

set of possible topological, proximity and directional options, and where documents 

searched are those available on the internet". In short, GIR is "concerned with 

providing access to geo-referenced information sources"(Larson, 1996). GIR is 

sometimes considered to be an integration of traditional Information Retrieval (IR) 

with GISc. This chapter offers a review of the literature on GIR with respect to the 

discovery of geographic data. 

Index Searching 

Geometry & Indexing Ranking 
Text Model 

Textual Visual 
Operations Interface 

CD CD 

Key: CL 
CD 

- 10 Direction of information flow 0 

Component of GIR system r 

User 

Query 
Operations 

Figure 2.1 The process of retrieving information. (adapted from Baeza-Yates and Ribeiro-Neto, 
1999) 

The cyclic nature of the process of information retrieval is illustrated in Figure 2.1. 

The illustration acknowledges the part played by the user in finding a suitable 
dataset, as the user provides feedback to the system in the form of refined keywords 
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or altered query constraints. The query operations invoke the searching mechanisms 

which, in turn, retrieve information from the index. The retrieved information, 

usually metadata, is then arranged according to increasing or decreasing relevance by 

the ranking facility before ultimately being presented to the user on the visual 
interface. This importance of the visual interface is shown by its role of being the 

bridge between the user and the rest of the IR system. The rest of this chapter 
discusses the different stages of IR illustrated with Figure 2.1. 

2.1 Ranking through Relevance 

2.1.1 The Concept of Relevance 

A fundamental concept in IR is 'relevance'- the degree to which an item is deemed 

to satisfy a user's query. Previous research has shown that there are variations in 

people's perceptions of relevance (Harter, 1996). "An overwhelming body of , 

evidence has accumulated toward the conclusion that the human beings involved in 

the information retrieval process (indexers, searchers and users) and the products 

they produce (indexing records, retrieved documents, queries, and relevance 
judgments) vary enormously from one another" (Harter, 1996: pp. 48). His summary 

of factors affecting a user's assessment of relevance lists over fifty possible 

parameters in a user's judgement. These parameters include the title of the document, 

the author's credibility, the searcher's intelligence and several other factors. A title 

describes the content of a document; therefore, directly influences a decision on the 

document's relevance to a task. However, a searcher's ability to understand the 

description of the document is also a factor in a decision on relevance. The 

credibility of the author (for example, is the author an expert on a specific subject) 
influences the searchers judgement of relevance as well. 

Similarly, in her work Borlund (2003a) examines the different definitions of 

relevance by other researchers. She then classifies them into two main groups, 

system-based relevance and human-based relevance. System-based relevance refers 

to a relation between a query and a set of information objects as computed through a 

specified algorithm. Whereas, human-based relevance refers to the judgement made 
by the searcher through his own individual mental experience (Borlund, 2003a). As 
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the reliability of system-based experiments is generally based on the repeatability of 
the experiments, system-based evaluation of relevance tends to be static and 

objective. In contrast, human-based relevance tends to be dynamic and subjective, as 
it is a function of the searcher's current cognitive state, situational constraints and the 

type of information problem. 

A recent discussion of geographic relevance is provided by Bucher et al., (2005). 

They observed six scenarios influencing the determination of geographic relevance. 
Three of the situations are with respect to thematic relevance and the other three are 

with respect to spatial relevance. Although their discussion does not include temporal 

relevance, it supports the view that geographic information relevance is 

multidimensional in nature. In their study they compare relevance judgements by II 

users, based on 5 queries, each query returning 10 documents. A scheme based on 

the six scenarios was used to evaluate the relevance judgements made by the users. 
They observed that although users found the scheme easy to understand, they were 
less confident in judging spatial relevance particularly when users were not familiar 

with a location. The scheme they used is as follows: 

Thematic relevance: 
1. A document which contains relevant information about the concept queried 

and on its own allows you to form a judgement about the document (ie. 

Requires no external knowledge). 

2. A document is relevant, since it points to a resource mentioning the concept 
but you must consult further pages referenced by the document to perform a 
judgement. 

3. A document does not provide information about the concept provided. 

Spatial relevance: 
1. A document refers to a location that is in/near the query location and you 

think that the location in the document has sufficient detail for you to find on 

a local map of the area 
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2. A document refers to a location that is in/near the query location but you 

think that there is insufficient information for you to find that location on a 
local map of the area. 

3. A document does not fall within the query location. 

This subsection has examined the views on relevance with respect to geographic 
data. Key observations include the suggestion that there are variations in how 

different individuals perceive relevance, suggested by Harter (1996). A classification 

of relevance into system and human-based assessments is offered by Borlund 

(2003a). Other studies referenced in this subsection highlight the multidimensionality 

of the relevance of geographic data. Based on the works discussed in this subsection, 

we take the view that the relevance of geographic data is indeed a multidimensional 

property, however it can be categorised into three components namely spatial, 

temporal and thematic properties (Beard and Sharma, 1997), as per the definition of 

geographic data suggested by Longely et al. (2001). The next subsection discusses 

how this relevance is inferred in IR and GIR. - 

2.1.2 Ranking Geographic Data 

The process of computing and ordering the retrieved items in a search is commonly 

referred to as ranking. The context of ranking within the IR process is illustrated in 

Figure 2.1. Several algorithms and approaches to relevance ranking have been 

developed over the years. Examples of ranking algorithms in existence include those 
for ranking simple text, hypertext, images and spatial documents (van Kreveld et al., 
2005, Lynch et al., 2004, Brin and Page, 1998). Several other ranking algorithms 

exist, however a discussion of all of them would be beyond the scope of this thesis. 

An example of ranking algorithms includes the PageRank algorithm for ranking 
hypertext documents, developed by Brin and Page (1998). This patented algorithm 
forms the basis of the Google search engine which has become increasingly popular 

over the past decade. The algorithm computes relevance of a hypertext document 

based on how many other documents reference that page. It treats each link to a 
hypothetical page B from page A to be a vote for page B by page A. Additional 
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textual mining is carried out on the page to determine the relevance of content to the 

prescribed query. Issues taken into consideration include the size of text, for example 

words in bold or presented in bigger sized fonts are given a higher weighting than 

non-nal text. Other issues the algorithm takes into consideration include the 

possibility of the user 'to get bored' during the search. This is represented in the 

algorithm by the damping factor. The damping factor therefore adds an element of 

personalisation to the ranking approach. The PageRank for a page labelled A, is 

therefore 

PR(A) = (1-d) +d (PR(TI)IC(TI) + ... + PR (TdIC(Td) 

where : 

n is a positive number 
T, ... T, are pages referencing Page A 

d is a damping factor between 0 and I 

C(A) is the number of pages referenced by Page A 

Even after the PageRank has been calculated, further evaluation of the returned 
documents is carried out. This involves counting the number of times the searched 

terms occurred in each of several types (the title, abstract, large plain text, small plain 
text and so on). Each type is assigned a type-weight. The number of times the search 
term occurs on each of the types contributes to the count-weight. The type-weights 

and the count-weights make up two separate vectors. The dot product of the vectors 

results in the IR score for the document which is combined with PageRank to give 

the final rank for the hypertext document. Multi-worded queries however result in 

multiple result sets. The proximity of the result sets is based on a ten-unit scale from 

46not even close" to "direct match". Proximity is included in the type-weight to give a 

type-prox-weight. The IR score is then computed from the dot product of the count- 

weights and the type-prox-weights. The PageRank algorithm is implemented in the 

Google search engine, the most widely used search engine, but does not take into 

consideration the spatial properties of documents. However, geographic data includes 

both attributive and spatial properties. 
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An example of a ranking algorithm that considers spatial properties is the 

Multidimensional Scattered Ranking approach (MSR)(van Kreveld et al., 2005). 

'raking the vector of spatial and thernatic relevance scores as points in 

multi di mensional space, as illustrated in Figure 2.2, scattered ranking lets the 

proximity between points be the Euclidean distance between the points in 

multidimensional space. In its basic form scattered ranking favours a document that 

is furthest away from the already ranked documents. Naturally, tile seeding document 

is the one with the smallest Euclidean distance from the query. As in other IR 

models, this document is considered to be the most relevant to the query. Given two 

collections R and U, containing ranked and unranked docurnents respectively, the 

next document to be ranked after the seeding document is the one that is furthest 

from the seeding document. Once this document has been discovered and added to 

the set of ranked documents R, it is then deleted from the set of unranked documents 

ti. All consecutive rankings are relative to the last ranked document. 

I) 
I- 

0 

I) 

C 

r) 

OP, 

Figure 2.2 Documents scattered in vector space according to their spatio-telliporal relevance 
(adapted from van Kreveld, 2004) 

Therefore, within vector space the rank is, 

rnin I 

Pi eR 1+11PH 

where: 

0p is the modulus of the distance from the query to the unranked document 

40 1), is the distance from the query to the closest ranked document to 1) 
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*p -pi is the modulus of the distance from an unranked document to its closest 

ranked document 

* jjxjj is the modulus of anumberx 

9R is the set of ranked documents 

*A is a constant, greater than zero, that defines the base eA of the exponential 
function 

* represents the query in vector space 

Geographic data may also be ranked based on the amount of spatial overlap as 

suggested by Larson and Frontiera (2004). Their approach uses Logistic Regression 

(LR) to rank datasets according to their spatial footprints. In this LR model the ratios 

of overlap of the query region and the candidate region are assigned to each 
independent variable (Xj) of the 'log odds', log O(Q, D). By multiplying the 

independent variables by weighting coefficients (Cj), each variable can be given a 
degree of influence on the value of the 'log odds'. The sum of the weighted 
independent variables is then added to a constant (Q to produce the 'log odds' 

which represents the degree of relevance of the dataset D to the query Q. The 'log 

odds' is then converted to a normalised probability to form the measure of spatial 

similarity. 

log 0 (Q, D) = Co +1 cxi 
i=I 

log O(Q, D) 

Q, D) = 
I+ dog O(Q, D) 

where: 
m is the number of ratios of overlap (in our case, m= 2) 

X, = area of overlap (query region, candidate region) / area of query region 

X2 = area of overlap (query region, candidate region) / area of candidate 

region 

Ci are coefficients for assigning weights to variables 

P is the probability of relevance 
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The concept of overlap is also adopted for time-based ranking of datasets as 

proposed by Yamuna and Candan (2000). Within this temporal model, the amount of 

overlap between the time specified in a query and that specified in the metadata 

record is determined. From the illustration in Figure 2.3, the similarity between 

periods A and B is the overlapping period C. Hence two periods starting and ending 

at the same time 'are completely similar'. The implementation of this model within a 

geographic data discovery framework is facilitated by the fact that geographic 

metadata specify the 'time period of content' as a mandatory metadata field. This 

field may be represented either as a single date or as two dates representing the 

beginning and end of dataset creation (ISO, 2003). Yamuna and Candan (2000) 

define the temporal similarity (ts) of two periods of time A and B as: 

ts (A, B) =II IAI+IBI+ICI 

where: 
A, B are two independent periods of time 
C is the proportion of overlap between A and B 

Figure 2.3 Temporal Ranges and overlap 

Early studies in the psychology of similarity developed models for quantitatively 

estimating the similarity between two entities. Tversky (1977) proposes a set-based 

ratio model for measuring similarity. Rodriguez and Egenhofer (2004) adopted and 

successfully applied this model to geographic entities. From the illustration in Figure 

2.4, set A is more similar to set B than set C, because they have more similar 

properties. Each similar property (element) is deemed as being a vote for the 

similarity between sets. Each set in this example represents an individual entity. 
Weightings are assigned to reflect the asymmetric similarity of A to B. This means 
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that the similarity ofA to B may not be the same as the similarity of B to A. In set 

theory notation, the ratio model for calculating semantic similarity S is: 

S(A, B) = 
If (An B) I forO<a< I 

lf(AnB)I+alf(A-B)I+(I-a)lf(B-A)I 

where: 

0A and B are two separate sets 

the set of all features that are common to both A and B is (AnB) 

the set of all features that belong to A and not to B is (A-B) 

a and (I -a ) are weightings reflecting the asymmetric influence of 

A and B on the similaritv valUe 

C-D CD 
CD N 

CD 

CD 

ck (Z) 

CD 
<: -:: ) 

Figure 2.4 Illustration of semantic similarity between entities using set notation 

This subsection has discussed the different aspects ofranking with regard to IR and 
GIR. It has presented a range of different approaches for computing the relevance 

score used for determining the rank ofa dataset. Once datasets have been ranked, 
they are then presented to a user through a visual interface. Tlie next section 
discusses the role of visual interfaces in the process ofIR. 

2.2 Visual Interface 

One of the stated research questions is -what are the limitations ofexisting 

approaches in the visualisation of candidate datasets during geographic data 

discovery'? ", this section will address this question. As already observed in Figure 

2.1, the visual interface is responsible tor communicating the results ofthe search to 

the user. Most IR user interfaces offer forms for entering search parameters. Aftcr a 
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search has been processed, the results are presented to the user. Traditional 

approaches for the presentation of search results were based oil the ranked textual 

list, however, a textual list offers a one dimensional view of relevance. Therefore, in 

a GIR environment the spatial, temporal or semantic relevance scores are merged 

into a single relevance score when presented on a ranked list. We illustrate this 

limitation with the following example. 

i- 
Multidimensional Score Set 

1200 

1000 

800 

U) 
(V 

Z 
600 

10 
s'? 

400 

200 
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0 Spatial 

0 Temporal, I 
LI Semantic'' 

Figure 2.5 An example set of multidimensional relevance scores (associated with Table 2.1) 

As an example, Figure 2.5 and table 2.1 present the spatial, temporal and semantic 

relevance scores of six datasets. Table 2.1 is a linear addition ofvalues from the 

graph in Figure 2.5, where the spatial, temporal and semantic relevance scores are 

multiplied by 5,10 and 20 respectively. From the Illustration, it can be seen that a 

one-dimensional representation of values (presented in the table) can lead to a 

misinterpretation of the individual relevance measures ofthe spatial. temporal and 

semantic properties of the datasets (Illustrated in Figure 2.5). For example. dataset 5 

has the lowest spatial relevance according to Figure 2.5. However, because ofthe 

weightings used in the linear model it appears to have the second highest integrated 

degree of relevance. This becomes a limitation when a user is particularly interested 

in individual relevance scores rather than the composite relevance score. 
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Title Score 
Dataset 6 1970 

_ Dataset 5 1660 
_ Dataset 1 755 
Dataset 2 830 
Dataset 4 660 
Dataset 3 635 

Table 2.1 Results of adding values from Figure 2.5 linearly, presented as textual listings 

Alternative cartographic presentations of search results are offered by the SPIRIT 

search engine (Purves et al., 2005). The system offers a 2D map with each document 

represented by an icon positioned at the location of the document's spatial footprint. 

Additional metaphors include a density-based cartogram, which represents the 

number of documents in the region by the size of the circles. Alternatively the 

numbers of documents can be presented in a 2D density surface. Although these 

approaches clearly improve on the traditional textual list, they however ignore the 

temporal relevance of documents. Temporal relevance is a useful constraint to use in 

GIR, as has already been observed by G6bel et al. (2002) and Beard and Sharma 

(1997). 

A study that considers all three properties of geographic data (space, time and theme) 

is by Beard and Sharma (1997). They propose calculating the temporal relevance 
from a ratio of the period defined by the candidate dataset and the period defined by 

the query. This approach to calculation of temporal relevance is consistent with that 

by Yamuna and Candan (2000) discussed earlier in this chapter, however Beard and 

Shan-na (1997) propose three separate fonnulae for handling different possible 

scenarios. In contrast, Yamuna and Candan (2000) propose a single similarity 

formula for handling different temporal scenarios. Similarly, Beard and Sharma 

(1997) propose an approach for calculating the spatial rank of candidate datasets 

based on the ratio of overlap between the spatial extent of datasets and a query. To 

address thematic relevance, they propose ranking several thematic fields separately 

and presenting a Boolean value to indicate whether a thematic field was matched or 

not. 

Consistent with proposals by G6bel et al. (2002), their study proposes ranking each 

property individually and thereafter combining the rankings graphically into a three- 
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part glyph, illustrated in Figure 2.6. Each part is colour-coded according to the 

calculated degree of relevance for that property, such that the darker the shade of 

colour, the higher the degree of relevance. However, related studies wam that the 

Red, Green, Blue (RGB) colour scheme of modem computer graphics "offers 256 3 or 

16 777 216 possible colour combinations, far more than the eye can distinguish" 

(Robinson et al., 1995: pp. 356). To overcome this, Beard and Sharma (1997) 

calibrate the glyphs into four parts starting from zero (i. e. 0,0.25,0.5,0.75 and 1). 

We highlight that this significantly reduces the resolution of each scale. However, we 

support their argument that their approach "avoids a meaningless mathematical 

combination of different attributes" (Beard and Sharma, 1997: pp. 158) and highlight 

that it is consistent with our discussion of the one-dimensionality of textual ranked 

lists presented earlier in this section. 

Spatial rank 

Thematic rank 

4 Temporal rank 

Figure 2.6 Multidimensional ranking glyph proposed by Beard and Sharma (1997) 

An alternative study by Rainio (2005) considers the visualisation of geographic 

metadata through a scatterplot matrix and parallel coordinate plots. A parallel 

coordinate plot arranges the axes of a multidimensional phenomenon into parallel 

bars and thus allowing several axes to be viewed concurrently. A scatterplot matrix 

presents all pairs of axes from a multidimensional set of matrixes in smaller 

scatterplots. From an experiment comparing the suitability of scatterplots to parallel 

coordinate plots for purposes of data discovery, Rainio (2005) observed that users 

found scatterplots more complex than parallel coordinate plots, even though they 

could detect the best datasets through using scatterplots. The users also spent more 

time viewing textual metadata than the parallel coordinate plots. The study concludes 

that although these forms of multivariate visualisations provide useful insight into the 

characteristics of geographic (geospatial) metadata, they however "cannot support 

users of geospatial metadata in the comparison of spatial elements of geographic 
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elements" (Rainio, 2005: pp. 92). We disagree with the generalisation of this 

conclusion, as comparison of spatial similarity (indicated through overlapping or 
intersection geometries) has been demonstrated in studies by Beard and Sharma 

(1997), and Larson and Frontiera (2004). The study does not consider important 

concepts of Information Retrieval such as similarity, relevance and ranking. 

It is necessary to enable a user to view and evaluate the 'fitness for use' of a 

candidate dataset. Raper et al. (2002) propose a framework for evaluating geographic 
information, through the visualisation of the datasets and associated metadata. They 

acknowledge the importance of allowing the user to assess a candidate dataset before 

acquisition, by examining a visualisation and the associated metadata. Through the 
implementation of a prototype, called PanoraMap, they demonstrate the feasibility of 
implementing a web-based visualisation application for assessing geographic 
datasets. Unfortunately, their study doe 

,s 
not consider the role of the data discovery 

system in assisting the user with evaluating candidate datasets. In short, their study 
does not consider the ranking of datasets and how inferred relevance is 

communicated to the user. 

This subsection has highlighted a major limitation of presenting ranked geographic 

search results as textual lists; specifically, the one-dimensionality of ranked textual 
lists was discussed. An alternative 2D cartographic approach was discussed as well; 
however, the 2D approach ignores temporal properties of geographic data. A 3D 

visualisation approach was also discussed; however, the approach relies on the 

ability of users to distinguish between different shades of colour which has been 

argued in related studies to be a difficult cognitive task. It should be noted that there 

has been increased activity within the web mapping community with the introduction 

of web maps on mainstream portals such as Google. This could be an indication of a 
future uptake of 2D and possibly 3D visualisation within future GIR applications. A 

further and more detailed discussion of visualisation approaches is presented in the 

next chapter. 
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2.3 Indexing and Text-Operations 

Also shown in Figure 2.1 is the role played by the Indexing mechanisms. The main 
benefit of creating an index is the significant improvement in retrieval time (that is, a 

shorter response time) (PostgreSQL Global Development Group, 2005). 

Unlike traditional IR systems, a GIR system has the added task of handling 

geometric information. Consequently, a GIR system ideally offers both textual and 

spatial indexing facilities. An example of a text indexing method is the B-tree 

approach, which breaks up text into nodes, then creates records of keys and pointers 

to each node or groups of nodes. A spatial indexing structure organises spatial 

objects into sets of buckets, which normally correspond to pages of secondary 

memory (Giffing 1994). An example of a spatial indexing approach is the R-tree -a 
B+-tree like structure which indexes groups of points, lines and polygons based on 

which MBRs would require the least expansion to accommodate a new object 

(Longley et al., 2001, Beckmann et al., 1990). An optimised variant of this approach 
is the R*-tree, which minimises the MBR of each enclosing node. Of all the R-tree 

variants, the R*-tree offers the best performance (Papadias and Theodoridis, 1997). 

Other spatial indexing methods include quad-trees, k-d trees and the Z-order index 

(Gaede and Giinther, 1998). A detailed description of each of these index methods is 

beyond the scope of this thesis; however Gaede and GUnther (1998) offer an 

extensive discussion of the approaches. 

To improve the retrieval performance of an IR or GIR system, the index is built over 

normalised text (Baeza-Yates, 1992). Text normalisation transforms metadata using a 

number of pre-defined operations, for example removal of stop-words such as "the" 

or "and", synonym mapping, stemming, standardisation of date fortnats and change 

of character case (from upper to lowercase or vice versa). A query to the IR system is 

also normalised, removing stop-words and specific characters, before an index is 

searched. Baeza-Yates (1992) cautions that text normalisation has the disadvantage 

that documents cannot be searched using common words as these may have been 

identified as stop-words by the system developer. 
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2.4 Ontology in GIR 

2.4.1 Ontology-assisted Query Operations 

Queries on a GIR system may be invoked in a number of ways, for example, by 

pointing at a map, typing in a question, pulling down a menu or clicking some 
buttons. The queries used by GIR systems are often expressed in controlled natural 
language to improve usability (Larson, 1996). It is easier for a user to remember the 

name of a place rather than the coordinates of a place. For this reason, geoportals 
have, historically, consisted of gazetteers that are relational tables consisting of 
tuples of <PlaceName, SpatialFootprinr> (de Oliveira et al., 1998, Larson, 1996, 

Brown, 1999, Tait, 2005). As the spatial footprints of abstract phenomenon, such as 

administrative or political boundaries are always changing, some gazetteers are built 

from <PlaceName, Centroidý> tuples instead. However, recent developments in 

ontology-assisted GIR have extended the ability of applications to use semantics that 

are more expressive than thesaurus and gazetteer databases (Abdelmoty et al., 2005). 

Ontology is a branch of metaphysics that is concerned with the nature or essence of 
being or existence (Soanes and Hawkes, 2005). Although originally an area of study 

within philosophical and metaphysical research, the study of ontology has been 

adopted by the computational sciences as a result of the increasing recognition of the 

potential of semantically-aware computation. From a computing perspective, "an 

ontology is the manifestation of a shared understanding of a domain, that is agreed 
between a number of agents, and such agreement facilitates accurate and effective 

communications of meaning, which in turn leads to other benefits such as 
interoperability, reuse and sharing" (Agarwal, 2005: pp. 504). The reference to a 
6shared understanding', in the definition proposed by Agarwal (2005), highlights the 
importance of an ontology being agreed upon by different stakeholders within a 
domain. The definition also highlights the 'communication of meaning' which refers 

to the exchange of semantic information between different agents. 
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Geographic Location 
+longitude : double 
+latitude : cloubl, 
+heiaht: double 

I 

I ... 
Administrave Area II Air Landing Area 

State II Country II Airfield II Airport 

Figure 2.7 A UML illustration of a simple Ontology (adapted from DARPA, 2001) 

Figure 2.7 shows a class hierarchy extracted from an ontology and illustrated in the 
Unified Modelling Language (UML). UML is a design notation used primarily for 

modelling object-oriented data models. According to the illustrated, an 
Administrative Area and an Air Landing Area are Geographic Locations, they 

therefore inherit properties from Geographic Location (namely Longitude, Latitude 

and height). Each State and each Country, by virtue of being an administrative area, 
is associated with exactly one Government. However, an Air Landing Area may be 

composed of one or more Runways. Within an ontological framework, each property 
is also defined such that relationships between classes can also be encoded, for 

example, a 'municipality governs a city'. 

The development of ontologies has presented the possibility of semantically-aware 
information processing on the web through the Semantic Web ----ý'a vision for the 
future of the World Wide Web in which information is given explicit meaning, 

making it easier for machines to automatically process and integrate information 

available on the Web" (World Wide Web Consortium, 2004). The geographic 

component of the semantic web has been the subject of several studies (Egenhofer, 

2002, Raskin and Pan, 2005, Rodriguez and Egenhofer, 2004). In his work 
Egenhofer (2002) identifies four methods for presenting geographic meaning within 
the Semantic Web; these include natural language through basic hypertext, simple 
metadata encoded in structured human-readable markup, data models encoding 
triples of (entity, relationship, attribute) and logical semantics which provide 
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relationships between terms and real-world entities. These methods of presenting 

geographic meaning in the Semantic Web form the basis of the 'Geospatial Semantic 

Web' (Kolas et al., 2005), referred to in some texts as the 'Semantic Geospatial Web' 

(Egenhofer, 2002). 

2.4.2 Sharing Semantics 

The World Wide Web Consortium (W3Q recently published the Web Ontology 

language (OWL) as a means of sharing semantics of entities and relationships 
between applications. Although it is now a WK standard, OWL was preceded by the 

DARPA Agent Markup Language and Ontology Inference Layer (DAML+OIL). As 

the name suggests, DAML+OIL was originally a project of the United States 

Defense Advanced Research Projects Agency (DARPA). OWL has been developed 

encompassing lessons leamt from the design and application DAML + OIL. Figure 

2.8 offers an illustration of an OWL fragment. 

<rdfs: Class rdf. 1D="GcographicLocation"> 
<rdfs: subClassOf rdf. resource=" #Location"/> 
<rdfs: comxnent> 

A Geographic Location is an item from the GEOFILE. 
It has a name and code. 

</rdfs: comment> 
</rdfs: Class> 
<rdfs: Class rdf. -1D="AirLandingArea"> 
<rdfs: subClassOf rdf. resource=" #G eographicLocation I'/> 
</rdfs: Class> 
<owl: Class rdf. -1D="AirPort"> 
<rdfs: subClassOf rdf. resource=" #AirLandin gArea "/> 
<owl: equivalentClass> 
<owl: Restriction> 
<owl: onProperty rdf. resource=" #installationTypeCode"/> 
<owl: hasValue> 

APT 
</owl: hasValue> 
</owl: Restriction> 
</owl: equivalentClass> 
</owl: Class> 

Figure 2.8 A subset of the GEOFILE Ontology encoded in OWL (DARPA, 2001). 
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The WK defines three derivatives (also known as "sublanguages") of OWL that 

make up the complete OWL specification; OWL Lite, OWL DL and OWL Full. The 

derivatives implement the OWL specification in increasing degrees of expressiveness 

that is, Full > DL > Lite. A detailed discussion of all the derivatives is beyond the 

scope of this thesis; however, a full discussion is offered by Antoniou and van 
Harmelen (2004). A summary of the main characteristics of the derivates is as 
follows: 

9 OWL Lite: Is the least complex of the three derivatives. It is mainly suited for 

users requiring a classification hierarchy and simple restrictions. For 

example, it imposes a maximum cardinality of one for every property 
defined. This is in contrast to the other derivatives that allow higher 

cardinality values. One of the benefits of having a simple version, despite its 

restrictions, is that it allows for easy migration of thesauri and dictionaries. 

OWL DL: This sublanguage offers more expressiveness than OWL Lite. For 

example, it allows maximum cardinality. It includes all OWL constructs, 
however it is subject to some restrictions to ensure that all conclusions are 

computable and can be computed in finite time. An example of a restriction 
imposed on using this sublanguage is that a class cannot also be an individual 

or a property. 
OWL Full: Both OWL Full and OWL DL use the same complete vocabulary. 
However, OWL Full does not have the same restrictions imposed on OWL 

DL. This language is basically the most expressive of the derivatives. 

Abdelmoty et aL (2005) present a critical comparison of OWL with the Geography 

Markup Language (GML). The latter language is developed by the Open Geospatial 

Consortium and is based on the object-oriented geographic data model (Open 

Geospatial Consortium, 2004). Their study concludes that OWL offers better 

mechanisms for representing relationships including relationships not included 

within the GML specification such as transitive, symmetric and inverse relationships. 
However, they acknowledge that GML offers a mature geographic data model that 
includes a large and rich vocabulary for encoding geographic concepts (Abdelmoty 

et al., 2005). This thesis supports the view that OWL offers more expressiveness of 

relationships than GML; however, we highlight that the GML specification allows 
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attributes of any type to be included within a geographic object. This means that it is 

possible to include a property in a GML object that references an ontology class 

encoded in OWL. It should be noted that though OWL is the current standard, there 

are other ontology languages in existence, some of which are considered more 

expressive that OWL itself (Agarwal, 2005). 

2.4.3 Ontology Implementations in GiScience 

One of the earliest investigations into the use of ontologies in GIR is by Hiibner et al. 
(2004). They present a system called GeoShare that allows users to search for 

geographic datasets and retrieve them from geographic web services. The retrieved 
datasets are then integrated into a 2D cartographic presentation. GeoShare computes 

the spatial, temporal and semantic relevance between a query and a document and 
integrates them into a single measure. The shortcomings of presenting single- 

measured relevance scores of geographic data have already been discussed earlier in 

this chapter. The linear function used by GeoShare is: 

Dc(A, B) =a Dh(A, B) + (I- a) Dv(A, B) 

where : 

"A is a query constraint 

"B is a candidate document property 

" Dh is the spatial distance 

" Dv is the hierarchical distance in the ontology 

" Dc is the integrated degree of relevance 

Another study involving the use of ontologies for the discovery of geographic web 

services is described in Klien et al. (2006). They present a scenario where data has 

been archived using the keywords "storm hazard model" and a user unknowingly 

searches for "estimate storm damage". They address this problem of heterogeneity 

through the implementation of a system that matches the outputs of geographic web 

services according to their semantics. They conclude that a method for constructing 

application ontology for service discovery should reflect the multitude of properties 
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that may be used during service discovery (Klien et al., 2006). A further discussion 

of their approaches is presented in Lutz and Klien (2006), where they propose a 

query language for invoking geographic searches. The query language allows users 

to select properties of specific ontology concepts using a variety of constraints. 

Figure 2.9 Conceptual design of the SPIRIT Geo-ontology (Jones et al., 2004). 

An example of a study that integrates concepts of semantics and GIR is the European 

Union-funded project called SPIRIT (Spatially-Aware Information Retrieval on the 

Internet) (Jones et al., 2002). The geographical ontology used within SPIRIT 

abstracts both the geographical and thematic structure of places for use within a GIR 

infrastructure, as illustrated in Figure 2.9. Unlike conventional geoportals, SPIRIT is 

unique in that it ranks unstructured content, specifically web pages. This differs to 
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other geoportals based on relational database engines and formal metadata as these 
hold structured data (formal data types and specified attribute fields). In contrast, 

content within web pages can be of any alphanumeric form and thus poses an 

additional challenge for IR. Using a domain ontology based on tourism and a 

geographic ontology for gazetteer purposes, the SPIRIT search engine is able to rank 
documents according to their textual and spatial properties (Jones et al., 2004). The 

role of ontologies within the SPIRIT system is illustrated in Figure 2.10. 

Ontologies 
Geo- 

Domain 

Relevance Metadata 
User Ranking 

Inter-face-I 

I 

Search 
Engine 

Web- 
Document 
Collection 

Indexes 
Spatial 
Textual 

Figure 2.10 The Architecture of the SPIRIT search engine (adapted from Jones ct al., 2004) 

As part of our study, an application was developed that expands a query with similar 

concepts extracted from an ontology. The application is called the Spatio-Temporal 

ontological Relevance Model (STORM) and is discussed in more detail later in this 

thesis. Given the wide range of ontologies available, two main ontologies were 

considered for supporting STORM, namely WordNet (Miller, 1995) and Cyc 

(CycCorp, 2003). WordNet is a lexical database offering approximately 100 000 

terms including nouns, verbs, adjectives and adverbs; statistics of which are 
illustrated in Table 2.2. A key concept of the WordNet ontology is the concept of a 

synset -a set of terms with similar meaning (i. e. synonyms). Semantic relations 
implemented in WordNet include hyponyms and hypernyms, known as 'ISA' 

relationships because they indicate that a class is a subclass of another. Other 
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semantic relationships include meronyms and holonyms, known as 'HASA' 

relationships because they indicate that a concept is a component of another. 

As WordNet defines terms in common and scientific use, it is often regarded as a 
lexical ontology or a linguistic ontology. Agarwal (2005) highlights that linguistic 

ontologies are sometimes used for translating between philosophical and engineering 

concepts by relating concepts to natural language. This suggests that a linguistic 

ontology such as WordNet is ideal for geographic data discovery as queries in GIR 

are often expressed in natural language (Larson, 1996). Further, WordNet includes 

geographical categories (Kavouras et al., 2005). Lastly, due to its relational model, it 

can be stored in both an OWL document and a relational database engine, the latter 

being significantly faster and more efficient when handling millions of records. The 

popularity of WordNet for IR applications, is also recognised by Mihalcea (2003), 

whose study proposes a series of transformations for improving the effectiveness of 
WordNet for IR. 

Part of speech Word forms No. synsets Total senses 

Noun 107929 74487 132408 

Verb 10805 12753 23256 

Adjectives 21364 18522 31078 

adverbs 4582 3611 5722 

Table 2.2 Statistics on WordNet (Mihalcea, 2003) 

Another example of a popular ontology is Cyc, which offers a knowledge base (KB) 

and an inference engine. "The full version of the KB contains over 2.5 million 

assertions (facts and rules), interrelating more than 155,000 concepts" Siegel et al 

(2004: pp. 3). The assertions are derived from expert knowledge in the domains of 

chemistry, biology, defence, diseases, grammar, lexicons and several others. Using a 

predicate-based language, called CycL, it is possible to add to, modify, delete from 

or query the KB. An API is provided for integrating Cyc with third-party clients. An 

additional feature, called the Semantic Knowledge Source Integration facility 

(SKSI), allows Cyc to read semantic descriptions from a relational database. Until 

July 14th, 2006, only a subset of the entire Cyc ontology was available for free. 
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Since then the entire KB has been made freely available and is expected to encourage 
further ontology-based research. 

Comparisons between these and other ontologies have been the subject of related 

studies by Lenat et al., (1995) and Kavouras et al. (2005). Their discussions suggest 

that Cyc offers more relationships per concept, whereas WordNet offers more 

concepts but with fewer relationships per concept. However, the successful use of 
WordNet in GIS is noted by Agarwal (2005) and its popularity is noted by Mihalcea 

(2003). Consequently, WordNet was selected for integration into the STORM 

prototype discussed later in this thesis. This subsection has presented some examples 

of studies involving the use ontologies in geographic or IR applications. The studies 
discussed in this subsection were selected because they discuss ontology-supported 
discovery specifically; other studies discussing the use of ontologies in geographic 
infortnation science can be found at Albertoni et al. (2005), Arpinar et al. (2005) and 
Raskin and Pan (2005). 

2.4.4 Calculating Semantic Similarity Using WordNet 

Several studies have proposed approaches for calculating semantic similarity using 
Wordnet. Varelas et al. (2005) classify the approaches into three groups: edge 

counting, information content and feature-based approaches. Edge counting methods 

calculate semantic similarity based on the length of the path mapping one concept to 

another (Richardson and Smeaton, 1995). The shortest path from one concept to 

another represents the highest similarity. Resnik (1999) observed that a limitation of 

an edge-based approach is that it assumes equivalent distances between nodes in the 

path. However, uniform distances between nodes are difficult to define as some parts 

of the taxonomy may have a higher density of concepts than others. This irregularity 

in densities of links between concepts can lead to "unexpected conceptual distance 

measures" (Richardson and Smeaton, 1995: pp. 6). Feature-based methods calculate 

semantic similarity based on the properties of terms or on their relationships to other 

similar terms in the taxonomy. An example of a feature-based approach, the Tversky 

(1977) similarity model, was discussed earlier in this chapter. As Richardson and 
Smeaton (1995: pp. 4) note, "Tversky's feature based similarity model is arguably 
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the most powerful similarity model to date". However; they also note that the 

existence of relatively few semantic relations in Wordnet, limits its effectiveness for 

IR purposes. 

Information content-based methods calculate the difference in information content of 

two concepts based on the probability of occurrence of the concept in a corpus 
(Resnik, 1999). Mathematically, the information content is the negative of the log of 
the likelihood of occurrence. This suggests that a similarity measure based on an 
information content-model can adapt well to different applications, provided the 

application is adequately represented in a corpus. Within a GIS-domain for example, 

the terms 'geographic' and 'spatial' would likely have high probabilities of 

occurrence in a geospatial metadata collection, as they are often used to describe 

geospatial datasets. However, Richardson and Smeaton (1995) observed that the 

information content model only considers synonym and ISA relations, thus ignoring 

other semantic relations such as HASA. Another limitation of this approach is that it 

considers only the existence of a lexical equivalent on a term, ignoring the semantic 
definition of a term; for example, the probability of occurrence of the term bank 

would be influenced by references to 'river bank' and 'commercial bank'. 

2.5 Chapter Summary 

A geo-centric modification of the process of IR was presented in Figure 2.1 and the 

sections within this chapter discuss each stage of that process. Some of the issues 

discussed included indexing, ranking, query operations and the visual interface. An 

examination of the literature suggests that GIR-based research is an integration of 

concepts from IR research and Geographic Information Science. Considerations in 

IR tend to be directly applicable to geographic data, as geographic data includes 

attributive properties that may not be of a spatial nature. However, as has been 

illustrated from the referenced texts, IR ignores spatial properties and hence geo- 

centric methodologies are necessary for efficient GIR. 

The concept of relevance in IR was also examined. Of particular importance is the 
high-dimensionality of relevance and how it leads to variations in the perception of 
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relevance amongst different users. A view characterising relevance according to 

system and human-based relevance, proposed by Borlund (2003a), is discussed. We 

contend that this view implies that evaluation of an IR or GIR system should reflect 

whether relevance is being assessed by an application or the human. The discussion 

on relevance presented in the chapter leads to an examination of ranking approaches 

used within the field of IR and GIR. Different relevance computation approaches are 

presented based on similarity, proximity and hyper-textual references. Most of the 

ranking models presented result in normalised probabilistic values offering a 

standardised interface for implementation in any GIR system. 

The role of ontology and semantics within query operations is also examined. Within 

a GIR infrastructure ontologies promise to extend the services originally offered by 

gazetteers and thesauri. A description of the current standard used for encoding 

ontology, OWL, is also presented. Related research comparing OWL with GML (a 

standard for encoding geographic data) is also presented. Also noted is the concept of 
the Semantic Web and its geographic component, the Geospatial Semantic Web. 

Approaches for presenting meaning within a Geospatial Semantic Web are presented. 
This thesis emphasizes that these methods of presenting semantics, coupled with 
Ontology encoding standards, offer the possibility of multiple GIR systems sharing 
the same definitions of semantics. 

The chapter contended that ranked lists are one-dimensional in nature. An illustration 

is offered showing how three series are merged into a single value when presented in 

a textual list. Related studies that support the view that ranked lists are one- 
dimensional were presented. One of the presented studies proposes a 2D cartographic 

approach for presenting results on a GIR system. The approach, implemented on the 

SPIRIT search engine, ignores temporal properties of the candidate datasets. An 

alternative approach, discussed in this chapter, proposes a multidimensional visual 

metaphor for presenting degrees of relevance through a multi-part glyph. Each part 

of the glyph is shaded according to a four-step scale representing the degrees of 

relevance. Although the approach improves on the textual ranked list, a scale of four 

shades reduces the resolution of a similarity-based relevance score (a fraction 

between zero and one). However, a four-step scale ensures that each degree of 
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relevance is distinguishable from the next on the scale. The next chapter considers 
the visualisation and computer graphics with regard to geographic data discovery. 
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Chapter 3 Visualisation Support for Geographic Data 
Discovery 

The appearance and presentation of geographic information has been the subject of 

several studies in geographic visualisation (geovisualisation) - defined as the 

integration of approaches from scientific visualisation, cartography, image analysis, 
information visualisation, exploratory data analysis and GIS to provide theory, 

methods and tools for visual exploration, analysis, synthesis and presentation of 

geographic data (MacEachren and Kraak, 2001). Concepts developed in 

geovisualisation research are important for geographic data discovery as they assist 
in communicating descriptions of datasets and associated metadata to users. This 

chapter starts by tracing the conceptual origins of geovisualisation with respect to 

data and information and goes on to discuss the visualisation of geographic data and 

the results of a geographic search. 

3.1 An Introduction to Visualisation 

The maxim "a picture is worth a thousand words" represents traditional thinking 

regarding the benefits of visualisation. The fundamental objective of visualisation is 

to allow humans to get insight into data and draw conclusions through the detection 

of relationships between the portrayed objects. Visualisation as a means to data 

exploration is particularly useful for extracting information from large amounts of 

potentially useful datasets. However, it is widely suggested within information 

systems research that the availability of data does not necessarily imply the existence 

of information, knowledge or wisdom. It is the role of computer assisted systems 

such as visualisation applications to attempt to make information apparent to a 
human. This raises the question, "when does data become information? " Longley et 

al., (200 1) suggest an answer to this question in their portrayal of decision-making 

support infrastructure(Figure 3.1): 
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Data: The quantities or characters operated on by a machine such as a 

computer. For example, recordings of wind direction, rainfall and 

temperature measurements in the Kalahari Desert may be considered as data. 

Information: It is data that has been selected, organised and prepared 

according to a given purpose or a posed question. For example, the rainfall 

measurements aforementioned offer an answer to the question "is the 

Kalahari Desert a dry terrain? ". In this case the weather conditions of the 

desert (dryness in particular) are the context within which the question is 

posed. 
Evidence: A conflation of validated (and sometimes contradictory) 
information from different sources related to specific problems. For example, 

rainfall measurements from the desert for a period of a week could suggest 

that the desert is wet territory. However, a series of rainfall datasets over 
longer periods would offer statistical evidence to the contrary. 

Knowledge: It is information to which value has been added by interpretation 

based on context, skill, experience, education or purpose. For example, it is 

widespread knowledge that deserts are generally dry territories. 

Wisdom: It is the most difficult to define as it is highly individualised and 
depends on the context within which a decision is made based on all the 

available evidence and knowledge (Longley et al., 2001). 

Wisdom ' 

Knowledge 

Evidence 

Information 

Data 

Figure 3.1 Decision-making support infrastructure (Longley et al., 2001) 
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3.1.1 Analysis through Visualisation 

Having distinguished between data and information we next introduce information 

visualisation. Information Visualisation is that aspect of visualisation that deals with 

the representation of abstract and non-spatial concepts and relationships that may not 
have physical counterparts in the real world, for example, the concept of relevance 
discussed in Chapter 2 (de Oliveira and Levkowit, 2003, Rohrer and Swing, 1997). 

Scientific visualisation, sometimes referred to as Visualisation in Scientific 

Computing, involves the representation of measured or simulated data representing 

objects or concepts associated with phenomenon from the physical world (de 

Oliveira and Levkowit, 2003). Both these categories of visualisation create graphical 

representations from data and facilitate the detection of patterns and relationships 
between objects. This thesis adopts the view that geographic visualisations span the 
definitions of both scientific and information visualisation as the attributive 

component of a geographic datum can hold varying forms of data or information. 

An important concept in Information Visualisation is spatialization, which is defined 

as "data transformation method based on spatial metaphors, with the aim of 

generating a cognitively adequate graphic representation (e. g. a depiction that 

matches human's internal visualisation capabilities) for data exploration and 
knowledge discovery" (Fabrikant and Skupin, 2005: pp. 668). To enable a user to 

effectively interpret an information visualisation, Fabrikant and Skupin (2005) 

identify three main challenges as being important for spatialization, i) encoding the 

semantics of data into appropriate spatial metaphors, ii) employing appropriate 

spatial structures for visually depicting the semantics of the data, iii) controlling the 

potentially experiential effects spatialized visualisations may have on users through, 

for example, controlled navigation and browsing. They propose the use of ontology 

to generalise the semantic descriptions, by identifying the essential characteristics of 
the source, and formalizing the appropriate source-target referencing rules. This form 

of semantic generalization is then followed by geometric generalization, which 
involves the reduction of the geometric detail of a representation. Historically, the 
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reduction of the amount of semantic or geometric detail from spatial information has 

been an area of study within cartographic generalization (Robinson et al., 1995, 

Kraak and Ormeling, 2003). 

Figure 3.2 The original map of the 1850s cholera outbreak in London by Dr John Snow 
(Gilbert, 1958) 

One of the earliest applications of visualisation within the geographic domain was in 

1855 by Dr John Snow. In the second edition of his paper 'On the mode of 

communication of cholera' Dr Snow presented a map, shown in Figure 3.2, 

illustrating the locations of the first five hundred deaths from cholera in the Broad 

Street area of London in September 1854 (Gilbert, 1958, Longley et al., 2001). The 

deaths had occurred over a period of ten days. The 'cholera field', as Snow referred 

to it, had its centre at a pump in Broad Street. This led to Snow formulating a 
hypothesis that "the incidence of cholera was only amongst people who drank from 

the Broad Street pump". At Snow's request, the handle of the pump at Broad Street 

was removed and the incidence of new cases ceased almost immediately. A modem 
day example of visualisation within spatial analysis includes a study, by Proctor et al. 
(2005), on the spatial autocorrelation between troop locations and health symptoms 
in the 1991 Gulf War. Their study employs visualisation techniques to arrive at 

49 



Chapter 3: Visualisation Support for Geographic Data Discovery 

results suggesting "significant local spatial clustering" in terms of where veterans 

were located during their deployment in relation to severe postwar health conditions. 

a 

Based on these examples of visualisation-supported spatial analysis and on the 

aforementioned definition of geovisualisation by MacEachren and Kraak (2001), we 

take the view that geovisualisation is not only about how the world looks but also 

about how the world works. As geographical information, by definition, always 
includes the dimensions of location and attribute, the rest of this chapter therefore 

discusses 2D and multidimensional geovisualisation. 

3.1.2 Comparative Studies between 2D and 3D 

Before discussing geovisualisation later in this chapter, it is important to note that the 

usefulness of multidimensional visualisations is an active area of research and 

controversy. Nielsen (2000) offers a criticism of three-dimensional (3D) visualisation 

centred on a difficulty to navigate a virtual -world. We appreciate that the views were 

published in 2000 before the current generation of 3D applications, such as Google 

Earth, that have been acquired by the wider public (Butler, 2006). The high 

download statistics for all the aforementioned Digital Earth applications suggest that 

the public is becoming more accustomed to 3D navigation, possibly due to the 

increasing popularity of videogames. The role of videogames in improving users' 

navigation skills is suggested by results from a study by Sj6linder et al (2005), whose 

study showed that older users needed more time to solve tasks in 3D virtual 

environments as compared to the younger users - who make up most of the 

videogaming community. Second, we contend that navigation cannot be considered 

an appropriate indicator of the usability of all 3D applications as it varies from 

application to application. Variability of navigation controls is not unique to 3D 

visualisation applications but is also evident in two-dimensional (21)) visualisation 

applications as well, for example between ESRI ArcMap and Autodesk Map. Instead 

we suggest that the ability of users to discern accurate and useful information from a 

visualisation is a more appropriate indicator. 
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In a study by Ware and Frank (1996) improvements of a factor of three in support of 

stereo-enabled 3D visualisations over their 2D alternatives were observed. These 

observations are supported by a quantitative comparison of 2D and 3D visualisation 
by Carvajal (2005) who observed an increase in understanding when users were 

exposed to 3D models as compared to traditional 2D drawings. In another study, 
Cockburn and McKenzie (2004) observed that there was no significant difference 

between the effectiveness of spatial memory when using 2D and 3D computer- 

supported systems; However, effectiveness decreased when using static 3D physical 

models (made from wires, papers cards and strings). They expressed reservations 

over the role of static-perspective views in 3D. This thesis supports their view that 
3D physical models are limited in their usability, however we highlight that real-time 

computer graphics are dynamic and not subject to the same limitations. This is 

evidenced by an evaluation study by Risden et al., (2000) in which they observed 
that users performed search tasks faster, without j eopardising quality of response, on 
dynamic 3D visualisations in comparison to 21? visualisations. Based on the 

arguments posed by these earlier studies we conclude that 3D visualisation has a 

significant role to play in Information and Scientific visualisation by making 

apparent relationships between objects; however, its role is alongside its 2D 

counterpart. 

3.2 Geovisualisation 

Being able to convey information using different metaphors of visualisation is 

important for data discovery as users may be accustomed to viewing variable 

metaphors depending on their context, skill, experience, education or purpose. These 

parameters have already been noted as being important factors of knowledge in 

Section 3.1. We illustrate the importance of variable metaphors with the following 

example involving civil engineers and hydrologists: civil engineers often use surface 

models when designing new roads or construction sites. Hydrologists often use 

contour maps to determine river catchments and other topographic features. This 

thesis contends that given some geographic data, it is appropriate to allow each user 
to be able to view the data using a metaphor they are accustomed to. Hence given a 
grid of spot heights, a civil engineer may choose to visualise it as a surface model, 
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shown in Figure 3.3a; and a hydrologist may visualise it using a contour plot, shown 

in Figure 3.3b. 
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Figure 3.3 Different visualisations created from the same grid of spot heights: (a) a surface 
model (b) a contour plot 

3.2.1 Two-Dimensional Geovisualisation 
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Geovisualisations are normally constructed from two forms of data namely, vector 
data encoded as points, lines, polygonal or volumetric objects and raster data 

encoded as regular matrices of values (Longley et al., 2001). Individual objects in 

vector data represent individual entities in the real world. This is in contrast to raster 

geographic data, where a single dataset encodes the continuous variation of a single 

phenomenon, such as temperature. Using these basic geometric constructs, 

geographic information scientists have been able to compile and integrate datasets 

into meaningful visualisations. Miscellaneous geovisualisations cater for the 

variations in perceptions of relevance discussed in Chapter 2 of this thesis. By 

presenting these visualisations during geographic data discovery, the geoportal is 

providing some 'visual metadata' to enable the user to reach judgement on the 

relevance of a dataset. 

Some of the ways through which two-dimensional geovisualisations can be classified 
is through measurement scale, corresponding graphical variables and the continuity 

of the data (Kraak and Ormeling, 2003). A classification based on these 

characteristics is shown in Figure 3.4. Measurement scales derived from the values 

of the properties in the data can be distinguished as being nominal, ordinal, interval 

or ratio scale (Kraak and Ormeling, 2003, Robinson et al., 1995). The six basic 

graphical variables applied to point, linear and polygonal shapes include differences 

in size, colour, texture, hue, orientation and shape (Bertin, 1983). The (dis)continuity 

of data forms a fundamental aspect of map design as it directly relates to vector and 

raster data models. 
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nominal ordinal/interval/ratio composite 
graphic variation of Repetition _ variation of variation of 
variables hue, grain, size, size, 

orientation, grey value segmenta- 
form tion 

point data nominal point dot maps proportional point diagram 
maps 

linear data nominal line 
Towline 

maps line diagram 
a)lines symbol maps 

b)vectors standard graduated vector 
vector maps vector inaps diagram maps 

poly . gonal land use maps regular grid proportional areal diagram 
I data symbol maps symbol grid grid 

a)regular maps and 
distribute-on choropleth 
b)irregular chorochro- choropleth areal diagram 
boundaries matic mosaic 

maps 
volume data stepped 

statistical 
Surface 

surface data isoline map filled-in isoline 
map 

volume data smooth 
statistical 
surface 

Figu re 3.4 A classification of different mapping methods based on measurement scale, 
corresponding graphical variables and continuity of data (Kraak & Ormeling 2003: pl)127). 
Grey cells show continuous data and white cells show discrete data. 

Ordinal scales of measurement, as applied to cartography. distinguish by class and 

rank objects within a class according to a quantitative measure. These allow for 

visual comparisons between maps as they encode values of attributes by colOUr, 

shade or other visual variables (Andrienko and Andrienko, 1999). For example, dot 

maps where a high density of maps represents a concentration ofa phenomenon. 
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Additional dimensionality can be added by varying two or more graphic variables 

such as hue with the sizes of points, lines or polygons. Within a geographic data 

discovery framework, quantitative representation of geographic information offers 
immediate visual data exploration as compared to presenting the user with relational 

tables of alphanumeric data. 

Similarly, interval scales of measurement introduce a specified quantity between 

ranks. The interval is specified in terms of a standardised unit of measurement and 

remains equal between all consecutive ranks. For example, elevation above mean sea 
level can be scaled into 256 equal parts, allowing it to be presented on a Red, Green, 

Blue (RGB) 8-bit screen. Ratio scales are an extension of interval scales; however, 

ratios have a non-arbitrary absolute zero. Ratios are, therefore, independent of the 

unit of measurement. For example, an object that is 4 metres long remains twice as 
long as that which is 2 metres long, even if the length is measured in inches. Other 

examples of ratio scales include weight and population. 

In contrast, nominal scales distinguish objects on a map according to qualitative 

considerations. These, therefore, do not imply any quantity of a represented 

geographic phenomenon. For example, a chorochromatic map presents differences 

between classes of phenomenon, such as land-cover. No order is assumed between 

each class and hence they are regarded as presenting qualitative information. Another 

example of a qualitative map is a tourist map that simply identifies names and 

locations of places of interest. Within a geographic data discovery framework, 

nominal maps can offer information about the semantics of the map. An integration 

of two geographic datasets and their presentation on a nominal map could allow 

users to discover composite datasets that are much richer in information than their 

aggregate subsets. 

This subsection has presented some of the different approaches used in 2D 

geovisualisation. It has highlighted the challenge of matching a method of 

representation to the needs and experience of a user. It should be noted that not all 

presentations of geographic information are map-based, for example, bar charts of 

rainfall measurements sampled at different locations present geographic information 

55 



Chapter 3: Visualisation Support for Geographic Data Discovery 

but are not maps. Whereas, this subsection discussed 2D representation, the next 

subsection discusses 3D and higher dimensional representation of geographic 

information. 

3.2.2 Multidimensional Geovisualisation 

One of the most common types of 3D geovisualisation is the Digital Terrain Model 

(DTM). A DTM is a digital three dimensional representation of a terrain surface and 

of selected I D, 2D and 3D geographic objects that are related to this surface (Kraak 

and Ormeling, 2003). The geographic objects referred to in the definition may 

include manmade infrastructure such as buildings, roads, bridges and others. When 

the digital representation shows only altimetry then it is referred to as a Digital 

Elevation Model (DEM). "The DEM is the most useful representation of relief in 

GIS" (Longley et al., 2001: pp. 289). DTMs have been widely used in geology to 

illustrate subsurface constructs and their relationships, for example, underground 

mineral deposits in relation to settlements above surface. Other applications of 

DTMs have been in demonstrating the effects of extreme weather conditions such as 

hurricanes and floods. Figure 3.5 presents a DTM showing proximity of buildings to 

a river. 

Just as there are different methods of 2D geovisualisation, 3D geovisualisations can 

also be significantly dissimilar. This dissimilarity in realism and content is 

sometimes due to the extra degrees of freedom and the significantly powerful 

graphics capabilities available in present day computer platforms. An examination of 
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the geovisualisation literature suggests that web-served 3D terrain models towards 

the end of the millennium were often localised subsets of the whole earth, for 

example, terrain and buildings within the city limits of Newcastle upon Tyne. One of 

the major reasons for this limitation was that graphics rendering operations were 

computationally intensive and early hardware capabilities had not advanced enough 

to handle the computations effectively and efficiently. However, improvements in 

the affordability and availability of high-performance computer graphics technology 

have resulted in the creation of dynamic and seamless DTMs. A metaphor that has 

resulted from the availability of improved computer graphics is the Digital Earth 

concept, which presents geographic information on a representation of the earth 

centred in 3D Cartesian space as illustrated in Figure 3.6. 
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where: 
" (P is geographic latitude 
"k is geographic longitude 
"P is a point at a location on earth 
" X, Y and Z are axes in geocentric Cartesian space 
"N is North on a 2D map 
"E is East on a 2D map 

Figure 3.6 Coordinate Transformations between 2D, 3D geographic and Cartesian space 

The Digital Earth metaphor, originally proposed by former US Vice President Al 

Gore (Gore, 1998), is drawn from the vision of 'zooming' in from space to the exact 

location of a dataset or information; effectively moving from very small-scale to very 

large-scale geovisualisations. For geoportals this could allow users to view 

atmospheric, astronomical, cadastral and meterological data within the same 

visualisation. Software implementing this concept include Google Earth, NASA 
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World Wind and ESRI ArcGlobe (Butler, 2006). The most popular of these packages 
is Google Earth, with over 1500 000 downloads, followed by World Wind with over 
500 000 downloaded (download. com, 2005). However, as Butler (2006: pp. 777) 

notes "Google Earth has no analytical functions and is not meant to replace 

professional GIS software". This could suggest that the public is appreciating the 

benefits of geovisualisation-supported IR, as Google Earth is primarily an IR 

application and does not offer spatial analytical capabilities. 

With the axes in 3D Cartesian space representing spatial coordinates, the fourth 

dimension is commonly implemented to represent time in geovisualisation. Due to 

the inherent temporal nature of animations, they are often used to represent change 

with respect to time. The change may be of a spatial or attributive nature, for 

example a hurricane that changes in both strength and location in time. A detailed 

discussion of computer animation would be beyond the scope of this thesis but a 

more detailed discussion can be found at Watt and Policarpo (2003). This thesis, 

however, highlights the potential for animating a historic series of geographic 

datasets. As geoportals allow for access to archived datasets, animated 

geovisualisation could allow the user to browse through different editions of the 

same dataset so that changes may be visually detected during data discovery. 

This subsection has examined the different approaches to 3D geovisualisation, 

differing in levels of realism. Also presented is the Digital Earth vision which forms 

the basis of popular software such as Google Earth. This thesis notes the possible 

benefit of the Digital Earth concept for geoportals serving earth observation 

information. Also highlighted in this subsection is the benefit of animating higher 

dimensional (4D and beyond) data during data discovery. The next section discusses 

the graphics technologies that make these visualisations possible. 

3.3 Interactive Real-time Computer Graphics 

The technologies enabling geovisualisation include interactive real-time 3D 

computer graphics hardware and software. D611ner (2005) offers a three level 
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classification of computer graphics technologies, the classes are low-level, high-level 

and description languages. An illustration of their architecture is shown in Figure 3.7. 

Low-level computer graphics systems generally include two main technologies, 

OpenGL and DirectX. The former is an open technology, originally by Silicon 

Graphics Inc (SGI) and "is the most widely-adopted device-independent 3D graphics 
API" (Chen, 2002: pp. I 11). On the other hand, Direct3l), the 31) rendering engine 

of DirectX, is a closed product of the Microsoft Corporation and is the de-facto 

standard 3D graphics engine for the Windows platform (Chen, 2002). 

These low-level technologies offer a functional approach to the developer. This 

means that rendering follows a 'bottom-up' or 'step-by-step' approach, in contrast to 

an object-oriented approach which allows some functions to be grouped into a class. 
For an object-oriented approach, developers have implemented higher-level 

scenegraph Application Programmers Interfaces (APIs) that encapsulate algorithms 

and data structures that operate on lower-level OpenGL or Direct3D functions. 

"Although there are a few scenegraph APIs available, none have yet become 

dominant"(Angel, 2006: pp. 523). 

Scene Description I 
Language 

I 

High-Lcvcl API 

OpenGL/ I 
DirectX 

I 

Virtual Machine 

Hardware 

Figure 3.7 Modern Graphics Architecture (adapted from Angel, 2006) 
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Two examples of high-level graphics APIs are OpenGL Performer and Java3D. 

OpenGL Performer, originally by SGI, offers a scenegraph-based data model over 
OpenGL functions. Its programming platform is based on the C and C++ 

programming languages. A major benefit of OpenGL Performer is that it offers 

multiprocessing (Rohlf and Helman, 1994). This means that it can split rendering 

amongst different Central Processing Units (CPU) and ensure that they are all 

synchronised. Another benefit is that it monitors and modifies the frame rate 

according to user requirements when initiating a simulation (Seron et al., 2002). It 

also manages available memory resources by using auto-detecting high-level calls 

and reserving necessary memory for execution before entering the main simulation 
loop. A major disadvantage of using OpenGL Performer for our study is that it is not 

web-deployable meaning it must be installed on the client machine prior to use. 

Another widely adopted API is Java3l), originally developed by Sun Microsystems. 

A user is offered the choice of installing either an OpenGL or DirectX wrapper. By 

virtue of being a Java API, it allows the developer to create 3D applications using a 

single language, Java, and embed additional Java functionality such as relational 
database connectivity. Similar to other Java-based applications, the disposing of 

created objects is handled by the 'garbage collector' of the Java Runtime 

Environment (JRE). Although this is a benefit for Java applications, for Java3l) it 

results in slower frame rates due to higher memory consumption (Selman, 2002). In 

contrast, native-based APIs, such as OpenGL Performer, allow the developer to 

create 'deconstructors' that can be invoked to dispose of objects at any time during 

execution. Selman (2002) also highlights the tendency of Java3D applications to stall 
during garbage collection. Despite this disadvantage, Java3D offers several benefits 

for example, access to other Java APIs, platform-independence, client-side 

computation, web-deployment through Java webstart and applets. Although both are 
deployed via the web, Java applets are embedded on a webpage and webstart 

applications run as standalone applications. 

At the highest level of the architectures illustrated in Figure 3.7 are the scene 
description languages (fonnats) such as the Virtual Reality Modelling Language 

(VRML), Openflight, eXtensible 3D (X3D), 3D Studio Max and others. These 
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languages allow for the encoding of a 3D virtual world within a text or binary file. Of 

the aforementioned languages, VRML is the most widely adopted for web-based 

visualisation. The latest version, called VRML97, was formally adopted by the 
International Organisation for Standardisation as ISO 14772. One of its main benefits 

is that it is encoded in ASCII text and hence is human-readable. Another benefit is 

that, because it is an ISO standard it is open and supported by several viewers. It 

also adopts a scenegraph data model similar to that of OpenGL Inventor and its 

successor OpenGL Performer (Chen, 2002). 

However, there are disadvantages of using VRML, or its geographic modelling 

profile GeoVRML. First, it only offers single-precision floating point values; which 

means it is not possible to present geographic data resolutions greater than 10 to 100 

meters (Rhyne, 1999, Moore et al., 1999). Second, it supports a fixed number of 

spatial referencing systems, specifically 3 coordinate systems, 21 ellipsoids and I 

geoid (GeoVRML WG, 2002). Third, at present most video cards will support 
texture sizes of 1024 by 1024 pixel dimensions therefore terrain representations 
larger than this require the geometry to be 'decomposed' into several smaller 

aggregates. This results in a heavier load on bandwidth, when using VRML for web- 
based visualisation, as all the aggregate textures have to be transmitted over a 

network (GeoVRML WG, 2002). Fourth, VRML is encoded in ASCII text which is 

verbose, in comparison to binary file formats (Horstmann and Cornell, 2001). VRML 

is therefore, slower to parse than its binary counterparts. Last, linking a VRML 

model to an external database required a use of the External Authoring Interface 

(EAI), however the EAI was particularly unstable as vendors developed their own 

custom implementations (Moore et al., 1999). X31), VRML's successor, has 

addressed the issue of floating point numbers by offering double-typed numbers. 
However, other issues observed with VRML remain unaddressed by the X31) 

specification (Web3D Consortium, 2004). 

3.4 Techniques of Web-based Visualisation 

Within this section we consider current approaches for web-based visualisation with 

respect to geographic data and geographic searches. The section describes how a 

61 



Chapter 3: Visualisation Support for Geographic Data Discovery 

web-deployable high-level graphics API such as Java3l) overcomes some of these 

limitations. The section focuses on web-based visualisation as geoportals and other 
GIR systems are similarly web-based. 

3.4.1 Visualising Results of a Geographic Search 

One of the stated research questions is "how can ontology be used to support 

visualisations of geographic search results? ", this question will be addressed in this 

subsection. The previous chapter presented the view that geographic relevance is 

made up of at least three main properties - spatial, temporal and thematic (semantic). 

Although geographic data as described in metadata is highly dimensional, users find 

it difficult to visualise spaces of more than three dimensions (de Oliveira and 
Levkowit, 2003, Fabrikant and Buttenfield, 2001). We therefore limit this discussion 

to the three aforementioned properties of geographic relevance. A challenge for 

presenting geographic relevance based on three-criteria ranking is that textual ranked 
lists, as already discussed in the previous chapter, are in effect one dimensional as 

they list search results from top-bottom or vice versa. Consequently, some studies 
have investigated the possibility of presenting search results in multidimensional 

visualisations. We discuss some of these in this subsection. 

In their study, Leuski and Allan (2004) propose spring-embedded visualisation for 

visualising clusters of ranked documents. Their approach, named Lighthouse, scales 

the multidimensional similarities of documents down to Euclidean space and maps 

representative spheres in Euclidean space such that the distances between the spheres 

correspond to the dissimilarities between the original documents as closely as 

possible (Leuski and Allan, 2004). Figure 3.8 shows a simplified depiction of the 

Lighthouse system. They observed that users constantly pointed out that accurate 

identification of the inter-document distances in 3D required frequent rotations of the 

structure thus making the visualisation task more difficult. They hence concluded 

that although 3D spring-embedded visualisations were more accurate than 2D 

visualisations in their portrayals of inter-document similarity, users still found it 

easier to use 2D visualisations for their IR tasks. Although users appeared to prefer 
2D representations in comparison to the Lighthouse system, we highlight that the 
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axes are not calibrated-, therefore they do not offer a visual aid for detecting distances 

or depth. Further, the Lighthouse system ignores the spatio-temporal properties of 

documents as it is designed for traditional IR, therefore it does not address spatial 

data discovery. 

A Sense of Place - 6. Geography of the 
Developing a world 
Gazetteer 

7. From National 

gla Geographic to Global 2. Places in Eng nd -1 
and Wales Geographic 

8. GIS tackles Cancer 
3. AnyWho: Internet 

Directory 
Assistance 9. Map Resources 

4. Cyndi's List &, 
Geographical 10. Geospatial Science 
Information 

5. , eoXwalk 11. Geomatician wins 
Gazetteer Project Nobel Prize (D 

Figure 3.8 Depiction of the Lighthouse visualisation (Leuski and Allan, 2004) 

Similarly, G6bel et al., (2002) use a 31) ViSLialisation metaphor to present search 

results on their GeoCrystal systern. Although the ViSUalisation is presented In a 31) 

environment, a vector map occupies the xy plane and the spatial footprints of' each 

document are rendered on this vector map. This means that only a single dimension 

is left for both the temporal and the thernatic properties. Further, GeoCrystal ignores 

the proportion of the area covered by the candidate document to that covered by the 

query, a consideration recogrused by other studies by I-arson and Froliticra (2004) 

and Beard and Sharma (1997). Another disadvantage ofthe GeoCrystal visualisation 

metaphor is that it does not provide a Visual aid t'Or interpreting intcr-docunient 

proximity within the 331) presentation; this makes interpretation dif'ficult when not in 

stereo-view. However, an advantage ofthe system is that it acknowledges the spatial, 

temporal and thematic characteristics ot'geographic metadata, thereby Supporting 

heterogeneous perceptions ol'geographic relevance. 
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This thesis proposes the use of 3D space to illustrate the degrees of relevance of 

geographic data based on the three components of geographic relevance already 

identified. We name the approach the Spatio-Temporal Ontological Relevance 

Model (STORM) and illustrate its conceptual design in Figure 3.9. Each axis in 

STORM is assigned to a component and graduated from zero to one so that 

normaliscd functions. discussed in Chapter 2, for computing the spatial similarity 

(Larson and Frontiera. 2004). temporal similarity (Yamuna and Candan. 2000) and 

semantic similarity ('I'-.., ersky. 1977) can be represented in -3)D space. Fach candidate 

dataset is then mapped to 3D coordinates based on the similarity/rclevance values. 

We further propose that the v1sualisation support rotation about the vertical axis and 

translation along both the vertical and horizontal planes. 

spatial shr iporal similarity 

Figure 3.9 The STORM vector space model for representing the relevance of geographic data 

The similarity measures are normallsed such that the least relevant documents are 

positioned closer to coordinate (0,0,0) and the most relevant documents closer to 

(1,1,1 ). The normalised axes mean that any similarity function that rctUrns valLICS 

ranging from zero to one can be assigned to ail axis 'N'thin tile STORM environment. 

The sensitivity of each ofthcse measures is represented by the scaling, ofall axes 
from zero to one, thereby allowing positions to incrcasc or decrease along cach axis 

through equal units. With documents presented as thumbnails. the geometric size of 

the thumbnails is intentionally kept constant so as to help the user detect distance 

easily through perspective views (that is. thumbnails closer to the viewer's position 
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appear larger than those that are further away). Further, when viewed from 

coordinate (1,1,1), documents that occlude others are more relevant than those 

occluded. This feature demonstrates a benefit of both perspective and occlusion 
(blocking of the visibility of objects in 3D space) for detecting the relevance of 

represented documents relative to others. "Occlusion is the single most important 

depth cue, over-riding others and because of occlusion we can see far less 

information in the z direction" (Ware and Plumlee, 2005: pp. 570). 

The STORM approach is unique to other presentation approaches adopted in GIR in 

a number of ways. Unlike ranked textual lists, STORM offers a non-linear view of 

relevance. This is because STORM offers support for rotation and translation of the 

visualisation such that a user can select varying views of relevance. Therefore, even 

though the axes are linear with respect to each geographic property (space, time and 

theme), the overall illustration of relevance is non-linear. STORM presents relevance 

scores as a fraction ranging from zero to one along all three axes; this is in contrast to 

the shading approach by Beard and Sharma (1997) which restricts possible relevance 

values to four intervals between zero and one. An additional difference to the Beard 

and Sharma (1997) model, is that STORM calculates thematic relevance according to 

semantic similarity, resulting in a value ranging from zero to one. In contrast, Beard 

and Sharma (1997) offer a Boolean value for the thematic relevance of each thematic 

property (indicating whether a term is found or not). Therefore, their approach 
ignores semantically similar terms. However, their approach presents several 

thematic properties separately, whereas STORM combines them into a single 

relevance measure. STORM is different to the Lighthouse approach (Leuski and 

Allan, 2004) as all three axes in STORM vector space are formally assigned to 

specific relevance measures based on spatial, temporal and semantic properties. The 

assignment of axes to distinct properties also demonstrates a difference to the 

GeoCrystal approach (G6bel et al., 2002), which assigns two out of three dimensions 

to a 2D cartographic map. 

This subsection has discussed various 3D metaphors for visualising search results on 
both an IR and GIR system. A metaphor for the 3D visualisation of search results 
based on spatial, temporal and semantic properties is proposed. The example 
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metaphors show that there is active research looking into 3D visualisations for 

offering visual interfaces for GIR systems. However, different compromises are 

made due to clarity, dimensionality and usability. We conclude from these examples 

that due to the varying information needs of users and their perceptions of 

geographic relevance, it is important for GIR research to continue to develop 

different metaphors of visualisation. 

3.4.2 Visualisation of Geographic Data 

One of the research questions that was stated is "from search results, how can a 

multidimensional geographic dataset be visualised in greater detail to determine its 

relevance? ", this question will be addressed in this subsection. In the previous 

subsection we discussed the visualisation of degrees of relevance of geographic data. 

Unfortunately, relevance ranking algorithms cannot provide the final judgement on - 

relevance as searchers themselves must be the ultimate judges as to the relevance of 

a listed document (Chen, 2004). It is necessary to provide the searcher with a 

preview of the data to enable her to reach a final decision of relevance. This 

subsection discusses geovisualisation techniques and proposes an approach for 

creating previews of multidimensional geographic data. 

3.4.2.1 Vector based Modelling 

Vector-based modelling follows two main approaches: geometry and texture-based 

mapping. The former involves the creation of a 3D model based on representative 

geometries of real-world objects. Traditional approaches used VRML for describing 

the geometries of objects within a virtual world. This meant that the solutions were 

subject to the same limitations of VRML already identified earlier in this chapter, 

namely single floating point numbers, few coordinate systems, limited terrain 

representation and vendor-specific constraints. We propose an approach for web- 

based 3D geovisualisation through the direct retrieval of geographic objects from a 
Relation Database Management System (RDBMS). The geographic objects are based 

on geometry primitives conforming to the OGC Simple Features specification (SFS) 
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(Open Geospatial Consortium, 2005). The SFS model is illustrated in Figure 3.10 

and includes the basic geometric primitives of points, lines and polygons. The 

approach is implemented within the Geospatial Database Online Visualisation 

Environment (GeoDOVE), a web-based GIS. 

Geometry L- Spatia]ReferencingSystem 

Point II Curve II Surface II GeometryCollection 

LineString II Polygon II MultiSurface II MultiCurve II MultiPoint 

Line II LinearRing III MultiPolygon II MultiLineString 

------------------------------------------------------------------ 
Class A Class AI 

(has 
Key: 

ErAggregation 

Inheritance 
(h[ ass - a) 

T(is-a) 

Figure 3.10 The Simple Features model(adapted from OGC, 2005) 

Using Java3D as an example, the proposed approach can be implemented in the 

following way. Java3l) uses the Shape3D class for the creation of three dimensional 

shapes. Each instantiation of the Shape 3D class contains instantiations of 

Geometry and Appearance classes. Within GeoDOVE, SFS 

MultiLineString and MultiPolygon geometries are represented through the 

extrusion of their aggregate SFS LineString objects. Figure 3.11 illustrates the 

extrusion process. The wall resulting from the extrusion is built by instantiating a 
Java3l) QuadArray object from a pair of adjacent vertices on the line and their 

associated vertical vertices. Each pair of adjacent vertices therefore results in an 
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individual rectangular plane. Creation ofextruded LinearRing walls follows the 

same process as LineStrings. The representation of SFS Point features is 

achieved through extrusion of a circle (geometrically a cylinder ccntred at the SFS 

Po i nt) defined by the following formula. 

yý Yo OV -, c) YT for (-r <x< 

Where: 

" xo, yo are coordinates of the SFS Point 

" t- is the radius of the circle 

" j, is the corresponding coordinate for each x coordinate 

When representing objects such as buildings from polygonal geometries, it is 

necessary to create a roof over the extruded polygon. Therefore extruded 

LinearRing objects (defining polygonal geometries) are roof'ed through the 

modelling of a roof that adopts the shape of its polygonal base. In 31) 

geovisualisation, roof's have traditionally been modelled as flat roof's. I lowever, 

computational geometry offers an algorithm called the 'Straight Skeleton' 1`61, 

modelling pitched roofs. The algorithm translates each edge of a polygon towards the 

centre ofthe polygon at a fixed rate until the shrinking polygon has an area as close 

to zero as possible (Felkel and Obdrzalek, 1998). The polygon vertices move inward 

along the angular bisectors formed by the edges ofthe polygon. Suggestions flor the 

use of the Straight Skeleton approach within geovisualisation have been made by 

Laycock and Day (2003) and D611ner and Buchholz (2005). 
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(a) LineSt ri nq bcl'orc cxtrusion 

(h) Wall created from extruded ring 
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Figure 3.11 The extrusion process 

An alternative approach for vector-based modelling involves texture-based mapping 

- rendering vector objects onto a texture draped on a DEM (Kersting and Diqlner, 

2002). This technique has the advantage that the complete vector representation is 

overlaid above the DEM. However, it produces a 2D representation on a 3)D surtace 

and hence when viewed in perspective view none ofthe represented objects have 

height. Despite this disadvantage, this thesis ackno\fledges that it is an ideal 

approach for viewing a DI'M from a carnera position directly above the terrain where 

viewing all geometric ob . lects could otherwise consume significant memory 

resources. Having examined the different approaches t'or vector-based modelling, we 

next examine raster-based modelling. 

3.4.2.2 Raster and TIN-based Modelling 

Raster-based modelling techniques are used for the creation ol'a 1)1, 'm from a regular 

grid of points or from a TIN. Often textures are draped on top ofthe 1)1ý"M. 

Techniques include multi-texturing, dynamic texture generation and Inulti-resolution 

modelling (D611ner, 2005). Multi-texturing involves the assignment ofrijultiple 

images to the same 3D shape. An example of inulti-texturing is the merging of' 
different thernatic maps, rendered on individual images. into a single texture that is 

then draped onto a DEM. Multi -rcsol Lition modelling of raster data IS LISI_Iallý 
implemented through the Lcvel-Of-Detail 1eature off1cred by most scenegraph Allis. 
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It is mostly useful for replacing textures on objects far away from the camera 

position with smaller textures that consume less memory. 

p4? 

Figure 3.12 Lens creation through dynamic texture generation (D611ner, 2005) 

Dynamic texture generation involves the creation of textures during runtime and 

often as a result of user interaction. Figure 3.12 illustrates dynamic texture 

generation through lenses rendered on a DEM and interactively controlled by the 

user. As the textures are created during run-time and in real-time, it is necessary that 

an application be client-side as transmission to a web server would result in longer 

response times for real-time visualisations. A scene description language such as 
VRML or X3D would be subject to such lengthy response times. In contrast, Java3D 

applets allow for dynamic texture generation as the textures can be rendered on the 

client-side. This is evidenced through GeoDOVE's gray-scale and multi-coloured 

texture generation created from a regular grid of spots heights. Figure 3.13 shows 

two textures automatically generated from the same elevation data. 
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TIN-based modelling involves the creation of a surface from irregularly positioned 

points usually through a triangulation algorithm, as illustrated in Figure 3.14. There 

are several triangulation algorithms that have been developed to date (Abdelguerfi et 

al., 1998), however most are based on the principles of the Delaunay triangulation - 

an aggregate of connected, but non overlapping triangles such that the circle defined 

by the points in each triangle contains no other points. Similar to raster datasets, 

TIN-based modelling can be used to create a DEM. Once a DEM has been created 

from either TIN or raster data, an image can be draped on the geometry by mapping 

texture coordinates (S, T) to vertices (x, y) on the DEM using the following equation. 

ssclie 
Xmax Xmin 

tscale 
Ymax Ymin 

Soffset = -Xmin XSscale 

toff,, i = -Ymin X tscale 

Scoordinate - Sscale XX+ Sffel 

tcoordinale = tscale XY+ toffsel 

where: 
40 Sscale and tscale are scale factors from real word coordinates to texture 

coordinate space 
0 (xmax, ymax) and (Xmin, Yinin) are the maximum and minimum bounding 

coordinates of the DEM 
0 (x, y) are real world coordinates, i. e. vertices from the geographic data 

Scoordinatc and tcoordinate are texture coordinates 
Soffset and toffs, t are offsets in texture coordinate space 

In contrast, scene description languages require that the texture coordinates be 

computed and packaged with a file before a scene is uploaded as they do not allow 

for automated generation of textures or texture coordinates during runtime. This 

highlights another advantage of a system such as GeoDOVE for purposes of 3D 

geovisualisation. A further advantage of Java. 313 applets is that they allow for the 
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calculation of base heights of shapes, during run-time, using an underlying DEM as a 

reference. Although some non-geospatial viewers of scene description languages can 

alter a scene during runtime, they seldom offer geographic operations and thus lack 

the ability to extract height information from DEMs. 

Figure 3.14 An illustration of the Delaunay Triangulation 

This section has discussed different techniques for the web-based representation of 

objects within a 3D scene. It should be noted that the modelling techniques are 
directly transferable to most scenegraphs, including OpenGL Performer, as they are 
based on algorithms involving the same geometric primitives; however not all 

scenegraph APIs offer web-deployment and platform-independence. The next section 

presents some studies on the comparison between 2D and 3D visualisation. 

3.6 Chapter Conclusion 

This chapter has discussed the different types of geovisualisation approaches of both 

2D and multidimensional geographic data. Geovisualisation approaches presented 

include small-area DTMs and global views based on the Digital Earth concept. The 

integration of 2D and 3D visualisation applications within mainstream search 

engines such as Google indicates the growing acceptance of geovisualisation- 

supported IR. The chapter has also presented suggestions from studies comparing 2D 

with 3D visualisation. From the comparative 2D and 3D studies, we conclude that 
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3D visualisation should be regarded as a complement of 2D visualisation approaches, 

rather than as a replacement. 

This chapter has also emphasized the need for improved metaphors of visualisation 

to support the varying perceptions of geographic relevance discussed in Chapter 2. 

To this end, an approach for web-based visualisation of geographic data is presented. 
A prototype based on the proposed approach, called GeoDOVE, is introduced. 

Similarly, an approach called STORM, for visualising results of geographic searches 
during data discovery, is proposed. Whereas this chapter presented the conceptual 

basis of the two proposed approaches, chapter 5 will describe the developmental 

aspects of their prototypes. However, the next chapter describes mechanisms for 

delivering data to these and other visualisation applications offered on geoportals. 
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Chapter 4 Web-based Delivery of Geographic 
Information 

The previous chapter discussed and proposed new methods for the visualisation of 

geographic data and results of a geographic search. In order to realise the models 

proposed in the previous chapter, considerations have to be made regarding the way 
in which data is delivered to the visualisation applications discussed. The computing 

and geographic information communities have developed two main methods for 

disseminating geographic data, through geographic web services and through 

spatially-enabled database engines. Consequently, the OGC has published 

specifications to standardise the implementation and operation of the two 

aforementioned methods of disseminating geographic information. Some of the 

specifications of the OGC extend on other specifications by the World Wide Web 

Consortium (W3C). In this chapter, we examine their role within a geoportal 

environment. 

This chapter adopts the following geo-centric definition of interoperability 

"geographic interoperability is the ability of information systems to 1) freely 

exchange all kinds of spatial information about the Earth and about the objects and 

phenomena on, above, and below the Earth's surface; and 2) cooperatively, over 

networks, run software capable of manipulating such information. "(OGC, 2001a) 

4.1 Dissemination through DBMS Connectivity 

Access to a database adds value to geographic data discovery as the user (searcher) 

can view attributive content prior to acquiring or purchasing it from a geoportal. Due 

to the limitations of historic web-based geovisualisation approaches, our study 

examined the architectures adopted in the development of desktop GIS as they offer 
both geovisualisation and database handling capabilities. Desktop GIS have been 

able to access vast amounts of data from distributed DBMS since before the turn of 

the millennium. In contrast, historic web-based multidimensional geovisualisation 

was based on dynamically generated scripts of VRML (Moore et al., 1999, Huang, 
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2003). VRML was unstable as each vendor implemented their own versions of 
browser plug-ins. Further, geographic datasets imposed a significant load on 
bandwidth when transmitted over the web as they are generally large in size. These 

and other limitations of VRML were discussed in Chapter 3. This section discusses 

the approaches used for enabling database connectivity from web-based GIS. 

4.1.1 Standardised DBMS Connectivity 

In examining database connectivity as achieved by desktop GIS, we observe that 

desktop GIS are generally able to access distributed Database Management Systems 

(DBMS). Distributed DBMS can be classified into two groups, namely homogenous 

and heterogeneous DBMS (Worboys and Duckham, 2004). The former is composed 

of multiple storage units each using the same DBMS software and data model. 

Similarly, the latter is composed of multiple storage units, however each using 

different DBMS software or different data models. To ensure interoperability the 

computing community developed the Open Database Connectivity (ODBC) interface 

which allows miscellaneous client applications to access any conformant DBMS. 

Figure 4.1 shows the basic architectures for accessing database servers through the 

ODBC, these include the two-tier and the three-tier model. The rest of this subsection 

discusses these architectures. 

In a two-tier model the database processing task is divided into two distinct parts - 

the database application (such as a GIS) on the client side and the database 

management on the server side. In this architecture, the database connectivity 

component can be installed on either the client side or the server side. Chao (2006) 

observes that installing the database connectivity component on the client side 

reduces the load on the server and also the network traffic. However, installing the 

database connectivity component on the server side ensures that it is available to all 

client applications all the time. Chao (2006) suggests that a limitation of the two-tier 

model is that it keeps a connection to a DBMS alive, which can overwhelm a 

database server. We highlight that this is a limitation that depends on the software 
design, as connectivity API such as the Java Database Connectivity (JDBC) API 
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allow for connections to DBMS to be opened and closed at will (Horstmann and 

Cornell, 2004), thereby freeing resources on the database server. 

Two-tier architecture 

Client tier Server tier 
Web browser, Applet SQ[' DBMS server, CGI or 
or Webstart Icts 
Application 

Three-tier architecture 

Client tier Middleware tier Server tier 
Web browser, Applet Application server (or S (Q I, DMIS wrýcy 
or Webstart DBMS spatial 
Application extension 

I 

ODBC1 orDB, 

Figure 4.1 The architectures popularly adopted for database connectivity (adapted from 
Chanem and Aref, 2004) 

The three-tier model introduces an additional tier ofirliddleware between tile client 

tier and the server tier. I lowever, it is tile most popular and mature architecture flor 

GIS development (Longley et al., 2001 ). We attribute this popularity to the ('01lowing 

reason, as not all DBMS are spatial ly-enabled. the nliddleware tier allo\vs GIS 

developers to implement spatial processing FUnCtiOnalltv that Supports a vvide range 

of DBMS. This is evidenced by F. SRI ArcSDF, which oilers unil'o rill connectivity to 

Microsoft SQL Server, Oracle and several other DBMS. Another example is 

PostGIS, which offers spatial capabilities to the I1ostgrcSQL database. An additional 

benefit ofthe three-tier model, is that it overcorrics database limitations imposed on 

unsigned Java applets. The applet security model allows unsigned applets to only 

access data sources from the same hosting server the applet is deployed frorn -that 

is, to run from a 'sandbox'. Although this limitation can be overcome by signing in 

applet 0 forstmarin and Cornell, 2001 ), users might be reluctant to run signed applcts 

as this also grants the applets complete access to the client's local files. The 
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middleware tier, therefore, allows Java applets to access distributed database servers 

whilst also restricting unnecessary access to the rest of the client machine. 

This subsection discussed possible architectures for disseminating data from DBMS. 

Additional considerations are required within an architecture that adopts 
heterogeneous DBMS as they often implement vendor-specific variations of SQL 

and slightly different database structures. The next subsection discusses some of their 

similarities and differences. 

4.1.2 Disseminating Vector Data from DBMS 

The OGC Simple Features specification, referred to in Chapter 3 as the SFS, 

recognises the object-relational nature of geographic databases. The SFS suggests a 

standardised relational database schema for abstracting geographic objects. Connolly 

et al., (1999) definý a relational schema as the attributes of a relation and their 

associated domains. The previous subsection discussed architectures for 

disseminating data from DBMS. In this subsection we discuss how the SFS is 

implemented inside different DBMS. Two example relational schemas from popular 

spatially-enabled DBMS are discussed. The SFS schema describes four tables-a 

table being a physical representation of a relation. The schema, which is illustrated in 

Figure 4.2, is made up of the 'Geometry Columns' table that lists all geographic 
datasets held in the database, the 'Spatial Reference Systems' table that lists all 

available coordinate systems, the 'feature table' that holds the attributes of all 

geographic datasets and the 'geometry table' that lists the geometries of the features 

listed in the feature table. 

In relational algebra, a relation that contains only those tuples (records) of another 

relation that satisfy a particular predicate is referred to as a 'selection'. For an 

example relation called R, Connolly et al., (1999) represent a selection in the 
following way Oprediw, (R). A projection, represented as I-Ifieldl, fidd2, ficidn(R), is a 

vertical subset of relation R. That is, it contains all records from R but only a few of 

the fields. A join between two relations R and S, is an integration of records from R 
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and S over a common field. One occurrence of the field that is common to both 

relations is then eliminated from the resulting relation. Connolly et al, (1999) 

represent it as RxS. The Cartesian product of two relations is a concatenation of 

every record in relation R with every record in relation S. It can be represented as 
RxS. Other relational operations can be found in the literature; however the 

aforementioned are adequate for our discussion. 

Feature Table 

objectid 
<attribute 1> 

<attribute 2> 

<attribute n> 

91 <Geome" Column (GID)> 

GID 
xmin 
ymin 
xmax 
ymax 
WKB_Geometry 

OGG-Geometry_Columns 

f table catalog 
f table scherna 

" f-table-name 
fgeometrycolumn 
g__table_. catalog 
g_table_schema 

" gjablename 
storage type 
geometry_type 
coord_dimension 
max_ppr 
srid 

OGC_spatial_references 

srid 
auth name 
auth name 
auth srid 
srtext 

Figure 4.2 The OCC SFS Relational Schema (derived from OCC, 2005) 

Where a geometry table is relation G, a feature table is relation P, a table ofspatial 

referencing systems is relation Z and the geometry columns table Is C, we observe 

that the collection of all geographic features (containing both attributes and 

geornetry) in the SFS schema is represented by the join GxF, where the UniCILIC 
identifier GID is the field common to both relations. This relation can also be 

represented using the selection operation (3(i (ill) I (ill)((; x P). Similarly, the ArcSDl-' 

database schema, illustrated in Figure 4.3, also represents a collection ofall 

geographic features through the same natural join Gxh'. In contrast, each geographic 
dataset on PostGIS stores both geometry and attributes in a single relational table, as 

illustrated in Figure 4.4. We also observe that even though ArcSDE and PostGIS 

implement more fields in relation Z than the SFS, the relation of spatial rel'ercricing 

systems in the SFS can be obtained through the projection llsrid, 
Wlthname. auth srid. srtext(Z)- 
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f-table-name 
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<attribute 1> 
<attribute 2> 
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f-table catalog 
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g tablecatalog 
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g_tat)le_name 
storagetype 
geometry_type 
coord_dimension 
maxppr 
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srid 
description 
auth_name 
auth name 
auth srid 
falsex 
falsey 
xyunits 
zurlits 
falsern 
munits 
object_flags 
srtext 

Figure 4.3 Relational schema of the ESRI ArcSDE geodatabase (ESRI, 2005b) 

I Feature Table ej 

objectid 
<attribute 1> 
<attribute 2> 

<attribute n> 
geometry 

Pg_Geometry_Columns 
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f_geometry_column 
coord_dimension 
srid 
type 

Pg_spatia [_references 

srid 
auth_name 
auth name 
auth_srid 
Srtext 
proj4text 

Figure 4.4 Relational schema of a PostGIS database (I'ostgreSQL Global Development Group, 
2005) 

Both ArcSDF and PostGIS implement several other tables within their scherna. This 

subsection has only discussed those that relate to the SFS. Our discussion ol'thesc 

relational schcrnas illustrates the variation in database scherna between 

heterogeneous spatial ly-enablcd DBMS. These variations necessitate a middleware 

tier to flormulate appropriate queries for each DBMS and provide an intcri'ace flor 

client-side applications. The middleware applications therefore, have to be aware of' 

the narnes and types of'fields and the tables in which specific fields can be l'ound. 

This subsection therefore has discussed the dissemination ot'vector geographic data 

from DBMS. The next section discusses dissemination ot'raster geographic data also 

f'rom DBMS. 
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4.1.3 Disseminating Raster Data from DBMS 

The dissemination of raster geographic data from a relational database server is 

possibly the most challenging in comparison to its vector counterpart. This is because 

popular GIS software such as ESRI ArcGIS and Intergraph Geomedia, are primarily 

vector-based systems and only offer a limited number of raster-based operations. 

However, the increasing availability of aerial photography and remote sensing 
imagery makes it imperative that improvements to raster data handling 

methodologies be made. Recognising this need, the OGC published the Grid 

Coverage Implementation (GCI) specification (OGC, 2001b). Whereas the SFS 

defined individual geographic features, the GO defines a continuous variation of 

geographical phenomenon over a given space. The SFS and GO therefore, derive 

from the vector and raster data models respectively. 

A fundamental property of a coverage is that there should be a value for a point at 

any given location over the spatial footprint of the coverage. There are at least four 

approaches for representing coverages using the GCI, these include: 

i) A coverage may be represented by a set of polygons which completely 

tile a plane, for example the triangles in a triangulation. The value of an 

attribute at any point on the raster is obtained from the polygon that 

contains that point. 

ii) A coverage may also be represented by a grid of values such that the 

value of returned by a grid for a point is the grid value that is closest to 

that point. This is the conventional approach adopted by several GIS. 

iii) Alternatively, a coverage may be represented by a mathematical function 

such that the value returned by the coverage for a location is the range of 

output values for that function. 

iv) A coverage can also be represented by any combination of the 

aforementioned approaches; for example, where the attribute value of the 

polygons in the first approach is a mathematical function. 
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Due to these highly variable means of encoding raster data, the GCl does not attempt 

to formalize a relational model for storing raster data. However, other studies have 

suggested possible relational schemas and approaches for storing geographic raster 

data. For example, ArcSDE cuts a raster dataset into smaller subsets, referred to as 

"blocks", and stores them in individual rows in a separate block table (I-ISRI, 2005a). 

The blocks are stored as several small binary large objects (131.013s). Each block is 

referenced in the SDErastercolunins table which is also used for referencing the 

different bands that may comprise a raster. The aggregating of raster datascts into 

smaller blocks also allows the creation and storage of lower resolution versions of 

the raster dataset, referred to as pyramids. The pyramids are created based on a 

resampling algorithm of the user's choice for example nearest ncighbOUr, 

convolution filters or bilinear interpolation. This means that rasters of the same 

pyramid have the same geographic extent but differ in resolution. Figure 4.5 

illustrates the creation of multi-resolution rasters using the pyramid concept. Figure 

4.6 shows the relational schema for ArcSDE raster datasets. 

Increasing 
lcvel Of 
rcsolution 

Figure 4.5 A py'ramid of smaller resolution versions of the same raster 

01'particular importance is the SDE_bIk 
_n 

table which stores tile actual PIXel ValLIeS 

as BLOBs. From the scherna, it can be observed that the table holds inf'orniation of' 

the location of the block within each level ol'the multi-resolution pyramid (i-oii, nbi-, 

coinhi). The table also identities the band to which tile block belongs 

(i-tivet-htindiO. The table therel'orc defines it flour dimensional matrix with tile band, 

pyramid level, row and columns as dimensions. Consequently, each block obtains its 

spatial reflerencing froin its position within the matrix ot'hiocks. The inatrix "hich 

represents the complete raster dalasct is spatially referenced by a polygon feature 

storcd in a geometry field with other thematic (business) ficids that a Liscr may wish 
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to implement. The raster dataset is delivered over the internet as a single raster after 

the ArcSDE engine merges all the aggregate blocks into a single dataset. 

name 
raster 
footprint 

--other use-defined fields 

d0 rasterband id 
sequence 

- 
nbr 

* raster-id 
name 

F<Iayerid> 
... 

SDE_ras-n 

rasterid 
raster flags 
description 

S<Iayerid> SDE_bnd_n i 

rasterband_id 

SDE_raster_columns 

rastercolumn id 
description 
database-name 

owner 
tablename 
rastercolumn 

f-* SDE_blk_n I 

rasterband id 
rrd_factor 
row-nbr 
col-nbr 
block_data 

rasterbandid 
type 
obj 

Figure 4.6 ArcSDE raster table schema (adapted from ESRI, 2005a) 

This subsection has highlighted the different approaches for encoding raster data. 

The subsection has also presented the ArcSDE relational model for storing raster 

data and as a series of tiles. A middleware layer allows for a mediator to integrate 

different tiles of the same raster dataset before sending the complete dataset to the 

client. Where a raster dataset is to be derived from a mathematical model, the raster 

dataset could be created by the mediator before sending to the client. The three-tier 

model is therefore a possibly appropriate architecture for providing database access 

to a wcb-based geovisualisation application. This section, in whole, has discussed the 

implementation of database servers and the schcrnas of relational tables adopted by 

the GIS community for disseminating geographic data. The next section discusses all 

alternative approach for disseminating geographic data using web services, which 

may also be regarded as mediators. 
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4.2 Dissemination through Web Services 

Contemporary GIS have evolved against a backdrop of developments in the 

dissemination of data and functionality through Web Services -a software system 
designed to support interoperable machine-to-machine interaction over a network 
(W3C, 1999-2006). Dissemination of geographic data through web services is 

different to dissemination of static geographic files as i) geographic web services 
have dynamic spatial footprints ii) can be served in various formats iii) can be served 
in various spatial referencing systems iv) can be merged with other datasets or layers 

from the same map service. Architectures based on web services are referred to as 

Service-Oriented Architectures (SOA). In its basic form, a SOA is an example of a 

three-tier architecture (discussed earlier in this chapter) with web services acting as 

middleware or mediators. However, SOA extended the three-tier paradigm into a 

multiple tier model (n-tier) as shall be illustrated later in this section. This section 
discusses web service technologies published by both the OGC and the W3C, we 

refer to OGC web services as 'geographic web services', to WX web services as 

'traditional web services' and to both as simply 'web services'. 

4.2.1 Traditional Web Services 

Traditional web services are built on technologies that can be divided into three main 

groups: communication protocols, service descriptions and service discovery. 

Communication protocols allow for the exchange of information between 

applications. An example of these is the Simple Object Access Protocol (SOAP). 

Service descriptions provide information on how to use a web service, that is, what 

functions a web service performs and the types of messages it receives and sends. 

The most popular method of describing a service is through the Web Service 

Description Language (WSDL). Service discovery technologies offer a catalogue of 

available services and their publishers. The current standard for service discovery is 

the Universal Description, Discovery and Integration (UDDI). Applications 

implementing these web service standards assume three types of roles, namely 

service requester, service provider and service registry. The applications interoperate 
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to publish, find and bind clients to available relevant services, as illustrated in Figure 

4.7. The rest of this section discusses the aforementioned web service technologies; 

an extensive discussion of other web service technologies can be found in 

Weerawarana et al. (2005). 

Service 
Registry 

Publish Find 
(WSDL) 

A 

(UDDI) 

Service Service 
Provider Requester 

Bind 
(SOAP) 

Figure 4.7 Web Services architectural model (adapted from Huhns and Singh, 2005) 

SOAP is a platform-independent protocol for exchanging structured information in a 

decentralised and distributed environment (W3C, 1999-2006). SOAP messages are 

encoded independently of the transmission protocol and therefore can be transmitted 

via HTTP, Secure HTTP (HTTPS) or any other proprietary transmission protocol. In 

its simplest form, a SOAP message is made up of three parts, a header, an envelope 

and a body. From Figure 4.8, which shows a simple SOAP message, the header is 

shown by lines 5 to 14 and the body by lines 15 to 22. The envelope, which is 

primarily meant for conformance with the XML specification, is illustrated by lines 2 

to 4 and line 23 in Figure 4.8. It should be noted, however, that the XML elements 

are not restricted to the ones illustrated in the Figure. They can adopt any name and 

therefore make it possible to represent most structured data models including those 

of object-oriented GIS. 

The principal method of describing a web service is through its WSDL specification. 

if we consider a web service to be a process which accepts input parameters and 

outputs some form of response, then a WSDL is an XML-based language for 

describing the name of a service, the operations offered and the data types of the 
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input and output parameters. The specification supports any data type system 

regardless of the platform used by the service requestor or service provider. This is 

achieved by referencing data types to namespaces (qualifiers) encoded as Uniform 

Resource Identifiers (URI). For example, the integer and string data types defined 

within the W3C XML schema (W3C, 1999-2006) are supported by most web service 

engines. Application-centric data types can also be supported by WSDL through the 

referencing of unique namespaces. 

1. <? xml version="1.0" ?> 
2. <env: Envelope 
3. xmlns: env="http: //www. w3. org/2003/05/soap-envelope" 
4. xmlns: xml="http: //www. w3. org/XML/1998/namespace"> 
5. <env: Header> 
6. <env: Upgrade> 
7. <env: SupportedEnvelope qname="nsl: Envelopell 
8. xmlns: nsl="http: //www. w3. org/2003/05/soap- 
9. envelope"/> 
10. <env: SupportedEnvelope qname="ns2: Envelope" 
ii. xmlns: ns2="http: //schemas. xmlsoap. org/soap/ 
12. envelope/"/> 
13. </env: Upgrade> 
14. </env: Header> 
15. <env: Body> 
16. <env: Fault> 
17. <env: Code><env: Value>env: VersionMismatch 
18. </env: Value></env: Code> 
19. <env: Reason><env: Text xml: lang=IIenI'>Version 
20. Mismatch</env: Text></env: Reason> 
21. </env: Fault> 
22. </env: Body> 
23. </env: Envelope> 

Figure 4.8 An example of a SOAP message (W3C, 1999-2006) 

Development of the UDDI specification is spearheaded by the Organization for the 

Advancement of Structured Information Standards (OASIS). Although OASIS is a 

separate entity to the W3C, the two organisations recognise each other's work and 

therefore build on each other's standards; for example, UDDI Application 

Programmers' Interfaces use SOAP (a W3C standard) for messaging. UDDI defines 

a set of services for the description and discovery of web services providers (such as 

businesses or governmental organisations), the web services they provide and the 

interfaces used for accessing the services. Although the current version of UDDI can 

represent Spatial Referencing Systems and degrees of latitude and longitude through 
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specification of technical models (tModels), a major obstacle to the adoption of 
UDDI within the GI community has been that UDDI registries do not support spatial 

queries, which are a fundamental aspect of geographic data handling (Alameh, 

2003). 

4.2.2 Geographic Web Services 

Some of the specifications by the OGC include the Catalogue Services Specification 

(CAT), Web Map Service (WMS), Web Feature Service (WFS) and the Web 

Coverage Service (WCS). They all fall under an umbrella specification referred to as 

the OGC Web Service specification (OWS). The OWS defines features that are 

common amongst all OGC web service specifications. Much of the consensus on 
OWS has been a direct result of earlier interoperability work on geographic data 

models. One of the key products of the geographic interoperability initiatives of the 

OGC has been the development of the Geography Markup Language (GML) as a 
data exchange format. This section starts with a discussion of GML because it is a 
key component of requests to and from geographic web services. 

<needs: geofeature uniqueid="123456"> 
<needs: owner>John Smith</needs: owner> 
<needs: polygon> 
<gml: Polygon srsName="osgb: BNG"> 
<gml: outerBoundaryIs> 
<gml: LinearRing> 
<gml: coordinates>424745.71875,564970.75 
424743.9375,564972.625 
424746.0625,564974.875 
424745.71875,564970.75</gml: coordinates> 
</gml: LinearRing> 
</gml: outerBoundaryIs> 
</gml: Polygon> 
</needs: polygon> 
</needs: geofeature> 

Figure 4.9 An extract from a GML rile 

GML is a platform-independent language (protocol) for exchanging geographic 
information (Lake et al., 2004); therefore it recognises spatial referencing systems 

and geometry. Similar to SOAP, GML is also serialised in XML. The standard 
formalises the elements describing geometry into, for example <gmI. *point>, 
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<gm1: LineString> and <gmI. -polygon> as illustrated in Figure 4.9. Unsurprisingly, 

the geometric elements of a GML file are mandatory, however other fields may vary 

depending on the particular profile of GML. As a result, different organisations have 

implemented their own profiles of GML for example the Ordnance Survey offers OS 

MasterMap and the Dutch National Mapping Agency (Topografische Dienst 

Nederland) offers TopIONL. Software vendors have similarly developed vendor- 

specific profiles of GML for example Safe Software's FME Workbench. The main 

advantage of GML over SOAP for geographic data dissemination is that across all 

GML profiles the geometry and spatial referencing systems are encoded using 

exactly the same notation and convention (schema). This significantly improves 

interoperability between different systems and helps ensure data integrity. In 

contrast, SOAP is not bound to any object structure and hence structures (classes) 

encoded in SOAP may differ from vendor to vendor. 

The WMS specification defines a web service that renders and returns dynamic maps 

as digital images. The maps are transmitted, as streams of bytes, in image formats 

such as PNG, GIF or JPEG. This allows the receiving browser to render them as 

copyentional images. The service therefore does not provide geographic data itself, 

instead it provides a pictorial view of the data layers. The input parameters for WMS 

include a reference to a style descriptor (for colours and symbols), the geographic 

extent, the spatial referencing system, the output format and the list of layers to 

render onto the produced image. If the layers defined in the request have differing 

SRS, the server projects the layers into the SRS defined in the request. The 

specification adopts at least three basic services, the getCapabililites, 

getMap and getFeatureInf o. The getCapabilities operation returns a 

list of all available layers including their geographic extents and spatial reference 

systems. The default style for each layer is also mentioned. Additional metadata is 

included for describing the WMS including the list of all image file types that can be 

returned by the service. The return from the operation is serialised in XML, making 

it human readable. The getMap operation returns a digital image of the requested 

layers using rendering styles defined in the getMap request. Last, the 

getFeatureInf o operation allows attributes to be retrieved from layers that 

allow querying. 
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The WFS specification defines an HTTP-based distributed computing platform for 

the insert, update, delete, lock query and discovery of geographic objects. Unlike the 

WMS, WFS return the actual content of the geographic data. It thus returns a 

collection of geographic objects serialised in GML, as a minimum. Alternatively, 

legacy geospatial formats such as the ESRI shapefile or Autodesk DXF may also be 

retrieved from a WFS. Description of geographic objects within the interface is 

however, restricted to GML. This restriction is further enforced by the rule that the 

interfaces must be in eXtensible Markup Language (XML). The WFS adopts a 

getCapabilities operation for describing the layers and operations available on 

the service. The getCapabilities operation of a WFS describes which feature 

types (layers) are available through the service, and which operations are supported 

on each feature type. The getCapabilities operation, therefore, offers similar 

metadata, to that offered by the WSDL descriptions. However, it also formalizes 

specification of geographic extents and spatial operations such as 'intersection' and 

6containment' that can be executed on available datasets. Formalizing geographic 

operations offers a higher-level of interoperability than offered by traditional web 

services, as they do not offer an equivalent facility. 

The OGC defines the WCS as a specification for supporting electronic interchange of 

geospatial datasets representing space-varying phenomena (coverage). Some of the 

geographic data models regarded as being of coverage type include raster models and 

Digital Elevation Models (DEM). These are generally encoded as a georeferenced 

regular grid of pixel values; however, coverages can be returned as image files. The 

specification defines three operations getCapabilities, getCoverage and 

des cribeCove rage. Similar to both the WMS and the WFS, the 

getCapabilities method provides metadata about the available layers and their 

spatial reference systems. An important distinction between WMS and WCS is that 

the latter can return either an image or the raw data itself. Images are generally 

restricted to Red-Green-Blue (RGB) values ranging from 0 to 255 whereas raw data 

may include pixel values greater than 255 or lower than zero. However, images offer 

the possibility of returning several image bands stored in a single image file. A 

portrayal service, as introduced in Chapter 1, is then required to render coverages 
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from a WCS before presentation on a client. Portrayal services are therefore, 

normally embedded within WCS, WMS or both. 

Within a geographic data discovery framework, the challenge of discovering a 

suitable web service is a major area of study. To address this challenge, the OGC 

published the Catalog Services specification (CAT) for disseminating geographic 

metadata encoded in the ISO19115. The specification allows for implementing 

different interfaces for communication between client and server for example 

through HTTP, CORBA or Z39.50 protocols. Web services adopting the HTTP 

binding are often referred to as Catalogue Services for the Web (CSW). Nouegras- 

Iso et al., (2005: pp. 202) observes that "despite the relevance of catalog interface 

specifications, the implementations are not many in comparison with other OGC 

specifications". They attribute the slow uptake of CAT to the higher attention 

afforded to web mapping by the OGC. In Chapter 1, we examined metadata 
dissemination through the Z39.50 and presented results on a survey we carried out to 

determine the popularity of different Z39.50 servers. We can therefore add to the 

observation by Nouegras-Iso et al., (2005) by highlighting that it is apparent that 

geographic metadata catalogue servers have been implemented, however there is no 
indication that they have been updated to conform to the CAT or CSW 

specifications. The specification enforces interoPerability by offering an extensible 

Common Catalogue Query Language (CQL) that is modelled on the SQL WHERE 

clause or relational algebra's predicates of selection operations. The CQL supports 

both tight and loose queries: where a tight query is defined as a query that returns a 

null set if a requested field is not supported; and a loose query is where any 

undefined field is considered to match the queries predicates. We acknowledge CAT 

as a possible geographic metadata delivery mechanism for the STORM browser that 

was proposed in Chapter 3. 
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Web Feature 
Service 

(ico% isualisation 
Client 

Figure 4.10 Chaining of geographic web services (adapted from Alameh, 2003) 

Figure 4.10 illustrates how these geographic web services interoperate within a geo- 

centric SOA. It can be observed from the illustration that a geo-centric SOA can 

comprise of several tiers. The section has shown that geographic web services offer a 

high level of interoperability by formalizing parameters for requests, for example the 

bounding box and spatial reference system parameters for WMS requests. Although 

this is an advantage over the more traditional web service specifications, this means 

that traditional web services offer more dynamism through the flexible structure of 

SOAP objects. Consequently, this thesis suggests that it is advantageous for web- 

based geovisualisation applications to support both traditional and geographic web 

services. This section has examined both traditional and geographic web services 

technologies; the next section examines the dissemination of multidimensional 

geographic objects. 

4.3 Delivering Multidimensional Objects 

The previous chapter discussed different approaches in the visualisation of 

multidimensional geographic information. This section discusses the storage and 

dissemination of multidimensional geographic objects using the data delivery 

methods discussed earlier in this chapter. In particular, the section discusses the 

encoding of 3D geographic objects within an RDBMS and the serving of 3D 

geographic objects from a SOA. First, we examine 3D geometric primitives 

suggested by Arens et al, (2005) for modeling geographic objects: 
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a) Tetrahedron: It is made up of four triangular planes that form a closed 

object in 3D coordinate space, as show in Figure 4.11. It is the most 
basic 3D geometry but modeling a complete 3D object may require 
defining several tetrahedrons. 

b) Polyhedron: It is made up of multiple polygonal faces and is thus the. 

3D equivalent of a polygon. An example is shown in Figure 4.12 

c) Polyhedron combined with spherical and cylindrical patches: These 

three geometries are imPlemented in several real-world objects and 

therefore a combination of them can be used to model a single 

geographic entity. An example is shown in Figure 4.13 

Figure 4.13 A polyhedron combined with cylinder 

d) CAD objects: These models a generally beyond the scope of the 

current SFS model. For example, Constructive Solid Geometry (CSG) 
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which allows a model to be created from a Boolean operation (such as 

union, intersection or difference) on other 3D models, as shown in 

Figure 4.14 

Figure 4.14 Illustrations of basic 3D geometric primitives (Arens et aL, 2005) 

To investigate the modeling of these primitives, our study examined both ArcSDE 

and PostGIS. ArcSDE uses CAD objects to model the surface of 3D geometries. The 

geometry type used is inherited from the ESRI Shapefile specification and is called a 

MultiPatch. ESRI define a MultiPatch object as an integration of different 

geometries, such as points, lines and polygons. As these geometries allow for 3D 

coordinates, the MultiPatch object can model almost any type of 3D shape. In 

contrast, PostGIS does not yet support MultiPatch objects. It however, supports the 

encoding of polygons with 3D coordinates, including triangular planes. As any 

surface can be approximated using a composite of triangular planes, this means 

PostGIS can support 3D geographic objects. A detailed discussion on the merits of 

any of the aforementioned approaches for modelling 3D objects would be beyond the 

scope of this chapter. However, Arens et al., (2005) offer a detailed discussion. 

Instead, we examine two approaches for storing 3D geometries in an RDBMS and 

the serving the geometries through SOA. 

As was established in Chapter 2, the basic geometric primitives include points, lines 

and polygons. The 3D coordinates of these geometries can be encoded as a sequence 

of X, Y, Z floating point numbers as implemented by the ESRI Multipatch geometries. 

For example, given four coordinates (xj, yj, zj) (X29Y2iZ2) (X3, y3, z3) and (X4, y4, z4) that 

define a quadrilateral plane; a sequence of these coordinates could be 

XI, X29X3i, X4iYI, Y2, Y3, Y4, ZI, Z2, Z3, Z4- It then becomes necessary to encode information 

about the number points encoded in the sequence and thereby enabling a 
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visualisation application to parse the sequence and reconstruct the quadrilateral 

plane. The sequence of coordinates is particularly suited for storage in an RDBMS as 
it can be stored as a BLOB. A BLOB is technically a sequence of bytes. A group of 

eight bytes can represent a double precision floating point number. This approach to 

storing multidimensional coordinates as a sequence of bytes (BLOB) in a relational 

database is implemented in ArcSDE relational tables. The BLOB can then be served 

through a database server as discussed earlier in this Chapter. 

An alternative approach is to disseminate the 3D object using a WFS or a SOAP- 

based traditional web service. The web service could encode the 3D geometry in a 

3D scene description language such as VRML, X31) or another XML-encoded 

language. Scene description formats were discussed in the previous chapter. This 

approach requires that the visualisation application support the 3D scene description 

formats. The advantage of this approach is that high level 3D real-time APIs such as 

Java3D and OpenGL Performer support several of these 3D scene description 

formats, as was discussed in Chapter 3. However, the approach inherits the 

disadvantages of 3D scene description languages discussed in Chapter 3. By virtue of 

messaging through ýXML-encoded objects, traditional web services can also transmit 

instances of objects (for example, Java3D objects) directly to the visualisation 

application. The advantage of this approach is that parsing of the objects is 

automatically handled by the web service framework. However, the disadvantage is 

that the objects may be platform-specific, for example Java3D classes differ from 

OpenGL Performer classes. 
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This section discussed the storage and dissemination of 3D geometries using the two 

data dissemination approaches discussed earlier in this Chapter. The choice of which 

approach to adopt depends on whether a visualisation application is capable of 

parsing a BLOB to reconstruct the 3D geometry. If using traditional thin-client web 

applications, then delivering the 3D object using a standard 3D description language 

such as VRML or X3D is more appropriate. However, if the visualisation application 

is capable of parsing a BLOB and reconstructing a 3D object then the DBMS 

approach can be adopted. Alternatively, a web service that translates a BLOB into a 

standard 3D scene description format could mediate between the visualisation 

application and the DBMS. 

4.4 Chapter Summary 

This chapter has presented two approaches for the dissemination of multidimensional 

geographic data namely; dissemination through DBMS and web services. Two-tier 

and three-tier architectures for disseminating geographic data through DBMS were 

examined. Similarly, two approaches for dissemination through web services were 

also examined, that is through traditional (SOAP-based) web services and through 

geographic web services. The chapter also highlighted that catalogue services 
implementing the CAT specification can be used for supporting the STORM browser 

that was proposed in Chapter 3. A summary of the different web service technologies 

discussed in this chapter is presented in Table 4.1. 

Task Traditional Web Service Geographic Web Service 

Messaging SOAP GML, WFS, WMS, WCS 

Description WSDL getCapabilities 

Discovery UDDI Catalogue Service 

Table 4.1 Tasks of the different traditional and geographic web services 
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The chapter also discussed the storage and dissemination of 3D objects using DBMS 

and web services. From the discussion in this chapter, we observe that all the 

aforementioned approaches for dissemination of data can implement a geometry 

model similar to the OGC SFS. We thus conclude that a multidimensional 

geovisualisation application should be capable of supporting DBMS and web 

services by resolving geometric structures from these delivery mechanisms into a 

representation of the SFS. These data delivery mechanisms could be used to support 

the web-based GeoDOVE application that was proposed in Chapter 3. The next 

chapter discusses the design and implementation of both the STORM and GeoDOVE 

prototypes. 
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Chapter 5 Design and Implementation 

5.1 Introduction 

One of the stated research questions was "could the suggested approaches be 

incorporated into a conventional geoportal? ", this question will be addressed in this 

chapter. The architecture of a geoportal was presented in Figure 1.3. The figure 

illustrates the inter-play between catalogue, data, portal and portrayal services. Some 

of these services were examined in previous chapters, namely Web Map Services 

(WMS), Web Feature Services (WFS), Catalogue Web Services (CSW) and Web 

Coverage Services (WCS). In Chapter 3 we presented a variety of geovisualisation 

approaches and proposed novel methods for visualising geographic data and the 

results of a geographic search. In addition to the aforementioned webs services, 
database-oriented approaches for disseminating multidimensional geographic data 

were discussed in Chapter 4. In this chapter, we consider the development of web- 
based applications based on the visualisation approaches proposed in Chapter 3 and 
discuss how the applications are incorporated into a geoportal. As by definition, a 

geoportal is "a web site that presents an entry point to geographic content on the 

web" (Tait, 2005: pp. 34), the geovisualisation applications discussed in this chapter 

are served through some of the web services discussed in Chapter 4. It is envisaged 

that the geoportal design will support the incorporation of heterogeneous 

geovisualisation and geographic metadata visualisation applications. 
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IE 

Figure 5.1 UML use case diagram showing requirements of STORM and GeoDOVE 

The aim of a GIR system, including a geoportal, is to enable users to efficiently 

discover relevant geographical datasets. The use case presented in Figure 5.1, 

illustrated in UML use case notation, describes the requirements of the prototype 

applications in relation to the geoportal and the user. The prototypes and the user are 

illustrated as 'actors', with the geoportal. as the platform from which the actors 

interact. The limitations of existing approaches for web-based geovisualisation and 

presenting the results of geographic search were discussed in detail in Chapters 2 and 

3. Our rationale for choosing Java3l) is that it is open source, web-deployable, 

platform independent and its applets can be embedded in a web page. 

5.2 Developing the STORM System 

5.2.1 Architecture 
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In Chapter 3 we proposed an approach for presenting ranked geographic inctadata 

records in a _3 )D visualisation. The proposed approach ranks rnetadata records 

according to spatial, temporal and semantic relevance. This study developed a 

prototype called the STORM browser to investigate the design and implementation 

considerations for such an application. The system adopts a three tier client- 

mi ddleware- server model. The meta-database is held and disseminated from 

metadata servers on the server-side. Requests and responses are processed by a 

metadata harvesting tool and ontology-based middleware. The resultant metadata 

records are then ranked and presented on the client-side by a Java3l)-based client. 

Figure 5.2 illustrates the architecture adopted. This subsection presents a more 

detailed and technical discussion of the design and implementation. 

Z39.50 

zn 9 50 3 . 

Z39.50 

----------- 

WordNET 

Server-side 

Figure 5.2 The STORM architecture 

Metadata 
I larvesting 

Ranking 
and 

Visualisation 

Ontological 
QLlcry 1--'xpansion 

Middleware ('I lent-side 

The first implementation issue considered was the harvesting ofinetadata. In 

Chapters I and 4 we discussed Catalogue web services (CSW). 'I'lle F(JI)(' 

Clearinghouse registry was Identified as a major source ot'gcographic metadata 

served through the Z39.50 protocol. Over 400 servers located worldwide are listed 

on the FGDC rcgistry(FDGC. 2005). The Isitc Z39.50 server, which is freely 

distributed by the FGDC, was selected t'()r metadata dissemmation. An initial version 

of the scrver-side component was implemented using VBZOOMC (I labing. 2002- 
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2003) open source libraries. During testing, it was observed that VBZOOMC was not 

adequately stable, it was replaced with the YAZ toolkit (Index Data, 2006) for 

interfacing with Z39.50 servers. 

The web application accepted eight HTTP parameters; the server's Uniform 

Resource Locator (URL), the meta-database name, the search title, keyword, 

bounding east, bounding west, bounding north and bounding south coordinates. The 

web application then automatically constructed a query statement before sending the 

query to a targeted metadata server. Once the results are returned from the metadata 

servers, the web application serialises them in XML before forwarding them to the 

STORM browser. By separating the Z39.50-based metadata harvesting from the 

ontology-handling and visualisation components, the design would ensure that the 

rest of the STORM system was independent of the Z39.50 connector used. 

A number of problems were encountered during implementation. First, several of the 

metadata servers on the FGbC clearinghouse registry implement the FGDC 

CSDGM, therefore the metadata harvesting application had to be capable of mapping 

fields from the CSDGM to the ISO 19115, which our study had adopted for reasons 

of interriationalisation. The ISO-FGDC crosswalk was adopted as a guide to 

mappings (FGDC, 2004). Further, some of the metadata records harvested had 

incorrect entries, for example start dates that occur after end dates or coincident 

boundary coordinates. The web application therefore had to check validity of the 

start and end dates, however, this was further complicated by the fact that the 

CSDGM allows variable date specifications (Hodge, 2001, FDGC, 2005). The web 

application uses string manipulation to check for common date formats such as 

DD/MM/YYYY, MM/DD/YYYY, YYYY, 'before YYYY'and'after YYYY'- 

where the day of the month is DD, the month is MM and the year is YYYY. 

However, we cannot claim to handle all possible date specifications as the CSDGM 

allows for dates encoded as 'free text'. The difficulty in automated processing of free 

text metadata is echoed by Podolak and Dem§ar (2004). 
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5.2.2 Ontology Access 

Chapter 2 discussed recent research on ontologies and their use in related studies. 
The STORM browser implements an Ontological Query Expansion tool for 

determining relationships between search terms and related concepts. As shown in 

Figure 5.2, the Ontological Query Expansion tool is an integral part of the STORM 

system. If the user's query includes a thematic keyword, the metadata harvesting tool 

sends a request to the Ontological Query Expansion tool which then returns a list of 
terms ontologically related to the search keyword. The additional keywords are then 

automatically added to the list of terms to query. Figure 5.3 presents a flowchart of 
the ranking algorithm designed for the system. 
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Figure 5.3 flowchart of the implemented ranking algorithm 

During the ranking process, the related terms are assigned lower weighting values, as 

per the Tversky model presented in Chapter 2, to reflect the difference in semantics 

between the discovered terms and the user's original search term. For example, for a 

search term skyscraper with a weight of 1.0, a discovered terrn of building would be 

assigned a weight of approximately 0.7 to show that even though a skyscraper is a 

building, a building may not be a skyscraper (Soanes and Hawkes, 2005). The 
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weighting values depend on the application, however they have an influence on the 

proximity of objects within the visualisation. It may, therefore, be necessary to select 

a large weight difference to reduce clatter on the semantic similarity axis. However, 

as our implementation is based on the model by Tversky(I 977), we also consider 

those terms that are not related to the query term. Therefore a document A that has 

the original search term in its metadata may rank lower than a document B that 

contains a semantically-related term, if there are several other terms within document 

A that are not related to the original search term. Figures 5.3,5.4 and the following 

equation indicate how Tversky's model has been implemented, 

i 
S= i+lux(q - i)l +lvx(o -i)l +lwx(m - i)l 

where: 

*i is the number of intersections between a query (or semantically related 
term) and a term in the metadata field 

o uv and w are weights assigned to the differences between query tenns, 

metadata terms and intersections. The weights are fractions that sum up to 

to depict asymmetric similarity as discussed in section 2.1.2. 

"q is the number of terms in the query 

"o is the number of semantically related terms 

"m is the number of terms in the metadata fields (e. g. title, abstract or others) 

"s is the similarity measure 

From the equation, similarity decreases with an increase in the number of terms that 

are not shared between the query terms and metadata fields. The process illustrated 

in Figure 5.4 increases the intersection index (i) each time a match between a query 

term and a term in a metadata field is found. After the query terms have been 

compared to the metadata, the process is repeated for terms semantically related to 

the query terms. This feature-based approach differs to edge-counting methods of 

semantic similarity as we assume equal distance between concepts. As discussed in 

section 2.4-4, conceptual distance between concepts is not always uniform leading to 

irregular densities of links between some concepts. Assumption of equal distance 

between concepts is, therefore, a limitation of our approach. Our approach differs to 

information content-based methods, as well, as we ignore the frequency of 
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occurrence of a term within a corpus. This, however, protects our similarity measure 

from terms with multiple meanings, for example, the term 'bank' could refer to a 

river bank or a commercial bank. 

x*+ 

a 

Figure 5.4 Flowchart of semantic comparison of query to terms in metadata descriptions 
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For implementing the ontological components, two ontologies were examined, 

namely OpenCyc and WordNet. The former is the free Subset of the Cyc ontology 

and currently offers specifications of over 60 000 concepts (CycCorp. 2003). The 

latter is a linguistic ontology (sometimes referred to as a lexical database) containing 

over 50 000 words and 40 000 phrases, collected into over 70 000 sense meanings 

and developed by the Cognitive Science Laboratory at Princeton University 

(Agarwal, 2005, Fellbaum, 1998). "The knowledge in Cyc is represented 

declaratively in a variant of predicate logic thus giving CYC more reasoning power 

than is available to WordNet" (Gilchrist, 200' 3: pp. 13 )). Our design adopted WordNct 

for implementation in the STORM system for the following reasons: First, it is 

available as a relational database, which processes queries faster than ASCII-based 

formats such as OWL. Second, linguistic ontologics, such as WordNet, offer a bridge 

between philosophical and engineering concept ual i sat ions (Agarwal, 2005). Third, at 

the time of the implementation ofSTORM, WordNct offered more concepts than 

OpenCyc. We however, emphasize that future research should examine the 

possibility of using both ontologics within STORM. 
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Figure 5.5 A subset ofthe relational implementation of Wordoet 

104 



Chapter 5: Design and Implementation 

A relational implementation of Wordnet was adopted for providing a lexical database 

(Android Technologies Inc., 2006). This database contains a relational table for 

similar terms, hypernyms, hyponyms, meronyrns, antonyms and other relations. To 

reduce the possibility of retrieving irrelevant terms, our implementation only adopted 

the tables of similar terms (wn,. 
_similar), 

hypernyms (wn, 
__hypernym), 

hyponyms 

(wq_hyponym) and synsets (wn,. 
_synset). 

An illustration of these tables is presented 
in Figure 5.5. The process of retrieving terms from the relational database was to, 

* create a view (called wn-tempo) from the join of the wn-synset and 

wn_similar tables, with both the synset_id and word fields as constraints 

select all from the join of wn_tempo and wn_synset, with the synset_id_2 
field as the constraint. 

* repeat the first two steps for other semantic relations (in our case, hypernyms 

and hyponyms). 

The associations created by the relational joins, are illustrated as circular-headed 
lines in Figure 5.5. Once the associations have been retrieved, the extracted terms are 

exported as XML through a servlet. The STORM-enabled browser then retrieves the 

XML document by referencing the URL of the servlet. A limitation of our approach 
is that we do not disambiguate the terms. For example, our system does not 
distinguish between senses of the term 'well' referring to a 'borehole' and 'feeling'. 

Term disambiguation is beyond the scope of this thesis, however, we acknowledge 

that term disambiguation could improve the retrieval of terms for the STORM 

system. The next subsection describes the implementation of the STORM-enabled 

browser. 

5.2.3 The STORM-Enabled Browser 

An important design issue was whether to implement the client application as an 

applet or a webstart application. Although both are deployed through the web, 

applets are embedded on a web page whereas webstart applications run 
independently of the web browser. Nielsen (2000: pp. 258) proposes that applets that 
involve accessing real-world data existing external to the hosting web page should be 
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displayed in a new non-browser window (that is, as webstart applications). The 

STORM browser was therefore designed to operate as a webstart application 

composed of three main Graphical User Interface (GUI) components, i) a five 

column table for the ranked list showing the one-dimensional rank, the title, spatial, 

semantic and temporal score of each dataset, ii) a 3D graphics panel for the STORM 

visualisation and iii) an HTML panel for presenting geospatial metadata for a 

selected dataset. A panel is a section of a GUI window. This design satisfies 

recommendations by Ware and Plumlee (2005) that all relevant information should 

be placed within the same field of view to aid navigation; in our case, the 3D 

visualisation, the metadata panel and the ranked list are presented in the same 

window. Another recommendation addressed includes the use of hyperlinks through 

the selection of datasets by clicking on records on the ranked list or clicking on 

thumbnails in the 3D visualisation. 

An additional design consideration was how to assist the user in detecting distances 

through the provision of calibrated axes. The size and shape of the thumbnails is kept 

constant so as to enable the user to detect depth through perspective, that is, objects 

that appear smaller are further away than those that appear bigger. Different graphics 

are rendered for vector and raster datasets on the thumbnails. A vector dataset is 

represented with a cartographic map of a globe, whereas a raster dataset is 

represented with a satellite view of the earth. Both of these thumbnails are illustrated 

in Figure 5.7. This type of symbolism allows for immediate identification of the type 

of dataset. With three panels on the main window, another design consideration was 

how the user interacts with the different GUI components. We followed a 

conventional GIS model for interaction; a desktop GIS allows clicking of an object in 

a visualisation to highlight the representation of that object on an attribute table and 

vice versa (Longley et al., 2001). In our case, however, there were three panels (i. e. 

including the HTML panel for presenting metadata) hence selection of an object in 

the visualisation or a record on the table would have to update the metadata HTML 

panel as well. 
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Figure 5.6 Dialog for entering search constraints. Ordnance Survey U Crown Copyright 

Another design consideration was how to provide a query interface. To avoid 

overwhelming the user with an excessive number of controls, a separate query 

window only appears upon clicking on a menu button, as illustrated in Figure 5.6. 

The query window included textboxes for entering the keywords, temporal and 

spatial constraints to search. The spatial constraints are entered either as bounding 

coordinates or through an interactive map that automatically alters the coordinates in 

the textboxes. The metadata for each dataset is compared with the keyword entered 

by the user to determine semantic similarity. The start and end dates entered are 

compared with the dates of creation retrieved from the metadata. The bounding 

coordinates entered by the user are tested against the bounding coordinates of each 

dataset to determine if the query area contains or overlaps the geographic extent of 

the dataset. Although not implemented in the current version of the browser, an 

alternative method for specifying spatial constraints could have been the use of an 

ontology-driven gazetteer, as implemented by the SPIRIT project (Jones et al., 2001). 

The visualisation panel extends the Can vas3D class which is the main drawing GU I 

component for rendering in Java3D. A grid of LineArray objects is implemented 
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and inserted into the root branch graph of the visualisation panel. The grid lines are 

spaced every 0.25 distance units over a unit-length axis. The axis of unit-length is 

adopted to correspond with the normalised similarity functions discussed in Chapter 

2. The text accompanying each grid line is implemented through the Text2D class 

offered by Java3D. The class offers a representation of a string of characters 

rendered on a rectangular shape. The Text2 D object for the spatial, temporal and 

semantic relevance scores are then positioned along their associated axis. Figure 5.7 

shows an example screenshot of the GUI and the labelled grid lines. Through the 

addition of instances of the MouseRotate, MouseZoom and MouseTranslate 

classes, the user is able to alter the position and orientation of the visualisation. 

However, to improve the usability of the navigation controls, vertical rotation was 

disabled. The navigation of 3D STORM space through 'flying' and zooming satisfies 

another recommendation by Ware and Plumlee (2005). 

As aforementioned, an HTML panel was implemented for presenting the geographic 

metadata. The applet stores metadata for each dataset in an instance of the class 

Da taset. Within each Da taset object the values and names of metadata f ields 

are stored in an encapsulated Java Hashtable object. The Hashtabie class 
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offers temporary storage of key-value pairs (Horstmann and Cornell, 2001). A 

program can extract each entry by specifying a key (field) to retrieve. For multiple 

occurrences of metadata fields such as two place names in the same metadata record 
(for example United Kingdom and England), STORM concatenates the values with 

commas separating each value. When a dataset is selected either in the visualisation 

panel or the ranked list, an HTML script is automatically composed from the key- 

value pairs stored in the Hashtable. The HTML script is then added to an instance 

of the JT ext: Pane class, a Java GUI component that renders HTML markup. 

As was described in this section, the cross-operation of the browser, middleware and 

external metadata servers was made possible through communication based on 

standard approaches such as the Z39.50 protocol and XML. The section 
demonstrated that a key aspect of the development of the interactive 31) visualisation 
is the Behavior class offered by Java3l) and its subclasses developed specifically 
for the STORM browser. This section has therefore discussed the development of the 

complete STORM system, including the browser, middleware and communication 

with servers. Subsequent sections will discuss the development of the GeoDOVE 

applet and how both STORM and GeoDOVE are integrated into the NEEDS 

geoportal. 

5.3 Development of GeoDOVE 

In Chapter 3 we discussed some of the limitations of existing 3D scene description 

languages and real-time 3D graphics engines. An approach based on a thick-client 

web-deployable Java, 3D applet was proposed. To investigate the proposed 

geovisualisation approaches, a prototype called GeoDOVE was developed as part of 
this study. The three main facilities that were identified for implementing GeoDOVE 

included the data upload, visualisation and exploration facilities. The user engages 

the aforementioned facilities in the following order: 
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1. From the NEEDS metadata page, a user clicks on a link to a dataset and is 

forwarded to the GeoDOVE-embedded webpage. 

2. The applet's data upload facility automatically uploads the dataset that was 

described by the metadata page in the previous step. 

3. As we cannot, at present, predict the schematic and semantic definitions of 

the contents of each dataset, the applet first asks the user if she wishes to 

extrude the dataset, and if so by how many distance units (generally metres). 
4. The applet's visualisation facility initialises the 3D scene and automatically 

renders the dataset with the user's presentation settings already implemented. 

5. Once the data has been rendered, the data exploration facility enables the user 

to access the associated table of attributes and assess the contents of the 

dataset. 

6. Upon gaining a deeper understanding of the data, the user may wish to 

change the appearance of the presented data. The applet should support 

runtime modifications to the appearance of objects in the 3D scene. 

5.3.1 Data Upload Facility 

The data upload facility is responsible for the retrieval of geographic data and 

instantiation of Java classes that abstract the SFS. This means that it is the interface 

between heterogeneous DBMS, web services and the applet. The SFS model that is 

produced by the data upload facility is implemented using primitive Java data types, 

and hence does not include any Java3l) classes. This was necessary to ensure that 

feature collections could be serialised and transmitted over the web, resulting in a 

three-tier client-middleware-server architecture. Important Java3l) classes such as 

the Geometry class do not implement the Serializable interface and hence 

instances of these classes cannot be transmitted as Java objects over a network 

connection (Horstmann and Corncll, 2001). In a two-tier architecture where the client 

connects directly through the ODBC or JDBC, serialisation is not necessary as the 

feature collection is created on the client side. An initial design of GeoDOVE was 

based on the two-tier approach. Unfortunately, security restrictions from outside our 

University Intranet were restrictive to connections through any ports other than port 
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80 (the HTTP web server) and consequently, the architecture was re-designed to 

adopt a three-tier model; with the upload facilities implemented at middle-level. Both 

architectures are presented in Figure 5.8. The dashed line depicts the cordon between 

client and server. The illustration shows that the difference between these two 

implementations of GeoDOVE was characterised mainly by the position of the 

JDBC/Web Service connector which was part of the upload facility. 

One of the most important design considerations was how to offer temporary storage 
for uploaded attributes. Although feature attributes could be easily stored in memory 

at runtime, it was necessary to offer the ability to query those attributes using 

standard methods of querying such as SQL. The applet was therefore designed to 

include an internal RDBMS. The internal RDBMS would offer SQL support for 

feature collections retrieved from data sources that may not support SQL-based 

querying. The RDBMS uses the popular HSQLDB, an open source database engine 

completely developed in Java (HSQLDB Development Group, 2005). The HSQLDB 

database is deployed with the rest of the GeoDOVE Java libraries when the applet 

web page is visited. A relational table is then created for each feature collection that 

is uploaded in the applet. A later section discusses the querying of attribute tables. 

Although the current implementation does not offer the creation of relational joins 

between uploaded feature collections, the HSQDB database supports relational joins 

and these may be included in future versions of GeoDOVE. 
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Figure 5.8 The CeoDOVE architecture 

5.3.2 Visualisation Facility 
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In Chapter -3) we proposed an approach for abstractim, ()( ic simple I, eaturc. s usilIg 

Java'M geometries. In this section we describe how the mechanisms for adding those 

Java3D geometries were implemented. The section is concerned with how objects 

are retrieved from the upload facility and added to tile ViSLlaIlSatiOlI faClllty. Further, 

this section is concerned with how the scene is initialised to prepare it lor user 

interaction. A screenshot ol'a geovisualisation frorn GcODOVF is presented in 

Figure 5.9. The illustration shows buildings With textures attached to ýýalls and all 

additional texture draped over the DEM as well. 
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5.3.2.1 Adding OGC Features to Java3D Scene-Graphs 

Once a feature collection-an abstraction of the SFS GeometryCo I lection 

class- has been created by the data upload facility, the feature collection is then 

added to the instance of the GeoPanel 3D class. This object handles all the 

visualisation processes including the 3D modelling of Point, LineString and 

LinearRing objects as per the procedure described in Section 3.4. The 

GeoPanel3D object retrieves metadata describing the types of SFS geometries held 

in the feature collection, the number of features and the spatial extent of the feature 

collection. If the feature collection holds Polygon objects, a loop is invoked that 

obtains the collection of LinearRing objects from each Polygon object. The 

collection of LinearRing objects is then used to create an instance of an 

ExtrudedLinearRing class, which then creates a 3D model of the 
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LinearRing from Java3l) Shape3D objects. Figure 5.10 illustrates the post- 

upload workflow for creating 3D models within the GeoPaneM object. 

start 

Polygons Get Polygon Get LinearRing 
inside? collection 

" 
collection 

Polylines Get Polyline Get LineString 
inside? collection 

W 
collection 

Points Get Point Prepare 
inside? collection extruded model 
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I 
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Figure 5.10 Flowchart of addition of SFS geometries into a 3D scene 

If the GeometryCollection holds instances of the Polyline class (an 

abstraction of the SFS MultiLineString) then from each Polyline the 

collection of LineString objects is retrieved. An Ext rudedLine String is 

then created from the collection of LineString objects using the procedure 

described in Section 3.4. An obvious difference between an 

ExtrudedLine St ring and an ExtrudedLinearRing is that objects of the 

former class implement a roof structure whereas objects of the latter do not. 
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However, an additional difference is that, unlike the Ext rudedLine String, the 

back of the ExtrudedLinearRing is culled (not rendered) as it is never visible 
due to the roof overhead. Visualisation applications apply culling techniques to 

optimise the speed and efficiency of real-time 3D rendering. An alternative approach 

for abstracting LineString objects is through the creation of Java3D 

LineArray objects to represent features such as pipe-works or other tubular 

structures. By default, if the user chooses not to extrude a collection of 

LineStrings, then the geometries are modelled as tubular LineArray objects. 

Finally, the user is given the opportunity to specify the width of each LineArray. 

As illustrated in Figure 5.10, Point objects are also retrieved from a 

GeometryCollection. If the user wishes to place a cylinder at the location of 

the point, then an ExtrudedLinearRing is created with vertices along the 

circumference of the point. Alternatively, if the user selects to create a spherical 

representation at the location of that point then a Java3l) sphere object is placed at 

the location. The applet also allows the user to specify the radius of the spherical or 

cylindrical objects. The Java3D Sphere and the Shape3D objects created from 

instances of the Point, Polyline and Polygon classes are then added to 

instances of the Java. 3D Transf ormGroup class. The Transf ormGroup class, 

allows for the translation, rotation and scaling of coordinates, including the 

positioning of models in the scene. The Transf ormGroup object is then added to 

a Switch object, which offers a toggle to enable or disable rendering of child 

objects. Each Switch object is then added to a BranchGroup which represents a 

GeometryCollection. The BranchGroup class has the special property that it 

is the only subclass of the Group class that can be added to a compiled and live 

scene. Figure 5.11 illustrates the resultant scenegraph. 
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Figure 5.11 The GeoPancl3D scene-graph 

So far we have discussed only how the SFS geometries are modelled, how they are 

retrieved and how they are added to a 3D scene (earlier in this section). An important 

design issue was the handling of colours and appearance of objects in the 

visualisation. "About four percent of the public (8.0% of men and 0.4% of women) 

are congenitally colour deficienf'(Robinson et al., 1995: pp. 400). It was therefore 

necessary to include dynamic colouring and texturing in our design. Each Java3l) 

Shape3D object is instantiated through the passing of two parameters, a Geometry 

and an Appearance object. Whereas the Geometry objects are created from SFS 

abstractions as discussed in Section 3.4, the appearance of each Shape3D is handled 

after the objects have first been uploaded. The appearance is defined through the 

specification of a material or a Texture object. A Material object offers a 
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homogeneous colour fill over a shape, whereas a Texture object allows an image 

or bitmap to be draped on geometry. Subclasses of the Behavior class were 

therefore implemented and set to drape an image on an extruded SFS geometry as a 

Texture object. In the following text, subclasses with a'vior' suffix are part of 

the Java3l) API, those with a 'viour' suffix have been implemented specifically for 

GeoDOVE. 

start 
in(Shape3D, Raster) Create Create new 

georeferenced Texture2D and 
Bufferedlmage replace original 

Obtain Set as new 
bounding Geometry and 
coordinates Appearance 

Create vertices Create 
and nonnals TriangleArray 

end 

Figure 5.12 Flowchart of the DEM creation process 

A separate behaviour subclass, called DEMBehaviour, was implemented for 

draping imagery over a DEM. The input parameters were the target Shape3D obj ect 

and the input georeferenced raster dataset (an instance of the GeoRaster class). 

When the DEMBehaviour class is triggered, the process illustrated in Figure 5.12 

takes place. First, the spatial extents and resolution of the input raster are retrieved. A 

regular grid of Java3l) Point3f vertices covering the spatial extents and spaced 

according to the just-extracted resolution is created. Then the corresponding normals 

are created for each Point3f vertex constituting the DEM. An instance of the 

TriangleArray class is then created and set as the geometry of target Shape3D 

object. For the appearance of the target Shape 3D object, the bounding coordinates 

of the input raster are used to geo-reference an instance of the Java image-handling 

class Buf f eredImage. Once the Buf f eredImage has been geo-referenced, a 

second input raster is then rendered on to the geo-referenced BufferedI ma g e. 
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The second input raster may be a colour-coded version of the first raster dataset or an 

image that was draped on the target Shape 3D object when the process was invoked. 

5.3.2.2 Scene Initialisation 

The scene is initialised by adding behaviours to enable user navigation within the 3D 

environment. Navigation is implemented by altering transformation properties of a 

Java3D Trans f ormGroup object. Java. 3D offers a KeyNavigatorBehavior 

class for altering Trans f ormGroup objects through a keyboard. It also offers 

MouseZoom, MouseTranslate and MouseRotate classes for altering 

Trans f ormGroups through actions on a mouse device. During initialisation of a 

scene in GeoDOVE, the root Transf ormGroup of the viewing platform (the 

location of the viewing camera) is added to a KeyNavigatorBehavior object, 

which is then added to the root BranchGroup. This allows the user to navigate 

around a 3D scene through key presses. Rather than using the MouseZoom, 

MouseTranslate and MouseRotate classes to navigate using the mouse 

device, our study adopted the OrbitBehavior class. The orbitBehavior 

class encompasses all 3D transformations (zooming, translation and rotation) in one 

class; in contrast to the aforementioned 'Mou s e'-prefixed classes which offer a 

single type of transformation per class. 

In addition to the navigation behaviours, the GeoPane13D class also prepares view 

attributes such as the background appearance and the initial position (and orientation) 

of the viewer. Java3D offers a Background class that allows the developer to place 

an image in the background of the visualisation. Unfortunately, the background 

image also does not move when the position of the viewing camera changes, which is 

not a realistic abstraction of spatial phenomena. An alternative is to create a spherical 

object, using the Sphere class, to contain the rest of the scene. This option allows 

all objects in the scene including the background to move relative to the viewing 

camera. The second option was implemented for the final version of the applet. 
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(a) Yaw (b) Pitch (c) Roll 

Figure 5.13 Orientation in 3D space illustrated with views of a teapot from above (a) the side (b) 

and the front (c) 

Defining the initial position and orientation of the viewing camera is an important 

part of the pre-visualisation process. The scene is initiated with the initial position of 

the viewing camera located at the centre of the first uploaded dataset. In addition to 

the position, we consider the orientation of the viewing camera. In 3D 

geovisualisation, the viewing camera is allowed to rotate both horizontally and 

vertically, thereby altering its yaw and pitch respectively. Figure 5.13 illustrates 

orientation in 3D space through the alteration of yaw, pitch and roll. Similar to 

OpenGL and Direct3D, orientation in Java3D is defined through the specification of 

a quatemion -a four parameter set of numbers - that specifies an axis in 3D space 

and an angle of rotation about that axis. Java3D adopts a default coordinate system 

with the Z axis increasing towards the viewing camera. GeoDOVE therefore alters 

the orientation such that the z-axis (representing the height above ground level) 

points upwards when the scene is initialised. 

5.3.3 Exploration Facility 

Once the GeometryCollection has been added to the root BranchGroup, the 

user is then able to explore the 3D scene. Visual exploration capabilities 

implemented included a behaviour class, LayerSeparator, which separates the 

layers vertically into a layer stack. The behaviour may be triggered by a key press or 

through clicking a menu button. The menu button dispatches an artificial key press 
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through the dispatchEvent method that the GeoP an e13D inherits from Java's 

GUI API. When triggered the LayerSeparator object traverses the scenegraph 

illustrated in Figure 5.11 and checks if each node is aT rans fo rmGroup 

representing a feature collection. If the behaviour class finds such a 

T ran sf ormGroup, the reference number (i) of the feature collection is obtained 

from the Trans f ormGroup's metadata and used to translate the 

Transf ormGroup by adding a vertical distance of ix 10. This means that each of 

the feature collections is translated according to whether it was uploaded first, 

second, third and so on. The behaviour class also offers a reverse function that re- 

integrates the multiple layers together by subtracting ix 10 from the height value. 

Figure 5.14 shows roads (in green), buildings (in purple) and laser-scanned data 

layers separated into a layer stack, including a background image of the sky with 

some clouds. 

Each feature's attributes can also be explored by highlighting the feature's record on 

an attribute table. A record can either be highlighted by selecting the associated 

geometric object in the 3D view, by selecting the associated record in the attributed 

table or by invoking an SQL query that selects the associated records. A geometric 

object representing a feature is selected using a SelectionBehaviour class, 

which extends the Java3D PickMouseBehavior class. The 

Select ionBehaviour is triggered when a user clicks on the GeoPanel3D 
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panel. An instance of this class is added to the root BranchGroup. The 

PickMouseBehavior class and other subclasses of the Java3D Behavior class 

offer a mechanism for transmitting messages between the Java runtime and the 

lower-level OpenGL/Direct3D graphics engines. Different triggers (called 

Wa ke UpO n events) may be set to invoke an action to be performed by a 

Behaviour subclass. 

Alternatively, the user may choose to select objects by clicking on a record in the 

attribute table. In this scenario, the TableSelectionBehaviour class handles 

the selection events. The attribute table passes the unique identifier of the selected 

record, which is then added to the list of selected identifiers in the 

Table Se 1e ct ionBehaviour object. Unlike the SelectionBehaviour 

class, this class is triggered by elapsed time; specifically it is automatically triggered 

every half a second. It therefore, behaves like Java's built-in listener classes which 

continuously monitor events on GUI components. The 

TableSelectionBehaviour class also allows for the selection of objects 

through the execution of an SQL statement such as SELECT * FROMMyTable 

WHERE UniqueID > 100 (that is, to select all features with an attribute called 

Uniquell) that has a value greater than 100). The SQL query returns a list of records 

and their unique identifiers are passed to the TableSelectionBehaviour 

which then highlights the associated objects in the 3D scene. 

Similar to the development of the STORM browser, the Behavior class played a key 

role in the implementation of the GeoDOVE applet. However, an additionally 

important component was the Java database connectivity API (JDBC). This section 
described, in detail, the processes through which the GeoDOVE applet retrieves 

geometry collections from a geospatial database and converts them into Java3l) 

geometries. The next section describes how the STORM browser and the GeoDOVE 

applet are integrated into the NEEDS geoportal. 
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5.4 Developing the Geoportal 

The previous two sections discussed the development of two visualisation 

applications. The first application is specifically for the visualisation of geographic 

search results. The second application is for the visualisation of multidimensional 

geographic data. With the visualisation software implemented, the next task was to 
integrate them into a single geoportal. For this to be achieved it was necessary to 
base the design of the geoportal on the OGC geoportal architecture presented in 

Figure 1.2 and the model suggested by Tait(2005) illustrated in Figure 1.3. The 

geoportal would have to support the Z39.50 protocol which is supported by over 400 

spatial data clearinghouses distributed globally(FDGC, 2005). The architecture 
illustrated in Figure 5.15 was designed for the implementation of the NEEDS 

geoportal. 
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Figure 5.15 NEEDS architecture 

The NEEDS geoportal is the platform from which the STORM browser and 

GeoDOVE are accessed. As these visualisation applications are primarily for 

enhancing geographic data discovery, they were made accessible from the 

geoportal's search pages and menus. Nielsen (2000) proposes that an intranet portal 

should always have three components: the directory, search and news sections. This 

thesis equates the directory to a catalogue as they both publish the existence and 

location of content. In addition to the search pages, the website structure was 

designed to include an upload section that included the metadata upload interfaces. 

The design of the NEEDS geoportal therefore included a news section for 
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announcing maintenance regarding the geoportal and also general news that may be 

of interest to the user community. The website design is presented in Figure 5.16. 
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Figure 5.16 Site map 
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Based on the architecture presented in Figure 5.15 and the site map illustrated in 

Figure 5.16, the three main facilities were identified for development namely, 

metadata upload, conventional discovery and data retrieval facilities. The rest of this 

section discusses their design and implementation. 

5.4.1 Metaclata Upload 

The metadata entries are entered through Java Server Pages (JSP). JSP offer dynamic 

content that depends on the parameters entered from the client-side. When a JSP 

page is visited, it is compiled into a Java Servlet which is a Java program that runs on 

a server and returns some output to a client. Serviets and JSP were selected for this 

project, over other server-side scripting platforms such as PHP and ASP. NET, 

because Java servlets have access to several API's such as the JDBC, Swing, Java3l) 

and others. Furthermore, Java is free and some of its APIs, such as Java3l) are now 

open source projects. The geoportal was designed to support two main scenarios for 

uploading metadata i) where the metadata references an external data source ii) 
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where the metadata references an in-house data source. The first scenario is 

primarily meant for data vendors who wish to publish the existence of data, but 

without freely distributing the data itself. By referencing an external data source, the 

geoportal is able to publish thumbnails of data with access constraints controlled and 

enforced by the data vendor. The second scenario is primarily for data donors who do 

not have the resources to disseminate geographic data. 

The metadata submission page implemented an HTML form for entering metadata. 
fields. For the first aforementioned upload scenario, a textbox was created for 

entering a WMS getMap request URL. As was stated in Chapter 4, the getMap 

request is the interface for retrieving rendered vector or raster maps. For the second 

scenario, an additional field was made available for selecting a dataset to upload. The 

dataset had to be a compressed archive of the files being donated. For example, a ZIP 

file containing shapefiles (SHP) or GML files, alongside other non-geographic files 

such as PDFs or Microsoft Word files. The servlet unpacks the ZIP archive into a 

special folder on the server where all the files are made available for service-based 
dissemination. 

In both scenarios all metadata entries are stored in a PostgreSQL relational table, 

which we have named 'geometadata'. The getMap request entered by the data 

donor, as per the first scenario, is stored in table geometadata as is. However, as the 

data donor in the second scenario does not have access to resources for disseminating 

data, a getMap request is automatically generated by the upload servlet. The 

generated getMap request contains parameters such as the bounding coordinates, a 
default height and width of 500 pixels and the URL of the geographic file uploaded. 

The geographic file is renamed to a 'safe' filename because certain characters are 

allowed for filenames but encoded on a URL, for example '(' is encoded as '%28' 

and ')' as '%2e'(W3C, 1999-2006). The getMap request in this case references a 

web map service built into NEEDS that allows dynamic references to data sources. 

The web map service is implemented in a class called GeoRenderer. 

Once metadata has been uploaded, an administrator is given the opportunity to 

examine newly added records before they are published. This is achieved through the 
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separation of the primary metadata storage database from the metadata publishing 

server. As stated, the primary storage is offered by a relational table called 

geometadata, and the metadata server is implemented through an Isite installation. 

When an administrator selects a metadata record for publishing, the metadata is 

exported as an XML file into the Isite data folder. Once all new metadata records 

have been examined and exported to the publishing folder, the administrator is then 

able to invoke a re-indexing operation on Isite. All the administrative tasks, including 

XML export, starting, stopping and re-indexing the metadata server is controlled 

from the geoportal and hence the existence of the geornetadata table and the metadata 

server is transparent to the user. 

5.4.2 Conventional Discovery 

The conventional discovery facility has two main tasks; to search and preview. We 

name this facility 'conventional' to distinguish it from the ontology-based approach 

adopted for the STORM browser. The search task involves the sending of a search 

request to a Z39.50 geographic metadata server and the extraction of metadata fields 

from the resulting XML into a formatted web page. The 2D preview task is only 

available for metadata records that include a getMap request on the 'online resource 

linkage' attribute of the IS019115 or the CSDGM, therefore metadata records on the 

NEEDS server included a getMap URL. The objective of the preview task is 

therefore to extract the getMap request and automatically prepare a WMS client for 

previewing the getMap source. 

Technology Task 

JSP Presentation 

Servlet Request and response processing 

PHP Connection and retrieval of records from 

Z39.50 servers 
Table 5.1 Summary of tasks performed by the three different technologies during search 
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During the search task a user enters search parameters on a JSP page. The search 

parameters are sent to a servlet, which then prepares and forwards a request to a PHP 

web application. The PHP web application adopts the Yaz toolkit for Z39.50 

communication and hence retrieves the titles of metadata records returned by the 

Z39.50 servers. The servlet and JSP then convert the list of titles from XML to 

HTML for presentation to the user. When a user selects a particular record for 

preview, the request is sent to a second servlet which sends a request to another PHP 

web application. The web application then sends the complete title of the selected 

record to the Z39.50 server which returns a complete metadata record in XML or 
SGML, depending on the server's implementation. The XML document is forwarded 

to the second servlet which extracts the metadata fields from the XML document and 

stores them in an instance of the Java Hashtable class. A JSP page then retrieves 

the field-value pairs from the Hashtable and presents them to the user. A 

summary of the description of tasks performed by JSP, servIets and PHP is presented 
in Table 5.1. 

The WMS client is built into the aforementioned JSP page, therefore the preview 

chronologically follows the search task. The main technologies adopted for the 

development of the preview facility include JavaScript, JSP and servlets. It should be 

noted that JavaScript programs run on a client web browser, whereas JSP and 

servlets run on a server. When the JSP page retrieves the getMap request from the 

aforementioned Hashtable, it separates the getMap request into the different 

URL parameters for example, the geographic layer, WMS server and bounding 

coordinates. 
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Figure 5.17 A screenshot of the NEEDS WMS client 

The parameters are then sent to a third servlet which automatically prepares a 

JavaScript configuration file for the WMS client. Some of the parameters used for 

configuring the WNIS client include the boundary coordinates, image format, image 

size and the names of layers to view. Other getMap parameters such as the style are 

ignored in the current implementation. The boundary coordinates are used to 

initialise the current viewable extents. Each click on the navigation menu alters the 

coordinates of the current viewable extent. A paintCompoment function was 

implemented in JavaScript and is invoked every time the viewable extent is altered. 

The name of the method is meant to highlight its relation to the Java GUI 

components which implement a similarly named function. A screenshot of the WMS 

client is shown in Figure 5.17. 

5.4.3 Data Retrieval 

For metadata with accompanying datasets, the JSP script writes out a hyperlink that 

references the ZIP archive that was uploaded. If the metadata does not include an 

accompanying dataset, for example, if it references a third-party metadata server, 

then the hyperlink is not written out to the JSP page. The hyperlink is also not written 

out if the client's request has been sent from an unauthorised IP (internet protocol) 

address. The IP address is a unique sequence of numbers used to identify nodes 
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(computers and other devices) on the Internet. As conditions for writing out the 

hyperlink are tested using a traditional Java 'if statement, additional access 

constraints may be implemented at this point on the JSP. 

Although not originally part of the system specifications, it became apparent during 

development time, that there were several other benefits to exposing a feature 

collection (whether as a shapefile or GML) for data discovery. One of the benefits 

included the ability to integrate other visualisation tools for improved visual data 

exploration. Our study, therefore selected two applications for investigating 

interoperability with third-party visualisation tools, namely R-project (Ripley, 2001) 

and Google Earth (Butler, 2006). The former, hereinafter referred to as 'R', is a 

statistical modelling package that allows users to compose and run mathematical 

functions from a GUI or the command line. One of the differences between the two 

systems is that the primary file forinat used by Google Earth, Keyhole Markup 

Language (KML), is a geospatial file format which borrows heavily from 

GML(Google, 2005, OGC, 2004). In contrast, R does not natively handle geospatial 
file formats and hence data held by NEEDS requires processing before use in R. 
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Figure 5.18 A flowchart of the data retrieval process 

The Java platform offers a class called Runt ime that allows an application to 

interface with the environment from which it runs. Commands that would normally 

be executed from the Windows DOS prompt or Unix shell prompt are passed to an 

instance of the Runtime class through the exec method. When the method is called, 

a process is created which the Java application then uses to determine if the method 

operation was successfully. To integrate R with NEEDS, we created a hyperlink to a 

JSP page that invokes a data processing servlet then writes an R input file. For 
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illustrative purposes, we implemented a data processing function that determines the 

density of features in a ten by ten grid matrix. Using the Runt ime. exec method, 

the JSP invokes an R batch script which references the R input file that has just been 

created. The R batch script creates a set of statistical graphs from the ten by ten 

matrix and writes the graphs to image files that are then referenced as HMTL IMG 

entries in the JSP output. This workflow is illustrated in Figure 5.18. 

2D preview from NEFDS WMS Client 

30 

2( 

Density surface from R-prqject 
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31) overlay 
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Figure 5.19 Screenshots of output from R-software and Google Earth interoperating with 
NEEDS 

The integration of Google Earth (GE) with the rest of the NEEDS system follows a 
different data workflow, as illustrated in Figure 5.18. GE operates as a standalone 
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application that is launched when a user clicks on a hyperlink to a KML file. If GE is 

already running, then clicking on a KML file triggers GE to upload the file into the 

current 3D scene. Therefore, to integrate GE with NEEDS, it was necessary to export 

a feature collection to a KML file. However, the main challenge with this process 

was that KML files only adopt the WGS84 coordinate system (Google, 2005: URL 

http: //earth. google. com/kml/kml - 
tags. html). As the NEEDS system primarily holds 

data from the United Kingdom, most of the datasets held on NEEDS are based on 

projected British National Grid coordinates. Therefore, it was necessary to include a 

coordinate transformation operation before exporting to KML. Figure 5.19 shows 

three different visualisations from the same river network using R-project, GE and 

the 2D preview tool on NEEDS. 

5.5 Chapter Summary 

This chapter has suggested and discussed methodologies for the implementation of a 

geoportal. that leverages visualisation methods for geographic data discovery. A 

conventional geoportal, based on the service-oriented architecture discussed in 

Chapter 1, was implemented as the platform on which to embed the visualisation 

prototypes. The two visualisation prototypes, STORM and GeoDOVE, were 
developed over a period of three years. During that period, STORM has evolved 

from two versions, GeoDOVE from three versions and NEEDS from three versions. 

Each version of the each prototype required a thorough examination of the existing 

architecture and this chapter has presented the current and more improved 

architectures. Throughout the development of the complete system the different 

facilities within each prototype were individually tested. However, the complete 

prototypes (STORM, GeoDOVE and NEEDS) were also evaluated for effectiveness 

and usability. The next chapter discusses the methodologies adopted and results 

observed during the evaluation studies. 
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Chapter 6 Evaluation 

6.1 Introduction 

One of the stated research questions is "what effect would the suggested approaches 

have on the performance of a geoportal? ". In addressing this question, GeoDOVE 

and STORM are evaluated independently of the NEEDS geoportal. Thereafter, the 

geoportal. (NEEDS) is evaluated with the visualisation applications integrated into it. 

"The determinants of system-acceptance are functionality (the degree to which the 

system provides functions which the users need to do their tasks) and usability (ease 

of use, a user-related and a task related concept)" (Benbunan-Fich, 2001: pp. 152). 

Therefore, the aim of the evaluation was to determine whether a geoportal that 

supports data discovery through multidimensional visualisation, as proposed in this 

thesis, could provide acceptable usability and performance. Related studies that have 

adopted both a user and system-oriented evaluations include for example, Lighthouse 

(Leuski and Allan, 2004), SPIRIT (Bucher et al., 2005) and the Integrated 

Thesaurus-Results Browser (ITRB) (Sutcliffe et al., 2000). 

6.1.1 Empirical Testing in GIR 

An overwhelming majority of IR evaluation studies focus on system-based empirical 

testing methods. Empirical testing involves the carrying out of a controlled 

experiment to gather evidence to support a hypothesis. Experiments in empirical 

evaluations therefore follow the same guidelines; first a hypothesis is presented then 

a set of controlled input variables that differ only in value are tested. The resultant 

observations are recorded and later analysed to determine any relations between 

changes in the values of input variables and the recorded observations. Within both 

IR and GIR, the two measures that are commonly evaluated are precision and recall; 

the latter being the proportion of retrieved relevant documents among all relevant 

documents in the document collection and the former being the proportion of 
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relevant documents among retrieved documents (Kobayashi and Takeda, 2000). The 

following formulae are commonly used for calculating normalised precision P, and 

recall U, for a retrieved set i: 

(a) Pi - 
IRl 

(b) Ui - 
R, 

IRil+IN, l W, 

where: 
e Ri is the number of relevant documents retrieved 

N, is the number of non-relevant documents retrieved. 
Wj is the number of all documents within a corpus that are known to be 
relevant to a query 

Although these have become standard measures for traditional IR evaluation, 
different studies have suggested that they offer an incomplete evaluation (Wang and 
Forgionne, 2006, Borlund, 2003b). The studies suggest that precision and -recall 

present the following limitations: firstly, the measures are computed from topical 

relevance, making them static. This means that they assume the user will find a 

suitable document from the first query. Therefore, they do not recognise the 

interactive and iterative process of IR. Secondly, they do not include the user's view 

of relevance within the evaluation. This means that the evaluation is constrained by 

how well the system matches the query constraints to the document description 

(normally metadata). Lastly, they ignore the multidimensionality of relevance, and in 

particular geographic relevance which may be influenced not only by the topic of the 
document but by the scale and date of creation as well. 

Evaluation of precision and recall in traditional IR has involved the use of very large 

document collections. Some of the earliest adopted document collections included 

the Text REtrieval Conference (TREC) and the Cross Language Evaluation Forum 

(CLEF) collections. Unfortunately these ignore the spatial (for example, scale and 

extent) and graphical (for example, user interface and graphic variables) 

characteristics of a GIR System. In response, a new initiative, called GeoCLEF, has 

been established to augment the multi-lingual retrieval framework CLEF with 

geographic considerations (Gey et al., 2005). Further justification for a geo-centric 
track within CLEF is offered by Martins et al. (2005), who emphasize that a GIR 

system integrates different components that interoperate but may require separate 
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evaluations. They list the following specific considerations i) geographic ontology 
development, ii) geographical reference extraction from text, iii) assignment of geo- 

scopes(coverages), iv) ranking according to geographic relevance and iv) design and 
development of user interfaces for GIR. However, as GeoCLEF is still at an early 

stage of development, it will not be employed for this study. Instead, this study uses 

geographic metadata. collections registered on the FGDC Clearinghouse registry 
(FDGC, 2005) as these are the primary catalogues within the geographic information 

industry. However, future studies should consider using GeoCLEF for similar 

evaluations. 

6.1.2 Usability Testing 

As mentioned earlier in this chapter, several studies have emphasized the importance 

of involving the user in any evaluation of an IR or GIR system. The three main 

approaches to generic usability testing are usability inspection, group walkthroughs 

and user testing (Brink et al., 2002). Usability inspections involve observations of 

specific aspects of a system by an expert. Although the expert can be the actual 
developer, it is highly recommended that the evaluator be someone else. Group 

walkthroughs involve a team of stakeholders in the system coming together to test 

and evaluate the system. The team is often made up of managers, clients, sales and 

support personnel and therefore excludes the developer or designer of the system. 
Both usability inspections and group walkthroughs are sometimes referred to as 
heuristic evaluations -a method for structuring the critique of a system according to 

a collection of recognized usability techniques. User testing involves observing users 

as they carry out prescribed tasks on the system. It is one of the most popular 

evaluation methods because of its low cost and involvement of members of the 

expected user community. Two main methods for collecting data during user testing 

are often applied namely, questionnaire filling and the 'think aloud' method. 

Questionnaires allow the developer to assign fixed questions that refer directly to 

aspects of the system that are being investigated. The responses to the questions can 
be entered during or after the testing session. Although traditionally the responses 

were written on a sheet of paper, modem studies employ forrns on websites that store 
the responses directly in an RDBMS. The ability to disseminate usability 
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questionnaires through the web means it is possible to involve users from different 

countries in a single usability test. The questions posted allow for profiles of the user 
to be acquired by asking general questions about the user's past experience and 

education with respect to concepts being investigated. Dix et al., (2004) categorise 

the types of questions generally posted in a questionnaire into the following five 

classes: 

* General: These are questions that obtain a profile of the user such as past 

experience, education and country of residence (if international users are 
involved). 

* Open-ended: These ask the user their own opinions without restricting the 

possible responses. Popular open-ended questions include for example "what 

improvements to this system do you recommend? " 

Scalar: These ask the user to specify the degree to which a statement relating 
to the system is correct. The degree is usually specified on a 7-step scale of 
integers. Even numbered scales, for example 4-steps, are usually avoided as 
they do not cater for 

' 
undecided judgements (i. e. in the middle of the range). 

Users tend to find it difficult to judge when responding to scales greater than 

7-steps. 

9 Multi-choice: These questions offer the user a set of explicit and independent 

responses. 

* Ranked: These are primarily comparative questions that ask the user list a set 

of items according to user preference. 

Another popular method for collecting data for usability testing is the 'Think Aloud 

protocol' approach, which is also known as Protocol Analysis (Owen et al., 2006, 

Lewis, 1982, Nielsen, 1994). This method requires users to verbalise their thoughts 

as they interact with the system. The verbalisations, sometimes with screenshots of 

the application, are often recorded on audio or video storage media. By recording the 

verbalisations assumptions, inferences and problems encountered during user-system 
interaction can be identified during later analysis. This provides a rich set of data for 

the developer to analyse. Hence, it is often considered that from five to ten users are 

sufficient for an effective protocol analysis (Nielsen, 2000, Brink et al., 2002). 

Although highly valuable in collecting data relating to user experience with an 
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application, a think-aloud evaluation can be expensive to run due to the need for 

audio-visual recording equipment. The recording equipment can also be time- 

consuming to set up. Further, Nielsen (2000) warns that the video camera can be 

intimidating to users. However, other recording devices such as dictaphones may be 

less intimidating. 

Each of the recorded sessions is transcribed into text. The quality of the transcription 

much depends on the clarity of the recording. From the transcriptions, irrelevant 

verbalisations are omitted and relevant ones are segmented (categorised) according 

to the objectives of the evaluation exercise (Blok, 2005, van Someren et al., 1994). 

For example, general comments about weekend sports or the morning's news are 

seldom important for a usability study and hence may be omitted. However, 

comments about the appearance of buttons and the navigation of the application 

under examination may be segmented into 'layout' and 'interaction' categories 

respectively. From those comments that are regarded as relevant, their frequency is 

often a useful indicator of the importance of the subject of the comments (Benbunan- 

Fich, 2001). Additional data is obtained from the time taken to accomplish each task 

when using the system. This data may be used to identify lengthy procedures that 

may require revision as "people have trouble with long procedures unless there are 

memory aids provided on paper or by the system" (Brink et al., 2002: pp. 112). 

This section has explored the different evaluation methodologies employed in IR, 

GIR and general website evaluations. Whereas traditional IR employed empirical 

testing, there is a growing recognition that user-system interaction is a significant 
factor in system acceptance. The section has also presented arguments from related 
GIR studies that emphasize the need for geo-centric methods of evaluating GIR 

systems as opposed to traditional IR techniques. The rest of this chapter therefore 

discusses the evaluation of STORM, GeoDOVE and NEEDS. 

6.2 Evaluating STORM 

The aim of the evaluation of STORM was to determine the retrieval performance of 

the STORM browser, in comparison to a traditional geoportal (i. e. Glgateway). Users 

were asked to carry out a set of specific queries on each tool. For each query, they 
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were to record the number of datasets retrieved and the number they found relevant 

to the query. The following subsections discuss this experiment further. 

6.2.1 Experimental Setup 

It is trivial that when comparing two systems A and B, if A returns more relevant 
documents and fewer non-relevant documents than B, then A is more effective than 

B. In traditional IR evaluation, the number of relevant documents for particular 

queries is known prior to evaluation. The formula for computing recall requires that 

the number of all datasets in the corpus known to be relevant be determined. 

However, due to limitations of the Z39.50 protocol, adopted for our study, this could 

not be determined. This means the study could only determine the precision of each 

search. "However, in many interactive settings, users require only a few relevant 
documents and do not care about high recall to evaluate highly interactive 

information qCcess systems" (Hearst, 1999: pp. 262). Similarly, Leuski and 
Allan(2004) base their evaluation of the Lighthouse system on precision without 

recall. 

Keyword Spatial footprint Collection 

Borehole north=54.955 south=53.024 BGS 

west---3.244 east---0.87 

Census north=56.624 south=54.67 Central 

west=-3.178 east---l. 51 Government 

(IGGI) 

Seismic north=55.592 south=52.628 BGS 

west---3.947 east=-0.895 

Macrofossils north=55.329 south=52 . 65 BGS 

microfossils west---3.508 east--0.597 
Table 6.1 Some of the queries used in the evaluation 

The United Kingdom's national spatial data clearinghouse, GIgateway, was selected 

as a benchmark for this study because i) it is the national spatial data clearinghouse; 
ji ) it adopts the widely-used YAZ Z39.50 client (West and Schofield, 2004); iii ) it 

harvests from clearinghouse nodes that implement the widely-used CNIDR zserver 
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(FDGC, 2005). Both GIgateway and the STORM browser were connected to various 
document collections, including the main GIgateway catalogue, British Atmospheric 

Data Centre (BADC) catalogue, British Geological Survey (BGS) catalogue, Central 

Government metadata archive (IGGI) and others. It was envisaged that the use of 

these archives would add to the realism and applicability of this study, as they are 

used within the geo-scientific industry. 

A group of ten users with highly varying computing and geospatial backgrounds 

agreed to take part in the study. The handout given to the users is presented in 

Appendix C. The users had the following profiles: 

* User A holds a first degree in Computing Science and is studying for a higher 

degree in Geornatics. He is less than 25 years of age. 

e User B holds a basic degree in Actuarial Science. She is less than 25 years of 

age. 
User C holds a first degree in Surveying. She is aged between 25 and 30 years 

of age. 

* User D holds a first degree in Civil Engineering and is studying for a higher 

degree in Geornatics. He is over 30 years of age. 

9 User E holds a first degree in Agriculture and is studying for a higher degree 

in Geomatics. She is over 30 years of age. 

0 User F holds a first degree in Surveying. She is aged between 25 and 30 

years of age. 

0 User G holds a first degree in Archaeology and a higher degree in History. 

She is less than 25 years of age. 

* User H holds a first degree in Geographic Information Systems. He is aged 
between 25 and 30 years of age. 

9 User I holds a first degree in Geographic Information Science. He is less 

than 25 years of age. 

e User J holds a first degree in Geography. He is studying for a higher degree 

in Geomatics. He is less than 25 years of age. 
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Each user was tasked with carrying out a set of queries- which were consistent 

across all users. For each query, the users independently noted down the numbers of 

relevant datasets in the set of top fifty ranked datasets. Only the top fifty ranked 
datasets were considered because any more datasets significantly reduce the clarity 

of the visualisation. Considering only the top few datasets is also consistent with 

studies by Leuski and Allen (2004) and Bucher et al (2005). It was expected that 

similar queries carried out on both STORM and GIgateway would return varying sets 

of datasets because the STORM browser expands a user's query with additional 

search terms. Further, variation of search results was expected between users because 

of varying expertise. Table 6.1 shows some examples of the queries that were used 
during the study. As illustrated, these are conventional queries that can be entered 
into most geoportals. In all queries, the temporal ranges were from 1995 to 2005. 

6.2.2 Results 

Table 6.2 shows observations from two of the users. The difference in precision (i. e. 

the percentage of returned relevant datasets to all returned datasets) is presented in 

the Diff column. Positive values indicate more relevant datasets from STORM and 

negative values indicate more relevant datasets from GIgateway. One of the ten users 

completed only five of the seven controlled queries hence there were a total of 68 

queries completed by all ten users. It was observed that 29 of all 68 queries exhibited 

higher precision by STORM; only 5 of all 68 queries resulted in higher precision by 

GIgateway; the remaining queries achieved equal precision measures. A summary of 

all observations for all ten users is presented in Table 6.3. It should be noted that the 

integrity of the results is upheld by the following points: 

Eight of the ten users show an improvement in favour of STORM 

The same metadata collections are searched by both systems 

The same queries, in number and form, are entered into both systems 

The users have varying degrees of both geospatial and computer-based skills 
The same users take part in the questionnaire-based evaluation 

(i) (ii) 
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Query STORM Gig Diff 

1 100 100 0 
2 60 4 56 
3 20 20 0 
4 100 100 0 
5 54 44 10 
6 54 34 20 
7 48 ,8 14 

Average 1 1 18.000 

Query STORM Gig Diff 

1 100 100 0 
2 0 0 0 
3 22 20 2 
4 100 100 0 
5 46 40 6 
61 0 0 01 
7 34 4 

L$ 

Average 

Table 6.2 Sample results from two of the users showing the difference in precision 

The results of the comparison between STORM and GIgateway are presented in 

Table 6.3. Positive values for the differences in precision represent an improvement 

and negative values suggest a reduction in precision when using STORM. The results 

were assessed using a t-test to statistically compare the means of values of precision. 

We calculated 18 degrees of freedom from our two samples of 10 observations each. 

The results show a calculated t-value of 2.34, with a probability of error of 0.03. 

Looking up the t-value in a t-table, we observe that our calculated t-value is higher 

than the tabulated t-value for 18 degrees of freedom, with a critical value of 0.02. 

This suggests that there is a 98% probability that the difference between the means is 

not through chance and thus the t-test is statistically valid. Variances of 104.67 and 

75.15 were calculated for STORM and GIgateway respectively, resulting in a 

variance ratio of 1.34. Conducting an F-test using the variance ratio, we observe that 

the difference in variances is not significant. This observation suggests that there was 

consistency in how users identified relevant datasets from a returned collection on 

both STORM and GIgateway- 
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User STORM Glgatewa Difference 
A 37.71428571 30 7.714285714 
B 42.57142857 38.2857143 4.285714286 
c 37.42857143 37.7142857 -0.285714286 
D 40.57142857 40.8571429 -0.285714286 
E 62.28571429 44.2857143 18 
F1 43.14285714 37.7142857 5.428571429 
G 63.42857143 51.1428571 12.28571429 
H 45.42857143 38.85714291 6.571428571 
1 54.4 47.6 6.8 

59.42857143 20.5714286 38.85714286 
Average 9.94 

Standard Deviation 11.5 

Table 6.3 Differences in the percentage of relevant datasets to all returned datasets 
(i. e. precision) 

The average difference in precision was approximately 9.9%, with a standard 
deviation of 11.52, in support of our hypothesis. The only observation that is more or 
less than twice the standard deviation is that of User J (who is studying for a higher 

degree in Geomatics). Considering results for User J as an outlier, we calculate an 

average precision of 6.72%, which still supports our hypothesis. For similar queries, 

the majority of users achieved higher precision values on STORM than on 
GIgateway. The negative precision values recorded (for User C and D) were both - 
0.3%; this was significantly lower than the positive precision values which ranged 
from 4.3% to 38.9%. It was also observed that queries with domain-specific search 
terms such as 'macrofossils' or 'seismic' achieved higher improvements in precision 

than the more general search terms such as 'census' or 'borehole'. This suggests that 

use of a more domain-specific ontology could result in higher improvements in 

precision. 

6.2.3 Reflective Summary 

This section has presented an evaluation of the STORM browser based on the IR 

performance metric of precision. The results showed an improvement in precision of 
9.9% in support of STORM over a traditional GIR system. Removing the outlier 
(User J), the improvement in precision reduces to 6.7%. Although this value also 

supports our hypothesis, the decline in precision illustrates the sensitivity of the 

results to the response of a single user to the STORM system. However, the 
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variances for both STORM and GIgateway do not differ significantly as suggested 
by the variance ratio of 1.39. This value suggests that the users identified relevant 
datasets on GIgateway more consistently than on STORM. We attribute this 

observation to possible confusion in some visualisations presented on STORM. 

6.3 Evaluating GeoDOVE 

The previous section was concerned with the STORM browser, and addressed issues 

of system and user-based performance. This section will discuss the evaluation of the 
GeoDOVE applet. GeoDOVE is an applet embedded within the NEEDS geoportal; 

therefore, a user evaluation of the applet without the geoportal would not be 

appropriate. Consequently, this section centres on system-based performance of the 

applet as it is intended for use from within a hosting geoportal. The tasks in this 

experiment were to retrieve a dataset and render it in a 3D. These operations were 
timed to determine the performance of the approach for direct database connectivity 

proposed in Chapter I 

This is in contrast to the STORM browser which uses Java webstart to run as a 

standalone application, though it is also launched from the web. It should be noted 
that we are not evaluating the visualisation metaphor offered by GeoDOVE as this 
has already been implemented in previous related studies. Instead we are evaluating 

the approach in which the geovisualisation are created, that is through direct 

connectivity to an RDBMS serving OGC simple feature objects. A usability 

evaluation of GeoDOVE is not offered at this stage, as the applet is to be embedded 
in a geoportal. Instead, the applet's usability is assessed as part of the NEEDS 

evaluation. 

6.3.1 Experimental Setup 

To determine whether the architecture presented in this study offers acceptable 

system-performance, the evaluation was based on the suggestion that a ten second 
limit is required for users to keep their attention on a task (Nielsen, 2000). Therefore, 

the evaluation aimed to show that GeoDOVE performs tasks within this ten-second 
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limit. It was important to test the application's ability to upload and model vector and 

raster datasets. Further, the size of a geographic dataset can have a significant 

bearing on the performance of an application; the study therefore involved the upload 

and visualisation of geographic datasets of varying sizes and extents. An additional 

performance indicator for 3D applications is the frame rate; therefore our study also 

monitored the frame rate as the user navigated through the visualisation. 

Figure 6.1 The stud N area selected fort lie eN aI uation (Ordnance SurveN rimn Copyright) 

The experimental setup included Windows PCs with 3.0 GHz Intel processors. Each 

PC hosted a Java 1.5 virtual machine from which the applet was run. The upload task 

was timed from the moment a request for data was sent to the server. The 

visualisation task was timed from the moment the user instructed the system to create 

a 3D model of the vector or raster data. The vector data was modelled as extruded 

polygons and the raster data as DEMs, using the methodologies described in Chapter 

3. The results of the upload and visualisation of vector data are presented in Figure 

6.2. The vector datasets had differing file sizes on the database server, ranging from 

0.4 megabytes for 1000 polygons to 15.2 megabytes for 14000 polygons. The vector 
datasets had coincidental centres to improve objectivity, thus every dataset contained 

all polygons that were contained in smaller datasets. Due to its high density of 
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buildings, shown in Figure 6.1, the city of Newcastle upon Tyne was selected as the 

study area. The results for the upload and visualisation of raster data are presented in 

Figure 6.3. All the raster datasets covered the same geographic extent; however, they 
had varying pixel dimensions. 

6.3.2 Results 

Figure 6.2 shows that for vector datasets containing up to 12500 polygons (with a 

memory footprint of 10 megabytes), the application extruded polygons within the 

accepted I O-second (10 000 milliseconds) limit. It can be observed from the figure 

that the uploading of each vector dataset is slightly faster than the extrusion of 

polygons within the dataset, particularly as the number of polygons increases: for 

uploading, the limit specified is only exceeded when the dataset contains more than 

13000 polygons (with a memory footprint of II megabytes). Unsurprisingly, 

complex polygons containing several vertices and multiple parts took longer to 

upload or extrude due to higher numbers of vertices and inner polygons. As indicated 

in Figure 6.3, raster upload exceeds our limit for files larger than 2100 x2 100 pixels 
(with a memory footprint of 15 megabytes); whereas creation of DEMs was 

significantly faster and more constant than raster upload. Surprisingly, creation of 
DEMs never appears to reach the I O-second limit. 
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Figure 6.2 Response times for the upload and extrusion of vector layers 

During the rendering of vector datasets, a frame rate ranging from 19 to 34 frames 

per second (FPS) was observed. The lower frame rate was recorded only when all 

extruded polygons were visible within the same field of view. The higher frarne rate 

was observed when 'flying through' at low altitude as there were fewer extruded 

polygons within the field of view. "For smooth animation, a rate of 20 trarnes per 

second or more is desirable"(Selman, 2002: pp. 104). As navigation through tile 

visualisation requires smooth animation of the position ofthe viewer, the observed 

range in frame rate is acceptable. A higher frame rate was achieved by reducing tile 

size of the applet to approximately 500 x 500 pixels. 
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Figure 6.3 Response time for the upload and creation of DEMs from raster laýcrs 

The rendering of raster datasets on rectangular planes (flat polygolls) produced the 

highest frame rate at 61 FPS. The rectangular planes were created prior to DFM 

creation to allow the user to select different visual properties bet'ore DFM creation. 

Unsurprisingly, draping raster datasets oil DEMs reduced the franic rate to 

approximately 23 FPS. This decrease in frame rate is due to the highcr ImInber of' 

triangles inherent in a DEM. As before, the frame rate increases when - flying 

through' the DEM, depending on the number oftriangles rendered in tile J-Icld of, 

view. 

6.3.3 Reflective Summary 

This subsection has presented a performance evaluation ofGeoD()VF'. As 

GeoDOVE runs embedded within a geoportal wcbpage, a usability study "'III he 

carried out as part of the evaluation of NEEDS. The performance evaluation involved 

the determination of response time upon loading geographic datasets ofincreasing 

size and geographic extent. The frame rate of the applet was also monitored to 

determine the 'smoothness' of animating the movement ofthc vlc%, Ncr. It was 

observed that up to 13000 vector polygons (with a rnernory footprint of' II 

megabytes) could be uploaded before the response time exceeded aI 0-second 
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benchmark adopted for the study. Up to 12500 polygons (with a memory footprint 

of 10 megabytes) could be extruded before reaching the benchmark. For raster 
datasets, the I O-second limit was exceeded when uploading datasets larger than 2 100 

x 2100 pixels. Surprisingly however, creation of a digital surface from the raster 
datasets appeared to be constant at approximately 3 seconds and did not reach the 10 

second limit. The frame rate ranged from 19 to 34 fps during the vector-based tests 

and from 23 to 61 fps during the raster-based tests. 

Unsurprisingly, the results of the evaluation of GeoDOVE are dependent on the load 

on the network, such that if there is significant traffic on the University intranet, 

datasets will take longer to retrieve from the database engine. However, we expect 
the retrieval time to exhibit a similar pattern of increase. Other factors that could 
influence the results include the processes run by other programs on the testing 

machines. We have attempted to address both of these concerns by performing the 

tests after working hours when there is the least amount of network traffic on the 
intranet and when there are fewer processes running on the database server. 
However, these are noted as possible factors on the repeatability of the results. 

6.4 Evaluation of NEEDS 

This chapter has, so far, only discussed the evaluation of the individual visualisation 

components (STORM and GeoDOVE). However, as these components were 
intended to be integrated into a geoportal, it was necessary to evaluate the complete 

geoportal (NEEDS) as well. Consistent with studies by Benbunan-Fich (2001) and 
Blok (2005), the Think-Aloud approach was adopted for evaluating the usability of 
the NEEDS geoportal. The rest of this section describes the evaluation experiments 

and presents the observed results. 

6.4.1 Experimental Setup 

The evaluation sessions were conducted at the University of Newcastle upon Tyne. 
Each session included a notebook PC running an Intel 1.3 GHz processor. The 
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notebook was connected to an audio/visual projector and the output from the 

projector was recorded using a video camera. In contrast to the experimental set up 

adopted by Blok (2005), this study did not include a video recording of the physical 
behaviour of the user because users can be intimidated by a video recorder, as 

suggested by Nielsen (2000). Instead the video recorder was intended to synchronize 

the verbalisations to events of the interaction between the user and the system. Figure 

6.4 illustrates the experimental setup. Although audio/visual capturing software 

exists that can capture the output from the screen and optionally record the 

surrounding sounds, it was decided not to use the software to avoid overloading the 

PC with several concurrent processes. Use of a video camera therefore ensured that 

the PC's resources were devoted to running only the software (geoportal) under 

examination, in addition to the operating system and other 'house keeping' 

applications. 

evaluator 
video recorder 

AAA 
II 

III 
II 

III 
II 
II 
III 
III 
III 
III 

Figure 6.4 An illustration of the experimental setup of the think-aloud sessions 

participants were selected from the intended user community; this included students 

on geospatial or related courses, as listed on Table 6.4. This meant that participants 

were likely to be familiar with the concept of spatial containment, which the 

geoportal uses as a search constraint. A classic study by Jakob Nielsen (1994) 

recommends using five participants for a think-aloud evaluation with any additional 

users depending on i) the skills and experience of the experimenter ii) the number of 
iterations planned for the system, and iii) the financial impact of the use of the 
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system. Consistent with recommendations in usability literature (Brink et al., 2002, 

Nielsen, 1994), a group of eight users was enlisted for our think-aloud evaluation. 

Four of the enlisted users had taken part in the STORM usability study and were thus 

familiar with the STORM browser. However, none of the participants had had prior 

exposure to GeoDOVE. 

Participant Discipline 

I Transport Engineering 

2 Geography 

3 Geographic Information 

Science 

4 Mathematics and 
Computing Science 

5 Civil Engineering 

6 Surveying 

7 Mining Surveying 

8 Computing Science 

Table 6.4 Participants' backgrounds 

6.4.2 The Tasks 

In their study, Blok (2005) observed that participants take decisions during 

familiarisation that influence their subsequent use of an application. Their realisation 

of this tendency by participants resulted in Blok having to incorporate data from the 

familiarisation phase into the final analysis of the evaluation study. Learning from 

their experience, the evaluation of NEEDS comprised of a single recorded session 

per user, which included both a familiarisation and a main element (comprising of 

tasks). To support the user in their familiarisation of the system, the documentation 

accompanying the evaluation exercise included explanations of the navigation 

controls. Integrating familiarisation with the actual experiment is supported in a 

study by Owen et al (2006). Their study aimed to examine how software designers 

employ available documentation for designing systems from existing components. 

They observed that training, prior to running a think-aloud evaluation, could have 

had an effect on the final outcome due to the related knowledge transfer from the 
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experimenter to the user and hence they carried out their experiments without 

providing prior training. They contend that the integrity of their experiments was 

upheld by the lengthy think-aloud sessions they undertook. 

Four tasks were prescribed for our experiment. The first two tasks required use of 

STORM and the last two tasks required use of GeoDOVE. However, all the tasks 

required starting from the NEEDS home page, navigating to the assigned tool 

(GeoDOVE or STORM) and interacting with that tool to identify datasets relevant to 

the scenarios presented in Appendix A. This process workflow ensured that each of 

the visualisation tools was examined with respect to its incorporation on the 

geoportal, in contrast to acting as a standalone application. In order to improve the 

objectivity and repeatability of the experiments, only datasets applicable to the four 

tasks were made accessible through the geoportal. Further, the users were prescribed 

specific queries to search on the geoportal. This ensured that the evaluation remained 

focussed on usability and not the retrieval performance (which is addressed in earlier 

sections of this chapter). 

For the interaction with STORM, -users were asked to verbalise their comprehension 

of the STORM visualisations. The researcher's comprehension of the visualisations 

presented during task 1 and 2 was used as a benchmark of the minimum information 

participants were expected to discover. Each task was considered achieved if a user 

correctly identified the most relevant datasets for each of the three axes. Additional 

reasonable interpretations of the visualisations from each user were added to the 

benchmark interpretation, for example identification of clusters. Therefore, the 

benchmark served as a guide to 'what the researcher expected the participants to 

discover'. With regard to GeoDOVE, participants were asked to identify datasets that 

were relevant to specified scenarios. For each of the two tasks involving GeoDOVE, 

a participant had to 1) examine the metadata of a dataset from the NEEDS interface 

2) then navigate to the GeoDOVE page for that dataset 3) add a DEM (for Task 3) 

and a 3D model (for Task 4) then decide if that Particular dataset was relevant to the 

specified scenario. Together the two tasks (3 and 4) required the user to examine 

approximately 10 datasets using Geol) OVE. 
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6.4.3 Results 

In this subsection, a summary of results from the usability exercise is presented. As 

aforementioned, four tasks were prescribed for each participant. During execution of 

each task, the verbalisations and machine-user interactions were recorded using a 

video recorder. After each session the verbalisations were then analysed to identify 

usage with respect to i) navigation from the geoportal to the applets, ii) layout of the 

geoportal or the applets, iii) search capabilities and iv) interpretation of 

visualisations. Consistent with related think aloud studies by Blok (2005) and 
Fabrikant (2000), the time to completion of tasks was also recorded. Recording time 

to completion of tasks provided an indication of the usability of the system, allowing 
for lengthy procedures to be identified. 
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Figure 6.5 Time taken to complete tasks I and 2 

The times taken to complete tasks I and 2 are presented in Figure 6.5. It should be 

noted that the observed time includes time spent on familiarisation and on simple 

exploration of the system. The results however, exclude unexpected interruptions 

such as loss of internet connection. For example, participant 2, who holds a 
bachelor's degree in geography, spent a significantly long time on tasks I and 2. His 

think-aloud session produced a high amount of data. In contrast, participant 3 spent 
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relatively shorter time carrying out the tasks and consequently producing a relatively 

smaller amount of data. Fabrikant (2000: pp. 97) observed similar trends, with expert 

users spending more time on tasks than non-expert users, and suggested that "they 

were not only intrigued by the representation, but also seem to particularly enjoy to 

be able to explore and manipulate objects in 313". This thesis supports the suggestion 

and further attributes the longer durations to a higher understanding of geographic 

concepts leading to more issues being noticed by experts. 
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Figure 6.6 Time taken to complete tasks 3 and 4 

The time taken to carry out tasks 3 and 4, presented in Figure 6.6, was surprisingly 

long because participants were required to examine each of five datasets for each 

task and then to navigate back to the search results to select the next dataset to 

examine. Two of the participants consequently suggested that it be made possible to 

upload all search results into the applet in order to avoid having to exit the applet 

each time a new dataset had to be viewed. Further observations made by the 

researcher for each session are presented in Appendix D. The text refers to 

coordinate (1,1,1) of the STORM visualisation as the 'Optimum position. 
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Figure 6.7 Samples of tool usage by the participants whilst carrying out tasks I and 2 
(green: ranked list, grey: metadata panel, blue: 3D visualisation panel) 

The number of times tools were invoked when carrying out task I and 2 was 

recorded and the proportion of tool usage is presented in Figure 6.7. This included 

instances when the mouse pointer was hovering over a user interface control, coupled 

with verbalisations about that control. It was envisaged that this would provide 
insight into user preference. The results suggest that the 3D visualisation on STORM 

drew most of participants' attention. However, all three user interface components 

(the 3D visualisation, the ranked list and the metadata panel) appeared to contribute 

to each participant's final judgement of relevance. 
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In summary, all participants were able to navigate from the main geoportal to either 
GeoDOVE or STORM without encountering any difficulty. The layout was not 

significantly different to what participants were expecting. All participants were able 

to invoke search operations on the geoportal and applets without any difficulty. 

Unsurprisingly though, interpretation of visualisations differed from user to user. 
This was expected based on observations by Borlund (2003a) which were discussed 

in Chapter 2. A consequence of the Tversky (1977) ratio model presented in Chapter 

2 is that dataset A which does not contain the query tenn could be ranked higher than 

dataset B which contains the query term, if dataset B contained several other terms 

that were not relevant to the query term. As a result, the semantic ranking appeared 

to confuse some participants particularly in regard to datasets with keywords 

semantically-related to the query term. 

6.4.4 User Feedback 
Following the recorded session, each participant in the study was asked to fill a 100- 
item questionnaire presented in Appendix B and adopted from Lin et al. (1997). Each 

item on the questionnaire had a list of graded responses including 'not at all (very 

bad)', 'no (bad)', 'average', 'yes (good)' and certainly (very good)'. Not all the 

questions listed were applicable to the geoportal under examination; hence a 'not 

applicable' option was included in the list of responses to reflect this. The responses 

were given an increasing index as shown in Table 6.5. By calculating the mean index 

for each question, it was possible to identify positive, negative and average 

responses; positive responses defined as those that resulted in a mean of greater than 

three and negative responses as those with a mean less than three. A question was 

excluded from the analysis if two or more users had marked it as being 'not 

applicable'. 

response not not at all no (bad) average yes certainly 

applicable (very (good) (very 

bad) good) 
Index 0 1 2 3 4 5 

Table 6.5 Scaled responses on the questionnaire 
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Most of the questions regarding compatibility of the system to users' experience 

received highly supportive responses. Similarly supportive responses were received 
for questions regarding consistency of the user interface. This suggests that the 

geoportal (including STORM and GeoDOVE) did not overwhelm the users and was 

thus consistent with their expectations and experience. Further, the user interfaces 

were intentionally made consistent with that of existing geoportals and 

geovisualisation applications so as to reduce the time required for familiarisation. 

Responses regarding the potential of the participant to learn how to use the system 

suggested that there was clarity of wording and the ordering and grouping of the 

menu options was logical. These responses are consistent with the video recordings 

which show all participants managing to navigate from the NEEDS home page to 

each visualisation application. 

It should be noted that several of the questions that received low responses were 

recorded as being not applicable to the system. However, some of the questions were 

concerned with the automation of minimal action, for example the provision of 
default values or function keys for frequent control entries. The responses are 

particularly relevant for the visualisation applications, as the provision of function 

keys for viewing from specific directions could effectively improve usability. Other 

features for minimising actions could be the automated suggestion of keywords as a 

user types in a search term. Such a facility requires the ability of the browser to 

retrieve keywords from a server-side database for each key-press. Responses to 

questions regarding error feedback suggest that more information is required in the 

event of errors occurring. 

6.4.5 Reflective Summary 

With both STORM and GeoDOVE incorporated into the NEEDS geoportal, a 

usability study of the complete system was carried out and presented in this 

subsection. Whereas the evaluation of the geoportal does not directly address the 

hypothesis of this study, it examines the outcome of integrating the proposed 

visualisation approaches within a geoportal. The think-aloud method (protocol 
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analysis) was adopted for the usability study and augmented with a questionnaire. 
Observations made during the think-aloud sessions showed that all the participants 

managed to navigate from the home page of the geoportal to the visualisation 

components (STORM and GeoDOVE). The participants were able to comfortably 

navigate between the visualisation components. Most of the participants preferred to 

view the visualisations from oblique angles, however one of the participants 

preferred 2D orthographic views of the data on both STORM and GeoDOVE. The 

time taken to achieve the tasks involving GeoDOVE was disappointingly long. 

Observations indicate that this was due to navigating between the search results and 

the applet for each possibly relevant dataset. Some of the feedback from users, 

suggested passing references to all datasets from the search results to the 

visualisation applet, to avoid having to restart the applet. 

6.6 Conclusion 

This chapter has presented evaluations of two visualisation applications (STORM 

and GeoDOVE) and a geoportal(NEEDS). The two visualisation applications are 
first evaluated independently of the geoportal to determine system performance, then 

evaluated as part of the complete geoportal to determine if a geoportal that hosts the 

applications would be acceptable to users. The evaluation of STORM addressed 
issues of retrieval precision and usability whereas the evaluation of GeoDOVE 

employed a determination of response time for two sets of raster and vector 

geographic datasets. The evaluation of the NEEDS geoportal was concerned with 
the usability of the geoportal once STORM and GeoDOVE had been deployed on the 

geoportal. 

The results presented in this chapter suggest that the STORM browser enhances the 

retrieval performance of a GIR system and is acceptable to users for supporting 

spatial data discovery. However, the small improvement in precision suggests that it 

is more appropriate as a complement rather than as a replacement to existing 

approaches. The results also suggest that GeoDOVE is an acceptable application for 

presenting 3D geovisualisations during spatial data discovery; however it inherits 
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limitations of speed characteristic of Java applets. Regarding the NEEDS geoportal, 

the results suggest that usability is maintained even when the visualisation 

applications are deployed on the geoportal. However, improvements could be made 

to how search results are passed from NEEDS to GeoDOVE, so that users do not 

need to frequently alternate between the two when examining several datasets. 
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Chapter 7 Conclusions 

7.1 Thesis Overview 

This thesis has considered the design and development of visualisation applications 
for improving the discovery and dissemination of multidimensional geographic 
information. An overview of geographic information retrieval was offered in Chapter 

2 in order to provide a background of considerations in spatial data discovery. A 

discussion of visualisation principles with respect to spatial data discovery was 

presented in Chapter 3. An approach for presenting the results of a geographic search 

wa, s proposed in Chapter 3. An approach for visualising geographic data on web- 
deployable Java applets was also proposed in Chapter 3. Chapter 4 examined 

methodologies for disseminating multidimensional geographic data through web- 
based technologies. The technologies include relational database management 

systems (RDBMS) and geographic web services. 

In Chapter 5, the design and development of prototypes based on the visualisation 

approaches proposed in Chapter 3 was discussed. The development of a geoportal 
that consumes data disseminated using the approaches discussed in Chapter 4 was 

also discussed. An evaluation of the visualisation prototypes and the geoportal was 

presented in Chapter 6. First, the prototypes were evaluated independently of the 

geoportal, and then evaluated as part of the geoportal. to determine usability and 

performance. 

The results of this study have presented an application of ontology-assisted 

multidimensional visualisation that performs better than the traditional ranked list 

approach (in precision). However, visual metaphors can take a variety of forms and 
hence we cannot generalise to cover all ontology-assisted visualisations. Therefore, 

we qualify the hypothesis by concluding that it is possible for geoportals offering 

ontology-assisted multidimensional visualisation services to enable users to discover 

and retrieve more relevant geographic information resources than those that do not 

offer these services. 
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7.2 Revisiting the Research Questions 

In Chapter 1, five research questions were presented. This subsection revisits the 

research questions to determine if they have been answered. 

* What are the limitations of existing approaches in the visualisation of 

candidate datasets during geographic data discovery? 

The thesis examined geographic data discovery from the perspective of SDI, spatial 

data clearinghouses and geoportals in Chapter 1. The role of geoportals as gateways 

to spatial data clearinghouses was highlighted. A detailed discussion of advances in 

Geographic Information Retrieval (GIR) was given in Chapter 2. Limitations to the 

presentation of the results of a geographic search using textual ranked lists were 

highlighted in Chapter 3; the main limitation being the reduction of multidimensional 

geographic relevance into a single dimensional relevance value. The thesis bases its 

argument on the fundamental definition of geographic data as linking a place, time 

and theme (Longley et al., 2001). 

Limitations of existing approaches for web-based 3D geovisualisation using scene 

description languages, such as VRML, were highlighted in Chapter 3. Particular 

emphases were made on the lack of support for double-precision floating point 

coordinates in VRML. Support for a very limited set of coordinate sytems was 

highlighted as another limitation of VRML (specifically, its geographic profile 

GeoVRML) and its successor X31). 

How can ontology be used to support visualisations of geographic search 

results? 
An approach for visualising the results of a geographic search within a three- 

dimensional visualisation environment was proposed. Each axis within 3D space is 

assigned to present one of spatial, temporal or semantic relevance measures. The 

approach was named the Spatio-Temporal Ontological Relevance Model (STORM) 
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based on its use of ontologies for calculating semantic relevance. The design and 
implementation of a prototype system was discussed in Chapter 5. The system 
includes a STORM browser, ontological query expansion tool and a metadata server. 
The prototype is able to extract metadata from OGC catalogue services based on the 

Z39.50 protocol. 

From search results, how can a multidimensional geographic dataset be 

visualised in greater detail to determine its relevance? 

An approach for web-based 3D geovisualisation was proposed and implemented in 

an applet called GeoDOVE. The applet is called the Geospatial Database Online 

Visualisation Environment (GeoDOVE) and implements the Simple Features 

geometry model by the OGC. By retrieving data directly from a relational database 

server, the applet is able to offer support for several more coordinate systems than 

traditional geovisualisation approaches based on VRML. As the applet is 

implemented using Java3l), it is also able to support double-precision floating 

numbers, thereby overcoming the aforementioned limitation of VRML. Web-based 

methodologies for serving 3D geographic data using web services and database 

servers were discussed in Chapter 4, these serve as data sources for GeoDOVE. The 

proposed approach therefore addresses several of the limitations of VRML/X3D 

identified in this thesis. 

Could the suggested approaches be incorporated into a conventional 

geoportal? 

The NEEDS geoportal was implemented using conventional technologies such as 

HTML, JSP and servlets. The traditional search component uses the PHP/Yaz toolkit 

to retrieve metadata records from external servers. By implementing a basic 

geoportal through these technologies, it is envisaged that the prototype visualisation 

applications will be transferable to any of the several geoportals that use these 

traditional web technologies. The STORM browser integrated into the geoportal 

through the inclusion of a hyperlink that invokes the Java webstart program. 
Therefore, the STORM browser offers an alternative search facility to the 
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conventional one offered by the geoportal. As the GeoDOVE applet is specifically 

for geovisualisation during discovery time, it was embedded within a web page that 

is accessed through the metadata viewing page. Parameters are automatically passed 
from the geoportal to the applet such that a data source is automatically uploaded 

when the applet is launched. 

e What effect would the suggested approaches have on the performance 

and usability of a geoportal? 

The visualisation components were evaluated independently of the geoportal to 

isolate issues specific to the prototypes. By virtue of being a GIR application, the 

STORM system was evaluated using IR principles to determine the retrieval 

performance in terms of the precision. Based on suggestions in related studies by 

Nielsen (2000,1994), a group of ten users took part in the study. The results suggest 

that the STORM browser improves retrieval performance by approximately 9.9%. 

Similarly, the GeoDOVE applet was also evaluated independently of the geoportal. 
The response time with respect to the upload and 3D modelling of vector and raster 

geographic datasets was monitored. The results suggest that the applet offers 

acceptable performance for vector datasets of up to approximately 11 megabytes, 

after which the response time exceeds an adopted ten-second benchmark. Raster 

upload exceeds the benchmark for datasets larger than 2 100 x 2100 pixels. 

Surprisingly, the creation of DEMs from raster datasets does not appear to exceed the 

benchmark for all the dataset sizes observed. 

Having determined the performance of the prototype visualisation applications, their 

usability from within the geoportal was evaluated next. The think-aloud method (also 

known as protocol analysis) was employed for the usability study. This generated a 
large amount of data, though most of it produced qualitative results. However, the 

think-aloud sessions revealed trends in user behaviour that would have been 

impossible to discover using other approaches. For example, processes that took a 
long time to complete due to repetitive actions were identified. The think-aloud study 

was augmented with a questionnaire to provide more targeted questions regarding the 

geoportal. 
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7.3 Major Findings 

This thesis proposed two approaches for visualising the results of a geographic 

search and for presenting geographic data during data discovery. The STORM 

system displays documents returned by a geographic search according to their 

inferred spatial, temporal and semantic relevance. The relevance scores are plotted in 

a three-dimensional graphics environment to allow the searcher to simultaneously 

evaluate all three scores. The GeoDOVE system allows the searcher to preview 

candidate datasets in a 3D graphics environment as Digital Elevation Models or as 

textured 3D objects. The prototypes have been implemented using a variety of 

programming platforms, for example Java and PHP, and incorporated into a 

geoportal named the North East Environmental Data Server (NEEDS). 

Evaluation experiments of the STORM browser support the hypothesis that 

geoportals that offer ontology-assisted multidimensional visualisations potentially 

can retrieve more relevant geographic- datasets than those that do not offer these 

facilities. The observed ability of users to discern similarity from the 

multidimensional visualisations is consistent with conclusions by Leuski and Allan 

(2004: pp. 282) who concluded that "users have no difficulty grasping the idea of 

spatial proximity as the metaphor for inter-object similarity". The degree of 

improvement in precision observed during the evaluation of the STORM browser 

suggests that the approach is better suited as a complement rather than a replacement 

of the existing ranked list. 

The GeoDOVE applet supports remote invocations of spatially enabled database 

servers. This capability allows an applet to use some of the computational resources 

available on the server-side and thereby reducing the load on a client. The ability to 

support database servers, offers the applet access to several more coordinate systems 

than those supported by existing geovisualisation approaches based on scene 

description languages such as GeoVRML. The performance-based experiments of 
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the GeoDOVE applet suggest that Java3l) applets can support multidimensional 

geovisualisation for data discovery purposes. 

Results of the evaluation of the complete geoportal, after integration with STORM 

and GeoDOVE, suggests that the visualisation prototypes continue to be usable after 
being deployed on a geoportal. This demonstrates that the visualisation prototypes 

can be integrated with existing geoportals, thereby providing further support for the 

stated hypothesis. Results of the think-aloud study carried out during the evaluation 

of the geoportal, showed that all participants were able to navigate GeoDOVE 

geovisualisations comfortably, although with varying levels of proficiency. This 

observation contradicts suggestions by Nielsen (2000) that 3D visualisation is 

inappropriate for web-based applications because 3D graphics are inherently difficult 

to navigate. 

7.4 Future Work 

This thesis has addressed issues concerning geovisualisation support for the 

discovery and delivery of multidimensional geographic data. Although the evaluation 

of the STORM browser demonstrated an improvement in precision and the 

deployment of both STORM and GeoDOVE on the NEEDS geoportal demonstrates 

the feasibility of use of the proposed methods within existing geoportals, there are 

some issues that need to be addressed by future research. This section presents some 

of these and thus addresses the final research objective identified in Chapter 1. 

7.4.1 Multidimensional Visualisation-Support for GIR 

Several approaches for multidimensional visualisation support for GIR have been 

proposed by various studies including this one, as discussed in Chapter 3. Although 

each approach offers its own unique metaphor, most of them are presented within a 

three dimensional visual environment. Further, some of the visualisation approaches 

such as STORM and GeoCrystal are based on searches on geographic data 

collections. This suggests that it may be possible to integrate all or most of the 

approaches into a single application, allowing users to switch between visual 
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metaphors at will. Such an application could for example, allow users to switch 

between the STORM, GeoCrystal or the Lighthouse visualisations depending on the 

information need or their understanding of the visualisation metaphor. 

7.4.2 Extended Use of Ontology in GIR 

As was noted in Chapter 2, ontologies have been used in GIR for deriving semantics 

from keywords and for determining the locations of places from keywords. The 

chapter emphasized the value of ontologies over historic approaches such as 

gazetteers. Although several studies have examined the design and development of 

ontologies for GIR and GIS applications, few of those studies have examined the use 

of ontology-supported inference engines for the determination of spatial 

relationships. Further research in this area should consider the inference of location 

based on known spatial relationships, for example, given three entities A, B and C, if 

A and C both intersect B and B is 100 metres long then it suggests that C is within a 

100 meters of A. Although, it is evident that such inferences may not result in 

accurate geographic coordinates, the density of points in gazetteers; suggests that a 

group of such inferences may result in reasonable inferences of location from 

ontology. A possible inference engine that could be used for this purpose is Cyc, 

which was introduced in Chapter 2. In addition to hypernym and hyponym relations, 

Cyc also allows for the addition of user-defined predicates. Predicates are used to 

construct sentences which can include at least two concepts and a relation between 

the concepts. For example, the sentence ((capital0f, London, UnitedKingdom)) could 

mean London is the capital of the United Kingdom. In this case, the relation is 

neither a hypernym nor a hyponym but a predicate. Cyc contains several of such 

sentences. Future studies should consider which of these relations, in addition to ISA 

relations, would benefit a GIR system. 

7.4.3 Evaluation of GIR Systems 

In Chapter 6, the evaluation of GIR systems based on the measures of precision and 

recall was discussed. The existing methods of measuring precision and recall do not 

take into consideration the variations of perceptions of relevance between users and 

the changing perception of relevance as a user examines candidate datasets (Borlund, 
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2003a). As the purpose of geovisualisation is to make apparent hidden geographic 
information through visual means, it means that revised approaches are necessary for 

the evaluation of visualisation-supported interactive GIR systems. The revised 

approaches should consider the changing perception of relevance during data 

discovery. Other issues specific to evaluation of GIR systems, have been discussed in 

Chapter 6; these include the development of a geographic track for IR evaluation 

platforms such as CLEF. Initial efforts have already been started by researchers from 

the field of GIR, through the GeoCLEF initiative discussed in Chapter 6. 

7.4.4 Incorporation into SDI 

One of the main reasons for adopting the use of Z3950 metadata servers was to 

ensure that the deliverables of this study could be easily deployed within an SDI- 

based on OGC catalogue service standards. As was noted in Chapter 1, over 400 

metadata servers listed on the FGDC clearinghouse registry adopt the Z39.50 

metadata standard. This suggests that the prototypes implemented in this study 

already have a potential user community. Each node on the FGDC clearinghouse 

registry has a specific application domain, this provides a well defined test area such 

that it could be determined precisely which disciplines have difficulty with the 

proposed visualisation approaches. Such findings could be used to modify the 

proposed approaches to address issues specific to a particular domain. 

7.6 Concluding Remarks 

The development of the NEEDS geoportal was based on service-oriented geospatial 
infrastructure as was described in Chapters I and 5. This has allowed different 

visualisation applications to be 'attached' to the main geoportal. The successful 
deployment and usage of the visualisation prototypes on geoportals demonstrate the 

value of visual methods in spatial data discovery. Additionally they highlight the 

importance of web-based data dissemination in enabling those visualisation 

applications. This thesis therefore concludes that geoportals offering visualisation 

support, allow for the discovery of more relevant geographic datasets than those that 
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do not offer such support. As research into GIR continues, it is envisaged that the 

NEEDS geoportal will continue to act as a platform for future development in the 

area of visualisation and ontology-assisted GIR. 
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Appendix A: Think-Aloud Evaluation Handout 

Appendix A Think-Aloud Evaluation Handout 

Scenario 
The North East of England is undergoing a major regeneration exercise. As part of 

the exercise, information relating to the possible impact on the environment is 

required. In this exercise, your role is to acquire datasets that could help in the 

determination of the environmental impact of the regeneration exercise. It is 

envisaged that the datasets will help regional planners arrive at well-informed 

decisions regarding were to locate various infrastructure. 

A colleague has recommended that you search the North East Environmental Data 

Server (NEEDS). It holds geographic data and associated metadata covering areas of 

the North East of England. 

Data Collection 

Datasets stored in the NEEDS Central Archive include large scale vector mapping of 

some buildings, roads, archaeological sites and other infrastructure. The Central 

Archive also holds some aerial imagery and photography covering parts of the North 

East of England. Those datasets that are stored in the Central Archive are 

downloadable; however those that are accessed from external archives are not. 

Experimental Setup 

For each of the tasks that follow please say your thoughts out load as you use the 

NEEDS system (that is, verbalise everything that comes to mind). 

evaluator 
video recorder 

projector 

screen 
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Tasks 
The search terms for each task are in blue. 

Additional datasets in GeoDOVE are in black and bold. 

For tasks I and 2, search using the STORM browser. 

1) Of major concern to regional planners is the impact the regeneration will 
have on current agricultural activity in the region. You have been asked to 
identify datasets containing agricultural information from the NEEDS 

archive, in the area bounded by N, S, W, E, = 56.609,53.3, -4.146, -0.17697. 
For the period (02/01/2006-02/07/2006) 

2) The National Heritage Trust is also concerned about the impact the 

regeneration will have on studies of fossils in the area bounded by N, S, W, E, 

=59.3 2,5 0.711, -7.642,2.20 1. Identify possibly relevant datasets. 

For the period (02/03/2003-02/05/2006) 

For tasks 3 and 4, use the Fast Search tool on the NEEDS home page. Once the list 

of datasets has been found, use GeoDOVE to tackle the rest of the task. 

3) Some of the regeneration could affect the flood defences of the town of 
Alnmouth. You are to identify vector datasets that show buildings of 
Almnouth in danger of flooding. A Digital Elevation Model (DEM) of 
Ahunouth is available in the GeoDOVE Database Server and has been named 
AInmouth_DTM-21SW_grid. Flood plains are coloured deep red. 

4) The regeneration project may affect an ongoing geological study. A 3D 

model of a subsurface geological structure has been made available on the 

web at http: //ce-gwll4. ncl. ac. uk/data/Vrml/rock2. wrl The structure is 

located belowground at coordinate 424560,564620,400. Find vector datasets 

showing roads that cover the area above the subsurface structure. 
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Questionnaire 

After carrying out these tasks, please fill in the questionnaire at 

htti): //NA-vNw. needs. nc1. ac. uk/needs2OO5/questionnaire. jsp 

There are approximately 100 questions listed but they are not all applicable, so 

please feel free to ignore those questions that you deem not applicable. 

Thank you for participating, 

Gobe Hobona 

3D Navigation 
zoom in, zoom out - centre mouse button 

rotate up or down - left mouse button 

translate left, right, up or down - right mouse button 

Change to multicoloured DEM 
Double click on the raster layer's name in the Table of Contents, then click Legend 

Symbol 

Adding a DEM 

Click the Add Data button 

Adding a 3D model 
Click the Add 3D Model button It 
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Appendix B NEEDS Usability Questionnaire 

Adapted from Pelman, G., Web-Based User Interface Evaluation with 
Questionnaires, available at http: //www. acm-org/-perlman/question. cgi? form=PUTQ 

which is based on Lin, HX Choong, Y. -Y., and Salvendy, G. (1997) A Proposed 

Index of Usability: A Method for Comparing the Relative Usability of Different 

Software Systems. Behaviour & Information Technology, 16: 4/5, pg267-278 
Top of Form 

1. COMPATIBILITY 

1. Is the control of cursor compatible with movement? 
2. Are the results of control entry compatible with user expectations? 
3. Is the control matched to user skill? 
4. Are the coding compatible with familiar conventions? 
5. Is the wording familiar? 

2. CONSISTENCY 

6. Is the assignment of colour codes conventional? 
7. Is the coding consistent across displays, menu options? 
8. Is the cursor placement consistent? 
9. Is the display format consistent? 
10. Is the feedback consistent? 
Il. Is the format within data fields consistent? 
12. Is the label format consistent? 
13. Is the label location consistent? 
14. Is the labelling itself consistent? 
15. Is the display orientation consistent? -- panning vs. scrolling. 
16. Are the user actions required consistent? 
17. Is the wording consistent across displays? 

18. Is the data display consistent with entry requirements? 
19. Is the data display consistent with user conventions? 
20. Are symbols for graphic data standard? 
21. Is the option wording consistent with command language? 
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22. Is the wording consistent with user guidance? 

3. FLEXIBILITY 

23. Does it have by-passing menu selection with command entry? 
24. Does it have direct manipulation capability? 
25. Is the design for data entry flexible? 

26. Can the display be controlled by user flexibly? 

27. Does it provide flexible sequence control? 
28. Does it provide flexible user guidance? 
29. Are the menu options dependent on context? 
30. Can user name displays and elements according to their needs? 
31. Does it provide good training for different users? 
32. Are users allowed to customize windows? 
33. Can users assign command names? 
34. Does it provide user selection of data for display? 

35. Does it handle user-specified windows? 
36. Does it provide zooming for display expansion? 

4. LEARNABILITY 

37. Does it provide clarity of wording? 

38. Is the data grouping reasonable for easy learning? 

39. Is the command language layered? 

40. Is the grouping of menu options logical? 

41. Is the ordering of menu options logical? 

42. Are the command names meaningful? 

43. Does it provide no-penalty learning? 

S. MINIMAL ACTION 

44. Does it provide combined entry of related data? 

45. Will the required data be entered only once? 

46. Does it provide default values? 
47. Is the shifting among windows easy? 
48. Does it provide function keys for frequent control entries? 
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49. Does it provide global search and replace capability? 
50. Is the menu selection by pointing? -- primary means of sequence control. 
51. Is the menu selection by keyed entry? -- secondary means of control entry. 
52. Does it require minimal cursor positioning? 
53. Does it require minimal steps in sequential menu selection? 
54. Does it require minimal user control actions? 
55. Is the return to higher-level menus required only one simple key action? 
56. Is the return to general menu required only one simple key action? 

6. MINIMAL MEMORY LOAD 

57. How are abbreviations and acronyms used? 
58. Does it provide aids for entering hierarchic data? 

59. Is the guidance information always available? 
60. Does it provide hierarchic menus for sequential selection? 
61. Are selected data highlighted? 

62. Does it provide index of commands? 
63. Does it provide index of data? 

64. Does it indicate current position in menu structure? 
65. Are data items kept short? 
66. Are the letter codes for menu selection designed carefully? 
67. Are long data items partitioned? 
68. Are prior answers recapitulated? 
69. Are upper and lower case equivalent? 
70. Does it use short codes rather than long ones? 
71. Does it provide supplementary verbal labels for icons? 

7. PERCEPTUAL LIMITATION 

72. Does it provide coding by data category? 
73. Is the abbreviation distinctive? 

74. Is the cursor distinctive? 

75. Are display elements distinctive? 

76. Is the format for user guidance distinctive? 
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77. Do the commands have distinctive meanings? 

78. Is the spelling distinctive for commands? 
79. Does it provide easily distinguished colours? 
80. Is the active window indicated? 

81. Are items paired for direct comparison? 
82. Is the number of spoken messages limited? 

83. Does it provide lists for related items? 

84. Are menus distinct from other displayed information? 

85. Is the colour coding redundant? 
86. Does it provide visually distinctive data fields? 

87. Are groups of information demarcated? 

88. Is the screen density reasonable? 

8. USER GUIDANCE 

89. System feedback: How helpful is the error message? 
90. Does it provide CANCEL option? 
91. Are erroneous entries displayed? 

92. Does it provide explicit entry of corrections? 
93. Does it provide feedback for control entries? 
94. Is HELP provided? 
95. Is completion of processing indicated? 

96. Are repeated errors indicated? 

97. Are error messages non-disruptive/informative? 
98. Does it provide RESTART option? 
99. Does it provide UNDO to reverse control actions? 
100. Is the sequence control user initiated? 
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Appendix C STORM Evaluation Handout 

Thank you for volunteering to participate in a user evaluation of the STORM (Spatial 

Temporal Ontological Relevance Model) browser. The STORM browser computes 

the strength of the relationship between a query, entered by the user, and the 

information attached to each spatial dataset returned by the query. The strength of the 

relationship is an indication of the relevance of the dataset to the user's task. The 

relevance is then mapped onto a three dimensional graph according to the degree of 

similarity in space (spatial), time (temporal) and theme (semantic) between the query 

and the dataset (shown in figure 1). A three dimensional ranked list is provided by 

the STORM browser to assist in interpretation of results. Both these components, the 

3D graph and the 3D ranked list, make up the STORM browser. 

Please launch the STORM browser and kindly test some of the queries in table 1. To 

enter parameters for each query, please click on the button circled in figure 1. Then 

after entering the query parameters, click on the button with the magnifying glass to 

run the query. Please fill in the number of retrieved datasets for those queries you 

tested in table I and kindly evaluate the system by filling in the questionnaire in table 

2. 

The browser requires Java version 1.5 and may be accessed through: 

http: //ce-qwll4. ncl. ac. uk/needz2/storm. jnlp 

You will be comparing the STORM browser (both the 3D graph and accompanying 

ranked list) to the traditional system offered by GIgateway at 

http: //www. gigateway. co. uk/datalocator/default. html 

Please repeat the same queries on GIgateway, excluding the UNEP. NET ones as 

these cannot be accessed through Glgateway. 
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Things to notice: 

e STORM's metadata panel highlights both the search term and tenns related to 
that search term eg. Agricultural is related to Agriculture, farming, etc 

9 Thumbnails of similar documents appear clustered together in space 

* The most relevant document is the one closest to coordinate (1,1,1) 

0 The least relevant is the one closest to (0,0,0) 

Your participation in this evaluation is highly appreciated. 

Kind regards, 

Gobe Hobona 

Research Student 

School of Civil Engineering and Geosciences 

University of Newcastle upon Tyne 

A .7 Mddlesbrougýi 

abstiwt covas m um emending to Haidmck. Wolviston, Gruthun. Owton Manor, High Throston, Fml Stauon, Haitlepool. Sewton Carew, Redcar. Mmskc-by-the-Sm, 
Saftlitinn-by-the-Sea, Brotton, Lofhu, Boosbmk. Skelton, New Maiskt. Eston, Nmthorpe, Harlington, Ingleby Barmck, Eaglescbffe, Yam. Egglescliffe and 
Stockton-on-Tees Coverage also mcludn Darbngtm, Spennymoor. FeirybilL Sedgefield, Bishop Atii: Wand, Shildon. Newton AychfFe, Stokesley, Great Ayton and 
Gwborough. 

spatW data forinat inap 

, tan date 2004 07 02 

end date 1996-01 01 

Figure 1. The STORM browser interface 
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Keyword Spatial footprint Collection Number of 
retrieved 
datasets 

borehole north=54.955 south=53.024 British Geological 
west=-3.244 east=-0.87 Survey (BGS) 

agricultural north=55.351 south=52.958 UNEP. Net 
west-- -3.354 east---0.259 

soil north=55 south=53 GlGateway 
west=-3 
ea§t---I 

census north=56.624 Central 
south=54.67 Government 
west=-3.178 (IGGI) 
east---l. 51 

seismic north=55.592 south=52.628 British Geological 
west=-3.947 east=-0.895 Survey(BGS) 

erosion north=54 south=51 LTNEP. Net 
west=-2 
east= I 

macrofossils north=55.329 south=52 . 65 British Geological 
microfossils west=-3.508 east=0.597 Survey(BGS) 
Table 1. Controlled queries (all letters should be lower case). Some of the searches 

return documents with temporal value of zero. This is due to incorrectly formatted 

metadata. 

Questions Please mark your responses in bold 
How long did it take to learn how 
to use the system in minutes? minutes 
How easy was it to identify the top 2 3 4 5 
20 ranked datasets? i. e. was the 
system's organisation of thumbnails 

Difficult Average Easy Very 
Easy 

convenient for finding the top 20 
ranked datasets? 
Does STORM require more or less 1 2 3 4 5 
effort than the GIgateway list to 
find the most relevant datasets? 

Much 
more 

More Similar Less Much 
Less 

Is STORM a better way to search 1 2 3 4 5 
for geographic data than the 
traditional Glgateway list? 

Horrible Worse Similar Better Much 
better 

How easy was it to navigate the 3D 1 2 3 4 5 
graph? Very 

D fficult 
I Difficult I Average Easy Very 

EaM 
Is STORM a more attractive and 2 4 5 
interesting way for finding Much I Less_ Similar Mored Much 
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geographic data on the web than the 
Glgateway list? 

I less 

How often do you play computer 23 E - l 
games? N ýever Sometimes Always 

Any other comments or 
suggestions? 

Table 2. Questionnaire 
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Appendix D Think Aloud Evaluation Observations 

The following are observations made during the think aloud evaluation of the 

NEEDS geoportal. 

Participant 1 

When launching the STORM browser from the geoportal home page, the participant 

voiced his concern regarding the Java Security manager pop-up window. He 

appeared to prefer interactive selection of the query extent as opposed to directly 

typing into the textboxes. This participant exhibited the best navigation capabilities 

amongst all participants. He was able to comfortably 'fly through' the visualisation 

using both the keyboard and the mouse. He even discovered 'hidden functions' that 

had not been shown to him by the researcher. He made several references'to the 

metadata panel and the text presented on the panel, stating the usefulness of the 

descriptions of data. Regarding the presentation metaphor, he complained that the 

visualisation does not show you where the data is located. During the session he 

mentioned that he was puzzled as to why a dataset without the search word had 

ranked higher than one with the search term. Despite this, he was able to correctly 
identify the most relevant datasets with respect to all three axes, even stating that 

certain datasets were "spatially good but temporally bad". 

Once he had launched GeoDOVE he embarked on a process of familiarisation 

involving translation, zooming and rotation. After approximately 30 seconds of 

exploring the navigation features of the applet, he declared "the controls are easy". 
Although he was comfortable with the navigation, he however complained about 

there not being any indication of the level of zoom, tilt or pan of the current view. 
The participant's first action on GeoDOVE was to zoom out and view the terrain 
from an angle of about 30 degrees to the horizontal plane. For the rest of the session, 
the angle varied between 30 and 60 degrees. Similarly the orientation of the view 

changed from oblique to orthographic, without a clear indication of any preference 
between the two. After uploading the DEM he indicated that it was much easier to 

see the buildings when the DEM is in the background. The participant also 
complained that he could not see the 3D model of the rock after uploading it. This 
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was because GeoDOVE does not automatically move the viewer to the location of 

the newly added layer or model. 

Participant 2 

Upon launching STORM from the NEEDS geoportal, the participant exclaimed that 

the Java security pop up was "scary". When entering the search parameters he 

commented that the coordinates label was useful however the map was in an unusual 

projection (WGS84) instead of the British National Grid which is commonly used in 

the UK. When the first search is invoked his attention was drawn to the table of 

search results. He had noticed that the relevance scores were incomprehensible, 

prompting him to re-examine the search parameters. Indeed, he had entered 

erroneous coordinates. After results from the corrected search had been visualised, he 

suggested that the thumbnails showed that the spatial extents of the datasets cover 

areas close to one another but did not illustrate "how close". He then rotated the grid 

such that the temporal axiswas increasing away from the viewer, thereby making 

only the spatial and semantic axes visible. After rotating the grid, he acknowledged 

that he had 'hidden' the temporal axis because it was not relevant to his needs and 

therefore he was using the visualisation from a 2D perspective. He commented that 

he was "highly confused" by a dataset that appeared to be highly relevantjudging by 

its metadata, but had been semantically ranked the lowest - this was because the 

dataset also had a several tenns that were not relevant. Throughout the session, he 

never zoomed into the graph, preferring only to rotate it instead. He commented that 

after using the browser for a while it is quite irritating that the search window is not 

open by default and he has to click on a button to open it. 

For the tasks involving GeoDOVE, the participant entered a query in the NEEDS 

geoportal and when the traditional textual list appeared he commented that the 
datasets required closer inspection to determine their relevance to the query. His first 

action once the DEM had been uploaded was to rotate and view the visualisation 
from directly over head (in orthographic projection). This suggested a preference for 

2D visualisation and was consistent with the participant's use of the STORM 

browser. In contrast to his earlier use of STORM, he navigated GeoDOVE by 

zooming, rotating and translating the visualisation. 
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Participant 3 

The participant successfully invoked a search on the STORM browser. Upon 

presentation of the search results, he stated that he was puzzled by how a dataset with 

the keyword 'fossils' was ranked lower than one with the keyword 'macrofossils'. To 

investigate this issue further, he rotated the 3D grid such that all three axes were 

visible. The participant therefore, appeared to prefer observing the visualisation from 

an oblique angle with the coordinate of highest relevance (1,1,1) being the closest to 

the viewing camera. Although he could identify which datasets were closest to the 

coordinate of highest relevance, he commented that he did not fully comprehend how 

the application inferred relevance. 

For task 3 involving use of GeoDOVE, the participant observed the visualisation 

from an angle of about 30 to 60 degrees from the horizontal plane. However, he 

changed to an angle of approximately 20 degrees for task 4; meaning he viewed the 

visualisation from as close to the DEM as possible. Throughout the session, he was 

comfortable navigating the 3D visualisation. In response to the requirements for task 

3, the participant stated that he could not adequately determine which part of the 

DEM was the 'deepest red'. Technical difficulties were encountered during the 

session resulting in loss of some of the recorded material. However, notes compiled 

during the session were sufficient to overcome the problem. 

Participant 4 

The participant's first comment was that NEEDS has a very simple interface and it 

does not take long to identify the search tools. Once he had launched the STORM 

browser, his first action was then to click on the server listbox to confirm that the 

NEEDS metadata server had been selected for performing tasks I and 2 of the 

usability study. Instead of using the map to select the area of interest, he entered the 

coordinates directly into the textboxes. He was able to comfortably translate, zoom 

and rotate the visualisation. He appeared to prefer selecting datasets by clicking on 

the ranked list rather than by clicking on the thumbnails. He was able to identify 

clusters of datasets with similar spatial scores. He however, appeared to ignore 

semantic and temporal scores. 
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For the tasks involving GeoDOVE, the user first attempted to identify which datasets 

contained buildings data by examining the metadata presented by the NEEDS 

geoportal. He acknowledged that closer examination was necessary to fulfil the given 

tasks. Upon launching and exploring the navigation features of GeoDOVE, he 

commented that navigation in GeoDOVE was slightly more intuitive than the 

STORM browser, particularly the mouse-based scrolling (zooming in through mouse 

scrolling is disabled in STORM due to its single unit axes). After uploading the 

subsurface 3D model, he was puzzled because the model did not appear anywhere in 

the visible scene. He then navigated around the scene until he could see the 3D 

model. For most of the session he viewed the terrain from an angle of approximately 

45 degrees to the horizontal plane. 

Participant 5 

The participant first confirmed that the browser was set to search the NEEDS 

metadata server. She then entered the query parameters directly into the textboxes 

and invoked a search. When the results appeared she rotated the 31) grid such that the 

optimum position (1,1,1) was closest to the viewing camera. Next, she clicked on 

some records on the results table and identified which thumbnails had been 

highlighted. Then she clicked on a thumbnail near the previously highlighted one and 

then examined the row on the results table, followed by the associated metadata 

panel. She then systematically clicked on each thumbnail or table row and examined 

the metadata of the selected dataset. For most of the session she rotated 3D 

visualisation without zooming in or translating the grid. 

For the tasks involving the use of GeoDOVE, the participant was able to navigate to 

the applet from the NEEDS home page. Once the dataset had been uploaded she 

managed to add the DEM to the visualisation. She familiarised herself with the 

applet by zooming and rotating the visualisation to an angle approximately 60 

degrees to the horizontal plane. After sometime however, she experienced some 

difficulty rotating the visualisation to a similar 60 degree angle. This difficulty in 

navigation caused her to abandon attempts to locate the uploaded subsurface model 

of a rock (for task 4). 
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Participant 6 

The participant's first action was to launch the browser then familiarise himself with 

the navigation controls. He systematically tried to rotate both vertically and 

horizontally but then realised that the vertical rotation is disabled. Initially, he 

attempted to zoom towards a thumbnail but encountered some difficulty. This was 

because the thumbnails were offset from the centre of the screen and thus they 

disappeared as he zoomed in. Replay of the video protocols shows that by the time 

the participant had reached task 2, he was now able to zoom to specific thumbnails 

by translating them to the centre of the screen before zooming in. Whilst carrying out 

task 1, he observed that some of the documents had high semantic scores because 

they contained the search term 'agricultural', however they did not discuss any 

agricultural concepts (this was an example of erroneous entry of keywords). This 

shows an ability by the participant to cross-reference titles on the ranked table with 

thumbnails on the 3D visualisation. 

Whilst familiarising himself with GeoDOVE, he commented that the navigation 

controls were better than those of the STORM browser, particularly the zooming tool 

which is controlled from the mouse scroll. For most of the session he rotated the 

terrain such that it was at an angle of approximately 45 degrees to the horizontal 

plane. Despite the availability of a graduated legend on the applet, the participant 

was not able to identify parts of low altitude on the DEM. His verbalisations suggest 

that he was not able to identify the parts of the DEM coloured in deep red (the 

symbol the legend assigned to areas likely to be flooded). 

Participant 7 

The participant commented on how the visualisation gives a clear indication of the 

relevance of each dataset. He rotated the graph to view only a single plane at a time 

and then rotated it to an oblique angle. He then stated that "the visualisation is good" 

because one can view relevance from any dimension. He further emphasized the 

importance of the metadata panel for describing datasets. However, he stated that he 

was confused by the ranking of some datasets, in task 1, as being highly relevant on 

the ranked list but not on the 3D visualisation (when viewed from position 1,1,1). For 
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task 2 he observed that the most relevant datasets on the ranked list were also the 

closest to the optimum position of (1,1,1). 

For task 3, the participant rotated the terrain and viewed it from an angle of 20-30 

degrees. He was able to comfortably translate the viewing camera around the 

visualisation; however, at times he found vertical rotation difficult. He commented 

that the colours, particularly their blending and brightness, were good for analysis as 
it clearly highlighted areas that are susceptible to a flood. He also commented that he 

was able to identify areas that were at a higher altitude and thus relatively free from 

potential flooding. For task 4 he was able to correctly identify datasets that had the 

subsurface structure underneath the roads (as had been required of all participants). 

Participant 8 

For tasks I and 2, he viewed the visualisation from oblique angles. Initially, he 

encountered difficulty zooming into specific thumbnails but was able to find a 

methodology for doing so. He commented that he was confused by how datasets 

without the query term were ranked, particularly as some of them had been ranked 
higher than those with the query term. He was however, able to identify datasets that 

were highly relevant to the query and those that were not by observing the positions 

of their thumbnails relative to the optimum position 

For most of the session he viewed the terrain from an oblique angle of approximately 
40 degrees to the horizontal plane. He comfortably navigated the visualisation; 
however, he commented that the vertical rotation was difficult to use. For tasks 3 and 
4, he was able to identify datasets that were relevant to the given scenarios. Ile was 

able to navigate between the geoportal and the applet, in order to examine each 
dataset, but commented that it would be better if the applet could access all the 
datasets returned by the search on the geoportal. 
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Appendix E Features of Prototypes 

The following are key features of the STORM browser 

3D visualisation panel : This is the main panel for presenting search results 

through the STORM visual metaphor. 

* Calibrated axes: The axes aid users in detecting distances of thumbnails from 

one another and from the principal coordinates (0,0,0) and (1,1,1). 

* Metadata panel: Allows users to view attributes such as the title, abstract and 

geographic coordinates of each dataset. 

* Title listing panel: Enables users to select datasets easily and presents 

numeric values for each similarity measure. 

e Search by keyword: Allows for querying titles and abstracts. 

9 Search by range of dates: Allows for temporal constraints on a search. 

e Search by geographic footprint: Allows for retrieving datasets with footprints 

that intersect the query footprint. 

* Z39.50 Connectivity: Allows for searching several distributed Z39.50 

metadata servers. 

The following are key features of the GeoDOVE applet 

* 3D visualisation panel: Panel from which geovisualisation is presented. 

e Direct upload from geospatial databases: Allows for datasets to be 

transmitted through the internet directly to the applet. 

* Vector data extrusion: Offering 2.51) visualisation of originally 2D vector 
datasets. 

9 Creation of 3D Digital Elevation Models from raster data: Allows for surface 

models to be added to geovisualisations. 

9 Ability to upload 3D VRML files: Allows for pre-built 3D models to be 

added to a visualisation, increasing content in a presentation. 

* Facility for viewing attribute tables: Allows for attributes to be viewed 
together with the objects in the visualisation. Selection of records in the table 
highlights the associated objects in the visualisation, and vice versa. 
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9 SQL query support for both the attribute table and 3D visualisation: Enables 

multi-object selection and selection through predicates and constraints. 
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