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ABSTRACr 

After introducing the nonlinear evolution equations of interest: the 

finite depth fluid (FDF), the Kadomtsev-Petviashvili (KP), the Classical and 

the ordinary Boussinesq equations, formal asymptotic derivations of the KP and 

the FDF equations are given for the description of surface and interfacial 

waves. 

The N-soliton solution of the FDF equation is reconstructed as a finite 

sum of Wronskian type determinants. This solution is then shown to reduce to 

the solutions of the KdV and the Benjamin - Ono equations under specific 

limiting conditions. Interactions between two solitons of the FDF equation 

are studied and their interaction properties are shown to reduce to those of 

the KdV and the Benjamin - Ono equations. Computer plots of the interactions 

of two-soliton solutions of the FDF and the Benjamin - Ono equations are 

given. 

Resonance phenomena in solitons are studied with reference to the KP 

equation. After discussion of the basic concepts of these phenomena, the 

N-soliton solution is shown to reduce to the Wronskian of N/2 functions 

(N-even), each of which represents a triad of solitons when the solitons 

resonate in pairs. Asymptotic behaviour of the interactions between a triad 

and a soliton and between two triads are examined and the phase shifts of the 

triads are obtained directly from the Wronskian representation. The 

interactions are analysed in detail with reference to numerical computations 

of the full solutions. 



After showing that the Classical Boussinesq equations are obtained from 

Whitham's shallow water wave equations, the basic concept of Hirota's pq=c 

reduction of the first modified KP hierarchy is outlined. The Classical 

Boussinesq equations are shown as the pq--O reduction of the same hierarchy. 

The solution of the hierarchy is manipulated to incorporate the pq--O 

reduction. As a result of these limiting procedures applied to the problem, 

Wronskian solutions of the Classical Boussinesq equations in terms of rational 

functions are produced. 

Finally the pq=c reduction of the KP hierarchy is applied to the ordinary 

Boussinesq equation. Using this, the N-soliton solution is expressed as a 

finite sum of Wronskian type determinants. Analytic verification made for the 

two-soliton solution shows that a number of Wronskian identities are needed 

for this purpose. The reason for this behaviour is examined. 
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INTRODUCHON 

Continuing studies in Fluid Mechanics have produced some fascinating 

nonlinear evolution equations which are worthy of further investigation. 

Particularly interesting is that many of these equations are shown to exhibit 

a special kind of steady state wave solutions now known as solitons. This 

type of wave can be found on the surface of shallow water, on the interface 

between two fluid layers of different densities, on thermoclines in the 

tropical oceans and in many other places. 

Perhaps the simplest nonlinear evolution equation of this kind is Burgers 

equation: 

ut+ uu x- 
öu 

xx = 0, b>O. (1.1) 
This was originally obtained by Burgers (1948) to model a turbulent flow. 

This equation also describes one dimensional flow of a viscous heat conducting 

fluid in which 6 is a measure of the viscous and thermal diffusion [Cole 

(1951) ]. 
Equation (1.1) includes both nonlinearity (uu 

x) and dissipation (6u 
XX). 

The behaviour of the solution of this equation can be explained without 

actually solving the equation itself. Let us suppose that 6 is small. 

Clearly in the case of 6=0, it is simply the first order nonlinear equation 

which shows steepening and breaking of most initial wave profiles at the 

leading edge. If the nonlinear term uu x is neglected, then (1.1) is a purely 

dissipative equation. This means that the initial wave profiles will decay 

exponentially with time. Now, with both nonlinear and dissipation terms in 

the equation, initially the waves will steepen. However, the steepening 

region contains wave components of increasingly large wave numbers and this 
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makes the dissipation effect more dominant than the effect of nonlinearity as 

the decay is proportional to the square of wave numbers. Therefore, further 

steepening is counteracted by this decay and thus breaking or multivaluedness 

of the solution is avoided. Hence, in Burgers equation we have a balance 

between nonlinearity and dissipation. 

One of the solutions of Burgers equation which shows this balance is 

[Dodd et al (1982)] 

u= a6[l - tanhl/2 (ax - 6a 2 
t)]. 

This can be obtained by using the Cole-Hopf transformation 

26 2-- (log F) (1.2) 
Ox 

which converts equation (1.1) to the heat equation 

Ft= 6F 
xx . 

Another equation which is very familiar in water wave theory is the KdV 

equation 

ut+ uu x+ 
bu 

Xxx = 0. (1.3) 

In contrast to the Burgers equation which is the simplest nonlinear 

dissipative equation, the KdV equation is the simplest nonlinear dispersive 

equation due to the presence of the 6u 
IN= 

term. This equation was first 

derived by Korteweg and de Vries (1895) for long waves on the surface of 

shallow water. The equations of this type occur wherever nonlinearity and 

dispersion come together as, for example, on nonlinear transmission lines 

[Hirose and Lonngren (1985)], in oscillation of a crystal lattice and in 

ion-acoustic waves Escott, Chu and McLaughlin (1973)]. 

The KdV equation (1.3) was studied numerically by Zabusky and Kruskal 

(1965) for 6= (0.022) 2 
with periodic boundary conditions u(x+2, t) = u(x, t) 

and a periodic initial condition u(x, O) = cos 7rx. In their study they 

observed that the initial wave only steepened at early times. They also found 

that behind the steepening wave, oscillations were developed and grew into 
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separate solitary waves. Furthermore, they found that the amplitudes and 

velocities of those solitary waves remained fixed and unchanged despite the 

nonlinear interactions taking place. This particle like property caused them 

to call the solitary waves "Solitons". 

Essentially, the nonlinearity in the KdV equation is balanced by the 

dispersion. This can be explained as follows. If we neglect the nonlinear 

term, then with 6>0 we have a purely dispersive equation with negative phase 

speed proportional to the square of the wave number. Now, as the leading edge 

steepens, components-of increasingly large wave numbers are dispersed and in 

this way the nonlinear steepening is balanced by the dispersion. 

The KdV equation has been studied extensively since the discovery of 

solitons by Zabusky and Kruskal (1965). An analytic procedure to obtain 

soliton solutions of this equation was immediately carried out by Gardner et 

al (1967) by using the inverse scattering transform. Rapid development in 

soliton theory has been continuing since then and some of this will be 

examined later. 

The form of the KdV equation normally used in employing the inverse 

scattering transform is 

ut+ 6uu +u= (1.4) 

and its solitary wave or single soliton solution is [Satsuma (1979)] 

2k 2 
sech 

2 (kx-4k 3 
t+Tj) (1.5) 

where k is any real constant which characterizes the soliton and Tj is a phase 

constant. The expression (1.5) shows that a taller soliton moves faster than 

the shorter ones. 

All the above equations describe surface waves which propagate in one 

direction only. There is however another equation which also describes waves 

on the surface of shallow water. This is the Boussinesq equation 

u tt -u xx - 3(u 2 )XX -u xxxx = 
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which was introduced by Boussinesq (1872) to describe such waves. This 

equation has also been rederived by Zabusky (1967) for waves in a nonlinear 

one dimensional lattice. 

Both the KdV and the Boussinesq equations are nonlinear dispersive 

equations. Unlike the KdV equation, the Boussinesq equation describes waves 

which can propagate in both positive and negative x-directions due to the 

presence of the second t and x-derivatives in (1.6). If one looks for waves 

which travel in one direction only from the Boussinesq equation, it is 

expected that this equation would reduce to the KdV equation. Indeed this can 

be done for large space and time scales by defining f= F- 
Y2 (x-t) and T=6 

3/2 

where e is a small parameter. In this way the Boussinesq equation (1.6) 

yields the KdV equation in the form 

2u 
1T + 6u 

1u if + ulfff ----: 0 

where U= EU 1+ F- 
2u2+... 

Solutions of the Boussinesq equation have been obtained by Zakharov 

(1974) by using the inverse scattering transform, by Hirota (1973b) using a 

direct method and by Nimmo and Freeman (1983) using the BAcklund 

transformations. 

Both the KdV and the Boussinesq equations arise from the shallow water 

wave problem as we have seen in the above discussion: this is one of the 

common features of these two equations. Another common feature is that both 

equations are contained in more general shallow water wave equations 

introduced by Whitham (1974), 

u+ (('+cru)wl P- w+ O(aplp 2 
tx6 xxx 

w+ aww +u 
CW 

+0 (aP, P 20 
txx2 xxt 

wf x 

where f is the first order term of an expansion for the velocity potential and 

a, P are small parameters arising from nondimensionalizing the physical 

variables. 
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Equations (1.7) can be written in a more convenient form by the 

substitution w=v+ Y2, Bv 
xx 

+0 (a, 6, e) 
as 

u+ ((l+u)vl +1 
tx 3"xxx 

vt+ (u + %V 2 )X 0 

after setting a= jU = 1. Equations (1.8) are referred to as the Classical 

Boussinesq equations and their solitary wave solutions have been found by 

Krishnan (1982) and Nakamura and Hirota (1985). 

All the equations mentioned in the above were derived for waves which 

propagate on the surface of shallow water. The propagation of internal waves 

in deep water has been the subject of study by Phillips (1966), Benjamin 

(1967), Davis and Acrivos (1967) and many others. Benjamin (1967) found that 

these solitary waves could be written in the rational form 

U(X, t) -2 
2k (1.9) 

k (x-kt+Tl)+l 

where k is a real constant and 71 is a phase constant. 

The actual equation for these internal waves was derived by Ono (1975) 

and written in the integro-differential form 

u 2uu +1 '9 
1 dx 0. 

txv 
(7x 

2 
'fco 

x _x 
He also showed that the solitary wave solution of (1.10) was given by (1.9). 

Equation (1.10) is known as the Benjamin - Ono equation. Multisoliton 

solutions of this equation have been found by Matsuno (1979a). 

It can be shown that both the KdV and the Benjamin - Ono equations share 

a common parent equation: an equation which contains a depth parameter which 

can be put to zero for the KdV equation and to infinity for the Benjamin - Ono 

equation. Such an equation is called the finite depth fluid equation 

ut+ 2uu 
x+ 

GEU 
XXI =0 

where 

C[f(x)] = 
ý' Pf,, [coth; K! 

2, 
ýx'-x) 

- sgn(x'-x)] f(x')dx' 2 

(I. 11) 

(1.12) 
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where X is related to the reciprocal of the fluid depth and P denotes the 

principal value of the integral. 

The form of the finite depth fluid equation (1.11) is due to Matsuno 

(1984). The original equation, however, was introduced by Joseph (1977) by 
rapriz5vitafiOn *e 

using the 
/111 of/ýdispersion relation advanced by Whitham (1967). The 

knowledge of the phase speed c(k) for waves travelling in a dispersive medium 

can be used to construct the equation governing such waves. The expression 

inside the square brackets in (1.12) comes from the inverse of the Fourier 

transform for c(k). 

The expression of c(k) used by Joseph to construct equation (1.11) was 

previously found by Phillips (1966). 

k :, ýcoth(, ) 
2 

for waves travelling on the thermocline in an ocean. 

All the equations we have mentioned so far are in one space dimension. A 

direct generalization of the KdV equation to two space dimensions has been 

made by Kadomtsev and Petviashvili (1970). By assuming weak y- coordinate 

dependence with the dominant wave propagation in the x- direction they have 

been able to produce the equation 

(u 
t+ 

6uu 
x+u YDOC 

)x+ 3u 
yy =0 (1.13) 

where the coefficients are chosen for later convenience. Although the 

original derivation of this equation was entirely based on the argument about 

wavelengths in the x and y- directions, its physical significance has been 

justified in connection with shallow water waves. A formal derivation of 

equation (1.13), which is called the Kadomtsev-Petviashvili (KP) equation, for 

waves propagating at a small angle with x-axis on the surface of shallow 

water, has been made by Johnson (1980), Freeman (1980) and Thompson (1980). 

All the equations we discussed in the above have been shown in the 

literature to exhibit soliton solutions. The work of searching for soliton 
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solutions has been growing rapidlY since the exploitation of soliton 

properties by Zabusky and Kruskal (1965). The discovery of thasetype of 

waves, however, can be traced back as early as 1834, in a report by 

Scott-Rusell (1844) who called them "Waves of Translation". Many parts of 

this report can be found quoted in Bullough and Caudrey (1980), Freeman 

(1980), Calogero and Degasperis (1982), Dodd, Eilbeck, Gibbon and Morris 

(1982) and in many others. 

The first analytical approach to obtain multisoliton solutions of the KdV 

equation was developed by Gardner et al (1967) and revised in a more 

mathematical formalism in their later paper of 1974. This method, now 

referred to as the inverse scattering transform, has received a lot of 

attention since then. The scope of inverse scattering was widened to include 

many other equations by Zakharov and Shabat (1974) and Ablowitz et al (1974). 

Many other equations such as the nonlinear Schrodinger, the modified KdV, the 0* 

sine and sinh--Gordon, the Kadomtsev-Petviashvili and the Boussinesq equations 

have been solved by the use of the inverse scattering transform [see Novikov 

et al (1984)]. 

Although the inverse scattering transform is widely used, it is an 

indirect method of solution which seeks to obtain the general solution to the 

problem. If the soliton solutions themselves are to be studied, a more 

straightforward approach can be adopted. An alternative technique has been 

given by Hirota (1971), first for the KdV equation and in a series of later 

papers for many other nonlinear evolution equations [see Hirota (1980)]. 

Essentially, Hirota's technique is a direct method. It involves the 

transformation [similar to the Cole-Hopf transformation (1.2)] of the original 

equation into a bilinear form. The solution is then obtained from this 

bilinear equation by using an expansion method. The application of this 

method to the KdV equation is given in Appendix A since all the equations 

considered in this thesis will be approached in this way. 
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The central aim of this thesis will be mainly the study of two aspects of 

the soliton solutions of the finite depth fluid, the Kadomtsev-Petviashvili, 

the Classical and ordinary Boussinesq equations. These are the structures of 

the solutions and the interactions between solitons. 

The direct method of Hirota leads to solutions in the form of sums of 

exponentials [Hirota (1980)] while the inverse scattering transform leads 

directly to a determinantal form [Lamb (1980)]. Another form of soliton 

solutions was first given by Satsuma (1979). By considering the inverse 

scattering scheme of the KdV equation (1.4) he was able to show that its 

N-soliton solution could be written as 
2 

2 log W(01, *'02 (1.14) 
Ox 

where W is the Wronskian of N functions 01102 0N with 

cosh (k x-4k 
3t+ 

77 

Each function 0i represents a single-soliton solution. 

However one can also reduce directly the ordinary determinantal form to a 

Wronskian form. This has been done by Freeman (1984). The Wronskian 

representation of the soliton solutions will be used throughout the thesis and 

the basic derivation of this representation together with its properties is 

presented in Appendix B. 
f 

The use of Wronskian solutions in verifying the multisoliton solutions is 

relatively simple compared with the other two forms. This is due to the fact 

that the Wronskian solutions can be made very compact. Furthermore 

differentiation of a Wronskian determinant is straightforward and does not 
a 

generate a large number of terms as differentition of an ordinary determinant 
A 

would. 

Soliton solutions have also been studied in terms of infinite dimensional 

Lie algebras. In this way, Jimbo and Miwa (1983) found that a particular 

See also Adler and Moser (1978) for earlier work 
on Wronskian solutions. 
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soliton solution does not belong to a specific equation only, but rather to a 

whole class of equations which form a hierarchy of increasing complexity. 
k 

Indeed they have produced seven important hierarchies W4 ch can be written in 

the form of Hirota's bilinear operator. Two of them are the KP hierarchy and 

the first modified KP hierarchy. These two hierarchies will be of interest in 

this work and they are listed in Appendix C. One of the advantages of these 

hierarchies is that they can be tabulated for reference purposes. This means 

that the solutions of many equations which do not belong directly to any of 

the hierarchies may be obtained by manipulating the solutions of one of the 

hierarchies. Such a manipulation leads to a constraint on the solution 

parameters. This process is called a "reduction" by Hirota (1985). He 

applied this procedure to the Classical Boussinesq equations (1.8) and 

obtained the so-called pq =c reduction. 

In order to illustrate this procedure, we take the KdV equation (1.4) as 

an example. By using the transformation 

L2 
u=2- log F 

ax 2 

it can be written in the bilinear form [Hirota (1971)] 

(D 
x4+DxDt 

)F. F =0 

where Dx, Dt are the bilinear differential operators defined by 

DmDnf. g =(a-0ma 
CI n Itt xf=X 

xt ax 
ýý) (j-t - ýý-t, ) f(x, t)g(x, )lt, 

=t - 

The bilinear equation (1.17) does not belong to any of the hierarchies 

[see Appendix C]. However it can be compared with the first equation in the 

KP hierarchy, 

(D 
14- 4D 1D3+ 3D 22)F. F =0 

where Dl. D2 and D3 refer to the bilinear operators with respect to the 

variables xj, x2 and x3. The single-soliton solution under this hierarchy is 

written as 

e 
px 1 +p x2 +p x3 +T7 

+e 
qx 1 +q 

2x2 
+q 

3x3 
+0 

(1.20) 
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where p, q are abritrary solution parameters with ppeq, 77 and 0 are constants. 

Now if we define x=x and t-1 then (1.17) becomes 
1 43 

(D 
14_ 4D, D 3) F. F = (1.21) 

which is exactly the first two terms of (1.19). Therefore it is easy to see 

that the solution (1.20) will satisfy (1.21) if 

3D 2 
2F. F=0. 

This is equivalent to the condition 

p2-q2= (1.22) 

Due to the relation given by (1.22) this problem has been described as 

the 2- reduction by Hirota (1986b). Since pXq then (1.22) gives q=-p, 

the solution of the KdV equation can be deduced from (1.20) to give 
12 
ý7(T1+0)+P X 

F=e22 cosh(px 1 +p 
3 

X3+T'O)* 

It should be noted from this expression that the exponential factor is 

independent of xl(=x) and therefore it does not contribute to the final 

solution u (1.16) and we can simply write 

cosh (px - 4p 3t+ 
TIO) 

in terms of the original variables where 770 
1 

77-0). Hence we obtain the -'ý 2 

same result as (1.15) which gives the final sech 
2 

solution (1.5) for u. 

We note that in the above calculation we have used the transformation 

t=I However, this is not the only choice that we could use to solve 4'3' 

this problem. We could choose, for example, t=x 3' This would result in a 

different reduction problem and a constraint different from (1.22). 

Let us now examine this type of reduction problem for the Boussinesq 

equation (1.6). The bilinear form of this equation is EHirota (1973b)] 

,422 (D 
x+Dx-Dt 

)F. F =0 

upon using the variable transformation (1.16). 

We may of course choose x=x1 and t= -ix 
2 so that (1.23) becomes 

vr-3- 
(D 

14+D12+ 3D 22 
)F. F = 0. (1.24) 
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Equation (1.24) can now be separated as 

(D 
14+D12+ 3D 22 )F. F 

(D 14_ 4D, D3 + 3D 22 )F. F + (4D 1D3+D, 
2 )F. F 

is 
Now, in order that (1.20) 

A to satisfy (1.24) we must have 

(4D1D 3+D, 
2 )F. F = 09 

(1.25) 

since the first expression on the right hand side of (1.25) is automatically 

zero by (1.19). Now if (1.20) is substituted into the last equation or into 

equation (1.24) itself, we find 

p+ 4p 3=q+ 4q 3. (1.26) 

This would result in the solution which is exactly the same as that obtained 

by Nimmo and Freeman (1983). 

If we now choose x=x1 and t=x2 then (1.23) is 

(D 
14+D12_D22 

)F. F = 0, (1.27) 

which then separates into 

(D 
14+D12_D22 

)F. F 

= (D 
14_ 4D 1D3+ 3D 22 

)F. F + (4D, D 3+D12_ 4D 22 
)F. F (1.28) 

By similar argument, if we require (1.20) to satisfy (1.27) then 

(4D 
1D3+D12- 4D 22 

)F*F --,: 0 

which means that the solution parameters satisfy 

pq 
1 (1.29) 

-4 

We shall see in Chapter 6 that the pq -1 duction of the KP hierarchy 
4"' 

for the Boussinesq equation generates a new structure of the solution :a sum 

of Wronskian type determinants. 

Interactions between solitons have been studied since the discovery of 

the solitons by Zabusky and Kruskal (1965). It has become one of the 

definitions of solitons that with the exception of some phase shifts, solitons 

preserve their identity after emerging from an interaction with another 



-12- 

soliton. However a study of two interacting solitons made by Miles (1977) 

reveals that under certain conditions a single soliton can be produced after 

the interaction. He also found that the two incident solitons and the 

resulting soliton formed a triad of solitons. This phenomenon is typical of 

soliton interactions which are known as resonances, and are familar in the 

study of linear waves. 

Let us consider this phenomenon for the two-soliton solution of the KP 

equation (1.13). The two-soliton solution is given by Lamb (1980) as 

a2 log A (1.30) 
ax 

wi th 

e 
771 

+e 
772 

+q 12 e 
T' 1 +'t72 

(1.31) 

where 

a. 
T7 = (2 +n )x + (, e -n, )y - 4(2 +n )t + log (1j. 

iiiiii2 +n i 

(2 
i-le iX; i, i=1,2; i0i. ij (2 
i +n i 

Xle 
i +n i) 

Here a1 is a constant, R,, n, are the solution parameters obtained upon 

parameterization of wave number k= (k, m) and the frequency W so that they 

satisfy the linear dispersion relation of the KP equation [Freeman (1980)] 

- c-ok +k4 +3m 
2=0 

wi th 

k= #0-+n, m=n2_ co 
2 

and cx)= 4(, 0 3 
+n 

3). 

It is found more convenient for the purpose of this discussion to 

represent the solution by A instead of the actual solution u. It should be 
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noted that a single-soliton solution is represented by only two terms, 

A= 1+e7l, which is equivalent to the final solution 

22 77 
-,, ý-(e+n) sech 22 

Let us now return to the two-soliton solution (1.31) with q 12 =0 which 

can be achieved by choosing either R1= 10 2 or n1=n 2' Now (1.31) becomes 

A=1+e 
T11 

+e 
T12 

. (1.32) 

From this expression we see that in the region where -q 2 -+ --co and Ti 1 is 

fixed we have A=A1= 1+e which is the first soliton. In the region where 

T11 -*-()oandTi2 is fixedwe find A=A2=1+e 
T12 

: the second soliton. In the 

region where -q 1 -+ 4-co and -q 2 +co wi th -q 1 T12 being fixed we have 

AA 
T12 

(1 
771-772 

) 

which is the third soliton resulting from the interaction between the first 

and the second solitons. Since the final solution u is expressed as (1.30), 

the exponential factor in the above equation can therefore be removed and 

hence 

A1 
T11-712 

(1.33) 

If the wave number of the third soliton is k3= (k 
3 IM 3) and its frequency is 

60 3' then we see that 

31 2 

and 

w= C) - UD 

This means that the soliton represented by A3 is a resonant soliton 

produced by the solitons represented by A1 and A 2' 

Therefore, with the choice q 12 ý0 one can always find that these three 

solitons come together in the form of a triad. Hence, in a two-resonance 

soliton solution, the motion of this triad can be dealt with as a single 

en ti ty. 
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The interaction will be more complicated if we include more solitons in 

the solution. The problem with three-soliton interaction of this kind has 

been considered by Anker and Freeman (1978). A procedure will be developed in 

Chapter. 4 for the interactions of a larger number of solitons when they 

resonate in pairs. 

We have so far explained the basic concern of the thesis. The outline of 

the remaining chapters iS as follows. 

We first derive the Kadomtsev-Petviashvili (KP) and the finite depth 

fluid (FDF) equations in Chapter 2. Our fluid models will be inviscid, 

incompressible and irrotational so that we deal with only the Laplace's 

equation for the velocity potential of the fluid. 

Chapter 3 looks into the soliton solution of the FDF equation. The 

N-soliton solution is expressed as a finite sum of Wronskian type 

determinants. This solution is then shown to reduce to those of the KdV and 

the Benjamin - Ono equations under certain limiting conditions. An explicit 

form of the two-soliton solution of the FDF equation is obtained and used to 

study their interaction. The interaction properties will be shown to reduce 

to those of the KdV and the Benjamin - Ono equations. The result of the 

analysis for the FDF and the Benjamin - Ono equations is supported by some 

computer plots. 

In Chapter 4 we discuss resonance phenomena in solitons with reference to 

the Kadomtsev-Petviashvili equation. After discussion of the basic concepts 

of this phenomena, the N-soliton solution which resonates in pairs is 

transformed into the Wronskian of N/2 functions (N-even). Each of these 

functions represents a triad. We then go on to discuss the interactions 

between a triad and a soliton and between two triads, with reference to 

numerical computations of the full solutions. 



-15- 

Soliton solutions of the Classical Boussinesq equations are discussed in 

Chapter 5. After showing that these equations originate from Whitham's 

shallow water wave equations we discuss some known solutions and the concept 

of pq =c reduction. Special attention is then given to the case of c=0 

since it is directly related to the Classical Boussinesq equations. A 

complete theory of the N-soliton solution using the Wronskian technique is 

discussed and the rational solutions are produced. 

In Chapter 6, we discuss the soliton solution of the ordinary Boussinesq 

equation. This equation is shown as the pq -1 duction of the KP hierarchy. 4" 

This reduction problem leads to a more complex Wronskian representation. The 

two-soliton solution in this representation is examined and shown analytically 

to satisfy the equation. The use of REDUCE programs is made in verifying 

higher order solutions. 

Finally we conclude our resultsand give some suggestions for further 

study in Chapter 7. 
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CHAF17ER 2 

DERIVATIONS OF EQUATIONS 

2.1 Derivation of the Kadomtsev-Petviashvili equation 

The derivation of the equation for waves on the surfaces of shallow water 

has been given by Johnson (1980), Freeman (1980) and Thomspon (1980). It will 

be repeated here as an introduction to a similar result for waves on an 

interface between two fluids of different densities which leads to the finite 

depth fluid equation. The scaling procedures for this equation in the form 

required are not readily available. 

For the purpose of this derivation we assume an inviscid, incompressible 

and irrotational fluid so that we may write the mass conservation equation or 

the continuity equation of the fluid in the form of Laplace's equation 

a 21P, 
++0. (2.1.1) 

ax, 2 
(3y j2 Oz, 2 

Here 0' is the velocity potential of the fluid, and (x', y', z') is the chosen 

coordinate system, with x' and y' the horizontal axes and z' the vertical 

axis. Primed variables will be used initially to simplify the notation for 

nondimensional variables later. 

We also assume that the bottom of the fluid is horizontal and located at 

z? = 0. Now, if TI' is the displacement of the surface from its undisturbed 

depth h, then the free surface is described by 

z' =h+ij'. 

Let ul, vI and w' be the x', y' and z' velocity components of the fluid. 

Then the vertical velocity of the fluid at the surface can be written as 

wL 1+U, TLý + V, a-W on z' =h+ 77' 

at, ax, ay 
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The momentum equation or the pressure condition at the surface is given 

by Bernoulli's equation 

p 
2-0 fa (U' 2+vp2+W, 2 

+ pl + pgzl = po + pgh 
at, 

+ 2' 

on z' =h+ 71'. Here po is the atmospheric pressure above the surface, p' the 

pressure in the fluid at the surface and p the densitY of the fluid. 

Therefore we must have p' = po and hence 

001 
+1 ut2 + vf2 + W, 

2)+0 
on z' =h+ T11. (2.1.3) - ý7( 

at, 2 

The final boundary condition is given by the vertical velocity at the 

bottom 

w1=0 on z' = (2.1.4) 

Our problem here is to solve Laplace's equation (2.1.1) subject to the 

boundary conditions (2.1.2) - 

We now consider a wave of amplitude a, propogatinj dominantly in the 

positive x' direction. If the wavelength in the x1 direction is X and in the 

direction is p, we then require X << p. Let us set 6=h/X, Then for 

shallow water waves 6 << 1 and for deep water waves 6 >> 1. Only the case of 

shallow water waves will be discussed here and so 6 small will be the basis of 

the approximation procedure. 

The problem is specified by suitably nondimensionalizing the variables. 

We define 

xIIIzI ct, 
T 3, 

Z= 

iý ,t=x 
of 

Tj Nc 

which then implies 

ul vt 6w, 
U-, V c Oc c 

where 0=x and c is a constant which has the dimension of speed. 
11 

(2.1.5) 

Indeed c 

can be chosen upon substituting the above nondimensional variables into the 

pressure condition (2.1.3). It turns out that the right choice is c=vrg-h. 
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In terms of these variables the equation of motion and the boundary 

conditions (2.1.1) - (2.1.4) become 

220 2c'12-, O 6 (2ý0- +0)+ 
LO 

=0 
ax 

2w 
az 

2 

w62 (8-17 +u 
2a 

+ 02 v 
aq) 

on z=l+n (2.1.8) 
at ax ay 

222 6 ao f (u2+02 2w2 
at+2v)+ ýE +6 Tj =0 on z=l+-q (2.1.9) 

w=0 on z=0. (2.1.10) 

For small amplitude long waves, we encounter another small parameter 

a/h << 1. We shall make use of the Korteweg-de Vries's approximation 62 

F- which is equivalent to taking a=h3A. In order to achieve a 

distinguished limit which includes the two dimensionality of the surface waves 

in the simplest form we set 02= ae for some constant a. (For a=0, the 

analysis would lead to the KdV equation .) 

In order to solve the above equations for 0 and Tj we first expand them in 

powers of e, 

0= F-[O F-0 1 
+.... ] 

77 = F-[N 0+ F-N 1 +.... ] 

and then substitute these into (2.1.7) and (2.1.10) to find 

2 '0 00 
=0 with 

'0' 
=0 on z=0 

Oz 2 az 

22 00 C3 (p 1 d th ý7- =0 on z=0 ')z 
, 3z 22cz 
c (3 z 

a2 02 
2 

01 a2 00 C30 2 

(3z 
2 ax 2-a- ay 2 with jz- =0 on z=0. 
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The solutions of the above differential equations are then 

00 = fo(xpyvt) 

z22 fl(X'Y't) -2 
ax 

2 

z2 cl 
2f 

az 
2 cl 

2f0z4 
cl 

4f0 

02 =f 2(X'Y't) -2 22 24 -4 
ax c3x ax 

Inserting these solutions into the velocity condition at the surface 

(2.1.8) gives to the lowest order 

c 'IN 2 
0af0 

'It -j2 c cx 

and into the pressure condition (2.1.9) gives 
af 0 

0 at 
Combining the last two equations, we find that N0 satisfies the linear 

wave equation 

'32 N0 '92 N0 

(3 t2 (3x 
2 

This equation has the solution N0= No(x-t, y) for waves travelling in the 

positive x-direction only with speed vrg-h in the physical coordinate. 

The nonlinearity only comes into our calculation in the next order 

approximation. Carrying out the same calculation as before for the next order 

we f ind 

'32 Na2N1 
--= G(X-t, y) 
at2 ax 

2 

where G is a function of x-t arising from N 0" Since G itself is a solution of 

the wave equation, the resonance effects mean that N1 contains a term like 

t C(x-t, y) which grows much faster than N0 as t -ý co. Therefore the asymptotic 

expansion for 77 is no longer uniformly valid for large t. We then need to 

1 
seek for a uniformly valid solution in the far field when t=O( /, ) and 

x-t = 0( 1) and wrLte the far f ield variables 
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2 
T X- u-w--u. v-*--, v and w-*--- W. 

The t and x derivatives are now 

aa 
x 

ý= ý7f at aT x 
Now, in terms of the far field variabless equations (2.1.7) - 

become 

2 . 120 c + ae 
2 c'l 0+=0 (2.1.13) 

af 2 
07Y 

2 
CRZ 

2 

! LTI 

+ eu 
2il 

+ ae 
2a 

W=6v" on z=l+e77 (2.1.14) 
CIT 49f af (3y 

6(30 
60 

+ e, u2+aev2+EW21 + -q =0 on z=l+en (2.1-15) 2 aT af 2[ 

w=0 on z=0. (2.1.16) 

We now set 

0= 4ý 
0+ Fs 4ý 

1 

77 = 7,0 + F- 77 1 

2 
T12 

and as before (2.1.13) and (2.1.16) give 

4ýDo = go (f 
.TS, Y) 

2g 

af 2 

4ý =gT, Y) 
z26g az 

2ag0z4a 90 

2 2(5 2a -F2 -2 -a2 24, 
a4 v y5 

From these we can deduce that 

ag 0 ag 1z2 
af 

+ F- TE- 

c3g 0 ag 1 Z2 
ay +6 (- Ely c2 

3 
90 

'553 
3 

90 
2) 

(3ya5 

(3 g00g1a 90 z3 (9 g0 
-Z cz-+ az --- -) + ... af 2 af 2 ay 26 

aý4 
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Using the above results in the velocity condition (2-1.14) we write 

a2 go 
2g1a 

90 1 go 
-(1+671 02 e[- +a, I 

af 'OE2 ay 26 a54 

a-qo a-qo a-ql ago 3, no 
6T af af a5 

by keeping only terms of 0(1) and O(e). 

At each order the last equation gives 

a2g0 a77 
0 

of 
2 af 

a2 91 C1771 ano a2 90 C390 a"'o 1 '3 4 90 a2 90 ++----. (2.1.18) 
C-If 

2 af aT 0 
CqE2 

af af 6 af 
4 

ay 
2 

Similarly, from the pressure condition (2.1.15) we can write 

ago c1go ag 11a3 90 '3gO 2 
j-- ---++ 77 + e-TI 0 

T af aE 3 TE9 01 

which then gives 

Og 0 
c -if . 10 

ag ago 1a3 90 1 ag 02 
- ý7( (2.1.20) 

'11 OT 2 
af 

32 

It is worth noting here that (2.1.19) is compatible with (2.1.17) showing that 

we are so far still on the right track. The first order approximation thus 

relates 77 0 and go but does not specify either at this level. An equation for 

TIO will thus be obtained at the next order approximation. 

Using (2.1.19) into (2.1.18) and (2.1.20) we write 

a2 91 (3TI 1 (3770 a-q 
01a3 

Tj 0a2 90 
- . 75 -+ 2-qO 63+a2 

af 2cT 
af C'ly 

and 

13 
2g1 aT7 

1 ap 01a3 -q 0 C3-q 0 
+ aT 2 a53 

TI 0 of 
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When the last equation is subtracted from the first one we find 

C'no Ono C', 
3 

TIO 
2 

90 
2 5-- + 3770 ýý- +a. =0., Tf'332 T 

c3f ay 
and upon differentiating this equation with respect to f and making use of 

(2.1.19) we finally arrive at the desired Kadomtsev - Petviashvili equation 

cl-no 
3 

Ti 02 TIO 

+i 3-qo 0. 3 gf 3 ay 2 

As mentioned earlier, when a=O, this equation reduces to the KdV equation 

'9770 'OTI 0 
2 

IOT 
+ 3TIO 

c15 

1a 770 
+3 

gf 3- 
c 

2.2 Derivation of the finite depth fluid equation 

Let us now consider one dimensional waves on the interface (y--O) between 

two fluids of different densities which are confined between two boundaries, 

one at the top (y=H) and the other at the bottom (y=-h). This model is very 

similar to the existence of internal waves at a thermocline of sea water if 

the thickness of the thermocline tends to zero. Such internal waves have been 

discussed by Phillips (1966), and Joseph (1977). A derivation of an equation 

describing such waves is given in Kubota et al (1978). 

For our model we let the densities of the fluids above and below the 

interface be R and p respectively, with p>R for stability. Furthermore we 

also require the fluids to be inviscid, incompressible and irrotational so 

that the equations of motion of the two fluids can be written as 

a2 10 + 
210- 

= 0, -h 
Ox 2 

(3y 
2 

0ea ID 0,0 <y<H (2.2.2) 
ax 2 

cly 
2 

where4(b and 0 denote the velocity potentials of the fluids above and below the 

interface- The schematic diagram for our model is shown in Fig. 2.1. 
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j= 

R 

lyl 

-- -1 = 
Fig. 2.1 The model for waves at an interface. 

The boundary conditions at y=H and y=-h can now be specified; 

v 
ao 0 on y=-h (2.2.3) 
ay - 

Va=0 on Y=H (2.2.4) 
ay 

where v, V are the vertical velocities of the lower and the top fluids. Due 

to some disturbance, the interface is displaced to some distance from the 

undisturbed position y=O. Let the interface at any time be described by y--Tl. 

We therefore have as before 

v 
077 

+u 
2T-1 

on y=n (2.2.5) 
at ax 

77 V+U ý2rl- on y=n (2.2.6) 
at ax 

where u, U are the usual notation for the horizontal velocities of the lower 
COrktin(Altý Of 

and top layer fluids. The final boundary condition is given by the,,, pressure 

at the interface, and it can be written as 

+1221 U2 + V2) 'L R(34ý +-+ g-ril on y---q. (2.2.7) 
at 2,2(u +v )+ grll : -- at -2't( 

We first look at the linear problem by neglecting all nonlinear terms in 

(2.2.5) - (2.2.7). The solutions of (2.2.1) and (2.2.2) together with (2.2.3) 

and (2.2.4) are 

1ý = Ae i(kx-wt) 
cosh k(y-H) 

(A = Be i(kx-wt) 
cosh k(y+h). 



-24- 

From (2.2.5) and (2.2.6) we deduce that 
00 

- on y ay - (3y 
whence we find 

Ce 
i(kx-wt) 

cosh k(y-H) 
sinh kH 

(2.2.8) 

-Ce 
i(kx-wt) 

cosh 
, 
k(y+h) 

sinh kh 

where C is an arbitary constant. 

Neglecting the nonlinear term in either (2.2.5) or (2.2.6) and making use 

of (2.2.8) we have 

Cke 
, 
i(kx-wt) 

(2.2.9) iw 
The linear counterpart associated with (2.2.7) now reads 

20 - a4ý p at Rýýt (p-R)g-q on y=O. (2.2.10) 

Upon using (2.2.8) and (2.2.9) in this equation we find 

C2 w2 g(p-R) 0= 0[--pcoth kh +R coth kH] 

gh 1-R 

Rkh 
p for kh small. 

1+ coth kH 
p 

Hence we find the dispersion relation 

Rkh 
cF7 '--R El - gh(l - -) 2p coth kH] 

p 
Rh Rkh I : I! -- El - ýýp-H -2 ýcoth kH - (2.2.11) 

gh (1- 11) 
pp p 

Therefore the linear wave is propagating at the speed c given by (2.2.11). 

For the nonlinear problem, we first nondimensionalize the variables as we 

did earlier for the Kadomtsev - Petviashvili equation. However in this 

problem we have essentially two fluids and therefore it is reasonable to use 

two different scalings one in each fluid. We have some freedom in choosing 

the scaling factors but the following choice turns out to be the correct one 
M 

to obtain the simplest interaction between the two fluids and in accomodatirig I\ 

the linear dispersion relation (2-2.11). We put 



-25- 

xx= 
xi y Y- vVt00 11h1 C' 66 1 C'e-H 

t 
CIt 77 

uu 
1H1 e-h' i= Tc- I 

for the fluid in the lower layer, and 

xxY= Y-J% vvUU i= ff-, 1H1C, bF- 1 CI6e- 1 C'eh 

for the fluid in the upper layer. 

(2.2.12) 

(2.2.13) 

In the above scalings, e and 6 are small parameters and C' has the speed 

dimension. For the consistency of the equations, we choose 6=h/H and that 6 

can be made small as we want h to be much smaller than H. We however still 

have the freedom in choosing c. The normal choice is F- =a/h where a is the 

wave amplitude. 

In terms of the nondimensional variables, equations (2.2.1) - (2.2.7) 

become 

62a201+0201=0, -I<y 
ax 12 09y 121 

1+=0, O<Y <1 
ax 12 ay 121 

wi th 

0 on y1= -11 v1=0 on Y1=1 (2.2.16) 

and 
d-q 

1 
Op 

1= 
F-TI (2.2.17) ýT-tj , "'i ax, --- Yi 1 

077 C'ITJ 

jt + eu, jX-- on Y e6TI 

If we substitute the dimensionless variables into the pressure condition 

(2.2.7) we find that C' needs to take the following form 

I-R c R) p L: <l (2.2.19) 
gh(l --p p 



-26- 

and with this choice (2.2.7) now reads 
60 

1 E; 222R+622 
+== "16(-) : 

2: 'ý(Ul +Vl 2at at 2( ul +, 5 V1 + T11 
p1 

on y1= F-77 1 and Y1= eb-q 1, (2.2.20) 

In a different manner from the KP equation, we now choose 6= Ke for this 

problem. Then (2.2.14) suggests that 01 should be expanded in the powers of 

2 6. Solving (2.2.14) at each order by using the boundary condition (2.2.16), 

we find 

2 Yi a2f4 f(xltl) +6 [F(xl, tl) - (yj+-ýE- )-]+ O(e (2.2.21) 

, OX12 

Since v 
00 

we find ay 

11 
-(l+yl) 

af+ O(E 2 

'52 
jy--l 

ax 12 

Thus to the first order, 

aol af 
axi axi 

on 
a-q 1a2f 
at 1 dx 12 

Also, taking only the first order terms from (2.2.20) we obtain 

af + 77, =0 on y (3 t1 

Thus we find the linear wave equation 

as one would expect. 

Tj 16 71 1 

mix Y0 (2.2.22) 
at 12 ax 121 

For the upper layer, at this order we find 

1, 
+1= 03, NY <1 

axi 2 ayl 21 

wi th vI=0 on Y1= 19 
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, 12f and v '0 
2 on Y1=0. (2.2.23) 

c9x 1 
As in the case of the KP equationt calculation at the next order leads to 

a nonuniformly valid expansion when t1= 0(6, - 1) 
and x1-t1= O(l). We then 

seek for a solution in the far field and set 

T= 6t 1 and f=x1-t1 

as before, so that 

Fs T- , ax T 

We now let 

01 =0 11 + co 12 

4ý 1= qý 11 + eqý 12 

U 11 + eu 12 

V 11 + F-V 12 

v 11 + ev 12 

77 1= 77 11 + ETJ 12 + ... 

The Laplace's equation for does not change in the far field and we 

therefore simply take the solution (2.2.21) but now, in order to suit the 

above expansion, f is expanded in powers of e, 

f=f0+ F- f1+ F- 
2f2+ 

whence 

Oil fO-* 012 f it ... 
(2.2.24) 

Now 

1a0 
v 11 + F- v 12 a2 6y 1 

(1+yl) Ea2f0a2f1 
aý2 Of 2ý+ 

Thus on y 11 +62 77 12 we have 

va2f0 
C9 

2f0a2f1 

(2.2.25) 
11 0ý2 

'12 11 af 2 af 2 
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The velocity condition (2.2.17) on y1= F-Tj 11 + F- 
2 

-q 12 now reads 

C377 11 c1p 12 
a-0 

11 
v 11 + ev 12 

+ +6 
aT 

+ Full j5- -+ 

which implies 

0 "T7 

Vil 

(2.2.26) 

ani 1 
aT'12 

05Iq 11 + 12 a5 aT 11 of - 

substituting (2-2-25) into (2.2.26) and also by making use of the relation 

a0li afo 
uii= -af -- af 

we find 

2 
0 

2 (2.2.27) 
CC 

a2f 1 'of 0 a711 1 a2f 0 'OT'12 aIll 1 
2 + + (3 f (3T 

ýq T, 11 2 (2.2.28) 
af af 

The pressure condition (2.2.20) now gives 

a0li a0li a012 F ao 11 2 RKe 
&D 

11 
ý7f - 'ý ý aT 

- ++ 
af 11 12 P af 

and hence at each order we obtain 
ap 11 af 0 (2.2.29) 

and 
a012 

RK c 2 
C3 

+ 77 - 12 C'IT 2 (3f P (3 f 

or equivalently 

af 1 af 01 RK '3"' 11 'Ca f02 

af 
( + 77 - 12 aT ýF af P af ' 

(2.2.30) 

Again we see here that (2.2.29) is compatible with (2.2.27) and relations 

between f0j, 771, and 0 
11 exist but none of them are specified. Now, 

differentiating (2.2.30 ) with respect to and making use of (2.2.29) we find 

CI 2fl arl 12 
OTI 

11 C3-Q 11 RK 
a2 4ý 

11 
2 ff OT 11 (3f P 2 

(2.2.31) 
of af 
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This equation when subtracted from (2.2-28) gives 

a-ri 11 RK a ID 11 
3, rl aT 11 of 'p 

af2 

The final task is thus to determineýD 11 when evaluated at Y1=0. 

(2.2.32) 

From the 

Laplace's equation for l) 1 and the boundary condition (2.2.23) we may obtain 

4ý 11 by solving the problem 

B2,1 2 
11 11 0 (2.2.33) ýe-2- 

By 2 

wi th 

0 on Y (2.2.34) TY 
11 

Nýl 1 
C9T, 11 

on Y (2.2.35) 
ayl af 1 

If we define g(k, Y, ) as the Fourier transform of ýPjj(f, Yj) by 

9(k, Yl) = 
f: 

ll(fYl)e- 
ikf df 

then the inverse is written as 

qý = 
1-F ik5dk. 

ll(ý, Yd 2v 
_: 

(k, Yl)e 

In terms of 9, (2.2.33) - (2.2.35) are 

c . 72g 
2k29 

ayl 
wi th 

0 on Y 
ayl 

'OTll 
-ikf 

c1 
-- 

3y e df 

,- ik -q 11 e- 
ikf df on Y1= 

%. -CO 

as we want Tj 

aTj 

0 as 00. ill af 
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The solution of the above problem is now 

i cosh k(1-Y) 
5(k, Y 1)= sinh k 

FOO 

and thus we have 

Tlll(f, T)e- 
ikf df 

4D (coth k T)e- 
ikO ldOlle ikf dk. (2.2.36) (f 

, 
0) =- TI 

7r 

f. 

11(ol 

The integral can be simplified by using the convolution theorem and we 

need to find the inverse of coth k. However coth z has a pole at z=0. To 

remove this pole we consider the function coth zI and we find that 
z 

(coth k-1 )e 
ikO 2 dk fcoth 

7rO 2 
3&JLJL 0 (2.2.37) iý 2 -2 2ý* 

Thus we can write 

1- ý(coth k-1) T)e- 
ikO IdOlle ikf dk 2, rr 00 

iý : 11 
Ol 

1 ýif 
7r02 -ikO 2- ikO I ikf (coth - sgii 0)e dO Tll, (O,, T)e dOl)e dk 

27r 2222 
co 

=i [coth 1 
-f, ) - sgn T111(f I T)dfr. (2.2.38) ýýfco 2(5 

Now, by using (2.2.38), (2.2.36) and the relation 

C3 
2. 

sZn 77 T)dEr =2 
ap 11 

af 2fOD 6f 

into (2.2.32) we find 

a. q 11 RK O-q 11 
CITI 11 RK c3 

2 
2 +3-q 1 Ecoth 12(E-f')-sgn (f-f')Injj(f T). d'f = 0. dT p 2p 

af 
2 

Fco 

This equation can be written as 

(377 11 
&Q 11 RK 32 

C) 
[coth 7r 

X'-X)-sgn(X'-X)]. T7 (X T) dX' 2 +3TI +: i- 
p 1 ax Ox 2 

f, 

00 
2 

(2.2.39) 

upon putting 

X 
RK 

T 
2p 

T=t. 
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Indeed (2.2-39) is the equation we have been looking for. It describes 

the wave propagation at the interface located at the depth equals unity beloýv 

the top boundary. It is normally known as the finite depth fluid equation. 

The X-coordinate in this equation is a moving coordinate where 

X RKT 
2p 

RKet 1 
XIt1+ 2p 

RK&- (x CIO H 
1- R (1 Rh 

t Hj gh P 
TpH) 

This means that if we observe a stationary wave in the X coordinate, it 

is actually propagating with a speed of -V (I - 
Rh 

with respect to 
gh (I - 

R) 2pH) 
P 

the physical coordinate. This is consistent with the linear wave speed 

(2.2.11). 
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CIIAPTER 3 

IIIE FINITE DEFM FLUID EQUATION 

3.1 Some vreliminaries 

We shall consider the finite depth fluid (FDF) equation in the form 

ut+ 2uu 
x+ 

G[u 
XXI =0 (3-1-1) 

where G is the integro-differential operator defined by 

Glf(x)l = 
2ý P (cothE'2ýý(x'-x)]-sgn(x'-x)j f(x')dx'. 2 

The parameter X -1 (>O) represents the distance between the bottom of the 

fluid and the internal wave layer and P denotes the principal value of the 

integral. Equation (3.1.1) is due to Matsuno (1979b, 1984). A similar 

equation to (3.1.1) has been derived by Kubota et al (1978) for internal waves 

propagating on a pycnocline between two fluids of different densities. 

The FDF equation has been studied by a number of researchers. The 

existence of a steady state solitary wave (single-soliton) solution was 

obtained and examined analytically by Joseph (1977) and its numerical solution 

by Kubota et al (1978). Joseph's single soliton solution is written as 

U U(x-ct) 
X TsinT (3.1.3) 

fcosh[XT(x-ct)] + cos T) 

where c X(I -T cot T), T is an arbitary real parameter with O<T<7r. Joseph 

and Egri (1978) then extended this result to an N-soliton solution. Satsuma 

et al (1979) gave a Mcklund transformation, a recursion scheme for 

conservation laws and an inverse scattering scheme for the equation. However 

the most suitable work for our purpose is that of Matsuno (1979b, 1984), since 

the approach used is that of Hirota's direct method. 
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Most of the previous work shows that equation (3-1.1) and its soliton 

solution are reducible to the Benjamin-Ono and the KdV equations and to their 

respective soliton solutions under cetain limiting conditions. 

Indeed, in the deep water limit X -+ 0, the equation reduces to the 

Benjamin-Ono equation 

u+ 2uu +1ap U(ý"t) dx' = 0. 
x 7r ax 

2 
':, xx 

In the shallow water limit X -+ co, and with the variable transformations 

XX 
Y2 

TX% 

it becomes the KdV equation [Matsuno (1979b)] 

uT + 2uuX -1=0 (3.1.6) 
3 "XXX 

which is the classical equation of soliton theory. 

We now give some results due to Matsuno (1984). By defining 

a U1 og ax 
where f+ and f are defined by 

i-1 f f(x 

in which the signs are vertically ordered, equation (3.1.1) is then 

converted into its bilinear form 

(iD 
t+ 

iXD 
x-Dx2) 

f+. f- = 0. (3.1.9) 

Assuming that u is real, Matsuno (1984) found the N-soliton solution in 

the form 

VL=O, 1 

with \p =x-at-6 

N (N) 
exp ý :ý4n X-f 

n\pn 
+ ýý ý't R4mA eml 

n=l Vm 

co t 'T ) 

am) 
2+22 

CXP Aem:: 
-- (a. - am) 

2+N2 (-Te + -f M) 
2 

(3.1.10) 

(3-1-11) 
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where -f 
n 

(satisfying 0<7 
n 

<7r) and 6n, n=1,2, ..., N, are real constants and 

2 denotes the summation over all possible combinations of p 011, 
11=0,1 

112 - 0, i,... ' %= 

We note that the functional form for f is the same as that for the KdV 

equation [see Appendix A]. In fact (3-1-10) is the generalized N-soliton 

solution obtained by Hirota (1980). 

If we now define 0n and kn by 

0=k (x + ik 

(3.1.12) 

ia 
n 

ý"rn + 
n) 

then expression (3-1.10) is more conveniently written in the form 

N (N) 
f2 exp[ Ip 

n(On 
+0n *) +2 ýL R4mB RMI 

P1=0,1 n=1 R<m 

wi th 

exp B 
(kp-k 

m) 
(ke-k 

m 
em - (k 

2 +k *) (k 
2 

«x +k ) 

where the asterisks denote complex conjugates. 

The sum of exponentials (3.1.13) is precisely the result obtained upon 

expanding the determinant 

k +k 0 +0 

rs k +k 
rs 

Furthermore, Freeman (1984) has shown that the determinant (3.1.15) may 

be written in a Wronskian form 

IDV-' 'W(OlPO2 
... o N) 

where 
0 

D= (6 
rs 

(k 
r 

+k 
ser 

IT (kp-k 
p/r 

S) 
r-1 



-35- 

and W is the NXN Wronskian 

W(01"02 0ý4) = 

wi th 

a01 3N- 10 

01 
ax ax 

N-11ý 

IN- 1 
ao Nc ON 

ON ax 
(9x 

N-1 

-0 0* 

nnenBnen 
N 

-1 An «k 
n 

+k 
n9 

(kp-k 
n» pXn 

N 
Bnv (k 

p 
+k 

n P=l 

We note that the factor IDV-ll in (3.1.16) takes the form 

1N JDV- I=A exp (2kn X) 
n=l 

where A is independent of x. 

Now, from (3.1.7) and (3.1.16)we find that 

N 

A exp k (x - ))W(0, V0'I ... 10 
.0 n=1 nx2 N) 

U=1 ýýX- log 

A exp 2kn (x + T))W(01'02 I ... "ON) 
n=l 

i2N +++) 
c3 Ä W('01902 N 

i äx- log e 
W(01'02 

-w W++' 

1902 ,N 
1 äx log 

W ('0 
1 "02 , 

where 
I-i 

0=0 (x 
n 

(3.1.17) 

(3-1.18) 

(3.1.19) 

(3.1.20) 
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From expression (3.1.19) we see that the factor IDV-ll does not 

contribute to the solution. Therefore we simply write (3-1.16) as 

f= W(01902 ,.. - 14P N)- 
t 

(3.1.21) 

3.2 The Wronskian solution 

We summarize from the previous section that 

f+= W(O +++ 
1'02'*'*'ON) 

(3.2.1) 

f W(OV02 
N) 

with 0± defined by (3.1.20) 
, (3.1.12) and (3.1.18). For later convenience, n 

we shall write W(ON) to mean W(01JP02 
N)* 

It is found that 0+ may be written as a linear combination of 0- and nn 
ao- n 
- -, and indeed we have 
ax 

+=an (3.2.2) 
nn ýix- + Onon' 

where 

-i2k 
-* /N i 2k /-X 

nn 
anee (3.2.3) 

nn 

'on iX/2, n=1,2,..., N (3.2.4) 

We see from (3.2.4) that 0n is independent of n. This is an important result 

since it makes further calculation much simpler. 

We now assume that 

f W(O (N-1) (3.2.5) 

where (N 1) means that the Wronskian has N-I consecutive derivatives up to 

order N-1 [see Appendix B]. We are now looking for a representation of f+ 

which is the Wronskian of the functions 0+ in terms of Wronskian type 
n 

determinants of the functions 

Expressing f in this way does not imply JDV- 11=1. 
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From (3.2.1) and (3.2.2) we find 

f= W((P + 
n 

= W(a 
ao 

n ix 
n 

(57. - + ý- On 

NN 
iX)r(O. 

= IT a2.. r ... N) (3.2.6) 
n=1 n r=O 

2v 

where (0... r ... N) is a Wronskian with consecutive derivatives up to order N 
v 

but the r-th derivative is absent. In the notation of (3.2.5) this means 

(0... r ... N) = (r, l, r+l, r+2,... N). (3.2.7) 
v 

N 
As before the constant TI an may be removed from f+ in (3.2.6) since it gives 

n=l 

no contribution to the final solution u. We thus find f+ as the sum of N+1 

Wronskian type determinants 

+N iX r f=2 (0... r... N). (3.2.8) 
r=O 

v 

We should remark here that all the functions which define f- and f+ are 

now and that we are not dealing with 0+ at all. We should also note from 
nn 

the definition of that 

2 
40- n (3.2.9) 

Ot n CIX2 

which will be used in calculating the t-derivatives of f+ and f-. 

We shall now prove that f- and f+, defined by (3.2.5) and (3.2. S), 

satisfy the bilinear equation (3.1.9). 

The derivatives of f+ and f- can easily be calculated by shifting the 

appropriate columns [see Appendix B]. For f+ we find 

+N iX r f=2 [(0... r ... N-1, N+l) + (0... r-1 ... N)] 
x r=O 

vv 
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r1) 7- (' ) [(0... r-2... N) + 2(0 r-1.. N-1, N+ 
2x 2 

r... N-1, N+2) + (0... r ... N-2, N, N+1)1 , 

+N iX 

+(0 

Similarly for f we find 

fx= (N-2, N) 

f9 =+ 
Zx 
ft 

(3.2.10) 

(3.2.11) 

We note here that in calculating f+ and f we have made use of relation tt 

(3.2.9). Using (3.2.10) and (3.2.11) we now calculate 

iD f +. f- = i(f + f- -f+f ttt 
N 

ix 
=2 (_)rý(0 ... r N)[(N-3, N-1, N) - (N-2, N+1)] 

r=O 
2v 

- N-1, N+2) 

N-2, N, N+1)] (N-I)l (3.2.12) 

iXD f +. f- = ix(f +ff+ f-) 
xxx 

N. X r+I 
=22 (-! A N-1, N+l) + (0 r-1 N)] (N-1) 

r --0 
2) 

- N) (N-2, N)l 

and 

-D2f+ff+ f- + 2f + f- -f+ f- 
x 2x x 2x 

N 
iX)r(E_(0. 

=2(.. r-2 ... N) - 2(0 ... r-1 ... N-1, N+l) 

r=O 
2vv 

(0... r (0... 

2[(0... r (0... r-1 ... N)] (N 2, N) 

- (0... r ... N)[(N 2, N+l) + 

(3.2.13) 

(3.2.14) 



-39- 

If we sum up all the expressions (3.2-12), (3.2.13) and (3.2.14) we find 

(iD +iXD -D 
2 )f 

txx 

N 
f2 

r=O 

where 

2((0... r... N-2, N, N+I) (N-1) 
v 

-(0.. . r. 
. 

. N-1, N+1) (N-2, N) 

+ (0.. . r. 
. 

. N) (N-2, N+1)}. 

The above expression is the Laplace expansion of a determinant EAppendix 

B] 

0... r ... N-2 
r+l 

Iv N-1 N N+l 

N-2 r N-1 N N+l 

The determinant G(r) can now easily be shown to be zero by elementary 

methods. Thus we have shown that the Wronskian solutions f+ and f- satisfy 

the FDF equation. 
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3.3 Reductions in the KdV and the Benjamin-Ono limits 

Let us first reduce the N-soliton solution of the FDF equation in the 

limit for the KdV equation. Under this limit, beside X -+ co and the 

transformation (3.1.5), we also require -r 
n0wi 

th X 
Y2 

'yn kept f ixed [Matsuno 

(1984)]. 

From (3.2.5) and (3.2.8) as X -+ (n we have 

-- 

where we have used the fact that 

(0 ... N-1, N) , (N 2, N) 
v 

and (0 ... N) 
v 

iN N The factor can be removed from the expression since it does not 

contribute to the final solution u. Now in the limit X -+ co we have 

log(f_) logý, (2 ) (N-2, N) 
+0 -2), 

=(2 .) 
(N-2, N) 

+ o( ý, -2 ). (3.3.1) i >, (N"l) 

We note here that 

a (N-2, N) = ýT-- (N-1). 
x ax 

By using this relation, (3.3.1) and the transformation X=X Y2 
x, the 

solution (3.1.7) now becomes 

a2 
2 2ýý, log(N-1)]. 

ax 2 
(3.3.2) 

This is the familiar N-soliton solution in the Wronskian form for the KdV 

equation [Freeman and Nimmo (1983)]. 
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The remaining task is to find the appropriate functions 0- which define 
n 

the Wronskian (N 1). Now from (3.1.11) 

an= '\ (1- -rn co t -f n) 

^rn 

n2 
3 

Tn 

n6 

n as 7 <<l (3.3.3) 3n 

and from (3.1.12) 

X -r n1 -r n kn= -týl +3 (3.3.4) 

The function 0n is given from (3.1.18) and (3.1.12) as 

1- 
-k (x +1+ ik t-6)k (x +- ik t-6) 

0n=AnenTnn+Bnenxnn. (3.3.5) 

By using (3-1.5) and (3.3.4) we find as X -+ co 

pp 
ý2- 

ix 
Y2p 2T 

-k + ik t-6nXnT-dn (3.3.6) 
n(x 

+n 
n) 23n4 

and 

pp2 iX 
Y2p 2T 

k* (x + ik t-6nX --I! T-dn (3.3.7) 
nnn22n4 

where Pn :=X%7n and d' 
n=X 

Y2 6n are kept fixed. 

The coefficients An and Bn can also be calculated by making use of 

(3.3.4) in the limit Xn <<I. From (3.1.18) we have 

N 
A ((k +k 9 (k 

P -k n)) R? 6n 

N 
-1 IT N",, 

y --r )I 
n PXn 2en 

N- I -N/2 -1N 2xpn Tr (P Cp n)l 
(3.3.8) 

eXn 



-42- 

and 

k +k en 

= (Ä-f 
Nx 

-1 +, yn) 

N 

2 N-lX-N/2 p-1 (P +p )1 -1 (3.3.9) 
n eXn Rn 

Inserting (3.3.6) - (3.3.9) into (3.3.5) we find 

o-=2 N-1 x -N/2 p1 -tx% P 2T/4 N-1 5n) 

nnena 
(P 

e -P n exp 2 
, O/n 

NVn 
+ IT (P 

e +p 
e? 6n 

p 2T 

where f' 
n=p n(X 

n3- d' 
n 

However the common factor 2 N-lX-N/2 p- 1 
e- 

ix 
% Pn2T/4 does not give any n 

contribution to the final solution u and therefore it may be removed from On, 

After rearranging the terms and removing a common factor we finally arrive at 

the same result as obtained by Satsuma (1979) 

-= cosh ( 
fn 

(3.3.10) 
n2 

p2 
where fP (X -T-d nn3n 

NN 
1 IT IT 

wi th dn ý2--j 2d 
n+ 

1 Og exn 
(pe+p 

n 
log P/n 

(P 
p- p 

n)]- 
We have thus recovered the N-soliton solution of the KdV equation which 

is given by (3.3.2) and (3.3.10). Indeed it is not difficult to show that 

this solution satisfies the bilinear form of the KdV equation 

13 Dx (D 
T+3DX)F. F =0 (3.3.11) 

where F= (N-1) with functions 0n defined by (3.3.10). However one needs to 

be very careful in doing this because, as noted by Freeman and Nimmo (1983), a 

Wronskian identity is needed for this purpose. 
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We next consider the N-soliton solution in the Benjamin-Ono limit. 

this limit it is required that X -+ 0 and that the parameter rn satisf ies 

EMatsuno (1984)] 

In 

Tn = 7r (3.3.12) 
n 

where Vn will become the solution parameter of the nth soliton. 

As X -+ 0, we see immediately from (3.2.8) that f+ is dominated by the 

term with r=O, hence 

f+ = (O... N) = (1,2,..., N). 

From now on we shall denote any Wronskian in which its first column is 

the first derivative by the symbol - and therefore f+ can be written as 
+ 

f =(N). (3.3.13) 

Because there is no independent variable transformation from the FDF 

equation to the Benjamin-Ono equation, the bilinear form of the Benjamin-Ono 

equation is obtained directly from (3.1.9) in the limit X -+ 0, 

(iD 
t-Dx2 

)f'. f- = (3.3.14) 

In order to obtain the form of the function we first calculate a and 

kn. From (3.1.11) and (3.3.12) we have 

a= X(l - -r cot -r 
-rrX 7rX 

+ r(l v Cos v -/sin (v 
nnn 

7r2A2 I 
2, X2 

n 2V 6V 2' 
nn 

2-2 
7r 3 

v 
nýl - ----. 2 +0 

3V 
n 

Now from (3.1.12), (3.3.12) and (3.3.15) we obtain 

Mr X2Vvnx2 7r 
23 

n 2V 2 ýv -) + O(X 
nn 

Using the above expression we find 

ik 

(3.3.15) 

(3.3.16) 

vn 
7r 

2-X iVX 7rX 
iv 

n2 
=----1- -) ýý- c-- O(N (3.3.17) 

2N 6V 2vn2n 
nn 
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and 

ik 
vnv 2X i 7r 7rX 

iv 
n2 ++ ýF Cn 71 

n+ 
O(X 

2X 6V 2v 
nn 

where 

Cn=Vnt-6 

v 

Tj 
n=Xt-6n 

For the coefficients AB we find 

A= «k +k -x ) 
N 

-1 IT (k -k 
pXn 

N 
2 ((7rX+O(X 17 

pXn 
2,2ýVp-Vn)l 

N1 
-1 (-rr'X IT -L (v -V 

p/n 
22 pn 

and 

N 
B IT (k +k 

P=l 

(3.3.18) 

(3.3.19) 

(3.3.20) 

N 
f(k 

n 
+k 

n9 
(k 

p 
+k 

n p; 4n 

2N2 
([VN + O(N a ENV+' v)+ O(X 

pXn 
21ývp- n 

N1 
-1 (7rX IT -2,7-(V p -V nI+i 

27rXa 
n" 

(3.3.21) 
pxn 

N1 
where an2V 

-V 
(3.3.22) 

pXn pn 
Combining the result (3.3.17) (3.3.22) for 0n we find that 

NVnV 
ýV (XV ff (V -V exp ý 

ýýj 
is a common factor which may be removed. 

p/n 
2pn 2N 

n 

are then left with 

We 
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7r (i 
x) 7TX c 

iv 
n 

ýF v2n- -2 T7n 

n 

1 7r 7rX 
iv 

n 
+2n Tn 

2 
1+i 2-rrXa en 

7rX 7rX n L( 77n 
2Vn Cn) 2 

i(-e n+ (1+i27rXa 
n 

)e n le (3.3.23) 

Since X -+ 0, all the exponentials inside the curly brackets in (3.3.23) 

can be expanded in their power series to give 

iv 
n 

is i2a le 
Tn 

(3.3.24) 
nn+n n 

iv 
We note here that the factor exp( -2n TO was not removed from (3.3.24) 

because would not define a non-zero NxN Wronskian without this term. 

We now show that f+ and f (N-1), with functions given by 
n 

(3.3.24), satisfy the bilinear form of the Benjamin-Ono equation (3.3.14). We 

note here that it is not difficult to see from (3.3.24)+hý5't 

CI 
2 

ii-70 (3.3.25) 
, 3t n ax 

2n 

which is needed to calculate f+ and f 
tt 

The derivatives of f+ and f- are obtained as before 

f+ (Nýl, N+I) 
x 

f 2x 
(N-1, N+2) + (N-2, N, N+I) 

f+ -i((N-1, N+2) - (Ný2, N, N+1)1 
t 

fx (N-2, N) 

f 2x 
(N-2, N+1) + (N-3, N-1, N) 

ft -i((N 2, N+l) - (N 3, N-1, N)J. 

Substitution of f+, f- and the related derivatives into the bilinear 

equation (3.3.14) yields 



L4 -' 6- 

2+ (iD 
t-D X)f . f- 

-2((N-2, N, N+l) (N-1) - (N-1, N+l) (N-2, N) 

+ (N) (N-2 N+1)). 

Again this is the Laplace expansion of a 2N x 2N determinant which can be 

written as 

N+l 2 
N-2 N-1 N N+l 

N-2 N-1 N N+l 

which can be shown to be zero. 

As we have seen in the above we did not use any identity in proving the 

N-soliton solution of the Benjamin-Ono equation. This is in contrast with the 

KdV equation in which an identity is needed for the same purpose. For the 

Benjamin-Ono equation if we put x1 =x and x2 =-it then its bilinear equation 

becomes 

(D 
12 +D 22 

)f *f 
+ý (3.3.26) 

We note that the order of f- and f+ in (3.3.26) is now opposite to the 

original equation (3.3-14) due to the property D2ffD2ff Now 

(3.3.26) belongs to the first modified KP hierarchy (Appendix C). Indeed it 

can be shown that all the equations under this hierarchy are satisfied by the 

Wronskian. solutions [c. f. Chapter 5] 

f- = (N"'1), f+ N) 

with the defining functions 0n satisfying 

a-ak-. 
0 -I I- (3xk n Ox 1kn 

and therefore no identities are needed. 
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3.4 The two-soliton solutions 

Two-soliton solutions of any nonlinear evolution equation are the 

simplest ones that one can use to explain soliton interactions. In this 

section we first deduce the explicit form of the two-soliton solution for the 

FDF equation and reduce it to the two-soliton solutions of the KdV and the 

Benjamin-, Ono equations under their respective limits. Interactions between 

the two solitons will also be discussed. 

From equations (3.2.5) and (3.2.8), for N=2 we have 

(0,1) 

+ ix i'X 2 1,2) + ýý 0,2) + (0,1 

with functions 

ik t-6)k (x +-, ik 
, 0- n +B nnt- 

bn) 

nn 

where 

An= ((k 
n 

+k 
n* 

)(kp-k 
n)l 

-1 

Bn= f(k 
n 

+k 
n* 

)(k 
p 

+k 
n* 

)) -1 

with p, n=1,2 and p ?6n. 

(3.4.1) 

(3.4.2) 

(3.4.3) 

(3.4.4) 

We first calculate all the determinants in (3.4.1) and (3-4-2) in order 

to find f- and f+ and then substitute kn from (3.1.12). It emerges from our 

calculations that there are some factors in f- and f+ which can be cancelled 

in The actual calculation is straightforward but very laborious and 

hence only some necessary results are given here. 

We eventually find 

f+= 1+e 
El- i-r 1 

+e 
f2- i-f 2 

+C 12 e 
51 +f 2- i(, y 1+'r2) 

(3.4.5) 
f- 1+e 

El +i-r 1 
+e 

f2+'T2 
+C 12 e 

51 +f 2+ i(-rl+^r2) 

after removing a constant factor as it does not contribute to the final 

solution. In (3.4.5) we have defined 
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12 

(-rl-'y2) +(bl-b 2) 
2 

(3.4.6) 

and 

(-rl+'r2) 2 
+(bl-b 2) 

2 

fn = Xy 
n(x - Xb 

nt-6 n) 

where 

(3.4.7) 

bn=1-, y n cot-r n* 
(3.4.8) 

In (3.4.5) we see that the numerator is the complex conjugate of the 

denominator and hence it can be written as 

f+ -i29 (3.4.9) 
f 

where 

-1 
e 

El 
sin ^rl +e 

E2 
sin -r 2+C 12 e 

fl+f2 
sin (-rl+'r2) 

0= tan El - E2 fl +f 2 I+e cos +e Cos -r 2+C 12 e Cos ('r 
1+^f2) 

From (3.4.9) we now have 

and therefore u is real. 

(3.4.10) 

.a f+ U 1- log 
ax f 
'10 2c 
ax 

Carrying out the actual differentiation in (3.4.11) we find the explicit 

form of the two-soliton solution of the FDF equation as 
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u= 2X(e 
fl 

-r 1 sin -r 1+e 

f2 
-r 2 sin 'r2 +e 

fl +f 2 E(-rl-^f2 ) sin (T 
1 -'r2) 

2f 1 +f 2 +C 12('rl+'r2) sin (71+ TO 3+ec 
12'r2 sin 'ý2 

+e 
f +2f 2C 

12'rl sin 71)/(1+2e 
51 

cos 71 + 2e 
f2 

cos 72 

+e 
2f 1 

+e 
2f 2 

+2e 
El +f 2 [cos(-f 

1-72) + C12 cos(7, +72)3 

2f 1 +f 2 El +2f 22 2(f 1 +f 2) 
+2e c 12 cos 'Y2 +2e c 12 Cos -f 1+C 12 e (3.4-12) 

In order to check this result with Joseph's single-soliton solution we 

put 72 ý f2 =0 which implies C 12 =1 in (3.4.12) to give 

u= 
2Xe 

Ei 
Ysin 

1+e 
2f 1 

+2e 
El 

Cos -f 1 

= cosh fI 

X -r I sin 

which is precisely identical to (3.1.3). 

+ Cos 

In the KdV limit, with bn and kn given by (3.3.3) and (3.3.4) 

respectively we find 
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fn = X-r 
n(x - Xb 

nt-6 n) 

2 
, rn 

T 
n3 

=x 
54 

T 
Xy 2T-X%6) 

p 2T3 

=pn (X _n3-d 

where Pt d't X and T are as defined before. 
nn 

We also have 

sin sin ou31 
nX 

COS 'T = COS n) =1+0 n% 

(3.4.14) 

sin (-r 1 +'f2) =sin(x Y2 
p1 +p 213 

-= -x ý4 
+ OH 

Ä 
Y2 

)1 

Cos (-T 1 +-r 2) ::: cos (% 

1+0U1)2 
x 

Y2 

and 
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12 : --: 

(-rl-^r2) (bl-b 2) 

(, y 1+ -r 2) 
2+ (bl-b 2) 

2 

( 2 pl-p2) + 
2_ 2 (P p 

12) 
23 /9x 

1- ( 
X pl+p2) 2+ (P 2_p 2 

12 
2 /9x 3 ) 

p l-P 22 
as 00 TýTP2) (3.4.15) 

We find that it is much simpler to work with 0 (3.4.10) rather than working 

with the final solution u (3.4.12). Substituting (3.4.14) into (3.4.10) we 

f ind 

-1x 
-Y2 EP1 e 

El 
+P 2e 

E2 
+C 12( 

pI +p 2 
)e 

El +f 2 

tan f 

1+e 
El 

+e 
E2 

+C 12 e 
fi +f 2 

-1. 

In the above expression, apart from the factor X-! 6, 
the numerator is the 

X-derivative of the denominator, or we can write 

0= tan- 
1(N- 

Y2 F 
(3.4-16) 

F 

where 

F= 1+e 
El 

+e 
E2 

+C e 
El +f 2. (3.4.17" 

12 

Now we have 

9 
do 
ax 

, 2X wo 
ax 

= 2- log F as X -+ "0 - 
(3.4.18) 

ax 2 
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By carrying out the differentiation in (3.4.18) we eventually find the 

two-soliton solution to the KdV equation (3.1.6) 

u .- 

(P 
I +p 2) 

2 (P 
12s12 

(P 
1-P 2t2 

)2+p2 2s22 (P 
2-pi t 1) 

2 

(3.4.19) 
2 ((PI +p 2) 

2_ p1p2 (1+t 
1)('+t2)1 

where s= sech ( 
En 

n2 

t= tanh (! n) 
,n=1,2. n2 

Now, in the Benjamin-Ono limit (X -+ 0), from (3.3.12) and (3.3.15) we 

f ind 

En = X-r 
n(x - Äb 

nt-6 n) 
VX 

2 
, X7r(x -Vnt-6n) V- (x -Vnt-6n)+ O(Ä ) 

n 

1\7rC 
vx 

c+ O(N 3 
nvn n 

and 

c1 4-rr 2X2 
2+ O(X 3 

12 ý-- (V 
l-v 2) 

where C=x-Vt-6 

In this limit we also have 

sin -f = sin7r(l -X 
7TX 

+ O(X 3 
nvv nn 

sin sin (27r-rX(I- +I )) 
1+72) v1v2 

-rrX +1+ O(X 
3 

v1v2 

COS 7 COS 7r( 1 7r2X2 0 (X4) 
nvn 2V 2 

n 

(3.4.20) 

(3.4.21) 

(3.4.22) 

Cos (-r + 'Y ( 2v - 7rX (11)) 
1 2) : ": cos v1+ V2 

rr 
2-A 2 1) O(N 4 

v2 

If we write (3-4.10) as 

tan- 
I( )l (3.4.23) 

0D 
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then by using (3.4.20) - (3.4.22) we find 

e 
El 

sin +e 
E2 

sin -r 2+C 12 e 
El +f 2 

sin(-r 1 +-r 2) 

XvC 7rX 
2c 

XvC 7TX 
2c 

Xv Ve1v11+Ve2v22 v1v221 

XV(C +C 
2( fl C2 

4v A2 
2) 

(Vl +V 2 
)e 

1 2) Vl + T2) 

(V 
1-v 2) 

Expanding the last expression in power series we find 

x 7r 

V 7ýýVlcl 
12 

Similarly for 0D we have 

V 2C2) + O(N 3 )- (3.4.24) 

D+e 

cl 

Cos +e 
C2 

Cos 'r2 +C 12 e 
cl +C 2 

cos(-r I+ 'r2) 

2- 7rX 
2 

2- 7FX 
2 

7r A2 
Xvc 

11+ 7r X2 
MrC 

2-V 
C2 

+( 
2V 

12- 

1)e 
2V 

22- 

1)e 2 

X-rr(c +C 
2 Cl C2 

47r 2-A 2 2-A 21 2)-7rX 
(V 

1 
1v 

2 (- + )e 
2V (V 

I-V 2) 12 

II 

X2V2VI +V 2)2_VVcc+ O(X 3 (3.4.25) V1V2V 1-V 21212 

where we have also used the power series expansions to obtain the last 

expression. Thus as X -+ 0 we find 

tan- (v 
v ici +V 2C2 (3.4.26) 

12-Vi v 2ClC2 

where 
V +V 22 

v (Vll 
V). 

(3.4.27) 
12 1- 2 

The explicit form for the two-soliton solution in the Benjamin-Ono limit is 

then obtained from (3.4.11) by using (3-4-26) to give 
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v 
12 

(V 
1 +V 2)+VIV2(VlCl 

2 
+V2C2 

2) 

(V 
ici +V 2C2) 

2 
+(Vl2-VlV2ClC2) 

2 

This result is identical to the one obtained by Matsuno (1979a). 

(3.4.28) 

We note that the single-soliton solution of the Benjamin-Ono equation can 

be obtained from (3.4.28) by putting V2=0 and V 12 =1 to give 

2V, 

1+V Iz cl z 

We have so far shown that the two-soliton solutions of the KdV and the 

Benjamin-Ono equations can be deduced directly from the two-soliton solution 

of the FDF equation. 

We now return to the two-soliton solution of the FDF equation and look 

for the interaction between two solitons. In the analysis that follows we 

assume y1> T2 . Although it is not very straightforward from (3.4.8), it can 

be shown that this assumption implies b1>b2 for 0< 72 ( 71 < 7r. The 

procedure to follow in this analysis is to look at the solution at time 

t -ý - 00, long before the two solitons interact, and at time t -4 + cO, long 

after they have collided. We shall also look at the form of the solution in 

the middle of the interaction. The results will then be deduced in the 

Benjamin-Ono and the KdV limits. We find that it is much simpler to work with 

0 (3.4.10) rather than the full solution (3.4.12). 

Let t -ý - co and f1 fixed. Then we have 

g2 - ky 2 
(bl-b 

2) t -4 - w' 

Thus, in this region the solution (3.4.10) is dominated by 

0Z tan- 
1e sin 

. 
1+e cos ^flj 

which corresponds to the first soliton u it 
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u 
X-r 1 sin-r 1 (3.4.29) 

1- cosh f1 +Cos -r 

The situation is quite different when we look for the soliton in the 

region where f2 is fi xed as t -+ - 00 - In this case we find 

X-rl(b -bl)t + 00 2 

and this implies 

tan- 
1 sin -r 1 +C 12 e 

E2 
sin(-r, +T2) 

- 

- 
Cos -f 1 +C 12 e 

E2 
COS(T 1 +-r 2), 

which corresponds to the second soliton u 2' 
X-r 2 sin y2 

u2= cosh(f 2 +log C 2)+cos T2* 
(3.4.30) 

Thus as t -+ - 00 we have two well separatedsolitons, u1 centred at f1=0 and 

u2 centred at f2=- log C 12' with u1 placed far behind u 2* 

By carrying out the calculation for t -++()o in a similar manner we find in 

the region where f1 is fixed the soliton u it 

U=X 
-r 1 sin -f 11 (3.4.31) 

1 cosh(f 1 +log C 12 
)+Cos 'r 1 

and in the region where ý2 is fixed we find only soliton u 2' 
'"2 sin 

u 
'r2 

(3.4.32) 
2- cosh 1, + cos 'r2 

Again as t --++00 we have two well separateJ soli tons, u1 now centred at 

El =- log C 12 and u2 at E2 = 0, with uI placed far in front of u 2" 

From (3.4.29) - (3.4.32) we see that both of the solitons have been 

shifted by a distance Ilog C 12 
1 after the interaction. A schematic diagram 

for the interaction discussed above is shown in Fig 3.1. In this figure we 

show that soliton 1 which was placed behind soliton 2 (their phase lines are 

drawn as continuous lines) undergoes an interaction in the circled region. 

After the interaction soliton 1 overtakes soliton 2 with their phases being 

shifted by log C 12* 
The dotted lines are the phase lines if there had been no 

interaction or if an interaction with log C -' 0 had taken place. 12 ': 
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/ 

licon 2 

I--- 

r inceraction 

FLg 3.1 Schematic diagram showing the phaso slilfcs 
of the solitons after the interaction. 
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In the Benjamin-Ono limit since C, 2ý41 as X-30 [c. f. (3.4.21)] then the 

phase shift, log C 12 = 0. Thus unlike most of the soliton interactions, 

Benjamin-Ono solitons interact together without producing any phase shift. 

For the KdV solitons the phase shift is 
TI T) 

log C2 log 
ff 1- 1 21 

,P >P 12 rp FP-2 j12 

after the interaction [c. f. (3.4.15)]. 

The form of the solution in the middle of the interaction can be examined 

by making the following variable transformations 

such that 

xl + h, t= tl 

h -Xb k-6 
logc 12 

11 -2XT 
1 

(3.4.33) 

and (3.4.34) 

h- Xb k-6 
logc 

12 
22 2XT 2 

Substituting (3.4.33) and (3.4.34) into (3.4.29), (3.4.30), (3.4.31) and 

(3.4.32) we f ind that as t -+ - 
cO, 

1# 

u, 'u = 

X-f 1 sin -f I 

cosh[N-rl(x-Xblt) - 

in the region where f1 is fixed, and 

, 
sin -r 

logc 12 ]+Cos 
2 

cosh[X-r(x-Xb 2 
t) 4 

in the region where f2 is fixed. 

Also we f ind as t -+ + 110 

log 

2C 
12 ]+Cos 'T 2 

uZu1= 
ky 1 sin 71 

log C 12 
cosh[XT, (x-Xb 

1 t) +-2 ]+Cos 

(3.4.35) 

(3.4.36) 

(3.4.37) 

in the region where f1 is fixed, and 
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U2 
X -r 2 sin y2 

('A 4 'IQ I 

cosh[N-r (x-Xb t) -11 
og C 

12 ]+Cos -r 22-22 
in the region where f2 is fixed. In all expressions (3.4.35) - (3.4.38) we 

have dropped the primes for convenience. 

We note that the solitons (3.4.35), (3.4.36) and (3.4.37), (3.4.38) are 

symmetric with respect to the new x and t-axes. This symmetric property means 

that the centre of the interaction is at x--O, t---O. 

If the full solution (3.4.12) is written in the new variables we find 

U 
2Xu N 

(3.4.39) 
uD 

where 
Y2 

u 2C sin cosh f, + 2Cý'-6 sin cosh N 12 2 72 12 112 

+(-r 1-T2) sin (Tl-T2) + C12(Tl+T2) sin (Tl+T2) (3.4.40) 

and 
I 

u 2Cý-, cosh + 2Cý6 Cos cosh + cosh D 12 Cos 72 1 12 12 I-f2) 

+C 12 cosh (f 
1 +f 2) + Cos (71-72) + C12 Cos (-fl+72). (3.4.41) 

where in the new variables x, t fn is redefined as 

En = Xy 
n 

(x -Xbn t). (3.4.42) 

We now determine the number of peaks in the middle of the interaction 

(x=O, t--O). To do this we expand all the hyperbolic functions in (3.4.39) in 

their power series at t--O about x=0 to find 

Q1+Q2X2x2 
2X u(x, O) 22 

2X 22 X2 R22 
ýýQ, +Q Xxx 2R 11 

Ql 
2X(- RI 

xQ2R 1-Ql R 2)x 
2 

R 
)t (3.4.43) 
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where 

2Cý-' sin 7 +-r sin -r sin (-r ^r 12(71 12 2) + (71-72) 1- 2) 

+C 12(71+'y2) sin (71+72) 

Cý sin y +, y sin -r 127172(72 11 2) 

(3.4.44) 

RI= 2Cý12( Cos -f I +Cos -r 2) + cos(71-72) + C12 +1 

+C 12 Cos (-r 
1+'r2) 

2 
Cos 7 +7 

2 
Cos ly 

(-rl-'r2) 2c 
12(71+72) 

2 

2 12 122 1) +22 

From the quadratic expression (3.4.43) we can see immediately that u will have 

a maximum (corresponding to a single peak) at x--O when 

Q2R, -Q1R2<0 (3.4.45) 

and a minimum (corresponding to double peaks) at x--O when 

Q2R, - Q, R 2>0. 
(3.4.46) 

Since expression Q2R, -Q, R 2 is very complicated and does not give a linear 

relation between -r 1 and 'Y2 , Table 3.1 is then produced to show the 

possibilities of having both types of the peaks discussed above. 

Figs 3.2a, b, c, d and e are produced to show the interactions at various 

time instants between the two-soliton solution of the FDF equation with X=1, 

71 =1.5 and -f 2 =1.0. From Table 3.1 the value of Q2RI-QIR2 is positive and 

thus we have two peaks in the middle of interaction, t=O. All the plots are 

drawn by using the symmetric solution (3.4.39). As is shown in these figures 

while the taller soltion is trying to overtake the shorter one (t =-4.0), it 

transfers some of its q mass 9 to the shorter soliton [as shown in Fig 3.2b] 

until both of them have the same mass [Fig 3.2c]. Figures 3.2d and 3.2e are 

the reversals of those of Figs 3.2a and 3.2b. 
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c 
12 

Q2R1-QIR') 

1.10 1.00 0.09311 0. £-1882 
1.20. 1.00 0.01153 0.45311 
1.30 1.00 0.02407 0.69119 
1.40 1.00 0.03977 0.85157 
1.50- 1.00 0.05785 0.83721 
1.60 1.00 0.07766 0.7ý058 
1.70 1.00 0.09867 0.35911 
1.80 1.00 0.12043 -0.29936 
1.90. 1.00 0. l(+262 -1.25146 
2.00 1.00 0.16493 -2.53396 
2.10. 1.00 0.1B715 -4.09995 
2.20 1.00 0.20911 -5.91642 
2.30. 1.00 0.23067 -7.91257 
Z 2.40 1.00 0.25173 -9.93947 
2.50. 1.00 0.27223 -12. OZ078 
2.60 1.00 0. Z-9210 -13.85455 
2.7 0- 1.00 0.3113£- -15.31618 
2.80 1.00 0.32988 --16.21217 
2.90 1.00 0.34775 -16.3350ý -Z 
3.00 1.00 -2 0. )5496 -15.45832 
D. 10 1.00 0.3B 15 0 -13.39532 
1.60 1.50 0.09169 0.6). 479 
1.70. 1.50 0.00640 1.25429 
1.80 1.50 0.01365 1. G9876 
1.90 1.50 0.01.303 2 2.42 0467 
2.00 1.50 0.03415 2.95891 
2.10. 1.50 0.04667 3, . 22 T301 
2.20 1.50 0.05030 3.337 17 
2.30 1.50 0.07478 3.2T367 
2.40 1.50 0.08991 2.91967 
2.50 1.50 0.10547 
n 2.960 1.50 0.12133 1.52459 
2.70 1.50 0.13 7 --li 4 0.5 '* 623 
2.80. 1.50 0.15339 -0.541724 
2.90 1.510 0.16940 -1.63062 

1.50 0.13528 7 5401 
3.10 1.50 0.20097 -3.695)6 
2.10 2.00 0.00107 :3351 0.91 
2.20 2.00 0.0ý410 1.9)707 
2.30 Z-. oc 0.00884 2.95965 
2.40. 2.00 0.01505 3.83270 
2.50 2.00 0.02253 4.57297 
2.60. 2.00 0.03108 5.1ý500 
2.70 2.00 0. Ol*O53 5.52305 
2.80 2.00 0.0-2072 5.69226 
2.90 2.00 0.05151 5.6; 93 0 
3.00. - 2.00 0.07279 5.43.239 
3.10 2.00 C. 09444 4.9T069 
2.60 2.50 0.00073 0.99708 
2.70 2.50 0.0,3232 1.93ý4ý. ) 
2.80 2.50 u. 0961 -, 2.6? 115 
2.90 2.50 0.01048 3.33327 
3.00 2.50 0.01579 3.? 16 1q 7 
3.10 2.5-0 '1192 0.0" 4.13692 
3.10 1 3.00 1 0.00053 1 

0.2, +£-1+4 

Týib it, 3-I SI I ow I (I g poss IbII It It, s of ha VL [I gs ing a ii d doub Io pe a ks 

In cho midd It, ot 1 nueract ions be r ween two FDF ,, ()I i con. s . 



-61- 

Fig. 3.2a 

0 

2-'IJOLITON SOLUTICN CF FDF EQJATION 
Gl=-1.9 G2ý-I. O T---0.9 

I.? 

1.0 

Fig. 3.2b 

1 

? -SOLITO, N SOLUTION OF FDF EQUATION 
GI ý- I.; (; 2-. l .0 Tý -it. 01 

--lo ý 
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Fig. 3.2)c 

P-Sr-l j TON Sri U'r 
_jN 01ý FDF ýQJA TI CN 

Gjý-!. q C, 2. -!. O T 

-10 --0 

Fig. 3.2d 

2-SOLITON SOWTION OF FDF EQUATION 
GI-1.5 C2,1.0 T=0.0 
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2-SOLITON SOLUTION OF FDF EQUATION 
GI =I .5 C2=1 .0 T=4.0 

Fig. 3.2e 

Fig. 3.2 Showing inceractions at time instants (a) t=-4.0 

(b) t=-0.5 (c) t=0 (d) c=0.5 (e) t=4.0 becween rwo 

FDF solitons with 1.0. yl = 1.5 and -y, = 1.0. Th i. s 

corresponds to the case of double peaks in the mid-interaction 

since QR -QR-0.88721. Noce the symmetry between 
-112 

f igUres 3.3a and 3.3e and also be cwcen figures 3 Ab and 3.3d. 

-10 -8 -6 -4 --2 02 
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ý--'JGLITON '-)CLUTION, OF FDF EQJATION 
G! Lz?. 0 G2---l .0r---,, 4. o 

Fig. 3.3a 

Fig. 3.3b 

--10 -. -6 
1. 

-2 02oS 
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2-SOLITON SOLUTION OF FDF EQUATION 
G1=2.0 G2=1.0 T-0.0 

Fig. 3.3c 

o3 

Fig. 3.3d 

-10 

-10 0 
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2-SOLITON SOLUTION OF FDF EQUATION 
G1=2.0 G2=1.0 T=4.0 

11 

Fig. 3.3e 

Fig. 3.3 Showing Lnteractions at time instants (a) E 4.0 

(b) t=-0.5 (c) t=0 (d) t = 0.5 (e) r- = 4.0 between 

two FDF solitons with 'ý = 1.0, 11= 2.0 and 'Y2 = 1.0 Thi-s 

corresponds to th e case of as ingle peak in the middle of the 

interaction since Q, R I- 
QIR-) ; zzý -2.53396. Noce the 

symmetry between figures 3.3a and 3.3b and also between 

fLgures 3.3b and 3.3d. 

-10 -8 -6 -4 -2 0 
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For X=1, -r. =2.0 and 7 =1.0, from Table 3.1, Q2R, -QR is negative and 
1212 

thus gives only a single peak in the middle of the interaction. In this case 

the taller soliton, while catching up the shorter one, tries to 'combine' its 

mass with the second soliton [Figs 3.3a, b] before both of the solitons become 

one [Fig 3.3c]. 

After time t--O they splý+- again until the taller 

soliton leads the way. These interactions are shown in Figs 3.3d, e. 

For the KdV solitons (X-4)o) the transformation x= X-N does not alter the 

peak conditions (3.4.45) and (3.4.46). In this limit we have 

2C % 
sin -rl sin sin 12 Tl + T2 T2) + (Tl-T2) (Tl-T2) 

C sin (71+'r2) 

(P 
1 -P 2p12p22 

(P 
l-P 2) 

2p 
l-P 2 

ý2 (P 
1 +p 2) 

2 

p1 +p 2XxXp1 +p 2 

4P 12p l-P 2) 
X(P 1 +p 2) 

% 
sin T+ -r sin r Q2 "': C12^rl'r2(r2 11 2) 

p l-P 2)p1p2 
p1 +p 2x 

2(P l-P 2) p12p22 

2 x (P 
I +p 2) 
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R 2Cý- (cos + cos 7 12 1 2) + cos(71-72) + C12 +1 

+C 12 Cos (-r 
I+ 'y2) 

p -P 
DDD 13 

'F 1-F2 
22 

2 (-F 1 
+p 

2 (2) +1 P1 
1-2. 

12+ -iýP22] 
+1+ +P"] 1+P2 

SP 12 

(P 
1 +p 2 

)2 

R C, Cos 'T + -r COS T+C 22122 1) +2 12- 2 

2222 pIp2 (P 
1-p 2) 1- 22 

(P 
1 +P 2) 

p p1 +p 2 2X 1 +p 2] 2X 

2(P 
l-P 2) p12 

X(P 
1 +p 2) 

Using the above expressions for Ql, Q2 ,R1 and R2 we then find 

SP 12 2(P 1-P 2)Pl 
2P22 

2112 
(P 

1 +p 2) 
2 

x2p1 +p 2) 

4P 2 (P -P ) 2( 2 
112 pl-p2)pl 

X(P 1 +p 2) 
* ý'(PI+P2) 

SP 
14 

(P 
1-P 2) ý3P 2_P2 

x2P1 +P 23211; 

PI)P2" 

Hence from (3.4.45) and (3.4.46) the peak conditions for the KdV solitons are 

3P 22>P12 for the double peaks (3.4.47) 

and 

3P 22<P12 for a single peak - 
(3.4.48) 

We note that these results can be obtained directly from the KdV solution 

itself and this has been treated elsewhere [Williams (1974)]. 
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In the Benjamin-Ono limit we must be careful in working with the limiting 

process involved. Indeed, calculations for Q1 and R1 show that 0(X 4) 
is the 

Lowest order term. Therefore 0(X 4) 
terms must be included in the expressions 

for C 12 and bn, otherwise a number of dominant terms will be lost. In this 

limit we find from (3.4.8) and (3.4.6) 

7r2X2 
2- 1 7r X3 7r4X4 b -, -( V ýV + 

nXnn 3V 2 45V 4 
nn 

c 47r 2-A 2 47r 2-A 3(v1 
+V 2) 47r 2-X-4 

12 (V 
l-v 2 

32 
+ 

VlV2(Vl-V23 2v1v 
2(Vl-V2) 

2 

- 
87r 

4x4+-1 
67r 

4x4+ 
O(X 

5 

3V 
1v2 

(V 
I -V 2) 

2 (V 
1-v 2 

)4 

This gives 

Y2 27r2A2 27r2A3 (V 1 +V2) 2-Tr 2-A 4 47r 4x4 
c=1- .-- 12 (V 1-v 2) 

2v1v 
2(Vl-V2) 

2v1v 
2(Vl-V2 )2 ' 

3V lV2(Vl-V2) 
2 

+- 
6v 4X44+ 

O(X 5 

(V 
1-V 2) 

upon using the Binomial expansion. Using the above expressions we then find 

QX4 7r 
44 

(V 
1 +V 2) 

+1+I 
(V 

1-V 2) 
2V1V2V1 2V 

2V1V2 
21 

x 7r 
- (V +V 
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(V 
1-v 2) 
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2V 
221 

2) 
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(V 

l-v 2) 
2V 

1 
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221 
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R \4 7r + 
(V v )4 2V 2V2 21 

1- 2 (Vl-V2)2V, V2 1, 

X 7r 

- (V +V 
4 

2(V 
I-V 2 )4V 

1 
2-V 

2212 

and 

R224 (- 
(V 

4v2++21 
21 

1- 2) V2 

X 7r 
_ (V +V 

2 ((V v4- 2V 2 

2(V 1-v 2 
)4V12V 

221 
2) 1- 2) lV2(Vl-V2) 

Thus we eventually arrive at 

R-QR-xr- (V +V 
2 (3V V2 2112 2(V 1-v 2) 

6V14v241 2)5 (Vl-V2) 
12- (Vl-V2) 

From this expression the peak conditions are 

3V 1v2- 
(Vl-V2) 2>0 for double peaks (3-4.49) 

and 

3V 1v2- 
(VI-V2) 2<0 for a single peak. (3.4.50) 

We have thus obtained all the conditions for double and single peaks in 

the middle of the interaction for the Benjamin-Ono equation. 

We note here that the symmetric two-soliton solution in the Benjamin-Ono 

limit is exactly the form (3.4.28) except that in the symmetric coordinates 

X't C is now defined as 

Cn=Vnt. n-1.2. 

In Figs. 3.4a, b, c, d, e we show the consecutive interactions at various 

time instants between two solitons which satisfy condition (3.4.49). The 

double peaks are shown in Fig. 3.4c. 

For the condition (3.4.50), the plots for the interactions are given in 

Figs. 3.5a, b, c, d, e in which the single peak is shown in Fig. 3.5c. 
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? -SOLITON SOLUTION OF B-0 EQUATION 
V1=4.0 V2ý2.0 T=--3.0 

-4a 

? -SOLJ'FON SOLUTITON OF B-0 EQUATION 
VI =4.0 V2=2.0 T=-O. 5 

Fig. 3.,! ýb 
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Fig. 3.4c 

? -SOLITON SOLUTION OF B-0 EQUATION 
V1=4.0 V2ý2.0 T=0.5 

3.4d 

? -SOLITON SOLUTION OF B-0 EQUATION 
VI =4.0 V2=2.0 T=O. 0 

-15 

-is .! 0 501; 10 
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2--SOLI'TON SOLUTION OF B-0 EQUATION 
VI =4.0 V2=2.0 T-ý. 0 

Fig. 3. -4e 

Fig. 3.4 Showing interactions at time instants (a) c= -3.0 

(b) t==0.5 (c) t=0 (d) t=0.5 (e) t=3.0 between 

two B-0 solitons with V, = 4.0 and V,, = 2.0. There are two 

peaks in the middle of the interaction (t = 0) as 3V 
Iv2- 

2 (v 
I-v2 

20.0. Note the symmetry between Fig. 3.4a 

and Fig. 3.4'e and also between Fig. 3.4b and Fig. 3.4d. 

-s 05.0i5 : >O 
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2-SOLITON SOLUTION OF B-0 EQUATION 
V1=10.0 V2=2.0 T=-0.5 

I 

Fig. 3.5a 

2-SOLITON SOLUTION OF B-0 EQUATION 
VI= 10.0 V2=2.0 T=-O. ' 

3. ýb 
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2-SOLITON SOLUTION OF B-0 EQUAFION 
V1=10.0 V2=2.0 'ro. o 

Fig. 3.5c 

2-SOLITON SOLUTION OF B-0 EQUVION 
V l= 10.13 V 2. --2. JT =O. , 

FLg. 3.5d 

4 --3 -2 -02 
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2-SOLJ-FON SOLUT! 9N OF B-0 EQUATION 
V1=10.0 V2,2.9 T. -9.5 

Fig. 3.5e 

Fig. 3.5 Showing interactions at time instants (a) t= -0.5 

(b) t= -0.1 (c) t=0 (d) t=0.1 (e) t=0.5 between two 

Benjamin-Ono solitons characterised by V, = 10.0 and 

V, 
) = 2.0. This corresponds to a single peak in the middle 

2 
of the interaction since 3V 

Iv2- 
(v 

I- VI) 4.0. Note 

the symmetry between figures 3.5a and 3.5e and also between 

figures 3.5b and 3.5d. 

-2 0236 
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CHAPTER 4 

RESONANCE PIENORENA WITH REFERENCE 

TO THE_KADONTSEV - PETVIASIIVILI EQUATION 

4.1 Notes on previous work 

Perhaps the first observation on resonance phenomena in solitons was made 

by Scott-Russell when he wrote "the magnitude of the reflected wave diminishes 

as the angle of incidence diminishes, until at length, when the angle of the 

ridge of the wave is within 15 0 or 20 0 of being perpendicular to the plane, 

reflexion ceases, the size of the wave near the point of incidence and its 

velocity rapidly increases, and it moves forward rapidly with a high crest at 

right angles to the resisting surface". [Scott-Russell (1844)]. 

However, the study of this phenomenon in soliton interactions was only 

carried out much later by Miles (1977). In his study of two interacting 

solitons in terms of shallow water wave theory in two space dimensions, he 

showed that when the angle of intersection of the two solitons is between 

certain critical angles, the two-soliton solution (with sech 
2 

profile) becomes 

singular (with cosech 
2 

profile) through the interaction, while at the critical 

angles the two incident solitons interact strongly to produce a third soliton 

known as a resonant soliton. 

This phenomenon has been considered as a breakdown of the Zakharov-Shabat 

theory of integrable systems with more than one space dimension by Newell and 

Redekopp (1977). Essentially this breakdown corresponds to the resonance 

condition 

where kI and W are the wavelength vectors and frequencies of the phases of the 

two solitons. This means that the third soliton with frequency W(k 1 -k 2 
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together with the incident solitons with frequencies w(kl) and w(k 2) form a 

triad of solitons. Therefore in a two-resonance-soliton interaction the 

motion of this triad can be dealt with as a single entity. 

The motion of such triads has been used by Anker and Freeman (1978) to 

describe the interaction of a three-soliton solution of the Kadomtsev 

-Petviashvili equation. The schematic development of the interaction with 

time has been obtained by them and shown to approximate closely to computer 

calculations of the analytic solution. 

More recently Ohkuma and Wadati (1983) have described analytically 

resonant interactions of two and three-soliton solutions of the 

Kadomtsev-Petviashvili equation. By considering the asymptotic behaviour of 

the solutions they showed that there are two types of resonances, plus and 

minus resonances. They also found that there are three arms of solitons 

stretching to infinity for the two-resonance-soliton interaction and five arms 

for the three-resonance-soliton interaction. However, the motion of the 

triads has not been considered in their work. 

In this chapter we shall study resonance phenomena between solitons with 

reference to the Kadomtsev-Petviashvili equation. In section 4.2 resonances 

in two-soliton solutions are discussed. This concept is then taken as the 

basis in explaining interactions of a larger number of solitons. In section 

4.3, the N-soliton solution of the Kadomtsev-Petviashvili equation in the form 

of an ordinary determinant is reduced to a Wronskian form when the solitons 

are assumed to resonate in pairs. The rest of the chapter will discuss the 

interactions between a triad and a soliton and between two triads. 
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4.2 Resonant interactions in two-soliton solutions 

The Kadomtsev-Petviashvili (KP) equation is generally written in the form 

6uu 
x+u XD(X 

)x+ 3u 
yy = 0. (4.2.1) 

The N-soliton solution of this equation has been found by many authors, 

including Zakharov and Shabat (1974), Satsuma. (1976) and Lamb (1980). The 

N-soliton solution due to Lamb (1980) and parameterized by Freeman (1984) is 

expressed in terms of an NxN determinant A as 

u=2a2 (log A) (4.2.2) 

ax 
wi th 

a. 0. 
. 1 ij + -ýý e n 

(4.2.3) ij nj 

where a,,, 0,, ni are arbitrary real constants and 

0 
ij = (P 

i +n i 
)x - (p 

i2 -n i2 
)y - 4(P 

i3 +n i3 
)t, i, j=1,2,... N. (4.2.4) 

The single-soliton solution is given by two terms 

e77 

which gives 

(4.2-5) 

2 
u= %(R+n) sech (4.2.6) 2 

with-q = (R+n)x - (P 2 
-n 

2 )y - 4(e 3+n3)t 
+ log( a) as we have seen in the R+n 

Introduction. 

The sech 
2 

profile given by (4.2.6) is a skewed soliton localized in some 

neighbourhood of line Tj=O and it extends its length to infinity along this 

I ine. 

As we mentioned earlier in the Introduction, all the information about a 

particular soliton solution given by (4.2.6) may also be obtained from its A 

expression (4.2-5). However the form of A is more convenient to use for our 

purpose. Therefore we shall be using A instead of the actual solution u in 

describing soliton interactions throughout this chapter. 
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For the two-soliton solution, we find from (4-2-3) 

A=1+e 
77 1+e T12 

+q 12e 
-q 

I -f-Y)2 (4.2.7) 

(1) 

where 

_ (R 2233a. 
77i = (R, +n, )x _n )y - 4(P +n )t + log (1) (4.2.8) 

iiiiR. +n. 
11 

and 

(, e i- 10 i 
)(n, -n 

q, j - (p 
i +n i 

)(P 
i +n 

(4.2.9) 

We note that all the terms in (4.2.7) have been numbered (1), (2), (3) 

and (4) respectively in order to facilitate our description later. The 

procedure of numbering the terms was introduced by Anker and Freeman (1978) to 

describe a three-soliton interaction. 

As seen from (4.2.5), a soliton is represented by two terms of A. Any 

single term from (4.2.7) will give zero contribution to the final solution u 

due to (4.2.2). Therefore, a procedure can be chosen so that we look for two 

dominant terms of A in order to locate which soliton is present in a region. 

For example in the region where -q 2 -ý - (n and Ti 1 is fixed, A is dominated by 

TI I 

(1) 

which can be recognized as the soliton characterized by the phase -q 1 centered 

at 77 1=0. 
Continuing the asymptotic process for all possible regions which 

provide two dominant terms we find 
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A=1+e 
TI 1 

as -q 2 COP TI If ixed 

(1) (2) 

A=I+e 
T12 

as co T12 f ixed 

(1) (3) 

A=e 
T71 

(1 +q 12 e 
772 

as + oo, T? 
2- 

f ixed 

(2) (4) 

e 
T12 

(I +q 12 e 
Til 

) as Ti + 00,71 
1f 

ixed 

(3) (4) 

A=e 
772 

(1 +e 
771-T12 

) as 77 1 -4 + co 
I T12 -+ + co 

(3) (2) 

with Tj 1-T'2 fixed and q 12 sufficiently small. 

All the exponential factors in (iii), (iv) and (v) may be removed for the 

actual solution (4-2.2). We note that the number underneath every term in the 

above expressions is obtained from the number which corresponds to its 

original term in (4-2-7). Each soliton will then be denoted by these numbers. 

For example in (i) we have soliton (12) with phase p 1* We note that from (iv) 

and (i) soliton (34) has the same phase as soliton (12) but it is shifted by 

6 -' log(q . Also soliton (24) has the same phase as soliton (13) but it 12 ': 12) 

is shifted by 6 12' 
The lines of the phases of all the above solitons in (i) - 

(v) can be drawn as in Fig. 4.1. 

Fig. 4.1 A near-resonant interaction 
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Now, solitons (12) and (13) can be viewed as the two incident solitons 

before the interaction, (23) is the interaction region while (34) and (24) are 

the post-interaction solitons. Solitons (34) and (24) are n fact the same 

solitons as (12) and (13) respectively but they are shifted by 16 
12" 

Therefore the actual configuration depends on the value of 16 
12" whether 

it is finite, zero or infinite. Fig. 4.1 corresponds to the case when 16 
121 is 

finite so that (23) has a finite arm. This situation can be achieved by 

choosing PR 0(l) and nn 121 2* Fig. 4.1 shall be referred to as a 

near-resonant interaction. 

In the case of 16 
121 = 0, both of the post-interaction solitons (34) and 

(24) are not shifted at all from the pre-interaction solitons (12) and (13). 

This means that the arm of (23) is zero and thus (12) and (34) lie on the same 

I ine Tj 1=0 and (13) and (24) lie on the same line T12 = 0. This interaction 

is sketched in Fig. 4.2. 

Fig. 4.2 A non-resona-nt interaction 

We shall refer to Fig. 4.2 as a non-resonant interaction since all 

solitons emerge form the interaction without being shifted at all. If we 

choose e1-R2= 0(1) and nI-n2= 0(1) then 16 
121 is small. Therefore we 

have a situation which is very close to Fig. 4.2. Indeed this choice of 

parameters will produce a small phase shift which is difficult to see in 
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practice and therefore we shall use this condition in order to mean or to 

produce a non-resonant interaction. In this limit we have from (4.2.7) 

A (1 
Til 

)(1 
T12 

) 

which corresponds to the superposition of the two solitons, (12) and (13). 

Now as 16 
12 

1 
--'ý* "0 the arm of (23) stretches to infinity and hence we 

have a triad of solitons as observed by Miles (1977). This is a pure-resonant 

interaction. It can be achieved by taking q 12 =0 or q 12 ---> oo For q 12 =0 we 

have 

1p2 or nI=n2 (4.2.10) 

and for q 12 --> 00 we have 

R1n2 or e2=-n 
1* 

(4.2.11) 

Therefore there are two types of resonance phenomena. The one which 

corresponds to condition (4.2.10) is termed as a "minus resonance" and to 

condition (4.2.11) as a "plus resonance" by Ohkuma and Wadati (1983). We 

shall only consider resonance phenomena of type (4.2.10) and choose the 

resonance conditions nI=n 2' e1-R2= 0(l) for the purpose of the work in 

this chapter. A schematic diagram for this behaviour can be drawn as in 

Fig. 4.3. 

Fig. 4.3 A pure-resonant interact C03 
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If the expression for q 12 is examined we find 
(, 0 1- e 2) (nl-n 

2) q 12 
1 +n 2)"2 +nl) 

D(kl-k 
2' m 1-M 2' w l-w 2) 

(4.2.12) D(k 
1 +k 2' m1 +M 2' wI +W 2) 

where D is defined as 

4_2 D(k, m, w) =k 4kw + 3m (4.2.13) 

We note that 

D(k, m, w) =0 (4.2.14) 

is the dispersion relation of the KP equation and that 

2233 
n, mn-P, w+n 

The resonance condition (4.2.10) is therefore equivalent to 

D(kl-k 2' m Cm 2' w Cw 2) '«"ý 0* (4.2.16) 

If the phase of the resonant soliton in Fig. 4.3 is -q 3' then 

T73 = (P 
3 +n P- ('03 2 

-n 32 
)y - 4(R 33 +n 33 

)t +63 

= (P Ce 2)x - (el 2_e 
22 

)y - 4(e 1 
3_e 

23)+ 61-6 2 
(4.2.17) 

a. 
where 6. = log Therefore we find that PP and nP upon using 3132 

the condition n1=n 2" 

Since Pi may take both positive and negative values, the amplitude of the 

resonant soliton %(e 1- S 2) 
2 

may be less or greater than the aplitudes of the 

incident solitons (12) and (13). We note that the term "minus resonance" 

refers to 9 1- P2 which appears in (4.2.17). 

The three types of interactions discussed in the above can be used as the 

basis in explaining more complicated interactions. In such interactions we 

shall find combinations of all or part of near-resonant, non-resonant and 

pure-resonant interactions. In other words the detail of an interaction will 

be a combination of figures (4.1), (4.2) and 
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We note from Fig. 4.1, that the interaction between solitons (12) and 

(13) producesthe intermediate soliton (23) and the shifted solitons (34) and 

(24). Soliton (23) is therefore obtained simply by eliminating number "I" 

from (12) and (13). Soliton (23) then splits into (34) and (24) where the 

common number "4" has been introduced. In fact "4" has not been used so far. 

This means that we can always construct an interaction between two 

solitons directly from the A expression (4.2.7). In the two-soliton 

interaction (4.2.7), if we start with an interaction between (12) and (13), 

the shifted solitons must be produced from the remaining term "4". However in 

a more complicated interactiot we shall have many more terms left and the 

choice must be the one that produces two solitons which differ from (12) and 

(13) by some phase shift. 

All the above rules will be observed in describing the interactions 

between a triad and a soliton and between two triads further on in the study. 

4.3 The reduction of determinant A into a Wronskian. 

G The determinantal form of A (4.2.3) has already been tranformed into a A 

Wronskian. form for the N-soliton solution by Freeman (1984). An advantage of 

the Wronskian 1019 02 NI as constructed from individual soliton solutions 

Olt 02 N is that the behaviour of the solution before and after the 

interaction can be deduced directly from the Wronskian itself. 

We now consider the case of N even and assume the resonance condition 

n K+i -= n,, i 1ý 2,..., K 

nIX nj, iXj, i, j=l, 2 .... K 

wi th K= N/2. 
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Condition (4.3.1) implies that we have K pairs of resonating solitons in 

the N-soliton solution. As we have seen earlier two resonating solitons 

interact together to produce a triad of solitons; we therefore now have K 

triads. Thus the solution now represents an interaction between K triads. We 

shall show that, with condition (4.3.1), the determinantal form of A reduces 

to a Wronskian of K functions, each of them representing a triad. 

The determinant A (4.2.3) can be written as 

JE 
n- 

1 
+E2 Al JE 

n' 
(4.3.2) 

where 

En= (6 
ij en1 

x+n 12 y-4n 
13tI 

Ee : -- (6, 
j ee1 

X-P i2 y-4e 13tI 

2,..., N. 
, 0. 

11 

(4.3.3) 

Due to the fact that the final solution u is given by (4.2.2) and that 

the factor JE 
nI 

is exponentially linear in x, it can be removed and thus 

(4.3.2) is simply written as 

A= JE 
n- 

1+Ep Al. (4.3.4) 

A close inspection of matrix ERA shows that it contains K pairs of 

identical columns CK+j =: Cj' j=l, 2,..., K, due to the resonance condition 

(4.3.1). Therefore the determinant (4.3.4) can be simplified by using the row 

and column operations. This procedure can be summarized by introducing a 

partitioned matrix J of size KxK, which is defined as 

J= 
II 

0; I 
(4.3.5) 

where I is the identity matrix of size KxK, and 0 is the zero matrix. 
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This matrix has the property 

(i) ii I= li-I I=i 
(4.3.6) 

(ii) JE 1 J- I=E1 

where the inverse, J- 1 
can be found as 

(4.3.7) 
0 1. 

Since J is a constant matrix, multiplying (4.3-4) by IJI or IJ-11 does 

not change the final solution u. We thus have 

A= IJE 
n- 

1 J- I+ JE R Aj- 11 

= JE 
n 

-1 + JE 2 Aj -1 1 

F (K) 0 (K) 
G (K) E 

n(K) 

= IF 
(K) 

I JE 
n(K)l 

(4.3.8) 

where the subscript (K) denotes the size of the matrix, 0 (K) the zero matrix, 

G (K) is the matrix 

G 
aK+ '- 

(e 
K+i x) 

(K)ij pK+i+ni 

and the matrix F (K) is given by 

F 6.. e 
(-n 

i X) 
+a1e 

(e 
i X) 

Aa 
K+i 

--e 

(e 
K+i X) 

(4.3.9) 
(K)ij ii +n 

jp K+ +n 

where we have shortened the arguments of all the exponentials as 

(-n 
i X) -(n ix+ni2y- 

4n 
i3 t) 

e -= e 

(e i x) 22y- 4e 3 

for convenience. 
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We note that from (4.3-8), JE 
n(K) 

I is an exponential factor, wh--)ý--- 

argument is linear in x and hence may be removed for the usual reason. Thus 

A= IF 
(K)'' 

(4.3-10) 

NN We note further that A now is aKxK, "a 2 ýp determinant. We now 

demonstrate that this determinant can be transformed into a Wronskian. 

It is found convenient to work with the transposed form of matrix F (K)* 

Now 

(-n 
i x) a1 (2 

i x) aK+j (2 
K+j x) 

F "' 6ee+e (K)ij «": ij +n 
12 K+j +n i 

where T stands for the transposed matrix. 

From (4.3.10) and (4.3.11) we can write 

JE 
n- 

1+M1A1E 
ei +M2A2E 221 

(4.3.12) 

where we have suppressed the subscript (K) since all the matrices are now of 

size KxK. In (4.3-12) we have defined 

E ei ,(6ei 
x) 

1 

E 22 ý-- (6e K+j x) 

j, j 
I 

A {'5ijaK+j) 
2 

m 
j 

m 24 K+ j+n, 

We also need to use the Van der Monde matrices V, W1 and W2 defined by 

V= «-n 
i) 

i-i 

j-1 

(, o i) 
i-1 ) 

w2": {(-1) i-i (2 
K+j) 

i-1 

and the diagonal matrices P, Q1 and Q2 as 
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K 
IT (np-n 

P/i 

Ql (6 
ij 

Q2 ý ý'5ij -1) 
1-1 

K 
17 (n 

p 
+R dl 

P=l 
K 
U (n 

p K+i))- 
P=l 

It has been shown by Freeman (1984) that 

V- 1Wr= p- 1MrQr, 
r=l, 2. 

Therefore 

Mr = PV -1 WrQr -1 
. r=l, 2. 

Introducing (4.3.13) into (4.3.12) we then have 

JE 
n- 

I+ PV- 1W 
lQl- 

1A1E 
Rl + PV- 1W 

2Q2- 
1 A2ER21 

(4.3.13) 

= jPV-1jjVP- 1E 
n- 

1+W 
1Ql- 

1A1E 
Pi +W 2Q2- 

'A 
2E R21* 

Since IPV-ll is only a constant factor in the above expression it can be 

removed, leaving 

where 

P- 1E 

(4.3.15) 

D Pr -= Qr- 1ArE 
Rr' r=l, 2. 

It can be checked that (4.3.14) is the 
N_ Wronskian of the functions 
2 

4ý 
i=e 

-0 j+e \Pij 
+e 

\p2j 
(4.3.16) 

where 

2_3K 
nix+niy 4n t+ log ( TT (np-n 

P/i 

A= JVD 
n+W1D pi +W2D P21 

(4.3.14) 
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23a 
\Plj = le x j, y- 4P 

it+ 
log K 

(4.3.17) 

U (n 
p 

=1 

\p2j K+j x-R2 K+j y- 4P K+j 
3t+ lo& K 

aK+j 

U (n 
p 

+s K+j) 
L=l 

i= lp 2 

For N=2, and making n1 =n 2' the above gives 

(-nlx) (2 x) + log( 12 

e+e1 
i777nj) 

+e 
(22x) + "9g(e 

2+in) 

(-nlx) 
{1 + 

77 1 T72 

which can be recognized as a triad with parameters P,, R 2' n 1* 

Each of the functions ýP 2 N/2 of the Wronskian (4.3.14) can be 

arranged in the form (4.3.18) which represents a triad. Thus the Wronskian 

solution (4.3.14) represents an interaction between N/2 triads, each of which 

can be treated as a single moving entity. 

We now give the result for N odd (N>3). In this case we choose K=(N-1)/2 

and use the same assumption that nK+i -': Oi' This means that we have K pairs 

of solitons in the resonant state and a single-soliton. By using a similar 

procedure to the one used for N even, the determinant A is transformed into a 

Wronskian of K+l functions 4ý1,4P 21... 14ý K+l where T) 2,... ýp K are defined by 

(4.3.16) and (4.3.17), while 11ý K+l is defined by 

ID K+ 1 ��: 
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where 

23K 
N= nNx +nNY- 4n Nt+I og f IT (np-n 

N) 
P=l 

\PN =RNx-RN2y- 4R N3t+ log K, N 
N (4.3.20) 

U (n 
p 

+P N) 
P=1 

The function 1ý K+I represents a single-soliton while each of all other 

functions 4ý1,4D 2 '. . ., 4b K represents a triad. Hence we have an interaction 

between K= (N-1)/2 triads and a single-soliton for N odd. 

4.4 Interactions between a triad and a soliton 

If we put n1=n2 leaving n3 unpaired in the three-soliton solution, we 

find from the previous section the associated Wronskian A as 

(-n 
1 x) (2 

1 x) (, o 2 x) 
+e 

-n 1e1 VO 

(-n 
3 x) (, o 3 x) 

+e 

(-n 
3x) 

+e 
(2 

3 x) 

which is recognized as an interaction between a triad with parameters Pl, P 29 

n1 and a soliton with parameters e 3' n 3' 

In the above Wronskian, the term e 
-(n 1 +n P 

can be factored out and 

removed from it, leaving 

1+e 
(, o 1 +n 1 

)x 
+e 

(e 
2 +n1)x 

(P 
1 +n 1 

)x 
2 

(2 
2 +n1)x 

13 
+n 3 

)x 

(4.4.1) 

(P +n 

where all the arguments of the exponentials have been shortened appropriately, 

for convenience, as before. We note that 

(e +n )x (e +n )x - (P 2 
-n 

2 )y - 4(e 3 
+n 

3 )t + log i3 i) 
(n 

1 +e i 
)(n 

3 +p i) 
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for i=1,2 and 

(e +n (e +n 
2 

-n 
2 )y - 4(R 

3 
+n 

3 )t + log 
a3 (nl-n 

3) 

e3 
3)x 

=e3P- 
(e3 

333 (n 
1+83) 

(n 
3+R3). 

We first write 

(2 
i +n i)X - (, o 

i2 -n i2 
)y - 4(P 

13 
+n 

13 

=p ilx -Qiy- (P 
i2 +3Q i2 

)tl 

where 

P. = e. +n., Q. = P. -n. 111111 

We now assume P <10 <n <n <P Pe 0(l) for i? 6j, nn and P. >O both 1213 3' ij13 

for convenience and also in order to incorporate the numerical computations 

presented in Section 4.6. 

In the region of the maximum of the triad, we have 

220 Qy- (P 1 +3Q, )t 

220 Q 2y - (P2 +3Q2 )t 

which can be solved to give 

Q2(pl 2 
+3Q, 

2)- Ql(P2 2 
+3Q2 

2) 

It Q2-Ql 

(P 12 +3Q 12)- (P2 2 
+3Q 22 

Q2-Ql 

In this region we then find 

p 3EX - Q3y - (P 32+ 3Q 32 )tl 

3r_ (Q -Q2)(Pl 
2 
+3Q 12 (Q2-Ql)(p3 2 

+3Q 32 Q3-Ql L3 

(Q 3 -Q 1 )(P 22 +3Q2 
2 )ýt* (4.4.2) 

We now show that the sign of the coefficient of t in (4.4.2) is negative 

under present assumptions: 

-(Q 3-Q2 
)(P 12 +3Q 12)- 

(Q2-Ql)(p3 2 
+3Q 32 

+(Q 3-Ql 
)(P 2 

2+3Q2 2) 
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=(Q3--Q2)EP3 
2 

+3Q 3 
3_p 

12 -3Q, 
2 

+(Q 3-Qd[P2 
2 

+3Q2 
2_p 

32 -3Q 32 

=(Q3-Q2)E(p3-pl)(p3+pl) +3 (Q3-Ql)(Q3+Ql)3 

+(Q 3-Ql)E(p2-p3)(p2+p3) +3 (Q2-Q3)(Q2+Q3)3 

4(Q 3-Q2)(Q3-Ql)(Ql -Q2)* 

The last expression is negative since Q, - Q2 < 0. Note that in the above we 

have used the relation P3-p1Q3- Q1 since n1Zn 3* 

Therefore 

p 3Ex - Q3Y - (P3 2 
+3Q3 

2 )t] -ý +w as t -+ - co 

-ý - co as t -+ + co . 

Now as t -* - (*, we have from (4.4.1) 

This gives 

1 
(, o 1 +n1)x (e 

2 +n1)x 

e 
(2 

1 +n1)x 
+e2e(, 

o 2 +n1)x 
10 

A=1+e 
Til +6 13 

+e 
T72 +6 23 

as t -+ - 00 , 

where we have used the usual notation 

T7 = (, e +n )x - (e 2 
-n 

2 )y - 4(P 3 
+n 

3 )t + log 

(4.4.3) 

(4.4.4) 

6.. = log ( i- ji )- 
ij (e 

i +n i 
)(P 

i +n i) 

We note that (4.4.4) is the triad with parameters Rl, e 2' n1 which individual 

solitons are centred on 77 1+6 13 :-0, TI 
2+6 23 =0 and -q 1- 

T12 + 

6 
13 

6 23 
0. 
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As t -0 + 00, we find from (4.4.3) and (4.4.1) that 

which yields 

+n 1 
)x 

e2 
+n 1 

)x 

(e 1 +n )x 
2 

(2 
2 +n1)x 

e 
77, 

+e 
T12 

as t -ý + 00. 

1 

-n3 

(4.4.5) 

This is the same triad as (4.4.4) but the individual solitons are now centred 

on Tj I=0, T19 =0 and TI, - T12 = 

From (4.4.4) and (4.4.5) we notice the phase shift of the triad. Before 

the interaction (4.4.4), the triad which can be represented by the point of 

intersection between the soliton with parameters Rl, n1 centred on 

TI +6 -' 0 and the soliton with parameters Pn centred on -q +6 Ot 1 13 ': 2' 12 23 

has been displaced after the interaction (4.4.5) by the intersection between 

the solitons which are centred on T7 1=0 and 77 2=0. 

Similar analysis can also be carried out in order to locate the positions 

of the solitons with parameters P 3' n3 before and after the interaction. This 

will subsequently be confirmed by computer calculations of the full solution. 

We now describe the detail of the interaction between a triad and a 

soliton. In order to explain the interaction we choose the notations of a 

doublet (ij) to represent a soliton, a triplet (ijk) to represent a 

pure-resonant interaction (triad) and a quadruplet (ijkR) to represent a 

near-resonant or non-resonant interaction. The basis for the interaction 

between two solitons outlined in Section 4.2 will also be observed. 

Expanding the determinant A in (4.4.1) we find 

'r'2 T13 

(3) (4) 

772 +71 3 
q 23 e 

(5) 

T' 1 
+T'3 

+q 13 e 

(6) 

(4.4.6) 
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b3 
The triad given /\ 

(4.4.4) can be recognized as triad (456) from expression 

(4-4-6) since 

A 
456 =e 

T73 
EI+e 

Til +6 13 
+e 

Tj 
2 +6 23 1- 

(4) (6) (5) 

This triad will interact with a soliton with parameters R 3' n3 which is 

recognized from (4.4.6) as (14), (26) and (35). For the values of eI 's and 

nI 's chosen in the examples presented in section 4.6, soliton (26) will first 

interact with the triad. 

The associated A for soliton (26) is 

A=e 
Til 

(1 +e 
T13 +6 13 ) (4.4.7) 

(2) (6) 

which is centred on Tj 3+6 13 ý-- 0. 

Now soliton (26) interacts with soliton (46) from triad (456). Each of 

the post-interaction solitons must contain (4) and (2) respectively, and a 

common term which can be obtained from the unused terms in (4.4.6). Such a 

term must be (1), and therefore the post-interaction solitons are (14) and 

(12). Examining the A for the interaction (1246) we find from (4.4-6) 

A 
1246 =I+e 

T71 

+e 
T13 

+q 13 e 
T' I 

+T73 

(1) (2) (4) (6) 

Since nýn. then 16 Ilog(q is much bigger than zero and this 1ý3 131 ý 13)l 

implies that (1246) is a near-resonant interaction with intermediate soliton 

(24). The interaction at this stage can be sketched schematically as in Fig. 

4.4a 



-96- 

L) 

Fig. 4.4a The earlier interaction between (456) and (26). 

In Fig. 4.4a the arrows show the directions of propagation of the 

individual solitons. The next stage of the interaction can be easily deduced 

from Fig. 4.4a as we notice that solitons (12), (14), (26) and (46) do not 

interact because they have performed a complete interaction at 

that stage. 

As time goes on soliton (26) will sweep over triad (456). While doing 

so, during the interaction the length of (46) will decrease to nothing and 

thus (26) interacts with (56). The expected shifted solitons of (26) and (56) 

are, from (4.4.6), (35) and (23) respectively. It can be shown that this 

interaction is non-resonant by examining the associated A (by non-resonant we 

mean a near-resonant interaction with very small phase shift). We have from 

(4.4-6) 
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A 2356 =e 
771 

+e 
772 

+q 23 e 
T12 +T7 3 

(2) (3) (5) 

77 1 +-q 
q 13 e 

(6) 

e 
T12 

[1 +e 
711-712 

+ 
T73+623 

+q 
13 (Tll-T'2) + 773+62-3 

q 23 

(3) (2) (5) 

Now 

q 13 e l-Y (nl-n 
3) (ý2 +n Pý3 +nl) 

q23 (el+n 
3)(e3 +nl) ' "2-e3) (nl-n 

3)' 

(2 Cle 3)(22 +n 3) 
=: ze 

1+n3)(22-23)* 

(6) 

Since we made the assumption that P 1- P3= 0(l), P 2- P3= 0(l) and n1=n2 

n3 then the above ratio must be of 0(l), and hence the interaction is 

non-resonant. 

The interaction continues with soliton (35) interacting with soliton 

(45), which can be shown to produce a near-resonant interaction (1345) with 

shifted solitons (14) and (13), and an intermediate soliton (34). Soliton 

(13) then interacts with soliton (12), which combines with (23) to form triad 

The interaction is now complete (Fig. 4.4b). 
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Fig. 4.4b The final interaction between (123) and (14). 

The structure of the configuration in Fig. 4.4b remains as it is as time 

goes on with the quadrangle formed by solitons (13), (23), (35) and (34) 

getting bigger and bigger. 

Essentially the earlier interaction between (456) and (26) in Fig. 4-4a 

has now become an interaction between (123) and (14) in Fig. (4.4b). Examining 

the triad (123) from (4.4.6) we have 

123 : -- 1+e 
Til 

+e 
712 

(1) (2) (3) 

which agrees with (4.4.5). 

,,, 
well have a different configuration from Fig. 4.4a or We may 

Fig. 4.4b. Depending on the gradients of (26) and (56), from Fig. 4.4a we see 

that it is possible for them to intersect. In fact, we have found from the 

numerical calculations that this is the case when P (n Zn <e <e In this 1123 

case beside interacting with (46), soliton (26) also interacts with (56) to 
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produce a non-resonant interaction (2356). Therefore an alternative 

configuration could be as in Fig. 4.5a. 

) 

Fig. 4.5a An alternative earlier interaction between (456) and (26) 

In the next interaction, soliton (35) interacts with soliton (45) to 

produce a near-resonant interaction (1345), as in Fig. 4.4b and solitons (12) 

and (23) interact to produce triad (123) as before; therefore we have a 

configuration such as Fig. 4.5b. 
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Fig. 4.5b An alternative final interaction between (123) and (14). 

At this stage triad (123) and the near-resonant section (1345) are moving 

on their own way with soliton (13) getting longer and longer; thus no other 

interaction will take place. 

So far we have discussed the interactions between a triad and a soliton 

under the assumption that n1 Zn 3- In this case we have found that the triad 

has experienced significant phase shift after the interaction. 

Let us now consider the case when nI-n3= 0(l). In this case, the 

interaction between a triad with parameters el, e 2' n1 and a soliton with 

parameters R 3' n3 does not produce significant phase shift since the 

interactions between the individual solitons are all non-resonant. 

Without loss of generality let us start the interaction between triad 

(123) and (26) with (123) behind (26). In this case we can no longer take 

RI <P 2 
<P 3 as before. The first interaction is simply shown as in Fig. 4.6a. 
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6) 

. .......... 

Fig. 4.6a A non-resonant interaction between (123) and (26) at earlier times 

As time goes on triad (123) will simply pass soliton (26) with very small 

phase shifts in the final triad and the final soliton (Fig. 4.6b). 

Fig. 4.6b The non-resonant interaction at later times 

The configuration in Fig. 4.6b remains unchanged but as we increase time, 

the triangle formed by solitons (14), (45) and (46) becomes bigger. 
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We have thus seen that in the interaction between a triad with parameters 

Pi) P 2' n1 and a soliton with parameters P 3' n 3' significant phase shift is 

obtained in the final triad when n1Zn3P while the phase shift is very small 

when n1-n3= 00). 

4.5 Interactions between two triads 

If we put n1=n3 and n2=n4 into the four-soliton solution (4.2.3), the 

analysis in Section 4.3 will end up with a Wronskian (4.3.14) of the functions 

given by (4.3.15). We thus have 

3 

-n 1e 

(-n 
1 x) 

3e 

(2 

(-n 
2x) (2 

2 x) (2 
4 x) 

+e+e 

-n 2e2e2 +VO 

and after removing a factor, A becomes 

1+(, 
o 1 +n1)x (, 0 3 +n 3)x 

I 
(e 

2 +n 2)x (e 
4 +n 2)x 

1 +n1)x 
2 

(2 
3 +n 3)x 

2+p2e 

(2 
2 +n 2 

)x 
+p 4e 

(2 
4 +n 2 

)x 

(4.5.1) 

where the arguments of all the exponentials have been shortened as before. 

Note that 

2_ 233a. 
(n -n i) (e +n ) (e +n )x - (2 n )y - 4(, 0 +n )t + logý ' Lp> 

eii -= eiiiiii 
(n 

1 +e i 
)(n 

2+2i) 

for p=1,2 and n pe n,, i= 11 2,3,4. 

I 

We assume for convenience that P1<R3<nI<n2<e2<p 4' n1n2 and 

P>0 for i=1,2,3,4 where P1 is defined in Section 4.4. 

Now, in the region of the maximum of the triad with parameters RI, R 3' nI 

we have 
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Q ly - (P 12 +3Q 12 )t -- 0 

23-0. Q3y (P 3 +3Q 3 )t ý 

which gives 

Hence 

Q3(pl 2 
+3Q 12)- Ql(P3 2 

+3Q3 
2) 

It Q3 - Ql 

(P 12 +3Q, 
2 (P3 2 

+3Q 32 

Q3-Ql 

p 2(x - Q2Y - (P 22 +3Q2 
2M 

2 
-(Q3-Ql)(p2 

2 
+3Q2 

2 (Q2-Q3)(Pl 2 
+3Q, 

2 
Q3-Ql t 

(Q 2-Ql)(p3 
2 

+3Q3 
2 )Itl 

p 4(x - Q2Y - (P 22 +3Q 22 )t) 

4 HQ -Q )(P 2 
+3Q 

222 
Q3 -Q 1 

11 3144 (Q4--Q3)(Pl +3Q1 

(Q 4-Ql)(P3 
2 

+3Q 32) It. 

(4.5.2) 

(4.5.3) 

It can be shown, as we did in Section 4.4, that the coefficients of t in 

(4.5.2) and (4.5.3) are both negative, and furthermore that 

(Q3-Ql)(p4 2 
+3Q4 

2 )+(Q4-Q3)(Pl 2 
+3Q, 

2)_(Q 
4-Ql)(p3 

2 
+3Q 32) 

(Q 3-Ql)(p2 
2 

+3Q 22 )+(Q2-Q3)(Pl 2 
+3Q 12 )-(Q2-Ql)(p3 2 

+3Q 32 )- 

Therefore as t -* -m both (4.5-2) and (4.5.3) tend to +00, with 

p4 (X-Q 2 Y-(P 22 +3Q 22 
)t) ) P2(x-Q2y-(p2 

2 
+3Q2 

2 )t)- 

Hence as t -ý- co) (4.5.1) becomes 

1 +n1)x (e 
3 +n 1 

)x 

(e 1 
+n 1 

)x (e 
3 +n 1 

)x 

(4.5.4) 

(4.5.5) 
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which is equivalent to 

A=1+e 
TI 1 +6 14 

+e 
T13 +6 34 

as t -ý - 00 p (4.5.6) 

where -q,, 6 are defined as before. 

The expression given by (4.5-6) represents the triad with parameters e 
ly 

3' n1 with its individual solitons centred on -q 1+6 14 =0v 713 +6 34 =0 and 

771--(13 6 14-ö 34 ý-- 0. 

Now as t -+ + 00, both (4.5.2) and (4.5.3) tend to - (n and thus (4.5.1) 

becomes 

which yields 

+1 
+n Ox 

3 +nl)x 

(e 
i +n dx 

+ 
(P 

3 +nl)x 

e 
TI I+e T13 

as t -+ + co. (4.5.7) 

This is the same triad as (4.5.6), but the individual solitons are now 

centred on -q 1= 0' T72 =0 and -q 1- 772 = 0. 

The expressions given by (4.5.6) and (4.5.7) show that the triad has been 

shifted after the interaction. The triad which was originally represented by 

the intersection of lines T7 +6 -' 0 and -q +60 before the interaction 1 14 ': 3 34 

(4.5.6) has then become the intersection between 77 1=0 and -q 3=0 after the 

interaction (4.5.7). 

We shall now explain the detail of the interaction under the above 

assumptions. Expanding (4.5.1) we find 

A1+e 
77 1+e T'2 

+e 
T73 

+e 
774 

+q 12 e 
T71 +Tj 

2+q 
14 e 

TI 1 
+T7 

4 

(1) (2) (3) (4) (5) (6) (7) 

+q 23 e 
T12 +T7 3+q 

34 e 
'Q3 +Tj 

4 (4.5-8) 

(8) (9) 

1 

-n1 
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We have already specified the triad with phase P19 R3' n1 before the 

interaction by (4.5.6). This is also recognized as triad (579) from (4-5-8) 

since 

A 579 : -- e 
T14 

[1 +e 
T11 +6 14 

+e 
T13 +6 34 1. (4.5.9) 

(5) (7) (9) 

This triad will then interact with a triad with parameters R 2' e 4' n 2* Such 

triads are recognized from (4.5.8) as (135), (267) and (489). For the values 

of P's and n's used in the numerical computation in Section (4.6), it can be 

shown that (267) will first interact with (579). The corresponding A for 

triad (267) is obtained from (4.5.8) as 

267 =e 
771 

[1 +e 
'r'2 +6 12 

+e 
-04 +6 14 1- (4.5.10) 

(2) (6) (7) 

Now soliton (27) from triad (267) interacts with soliton (57) from triad 

(579). Since nn, this is a near-resonant interaction producing -ýýe 12 

intermediate soliton (25). The post-interaction solitons must respectively 

contain the numbers (2) and (5) and another common number taken from the 

unused terms in (4.5.8). The only choice is soliton (12) and soliton (15). 

If (67) and (79) are allowed to intersect then the interaction between 

these solitons will be non-resonant. The post-interaction solitons are (68) 

and (89). The corresponding A for this interaction is 

A 6789 -q 12 e 
TI 1 

+Tl 

+q 14 

(6) (7) 

711+77 
4+q 

23 e 
T12+713 

+q 34 e 
773 +77 

4 

(8) 

= 34 e 
773 +T7 4 

ýl +e 
T' 1 -T'3 +6 14-6 34 

+e 
T12-774 +6 23-6 34 

+e 
711 -T'3 +77 2-714 +6 12 -6 34 

) 

(9) (7) (8) (6) 

q 34 eT'3 
+TJ 4(l +e 

T71-T'3 +6 14- 6 34 
+e 

172-T14 +6 23 -6 34 

(9) (7) (8) 
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+q 
12 q 34 T' 1 -T'3+614-634+r'2-774+623-634 

q 23 q 14 

(6) 

Now we have 

q 12 q 34 
(el-82)( p 3-84) 

q 23 q 14 
- "3-82)( 8 1-84) 

This is a 0(1) quantity and therefore implies small phase shift, and hence 

(6789) is a non-resonant interaction. 

The schematic configuration of the whole interaction can now be drawn as 

in Fig. 4.7a. 

Fig. 4.7a The interaction between triads (267) and (579 

at earlier times., 

In Fig. 4.7a, we have put the faster triad (267) "behind" the slower 

triad (579). 
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As we increase the time, soliton (26) from triad (267) and soliton (68) 

intersect to produce a non-resonant interaction (2468), and soliton (9-1+. ) 

produced from this interaction in turn intersects with (12) to produce triad 

(124). Meanwhile solitons (89) and (59) interact to produce another 

non-resonant interaction (3589). Soliton (38) from (3589) in turn interacts 

with soliton (48) from (2468) to produce a near-resonant interaction with 

intermediate soliton (34) and the shifted solitons (14) and (13). Solitons 

(13) and (15) interact to produce triad (135). The interaction at this stage 

is now complete (Fig. 4.7b). 

Fig. 4.7b The final intcraction between triads (124) and (135). 
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In Fig. 4.7b, triad (135), originally triad (267), has moved "in front" 

of triad (124), originally (579). Examining the corresponding A's we find 

from (4.5.8) 

A 135 +e 
T12 

+e 
T14 

and 

A 
124 : -- 1+e 

Til 

+e 
T13 

. 

The last expression is exactly (4.5.7). 

Fig. 4.8a An alternative interaction between triads 

(267) and (579) at earlier times. 

We note here that depending on the slopes of (67) and (79), these two 

solitons might not intersect. Therefore an alternative to Fig. 4-7a is given 

by Fig. 4. Sa 

However solitons (67) and (79) interact at last to produce a non-resonant 

interaction (6789). Solitons (68), just produced, interacts with soliton (26) 

to produce also a non-resonant interaction (2468), while soliton (89) 

interacts with soliton (59), also producing a non-resonant interaction (3589). 
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The rest of the interactions are the same as in Fig. 4.7b. The full 

interaction is sketched in Fig. 4.8b. 

Fig- 4.8b The alternative interaction between 

triads (124) and (135) at later times. 

We have thus seen in the above that upon choosing nIn2 both triads 

experience significant phase shifts after the interaction. 

For the case nI-n2= 0(l), all 6 
ij 

's are very close to zero and 

therefore the phase shifts of all triads are very small. Thus the faster 

triad simply sweeps over the slower triad and all the intersections between 

individual solitons produce only non-resonant interactions. 
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4.6 tations 

Some numerical computations have been carried out for the interactions 

between a triad and a soliton and between two triads. The expressions for A 

(4.4.6) and (4.5.8) are first calculated and then the full analytic solution 

(4.2.2) is used to obtain the actual solution. 

We follow the method previously used by Anker and Freeman (1978) in 

plotting the solution graphs by using symbols. The main procedure is to draw 

the lines on which the amplitudes of all individual solitons are centred. 

This is done by locating all the possible local maxima in a run. These local 

maxima are the amplitudes of some solitons. In order to make the result 

easier to interpret we have chosen the values of parameters eI 's and n1 's in 

such a way that the amplitudes of all possible solitons arising from them are 

different. To each of these amplitudes a different symbol is allocated. 

These symbols are then plotted in the region of their existence in the x-y 

coordinates. 

For the interaction between a triad and a soliton, three different sets 

of R1 's and nI 's are used and they are listed in Table 4.1a. The slopes of 

the phase lines are given in Table 4.1b while the amplitudes and the symbols 

used are given in Table 4.1c. In all the calculations we take aI=1 for 

simplicity. 

For the values of e1 's and n1 's in Set 1, we find that expression 

(Q 22222 
+3 

2 
3-Q2) 

(P, +3Q, ) - (Q2-Ql)(p3 +3Q3) + (Q 
3-Ql 

)(P 2 Qý) 

is negative. Thus as t -+ -OD we have triad (4.4.4) while as t -+ +oo we have 

triad (4.4.5) 



Set 1 Set 2 Set 3 

e1 1.0 -1.0 -2.01 
e2 1.5 2.5 3.99 
e3 2.5 4.0 1.99 

n1=n2 2.0 2.0 3.01 

n3 2.0 + 10-6 2.0 + 10-6 1.41 
6 13 -16.013 -13.998 0.758 
6 23 -16.572 -16.708 -2.133 

Table 4.1a Data for Figures 4.9,4.10 and 4.11 

Set 1 Set 2 Set 3 

-0 1=c -1.0 -0.333 -0.199 
T12 =c -2.0 2.0 1.02 
T13 =c 2.0 0.5 1.72 
TI 1 -T'2 =c 0.4 0.667 0.50 

T) 1 -T'3 =c 0.286 0.333 0.788 

T72-TI3 =c 0.25 0.154 0.176 

Table 4.1b Slopes of phase lines for Figures 4.9.4.10 and 4.11 

Amplitude 

Soliton Symbol Set 1 Set 2 Set 3 

(12), (46) 1 4.5 0.5 0.5 
(13), (45) 2 6.125 10.125 24.5 
(14), (26), (35) 3 10.125 18.0 5.78 
(23), (56) 4 0.125 6.125 18.0 
(24) 5 1.125 12.5 - 
(34) A 0.5 1.125 

Table 4.1c Showim symbols and amplitudes used for 
Figures 4.9.4.10 and 4.11 

For the values of R1 's and n1 's in Set 1, we have plotted the interactions at 

several time instants but only those at T= -1.5, T= -0.5 and T=2.0 are 

% 
shown as they give different configurations. These are illustrated in 

Figures 4.9a, b and c. 
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At time T= -1.5 (Fig. 4.9a), soliton (26) interacts with soliton (46) 

from triad (456) to produce a near-resonant interaction (1246). The net 

configuration is exactly as in Fig. 4.4a. We note that at this stage 

solitons (26) and (56) do not interact due to their slopes. 

At time T= -0.5 (Fig. 4.9b), soliton (26) is about to interact with 

soliton (56) as the length of (46) is shrinking. We note that at this stage 

the length of (24) remains unchanged, indicating that all the solitons in the 

near-resonant interaction (1246) do not interact among themselves. 

The change is very clear at T=2.0 (Fig. 4.9c). In this figure (26) and 

(56) interact to produce a non-resonant interaction (2356); soliton (35), just 

produced in (2356), interacts with (45) to form a near-resonant interaction 

(1345); and soliton (13), produced from this interaction, interacts with (12) 

to produce triad (123). The whole configuration now agrees with Fig. 4.4b. 

If we increase the time further, the configuration remains the same but the 

length of (13) will be greater. 

For the values of P1 's and n1 's listed in Set 2 of Table 4.1a, we find 

that expression (4.6.1) is sti II negative. Again, in this case as t -+ -110 we 

have the triad given by (4.4.4) and as t -+ +co it is given by (4.4.5). The 

situation here is exactly the same as the one for Set 1 except that solitons 

(26) and (56) intersect. The interactions between the triad and the soliton 

arising from Set 2 are presented in Figures 4.10 a, b, c and d. 

At time T= -1.25 (Fig- 4.10a) as well as interacting with soliton (46), 

soliton (26) also interacts with soliton (56) to produce a non-resonant 

interaction (2356). Other interactions are similar to Fig. 4-9a. 

At time T= -0.5 (Fig. 4.10b), the configuration is the same as 

Fig. 4.10b except that the triangle formed by solitons (26), (46) and (56) is 

now becoming smaller. 
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A Change can be seen at time T=1.0 (Fig. 4.10c) when soliton (23) 

interacts with soliton (12) to produce triad (12-3), and solitons (35) and (45) 

interact to give a near-resonant soliton (1345). We note that the scale for 

Fig. 4.10c has been enlarged so that we can see soliton (34). 

Fig. 4-10d is for the interaction at T=1.5. Its configuration is 

similar to the one in Fig. 4.10c, except that the length of soliton (13) is 

greater than before. Therefore, if we increase the time further, the final 

triad (123) and soliton (14) will be very far apart. 

For the values of R1 's and nI 's listed in Set 3 of Table 4.1a, the 

interactions are plotted in Figures 4.11a, b. For these values of eI 's and 

n. 's the situation is different from those of the other two sets. It can be 1 

found that expression (4.6.1) is now positive, implying the associated A from 

(4.4.1 ), as t -+ -00, is 

1+ 
+n 1 

)x 

R 
(P 

1 +nl)x 

(2 
2 +n1)x 

10 

(2 
2 +n1)x 

y 

which is equivalent to 

e 
Til 

+e 
T72 

as t -4 -00 . (4.6.2) 

Similarly, we shall have 

A=1+e 
Til +6 13 

+e 
T12 +6 2-3 

as t -4 +cO . 
(4.6.3) 

However, since now n1-n3= 0(l), we then have 6 13 and 6 23 very small. 

Therefore the final triad (4.6.3) is not very much shifted from the original 

triad (4.6.2). Indeed all the interactions in this case produce small phase 

shifts, and they are illustrated in Figures 4. lla, b. 

At time T= -2.0 (Fig. 4.11a), triad (123) is placed behind soliton (26). 

Interaction between (26) and (23) produces a non-resonant interaction (2356). 
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At time T=0.25 (Fig. 4.11b), triad (123) has already overtaken 

soliton (26), as soliton (2,3) shrinks to nothing. Soliton (26) interacts with 

soliton (12) to produce a non-resonant interaction (1246); solitons (46) and 

(56) produce triad (456), while solitons (45) and (14) produce a non-resonant 

interaction (1345). If we increase the time further, the triangle formed by 

solitons (14), (45) and (46) will get bigger but the shape of the 

configuration remains the same. 

We next move to the interaction between two triads. For this purpose the 

values of Pl, e 2' R 3' p 4' n1=n 3' n2=n4 are chosen as 

R1=1.0, P22.5, e3=1.5, e4=3.2 
(4.6.4) 

n1= n3 = 2.0 n2=n4=2.0 + 10-6 

The values for 6.. 's are 13 
6 16.013 6 15.8 12 14 (4.6-5) 
6 23 16.6 6 34 16.2. 

We note that the values of 6.. 's are almost the same for all of them and Ij 

thus we should expect some non-resonant interactions to happen. 

In Table 4.2, we list all possible solitons, their amplitudes and symbols 

for use in Figures 4.12a, b, c and d. 

Soliton Amplitude Symbol 

(12), (36), (57) 4.5 1 
(14), (38), (58) 6.125 2 
(13), (26), (48) 10.125 3 
(15), (27), (49) 13.52 
(24), (68), (79) 0.125 4 
(25) 2.42 8 
(34) 0.5 9 
(35), (67), (89) 0.245 6 

Table 4.2 Amplitudes and sVmbols of the solitons 
for Figures 4.12a. b. c and d 

We note that this choice of e1 's and n1 's satisfies all the assumptions 

used in the analysis in Section 4.5. 
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From (4.6.4) we can see that the slope of soliton (67) [which corresponds 

to I ine -q 2- T14 = 0] is less than the slope of soliton (79) [corresponding to 

line -ql - T13 = 0]. Thus according to Fig. 4.7a they intersect. 

At time T= -1.0 (Fig. 4.12a) triad (267) is placed above triad (579). 

Solitons (67) and (79) interact to produce a non-resonant interaction (6789), 

while solitons (27) and (57) intersect to produce a near-resonant interaction 

(1247). 

At time T= -0.5 (Fig. 4.12b), the quadrangle formed by (27), (57), (79) 

and (67) is indeed getting smaller. Note that the scale has been enlarged in 

Fig. 4.12b in order to observe that (67) and (89) lie on a straight line. 

A significant change is recorded at T=1.0 (Fig. 4.12c) after the 

triangle has disappeared. In Fig. 4.12c we note that triad (135), which 

differs from the original triad (267) by some phase shift, is now below triad 

(124), which was originally triad (579). This means that the triad with 

parameters P 2' R 4' n2 has overtaken the triad with parameters el., R 3' n I' 

The configuration at T=2.0 (Fig. 4.12d) is the same as the one for 

Fig. 4.12c, except that both of the triangles are much bigger than they were 

before, and thus the two triads (135) and (124) are much further apart. This 

means that no further interaction will take place. 

All the plots presented in Figures 4.9-4.12 should therefore be 

sufficient to observe the interactions between triads. Interactions between 

three or more triads will be the same as for the two, but with more 

complicated configurations. 
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Cl IAPTER 5 

'IIIE CLASSICAL B(XJSSINESQ EQUATIONS: 

IIIE pq =0 REDUMON 

5.1 Some preliminaries 

It has been pointed out in the Introduction that the Classical Boussinesq 

equations 

u+ fv('+u)l I= 
tx' 3'xxx 

2 
v+ fu +vI t2x 

are just another form of the shallow water wave equations 

u+ fw(l+au)l -aw+ 0(4,0 20 
t2x6 xxx 

w+ fu + aw ,p+ 0(aP, p 20 
t 2-fx - ýE wxx t 

through the transformation 

v+v+ 0(aP, P 2 
xx 

(5.1.1) 

(5.1.2) 

(5.1.3) 

Indeed, substitution of (5.1.3) into (5.1.2) and keeping only the terms 

of 0(l), O(a) and 0(p) gives 

u+ ýv(l+au)'j +Ev+ 0(ap, p 20 
t 

av 
2x3 xxx 

2 
vt+ (u +21x+ 0(ap, p 0 

The Classical Boussinesq equations (5.1.1) can be recovered from (5.1.4) 

by setting a=0=1. We note here that the periodic wave solution and the 

one-soliton solution to (5.1.1) have been found by Krishnan (1982), and its 

multisoliton solutions by Nakamura and Hirota (1985) and Hirota (1985,19S6a). 

Following Nakamura and Hirota (1985), equations (5.1.1) are transformed 

into the bilinear forms 

(iD +D2 )TOT /=0 

(iD D+D3 )T*T/ 

xtx 

by using the transformations 
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OgTT /) 

c3 

Ox 

T/) 
(5.1.6) 

v= -2i ä ýx log 
T 

They have also found the N+l-soliton solution by solving (5.1-5) in the 

orm 

Tf= W(H 2N( Z), H2N_, (z) H N( Z» 
(5.1.7) 

T= T" -ýr 

where W is the Wronskian of N+l functions HN (z), H N+l(z)' ..., H 2N( z) and 

where H is the Hermite polynomial, 

HO(z) = 1, Hl(z) z, H 2(z) =z2 

H3(z) = Z3 - 3z 

H 
n(z) = (-') nez /2 dne -Z /2 

dz 

and z is defined by 

z= x/v&2it . (5.1.9) 

Hirota (1985) has considered what is termed as the "pq = c" reduction in 

relation with the Classical Boussinesq equations. Because our work in this 

chapter will be dealing with this kind of reduction problem, we shall now 

explain very carefully the meaning of the pq =c reduction. Let us first 

explain this in the sense used by Hirota. 

We start with the first modified KP hierarchy introduced by Jimbo and 

Miwa. (1983) Esee Appendix C]. The first two equations of this hierarchy are 

(D 
2 

+D )T*Tl =0 12 

(D 3 
-4D -3D D )T*Tl =0 1312 

where D. denotes the bilinear differential operator with respect to the 
I 

independent variable x The N-soliton solution of all equations under this 

hierarchy is described by them and also by Hirota (1985) as 
N (N) 

T= exp [2 ji 
1 

(TI 
i 

+ýP 
i)+2 11 ipi Tij] (5.1.12) 

P--O, I 
i= i>j 

N (N) 
exp Epi (ni +, P i) + :E pip iTij 

W=O, 1 i>j 



-128- 

where 
00 
. (pn n) x Tli 

i -q in 
n--O 

exp -r ij - 

(pi-P )(q, -q 

(p, -q )(q 
i-P 

exp ýp i=qi 

exp qp 

and all the 2 notations have been defined in equation (3.1.10). Here pi and 

q1 are the solution parameters which characterize the ith soliton and they are 

arbitrary for the solutions of all the equations under this hierarchy. 

Hirota (1985) showed that with T and T' defined by (5.1.12) and (5-1-13) 

respectively, the choice of 

Pi qi=c for all i (5.1.14) 

requires T and T' to satisfy 

(D 3 
+3cD -D 

)T*Tl =0 113 

Now let us look at a nonlinear evolution equation which has the bilinear 

orm 

(D 3 
+4cD +D D )T*Tl =0 1112 

(5.1-16) 

By using (5.1.16), equation (5-1.11) can be separated in the following 

way 

(D 3 
-4D -3D D )T*Tl 

1312 

(D 3 
+4cD +D D )T*Tl 4(D +DjD cD, )T*T 

11123 2+ 
313 (D '(D -4D )+ cD, ]T*T" 

+4cD +D D )T*Tl 4[D 11123+313 

3 
+D D )T*T' 43 )T*Tl (5.1.17) (D +4cD '(D +3cD, -D 1112313 

This means that T and T' which satisfy (5.1.11) and (5.1.15), must also 

satisfy (5.1.16). In other words (5.1.16) is satisfied by T and T', given by 

(5.1.12) and (5.1.13), provided that piqi=c for all i. Therefore (5.1.16) 

is said to be the pq =c reduction of (5.1.11). 

The pq =c reduction can also be explained in the following way. Let us 

define T and T' by 
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33 
T=P exp (2 pnx n)+Q e>cp( 2qnx 

n) 
n=l n=l 

T/ =pP exp( pnxn)+qQ exp( q nx 
n) 

n=l n=l 

(5.1.1s) 

where all other variables x, n>4 have been put tozaro as they do not 

actually appear in the equations. 

T and T' defined by (5.1.18) can be shown to satisfy the first two 

equations of the first modified KP hierarchy (5.1.10) and (5.1.11) for any P, 

p and q. If they are substituted into (5.1.15) or (5.1.16) we find that 

for pXq, p and q are related by pq = c. Now since equations (5.1.15) and 

are 'reduced' from the second equation of the first modified KP 

hierarchy through (5.1.17), we say that both equations (5.1.15) and (5-1-16) 

are the pq =c reductions of the first modified KP hierarchy. 

5.2 The first modified KP hierarchy 

In this section we shall claim that all the equations of the first 

modified KP hierarchy have the n-soliton solutions in the Wronskian form 

T= (n-i) 

T' 

=(c; ) 
of the functions 

(5.2.1) 

mm 

exp[ 2 (-p, ) rxr+Qi 
expE 7- (q drxr i=1,2,..., n . 

(5-2.2) 

r=l r=l 

The Wronskian notations have been defined in Sections 3.2,3.3 and also in 

Appendix B, m is the associated number of the independent variables which are 

present in the equation under consideration. We note that we have put -p 

instead of just pi in (5.2.2) in order to relate this analysis to earlier 

work on the Wronskian method. We also note that the Wronskians in (5.2.1) are 

defined for the derivatives of x 1, 

From the definition of 0i (5-2-2) we see that 

r oi 

ax, axr I 

(5.2.3) 
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Relation (5.2.3) will be used in calculating the derivatives of T and T' with 

respect to xr. 

For the single-soliton solution, T and T, assume the form (5.1.18) and it 

is not difficult to show that this pair satisfies the first two equations of 

the modified KP hierarchy. We now show that the n-soliton solution (5.2.1) 

satisfies equations (5.1.10) and (5.1.11). 

If (5.1.10) is expanded we find 

(D 2 
+D )T*Tl = (T +T )T" + T(T -T/ 2T T' (5.2.4) 12 2x 1x2 2x 1x2x1x1 

The derivatives Of T and T' are found by shifting the appropriate columns as 

usual, 

Tx = (n-2, n) 

T 
2x = (n-2, n+l) + (n-3, n-l, n) 

Tx = (n-2, n+l) - (n-3, n-l, n) 

T (n-l, n+l) x1 

T 
2x 1 

(n-l, n+2) + (n-2, n, n+l) 

T (n l, n+2) - (n-2, n, n+l) x 

(5.2-5) 

Substituting T and T' and all their derivatives (5.2.5) into the right 

hand side of (5.2.4) we find 

2 (D 
1 +D 2 

)T*Tl = 2f(n 1)(n-2, n, n+l) - (n-2, n)(n-l, n+l) 

+ (n-2, n+l)(n)l. (5.2.6) 

The expression on the right of the above equation can be written as the 

Laplace expansion of a determinant 

n-2 n-1 n n+ 1 

n-2 n-1 n n+l 

which can be shown to be zero, by using row and column operations. We have 

therefore shown that the Wronskian solutions T and T' defined by (5.2.1) 

satisfy the first equation of the first modified KP hierarchy. 
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For the second equation of the first modified KP hierarchy we have 

3 (D 
1 -4D 3 -3D 1D2 

)T'T*' (T 
3x 1 

-4T x3- 
3TX 

1x2 

)T 

T(T' -4T' +3T' + 3(T -T )T 
3x 1x3x1x 2) x2 2x 

1xI 

+ 3T (T" +Tf 
x1x2 2x 1 

(5.2.7) 

Beside the derivatives in (5.2.5), some extra derivatives are also needed 

and we find 

T (n-2, n+2) + 2(n-3, n-l, n+l) + (n-4, n-2, n-l, n) 3x 
i 

Tx (n-2, n+2) - (n-3, n-l, n+l) + (n-4, n-2, n-l, n) 

Txx (n-2, n+2) - (n-4, n-2, n-l, n) 

T (n-l, n+3) + 2(n-2, n, n+2) + (n-3, n-l, n, n+l) 3x 

Tx (n l, n+3) - (n-2, n, n+2) + (n-3, n-l, n, n+l) 

Txx (n l, n+3) - (n-3, n-l, n, n+l) 

(5.2.8) 

Now substituting T, T' and all their derivatives (5.2.5) and (5.2-S) into 

the right-hand side of (5.2.7) we find 

(D 3 
-4D -3D D )T*T" 

312 

6[(n"'1)(ný3, n-l, n, n+l) (ný3, n-l, n)(nýl, n+l) 

+ (n-3, n-l, n+l)(n)] - 6[(n-1)(n-2, n, n+2) 

(n-2, n)(n-l, n+2) + (n-2, n+2)(n)] 

(-i ) n+l 6 
n-3 n-I n-2 n n+l 

n3 n-I n-2 n n+l 

n-2 n-1 n n+2 

n-2 n-1 n n+2 
(5.2-9) 

All the determinants in the last expression can be shown to be zero as 

usual and thus is verified the solution of the second equation of the first 

modified KP hierarchy. 

Indeed, we can always show that the Wronskian. solutions defined by 

(5.2.1) satisfy the rest of the equations of the hierarchy, but these two 
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examples are sufficient for the purpose of the work in this chapter. 

5.3 The va = -c reduction 

We are interested in the equations 

(D 2 
+D )TOT/ 0 

12 

(D 3 
+4cD +D D )T*T/ 

11120 

(5.3.1) 

(5.3.2) 

because they are related directly to the bilinear forms of the Classical 

Boussinesq equations (5.1.5) by some independent variable transformations. As 

we have seen earlier, equation (5.3.1) is the first equation of the first 

modified KP hierarchy, while (5.3.2) is a reduced equation of the second 

equation of the hierarchy, or as we rewrite from (5.1.17) 

(D 3 
-4D -3D D -T, 131 2)T 

3 
+D D )T*Tl -43 (D +4cD '(D +3cD, -D 

)T-T' (5.3.3) 
1112313 

If we put n=1 into (5.2.1) and substitute the resulting T and T' into 

(5.3.2) we shall find 

(pq+c)(p+q) 2= 

We thus have pq = -c for qX -p. The same result would also be obtained if we 

applied similar treatment to equation 

(D 3 
+3cD -D 

)T*Tl =0 113 

Therefore by virtue of (5.2.2) we say that (5.3.2) is the pq = -c 

reduction of the first modified KP hierarchy. We have already shown that 

relation pq = -c satisfies (5.3.2) for the single-soliton solutions. We shall 

now prove this is also true for the case of the n-soliton solutions (5.2.1). 

With the relation p, q, = -c, the function (5.2.2) can be written as 

22 
P1 exp[ I (-P drxr]+Qi expE 2 (_ c )rx 

r] 
(5.3.4) 

r=1 r=1 
Pi 

where we have put xr=0, r>3 for convenience. From the form of this 

function, we may deduce immediately that 

P 
(k) (k+l) 

+c (5.3.5) 
ii 
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where 

p (p +c (5.3.6) 
ip 

and 0 
(k ) 

denotes the kth derivative of w*i+h Y-esP41cf 4-'0 '1 i 

We note that relation (5.3-5) is an identity for the single-soliton 

solution. Anidentity for the n-soliton solution may also be obtained from 

this relation by using the determinant property 
NN 
2 ak al, a 2'. "'a. 

.2a,, 
a 2 ..., aajaj+,,..., a,, (5.3.7) 

k=1 J=1 

where ala 2) ... ,aN are the columns of an NxN determinant la,, j and aa 

denotes the jth column with 

aa ij 

aa. 
aa 2j 

LLLN'ýLN jj 

If we apply (5.3.7), for example, to the Wronskian (N-1) of the functions 

01 which satisfy relation (5.3.5), we find 

N 
Y- pi (N-1) = (N-2, N) + c(-l, N-1) 

i=l 

Now, expanding (5.3.2) we find 

(D 3 
+4cD +D D )T*T/ 

-,: 
(T +TX +4CT )T 

1112 3x 11x2xI 

T(-T*' +T' -4CT' 3x 
1x1x2xI 

- (3T +T )T' +T (3T' -T /)- (5.3.8) 
2x Ix2x1x1 2x Ix2 

Subsituting T, T' (5.2.1) and their derivatives which have already been 

calculated before E(5.2.5) and (5.2.8)] into the right-hand side of (5.3. S), 

we f ind 

(D 3 
+D D +4cD, )T*T" 

12 

[2(n-2, n+2) + 2(n-3, n-l, n+l) + 4c(n-2, n)](n) 

-(n-1)[2(n-2, n, n+2) + 2(n-3, n-l, n, n+l) + 4c(n-l, n+l)] 

- [4(n-2, n+l) + 2(n-3, n-l, n)](n-l, n+l) 

+ (n-2, n)[4(n-2, n, n+l) + 2(n-l, n+2)] (5.3.9) 
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The expression (5.3-9) can be simplified into a convenient form by 

substituting (n 3, n-l, n+l)(n) and (n-2, n)(n-l, n+2) by an expression which can 

be found from (5.2.9). Thus 

(D 3 
+D D +4cD, )T*T" 

12 

-4((n 1)(n 3, n-l, n, n+l) - (n-2, n)(n-2, n, n+l) 

+ [(n 2, n+l) + c(n-1)](n-'l, n+l) 

- [(n-2, n+2) + c(n-2, n)](n)) (5.3.10) 

Making use of the property (5.3.5) we see that 

(n-2, n+l) + c(n-1) = (n-2, (n+l) + c(n-1)) 

(n-2, p(n)) 

and 

(n 2, n+2) + c(n-2, n) = (n-2, (n+2) + c(n)) 

= (n 2, p(n+l)) 

where p(k) is a column given by 

Piol 
(k) 

p(k) P2 2 
(k) 

(5.3-12) 

(k) 

. 
PnOn 

Thus, by using (5.3.11), the expression on the right of (5.3.10) is 

written as 

-4((n-1)(n-3, n-l, n, n+l) - (n-2, n)(n-2, n, n+l) 

+ (n-2, p(n))(n-l, n+l) - (n-2, p(n+l))(n)) 

The above expression can now be written in the form of the Laplace 

expansion of a determinant 

'A _, 
n-2 n- 1 p (n) p(n+l) 

I. 
n-3 n-2 n-1 n n+1 

I 

Multiplying each of the last n rows of this determinant by pi gives 

4(-l n-2 n-1 n p(n) p(n+l) 

n 
TT Pi 

p(n-3) p(n-2) p(n-1) p(n) p(n+l) 

i=l 

Subtracting the bottom n rows from the top n rows and using relation 
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(5-3.5) yields 

n n-2 -(n-2) -c(n-4) -c(n-3) -c(n-2) 

(n-3) n-2 n-I n n+l 

where (n-2) denotes columns with derivatives 2,3, ..., n-2. 

By adding the individual columns, the last determinant becomes 

n-2 
4(-1 )n (5.3.13) 

(n+l) 

which is obviously zero, since it contains n+1 zero columns in the first n 

rows. This means that we have shown T and T', defined by (5.2-1), with 

functions 0 i, s defined by (5.3.4), satisfy equation (5.3.2). 

We note here that similar proof can also be applied to equation (5.1.15). 

5.4 The pq =0 reduction 

If we now choose Pi= (-Pi)- r and Q 
im = (q 

i)-r in equation (5.3.4) then we 

have 
fi TI i 

er+e 
(q 

i 

where 
2 
1 (-P m 

M=l 
(5.4.2) 

2 
T7i = .7 

(q 
i xm 

M=l 

Introducing Pi and QI in this way has the effect of shifting all the 

derivatives in T and T' r places down. We may now write 

T (r n-r-1) 

(5.4.3) 

(r-1 n-r) 

where k denotes all the negative derivatives from k, k-1, ..., 1. The 

functions 0i which define the Wronskians in (5.4.3) are not of the form 
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any more but 

fi TI 
i 

(5.4.4) 

We now look at the first r columns of T and the first r-I columns Of T'. 

The element of the first column Of T, for example, takes the form 

fi 77 i 

ee 
(-Pi )r (q 

i)r 

Now, if we let qi -+ 0 then the dominant behaviour of this expression 

comes from the inverse powers of qi and the exponential term e77' is unity. 

Indeed we have 

fi T7 
i 

(-P 
i)r 

(q, )r qr i 

Therefore in this limit we have 

(5.4.5) 

], n"'r) 

where 
r] denotes the columns )r, r-1 

qqiqi 

However, it is more convenient to express (5.4.5) in terms of p, since in 

the I imi tqi -+ 0Ei. e. the pq =0 reduction] the function is 

f -P x +p x 
+ei+ei1i2 (5.4.6) 

By using the fact that pq = -c we then write (5.4.5) as 

r T= ([(-p) ]�n-r-1) 

r-1 ], n-r) . 

(5.4.7) 

certain symmetry will be necessary if the physical variables u and v 

[equation (5.1-1)] are to be real. This will be discussed in Section 5.5. 

For the present it will be sufficient to say that we require T and T' to be 

complex conjugates as far as possible. This may be achieved by taking n= 2N 

and r=N. Thus (5.4.7) becomes 
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-'-N T= ([(-p) ]�N-1) 

(5.4.8) 

N-1 
T (E(-P) I, N) 

If we make a further choice that p* then i+N -pi 

Oi+N +e 
fi+N 

+ e-f' 

We thus have 

N-1 

N-1 (-PN) (-PN) 

1+e 
Ei 

(-pl)e 
Ei 

... (-pl) Ne Ei 

1+e 
EN 

(-p 
N 

)e 
EN 

... (-PN) Ne fN 

(P*, ) N-1 
(P*l) 1+e 1 (pl)e 1 (P«»1) Ne 

(5.4.9) 

-f 
*-53, E 

f 
N-I NNN-N (PN) (P*) I+e (p*)e 

... (p e 

INN 

-x 
Multiplying each of the first N rows by e-fi and the last N rows by e 

fi 

T' 

we find 

T' 

N-1 --fl -fl 
(-Pl) 

:e 
(-P 

1 
)e 

(-PN) N-1 
e 

-fN 
(-pl)e-fN 

f*f* N-1 11 (pl) e (p*)e 
1 

1+e 1 (-pl) 

1+e (-PN) 

1+e Wi 

(-Pl) 

(-PN) N 

(P*) 
N 

IT 
i=l 

(p N1eN (p )e N I+e N (P, *) (P*) N 
NNNN 

This form can be simplified further by exchanging the columnbetween the first 

and the last, the second first and the second last and so on. The rows of the 

resulting determinants are also exchanged in this way. The sign of pi and pi 

may also be changed by multiplying the relevant columns by a power of -1. The 

resulting determinant is now 
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f 
34 

34 N N-1 1 (-Pl) 1+e (-p3*) ee 1 

Nf 
34 

1+e 
N (-p*)e N 

... 
(-P") N-1 

eN (-PN) 
NNN 

N -fi -fi N-1 -fi 
(pl) 

... (pl) 1+e (pl)e 
... 

(PI) e 

*N -fN -fN N-1 -fN 
(PN) 

... (PN) 1+e (PN )e ... (PN) e 

We thus have 

NN (-1) Ue1 
i=1 

Nf 34 
T _, )N IT e 

i-fi 
T (5.4-10) 

i=l 

which means that apart from an exponential factor, T' is just the complex 

conjugate Of T. 

We now show that T and T' defined by (5.4.8) satisfy the equation for the 

pq =0 reduction Ei. e., equation (5.3.2) with c 0], 

(D 
3 

+D D )T*T' =0 112 

Expanding (5.4.11) as before we find 

(D 
3 

+D D )T*T 
112 

(T +T )T T(T' -T' 3x 
1xIX2 

3x 
1x1x2 

-(3T +T )T +T (3T" -T' (5.4.12) 
2x 

1x2xIx1 
2x 

1x2 

Since T and T/ defined by (5.4.8) are the special case of the more 

general solution (5.2.1), one may conclude that the substitution Of T, T' from 

(5.4.8) and their derivatives into (5.4.12) would eventually give the 

determinant 

ýN (-P) N-2 

(5.4.13) 

- N-1 N+l 

by comparison with the general result (5.3.13). 

We shall show from first principles that (5.4.13) is true. The 

derivatives Of T are 
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N Tx], N-2, N) 

TNN 
2x (E(-P) ], N 2, N+l) + (U-P) ], N-3, N-1, N) 

TNN 
3x (U-P) ], N-2, N+2) + 2(E(-P) ], N-3, N-1, N+l) 

N 
+ ], N-4, N-2, N-1, N) (5.4.14) 

T 
N] N 

x2 
([(-P) N-2, N+l) - (E(-P) ], N-3, N-1, N) 

TýNN 
xX (E(-P) ], N-2, N+2) - (E(-P) ], N-4, N-2, N-1, N) 

The derivatives Of T' are very similar to those Of T, except that the 
N- N-1 constant columns E(-P) ] are changed to E(-P) ] for T' , and for the rest of 

the terms we simply change N to N+1. For example we have 

N-1 
Tx1= ([(-ýP) ], N-1, N+l) 

Using the above we find from (5.4.12) 

(D 3 
+D D )T*Tf 

112 

ýN N-1 
-4f(E(-P) ], N-1)(E(-P) ], N-3, N-1, N, N+I) 

N N-1 
-(E(-P) ], N-2, N)(E(-P) ], N-2, N, N+l) 

-N N-1 - 
+(E(-P) ], N-2, N+1)(E(-P) ], N-1, N+l) 

N N-1 ^ 
-(E(-P) ], N-2, N+2)(E(-P) ], N) 

EP N-2 N-1 

= (-l) N 
4ý 

- N-1 
E (-P) ] N-3 N-2 

N N+ 1 N+2 

N-1 N N+l 

(5.4.15) 

The 4N x 4N determinant in (5.4.15) can be shown to be zero by realizing 

an identity relation which is equivalent to (5.3.5). In the present problem 

we simply have 

_p x +P2 x 
+e1i2 (5.4-16) 

which gives 

(-P (k) (k+l) 
for kX0 (5.4.17) 

and 
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(-p -P + 00) 

If we multiply the last 2N rows of the determinant (5.4.15) by -p i we 

f ind 

(D 3 
+D D )T-T' 

112 

ýN 
f-1) N4 [(-P) N-2 

2N 
TI (-p 

i=l 

N-1 N N+l N+2 

N-1 N N+l N+2 

(5.4.18) 

"N 
where ([(-p) ] indicates the columns with powers 

(-Pi) NI( 
-pi) 

N-1 
% .... (-Pi) 2, 

and ' indicates the first column is -p, (l+e 

Now, subtracting the second 2N rows from the first 2N rows of the determinant 

(5.4.18), and adding the appropriate columns we find 

N 
f_IjN A 

IU-P) 
] N-2 

k-11 --I 
2N 

IT (-P 
i=l 

' 19 N-2 N-1 N N+l N+2 

(5.4.19) 

This determinant is obviously zero, because there are 2N+1 zero columns in the 

first 2N rows. 

We note that (5.4.19) is simply 
N 

(-l) N4 E(-P) I N-2 

N-1 E(-P) N+I 

the form we mentioned earlier (5.4.13). 

Thus, the functions T and T' given by equations (5.4.8) satisfy 

(D 2 
+D )T*T 0 

12 

(5.4.20) 

(D 3 
+D D T*T 0 

112 

in which the first equation is from the first modified KP hierarchy, while the 

second is the equation for the pq =0 reduction of the hierarchy. 
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5.5 The Classical B-oussinesq equations 

The Classical Boussinesq equations (5.1.5) are recovered from (5-4-20) by 

choosing x1=X, X2= -it to give 

(iD +D 
2 )T*T 0 

tx 

(iD D +D 
3 )T*T 

xtx 

The N-soliton solutions are thus given by [equation (5.4.8)] 

T= ([(-p) ]�N-1) 

«-N-i T' = ([(-p) ]�N) 

(5.5.1) 

(. 5.5.2) 

34 

wi th p i+N = -p, and the single-soliton solutions 0i= I+e 'oi+N = 1+e 

i= where 

2 Ek = -P kx- ip kt 
(5.5.3) 

The physical variables u, v, which satisfy equations (5.1.1) are related 

to T and T* by the transformation Eequation (5.1.6)] 

a2 
u 22ýý lOgTT') 

ax 2 

'I 
-2i 

c log 
T) 

iaý--Xý T 

(5.5.4) 

Recalling from the previous section, T and T' are complex conjugates 

except for an exponential factor, 

exp :E (f 
k 

k=l 
(5.5.5) 

The exponential factor does not contribute to u and thus we have 

-1 -a2 U 1(10g TT 
ax 2 

which is obviously real. 

However, the exponential factor gives an added constant for v, 
X 

log 
(3x 

(5.5.6) 

The constant A can readily be removed by a Galilean transformation, and thus v 
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is real. 

5.6 The rational solutions 

It has been mentioned in Section 5.1 that Nakamura and Hirota (1985) 

obtained the solutions of the Classical Boussinesq equations in the Wronskian 

form of Hermite polynomials. 

We shall now show that these solutions can also be produced from the 

pq =0 reduction problem discussed earlier. 

We start with writing [Abramowitz and Stegun (1965)] 

f -px 1 +P x2 co 1 ix 1%n E% (iPX2) ee2 nl 
Hn 

n= 2 

where Hn is an Hermite polynomial and we are interested in the solutions for 

plyp2y .... P2N -+ 0. 

Consider first 

N-1 ^ 
3 N). 

We have from (5.6.1) 

r 
'ok 0r 

Ek 
1 +e 

(3x 
r c3x r 11 

co 1arH 
(-q) 

% 
ix I 

2 
n! r 

(ip 
kx2 with p 

n--O ax 1 
2x 2 

00 rH 
n(71) r%n 

= -7 
L- i (ip 

kx 2) 
n=r n! arl r 

[2xi 
ýjý 

OD 
1'r 

(ip x 
5ý ) 

(n-r)! -H n-r 

[2 

xi 
2] k2 

n-=r 2 
5ý 

1H (-n) ir (ip x 
54 ) n+r 

9 
n=O 

n! n 

[22jý 
k2 

where we have used the relation 

(5.6.2) 

aH (s) n 1_ H (S) (5.6.3) 

'asr 
n ý-n-r)! n-r 
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We note that in the expression for 
ar Ok 

. the term 
[2xi 

ý62 
]r 

can be factored 
(3xr 12 

out of the summation and is also independent of x Therefore it does not 

contribute to the solutions u, v and thus we simply write 

r n+r n+r Ok co Pk z 

r .2 n1 
Hn (71) (5.6.4) 

axi n--O 
where z= ix 

% 
2' 

In these terms, T' now takes the form 

nn n+l n+l 
N-1 00 p1z CO Pi z 

T (-p + 
n! 

!n (77), 
n' 

Hn (77) 

n--O n=O 
n+N n+N 00 Pi zH 

2 
n1 n(T') 

n--O 
Since the first N-1 columns are simply (-p 

i 
)j, j=1,2p .... N-1, 

multiples of these can be subtracted reiteratively from the last N columns 

until all the terms containing (-pi), (-pi) 21... 
I (-Pi) N-1 disappear from the 

summation. 

Now, the first N columns remain unchanged and the N+rth column takes the 

orm 
n+r n+r 00 Pi z 

2 
nI -H n(77) n=N-r 

N+n N+n 
00 Pi z 
2-Hr=1,2, ..., N (5.6.5) 

n=0 
(N+n-r)! N+n-r 

All the elements Of T' can be written in the form A (pi) 

i, j = 1,2, ..., 2N. For pllp2,? ... IP 2N -4 0, writing the elements Of T' in 

this way we have 

Ia i-l Ai (p 
T lim 

i-1 - (5.6.6) 
Pi -+ 0 43P i 

i=l,..., 2N 

as the largest term in an expansion in p it ... ' P2N (pi36pj' i/A. 

Introducing the limit pl, P2 9 ... ' P2N -+ 0 by using (5.6.6) we find 
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T 

T ------- T 
22 

where 

o 1+H 0 

T 
-0) 

-(2! ) 

and 

,, N+i-1 00 N+n N+n 

T lim 0z PN+i 
H (TI) 22 

P--10 ap 
N+i-1 (N+n-j)! N+n-j 

i=l, I 
.., 2N 

N+i n--O 

z 
N+i-1 H N+i-j-l(-q) (N+i-l)! 

(N+i-j-l)! 

in which the contribution only comes from the term with n= i-1. Since T 11 is 

independent of x1, we just have T' = T' However, in T' the term 22* 22 

z 
N+i-1 N+i-l)! can always be factored out, leaving 

/-H T- (N+i-j-l)! (5.6.7) 

The form Of T' in (5.6.7) can be rearranged so that the Nth row becomes 

the first, the N-lth becomes the second and so on; we thus write (with 

i -ý 
H 2N-i-j(T7) 

(2N-i-j)! - 
(5.6. S) 

Written in this form, T' is a Wronskian in both rows and columns. The 

matrix is thus symmetric. 

We note that, if in (5-6.8) N is replaced by N+l, we find the N+1-soliton 

solution 

TH 
2N-i-j+2(T7) 
(2N-i-j+2)1 

the form obtained by Nakamura and Hirota (1985). 

We now consider 
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N (5.6.9) 

By using (5.6.4) we can write 

00 PnznH (T7) "0 p n+l z n+l 

TN 
N-I 

+2in 7- H 
n--O n' n=O n' n 

n+N- 1 n+N- 1 
00 pz 

.2 nI 
Hn 

n=O 
Reiterative subtraction of the multiples of the first N columns from the 

last N-1 columns yields for the N+rth column, r=2N 

00 n+r n+r Pi z 
jý-ý Hn(-q) 

n=N-r+l 

CO n+N+ 1 n+N+ 1 
z Pi 

H (5.6.10) 
(n+N-r+l)! n+N-r+1(77) 

n=O 
If (5.6.6) is applied to T it will give zero, so we must consider the 

next term of the expansion and take instead 

T lim 
al Ai (pi) 

p0 ap 
i=1,2,.., 2N 

Using this we find 
I TI 

T ------- 
T 

22 

where 

-2 
T -(3)! 

-(N! ) 

and 
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T 22 
lim 

Pi -40 

i=1,2 ..... 
2N 

Co N+n N+n 
pi 

H 'OP (n+N-j+I)! N+n-j+l 
n=O 

z 
N+i H N+i-j+I(Tl) (N+i)! (N+i-j+l)*, 

where the non-zero contributions only come from the terms with n=i. Again, 

all the coefficients z 
N+i (N+i)! can be factored out of the determinant and 

thus 

T=TH 
N+i-j+l(TI) 

22 (N+i-j+l)! 

Changing the rows as before, i -ýN-i+l, we find the Wronskian form 

TH 
2N-i-j+2(77) (5.6.12) 

(2N-i-j+2)! 

We have thus found the rational solutions of the Classical Boussinesq 

equations by considering the pq =0 reduction problem using the Wronskian 

technique. 
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CIIAP17ER 6 

THE ORDINARY B(XJSSINESQ EQUATION 

6.1 Derivation of the ordinary Boussinesq equation from the shallow water 

wave equations 

The ordinary Boussinesq equation is normally written in the form [Hirota 

(1973b), Nimmo and Freeman (1983)] 

u tt -u xx - 6(u 2 )XX -u xD= =0. (6.1-1) 

This equation was introduced by Boussinesq (1872) to describe the propagation 

of long waves in shallow water. The equation has also been derived by Zabusky 

(1967) to describe similar waves in a nonlinear one-dimensional lattice. 

We shall now derive the ordinary Boussinesq equation from the shallow 

water wave equations 

Tj + ((l+aTI)wl aw 
+0 (aB, j3 

2 
tx6 xxx 

w+ aww +w+ 0(ap, p 2 
txx2 xxt 

We note that these equations have been introduced in Chapter 5 Ec. f. equations 

(5.1.2)] but here we choose to write -q in place of u as we want to reserve u 

to denote the amplitude of the waves described by (6.1-1). 

We start with the variable transformations 

(X, T) - ail 

Xx+a -q(x, t)dx (6.1.3) 

Tt 

which have been introduced by Johnson (1983). In the following calculation 

all terms other than 0(l), O(a) and 0(p) will be omitted. 

The x and t derivatives can be calculated as 



-1 
'48- 

a (1+aTI) a 
ax - ax 
c 'I a ax 0 
at -at ax 

=a Tj (x, t) dx a 
arT 

FcO 

t ax 
aa 
c 7T aw aX , [from (6.1.2)] 

(6.1-4) 

(6-1-5) 

Using (6.1.4) and (6.1-5) into the first of (6.1.2) and keeping only the 

required terms we find 

-0w=0 'IT , T'wx , wx ýý xxx 

and thus 

wp=0 (6.1.7) rýTT + 2a (T'wX) 
T+' XT - ýý wXXXT 

upon differentiating (6.1.6) with respect to T. 

The second of the equations (6.1.2) now becomes 

+a20w= wT + T'X 121=(77 )X- ýý XXT 

The derivatives of w in (6.1.7) can be obtained from (6.1.6) and (6.1.8) 

as 
022 

wX = --rjT + a2MT - VXXT +0 (ap, a10 (6.1.9) 

w XT = -Tlxx -a20w+ 0(ap, a 
2p2 (6.1-10) ý2ý T, ) 

XX + ýF XXXT 

From the last equation we also have 

wXXXT = -, nXXXX + O(a, P) . 
(6-1-11) 

Inserting (6.1.9)-(6.1.11) into (6.1.7) we find 

ma20=0 T117 - 2cý(T T)T - 71XX - ý-22L(Tl )xx -3 Tlxxxx 

It can be realized from (6.1.3) that 

Tj U+ au 
2+ 

O(a 
2) 

TITT a(-q 
2 )TT = UTT + O(a 2 

T? xx u xx + a(U 
2 )XX + O(a 2 

(TI 2)XX 
= U2 + O(a) 

xx 

77xxxx ,::::: u xxxx +0 (a) . 

Using these relations, (6.1.12) can be written as 

uu2 
T-F - XX 

ý2ýý U) XX - L3UXXXX 0 
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The ordinary Boussinesq equation (6.1.1) can be recovered from (6.1.13) by the 

linear transformation U -+ au, X -+ bx and T -+ ct for some a, b and c. 

We note here that if we took into account the 0(a2) terms and make the 

transformation 

a-q +a Tj 

the corresponding equation to (6.1.13) would be 

u UXX _3 (U2 )XX - 2a 2(U3) 
_0 TT v xx ýUvm =0 

which could be considered as the modified Boussinesq equation. 

6.2 Some previous results 

The inverse scattering scheme for the ordinary Boussinesq equation 

(6.1.1) has been developed by Zakharov (1974). The solvability of this 

equation using the inverse scattering transform has also been pointed out by 

Kaup (1980) and Caudrey (1980). 

The direct method has also been applied to this equation by Hirota 

(1973b). By using the variable transformation 

a 
2( log f) 

ax 
equation (6.1.1) is transformed into the bilinear form 

(D 2 
-D 

2 
-D 

4 )f-f =0 (6.2.2) 
txx 

One interesting fact that one should note with regard to Hirota's 

formulation is that the bilinear equation (6.2.2) is directly related to the 

linear differential operator of the ordinary Boussinesq equation 

a22a22a44 

at CIX (3x 
which is normally used to deduce the dispersion relation of the equation, 

k2-k4= 

Therefore 

I k(l+k 2)%p 

where the plus sign is for the wave which travels to the right and the minus 

sign for the wave which travels to the lef t of the x-axis. 
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The N-soliton solution found by Hirota is written in the form 

(N) N 

(X, t) = exp 
[ýA 

ii ;1i 11 i, 
ý 

lYlil 

g--0,1 i<j 
k. xt0 

or 

(1+k 2 Y2 

exp A 
(F- 12 

i-E i0i)2 
(k, -k 

2_ (k, -k 
4 

ij 
(6 9i +F- 

i0i)2(Iki +k 
2- (k 

i +k 
4 

where the notation for the summations has already been explained in Chapter 3. 

We note that the above functional form of f is the same as that for the 

Korteweg-de Vries equation [Hirota (1980)]. 

Nimmo and Freeman (1983) have also found the N-soliton solution of the 

ordinary Boussinesq equation in the form of a Wronskian of N functions. 

Because our work here is closely related to theirs, we shall now examine their 

result. 

The Mcklund transformations which relate between two soliton solutions 

f' and f of the equation are 

D +aD 
2 )f, -f =0 (6.2.3a) 

tx 

(aD D +D +D 
3 )f., -f = Nf, 'f (6.2.3b) 

xtxx 

where a2= -3. We note that for X=0 and a suitable value for a, equations 

(6.2.3) are the bilinear form of the Classical Boussinesq equations discussed 

in Chapter S. Thus as we have seen in Chapter 5, for X=0, f' and f differ 

only in their phases, not in the number of solitons. 

By taking f' = 1, which corresponds to the trivial solution, u=0, they 

found from equations (6.2.3a, b) the single-soliton solution 

A exp(-Rx+aP 
2 

t) +B exp(nx+an (6.2.4) 

where A and B are real constants and P, n the soliton parameters, and they are 

related by 

x= -(e+4e 
3)=n+ 

4n 3. (6.2.5) 
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The N-soliton solution of the ordinary Boussinesq equation is written as 

the Wronskian 

(6.2.6) 

of the functions 

exp(-P x+aP 
2 

t) +B exp(n x+an 
2 

i= 1ý2,..., N . (6.2.7) 

We note here that in order to show that (6.2.7) satisfies (6.2.2) one 

needs an identity which can be obtained by making use of relation (6.2.5). By 

using this relation we see that 

(P +4R 
3 )o (r) =0 

(r+l) 
+ 40 

(r+3) 
iiiii 

(6.2.8) 

where the superscript (r) denotes the r-th derivative with respect to x. 

From the fundamental properties of determinants (5.3.7), relation (6.2-8) 

can be used to obtain 

N3 
2 (P 

1 
+4R i 

)(N-1) = (N-2, N) + 4(N-2, N+2) 
i= 

- 4(N-3, N-ltN+I) + 4(N-4, N-2, N-1, N) (6.2.9) 

N3 

.2 
(P 

I 
+4P 

I 
)(N-2, N) (N-2, N+l) + (N-3, N-1, N) 

i=l 

+ 4(N-2, N+3) - 4(N-3, N, N+I) 

+ 4(N SýN-3)N-2, N-1, N) (6.2.10) 

Substitution of (6.2.6) into (6-2.2) yields an expression which contains 

2 (N-2, N) . This term can be removed by using (6.2.9) and (6.2.10) to give 

2 (N-2, N) = (N-1)[(N-2, N+l) + (N-3, N-1, N) 

4(N-2, N+3) - 4(N-3, N, N+l) 

4(N-5, N-3, N-2, N-1, N)] 

- (N-2, N)[4(N-2, N+2) - 4(N-3, N-1, N+I) 

4(N-4, N-2, N-1, N)] (6.2.11) 

Using this identity one eventually finds 
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224 
)(Ný1)-(N-l) 

txx 

12[(N-1)(N-3, N, N+l) - (N-2, N)(N-3, N-1, N+I) 

(N-2, N+1)(N-3, N-1, N)] 

N-3 N-2 N-1 N N+1 6 
N-3 N-2 N-1 N N+1 

Since this determinant is obviously zero, (N 1) is thus verified as the 

solution of (6-2-2). 

We shall now go on to show that the BAcklund transformations (6.2.3a, b) 

are satisfied by two sets of identical solitons which differ in their phases 

for X=0 and satisfied by N and N+l-soliton solutions when X= -(R +49 
3 

N+1 N+1)* 

For X=0 we take two phase-difference N-soliton solutions 

f (N-1) 
(6.2.12) 

f (N) 

where (N 1) and (N) are the Wronskians of the functions and -a- -Xý i 
i=1,2, ..., N respectively. Essentially the order of the derivative in each 

column of (N) is one degree higher than the order of the same column in (N-1). 

Substituting (6.2.12) and their derivatives into (6.2.3a) we find 

2 (D 
t +aD 

x 
)f'-f 2a((N 1)(N-2, N, N+I) 

(N-2, N)(N-1, N+l) + (N-2, N+I)(N)l 

(-l) N 2a N-2 N-1 N N+l 
10 

Ný-2 N-1 N N+l 

This determinant is zero and thus we have verified the solution of (6.2.3a). 

Now substituting (6.2.12) and their derivatives into (6.2.3b) yields 

(wi th X= 0) 

3 (aD 
xDt 

+D 
x 

+D 
x 

)f'-f = (-2(N 2, N+2) + 2(N-3, N-1, N+I) 

+ (N-2, N) + 4(N-4, N-2, N-1, N)j(N) 

(N-l)f-4(N-1, N+3) + 2(N-3, N-1, N, N+l) 

(N-1, N+l) - 2(N-2, N, N+2)) 

6(N-3, N-1, N)(N-1, N+I) + 6(N-2, N)(N-1, N+2). (6.2.13) 
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The expression on the right side of equation (6-2.13) looks quite 

complicated and it is not obviously zero. However, it can be simplified by 

using the identity 

N3N3 
(N-1) 2 (P 

i +4e i 
)(N) 2 (P 

i +4e i 
)(N-1)1(N) 

i=1 

which gives 

((N-2, N) + 4(N-4, N-2, N-1, N))(N) 

(N-I){(N-1, N+l) + 4(N-1, N+3) 4(N-2, N, N+2) 

+ 4(N-3, N-1, N, N+1)1 

- f4(N-3, N-1, N+1) - 4(N-2, N+2))(N) (6.2.14) 

Using (6.2.14), we find (6.2.13) becomes 

(aD D +D +D 
3 )f'-f 

xtxx 

6f(N-1)(N-3, N-1, N, N+1) - (N-3, N-1, N)(N-1, N+1) 

+ (N-3, N-1, N+1)(N)j 

- 6{(N 1)(N 2, N, N+2) - (N 2, N)(N-1, N+2) + (N-2, N+2)(N)l 

(-1) N+1 6 N-3 N-1 N-2 N N+1 

N-3 N-1 N-2 N N+1 

(-1) N+1 6 N-2 N-1 N N+2 

N-2 N-1 N N+2 

Both of the determinants are obviously zero and therefore we have 

verified the solution of (6.2.3b). 

One important point that one should note from the above verification is 

that we do not require any identity for equation (6.2.3a) while we do need one 

for equation (6.2.3b). If we put x1=x and x2= at equations (6.2.3a) and 

(6.2.3b) respectively become 

(D 2 
+D '-f =0 (6.2.15) 

1 2)f 

(-3D D +D +D 
3 )f, -f =0 (6.2.16) 

1211 

We thus realize that the first equation is an equation of the first 

modified KP hierarchy, while the second one is not. Therefore for any value 

of e and n the Wronskians f' = (N-1) and f= (N) of the functions defined 
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by (6.2.7) will automatically satisfy (6.2.3a), while these will only satisfy 

(6.2.3b) if Pi and rl i satisfy the identity relation (6.2.5). This can be 

explained if we recall from Appendix C that the second equation of the first 

modified KP hierarchy is 

(D 3 
-4D -3D D "-f =0 131 2)f 

This equation can be separated as 

(D 3 
-4D -3D D /Of 131 2)f 

(-3D D +D +D 
3 )f'-f - (D +4D /-f 12111 3)f 

In terms of variables x1 and x2 the function 0i (6.2.7) becomes 

0=A exp(-, e x +VO 
2x+B. (n x +n 

2x 
iii1i 2) 1i1i 2) ' 

(6.2.17) 

(6.2.18) 

(6.2.19) 

It has been proved in Chapter 5 that the Wronskians P= (N-1) and 

f= (N) of the functions 1,2.,. N, def ined by (6.2.19), satisfy 

equation (6.2.17) for any value of P1 and ni* 

satisfy (6.2.16) we require from (6-2-18) 

(D 
1 +4D P '-f =0. 

Substituting (6.2.19) into (6.2.20) yields immediately 

+R3= -(n +4n 
3 

the relation which has been used to produce identity (6.2.14). 

We now define f' and f as 

(6.2.20) 

f (N-1) 

f N) 
(6.2.21) 

where (N 1) is the Wronskian of N functions 1,2,..., N and (N) the 

Wronskian of N+l functions 0,, i=1,2,..., N, N+l with 0i defined by equation 

(6.2.7). We shall show that (6.2.21) satisfies the Mcklund transformations 

(6.2.3a, b) for X= -(e +4S 
3 ). We note immediately that X is also given by 

N+l N+l 

pN PN+l (6.2.22) 

where 
K3 

pK (e 
i +4e K=N, N+l (6.2.23) 

Thus in order that f' and f 

Verification of the solution (6.2.21) for equation (6.2.3a) is 
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straightforward as was the case of X=0. We thus verify only equation 

(6.2.3b). We first write equation (6.2.3b) as 

(aD D +D +D 
3 f'-f - Xf'-f =0 xtxx 

(6.2.24) 

Substitution of f' and f given by (6.2.21) and their derivatives into 

equation (6.2.24) yields 

{-2(N-2, N+2) + 2(N-3tN-ltN+l) + (N-2tN) 

4(N-4, N-2, N-1, N)j(N) 

(N-1)(-4(N-1, N+3) + 2(N-3, N-1, N, N+I) 

- (N-1, N+l) - 2(N-2, N, N+2)1 

- 6(N-3, N-1, N)(N-1, N+l) + 6(N-2, N)(N-1, N+2) - X(N-1)(N). 

(6.2.25) 

In order to work out the actual expression for X(N-1)(N) we should note 

that the scalar operator pN must act upon (N-1) and PN+1 upon (N) and their 

derivatives. We thus have 

X(N-1)(N) [p 
N 

(N-1)](N) (N-1 )EPN+l (N)] 

[(N 2, N) + 4(N-2, N+2) - 4(N-3, N-1, N+l) 

4(N-4, N-2, N-1, N)](N) 

- (N-1)[(N-1, N+l) + 4(N-1, N+3) - 4(N-2, N, N+2) 

4(N-3, N-1, N, N+1)] 

Using (6.2.26), expression (6.2.25) becomes 

6((N-1)(N-3, N-1, N, N+l) - (N-3, N-1, N)(N-1, N+l) 

+ (N 3, N-1, N+1)(N)l 

- 6ý(N 1)(N 2, N, N+2) - (N-2, N)(N-1, N+2) 

+ (N22, N+2)(N)l 

(6.2.26) 

The above expression is the Laplace expansion of two (2N+l) x (2N+l) 

determinants 

N-3 N-1 

N-3 

N N-2 

N-2 

0 N-2 N N+l 

N- 1 N-2 N N+l 

N-1 N N+2 

N-1 N N+2 
(6.2.27) 
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where the upper matrices contain N rows while the lower ones contain N+1 rows. 

Both of these determinants can be shown to be zero, thus verifying the 

solutions of (6.2.3b). 

6.3 The pq =1 reduction of the KP hierarchy 
4 

If we write x1=X,, X2=t then the bilinear form of the Boussinesq 

equation (6.2.2) becomes 

(D 4 
+D 

2 
-D 

2 )f-f =0 112 
(6.3.1) 

In terms of x1 and x2 the single-soliton solution (6.2.4) is simply 

A exp(-Rx 1 +aR 
2x 

2) +B exp(nxl+an 
2x 

2) 

A exp(-Rx +aP 
2xB 

exp[(P+n)x +a(n 
2_ P2 (6.3.2) 

1 2)ý' +A1 )x231 . 

Since the exponential factor A exp(-Px I +aR 
2x2) has the argument which is 

linear in x1, it gives only zero contribution to the final solution due to 

[c. f. (6.2.1)] 

a2 (log f) 

axi 
(6.3.3) 

Equation (6.3.1) is to be compared with the first equation of the KP 

hierarchy 

(D 4 
-4D D +3D 

2 (6.3.4) 
113 2)f*f ::: 0 

which has the single-soliton solution in the form 

2323 
fA exp(qx I +q x2 +q x 3) +B exp(px 1 +p x2 +p x 3) 

A exp(qx +q 
2x 

+q 
3xB 

exp[(P-q)xl+(p 
2 

-q 
2 

12 
Pl +N 

+ (p 3 
-q 

3 )X331 ' 
(6.3.5) 

for any p, q as long as pX q- 

As we have seen in the Introduction, equation (6-3-4) can be separated as 

(D 4_4D D +3D 
2 )f-f 

1132 

(D 4 
+D 

2 
-D 

2 )f-f - (D 2 
+4D D -4D 

2 )f-f (6.3.6) 
1121132 

Now for (6.3.5) to satisfy (6.3.1) we also require that it satisfies 

(D 2 
+4D D -4D 

2 )f-f =0 (6.3.7) 
1132 
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Using (6.3.5) we find the dispersion relation of (6.3.7) as 

(p-q) 2+ 
4(p-q)(p 

3 
-q 

3)- 
4(p 

2 
-q 

2)2= 

This in turn simplifies to 
I 

pq 

(6.3.8) 

(6.3.9) 

We note that relation (6.3.9) can also be found by substituting (6.3.5) 

into 

Thus the ordinary Boussinesq equation can be viewed as the pq =1 4 

reduction of the KP hierarchy. The 1 
is the type of the pq =c reduction "" -4 

which normally occurs in the first modified KP hierarchy. Normally in the KP 

hierarchy one has the problems of n-reduction. For example, putting x1=X 

and x2 at would result in the ordinary Boussinesq equation in the 

p+ 4p 3q+ 
4p 3 

reduction problem [Hirota (1986b)]. 

In the remaining sections of this chapter we shall be dealing with a new 

representation of the soliton solution of the ordinary Boussinesq equation as 
1 

a result of the 4. reduction. 

6.4 New representation of the solution 

From the previous section, we have expressed the soliton solution of the 

ordinary Boussinesq equation in two forms. One is with parameters P, n which 

are related by 

R+V3= -(n+4n 
3)f 

and the other one is with parameters p, q related by 

1 
pq 4 

Using equations (6.3.2) and (6.3.5), and neglecting the factors, we may 

write (with q-1) 4p 

4p 

a(n 
2 

-R 
2p2--12 

(4p) 

(6.4.1) 

where we shall take a= iV3- . 
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Solving equations (6.4.1) simultaneously for P, n we find 

R11 -) 4pZ 
vF3 

(6.4.2) 
I 

ip- z 

VF3 
Z 4p 

where 
iv/6 

e (6.4.3) 

A number of identities in z may be produced from (6.4.3). Two of them 

are 
11 
-ýý z+ -) =1 
v*r3- z 

Z4z2 

(6.4.4a) 

(6.4.4b) 

Now, using (6.4.2)-(6.4.4) we may write 

A. e0 
li 

+ B. e0 
2i 

= A. exp(-e x +aP 
2x+B, 

exp(n x +an 
2x 

Ii 2) i1i2 
a22 1- 

,z 
A. exp p. z -i (p z 

iz)xl 
+2 2)x2l 

V'5 131 (4p d2z 

2 
Pl Za Pl 

+B exp (-- -)X, + n, (- + i /3- Z 4p i3Z2 

Z1-a2 
= exp (- ýl-(p. - )x, + ýý-[(P + 

vF3 
1 4p 

i3i 

Z2-«1 

(4p 
i) 

2 ýPx2ý 

1 )Z 21 ý]x2ý 
p i)2 

x. x2 
exp(p, x +p XA exp( 1 

1i2i 4p 
i (4p 

i) 
2)ý 

=EI (B 
1e 

ii 
+AIe 

2i I (say) 

where 

(6.4.5) 

Z1a2121 
exp -)x, +1 )Z (6.4.6) 

"f(pi 2 2]x 4p 3 (4p 

For simplicity we write (6.4.5) as 

.0i= 

where 

exp[-P x +aR 
2x]+ 

iIi2 

(6.4.7) 

expEn x +an 
2x (6.4.8) 

iIi 21 

and 
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A exp 
12+B. 

exp[p x +p 
2x 

(6.4.9) 
i 

[4p, 
, 

(4p d 21 1i1i 2]' 

The xl-derivatives of 0i can now be deduced as 

.-E 
(-l--, 3 z (6.4.10) 

, 3xn 1 zvF3 
+ 4, v ý3- 

1 

where d=a and d_ denotes the integral operator with respect to x + ax 
1 1* 

For the purpose of the following analysis we shall denote [] to mean a 

Wronskian of functions 0i (with parameters ei., n i) and () to mean a Wronskian 

of functions (P (with parameters p,, q =1). Using (6.4.10) for the ii 4p 
i 

single-soliton solution we find 

[0] = E(O) 

Ell = 
E2 

-=-m) 
Z--ý 
41 -') I 

z V53 

[2] E 
2 - 

z2 0) + 2 
z4 =-, J-2)1 

2 (zV3 ) 4 

[3] E '(3) - 1 3 
z2 3 1) 4 

4 
+ 3z -1) -ý7( 2 

8 
- 

ý, 
-3)j 3 (zv'S) 4 4 

or, in general, we have 

[N] = 
E 

N (N 
N! 

-r)! 
z (N 
4 -2r) ,N=1,2ý (6.4.11) 

(zVIS) 
r=O 

We can now proceed to recons truct the soliton solutions which are 

originally in the form of a Wronskian of 0i into a form of a finite sum of 

Wronskian type determinants of (P i 
(with parameters p,,, q 

have the two-soliton solution 

EIE2z2 
[0, I] k(0)1(1) - 'Ili--( -1)) 

zvf-3 
4 

f 

E1E2 
(0,1) +z2 

ZV15 
4 

For the three-soliton solution we find 

From (6.4.11) we 

(6.4.12) 
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[0,1,2] 
E1E2E32Z2Z4 

-2) 4+2 3'24 

E1 E2E3[(0, 
Z2Z4 1,2) 
4--(-1,0,2) + -iý-, ý-2Y021) 

(zV, 5) 42 
6 

z 1,0) 
43 

(6.4.13) 

By using the similar procedure we can also produce the four-soliton 

solution 

E1E2E3E4Z2 

z, AJ 
ý-«0,1,2,3) + -4, ý-(-1,0,2,3) 

46 
ZZ z77(-2,0ý, 1,3) + z--2ý(-3,0,1,2) + (-2, -1,0,3)] 23 44 

10 12 ZZZ + -1,0,2) + ý, --ý-39-2,0,1) + ezý-39-2, -1,0)1 . 444546 

(6.4.14) 

We note that all the factors outside (I in the above solutions can be 

removed as they do not contribute to the final solution u of the ordinary 

Boussinesq equation. 

The structure of the new representation can be generalized to the 

N-soliton solution as 

2 K-i 
[N-l] =ý 

where 

K -- 
N(N-1) 

2 

2i - 

(6.4.16) 

Also here W is the summation of all possible Wronskian type determinants 

(c 
i0l C ill c i2 ..., CiN_l) with one of the cin's being the column (0) and other 

c 
in 

's being any column (in) chosen from n=1,2, ..., N-1, without repeating, 

arranged in the order of c io 
<c 

il 
<c 

i2 
< ... <c 

iN-1 and satisfying 
N-1 

in 1 
(6.4.17) 

n=O 
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For example, for the two-soliton solution, we have K=1 and thus 

L0= -1, LI from (6.4.16). To construct WL0 we choose c 00, c 01 from (0), 

(-I) and (1), such that c 00 +c 01 =-1. Thus we have WL0= (-"0)* Similarly 

we can find W 

In the four-soliton solution we check for the z6 term. Here K=6 and 

the z6 term corresponds to i=3 which gives L3=0. Therefore for W0 we can 

only choose the columns -2, -1,0,3 and -3,0,1,2 as they sum to zero. 

Thus 

Wo = 

Although the solution (6.4.15) gives rise to a polynomial in z of order 

N(N-1), it can always be grouped into two terms only as the result of identity 

(6.4.4b): the z0 and z2 terms. It is therefore reasonable, in verifying the 

02 
solution to look at the coefficients of z and z However, one should notice 

that the coefficients of zo and z2 in a solution are themselves not the 

solutions. 

6.5 The two-soliton solution 

Before proceeding to verify that the two-soliton solution in its new 

representation (6.4.12) satisfies the ordinary Boussinesq equation we first 

give some relations which will be used repeatedly for this purpose. We 

rewrite the function 

exp(p x +p 
2x)+A 

exp( 
12 

i1i2i 4p 
i' (4p d2 

From (6.5.1) we see immediately that 

a(p. a2 (P. 

ax 1-2 (6.5.2) 
2 ax 1 

which is the property of the KP hierarchy. This relation will be used as 

usual to calculate the derivatives of the Wronskians with respect to x 2' 
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Another relation which can be deduced immediately from (6.5.1) is 

a 
(r) 

= (, 
(r+n) 

+1(, 
(r-n) 

(6.5.3) 
n1i4ni 

wi th 

(4p 
(6.5.4) 

where V(k) is the k-th derivative of 0. with respect to x i11* 

Relation (6.5.3) gives rise to a number of Wronskian identities as we 

have seen in Section 6.2. However, in application of (6.5.3), beside shifting 

up a column by n degrees, we also shift that column n degrees down. Thus we 

should expect to obtain many terms in our expressions. For example, 
11 

al(0,2) = (0,3) + (1,2) + -4ýtjO, 1) + '(-1,2) 4 

in which we have used the notation 
N 

anann 

We now show that the two-soliton solution 
2 

z f= (0,1) + -, ý-(-1,0) 4 

satisfies the bilinear form of the ordinary Boussinesq equation 

(D 4 
+D 

2 
-D 

2 
11 2)f*f ý0 

Expanding (6.5.7) we find 

(D 4 
+D 

2 
-D 

2 )f-f 
112 

2(ff -4f f 3f 2 
+ff f2 ff +f 

2 
4x 1x1 

3x 1+ 
2x 2x 1- x 1- 2x 2x2 

The required derivatives of f can be calculated as 

2 
f (0,2) +z -1,1) x4 

(6.5.5) 

(6.5.6) 

(6.5.7) 

(6.5.8) 

2 
f (0,3) + (1,2) + 24ý: ý(-1,2) + (0,1» 

2x 

2 
f 3x 

(0,4) + 2(1,3) (-1,3) + 2(0,2» 
4 

1 
2 

f 
4x = (0,5) + 3(1,4) Z 2(2«, 3) + L--ý(-1,4)+3(O, 3)+2(1,2» 

1 
2 

f = (0,3) - (1,2) + 

') = (0,5) + 2(2,3) 
4 

- (194) +Z «-1,4) + 2(1,2) - (0,3» 
4 x, ) 
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It can be seen from the above derivatives that all the Wronskian type 
2 

z determinants in the coefficients of T- can be found by shifting down by one 
0 every column of the appropriate determinants in z This is simply due to the 

form of f given by (6.5.6). 

Now, substituting f and all the above derivatives into the right-hand 

side of the equation (6.5.8) we find 

(D 4 
+D 

2 
-D 

2 )f-f = 2(c +z (6.5.9) 1120 T-c2l 

where 

co = (0,1){4(1,4) + (0,3) + (1,2)1 

+ 4{(0,3) 2+ (1ý2) 2+ (0,3)(1,2)1 

- (0,2) 2_ 
4(0,2){(0,4) + 2(1,3)1 

- 
(-l'o)f4(0,3) 

+ (-1,2) + (0,1)1 
42 

22 '((-1,2) + (0, I) + (-1,2)(0,1)1 4 

(-1,1) 2 
+4+4 -1,3) + 2(0,2)1 

and 

(0,1)f 4(0,3) + (-1,2) + (0,1)) 2: 

4(0,3)(2(-1,2) + (0,1)1 + 4(1,2)f2(0,1) + (-1,2)) 

- 4(0,2)f(-1,3) + 2(0,2)) 

- 4(-1,1)((0,4) + 2(1,3)1 + 
(-1'0)(4(0,3) 

+ (-1,2) + (0,1)1 
4 

+ (-1ý2) 2+ (0,1) 2+ (-1,2)(0,1) - (-1,1) 2 

- 4(-1,1)ý(-1,3) + 2(0,2)1 . (6.5.11) 

We shall show that both coefficients c0 and c2 are zero. However, the 

expressions for c0 and c2 as seen in (6.5.10) and (6.5.11), seem very 

complicated and of course they are not obviously zero. Furthermore 

application of a single identity does not reduce them into a more manageable 

f orm. However, we have managed to use a number of identities for this 

purpose. 
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For cop the identities used can be written as follows 

(4(0,3) + 4(1,2) - (0,1))al(0,2) (0,2)al(4(0,3) + 4(1,2) - (0,1)) 

(-1,1)al( 
(-1,2) 

+ (1,2)1 ( (-1,2) 
+ (1,2))a (-1,1) 

441 

4(0,1)al(1,3) 4(1,3)al(0,1) 

(1,2)(a 2 
-a (-1,0)(a 2 

-a 2). 1 2)(-"0) 1 2)(1 
Essentially identities (6.5.12) remove all the squared terms and terms 

with a common column such as (0,1)(1,4). These types of terms are not wanted 

for our purpose because they do not appear in the Laplace expansion of a 

determinant. 

By using all the identities in (6.5.12) in (6.5.10) we eventually find 

tha t 

co = 

- (0,1)(2,3) + (0,2)(1,3) - (0,3)(1,2) 

1 
+ -:! --((-10)(1,2) - (-1,1)(0,2) + (-1,2)(0,1)1 

4 

42 

The above expression is exactly the form of the Laplace expansion of some 

determinants and it can be written as 

c0= 
1-1 023 10 12 31 

023-123 

+1 -1 0121 -2 -1 12 (6.5-13) 
4-01242- -1 12 

and each of the determinants is obviously zero and thus c0=0. 

For c 2' the identities used are 

(0,1)al(8(0,2) - 4(-1,3)1 (8(0,2) - 4(-1,3)lal(0,1) 

((-1,2) - 4(0,3)lal(-1,1) (-1,1)al((-1,2) - 4(0,3)) (6.5.14) 

4(-1,0)al(1,3) 4(1,3)al(-1,0) . 

These identities will then give 
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02= (-2, -l)(1,2) - (-2,1)(-1,2) 

- 4((-1,0)(2,3) - (-1,2)(0,3) + (-1,3)(0,2)) 

(-2,1)(0,3) + (-2,3)(0,1) 

4((-1,2) + 
42 

4(-1,3)(0,21 + 4((-1,4) + 
4 

Again, c2 is seen as a Laplace expansion of some determinants; indeed we can 

wri te 

-2 -1 1 2 -1 0 2 3 C = 2 " 
-1 1 2 " 0 2 3 

+ -2 0134 -1 a 2(0 a 2(1) a2 (2) 

*0130012 

where a (n) denotes that the column takes the form a , 
(n) 

2 2. i 
1 

Now, except for the last determinant, all other determinants in (6.5.15) 

are clearly zero. 

For the last determinant, multiplying the last two rows each by a2 and 

a2 respectively we have 

a2 (0) a 2(l) 

01 

2 
17 a 2. 

i=l I 

2 

2 

a 2( 0) a 2(1 
)a2 (2) 

a 2( 0) a 2( 1) a2 (2) 

and thus it is now zero by the method of subtraction. We have therefore 

established that c2=0 and hence verified the two-soliton solution (6.5.6) of 

the ordinary Boussinesq equation. 

The use of multiple identities such as (6.5.12) and (6.5.14) in verifyinIg 

Wronskian solutions is something which has never occurred before. For 

example, we take the KdV equation in its bilinear form 

(D 4_4D D 
11 3)f*f -":: 0 
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As we have seen in the Introduction, (6-5-16) is a reduction of the KP 

hierarchy since it can be separated as 

(D 4_4D D (D 4 
-4D D +3D 

2 )f-f - 3D 2 f-f (6.5.17) 11 3) f*f"::::: 
11322 

Therefore, if we take the N-soliton solution in the Wronskian form f 

of functions 

2323 
qxI +q ix2 +q ix3+B Pi x1 +p ix2 +p ix3 

we then require 

3D 2 f-f 2 (6.5.18) 

In other words, (6.5.16) is satisfied by f if it also satisfies (6.5.18). 

Therefore (6.5.18) is the identity needed in verifying the solution of 

(6.5.16). Substituting f= (N-1) and its derivatives into (6.5.18) we find 

the single identity 

2 (N-2, N+l) + (N-3, N-1, N) 

(N-l)f(N-2, N+3) + 2(N-3, N, N+I) - (N-3, N-1, N+2) 

(N 4, N-2, N-1, N+l) + (N-5, N-3, N-2, N-1, N)) 

2(N 2, N+1)(N-3, N-1, N) (6.5.19) 

If the N-soliton solution is substituted into the KdV equation (6.5.16) 

one should find an expression with some undesired terms like 

22 (N-1)N+l) , (N-3, N-1, N) and (N-1)(N-3, N-1, N+2), which do not appear in the 

Laplace expansion of a determinant. Such terms are removed at once by 

applying (6.5.19). Therefore the final expression that one should get for the 

KdV equation (6.1.16) is exactly the same expression that one would obtain 

from the KP equation 

(D 4 
-4D D +3D 

2 f-f =0 1132 
2 

since the last term in equation (6.5.17) which is -3D 2 f-f has actually been 

put to zero. 

The situation is quite different for the pq =4 reduction problem in 
.d 

relation to the ordinary Boussinesq equation. In order to illustrate the 
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difference here we first define 

D4+D2D2 112 

D4- 4D D+ 3D 2 
(6.5.20) KP : -- 1132 

2) = 4D D+D2- 4D 2 
L1312 

Thus, the reduction problem (6.3.6) becomes 

2B f-f =0 KP f-f +0L f-f . 

If the two-soliton solution (6.5.6) is substituted into (6.5.21) we find 

22 
++ 

2Z2 24 2 KP«0")*(0") + ý4 -"0)*(o '1ý1-2 - l' 0) * (_ l' 0) 
4 

2z 2Z4 
(0,1) + 442 

4 

KP(O")*(O") + 
Z2 

K 4 

2eL 
(-1,0)-(-1,0) 

t- Z2 (-1,0)-(0,1) + 22 4 KP 4 

(6.5.22) 

However, T KP 
(0,1)-(0,1) and T KP 

(-1,0)-(-1,0) are both zero, since (0,1) and 

(-1,0) are the solutions of the KP hierarchy. Thus from (6.5.22) we then have 

2b 1 
t-(0,1)0(0") - «ý--. oL(-"0)*(-"0) 

Z21=0. 
-ý22 KP 

(-1,0)-(0,1) + 22 -"0)*(0") - ýoL(-"0)*(-"0)1 
4 L( 

(6.5.23) 

By virtue of the reduction problem of the KdV equation (6.5.17), 

equation (6.5.23) should give the required identity. However, we found that 

2c (6.5.24) 2) L 
(0,1)-(0,1) 20L0 

and 
1 

2D KP(-"O)*(O'I) + 22L(-"O)*(O'I) qý L 
(-1,0)-(-1,0) = 2c 2 

(6.5.25) 

where c0 and c2 are given by (6.5.10) and (6.5.11) respectively. This means 
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that both (6.5.9) and the expected identity (6-5.23) give the same expression. 

This is the reason why the identities (6.5.12) and (6-5-14) have been 

constructed independently of (6.5.23) by using relation (6.5.3). 

Analytic verification of solution (6.4.15) for a higher number of 

solitons in the way we did for the two-soliton solution is very complicated. 

However, simple computer programs may be used for this purpose. Furthermore, 

it is now possible to use REDUCE programs to solve many problems in solitons. 

Applications of a REDUCE program to verify the four-soliton solution of the 

ordinary Boussinesq equation will be discussed in Section 6.7. 

6.6 The Mcklund transformations 

The BAcklund transformations (6.2.3a, b) of the Boussinesq equation 

(6.2.2) can be rewritten with x=x1 and t=x2 as 

(D +aD 
2 )f'-f =0 21 

(aD D +D +D 
3 )f, -f =0 1211 

(6.6. l 

(6.6. lb) 

where we have put X=0. Choosing X=0 means that we require f' and f to 

differ only in their phase and not in the number of solitons. We shall show 

that equations (6.6.1a, b) are satisfied by single-soliton solutions 

Ec. f. (6.4.11)] 

f' = (0) 

2 
f= (1) - 

We first realise that 

(D +D 
2 )(O)-(l) = (D +D 

2 )(-l)-(O) 
2121 

(6.6.2) 

(6.6.3) 

due to the property of the first modified KP hierarchy, and then we show that 

(D 3 
+D D +D )(o)-(l) = (D 3 

+D D +D )(-l)-(O) =0- (6.6.4) 
11211121 

We have 
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(D 3 
+D D +D 112 1) 

(0) (1) 

= 3(2)(2) + 3(l)(3) - (0)(4) 

(2)(2) - (1)(3) + (0)(4) 

(0)(2) 

= 4(3)(1) - 4(2)(2) + (1)(1) - (0)(2) 
. (6.6.5) 

From relation (6.5.3) we find 

(2) +1 (0) 
41 

al(2) (3) + 14 
These relations then yield 

4(2)(2) = 4(3)(1) + (1)(1) - (0)(2) 
. 

Using the above identity in (6.6.5) we find that 

(D 3 
+D D +D, )(O)-(l) =0 112 

The proof of 

(D 3 
+D D +D 112 1)(-')'(0) 

is very similar to the above and thus we leave it to the reader. Now, 

substitution of (6.6.2) into (6.6.1a) yields 

22 (D +aDi)(o)-((l) 2 4-( 

[D +(2z 
2 

-1)D 
2Z 

2 ll(0)0«1) - 14-(-1)ý 

222 (D 2 +D, )(0)-(1) + 2(z -1)D, (0)-(1) 

Z2242 
- 'ý: ý D -D )(0)-(- - -ý-D (0)-(- 1) 421 1) 21 

222 (D +D =4, --(D +D, )(-I)-(O) 
2 1)(0)-(') +z2 

2_ 22 
+ 2(z 1)(D (OHO - 

1D (6.6.6) 
1 4' 1(-l)-(O)l 

where we have used the relations a= 2z 2_1, D 2(0)*(-') = -D 2(-' 
)-(0) and 

Z4= 

The first two terms in (6.6.6) are zero by (6.6.3). Now 

212 D 1(0)-(l) 
Dl(-l)-(O) 

can be shown to be zero by making use of relation (6.5.3), and thus verifying 

(6.6.3a) - 
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For equation (6.6.3b) we can write 

(aD D +D +D 
3 )(0)-«1) -Z 1211 

! 
4ýý-1 

)1 

«2z 2 
-1)D D+D+D3 

iý(0)-«1) 
Z 

121 

(D 3 
+D D +D, )(0)-(1) + 2(z 2_ 

1)D D 1121 2(0)*(1) 

-Z2 
3- Z4 r-(D DD +D, )(0)-(-1) - 2ý4-D, D 1 -(0) 412 2(-1) 

2 3,3 (D +D D +D :,: ýýDl+D, D +D, )(-1)-(0) 112 1)(0)-(1) +2 

+ 2(z 2_ 1)(D DD (-1)-(0» 1 2(0) * (1) - -4:. Dl 2 
Again the first two terms in (6.6.7) are zero by (6.6.4). 

By using relation (6.5.3) we can also show that 
1 

DD (0)-(l) - ýD D 12412 

and thus we have verified (6.6.3b). 

(6.6.7) 

We have therefore seen how the soliton solutions (6.4.15) 4 the ordinary 

Boussinesq equation satisfy the equation and its Mcklund transformations. 

6.7 REDUCE programs 

REDUCE is a special algebraic programming system produced by 

Hearn (1984). The capabilities of this sytem include: 

(1) Expansion and ordering of polynomials and rational functions; 

Substitution and pattern matching in a wide variety of forms; 

(3) Automatic and user-controlled simplification of expressions; 

Calculations with symbolic matrices; 

(5) Arbitrary precision integer and real arithmetic; 

(6) Facilities for defining new functions and extending program syntax; 

(7) Analytic differentiation and integration; 

(8) Factorisation of polynomials; 

(9) Dirac matrix calculations of interest to high energy physicists. 

Since the above capabilities cover calculations with matrices, facilities 
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for defining new functions, expansion and ordering of functions, REDUCE 

programs are very suitable for solving soliton problems. Indeed, in the 

preparation of this chapter, extensive use of such programs has been made. 

Calculations in Section 6.5 were very laborious in some stages and a REDUCE 

program was used to keep calculations on the correct path. 

Furthermore, a program package using REDUCE has been developed by 

Ito (1987). This package, called DOP (Differential Operator Package) includes 

Hirota's derivatives, Wronskian manipulation and evaluation. It is very 

suitable to use in soliton problems. Subroutines for Hirota's bilinear 

operators and Wronskians are built in the package. Indeed, we have used this 

package to verify the three- and four-soliton solutions of the ordinary 

Boussinesq equation in the new representation (6.4.15). The program used for 

the four-soliton solution is listed below. 

'I NE SQ E QUA TI UIJ Z 4-SOLITON SOLUTION FUR BOUSS 
WRONSKIAN W; 

"6/64 
4096t + 

G: =4096*F$ 
Z THE BOUSSINESP EQUATION 
FOR A' :=1: 8 DO IJ(I): =PA; ZT(GtI)$ 
FOR I: =1: 8 DO FOR J: =1: 8 PO 

") -0 (U (I"p2)S Y(IpJ): =D(U(I)jU(J)IXI, 4)+D(IJCI)IUCJ)#Xl. ti- A). *U(J)pXt- 

P: = FOR I: =1: 3 SUM F*()P J: =1: 11 SUM Y(ItJ)ý 

LET 
C0EFF(NUM(P)YZ7C)$ 
CC0EVAL 14 C0 
CC2EVAL. WC 2- 
X PQ 1/4 REf)UCTTUIJ 
FOR ALL N LCT FIICIYII) 
F0R ALL N LET Fl#(ZvPJ) 
FOR ALL N LET Fl. q(3,11) 
FOR ALL N LEF Fjý, 1(4yfl) 
cco 
cc2 
LND 

-P I. -:, -': tj +01 
p +4P2 

4)'. 'P 3 + 
A4*:, P4*. ý, ̀J +4*P4 
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In the above program, we first write the four-soliton solution from 

(6.4-14) as a polynomial in z. Each term is numbered from 1 to 8 in order to 

avoid stack overflow when the program is run. The D operator used in the 

program defines the bilinear operator as 

D(U, V, X M) =Dm U-V N' N 

The expression for the Boussinesq equation is represented by P. 

Expression P is then separated into two parts by requiring z4=z2-I and the 

coefficient statement COEFF(Num(P), z, C). The actual coefficients of z0 and 

z2: OCO and CC2 are then calculated after declaring the functions which define 

the Wronskian with p1 The value of OCO and OC2 are both zero and thus i'i - 4* 

verify the four-soliton solution. 
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(3 IAI'rER 7 

CONCLUSION 

After introducing the nonlinear evolution equations of fluid mechanics 

which have been the interest of this thesis, we first derive the 

V- 
I. domtsev-Petviashvili (KP) equation in dimensionless variables by using a 

formal scaling procedure. Such a derivation has been carried out previously 

by a number of authors. It was repeated in this work as an introduction to 

the derivation of a similar equation, the finite depth fluid (FDF) equation. 

A suitable scaling procedure has been found for the derivation of the FDF 

equation which, in our model, described a wave propagation on the interface 

between two fluid layers of different densities. An advantage of using this 

scaling procedure is that the continuity of density at the interface did not 

play any role in the derivation. This should be compared to the derivation of 

the similar equation by Kubota et al (1978) in terms of physical variables, in 

which the continuity of density has been taken into account. 

The main theme of this thesis has been the study of the soliton solutions 

of the FDF, the KP, the Classical and the ordinary Boussinesq equations. The 

soliton solutions to all these equations have already been found using 

Hirota's direct approach. This is the appropriate method to use when the 

soliton solutions themselves are to be studied. 

The result of Matsuno (1984) was employed to deduce the N-soliton 

solution of the FDF equation in the form of a finite sum of Wronskian type 

determinants. The new structure of this equation has also been shown to fit 

the equation without making use of any algebraic identity. This means that 

the FDF equation has a similar property to that of the KP equation and not to 

that of the KdV equation, which requires an identity in the verification of 

its Wronskian solution [Freeman (19S4)]. Since the verification of the 

solution of the FDF equation does not require any identity, and by virtue of 

the hierarchies of equations produced by Jimbo and Miwa (19S3), this suggests 
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a different hierarchy of equations, of which the FDF equation is one. 

hierarchy, with the general bilinear equation of the form 

P(D)f+-f- =0 

where f- is a single Wronskian and f+ is a finite sum of Wronskian type 

Such a 

determinants of the same functions as those for f however, has not yet been 

found. This then requires a further study. 

The N-soliton solution of the FDF equation in the new representation has 

also been shown to reduce to those of the KdV and the Benjamin--Ono equations 

under specific limiting conditions. Also shown was that the interaction 

properties of the solution of the FDF equation reduced to those of the KdV and 

the Benjamin-Ono equations. Indeed, this isin contradiction to the result of 

Chen and Lee (1979) who concluded that the solution of the FDF equation 

reduced only to the solution of the KdV equation, but not to the solution of 

the Benjamin--Ono equation. We note here, to our advantage, that Chen and 

Lee's conclusion was rejected by Henyey (1980). 

The use of Wronskians to represent multisoliton solutions has been made 

extensively throughout the thesis. The advantage of the Wronskian 

101 
P(P2 1 ... 10 NI as being constructed directly from individual soliton solutions 

OV02 1 ... 10 N has enabled us to reconstruct the N-soliton solution of the KP 

equation which resonates in pairs. From the knowledge that two resonating 

solitons interact together to produce a triad of solitons, we have been able 

to express the N-soliton solution originally in the form of an ordinary 

determinant as the Wronskian 21... 10 N/21 for N-even and the Wronskian 

I(Pi 
V(P 2'*** 'ýN- DAZ "ON I for N-odd where (P 

1 are the individual triads. Therefore 

we have been able to study in detail the interactions between triads and 

solitons. Specifically, we chose to consider interactions between N/2 triads 

and between(N-1)/2 triads and a soliton. 

The asymptotic behaviour of the triads or the soliton can be examined 

from the Wronskian itself. The phase shifts of the triads and soliton after 
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the interaction can be readily computed. 

The detail of the interactions between a triad and a soliton and between 

two triads has been examined both analytically and numerically. It is 

interesting to note that the interaction between two triads have been found 

similar to the interaction between two solitons in one space dimension in the 

way that the faster triad will overtake the slower triad and they both emerge 

from the interaction without changing their shape but with only some phase 

shif ts. 

The pq =c reduction of the first modified KP hierarchy presented in 

Chapter 5 was first given by Hirota (1985) for the Classical Boussinesq 

equations. By use of the Wronskian technique, a complete theory of the 

N-soliton solutions has been given, including the rational solutions. This 

therefore gives a good example of how the hierarchies can be used to give 

solutions of 'reduced' equations of practical importance. 

A similar technique applied to the ordinary Boussinesq equation itself, 

leads to a different separation of the first equation of the KP hierarchy from 

that used by Nimmo and Freeman (1983) and, earlier, by Hirota and Satsuma 

(1977). Such a separation, however, leads to a more complex Wronskian 

representation of the solution. Indeed we have found the N-soliton solution 

of the ordinary Boussinesq equation as a finite sum of Wronskian type 

determinants. The solution can be viewed as the polynomial in a parameter z 

where z=ei 7r/6. Since z satisfies the identity relation z4=z2-1, the 
02 

polynomial can always be reduced into two terms: z and z terms. It is shown 

that the two-soliton solution in the new representation satisfies the equation 

in a similar way to that originally proposed by Nimmo and Freeman (1983). 

This suggests that the N-soliton solution can also be verified in a similar 

manner. This requires a further investigation. 
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APPENDIX A 

THE DIRECF KMIOD OF IJIROTA 

Hirota (1971) has developed a direct method to obtain multisoliton 

solutions of the KdV equation. This method has been successfully applied to a 

number of nonlinear evolution equations including the KP, the Classical and 

ordinary Boussinesq and the finite depth fluid equations. 

The method involves the substitution of the original dependent variable 

in the form G/F and requires the nonlinear evolution equation to be written in 

the form of a bilinear equation. The nonbilinear part is equated to zero so 

that the relation between F and G is found. 

In order to illustrate this method we consider the KdV equation 

ut+ 6uu 
x+u NXX =0 (A. 1) 

with boundarY conditions u, u Xý u xx -4 0 as x -+ ±cO. 

Equation (A. 1) is first written in terms of w, where u=wx. After one 

integration it becomes 

3w 2+w=0 (A. 2) 
x ND<X 

Substituting w= G/F into (A. 2) gives 

(G 
t 
F-GF 

t 
)/F 2+ 3(G 

x 
F-GF 

X) 
2 /F 4 

2 
+ (G 

XD. CX 
F-3G 

xx 
Fx -3G xF xx -GF DCKX 

/F 

+ 6(FG F2 +FGF F -GF 
3)/F4 

=0 (A. 3) 
xxx xx x 

We notice that the resulting equation (A. 3) looks more complicated then the 

original equation (A. 2) or (A. 1). However, the terms can be rearranged as 

follows: 

Ect F-GF 
t +G 

xxx 
F-3G 

xx 
Fx +3G 

xF xx --GF NNX 
/F 2 

+ 3(G F-GF )[C F-GF -2(FF -F 
2) 3/F 4=0 

xxxx xx x 
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This equation can be decoupled into 

GtF- GF 
t+G ND(X 

F- 3C 
xx 

Fx+ 3C 
xF xx - GF 

NNX =0 (A 
- 4) 

GF- GF - 2(FF -F 
2)=0. 

(A. 5) xx xx x 
From (A. 5) we can deduce the relation between G and F, 

x rn I ýF 1%-71 2x Fýj rx 
]x 

which means 

log F) (A. 6) 
c ')x 2' 

and 

Fx. (A. 7) 

Using (A. 7) into (A. 4), it can be written in the form 

(D +D 
3 )FX*F =0 (A-S) tx 

where the bilinear operators D and D3 have been introduced in (1.18). tx 
However (A. S) is more conveniently written in the form 

D (D +D 
3 )F-F =0 (A. 9) 

xtx 

where we have made use of the relations 

2D 
tF Xý 

F=DD F-F 

and 

2D M-1 F -F =Dm F-F ,m even xxx 
Essentially what we have been doing in the above is to transform the KdV 

equation (A. 1) into the bilinear form (A. 9) by using the Cole-Hopf-like 

transformation 

The solution to the bilinear equation (A. 9) is obtained by expanding F as 

a power series in a small parameter 6 

F=I+ eF I+ 6- 
2F2+ (A. 10) 

Substituting (A-10) into (A-9) and collecting terms of the same powers in 

c we f ind 
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a, C, '93 2+ -' F0 (A. 11) 
13X 

I-at 
ax 3) 1 

2, c3 [2- ecl- 
3 

,qt+ --F -D (D +D )F F (A. 12) 9x 
ax3] c2xtx 

! ý3 cl 3 

c 

A [5 
-t + -D (D +D )(F F +F F (A. 13) Ox _IX3, 

] 
Fxxtx 

2* 1C 2) 

and so on. 

The single-soliton solution is obtained by taking 

F1=a exp(kx -k3 t) , 

and 

F2=F3== 

Therefore 

F=1+ exp(kx- k3 t+6) 

where the parameter 6 has been absorbed into 6. Using (A. 6) the solution is 

12213 
U= -k sech -ý', Jkx-k t+6) 22 

For the two-soliton solution we choose F1=aI exp Tj 1+a2e xp T7 
2 where 

T7 kx-kt- 
11 

It is interesting to note that with this choice we find from (A. 12) 

kk2 
2 -r'2 

2 
2 

2] 
exp F ý'k (T71 +T72) 

and that we can always choose F3=F4=-=0 to terminate the series 

This means that we obtain an exact solution. Therefore for the 

two-soliton solution we have 

0 1-k 2, ] 201 +0 2 
e 

, +k 2 

where 0= T7 i+6 i* 

Similarly, the N-soliton solution is obtained by taking 

N 

F1ai exp(-q d 

and F N+l -F N+2 
0. The form of F for the N-soliton solution is 

expressed as a sum of exponentials [Hirota (1980)] 
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(N) N 

exp 
[ýAii 

flip +ý 4i oil (A. 14) 

p1=0,1 i>j i=1 

where 

(k, -k )[k 3 
-k 

3 
-(k, -k 

3 

exp(A )=-i11 
ij (k +k )[k 3 

+k 
3_ (k +k 

3 
iiIjii 

is the summation over all possible combinations of p 0,1, 

4=0,1 
(N) 

1-L2 = O'l, ... ' pV = 0,1 and the summation over all possible pairs, with 

i>j 

i>j chosen from N elements. 
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APPENDIX B 

THE WRONSKIAN SOLUTIONS 

The N-soliton solutions of the KdV and the modified KdV equations have 

been expressed by Satsuma (1979) in the form of the Wronskians of some 

functions by considering the inverse scattering schemes for the two equations. 

The structure of the solutions in this form can also be deduced directly from 

the determinantal form of the solutions obtained from the inverse scattering 

transform. This has been shown by Freeman (1984) and the outline of the proof 

is given below. 

For this purpose we take the KP equation in the form 

(u 
t +6uu 

x 
+u 

XXX 
)x+ 3u 

yy =0- (B. 1) 

The N-soliton solution to this equation, obtained from the inverse 

scattering transform, can be written as ELamb (1980)] 

(3 
2 

2 -, -(log 
(3x 

2 

wi th 

(B. 2) 

a. 
6+I exp(O. +\P. ) (B. 3) 

ij PI +n 
j11 

where 

x2yV3t 
2 

\Pj nx+n, y 4n 
1t 

with R, n, ) a real constants, i=1,2, ..., 

If matrices M, A, D1 and D2 are defined as 

M=1A6, ja, 
[T 

-T-n- 
,n j] 

DI= 
[6 

ij exp 0 
il yD2= 

[6 
ij exp p il 

then (B. 3) can be written as 

AD 1 
MD 21 ' 

(B., I) 

The determinantal form of F in (13.4) is transformed into a Wronskian form by 
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making use of the following matrices 

N 
P 

[6 
j 

Tr (P 
P_ 

e 
P/i 

N 
Q 

16 
ij(-l)i- 

U (e +n d] 
P=l 

V (-e 

W (-l) j-1 
n 

i-11 
i 

where V and W are the Van der Monde-type matrices. 

The matrix M is related to the above matrices by 

V- 
1W= 

p- 1 MQ 

where V -1 has been obtained by making use of the theory of symmetric 

functions. 

From this relation, M is expressed as 

-1 -1 M= Pv WQ 

By using the last relation in (B. 4) we find 

F= 11 + AD 1 PV- 1 WQ- D 21 

= JAD 
1 PV- 11 jVP-lD 

1 
'A-'+WQ- 1D 

21 

The factor JAD 
1 PV-lj in the above expression takes the form 

N 

C exp Ri x) where C is a function of t only. By virtue of the final 

solution u expressed by (B. 2) this factor may therefore be ignored and thus 

F= jVP-lD 'A-'+WQ-'D 
21 

A close look at the determinant (B. 5) shows that 

13 F 
(i+l)j = (9x ij 

where F Therefore (B. 5) is the Wronskian 

(P 1 (P 2 ... (P N 
')(P 00 O(P C2N 

ax CIX ax 
F 

a N-1 4) a N-1 4) a N-1 
(p 

ax 
N-1 ax 

N-I .............. Ox N-1 

(B. 5) 

(B. 6) 
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wi th 

-(e. x-e 
2 

y-4e 
3 

t+6 n x+n 
2 

y- n 
3t-lf 

eiiii (B. 7) 

where 

N 
log(a IT (P 

p- 
ei 

P/j 

and 

N 
log( TI (e 

p +n 
P=l 

The Wronskian (B. 6) is more conveniently written in its transposed form 

in which the columns represent the orders of differentiation of increasing 

degree and thus it can be denoted by 

F= (O, 1,2,..., N-1) 8) 

The notation in (B. 8) can be made rnore compact still by writing 

F= (N 1) (B. 9) 

where ^ indicates the Wronskian which begins with order zero and ends up with 

order N-1. 

In verifying soliton solutions we need to differentiate the function F. 

Differentiation of a Wronskian is much simpler than differentiation of an 

ordinary determinant since differentiation of a column may produce two 

identical columns and hence gives no contribution. For example, we have 

a(p a(p a2 (P a N-1 
(P 

x C3 x, C-IX ax 2 
axN- I 

a2 (P a2 (P (3 
N- I(P 

+ (pi 9 2 2 ... N-1 
c3x 13X ax 

a(p C') 
N-3 

(P (3 
N- 1(p aN-I(p 

ax (3x 
N-3 ax N-1 ax N-1 

al) C3 
N-2 

(P aN 4) 

ax 3xN-2 (3x 
N 
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This means that the first N-1 determinants are zero since they contain 

two identical columns. Thus in the notation of (B. 9) we simply have 

Fx= (N 2, N) 

What we are doing in here is simply shifting up the order of every columii 

by one and collecting the ones which do not have two identical columns. Us i ng 

this we can find 

F (N 2, N+I) + (N-3, N-1, N) 2x 

F (N 2, N+2) + 2(N-3, N-1, N-1) + (N-4, N-2, N-1, N+I) 3x 

and so on. 

Differentiation of F with respect to other variables such as t and y for 

the KP equation follows the same pattern. Normally, differentiation with 

respect to other variables ;, 9 directly related to the differentiation with 

respect to x. Indeed, this can be obtained from the functions which define 

the Wronskians. For the KP equation we find from (B. 7) that 

&P. a3 4). O(P. d2 (P. 
Tt -4 

Ox3 dy ax 2 

Therefore to differentiate F with respect to t we first multiply the 

columns by -4 and shift up the order of that column by three- In this way we 

f ind 

Ft -4((N-2, N+2) + (N-3, N+1, N-2)1 

-4((N 2, N+2) - (N-3, N-1, N+1)) 

Similarly, we may also obtain 

Fy = (N-2, N+l) + (N-3, N, N-1) 

= (N-2, N+l) - (N-3, N-1, N) 

It should be noted that the number of determinants obtained in all the 

above derivatives does not depend on the size of the Wronskian F. It depends 

only on the order of the derivatives. 

Now, substituting the solution (13.2) into the KP equation (B. 1), we find 

the bilinear equation 
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FF-FF+ FF - 4F F+ 3F 2+ 
3(FF F20 (B-10) xt xt 4x x 3x xx 2y- y 

In order to verify the Wronskian solution (B. 9) for the KP equation (B-1) 

we need to show that (B. 9) satisfies (B. 10). Substituting (B. 9) and all its 

necessary derivatives into (B. 10) we find the expression on the left side of 

(B. 10) gives 

6f(N-1)(N-3, N, N+I) - (N-2, N)(N-3, N-1, N+l) 

(N-2, N+1)(N-3, N-1, N)) 11) 

which must be shown to be zero. The appropriate method to do this is to make 

use of the Laplace expansion of a determinant which can be described as 

follows [Aitken (1954)]. 

Let us choose the first m rows rl, r 2) ..., r of a determinant A of size 

NxN. From these m rows and from all possible combinations of m different 

columns we can form n minors A,, i=1,2, ..., n where 
MI 

n= (N-m)! m! ' 

Associated with minor A1 is its complementary minor or cofactor Ai formed 

from the remaining N-m rows and N-m columns. The determinant A is then 

written as 

n S. 
'A A' 

where 

(B. 12) 

Si=rI+r2+... +rm+c ii +c i2 + ... +c 
Im 

with c 119 C i2' **" C im the original column numbers used to form the minor A1. 

As a special case we consider a determinant A of size 2N x 2N in the form 

ID -abc dl 
II (B. 13) 

where D is an Nx (N-2) matrix, the dot is the zero matrix, and a, b, c, d 

the column matrices. By choosing m=N, most of the minors give zero 

contribution due to the zero matrices in the first and second N rows and we 

are left with only six non-zero minors. Thus, the Laplace expansion (B. 12) 

yields 
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A= IDabIlDadl - IDacIlDbdl + jDadjjDbcj 

+ IDbc I jDad I- jDbd I JDac I+ IDcd I jDab I 

= 2( jDab I IDcd I- jDac I jDbd I+ jDad I IDbc I (B. 14) 

If we put D= (N-1), a= (N-2), b= (N-1), c= (N) and d= (N+I) in (B. 14) we 

can see that (B. 11) is 

N-1 N-2 N-I N N+I 
3 

N- I N-2 N-1 N N+1 

which can be shown to be zero by elementary row and column subtraction method. 

Hence we have verified that the Wronskian solution (B. 9) satisfies the KP 

equation. 
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APPENDIX C 

The Hierarchies 

P (D) 

dcgrce 4D4 -4DID3+3D' 
-1 

11 

(D3+2D3)D2 -3DID, I 

dcgree 6D6- 20D3D - 80D2 + 144D Ds -45D2D2 

'C 'ýc ,I113 

D6+4D3D3 -32DI -9DIDI + 36DA 113121 

dcgree 7 (D5 +I OD 2D 
3+24DS)D2+5D3D, -40D, D 1 

DID3+ (D3+2D3)D4-4D, D6 21 

D D3D2+ D3D4-2D, D6 

degree 8 D'+ 14D5D3+84D3D3-504D Ds- 120D I D7- 1051)211)2D 34 
+210W + 420DID6 

-2D 
2D2 +4D 3 D5+4D3Ds- 12D, D7+D 4 D2-9D 2+ 14D D6 131J242 

-6D2D 
2 +4D 3 D3-41)3Ds+ 12DD7+D 4 

-6D2D2D4-3D 
2 +2D D6 

131242 

D5D3 -16D3D5-5D, D3D 2+ 20D2D6 12 

2D 2D2 +4DD5-12D, D D2 +3D 2 D2D4+3D1-2D2N" 13 7+2DID3 214 

dcgree 9 (D' + 35D 22 D3-2 I DiD5+90DI)D, + 105D4 
+(35D3, - 140D3)D, - 105D, D, 

D'D3+9D D2 D4+6D 2 D3D, +(4D3+16D3)D -36D, Dg I112116 
L)4 2 

I 3+12D D5+48D -21D3D -36D5)1)--24 lj)2D,, -. (3 D 7)Dl +134.2 
+(2D3, - 8D3)D6 +24DDs 

3+2D3D -3D, D, D4+D, D, 16 

(3D, D3+ 3DID5 - 6D, )D2+3D, D4D2' +(6DID3+ 9D5)D4 3 

-i-(-DI+4D, )D -21D, Da 16 

(D 20D'D i 3+221)3)D4 + 15DID2D4+ 2D3D6- 60D, D. 

C. I The KP hierarchy: P(D)F. F =0 after Jimbo and Miwa. (1983). 

The N-soliton solutions of the equations under this 

hierarchy take the Wronskian form F= (N-ý-l ) of the functions 

00 n co n 
cl i exp( Pi xn+bi exp( Z q, \n 

n=l n=l 

for i=1,2, ..., 
N with pI qj arbitrary solution parameters. 
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P (D) 

degree 21 D, + D2 

degree 3 D3-4D3- 3L), D2 
I 

degree 4 D, + 8D, D3+3D, D2- 6D, 

- DID2+ D2' + 2D,, 

degree 5 DI - 16D5 + 5D, D2_I OL), D, 2 

2 (D3-4D 
2 1 3)D2+3D, D +6D, D, 

D1, -4D2, D3+3D3, D, +6D, D, 2 

degree 6 D6- 20D 3D -8OD2+144D, D, +(-15D4+60D, D 11331 3)D2 

(-D'-8D, D -3D 
2D2 +6DID4 I 3)D2 121 

-D 
6+ 16D3 3 
1 ID3+ 3 D, D2 +12D2 

I 3+2D2 D3D 3-3D, D2D3+6D6 

3D6+192D, D5+(-356-, -l6jL)-D3)D - 90 1) 2 L) 2 11212 

+l8OD2D,, -120D 
D4 

2 

degree 7 11 D', - 70D4lD3- 336DID5 + 560D D32- 480D 137 
+ (- 7DI 4- 490D 2D- 168D5)D2 + (2 IOD'+ 420D 2 1131 3)D2 

3D 7+ 112D 2 D5-640D7+ (14 D21 --2 24 D5)D2+ 35D 3 D2-70D 3 
12 11)4 

-70DIDJ+ 140DID2D4 

5D 4 Dj- 120D2D3 +40DID 2+ 24OD74- (D5 + 35D2D3 + 84D5)1)2 II133-2 
+30DID3 +(-5DI IOD3)D2 2 

(-3D5, +48D5)D2+(-5D3, + 20D. 3)DII + (I OD 13 - 40D3)D, 

D7- 280D I D'+ 294D 2 D5 - 120D7+ (7D5 - 70L)2D3- 421)3)L)2 
35DJ- 70D3)D 2- 105DIDJ 2 

3D'D3 - 56D 2 D5 +24D I D2 +8OD7+(17DD 1 .3+ 
28D5)D2 4- 2D3D22 

+2D3D, 4 + 14D II II 
Di + 8D, D2 ), 

I DI + DiD D4+4DID - D'ID5 + 4D7 +(D4, D3 - D5)DI + D3 4+DID2 6 

C. 2 The First Modified KP hierarchy: P(D)F. F' =0 after 

jimbo and Miwa (1983). The N-soliton solutions of the 

equations under this hierarch,,, take the Wronskian form 

F= (N-1), F' = (ý). The functionswhich define these 

Wronskians are the same as those for the KP hierarchy. 
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