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Abstract

Mitochondria are organelles that reside in virtually every cell of the human body and provide
the energy for the cells to function. OXPHOS is the main metabolic pathway through which
mitochondria generate energy, it is a machinery made up of five complexes each built with
sub-units of multiple proteins and molecules. Defects in OXPHOS machinery manifest
as results of genetic mutations and lead to mitochondrial disease. Mitochondrial diseases
are currently untreatable due to our limited understanding of their pathology. The study of
mitochondrial disease pathology involves discovery of OXPHOS protein expression patterns
linked to various genetic mutations.

Mitochondrial disease affects high energy demanding cells like Skeletal Muscle (SM) cells
(myofibres). The expression of various OXPHOS proteins in myofibres taken from SM
biopsies is studied. These OXPHOS proteins in SM tissue are observed using various imaging
techniques such as Imaging Mass Cytometry (IMC). IMC produces high dimensional (up to
40 channels) multiplexed pseudo-images representing spatial variation in the expression of
a panel of OXPHOS proteins within a tissue, including sub-cellular variation. In previous
methods good quality ‘analysable’ myofibres in these multichannel images are segmented and
various statistical summaries, such as mean protein expression, are computed per myofibre.
Statistical summaries of various groups of myofibres linked with different genetic mutations
and a healthy control group are compared to analyse and understand the OXPHOS protein
expression patterns of various mitochondrial diseases.

Theses methods have a number of limitations i) profiling OXPHOS protein patterns in
high dimensionality data: Due to high dimensionality multiplex data, it is not possible to
classify and discover the OXPHOS protein expression pattern for four out of five groups
of genetic mutations affecting mitochondria that have been studied [1] i.e. except for one
group of genetic mutation the classification accuracy for all other groups was below 90%. i1)
Precise segmentation and curation of myofibres: It is not possible to precisely segment and
curate myofibres with existing applications without heavy manual corrections. iii) The use
of statistical summaries per myofibre ignores all intra-myofibre features. There are many
hypotheses [2, 3] that theorise the existence of differential features within myofibre in various

mitochondrial dysfunctions.



vi

In this thesis I use Machine Learning (ML)-specifically logistic regression and XGboost,
and various Deep Learning (DL) methods to address the three limitations mentioned above
with the following contributions. I) Classify myofibres of mitochondrial patients affected
by various genetic mutations, using explainable ML and myofibre statistical summaries.
I show that using ML the classification accuracy for all five mutations exceeds 90% . 1
also demonstrate the use of explainable ML methods to discover the OXPHOS protein
expression patterns associated with these high predictive accuracy ML models. II) Precise
myofibre segmentation and curation pipeline: I developed ‘myocytoML’ a precise myofibre
segmentation and curation pipeline that meets the quality of gold standard manual human
annotations. This also led to the building of NCL-SM: A large dataset of more than 50k
manually annotated myofibres, which is now available for public use. III) Classify myofibres
of mitochondrial patients affected by various genetic mutations, using explainable DL and
segmented multichannel raw images. I show that using DL the classification accuracy for
all five mutations exceeds 98%. I also demonstrate the use of explainable DL methods to
discover the OXPHOS protein expression patterns associated with these high predictive

accuracy DL models.
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Chapter 1

Introduction

Deep learning (DL) in medicine and healthcare is a rapidly advancing domain, making
groundbreaking strides in diagnosis, prognosis and drug discovery [4—12]. This is particularly
noticeable in bioimaging where DL is facilitating a paradigm shift in detecting disease [13—
16]. The adaptation of general computer vision DL models such as Convolutional Neural
network (CNN) [17], R-CNN (region based CNN) [18], vision transformers [19, 20] and
DL models such as UNet [21] invented out of biomedical specific use cases are driving the
invention of novel and groundbreaking DL pipelines for diagnosis and prognosis [14, 22, 23].
The use of explainable DL to discover underlying natural processes and phenomena in
meteorology, astronomy, geology, biology is at the cutting-edge of Al research [24-33],
however, to the best of my knowledge there is no prior literature describing such applications
in mitochondrial disease i.e. the use of DL to aid in the discovery of clinical phenomena

such as mitochondrial disease pathology.

Mitochondrial diseases are individually uncommon but are collectively the most common
metabolic disorder affecting 1 in 5,000 people[34]. They can cause severe disabilities and
adversely affect the life expectancy of patients [35]. They manifest either as a result of
mutations in genes encoded by the mtDNA and/or in genes encoded by the nDNA whose
products are imported into mitochondria [1]. Mitochondrial disease pathology is complex
and highly heterogeneous. Diagnosis usually requires algorithmic analysis of clinical history
and of results from multiple laboratory investigations [36]. Some of the latest approaches
to classify mitochondrial diseases, quantify disease severity and understand the disease
pathology are based on the analysis of single-cell protein expression in multiplex images of
skeletal muscle (SM) tissue collected from patients and control groups.

The Wellcome Centre for Mitochondrial Research (WCMR) based within the Newcastle

University is one of the leading institutes conducting research into mitochondrial diseases



2 Introduction

worldwide, and WCMR have an unparalleled repository of clinical data and tissue from
controls and patients with mitochondrial disease [37]. The data includes images of tissue
sections that capture spatial variation in protein expression within tissue (including within
cells) and from which single-cell level protein expression can be observed and measured. At
WCMR advanced protein expression measurement techniques such as Image Mass Cytometry
(IMC) are used to observe the spatial variation in the expression of up to 40 proteins in
tissue simultaneously. Established statistical approaches to analyse this multiplexed high
dimensional data can in some cases, i.e. one in the five cases that are studied [1], successfully
identify defective myofibres and the proportion of defective myofibres seems to usefully
segregate patients from control subjects [1, 38]. However, these approaches are based around
statistical summaries of intensity per myofibre that were i) imprecisely segmented and ii) are
fairly crude quantitative measures of myofibre morphology ,and iii) ignores intra-myofibre
features that are theorised to differential as per the latest studies [2]. In contrast, in order to
derive as much information as possible from these rare and valuable patient data to discover
the possible protein expression patterns that can reveal mitochondrial disease pathology, the
use of Machine Learning (ML) and Deep Learning (DL) can be explored for the analysis of
these raw multiplex (IMC) images.

To profile protein expression patterns associated with various mitochondrial diseases
using ML & DL is a significant challenge. This involves first building models that can
accurately predict different classes of mitochondrial disease — especially difficult due to
difficulties involved in precise myofibre segmentation; the subtle differences between the
classes and second, building pipelines to interrogate these models to understand the basis
for their predictions — through approaches of explainability. The work undertaken in this
thesis is to research and develop various explainable ML & DL pipelines in order to derive
as much information as possible from the raw multiplex (IMC) protein expression data with
an aim to discover the possible protein expression patterns that can reveal mitochondrial
disease pathology. This thesis details a system for automatic segmentation, classification
and presentation of possible pathology of various mitochondrial dysfunctions based on
unprocessed (raw) IMC data. This is achieved through three pipelines of trained computer
vision ML, DL models and robust post-processing techniques capable of removing all
non-ideal regions/myofibres in the tissue image, classify myofibres in these tissues from
different subject classes and give possible pathological reasoning via explainable methods, a
visualisation of which can be seen in Figure 1.1.

The proposed system led to development of the following dataset and pipelines.

* NCL-SM: a large dataset of >50k precise manually segmented myofibres that are

made publicly available for training and evaluation of SM tissue image segmentation
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pipelines. A consequence of this led to development of a) protocols for segmenting
multiplex (IMC) SM tissue images that address the issues of precise segmentation;
detecting frozen damaged and non-transverse sliced myofibres, and folded tissue; b)
evaluation metrics that inform all aspects of annotation quality.

* myocytoML: an automatic SM tissue image segmentation pipeline that can precisely
segment and curate myofibres that are of analysable quality.

* An explainable ML pipeline combines ML models with explainable methods applied
to statistical summaries of myofibres to classify myofibres linked to five classes of
genetic mutations and profile these myofibres based on associations discovered by ML
Explainable Methods (EMs).

* An explainable DL pipeline that combine DL models with EMs to profile segmented
multiplex images of myofibres linked to five classes of genetic mutations. This is
further extended to classify and profile unsegmented SM tissue section multiplex

images.

1.1 Research aim and contributions

The high level aim of this thesis is to: Design, implement, and evaluate novel explainable
machine learning analysis pipelines that precisely segment the multiplex SM tissue
images; collate multiplex myofibre images and genetic mutation data and make ex-
plainable predictions which allow users to discover underlying mitochondrial disease
pathology.

Implicit in this aim are a number of research questions:

1. Is it possible to precisely segment and classify ‘analysable’ myofibres in multiplex

images using machine learning?

2. Is it possible using explainable machine learning to classify and profile mitochondrial
disease using per myofibre statistical summaries?

3. Is it possible using explainable deep learning to classify and profile mitochondrial

dysfunctional myofibres using raw segmented multiplex images of myofibres?

4. Is it possible using explainable deep learning to classify and profile mitochondrial

diseases using raw unsegmented multiplex images of SM tissue?
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Input (Imaging data) - ——»

Input (genetic mutation) - ———»

Output (of each part of the pipeline) - |::>

myocytoML: SM tissue
image segmentation
pipeline

Explainable ML
pipeline for
profiling myofibre
using summaries
Explainable DL
pipeline for
profiling myofibres
using raw

segmented IMC
images.

1y

Multiplex protein
images (IMC)

Figure 1.1 A high level overview of data flow through the proposed system. A Input multiplex IMC
images (left) are passed through myocytoML: an automatic segmentation pipeline, producing an
instance segmentation output mask of ‘analysable’ myofibres, remove all non-analysable (folded
tissue) regions and myofibres (frozen artifact myofibres; non-transverse sliced myofibres). This also
provides per myofibre morphological summaries and annotation quality metrics. B The ‘analysable’
myofibres mask, the multiplex input image and genetic mutation information are used as input to
i) produce statistical pixel intensity summaries per myofibre for each input channel, ii) these are
used to training ML classification models, iii) model/s with highest predictive accuracy is selected to
apply EMs that produces SHAP plots which informs the ML model’s prediction basis, this is used
to discover associations between channels, pixels and genetic mutation class. C The ‘analysable’
myofibres mask, the multiplex input image and genetic mutation information are used as input to i)
create a dataset of multiplex segmented images of ‘analysable’ myofibres, ii) these are used to train
DL classification models, iii) model/s with highest predictive accuracy is/are selected to apply EMs
that produces SHAP explanation masks which inform the DL. model’s prediction basis in terms of
SHAP values per pixel, absolute SHAP value (ASV) per channel, this is used to profile myofibres
linked to genetic mutation classes.
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To answer these questions and thereby address its aim, this thesis presents the following
contributions:

1. myocytoML: An automatic segmentation pipeline for precise segmentation of SM
tissue images [39]. The pipeline is made up of three ML models and robust post pro-
cessing techniques to 1) segment all myofibres, 2) classify and remove non-analysable
myofibres, 3) detect and remove folded regions. This is presented in Chapter 5.

2. NCL-SM: A fully annotated dataset of images from human skeletal muscle biopsies. To
enable the development of myocytoML, NCL-SM was built as a completely manually
and precisely segmented dataset of more than 50,000 myofibres that captures diverse
subjects (healthy controls and patients suffering from various muscle diseases) and
imaging techniques (IMC, IF). In addition to this, NCL-SM has complete annotations
of all folded regions and classification of frozen damaged myofibres, non-transverse
sliced myofibres and ‘analysable’ myofibres. These annotations are accompanied with
metrics that define the quality of these annotations, i.e. both comparative metrics
derived from duplicate human annotations and objective metrics driven from domain
specific factors i.e. inclusion of cell membrane and exclusion of cell mass. This is
presented in Chapter 4.

3. Explainable ML pipeline to classify and profile mitochondrial disease using multi-
plex per myofibre statistical summaries: i) myofibre summaries are computed using
‘analysable’ myofibres mask, the multiplex input image, ii) these multiplex/multi-
channel myofibre summaries and genetic mutation information are used to train ML
classification models, iii) models with the highest predictive accuracy are selected
to apply EMs that produce explanation plots which informs the ML model’s predic-
tion basis, this is used to discover associations between channels, pixels and genetic

mutation class. This is presented in Chapter 3.

4. Explainable deep learning pipeline to classify and profile mitochondrial dysfunctional
myofibres using raw segmented multiplex images of myofibres : 1) a dataset of mul-
tiplex segmented images of ‘analysable’ myofibres is created using an ‘analysable’
myofibres mask and the multiplex input image, ii) these multiplex/multichannel raw
myofibre images and genetic mutation information are used to train DL classification
models, ii1) models with the highest predictive accuracy are selected to apply EMs
that produce explanation masks which inform the DL. model’s prediction basis, this is
used to profile myofibres linked to various genetic mutation classes. This pipeline is
then extended to classify and profile mitochondrial diseases using raw unsegmented

multiplex images of SM tissue. This is presented in Chapter 6.
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1.2 Thesis Structure

The structure of this thesis is as follows:

Chapter 1 provides the motivation for the work undertaken in this thesis, and highlights
its main contributions. An overview of the peer-reviewed publications produced as a

result of work undertaken in fulfilment of this thesis is also presented.

Chapter 2 presents the required background knowledge for understanding the work pre-
sented in future chapters. An introduction to mitochondrial biology, IMC data analysis,
machine learning and deep learning is provided, alongside a discussion of key com-
puter vision concepts and their recent use in medicine. Existing analysis methods for

multiplex (IMC) biomedical data is also examined.

Chapter 3 discusses the development of explainable ML pipeline to classify and profile
mitochondrial disease using multiplex per myofibre statistical summaries. This includes
selection of appropriate ML models and explainable methods; training experiments

and building insights from predictive inference.

Chapter 4 outlines the creation of NCL-SML.: a fully annotated dataset of images from SM
biopsies. This is built to allow for work presented in later chapters of this thesis to
be completed and NCL-SM is released for public use i.e. to train and evaluate ML
models for SM tissue image segmentation. The NCL-SM consists of more than 50k
manually segmented myofibres from diverse subjects and captured using two imaging
techniques, 1) a multichannel IMC dataset consists of ~23k manual annotations of
myofibre, this was collected at WCMR and consist of seven classes of mitochondrial
diseases, ii) a multichannel IF dataset consist of ~ 27k manual annotations of myofibre,
this was collected at WCMR and consists of six classes of mitochondrial diseases. The
chapter also introduces 1) protocols to segment SM tissue image and curate ‘analysable’
myofibres within the image, ii) evaluation metrics for measuring the various aspects of

annotation quality required for SM tissue image analysis.

Chapter 5 discusses the development of myocytoML: an automatic segmentation pipeline of
SM tissue images. This discusses design decisions including selection of segmentation
models, classification models, order of execution of tasks, graphical user inference
and standard operating procedure. The chapter also discuses experimental design
and training of ML models for the tasks involved in accomplishing precise SM tissue

segmentation.
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Chapter 6 discusses the development of an explainable DL pipeline to classify and pro-
file dysfunctional myofibres using raw segmented multiplex images of myofibres.
This includes preparation of data i.e. multichannel myofibre images of uniform size;
selection of appropriate DL models and explainable methods; DL model training ex-
periments and building myofibre profile images from predictive inference.The chapter
also discusses an extension of this pipeline to be used in unsegmented multiplex (IMC)
data.

Chapter 7 summarises the conclusions of the work presented in this thesis, highlights main

contributions and explores avenues for future work in the area.

1.3 Related Publications

The work outlined in this thesis has led to the publication of the following peer-reviewed

papers:

[40] - presented in Chapter 6 A. Khan, C. Lawless, A. E. Vincent, S. Pilla, S. Ramesh, and
A. S. McGough, “Explainable Deep Learning to Profile Mitochondrial Disease Using
High Dimensional Protein Expression Data”, Proceedings — 2022 IEEE International
Conference on Big Data, Big Data 2022, pp. 4375-4384, 2022.

[41] - presented in Chapter 4 A. Khan, C. Lawless, A. E. Vincent, C. Warren, V. D. Leo,
T. Gomes, and A. S. McGough, “NCL-SM: A Fully Annotated Dataset of Images from
Human Skeletal Muscle Biopsies”, in 2023 IEEE International Conference on Big
Data (BigData), pp. 3704-3710, 2023.

1.3.1 Publications reuse and contributions

Some of this published material is reproduced verbatim within this thesis, for which I have
required copyright permissions. These publications are written by me as first author under the
guidance of my PhD supervisors Dr Lawless, Dr Vincent and Dr McGough. The contributions
of other coauthors are as follows- S. Pilla and S. Ramesh were MSc students who help with
training classification models for unsegmented TS multiplex data; C. Warren, V. D. Leo and
T. Gomes collected, processed, and imaged biopsies/tissue sections also performed expert

annotations.






Chapter 2

Background

2.1 Mitochondrial biology

Mitochondria are organelles that produce ~ 90 % of the energy consumed within each
of the trillions of cells that make up a human body [42]. Dysfunction in mitochondria
disproportionately affects cells with a high energy demand e.g., muscle cells and neurons.
Mitochondria are unusual in that they have their own DNA (mtDNA). Genes in mtDNA code
exclusively for mitochondrial proteins and their synthesis machinery, but most mitochondrial
proteins are encoded in nuclear DNA (nDNA). Mutations affecting mitochondrial proteins,
whether encoded in mtDNA or nDNA manifest as mitochondrial diseases [43]. Mitochondrial
diseases are classified based on their genetic aetiology, i.e., the source and location (nDNA or
mtDNA) of their mutation, as inherited or sporadic nDNA and/or mtDNA diseases. In mtDNA
diseases, when genetic mutations in mitochondrially encoded genes reach high concentrations
in an individual cell, this results in alterations in the concentration of mitochondrial proteins
and associated subunits of the mitochondrial respiratory chain (RC) complexes which in turn

results in mitochondrial dysfunction [44].

2.1.1 Okxidative phosphorylation

Oxidative phosphorylation (OXPHOS) is a vital metabolic process that occurs in the mi-
tochondria of cells, where it generates ATP (adenosine triphosphate), the primary energy
currency of the cell. The inner mitochondrial membrane hosts OXPHOS protein complexes
that comprise the mitochondrial respiratory chain complexes (complexes I-IV) and ATP
synthase (complex V). The whole electron transfer process through the OXPHOS complexes
leading to creation of ATP is described in Figure 2.1.
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Figure 2.1 Oxidative phosphorylation: The inner mitochondrial membrane hosts OXPHOS protein
complexes I-V. Complex I starts the first step of OXPHOS and accepts electrons derived from NADH,
with complex II accepting electrons derived from FADH,. These are transferred along the chain to
complex III to complex IV through cytochrome c. The transfer of electrons through complexes I-IV is
coupled with the pumping of protons from the matrix to the intermembrane space. This creates an
electrochemical gradient which causes protons to flow back through complex V to convert ADP to
ATP [45]. Figure taken from [46, 47]

2.1.2 Mitochondrial genetics

As mentioned earlier mitochondria have their own DNA (mtDNA) but the majority of

mitochondrial proteins are encoded in nDNA.

mtDNA

The mtDNA located in the mitochondria of human cells is inherited almost exclusively from
the mother, and is the small, circular double-stranded molecule — measuring 16569bp, which
encodes 37 genes: 13 OXPHOS subunits, protein synthesis machinery(22 tRNAs and 2
rRNAs) as presented in Figure 2.2 [48].

mtDNA replication, hetroplasmy and the threshold effect

Replication of mtDNA occurs independently of the cell cycle and is reliant on its own
replication machinery. This replication machinery when working correctly produces wild-
type (normal) mtDNA; however sometimes defects (e.g. mutations in RRM2B and POLG)
cause it to produce mutant (abnormal) mitochondrial mtDNA [49]. Due to the polyploid
nature of mtDNA, it is possible for wild-type and mutant genomes to coexist within a cell.
The cell is said to be homoplasmic if all copies of the mtDNA within the cell are identical,

however a cell is heteroplasmic if more than one mtDNA species are present. Heteroplasmy
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is measured as a percentage derived from the total number of mtDNA species and can vary
in different cells. When the proportion of mutated mtDNA exceeds a certain threshold it
leads to a phenotypic manifestation (disease symptoms) of the genetic defect see Figure
2.3. This threshold level varies across 1) different tissues depending on their energy demand
1.e. tissues which are highly dependent upon OXPHOS metabolism experience effects at a
lower threshold, and ii) mtDNA mutations i.e. higher in point mutation than single deletion.
Usually the threshold level falls between 60-90% mutant to wild-type mtDNA [50, 51].

mtDNA mutations

Genetic defects associated with the human mitochondrial genome were first demonstrated
in 1988 [52, 53] and since then, a vast number of mutations have been identified and linked
with mitochondrial disease. The main types of mtDNA mutations are as follows:

mtDNA point mutations

mtDNA point mutations are described as a single base pair substitution and are present
in the adult population at a prevalence of 1 in 5000 [34] . These mutations, which can
either be maternally inherited or sporadic, are hugely heterogeneous and cause a vast range
of mitochondrial diseases. There is great clinical variability between carriers of the same
mutation. Patients can present with other features such as ataxia, diabetes mellitus, optic
atrophy, hearing loss and dementia [54].

Single, large-scale mtDNA deletions

Single, large-scale mtDNA deletions refer to the loss of a substantial segment of the mtDNA
molecule, which can result in the removal of several genes essential for mitochondrial func-
tion, these deletions are thought to occur sporadically during early stages of development [55].
These deletions can lead to a variety of mitochondrial disorders; the most commonly reported
deletion encompasses 4,977bp [55], but deletions can vary in size from 1.3 to 10 kb. A
prevalence of 1.5/100,000 accounting for approximately 16% of adult mtDNA mutations,
deletions are a common cause of mitochondrial disease [34]. There are three main clinical
syndromes associated with deletions: CPEO, Kearns-Sayre syndrome (KSS) and Pearson

syndrome [56].
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Figure 2.2 mtDNA: The mitochondrial genome encodes 37 genes — 13 OXPHOS subunits (complex I
= orange, complex III = pink, complex IV = green, complex V = purple), protein synthesis machinery
(22 mt-tRNAs (blue) and 2 mt-rRNAs (grey)). Figure taken from [46, 47]

2.1.3 nDNA mutations

As mentioned earlier mitochondria are under dual control of both mtDNA and nuclear DNA
(nDNA). Although mtDNA encodes for 37 genes that are critical for protein synthesis, the
remaining proteins that are required for RC complex assembly, mtDNA replication, repair,
transcription and translation are encoded by nuclear DNA (nDNA). Currently there are
approximately 1100 nuclear genes encoding mitochondrial proteins [57]. Therefore, some
mitochondrial diseases are caused by defects in nuclear genes. Some of these nDNA muta-
tions will have a secondary effect on mtDNA, resulting in deletions and mtDNA depletion
causing various conditions [58]. The nuclear genes associated with mtDNA deletions encode
proteins involved in 37 replications (TWNK [59], MEN2 [60], biogenesis (TFAM [61]),
TK2 [62]), mitochondrial fusion (OPA1 [63]), POLG [64] and mitochondrial maintenance
(RRM2B [65])).
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Figure 2.3 mtDNA heteroplasmy and the threshold effect. RC function (blue line) is maintained
around 100% until the heteroplasmy level (proportion of mutant to wildtype mtDNA) reaches a
threshold level (indicated by the red dotted line). After this threshold is reached, the percentage of
respiratory chain function begins to decline. Figure taken from [46, 47]
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Mitochondrial diseases are rare metabolic disorders affecting 1 in 5,000 people [34]. They
can cause severe disabilities and adversely affect the life expectancy of patients [35]. They
manifest either as a result of mutations in (mtDNA) and/or (nDNA) [43]. Some of the latest
approaches to understanding mitochondrial disease pathology involves analysis of single cell
protein expression data in tissue that are highly dependent upon OXPHOS metabolism, i.e.

need more energy e.g. skeletal muscle [43].

2.2 Skeletal muscle in mitochondrial diseases

Skeletal muscle (SM) is one of the primary tissues affected in mitochondrial diseases, given
its high energy demands [66, 67]. SM is affected by defects in RC function, however theoreti-
cally RC dysfunction can give rise to any symptom, in other tissues[68]. Due to great clinical
and genetic variability presented by patients suffering from mitochondrial SM disorders
(myopathies), its diagnosis is challenging. However, genetic sequencing techniques such
as next generation sequencing (NGS) has revolutionised the way in which these diseases
are diagnosed making diagnosis quicker and more straightforward i.e. by detecting the
genetic mutations [69]. Histochemical (microscopy) image analysis of SM biopsies is still
widely-used for detecting mitochondrial abnormalities for diagnosis. One method, the Go-
mori trichrome stain, allows visualisation of ragged red fibres, a hallmark of mitochondrial
myopathies, under the microscope. These myofibres have an abnormal appearance due to
the accumulation of dysfunctional mitochondria around the edges of myofibres [70]. Other
techniques that look for specific mitochondrial enzymes, e.g. cytochrome c¢ oxidase/suc-
cinate dehydrogenase (COX/SDH) dual histochemistry [71], are more informative as they
allow the observer to assess function of components of mitochondrial energy production.
COX/SDH is a technique that in mitochondrial myopathy typically shows a mosaic pattern
of complex IV enzyme COX deficiency in myofibres. This mosaic pattern is due to a mixture
of COX-positive (brown precipitate) and COX-negative (lack of brown precipitate and there-
fore presence of blue precipitate) myofibres in a muscle biopsy. Although this allows the
classification of myofibres into COX-positive, intermediate or COX negative, only complex
IV deficiency can be evaluated with this method, and any deficiency in other OXPHOS
complexes such as complex I, IIl and V cannot be detected.

This issue is addressed by an immunofluorescent (IF) technique that quantifies the levels

of complex I and IV together with a marker for mitochondrial mass [72].
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2.3 SM tissue imaging technique: Quadruple

Immunofluorescence

IF is an antibody-based semi-quantitative imaging technique that visualises specific proteins
or antigens within cells or tissues using antibodies linked to fluorescent dyes. It allows the
capture of high resolution and high bit depth microscopic images and is less expensive and
faster than other advanced techniques such as imaging mass cytometry (IMC), but with IF

only up to five proteins can be observed.

2.4 SM tissue imaging technique: Image Mass Cytometry

IMC is a recently developed method allowing quantitative analysis of protein levels in a
highly multiplexed way, at single cell and subcellular resolution as described in Figure 2.4.
The output from the image mass cytometer is either text or proprietary .mcd file which can be
converted into pseudo-images using MCD viewer [73]. These pseudo images have resolution
of 1um x 1um per pixel and can be exported as a 16 or 32 bit grayscale image stack saved in
OME-TIFF(.ome.tiff) format for downstream analysis [73].

2.5 Leveraging full potential of IMC data in the context of

mitochondrial disease SM tissue analysis

IMC allows observation of up to 40 protein markers [74] with 1yum x 1um resolution and
can provide insight into the pathology of various genetic mutations that cause mitochondrial
diseases, which require observation of proteins/enzymes/subunits in the myofibre (including
sub-cellular areas to test various theories [2]) involved in the function of OXPHOS complexes
(1-V). IMC allows us to select multiple target protein markers to observe i.e. multiple markers
within each OXPHOS complex, mitochondrial mass markers, cell morphological markers
(e.g. cell membranes, nuclei). The IMC data in context of mitochondrial disease pathology in
SM tissue present us with the opportunity to observe and understand the associations between
these various protein markers, intra-myofibre regions and genetic mutations. There are many
analysis methods [75-81] for high dimensional multiplex (IMC) data, all of which employ
1) segmentation of cells in the multiplex data, ii) followed by application of dimensionality
reduction techniques, either spatially (e.g. protein marker’s pixels mean intensity per cell)
or channel-wise, iii) followed by classification or clustering methods to visualise various

groups/classes/populations of cells. In the context of our use case this type of analysis
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Figure 2.4 Imaging Mass Cytometry: experimental procedure in which IMC cells are stained with
a panel of antibodies conjugated to heavy metals and tissue (cells) are scanned by a pulsed laser
which ablates a spot of tissue section. The tissue is vaporised on each laser shot and enters the mass
cytometer where the relative concentration of heavy metals can be quantified. These measurements are
later combined as pseudo images where location and intensity of each pixel correspond to the amount
of metal isotopes and location at each spot. Cells are segmented in these images for conducting single
cell data analysis. Figure taken from [1, 74]
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which requires either ignoring intra-myofibre features (when the data is reduced in spatial
dimension) or ignore channels (when data is reduced in channel-wise dimension) means

compromising with leveraging of full potential of multiplex IMC data.

2.6 Existing IMC analysis pipeline for mitochondrial

disease SM tissue

For downstream analysis of skeletal muscle tissue sections, currently individual skeletal
myofibers (SMs, skeletal muscle cells) are identified using semi-automatic image segmen-
tation and then average protein expressions per cell estimated. This step is carried out
using a Python image analysis package called mitocyto [1]. Average protein expression
levels in single SMs are analysed using relevant statistical techniques and the R shiny tool
plotIMC[82][75]. Comparisons are drawn between matched patient and control groups using
relevant statistical models (e.g. linear regression, Gaussian Mixture Models (GMM)).

2.6.1 Myofibre segmentation using mitocyto

Before performing the analysis on the multiplex IMC data, individual myofibres need to
be segmented. For this the mitocyto! application built in-house by Dr Conor Lawless is
used. Segmentation software that were previously used by other groups for IMC multiplex
data such as MiCAT [77], cell profiler [83] and Ilastik [84], were difficult to adapt in order
to accommodate for the type of analysis that was required for IMC in skeletal muscle i.e.
precise segmentation of myofibre, removal of unfit for analysis regions (folded tissue) and
myofibres (freezing damaged and non-transverse sliced (NTM). This necessitated the de-
velopment of mitocyto in-house at WCMR that can segment myofibres in IMC multiplex
images. Mitocyto works by building an edge map of the cells which is used to segment
the area of each individual cell. The edge map is constructed by applying computer vision
algorithms from OpenCV [85] like watershed, threshold, Canny edge detection and finding
contours. The edge map can be constructed automatically, either directly from an image
representing cell membranes, or from a gradient map constructed from a channel (or from an
average of all available channels). The edge map can also be drawn by manual tracing over
individual channel images (or over an average of all available channels), using the mouse. It
is suggested that using membrane channel images produces the best results compared to all
other channels or combinations [1].

This is followed by a post processing step to retain myofibres that are of ‘analysable’ quality

'www.github.com/CnrLwlIss/mitocyto
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and remove the rest from the segmented myofibres in the edge map. The criteria of size
(areamin=500, areamax=17500), convexity (convexmin=0.75, convexmax=1.0), aspect ratio
(asp-ratiomin=0.0, asp-ratiomax=10.0), and circularity (circmin=0.0, circmax=100.0) were
used to detect and remove non-transverse sliced myofibres.

But it was observed that both automatic steps of constructing edge maps and filtering
‘analysable’ myofibres do not usually yield a segmentation which is analysis ready. This
might be due to weak signal or noise in the image, or factors such as tissue folding or freezing
damaged myofibres that are not handled by mitocyto. For this reason the common workflow
to use mitocyto is where a first draft of the edge map is constructed automatically, followed
by manual updates to arrive at a segmentation of analysable quality [1]. An example of a
final ‘analysable’ myofibres mask produced using mitocyto is presented in Figure 2.5.
Using analysis ready edge map mitocyto can produce a comma separated (CSV) file con-
sisting of statistical summaries for each individual myofibre. This includes area, perimeter,

aspect ratio, coordinates and mean, log mean and median intensity for individual myofibres.

2.6.2 SM tissue multiplex (IMC) data analysis using plotIMC

plotIMC? [1] is a R shiny web-tool that is built in-house at WCMR by Dr Conor Lawless to
analyse the multiplex statistical summaries produced by mitocyto. plotIMC has three views,
i) 2Dmito plot is the default view which produces a scatter plot between a selected protein
target on the y-axis and surrogate for mitochondrial mass marker VDAC]1 on the x-axis, a
linear regression line and 95% predictive interval (PI) is drawn using all control myofibres.
This predictive interval is used as reference upon which patient myofibre summaries are
drawn, and the myofibres lying outside this predictive interval are classified as affected by
mutation as described in Figure 2.6, i1) mean intensity stripchart view shows the proteins’
mean intensity distributions of control and patient myofibres as described in Figure 2.7
and iii) theta stripchart view shows the proteins’ theta distributions of control and patient
myofibres as describe in Figure 2.8.

In addition to these three views, plotIMC also produces a Pearson’s correlation plot between
all protein targets for a given subject as described in Figure 2.9 and tabular summaries that
present i) proportion of a given patient’s myofibres lying outside 95% PI computed using
control myofibres, i1) mean intensities of all proteins categorising it as ‘ABOVE’, ‘NODIFF’,
‘BELOW’ based on the predictive intervals, and iii) a table summing the spread of intensities

of all proteins for a given patient i.e. min, max, mean, median.

Zhttps://mito.ncl.ac.uk/warren_2019/


https://mito.ncl.ac.uk/warren_2019/

2.6 Existing IMC analysis pipeline for mitochondrial disease SM tissue 19

Figure 2.5 Section from P02 segmented and manually updated using mitocyto. The data exported
as 16-bit TIFF files from MCD viewer has 12 tiff files per section, each corresponding to a target
protein, resolution of 1 pixel per 1 um?, which is determined by the size of the laser spot. From this
the myofibre membrane marker (Dystrophin) tiff file is used to construct an edge map using mitocyto.
The coloured annotations (unique colour per myofibre with its number displayed in white text) are
‘analysable’ myofibres and white annotation are rejected myofibres.
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Figure 2.6 P02 myofibers 2Dmitoplot made using plotIMC. The points are coloured according to
values of a selected protein (NDUFBS) , from red to blue gradient representing lower to higher values
of patient’s (P02) myofibres and gray points represent control myofibres. The dotted lines represent

95% PI of control myofibres.
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Figure 2.7 PO2 myofibers stripchart mean intensities made using plotIMC. The coloured points
(coloured according to NDUFBS8 values) represent patient (P02) myofibres and gray points represent
control myofibres. The dotted lines represent mapping of individual myofibre across various protein
markers.
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Figure 2.8 P02 myofibers strip chart theta made using plotIMC.The coloured points (coloured
according to NDUFBS values) represent patient (P02) myofibres and gray points represent control
myofibres. Plot on the left defines how the theta values are computed.
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Figure 2.9 P02 myofibers correlation plot made using plotIMC. The coloured points (coloured
according to NDUFBS values) represent scatter plot between two proteins. The numbers in cells are
the Pearson’s correlation values.
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2.7 A typical analysis of SM tissue IMC data using existing
analysis pipeline

At WCMR the multiplex IMC data is analysed using mitocyto and plotIMC as performed by
Warren et al. [1] . Here, I present a typical analysis of this data from Warren ez al. [1] that
will be used as reference/benchmark for analysis conducted using ML methods developed in
this thesis.

2.7.1 Data

Skeletal muscle samples were taken from the vastus lateralis of patients with clinically and
genetically-characterised mitochondrial diseases of either mtDNA or nDNA origin. For
the initial cohort, patients were grouped based on the type of mutation: Nuclear-encoded
mutations affecting complex I (n=2), Single, large-scale mtDNA mutations (n=2), Point
mutations in mitochondrial-encoded tRNA leucine (MT-TL1) (n=3), and point mutations in
other mitochondrial-encoded tRNAs (n=3). SM samples were taken from the hamstring of
the healthy controls (n=3).

Ethical approval for use of mitochondrial disease patient tissue was granted by the
Newcastle and North Tyneside Local Research Ethics Committee (reference 16NE/0267).
Control tissue was acquired from the distal part of the hamstring muscle from individuals
undergoing anterior cruciate ligament surgery following approval by the Newcastle and North
Tyneside Local Research Ethics Committee (reference 12/NE/0394). Information about all

patients and control cases are displayed in Table 2.1.

IMC data

The 6um sections were transversely sectioned from frozen blocks of biopsies from subjects
mentioned in Table 2.1 prepared for IMC which included air drying the frozen tissue, fixing
it with paraformaldehyde, permeabilisation by dehydration and rehydration in a methanol
gradient, overnight incubation with the metal-conjugated antibody panel and finally being
placed in Hyperion imaging mass cytometer for ablation. After successful ablation files were
exported in their native “MCD” file format and processed to single channel TIFFs (16-bit)
using MCD viewer software (Fluidigm).

The antibody panel used was designed to include antibodies that specifically targeted a
number of mitochondrial proteins as well as myofibre membrane and nuclear markers.
Out of 12 markers, eight mitochondrial antibodies were included, seven of these targeted

proteins involved in complexes I-V (CI-CV) of the mitochondrial oxidative phosphorylation
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Table 2.1 Subject information: Information of patients and controls detailing gender, age at biopsy,
clinical information and genetic defect. The orange rows define the genetic mutation of the subjects
in the following rows.

Subject | Gender | Age | Clinical informa- Genetic defect Heteroplasmy level
tion
Nuclear-encoded mutations affecting complex I (taken from the vastus lateralis)
PO1 M Adult | Exercise intoler- | TMEM126B NA
ance, unable to | Homozygous
perform sustained | ¢.635G>T,
aerobic exercise | p.(Gly212Val)
normal  resting
lactate, normal
CK
P02 M Adult | Exercise  intol- | ACAD9  Com- | NA
erance, muscle | pound heterozy-
cramps, elevated | gous c.1150G>A,
serum lactate p-(Val384Met)
and c.1168G>A,
p-(Ala390Thr)
Single, large-scale mtDNA mutations (taken from the vastus lateralis)
P03 F 29yrs | CPEO and bilat- | Deletion size: | 53%
eral ptosis 4372bp  Break-
points: 8929-
13301 mtDNA
deletion  level:
53%
P04 F 39yrs | CPEO, diplopia Deletion size: | 28%
7498bp  Break-
points: 7130-
14628 mtDNA
deletion  level:
28%

Point mutations in mi

tochondrial-encoded tRNA leucine (MT-TL1) (taken from the vastus lateralis)

rior cruciate liga-
ment surgery

P05 F 25yrs | Exercise intoler- | m.3243A>G MT- | 66%
ance, ptosis TL1 mutation
P06 F 47yrs | Modest exercise | m.3243A>G MT- | 34%
intolerance TL1 mutation
P07 M 53yrs | CPEO m.3243A>G MT- | 74%
TL1 mutation
Point mutations in other mitochondrial-encoded tRNAs (taken from the vastus lateralis)
P08 M 33yrs | Mitochondrial m.10010T>C MT- | 89%
myopathy TG mutation
P09 F 35yrs | Mild weakness m.14709T>C MT- | 76%
TE mutation
P10 M 63yrs | Exercise intoler- | m.5543T>C MT- | NA
ance, prominent | TW mutation
exertional dysp-
nea
Healthy controls (taken from the tibialis anterior)
C01 M 20yrs | Taken during ante-
rior cruciate liga-
ment surgery
C02 M 24yrs | Taken during ante-
rior cruciate liga-
ment surgery
C03 F 23yrs | Taken during ante-
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Table 2.2 Presented here is the list of protein targets and respective antibodies.

Protein Target Metal label | Host and metal isotope (primary antibodies) Secondary antibodies
Membrane marker: Dystrophin 176Yb Mouse
Complex I: NDUFBS8 160Gd Mouse 1gG1 Anti-IgG1 biotin
Complex I: NDUFA13 164Dy Mouse IgG2b Anti-IgG2b Alexa Fluor 546nm
Complex II: SDHA 153Eu Mouse 1gG1 Anti-IgG1 Alexa Fluor 647nm
Complex III: UQCRC2 174Yb Mouse I1gG1 Anti-mouse IgG Alexa Fluor 488nm
Complex IV: MTCO1 172Yb Mouse IgG2a Anti-IgG2a Alexa Fluor 488nm
Complex IV: COX4+4L2 168Er Mouse [gG2a Streptavidin Alexa Fluor 647nm
Complex V: OSCP 161Dy Mouse IgG1
OMM marker: TOM22 158Gd Mouse IgG
OMM Mass marker: VDAC1 166Er Mouse IgG2b
DNA marker: DNA1 1911r
DNA marker: DNA2 1931r

machinery and one targeted a mitochondrial outer membrane protein which acted as a
surrogate for mitochondrial mass, two markers targeted DNA and one myofibre membrane
as detailed in Table 2.2. These targets allowed observation of all five complexes of the
respiratory chain, mitochondrial outer membrane (VDACT) can be used as a surrogate for
mitochondrial mass and by extension for cytoplasm, nuclei (DNA1 and DNA?2) and myofibre
membrane marker (dystrophin). VDACT1 and dystrophin will be helpful in segmentation of
myofibres.

2.7.2 Results using existing analysis pipeline

Myofibre segmentation

Using mitocyto with manual interventions to remove folded tissue regions and freezing
damaged myofibres, an ‘analysable’ myofibres edge mask is made for 13 subjects resulting in
8994 myofibres across all subjects as presented in Table 2.3. However, there is no provision
in mitocyto to evaluate the quality of segmentation and users have to rely on visual inspection.
In addition to ‘analysable’ myofibres edge masks mitocyto also produces a CSV file with per
myofibre statistical summaries of protein markers and myofibre morphological measurements
as described in Table 2.3.

plotIMC analysis

The CSV file from mitocyto is used as input to plotIMC to analyse it. As discussed earlier
plotIMC allows a user to perform exploratory data analysis using various plots as presented
in Figures 2.6, 2.7, 2.8 & 2.9. For classification of control and patient myofibres, plotIMC
uses 95% PI of control myofibres i.e. myofibres lying out 95% PI are classed as deficient
or abnormal. It is suggested that a proportion of myofibres from a subject that lies outside

95% P1 are considered deficient (dysfunctional) and patients will have a higher proportion
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Table 2.3 Per myofibre statistics generated using mitocyto. MED, LOG prefix before protein marker
refers to median, log of pixel intensities. Mean pixels intensities are represented by protein marker
name without prefixes.

Subject_ID | Myofibre count | Input features
CO01 148
ggg ?2? SDHA, LOG_SDHA, MED_SDHA; NDUFBS,
PO1 337 LOG_NDUFBS8, MED_NDUFBS; OSCP,
P02 232 LOG_OSCP, MED_OSCP, NDUFA13,
P03 1361 LOG_NDUFA13, MED_NDUFA13, VDACI,
PO4 279 LOG_VDACI, MED_VDACI1, COX4+41.2,
P05 1878 LOG_COX4+4L2, MED_COX4+41.2, MTCO1,
P06 208 LOG_MTCO1, MED_MTCO1, UqCRC2,

LOG_UqCRC2, MED_UqCRC2, Area,
P07 755 . } . .

AspectRatio, Perimeter, Circularity, xCoord,
P08 628
P09 946 yCoord
P10 602

Total = 8994

of deficient myofibres [1]. The results for all 13 subjects based on 95% PI for each protein
marker is presented in Table 2.4. As observed in the table only for one group of patients, i.e.
P0O1&P02 with nDNA-encoded mutations, can the 95% PI classify myofibres with >90%
accuracy and for most groups using 95% PI is not a good discriminator, this can be due to

more complex associations exist between protein makers that is not captured by 95% PI.

Advantage of existing analysis workflow

* Without mitocyto myofibre segmentation would be a laborious task that would take
hours and days. In our experience manually annotating a myofibre can take up to two
minutes per myofibre and a section can have on average 1000 myofibres and studies

usually have dozens of sections.

* plotIMC allows comparison of statistical summaries across multiple subjects and

proteins in both graphical and tabular format.

 Using plotIMC’s 95% PI for classification certain patients’ myofibres can be accurately
classified as described in Table 2.4

Limitations of existing analysis workflow
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Table 2.4 Classification using plotIMC. plotIMC uses 95% PI of control myofibres to classify
myofibres based on their mean protein expression measured in terms of pixel intensities. The green
cells are where percentage of myofibres that are either above below the 95% P1I line exceed 90 %, and
orange cells are where these proportions are between 70%-90% .

Subject | PI category | NDUFA13 | NDUFB8 | SDHA | UgCRC2 | COX4 | MTCO1 | OSCP | VDACI1
P01 ABOVE 0.00 0.00 98.52 97.93 87.87 84.91 | 99.11 0.00
P01 IN 0.00 0.00 1.48 2.07 12.13 15.09 0.89 | 100.00
P01 BELOW 100.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00
P02 ABOVE 0.00 0.00 70.24 71.03 50.79 | 88.89 | 61.51 0.00
P02 IN 0.00 0.00 29.76 28.57 49.21 11.11 36.90 | 100.00
P02 BELOW 100.00 100.00 0.00 0.40 0.00 0.00 1.59 0.00
P03 ABOVE 2.13 4.12 0.07 3.16 2.72 0.96 0.29 0.00
P03 IN 95.44 91.25 99.71 96.03 93.38 | 96.40 | 98.24 | 100.00
P03 BELOW 243 4.63 0.22 0.81 3.90 2.65 1.47 0.00
P04 ABOVE 1.87 0.00 36.21 59.35 76.17 | 45779 | 55.26 0.00
P04 IN 92.64 71.73 63.79 40.30 1822 | 4743 | 44.74 | 100.00
P04 BELOW 5.49 28.27 0.00 0.35 5.61 6.78 0.00 0.00
P05 ABOVE 0.53 0.11 11.34 43.77 27.42 4.53 17.89 0.00
P05 IN 74.92 70.07 88.60 52.24 62.25 81.15 | 81.15 | 100.00
P05 BELOW 24.55 29.82 0.05 3.99 10.33 14.32 0.96 0.00
P06 ABOVE 5.62 0.85 7.81 55.43 33.21 12.82 11.48 0.00
P06 IN 81.07 76.07 92.19 41.15 60.81 77.66 | 86.08 | 100.00
P06 BELOW 13.31 23.08 0.00 3.42 5.98 9.52 2.44 0.00
P07 ABOVE 0.40 0.13 68.64 66.67 16.86 3.16 41.90 0.00
P07 IN 33.60 29.78 31.36 33.07 78.13 | 77.08 | 57.84 | 100.00
P07 BELOW 66.01 70.09 0.00 0.26 5.01 19.76 0.26 0.00
P08 ABOVE 0.16 0.00 89.47 5.74 3.03 0.00 90.75 0.00
P08 IN 13.56 10.85 10.53 38.44 9.41 10.69 9.25 | 100.00
P08 BELOW 86.28 89.15 0.00 55.82 87.56 | 89.31 0.00 0.00
P09 ABOVE 3.04 2.72 4.19 0.21 23.98 9.53 3.87 0.00
P09 IN 51.52 49.11 94.66 69.74 49.11 55.39 | 74.55 | 100.00
P09 BELOW 45.45 48.17 1.15 30.05 26.91 35.08 | 21.57 0.00
P10 ABOVE 0.17 0.00 58.08 6.01 0.86 0.34 8.93 0.00
P10 IN 14.43 11.68 41.75 34.02 15.64 13.75 | 74.40 | 100.00
P10 BELOW 85.40 88.32 0.17 59.97 83.51 85.91 16.67 0.00
Co1 ABOVE 0.68 4.05 0.00 0.00 0.68 0.68 1.35 0.00
Co1 IN 99.32 95.95 93.92 93.92 98.65 | 97.30 | 97.97 | 100.00
C01 BELOW 0.00 0.00 6.08 6.08 0.68 2.03 0.68 0.00
C02 ABOVE 1.38 0.35 1.38 0.35 0.69 0.00 2.08 0.00
C02 IN 98.62 99.65 98.62 98.96 97.23 | 100.00 | 97.92 | 100.00
C02 BELOW 0.00 0.00 0.00 0.69 2.08 0.00 0.00 0.00
C03 ABOVE 1.53 9.92 0.76 8.40 1.53 13.74 4.58 0.00
C03 IN 88.55 82.44 97.71 86.26 88.55 | 74.81 84.73 | 100.00
C03 BELOW 9.92 7.63 1.53 5.34 9.92 11.45 10.69 0.00
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* Mitocyto segmentation needs manual updates or intervention both for segmentation
and curation. More importantly the quality of annotations is not evaluated and just
relies on subjective intuition. Segmentation and curation is the fundamental first step

of the analysis upon which the reliability of any further analysis is dependent.
* plotIMC works on statistical summaries ignoring intra-myofibre features.

* With plotIMC it is not possible to leverage multichannel protein analysis i.e. each
protein’s summary is treated individually and compared parallelly.

* Using plotIMC’s 95% PI for classification only myofibres from POl & P02 can be
accurately classified and to a lesser degree (70%-90%) also myofibres from P08 & P10.
But for the remaining subjects the current pipeline cannot classify the myofibres.

» The association between various proteins for individual subjects or groups of genetic
diagnoses cannot be explained with the current pipeline. plotIMC allows observation
of the correlation between protein summaries but this does not consistently hold true
across subjects which make validating any association irrelevant.

* The whole workflow requires manual interventions i.e. in segmentation, myofibre
curation (selecting ‘analysable’ quality myofibres), moving data from mitocyto to
plotIMC.

2.8 Other existing tools and methods to study multiplex
IMC image data

2.8.1 Napari

Napari [86] is an open-source, multi-dimensional image viewer for Python. It is designed
specifically for browsing, annotating, and analysing large multi-dimensional images, making
it particularly useful for the multiplex IMC images. Napari allows development of scripts,
widgets and plugins on top of it enabling the building of powerful workflows. This func-
tionality can be leveraged to build custom image segmentation workflows such as SM tissue

IMC image segmentation.

2.8.2 IMC data analysis workflow by Windhager group

Windhager et al. have developed a suite of tools for the analysis of multiplex data including

IMC data [78]. Their end-to-end multiplex image analysis workflow consists of 35 steps and
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about a dozen tools for various analysis tasks e.g. visualisation, segmentation, clustering
analysis, principal component analysis (PCA). Some of these tools which are relevant for our
use case are discussed below.

Napari-IMC [78] is an image viewer Napari plugin to view multi-dimensional raw IMC
data from its proprietary MCD file. In addition to a multichannel view it allows the user
to observe multi-regions and modes (acquisitions, panoramas), providing a holistic view of
IMC raw data.

Steinbock [78] is an image segmentation tool for multiplex (including IMC) imaging data.
It is a python package that incorporate various biomedical segmentation methods and models
such as cellprofiler [83], Ilastik [84], DeepCell [87, 88], and Cellpose [89] into a single tool.
It allows the user to select from these methods and pretrain models for image segmentation
as per their requirement e.g. tissue type. In addition Steinbock allows users to generate per

cell statistical and morphological summaries similar to mitocyto in CSV text files.

Cytomapper [90] is an open-source Bioconductor/R package designed for the visualisation
and exploration of per cell summaries of highly multiplexed imaging data. It facilitates the
analysis of spatial patterns and cell-cell interactions within the tissue. It also has an R shiny
application (GUI) that allows visualization based on hierarchical gating of cells based on

protein marker levels.

imcRtools [78] is an open-source Bioconductor/R package that offers helper functions
for analysis of per cell summaries of highly multiplexed imaging data. Using spatial graph
constructs it provides a number of analyses such as cell-cell interaction, spatial clustering.

2.8.3 Case for using these tools for SM tissue IMC data analysis to
understand mitochondrial disease pathology

While these are useful methods and tools for analysis of multiplex (including IMC) data,
they suffer from similar limitations to the existing pipeline in the context of our use case as
discussed in Section 2.7.2.

Case for SM tissue image segmentation

Steinbock is a flexible tool that allow users to select segmentation tools/models that are

appropriate to their use case. But this cannot perform the segmentation for the type of



2.9 Computer vision 31

analysis that is required for IMC in skeletal muscle i.e. precise segmentation of myofibre,
removal of non-analysable regions (folded tissue) and myofibres (freezing damaged and
non-transverse sliced (NTM). Furthermore, in my experience the generalised segmentation
tools and models (without customised retraining) that are available within Steinbock do not

produce the segmentation quality required for the use case researched in this thesis.

Case for leveraging full potential of SM IMC data

Similar to plotIMC both Cytomapper and imcRtools work with per cell summaries of IMC

multiplex data and so are exposed to similar limitations i.e. ignoring intra-myofibre features.

2.9 Computer vision

Computer vision (CV) is a field of computer science that focuses on enabling computers
to interpret a high-level understanding from digital images or videos. It involves the de-
velopment of algorithms and models that allow computers to process, analyse, and make
decisions based on visual inputs such as images [91]. CV can be classified based on tasks
it accomplishes such as image segmentation, object detection, image classification, image
registration. Relevant to this thesis are the following CV techniques.

2.9.1 Image segmentation

Image segmentation is a CV technique that deals with classification of pixels within an image
into discrete classes with an aim to partition areas in the images that might represent objects
such as cells within a tissue [92]. Depending on number of discrete classes and tagging of

individual instances of the same object, image segmentation can be divided into four sub
types.

Edge-based segmentation

Edge-based segmentation techniques work by identifying edges of objects within an image
by employing algorithms such as watershed, threshold, Canny edge detection and finding
contours [93]. These contours are processed and converted to a segmentation mask as used

in mitocyto.



32 Background

Semantic segmentation

Semantic segmentation techniques work by assigning pixel-level labeling of segmented areas
to object classes such as segmenting all dogs and cats in an image as two discrete pixel labels
[92]. A case for semantic segmentation for our use case might be for segmentation of folded
tissue regions i.e. three semantic pixel labels one representing folded tissue region, normal

tissue regions and background.

Instance segmentation

Instance segmentation techniques extend semantic segmentation by not only labeling each
pixel but also distinguishing between different instances of the same object class [92]. A
case for instance segmentation for our use case might be for myofibre segmentation i.e. each

instance of myofibre within SM tissue image label with a unique pixel value/id.

Panoptic segmentation

Panoptic segmentation combines the tasks of semantic and instance segmentation. It provides
a complete scene understanding by assigning a unique label to each pixel and identifying
both object instances (e.g. individual cells) and semantic classes (e.g. folded tissue, normal
tissue) in the image [92].

2.9.2 Image classification

Image classification is a CV technique that deals with classification of images, i.e. assigning
a label or category to an entire image based on its content/features. The goal of image
classification is to recognise objects, patterns, or features within an image and classify
them [94]. A case for image classification for our use case might be for freezing damaged
myofibre classification.

2.10 Supervised machine learning

Supervised machine learning is a paradigm of machine learning where ML models are
trained with labeled data i.e. pair of input and expected output. The goal of the model is
to learn associations between features/patterns in the input data and output label, so that it
can correctly predict the label of unseen data [95]. This approach is “supervised” because

the learning process is guided by the known ground truth labels during training. This ML



2.10 Supervised machine learning 33

technique can be applied to a range of predictive tasks such classification, segmentation,
regression.

The training of supervised ML models is performed by splitting the data into training
and testing sets. The ML model is trained on the training set by minimising a loss function
that measures the difference between the predicted outputs and the actual ground truth. This
minimising of a loss function is achieved by adjusting the internal parameters (weights) of
the models to minimize loss function which is typically done using an optimisation algorithm
like stochastic gradient descent. Depending on the predictive task there are various loss
functions such as binary cross-entropy for binary classification, categorical cross-entropy
for multi-class classification, mean squared error, mean absolute error. The model can
become too tailored to the training data, reducing its ability to generalize to new data. This
is called overfitting which can be mitigated by employing various methods such as using
cross validation data sets while training that allow detection of early signs of overfitting, i.e.
when training loss is noticeably lower than validation loss, using data augmentation which
allows introduction of artificial variation and noise in the training data, using early stopping,
i.e. during training if the validation loss starts to increase while training loss continues to

improve, stop the training early.

2.10.1 Machine learning for tabular data

ML for tabular data (such as multiplex summaries of myofibres) is not fundamentally
different to other data modalities but a more structured format of tabular data makes many
ML models applicable to it. Performance of ML models is dependent on their ability to
identify relationships between input features and dependent (expected output) variable. The
extent of complexity involved in this relationship needs comparable ML models that can deal
with the complexity at hand.

Simple linear models perform better where the relationship between the input features and
dependent variable is less complex (that can be approximated using linear functions), as this
relationship get complex Tree-based and deep learning (DL) models are more useful. But it
had been observed that for tabular data Tree-based models perform better than DL [96].

Generalised Linear Models (GLMs)

GLMs are a family of models that extend from traditional linear regression models that takes
the general form of

Y =Po+XB 2.1)
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where Y is the dependent variable and X is the input features vector, fBy is intercept (bias)
and f is coefficient (weight) [97] .

Logistic Regression (LR)

LR is a type of GLM for binary classification i.e. when the dependent variable is binary. LR

can be extend to multinomial dependent variables. The LR takes the general form of

1
e Bt X

(2.2)

that transforms the linear regressed value to probability ranging from 0-1 using functions
such as sigmoid and a threshold (usually 0.5) can be selected for binary dependent variable

prediction [97] .

Tree based models

Tree or decision tree based models are a type of ML predictive model that works by recursively
splitting the data into subsets based on the values of input features. This progressively
increases purity, i.e. a measure of how mixed the elements are within a node (subset), a
pure node is where all elements belong to a single class, i.e. leaf nodes that are terminal
nodes that represent class labels of dependent variables. There are a number of parameters
like maximum depth, minimum number of samples in a leaf node and optimisers that make
training the tree based models possible [98].

Most of the time a single tree might be too simple to capture complex relationships/patterns in
the data leading to poor performance. To address this, the concept of a tree can be extended to
an ensemble of trees i.e. training number of decision trees and aggregating them to improve
the performance. There are two ways of aggregating these trees — bagging: training multiple
models independently and in parallel on different subsets of the training data, and combining
their predictions; boosting: in contrast to bagging in boosting models are trained sequentially,
where each new model tries to correct the errors made by the previous models to reduce both

bias and variance by focusing on the most difficult cases in the training data.

XGBoost

XGBoost (XGB) stands for Extreme Gradient Boosting and is an extension of tree based
models that builds an ensemble of decision trees by training them sequentially and selecting
the trees that reduce the loss function. In addition to tree parameters, it has parameters related

to boosting (adding new trees) and gradient descent to minimise the loss function [99].
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2.10.2 Deep Learning

Deep learning (DL) is a sub-field of machine learning that involves training artificial neural
networks (ANNs)/deep learning models that are composed of multiple processing layers
to learn representation of data with multiple levels of abstraction [100]. Artificial neurons
are the basic building block of ANNSs that self-optimise by learning, layers of neurons
are interconnected to make an ANN. DL is well suited for complex tasks such as image
classification or segmentation. Use of conventional ML techniques for such tasks requires
overhead of pre-processing the data to extract features, select appropriate features for training,
and any sub-optimal pre-processing leads to poor ML model performance [101]. In contrast
DL models have the ability to learn features automatically from inputs such as images [101].

Artificial neuron is inspired by biological neurons in the human brain, artificial neuron
(neuron) is a computer programming function that receives inputs with weights and produces
an output based on activation function.

y=fQQ)_xiwi+B) (2.3)

where f is activation function, x; is input to neuron, w; are weights and f is bias.

Activation function determines the output of a neuron and depending on the function
can produces various outputs such as binary state outputs, i.e. 1. neuron activated state
output or 2. neuron not activated state output. This introduces non-linearity into the DL
model which allows it to learn complex patterns. There are various activation functions
depending on DL model architecture and layers such as rectified linear unit (ReLU)(input) =
max(0,input) usually employed in input and hidden layers, sigmoid(input)= 1/(1 4 e~"Pu")

usually employed in the output layer.

Layers in DL model are serial arrangement of neurons and interconnection between them.
Typically there are three types of layer in DL models. 1) Input layer is the first layer which
receives raw input e.g. pixels for an image input; i1) hidden layers are intermediate layers
between input and output that consist of number of neurons that transform the input into
something the network can use to make a decision; iii) output layer is the final layer of the
DL model that produces the prediction. The number of neurons in this layer corresponds to
the number of classes in the classification problem such as predicting genetic mutation of

myofibres.
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Training a DL model involves adjusting weights (w) and biases (f3) of neurons using
backpropogation. The backpropogation process includes i) forward pass represent the flow
of input through the ANN, i.e. input data passing through layers to produce output, ii) loss
calculation using loss function that calculates the difference between predicted output and
actual (ground truth) output; iii) backward pass is propagation of error (loss) back through
the ANN from the output layer allowing the adjustment of weights (w) and biases () to
minimise the loss.

To reduce over fitting and efficient convergence of DL models, various techniques are
used, such as i) Early stopping: as discussed above it can be implemented by monitoring
performance of the model on the validation set compared to training set and stopping the
model training when its performance degrades on the validation set compared to the training
set. ii) Weight initialisation: The selection of initial weights determine the time when
the model converges (completes training). This can be selected randomly or use informed
weights from pre-trained models. ii1) Drop-out: is a mitigation to overfitting where a
proportion of outputs from neurons are discarded to reduce the complexity and by extension
overfitting of the model. iv) Data augmentation: is a process in which artificial noise and
variations are introduced in the training data, e.g. rotation of image, that allow the model
to generalise. v) Batch normalisation: is a process in which at each batch of training, the
layers’ input are normalised and scaled to improve training and fast convergence [102].
Optimiser are algorithms that are used to adjust weights and biases of neurons in the
DL model. This plays an important role on DL. model training by determining how the
model parameters are updated during training. The selection of an appropriate optimiser
and learning rate determine how fast the model training converges and also the predictive
performance of the model. There are various options of optimisers to select from such as
SGDM [103], AdaGrad [104], Adam [105], RMSProp [106] and usually during the training

process selection of these with a combination of learning rates are tried.

DL model architectures

The arrangement of these layers and depth, i.e. number of hidden layers, defines DL. model
architecture. The DL model architecture is inspired by its application, i.e. the problem it
is aiming to solve. Some of the architectures are convolutional neural networks (CNN),
recurrent neural networks, transformer networks. The work accomplished in this thesis relies
heavily on CNN based models.

Convolutional neural network A traditional ANN tends to struggle with the complexity

involved in recognising patterns in images [107]. A CNN addresses this limitation by
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Figure 2.10 CNN architecture

Architecture of a simple CNN model. A CNN model consists of series of convolutions with
non-linearity layers, pooling layers, followed by flattened and fully connected layers attached
to the output layer. Convolution layers perform convolution operation where a kernel/filter
‘K’ i.e. a small matrix of (nxn) size is multiplied element-wise followed by a summation,
with whole input matrix by sliding in steps, in each step a filter is moved across the image
in a stride, e.g. stride=1 will move one pixel/element of matrix at a time. This is followed
by padding where extra pixels/elements are added around convolution output to make it the
same size as input. This is followed by application of non-linearity activation function such
as ReLU that introduces non-linearity. The result after convolution operation is a feature map
that highlights/detects features in the image. Pooling layers reduce the spatial dimensions of
feature maps by aggregating their elements by using various techniques such as maximum
pooling, average pooling where max, mean value is computed across non-overlapping regions
of feature map in steps with predefined pooling size. Finally, output is flattened to 1D (for
classification) and passed to a fully connected layer where every neuron in it is connected to
every neuron of adjacent layers, including an output layer which has neurons equal to the
number of classes required as output. Figure adapted from [102].
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Figure 2.11 VGG16 architecture
Architecture of a VGG16 model. VGG16 models consist of a series of convolution pooling
layers, followed by flattened and fully connected dense layers attached to the output layer.

improvements in the architecture of the ANN. The architecture of a simple CNN model is
described in the figure 2.10.

2.10.3 Deep Learning for Computer Vision

DL models based on CNN approaches have achieved great success in image classification
tasks in various domains such as bio-medicine, finance, and manufacturing [108—112].
Development of these models has been popular in the last decade leading to the invention
of many new models that have considerably improved performance, setting new records
for prediction accuracy on large public image datasets like ImageNet [113]. These models
typically use convolutional and pooling layers with a large number of filters or other layers
or use techniques such as dropout, batch normalisation, ReLU activation, inception modules
and residual learning to alleviate problems such as overfitting and vanishing gradient. These
initial layers are typically followed by dense fully connected layers and an output layer that

uses an activation function (such as sigmoid) to convert logit into outputs [114].

One way of tracking the best models over the years has been to track the winners of
ImageNet’s ILSVRC challenge which highlighted models such as AlexNet, ZFNet, VGG,
GoogLeNet and ResNet that are widely used in image classification applications today [115].
While the architectures of these DL models are the main cause of their improvements, these
models need massive training datasets, e.g. 14 million images in the ImageNet dataset
to achieve these results [114]. There are many real world cases (including ours) where
availability of such a volume of data is impractical. In such cases transfer learning can often
improve the performance over training only on the appropriate, but small, dataset. Transfer
learning is a method where the model is first trained on a related large dataset and the trained
weights are used as a starting point to further train the model with the original small dataset
[114].
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VGG16

VGGI16 [116] is a very deep convolution neural network with 16 layers that is trained on
large datasets including ImageNet [115]. It is considered an appropriate CV models for
object recognition and image classification [116] and performed well on images from variety
of domains [117]. VGG is an extension of CNN models that uses small (3x3) convolution
filters with increased depth of 16 (also 19 for another version) weight layers, i.e. learnable
parameters, as described in Figure 2.11. VGG16 can be adapted to any input image size such

as in our case (height x width x 13 channels).

ResNet

ResNet [118] is another CNN based model that proposed a novel way of expanding the
layers of CNN with actual performance improvements, it comes with various versions of
weight layers including 18,50,101 layers. The main concept of ResNet is residual learning,
i.e. instead of learning the direct mapping from input to output, ResNet learns the residual
mapping. This means that each layer (or set of layers) only needs to learn the difference (or
residual) between the input and the output, which can be easier to optimise. This can be
formally defined as, instead of learning the F(x), i.e function mapping after the convolution
and non-linear layers, they fit another mapping function H(x)=F(x)-x on which the original
mapping is recast into H(x)+x. Feed forward neural networks can realise this mapping with
“shortcut” residual connections by performing a simple identity mapping, and their outputs
are summed to the outputs of the layers. Such “shortcut” residual connections do not add
additional complexity nor parameters to the model, making this architecture very powerful
and efficient [102]. ResNet50 has been used in this thesis for various classification tasks.

Hybrid models

Combining CNN based models such as VGG16, ResNet50 or a simple CNN, with tree-
based models such as Random Forest, XGBoost is an interesting approach that leverages
the strengths of both techniques for tasks such as image classification. The idea is to use
a CNN-based model to extract features from images and then use a tree-based classifier to
perform the final classification based on these features. This approach has been tried for

some image classification tasks in this thesis.

UNET

UNET is a type of convolutional neural network (CNN) specifically designed for image

segmentation tasks, particularly in biomedical image analysis [21]. Its architecture consists
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of two main parts 1) Contracting Path (Encoder): this consists of several convolution layers
followed by max-pooling layers, which progressively reduce the spatial dimensions while
increasing the number of feature maps. Each convolution layer typically uses ReLLU (Rectified
Linear Unit) activation and is followed by a pooling operation that downsamples the image.
i1) Expanding Path (Decoder): this consists of upsampling operations (usually transposed
convolutions) followed by convolutional layers. This path also includes skip connections
that concatenate feature maps from the corresponding contracting path layers, which helps to
recover fine-grained details and improve segmentation accuracy [21]. This allows UNET to
be efficient in semantic segmentation tasks such as folded tissue region segmentation. UNET

and its variants are used for semantic segmentation tasks in this thesis.

Mask R-CNN

This is a DL model designed for instance segmentation tasks. It consist of 1) Backbone
Network: A CNN used for feature extraction from the input image. Common choices
for the backbone include CNN, VGG or ResNet, often combined with a Feature Pyramid
Network (FPN) that allows feature extraction of objects of different sizes. i1) Region Proposal
Network (RPN): This network proposes candidate object regions (Rols). It outputs a set of
proposed bounding boxes that potentially contain objects. iii) Bounding Box Regression and
Classification: For each proposed Rol, the network predicts the class of the object and refines
the bounding box coordinates. iv) Mask Prediction Branch: This branch is added parallel to
the bounding box regression and classification branches. It predicts a binary mask for each
Rol, allowing for pixel-level segmentation of the detected objects [119]. This object class,
its corresponding bounding box and mask results in an instance segmentation mask such as
ones required in myofibre segmentation. In this thesis mask R-CNN is experimented with

alongside other instance segmentation methods for myofibre segmentation.

Stardist

StarDist [120] is a novel CNN-based instance segmentation model that is designed to predict
segmentation of objects of star-convex shape such as cells or myofibres in biomedical
images. Its approach represents object shapes using star-convex polygons, which simplifies
the problem of predicting object boundaries, i.e by just predicting an object’s center and
radial distances (default set to 32) from center to boundaries, this significantly improves
segmentation performance [120]. The architecture of StarDist is explained in Figure 2.12. In
this thesis StarDist is experimented with alongside other instance segmentation methods for

myofibre segmentation.
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Object proposals Object selection

Figure 2.12 StarDist architecture. a is a sample input image that shows typical touching objects (cells).
b StarDist works by learning and predicting parameters rff ; radial distances (default =32) of object
k from centre (i,j) and d; ; is the probability of (i,j) being the centre of the object (cell). ¢ Object
proposals: these parameters % d; j are learned by a CNN-based backbone typically a UNET or mask

i,J’
R-CNN, for all possible candidate objects. Object selection: a non-maximum suppression algorithm

selects/predicts the most likely object from proposed object candidates. Figure adapted from [120]

Cellpose

Cellpose [89] is another novel CNN-based instance segmentation model that is designed
to predict cell (myofibre) shaped objects. It has performed well in various biomedical
segmentation tasks such as cell and nuclei segmentation [83, 87, 121, 122]. Cellpose is an
instance segmentation model that uses vector flow representation generated by simulated
diffusion starting from the centre of the cell (in our case myofibre) toward its border in
the annotation mask. It also uses a parameter to determine whether a pixel is inside or
outside the cell. A neural network (typically a UNET) is then trained to predict vertical,
horizontal gradients and whether a pixel belongs to any cell. These three predictions are
combined to form flow mask and cell probability mask, these are then used to create final
instance segmentation masks. We can optimise the final results using i) flow threshold that
determines maximum allowed error of flows in flow masks and ii) cell probability threshold
that determines whether pixels belong to a cell or not [89]. The architecture of cellpose is
explained in Figure 2.13. In this thesis cellpose is experimented with alongside other instance

segmentation methods for myofibre segmentation.



42 Background

a Manual annotation Spahal gradients Combined gradients
Simulated diffusion
Legend
o E
#

Example cells

'\\J*\"i"\ft -

N Horizontal Vertical . i Combined
gradients gradlents Inside/outside gradients

d — _
— —
5 o
-C:_). — - —t - " 'E‘
x4 -
%2 %2
%2 Style %2
X2 %2

Figure 2.13 Cellpose architecture. a At the time of training cellpose converts manual instance
segmentation masks into vector flow representations using simulated diffusion processes starting
from the centre of objects (myofibres) in the mask. b These vector flow representations for example
objects (cells) are made by combining simulated diffusion from objects’ centers in both horizontal
and vertical directions. ¢ These vector flow representations are used to train (¢) a UNET model that
predicts vector flow representation and whether a pixel is inside or outside this vector flows. This is
followed by applying (e) simple gradient tracing to construct (f) instance segmentation masks. Figure
from [89]
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2.10.4 ML vs DL terminology in the thesis

Throughout the thesis any machine learning model that is not deep learning-based is referred
to as machine learning (ML), and any model that uses deep learning is referred to as deep
learning (DL).

2.11 Machine learning explainability

In machine learning and artificial intelligence (Al), the terms explainability and interpretabil-
ity are frequently used interchangeably. Despite how similar they appear, it is crucial to
recognise the distinctions. Rudin [123] distinguishes between interpretable and explainable
Al: while explainable Al attempts to offer post-hoc explanations for currently used black-box
models, which are incomprehensible to humans, interpretable Al focuses on building mod-
els that are intrinsically explainable. Lipton [124] emphasises the distinction between the
questions that each family of techniques seeks to answer. Interpretability asks, “How does
the model work?”” while explainability seeks to respond to “What else can the model tell
me?” There is no general agreement on what either interpretability or explainability means
[125], however, we have used Rudin’s definitions of these terms in this thesis. Throughout
the thesis explainable Al methods are employed to uncover the basis of model predictions.

Explainable methods (EMs) provide post-hoc explanation of the basis for a model’s pre-
dictions by usually comparing input and output of the model i.e. by changing features in
input to observe the effects of it on the output and attribute contribution to that feature based
on amount of effect. EMs are effective methods to understand the importance of various
input features such as protein markers (channels in IMC multiplex images), pixels within
myofibres. But for the use case of understanding mitochondrial disease pathology using
multiplex IMC data, knowing just the importance of pixels within myofibre and protein
markers is not enough, it requires this importance to be defined as associations, i.e. the
importance of a certain feature should be quantified in terms of its proportional importance
to rest of the features and its correlation with output prediction. For an example the ideal
EM should explain the importance of each protein marker quantified in proportionality terms,
which allows the user to understand relative importance to other protein markers. Also it
should reveal the protein marker’s relationship with the output genetic mutation, e.g. if its

under or over expression is linked to a genetic mutation.
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SHAP

SHAP [126-129] stands for Shapley additive explanation and is a suite of EMs developed
by Lundberg et al. that are based on Shapley values [130] from cooperative game theory.
These EMs explains ML and DL model predictions by allocating optimal credit/blame to
each input feature and revealing their association with the predicted class. This in theory
satisfies the requirements of the use case investigated in this thesis. SHAP provides various
EMs catering to explainability objectives, and models such as explaining ML models trained
on tabular data, computer vision DL models trained on image data.

2.11.1 Explainable methods for tabular ML models

ML models trained on tabular data such as LR and XGB trained on the myofibres summaries
in this thesis are interpretable due to their relative simple architecture. These methods
also provide input feature importance scores using parameters such as logistic regression
coefficients etc. that gives insights about the relative importance of each input feature. But
as discussed earlier this is not enough for the use case investigated in this thesis, it requires
quantified credit/blame assigned to each input feature and the relationship between input
feature and the predicted class. Fortunately, SHAP provides EMs for models such as LR and
XGB.

SHAP provides various EMs and corresponding plotting functions to explain tabular data
trained ML models. These EMs usually explain the model’s prediction output using back-
ground/reference dataset, i.e. plotting each instance in reference dataset with their SHAP
values revealing both their relative proportional importance and their relationship/associa-
tion/correlation direction with the predicted class. There are a number of SHAP EMs that
are relevant to models used in this thesis such as i) Tree SHAP: Specifically optimized for
tree-based models (e.g XGBoost), Tree SHAP efficiently computes Shapley values, providing
explanation for given reference dataset, i1) Kernel SHAP: Suitable for explaining any model
by approximating Shapley values using a sampling-based approach. It provides accurate
explanations but may be computationally intensive for large datasets, iii) SHAP explainer: is
the default EM provided by SHAP that automatically selects the most appropriate EM from
the SHAP library for a given ML model[127].

SHAP also provides a range of plot functions that are very powerful in visualising the associ-
ations between input features and predicted classes. Some of the plots used in this thesis are
1) SHAP waterfall plot: to look into the basis of prediction for individual instances, waterfall
plots are useful to explain proportional importance and associations in terms of SHAP values,

i1) SHAP bar plot: to look into the basis of prediction for a group of instances such as whole
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training data, this can help to understand ‘global’ explanation of model predictions and
can reveal proportional importance of each feature, i11)) SHAP beeswarm plot also allow
observation of the basis of predictions of group of instances but it reveals the associations
both in terms of their proportional importance and direction of these associations, i.e. posi-
tively/negatively correlated with predicted class. iv) SHAP heatmap plot allows observation
of comparative SHAP values of all features for a group of instances and a model’s logit
output arranged using hierarchical clustering by the similarity of explanations, i.e. SHAP

values.

2.11.2 Explainable methods for CV DL models

There are EMs that provide post-hoc explanations for DL model predictions [131]. These can
be categorised in many ways 1) Global vs Local methods: global methods try to explain the
overall decision making process of DL models by presenting explanation across all training
data instances and local methods try to explain individual decisions [131]. ii) Gradient-based
vs Perturbation-based methods: gradient-based methods use gradient of the output with
respect to the input or extracted features to explain individual decisions; perturbation-based
methods perturb input features by removing or altering their values and calculate the effect on
model performance thereby finding the important features [131-133]. iii) Function, Signal
and Attribution methods: This categorisation is based on the information these groups of
methods present. They provide different information about model predictions that are usually
complementary to each other [134].

Function methods [Grad-CAM [135] Gradients [136] or Saliency]

These are basic gradient-based methods that use gradients of output neurons with respect to
input to estimate importance of input pixels in the image, i.e. greater gradient means more
importance [136]. To simplify, for a linear model y = w x x, these methods analyse weights
(w) as gradient between output (y) and input (x), dy/dx = w [134]. For a CV DL model (w)
will be a tensor of gradients of the same shape as the input image.

Signal methods [DeConvNet [137], Guided Backprop [19]]

These methods aim to isolate input patterns that simulate neuron activity in the higher layers
of CNN i.e. analysing the components of the input data that causes the output [134]. They
do this by applying some activation function over the gradients [131, 138].

DeConvNet is a reverse CNN that maps features detected in higher layers to input pixels

[137]. It does this by applying an activation function (ReLU) in the ‘importance’ calculation
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instead of just using the gradients [138]. This allows only the positive gradients or signal to
be chosen which shows the most important features in the input [137]. Guided Backprop
follows a similar process as DeConvNet but also uses the backpropagated gradient in the
‘importance’ calculation [19].

Signals are more informative than functions in that they tell us both the regions and
direction of the input image that are used by the model to predict output[114]. Signal
methods like DeConvNet and Guided Backprop are used in the analysis of medical imaging
data. For example, De Vos et al. [139] assessed coronary artery calcium for each slice of a
heart or chest computed tomography (CT) image and applied deconvolution to reveal where

in the slice the decision was made.

Attribution methods [Deep Taylor [140], Input Gradient [131, 138], Layer-wise
Relevance propagation (LRP-Epsilon, Z, PresetAFlat, PresetBFlat)] [138, 141]

These methods attribute importance to input features/signal dimensions for the output i.e.,
how much the signal dimensions/features of the input contribute to the output across the
neural network [134, 138]. For a linear model y = w X x attribution r = ([w| ® a) where [w] is
weight vector, ® denotes element-wise multiplication and a is the signal [134]. Attributions
are built upon signals, i.e. attribution tells us the importance of each signal dimension/feature
of the input image toward predicting the output. Attributions give more detailed explanation
about model prediction than signal and are used to analyse many medical DL models[142].

Bohle et al. [142] employed LRP (an attribution method) to locate Alzheimer’s disease-
causing areas in brain MRI images. They contrasted the saliency maps produced by guided
backpropagation with LRP and discovered that LRP was more accurate in detecting areas

known to have Alzheimer’s disease.

DeepLIFT

DeepLIFT is an EM designed for DL models. It aims to explain the contribution of each
feature (input neuron) to a neural network’s output prediction. DeepLIFT operates by
comparing the activation of each neuron to a reference activation and assigning contributions
based on how different the neuron’s activation is from this reference [143].

Integrated Gradient

Integrated gradient is an EM for DL models, similar to DeConvNet and input gradient EMs
it uses gradient in the network to compute attribution but instead of just taking the gradient at

the input itself, Integrated gradient integrates the gradients along the path from the baseline
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to the actual input. This approach accounts for the accumulated effect of each feature as it
moves from a neutral state (baseline) to its actual value [144].

All these methods can provide perfect explanations for linear models but DL models
are highly non-linear, which means these explanations can only be used as approximations
[134]. To come back to our premise that these methods complement each other to find
explanations about model prediction, as discussed earlier explanations required for the use
case investigated in this thesis require knowing the association between input features (protein
marker channels) and mutation class explained in terms of correlation (positive/negative)
of protein markers toward prediction and relative importance/contribution of each of these
protein markers quantified. This is achieved by adapting the earlier mentioned EMs into
SHAP values. There are two EMs that are adapted to build attribution/explanation mask in
terms of SHAP values, namely integrated gradient and DeepLIFT with their corresponding
SHAP adaptions called ‘GradientExplainer’ and ‘DeepExplainer’ respectively. While many
of the EMs discussed earlier have been experimented with for the work presented in this thesis,
‘GradientExplainer’ and ‘DeepExplainer’ are used for final results of profiling myofibre’s
genetic mutation in terms of raw multiplex IMC data.

Defining an ideal explainable ML/DL pipeline : An ideal pipeline will give a profile of
myofibres associated with a genetic diagnosis. This will be in terms of relationship between

all available proteins markers and leveraging the intra-myofibre morphology/ features.

2.12 Chapter summary

This chapter introduced the required background knowledge for understanding the work
presented in this thesis. This includes introduction to mitochondrial biology and disease,
discussion of existing analysis methods and their limitations, and introduction to ML and DL
methods and the corresponding explainable methods.






Chapter 3

Explainable ML Analysis on Processed
Data from mitocyto

3.1 Introduction

The current techniques for analysis of multiplex protein data (IMC) such as plotIMC and
Cytomapper have limitations as explained in Section 2.7.2. These tools include 1) cell (myofi-
bre) segmentation tools such as mitocyto, Steinbock that segments and calculates statistical
summaries per cell/myofibre. ii) Per myofibre summary analysis tools such as plotIMC,
Cytomapper , imcRtools that allow the user to analyse and visualise multiplex IMC data.
These work by plotting relative mean intensities as a colour bar per protein on section i.e.
colouring each cell with mean intensity colour that allows a user to observe the difference
on a section image. This can then be gated by applying a threshold to define a cell class,
cell-to-cell interactions using spatial graphs with cells representing nodes and interactions
representing edges.

These methods suffer from limitations as discussed in Section 2.7.2, i.e. it is not possible to
leverage multichannel protein analysis i.e. each protein’s summaries are treated individually
and compared in parallel. Further methods were also considered to analyse multiplex data
such as t-SNE, UMAP and PCA, which are all dimensionality reduction techniques. While
UMAP and t-SNE did show identifiable clustering by some genetic mutations these were not
helpful in profiling the myofibres in term of importance of all available protein levels.

As discussed in 2.1.2 mitochondrial disease is heterogeneous and develops independently
of cell-cycle, this makes cell-to-cell interaction analysis of our data less relevant, also this
analysis was previously conducted by a group in WCMR which did not yield useful results.

As discussed in Section 2.6.2 plotIMC allows biomedical scientists to analyse individual
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protein channels in parallel but association between these channels to profile myofibres based
on their genetic mutation is not possible, also using plotIMC’s 95% PI it is not possible to
classify the genetic mutation class of myofibres except myofibres linked to nuclear-encoded
mutations affecting complex I. The nuclear-encoded mutations affecting complex I rely on
nuclear DNA affecting all myofibres homogeneously and so the deficiencies are observed
across all myofibres in these patients and allow plotIMC to classify myofibres of these
patients [145]. Whereas in mtDNA mutations (the rest of the patient groups) there may exist
varying proportions of wild-type and mutant mtDNA and therefore a mix of myofibres with
different levels of mitochondrial dysfunction. This makes classification of cases as patient or
control and profiling of myofibres of these patients difficult. Explainable ML methods can
not only leverage complex patterns in the data to classify but also can reveal these patterns

that can be a useful approach for the analysis of multiplex (IMC) per myofibre summaries.

3.2 Aims of this chapter

To overcome the limitation of other techniques in analysis of IMC data of mitochondrial
disease patients, in this chapter explainable machine learning methods will be used to classify
and profile myofibres linked to genetic mutations affecting mitochondrial dysfunction using
the processed IMC data. The aims of this chapter are as follows:

* Classify the mitochondrial genetic mutations of myofibres using machine learning and
per myofibre statistical summaries of multiplex mitochondrial protein markers’ IMC
data.

* Profile these myofibres in terms of the associations between mitochondrial protein
markers and the mitochondrial genetic mutations by interrogating ML classification
models using explainable ML methods.

3.3 Data and methods

3.3.1 Data

To contrast and compare the result, the same processed IMC data as in Section 2.6.2 and the
same eight protein channels as presented in Table 2.4 are used. This includes three statistical
summaries i) mean of pixel intensities ii) mean over log values of pixel intensities and iii)

median of pixel intensities per myofibre and for each of the eight protein markers.
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3.3.2 Methods:ML classification for processed IMC data

Exploratory data analysis

Exploratory data analysis (EDA) is usually the first step before any ML analysis, where all
input variables/features are explored with an aim to understand the data so that informed
decisions for further ML modeling can be made. EDA involves identifying preliminary
patterns in the data using techniques such as statistical summaries, dimensionality reduction
and correlation analysis [146].

The analysis conducted in Section 2.6.2 is EDA and does divulge many aspects about the
data but nevertheless is not complete, i.e. the analysis conducted in Section 2.6.2 is controls
vs a patient (tissue section). This does not give much information about various aggregates
1.e. overall observations, group of patients of similar diagnosis, group of controls.

We aim to perform EDA across these aggregations and combine the knowledge gain from

this and Section 2.6.2 towards selecting relevant features and ML models.

ML modelling

The aim is to perform ML classification analysis on processed IMC data. As discussed in
Section 2.10.1 for tabular data usually GLMs and tree based models perform well. The
complexity of relationship between input features and dependent variables decides which
ML models are useful. The usual model training process was followed which include 1)
splitting the data into 70%: 15%: 15% for training, validation and testing, ii) optimising
the parameters for the model using validation set and iii) evaluating the test results using
weighted accuracy and recall which give a fuller picture in terms of both model accuracy in
general but also its performance towards both classes.

Based on factors discussed earlier and the biological reasoning mentioned in Table
3.1 it was decided that the ML classification on aggregations mentioned in Table 3.1 will
be performed using the sequence of EDA, GLMs (LR) and if this does not yield good
classification results then to try tree based models.

3.3.3 Methods:Explainable ML methods for tabular data

As discussed in Section 2.11.1 well trained ML models are good at finding correlations which
can sometimes also unravel associations [147]. To explain this let us consider a dataset of
multiple input features of which if only a few (or just one) features are enough to classify the
dependent variable then high-performing ML models might only use these correlations and

ignore any other associations between the other input features and the dependent variable.
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Table 3.1 Classes for ML classification analysis

Classes

Reasoning

nDNA encoded mutation (PO1 & P02)
vs Controls. This will be referred to as
class A vs controls

Both patients suffer from similar mutations
and are expected to present similar phenotype.
i.e. protein patterns [1]

Point mutation in (MT-
TL1)(P05,P06,P07) vs  Controls.
This will be referred to as class B vs
controls

All three patients suffer from similar mutations
and are expected to present similar phenotype,
1.e. protein patterns [1]

Point mutation in mito encoded
tRNA(P08,P09,P10) vs Controls. This
will be referred to as class C vs con-
trols

All three patients suffer from similar mutations
and are expected to present similar phenotype,
1.e. protein patterns

Single, Large-scale mtDNA mutation
(P03 & P04) vs Controls. This will be
referred to as class D vs controls

Both patients suffer from similar mutations
and are expected to present similar phenotype,
i.e. protein patterns [1]

P03 vs Controls

Classification of PO3 myofibres is particularly
challenging using plotIMC as seen in Table 2.4
1.e. > 91% of P03 myofibres were within 95%
PI of control myofibres. For this reason and
to include an individual patient classification
case that will allow us to contrast and compare
the analysis in Section 2.6, PO3 vs Controls is
analysed as a separate case.
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This makes our objective of using ML to discover the protein patterns, i.e. all associations
between these proteins with mitochondrial genetic mutation, a challenging task.

To address this issue, the following sequential strategy of applied explainable ML is
adopted in this thesis.

* Correlations between input features from EDA identify highly correlated input
features.

e ML model training Train models with i) all input features in cognisance of highly
correlated features, expect that model will ignore some features. ii) only input features
that do not have high correlation between them. iii) separately on each individual
feature.

* Apply explainable ML methods to models trained on all relevant combinations
of input features. This will distill insights that ‘explain’ the associations between
input features and dependent variable. Where relevant and possible, to validate the
associations apply multiple explainable methods, e.g. interrogate model using inbuilt
importance score and SHAP.

Explainable methods for LR

Logistic regression (LR) is usually the most explainable classification ML model as the
correlation and associations can be explain by linear relationships [148]. The model was
interrogated using 1) its coefficients for input features: it is important to understand that LR
although deriving its predictions by finding a linear relationships between input features, it
takes shape of log-odds as described in equation 3.1. This means the coefficient  cannot be
interpreted as exact weight as in linear regression model but nevertheless its magnitude and
direction are relevant in finding its correlation effect toward the predicted variable. ii) By
applying SHAP explainer: SHAP values for LR as described in equation 3.2 are calculated by
multiplying the coefficient B with the difference between the input feature and its expected
value which in turn is calculated as means of the feature from the reference dataset (which
in our case is the whole training dataset). But it should also be noted that the final SHAP
values are transformed into log-odds space. This makes the SHAP values very powerful and

informative not just for global explanation but also for individual local explanations [127].

log(P{Y = patient} /P{Y = control}) = Bo+ x;3 (3.1)

0i = Bi- (xi —E[x;]) (3.2)
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Equation 3.1 describes LR in log-odd terms for a binary classification where x; are input
variables, Y is predicted binary variable, P is probability of Y being patient or control, 3,
is intercept/bias and B coefficients/weights; equation 3.2 describes SHAP values for a LR
model where ¢; is the SHAP value for input feature x;, f3; is the coefficient of x; and E [x;] is

expected values of x; computed using the reference dataset.

Explainable methods for XGB

While simple high-bias models like LR seems easy to understand but are sensitive to model
mismatch, i.e. a model’s ability to capture true relationships in the data, this mismatch can
sometime create artefactual relationships that do not really exist in the data [149]. Low-bias
models like XGBoost (XGB) are great at capturing non-linear relationships between input
features in the tabular data and so are more immune to model mismatch problems [126].
Taking the model-mismatch problem into account and using appropriate explainable methods
like ‘TreeExplainer’ models like XGB can be more accurate representations of patterns in
the data and more interpretable than even the LR model [126]. The XGB was interrogated
using 1) its native “importance_score”: which is computed by summing the number of
splittings on a feature that reduces the impurity (gain) across all the splits in the tree which
is then averaged across all trees in the trained XGB model. This is helpful in deducing the
correlation of the input features in magnitude but not in direction. ii)) SHAP TreeExplainer:
is a combination of the concept of each player’s contribution from cooperative game theory,
applied to tree-based models to generate local explanations, which are aggregated to provide
global explanation for tree-based ML models. This retains local faithfulness to the model
while still revealing global patterns, resulting in more informative, detailed explanations that
are more accurate representations of the model’s behaviour [126]. SHAP TreeExplainer and
SHAP plots allow a user to unravel the correlation and associations between input features
and predicted variable, not just in magnitude and direction but also its prevalence, most other
explainable ML methods conflate magnitude of input feature importance to prevalence [126].

This is further discussed in SHAP explanation figures in Section 3.4.

Explainable methods plots

SHAP plots help explain and delineate various correlations and associations between variables
that help the model predict. There are four main types of SHAP plots used in this chapter

that are explained below using toy examples.
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Figure 3.1 SHAP heatmap plot shows population of substructures in a model prediction dataset
usually clustering these hierarchically such that populations of instances that have same profile are
group together. This can be observed in above example i.e. instances of variables (proteins) with
similar values are group together. At the top of the plot is model’s predicted probability function, in
this toy example taking binary values i.e. 0 or 1. The colour (blue or red) gradient of each variable
highlights the contribution it makes toward predicted probability. In the heatmap this can be seen
across the whole predicted dataset.
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Figure 3.2 SHAP barchart plot shows the mean contribution of each variable towards predicted
probability (disregarding sign). For the toy example above the variables with greater mean SHAP
values denotes their importance toward prediction across the whole predicted dataset.
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Figure 3.3 SHAP beeswarm plot shows prevalence of variables’ contribution towards predicted
probability across the whole predicted dataset. in the toy example above it can be observed that
variables COX4+4L2 and SDHA’s high values translates into moderately high positive (around 0.2)
predicted probability contribution for many instances. On the other hand NDUFA13’s high values
translates into extreme high negative (around -0.5) predicted probability contribution for few instances.
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Figure 3.4 SHAP waterfall plot are plotted for individual predicted instances. In the toy example
above it can be seen that the values of variables COX4+4L.2, SDHA and OSCP heavily contribute
positively toward predicted probability pushing it toward 1.
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3.4 Results

34.1 EDA

Dataset counts

The statistical summaries presented in Table 3.2 help decide the features to be selected for
ML model training. As seen in the table the relatively high variation (measure in standard
deviation) exists for certain protein markers such as SDHA and COX4+4L2. Out of the three
statistical summaries i.e. mean of all pixels in myofibre, mean of log of all pixels in myofibre,
and median of pixels in myofibre, it was decided that mean should be used as the other two

do not give any added information.

Pattern in input features

There were a number of EDAs performed including density plots that use kernel density
approximation to show the probability density function of the variable; scatter plots: plot
observations as dots on two coordinates represented by two variables; and correlation plots
that show relationship (correlation) between variables. The most informative were the
correlation plots for datasets and its subsets (i.e. various subject groups) as presented in
Figure 3.5. The correlation plot gave some intuitions about highly correlated input features,
which is helpful in ML model selection, feature selection and interpreting insights from
explainability methods.
The following observations were made in the EDA which are presented in Figure 3.5.

* In controls a high positive correlation exists between all eight protein markers.

* In patients a high positive correlation exists between VDAC1 & SDHA, OSCP;
SDHA & OSCP; NDUFB8 & NDUFA13; MTCO1 & COX4+4L2, and COX4+4L2 &
UqCRC2.

* In combined (controls+patients) data a very high positive correlation exists between
NDUFB8 & NDUFA13 and MTCO1 & COX4+4L2.

And taking these observations into account, the following initial intuitions about feature

selections were noted:

* Having two protein markers NDUFB8 & NDUFA13 representing complex I and two
protein markers MTCO1 & COX4+4L2 representing complex IV might not add any

discriminating advantage for the models.
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Table 3.2 Myofibre statistical summaries ranges. The first column define per myofibre features, the
first four rows refer to the morphological features, followed by mean, mean(log), median intensity
value for each protein. The alternating colours between group of rows is to improve readability.

Input feature Min Mean Max Std
Area 503 | 3105.06 | 17033.5 | 887.74
Perimeter 107.94 | 426.05 | 2089.58 | 202.28
AspectRatio 0.22 1.31 6.36 0.51
Circularity 0.01 0.24 0.85 0.13
NDUFBS 1.03 2.31 13.05 1.26
LOG_NDUFB8 1.02 1.95 9.60 0.96
MED_NDUFBS 1.0 1.90 10.0 1.13
NDUFA13 1.06 2.74 11.87 1.56
LOG_NDUFA13 1.04 2.26 9.25 1.20
MED_NDUFA13 1.0 2.21 10.0 1.43
SDHA 1.44 11.06 91.48 10.48
LOG_SDHA 1.31 8.97 74.57 8.48
MED_SDHA 1.0 9.62 83.0 9.22
UqCRC2 1.24 7.72 50.74 6.1
LOG_UqCRC2 1.15 6.26 43.50 4.97
MED_UqCRC2 1.0 6.66 45.0 541
MTCO1 1.01 2.25 15.12 1.35
LOG_MTCO1 1.01 1.91 13.05 1.05
MED_MTCOI1 1.0 1.85 13.0 1.23
COX4+4L2 1.28 11.93 93.78 10.82
LOG_COX4+4L2 1.19 9.62 80.75 9.02
MED_COX4+4L2 1.0 10.40 79.5 9.73
OSCP 1.14 6.70 57.02 6.20
LOG_OSCP 1.10 5.26 41.89 4.75
MED_OSCP 1.0 5.63 46.0 5.29
VDACI1 1.05 242 14.8 1.33
LOG_VDACI 1.03 2.03 11.68 1.00
MED_VDACI1 1.0 1.97 13.50 1.21
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Figure 3.5 Correlation between protein markers in myofibres from all subjects and controls and patients
separately. This is Pearson correlation, values range from -1 (perfect negative/inverse correlation) to 1
(perfect positive correlation), the legend to the right of each plot shows white-blue colour gradient
scale with the darkest blue representing the highest value and lightest white representing the lowest
value. ‘All Data’ refers to combined myofibres of all controls and patients.

Table 3.3 Statistical distribution of mean intensities in controls: These are computed using mean
intensity in a myofibre for each protein marker over all control myofibres

Summary | NDUFB8 | NDUFA13 | SDHA | UgCRC2 | MTCO1 | COX4+4L2 | OSCP | VDACI1
Min 1.19 1.17 1.5 1.40 1.07 1.60 1.23 1.09
Mean 2.94 3.00 5.04 4.38 1.97 7.46 3.42 1.86
Std 1.67 1.75 2.99 3.01 0.88 5.66 222 0.68
Max 13.05 10.69 17.73 17.51 5.72 30.53 13.05 6.81

* VDACI as a surrogate for myofibre mass is sensible as evident by its high positive

correlation with all other markers in controls.

3.4.2 Explainable ML analysis of class A (P01 and P02) vs controls

Classification of myofibres from patients suffering from nDNA encoded mutations (class A)
was the only case that the current techniques can accurately classify, as observed in Table 2.4.
The classification was achieved based on 95% PI on complex I protein markers NDUFB8
and NDUFA13. In this section we apply explainable ML methods to classify these same
myofibres and compare the results and insights achieved by both of these techniques.

EDA
The following observations were inferred from Figure 3.6 and Table 3.4.

» Compare to control myofibres where a high positive correlation exist between all eight
protein markers. In class A myofibres a correlation similar to control myofibres is
observed in six proteins i.e. excluding NDUFB8 and NDUFA13.
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Figure 3.6 Correlation between protein markers in myofibres from class A and controls, controls,
class A. In the plot nDNA encoded mutation refers to class A.

Table 3.4 Statistical distribution of mean intensities in class A patients: These are computed using
mean intensity in a myofibre for each protein marker over all class A myofibres

Summary | NDUFB8 | NDUFA13 | SDHA | UqgCRC2 | MTCO1 | COX4+4L2 | OSCP | VDACI1
Min 1.05 1.16 5.66 4.59 1.95 9.87 3.96 1.45
Mean 1.22 1.7 23.54 21.96 5.68 39.63 15.35 3.45
Std 0.06 0.25 8.27 8.53 232 17.1 5.90 1.24
Max 1.47 2.51 53.01 50.74 15.12 93.78 34.6 7.97

* In cognisance of VDACI as surrogate for myofibre mass, only its correlation with
SDHA, UqCRC2, MTCO1 and COX4+4L.2 is comparable to controls. All other protein

markers’ correlation is reduced in class A myofibres relative to control myofibres.

* SDHA and UqCRC2 correlation is high in class A myofibres compared to control
myofibres.

ML classification results

LR (logistic regression), tree-based models (random forest and XGB (XGboost)) were trained
with various combinations of input features and the results from optimised best performing
models are detailed in Table 3.6. The optimised parameters of both LR and XGB models
trained with all eight markers are presented in Table 3.5. It was observed that random forest
did not yield results better than XGB and so results from best performing tree-based model
(XGB) are reported throughout.

As evident in Table 3.6 both LR and XGB can predict the class A myofibres with 100%
accuracy. It can also be observed that on single-protein data LR outperform XGB, this
is expected as in class A myofibres deficiency pattern between controls and patients is
linear which the LR is leveraging. Aside from the observations presented in the the table,

an accuracy of 99% was observed when trained with six out of eight protein markers i.e.
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Table 3.5 Optimised models’ parameters for class A vs controls myofibres. In the table ‘const’ refers
to bias/intercept, and eight protein marker names refers to LR’s coefficients for that variable (protein
marker).

Method Parameter name Optimised parameter
values

LR const -3.17
NDUFBS -1.92
NDUFA13 -1.60
SDHA 0.50
OSCP 0.47
COX4+4L2 0.37
MTCO1 -0.34
VDACI1 -0.34
UqCRC2 0.18

XGB colsample_bytree 0.7
eta 0.1
gamma 0.3
max_depth 3
min_child_weight 1

excluding NDUFBS8 and NDUFA13. As discussed in the Section 3.3.3 in cases where more
than one ML model produces similar accuracy, it was decided that both models would be

interrogated to distill predictive inference, i.e. by applying EMs to these models.

Applying explainable ML methods to LR and XGB models for class A myofibres
prediction

The results presented in Figures 3.7, 3.8, 3.9 and 3.10 are SHAP EMs applied to LR and
XGB models. The global explanations generated using whole training data with SHAP
EMs that are presented in Figures 3.7 and 3.9 for LR and XGB models respective shows 1)
both models uses slightly different patterns in the data to achieve the same 100% accuracy
i.e. SHAP EM shows the top three average SHAP values for protein markers for the LR
model are COX4+4L.2, SDHA & OSCP, and for the XGB model are NDUFB&, SDHA
& COX4+4L2. ii) The SHAP value prevalence observed in Figure 3.7C and 3.9C shows
NDUFA13 & NDUFBS proteins’ high mean intensities are associated with extreme negative
SHAP values in both the models, these are very consequential towards predicting instances
of myofibres as negative (control) class. In addition NDUFB8’s low mean intensities are
associated with extreme positive SHAP values in the XGB model, these values are very

consequential towards predicting instances of myofibres as a positive (class A) class. It can
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Figure 3.7 SHAP global explanations of LR model that predicts class A myofibres. The LR model
interrogated here had 100% test accuracy and trained on all eight protein markers. A, SHAP heatmap
plot, on x-axis is instances of reference dataset (which in this case is the whole training dataset of
852 instance (427 class A myofibres + 425 control myofibres)) on y-axis are SHAP values for each
input feature. On the top of the plot f(x) is predicted value of the model which for LR is a value of 1
for patient myofibres and O for control myofibres. The SHAP values on the y-axis are encoded into
colour scale. The instances are ordered using hierarchical clustering by their explanation similarity. B,
bar chart of the average SHAP value magnitude of each input feature. C a set of SHAP beeswarm
plots, where each dot corresponds to an individual myofibre in the analysis. The dot’s position on the
x axis shows the impact that feature has on the model’s prediction for that instance. When multiple
dots land at the same x position, they pile up to show density i.e. prevalence.
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Figure 3.8 SHAP local explanations of LR model that predicts class A myofibres. A, SHAP waterfall
plot providing local explanation for correctly predicted control myofibre instance. The bottom is
E[F(x)] the expected values of the model output, then each row shows how the positive (red) or
negative (blue) contribution of each feature moves the value from the expected model output over the
reference (training) dataset to the model output for this prediction. B Another SHAP waterfall plot
but for correctly predicted class A myofibre.
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Table 3.6 Accuracy metrics for models trained to predict class A myofibres. Metrics in columns 2 to 5
are for models trained on all eight protein markers.

Training Test Recall(%) | Recall(%) | Accuracy (single pro-| Accuracy
Model | Accu- | Accu- | b oty | (Controls) | tein)(%) (VDAC 1 +Protein)(%)
racy(%)| racy(%)
LR 100 100 100 100 92.28 (NDUFBS) 100 (NDUFBS)
92.28 (SDHA) 98.95 (NDUFA13)
92.28 (UqCRC2) 96.14 (SDHA)
90.52 (COX4+4L2) 94.03 (UqCRC2)
89.82 (OSCP) 94.03 (COX4+41.2)
88.07 (MTCO1) 93.68 (OSCP)
79.65 (NDUFA13) 90.88 (MTCO1)
79.65 (VDAC1) NA (VDAC1)
XGB | 100 100 100 100 78.05(0SCP) 99.65(NDUFBS)
76.60(VDAC1)) 99.65(NDUFA13)
75.15 (NDUFBS) 97.19(UqCRC2)
74.74 (COX4+4L2) 96.84 (COX4+4L2)
74.53 (MTCO1) 96.50 (OSCP)
74.32 (UqCRC2) 96.14 (SDHA)
74.12 (SDHA) 91.93 MTCO1)
72.88 (NDUFA13) NA (VDAC1)
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Figure 3.9 SHAP global explanations of XGB model that predicts class A myofibres. The XGB model
interrogated here had 100% test accuracy and trained on all eight protein markers. A, SHAP heatmap
plot. B, bar chart of the average SHAP value. C, a set of SHAP beeswarm plots.
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Figure 3.10 SHAP local explanations of XGB model that predicts class A myofibres. A, SHAP
waterfall plot providing local explanation for correctly predicted control myofibre instance. B,
Another SHAP waterfall plot but for correctly predicted class A myofibre.

also be observed that COX4+4L.2 and SDHA have opposite associations, i.e. higher mean
intensities of these proteins are associated with positive SHAP values that are consequential
towards predicting instances of myofibres as class A. These associations are further evident
in the SHAP heatmap plot in Figure 3.7A & 3.9A, where the inverse relationships between
NDUFA13, NDUFB8 and COX4+4L2, SDHA is leveraged by LR model, but XGB model
leverages similar inverse relationship but with NDUFA13 and SDHA.

Similar associations are also observed by studying individual instances of myofibres i.e. local
explanations that are presented in Figures 3.8 & 3.10 for LR and XGB models respectively.
A more detailed per protein interpretation of SHAP values combined with their predictive
power and their average mean intensities across the both classes is available in Appendix .1,
Tables 1 and 2.

Insights and predictive inference

The following insights are drawn from applying explainable ML methods to the dataset of

class A and control myofibres.

Predictive inference from LR model insights Compared to control myofibres, in class A
myofibres the levels of markers for complex IV (COX4+4L2), complex II (SDHA), complex
V (OSCP) are higher and complex I markers are considerably lower, enough to predict these
with 100% accuracy.

Predictive inference from XGB model insights Compared to control myofibres class A
myofibres have considerably lower levels of markers for complex I (NDUFBS) and higher
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levels of complex II (SDHA), these differences are enough to predict these with 100%

accuracy.

Combined predictive inference

As discussed earlier ML models have a tendency to ignore associations between all input
features, if some of the correlations between input features’ and predictive variables is
sufficient to make good predictions, it ignores other associations. This is observed in how
the two models (LR and XGB) we used above behave. To overcome this shortcoming we
conducted predictive power of these features with VDACI as a surrogate for myofibre mass.
We observed when combined with VDACI, all features have a predictive power of greater
than 95%. So, taking into account the results from EDA, explainable LR model, explainable
XGB model and predictive powers of all input features, the following predictive inference is

generated.

In class A myofibres when compared to control myofibres, the following pattern is
observed. A very considerably low level of complex I (NDUFB8 & NDUFA13) proteins, a
considerably high level of complex II (SDHA), complex III (UqCRC2), complex IV (MTCO1
& COX4+4L2) and complex V (OSCP) proteins.

Biological validation

Class A myofibres, i.e. linked to nDNA encoded genetic mutations, are well understood
compared to other classes of myofibres and as such present an appropriate validation case for
testing the explainable ML predictive inference. In class A myofibres it is expected that the
nDNA encoded complex I proteins will be down-regulated i.e. exhibit low-levels, due to this
the OXPHOS electron transfer process has to rely more on the rest of the complexes resulting
in upregulation of proteins in complexes II-V [1, 46, 145]. These are the exact associations
presented in Section 3.4.2, the predictive inference derived from applying explainable ML
methods reveal the ML models are leveraging associations that make biological sense and
agree with established facts. Interestingly the methods finds many available associations as
opposed to expectation that models will ignore associations that are surplus to associations
sufficient to make good predictions. A slightly different associations exploited by the two
models is still in line with biological basis i.e. albeit different proteins were used for

differentiating the class A nevertheless these belong to same complexes.
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Figure 3.11 Correlation between protein markers in class B myofibres

Table 3.7 Statistical distribution of mean intensities in class B myofibres : These are computed
using mean intensity in a myofibre for each protein marker over all class B myofibres

Summary | NDUFB8 | NDUFA13 | SDHA | UqgCRC2 | MTCO1 | COX4+4L2 | OSCP | VDACI1
Min 1.03 1.07 1.93 1.52 1.02 1.88 1.32 1.13
Mean 2.50 2.93 8.64 7.83 2.20 11.66 5.88 2.15
Std 1.41 1.75 6.41 4.53 0.83 7.25 3.23 0.75
Max 9.74 11.88 58.35 42.80 6.43 53.92 47.85 | 10.60

3.4.3 Explainable ML Analysis of class B (P05, P06, P07) vs controls

Classification of myofibres from patients carrying a point mutation in MT- TL)( (class B)
is not possible with current techniques as observed in Table 2.4. In this section we apply

explainable ML methods to classify these same myofibres and construct predictive insights.

EDA

The following observations were inferred from Figure 3.11 and Table 3.7.

» Compared to control myofibres where a high positive correlation exists between all
eight protein markers, in class B myofibres no such correlation exists except between
NDUFBS8 and NDUFA13; MTCO1 and COX4.

* In cognisance of VDACI as surrogate for myofibre mass, only its correlation with
SDHA, UqCRC2, MTCOI1 and COX4+4L2 is comparable to controls. All protein

markers’ correlation is reduced in class B myofibres compared to controls.

ML classification results (class B)

LR and XGB models for class B vs control myofibre classification were trained with various

combinations of input features and the optimised parameters of both models trained with all
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Table 3.8 Optimised models’ parameters for class B vs controls myofibres.

Method Parameter Optimised parameter
values

LR const 10.42
NDUFB8 -3.57
NDUFA13 -3.51
SDHA -0.18
OSCP -0.17
COX4+4L2 1.34
MTCO1 -8.54
VDACI1 -0.02
UqCRC2 3.35

XGB colsample_bytree 0.5
eta 0.3
gamma 0.0
max_depth 5
min_child_weight 1

eight markers are presented in Table 3.8. The results from optimised best performing models
are detailed in Table 3.9.

As evident in the table both LR and XGB can predict the class B myofibres with 99%
accuracy. As discussed in Section 3.3.3 in cases where more than one ML model produces
similar accuracy, it was decided that both models will be interrogated to distill predictive
inference i.e. by applying EMs to these models.

Applying explainable ML methods to LR and XGB models for class B myofibres
prediction

The global explanations generated using whole training data with SHAP EMs are presented in
Figures 3.12 and 3.14 for LR and XGB models respectively. In these it can be observed that
1) both models use slightly different patterns in the data to achieve the same 99% accuracy
i.e. SHAP EM shows the top three average SHAP values for protein markers for LR models
are UqCRC2, COX4+4L.2 and MTCOI1, and for XGB model are UgCRC2, NDUFBS8 &
COX4+4L2. ii) The SHAP value prevalence observed in plot Figures 3.12C and 3.14C
shows low mean intensities of UqCRC?2 protein are associated with extreme negative SHAP
values in both of the models, these are very consequential towards predicting instances of
myofibres as negative (control) class. In addition high mean intitensities for UqQCRC2 are
associated with positive SHAP values in the models, these values are consequential towards

predicting instances of myofibres as positive (class B) class. It can also be observed that the
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Table 3.9 Accuracy metrics for models trained to predict class B myofibres

LB IV Recall(%) | Recall(%) | Accuracy (single pro- | Accuracy
wiledell) Agate | Agan (Patients) | (Controls) | tein)(%) (VDACI1+Protein)(%)
racy(%| racy(%
LR 99 99 100 95 61.81(NDUFBS) 64.30 (NDUFBS)
57.03 (NDUFA13) 53.53 (NDUFA13)
53.04 (SDHA) 55.53 (SDHA)
63.41 (UgqCRC2) 69.90 (UgqCRC2)
51.15 (MTCO1) 50.05 (MTCO1)
58.62 (COX4+4L.2) 59.22 (COX4+4L.2)
52.34 (OSCP) 55.83 (OSCP)
49.85 (VDAC1) NA (VDACI1)
XGB | 100 99 99 93 86.34 (NDUFBS&) 87.24 (NDUFBB8)
86.34 (NDUFA13) 87.14 (NDUFA13)
85.64 (SDHA) 86.34 (SDHA)
88.03 (UqCRC2) 87.64 (UqCRC2)
86.34 (MTCO1) 85.84 (MTCO1)
86.14 (COX4+41.2) 86.84 (COX4+41.2)
87.44 (OSCP) 87.54 (OSCP)
86.54 (VDAC1) NA (VDAC1)
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Figure 3.12 SHAP global explanations of LR model that predicts class B myofibres. The LR model
interrogated here had 99% test accuracy and trained on all eight protein markers. A, SHAP heatmap
plot. B, bar chart of the average SHAP value. C, a set of SHAP beeswarm plots
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Figure 3.13 SHAP local explanations of LR model that predicts class B myofibres. A, SHAP waterfall
plot providing local explanation for correctly predicted control myofibre instance. B, Another SHAP
waterfall plot but for correctly predicted class B myofibre.
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Figure 3.14 SHAP global explanations of XGB model that predicts class B myofibres. The XGB
model interrogated here had 99% test accuracy and trained on all eight protein markers. A, SHAP
heatmap plot. B, bar chart of the average SHAP value. C, a set of SHAP beeswarm plots
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Figure 3.15 SHAP local explanations of LR model that predicts class B myofibres. A, SHAP waterfall
plot providing local explanation for correctly predicted control myofibre instance. B, Another SHAP
waterfall plot but for correctly predicted class B myofibre

two complex IV protein markers (COX4+4L2 and MTCO1) have inverse associations with
each other, i.e. higher mean intensities of COX4+41.2 protein are associated with positive
SHAP values and lower mean intensities of MTCOI protein are associated with positive
SHAP values that are consequential towards predicting instances of myofibres as positive
(class B) class. These associations are further evident in the SHAP heatmap plot A within
Figures 3.12 & 3.14, where the inverse relationship between UqQCRC2 & COX4+4L.2 and
MTCOI, and complex I proteins (NDUFBS8, NUFA13) is leveraged by the LR model, but the
XGB model leverages different relationships between UqCRC2, COX4+4L2 and the rest of
the proteins.

These associations are also observed by studying individual instances of myofibres that are
presented in Figures 3.13 & 3.15 for LR and XGB models respectively. A more detailed
per protein interpretation of SHAP values combined with their predictive power and their

average mean intensities across the both classes is available in Appendix .1, Tables 3 and 4.

Insights and predictive inference

The following insights are drawn from applying explainable ML methods to dataset of class

B and control myofibres.

Predictive inference from LR model insights (class B) Compared to control myofibres,
in class B myofibres the levels of markers for complex III (UqCRC2) and complex IV
(COX4+4L2) are higher and complex I (NDUFB8 & NDUFA13) and complex IV (MTCO1)
are lower, and a strong inverse association exists between the two complex IV markers
(COX4+4L2 & MTCOL), enough to predict with 99% accuracy (100% for patients & 95%
for control).
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Predictive inference from XGB model insights (class B) The class B myofibres differ
from control myofibres in the following pattern. The levels of markers for complex III
(UgCRC2) and complex IV (COX4+4L2) are higher and complex I (NDUFB8 & NDUFA13)
and complex IV (MTCO1) are lower, and a strong inverse association exists between the two
complex IV markers (COX4+4L2 & MTCO1), enough to predict with 99% accuracy (99%
for patients & 93% for control).

Combined predictive inference (class B)

Taking into account the results from EDA, explainable LR model, explainable XGB model
and predictive powers of all input features, the following predictive inference is generated.
In class B myofibres when compared to control myofibres, the following pattern is
observed: higher levels of complex III (UqCRC2) and complex IV (COX4+4L2), lower
levels of complex I (NDUFB8 & NDUFA13) and complex IV (MTCOI1). And a strong
inverse association exists between the two complex IV markers (COX4+4L2 & MTCOL1).
The markers of the other three complexes did not have any additive benefit for prediction

accuracy i.e. leaving them out of model training did not affect accuracy.

Biological validation

The biological validation of predictive inferences discovered using explainable ML analysis
for class B myofibres are not straightforward as this class of mutations is not completely
understood. Nevertheless, in m.3243 point mutation which belongs to class B mutations,
patients have mostly complex I deficiency (NDUFB8 and NDUFA13)[34, 36, 67, 145] which
the ML models are correctly choosing . Association of high levels of UQCRC2 to class B
discovered is surprising and there may well be a good biological explanation that needs
further investigation by experimental validation to conclude whether it was an artefactual or

novel discovery.

3.4.4 Explainable ML Analysis of class C (P08, P09, P10) vs controls

Classification of myofibres from patients carrying single point mutations in mitochondrial
encoded tRNA (class C) is not possible with current techniques as observed in Table 2.4. In
this section we apply explainable ML methods to classify these same myofibres and present

insights achieved using explainable ML methods.
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Figure 3.16 Correlation between protein markers in class C myofibres

Table 3.10 Statistical distribution of mean intensities in class C myofibres: These are computed
using mean intensity in a myofibre for each protein marker over all class C myofibres

Summary | NDUFB8 | NDUFA13 | SDHA | UgCRC2 | MTCO1 | COX4+4L2 | OSCP | VDACI1
Min 1.04 1.10 2.02 1.47 1.02 1.29 1.46 1.17
Mean 2.03 2.35 18.30 7.13 1.67 8.42 10.91 3.38
Std 1.31 1.46 14.82 5.36 0.83 6.47 8.61 2.00
Max 8.56 9.43 91.48 41.70 4.95 38.34 57.03 | 14.83
EDA

The following observations were inferred from Figure 3.16 and Table 3.10.

* Compared to control myofibres where a high positive correlation exists between all
eight protein markers, in class C myofibres no such correlation exists except between
NDUFBS8 and NDUFA13; MTCO1 and COX4 and to a lesser extent UqQCRC2 and
SDHA.

* In cognisance of VDACI as surrogate for myofibre mass, in class C myofibres the
correlation with SDHA, UqCRC2, MTCO1 and COX4+4L2 is comparable to controls.
The correlations for all other protein markers are reduced in class C compared to
controls.

ML classification results (class C)

LR and XGB models were trained with various combinations of input features and the results
from optimised best performing models are detailed in Table 3.12. The optimised parameters
of both LR and XGB models trained with all eight markers are presented in Table 3.11.

As evident in Table 3.12 LR and XGB can predict the class C myofibres with 98% and
99% accuracy respectively. Both models are used for predictive inference i.e. to apply

explainable ML methods.
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Table 3.11 Optimised models’ parameters for class C vs controls myofibres.
Method Parameter Optimised parameter
values
LR const 5.27
NDUFBS -1.77
NDUFA13 -2.62
SDHA 1.06
OSCP -0.29
COX4+4L.2 2.02
MTCOI1 -7.90
VDACI1 2.832
UqCRC2 -0.90
XGB colsample_bytree 0.7
eta 0.3
gamma 0.0
max_depth 15
min_child_weight 1
Table 3.12 Accuracy metrics for models trained to predict class C myofibres
Training Test Recall(%) | Recall(%) | Accuracy (single pro- | Accuracy
Model | Accu- | Accu- (Patients) | (Controls) | tein)(%) (VDACI1 +Protein)(%)
racy(%) | racy(%)
LR 97 98 98 95 67.93 (NDUFBS) 77.70 (NDUFBS)
65.74 (NDUFA13) 74.19 (NDUFA13)
71.86 (SDHA) 71.28 (SDHA)
56.71 (UqCRC2) 69.82 (UqCRC2)
63.55 (MTCO1) 71.72 (MTCO1)
44.31 (COX4+4L2) 65.60 (COX4+4L2)
67.05 (OSCP) 67.5 (OSCP)
66.47 (VDAC1) NA (VDACI)
XGB | 100 99 99 98 79.73 (NDUFBS) 85.13 (NDUFBS)

80.03 (NDUFA13)
86.30 (SDHA)
83.09 (UqCRC2)
80.17 (MTCO1)
80.03 (COX4+4L2)
83.97 (OSCP)
84.98 (VDAC1)

84.98 (NDUFA13)
85.13 (SDHA)
86.00 (UGCRC2)
85.57 (MTCO1)
84.69 (COX4+412)
86.15 (OSCP)

NA (VDAC1)
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Figure 3.17 SHAP global explanations of LR model that predicts class C myofibres. The LR model
interrogated here had 98% test accuracy and trained on all eight protein markers. A, SHAP heatmap
plot. B, bar chart of the average SHAP value. C, a set of SHAP beeswarm plots
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Applying explainable ML methods to LR and XGB models for class C myofibres
prediction

The global explanations generated using whole training data with SHAP EMs that are pre-
sented in Figures 3.17 and 3.19 for LR and XGB models respectively show i) both models
use slightly different patterns in the data to achieve 98% and 99% accuracy respectively.
SHAP EM shows the top three average SHAP values for protein markers for LR model are
COX4+4L2, SDHA & MTCOL1, and for XGB model are NDUFBS&, SDHA & COX4+4L.2.
i) The SHAP value prevalence observed in plot C within Figures 3.17 and 3.19 shows
COX4+4L2 protein high mean intensities are associated with extreme positive and vice versa
SHAP values in both the models are very consequential towards predicting instances of
myofibres as both classes. In addition SDHA also has a similar association to COX4+4L2
with SHAP values but results in relatively moderate SHAP values compared to COX4+41.2 .
It can also be observed that the two complex IV protein markers (COX4+4L2 and MTCO1)
have inverse association with each other, i.e. higher mean intensities of COX4+4L2 protein
are associated with positive SHAP values and lower mean intensities of MTCO1 protein
are associated with positive SHAP values that are consequential towards predicting in-
stances of myofibres as positive (class C) class. These associations are further evident in the
SHAP heatmap plot A within Figures 3.17 and 3.19, where the inverse relationship between
COX4+4L2 and MTCOI, and complex I proteins (NDUFBS8, NUFA13) is leveraged by LR
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Figure 3.18 SHAP local explanations of LR model that predicts class C myofibres. A, SHAP waterfall
plot providing local explanation for correctly predicted control myofibre instance. B, Another SHAP
waterfall plot but for correctly predicted class B myofibre.
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Figure 3.19 SHAP global explanations of XGB model that predicts class C myofibres. The XGB
model interrogated here had 99% test accuracy and trained on all eight protein markers. A, SHAP
heatmap plot. B, bar chart of the average SHAP value. C a set of SHAP beeswarm plots
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Figure 3.20 SHAP local explanations of LR model that predicts class C myofibres. A, SHAP waterfall
plot providing local explanation for correctly predicted control myofibre instance. B, Another SHAP
waterfall plot but for correctly predicted class C myofibre.

model, but XGB model leverages different relationships between NDUFB8 and COX4+4L.2
& SDHA.

The associations observed by studying individual instances of myofibres i.e. local explana-
tions that are presented in the Figures 3.18 & 3.20 for LR and XGB models respectively, give
similar insights to ‘global’ explanation. A more detailed per protein interpretation of SHAP
values combined with their predictive power and their average mean intensities across the

both classes is available in Appendix .1, Tables 5 and 6.

Insights and predictive inference

The following insights are drawn from applying explainable ML methods to the dataset of
class C and control myofibres.

Predictive inference from LR model insights (class C) The class C myofibres differ
from control myofibres in the following pattern. Compared to control myofibres, in class
C myofibres the levels of markers for complex IV (COX4+4L2), complex II (SDHA) are
higher and complex I (NDUFB8 & NDUFA13), complex IV (MTCO1) and to a lesser extent
complex III (UqCRC2), and Complex V(OSCP) are lower. An inverse association exists
between the two complex IV markers (COX4+4L2 & MTCO1), enough to predict with 98%
accuracy (98% for patients and 95% for control).

Predictive inference from XGB model insights (class C) The class C myofibres differ
from control myofibres in the following pattern. Compared to control myofibres in class
C myofibres the levels of markers for complex IV (COX4+4L2), complex II (SDHA) are
higher and complex I (NDUFB8 & NDUFA13), complex IV (MTCO1) and to a lesser extent
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complex III (UqQCRC2) and Complex V(OSCP) are lower. An inverse association exists
between the two complex IV markers (COX4+4L2 & MTCO1), enough to predict with 99%
accuracy (99% for patients and 98% for control).

Combined predictive inference (class C)

Taking into account the results from EDA, explainable LR model, explainable XGB model
and predictive powers of all input features, the following predictive inference is generated.
As the predictive inference from both models agrees the combine predictive inference is

the same as above. It was also observed that the removal of any marker reduces the accuracy.

Biological validation

Class C mutations are not completely understood but some predictive inferences are expected
such as ‘deficiencies of complex I (NDUFB8 and NDUFA13), complex IV (MTCO1) and
to a lesser extent complex III (UqCRC2), and Complex V(OSCP)’, it is expected to see
some deficiency in complex III and V but not as much as for complex I and complex IV
(MTCOL1). The other predictive inferences such as correlation between SDHA and UqCRC2
and predictive power of SDHA is interesting. SDHA is expected not to change or to increase
and UqCRC2 to be the same if not deficient. These are interesting discoveries that warrant

further investigations.

3.4.5 Explainable ML Analysis of class D (P03 and P04) vs controls

Classification of myofibres from patients suffering from single, large-scale mtDNA mutation
(class D) is not possible with current techniques as observed in Table 2.4. In this section
we apply explainable ML methods to classify these same myofibres and present insights
achieved by explainable ML methods.

EDA

In control myofibres where a high positive correlation exists between all eight protein
markers, this is also observed in class D myofibres (except with NDUFBS) but to a lesser
extent. Similarly, VDACI have a similar correlation in class D myofibres as in control
myofibres with all protein markers except NDUFBS. This is presented in Figure 3.21 and
Table 3.13.
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Figure 3.21 Correlation between protein markers in class D myofibres

Table 3.13 Statistical distribution of mean intensities in class D myofibres : These are computed
using mean intensity in a myofibre for each protein marker over all class D myofibres

Summary | NDUFB8 | NDUFA13 | SDHA | UgCRC2 | MTCO1 | COX4+4L2 | OSCP | VDACI1
Min 1.06 1.06 1.44 1.24 1.02 1.31 1.15 1.05
Mean 243 3.04 6.14 5.36 2.10 9.88 3.75 1.82
Std 0.68 1.29 3.54 2.97 0.83 7.14 2.17 0.46
Max 5.92 10.32 27.46 20.71 5.75 38.36 16.82 4.75

Table 3.14 Optimised model parameters for class D vs controls myofibres.

Method Parameter Optimised parameter
value

LR const 8.52
NDUFB8 -0.56
NDUFA13 -0.37
SDHA 0.17
OSCP -1.69
COX4+41.2 1.05
MTCOIl -6.71
VDACI1 -0.52
UqCRC2 1.23

XGB colsample_bytree 0.7
eta 0.25
gamma 0.0
max_depth 5
min_child_weight 1
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Table 3.15 Accuracy metrics for models trained to predict class D myofibres

Model zrcaéﬁl_n };ecsctu— Recgll(%) Recall(%) Af:curacy (single pro- | Accuracy '
racy (%) racy(% (Patients) | (Controls) | tein)(%) (VDAC1+Protein)(%)

LR 86 85 97 35 57.41 (NDUFBS&) 69.96 (NDUFBS&)
47.30 (NDUFA13) 60.11 (NDUFA13)
48.72 (SDHA) 60.40 (SDHA)
48.86 (UqCRC2) 72.08 (UqCRC2)
46.01 MTCO1) 63.82 (MTCO1)
46.44 (COX4+41.2) 63.96 (COX4+4L2)
45.72 (OSCP) 55.41 (OSCP)
53.56 (VDAC1) NA (VDAC1)

XGB | 100 93 97 78 82.05 (NDUFBS8) 82.33 (NDUFBS8)
80.12 (NDUFA13) 80.12 (NDUFA13)
79.06 (SDHA) 82.47 (SDHA)
79.34 (UqCRC2) 82.47 (UqCRC2)
79.06 (MTCO1) 80.34 (MTCO1)
79.06 (COX4+4L.2) 80.91 (COX4+41.2)
78.35 (OSCP) 81.05 (OSCP)
81.48 (VDAC1) NA (VDAC1)

ML classification results (class D)

LR and XGB models were trained with various combinations of input features and the results
from optimised best performing models are detailed in Table 3.15. The optimised parameters
of both LR and XGB models trained with all eight markers are presented in Table 3.14.

As evident in Table 3.15 only XGB can predict the class D myofibres with accuracy >
90% 1.e. 93% more important to note is the recall for controls for both models 1.e. 35% by
LR and 78% by XGB. This inaccuracy of the LR model made it unfit for predictive inference.
Whilst XGB model’s control recall is better but not > %90, but because it achieved 97% on
class D myofibres, it was decided that it would be used for predictive inference, i.e. to apply
explainable ML methods.

Applying explainable ML methods to XGB model for class D myofibres prediction

The global explanations generated using whole training data with SHAP EMs that are
presented in Figure 3.22 for the XGB model shows 1) the patterns in the data it uses to
achieve 93% accuracy i.e. SHAP EM shows the top three average SHAP values for protein
markers are UQCRC2, COX4+4L2 & OSCP. ii) The SHAP value prevalence observed in plot
C within Figure 3.22 shows low mean intensities for UJCRC2 protein are associated with
extreme negative SHAP values and to lesser extent vice versa, these are very consequential

towards predicting instances of myofibres as control class and to a lesser extent as class D. In



80 Explainable ML Analysis of Myofibre Summaries

UqCRC2

3.8 COX4+4L2

oscP
ﬂx) SDHA
NDUFB8

=
3
o MTCO1
5
UgCeRe2 ‘ ‘ ‘ll ”|I I ° VoACL
o
° NDUFA13
COX4+4L2 ‘H g
c 0.00 0.25 0.50 0.75 1.00 125 150 175
S (ISHAP value]) (: impact del output itude)
oscp ‘ IH |‘” ” g mean{(SHAP valel) (average impac on model output macnitude
3 High
ig
SDHA ‘ ‘ ‘ H £ ‘L‘ h
= UqCRC2 .
- q
NDUFB8 2 coxara
>
a oscp °
MTCO1 S SoHA . 3
v ¢
VDAC1 | | NDUFBS %
MTCO1 - =
NDUFA13 voact
| l l ' ' | ' ' -3.8
u 0 250 500 750 1000 1250 1500 1750 2000 NDUFA13

Instances Low
C -4 -2 o 2 4
SHAP value (impact on model output)

Figure 3.22 SHAP global explanations of XGB model that predicts class D myofibres. The XGB
model interrogated here had 93% test accuracy and trained on all eight protein markers. A, SHAP
heatmap plot. B, bar chart of the average SHAP value. C, a set of SHAP beeswarm plots
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Figure 3.23 SHAP local explanations of XGB model that predicts class D myofibres. A, SHAP
waterfall plot providing local explanation for correctly predicted control myofibre instance. B,
Another SHAP waterfall plot but for correctly predicted class D myofibre.
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addition COX4+4L2 also has a similar association to UqCRC2 with SHAP values. It can also
be observed that the two complex IV protein markers (COX4+4L2 and MTCO1) have inverse
association with each other, i.e. higher mean intensities of COX4+4L2 protein are associated
with positive SHAP values and lower mean intensities of MTCOI1 protein are associated with
positive SHAP values that are consequential towards predicting instances of myofibres as
positive (class D) class. These associations are further evident in the SHAP heatmap plot A
within Figure 3.19, where the inverse relationship between UqCRC2,COX4+4L2 and OSCP
and MTCOL is leveraged by the XGB model.

Similar associations are also observed by studying individual instances of myofibres i.e. local
explanations that are presented in Figure 3.23. A more detailed per protein interpretation of
SHAP values combined with their predictive power and their average mean intensities across

the both classes is available in Appendix .1, Table 7.

Insights and predictive inference

The following insights are drawn from applying the explainable XGB ML model to a dataset
of class D and control myofibres.

Predictive inference from XGB model insights (class D) The predictive inference for
this model should be seen with acknowledgement of its low accuracy on control myofibres.
The class D myofibres differ from control myofibres in the following pattern. Compared
to control myofibres, the levels of markers for complex III (UqCRC2) and complex IV
(COX4+4L2) are higher and complex I (NDUFB8) is lower in class D myofibres. Further, an
inverse association exists between the two complex IV markers (COX4+4L2 & MTCOL1),
enough to predict with 93% accuracy (97% for patients & 78% for control).

Biological validation

It should be noted that biologically validating predictive inferences for myofibres linked with
Class D mutations is not possible as these mutations’ relationship with OXPHOS proteins
is not fully understood. Predictive inference finds higher levels of complex III (UqCRC2)
and complex IV (COX4+4L2), lower levels of complex I (NDUFBS), which make biological
sense but need to be investigated further experimentally. The inverse association between

complex IV proteins is surprising, a finding that warrants further investigation.
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Figure 3.24 Correlation between protein markers in PO3 myofibres

Table 3.16 Statistical distribution of mean intensities in P03 myofibres : These are computed using
mean intensity in a myofibre for each protein marker over all PO3 myofibres

Summary | NDUFB8 | NDUFA13 | SDHA | UgCRC2 | MTCO1 | COX4+4L2 | OSCP | VDACI1
Min 1.06 1.06 1.44 1.24 1.02 1.31 1.15 1.05
Mean 2.17 2.25 3.75 3.30 1.56 5.07 222 1.51
Std 0.62 0.64 1.13 0.92 0.28 1.94 0.52 0.22
Max 5.64 6.08 16.92 8.34 3.54 19.37 5.61 4.75

3.4.6 Explainable ML Analysis of P03 vs Controls

Classification of myofibres from PO3 was one of the cases that was not possible with the
current techniques as observed in Table 2.4. For this reason it was decided that to use it as a
challenging benchmark to provide contrast. The following observations were made in the
EDA which is presented in Figure 3.24. In controls a high positive correlation exists between
all eight protein markers. To a lesser extent it is also observed in control and P03 data and to
an even lesser extent in just PO3 data. VDAC1’s correlation with SDHA is comparable to
controls. The correlation for all other protein markers is reduced in PO3 myofibres compared

to controls.

ML classification results (P03)

LR and XGB models were trained with various combinations of input features and the results
from optimised best performing models are detailed in Table 3.18. The optimised parameters
of both LR and XGB models trained with all eight markers are presented in Table 3.14.

As evident in Table 3.18 only XGB can predict the PO3 myofibres with an accuracy of
95%; more important to note is the recall for controls for both models i.e. 55% by LR and
91% by XGB. The inaccuracy of the LR model makes it unfit for predictive inference. Based
on accuracy and recalls it was decided that XGB should be used for predictive inference, i.e.

to apply explainable ML methods.
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Table 3.17 Optimised model parameters for PO3 vs controls myofibres.
Method Parameter Optimised parameter
value
LR const 6.62
NDUFBS 1.28
NDUFA13 1.19
SDHA -0.71
OSCP -4.38
COX4+4L.2 0.33
MTCOI1 -4.84
VDACI1 -0.93
UqCRC2 2.84
XGB colsample_bytree 0.7
eta 0.15
gamma 0.1
max_depth 8
min_child_weight 1
Table 3.18 Accuracy metrics for models trained to predict PO3 myofibres
Training Test .
Recall(%) | Recall(%) | Accuracy (single pro- | Accuracy
Model | Accu- | Accu- (Patients) | (Controls) | tein)(%) (VDACI1 +Protein)(%)
racy(%) | racy(%)
LR 82 84 95 55 70.60 (NDUFBS) 73.50 (NDUFBS)
67.50 (NDUFA13) 73.91 (NDUFA13)
68.33 (SDHA) 73.29 (SDHA)
62.73 (UqCRC2) 74.53 (UqCRC2)
69.15 (MTCO1) 73.71 (MTCO1)
66.46 (COX4+4L2) 74.12 (COX4+4L2)
72.67 (OSCP) 74.32 (OSCP)
71.43 (VDAC1) NA (VDACI)
XGB | 100 95 97 91 75.15 (NDUFBS) 76.60 (NDUFBS8)
72.88 (NDUFA13) 76.40 (NDUFA13)
74.12 (SDHA) 76.81 (SDHA)
74.32 (UqCRC2) 76.60 (UqCRC2)
74.53 (MTCOL1) 76.40 (MTCO1)
74.74 (COX4+4L2) 77.02 (COX4+4L2)
78.05 (OSCP) 75.57 (OSCP)
76.60 (VDAC1) NA (VDACI)
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Figure 3.25 SHAP global explanations of XGB model that predicts PO3 myofibres. The XGB model
interrogated here had 95% test accuracy and trained on all eight protein markers. A, SHAP heatmap
plot. B, bar chart of the average SHAP value. C, a set of SHAP beeswarm plots

Applying explainable ML methods to XGB model for P03 myofibres prediction

The results are presented in Figures 3.25 and 3.26. The global explanations generated using
whole training data with SHAP EMs that are presented in Figure 3.25 for XGB model show
1) the patterns in the data it uses to achieve 95% accuracy i.e. SHAP EM shows the top
three average SHAP values for protein markers are OSCP, UqJCRC2 and SDHA. ii) The
SHAP value prevalence observed in plot C within Figure 3.25 shows OSCP protein high
mean intensities are associated with extreme negative SHAP values and to a lesser extent

vice versa, these are very consequential towards predicting instances of myofibres as control
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Figure 3.26 SHAP local explanations of LR model that predicts PO3 myofibres. A, SHAP waterfall
plot providing local explanation for correctly predicted control myofibre instance. B, Another SHAP
waterfall plot but for correctly predicted PO3 myofibre.
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class and to a lesser extent as PO3 class. In addition SDHA also has a similar association to
OSCP with SHAP values, but inverse association is observed with UqCRC2. It can also be
observed that the two complex IV protein markers (COX4+4L2 and MTCO1) have inverse
association with each other, i.e. higher mean intensities of COX4+4L2 protein are associated
with positive SHAP values and lower mean intensities of MTCOI1 protein are associated
with positive SHAP values that are consequential towards predicting instances of myofibres
as positive (P03) class. These associations are further evident in the SHAP heatmap plot A
within Figure 3.25, where the inverse relationship between (OSCP& SDHA) and UqCRC?2 is
leveraged by the model.

Similar associations are also observed by studying individual instances of myofibres i.e. local
explanations that are presented in Figure 3.26. A more detailed per protein interpretation of
SHAP values combined with their predictive power and their average mean intensities across
both classes is available in Appendix .1, Table 8.

Insights and predictive inference

The following insights are drawn from applying the explainable XGB ML model to a dataset
of PO3 and control myofibres.

Predictive inference from XGB model for P03 myofibres should be seen with acknowl-
edgement of its lower accuracy on control myofibres. The associations used by the model are
complex and combinatory with only complex V(OSCP) marker lower level’s association with
P03 being clear. But other markers are good discriminators too, evident by their respective
predictive powers and the model with all eight markers was able to predict with 95% accuracy
(97% for patients and 91% for control).

Biological validation

The predictive inference for PO3 myofibres is limited which makes biological validation
difficult.

3.5 Discussion

3.5.1 Classification accuracy of explainable ML methods

As observed in Section 3.4, the predictive accuracy of the methods developed in this chapter

ranges from 100% for class A myofibres to 93% for class D myofibres. These are better than
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the current technique as presented in Table 2.4. These classification accuracies from a perfect
100% to relatively good 93% implies there exist a pattern in the dataset which ML models
can exploit to achieve these accuracies. It can also be concluded that the models selected
for this task, i.e. LR and XGB, were appropriate, this is evident by classification results and
their ability to capture linear and non linear associations between all the input features and

the target variable, this was evident in their explanations plots.

It was also observed low-biased XGB models provided complementary and additive
results to high-biased LR as discussed in Section 3.3.3.

3.5.2 Insights from combination of predictive power of individual

features and explainable methods

The predictive inferences presented in tables in Appendix .1 e.g. Table 1, help to understand
how each feature was used by the model to make predictions in terms of their overall impact,
correlation of their value towards target outcome, contribution prevalence (i.e. proportion of
predictions on a scale of contribution), predictive power of the feature on its own, and its
statistical shape (mean and standard deviation) compared to control myofibres. All these
collective and combined with other features explanations allow biomedical scientists to
infer associations used by the model. In three out of five cases analysed in this chapter the

predictive inference of two models was used, sometimes this provided additive insights.

For the first three cases (class A, B and C) both LR and XGB models produced >95%
accuracy; the explanations were much easier to interpret, as can be observed in the explanation
plots. This was due to associations used by models being linear which resulted in explanation
plots showing linear correlations between features and target variables. This ultimately
allowed me to generate hypotheses that are simple, i.e. description of target class myofibre

patterns in terms of up or down regulation compared to control class.

For the last two cases (class D and P03) the models did not used linear associations as
evidenced by poor performance of LR and better performance of XGB models with increased
‘max_depth’ which implies the bases of prediction are more complex. This resulted in SHAP
explanation plots which were inconclusive about a feature’s correlation with target variable,
i.e. the strength of a feature’s pixel intensity cannot be easily decomposed as contributing
positively or negatively towards target prediction on the global level. In this scenario studying
local SHAP explanations provided insights into associations. In addition to results presented
earlier, SHAP interaction analysis [127] was also performed but the results from it did not

add any additional insights.
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Biological validation and novel insights

Class A myofibres are instrumental in validating the ML models as these have well defined
biologically expected patterns that can be used for validation of predictive insights. These
expected patterns such as downregulation of complex I proteins and compensatory upregu-
lation of complex II-V in class A myofibres has been used to validate the derived class A
predictive inference insights. All the insights discovered by the explainable ML pipeline
for class A myofibres are in accord with the biological expectations as discussed in Section
3.4.2. There are a number of predictive insights that are potential novel pathology explaining
discoveries such as association of high levels of UqJCRC?2 to class B mutations, correlation
between SDHA and UqCRC2 in class C mutations and inverse association between complex

IV proteins in class D mutations.

3.5.3 Limitations

While the classification accuracy and explanations where models were able to exploit linear
associations were useful but there are a number of limitations of the ML analysis conducted

in this chapter.

Reliability of processed data

The methods used in this chapter assume that the processed data derived from mitocyto
segmentation to be reliable. This assumption is not backed by any evidence or evaluation of
the quality of segmentation and curation of myofibres. This is a substantial weakness of the
study conducted in this chapter, i.e. if segmentation quality affected the per myofibre mean

protein intensities it will have impacted the model training.

Ignoring intra-myofibre features

The ML analysis conducted in this chapter used statistical summaries that ignored all intra-
myofibre features. There are many hypotheses [2, 3] that theorise the existence of differential
features within myofibre in various mitochondrial dysfunctions, this is further discussed in

Section 6.1. The ML analysis conducted in this chapter would not be useful in this regard.

Interpretations of complex associations

As observed in classification of Class D and PO3 myofibres where the model exploited

complex associations, the interpretations of explanation plots were complex and deriving a
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reliable hypothesis backed by hard evidence was difficult. The local explanation plots are

helpful but studying hundreds of them to decipher associations is impractical.

Small patient cohort

The analysis conducted in this study has a small number of patients per genetic mutation
class. This is because patients suffer from a disease that is rare; nevertheless, the conclusion
derived from this analysis should be viewed considering this limitation.

3.5.4 Conclusion

In this chapter predictive inference of four classes of mitochondrial mutations using pro-
cessed single-cell (myofibre) data was performed. The classification results exceeded the
current techniques and explanations provided by SHAP plots were helpful in recognising
the patterns/associations between input features and target features, especially when models
were able to exploit multi-linear relationships/associations. The reliability of processed data

and impracticality of deciphering complex association need further research.



Chapter 4

NCL-SM: A Fully Annotated Dataset of
Images from Human Skeletal Muscle
Biopsies

4.1 Introduction

As discussed in Section 3.5.3 reliability of myofibre segmentation and myofibre curation i.e.
selecting the myofibres that are not affected by any artefactual defects, is an unresolved issue
with the current analysis techniques. Subsequently the quality of myofibre segmentation and
curation achieved using mitocyto and others were evaluated as presented in Chapter 5 and
were found to be imprecise. It was then decided to use deep learning for these two tasks and
it was found that vanilla/generalised DL models such as UNET, Mask R-CNN, Cellpose did
not produce the segmentation quality required and explained in Chapter 5 .

To train a bespoke model for precise myofibre segmentation and curation, requires a
precisely segmented and curated dataset of SM tissue images for training. To the best of
my knowledge there is no such publicly available dataset for myofibre segmentation or
classification. Making this dataset available and clearly defining the challenge involved
in myofibre segmentation and curating the usable myofibres is a crucial first step towards
development of an automatic tool for this problem.

High quality annotated datasets are critical for development of relevant ML/DL models or
pipelines. This has been evident since the early days of modern ML with datasets such as
MNIST [150], COCO [151], ImageNet [115] and more recently SA-1B [152] enabling the
construction of some seminal ML models like ResNet [118], VGG [153], vision transformer
[154] and SAM [152]. It was decided to undertake a project to build Newcastle Skeletal
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Muscle (NCL-SM), a dataset of precisely segmented and curated SM tissue images, and
make it publicly available to nurture open science and allow transparency of any solutions

we build using this dataset.

4.1.1 SM tissue segmentation for analysis

Microscopy imaging and cytometry-based pseudo imaging techniques allow us to observe
protein expressions within individual cells within tissue images, when a single cell segmenta-
tion approach is used. For many biological and disease processes, this is the most appropriate
spatial scale for understanding mechanisms. Further, the spatial arrangement of cells of
different classes within tissues in vitro is often informative about biology and disease pathol-
ogy. There are many diseases affecting SM tissue, including amyotrophic lateral sclerosis
[155], multiple sclerosis [156], muscular dystrophy [157] and a wide range of mitochondrial
diseases [158]. The dataset presented in this chapter is collected from healthy human control
subjects and from patients suffering from genetically diagnosed muscle pathology, including
mitochondrial diseases.

Any analysis of SM images at the single myofibre level requires 1) precise segmentation
of individual myofibres, as regions close to the myofibre membrane are known to exhibit
differential features [2]. 2) removal of myofibres damaged by freezing that might occur
in the process of storage and thawing, as the subcellular patterns in protein expression, or
indeed per-cell mean expression, will be impacted by the technical artefact, masking the
target biology. 3) removal of SM myofibres that are not sliced in transverse orientation or are
partially sectioned, as the presence of such myofibres does not allow for a standard or uni-
form comparison across all the myofibres in a tissue and 4) removal of folded tissue. Tissue
can fold in on itself during tissue handling and slide preparation. Such folding artificially
amplifies apparent protein expression in affected regions and is again a purely technical
artefact, not related to target biology.

Currently most single-myofibre SM analysis is carried out using custom built semi-
automatic pipelines like mitocyto [1], using general image analysis tools like Ilastik [84] or
cellprofiler [83], or using vanilla ML models like StarDist [120] or Cellpose [89]. None of
these approaches produce the segmentation quality required for analysis of SM out of the box,
without suitable training in my experience. Custom built pipelines like mitocyto are used more
often than general ML models (which are not trained on SM data) as these require relatively
fewer corrections than general ML models. I evaluate and discuss mitocyto segmentation
quality in Chapter 5 . To improve the segmentation quality and remove compromised
myofibres and SM regions, biomedical scientists spend hours manually correcting the issues

in tissue section images and segmentation masks such as manually correcting individual
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myofibre annotations and classifications, before doing downstream quantitative analysis.
This can be an inefficient use of scientists’ time but also the corrections are subjective and
not reproducible.

The main barrier to the development of a suitable ML tool/model for fully automatic
segmentation and curation of SM myofibres is the lack of any high quality, manually seg-
mented and curated SM myofibre image data on which to train appropriate ML models. And
to account for subjectivity in annotations there need to be be duplicate annotations to reveal

the level of subjectivity.

4.2 Aims

The aims of this chapter are

* To develop evaluation metrics that detail the quality of segmentation and curation

required for SM tissue image analysis.

* To build a dataset of precisely segmented and curated SM tissue sections that capture
diverse subject groups, i.e. controls and patients, and imagining techniques, i.e. IF
(microscopy) and IMC and evaluate the quality of this dataset using the developed

evaluation metrics.

4.3 Methods

4.3.1 SM tissue segmentation and curation protocol

The SM tissue segmentation and curation protocol developed under the guidance of biomedi-
cal experts from WCMR can be divided into four tasks.

Myofibre segmentation

The protocol for myofibre segmentation is i) include all areas within a myofibre that had mi-
tochondrial mass signal, i1) exclude any areas within a myofibre that had myofibre membrane
signal and ii1) prioritise signal from within myofibre when membrane signal is weak. Point
ii1) is necessary because noise is common in these types of data resulting in some overlapping
mass and membrane pixels. In such scenarios, we consider mitochondrial mass signals within
a myofibre to be the most reliable indicator of myofibre morphology as presented in Figure
4.1.
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Figure 4.1 Typical Manual Segmentation of a SM Tissue Section: An IMC SM tissue section
image from subject P17. Consists of 1,068 myofibres manually segmented following the protocol, i.e.
include all myofibre mass and exclude membrane. Each colour is an unique pixel value per myofibre
in the annotated mask.
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Figure 4.2 Identifying Myofibre Freezing Artefacts All myofibres from section P02. A (id:190), B
(1d:138) and C (id:257) are typical freezing damaged myofibres resulting in a leopard spot pattern, D
(1d:448), E (1d:117) and F (1d:398) are partial myofibres that are more severely damaged by freezing,
G (1d:303), H (id:415) and I (id:288) are examples of myofibres without any freezing defects. Figure
adapted from Khan et al. [41].

Freezing Artefact Myofibre (FAM) classification

The protocol for identifying myofibres with freezing artefacts was i) look for a leopard spot
pattern within myofibres that are typical of freezing damage and i1) look for partial myofibres
i.e. large part of myofibres missing as a result of freezing. These patterns are demonstrated

in Figure 4.2.

Non-Transverse Sliced Myofibre (NTM) classification

The protocol for identifying non-transverse sliced myofibres was to look for i) myofibres
with skewed aspect ratio, e.g. elongated; i1) all myofibres at the border of image: these are
partial observations; iii) segmented objects which are too small or too big; and iv) myofibres

with unusual convexity. NTM shapes are demonstrated in Figure 4.3.

Folded tissue Regions (FR) segmentation

Folded tissue regions were segmented by an expert biomedical scientist, these were identified
by looking for overlapping membrane signals that result in mesh patterns as demonstrated in
Figure 4.4.
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Figure 4.3 Typical Non-Transverse Sliced Myofibres: Myofibres from tissue section C04. A (ID:
39) is a typical elongated myofibre cross-section which has not been cut in the transverse orientation
B is myofibre (ID:6) with unusual convexity, C is myofibre (ID:24) of large area, and D is a partial
myofibre (ID:12) that has been truncated by the border of the image

Figure 4.4 Typical SM Tissue Folding Segmentation of folded regions (each instance of folding is
coloured differently) in a tissue section PO6
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Figure 4.5 Area Near the Membrane IMC image of a fibre (ID:723) from tissue section P17
illustrating Area outside the Border (AoB, red) and Area inside the Border (AiB, green) on either side
of the border of an annotated myofibre. These areas are identified by eroding and dilating the border
using 5x5 and 9x9 pixel kernels for IMC and IF images respectively.

4.3.2 Evaluation metrics for SM tissue image segmentation and

curation

In order to evaluate the quality of myofibre segmentation annotations we need quantitative
metrics that capture the nuances required during SM analysis. In this section these nuances

are defined and the quality evaluation metrics are introduced.

Myofibre segmentation evaluation metrics

Intersection over Union (IoU) is a widely used evaluation metric to measure the quality of
annotation/segmentation in computer vision tasks. But for myofibre segmentation examining
IoU of each myofibre alone will not reveal important aspects about segmentation quality, 1.e.
the areas missed or included matter, as emphasised in Section 4.1, in other words we want any
automatic pipeline to have high accuracy segmenting areas on either side of the border of each
myofibre as illustrated in Figure 4.5. To measure this, we developed two quantitative metrics:
myofibre mass missed correlation (r4,5) and myofibre membrane included correlation (r4;p)
along with the aforementioned IoU. All three metrics are defined below:

* Myofibre mass missed correlation (r4,5): This is the Pearson correlation between
the proportion of myofibre mass pixels missed in the Area outside the myofibre Border

(AoB) by annotator x, compared to annotator y, across all available myofibres i € 1...n.
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AR = Z?:l (xA()Bi - XA()B) (yA()Bi - yA()B) (4 1)
0. - .
VY (xa08i — Xa08)2 L1 | (VAoBi — YaoB)?

where xa0p; 1s the proportion of myofibre mass pixels in AoB in myofiber i as annotated
by annotator x; yaogi 1S the proportion of myofibre mass pixels in AoB in myofiber i as
annotated by annotator y; overbar represents the mean across all n myofibres; and » is

the number of myofibres assessed.
Myofibre membrane included correlation (r4;5): Defined as above, but for AiB:

_ Y1 (xaipi —XaiB) (YaiBi — YaiB)
VY (xaisi —XaB)? L (vaisi — YaiB)?

TAiB 4.2)

where xajg; is the proportion of myofibre membrane pixels in AiB in myofiber i as
annotated by annotator x; yaig; is the proportion of myofibre membrane pixels in AiB

in myofiber i as annotated by annotator y.

IoU (IoU;): This is defined as the intersection of overlapping pixels divided by union
of all pixels between two annotations of myofibre i. This is measured per myofibre
and IoU is the mean across all n myofibres assessed.

X;nY;
IoU,:’ (O
|X; VY]

4.3)

where X and Y are annotations of myofibre i by annotators X and Y.

Myofibre curation evaluation metrics for FAM and NTM

As discussed in Section 4.1.1, inclusion of FAMs and NTMs in the analysis can impact the

subcellular patterns in protein expression, or indeed per-cell mean expression, masking the

target biology. At the same time it is vital to emphasise that the tissue collected for the

analysis come from muscle biopsies of patients suffering from rare mitochondrial diseases,

making these biopsies a rare and precious resource that needs to be utilised without any

wastage i.e. salvaging the myofibres wherever possible. For this reason striking a balance

between full utilisation of SM tissue and preserving the analysis from any artefactual factors

is important. It was decided that sensitivity, specificity and F1 score as metrics will allow us

to measure the myofibre curation quality and help find a balance as discussed above.

true positives
sSensitivity = — P - “4.4)
true positives + falsenegatives
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ficity truenegatives 4.5)
specificity = .
P truenegatives + false positives

2 xtrue positives
FI score = — — . (4.6)
2 xtrue positives + false positives + false negative

FR segmentation evaluation metrics

Folded tissue section affects regions of tissue which means its affect needs to be calculated
on the whole tissue section. It was decided that the best metrics to evaluate FR in a tissue
section will be loU, i.e. intersection of overlapping pixels divided by union of all pixels

between two annotations of all FRs in a tissue section.

4.4 Data

As part of this thesis a high quality fully manually segmented and mostly manually curated
SM imaging dataset, i.e. NCL-SM,! and its quality evaluation code® is made publicly
available. The images are collected using two different imaging technologies: Imaging Mass
Cytometry (IMC) and ImmunoFluorescence (IF) amounting to 50,434 myofibres in 46 tissue
sections, 30,794 of which are classed as ‘analysable’, 18,102 classed as ‘not-analysable-
due-to-shape’, 1,538 myofibres classed as ‘not-analysable-due-to-freezing-damage’ and 405
annotations of folded tissue regions.

The NCL-SM dataset includes images of 46 tissue sections that capture spatial variation in
protein expression within tissue (including within myofibres). We use microscopy-based
techniques, i.e. IF and advanced protein expression measurement techniques like IMC that
allow us to observe the spatial variation in the expression of up to 40 proteins in tissue

simultaneously.

4.4.1 Capturing images

The following is the sequential process of collecting this data.

Biopsies
Following ethical approval from the Newcastle and North Tyneside Local Research Ethics
Committee and informed consent from control and patient subjects, biopsies of SM were

Thttps://doi.org/10.25405/data.ncl.24125391
2www.github.com/atifkhanncl/NCL-SM
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collected from patients and healthy control subjects as described in Table 4.1. However,
ethical approval for this project was not required as it consisted of a re-analysis of existing
image data collected as part of studies conducted in [1, 2, 47, 159]. This original data was
obtained from approved studies on samples from Newcastle Brain Tissue Resource (Approval
Ref:2021031) and Newcastle Mitocondrial Research Biobank (approved by the Newcastle and
North Tyneside Research Ethics committee reference 16NE/0267) and Newcastle Biobank
(approved by the Newcastle and North Tyneside Research Ethics committee 12/NE/0394).

Table 4.1 Subject information: Information of patients and controls detailing gender, age at biopsy,
clinical information, genetic defect, heteroplasmy level, tissue section (TS) name and Imaging type.
The subject IDs that start with P and C are patients and controls whose tissues were imaged using
IMC, and the subject IDs that start with S are subjects whose tissues were imaged using IF .The
orange rows define the genetic mutation of the subjects in the following rows.

Subject| Gender| Age | Clinical in- | Genetic Heteroplasmy | TS Imaging
formation defect level names | type
Nuclear-encoded mutations affecting complex 1
(taken from the vastus lateralis)
PO1 M Adult | Exercise TMEMI126B | NA PO1 IMC
intolerance, | Homozygous
unable to | ¢.635G>T,
perform p-(Gly212Val)
sustained
aerobic
exercise
normal rest-
ing lactate,
normal CK
P02 M Adult | Exercise ACAD9 NA P02 IMC
intolerance, | Compound
muscle heterozygous
cramps, ele- | c.1150G>A,
vated serum | p.(Val384Met)
lactate and
c.1168G>A,
p-(Ala390Thr)
Single, large-scale mtDNA mutations
(taken from the vastus lateralis)
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929

P03 F 29yrs | CPEO and | Deletion 53% P03 IMC
bilateral size: 4372bp
ptosis Breakpoints:
8929-13301
mtDNA
deletion level:
53%
Point mutations in mitochondrial-encoded tRNA leucine (MT-TL1)
(taken from the vastus lateralis)
P05 F 25yrs | Exercise m.3243A>G | 66% P05 IMC
intolerance, | MT-TL1
ptosis mutation
P06 F 47yrs | Modest ex- | m.3243A>G | 34% P06 IMC
ercise intol- | MT-TL1
erance mutation
P07 M 53yrs | CPEO m.3243A>G | 74% P07 IMC
MT-TL1
mutation
Point mutations in other mitochondrial-encoded tRNAs
(taken from the vastus lateralis)
P08 M 33yrs | Mitochond- | m.10010T>C | 89% P08 IMC
rial myopa- | MT-TG
thy mutation
P09 F 35yrs | Mild weak- | m.14709T>C | 76% P09 IMC
ness MT-TE
mutation
P10 M 63yrs | Exercise m.5543T>C | NA P10 IMC
intolerance, | MT-TW
prominent | mutation
exertional
dyspnea
DY SF mutation
S09 NA Adult | NA DYSF NA S09 IF
S11 NA Adult | NA DYSF NA S11 IF
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S13 NA Adult | NA DYSF NA S13 IF

S15 NA Adult | NA DYSF NA S15 IF

S18 NA Adult | NA DYSF NA S18 IF
POLG mutation

S43 NA Adult | NA POLG NA S43 IF

S60 NA Adult | NA POLG NA S60 IF

RRM?2B mutation

S23 NA Adult | NA RRM2B NA S23 IF

Healthy controls

(taken from the tibialis anterior)
Co1 M 20yrs | Taken dur- Co1 IMC

ing anterior

cruciate
ligament
surgery
C03 F 23yrs | Taken dur- Co03 IMC

ing anterior

cruciate
ligament
surgery
C03 F 23yrs | Taken dur- C03- | IMC

ing anterior 2

cruciate
ligament
surgery
Cco4 F Adult | Taken dur- C0o4 IMC

ing anterior

cruciate

ligament

surgery
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Co4 F Adult | Taken dur- C04- | IMC

ing anterior 2

cruciate

ligament

surgery
Cl1 NA Adult | Taken dur- Cl1 IMC

ing anterior

cruciate

ligament

surgery
S02 NA Adult | NA S02 IF
S26 NA Adult | Taken dur- S26 IF

ing anterior

cruciate

ligament

surgery
S37 NA Adult | Taken dur- S37 IF

ing anterior

cruciate

ligament

surgery

Mitochondrial disease patients

P11 NA Adult | NA NA NA P11 IMC
P12 NA Adult | NA NA NA P12 IMC
P13 NA Adult | NA NA NA P13 IMC
P14 NA Adult | NA NA NA P14 IMC
P15 NA Adult | NA NA NA P15 IMC
P16 NA Adult | NA NA NA P16 IMC
P17 NA Adult | NA NA NA P17 IMC
P18 NA Adult | NA NA NA P18 IMC
P19 NA Adult | NA NA NA P19 IMC
P20 NA Adult | NA NA NA P20 IMC
P21 NA Adult | NA NA NA P21 IMC
P22 NA Adult | NA NA NA P22 IMC




102 NCL-SM: A Fully Annotated Dataset

S38 NA Adult | NA NA NA S38 IF
S41 NA Adult | NA NA NA S41 IF
S44 NA Adult | NA NA NA S44 IF
S45 NA Adult | NA NA NA S45 IF
S48 NA Adult | NA NA NA S48 IF
S53 NA Adult | NA NA NA S53 IF
S54 NA Adult | NA NA NA S54 IF
S67 NA Adult | NA NA NA S67 IF

Tissue imaging

IMC described in Section 2.4 is a relatively new pseudoimaging technique that allows
observation of up to 40 protein markers simultaneously but IF described in Section 2.3
is more widely used due to cost implications. For this reason it was decided that the
segmentation tool would be more widely useful, if it can cater for images captured using
both of these techniques. This meant the training data needed to include images captured
using both IMC and IF.

The NCL-SM consist of 22,979 myofibres in 27 tissue sections imaged used IMC and 27,455
myofibres in 19 tissue sections imaged using IF. Together these total 50,434 myofibres in 46

tissue sections from 44 subjects.

Annotation

The 46 tissue section images in NCL-SM are made by arranging grayscale images of a
myofibre membrane protein marker, i.e. Dystrophin and of a mitochondrial mass protein
marker VDACT into an RGB image where R = membrane protein marker, G = mass protein
marker and B = 0. Each channel of the images is contrast stretched (5th to 95th percentile) to
improve image contrast for the segmentation task but raw images without contrast stretching
are also included in NCL-SM. The annotation protocols discussed in Section 4.3.1 were
followed to create NCL-SM.

Myofibre segmentation: Following the annotation protocol mentioned in Section 4.3.1 we
trained annotation specialists from Gamaed® working under the close oversight of
expert biomedical scientists from the WCMR to segment each myofibre in all 46
tissue sections, amounting to 50,434 myofibres, using the online Apeer platform4 for

Swww.gamaed.com/
‘www.apeer.com/
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all manual annotations. All segmentation went through rigorous visual inspection
and a number of random myofibres in the data were segmented separately by expert
biomedical scientists for quality assurance (QA). This is further discussed in Section
4.5.

Freezing artefact myofibre (FAM) classification: Following the annotation protocol men-
tioned in Section 4.3.1 FAM classification annotation was duplicated by two experts
from WCMR and any disagreement was resolved by discussion among a panel of
experts. This resulted in 1,538 myofibres with freezing artefacts where both annotators
were in agreement. All annotations which differed between annotators were reviewed

and resolved by a third expert after discussion.

Non-transverse sliced myofibre (NTM) classification: Following the annotation protocol
mentioned in Section 4.3.1, for NTM classification annotations the following approach
was used: 1) two experts working together identified up to 1,500 such myofibres in
the data; 2) using these 1,500 myofibres, thresholds for area, convexity and aspect
ratio were calculated; 3) these thresholds and a function to detect any myofibre on the
edge were then applied on whole data, resulting in two classes of myofibres (NTM and
non-NTM); 4) finally both classes of myofibres were rigorously visually inspected to

detect and correct any mis-classification. These resulted in 18,102 NTMs.

Folded tissue region (FR classification): Following the annotation protocol mentioned in
Section 4.3.1 FR were segmented by a biomedical scientist resulting in annotations
for 405 different tissue regions affecting 37 out of 46 sections. A duplicate FR
segmentation of tissue sections was performed by another expert biomedical scientist

for measuring the reference human-to-human segmentation quality i.e. IoU score.

4.5 Results

4.5.1 NCL-SM counts

All the detailed myofibre segmentation and classification annotation counts in the NCL-SM

are presented in Table 4.2.
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Table 4.2 Annotation counts in the Newcastle skeletal muscle (NCL-SM) dataset. The table reports the
counts of tissue section (TS), analysable myofibre (AM), non-transverse myofibre (NTM), freezing
artefact myofibre (FAM) and folded region (FR).

Imaging Technique TS Count Myofibre Count AM Count NTM Count FAM Count FR Count
IMC 27 22,979 14,841 7,358 780 84
IF 19 27,455 15,953 10,744 758 321
Total 46 50,434 30,794 18,102 1,538 405

Table 4.3 Reported are the annotation quality metrics’ values for QA human-to-human annotation
comparison as mention in Section 4.4.1. In the table MF-A, raoB, raig. 10U, ( A%(IoU >0.80),
A%IoU >0.90), A%((IoU >0.95)), QA-IMC, QA-IF stands for ‘Myofibres Assessed’, ‘Myofibre
Mass Missed Correlation’, ‘Myofibre Membrane Included Correlation’, ‘Mean IoU’, (‘Accuracy in
terms of % of myofibres meeting loU threshold of 0.8, 0.9 and 0.95’), ‘QA for IMC images’ and ‘QA
for IF images’ respectively.

Annotations MF-A raop  7rais  [oU A%((IoU >0.80) A%((IoU >0.90) A%IoU >0.95)
QA-IMC 53 0.99 0.77 0.96 100 100 77.4
QA-IF 23 0.92 094 0.96 100 100 74

4.5.2 NCL-SM myofibre segmentation evaluation

The myofibre segmentation quality of NCL-SM evaluated by duplicate manual annotation
performed to check for quality assurance is presented in Table 4.3. The lower r5ig observed
for IMC images are likely due to low resolution of IMC compared to IF.

4.5.3 NCL-SM FAM classification evaluation

The FAM classification quality of NCL-SM evaluated by duplicate manual annotations
performed to check inter-annotator variability are presented in Table 4.4. The ground truth
(GT) annotations are verified and corrected by a panel of experts as described in Section 4.4.1.
As seen in the table there is some inter annotator variability (IAV) reflected by sensitivity
scores of 0.79 and 0.87 between ANT1 and ANT?2 annotations.

Table 4.4 NCL-SM FAM classification inter annotator variability (IAV). ANT1, ANT2, GT, SENS,
SPEC and F1 stands for annotator 1, annotator 2, ground truth annotation, sensitivity, specificity and
F1 score.

Annotations TS GT vs ANT1 GT vs ANT2 ANT1 vs ANT2
SENS SPEC F1 | SENS SPEC Fl1 | SENS SPEC Fl
IAVIMC) | PO2,P06 | 0.79 099 0.88 | 0.87 099 092 089 098 0.84
IAV(IF) S11,S60 | 0.88 099 090 | 0.85 098 0.86 | 0.81 098 0.82
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Table 4.5 NCL-SM FR segmentation quality evaluation. TS, IoU and Mean(IoU) stands for tissue
section, intersection over union and mean intersection over union of 19 TS respectively.

TS C03 C04 P02 P03 PO5 PO6 PO7 PO8 P09 P10 P11 PI2 PI3 P14 PI8 P19 P20 P21 | Mean(IoU)
IOU‘O.SI 0.12 0.16 0.28 047 061 0.12 034 038 046 053 0.60 0.04 0.16 045 052 052 0.22 0.36

4.5.4 NCL-SM NTM classification evaluation

As discussed in Section 4.4.1 myofibre morphological features were used to classify NTMs.
The morphological features identified for annotating NTMs following the protocol developed
by expert biomedical scientists as mentioned in Section 4.4.1 are converted into logical
functions to classify NTMs/non-NTMS that is described in Algorithm 1. The NTM results,
i.e. quality assessment is straightforward, i.e. any myofibre that has these morphological
thresholds is classified as a NTM.

Algorithm 1 NTM classification based on myofibre morphological features. ‘m’ prefix
before every morphological feature stands for myofibre and ‘ImageResolution’ of IMC is 1
um and IF is 0.33 yum.

NTMClassification (Myo fibreMorphological Features,ImageResolution) :
Input : Myofibre morphological features: mArea , mOnBorder , mConvexity
mAspectRatio, mLengthSquaredByArea and ImageResolution

Output : NTMclassification()

if ((mArea < 210/ImageResolution)or(mArea > 27000 /ImageResolution)or(mOnBorder =
True)or((mConvexity > 1.19)and (mLengthSquaredByArea > 3.10))or((mAspectRatio >
2.2)and(mLengthSquaredByArea > 1.8))) then
‘ return True;

else
| return False;

end

4.5.5 NCL-SM FR segmentation evaluation

The FR segmentation quality of NCL-SM evaluated by duplicate manual annotation per-
formed to check for quality assurance are presented in table 4.5. As can be seen there is a
high degree of IAV reflected by poor IoU score across all TS i.e. IoU < 0.61.

4.6 Discussion

The NCL-SM annotation quality results presented in Section 4.5 reflects its usefulness as

a resource that addresses the lack of SM tissue datasets that are 1) precisely segmented as
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evident in Table 4.3, i1) curated as evident in Tables 4.4, 4.5, and iii) large enough as detailed

in Table 4.2 for training DL models.

4.6.1 NCL-SM utility
The contribution of NCL-SM as a resource can be described as follows:

Defines the process of SM tissue segmentation and curation — to best of my knowledge
there is no literature that defines the detailed process of preparing multiplex SM tissue
data for single-cell analysis, as it has been done here with NCL-SM.

Evaluation metrics — As part of building NCL-SM evaluation metrics were introduced that
allow users to uncover and inspect the nuance quality requirements for SM tissue
image analysis as described in Section 4.3.2.

Large precisely segmented dataset — NCL-SM is fully manually segmented and mostly
manually curated, allowing it to be used as a benchmark dataset of SM tissue. It is

large, i.e. with >50k myofibres, making it suitable to train many DL models.

Publicly available — NCL-SM in its entirety with evaluation code is publicly available for
open science. This will help development of a wide variety of SM tissue related

applications and research.

4.6.2 Limitations
Whilst, as describe earlier, the NCL-SM is a useful resource it does have some limitations.

FAM IAV as observed in Table 4.4 there is noticeable inter annotator variation in classifying
FAMs. The specificity which reveals more about misclassification of non-FAM, is
around 99%. But the sensitivity which reveals more about misclassification of FAM, is
between 79% and 87%. The relatively poor sensitivity is contributing toward reduction
of respective F1 scores. This highlights that there is noticeable disagreement between
domain experts to classifying FAMs, which in turn is due to ambiguity or subjectivity
in detecting FAMs in edge cases were freezing damage is not obvious. This should
be acknowledged in any tool/pipeline build for SM tissue image segmentation and
curation.

FR poor IoU as observed in Table 4.5 the mean IoU for FR calculated across various SM
tissue sections is observed to be 0.36, which is quite poor to be used as a benchmark.
This highlights the difficulty in precisely segmenting the FRs in a TS, while it was
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observed that presence of folding is much easier to observe,precisely segmenting the
region affected by folding is very difficult and involves subjective intuition and so is
reflected in poor IoU in duplicate annotation. This should be addressed appropriately
by any tool developed using NCL-SM.

Low FR count folding is an undesirable artifact that biomedical scientists strive to avoid in
tissue preparation. In our dataset there are 405 FR which is a lower count for training
DL models.

4.6.3 Conclusion

In this chapter NCL-SM dataset is introduced and described in detail, i.e. defining the
protocols for SM tissue segmentation and curation for single cell analysis, defining evaluation
metrics that reveal the quality of NCL-SM. These evaluation metrics revealed that for three
out four annotation tasks, i.e. excluding FR segmentation, the annotation quality is good as

reflected by minimal IAV. The chapter also described the limitations of this useful resource.






Chapter 5

myocytoML: An Automatic Segmentation
Pipeline for Muscle Fibres

5.1 Introduction

As discussed in Chapter 4, precise segmentation and curation of myofibres in images of SM
tissue cross-sections is a non-trivial and important part of many downstream analyses to
understand diseases affecting muscles. Presently segmentation and curation involve either
using imprecise annotations or significant manual interventions that introduces subjectivity,
both of these in turn affect reliability of the analysis.

The pace of development of ML/DL models to solve various computer vision (CV)
tasks is rapid [87, 92]. The same applies to the development of DL models for CV tasks
in a biomedical domain [89, 120]. These DL models address tasks of segmentation, object
detection and classification, individually or simultaneously i.e. panoptic segmentation. As
described in Section 4.3.1 the process of preparing SM imaging data for single cell analysis
can be divided into four CV tasks, 1) myofibre segmentation, i1) Freezing artifact myofibre
(FAM) classification, iii) non-transverse sliced myofibre (NTM) classification and iv) folded
tissue regions (FR) segmentation. Quality evaluation for each of these tasks, considering the
nuance requirements of single cell analysis of SM tissue, required appropriate metrics as
described in Section 4.3.2. There exist a number of applications, both domain specific such
as quadruple immunofluorescence analyser [160], mitocyto [1], MiCAT [77] and Steinbock
[78], and generalised such as cellprofiler [83] , Fiji ImageJ [161], or using vanilla ML models
like Cellpose [89] and StarDist [120]. But none of these applications/pipelines are built to
address all four CV tasks mentioned earlier and are not optimised to produce the precision

required for SM tissue image single-cell analysis. Furthermore, there are no tools/models
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to segment FR in SM tissue section images, or to classify FAM and NTM. Based on these
shortcomings of previous methods and to address these, it was decided to build a ML pipeline
that can address these challenges by leveraging NCL-SM [41] to train appropriate ML/DL
models.

5.2 Aims

The aim of this chapter is to build an application or pipeline that addresses the following

requirements.

* Precise segmentation and classification of SM tissue images guided by precision

achieved by duplicate human to human annotations in NCL-SM.

* The application should address the issue of observed ambiguity in FAM classification

and FR segmentation tasks as reported in Section 4.6.2.

* The application/pipeline should provide a graphical user interface (GUI), which should
allow the user flexibility to amend masks acknowledging the ambiguity mentioned

above.

5.3 Background: myocytoML design decisions

The NCL-SM manual annotation protocols discussed in Section 4.3.1 give insights into
different aspects of performing SM tissue image segmentation. Taking inspiration from the

manual annotation process, the following design decisions were made as discussed below.

5.3.1 Panoptic model vs separate models

The decision over selection of the appropriate type of ML model was guided by separation of
four CV tasks in manual annotation of NCL-SM. It is observed that there exist additive and
sometime competitive complexity with addition of each CV task, i.e. segmenting myofibre
and folded regions simultaneously or classifying FAMs and NTMs simultaneously is virtually
impossible, as a myofibre can be both FAM and NTM, i.e. a non-transverse sliced myofibre
that is also damaged by freezing, also FRs consist of myofibres. For these reasons it was
decided that each of the four identified CV tasks will be addressed separately by myocytoML.
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5.3.2 Order of execution

In the manual annotation process the following order is applied: 1. Segmenting FRs and
removing them from the image; 2. Using segmentation tools such as mitocyto the remaining
SM tissue image is segmented; 3. FAMs and NTMs are identified and removed; and 4. The
remaining segmented myofibres are manually corrected where required, resulting in the final
‘analysable’ myofibre mask.

Adopting this same order of execution will not be ideal, as this will not afford the
flexibility required especially considering ambiguity/subjectivity in FAM classification or
FR segmentation. To accommodate the required flexibility the following order of execution
of four CV tasks was decided: 1. The myofibre segmentation and FR segmentation are
separately executed resulting in myofibres_mask and FR_mask; 2. Using image and/or
myofibres_mask NTM and FAM classification is separately executed resulting in NTM_mask
& FAM_mask.3. Finally non-zero pixels that exist in FR_mask, NTM_mask and FAM_mask

are removed from myofibres_mask, resulting in an ‘analysable’ myofibres mask.

5.3.3 Quality information

One of the limitations of all existing applications for SM tissue image segmentation is
that these do not give any description or evaluation about the quality of annotations they
produce. In the absence of such annotation quality information, users have to rely on
visual inspection which is subjective. To address this it was decided that myocytoML will
accompany annotation quality information in terms of metrics defined in Section 4.3.2. These
metrics will be generated by comparing selected/random handfuls of myofibres annotated by

the user to the myocytoML output.

5.3.4 Flexibility

As discussed in Section 4.6.2 there is noticeable IAV in FAM classification and little agree-
ment between manual annotators about FR segmentation. This is reflected in the ground
truth duplicate annotations, which means the models trained using this ground truth data
most likely will have similar issues. To address this it was decided that myocytoML should
have a GUI that should allow users to amend masks generated by all four CV tasks with
minimal effort, moreover it should automatically update the final ‘analysable’ myofibres

mask reflecting any amendments made to any of the four CV masks.
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5.4 Methods

The following models and methods as appropriate for each of the four CV tasks were selected

based on the latest literature.

5.4.1 Methods of myofibre segmentation task

As discussed in Section 5.3, the expected myofibres segmentation mask is an instance
segmentation mask. There are a number of ML models and traditional CV methods that can
accomplish instance segmentation [21, 82—84, 89, 119, 120, 152, 161-166]. But it has been
observed that DL models [89, 120] demonstrate an unparalleled performance compared to any
traditional CV methods. The approaches to solve instance segmentation for biomedical CV
tasks by ML/DL models can be categorised into three broad categories: 1. pixel-classification
based approaches, where supervised ML models are trained to predict the class of each pixel
in an image such as belonging to a cell vs background, then post processing techniques such
as contour detection are applied to create an instance segmentation mask. There is a spectrum
of ML models such as tree-based XGB [99], DL based ResNet [118], and VGG [116], that
can be employed for pixel-based classification. But these models have limitations especially
segmenting densely packed images i.e. where objects to segment share borders this approach
performs poorly [167]; 2. Feature-based segmentation, where DL models are designed such
that they can leverage an object (e.g. cell) features to perform more precise segmentation.
This can be achieved by encoder-decoder based models such as UNET [21] as discussed
in Section 2.10.3 and RPN based models such as Mask R-CNN as discussed in Section
2.10.3; 3. Distance-map based segmentation approaches are more popular for single cell
segmentation where models predict distance [89, 120] for each pixel to/from centre and/or
border of the object. This results in a distance or flow map which is processed to produce
precise single-cell instance segmentation masks [167]. Distance-map based models such as
Cellpose [89] and StarDist [120] as discussed in Section 2.10.3 are built upon feature-based
models i.e. the backbone for such models is either UNETSs or mask R-CNNs. Cellpose and
StarDist performed comparative analysis of segmentation quality with feature based models
(UNETs & mask R-CNN) and concluded that the distance-map based models outperform
feature-based models [89, 120].

Windhager et al. [78] has built the most relevant pipeline to our problem, it is a com-
prehensive pipeline/workflow for multiplex tissue image single cell end-to-end analysis, a
part of this pipeline deals with single-cell segmentation in which they provide options to

use either pixel-based classification models, feature-based or distance-map based models.
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But as discussed in Section 5.1 this pipeline and tools do not acknowledge or address the
four CV tasks that are specific to SM tissue image analysis as discussed earlier. Moreover,
these vanilla models; i.e. without customised retraining models with NCL-SM, were found
to perform poorly as observed in Table 5.3, i.e. masks produced using these models do not
make it to the top five (or indeed the top 20) best performing models.

Based on the factors discussed above it was decided that distance-map based models,
Cellpose and StarDist should be used. These models with various combinations of transfer
learning (pre-training weights), training data (IMC and/or IF) and optimisation of hyperpa-

rameters were experimented with.This is discussed in more detail in Section 5.5.1

5.4.2 Methods of FAM classification task

In the manual annotation process FAM are classified based on damage caused by freezing
as described in Section 4.3.1. An ideal method would detect this feature, i.e. freezing
damage and classify the myofibre as FAM. A range of traditional CV based approaches
were experimented with such as pixel intensity distribution i.e. a freezing damage (whole or
partial myofibre damage) should reflect as abnormal peaks at zero in intensity distributions
for FAM. But the classification results were poor, it was observed that for various patient
groups’ myofibres there exist zero intensity peaks in their distributions that are not linked with
freezing damage but may be a phenotype of the disease. It was then decided to use ML for
FAM classification. There are a number of classification ML models [109, 118, 168—-170], as
discussed in Section 2.10.3; some of these are DL models such as vanilla CNN, ResNet and
VGG and others are hybrid models constructed by fusing a DL model for feature extraction
and a tree-based model such as XGB trained on extracted features to predict class. It was
decided to experiment with CNN, VGG16, ResNet50, hybrid CNN-XGB, VGG16-XGB and
ResNet50-XGB and select the model with the best FAM classification performance.

5.4.3 Methods of NTM classification task

As discussed in Section 4.3.1 there already exists a morphological based function as defined
in algorithm 1 that classifies NTMs with perfect precision. Based on this it was decided that
the same N'TM function should be used to classify NTMs in myocytoML.

5.4.4 Methods of FR segmentation task

The characteristics of folded regions segmentation are distinct to myofibre segmentation in

that FR are groups of myofibres folded on themselves. This means that these are larger in
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area, have a higher intensity for the mass marker and usually have a mesh membrane pattern
as describe in Figure 4.2. This means both pixel-based classification models and feature
based models are good candidates for the FR segmentation task.

But it should be acknowledged that annotator agreement in terms of IoU metric in the
ground truth data is found to be poor i.e. 0.36 across 19 TS images. This means it is unlikely
that any model can precisely segment FR.

Given these factors it was decided feature based models, i.e. UNETs and Mask R-CNN,

shall be used for experiments.

5.5 Experiments and results

5.5.1 Myofibre segmentation task

Experiment data for myofibre segmentation

The training and test data is taken from NCL-SM which consists of two sub datasets for
IMC and IF images. All ML models were trained using images built by arranging grayscale
images of a cell membrane protein (Dystrophin) marker and mitochondrial mass protein
(VDACT) marker into an RGB image where R = membrane protein marker, G = mass protein
marker and B = 0. As discussed earlier, these two markers, i.e. Dystrophin and VDACI, are
good markers/identifiers of myofibre membrane and its mass respectively. However, single
channel, i.e. only membrane marker and only mass marker, were also experimented with, but
these gave poor results. As described in Table 5.1 one or two TS images were withheld from
IMC and IF datasets for testing the trained models. The DL models used here required the
training images to be of uniform size, for this all training images were split into patches. It
was decided that three different patch sizes as described in Table 5.1 would be experimented

with, making sure that the patch sizes is at least twice the average diameter of myofibre.

Experiment ML model parameters for myofibre segmentation

As discussed in Section 5.4.1 distance-map based models StarDist and Cellpose were selected
to experiment for myofibre segmentation. These models were trained with various combina-
tions of datasets, patch sizes, initialised weights and model parameters as described in Table
5.2. The data was split into 70%: 15%: 15% for training, validation and testing. Experiments
were conducted on a machine with the following specification: GPU: 4 x NVIDIA Tesla
V100 (16GB), CPU: 24 cores, RAM:448GB.
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Table 5.1 myocytoML training data details.
Imaging . .
Tech- Channels Tissue sections Average Iraining
. myofibre | patch
nique
Test Training d1?1meter sizes
(pixels)
R= membrane marker; 2 (P02 & | 25 (all except 256x256;
IMC G= mass marker ; B= PO6) P02 & POG) 65 512x512;
Zero 1024x1024
R= membrane marker; 18 (all except 512x512;
IF G= mass marker ; B=| 1 (S48) s48) p 200 1024x1024;
Zero 2048x2048

Table 5.2 Details of myofibre segmentation models experiments. ‘Datasets & patch sizes’ column
describes the image type, i.e. IMC or IF and various patch sizes that were experimented with. The
column ‘Initialised weights’ describes the names of pre-trained weights that were used for transfer
learning, ‘From scratch’ means random initialised weights were used. The ‘Parameters’ column
details all parameters relevant to the model being trained, that were being experimented with, for each
parameter the values after the colon denotes the options that were experimented with. In the table
diam_mean, mae, mse stands for mean diameter of the myofibre, mean absolute error, mean squared
error respectively.

2048x2048); 3) IMC+
resized_IF to 1/3 size
& (256x256; 512x512;
1024x1204)

Model | Datasets & patch sizes | Initialised Parameters
weights

StarDist | 1) IMC & (256x256; | 1) From | 1) Backbone: UNET; 2) n_ray:
512x512; 1024x1204); | scratch; 2) | 32,64, 128; 3) grid: (2,2) , (4,4),
2) IF & (512x512; | ’2D_versatile_he’ | (8,8); 4) train_learning_rate:
1024x1204; le-5, le-4; 5) train_batch_size:
2048x2048); 3) IMC+ 16, 32; 6) training_metric:
resized_IF to 1/3 size dist_iou_metric, mae, mse; 7)
& (256x256; 512x512; epochs >2000 & patience 200
1024x1204) epochs

Cellpose| 1) IMC & (256x256; | 1) From scratch; | 1) Backbone: UNET; 2)
512x512; 1024x1204); | 2) ’Tissue_Net’; | diam_mean: 65 (IMC &
2) IF & (512x512;|3) ‘’cyto’; 4) | IMC+resized_IF), 200 (IF);
1024x1204; ‘cyto2’ 3) learning_rate: 0.1, 0.2; 4)

weight_decay =le-5, le-4, le-3;
5) train_batch_size: 8,16, 32; 6)
training_metric: Cellpose_loss;
7) epochs >2000 & patience 200
epochs




116 myocytoML: An Automatic Segmentation Pipeline

Results for myofibre segmentation

The results for top performing models are presented in Table 5.3. The list does include top
performing StarDist models that are not in the top 10 but are presented for comparison. As
can be observed in the table, the best performing model for IMC images was a Cellpose
model that was trained with random initialised weights i.e. from scratch trained on patch size
of 512x512 pixels. This model has performed the best across five out of six evaluation metrics
i.e. excluding the metrics ‘A%(IoU>0.95)" which defines percentage of myofibres with >0.95
IoU. It is also seen that this model has considerably outperformed the existing workflow of
using mitocyto with manual correction ( myocytoML vs mitocyto+ raop : 0.95 vs 0.90; raig
- 0.78 vs -.015; IoU: 0.94 vs 0.91; A%(IoU >0.80): 98.3 vs 95.24; A%(IoU >0.90):92.2 vs
74; A%(IoU >0.95): 47.35 vs 59.4). This same model performance when compared to “gold
standard” manual annotations is comparable but slightly lower in evaluation metrics as seen
in the table.

The best performing model for IF images was again a Cellpose model that was trained with
random initialised weights on training data that included IMC images and resized IF images
with patch size of 512x512 pixels. This model has performed the best across four out of six
evaluation metrics, i.e. excluding the metrics rajg & A% (IoU>0.80)" . It is also seen that
this model has comparable albeit slightly lower performance than compared to the "gold
standard" manual annotations i.e. myocytoML vs benchmark 7505 : 0.92 vs 0.92; rajg : 0.87
vs 0.94; IoU: 0.92 vs 0.96; A%(1oU >0.80): 95.41 vs 100; A%(IoU >0.90):89.66 vs 100;
A%(IoU >0.95): 49.54 vs 74.

Cellpose models outperformed all other models and tools across both the image types, which
suggests the flow map based approach is particularly appropriate for myofibre segmentation.
In addition to results reported in Table 5.3 other tools and models including vanilla StarDist,
Cellpose models, Ilastik where experimented with but all of these achieved IoU < 0.85.

5.5.2 FAM classification task

Experiment data

The training and test data for FAM classification models is as describe in Table 5.1 except
for splitting the images into patches. Instead, for training FAM models the RGB images
were split into individual myofibre images using NCL-SM segmentation masks. These were
then separated into two classes ‘FAM’ and ‘non_FAM’ using the ‘FAM’ and ‘all_myofibres’
masks from NCL-SM. This resulted in >20k (IMC) & >25k (IF) myofibres for training.
But there exists a substantial class imbalance as there are no more than 700 ‘FAM’ class

myofibres in each IMC and IF sub-datasets. For this reason it was was decided that a class
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Table 5.3 Results of myofibre segmentation models experiments. Please note the benchmark here
differ slightly as these are calculated for only test TS images as opposed to Table 4.3 which was
accessed across more TS images. The green cells are top metrics score across column per I_type.

1_type

Top 3

Metrics

Model parameters

mitocyto+

CP_IMC_Scratch

IMC

CP_IMC_cyto2

CP_IMC_TN

SD_IMC_Scratch

Y'AoB

0.90

0.86

T'AiB

IoU

-0.15 | 0.91

0.77

A%(lo
>0.80)

95.24

97.9

A%(lo
>0.90)

74

89.77

A%((IoU
>0.95)

11.3

NA

47.35

Model: Cellpose; 1) training
dataset: IMC; 2) initialised
weight: random; 3) patch size:
512x512; 4) learning rate &
weight decay: 0.1 le-4; 5)
diam_mean: 65; 6) batch size: 8

0.77

0.93

97.9

89.86

0.65

0.85

80.47

57.63

48.44

Model: Cellpose; 1) training
dataset: IMC; 2) pre-trained
weights: ‘cyto2’; 3) patch size:
512x512; 4) learning rate &
weight decay: 0.1 le-4; 5)
diam_mean: 65; 6) batch size: 8

Model: Cellpose; 1) training
dataset: IMC; 2) pre-trained
weights: ‘Tissue_Net’; 3) patch
size: 512x512; 4) learning rate
& weight decay: 0.1 le-4; 5)
diam_mean: 65; 6) batch size: 8

11.58

Model:  StarDist 1) training
dataset: IMC; 2) initialised
weights: random; 3) patch size:
512x512; 2) n_ray: 64 ; 3) grid:
(2,2) ; 4) train_learning_rate: le-
4; 5) train_batch_size: 16; 6)
training_metric: dist_iou_metric

CP_Mix_Scratch

CP_IF_Scratch

CP_IMC_TN

Model: Cellpose; 1) training
dataset: IMC+ resized_IF; 2)
initialised weights: random; 3)
patch size: 512x512; 4) learning
rate & weight decay: 0.1 le-4; 5)
diam_mean: 65; 6) batch size: 8

Model:  Cellpose; 1) train-
ing dataset: IF; 2) initialised
weights: random; 3) patch size:
1024x1024; 4) learning rate &
weight decay: 0.1 le-4; 5)
diam_mean: 200; 6) batch size:
8

71.16

10.75

Model: Cellpose; 1) training
dataset: IMC; 2) pre-trained
weights: ‘Tissue_Net’; 3) patch
size: 512x512; 4) learning rate
& weight decay: 0.1 le-4; 5)
diam_mean: 65; 6) batch size: 8

SD_Mix_Scratch

0.76

0.61

0.73

66.32

32.1

Model:  StarDist 1) training
dataset: IIMC+ resized_IF; 2)
initialised weights: random; 3)
patch size: 512x512; 2) n_ray:
64 ; 3) grid: (2,2) ; 4)
train_learning_rate: le-4; 5)
train_batch_size: 16; 6) train-
ing_metric: dist_iou_metric
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Table 5.4 Details of FAM models experiments. ‘Datasets’ column describes the image type i.e. IMC
or IF . The column ‘Initialised weights’ describes the names of pre-trained weights that were used
for transfer learning, ‘None’ means random initialised weights were used. The ‘Parameters’ column
details all parameters relevant to the model being trained. For each parameter the values after the colon
denote the options that were experimented with. In the table CNN-XGB, VGG16-XGB, ResNet50-
XGB, SGD, RMSprop stands for hybrid CNN-XGB model, hybrid VGG16-XGB model, hybrid
ResNet50-XGB model, stochastic gradient descent, root mean square propagation respectively. The
architecture of the CNN model used is described in the Table 6.2

Model Datasets Initialised Parameters
weights
CNN IMC; IF None 1) Image resized: 128x128, 224x224;

2)optimizer:  ‘Adam’, ‘SGD’, ‘RM-
Sprop’3) learning rate: 1e-3,1e-4 4) Train-
ing metrics: sensitivity, specificity, F1
score, Accuracy; 5) epochs >1000 with
patience = 100

VGG16 IMC; IF ‘ImageNet” | 1) Image resized: 224x224; 2) optimizer:
‘Adam’, ‘SGD’, ‘RMSprop’3) learning
rate: le-3,le-4 4) Training metrics: sensi-
tivity, specificity, F1 score , Accuracy; 5)
epochs >1000 with patience = 100
ResNet50 IMC; IF ‘ImageNet’ | same as for VGG16

CNN-XGB IMC; IF None 1) Image resized: 128x128, 224x224; 2)
optimizer: ‘Adam’, ‘SGD’, ‘RMSprop’3)
learning rate: le-3,1e-4 4) Training met-
rics: sensitivity, specificity, F1 score, Ac-
curacy; 5) epochs >1000 with patience =
100; 6) XGB (“eta”: [0.05, 0.10, 0.15,
0.20, 0.25, 0.30 ], “max_depth™: [ 3, 4,
5,6,8, 10, 12, 15], “min_child_weight”: [
1,3,5,7], “gamma”: [ 0.0, 0.1, 0.2, 0.3,
0.4 ],“colsample_bytree” : [ 0.3, 0.4, 0.5,
0.71)

VGG16-XGB | IMC; IF ‘ImageNet” | 1) Image resized: 224x224; 2) optimizer:
‘Adam’, ‘SGD’, ‘RMSprop’3) learning
rate: le-3,le-4 4) Training metrics: sen-
sitivity, specificity, F1 score, Accuracy;
5) epochs >1000 with patience = 100; 6)
XGB :same as above

ResNet50- IMC; IF ‘ImageNet” | same as for VGG16-XGB

XGB
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balanced training data of around 1300 myofibres for IMC and 1200 for IF should be created
by selecting all available ‘FAM’ class myofibres and randomly selecting a similar count of

‘non_FAM’ class myofibres from available ‘non_FAM’ class myofibres.

Experiment ML model parameters for FAM classification

As discussed in Section 5.4.2 the experiments were conducted by training the six pixel-based
classification models. The data was split into 70%: 15%: 15% for training, validation and
testing. The details of training are presented in Table 5.4. Experiments were conducted on a
machine with the following specification: GPU: 1 x NVIDIA Tesla V100 (16GB), CPU: 6
cores, RAM:112GB.

Results for FAM classification

The results for top performing FAM classification models are presented in Table 5.5. As seen
in the table the results are compared with two sets of benchmark metrics, this is because
the benchmark consists of three sets of FR annotation, i.e. one “ground truth” and two
duplicate annotations, this resulted in two benchmarks. These two benchmarks were arranged
in descending order, i.e. higher followed by lower. The top three models that produced the
best performance across the four evaluation metrics i.e. FAM_sensitivity, FAM_specificity,
F1 score and accuracy are listed in the table for both the image types.

The best performing model in both datasets, i.e. IMC and IF, was a ResNet50 model that
was trained on ‘ImageNet’ pre-trained weights, with patch size of 224x224 pixels. For IMC
images the ResNet50 model is closer to the lower benchmark metrics but this is not the case
for IF images where all models underperform compared to the benchmark.

5.5.3 FR segmentation task

Experiment data

The training and test data for FR segmentation models is as describe in Table 5.1 except for
sizes of split image patches, i.e. FR are usually larger than myofibre as folding usually affects
multiple myofibres, for this reason patch sizes of 1024x1024, 2048x2048 and 4096x4096

pixels were selected instead.
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Table 5.5 Results FAM classification models experiments. In the table I_type, RN_IMC,
RN_XGB_IMC, VGG_IMC, SENS, SPEC stands for image type, ResNet50 model trained on IMC,
hybrid ResNet50-XGB model trained on IMC, VGG model trained on IMC, sensitivity, specificity
respectively .*Note the readings for FAM classification evaluation in Chapter 4 Table 4.4 will differ
as these were calculated across all TS images, whereas the results presented here are only for test TS
images as the remaining images were used for training. The green cells are top metrics score across
column per I_type.

I_type| Top 3 Metrics Model parameters
SENS| SPEC | F1 Accuracy

Model: ResNet50; 1) training
dataset: IMC; 2) pre-trained
weight: ‘ImageNet’; 3) image re-
size: 224x224; 4) learning rate:
le-3; 5) training metric: accuracy
Model:  ResNet50+XGB; 1)
training dataset: IMC; 2) pre-
trained weight:  ’ImageNet’;
3) image resize: 224x224; 4)
learning rate: 1le-3; 5) train-
ing metric: accuracy; 6) XGB:
(eta=0.3,gamma=0,max_depth=06)
0.57 | 0.86 Model: VGGI16; 1) training
dataset: IMC; 2) pre-trained
weight: ‘ImageNet’; 3) image re-
size: 224x224; 4) learning rate:
le-3; 5) training metric: accuracy

RN_XGB_IMC

VGG_IMC 0.5

Model: ResNet50; 1) training
dataset: IMC; 2) pre-trained
weight: ‘ImageNet’; 3) image re-
size: 224x224; 4) learning rate:
le-3; 5) training metric: accuracy
Model: VGGI16; 1) training
dataset: IMC; 2) pre-trained
weight: ‘ImageNet’; 3) image re-
size: 224x224; 4) learning rate:
le-3; 5) training metric: accuracy
Model:  ResNet50+XGB; 1)
training dataset: IMC; 2) pre-
trained weight:  ‘ImageNet’;
3) image resize: 224x224; 4)
learning rate: 1le-3; 5) train-
ing metric: accuracy; 6) XGB:
(eta=0.3,gamma=0,max_depth=8)

RN_XGB_IF
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Table 5.6 Details of FR segmentation models experiments. ‘Datasets % patch sizes’ column describes
the image type, i.e. IMC or IF and split image patch sizes. The column ‘Initialised weights’ describes
the names of pre-trained weights that were used for transfer learning, ‘From scratch’ means random
initialised weights were used. ‘Parameters’ column details all parameters relevant to the model being
trained. For each parameter the values after the colon denote the options that were experimented with.
In the table IMC+ resized_IF to 1/3 size refers to a training dataset where IMC images were split and
combined with IF images that were first resized to 1/3 and then split.

Models Datasets & patch sizes | Initialised | Parameters

weights
UNET [21],| 1) IMC & (512x512;| 1) From | 1) Backbone: ‘VGG16’;
UNET++[165], 1024x1204; scratch; 2) learning rate:
R2 UNET 2D 2048x2048); 2)|2) ‘Ima-| le-3,le-4; 3)Train-
[171], Atten- | [IF &  (1024x1204; | geNet’ ing metrics: IoU,
tion_UNET 2048x2048;4096x4096); ‘losses.dice_coef’; 4)
[172], 3) IMC+ resized_IF epochs >2000 with
UNET_3plus_2d | to 1/3 size & patience = 200
[164], (512x512; 1024x1204;
Mask_RCNN 2048x2048)
[119]

Experiment ML model parameters for FR segmentation

As discussed in Section 5.4.4 for FR segmentation it was decided that feature-based models
are selected for experiments. The selected models are presented in Table 5.6. The data was
split into 70%: 15%: 15% for training, validation and testing.

Results for FR segmentation

The results for ‘top’ performing FR segmentation models are presented in Table 5.7. As
seen in the table, UNET_2D model performance evaluated using image wide IoU of folded
regions exceeded the benchmark metric. But this should be seen in the context of the poor
IoU in the duplicate manually annotated “ground truth” data. Although the UNET_2D model
outperformed the benchmark metric but IoU of 0.21, 0.64 for P02, P06 respectively is poor
by normal standards.
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Table 5.7 Results of FR segmentation models experiments. *Note the readings for FR segmentation
evaluation in Chapter 4 Table 4.5 will differ as these were calculated across many TS images where
folding exists, whereas the results presented here are only for test TS images as the remaining images
were used for training. The golden row is benchmark annotation score.

Model IoU Parameters
P02 P06
Benchmark 0.16 | 0.61 NA
UNET_2d 0.21 0.64 1) Backbone: ‘VGG16’; 2) patch size:

1024x1024; 3) learning rate: le-3; 4) optimiser:
‘Adam’; 5) training metric: ‘losses.dice_coef’
UNET+ 0.11 0.54 1) Backbone: ‘VGG16’; 2) patch size:
1024x1024; 3) learning rate: le-3; 4) optimiser:
‘Adam’; 5) training metric: ‘losses.dice_coef’
UNET_3plus_2d 0.04 0.66 1) Backbone: ‘VGG16’; 2) patch size:
1024x1024; 3) learning rate: le-3; 4) optimiser:
‘Adam’; 5) training metric: ‘losses.dice_coef’

5.6 myocytoML

The design considerations for myocytoML are based on the discussion in Section 5.3. For
each of the four CV tasks discussed in Section 5.4 the respective top performing model
presented in Tables 5.3, 5.5, 5.7 in the Section 5.5 is selected.

5.6.1 myocytoML architecture

myocytoML! is a Python application and the architecture of it is described in Figure 5.1.

5.6.2 myocytoML graphical user interface

As can be observed in Section 5.5, for most of the CV tasks required for SM tissue segmenta-
tion and curation, myocytoML precision is close to the benchmark metrics measured between
duplicate annotations by humans. But it can also be observed as discussed in Section 4.6 the
‘ground truth’ annotations are not perfect which is reflected in the benchmark metrics. This
means the segmentation and classification masks produced by myocytoML will not be perfect.
And the evaluation metrics produce by myocytoML by comparing the myocytoML masks
with random manual annotations by the user will give a quantitative measure of quality of
segmentation, which can be helpful in identifying the mistakes in masks that need correction.

Thttps://github.com/atifkhanncl/mitoML_segmentation_pipeline
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Input Image

1 l 2A 2B l 3 l

Cellpose Morphology Based Rules| ResNet50 UNET
(Myofibre Segmentation) (NTM Classification) (FAM Classification) (FR Segmentation)
y v
Myofibre Mask _ NTM Mask FAM Mask
4

Evaluation
Metrics

Final Mask

Figure 5.1 myocytoML Design. Input Image: SM image made by arranging greyscale images of a
cell membrane protein marker and myofibre mass protein/any cytoplasm marker into an RGB image
where R = membrane protein marker, G = myofibre mass marker and B = 0; 1: Custom trained
Cellpose model predicts ‘Myofibre Mask’ for input image; 2A: Each myofibre in ‘Myofibre Mask’ is
classified as NTM/non-NTM based on morphological features, producing ‘NTM Mask’; 2B: Using
‘Myofibre Mask’ each fibre in the input image is segmented into individual myofibre images, each of
these is fed to a custom trained ResNet50 model that classify myofibres as either FAM/non-FAM,
producing a ‘FAM Mask’ ; 3: Input image is fed to a trained UNET model that predicts ‘FR Mask’;
4: Final instance segmentation mask of ’ Analysable’ myofibres is made by removing ‘NTM Mask’,
‘FAM Mask’ and ‘FR Mask’ from ‘Myofibre Mask’. In this step quality evaluation metrics (as
discussed in Section 4.3.2) are also computed if a ‘ground truth’ manual annotation mask is provided.
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Figure 5.2 myocytoML allows users to review and amend each mask with minimal effort. Segmenta-
tion masks can be amended using erase, brush, pencil and color fill tools. Classification masks can be
amended by double clicking on myofibre to change its binary class.

To make myocytoML a useful tool, the mask correction process needs to be simple and quick.
Taking these points into consideration a GUI for myocytoML review was built on top of a
image viewer package Napari [86] using its widgets and scripts functionality, this allows

users to view and amend the myocytoML output masks with ease, as describe in Figure 5.2.

5.6.3 myocytoML standard operating procedure (SOP)

The following SOP of myocytoML is envisioned to be efficient.

Inputs The user provides (i) images of cell membrane marker and myofibre mass marker
for each SM TS; 11) Manual segmentation masks where a selected few myofibres are

segmented for QA, this can be done using Napari.

Output myocytoML produces (i) masks: raw ‘Myofibre Mask’, ‘NTM Mask’, ‘FAM Mask’,
‘FR Mask’; i1) csv files: 1) include all morphological detail of each myofibre and 2)
evaluation metrics measured by comparing myocytoML masks with manual annotated

masks.

Review Using myocytoML review on Napari users can review and amend each mask by

1) for segmentation mask: amend using erase, brush, pencil and color fill tool; ii) for
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Figure 5.3 myocytoML SOP. End-to-end SM tissue section (TS) image annotation process for SM TS
‘PO6’. A: User provides two greyscale SM tissue images, one a cell membrane protein (Dystrophin)
marker and other a myofibre mass protein (VDAC1) marker. myocytoML arranges grayscale images
into an RGB image where R = membrane protein marker, G = mass protein marker and B = 0; B:
myocytoML myofibre instance segmentation mask for A; C: myocytoML FAM mask for A, overlaid
on the image; D: myocytoML NTM mask for A, overlaid on the image; E: myocytoML FR mask for
A, overlaid on the image; F: Final instance segmentation mask of ‘Analysable’ myofibres made by
removing objects identified in C, D and E from B.

classification masks: amend by double clicking on myofibre to change its binary class
i.e. from NTM to non-NTM or from FAM to non-FAM and vice versa.

5.7 Discussion

Myofibre segmentation : if done manually then myofibre segmentation is the most time
consuming of the four CV task involved in SM image segmentation and curation. As observed
in Table 5.3 myocytoML exceeds in precision when compared to the current process, i.e.
using mitocyto plus manually correcting masks. It is also observed that its precision measured
in terms of evaluation metrics are close to the benchmark duplicate human annotations. It
was observed that Cellpose outperformed StarDist for my use case i.e. precise segmentation

of SM images.

NTM classification : NTM was the simplest of the four CV tasks to solve with the
development of algorithm 1.

FAM segmentation : As observed FAM classification performance is closer to the lower

bound of the benchmark for IMC images as observed in Table 5.5. But for IF images the
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results were poorer, mostly due to poor specificity by the models. This can be due to number
of factors but mostly due to subjectivity in FAM annotation. It was decided to acknowledge
that there will be subjectivity in this CV task since biomedical scientists need to balance
between full utilisation of damaged tissue and avoiding any adverse affect on analysis. For
this reason it was decided that a good enough FAM model with an easy process to correct

misclassification would be the most useful solution.

FR segmentation has the poorest IAV as discussed in Section 4.6.2 which limits the
segmentation accuracy that can be achieved using this training data. As observed in Table
5.7 the IoU score achieved using myocytoML exceeds the benchmark metrics. But it is clear
the IoU scores of 0.21 and 0.61 are poor by normal standards. By observing prediction of the
FR models it was noted that the model predictions were usually correct about large folding
areas. For this reason in the myocytoML, it was decided that only large FR (>1500 pixels
diameters) should be retained from the model segmentation mask. This processed mask with

an easy process to correct the segmentation mask was deemed to be a suitable solution.

5.7.1 myocytoML utility

Studying the pathology of mitochondrial diseases or other disorders affecting SM usually
requires analysis of SM tissue images. For a reliable single-cell analysis of the SM tissue
images, the segmentation and curation of these SM cells (myofibres) need to be precise.
myocytoML is an end-to-end SM tissue image segmentation and curation pipeline that
produces segmentation and curated masks that are close to the ones achieved by domain
expert human annotators. myocytoML is also flexible to accommodate the subjectivity that
exists in SM image segmentation/curation with a simple mask amendment process.

Biomedical scientists at WCMR have recently started using myocytoML replacing other
tools and methods.

5.7.2 Limitations

myocytoML is a useful tool for SM tissue image segmentation as discussed earlier but it has
a few limitations.

* Asitis a prototype it is not optimised, i.e. the time to process a large IMC image can be
up to 45 minutes. This is because the pipeline processes different CV tasks sequentially.

By optimising the code and employing multi threading this can be improved.
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* Its installation can be simplified by packaging it as a Napari plugin. This is a feature

that can enhance the usability of myocytoML.

* While flexibility in amending masks is useful, the amendments can be used for contin-
uous learning i.e. retraining models to learn from these corrections. But this feature
is not implemented in the current version of myocytoML. This might improve the
annotation quality by minimising the subjectivity over time as models improve by

learning from corrections.

5.7.3 Conclusion

In this chapter I describe the process of building myocytoML: a SM tissue image segmentation
and curation pipeline that is flexible to address subjectivity involved in this process. The
chapter described and discussed the design decision of myocytoML, including the choice of
models for the four CV tasks and order of execution of these CV tasks. The results presented
in this chapter show that myocytoML meets almost all the benchmark metrics for IMC
images and to a lesser extent IF images. The chapter also describes myocytoML GUI built
on top of Napari and the SOP of using myocytoML for multiplex image segmentation and
curation of myofibres in SM TS images.The utility and limitations of myocytoML are also

discussed.






Chapter 6

Explainable DL Analysis to Classify
Mitochondrial Disease in Myofibre and
SM Tissue

6.1 Introduction

As discussed in Chapters 2 and 3 there exist a number of techniques such as plotIMC, Cy-
tomapper, imcRTools [76—80, 82, 173—175] for analysis of multiplex protein data (IMC).
These techniques usually employ single cell segmentation, followed by applying processing
techniques to the multiplex data with an aim to 1) extract statistical summaries, or features or
i1) reduce dimensions, this is followed by comparative, neighbourhood, clustering, cell-to-cell
interaction analysis, and visualisation.

These existing approaches are essentially attempting to resolve the curse of dimensionality
of multiplex data by reducing the dimensions (usually spatially in the form of statistical sum-
maries or features, sometimes channel-wise, i.e. reducing by combining multiple channels).
This effectively leads to ignoring features in the dimensions where reduction is applied. This
is more of an issue in the analysis of SM tissue of mitochondrial disease patients, where some
of the associations between various OXPHOS proteins (captured in channels) and theories
proposing existence of differential features within cells (captured in pixels), might be lost
through the reduced dimensions. To explain this further let us take two cases: 1) applying
dimensionality reduction channel-wise will result in merging of channels’ signals which will
limit observation of actual delineated importance/association of each channel involved in the
analysis; 2) Applying dimensionality reduction spatially, e.g. by using per myofibre mean

pixel intensities that ignore intra-myofibre features, and introduce limitations on performing
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analyses to test certain hypotheses proposing the existence of differential features within
myofibres, such as the perinuclear niche hypothesis by Vincent et al. [2] that propose the
existence of differential features near nuclei of myofibres with primary or secondary mtDNA
mutations.

Explainable DL, i.e. a combination of high performing DL classification models [108—112]
that are setting new records for prediction accuracy [113] and state-of-the-art explainable DL
methods [19, 127, 128, 134, 136, 137, 143] that help explain the basis of model predictions,
can be an approach to classify myofibres and SM tissue sections and profile these in terms
of their spatial and channel-wise features. To the best of my knowledge there are no such
studies for multiplex SM TS image analysis and more broadly for any multiplex biomedical
data.

6.2 Aims

To overcome the limitations of existing approaches where intra-myofibre spacial features
are ignored, in this chapter I will analyse (classify) and profile segmented multiplex (IMC)
myofibres. The aims of this chapter are as follows:

* Predict the mitochondrial genetic mutations of myofibres using DL and raw multichan-

nel images of segmented myofibres.

* Profile these myofibres based on their mitochondrial genetic mutation using explainable
DL methods.

» Extend this analysis to unsegmented raw multichannel images of SM tissue sections.

6.3 Data and methods

6.3.1 Data

To perform both comparative and complementary analysis between the studies performed in
this chapter and Chapters 2 and 3, the data, i.e. 13 TS from 13 subjects as described in Table
2.1, imaged using IMC that consist of 12 channels/protein markers as described in Table 2.2,
and grouped into five groups as described in Table 2.6 remains same.

As described in Section 2.7.1 a TIFF (16-bit) file corresponding to each of 12 protein markers
for every subject was used as raw data.
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Table 6.1 Myofibre count for explainable DL analysis

Genetic mutation TS count Myofibre count
Controls — healthy control subjects 3 645
ClassA — nDNA encoded mutation (PO1 & P02) 2 400
ClassB — Point mutation in (MT-TL1)(P05,P06,P07) 3 2927
ClassC — Point mutation in mito encoded tRNA(P08,P09,P10) 3 1632
ClassD — Single,Large-scale mtDNA mutation (P03 & P04) 2 1753
P03 — Single, large-scale mtDNA mutations | 1262

Myofibre segmentation and curation

Following myocytoML SOP as described in Section 5.6.3 myofibres in all 13 TS IMC images
were segmented and curated. The exception was the TS images that were used for training
myocytoML models, in this case these manually annotated and curated myofibres are used
instead. This resulted in the myofibre count as detailed in Table 6.1.

Single-myofibre multiplex images

The 12 protein marker images and a binary (0 or 255) ‘Analysable’ myofibre mask are
combined to make a 13 channel array (height x width x 13 channels) for each TS image.
Using ‘Analysable’ myofibre mask individual analysable myofibres images were created.
Extra padding of pixels (value=zero) were added to these images to make them all of uniform
(200x200x13) shape with myofibre in the center, these dimensions were decided based on
the average cross-section diameter of myofibre in IMC images found to be 65 pixels. The
inclusion of the myofibre mask as the 13th channel was done to observe the predictive power
of myofibre morphology which is represented by this channel. An additional dataset of
single-myofibre multiplex data with a different padding resulting in shape (224x224x13) is
also made to allow the training of models with ‘ImageNet” weights.

6.3.2 Methods

As discussed in Chapter 3, ML models trained on statistical summaries of myofibre had
predictive accuracy ranging from 93% for class D myofibres to 100% for class A myofibres.
This was followed by application of explainable ML methods to these ML models to extract
the ML model’s basis of prediction leading to decomposing this into the correlations and
association between the various protein markers involved. The associations were then used to

create reports of insights and predictive inference. In this chapter the aim is to achieve high
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Table 6.2 Simple CNN model architecture

Layer Output shape

Input (height,width,channels)
Convolution (CONV2D) (None,198,198,32)
Max-pooling (MAXPOOL2D) | (None,99,99,32)
CONV2D (None,97,97,64)
MAXPOOL2D (None,48,48,64)
Flatten (None,147456)
Dropout (0.5) (None,147456)

Dense (None, 1)

predictive accuracy using the raw segmented multiplex myofibre images and apply relevant

explainable ML methods to extract predictive inference and insights.

DL classification models

As discussed in Section 2.10.3 there are a number of high performing models for CV tasks
including image classification [108—112]. The task of classifying the genetic mutation class
of myofibres using multiplex segmented IMC data is an image classification task albeit
consisting of more channels than the usual RGB or grayscale images. CNN-based models are
good candidates for multiplex myofibre image classification and leveraging transfer learning
i.e. using pre-trained weights from models trained on large datasets such as ImageNet, can
improve model training. It was decided to experiment with DL models: i) Simple CNN: A
stack of convolution, max-pooling, dropout and dense layers as describe in Table 6.2; ii)
VGG16 with and without ‘ImageNet’ weights; ii1) ResNet50 with and without ‘ImageNet’
weights.

Explainable methods for DL. models

As discussed in Section 2.11.2 there are number of explainable methods [19, 134, 136—
142, 144, 176, 177] for DL models that use different approaches to produce explainable
masks. Explainable masks shows the attribution/importance of pixel/s and features in an
image towards making a prediction. The faithfulness of these EMs is evaluated by the

properties and axioms they satisfy. Such as

Sensitivity : An EM satisfies this property if for two given inputs x; and x which only differ

in one feature/pixel, the EM assigns a non-zero attribution to that feature/pixel [144].
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Implementation invariance : If two different DL models are functionally equivalent i.e.
produce the same predictions, then an EM satisfies an implementation invariance
property if the attributions it produces are the same for the two DL models [144].

Completeness : An EM satisfies this property if the EM attributions add up to the difference
between the output of the EM at the input x; and baseline (reference) input x [144].

Linearity : An EM satisfies this property if the linear combination of two DL models
represented as fi, f» and their linear combination model represented as f3=a. fj+b
.f> then the EM attributions for f3 should be the weighted sum of the attributions for
Jf1 and f, with weights a and b respectively[144].

Local accuracy : An EM satisfies this property if for a DL model which is functionally
represented as f(x) the EM approximation matches the output f(x/) where x/ is simpli-

fied/reference input, e.g. a blank image [127].

Missingness : An EM satisfies this property if a feature/pixel can be toggled off/removed
from input and this does not affect the prediction of a DL model and a corresponding

explanation/attribution map has zero contribution assigned to that feature/pixel[127].

Consistency : An EM satisfies this property if a DL model changes so that if some simplified
input’s contribution increases or stays the same regardless of the other inputs, that
input’s attribution should not decrease [127].

There are many EMs such as layer-wise relevance propagation[138, 141], DeConvNet[137],
Deep Taylor [140], input Gradient [131, 138], integrated gradient [144] and DeepLIFT [177]
that satisfy many of the properties discussed above and can be appropriate EMs for DL
models. But the requirement for our use-case has an addition factor to consider, i.e. associa-
tions: knowing attribution or importance alone of pixels/features is not useful to understand
mitochondrial disease pathology in terms of OXPHOS proteins. It requires the association
between OXPHOS proteins and mutation class explained in terms of correlation (positive/neg-
ative) of protein markers toward prediction, and the relative importance/contribution of each
of these protein markers quantified.

This is achieved by adapting the earlier mentioned EMs into Shapley additive explana-
tions (SHAP values). There are two EMs that satisfy most of the EM evaluation properties
and are adapted to build attribution/explanation masks in terms of SHAP values, namely
integrated gradient and DeepLIFT with their corresponding SHAP adaptations called ‘Gradi-

entExplainer’ and ‘DeepExplainer’ respectively.
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Integrated Gradient (GradientExplainer) For a DL model represented as function F(x)
for some current input x, and a baseline input x/ e.g. a blank image with all zeros. Consider
the straight line path from the baseline x7 to the input x, and compute the gradients at all points
along the path. Instead of just taking the gradient at the input itself, Integrated Gradients
integrate the gradients along the path from the baseline to the actual input. This approach
accounts for the accumulated effect of each feature as it moves from a neutral state (baseline)
to its actual value [144].

GradientExplainer is a SHAP adaptation of integrated gradient: Integrated gradients require
a single baseline/reference value (e.g. a blank image) to integrate from, as an adaptation
to generate approximate SHAP values using integrated gradient, the expected gradients
reformulate the integral as an expectation and combines that expectation with sampling
reference values from the background dataset (provided by users). This leads to a single
combined expectation of gradients that converges to attributions that sum to the difference

between the expected model output and the current output [178].

DeepLIFT (DeepExplainer) Intuitively it works by comparing the activation of each neu-
ron for the current input to a reference activation, i.e. when a reference (average) input was
passed, and assigning contributions based on how different the neuron’s activation is from
this reference. This difference from the reference contribution is computed by propagating
these differences backwards through the network, from the output layer to the input layer,
assigning a contribution score to each input feature. The idea is to distribute the difference in
the output back to the input features in a way that considers both the weights and activations
of the intermediate neurons. It uses a multiplicative approach to propagate these contribution
scores, which considers both the gradient and the activation difference. This approach helps
in handling cases where gradients might be small or zero. The contributions from all input
features sum to the total difference between the actual output and the baseline output [143].
DeepExplainer is a SHAP adaptation of DeepLIFT. DeepExplainer approximates the condi-
tional expectations of SHAP values using a selection of background samples (provided by
the user). Contribution score attribution rules of DeepLIFT can be chosen to approximate
Shapley values; by integrating over many background samples DeepExplainer estimates
approximate SHAP values such that they sum to the difference between the expected model

output on the passed background samples and the current model output [178].

It was decided that both ‘GradientExplainer’ and ‘DeepExplainer’ should be used as EMs
for classification models. This will allow me to validate the faithfulness of these methods i.e.
if the explanation masks generated by these two methods are similar in i) pixel importance,

observed as a strength of SHAP value for a given pixel toward a prediction, and ii) channel
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importance, observed as relative importance of all channels, i.e. the order of importance
score attributed to each channel.

6.4 Experiments and results (myofibre)

6.4.1 Experiment design

Experiment data

As discussed in Section 6.3.1 multichannel (IMC) segmented myofibre images are used in
the experiments. Training was conducted with i) all 13 channels (including mask), ii) eight
OXPHOS channels as in Table 2.4 iii) individual channel, iv) selected channels identified
in the predictive inference insights from Section 3.4. All models are trained for binary

classification, the classes are defined in Table 3.1.

DL classification models experiments

Based on the strategy discussed in Section 6.3.2 the experiments were conducted by training 1)
CNN, ii) VGG16 and iii) ResNet50 models. These models were trained as binary classifiers
with various combinations of pre-trained weights and model parameters as described in
Table 6.3. The ImageNet pre-trained weights were used for transfer learning and a range of
parameter ranges were experimented with based on DL model classification literature. The
data was split into 70%: 15%: 15% for training, validation and testing. It was decided to
observe accuracy holistically, i.e. across both classes, so the following metrics were recorded
1) accuracy ii) recall (patients y=1) iii) recall (controls y=0). All experiments were conducted
on a machine with the following specification: GPU: 1 x NVIDIA Tesla V100 (16GB), CPU:
6 cores, RAM:112GB.

Explainable methods experiments

As discussed in Section 6.3.2 ‘GradientExplainer’ and ‘DeepExplainer’ were used to make ex-
planation masks. For ‘GradientExplainer’ whole training data was used as ’background’/reference
but for ‘DeepExplainer’ 100 training samples (50 from each class) were used as background,
this was due to limitation of GPU memory. The ‘DeepExplainer’ would not run when
exceeding 100 samples on available GPUs and it was infeasible to source a machine with
high end GPU memory. Where comparable results were obtained by VGG16 and ResNet50,

VGG16 was selected to apply EMs due to its relative simple architecture. It was consistently
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Table 6.3 Details of myofibre classification experiments. The ‘Datasets & patch dimensions’ column
describes the various patch dimensions that were experimented with. The column ‘Initialised weights
describes the names of pre-trained weights that were used for transfer learning, ‘None’ means random
initialised weights were used. The *Parameters’ column details all parameters relevant to the model
being trained, that were being experimented with, for each parameter the values after the colon denote
the options that were experimented with.

Model Datasets & patch di- | Initialised | Parameters
mensions weights

CNN multiplex myofi- | None 1) optimizer: ‘adam’, ‘SGD’, ‘RMSprop’; 2)
bre images 1) learning rate: le-3,l1e-4; 3) Training metrics:
(200,200,13)- All chan- Accuracy, Recall (patients), Recall (controls); 4)
nels  1i)(200,200,8)- epochs >1000 with patience = 100
OXPHOS channels,
iii) (200,200,1)-
Individual channels

VGGI16 | multiplex myofibre | None, 'Ima- | 1) optimizer: ‘adam’, ‘SGD’, ‘RMSprop’; 2)
images 1) (200,200,13), | geNet’ learning rate: le-3,le-4; 3) Training metrics:
ii) (200,200,8), Accuracy, Recall(patients), Recall(controls); 4)
1i1)(200,200,1), epochs >1000 with patience = 100
iv) (224,224,13)
v)(224,224.8), vi)
(224,224,1)

ResNet50| multiplex — myofibre | None, ‘Ima- | 1) optimizer: ‘adam’, ‘SGD’, ‘RMSprop’; 2)
images 1)(200,200,13), | geNet’ learning rate: le-3,le-4; 3) Training metrics:
ii) (200,200,8), Accuracy, Recall(patients), Recall(controls); 4)
1i1)(200,200,1), epochs >1000 with patience = 100
iv)(224,224,13),
v) (224,224,8), vi)
(224,224,1)
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observed that for all experiments conducted the explanation masks by both GradientEx-
plainer and DeepExplainer were equivalent in both the pixels identified as important and the
order of channel’s absolute SHAP values (ASV): calculated as the sum of all SHAP values
(irrespective of sign) in a channel’s explanation mask.

6.4.2 Results

Explainable DL analysis of class A vs controls

Patients suffering from nDNA encoded mutations (class A) was the only case that the current
techniques can accurately classify as observed in Table 2.4. ML models presented in Section
3.4.2 also predicted this myofibre with 100% accuracy. In this section I apply explainable
DL methods to classify these same myofibres but using raw segmented data and report the

results and insights achieved by these techniques.

DL classification results CNN, VGG16 and ResNet50 models were trained and results are
reported in Table 6.4. In addition to the models mentioned in Table 6.4 other models also
produced 100% accuracy, including one model that was trained on seven selected channels
(NDUFBS8, NDUFA13, SDHA, UqCRC2, MTCO1, COX4+4L2 and OSCP), i.e. selected
because of their predictive power as discussed in Section 3.4.2.

Explainable methods for class A vs controls models As there were many models with
100% predictive accuracy, it was decided that the model with simpler architecture, i.e. CNN
should be used to apply EM due to lower computation cost. Three CNN models trained on 1)
all 13 channels, 11) 8 OXPHOS channels and iii) seven selected channels were used to apply
EMs. Both GradientExplainer and DeepExplainer were applied and SHAP values explanation
masks produced by both methods are very similar. However, with DeepExplainer only 100
multiplex myofibres images as reference/background were possible due to limited GPU
memory. Hence all explanation masks reported here were generated using GradientExplainer.

ASYV values were used to identify the channel importance/attribution and pixel colours
in the explanation masks represent SHAP values, i.e. red represents positive SHAP values
that contribute positively towards positive class (class A) and blue represents negative SHAP
values that contribute negatively towards negative class (control). As seen in Figures 6.1 and
6.2, explanation masks for both models report the top four ASV values for OSCP, NDUFBS,
UqCRC2 and SDHA. Figure 6.3 explanation mask shows the models trained on 13 channels
have the highest ASV values for myofibre mask and OSCP. OSCP and NDUFBS8 channels
have the highest ASV in both Figures 6.1 and 6.2, observing the positive and negative SHAP
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Table 6.4 Classification metrics for DL. models trained to predict class A myofibres. In the table
Chns,Acc,R_PR_C and NA stands for channels, accuracy, recall (patients’ myofibres), recall (controls’
myofibres) and not available respectively. Note: individual channel training was performed for the top
2 performing models.

Top (3) Metrics (13 Chns) Metrics (8 Chns) Acc (single pro-
models tein)(%)

Acc(%) | R_P(%)| R_C(%)| Acc(%)| R_P(%)| R_C(%)
CNN 100 100 100 100 100 100 92.28 (NDUFBS)
99.36 (NDUFA13)
83.44 (SDHA)
94.26 (UgqCRC2)
89.81 (MTCO1)
94.26 (COX4+4L.2)
94.26 (OSCP)
83.44 (VDAC1)
87.26 (TOM22)
85.99 (Dystrophin)
67.51 (DNA1)
64.97 (DNA2)
54.14 (Mask)
VGG16 | 100 100 100 100 100 100 98.73 (NDUFBS)
ini-
tialised
weights
(ran-
dom)

92.36 (NDUFA13)
97.45 (SDHA)
98.73 (UgqCRC2)
89.81 (MTCO1)
94.9 (COX4+41.2)
97.45 (OSCP)
88.53 (VDACI)
61.78 (TOM22)
92.36 (Dystrophin)
85.35 (DNA1)
88.53 (DNA2)
55.41 (Mask)
ResNet50| 100 100 100 100 100 100 NA

ini-
tialised
weights
(ran-
dom)
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values within these masks reveal that high intensity pixels in NDUFBS are associated with
control class predictions and similarly it can be seen the high intensity pixels, especially near
the membrane, are assosiated with control class predictions.

Figure 6.4 is made by merging the four channels OSCP, NDUFBS8, UqCRC2 and SDHA
with the highest ASV into a RGB image. The four channels were scaled, i.e. divided by the
number of channels (4) and sequentially added to red, green, blue channels. As observed in
the figure 6.4 this approach profiles the two classes into visually distinct colour groups, i.e.
class A myofibres are bluish-purple and control myofibres are greenish-white.

Biological validation The predictive power of complex I protein markers such as ND-
UFA13 (99.36 % CNN model), NDUFBS (98.36 % VGG16 model) is expected as discussed
earlier in Section 3.4.2 in class A myofibres nDNA encoded complex I proteins will be
down-regulated, i.e. exhibit low- evels, and models are leveraging this feature of class A
myofibres. Similarly, the predictive power of other OXPHOS proteins such as UqCRC2,
SDHA, OSCP and COX4+4L2 is also expected due to upregulation as discussed in Section
3.4.2. The explanation masks of the two myofibres reveals OSCP, NDUFBS, SDHA and
UgCRC2 have the four highest ASV. This means for these two myofibres the model’s predic-
tions were influenced more by these four markers/channels. As discussed earlier these four
markers should provide the differential features and the models seems to be leveraging this.
Furthermore, the profiling of these two myofibres based on the highest four ASV markers in

Figure 6.4 is an interesting visualisation of classifying these myofibres.

Explainable DL analysis of class B vs controls

ML models presented in Section 3.4.3 predicted these myofibres with 99% accuracy. In
this section I apply explainable DL methods to classify these same myofibres but using raw
segmented data and report the results and insights achieved by these techniques.

DL classification results CNN, VGG16 and ResNet50 models were trained and results are
reported in Table 6.5. In addition to the models mentioned in Table 6.5 a model trained on
five channels (NDUFB8, NDUFA13, UqgCRC2, MTCO1 and COX4+4L.2) that were selected
because of predictive inference insights in Section 3.4.3 recorded accuracy of 99%; recall
(class B myofibres) of 99%:; recall(control myofibres) of 98% .

Explainable methods for class B vs controls models Based on predictive accuracy it was
decided that the VGG16 model should be used to apply EM. Two VGG16 models trained
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Figure 6.1 GradientExplainer applied to CNN model (class A) trained on 7 OXPHOS channels
selected because of the predictive inference insights in Section 3.4.2. The first & third columns are
raw channel images, second and third columns are their respective explanation masks. In the figure
TL,PL,Ch,ASV stands for true label, predicted label, channel, absolute shap value respectively.
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Figure 6.2 GradientExplainer applied to CNN model (class A) trained on § OXPHOS channels.
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Table 6.5 Classification metrics for DL models trained to predict class B myofibres. Note: individual
channel training was performed for the top 2 performing models.

Top (3) Metrics (13 Chns) Metrics (8 Chns) Acc (single pro-
models tein)(%)
Acc R_P R_C(%)| Acc R_P R_C
(%) (%) (%) (%) (%)
VGG16 | 99 99 96 98 99 95 89.36 (NDUFBS)
ini-
tialised
weights
(ran-
dom)

98.62 (NDUFA13)
87.13 (SDHA)
86.57 (UqCRC2)
83.58 (MTCO1)
86.19 (COX4+4L2)
87.68 (OSCP)
86.01 (VDAC1I)
86.57 (TOM22)
97.95 (Dystrophin)

87.5 (DNAL)
89.36 (DNA2)
87.69 (Mask)

ResNet50| 98 100 90 98 99 94 86.75 (NDUFBS)

ini-

tialised

weights

(ran-

dom)
84.32 (NDUFA13)
86 (SDHA)
86.58 (UqCRC2)
82.46 (MTCO1)

84.7 (COX4+4L.2)
85.63 (OSCP)
84.88 (VDAC1)
85.07 (TOM22)
89.36 (Dystrophin)
85.44 (DNA1)
87.87 (DNA2)
77.62 (Mask)
CNN 91 97 63 96 99 85 NA
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4

Figure 6.4 RGB image made by weighted stacking of input channels of class A and control myofibres
that had highest 4 ASV values in Figure 6.1, i.e. OSCP, NDUFB8, SDHA and UqCRC?2. On the top
row are class A myofibres and on the bottom row are control myofibres.

on 1) eight OXPHOS channels and ii) five select channels were used to apply EMs. All
explanation masks reported here were generated using GradientExplainer.

ASV values were used to identify the channel importance/attribution and pixel colours in

the explanation masks represent SHAP values. As seen in Figures 6.5 and 6.6 explanation
masks for both models report the top four ASV values for NDUFBS, OSCP, UqgCRC2 and
SDHA. Observing the positive and negative SHAP values within these high ASV explanation
masks reveals that high intensity pixels in the centre of the myofibre in NDUFBS are
associated with control class predictions; it can be seen the that low intensity pixels in SDHA
are associated with class B myofibres predictions.
Figure 6.7 is made by merging the four channels NDUFBS&, OSCP, UqCRC2 and SDHA
with highest ASV into a RGB image. As observed in Figure 6.7 this approach profiles the
two classes into visually distinct colour groups, i.e. class B myofibres are reddish-purple and
control myofibres are whitish.

Biological validation Above 92% accuracy observed for complex I marker trained VGG16
single-protein models is expected as discussed in Section 3.4.3, but the highest predicted
accuracy observed being just using Dystrophin (membrane marker) is a surprising finding.
This could be artifactual and warrants an experimental validation. The highest ASV for the
NDUFBS and the high positive SHAP values for pixels with low intensities being within the
NDUFBS8 channel as presented in Figures 6.5 and 6.6, implies that models are leveraging the
expected downregulation of complex I markers. The SDHA downregulation’s association

with class B is an intriguing finding that needs experimental validation.
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Figure 6.5 GradientExplainer applied to VGG16 model trained on 5 OXPHOS channels of myofibres
from class B patients and controls, selected because of the predictive inference insights in Section
3.4.3.
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Figure 6.6 GradientExplainer applied to VGG16 model trained on 8 OXPHOS channels of myofibres
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True_Label: Class B True_Label: Class B True_Label: Class B True_Label: Class B True_Label: Class B

True_Label: Control True_Label: Control True_Label: Control True_Label: Control True_Label: Control

P ~Ial.

Figure 6.7 RGB image made by weighted stacking of input channels of class B and control myofibres
that had highest 4 ASV values in Figure 6.5 i.e. NDUFBS§, OSCP, UqCRC2 and SDHA. On the top
row are class B myofibres and on the bottom row are control myofibres.

Explainable DL analysis of class C vs controls

ML models presented in Section 3.4.4 predicted these myofibres with 99% accuracy. In
this section I apply explainable DL methods to classify these same myofibres but using raw

segmented data and report the results and insights achieved by these technique.

DL classification results CNN, VGG16 and ResNet50 models were trained and results
are reported in Table 6.6. In addition to the models mentioned in Table 6.6 a model trained
on five channels (NDUFBS8, NDUFA13, SDHA, MTCOI1 and COX4+4L2 ) that were
selected because of predictive inference insights in Section 3.4.4 recorded accuracy of 99%;
recall(class B myofibres) of 99%; recall(control myofibres) of 100% .

Explainable methods for class C vs controls models Based on predictive accuracy it was
decided that the VGG16 model should be used to apply EMs. Two VGG16 models trained
on 1) eight OXPHOS channels and ii) five selected channels were used to apply EMs. All
explanation masks reported here were generated using GradientExplainer.

ASV values were used to identify the channel importance/attribution and pixel colours in
the explanation masks represent SHAP values. As seen in Figures 6.8 and 6.9 explanation
masks for both models report a difference in the highest four ASV values: for the five channel
model it is NDUFB8, NDUFB13, SDHA, and MTCO1, whereas for the eight channel
model it is NDUFBS8, OSCP, UqgCRC2 and SDHA. Observing the positive and negative
SHAP values within these high ASV explanation masks reveals that high intensity pixels
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Table 6.6 Classification metrics for DL models trained to predict class C myofibres. Note: individual
channel training was performed for top 2 performing models.

Top (3) Metrics(13 Chns) Metrics (8 Chns) Acc (single protein)
models (%)

Acc R_P R_C Acc R_P R_C
(%) (%) (%) (%) (%) (%)

VGG16 | 96 96 95 99 99 98 93.57 (NDUFBS)
ini-
tialised
weights
(ran-
dom)
92.69 (NDUFA13)

91.22 (SDHA)
87.43 (UqCRC2)
76.9 MTCOLI)
90.64 (COX4+4L2)
92.4 (OSCP)

89.77 (VDACI)
88.89 (TOM22)
98.24 (Dystrophin)
89.47 (DNAI)
87.72 (DNA2)
71.05 (Mask)

CNN 88 89 85 99 99 99 85.38 (NDUFBS)
79.53 (NDUFA13)
84.5 (SDHA)
74.85 (UqCRC2)
77.78 (MTCO1)
78.65 (COX4+4L2)
85.67 (OSCP)
83.92 (VDACI)
90.35 (TOM22)

96.2 (Dystrophin)
71.2 (DNALI)
74.27 (DNA2)
70.76 (Mask)

ResNet50| 91 97 76 99 100 97 NA

ini-

tialised

weights

(ran-

dom)
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near the membrane of the myofibre in NDUFBS8 are associated with class C myofibre class
predictions; it can be seen that the high intensity pixels in SDHA are associated with control
class myofibres predictions.

Figure 6.10 is made by merging the four channels NDUFB8, NDUFB13, SDHA and OSCP
with the two highest ASV from each explanation mask into a RGB image. As observed in

Figure 6.10 this approach does not profile the two classes clearly.

Biological validation The highest predicted accuracy being observed in both models
trained with just Dystrophin (membrane marker) is a surprising finding. This could be
artefactual and warrants an experimental validation. The same applies for DNA1 and DNA?2
markers unless it is that there are more nuclei in either classes of myofibres that is leading the
models to exploit this as a differential feature or even the location of nuclei within myofibres,
this warrants further experimental validation. The above 90% accuracy with single-protein
models trained on OSCP,SDHA and COX4+4L2 is an interesting finding that also warrants
experimental validation. The highest ASV for the complex I markers and the high positive
SHAP values for pixels with low intensities within NDUFA 13 channel as presented in Figures
6.8 and 6.9, implies that models are leveraging the expected downregulation of complex I

markers.

Explainable DL analysis of class D vs controls

ML models presented in Section 3.4.5 predicted these myofibres with 93% accuracy. In
this section I apply explainable DL methods to classify these same myofibres but using raw
segmented data and report the results and insights achieved by these technique.

DL classification results CNN, VGG16 and ResNet50 models were trained and results
are reported in Table 6.7. In addition to the models mentioned in Table 6.7 a model trained
on three channels (NDUFBS8, UqCRC2 and COX4+4L2 ) that were selected because of
predictive inference insights in Section 3.4.5 recorded accuracy of 89% ;recall(class B

myofibres) of 98%; recall(control myofibres) of 65%.

Explainable methods for class D vs controls models The VGG16 model is used to
apply EMs due to its high predictive accuracy. A VGG16 model trained on eight OXPHOS
channels was used to apply EMs. All explanation masks reported here were generated using
GradientExplainer.

ASYV values were used to identify the channel importance/attribution and pixel colours in

the explanation masks represent SHAP values. As seen in Figure 6.11 the explanation mask
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Figure 6.8 GradientExplainer applied to VGG16 model trained on 5 OXPHOS channels of myofibres
from class C patients and controls, selected because of the predictive inference insights in Section
3.4.4.
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Figure 6.9 GradientExplainer applied to VGG16 model trained on 8 OXPHOS channels of myofibres
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Table 6.7 Classification metrics for DL models trained to predict class D myofibres. Note: individual
channel training was performed for top 2 performing models.

Top(3) Metrics(13 Chns) Metrics(8 Chns) Acc (single pro-
models tein)(%)

Acc(%) | R_P(%)| R_C(%)| Acc(%)| R_P(%)| R_C(%)
VGG16 | 93.3 95 89 99.8 100 99 81.11 (NDUFBS)
ini-
tialised
weights
(ran-
dom)

80.83 (NDUFA13)
80.23 (SDHA)
83.33 (UqCRC2)
79.72 (MTCO1)
84.72 (COX4+4L2)
85.23 (OSCP)
85.83 (VDAC1)
90 (TOM22)

93.61 (Dystrophin)
84.72 (DNAI)
83.05 (DNA2)
79.17 (Mask)

ResNet50| 94.4 98 84 99 99 97 81.39 (NDUFBS)
ini-
tialised
weights
(ran-
dom)
76.94 (NDUFA13)

77.77 (SDHA)
81.39 (UqCRC2)
80.27 (MTCO1)
75.28 (COX4+4L.2)
80 (OSCP)

74.17 (VDACI)
84.44 (TOM22)
87.78 (Dystrophin)
85 (DNA1)

83.33 (DNA2)
78.05 (Mask)
CNN 92 93 89 93 94 89 NA




6.4 Experiments and results (myofibre) 153
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Figure 6.10 RGB image made by weighted stacking of input channels of class C and control myofibres
that had the highest 4 ASV values in Figure 6.8 i.e. NDUFB8, OSCP, UqQCRC2 and SDHA. On the
top row are class C myofibres and on the bottom row are control myofibres.

for the model reported the highest four ASV values for channels NDUFB8, UqCRC2, OSCP
and NDUFB13. Observing the positive and negative SHAP values within these highest
ASV explanation masks revealed that high intensity pixels in UqCRC?2 are associated with
control myofibre class predictions; it can be seen that low intensity pixels in NDUFA13 are
associated with class D myofibre predictions.

Figure 6.12 is made by merging the four channels NDUFBS, UqCRC2, OSCP and NDUFB13
that have the highest ASV in the explanation mask into a RGB image. As observed in Figure
6.12, this approach profiles the two classes into visually distinct colour groups, i.e. class D
myofibres are bluish and control myofibres are whitish.

Biological validation The highest predicted accuracy being observed in VGG16 models
trained with just Dystrophin;TOM?22 is a surprising finding. This could be artifactual and
warrants an experimental validation. The ASV and individual SHAP values per pixel and
channel are not straightforward to validate as class D myofibres are not completely understood
yet.

Explainable DL analysis of P03 vs controls

ML models presented in Section 3.4.6 predicted these myofibres with 95% accuracy. In
this section I apply explainable DL methods to classify these same myofibres but using raw

segmented data and report the results and insights achieved by these technique.
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Figure 6.11 GradientExplainer applied to VGG16 model trained on 8§ OXPHOS channels of myofibres
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4

True_Label: Control True_Label: Control True_Label: Control True_Label: Control True_Label: Control

Figure 6.12 RGB image made by weighted stacking of input channels of class D and control myofibres
that had the highest 4 ASV values in Figure 6.11 i.e. NDUFBS8, UqCRC2, OSCP and NDUFB13. On
the top row are class D myofibres and on the bottom row are control myofibres.

DL classification results CNN, VGG16 and ResNet50 models were trained and results are
reported in Table 6.8.

Explainable methods for P03 vs controls models The VGG16 model is selected to
apply EMs as it achieved the highest predictive accuracy. A VGG16 model trained on eight
OXPHOS channels was used to apply EMs. All explanation masks reported here were

generated using GradientExplainer.

ASYV values were used to identify the channel importance/attribution and pixel colours
in the explanation masks represent SHAP values. As seen in Figure 6.13, the explanation
mask for the model reported the highest four ASV values for channels UqCRC2, NDUFBS,
NDUFA13 and COX4+4L2. Observing the positive and negative SHAP values within these
highest ASV explanation masks reveal that high intensity pixels in UqCRC2 and NDUFA13
are associated with control myofibre class predictions; it can be seen that low intensity pixels
in COX4+44L2 are associated with PO3 class myofibre predictions.

Figure 6.14 is made merging the four channels UQCRC2, NDUFB8, NDUFA 13 and COX4+4L2
that have the highest ASV in the explanation mask into a RGB image. As observed in Figure
6.14, this approach profiles the two classes into visually distinct colour groups, i.e. P03

myofibres are greenish and control myofibres are whitish.
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Table 6.8 Classification metrics for DL models trained to predict PO3 myofibres. Note: individual
channel training was performed for top 2 performing models.

Top (3) Metrics (13 Chns) Metrics (8 Chns) Acc (single protein)
models (%)

Acc R_P R_C Acc R_P R_C
(%) (%) (%) (%) (%) (%)

VGG16 | 89 93 84 98 100 99 88.15 (NDUFBS)

ini-

tialised

weights

(ran-

dom)
84.67 (NDUFA13)
86.06 (SDHA)
87.11 (UqCRC2)
83.27 (MTCO1)
89.2 (COX4+4L2)
90.24 (OSCP)
89.55 (VDACI)
90.59 (TOM22)

93.73 (Dystrophin)
88.85 (DNA1)
83.62 (DNA2)
91.99 (Mask)

ResNet50| 90 93 84 95 99 87 80.84 (NDUFBS)

ini-

tialised

weights

(ran-

dom)
85.02 (NDUFA13)
78.74 (SDHA)

81.53 (UqCRC2)
82.58 (MTCO1)
82.93 (COX4+4L2)
85.36 (OSCP)
83.97 (VDACI)
90.59 (TOM22)
90.59 (Dystrophin)
85.02 (DNA1)
81.18 (DNA2)
83.97 (Mask)
CNN 79 81 75 86 90 79 NA
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Figure 6.13 GradientExplainer applied to VGG16 model trained on § OXPHOS channels of myofibres
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True_Label: PO3 True_Label: P03 True_Label: PO3 True_Label: P03 True_Label: PO3

True_Label: Control True_Label: Control True_Label: Control True_Label: Control True_Label: Control

Figure 6.14 RGB image made by weighted stacking of input channels of PO3 and control myofibres
that had the highest 4 ASV values in figure 6.13, i.e. UQCRC2, NDUFB8, NDUFA13 and COX4+4L2.
On the top row are P03 myofibres and on the bottom row are control myofibres.

EM applied to Dystrophin channel model

It was observed in all class models that Dystrophin has high (>90%) individual predictive
accuracy. GradientExplainer was applied to a class C Dystrophin model that recorded 98.2%
accuracy as reported in Table 6.6.

Observing the SHAP values within the Dystrophin explanation mask reveal that high

intensity pixels within myofibres are associated with control myofibre class predictions.

6.5 Experiments and results (SM TS)

Another study to investigate if it is possible to classify multiplex (IMC) SM TS images
without segmentation was also conducted. The work was led by me in collaboration with
two Masters students: S. Pilla and S. Ramesh.

6.5.1 Data

The data used in this study is the same as that described in Section 6.3.1 with additional
TS multiplex IMC images from control subject ‘C04’, bringing total TS to 14 (10 patients
and 4 controls). With this limited data it was realised that class-wise (A, B, C and D) is
not possible to train DL models. It was decided a binary classification analysis would be

performed between control vs patient classes.
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Figure 6.15 GradientExplainer (left) & DeepExplainer (right) explanation masks for the VGG16
model trained on Dystrophin channel of myofibres from class C patient and controls.



160 Explainable DL Analysis to Classify Myofibre and SM Tissue

Data processing

Ten channels i.e. NDUFB8, NDUFA13, SDHA, UqCRC2, MTCO01, COX4+4L2, OSCP,
VDACI1, TOM22, Dystrophin were select and all TS muliplex images were split into 512x512
pixel patches. This resulted in 228 control class images and 721 patient class images that
were used for training and testing the models.

Experiment design

VGG16 and ResNet50 DL models were used for training using 1) all 10 channels with adapted
input layers of the models and ii) each channel individually. The data was split into 70%:
15%: 15% for training, validation and testing. A range of EMs such as Gradients [136],
DeConvNet [137], Guided Backprop [19], Deep Taylor [140], Input Gradient [131, 138],
Layer-wise Relevance propagation [138, 141] were used but due to requirements of the
use-case investigated in this thesis, as discussed in Section 6.3.2 GradientExplainer and
DeepExplainer are presented.

6.5.2 Results

DL classification of unsegmented IMC data

CNN, VGG16 and ResNet50 models were trained and top 10 results are reported in Table 6.9.
The results from CNN model were poorer than other models and so did not make it to the
table. In addition to the models mentioned in Table 6.9 a model trained on eight OXPHOS
channels that were selected to match the analysis mentioned in Section 2.6.2, recorded a test
accuracy of 98% .

The high predictive accuracy of these models prompted us to experiment/train the models
four times with different random seeds to split training, validation and test data. The mean

accuracy over these four runs still remains high as seen in Table 6.9.

Explainable methods applied to model trained on unsegmented IMC data

A number of EMs were applied as mentioned earlier, to six selected models with high
predictive accuracy, most of these were not easy to interpret as it is difficult to generate
metrics using them which are equivalent to ASV from SHAP that inform channel importance.
So, DeepExplainer and GradientExplainer were used but as these EMs produced similar
explanation masks, in this section GradientExplainer explanation masks are presented with
ASYV, applied to the VGG16 model trained on the patches of unsegmented IMC data consists
of eight OXPHOS protein channels.
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Table 6.9 Unsegmented data model ranking: models trained on various channels ordered by mean
test accuracy over 4 different training runs which were distinguished by random seeds. * Chn, TA,
RS, SD and VAR stands for Channel, Test Accuracy, Random Seed, Standard Deviation and Variance
respectively. The green cells highlights models where mean TA exceeded 90%.

Model | Chn TA(%)RS] TA(%)RS] TA(%)RS!] TA(%)RS] Mean | SD | Var
A B C D TA TA |TA
VGG16 | 10chns | 100 98.95 98.95 98.95 052 | 027
ResNet50 | UGCRC2 | 100 92.86 100 96.43 341 | 11.68
ResNet50 | NFUFA13 | 100 9286 | 92.86 | 96.43 341 | 11.68
ResNet50 | Dystrophin | 96.43 96.43 9286 | 92.86 206 | 424
ResNet50 | OSCP 92.86 | 96.43 92.86 | 92.86 178 | 3.18
ResNet50 | COX4 100 96.43 85.71 89.29 6.52 | 4253
ResNet50 | SDHA 89.29 82.14 [ 9286 | 96.43 6.10 | 37.22
ResNet50 | NDUFBS | 85.71 85.71 92.86 85.71 8749 [357 | 1278
ResNet50 | VDACT | 85.71 78.57 89.29 85.71 84.82 | 449 |20.20
ResNet50 | TOM22 | 71.43 85.71 89.29 85.71 83.03 | 791 | 62.70
ResNet50 | MTCOI | 67.86 82.14 |75 9286 | 79.46 | 10.66 | 113.73

ASYV values were used to identify the channel importance/attribution and pixel colours in
the explanation masks represent SHAP values. As seen in Figure 6.16 explanation masks for
the model report the high ASV values for channels NDUFBS8, OSCP, UqCRC2 and SDHA.
Unlike a clean trend of negative correlation of SHAP values between the two binary classes
that exist in the analysis of segmented myofibre, in unsegmented TS images it is difficult
to find such trends. As seen in Figure 6.16 the SHAP values looks similarly spread in both
the explanation masks representing patient and control TS patch. This makes extraction of
insights from these explanation masks difficult.

6.6 Discussions

6.6.1 DL models classification

The predictive accuracy of DL models for all five cases i.e. Class A, B, C & D, and P03
ranged from 98% for P03 to 100% for class A myofibres. This surpasses both the ML
analysis performed in Chapter 3 which ranged from 93% to 100%, and analysis conducted
using existing tools discussed in Section 2.6.2 which had classification accuracy exceeding
90% for one of the five cases mentioned above. It is clear that DL models are leveraging
some differential features that are available in the raw multiplex data which is accessible to
these models because of their convolution architecture that allows these models to detect

beyond linear relationships. The high predictive accuracy of these models make these eligible
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Figure 6.16 GradientExplainer applied to VGG16 model trained on 10 channels of myofibres from
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candidates to apply EMs that can reveal the basis of predictions of these models, that can be
used to derive predictive inferences and validate that they are giving the right answer for the

right reason.

Individual channel models Across all five cases it is observed that models trained on
individual channels related to myofibre morphology i.e. Dystrophin (myofibre membrane
marker), TOM22 and VDACI (both surrogates for myofibre mass) recorded high predictive
accuracy relative to other channels, the highest model trained to predict class C myofibres
using only Dystrophin achieved predictive accuracy of 98.2%. The use of myocytoML for
segmentation results in ‘analysable’ myofibres that should be of uniform quality that limits
morphological artifacts creeping in due to user bias. Nevertheless this is an interesting
finding.

6.6.2 EM to profile myofibres

It is clear the EMs selected i.e. GradientExplainer and DeepExplainer are useful and
faithful, as evidenced by the similarity of explanation masks produce by these two EMs.
These explanation masks revealed the ‘proportional’ importance of each channel in terms of
ASV towards a class prediction, and SHAP value of pixels revealed the trend linking pixel
intensities to class predictions. This allowed in some cases, e.g. class C, identification of
spatial features within myofibre that are important for model prediction. The channel-wise
importance identified using ASV was useful in profiling four out five cases of myofibres
analysed in this thesis. These profiles constructed by combining the four channels with
highest ASV into a weighted RGB image is a useful finding. This essentially allows us to
define a class of myofibre in terms of a threshold range (of colour) that is composed of a
combination of thresholds of associated channels. It should be noted that this is not a unique
solution i.e. there may be many other associations between channels that might produce
similar differential colour thresholds. When compared to explanations derived in chapter
3 the explanations derived using DL models and myofibre images divulge inter myofibre
features’ associations with mutations.

EM on Dystrophin model The application of GradientExplainer to the class C VGG16
model trained only with Dystrophin reveals that the differential feature leveraged by the
models seems to be the relatively elevated presence of Dystrophin within myofibre in control
class myofibres than class C myofibres. Dystrophin is usually present in the membrane,
the elevated presence of Dystrophin inside the myofibre is an interesting finding that might

be linked to differences in processing tissue from controls and class C patients. It is noted
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that due to scarcity of control tissue, it undergoes relatively more rounds of freeze/thaw
than patients as it is used as control in many studies. This might introduce some artefactual
spreading of Dystrophin, however this is a hypothesis that needs a separate experimental

validation.

Validation of predictive inference insights The main purpose of the explainable DL
pipeline developed in this chapter is to discover novel spatial and channel-wise associations
that can help understand mitochondrial disease pathology. To this end, the pipeline discovers
various associations that are presented as predictive inference insights. These insights are
essentially the differential patterns in the data that the DL models are leveraging to classify
myofibres with good accuracy i.e. >98% across all classes. But these differential patterns
can be novel or artefactual associations, and differentiating these requires some validation
methods. Biological validation is used to substantiate the predictive inference insights i.e. by
comparing these insights to the biologically expected associations/patterns. For this, a class
A mutations myofibre case is useful as this class is relatively better understood and provides
well defined expected biological patterns. These expected patterns such as downregulation of
complex I proteins and compensatory upregulation of complex II-V in class A myofibres
have been used to validate the derived class A predictive inference insights. All the insights
discovered by explainable DL pipeline for class A myofibres are in line with the biological
expectations as discussed in Section 6.4.2. However, for other classes where the pathology
is poorly understood, validating the predictive insights requires designing and conducting

biomedical experiments which is out of the scope of this thesis.

6.6.3 Unsegmented SM multiplex image classification

The high predictive accuracy attained by models trained on unsegmented patches of multiplex
TS is interesting, especially with single-protein models such as UQCRC2, as there are no
biologically known associations for classifying these myofibres. This implies there exist
unknown differential features that models are exploiting to predict the class of the patch.
However, applying EMs to these models does not reveal many useful predictive insights due
to complex explanation masks that point to various combinations of SHAP values for pixels
within both classes of SM TS image patches.

6.6.4 Limitations of explainable DL analysis

Data The studies conducted in this chapter have used small cohort of subjects with some

classes’ models trained with less than 400 myofibres from two subjects. This makes the
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analysis vulnerable to subject specific biases. The dataset must be representative of the
population. All tissue used in this analysis was processed and imaged at WCMR which

exposes it to acquisition of process/machine related artifacts.

Explainable methods The EMs used here essentially show difference from reference. If
the reference is not representative of reality then the explanation produced will be flawed.
For reference data, a class balanced training dataset was used but with a small dataset it is
difficult to guarantee that the reference is representative of reality. The predictive inference
was built here by studying small number of myofibres from test data. It should be noted
the explanations are locally accurate of the myofibre studied and should not be conflated
to represent a typical class of myofibre. It should also be noted that explanation masks are
a way to understand model predictions, the predictive insights from these is based on the
associations the model used to produce this prediction. This again should not be conflated as

evidence of biological associations.

Flawed binary class design of unsegmented IMC data Due to scarcity of images the
analysis conducted in the study used unsegmented IMC data for controls vs patients which is

not based on biological curiosity.

Limited insights from models trained with unsegmented IMC data The best scenario
expectation for this study was explanation masks that reveal dysfunction myofibres within
TS. But the explanation masks are hard to interpret and do not lead to derivation of predictive
insights.

6.6.5 Scope for improvements and future work

In this thesis a small number of DL models and EM techniques were leveraged to build
myofibre profiles. This by no means reveals all possible associations. The current pipeline
is script based which may deter biomedical domain users. The actual usefulness of these
methods can be fully exploited by the domain users. To enable domain users to leverage DL
for finding association this needed to be built as a tool installed on a server with appropriate
GPUs.

In this thesis there was no research done on development of methods for validation of the
association found using explainable DL/ML pipelines. Similar to significance testing in
statistics, there is a need for validation testing specific to predictive insights built using

explainable DL.
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6.7 Conclusion

This chapter describes the process of building an explainable DL pipeline that has predictive
accuracy exceeding 98% across all five myofibre mutation cases. This DL classification
pipeline is also applied to unsegmented SM TS images that produce 99% accuracy but for
control vs all patients classification. To interrogate these highly accurate predictive DL
models various EMs were tried but GradientExplainer and DeepExplainer were selected
because these provide both the association between OXPHOS proteins and mutation class
explained in terms of correlation (positive/negative) of protein markers toward prediction,
and the relative importance/contribution of each of these protein markers quantified. These
EMs generated explanation masks that are used to profile myofibres in four out of the five
cases studied in this chapter. The utility and limitation of this explainable DL pipeline in the

context of discovering mitochondrial disease pathology are also discussed.



Chapter 7

Final Discussion

Mitochondrial diseases are metabolic genetic disorders that can cause severe disabilities and
adversely affect the life expectancy of patients [35], their affects are pronounced in high
energy demanding cells such as myofibres in the SM tissue. Mitochondrial diseases are
currently untreatable due to limited understanding of their pathology which is complex and
highly heterogeneous in presentation. One way of studying these diseases is by profiling
the affected cells (myofibres) in terms of levels of OXPHOS proteins within the myofibre.
IMC allows observation of selected OXPHOS protein markers by imaging the SM tissue as
multiplex image data. The analysis of this multiplex data can potentially allow classification
and profiling of myofibres affected by mitochondrial disease causing genetic mutations.
With previous techniques classification of only one group of genetic mutations was possible,
out of the five that were studied. This is due to limitations of the previous techniques
that includes: i) inability to analyse (classify) high dimensional multiplex data without
employing dimensionality reduction, which essentially ignores features in the dimensions
were the reduction is applied; i1) imprecise segmentation of myofibres within the multiplex
image data, myofibre segmentation is the fundamental first step upon which the reliability
of any analysis conducted depends and this also limits validation of theories such as the
existence of differential features in perinuclear regions within myofibre, that require precise
myofibre segmentation. The work undertaken in this thesis addresses these limitations with

the contributions discussed in the following section.



168 Final Discussion

7.1 Main contributions of this thesis

7.1.1 NCL-SM

NCL-SM, a fully manually segmented dataset of more than 50k myofibres, is developed as
part of this thesis. It is a useful resource for developing and evaluating any tool or pipeline
that deals with segmentation of SM tissue images, as evident in subsequent development of
myocytoML. To the best of my knowledge there is no public dataset of precisely segmented
SM TS images, the related dataset such as TissueNet [179] which consists of various tissue
segmentation data does not contain annotations required of the use case studied in this thesis.
Furthermore, models such as Cellpose trained with just TissueNet produced the segmentation
quality that was subpar to Cellpose trained with NCL-SM as presented in Table 5.3.

NCL-SM is not just a dataset, it also describes the issues that must be addressed for
reliable myofibre segmentation. It prescribes protocols to filter ’analysable’ myofibres, by
identifying and removing FAMs, NTMs and FRs from the SM tissue image. It defines the
evaluations metrics such as (r4,p),(r4;p) that are specific to the task of single-cell SM tissue
image segmentation and curation of ‘analysable’ myofibres.

It also provides a benchmark duplicate manual annotations to evaluate against. This
highlights the level of subjectivity involved in various parts of the annotation process with
some tasks such as FR segmentation experiencing a high level of IAV. This helps any
developers of new SM segmentation tools to set the expectation and remedies for subjectivity
in the annotation process.

NCL-SM is a useful resource but its main limitation is its limited diversity, i.e. it consists
of only frozen tissue, from dozens of patients suffering mainly from mitochondrial disease
and a wider variety of other neuromuscular disorders, all of whose biopsies were processed
in Newcastle. To be more representative NCL-SM should be expanded to include precisely

annotated SM tissue images of fixed tissue, from other institutes or centres around the world.

7.1.2 myocytoML

myocytoML is single-cell SM tissue image segmentation pipeline that produces the seg-
mentation and curation of myofibres that virtually meets the quality achieved by the ‘gold
standard’ duplicate manual annotations, as described in Section 5.5. It was developed by
recognising the subjectivity that exists in various tasks of SM tissue image segmentation, it
addresses this by providing a flexible GUI that allows users to amend all produced masks
with ease and speed. The annotation masks produced by myocytoML are accompanied by

evaluation metrics that informs the user about the quality of annotations produced. Other
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related methods for single-cell segmentation such as MiCAT [77], Steinbock [78], gener-
alised such as cellprofiler [83], DeepCell [88], mitocyto [1] do not address the four CV tasks
i.e. myofibre segmentation, NTM classification, FAM classification and FR classification,
required for SM tissue image analysis. Furthermore these methods also lack the precising of
myofibre segmentation compared to one achieved using myocytoML as discussed in Section
5.5.

myocytoML is a useful tool which is already being used in WCMR, nonetheless, it is a
prototype that has limitations. The code of myocytoML is not optimised, this results in large
IMC images taking up to 45 minutes to be processed. The installation process of myocytoML

can be improved by packaging it as a Napari plugin.

7.1.3 Explainable machine learning analysis of multiplex image data:
raw segmented myofibre images; statistical summaries per

myofibre

Explainable methods applied to ML and DL models are potent tools to classify and profile
myofibres, evident in the research conducted in Chapters 3 and 6. The classification accuracy
exceeds 98% across all cases studied using DL on raw segmented multiplex images and
93% for the same using ML on per myofibre statistical summaries. These are substantial
improvements in accuracy compared to the previous method, i.e. plotIMC for which classi-
fication accuracy did not exceed 90% for most cases studied. But more importantly these
models with high predictive accuracy make them eligible to apply EMs to know their basis
of predictions, i.e. there is no point in interrogating an inaccurate model. EMs applied
to both ML models trained on per myofibre statistical summaries and DL models trained
on raw segmented myofibre images provide predictive inferences which were insightful
in profiling myofibres linked to the five cases of genetic mutation studied. EMs based on
Shapley values were used as these quantify the contribution of each input feature towards
model prediction, this helps ascertain relative importance in both directions i.e. spatially
in terms of pixels; channel-wise in terms of OXPHOS proteins. It needs to be emphasised
that only a broad case explainable DL was carried out in this thesis, where a high predictive
accuracy model trained with selected protein markers of interest is interrogated mainly to
understand associations between these proteins and the predicted class, which was further
extended to profile myofibres. But there exist many niche and biologically curious use cases
of this approach such as constraining the input to small areas within myofibre e.g. perinuclear
region and equal area non-perinuclear region, looking for associations between channels, and

relative importance of these small areas towards class predictions.
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In four out of five cases studied it was possible to profile myofibres in terms of weighted
RGB images made by combining the channels with the highest four ASV scores. In these four
cases a clear differential colour threshold that can classify classes of myofibre was observed.
This threshold can be decomposed in to threshold combinations of the protein markers.
When EMs were applied to ML models trained on per myofibre statistical summaries,
this revealed the associations between protein markers in SHAP plots. These plots were
generated using whole training data and in a sense give a picture of associations across
the samples used in training. The combination of explanation masks from DL models that
allows observation of individual myofibres and SHAP plots from ML models that allow
observation of associations across the population of myofibres, is an informative approach in
understanding the association spatially and channel-wise, that can be helpful in understanding

the mitochondrial disease pathology in the SM tissue.

While this approach of using EMs has been useful in profiling myofibres in the use
cases investigated in this thesis, there are factors that need to be considered. That is, i) the
explanations provided by this methods are the association that the ML/DL model is using for
accurate predictions, this should not be conflated as biological discovery of this association,
i1) the explanations distilled using the approach developed in this thesis are not exhaustive
i.e. they pick the most prevalent associations but not all associations the model is using, so
the association discovered should not be misunderstood for this to be the unique solution of

associations used by the model.

The validation of predictive inference insights were carried out by comparing the insights
from explainable ML/DL pipelines to biologically expected associations/patterns. For this,
class A myofibres were instrumental, as this class is relatively better understood and provides
well defined expected biological patterns for class A myofibres. Comparing the class A
predictive insights to biologically expected patterns showed that all insights were in accord
with the expected biological associations. But for other classes of mutations for which the
pathology is not fully understood, performing such validation is not possible, in these cases
the validation requires some sort of biomedical experiments, which require resources and

time that might not always be feasible.

The main limitation of this approach is differentiating the novel insights from artefactual
insights. ML/DL models are powerful classifiers that try to exploit any available differential
pattern in the training data. Especially when the data is high dimensional multiplex images,
these patterns can be complex such as a differential feature that is a complex combination of
spatial and channel-wise associations. Distilling and decomposing such complex patterns
using the explainable ML/DL approach introduced in this thesis require analysis of many

individual myofibre cases and building an evidence base hypothesis using biological experi-
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mentation. This is time consuming and there may be cases where experimental validation is

not possible.

7.2 Future work

7.2.1 myocytoML

As discussed earlier myocytoML is a useful tool that is already being used but it is a prototype.
To allow it to be used across the SM image analysis domain it needs to packaged as a Napari
plugin. Its design is uniquely suited to be built as a continuous learning platform, i.e.
its flexibility where it allows users to amend masks can be leveraged to improve model
performance and over time improve the IAV across all four CV tasks. To build myocytoML
as a continuous learning platform it needs be resourced with appropriate compute (GPU) and
web GUL

7.2.2 A unified pipeline for multiplex biomedical data

To democratise the use of Al for biomedical discoveries there is a need for a unified pipeline
for multiplex biomedical data with appropriate user inference that appeals to the domain
users, i.e. biomedical scientists. Specific to the use case studied in this thesis, this will
be a combination of myocytoML for segmentation, curation and extraction per myofibre
summaries; explainable ML/DL to find spatial and channel-wise associations and to profile
myofibres; and traditional statistical analysis tools such as plotIMC, imcRTools. This can be
built upon existing applications such as Napari and designed to leverage GPUs. From the
experience conducted in this research it was observed that with typical GPUs used in this
research such as NVIDIA Tesla V100 (16GB) it takes hours and days for some models to be
trained. This needs to be addressed or mitigated by optimising code, employing high end
GPUs or design adjustments such that different tasks are executed in parallel.

7.2.3 Validation methods for associations discovered using explainable
ML

There are no validation methods specific to the associations discovered using EMs. The
standard significance testing or randomised control trial-A/B testing are dependent on strength
of observations used, i.e. subjects. For the studies in this thesis that used only 13 subjects
across four classes with some classes represented by two subjects, this is not an appropriate

validation test.
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The purpose of validation tests for the studies discussed in this thesis is to 1) differentiate
between novel insights and artefactual insights. Artefactual insights are usually the result of
artifacts in the data that discriminately affect classes, but it can also be due to nuances in the
ML/DL models and explainable methods. The required validation method needs to address
the detection of artefactual insights by assigning a confidence score for each predictive insight
that takes into account all sources from where artifacts can creep in. ii) Inform the strength
of the predictive insight in terms of number of observations that back it up across the whole
of the training data. This is an open research question that requires more research and the

results of this can benefit MLL/DL applications across all domains.

7.3 Conclusion

The research conducted in this thesis introduced a novel approach for understanding mi-
tochondrial disease pathology. The explainable ML/DL analysis of SM tissue images to
discover mitochondrial disease pathology has introduced a paradigm shift in the approach
to understanding mitochondrial disease pathology using artificial intelligence models. The
tremendous potential of ML/DL models in resolving various tasks that help with analysis of
SM tissues for understanding their pathology is evident throughout this thesis. This includes
addressing the limitations with previous methods, i.e. imprecise segmentation of myofibres
within the multiplex image data that affects the reliability of downstream analysis; inability to
analyse (classify) high dimensional multiplex data without employing dimensionality reduc-
tion. The development of myocytoML allows biomedical scientists to precisely segment and
curate myofibres in multiplex SM tissue images. The segmentation quality achieved using
myocytoML is close to human-level. Moreover, it provides a convenient GUI that allows
users to amend masks. As part of this, NCL-SM, a large dataset of precisely segmented
SM tissue images, is released for public use. This benchmark dataset lays foundations for
evaluation and training of future myofibre segmentation pipelines. The explainable DL/ML
pipelines developed in this thesis were able to classify mutation classes of myofibres, discover
associations and profile myofibres using the high dimensional multiplex image data. This is
a exciting new approach that opens a multitude of opportunities not just for mitochondrial

disease pathology but for biomedical discoveries at large.
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.1 Predictive inference tables from Chapter 3

Table 1 Insights from explainable LR model trained for class A vs control prediction

Input fea-

ture

SHAP magnitude
and direction

SHAP
prevalence

values

Predictive power

Control | Pa-
tients (mean
& STD val-

ues)
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COX4+4L2 | On global model | As observed in | 90.52(COX4+4L2); | 7.46 & 5.66 |
level COX4+4L2 | figure 3.7 C it | 94.03(COX4+4L2 | 39.63 & 17.1
has the greatest | has  moderately | with VDACI)
magnitude of | long tails in both
all, as seen in | directions  with
figure 3.7 B. And | higher density on
the direction of | both extremes.
correlation  with | This implies for
SHAP values is | a majority of
positive as seen | predictions its
in figure 3.7 C, | SHAP values
this implies higher | (both positive &

COX4+4L2 values | negative) was a
mostly result in | major contributor
positive SHAP | towards model
values which | making a predic-
inturn push the | tion. This is further
prediction towards | evident in figure
positive (class A) | 3.7 A as darker
class. (higher) positive
& negative SHAP
values relative
to other features
over most of 852
training instances.

SDHA The contribution | As observed in | 92.28(SDHA); 5.04 & 2.99 |
of SDHA towards | the 3.7 C & A | 96.14(SDHA with | 23.54 & 8.27
model prediction | again it has similar | VDACI)
is very similar | SHAP values
to COX4+4L2 in | prevalence pattern
all respects albeit | to COX4+4L2
slightly  reduced
in magnitude as
observer in figure
3.7B,C, A.
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OSCP The contribution | As observed in fig- | 89.82(OSCP); 342 & 2.22 |
of OSCP towards | ure 3.7 C & A | 93.68(OSCP with | 15.35 & 5.90
model predic- | again it has sim- | VDACI)
tions is similar | ilar SHAP values
to COX4+4L2 | prevalence pattern
& SDHA in all | to COX4+4L2 &
respects albeit | SDHA
reduced in magni-
tude as observer in
figure 3.7 B, C &
A.

NDUFA13 | The global level | As observed in | 79.65 (NDUFA13); | 3.00 & 1.75
contribution  of | figure 3.7 C it has | 98.95(NDUFA13 11.7 & 0.25
NDUFA13 to- | a high density of | with VDACI

wards the model
prediction is the
4th highest out of
the 8 features as
seen in figure 3.7
B. And as seen in
figure 3.7 C the
direction of corre-
lation with SHAP
values is negative,
this implies higher
NDUFA13 values
mostly result in

SHAP
which in
the
prediction towards

negative
values
turn  push
negative (control)

class.

SHAP values that
are marginally
greater than zero
but a very long
left tail. Which
implies for most
predictions its
contribution to
model prediction
is not the most con-
sequential but for
some predictions
higher values of
NDUFA13 lead
to a very high
SHAP

that are

negative
values,

very consequential
towards predicting
them as negative
(control) class,
as evident in the

figure 3.8 A.
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NDUFBS8 The contribution of | As observed in fig- | 92.28 (NDUFBS); | 2.94
NDUFBS8 towards | ure 3.7C & Aithas | 100 (NDUFB8 with | &1.6711.22 &
model prediction | similar SHAP val- | VDACI) 0.06
is very similar | ues prevalence pat-
to NDUFA13 in | tern to NDUFA13.
all respects albeit
slightly  reduced
in magnitude as
observer in figure
37B,C&A.

UqCRC2 As observed in | As observed in | 92.28 (UqCRC2); | 438 & 3.01
figure 3.7 B, C & | the figure 3.7 C | 94.03  (UqCRC2 | 121.96 & 8.53
A, its contributions | the highest density | with VDAC1)
towards the model | of SHAP values
predictions  are | of UqCRC2 is
modest and slight | marginally  less
positively  corre- | than zero and no
lated to SHAP | extreme  values,
values which implies for

all predictions
its  contribution
towards model
prediction is not
consequential.

MTCOIl As observed in | As observed in | 88.07 (MTCO1); | 1.97 & 0.88 |
figure 3.7 B, C & | figure 3.7 C, the | 90.88 (MTCOI1 with | 5.68 & 2.32
A, its contributions | highest  density | VDAC1)
towards the model | of SHAP values
predictions are | for MTCO1 is
very modest. marginally greater

than zero and no
extreme  values
which implies for
all predictions
its  contribution
towards model
prediction is not
consequential.
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VDACI1

As observed in
figures 3.7 B, C &
A, its contributions
towards the model
predictions  are

very modest.

As observed in
the figure 3.7 C,
the highest density
of SHAP values
for VDACI is
near zero with no
extreme  values
which implies for
all predictions
its  contribution
towards model
prediction is not

consequential.

79.65 (VDACI)

345 & 1.24 |
1.86 & 0.68

Table 2 Insights from explainable XGB model trained for class A vs control prediction

Input fea-

ture

SHAP magnitude
and direction

SHAP
prevalence

values

Predictive power

Control | Pa-
tients (mean
& STD

ues)

val-




178

NDUFBS

The contribution of
NDUFBS towards
model prediction
has the greatest
magnitude of all,
as seen in the
figure 3.9 B. And
the direction of
correlation  with
SHAP
negative as seen
in figure 3.9 C,
this implies higher
NDUFBS8 values
mostly result in
SHAP

values which in

values is

negative
turn push the
prediction towards
negative (control)
vice

class and

versa.

As observed in
figure 3.9 C it has
very long tails in
both
with higher density

directions

on both extremes.

This implies for

a majority of

predictions its
SHAP values
(both positive

& negative) was
major contributor
model

This
is further evident
in figure 39 A:
as darker (higher)

towards

predictions.

positive & negative
SHAP

relative to other

values

features over most
of the

instances.

training

Also
evident in figures
figure 3.10 A & B.

75.15 (NDUFBS)
:99.65(NDUFBS
with VDACI)

2.94
&1.6711.22 &
0.06
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SDHA

The contribution
of SDHA towards
model prediction
has the
greatest magnitude

second

of all but consider-
ably smaller than
NDUFBS, as seen
in the figure 3.9
B. The direction
of correlation with
SHAP
positive as seen in
the figure 3.9 C.

values is

As observed in

the figure 3.9 B.

The direction of
correlation ~ with
SHAP
positive as seen in
the figure 3.9 C it

has very long tails

values is

in both directions
with higher density

on right extreme.

This implies for
a majority of
predictions its
SHAP
(both positive &

negative but more

values

SO positive) was a
major contributor
model

This

is further evident

towards

predictions.
in the figure
3.9 A as darker
(higher) positive
& negative SHAP
values relative to
all other features
except NDUFBS
over most of the

instances.

74.12 (SDHA);
96.14 (SDHA with
VDACI)

5.04 & 2.99 |
23.54 & 8.27
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towards model
prediction is sim-
NDUFBS

respects

ilar to
in all
albeit reduced
in magnitude as
observed in the
figure 3.9 B, C &

A.

& A NDUFAI3
has slightly similar
SHAP value preva-
lence to NDUFBS8
but its densities
are much closer
toward zero this

implies it has mod-

est  contribution
compare to the
top 2 features

towards the model

predictions.

COX4+4L2 | Asobservedinthe | As observed in | 74.74 (COX4+4L2); | 7.46 & 5.66 |
figure 3.9 B, C | the figure 3.9 C,| 96.84 (COX4+4L2 | 39.63 & 17.1
& A, COX4+4L2 | the highest density | with VDACI)
contributions of SHAP values
towards the model | of COX4+4L2
predictions are | is around zero
modest and slight | and there are not
positively  corre- | many extreme
lated to SHAP | values, which
values implies for most
predictions its
contribution was
not consequential.
NDUFA13 | The contribution | As observed in | 72.88 (NDUFA13); | 3.00 & 1.75
of NDUFA13 | the figure 3.9 C | 99.65(NDUFA13) 1.7 & 0.25
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UqCRC2 As observed in the | As observed in | 74.32 (UqCRC2); | 438 & 3.01
figure 3.9 B, C & | the figure 3.9 C, | 99.65 (UqCRC2 | 121.96 & 8.53
A, its contributions | the highest density | with VDACI)
towards the model | of SHAP values
predictions  are | of UqCRC2 is
modest and slight | around zero and
positively  corre- | not many extreme
lated to SHAP | values, which
values. implies for most

predictions its
contribution was
not consequential.

OSCP As observed in the | As observed in | 78.05(OSCP); 342 & 2.22 |
figure 3.9 B, C | the figure 3.9 | 96.50(with VDAC1) | 15.35 & 5.90
& A, its contribu- | C, the highest
tions towards the | density of SHAP
model predictions | values for OSCP is
are very modest. around zero with

no extreme values,
which implies
its  contribution
towards model
predictions is not
consequential.

VDACI As observed inthe | As observed in | 76.60 (VDACI1) 345 & 1.24 |
figure 39 B, C | the figure 3.9 C, 1.86 & 0.68
& A, its contribu- | the highest density
tions towards the | of SHAP values
model predictions | for VDACI1 is
are very modest. around zero with

no extreme values
which implies
its  contribution
towards model
predictions is not
consequential.




182

MTCO1

As observed in the
figure 39 B, C
& A, its contribu-
tions towards the
model predictions

are very modest.

As observed in
the figure 3.9 C,
the highest density
of SHAP
MTCOL1 is

around zero and

values

for

no extreme values
which

its contribution

implies
towards model
predictions is not

consequential.

74.53 (MTCOLl);
91.93 MTCOI1 with
VDACI)

1.97 & 0.88 |
5.68 & 2.32

Table 3 Insights from explainable LR model trained for class B vs control prediction

Input fea-
ture

SHAP magnitude
and direction

SHAP
prevalence

values

Predictive power

Control | Pa-
tients (mean
& STD
ues)

val-
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UqCRC2 UqCRC2 has the | Asobservedinthe | 63.41 (UqCRC2) | 4.38 & 3.01 |
greatest mean | figure 3.12 (C) it | ; 69.90(UqCRC2 | 7.83 & 4.53
SHAP values over | has very long tails | with VDACI)

all predictions as
seen in the figure
3.12 (B). As seen
in the figure 3.12
(C) its direction of

correlation  with
SHAP values is
positive.

in both directions
with higher density
around zero. This
implies for a good
proportion of pre-
dictions its SHAP
values made mod-
est contribution to-
wards model pre-
dictions but very
long and thick tails
implies for another
good number of
predictions its con-
tribution were con-
sequential for both
This is
further evident in
the figure 3.12 (A)
as there exist mix
of darker (higher)
and lighter(lower)
SHAP values.

classes .
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roughly  inverse
to COX4+4L2 in
direction but with
reduced magnitude
as seen in figures

3.12 (B) & (C).

(A) it has roughly
similar prevalence
SHAP values pat-
tern to COX4+4L.2
but in reverse. The
inverse relation-
ship can also be
observed in the

figure 3.13 (B).

VDACI)

COX4+4L2 | The contribution | As observed in fig- | 58.62 (COX4+4L2); | 7.46 & 5.66 |
of  COX4+4L2 | ures 3.12 (C) & | 59.22 (COX4+4L2 | 11.66 & 7.25
towards model | (A) it has simi- | with VDACI)
prediction has the | lar SHAP values
second  greatest | prevalence pattern
magnitude of all as | to UqCRC2 but
seen in the figure | with reduced mag-

3.12 (B). And | nitude.
the direction of
correlation  with
SHAP wvalues is
positive as seen in
the figure 3.12 (C).

MTCOI1 The contribution | As observed in | 51.15 (MTCO1); | 1.97 & 0.88 |

of MTCO1 is | figures 3.12 (C) & | 50.05 MTCO1 with | 2.20 & 0.83
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NDUFA13 | The contribution | As observed in | 57.03 (NDUFA13); | 3.00 & 1.75 |
of NDUFA13 is | figures 3.12 (C) | 53.54(NDUFA13) 293 & 1.75
similar to MTCOI1 | & (A) it has long
in direction but | left tail and higher
with reduced | density around
magnitude. zero, this implies

for majority of
predictions its
contributions were
not great but for
some negative
(control) it has
consequential con-
tribution towards
model predictions.

NDUFBS The contribution of | As observed in fig- | 61.81(NDUFBS); 294 &1.671
NDUFBS is simi- | ures 3.12(C) & (A) | 64.31 (NDUFBS8 | 2.50 & 1.41
lar to NDUFA13 | it has similar preva- | with VDAC1)
in both magnitude | lence SHAP val-
and direction. ues pattern to ND-

UFA13

SDHA As observed in fig- | As observed in | 53.04(SDHA); 5.04 & 2.99 |
ures 3.12 (B), (C) | the figure 3.12 | 55.53(SDHA with | 8.64 &6.41
& (A), its contri- | (C), the highest | VDAC1)
butions towards the | density of SHAP
model predictions | values for SDHA
are very modest. is around zero and

no extreme values
which implies
its  contribution
towards model
prediction is not
consequential.
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butions towards the
model predictions

are very modest.

density of SHAP
values for VDAC1
is around zero and
no extreme values
which

its contribution

implies
towards model
prediction is not

consequential.

OSCP As observed in fig- | As observed in | 52.34 (OSCP); | 3.42 & 2.22 |
ures 3.12 (B), (C) | the figure 3.12 | 55.83 (OSCP with | 5.88 & 3.23
& (A), its contri- | (C), the highest | VDAC1)
butions towards the | density of SHAP
model predictions | values for OSCP
are very modest. is around zero and
no extreme values
which implies
its  contribution
towards model
prediction is not
consequential.
VDACI1 As observed in fig- | As observed in | 49.85 (VDACI) 345 & 1.24 |
ures 3.12 (B), (C) | the figure 3.12 2.15&0.75
& (A), its contri- | (C), the highest

Table 4 Insights from explainable XGB model trained for class B vs control predictions

Input fea-

ture

SHAP magnitude
and direction

SHAP
prevalence

values

Predictive power

Control | Pa-
tients (mean
& STD val-

ues)
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UqCRC2 UqCRC2 has the | As observed in | 63.41 (UqCRC2) | 4.38 & 3.01 |
greatest mean | the figure 3.14 (C) | ; 69.90(UqCRC2 | 7.83 & 4.53
SHAP value over | it has long tails | with VDACI)

all predictions as
seen in the figure
3.14 (B). As seen
in the figure 3.14
(C) its direction of

correlation  with
SHAP values is
positive.

but longer still on
left with higher
density
[0-4]. This implies
for a

around

majority
of predictions
its SHAP values
made decent con-
tribution towards
model predictions
but very long left
tail implies for
a good number
of predictions its
contribution were
consequential for
negative (control)
class . This is
further evident
in the figure 3.14
(A) as there exist
(higher)

values

darker
SHAP
compare to other

features.
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NDUFBS8 NDUFBS8 has sec- | As observed in the | 63.41 (NDUFBS) | 294 &1.67I
ond biggest mean | figure 3.14 (C) it | ; 69.90(NDUFB8 | 2.50 & 1.41
SHAP value over | has it a moderate | with VDACI)
all predictions as | tails with highest
seen in the fig-| density around [0-
ure 3.14 (B). As | 5] & -2. This
seen in the figure | implies its contri-

3.14 (C) its direc- | butions for predict-

tion of correlation | ing positive (class

with SHAP values | B) class were de-

is negative. cent but had mod-
erate contributions
toward predicting
negative (control)
class.

COX4+4L2 | COX4+4L2 has | As observed in | 63.41 (COX4+4L2) | 7.46 & 5.66 |
third biggest mean | the figure 3.14 | ; 69.90(COX4+4L2 | 11.66 & 7.25
SHAP value over | (C) it has similar | with VDACI)
all predictions as | SHAP value preva-
seen in the figure | lence patterns to
3.14 (B). As seen | NDUB8 but in
in the figure 3.14 | reverse.

(C) its direction
with SHAP values
is positive.

NDUFA13 | NDUFA13  has | As observed in | 63.41 (NDUFA13) | 3.00 & 1.75 |
same correlation | the figure 3.14 | ; 69.90(NDUFA13 | 2.93 & 1.75
with SHAP values | (C) it has simi- | with VDACI)
as NDUFBS. lar SHAP value

prevalence  pat-
terns to NDUBS8
with reduced
magnitude.
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MTCOl1 The contribution | As observed in | 63.41 (MTCO1) ;| 1.97 & 0.88 |
of MTCO1 is | figures 3.14 (C) | 69.90(MTCO1 with | 2.20 & 0.83
roughly inverse | & (A) it has | VDACI)
to COX4+4L2 in | roughly  similar
direction but with | prevalence SHAP
reduced magnitude | values pattern to
as seen in figures | COX4+4L2 but in
3.14(B) & (O). reverse, except it

has a longer left
tail. This implies it
affected the model
decision more
consequentially
for some negative
(control) class.

VDACI1 As observed in fig- | As observed in | 63.41 (VDACI) 345 & 1.24 |
ures 3.14 (B), (C) | the figure 3.14 2.15&0.75
& (A), its contri- | (C), the highest
butions towards the | density of SHAP
model predictions | values for VDACI1
are very modest. is around zero and

no extreme values
which implies
its  contribution
towards model
prediction is not
consequential.
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butions towards the
model predictions

are very modest.

density of SHAP
values for OSCP
is around zero and
no extreme values
which

its contribution

implies
towards model
prediction is not

consequential.

SDHA As observed in fig- | As observed in | 63.41 (SDHA) ;| 5.04 & 2.99 |
ures 3.14 (B), (C) | the figure 3.14 | 69.90(SDHA with | 8.64 &6.41
& (A), its contri- | (C), the highest | VDAC1)
butions towards the | density of SHAP
model predictions | values for SDHA
are very modest. is around zero and
no extreme values
which implies
its  contribution
towards model
prediction is not
consequential.
OSCP As observed in fig- | As observed in | 63.41 (OSCP) ;| 342 & 2.22 |
ures 3.14 (B), (C) | the figure 3.14 | 69.90(OSCP with | 5.88 & 3.23
& (A), its contri- | (C), the highest | VDACI)

Table 5 Insights from explainable LR model trained for class C vs control prediction

Input fea-

ture

SHAP magnitude
and direction

SHAP
prevalence

values

Predictive power

Control | Pa-
tients (mean
& STD val-

ues)
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COX4+4L2 | COX4+4L2 has | Asobserved in the | 44.31(COX4+4L2) | 7.46 & 5.66 |
the greatest mean | figure 3.17 (C) it | ;65.60(COX4+4L2 | 8.42 & 6.47
SHAP values over | has very long tails | with VDACI)

all predictions as
seen in the figure
3.17 (B). As seen
in the figure 3.17
(C) its direction of

correlation  with
SHAP values is
positive.

in both directions
with higher density
around -0.2. This
implies for a
good proportion
of predictions
its SHAP values
made average con-
tribution towards
model predictions
but very long tails
especially  right
one, implies for
some predictions
its  contribution
were consequential
for both classes
but more so for
positive (class C)
class . This is fur-
ther evident in the
figure 3.17 (A)as
there exist mix of
(higher)
and lighter(lower)
SHAP values.

darker
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SDHA The contribution | As observed in | 71.9(SDHA) ;1 5.04 & 2.99
of SDHA towards | the figure 3.17 | 71.23(SDHA with | 118.30 & 14.82
model prediction | (C)it has long left | VDACI1)
has the second | tail with higher
greatest magnitude | density around 0.2.
of all but smaller | This implies for
than COX4+4L2, | most prediction its
as seen in the | contributions were
figure 3.17(B). | average especially
The direction of | for positive (class
correlation  with | C) class. But long
SHAP values is | left tail implies
positive as seen in | its  contribution
the figure 3.17 (C). | for some neg-

ative (control)
predictions were
consequential.

MTCOI1 The contribution | As observed in | 63.55(MTCO1) ;| 1.97 & 0.88 |
of MTCO1 is | figures 3.17 (C) & | 71.72(MTCO1 with | 1.67 & 0.83
roughly inverse | (A) it has roughly | VDACI)
to COX4+4L2 in | similar prevalence
direction but with | SHAP values pat-
reduced magnitude | tern to COX4+4L.2
as seen in figure | butin reverse. The
3.17 (B) & (C). inverse relation-

ship can also be
observed in the
figure 3.18 (A).
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NDUFA13 | The -contribution | As observed in fig- | 65.74(NDUFA13) 3.00 & 1.75 |
of NDUFA13 is | ures 3.17 (C) & | ; 74.20(NDUFA13 | 2.35 & 1.46
similar to MTCOL1 | (A) it has long | with VDACI)
in direction but | left tail and higher
with reduced | density around 0.1,
magnitude. this implies for ma-

jority of predic-
tions its contribu-
tions were modest
but for some nega-
tive (control) class
it has consequen-
tial contribution to-
wards model pre-
dictions.

VDACI1 As observed in fig- | As observed in | 66.47(VDACI) 345 & 1.24 |
ures 3.17 (B),(C) | the figure 3.17 3.38 & 2.00
& (A), its contri- | (C), the highest
butions towards the | density of SHAP
model predictions | values for VDACI1
are very modest. is around 0.1 and

no extreme values
which implies
its  contribution
towards model
predictions were
modest.

NDUFBS The contribution | As observed in | 67.93(NDUFBS) ;| 294 &1.67I
of NDUFBS8 is sim- | the figure 3.17 | 77.7(NDUFBS8 with | 2.03 & 1.31
ilar to NFUFA13 | (C), it has similar | VDAC1)
in direction but | SHAP value preva-
with reduced | lence pattern to
magnitude. NDUFBS
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butions towards the
model predictions

are very modest.

density of SHAP
values for OSCP
is around zero and
no extreme values
which

its contribution

implies

towards model
predictions were
modest.

UqCRC2 As observed in fig- | As observed in the | 56.70(UqCRC?2) 438 & 3.01 |
ures 3.17 (B),(C) | figure 3.17 (C), it | ; 69.83(UqCRC2 | 7.13 & 5.36
& (A), its contri- | has roughly sim- | with VDACI)
butions towards the | ilar SHAP value
model predictions | prevalence pattern
are very modest. to NDUFBS

OSCp As observed in fig- | As observed in | 67.05(OSCP) ;] 3.42 & 2.22 |
ures 3.17 (B),(C) | the figure 3.17 | 67.5(0OSCP  with | 10.91 & 8.61
& (A), its contri- | (C), the highest | VDAC1)

Table 6 Insights from explainable XGB model trained for class C vs control prediction

Input fea-
ture

SHAP magnitude

and direction

SHAP
prevalence

values

Predictive power

Control | Pa-
tients (mean
& STD

ues)

val-
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NDUFBS NDUFBS8 has the | As observed in | 79.73 (NDUFBS) | 294 &1.67I
greatest mean | the figure 3.19 | ;85.13(NDUFBS8 2.03 & 1.31
SHAP values over | (C)it has long | with VDACI)

all predictions as
seen in the figure
3.19 (B). As seen
in the figure 3.19
(C) its direction of

correlation  with
SHAP values is
negative.

tails with higher
density around
[3-4]. This implies
for a majority
of predictions
its SHAP values
made decent con-
tribution towards
model predictions
were consequential
for both (control)
classes but more so
for positive (class
C) class . This
is further evident
in the figure 3.19
(A) as there exist
(higher)

values

darker
SHAP
compare to other

features.
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SDHA

The contribution
of SDHA towards
model prediction
has the second
greatest magnitude
of all but smaller
than  NDUFBS,
as seen in the
figure 3.19 (B).
The direction of
correlation  with
SHAP

roughly positive as

values is

seen in the figure
3.19 (C).

As observed in the
figure 3.19 (O)it
has long left tail
with higher density
This

implies for most

around 2.

prediction its con-
tributions were de-
cent for positive
(class C) class. But
long left tail im-
plies its contribu-
tion for some neg-
ative (control) pre-
dictions were con-
sequential. This is
further evident in
the figure 3.20

86.3 (SDHA)
:85.13(SDHA with
VDAC1)

5.0 & 299
118.30 & 14.82
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COX4+4L2

COX4+4L2 has the
third greatest mean
SHAP values over
all predictions as
seen in fig B. As
seen in the figure
3.19 (C) its direc-
tion of correlation
with SHAP values

is positive.

As observed in the
figure 3.19 (C) it
has very long tails
in both directions
with higher den-
sity around [-2 to
1].  This implies
for a good propor-
tion of predictions
its SHAP values
made average con-
tribution towards
model predictions
but very long tails
implies for some
predictions its con-
tribution were con-
sequential for both
This is
further evident in
the figure 3.19 (A)
as there exist mix
of darker (higher)
and lighter(lower)
SHAP values.

classes .

80.03 (COX4+412)
. 84.69(COX4+412
with VDAC1)

7.46 & 5.66 |
842 & 6.47

NDUFA13

The direction of
correlation of ND-
UFA13 with Shap
values seems to be

negative.

As observed in
the figure 3.19
(C) , it has tails
in both directions
with higher density
around 1.2. This
implies for most
model predictions
its  contributions

were average.

80.03 (NDUFA13)
:84.99(NDUFA 13
with VDACI)

3.00 & 1.75 |
2.35 & 1.46
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MTCOl1 The contribution of | As observed in fig- | 80.17 (MTCO1) ;| 1.97 & 0.88 |
MTCOL is roughly | ures 3.19 (C) & (A) | 85.57(MTCO1 with | 1.67 & 0.83
negative in direc- | it has roughly sim- | VDACI)
tion as seen in | ilar SHAP values
figures 3.19 (B) | prevalence pattern
&(0). to NDUFA13.

UqCRC2 As observed in fig- | As observed in | 83.09 (UqCRC2) | 4.38 & 3.01 |
ures 3.19 (B), (C) | the figure 3.19 | ; 86.00(UqCRC2 | 7.13 & 5.36
& (A), its contri- | (C), it has roughly | with VDACI)
butions towards the | similar SHAP
model predictions | value prevalence
are modest. pattern to MTCO1

but  compressed
towards zero.

OSCP As observed in fig- | As observed in the | 83.97(OSCP) ;| 342 & 2.22 |
ures 3.19 (B), (C) | figure 3.19 (C), it | 86.15(OSCP with | 10.91 & 8.61
& (A), its contri- | has roughly sim-| VDACI)
butions towards the | ilar SHAP value
model predictions | prevalence pattern
are modest. to UqgCRC2

VDACI1 As observed in fig- | As observed in the | 84.99 (VDACI) 345 & 1.24 |
ures 3.19 (B), (C) | figure 3.19 (C), 3.38 & 2.00
& (A), its contri- | the highest density
butions towards the | of SHAP values
model predictions | for VDACI is
are modest. around 1 and a left

tail which implies
its  contribution
towards model
predictions were
modest except in
some prediction of
negative (control)
class.

Table 7 Insights from explainable XGB model trained for class D vs control prediction




prediction has the
second  greatest
magnitude of all

as seen in the

figure 3.22 (B).

The direction of
correlation  with
SHAP
positive as seen in

the figure 3.22 (C).

values is

with higher den-
sity at right ex-
treme and around
This im-

plies for some pre-

Z€10.

diction its contribu-
tions were modest
for negative (con-
But
long right tail im-

trol) class.

plies its contribu-
tion for some pos-
itive (class D) pre-
dictions were con-

sequential.
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Input fea- | SHAP magnitude | SHAP values | Predictive power Control | Pa-
ture and direction prevalence tients (mean

& STD val-
ues)
UqCRC2 UqCRC2 has the | As observed in | 79.34 (UqCRC2) | 4.38 & 3.01 |
greatest mean | the figure 3.22 |; 82.48(UqCRC2 | 5.36 & 2.97
SHAP values over | (C) it has long | with VDACI)
all predictions as | tails with higher
seen in the figure | density around
3.22 (B). As seen | [2-4]. This implies
in the figure 3.22 | for a majority
(C) its direction of | of predictions
correlation  with | its SHAP values
SHAP values is | made decent con-
positive. tribution towards
model predictions
for both the classes
COX4+4L2 | The contribution | As observed in the | 79.05 (COX4+4L2) | 7.46 & 5.66 |
of  COX4+4L2 | figure 3.22 (C) it | ; 80.91(COX4+4L2 | 9.88 & 7.14
towards model | has long right tail | with VDAC1)




200

OSCP

OSCP has the
third greatest mean
SHAP values over
all predictions as
seen in the figure
3.22 (B). As seen
in the figure 3.22
(C) its direction of

correlation  with
SHAP values is
negative.

As observed in
the figure 3.22
(O) it has tails in
both
with higher density
around [-2 to -1].

directions

This implies for a
good proportion
of predictions its
SHAP values made
average contribu-
tion towards model
predictions  but
tails implies for
some predictions
its  contribution
were consequential
for both classes
This is further
evident in the
figure 3.22 (A) as
there exist mix of
(higher)
and lighter(lower)
SHAP values.

darker

78.34 (OSCP)
81.05(0OSCP  with
VDACI)

342 & 2.22 |
375 & 2.17

SDHA

As seen in the fig-
ure 3.22 (C) the di-
rection of correla-
tion of SDHA with
Shap values is in-

conclusive.

As observed in the
figure 3.22 (C) , it
has long left tail
with higher den-
sity around zero.
This implies for
most model predic-
tions its contribu-
tions were modest
but for some nega-
tive (control) class
predictions it was

consequential.

79.06 (SDHA) ;
82.47(SDHA with
VDACI)

5.04 & 2.99 |
6.14 & 3.54




model predictions

are very modest.

for NDUFBI13 is
around 1 which
implies its con-
tribution towards
model predictions
were modest for

both classes.
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NDUFBS The direction of | As observed in fig- | 82.05(NDUFBS) 294  &1.67I
correlation of | ures3.22(C)& (A) | ; 82.34(NDUFBS | 2.43 & 0.68
NDUFBS with | it has long left tail | with VDAC1)
SHAP values is | with high density
inconclusive . around 1. this im-
plies modest con-
tribution for most
predictions but for
some negative pre-
diction its contri-
butions was conse-
quential.
MTCOl As observed in | Asobservedinthe | 79.06 (MTCOI1) ;| 1.97 & 0.88 |
figures 3.22 (C) & | figure 3.22 (C) , | 80.34(MTCO1 with | 2.10 & 0.83
(A), its contribu- | it has roughly sim- | VDACI)
tions towards the | ilar SHAP value
model predictions | prevalence pattern
are similar to | to NDUFBS but in
NDUFBS8 but in | reverse.
reverse.
VDACI As observed in fig- | As observed in the | 81.48(VDACI) 345 & 1.24 |
ures 3.22 (B),(C) | figure 3.22 (O), it 1.82 & 0.46
& (A), its con- | has roughly sim-
tributions towards | ilar SHAP value
the model predic- | prevalence pattern
tions are similar to | to NDUFBS
NDUFBS
NDUFA13 | Asobserved in fig- | As observed in the | 80.20 (NDUFA13) | 3.00 & 1.75 |
ures 3.22 (B),(C) | figure 3.22 (C), | ; 80.20(NDUFA13 | 3.04 & 1.29
& (A), its contri- | the highest density | with VDACI)
butions towards the | of SHAP values
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Table 8 Insights from explainable XGB model trained for PO3 vs control prediction

Input fea- | SHAP magnitude | SHAP values | Predictive power Control | Pa-

ture and direction prevalence tients (mean
& STD val-
ues)

OSCP OSCP has the | Asobservedinthe | 78.05 (OSCP) ;| 342 & 2.22 |
greatest mean | figure 3.25 (C) it | 75.57(OSCP with | 2.22 & 0.52
SHAP values over | has long left tail | VDACI)
all predictions as | with higher den-
seen in the figure | sity at around 2.

3.25 (B). As seen | This implies for

in the figure 3.25 | most its contribu-

(C) its direction of | tion towards the

correlation  with | prediction is aver-

SHAP values is | age but for some

negative. (mostly) negative
(control) class pre-
dictions, its con-
tribution is conse-
quential.

UqCRC2 The contribution of | As observed in | 74.33 (UqCRC2) | 4.38 & 3.01
UqCRC2 towards | the figure 3.25 | ; 76.60(UqCRC2 | 13.30 & 0.92
model prediction | (C) it has long | with VDACI)
has the second | tails with higher
greatest magnitude | density around
of all as seen in | [2-4]. This implies
the figure 3.25 (B). | for a majority
The direction of | of predictions
correlation  with | its SHAP values
SHAP values is | made decent con-
roughly positive as | tribution towards
seen in the figure | model predictions
3.25 (O). for both classes .
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SDHA

As seen in the fig-
ure 3.25 (C) the
direction of cor-
relation of SDHA
with Shap values is

roughly negative.

As observed in the
figure 3.25 (C) it
has long left tail
with higher density
around 0. This im-
plies for a major-
ity of predictions
its SHAP values
made modest con-
tribution towards
model predictions .
But for some nega-
tive (control) class
predictions its con-
tribution was con-

sequential.

7412 (SDHA)
:76.81(SDHA with
VDACI)

5.04 & 2.99 |
375 & 1.13

VDACI1

As seen in figure
3.25 (B) & (C) the
direction of corre-
lation of VDACI
with Shap values
is roughly negative
with similar magni-
tude to SDHA.

As observed in
the figure 3.25
(O) it has left tail
with higher density
around 1. This im-
plies for a majority
of predictions
its SHAP values
made modest con-
tribution towards
model predictions

But for some
negative (control)
class predictions
its  contribution

was consequential.

76.60(VDACT)

345 & 1.24 |
1.51 & 0.22
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MTCO1

As seen in the fig-
ure 3.25 (C) the
direction of corre-
lation of MTCOI1
with Shap values is

negative.

As observed in
the figure 3.25
(C) it has right
tail with higher
density around
0-1. This implies
for a majority
of predictions
its SHAP values
made modest con-
tribution towards
model predictions

But for some
(PO3)

predictions

positive
class
its contribution

was above average.

74.53 (MTCO1) ;
76.40(MTCO1 with
VDACI)

1.97 & 0.88 |
1.56 & 0.28

NDUFBS

As seen in the fig-
ure 3.25 (C) the di-
rection of correla-
tion of NDUFBS
with SHAP values
is roughly positive.

As observed in
the figure 3.25
(C) it has small
tails with higher
density around
0-1. This implies
for a majority
of predictions its
SHAP values made
modest contribu-
tion towards model

predictions .

75.15(NDUFBS)
:76.60(NDUFBS
with VDACI)

294 &1.67
2.17 & 0.62
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COX4+4L2 | As seen in the | As observed in | 74.74(COX4+4L2) | 7.46 & 5.66 |
figure 3.25 (C) | the figure 3.25 | ;77.02(COX4+4L2 | 5.07 & 1.94
the direction | (C) it has small | with VDACI)
COX4+4L2 has | tails with higher
similar magnitude | density = around
and direction to | 0-1. This implies
NDUFBS. for a majority
of predictions its
SHAP values made
modest contribu-
tion towards model
predictions
NDUFA13 | As seen in the fig- | As observed in | 72.88 (NDUFA13) | 3.00 & 1.75 |
ure 3.25 (C) the di- | the figure 3.25 (C) | ; 76.40(NDUFA13 | 2.25 & 0.64
rection NDUFA13 | it has small tails | with VDACI)

has similar magni-
tude and direction
to NDUFBS.

with higher density
around -0.5 to
0.5. This implies
for a majority
of predictions its
SHAP values made
modest contribu-
tion towards model

predictions.
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