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Abstract

The use of data-driven approaches, machine learning techniques, and optimisation methods
in transport policy-making and the subsequent implementation of policy commitments has
seen a substantial growth in recent years. The potential benefits of big data in transportation
are significant, but the challenge lies in extracting knowledge from data to inform policy
design, implementation, and validation. There is a significant gap in the literature on the
application of machine learning and optimisation methods applied for policy validation and
its implementation in transportation.

The aim of this PhD project it to study the potential of data-driven techniques for analysing
and validating the objectives of policy interventions, and implementing policy commitments
in the transport arenas. To achieve the aim of this PhD research, the following research
questions are specifically addressed: (a) Given the large volume of data gathered from the
transportation network, how to find data types that are relevant to a policy objective? (b)
What machine learning techniques are suitable for combining large datasets, processing the
data, and validating a policy objective? (c) Can these large dataset techniques be integrated
in the implementation of policy commitments?

The study’s methodology involves identifying relevant data types for the proposed pol-
icy objectives, selecting appropriate machine learning techniques for processing data and
validating the policy objectives, and determining the potential use of these techniques for
policy commitment implementation. Two frameworks have been designed to tackle the
specific challenge of finding datasets related to the policy objective and validating policy
interventions using machine learning techniques. A third framework have been designed for
finding the best implementation of policy commitments using multi-objective optimisations.
The term ‘framework’ is used since the proposed approaches are high level and flexible, and
can be applied to different policy objectives. The details and the choice of machine learning
models can be decided depending on the specifics of the policy objective.

The study focuses on two case studies aimed at improving air quality and reducing
greenhouse gas emissions, which are essential components for meeting the UK’s target of
achieving net-zero emissions by 2050. Datasets from the Newcastle Urban Observatory and

open-source datasets gathered from the industrial Case-funding partner of this PhD, Arup, is
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used for this research with policies focusing on clean air zones and the transition towards
electric vehicles (EVs).

The objective of the clean air zone policy is to reduce exposure to harmful levels of NO2,
while the most important policy commitment of transitioning towards electric vehicles is
to expand the electric vehicle charging infrastructure, ensuring that the EV charging infras-
tructure meets the demand of users. Two data-driven approaches are employed, including
machine learning models for policy objectives and the use of simulation in combination
with optimisation for implementing policy commitments. By leveraging these advanced
techniques, this research aims to provide valuable insights for policymakers, helping them
make more informed decisions when planning and implementing transportation policies.

In the first case study, common machine learning classifiers are used, which include
Decision Tree, K-Nearest Neighbours, Gradient-Boosted Decision Trees, and Light Gradient-
Boosting Machine (LGBM). It is shown that the constructed models share common con-
clusions about the importance of features in predicting NO2 concentrations with LGBM
performing best in capturing the relations in the dataset with accuracy 88%. Subsequently,
historical data is used to model air quality in Newcastle upon Tyne both assuming with and
without the implementation of the clean air zone. The long short-term memory model is
used to predict the NO2 concentration with root mean square error of 0.95. The approach
shows the use of machine learning methods in analysing and validating the objectives of
interventions in transportation systems. The role of machine learning can be summarised
as predicting what is going to happen in the future if the policy is not implemented (using
available historical data), and predicting the air quality and other related variables using
transport behaviour changes in response to the implemented policy.

The second case study is the expansion of the EV charging infrastructure of Newcastle
upon Tyne, UK. An optimisation model is developed to estimate and optimise the charging
points types, charging points quantity, charging points locations, total expenditures, and
utilisation of charging points for four different future energy scenarios. Quantitatively, the
optimal solutions recommend installing higher number of faster charging points to reduce
the percentage of slower charging points from the current 60% to around 25% in the four
scenarios. Still, the optimal solutions put priority on the slower charging points (around 25%),
with faster charging points having smaller portions each around 10%-13%. The optimisation
shows that while 7kW charging dominates the market currently, it is more beneficial to
improve charging efficiency and reduce investment costs by having a higher percentage of
installations from other types of charging points in the future installations. The results also
illustrate the spatial distribution of charging points, with higher concentrations in urban areas

and near major roads.
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This PhD research contributes to the body of knowledge on using quantitative methods
to validate the objectives of policy interventions and implement policy commitments in
transportation. The findings will provide policymakers with valuable insights to make more
informed choices to improve transportation systems. This research provides an opportunity
to explore the benefits and challenges of using data-driven approaches, machine learning
techniques, and optimisation methods to improve transportation planning and policy-making.
The study’s methodology and results will be significant for policymakers, stakeholders, and

researchers interested in using quantitative methods to improve transportation systems.
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Chapter 1
Introduction

This introductory chapter sets the scene for the research area of the thesis and provides a
background on the use of data-driven methods in transport systems. The research gap in the
literature is briefly explained with focus on the use of data-driven solutions in transport policy
interventions and two case studies one focused on clean air zones and the other considering
the expansion of electric vehicles charging infrastructure. The aim, research questions, and
objectives of the thesis are then provided. The chapter also describes the potential benefits,
limitations, and finally the outline of the thesis with the interrelation of the chapters.

For the purpose of reproducibility of the results of this thesis, the links to original
datasets used for generating the results are provided in a separate section on Data and Code
Availability. All original code has been deposited at Github and is publicly available with

links reported in the section.

1.1 Background

The current increasing use of Information and Communication Technologies (ICT) in the
transport sector allows for collection of unprecedented volumes of data across all modes and
transport systems. This ‘big data’ has generated a strong interest in the transport research
community as well as in the relevant industries, transport stakeholders and delivery bodies,
and among policy makers (Urbanek, 2018). In order to utilise the potential benefits of ICT,
additional research is needed in terms of digital infrastructure, development of digital skills,
and understanding of the underlying data resources, as described in a report from Government
Office for Science (Cottrill, 2018).

The considerable amount of data available from all modes of transport can be used
to improve performance, efficiency, service provision, safety and security of the transport

network for its users (Teoh et al., 2019). Since the large amount of data comes from different
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sources, it is a challenging task to extract knowledge from the data as it is brought together.
Transport sector is the second-largest contributor of carbon emissions in Europe, and data
from the transport network can be used to influence the behaviour of the users and reduce
the carbon emissions (Hoen et al., 2014). The newly available data has been successfully
applied to solve many important problems in transport (Veres and Moussa, 2019) including
the prediction of traffic status, destination, and demand.

Big data points to the datasets that are large, complex with different types of data and
can be very challenging to analyse. For instance, in a single project on Transport for London
(TfL), over 10 billion data points were collected. One of the most important challenges
of big data in transport is the fact that data is gathered, stored, and managed by multiple
organisations, with various levels of data accessibility (Jain et al., 2016).

The Open Data Institute (Northhighland worldwide consulting, 2018) has divided the
data accessibility in three different groups of closed, shared and open data. The closed data
is available only for internal people of an organisation, shared data is available for the Group-
based access by authentication, and open data is available for all the businesses, organisations
and people. Open data infrastructure is essential to enhance transport and elevate the public
transport system’s reliability, comfort, and safety for individuals of diverse conditions.
According to a paper that was published by Transport Systems Catapult (Knuth, 2016), it was
estimated that not making the transport datasets open and accessible for everyone can result
in A&15bn in lost direct and indirect benefits to the UK by 2025. Transport organisations are
consisting of many local authorities and private sectors. These can create many barriers in
data sharing as each of these organisations have their own policy and concerns for sharing
data between different organisations.

According to a report published by the Northhighland worldwide consulting (2018)
barriers and concerns about data sharing can be divided into the three categories of external
barriers, internal barriers, and cultural barriers (Catapult Transport Systems, 2017). Note
however that in case datasets are used for developing sensitive policy options, such barriers
may be created intentionally to preserve confidentiality of the developed data-driven approach
and the results. Massive data are collected from various sources by different public agencies
and private sectors which rarely communicate with each other. This means the data is
only used and analysed for a particular piece of a transport system, such as an intersection,
a stretch of freeway, or specific bus routes. In order to achieve optimal operation of the
transport network, various multi-modal datasets need to be collected and integrated from
roadway traffic, public transit, parking, incidents, bicycles, buildings, social media, and so

on (Litman, 2017). These multi-modal datasets can then be analysed using novel statistical
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learning algorithms for optimal decision making and designing interventions for one mode
of transport while taking into account the impact on other modes.

The recent advances in sensing and the storage of large volumes of data have introduced
a revolution in the way transport systems are designed and managed (Torre-Bastida et al.,
2018; Zhang et al., 2011). Real-time and historical information gathered from the transport
network enable us to learn, and develop interventions to improve the efficiency of the network
and make it sustainable. This has opened new research directions in the transport research
community and has generated a strong interest in the relevant industries and among policy
makers to move towards intelligent transport systems in which data collection and analysis
plays a fundamental role in decision making, design, and increased efficiency (Hoen et al.,
2014; Teoh et al., 2019; Urbanek, 2018). The survey papers by Zhang et al. (2011) and
by Torre-Bastida et al. (2018) analyse the latest research efforts on developing data-driven
intelligent transport systems while discussing the functionality of the key components and
future research directions to tackle the related challenges.

Using large volume of data effectively in the transport sector bring its own challenges
and opportunities for further research. Specific data-driven solutions that have been studied
by researchers recently to address challenges in the transport sector are as follows. The
work by Sarabia-Jacome et al. (2020) studies automation of operations in seaport logistics
and proposes a Big Data architecture for secure data sharing and promoting an intelligent
transport multimodal terminal for improving decision making. The work by Dai et al. (2019)
proposes a data-driven approach to construct an accurate model for predicting short-term
traffic flow by combining the spatio-temporal analysis with a Gated Recurrent Unit. The
article by Ma et al. (2020) proposes a convolutional neural network architecture for predicting
multi-lane short-term traffic flow. Other applications of data-driven methods in the transport
sector include building preventive maintenance decision models of urban transport systems
(Lietal., 2019), optimising fuel consumption and sulfur oxide (SOx) emissions using big data
analytics techniques to make environmentally sustainable operations in maritime shipping
(Zhao et al., 2019), and predicting transport carbon emission using urban big data to mitigate
climate change (Lu et al., 2017; Sharma and De, 2022).

The previous research on validating the objectives of transport policy interventions using
data-driven methods is very limited. Current model-driven approaches are not adequate to
cope with dynamic urban environments and the increasing complexity of transport networks.
The exponential growth in data availability from diverse sources in transport infrastructure
have created the potential of harnessing this data for more insightful, dynamic, and predictive
transport policy-making. Therefore, substantial amount of research is needed to effectively

integrate data-driven methods in various stages of designing transport policies, validating the
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objectives of policy interventions, and implementing policy commitments. Technological
advancements in machine learning, artificial intelligence, and big data analytics is currently
at a stage where their application can significantly transform transport policy design and
implementation, making systems more adaptive and responsive to real-world conditions.
Addressing the complexities of modern transport requires interdisciplinary research
that combines data science, transport policy-making, urban planning, and environmental
science. This approach can ensure that data-driven methods are not only technologically
sound but also socially equitable and environmentally sustainable. A successful example is
Transport for London, where big data is used efficiently to design new interventions in case
of disruptions for improving the public transport for millions of passengers. This showcases
that the availability of data creates possibilities for having more efficient implementation of

policy commitments.

1.1.1 Clean Air Zones

Clean air zones are being designed and implemented by local authorities to improve the
air quality, reduce pollution, improve public health, and create a more sustainable urban
environment. The clean air zone can apply specific requirements to both commercial operators
and private motorists. This include buses and coaches, taxis, vans, light goods vehicles,
minibuses, heavy good vehicles, and private hire vehicles that are not compliant with the
intended emission standards. The UK governmentaAZs Clean Air Strategy (DEFRA, 2019)
includes the implementation of clean air zones in large UK cities. By charging road vehicles
of specific classes, the main purpose of introducing and implementing clean air zones is to
reduce the air pollution levels and satisfy the legal requirements on keeping specific pollutants
below the allowable limits. The pollutants include nitrogen oxides (NO,), particulate matters
(PM,), carbon dioxide (CO;), and other greenhouse gases. In particular, breathing air that
has high concentrations of NO; can create irritation in the human respiratory system, can
cause diseases such as asthma, may compromise long function, and increases the risk of
respiratory infections (Chen et al., 2007; Keast et al., 2022). Once properly designed and
implemented, a clean air zone reduces traffic emissions that are harmful, improves air quality
and protects people’s health (see the work by Holman et al. (2015) on the performance of
such zones in European cities and the work by Liu et al. (2023) for Birmingham). Designing
effective clean air zone interventions is essential for achieving an improved air quality, and
data will play a central role in such a design.

The methodologies for designing effective clean air zones have the following steps:
identifying the geographical area, stakeholder engagement, modelling and impact assessment,

choosing measures and incentives, implementation, and finally, monitoring and evaluation.
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The core technical aspect of these methodologies is to develop computational models, which
is done using physics laws and models of physical processes (e.g., chemical transport
models, computational fluid dynamics, and whether forecast models (Jacob, 1999)). Building
such computational models involves making appropriate assumptions to simplify complex
atmospheric processes and to manage the computational constraints. Given the recent
advances in machine learning and artificial intelligence, an alternative approach to building
these complex physics-based computational models is to develop models directly from data.

The report by Defra Joint Air Quality Unit (February 2020) provides the general guide-
lines for the operation of clean air zones in England. It recommends the approach to be
taken by local authorities when implementing and operating a clean air zone. An example of
this approach is the clean air zone in Greater Manchester (CAGM), which has the goal of
improving air quality by encouraging some vehicle owners to upgrade to cleaner vehicles
or pay a daily charge. The technical reports published on the website of CAGM ! clearly
show the role of data is designing the related policies and evaluating such policies when they
are implemented. In general, datasets play two main roles: (1) datasets are used to select
and tune parameters of the physical models developed for air quality, and (2) datasets are
used for monitoring and checking if the target of the policies are achieved (e.g., reducing the
pollutant level to some value).

Newcastle City Council has been in the process of designing and implementing a clean
air zone In the past few years. The zone was launched on January 2023. The availability of
large volumes of data from Newcastle collected and stored by Newcastle Urban Observatory,
makes the Newcastle clean air zone a perfect candidate for applying the methodologies

developed in this PhD project for data-driven validation of policy objectives.

1.1.2 Expansion of EV Charging Infrastructure

With the advances in science and technology to better understand and evidence the effects
of climate change, individuals and governmental organisations are paying more attention
to alternative forms of energy obtained from solar, wind, hydroelectric, and geothermal
power (Nehrir et al., 2011). The UK committed in 2019 to a legally binding net zero target
by 2050 and introduced new interim targets to reduce emissions by 78% by 2035 (Logan
et al., 2022). As a key tenant of the new technologies to reduce carbon emissions, electric
vehicles (EVs) are making a rapid sales progress with a yearly sales increase of 20% in
2022 (ZapMap, 2022b). As of the end of February 2024, there are over one million EVs

on UK roads. To address the inevitable increasing demand for charging EVs, Department

Thttps://cleanairgm.com/technical-documents
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for Business, Energy & Industrial Strategy (BEIS) has committed to a minimum of 2,500
charging points across the strategic road network in the UK (HM Government, 2021). Many
studies look at the market, the economy and the environment as entry points for designing
the location of charging stations (Cai et al., 2014; LaMonaca and Ryan, 2022; Wang et al.,
2016; Yang et al., 2017). However, there are still some deficiency in the study of the actual
quantity and types of charging points.

In order to help City Councils and other governmental organisations plan for the EV
charging infrastructure, optimising the following factors are needed to design and expand
the EV charging infrastructure: charging point type, charging point location, charging point
quantity, total capital and operational expenditures, and operating hours of charging points.
This observation makes the optimal expansion of EV charging infrastructure a good candidate
for applying the methodologies developed in this PhD thesis on data-driven optimisation for

implementation of policy commitments.

1.2 Aim, Research Questions, and Objectives

Based on the emergence of new technologies and the collection of unprecedented amounts
of data from various sources in the transport sector, this PhD project aims to investigate the
potential of quantitative methods that can effectively deal with large, diverse, and complex
datasets for validating the objectives of proposed policy interventions and implementing
policy commitments. Based on the literature review presented in Chapter 2 and the identified
research gaps and challenges, this PhD project will focus on the following aim:

“To develop data-driven techniques that can integrate and deal with large diverse complex
datasets in transport for validating the objectives of policy interventions and for efficient
implementation of policy commitments with Air Quality and EV charging infrastructure as

case studies.”

In order to achieve the aim of this PhD project, the following research questions are identified:

RQ1. Given the large volume of data gathered from the transport network, what data types

are relevant to the objectives of a policy intervention?

RQ2. What machine learning techniques are suitable for combining large datasets, processing
the data, and validating the objectives of policy intervention?

RQ3. Could these datasets and machine learning techniques be used for efficient optimal

implementation of policy commitments?



1.3 Contributions and Potential Benefits 7

These research questions are linked together with respect to the extremely large volume of

data and the need for efficient analysis and learning methods. This PhD project will address

the challenging task of developing a methodology for using machine learning techniques to

validate the objectives of a policy intervention and find optimal implementation of policy

commitments.

In order to achieve the aim of this PhD research and answer the above research questions,

the following objectives are considered:

O1.

02.

03.

04.

0Os.

06.

Identify, gather, preprocess and analyse data types relevant to a policy from different

sources.

Develop suitable machine learning models based on the input processed data and the

considered policy objectives and commitments.

Analyse and simulate future scenarios under the implementation of the policy commit-

ments to gain insights on their impact in the transport network.

Study methods for validating the outcome of machine learning methods. Select and use
metrics that can best describe the accuracy of the outcome and validate the outcome
against domain knowledge.

Determine the potential use of optimisation methods for transport policy commitment

implementation.

Apply the designed frameworks to case studies on validating the policy objectives of
clean air zone and the expansion of the electric vehicle charging infrastructure, which
are critical for achieving the UK’s target of net-zero emissions by 2050.

1.3 Contributions and Potential Benefits

The main contributions of this thesis are as follows.

* This thesis demonstrates the use of machine learning methods for validating policy

intervention objectives in transport systems. The validation could be part of the initial

policy creation, policy refinement, or a post implementation review.

* It proposes a framework for finding data types that are relevant to the intervention

objective, and for validating the intervention and checking how well the objectives of

the intervention are achieved.
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* It contributes to the Al-based support and assistance of implementing policy commit-
ments by capturing the focus of the implementation problem, and building a framework

that integrates data with simulation and optimisation.

* It provides new ideas and solutions for intelligent decision-making against multiple
conflicting performance criteria. The approach of this thesis creates computational
models that can understand statistical data and generate acceptable, intelligent decisions

with good robustness.

The obtained results of this PhD research have been presented in the form of two journal
manuscripts and seven conference papers including a journal paper published at iScience,
a journal paper published at IEEE Access, two papers at the IEEE International Confer-
ence on Intelligent Transportation Systems, two conference papers at the Universities
Transport Study Group (UTSG), a conference paper at the Institution of Engineering
and Technology, Powering Net Zero (IET), a paper at the ECTRI Young Researchers
conference, and a paper at the Annual Electric Vehicle Conference in Edinburgh Napier.

The study’s findings will contribute to the body of knowledge on using data-driven
approaches, machine learning techniques, and optimisation methods to improve policy
planning and decision-making in the transport sector, while also exploring the possibilities of
quantitative modelling impact on validating policy objectives. The insights gained from this
study will be valuable to policymakers and stakeholders in the transport sector and will assist
in making informed choices to improve transport systems.

The research of this thesis contributes to a more sustainable urban environment by
providing valuable insights into effective clean air zone interventions, which can improve air
quality and promote sustainable transport solutions. The optimisation approach proposed
in this thesis is general and can be applied to any baseline model that can simulate future

transport scenarios.

1.4 Scope and Limitations

Based on the research questions, and the performed literature review, a research gap that
emerges is the limited research on the application of machine learning and optimisation
methods to validate and implement transport policy commitments. While there has been
growing interest in using these technologies in transport, there is still limited research on their
practical application for validation of policy objectives and its implementation. Therefore, this
study aims to fill this gap by exploring the potential use of machine learning and optimisation

techniques for validation of policy objectives and its implementation in the transport sector.
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Fig. 1.1 High-level overview of the content of the thesis chapters

Additionally, there is a need to investigate the challenges and opportunities of applying
data-driven approaches and quantitative methods to transport policy-making, particularly in
the context of large, diverse, and complex datasets. This research aims to provide valuable
insights into these research gaps and contribute to the effective implementation of transport
policy commitments and decision-making processes.

The scope of this study is limited to the application of machine learning and optimisation
methods for validating policy objectives and its implementation in transport, with a focus on
air quality improvement and electric vehicle charging infrastructure expansion. While the
methodology of this thesis is general and the designed frameworks are applicable to other
transport policy interventions, the quantitative results of this study needs to be interpreted
within the context of the specific case studies being investigated.

Several limitations may impact the study’s results, including the availability and quality
of data, and the selection of machine learning and optimisation techniques. To address these
limitations, the research will adopt a rigorous methodology for data collection and analysis,
carefully selecting appropriate machine learning techniques and optimisation methods after
an extensive literature review.
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Fig. 1.2 Structure of the thesis

1.5 Thesis Outline

This thesis consists of eight chapters which detail the steps and processes undertaken in
order to achieve the aim and objectives of the study described in Section 1.2. The high-level
overview of the content of the thesis chapters are provided in Figure 1.1. The connection
between different chapters is presented in Figure 1.2. These chapters are:

* Chapter 1: Introduction provides an overview of the research background, research
questions, scope, limitations, and the structure of the thesis.

* Chapter 2: Literature Review presents a review of the existing literature on data
types, machine learning techniques, and optimisation methods with focus on their

application in transport.

* Chapter 3: Methodology describes the research design, the current state of practice
in evidence-based policy-making, the impact of data-driven methods on policy-making
processes, the proposed data-driven frameworks, and their integration within the cycle

of policy design and implementation.

* Chapter 4: Machine Learning & Relevant Data Types for Clean Air Zone presents

data collection and data analysis methods, the results and analysis of the clean air zone
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case study, focusing on finding relevant data types related to the policy objective using

machine learning methods.

* Chapter 5: Machine Learning & Validating the Objective of Clean Air Zone
presents the results and analysis of the clean air zone case study, focusing on validating

the policy objectives using machine learning methods.

* Chapter 6: Optimisation & Electric Vehicle Charging Infrastructure presents
data collection and analysis, and the results for the electric vehicle charging infrastruc-
ture expansion, focusing on policy commitment implementation using optimisation

methods.

* Chapter 7: Discussions and Conclusions provides a synthesis of the research findings,
discussing the implications for policy and practice, as well as the study’s limitations
with respect to technical and data constraints as well as their limitations in being

integrated in the policy design cycle.

* Chapter 8: Future Research Directions summarises the key findings and contribu-
tions of the thesis, and offers recommendations for policymakers, stakeholders, and

researchers in the field of transport policy-making.

The above chapters will contribute to the main aim of this thesis, which is to provide a
comprehensive understanding of the potential of data-driven approaches, machine learning
techniques, and optimisation methods for validating the objectives of policy interventions and
implementing policy commitments. The employed approaches include integrating simulation
models with optimisation, putting appropriate assumptions for building prediction models,

training machine learning models using data, and performing multi-objective optimisations.

1.6 Data and Code Availability

Original datasets used for generating the results of this thesis are publicly available with links
listed in Table 1.1. All original code has been deposited at Github and is publicly available
with links reported in Table 1.1. The Python code for Chapter 4 is included in Appendix B.
The Python code for Chapter 5 is included in Appendix C. The Python code for Chapter 6 is
included in Appendix D. While the author has reported in this thesis any information required
to reanalyse the data, any further information and requests for resources should be directed
to the author at farhadi.farzane @ gmail.com.

The first year of the PhD research considered also other case studies such as road pricing

schemes. Multiple organisations were contacted to gain access to appropriate datasets. Due
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to the barriers and concerns around data sharing encountered extensively in the initial stage of
this PhD research, it was decided to continue with clean air zone as the first case study since
appropriate datasets was available through Newcastle Urban Observatory. The second case
study on EV charging infrastructure was chosen in consultation with the industrial partner
of the PhD research, Arup Group Limited, that facilitated accessing a baseline model with
publicly available datasets.
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Table 1.1 Links to data sources and code developed for generating the results of this thesis

Chapter 6

DATA & CODE | SOURCE IDENTIFIER

Deposited data

Air Quality Data | Newcastle Urban | https://newcastle.urbanobservatory.ac.uk/

Observatory

Car Ownership UK Department | https://www.data.gov.uk/dataset/

For Transport 11bc7aaf-ddf6-4133-a91d-84e6f20a663e/
national-trip-end-model-ntem

Vehicle Availabil- | UK Office for Na- | https://www.nomisweb.co.uk/home/Search?

ity tional Statistics | context=&term=Car+or+van+availability

(Nomis)
Power Profile UK Department | https://www.gov.uk/government/statistics/
For Transport electric-chargepoint-analysis-2017-domestics
Trip Statistics UK Office for Na- | https://www.ons.gov.uk/census/201 1census/
tional Statistics | 201 1censusdata/originanddestinationdata
(Census)

EV Efficiency and | Bloomberg https://www.bloomberg.com/

EV Battery Size professional/datasets/?bbgsum-page=
DG-WS-PROF-SOLU-DATACONT&
mpam-page=21140&tactic-page=429341

Future = Energy | National Grid https://www.nationalgrideso.com/

Scenarios future-energy/future-energy-scenarios

Software and al-

gorithms

Python 3.10 Python Software | https://www.python.org

Foundation

Code for Air | Github repository | https://github.com/farzanehfar/Air_Quality_

Quality results in MachineLearning

Chapters 4-5

Code for EV | Github repository | https://github.com/farzanehfar/

charging infras- MultiObjective-Optimization

tructure and

evaluation in
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Chapter 2
Literature Review

This chapter undertakes a thorough examination of the existing literature derived from prior
studies, aiming to establish the research direction for this thesis. Employing a top-to-bottom
approach, the literature review takes a broader perspective of the subject, gradually refining
the discussion to identify the fundamental issues. The exploration starts by sequentially
addressing key topics, commencing with a comprehensive overview and progressively delving
into more specific areas of the analysis. The sequence of the topics reviewed begins by
defining policy and its different stages as described in Section 2.1. The next Section 2.2
describes policy design, implementation, and validations in the transport sector. Section 2.3
reviews the essential role of quantitative methods in transport followed by a review of
machine learning methods in Section 2.4 and optimisation methods in Section 2.5. This
section provides information on the choice of the case studies for applying the methodologies
developed in this thesis together with the limitations of the current research are presented in
Section 2.6. Finally, the research gaps are presented in Section 2.7 along with a conclusion
of this chapter.

2.1 Policy

The word policy is defined in Cambridge dictionary as “a set of ideas or a plan of what to do
in particular situations that has been agreed to officially by a group of people, a business
organisation, a government, or a political party”. The specific forms and types of policies
can vary significantly depending on the context and the organisation or government body
developing them. Policies could be in the form of laws, regulations, targets, ways of doing
things, banning certain behaviours, and incentivising specific actions. Policies could be
set from national governments, regional governments, local government, or stakeholders

(e.g., in the transport sector being National Highways or Network Rail). A policy could
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Fig. 2.1 Different stages for achieving an overarching vision or goal starting from setting a
strategy down to defining multiple projects

also be delivered by authorities that are different from the one setting the policy. Figure 2.1
sketched based on the works by Palfrey et al. (2012) and Nellthorp and Mackie (2017)
shows different stages for achieving an overarching vision or goal by the UK Government,
which starts by setting a strategy, having policies for the related sectors, defining policy
commitments, and finally having multiple programs and projects to implement those policy
commitments by the related authorities and public or private organisations. This thesis will
focus on policy in the transport sector. An example strategy set by the UK government is
the net zero emission strategy with policies specific to how the transport sector can help
deliver on this strategy, which will also be used in this thesis for demonstrating the developed
methodologies. Figure 2.2 shows the key transport policy commitment and objective of the
Net Zero Emission Strategy based on the UK policy paper on Net Zero Strategy,! which will

be used for applying the data-driven quantitative research methodology of this thesis.

2.2 Policy in Transport

Transport policy is an important aspect of modern society, as it impacts the movement of

people and goods and influences economic development and environmental sustainability

'https://www.gov.uk/government/publications/net- zero-strategy
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Fig. 2.2 Key transport policy commitment and objective of the Net Zero Emission Strategy
for applying the data-driven quantitative research methodology of this thesis

(Marsden and Reardon, 2017). This section will discuss the importance of policy in transport
and the challenges facing transport policy design, implementation, and validation.

One of the key reasons why policy in transport is important is that it can help to shape
the development of transport systems in ways that align with broader social, economic,
and environmental objectives (Rodrigue et al., 2023). For example, policy can promote the
use of public transport, walking, and cycling, which can help to reduce carbon emissions,
congestion, and air pollution (Poudenx, 2008). In addition, transport policy can support
economic development by providing access to employment, education, and healthcare, and
by facilitating the movement of goods and services.

The work by Kii et al. (2016) provides a review of the interaction between transportation
and spatial development with respect to urban policy and infrastructure planning. The
authors review policy objectives, such as safety, efficiency, and sustainability, and the policies
that have been implemented to achieve these objectives. The authors conclude that the
co-evolution of two approaches of (a) intensive modelling at the local scale and (b) simplified
modelling at regional, national, and global scales will contribute to sustainability science
to satisfy environmental and energy constraints. The work by Kaufmann et al. (2008)
examines the political, social, and economic factors that have influenced the development
and implementation of transport policies. The researchers analysed existing literature and

policy documents, as well as conducted interviews with key stakeholders involved in the
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transport sector. The study found that transport policies have been shaped by a complex
interplay of political, social, and economic factors, including urbanisation, environmental
concerns, technological developments, and institutional arrangements. The researchers
identified key challenges facing transport policy, such as the need to balance competing
policy goals and the tensions between national and local governance structures. The work
by Rastogi (2011) focuses on transport policy and planning in developing countries. The
authors review the challenges facing transport systems in these countries, including rapid
urbanisation and increasing motorisation. They conclude that policy solutions such as
promoting public transport, improving non-motorised transport, and implementing low-
carbon transport options will make non-motorised transportation sustainable both within and
across travel modes.

The work by Chapman (2007) provides an overview of transport policies that aim to
reduce carbon emissions and mitigate climate change. The authors review policy instruments
such as fuel taxes, emissions standards, and public transport subsidies, and their effectiveness
in reducing emissions. They conclude that a combination of policy instruments is needed to
achieve significant emissions reductions. This observation becomes important when setting
an objective for a policy intervention and extracting trends in datasets gathered before and
after implementing a clean air zone. The work by Leite de Almeida et al. (2021) discusses
the role of transport policy in achieving the Sustainable Development Goals (SDGs). The
authors review the links between transport and the SDGs, and the policy measures needed to
achieve them. Their results show that these SDGs can be achieved by setting appropriate
policy interventions including implementation of zero emission zones, subsidy schemes for
the uptake of clean vehicle technology, and the digitalisation of the transport system.

The development and implementation of transport policy can also face significant chal-
lenges. One of the main challenges is the complex and fragmented nature of transport systems,
which can involve multiple stakeholders and levels of the government (Givoni, 2014). This
can make it difficult to coordinate policy and ensure that it is effective and sustainable over
the long term. Another challenge is the limited resources available for transport policy, which
can constrain the ability of policymakers to invest in new infrastructure, improve services, or
address emerging issues such as climate change (Givoni, 2014). Moreover, setting wrong
transport policies could create obstacles and unintended consequences including increased
traffic congestion, negative environmental impacts, economic inefficiency, social inequalities,
Infrastructure Strain, energy Dependence, negative health impacts, safety concerns, and
public dissatisfaction (Santos et al., 2010).

Despite the challenges mentioned above, there are several key elements that are critical

to effective transport policy. First, policy should be based on a clear understanding of the
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objectives and outcomes that policymakers want to achieve (Rodrigue et al., 2023). This
should involve consultation with stakeholders during the policy design and the development of
robust evidence-based evaluation of the policy implementation using data. Second, transport
policy should be integrated with other policy areas, such as land use, environment, and social
policy, to ensure that it is aligned with broader social and economic goals. Third, policy
should provide have an optimal mix of stability and adaptability, so that it can respond to
changing circumstances and emerging challenges such as new technologies or climate change
(Browne and Ryan, 2011).

Several factors contribute to the often observed inflexibility in transport policies. This in-
cludes limited financial resources, long planning horizons in transport infrastructure projects,
institutional inertia that can slow down the adaptation of transport policies, short political
cycles that may discourage long-term planning and investment in flexible infrastructure, and
lack of comprehensive data and information about emerging technologies (Gifford, 2005).

All the works reviewed above highlight the need for a comprehensive evaluation of
policy implementations against their objectives. This will require gathering data through
digitalisation of the transport sector, processing the data to extract useful knowledge, building
computational models for such evaluations, and use them to improve the policy implementa-

tions. These elements form the high-level aim of this PhD research.

2.2.1 Policy Design in Transport

Transport policy design is a critical element in planning at all levels, from local urban
frameworks to broader regional and national planning. One of the aims of transport policy
design is to provide safe, efficient, and sustainable transport options to the public (Pojani and
Stead, 2018). This section will discuss the key principles of transport policy design, provide
successful examples, and examine the role of evidence-based research in such a design.

One of the key principles of transport policy design is the identification of clear objectives
(gov.uk, 2021). Policy designers need to have a clear understanding of what they want to
achieve through the policy (Pojani and Stead, 2018). For example, the objective of London’s
Congestion Charge was to reduce traffic congestion and use the generated revenues to support
London’s transport system. This objective was clearly stated in the legislation and together
with the technology available at the time guided the design of the policy (gov.uk, 2021). The
Results of the London Congestion Charging scheme was re-assessed in the work by Givoni
(2012) using data-driven methods to build computational models to better understand its
effectiveness.

Another important principle of transport policy design is the use of evidence-based
research (Davies and Nutley, 2000). Evidence-based research provides policymakers with
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objective information about the problem they are trying to address and the most effective
solutions. For example, the use of evidence-based research played a critical role in the
development of the Vision Zero Safety, which is a multi-national road traffic safety project
for achieving zero fatalities in the road traffic.? It started in Sweden in 1997 as a vision that
galvanised stakeholders to work towards the target and was based on the scientific evidence
linking traffic crashes to human behaviour and the built environment (nyc.gov, 2020). Since
then, many cities in different countries have implemented measures to move towards this
target including Canada, Netherlands, Sweden, United Kingdom, and the United States.
Successful design and implementation of the related projects have been based on data-driven
solutions linked with the aim of this PhD research.

Policy design also requires a consideration of available resources (Hatzopoulou and
Miller, 2009). Policymakers need to understand the costs and benefits of different policy
options and the resources required to implement them. The introduction of electric buses
in Shenzhen, China, is an example of a policy design that considered available resources
(Mahmoud et al., 2016). The policy was designed to address air pollution in the city and was
based on the availability of renewable energy sources and the affordability of electric buses.

Successful transport policy designs often involve collaboration between different stake-
holders (Fischer, 2004). For example, the development of the Copenhagen Bicycle Strategy
involved input from a range of stakeholders, including cyclists, business groups, and city
officials (Gossling, 2013). This collaboration ensured that the policy design addressed the
concerns and needs of all stakeholders, which results in a policy is a form of compromise
between the different interested parties.

The works reviewed above show that transport policy design is a complex process that
requires a clear understanding of the problem, the identification of clear objectives, the use
of evidence-based research, consideration of available resources, and collaboration between
stakeholders. Evidence-based research plays a critical role in transport policy design by
providing policymakers with objective information about the problem and potential solutions.
Moreover, the limitations of the works reviewed above together with the technological
advances in machine learning, artificial intelligence, and big data analytics show that more
work is needed to integrate data-driven approaches in assessing the policy design and refining

its implementation using the additional knowledge gained through data.

Zhttps://en.wikipedia.org/wiki/Vision_Zero
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2.2.2 Validating Policy Objectives in Transport

Validating transport policy objectives is an essential step in the policy-making process to
ensure that policies will meet their intended objectives and deliver the desired outcomes.
The validation could be part of the initial policy creation, policy refinement, or a post
implementation review. It also needs to understand the art of the possible of the science,
engineering and technology that may be required to introduce the policy effectively. Transport
policies can have significant impacts on social, environmental, and economic factors, and
therefore require careful consideration and assessment to avoid unintended consequences
(Jonsson, 2008). Validating the policy objectives involves a systematic evaluation of the
proposed policy against the intended goals and objectives both at the design stage of the
policy and when the policy is introduced. It is a critical step in the policy-making process as it
allows policymakers to identify any potential gaps, weaknesses, or unintended consequences
of the policy before its implementation (Jonsson, 2008). Validation policy objectives can help
to improve the effectiveness and efficiency of policies by identifying areas for improvement
and suggesting modifications to ensure that policies meet their intended outcomes.

There are several reasons why validating policy objectives is crucial in transport. First,
transport policies can have far-reaching effects on social, economic, and environmental
factors. For example, a policy to promote cycling may have positive impacts on public health
and air quality but may also lead to increased traffic congestion and reduced road capacity
(Commission, 2014). Therefore, it is important to assess the potential impacts of the policy
holistically and identify any unintended consequences.

Second, transport policies often involve significant financial and resource investments.
Validating policy objectives can help policymakers to ensure that resources are allocated
effectively and efficiently to achieve the intended outcomes (Halim et al., 2018). By identify-
ing any potential gaps or weaknesses in the policy, policymakers can modify the policy to
ensure that resources are used optimally.

Third, transport policies are often complex and require multiple stakeholders’ involve-
ment. Validating policy objectives can help to ensure that all stakeholders’ interests are taken
into account and addressed adequately in the policy (Le Pira et al., 2017). This can help to
build stakeholder support and promote the policy’s implementation and success.

An example of validating policy objectives in transport is the European Union’s policy
on alternative fuel infrastructure (Policy, 2017). In 2014, the European Union adopted
a policy to promote the deployment of alternative fuel infrastructure, including electric
vehicle charging points, hydrogen refuelling stations, and natural gas filling stations, across
Europe. The policy aimed to reduce the dependency on fossil fuels and promote the use
of low-emission vehicles (Policy, 2017). To validate the policy objectives, the European
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Commission conducted a comprehensive impact assessment, including economic, social, and
environmental impacts. The impact assessment identified the potential benefits of the policy,
such as reducing greenhouse gas emissions and improving air quality, but also highlighted
potential challenges, such as high infrastructure costs and regulatory barriers. The findings of
the published report (Policy, 2017) highlights the need for secure and flexible data handling,
producing real-time data to encourage rational use of the services, and collecting coordinated
data through monitoring activities.
Therefore, Section 2.3 will discuss the details of quantitative methods in transport.

2.3 Quantitative Methods in Transport

With the increasing complexity and demands of transport systems, modelling plays a criti-
cal role in enhancing their efficiency and sustainability (Bates, 2007; Iacono et al., 2008).
Transport modelling can be classified into two main categories: quantitative and qualitative
modelling (Queirds et al., 2017). While both approaches have their advantages and disad-
vantages, their effective use depends on the specific transport problem at hand. Quantitative
modelling involves the use of mathematical or statistical techniques to analyse transport data
and make predictions about future transport patterns (Philips, 2023). This approach uses
numerical data and statistical models to quantify relationships between variables and predict
the outcomes of transport decisions. Commonly used quantitative modelling techniques in
transport include regression analysis, optimisation models, and simulation models (Iacono
et al., 2008). The main advantage of quantitative modelling is its ability to provide precise
and quantitative estimates of transport outcomes (Queirés et al., 2017). This approach is
particularly useful in analysing large and complex transport systems that involve multiple
variables and factors. For instance, optimisation models can be used to determine the optimal
route for a fleet of trucks, minimising the total travel time and fuel consumption (Peceny et al.,
2020). Similarly, simulation models can be used to predict the impact of a new transport
policy on traffic flow and congestion (Chao et al., 2020).

However, quantitative modelling also has its limitations. The major challenge is the
availability and accuracy of data (Milne and Watling, 2019). transport data is often complex
and difficult to collect, requiring specialised tools and techniques (Milne and Watling, 2019).
Furthermore, quantitative models are based on assumptions and simplifications, which may
not always reflect the real-world complexities of transport systems (Jiang et al., 2022).

There are several types of quantitative modelling techniques that are commonly used
in transport research, which are reviewed next. Features, advantages, disadvantages, and

limitation of each of the techniques are summarised in Table 2.1.
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Table 2.1 Overview of quantitative modelling techniques

Quantitative Mod- | Core Features Advantages Disadvantages | Limitations
elling Technique
Regression Analysis | Uses data to find | Good for mak- | May not cap-| Needs large,
(Yang, 2015) (Bates, | out how a change | ing predictions | ture non-linear | good-quality
2007) in one thing | and finding | relationships data; can be
is linked to a | trends. misled by
change in another unusual data
(Estimates rela- points.
tionships between
variables).
Optimisation Mod- | Searches for the | Finds the best | Can be hard | Sometimes
els (Mamoun et al.,, | best way to do | option among | to solve com- | oversimplifies
2021), (Hensher and | something, like | the available | putationally; real problems;
Button, 2007), (Chen | minimising costs | many options | requiring large | needs  good
etal., 2016) or travel time. to achieve | computational | data to work
something. resources; may | well.
not find the
absolute best
solution.
Simulation Models | Creates a model | Can try out dif- | Can be com- | Relies on the
(Jacyna et al., 2014), | that acts like a | ferent scenar-| plex and need | model being a
(Jacyna et al., 2014), | real system to see | ios safely. large computer | good copy of
(Moller, 2014) what might hap- power. the real world.
pen.
Discrete Choice | Looks at how peo- | Helps under- | Assumes Relies on
Models ple make choices | stand why | people always | detailed infor-
(Bierlaire, 1998), | from a set of op- | people prefer | make logical | mation about
(Brownstone, 2001), | tions, like which | one option | choices. why  people
(Moller, 2014), | transport to use. over another. make the
(Tiwari et al., 2003) choices they
do.
Machine Learning | Algorithms that | Can deal with | Needs a lot of | Success  de-
Methods improve  from | complex and | dataandcanbe | pends on the
(Tizghadam et al., | experience and | big data. hard to under- | quality of
2019), (Tizghadam | can find patterns stand why it | data; can make
et al., 2019), (Polson | in data. made a certain | mistakes if
and Sokolov, 2017), prediction. the data is not
(Omrani, 2015), representative.
(Evans et al., 2019)
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* Regression Analysis: Regression analysis is a statistical technique that is used to

estimate the relationship between two or more variables (Yang, 2015). In transport
research, regression analysis is often used to predict travel behaviour. The book by
Bates (2007) provides a historical account of demand modelling in transport, where

regression analysis plays a role in predicting different modes of travel behaviour.

Optimisation Models: Optimisation models are used to find the optimal solution to a
transport problem (Mamoun et al., 2021). In transport research, optimisation models
are commonly used to optimise route planning and scheduling, vehicle routing, and
supply chain management. The book by Hensher and Button (2007) provides different
paradigms in fundamentals of transport modelling and describes how optimisation
models can be used to improve the use of transport network. Optimisation models are
also used recently in a study by Chen et al. (2016) to optimise the route of a fleet of

electric vehicles with respect to the availability of charging stations and travel time.

Simulation Models: Simulation models are used to simulate the behaviour of transport
systems and predict transport outcomes (Jacyna et al., 2014). In transport research,
simulation models are commonly used to predict traffic flow and congestion, evalu-
ate the impact of transport policies and strategies and simulate emergency response
scenarios (Jacyna et al., 2014). The book by Moller (2014) provides an overview of

simulation tools in transport using research-oriented use cases in transport sector.

Discrete Choice Models: Discrete choice models are used to predict travel behaviour
and demand by modelling the choices that travellers make (Bierlaire, 1998). In
transport research, discrete choice models are commonly used to predict mode choice,
route choice, and departure time choice (Brownstone, 2001). The book by Maoller
(2014) shows how discrete choice models can be integrated as part of simulation
models in various transport use cases. A study by Tiwari et al. (2003) have used a

discrete choice model to predict the mode choice of commuters.

Machine Learning Methods: Machine learning methods are increasingly being used in
transport research to analyse and predict travel behaviour. They can be used to develop
predictive models for simulating the behaviour of transport systems and predicting
transport outcomes (Tizghadam et al., 2019). These methods are used to identify
patterns and relationships in large datasets. Machine learning techniques are used to
develop traffic flow simulation models that can predict traffic flow and congestion
(Polson and Sokolov, 2017; Tizghadam et al., 2019). The paper by Omrani (2015)
presents a study that uses machine learning methods to predict the travel mode choice
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of individuals. The study aims to identify the factors that influence travel mode choice
and to develop a model that accurately predicts the mode of travel for individuals based
on these factors. The work by Evans et al. (2019) uses machine learning methods to
forecast road traffic conditions while incorporating more accurately the contexts such
as public holidays and sporting events. The details of machine learning techniques will

be reviewed in the next section 2.4.

Depending on the specific research question and transport problem at hand, different
modelling techniques may be more appropriate than others. Here are the advantages and
disadvantages of quantitative models in transport research, along with application examples.
The key advantages are:

» Cost-effectiveness: quantitative models can be used to evaluate the performance of
transport systems cost-effectively, without the need for expensive field experiments
(Rinaldi et al., 2022). For example, a study by Mishra et al. (2010) used a simulation
model to evaluate the impact of different bus rapid transit designs on passenger travel

time and waiting time.

* Flexibility: quantitative models can be easily modified to incorporate different sce-
narios and parameters, allowing researchers to evaluate the performance of transport
systems under a variety of conditions (Zaied, 2008). For example, a study by Cao et al.
(2019) used a simulation model to evaluate the impact of different parking policies on

traffic congestion in a downtown area.

» Safety: quantitative models can be used to evaluate the safety of transport systems
and identify potential hazards and risks (Shyur, 2008). For example, a study by Cunto
and Saccomanno (2008) used a simulation model to evaluate the safety of a signalised

intersection under different traffic conditions.
The key disadvantages are:

* Assumptions: quantitative models are based on a number of assumptions about the
behaviour of transport systems (Keith et al., 2020). The accuracy of these assumptions
can affect the accuracy of the simulation results. For example, a study by Bonsall et al.
(2005)) noted that the accuracy of a simulation model for traffic flow depends on the

assumptions made about driver’s behaviour.

» Data Requirements: quantitative models require large amounts of data, and the accuracy
and representativeness of this data can affect the accuracy of the results (Sargent, 2010).
For example, a study by Moosavi et al. (2020) noted that the accuracy of a simulation

model for public transit depends on the quality of the transit network data.
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* Complexity: quantitative models can be complex and difficult to understand. The
accuracy of the quantitative results can depend on the skill and experience of the
modeller (Sargent, 2010). For example, a study by Alghamdi et al. (2022) noted that
the accuracy of a simulation model for signalised intersections depends on the skill of

the modeller in selecting appropriate model parameters.

Types of Data in Transport. Data available from the transport system can be used to
improve the accuracy of the quantitative models described above, thus plays a central role
in transport policy design, implementation, and evaluation. Relevant types of data in the

transport sector include:

* Quantitative data: Numerical information, such as travel demand, vehicle counts,
emissions levels, and performance data can be collected through surveys, sensors, or
administrative records (Cheng, 2022).

* Qualitative data: Descriptive information, such as stakeholder opinions, user expe-
riences, and institutional arrangements, can be gathered through interviews, focus

groups, or document analysis (Fossey et al., 2002).

* Geospatial data: Geographic information, such as spatial distribution of transport infras-
tructure, land use patterns, and accessibility levels, can be analysed using Geographic

Information Systems (Breunig et al., 2020).

* Big data and IoT: Large and complex datasets generated by various sources, such
as social media, mobile devices, and Internet of Things (IoT) sensors, can provide
valuable insights for transport policy-making and performance monitoring (Hajjaji
etal., 2021).

As mentioned in the background Section 1.1, there are barriers in the effective use
of data in transport including incomplete and inaccurate data, data privacy and security
concerns, lack of data format standardisations, fragmented data sources, regulatory barriers,
and technological and financial limitations (Catapult Transport Systems, 2017). The next
section provides the details of machine learning methods and how they can address a subset
of these barriers to develop accurate computational and quantitative models.

From the quantitative modelling techniques discussed above, discrete choice models will
not be considered for answering the research questions of this thesis. This is mainly due to
the limitation of discrete choice models focusing on the individualistic behaviours of people

than their aggregate effects on the whole transport system. Therefore, machine learning and
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optimisation models will be used for addressing the research questions while considering the

simulation models as a building block in the designed frameworks. These are reviewed next.

2.4 Machine Learning Methods

Machine learning and optimisation methods are chosen among the available quantitative
modelling techniques described in the previous section to address the research questions of
this thesis on validation of the objectives of policy interventions and efficient implementation
of policy commitments (cf. Section 1.2). In this section, the aspects of machine learning
methods required in the rest of the thesis are reviewed.

Machine learning methods have increasingly been applied in the transport domain to
analyse large, diverse, and complex datasets for various purposes, including a few applications
in transport policy (Lofgren and Webster, 2020). These methods can help in identifying
patterns and trends, predicting future outcomes, and evaluating the potential impacts of policy

interventions on transport systems.
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Fig. 2.3 The overview of steps in using machine learning for performing a task (Goodfellow
et al., 2016)

Figure 2.3 shows an overview of the steps in using machine learning methods for perform-
ing a task (Goodfellow et al., 2016). First data from multiple different sources are collected.
These datasets could be in different formats and convey different information. The next step
is to integrate these different datasets and preprocess them to make them suitable for the
next stage. Then an appropriate model is selected and is trained over the data (Nguyen et al.,
2018). The quality of the model is assessed and the model is revised if needed. The model is
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also used for making predictions. Finally, the outcome of the model is visualised and reports
are created for making decisions (Xyntarakis and Antoniou, 2019).

As it can be seen in Figure 2.3, there are lots of feedback arrows which shows how
different steps provide inputs and feedback to each other. For example, if the quality of the
data is not good enough, more data needs to be generated. If the quality of the model is not
good, a different model needs to be selected or the datasets should be improved (Nguyen et al.,
2018). If the quality of the visualised outcome is not good, then the visualisation technique
may need to be changed depending on the selected model (Xyntarakis and Antoniou, 2019).

The next section reviews the commonly used machine learning techniques in transport and
validating the objectives of transport policy interventions, along with the relevant literature.
These techniques can be classified into supervised learning, unsupervised learning, and
reinforcement learning (Goodfellow et al., 2016). A summary of these techniques are
provided in Table 2.2 and explained in the next subsections.

2.4.1 Supervised Learning

Supervised learning is a widely used machine learning approach in transport, where the
model is trained using labelled datasets, and the learning process is guided by a known target
variable (Cunningham et al., 2008). Two main types of supervised learning techniques are
regression and classification.

Regression: Regression techniques are used to model the relationship between a quantity
that is considered as a dependent variable and other quantities in the dataset considered
as independent variables. This makes them suitable for predicting continuous outcomes
(Nasteski, 2017). Examples of regression techniques in transport include predicting traffic
flow (Dell’ Acqua et al., 2015), estimating vehicle emission values (Kim and Lee, 2010), and
forecasting travel demand (Zhang et al., 2019b).

Classification: Classification techniques are employed to categorise data into distinct
classes based on their features, making them appropriate for predicting categorical outcomes
(Kesavaraj and Sukumaran, 2013). In transport, classification methods have been used
for tasks such as identifying high-risk crash zones, detecting traffic congestion levels, and
predicting public transport ridership (Ramli and Mohamed Rawi, 2020).

Beyond regression and classification, supervised learning methods also include:

* Time Series Forecasting: Time series forecasting involves predicting future values
based on historical data. This class of methods is particularly useful for temporal data

where the goal is to make predictions over time.
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Table 2.2 Machine learning methods and their applications in transport

Machine Features Advantages Disadvantages Applications in Trans-
Learning port
Method
Supervised Trained with | Being accurate | Requires  large | Traffic flow prediction,
Learning labelled data; | on known | labelled datasets; | vehicle emissions esti-
(regression) models guided | tasks. may not gener- | mation, travel demand
by a known alise well. forecasting (Dell’ Acqua
target variable. et al., 2015; Kim and
Lee, 2010; Zhang et al.,
2019b).
Supervised Utilises la- | High accuracy | Requires sub- | Identifying high-risk
learning belled  data | in prediction | stantial labelled | crash zones, detecting
(classification) | to categorise | for known | datasets; less | traffic congestion levels,
into predefined | categories; ef- | effective with | predicting public trans-
classes; output | fective in risk | unseen data or | port ridership (Ramli
is a discrete | assessment overlapping class | and Mohamed Rawi,
label. and decision- | boundaries. 2020).
making.
Unsupervised | Finds patterns | Discovers hid- | May find irrele- | Detecting traffic pat-
learning or structures | den structures | vant patterns; less | terns, clustering simi-
(clustering) without la- | in data; useful | control over out- | lar transport areas, iden-
belled data; | for segmenting | comes; challeng- | tifying high-risk crash
no predefined | data into mean- | ing to validate. zones, understanding ur-
target variable. | ingful groups. ban mobility patterns
(Hong et al, 2021;
Kim, 2019; Miinz et al.,
2007).
Reinforcement | Learns through | Adapts to | Requires a well- | Optimising traffic signal
learning trial and error | changing defined reward | timings, managing pub-
to achieve a de- | environments; | system and an in- | lic transport systems,
fined goal in a | optimises teractive dynamic | and infrastructure plan-
dynamic envi- | performance environment for | ning investment in a
ronment. through  re- | collecting data. simulation environment
wards. (Balaji et al., 2010;

Box and Waterson,
2013; Garcia-Flores
et al., 2017; Nama et al.,
2021).
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* Ranking: Ranking algorithms are designed to order items in a specific sequence
based on their relevance or importance. This is commonly used in search engines,

recommendation systems, and information retrieval (Chauhan et al., 2015).

* Sequence Prediction: Sequence prediction focuses on predicting the next item in a se-
quence of events, often used in text generation, speech recognition, and bioinformatics
(Welleck et al., 2019).

* Metric Learning: Metric learning aims to learn a distance metric that reflects the
similarity between data points. It is commonly used in tasks like image retrieval, face

verification, and clustering (Hoi et al., 2010).

* Structured Prediction: Structured prediction involves predicting complex outputs
that are structured, such as sequences, trees, or graphs. This class of methods is used in

tasks like natural language processing, parsing, and object detection (Dev et al., 2021).

From the above list, only Time Series Forecasting is applicable to the dataset available for this
research (which is the time series from Newcastle Urban Observatory) and will be discussed
in details in Section 2.4.6 together with classification and regression methods. The other

methods require datasets that include images, textual information, or online webpage data.

2.4.2 Unsupervised Learning

Unsupervised learning techniques involve identifying patterns and structures in datasets
without the use of labelled data or known target variables (Hastie et al., 2009).

The main form of unsupervised learning in transport is clustering algorithms, which
group similar data points together without requiring labelled data. This has been useful for
identifying patterns and trends in transport data (Madhulatha, 2012), and has been applied to
tasks such as detecting traffic patterns (Miinz et al., 2007), analysing travel behaviour (Hong

et al., 2021), and identifying areas with similar transport characteristics (Kim, 2019).

2.4.3 Reinforcement Learning

Reinforcement learning techniques involve learning optimal actions based on trial-and-error
interactions with a dynamic environment (Kaelbling et al., 1996; Kazemi and Soudjani, 2020;
Kazemi et al., 2022, 2024; Sutton and Barto, 2018). In transport, reinforcement learning has
been employed for tasks such as optimising railway networks (Subramanian et al., 2023)
and traffic signal timings (Balaji et al., 2010), building an automated signalised junction
controller (Box and Waterson, 2013), managing public transport systems (Nama et al., 2021),
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and planning infrastructure investments (Garcia-Flores et al., 2017). Reinforcement learning
algorithm has been applied by Arel et al. (2010) to optimise traffic signal timings in a
simulated environment, demonstrating the potential of these techniques for improving traffic

flow and reducing congestion.

2.4.4 Machine Learning Methods in Validation of Transport Policy
Objectives

The works on the use of machine learning methods for validating the objectives of policy
interventions are very limited. There is only a few recent work that study the potential of

machine learning methods for answering such a research question:

* The research by Elfar et al. (2018) has employed a supervised learning algorithm to
predict real-time traffic congestion, which can be useful for evaluating the effectiveness

of congestion management policies.

* The work by Damsere-Derry et al. (2019) has applied regression analysis to evaluate

the effectiveness of traffic calming measures on road safety.

* Javanmard and Ghaderi (2022) have used classification techniques to estimate the

impact of transport policies on greenhouse gas emissions.

Based on reading these recent preliminary works, it is identified that from the machine learn-
ing methods described in the previous subsections, reinforcement learning and unsupervised
learning are not suitable for validating the objectives of policy interventions. This is mainly
due to (a) the inherent limitation of reinforcement learning that requires a well-defined
reward system and an accurate interactive dynamic environment which is not available with
the current technological developments in the transport sector; and (b) the limitations of
clustering techniques that cannot handle large datasets with its outcome being subjective
to interpretation and is difficult to judge the quality of the outcome of the clustering. The
research questions of this thesis on validating the objectives of policy interventions are best
being studied by regression and classification methods from supervised learning depending
on the nature of measured quantities. In the next subsection 2.4.5, techniques for dealing
with large datasets are described. The choice of models for regression and classification will
be studied in Subsection 2.4.6.



32 Literature Review

2.4.5 Methods for Dealing with Large Datasets

There are two methods to deal with large volume of data, which are feature selection and
dimentionality reduction (Goodfellow et al., 2016; Hooker et al., 2018). The purpose,
considerations, and the preferred use cases of these methods are summarised in Table 2.3.
Feature selection is performed via feature importance, which is a technique used in machine
learning to identify which features (or quantitative variables) have the most influence on
the outcome of a model (Zien et al., 2009). The goal of feature importance analysis is to
determine which features contribute the most to the accuracy or performance of a model, and
which features can be safely ignored or removed without significantly affecting the model’s
accuracy. There are two ways to measure feature importance, depending on the type of the
model and the specific goals of the analysis (Zien et al., 2009):

* Permutation feature importance: The permutation feature importance was introduced
by Breiman (2001) for random forest models and was extended by Fisher et al. (2019)
to other machine learning models. In this method, the importance of a feature is
computed by first training the model on the train dataset, then permuting the feature
and computing the increase in the prediction error of the model. If a feature is important
in making predictions, the prediction error should increase after permutation. If a
feature is unimportant, the change in the prediction error will be negligible by doing
the permutation. Features with the largest decrease in performance are considered the

most important.

* Correlation-based methods: Features that are highly correlated with the outcome
variable are often considered important, as they are likely to have a strong relationship
with the target variable (Blessie and Karthikeyan, 2012).

Dimensionality reduction techniques aim to reduce the number of features in a dataset
while preserving its essential structure, which can be valuable for visualising high-dimensional
data and improving the efficiency of machine learning algorithms (Sorzano et al., 2014). In
transport, dimensionality reduction methods have been used for tasks such as visualising
traffic patterns (Li et al., 2017) and simplifying travel demand models (Vovsha et al., 2002).

For the objective of this thesis on validating the objectives of policy interventions, feature
selection will be used instead of dimentionality reduction due to the fact that dimentionality
reduction can potentially creates new variables as nonlinear functions of quantitative variables

in transport. This makes it difficult to assess and interpret the outcomes.
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Table 2.3 Methods for dealing with large datasets in machine learning

Method Purpose Considerations Preferred Use Case
Feature Selection | To identify which | Relies on measuring | Used when model in-
(Goodfellow features  signifi- | feature importance, | terpretability and re-

et al., 2016),| cantly influence | such as permutation | taining original fea-
(Breiman, 2001), | the outcome of a | feature i1mportance | tures are important.
(Fisher et al., | model. and correlation-based
2019), (Zien et al., methods.

2009), (Blessie
and Karthikeyan,

2012)
Dimensionality To reduce the | Can create new | Used for visualising
Reduction number of features | variables that are | high-dimensional

(Sorzano et al.,| while preserving | nonlinear functions of | data and improving
2014), (Li et al., | the dataset’s struc- | the original features, | algorithm efficiency,

2017), (Vovsha | ture. which may complicate | but less suitable
et al., 2002) interpretation. when interpretability
is crucial.

2.4.6 Machine Learning Models for Supervised Learning

As discussed in Subsection 2.4.4, validating the objectives of policy interventions using data
is suitable to be studied by regression and classification methods from supervised learning
than unsupervised or reinforcement learning. Different supervised learning algorithms may
exhibit varying levels of robustness to noise, outliers, and changes in data distribution.
Moreover, the characteristics of the dataset, such as size, dimensionality, and noise, can
impact the performance of the learning algorithms (Goodfellow et al., 2016). Due to the
reasons mentioned above, it is common practice that researchers in machine learning apply
multiple learning algorithms to (a) determine which ones are more suitable for the specific
data properties at hand; (b) understand the robustness and generalisability of models across
diverse datasets; and (c) compare their accuracy to assess their performance in terms of
predictive accuracy and efficiency (Goodfellow et al., 2016). These factors become more
critical, especially for transport datasets used in the case studies of this thesis, which are
noisy with missing or wrong data points.

For validating the objective of the policy intervention studied in Chapter 5, the following
classification methods are reviewed: Decision Tree (DT), k-Nearest Neighbors (KNN),
Gradient Boosted Decision Trees (GBDT), and Light Gradient Boosting Machine (LGBM)
(Goodfellow et al., 2016). A summary of these supervised learning models is presented in

Table 2.4 and is explained next.
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* Decision Tree (DT) classifiers were initially developed by Messenger and Mandell

(1972). Since then, it has been used extensively as one of the most powerful classifiers.
Recent use of DT classifiers in transport systems includes the work by Sekhar et al.
(2016) that predicts the mode choice behaviour of commuters and by Chen and Wang
(2009) for automatic freeway incident detection. DT has a tree structure. At each node
of the tree, the data is compared with a constant and depending on the direction of the
comparison, one child node is selected. The leaf nodes of the tree holds the class labels.
DT classifier assumes the labels to be a function of features. It tries to sequentially
divide the space of features into two parts using comparison with a constant until the
right label is identified. The depth of the tree is a hyper parameter that shows the

required number of comparisons needed to assign a label to a data point.

Light Gradient Boosting Machine (LGBM) classifier (Ke et al., 2017) is designed to
be efficient and more effective for handling big data (large number of features and
data instances). The general idea of LGBM is to speed up learning and reduce the
computational complexity by focusing on the training examples that result in a larger
gradient. LGBM is used in transport applications, e.g., by Niyogisubizo et al. (2023)

for predicting traffic crash severity.

K-Nearest Neighbours (KNN) classifier was developed first by Fix and Hodges (1989).
It assumes that data points that are near to each other in the feature space have the
same label. The KNN algorithm predicts the label of a given data point as follows: it
computes the distance of all the points from the current data point; it then sorts the
computed distances from smallest to largest; it picks the first K smallest distances;
it finally gets the labels of the selected K data points associated with those distances
and returns the label with the highest repetition. The KNN classifier has been used
extensively in transport applications including the work by Sun et al. (2018) for short-
term traffic forecasting and by Wang et al. (2020) for imputation of missing traffic
data.

Gradient Boosted Decision Tree (GBDT) combines multiple machine learning models
(as weak learners) into a single machine learning model (as a strong learner) in an
iterative fashion (Elith et al., 2008). GBDT uses regression decision trees as weak
models (a numerical value is assigned to each region of the feature space, which is the
average of training data in that region). The loss function is also the log-loss function,
which is then passed to a sigmoid function to find the predicted label. GBDT is used in
transport applications for example by Gallo et al. (2022) to predict the occupancy of
public transport vehicles.
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From the above four classifiers, GBDT and LGBM are developed recently and can have
complex structures with larger number of hyper-parameters. The training of GBDT and
LGBM could require more computational resources. DT and KNN are relatively simple and
can be easily implemented. The KNN algorithm becomes slower for increasing data sizes
(number of data points and features).

Deep learning models have also been applied to variety of tasks in transport, including
traffic flow prediction (Lv et al., 2014; Zhang et al., 2019a), travel mode detected (Nam
et al., 2017), and traffic incident classification (Li et al., 2022) due to their ability to learn
hierarchical representations from data (LeCun et al., 2015). For the case studies of this thesis
the above classification models are selected instead of deep learning methods due to the
following reasons (Cai et al., 2018; Goodfellow et al., 2016):

* Data Characteristics: The datasets used in this research are relatively structured and
tabular, with a moderate number of features and records. DT, GBDT, and LGBM are
well-suited for such data types, often outperforming deep learning models in scenarios
where the data is structured and does not have a vast number of features or records that
typically benefit from deep learning architectures. KNN also excels in cases where the

decision boundaries are non-linear, and the feature space is well-defined.

* Performance on Medium-Sized Datasets: Deep learning models tend to perform
best when there is a large volume of data for training. However, for medium-sized
datasets, which were the focus of this research, DT, GBDT, and LGBM showed to
achieve high performance without the need for extensive tuning and large datasets that

deep learning models require.

* Training Efficiency and Resource Constraints: DT, GBDT, LGBM, and KNN are
generally more computationally efficient and less resource-intensive compared to deep
learning models, which often require extensive computational resources, large datasets,
and longer training times. In the context of this research, where efficiency and the
ability to quickly iterate on models were important, these methods provided a good

balance between performance and computational cost.

* Model Interpretability: A key objective of this research was to maintain a high degree
of model interpretability. Dt, GBDT, and LGBM provide clear insights into feature
importance and decision-making processes, making them easier to understand than the

often complex and hard-to-interpret deep learning models.

Although examples of using the above supervised learning models in data-driven analysis

of transport systems were mentioned, there is no prior work on using these models for
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validating the objectives of transport policy interventions. For instance, searching the term
“validating policy objective” and “decision tree” and “transport” in Google Scholar reveals
no relevant result apart from the work published during this PhD research.

Making Predictions on Time Series Data. The datasets gathered and stored from transport
systems often come in the form of time series, which are quantities that change over time.
Examples of these datasets are traffic flow, travel time, time-stamped weather data, occurrence
of accidents, and air quality monitoring data. The datasets available for the case studies of
this research are also in the form of time-stamped data (cf. Section 4.2). Specific supervised
learning models have been developed to make predictions on time series data (Bontempi
et al., 2013).

Recurrent neural networks (RNNs) are a special class of neural networks with a particular
structure designed for processing sequential data (Goodfellow et al., 2016). The basic idea of
RNN is to introduce hidden states 4, that can encode some form of memory for capturing
the essential information from previous data points in the sequence. The relation between

hidden states /;, features x;, and labels y; can be summarised with the equations

hy = f(xhht—l;bh)
yr = &(hy; by),

where at each time point, the hidden state 4, is a function of current features x; and previous
hidden states /; 1. The labels y; are also functions of the hidden states 4;. The parameters
by, by are learned from the data. The functions f, g are usually in the form of neurons that
take the weighted sum of their inputs together with some appropriate activation functions.

Long Short-Term Memory (LSTM) networks are a type of RNNs for learning order
dependence in sequence prediction problems (Gers et al., 2002). The basic idea behind an
LSTM is to introduce a “memory cell” that can store information over long periods of time
(Van Houdet et al., 2020). The memory cell is controlled by three “gates” that regulate the
flow of information in and out of the cell: the input gate, the forget gate, and the output gate.
The LSTM cell can be broken down into four main components:

1. Input gate: This gate controls the input to the memory cell. It takes the input vector and
the previously hidden state vector as inputs and produces a vector of values between 0
and 1 that represent the amount of each input to let into the memory cell (Staudemeyer
and Morris, 2019).

2. Forget gate: This gate controls the retention of information in the memory cell. It takes

the input vector and the previously hidden state vector as inputs and produces a vector
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Table 2.4 Machine learning models: features, parameters, advantages, and applications in
transport systems

Method Features and Pa- | Advantages Application in
rameters Transport
Decision Tree (DT) | Tree-like model; | Easy to interpret; | Predicting the mode
(Messenger  and | parameters  in- | handles both types | choice behaviour of
Mandell, 1972), clude tree depth, | of data well. commuters (Sekhar
min samples split, et al., 2016), auto-
min samples leaf. matic freeway inci-
dent detection (Chen
and Wang, 2009).
Light Gradient | Gradient boost- | Fast training; ef- | Predicting traffic
Boosting Machine | ing; parameters | ficient for large | crash severity (Niyo-
(LGBM) include learning | datasets. gisubizo et al., 2023).
(Ke et al., 2017) rate, number
of leaves, max
depth.

k-Nearest Neigh-
bours (KNN)
Fix and Hodges

Instance-based;
main parameter
1s the number of

Simple implementa-
tion; effective for
small datasets.

Short-term traffic
forecasting (Sun
et al., 2018), imputa-

(1989) neighbours. tion of missing traffic
data (Wang et al.,
2020).

Gradient Boosted | Ensemble of | High accuracy; re- | Predict the occupancy

Decision Trees
(GBDT)

(Elith et al., 2008)

trees; parameters
include number
of trees, learning

duces bias and vari-
ance; strong model
from weak learners.

of public transport ve-
hicles (Gallo et al.,
2022).

rate, depth.
Time Series Fore- | Type of recurrent | Captures long-term | Short-term  traffic
casting with LSTM | neural network; | dependencies in | forecast (Zhao et al.,
(Gers et al., 2002), | parameters  in- | series; optimal | 2017), air quality
(Van Houdt et al., | clude LSTM | for sequential | modelling (Krishan
2020) units, learning | data, especially | et al., 2019).

rate, batch size, | with  long-range

layers. dependencies.
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of values between 0 and 1 that represent the amount of each piece of information to
forget from the memory cell (Van Houdt et al., 2020).

3. Memory cell: This is the main storage unit of the LSTM. It stores information over

time and is controlled by the input and forget gates (Graves, 2012).

4. Output gate: This gate controls the output of the memory cell. It takes the input
vector and the previously hidden state vector as inputs and produces a vector of values
between 0 and 1 that represent the amount of each piece of information to output from
the memory cell (Van Houdt et al., 2020).

Although LSTM as a time series machine learning model have been used for making
predictions on time-stamped transport data (Krishan et al., 2019; Zhao et al., 2017), there
is no prior work on using these models for validating the objectives of transport policy
interventions. Searching the term “validating policy objective” and “LSTM” and “transport”
in Google Scholar reveals no relevant result apart from the works published during this PhD
research.

2.5 Optimisation Methods

Machine learning and optimisation methods are chosen among the available quantitative
modelling techniques described in the Section 2.3 to address the research questions of this
thesis on validation of the objectives of policy interventions and efficient implementation of
policy commitments (cf. Section 1.2). This section reviews the principles of optimisation
methods and prior research results to identify the related research gaps.

Optimisation algorithms play a key role in solving complex problems in various fields
including transport engineering, economics, computer science, and biology (Vanderbei,
2014). The structure of optimisation algorithms can be divided into the following main
components (Bertsekas, 2016):

* Decision variables: These are the variables that can be adjusted to find the optimal

solution. The values of decision variables determine the value of the objective function.

* Constraints: These are the restrictions that the solution must satisfy. Constraints may

be expressed as equality or inequality conditions.

* Objective function: This is the function that needs to be optimised. It defines the

quantity that is to be maximised or minimised.
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Optimisation problems are typically solved using an iterative algorithm

Constants
D
Model
Decision Objective
Variables Function
(X)
Optimiser

Fig. 2.4 The overview of optimisation problems (Bertsekas, 2016)

The overview of the optimisation components has been shown in Figure 2.4.
In the next subsections, classic deterministic optimisation algorithms, evolutionary ran-
domised methods, and multi-objective algorithms will be discussed.

2.5.1 Classic Deterministic Optimisation Algorithms

Deterministic optimisation refers to a class of optimisation algorithms that follow a systematic
and rule-based approach to find the optimal solution (Cavazzuti, 2013). These algorithms are
based on mathematical programming and rely on precise mathematical formulations of the
objective function and constraints. Deterministic optimisation is often used interchangeably
with classical optimisation (Rader, 2010). Both terms refer to optimisation methods that rely
on mathematical and computational models to find the optimal solution to a given problem
(Rader, 2010). Deterministic optimisation assumes that the inputs to the optimisation model
are known with certainty and that the objective function is deterministic, meaning that there
is no uncertainty or randomness involved (Lin et al., 2012). Deterministic optimisation
algorithms are a class of optimisation methods that aim to find the optimal solution for a
single objective function (Persson et al., 2005).

Classic deterministic optimisation algorithms include gradient descent (Ruder, 2016),
NewtondAZs method (Polyak, 2007), and conjugate gradient (Nazareth, 2009). These
algorithms have the following limitations: (a) sensitivity to the initial conditions, (b) the risk
of getting trapped in local optima, and (c) the difficulty in handling non-convex problems.

Moreover, these algorithms mainly handle single optimisation objectives, thus not suitable
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for implementing transport policy commitments in which multiple conflicting objectives

need to be addressed at the same time.

2.5.2 Evolutionary Randomised Algorithms

Evolutionary algorithms are inspired by the principles of natural evolution and genetics

(Eiben and Smit, 2012). They are a family of optimisation algorithms that use mechanisms

of selection, recombination, and mutation to search for the optimal solution to a problem

(Egea et al., 2010). Evolutionary algorithms are implemented using the following steps:

Initialisation: A population of candidate solutions is randomly generated (Tanskanen,
2002).

Fitness evaluation: The fitness of each candidate solution is evaluated using an objective

function that measures the quality of the solution (Jin et al., 2000).

Selection: The fittest candidate solutions are selected for reproduction, based on their
fitness.

Reproduction: New candidate solutions are generated by applying recombination and
mutation operators to the selected candidate solutions (Annunziato and Pizzuti, 2000).

Replacement: The new candidate solutions replace the old ones in the population
(Tanskanen, 2002).

Termination: The algorithm terminates when a termination criterion is met, such as a

maximum number of generations or when the optimal solution is found (Annunziato
and Pizzuti, 2000).

The main strengths of evolutionary algorithms are:

Robustness: Evolutionary algorithms are highly robust, as they can handle complex
and highly nonlinear optimisation problems that are difficult to solve using traditional
optimisation techniques (Vikhar, 2016).

Global optimisation: Evolutionary algorithms can search the entire solution space and
find the optimal solution, even in the presence of multiple local optima (Andrzej and
Stanislaw, 2006).

* Adaptability: Evolutionary algorithms can adapt to changes in the problem environ-

ment, making them suitable for dynamic optimisation problems (Diaz-Manriquez et al.,
2011).
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* Black-box optimisation: Evolutionary algorithms do not require any prior knowledge
of the problem, making them suitable for black-box optimisation problems (Bennet
etal., 2021).

On the other hand, evolutionary algorithms can be computationally expensive, especially
for high-dimensional optimisation problems (Bennet et al., 2021), and require the tuning
of several parameters, which can be a challenging task for complex optimisation problems
(Bennet et al., 2021).

In contrast to classic deterministic optimisation algorithms described in the previous sec-
tion, evolutionary algorithms can handle multiple conflicting objectives (Deb and Deb, 2013)
to generate a set of solutions that are optimal with respect to multiple objectives instead of a
single objective (Fieldsend and Everson, 2005). Implementing transport policy commitments
in general includes multiple conflicting objectives that need to be addressed at the same
time. Therefore, for the research questions of this thesis, a class of evolutionary algorithms
called multi-objective genetic algorithm (Gao et al., 2000) is selected for optimisation as a
popular evolutionary algorithm that can handle multiple objectives and do not require any
prior knowledge of the problem thus suitable for being integrated with machine learning
models.

In a genetic algorithm (GA), solutions are represented as genes, and a population of these
genes constitutes a generation (Forrest, 1996). The algorithm evolves through successive
generations, applying genetic operators such as selection, crossover (recombination), and
mutation to create offspring solutions. The fittest individuals, determined by their fitness
values in relation to the problem’s objective(s), are more likely to be selected for reproduction.
This process is iteratively performed until a termination condition is met, such as a predefined
number of generations, a specific fitness threshold, or a convergence criterion (Kumar et al.,
2010). By mimicking natural evolution processes, GAs effectively explore and exploit the
search space to find optimal or near-optimal solutions for complex optimisation problems.

Genetic algorithms have been used as an optimisation tool for tuning the hyperparameters
of machine learning algorithms (Mehta, 2022). A prominent example of this is the work
by Nikbakht et al. (2021), who proposed using GA to optimise the hyperparameters of
deep neural networks. Similarly, other studies have used GA to optimise the parameters of
support vector machines (Huang and Wang, 2006) and decision trees (Stein et al., 2005).
Conversely, machine learning techniques have been used to enhance the performance of GA.
One example is the use of neural networks as surrogate models to speed up the evaluation
of fitness functions in GA (Rasheed et al., 2005). Another example is the use of machine

learning to guide the search process in GA, such as the work by Zhou (2002), who proposed
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a hybrid algorithm combining GA and reinforcement learning for solving optimisation
problems.

A survey of multi-objective evolutionary algorithms can be founds in the work by (Zhou
et al., 2011). A survey on the application of evolutionary algorithms in transport is provided
by (Chen et al., 2022). Among these methods, Ant Colony Optimisation (ACO) is a heuristic
algorithm inspired by the foraging behaviour of ant colonies (D4AZAcierno et al., 2010). It
is shown by (Alexander and Sriwindono, 2020) that while ACO is able to find better solutions
than the Genetic Algorithms when the fitness function is known, the Genetic Algorithm
shows a better speed of completion. This feature is in particular important for the problem
setting of this thesis where there are multiple fitness functions and the optimisation domain
is very large.

Although the works reviewed above and summarised in Table 2.5 show promising results
in the integration of GA and machine learning methods, there is no previous research on

integrating them in a framework for finding optimal implementation of policy commitments.

2.6 Case Studies

This section provides information on the choice of the case studies for applying the method-
ologies developed in this thesis. Due to the global challenge of climate change and the
growing environmental concerns, the focus will be on the Net Zero Emission strategy set
by the UK government (Government, 2021a). The first case study is clean air zone with
an objective for the policy intervention, which will be used to show how machine learning
models can validate this policy objective. The second case study is the expansion of electric
vehicle charging infrastructure using optimisation methods (cf. Figure 2.2).

With the advances in science and technology to better understand and evidence the effects
of climate change, individuals and governmental organisations are paying more attention to
alternative forms of energy obtained from solar, wind, hydroelectric, and geothermal power
(Nehrir et al., 2011). Many countries are progressing in the path of introducing appropriate
policies to reduce carbon emissions and mitigate the effects of climate change. Most notably,
the 2021 United Nations Climate Change Conference (COP26) which was held in Glasgow,
Scotland, which hosted delegates from 200 countries. The outcome of COP26 was a new
deal, known as the Glasgow Climate Pact. The UK already committed in 2019 to a legally
binding net zero target by 2050 and introduced new interim targets to reduce emissions by
78% by 2035 (Logan et al., 2022). Figure 2.5 shows the percentage of global total greenhouse
gas emissions in 2018 with China, the USA, and the EU being responsible for almost half of
global emissions (data from CAIT Climate Data Explorer via ClimateWatch).
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Table 2.5 Integration of genetic algorithms and machine learning techniques

Reference Purpose Machine Learning | Contributions
Integration
Mehta (2022) Using GA for hyper- | Generic, not specific | Demonstrated GA’s

parameter optimisa-
tion of machine learn-
ing models.

to a model.

utility in machine
learning hyperparam-
eter optimisation.

Nikbakht et al. (2021)

Using GA for hy-
perparameter optimi-
sation of deep neural
networks.

Deep Neural Net-

works

Proposed GA for
deep learning model
optimisation, enhanc-
ing performance.

Huang and Wang (2006)

Using GA for hy-
perparameter optimi-
sation of SVMs.

Support Vector Ma-
chines

Used GA to fine-
tune SVM parame-
ters, resulting in im-
proved classification
accuracy.

Stein et al. (2005)

Using GA for hy-
perparameter optimi-
sation for decision
trees.

Decision Trees

Applied GA to de-
termine optimal deci-
sion tree parameters,
improving decision-
making accuracy.

Rasheed et al. (2005)

Enhancing GA per-
formance.

Neural networks as
surrogate models

Utilised neural net-
works to accelerate
GA fitness evalua-
tions, improving opti-
misation efficiency.

Zhou (2002)

Guiding the GA

search process.

Hybrid with Rein-
forcement Learning

Introduced a hybrid
algorithm combining
GA and reinforce-
ment learning for op-
timisation problems.
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Fig. 2.5 Percentage of global total greenhouse gas emissions in 2018 (data from Climate-
Watch)

In recent years, there has been growing concern about the impact of air pollution and
greenhouse gas emissions on public health and the environment. In response, policymakers
and experts have focused on improving air quality and reducing greenhouse gas emissions
through various strategies and policies (National Institute of Environmental, 2019). Im-
proving air quality is a complex challenge that requires a range of strategies, policies,
commitments, programs, and projects across different sectors (Nations, 2015). Many of these
strategies are interconnected and can have co-benefits for both air quality and greenhouse
gas emissions (Trust, 2021).

Department for Business, Energy, and Industrial Strategy (BEIS) of the UK government
has proposed a “Net Zero Strategy” to support the successful implementation of the strategy
by investing over £100 billion in efforts to eliminate carbon emissions (BEIS, 2021). As
a key tenant of the new technologies to reduce carbon emissions, electric vehicles (EVs)
are making a rapid sales progress with a yearly sales increase of 20% in 2022 (ZapMap,
2022b). The UK plans to achieve 100% zero emissions on all new cars and trains by 2035
by actively pursuing the development and sale of Ultra Low Emission Vehicles and Zero-
Emission Vehicles. To address the inevitable increasing demand for charging EVs, BEIS has
committed to a minimum of 2,500 charging points across the strategic road network in the
UK (HM Government, 2021).

The UK’s Net Zero Emissions Strategy, which aims to achieve net-zero greenhouse
gas emissions by 2050, includes a range of policies and initiatives across various sectors,
including energy, transport, buildings, industry, and agriculture (Government, 2021a). Some
of these key policies include (Government, 2021a):

* Increasing renewable energy sources: The UK has set a target to generate at least 50%
of electricity from renewable sources by 2030.
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* Encouraging energy efficiency: The UK has set a target to improve energy efficiency

in homes, businesses, and industry.

* Promoting low-emission vehicles: The UK has set a target for the ban on the sale of

new petrol and diesel cars from 2030 and for all new cars and vans to be zero-emission

by 2035 by transitioning toward electric vehicles.

* Reducing emissions from buildings: The UK has set a target for all new homes to be

built to a zero-carbon standard by 2025.

* Reducing emissions from industry: The UK has set a target to reduce emissions from
industry by at least two-thirds by 2050.

The next two subsections give reviews the principles of clean air zones and transition

towards electric vehicles in the context of the UK’s Net Zero Emission Strategy. Table 2.6

gives an overview of these two case studies used in this thesis.

Table 2.6 Overview of the case studies used in this thesis to demonstrate the designed

frameworks

Aspect

Clean Air Zone

Transition Towards Electric
Vehicles

Policy Focus

Encourage the use of low-
emission vehicles, introduce
daily charges

Increase the number of charg-
ing points, improve accessibil-
ity

Objective

Improve air quality and reduce
pollution in cities

Reduce carbon emission and
improve air quality

UK Government’s
Commitment

Target net-zero carbon emis-
sions by 2050, introduce clean
air zones in cities

Expanding the charging infras-
tructure to support the grow-
ing number of EVs on the
road.

2.6.1 Clean Air Zone

The UK government has set a clean air zone policy to improve air quality and reduce air

pollution in cities across the country (UK Government, 2021). The policy aims to reduce

the harmful emissions from vehicles by encouraging the use of low-emission vehicles and

reducing the number of high-polluting vehicles on the roads.

The clean air zone policy was first introduced in 2017, following a court ruling that the

UK government was failing to meet EU air quality standards. The policy was designed to
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help reduce the levels of nitrogen dioxide and particulate matter in the air, which are harmful
to human health and the environment (UK Government, 2021). Under the policy, local
authorities in England are required to identify areas with poor air quality and implement
measures to reduce pollution, including the introduction of clean air zones. These zones are
areas where certain types of vehicles are required to pay a daily charge to enter, based on
their level of emissions.

The policy is being rolled out gradually across the country, with several cities already
introducing clean air zones, including Birmingham, Bath, and Leeds. London has also
introduced its own Ultra-Low Emission Zone, which operates in the same way as a clean air
zone (Transport for London, 2021).

The UK government has set a target of reaching net-zero carbon emissions by 2050, and
the clean air zone policy is an important part of achieving this goal (Transport for London,
2021). The policy is also in line with the UK’s obligations under the Paris Agreement, which
aims to limit global warming to below 2AfC above pre-industrial levels.

The UK Department for Transport (DfT) and the Department for Environment, Food &
Rural Affairs (Defra) have jointly produced a report that lays out a framework for the design
and operation of clean air zones in England (Defra Joint Air Quality Unit, February 2020). It
recommends the approach to be taken by local authorities when implementing and operating
a clean air zone. These recommendations apply also to the clean air zone being considered
for implementation in Newcastle. An example of such an implementation in England is
the Greater Manchester Clean Air Zone (GMCAZ) (Clean Air Greater Manchester, 2020).
The interventions designed in the GMCAZ was launched on 30 May 2022 and requires
the vehicles that do not meet the emissions standards, to pay a fee when entering the clean
air zone. The non-compliant vehicles are: Heavy goods vehicles, buses, coaches, vans,
minibuses, private hire cars, and motorcaravans that have a EUROV or earlier diesel engine
that have a EUROIII or earlier petrol engine. Private cars are not currently affected by the
intervention. This new scheme also provides financial support with more than £120m of
government funding to help businesses in the region, organisations and people switch to

compliant vehicles by either replacing or retrofitting non-compliant vehicles.

2.6.2 Transition Towards Electric Vehicles

The UK government has introduced several policies aimed at promoting the transition towards
electric vehicles (EVs) in recent years. These policies are part of the UK’s efforts to reduce
carbon emissions and improve air quality (Wills, 2021). This section will discuss some of

the key policies that have been introduced to promote the uptake of EVs in the UK.
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* Plug-in Car Grant: The UK government offers a grant to drivers who purchase a new
electric vehicle. This grant was first introduced in 2011 and has been extended several
times since then (UK Government., 2021). Currently, drivers can receive a grant of up
to £2,500 towards the cost of a new electric car, and up to £350 towards the cost of a

new electric motorcycle.

* Workplace Charging Scheme: The UK government offers a grant to businesses that
install EV charging points at their premises (Government, 2021b). The Workplace
Charging Scheme provides a grant of up to £350 per charging socket, up to a maximum

of 40 sockets per business.

* Electric Vehicle Homecharge Scheme: This scheme provides a grant of up to 75%
of the cost of installing a home charging point, up to a maximum of £350 (Gov.UK,
2021). This scheme is designed to make it easier and more convenient for people to
charge their EVs at home.

* Road to Zero Strategy: In 2018, the UK government published its Road to Zero
strategy, which outlines its plans for transitioning towards zero-emission vehicles (HM
Government, 2018). The strategy includes a target for at least 50% of new cars and
40% of new vans to be ultra-low emission by 2030, as well as plans to invest in EV

charging infrastructure and support for research and development.

» Zero Emission Vehicle Mandate: In 2020, the UK government announced plans to
introduce a Zero Emission Vehicle Mandate, which would require car manufacturers to
sell a certain percentage of zero-emission vehicles each year (HM Government, 2018).

The mandate is expected to be introduced in 2030, following a public consultation.

* Ban on new petrol and diesel vehicles: The UK government has announced a ban on the
sale of new petrol and diesel cars and vans from 2030 (HM Government, 2018). This
policy is part of the government’s plan to achieve net-zero greenhouse gas emissions
by 2050 and will accelerate the transition towards EVs (HM Government, 2018).

These policies have already had a significant impact on the uptake of EVs in the UK
(OFGEM, 2018). In 2020, more than 108,000 new electric cars were registered in the UK,
accounting for 6.6% of all new car registrations. This represents a significant increase from
2019 when electric cars accounted for just 1.6% of new car registrations (OFGEM, 2018).
The commitments that the UK government has made to facilitate the transition towards

electric vehicles (HM Government, 2021) are as follows:
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* Grants for EV purchases: The government offers a grant of up to £2,500 towards
the purchase of eligible EVs to encourage the uptake of cleaner vehicles. This grant
is available to all UK residents and can be applied for through the Office for Zero
Emission Vehicles.

* Funding for EV infrastructure: The UK government has committed £1.3 billion to
support the rollout of EV charging infrastructure across the country. This funding
will help to expand the network of charging points and make EVs more accessible to

drivers.

* Company car tax incentives: The government has introduced tax incentives to encour-
age businesses to choose EVs for their company car fleets. The incentives include

lower tax rates for EVs and a zero rate of company car tax for pure electric vehicles.

As the UK moves towards electric vehicles, one of the most important commitments is
expanding the charging infrastructure to support the growing number of EVs on the road.
This expansion is necessary to address range anxiety and increased demand, stimulate the
economy, and reduce the environmental impact of the transport sector.

Chapters 4 and 5 of this thesis are focused on applying the methodologies developed
in this thesis to clean air zone, which aimed to improve air quality using machine learning
methods. Chapter 6 examines the the application of the methodologies to expansion of
electric vehicle charging infrastructure using optimisation methods. In the next two sections,
the literature on the use of machine learning methods and optimisations on these two case

studies are reviewed to identify the gaps.

2.6.3 Machine Learning Techniques Applied to Air Quality

The technical reports published in the website of Greater Manchester Clean Air Zone®
demonstrate the role of data in designing the related interventions and evaluating them when
they are implemented. In general, datasets play two main roles: (1) datasets are used to select
and tune parameters of the physical models developed for air quality, and (2) datasets are
used for monitoring and checking if the policy objectives are achieved (e.g., reducing the
pollutant level to some value).

In contrast to a clean air zone in which the local authority is actively trying to improve
the quality of the air, low emission zones put restrictions specifically on vehicles that do
not meet a minimum standard for vehicle emissions, e.g., the European Union’s emissions

standards (European Environment Agency, 2020) on harmful air pollutants and greenhouse

3https://cleanairgm.com/technical-documents
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gases. Ellison et al. (2013) studied how the low emission zone implemented in London
impacted the vehicle usage and air pollution by using the data from the registration and
enforcement information. The authors focus on concentrations of particulate matter PMq
and NO,. This choice was made due to the fact that in London, approximately 25% of PMq
and 57% of NO, emissions from road transport come from heavy vehicles (Transport for
London, 2008). Using ambient air quality measurements, they showed that concentrations of
particulate matter have dropped by 2.5-3.1% within the low emission zone, but they did not
find any noticeable differences for all measured NO, concentrations.

Another line of research studies various methods for specifying and deciding on bound-
aries of a clean air zone. Karaca (2012) uses data from the air quality monitoring stations
and combines statistical analyses with interpolation techniques to identify the areas with
the highest concentrations of particulate matter. Sturman and Zawar-Reza (2002) integrate
an atmospheric model with a kinematic model to identify the boundaries of the catchment
of air affecting concentrations of air pollution. The available data is used to initialise and
calibrate the models. Yearley et al. (2003) discuss an empirical approach called ‘participatory
modelling’ to find spatial representations of local knowledge about air pollution and use them
in local governance of air quality. They present empirical data from a three-city case study
and generate maps using local knowledge, which can then be used as a form of consultation
for the local governance of the politics on air pollution.

Although the above works show the potential of data-driven techniques for modelling,
analysing, and addressing challenges related to air quality, developing data-driven methods
for validating policy objectives on air quality has not received attention. The rest of this
section reviews machine learning models used to solve problems on air quality.

A systematic review of data-driven methods for air pollution prediction is provided by
Iskandaryan et al. (2020). Their work provides an overview of machine learning techniques
used in the smart city domain to predict air quality, and classifies the temporal resolutions
analysed with these techniques. Prediction of NO; concentration in an air quality monitoring
site of the Greater Manchester Area, United Kingdom, is performed by Catalano and Galatioto
(2017) using a moving average model and a neural network model. Their results show that
the accuracy of moving average in the prediction of extreme air pollution events is 27% better
than the standard statistical methods and 113% better than using neural network models. This
shows that methods for time series modelling and analysis are better in making predictions
of time-stamped data with temporal dependencies. This observation has been considered in
the choice of the machine learning models of this thesis.

Navares and Aznarte (2020) have focused on air quality prediction in Madrid, Spain.

Their work provides a method to predict CO, NO,, Oz, PM1g, SO, and pollen concentrations
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using long short-term memory (LSTM). They try to find the best configuration in the LSTM
(e.g., how neurons are connected) for reducing the prediction error and having robust one
day-ahead air quality predictions. Their work does not include any results on using these
predictions for validating policy objectives or their design.

Rybarczyk and Zalakeviciute (2021) consider the travel restrictions and the lockdowns
imposed due to the COVID-19 pandemic, and studies their impact on Air Quality using
machine learning methods. Their work uses Gradient Boosting Machine algorithm to assess
the impact of full or partial lockdown on air quality. Their approach is to use pre-lockdown
data to predict the pollution levels without lockdown and then compare the predictions
with pollution levels measured under lockdown measures. Another study is performed by
Turner et al. (2020) to understand the effect of COVID-19 restrictions on CO, emissions.
They use CO; observations and an atmospheric transport model to compute changes in CO;
emissions caused by the imposed lockdown. They predict a 30% decrease in CO, emissions
and conclude that this reduction is mainly due to changes in road vehicles as opposed to
other non-traffic emissions which showed small changes.

Castelli et al. (2020) apply support vector regression (SVR) as a machine learning
approach to predict the air quality index (AQI). AQI is an index for quantifying the level of
pollution of air. Its values range from 0 to 500 parts per billion (ppb), where higher values
indicate larger pollution. The SVR model used by Castelli et al. (2020) is a nonlinear mapping
that maps the dataset into a feature space and fits a linear regression model to the dataset in
the new feature space. A kernel function is defined as a mapping from the input space to
the new feature space. They show empirically that radial basis function as kernel functions
gives the best result for prediction on the chosen dataset. Their approach is implemented
on a dataset containing hourly data measured from the state of California, USA, between
January 1, 2016, and May 1, 2018. The result shows that the pollutant concentrations can be
successfully predicted to using SVR method as a regression problem, and the six categories
of AQI can be predicted as a classification problem with an accuracy of 94.1%. They do not
study the effect of interventions for improving air quality.

Suleiman et al. (2019) use three machine learning methods for predicting concentrations
of PM g and PM; 5 using road traffic, meteorological data and pollutant data measured and
stored at Air Quality Monitoring sites of London. The machine learning models used in
their study include Artificial Neural Networks (ANN), Boosted Regression Trees (BRT) and
Support Vector Machines (SVM). The reported implementations show that ANN and BRT
are better than SVM in predicting PM g and PM, 5 concentrations and these two models can
be applied in managing the traffic-related particulate matter concentrations. The authors also

conceptualised a hypothetical scenario to demonstrate the use of machine learning models in
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air quality management. The scenario assumed that the study area permits only EUROIV
petrol and EUROVI diesel vehicles to be driven in that area. The dataset is the revised using
the Emissions Factors Toolkit (EFT) (Defra, 2022) and new machine learning models are
constructed on the modified data. The paper demonstrate that machine learning methods can
be used to forecast concentrations of pollutants PM ¢ and PM; 5 whenever rich datasets are
available.

Orun et al. (2018) have developed a Bayesian network method with an optimised con-
figuration to provide a probabilistic traffic data analysis and to predict traffic-related air
pollution. Machine learning predictive models are developed by Harishkumar et al. (2020)
for predicting particulate matter concentration using Taiwan Air Quality Monitoring datasets
from 2012 to 2017. The developed predictive models were compared with the traditional
models and cross-validation is used to select the best model with the highest performance.
Vosough et al. (2020) have studied the reduction of ambient air pollution and congestion
using weather forecasts and predictive cordon tolls. The authors used a model of emission
dispersion to forecast air quality using recorded weather data for Tehran in 2016. It is shown

that the constructed pricing scheme decreases the daily average CO concentrations.

Although the works reviewed above and summarised in Table 2.7 make promising
observations on the use of machine learning methods for making predictions on air quality,
these works do not give a framework for efficient analysis of policy objectives related to
air quality. Chapters 4 and 5 of this thesis provide a general data-driven framework for
analysis of the policy objectives that have machine learning methods as a core modelling and
computation component. As a proof of concept, the reduction in the concentration of NO;

by the implemented clean air zone will be studied.

2.6.4 Optimisation Models for Electric Vehicle Charging Infrastructure

With the rapid increase in the variety and number of EVs, it is becoming challenging to
meet the growing demand for charging these EVs. The challenges include the electricity
grid overloading, forecasting the required charging load, and charging time and traffic-crowd
management at charging stations (Pareek et al., 2020). The research conducted by Illmann
and Kluge (2020) studies the relation between an increasing availability of public charging
infrastructure and consumers decisions to switch to EVs. They find evidence of a positive
long-run relationship, and conclude that consumers also attach more importance to the
charging speed. Therefore, governments and experts are interested in satisfying the demand
for EV charging and maximising the economy and benefits. Cai et al. (2014), Yang et al.
(2017), and Wang et al. (2016) have studied and simulated the optimal location of charging
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Table 2.7 Overview of previous research works applying machine learning methods to air

quality

Reference

Methodology/ Tech-

niques

Focus and Contribution

Ellison et al. (2013)

Data analysis using reg-
istration and enforce-
ment information

Impact of low emission zone in London
on vehicle usage and air pollution

Karaca (2012)

Statistical analyses with
interpolation techniques

Identifying areas with high particulate
matter concentrations

Sturman and Zawar-
Reza (2002)

Integration of atmo-
spheric and kinematic
models

Identifying boundaries of air pollution
catchment areas

Yearley et al. (2003)

Participatory modelling

Empirical approach for spatial repre-
sentation of local knowledge on air pol-
lution

Iskandaryan et al.
(2020)

Systematic review

Overview of machine learning tech-
niques in smart cities for air quality pre-
diction

Catalano and Galatioto

Moving average model

Prediction of NO, concentration; com-

(2017) and neural network parison with traditional methods
Navares and Aznarte | Long short-term mem- | Air quality prediction in Madrid; robust
(2020) ory (LSTM) one day-ahead predictions

Rybarczyk and Zalake- | Gradient Boosting Ma- | Assessing the impact of COVID-19
viciute (2021) chine lockdown on air quality

Turner et al. (2020)

Atmospheric transport
model

Studying the effect of COVID-19 re-
strictions on CO, emissions

Castelli et al. (2020)

Support vector regres-
sion (SVR)

Predicting air quality index using SVR

Suleiman et al. (2019)

ANN, BRT, SVM

Predicting PM ¢ and PM, 5 concentra-
tions using traffic data

Orun et al. (2018)

Bayesian network

Probabilistic traffic data analysis for air
pollution prediction

Harishkumar et al.
(2020)

Machine learning mod-
els

Forecasting particulate matter concen-
tration in Taiwan

Vosough et al. (2020)

Emission
model

dispersion

Forecasting air quality and congestion
reduction strategies
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stations for taxis and buses and have extended this to the location of charging stations for
private EVs.

Although the expectations and constraints for taxi and bus charging are different to that
for private vehicles, the studies mentioned above highlight the importance of developing
simulation models for EV charging infrastructure. On the other hand, LaMonaca and
Ryan (2022) provide a review of the EV charging infrastructure market, and identify the
relationship between governments, investors and individuals by presenting and analysing its
essential functions and the roles of the players that will fuel the deployment of large-scale EV
infrastructure. They find that assigning clear roles to the public and private actors and funders
is needed to achieve efficient development of the required infrastructure for large-scale EVs.

A summary of the research reviewed above is provided in Table 2.8 that overall look at
the market, the economy and the environment as entry points for the location of charging
stations. However, there are still deficiency in the study of the actual quantity and types of
charging points. There is a lack of appropriate analysis of the problem at the micro level (i.e.,
the spatial distribution of the charging points in a geographical region). This may lead to an
inappropriate utilisation of resources and an unnecessary burden on the power grid: having
an unbalanced charging demand in different areas of the region may violate the constraints
of the existing electricity grid distribution. Satisfying these constraints is detrimental to
the development and implementation of policy commitments on the new EVs in the long
run. Therefore, it is necessary to comprehensively analyse and optimise the type, quantity,
location, and total capital and operational expenditures of charging points from a combination
of micro and macro levels.

While the existing literature on optimisation and electric vehicle charging infrastructure
presents valuable insights and approaches for planning and managing charging networks
(Neaimeh et al., 2015; Sadati et al., 2020; Zhang et al., 2020; Zhou et al., 2022), there is
a need for a comprehensive framework that integrates advanced techniques to effectively
address the challenges associated with the rapid growth of EVs. Chapter 6 shows how
the novel data-driven optimisation framework of this thesis can combine machine learning
methods, such as long short-term memory (LSTM) and fuzzy logic, with multi-objective
genetic algorithms to efficiently plan and deploy electric vehicle charging infrastructure. This
framework not only considers multiple objectives, such as cost minimisation and charging
network coverage but also accounts for real-world constraints and uncertainties to ensure its
practical applicability.

Previous studies generally rely on restrictive assumptions that limit the scope for applica-
tion of the results. Studies that provide optimisation for a single type of charging point are
available (Bayram et al., 2022; Sundstrom and Binding, 2010). In order to better investigate
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Table 2.8 Summary of research on optimisation models for EV charging infrastructure

Reference

Study Focus/Objective

Key Findings and Contribu-
tions

Pareek et al. (2020)

Challenges in EV charging in-
frastructure

Discussed grid overloading,
charging load forecasting, and
traffic management at charging
stations

[llmann and Kluge
(2020)

Relation between public charg-
ing infrastructure and EV adop-
tion

Found a positive long-run rela-
tionship; importance of charg-
ing speed emphasised

Cai et al. (2014)

Optimal location of charging
stations for taxis

Simulated and studied optimal
station locations, extended to
private EVs

Yang et al. (2017)

Data-driven approach for EV
charging stations

Simulated optimal locations for
bus and taxi charging stations

Wang et al. (2016)

Simulation of charging station
locations

Focused on charging station lo-
cation for private EVs

LaMonaca and

Ryan (2022)

Review of EV charging infras-
tructure market

Identified roles of public and pri-
vate actors in infrastructure de-
velopment

Zhou et al. (2022)

Building a social cost model for
placement of charging stations

The social cost is sensitive to the
number of charging stations, de-
mand at intersection points and
probability of charging each day

Zhang et al. (2020)

Solving EVs charging schedul-
ing problem using reinforce-
ment learning

minimising the total charging
time of EVs while maximis-
ing reduction in the origin-
destination distance

Sadati et al. (2020)

Study solar-based EV car parks
with private owners

Profit maximisation and cost
minimisation

Neaimeh et al.

(2015)

Probabilistic approach to com-
bine smart meter and electric ve-
hicle charging data

Investigate impacts on the distri-
bution network

Bayram et al.

Finding a closed-form expres-

Calculation of the optimal ser-

(2022) sion for the plug-in electric ve- | vice capacity for charging loca-
hicles charging station capacity | tions

Sundstréom and | EV charging schedule optimisa- | Achieving satisfactory state-of-

Binding (2010) tion while minimising charging | charge levels and optimal power

COsts

balancing.
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multiple aspects of EV infrastructure planning at the same time, this research uses genetic
algorithm, which is improved based on the concepts of long short-term memory and fuzzy
logic.

2.7 Research gaps

This chapter has reviewed extensively the range of research topics related to the main subject
of this study, starting from policy design, implementation, and validations in the transport
sector, followed by the role of quantitative methods in transport and a review of machine
learning and optimisation methods.

The reviewed research papers revealed two key observations: (a) limited work in which
the objectives of a policy intervention is validated using machine learning methods; and (b)
a need for a framework to evaluate policy implementations against their objectives using
data gathered through digitalisation of the transport sector. More work is needed to integrate
data-driven approaches in assessing the objectives of policy interventions and refining their
implementations using the additional knowledge gained through data. These observations
shaped the high-level aim of this PhD research that has elements from processing the data
to extract useful knowledge, building computational models for the objectives of policy
interventions, and use them to improve the implementations of policy commitments and their
outcomes.

Next, quantitative modelling techniques were reviewed, concluding that machine learning
and optimisation models are better suited for validating the objective of policy interventions
and improving the implementation of policy commitments in comparison with discrete
choice models. This is mainly due to the limitation of discrete choice models focusing on
the individualistic behaviours of people than their aggregate effects on the whole transport
system.

Then, classes of machine learning methods where reviewed with their properties, advan-
tages, and disadvantages. It is concluded that supervised learning methods are appropriate
for the quantitative policy objectives in transport than reinforcement learning or unsupervised
learning. This is mainly due to (a) the inherent limitation of reinforcement learning that
requires a well-defined reward system and an accurate interactive dynamic environment
which is not available with the current technological developments in the transport sector;
and (b) the limitations of unsupervised techniques that cannot handle large datasets with its
outcome being subjective to interpretation and is difficult to judge the quality of the outcome.

Classes of optimisation methods where reviewed with their properties, advantages, and

disadvantages. It is concluded that evolutionary randomised algorithms are appropriate for
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for handling multiple conflicting objectives in implementing transport policy commitments
than classic deterministic optimisation algorithms. Classic optimisations are limited due to
(a) sensitivity to the initial conditions; (b) the risk of getting trapped in local optima; and (c)
the difficulty in handling non-convex problems.

The reviewed literature were considered to identify the gaps in (a) machine learning
methods in validating the objectives of policy interventions, and (b) data-driven optimisation
techniques for implementing transport policy commitments. Although the reviewed works
show promising results in the integration of evolutionary optimisation and machine learning
methods, there is no work integrating them in a framework for finding optimal implementation
of policy commitments.

Due to the global challenge of climate change and the growing environmental concerns,
two case studies from the UK’s Net Zero Emission strategy (Government, 2021a) were
selected as candidates for demonstrating the methodologies developed in this thesis. The first
case study is clean air zone and the second case study is the expansion of electric vehicle
charging infrastructure.

The limitations of the current research on the chosen case studies for applying the
methodologies developed in this thesis were also identified, summarised in Table 2.9. In the
clean air zone case study, the most relevant papers were the ones reported in the first row
and second column of the table. Although these works make promising observations on the
use of machine learning methods for making predictions on air quality, they do not give a
framework for efficient analysis of policy objectives related to air quality.

In the case study on the EV charging infrastructure case study, the most relevant literature
were the ones reported in the second row and second column of the Table 2.9. Although these
works provide valuable insights and approaches for planning and managing EV charging
networks, there is no comprehensive framework that integrates machine learning techniques
with simulation models to effectively address the challenges, real-world constraints, and

multiple conflicting objectives associated with the rapid growth of EVs.

2.8 Conclusions

This chapter reviewed over 140 references on the main subject of this study. The identified

key gaps in the existing literature are
» Limited work on data-based validation of policy objectives.

* Lack of a comprehensive data-driven framework for validating the objectives of policy

interventions.
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Table 2.9 Summary of research gaps in case studies

Case Study

Relevant Literature

Identified Gaps
in Current Re-
search

Contribution of
This Thesis

Clean Air Zone

Ellison et al. (2013),
Karaca (2012), Sturman
and Zawar-Reza (2002),
Yearley et al. (2003),
Iskandaryan et al. (2020),
Navares and Aznarte
(2020), Rybarczyk and Za-
lakeviciute (2021), Turner
et al. (2020), Castelli et al.
(2020), Suleiman et al.
(2019), Orun et al. (2018),
Harishkumar et al. (2020),
Vosough et al. (2020).

Works focus on
air quality pre-
dictions but lack
a framework for
analysing policy
objectives related
to air quality.

Developing a
framework  for
efficient analysis
and validation of
air quality policy
objectives using
machine learning
methods.

Electric Vehicle
Charging Infras-
tructure

Pareek et al. (2020), IlI-
mann and Kluge (2020),
Caietal. (2014), Yang et al.
(2017), Wang et al. (2016),
LaMonaca and Ryan
(2022), Zhou et al. (2022),
Zhang et al. (2020), Sadati
et al. (2020), Neaimeh
et al. (2015), Bayram et al.
(2022), Sundstrom and
Binding (2010).

Insights on
planning and
managing EV
charging net-
works but no
integration of
machine learning
techniques with

simulation mod-
els for addressing
real-world chal-
lenges.

Creating a
comprehensive
framework that
combines ma-
chine  learning
with simula-
tion models for
EV charging
infrastructure
challenges.
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* Need for integrating machine learning methods with policy intervention analysis.

* Limited work on data-driven optimisation integrated with simulation models for policy

implementation.

These identified research gaps serve as crucial areas for the proposed PhD research to
address, aiming to contribute to the field by developing a methodology that fill these voids
and enhance the understanding and implementation of transport policies.

The extensive review summarised in this chapter has motivated the research proposed
in this PhD thesis. It is important to integrate machine learning and optimisation methods
for validating the objectives of transport policy interventions and implementing the policy
commitments. This research expects to develop novel data-driven frameworks designed
specifically for filling the identified gaps. Next chapter describes the methodology and the
designed frameworks.

For the selection of case studies, Clean Air Zone and transition towards electric vehicles
were considered in the context of the UK’s Net Zero Emission Strategy, and the literature
related to the topic of this PhD research were reviewed. It is concluded that although promis-
ing observations are made in the use of machine learning for predictions in air quality, there
is a lack of a cohesive framework for the efficient analysis of policy objectives, particularly
related to clean air zones. The reviewed literature notes a lack of work that integrates machine
learning techniques with simulation models to effectively address challenges, real-world
constraints, and conflicting objectives associated with the rapid growth of electric vehicles.
Therefore, clean air zones and expansion of the electric vehicles charging infrastructure will
be used in the subsequent chapters to demonstrate the designed data-driven frameworks of

the next chapter.



Chapter 3

Methodology

A critical review of the previous research works was covered in Chapter 2. The reviewed
papers revealed the limited work in which the success of a policy intervention is assessed
using data, and showed the need for a framework to validate policy interventions against
their objectives and implement policy commitments using data. The review identified the
following research questions in integrating machine learning and optimisation methods for
validating transport policy objectives and implementing the policy commitments: RQ1.
Given the large volume of data, what data types are relevant to the objectives of a policy
intervention? RQ2. What machine learning techniques are suitable for combining large
datasets and validating an intervention? RQ3. Could these data-driven techniques be used
for efficient optimal implementation of policy commitments?

In order to answer the above research questions, the following objectives are considered:
O1. Identify, gather, preprocess and analyse data types relevant to a policy from different
sources. O2. Develop suitable machine learning models based on the input processed data
and the considered policy objectives and commitments. O3. Analyse and simulate future
scenarios under the implementation of the policy commitments to gain insights on their
impact in the transport network. O4. Study methods for validating the outcome of machine
learning methods. Select and use metrics that can best describe the accuracy of the outcome
and validate the outcome against domain knowledge. OS. Determine the potential use of
optimisation methods for transport policy commitment implementation. O6. Apply the
designed frameworks to case studies on validating the policy objectives of clean air zone and
the expansion of the electric vehicle charging infrastructure, which are critical for achieving
the UK’s target of net-zero emissions by 2050.

Regarding the case studies, Chapter 2 also demonstrated that previous research works do
not give a framework for efficient analysis of policy objectives related to air quality. Previous

works do not provide a comprehensive framework that integrates machine learning techniques
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with simulation models to effectively address the challenges, real-world constraints, and
multiple conflicting objectives associated with the rapid growth of electric vehicles. Therefore,
this chapter describes the datasets collected and prepared for applying the methodology of
the thesis and the designed frameworks to these case studies.

This chapter starts with a description of the current state of practice in evidence-based
policy-making in Section 3.1 followed by a discussion on the impact of data-driven methods
on policy-making processes in Section 3.2. Three data-driven frameworks that address the
research questions of this thesis are described in Section 3.3, with their integration within
the policy cycle presented in Section 3.4. The first framework is developed for identifying
relevant data types and is presented in Section 3.5. The second framework is developed
for validating the objectives of policy interventions and is presented in Section 3.6. The
third framework is developed for optimal implementation of policy commitments and is
presented in Section 3.7. Finally, the choice of programming language for implementing the
methodology and applying the frameworks to case studies in subsequent chapters is presented

in Section 3.8 followed by conclusions of this chapter.

3.1 Current State of Practice in Evidence-Based Policy-
Making

Policy-making is a complex and multifaceted process that requires the integration of various
sources of information, stakeholder perspectives, and evidence-based insights. WEBTAG
(Web-based Transport Analysis Guidance)' is a framework developed by the UK Department
for Transport (DfT) to provide guidance on the appraisal of transport policies. It offers
comprehensive guidelines and methodologies for assessing the economic, environmental, and
social impacts of transportation initiatives. WEBTAG aims to ensure that transport projects
are appraised consistently, transparently, and in line with government objectives. Another
guidance for transport policy making is the Green Book? issued by HM Treasury in the
United Kingdom. The Green Book is a comprehensive guide designed to provide government
departments and agencies with best practices for appraisal and evaluation of policies and
projects.

The key components discussed in WEBTAG, the Green Book, and other evidence-based
policy-making guidelines (Bulmer et al., 2007; De Marchi et al., 2016; Research Oxford
University, 2024; Strydom et al., 2010), are as follows:

Thttps://discovery.nationalarchives.gov.uk/details/r/C16957
Zhttps://shorturl.at/JGunZ
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Fig. 3.1 The cycle of policy design and implementation (De Marchi et al., 2016; Research
Oxford University, 2024)

1. Transport Appraisal Process: developing a strategic case that justifies the project in
terms of its alignment with policy objectives and strategic fit; developing an economic
case that makes a cost-benefit analysis; developing a financial case that considers
the financial affordability, funding, and budgetary implications; and developing a
management case that focuses on the deliverability and management of the project,

including governance, risk management, and project planning.

2. Appraisal Framework: for performing demand forecasting, cost-benefit analysis,

environmental impact assessment, and social impact assessment.

3. Data Collection and Analysis: providing guidance on conducting surveys, studies,

and data collection to support the appraisal process.

4. Documentation and Reporting: standardised templates and formats for presenting

appraisal results and processes for reviewing and validating appraisal reports.

Based on the available guidelines for evidence-based policy-making including WEBTAG,
the Green Book, and Research Oxford University (2024), and the recent works by De Marchi
et al. (2016), Strydom et al. (2010), and Bulmer et al. (2007), the cycle of policy design and

implementation consists of the following steps, as illustrated in Figure 3.1:

1. Issue Identification: This first step in the policy cycle involves identifying the issues
that require government intervention. This step includes recognising and defining

the problem, understanding its root causes, and determining its scope and impact on
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society. It is crucial to clearly articulate the issue to ensure that all stakeholders have a

common understanding of the problem that needs to be addressed.

. Aims: Once the issue is identified, the next step is to clearly define the aims of the

policy intervention. This involves setting broad goals and objectives that the policy
seeks to achieve. The aims should be aligned with the overall strategic priorities of the
government or organisation and should address the core aspects of the identified issue.

. Problem Analysis & Appraisal: This step involves a thorough analysis of the problem,

generating various options to address it, and appraising these options based on their
feasibility, effectiveness, and potential impact. The analysis should consider multiple
dimensions of the problem, including economic, social, and environmental factors.
Appraisal involves evaluating the pros and cons of each option, considering factors

such as cost, implementation complexity, and expected benefits.

. Preferred Option & Feasible Objectives: After appraising different options, the

most promising one is selected as the preferred option. This step also involves setting
feasible objectives that the preferred option aims to achieve. The objectives should
be specific, measurable, achievable, relevant, and time-bound. This ensures that the

policy intervention has clear targets and milestones that can be tracked over time.

. Final Consultation: Before finalising the policy, it is essential to consult with stake-

holders, including experts, affected parties, and the general public. This consultation
helps in refining the policy and ensuring it is comprehensive and acceptable to all
relevant parties. Stakeholder engagement is critical for gaining support, addressing

concerns, and incorporating diverse perspectives into the policy design.

. Decision: Making the final decision on which policy option to implement.

. Implementation & Delivery: Putting the policy into action through various programs,

regulations, and initiatives.

. Maintenance, Monitoring & Review: Continuously monitoring the implementation

of the policy to ensure it is achieving its objectives, and making necessary adjustments.

. Evaluation: Assessing the overall impact and effectiveness of the policy.

Each step in the policy cycle is critical for the successful development and implementation of

a policy. The data-driven frameworks developed in this research provide support at various

stages of this process.
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3.2 Impact of Data-Driven Methods on Policy-Making Pro-

cesses

Traditional policy-making approaches often rely heavily on expert judgement, qualitative
analysis, and historical data. While these methods have proven effective in many cases,
they can be limited by subjective biases and the static nature of the data used. In an era
where data is abundantly available and computational power has significantly increased,
there is a growing opportunity to improve policy-making processes through the application
of data-driven approaches. The integration of data-driven methods into traditional policy-
making processes marks a pivotal shift in how policies are conceptualised, implemented, and
refined. Traditionally, policy decisions have heavily relied on qualitative analysis and expert
judgement. While these approaches remain valuable, they can be significantly strengthened
by incorporating quantitative data analysis, which offers enhanced rigour and precision.
According to Sanderson (2002), data-driven methods allow policymakers to ground their
decisions in empirical evidence, thereby minimising biases and subjective interpretations that
often accompany purely qualitative assessments.

Moreover, the transparency and accountability of the policy-making process are greatly
enhanced through data-driven approaches. As Brunswicker et al. (2019) argue, the availability
of concrete data enables policymakers to clearly justify their decisions, fostering trust among
stakeholders and the general public. This traceability is particularly important in an era where
public confidence in governmental decisions is frequently challenged, necessitating a clear
and defensible rationale for policy actions.

Another critical advantage of integrating data-driven methods is the ability to make
proactive policy adjustments. Continuous data collection and real-time analysis provide a
dynamic feedback loop, enabling policymakers to identify emerging issues and optimise
policy outcomes. Brunswicker et al. (2019) and van Veenstra and Kotterink (2017) highlight
how this flexibility can lead to more responsive and adaptive governance, where policies
evolve in tandem with changing circumstances, rather than lagging behind them.

Furthermore, data-driven approaches can facilitate broader stakeholder engagement by
making complex data more accessible through advanced visualisation and presentation tools.
When data is presented in an understandable format, it empowers stakeholders to provide
more informed feedback. This inclusive approach not only democratises the policy-making
process but also leads to more comprehensive and accepted policy outcomes. By engaging a
wider range of voices, from citizens to experts, data-driven policy design can enhance the

legitimacy and acceptance of policies, ultimately contributing to more effective governance.
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In light of these benefits, there is a growing corpus of research on data-driven policy

design that underscores its transformative potential (Brunswicker et al., 2019; van Veenstra

and Kotterink, 2017). Integrating these insights into traditional policy-making frameworks

may offer a pathway to more innovative, effective, and equitable policy outcomes. Note

that expert knowledge and data-driven methods complement each other at each stage of the

policy design cycle, enhancing the robustness, effectiveness, and responsiveness of policies
as discussed by Christensen (2021) and Bolger and Wright (2017):

1.

Agenda Setting: Expert knowledge identifies and prioritises emerging issues based
on theoretical and practical insights. Data-driven methods support this by revealing
patterns and trends through trend analysis and quantitative evidence. Together, they

ensure the policy agenda is both relevant and evidence-based.

. Policy Formulation: Experts design policy options and assess their feasibility, drawing

on their specialised knowledge. Data-driven methods can simulate potential outcomes
and quantify costs and benefits. Experts interpret these results to refine policy solutions,

ensuring practicality and effectiveness.

Decision Making: Experts provide contextual understanding and balance competing
interests during decision-making. Data-driven methods enhance this with decision
support systems and scenario analysis, presenting possible outcomes. Together, they

guide policymakers to make informed, balanced decisions.

. Implementation: Experts offer technical support and training during policy implemen-

tation. Data-driven methods provide monitoring systems and real-time performance
metrics, tracking progress and effectiveness. This feedback allows experts to make

timely adjustments, ensuring successful implementation.

Evaluation: Experts interpret evaluation results and recommend policy improvements.
Data-driven methods conduct impact and comparative analyses, measuring outcomes
against benchmarks. Combining these insights ensures evidence-based recommenda-

tions for refining policies.

Policy Maintenance and Termination: Experts provide ongoing advice on maintain-
ing, adjusting, or terminating policies based on new insights. Data-driven methods
continuously monitor performance and analyse trends. This combination ensures

policies remain relevant and effective, adjusting as needed.

. Policy Learning and Innovation: Experts disseminate best practices and drive in-

novation using theoretical insights and practical experience. Data-driven methods
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facilitate data sharing and identify opportunities for innovation. Integrating both

fosters continuous learning and improvement in policies (Trott et al., 2021).

3.3 Proposed Data-Driven Frameworks

This PhD project will address the challenging task of developing a methodology for using
machine learning techniques to validate the objectives of a policy intervention and find
optimal implementation of policy commitments. To fill the identified gaps and answer the
research questions of this PhD project, three frameworks are developed to address three
research questions related to transport policy. The term ‘framework’ is used since the
approaches presented in this chapter are general and flexible, and can be applied to different
policy objectives and commitments.

The first research question mentioned above aims to identify datasets relevant to transport
policy objectives. To accomplish this, feature importance and classification machine learning
techniques are employed. The framework is discussed in detail in Section 3.5 and is employed
in Chapter 4 for clean air zone case study. It is based on approaches and concepts from
the Machine Learning literature. This framework facilitates the computation of correlations
between different datasets and target variables using available data and statistical methods.

The second framework is designed to validate the objectives of policy interventions. Time
series machine learning techniques are used to develop this framework, which is described in
Section 3.6 and is employed in Chapter 5 for clean air zone case study.

The third framework aims to implement policy commitments in transport systems using
optimisation multi-objective methods. This framework is elaborated in detail in Section 3.7
and is employed in Chapter 6 on the case study of the expansion of the electric vehicle
charging infrastructure.

Table 3.1 gives an overview of mapping the designed frameworks to the research objec-

tives and the technical chapters of this thesis.

3.4 Integration of Data-Driven Frameworks with the Policy

Cycle

Figure 3.2 shows the integration of the data-driven frameworks proposed in this thesis with
the policy cycle. Each framework is aligned with specific steps in the process of policy

design and implementation as follows:
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Table 3.1 Overview of mapping the designed frameworks to the research objectives and the

technical chapters

Chapter Chapter 4 Chapter 5 Chapter 6
RQ1. Given the large RQ2. What machine
volume of data gathered | learning techniques are RQ3. Could
Research from the transport suitable for combining | data-driven techniques
Questions network, what data datasets, processing the be used for efficient
RQ) types are relevant to the | data, and validating the | optimal implementation
objectives of a policy objective of a policy | of policy commitments?
intervention? intervention?
To Investigate the . .
o . To investigate the . .
possibility of selecting s To investigate the
. possibility of proposed . .
important datasets . 1 implementation of
o policy validation before . .
Objectives related to proposed . . policy commitment
. C . implementing them . .
policy objective in } . using data-driven
. using data-driven
transport system using aooroach approach.
data-driven approach. pp ’
Nature of o o o
Study Quantitative Quantitative Quantitative
Machine Learnin Machine Learning Time Data-Driven
Methods . ning g Multi-Objective
Classification Series L
Optimisation
Car Ownership, Vehicle
Availability, Power
Data Air Quality, Weather, Air Quality, Weather, Profile, Trip Statistics,
Collected Time Stamps, Vehicles | Time Stamps, Vehicles Electric Vehicle
Efficiency, Electric
Vehicle Battery Size.
Data Pre- Collecting, Cleaning, Collecting, Cleaning, Collecting, Cleaning,
Processing Analysing Analysing Analysing
o Python, Libraries
. o, L1brarles (NumPy, Scikit-learn, Python, Libraries
Programming | (NumPy, Scikit-learn,
Laneuage Pandas. Keras Pandas, Keras, (Pandas, NumPy, Math,
o ety Matplotlib, Matplotlib, GDAL)
P TorchMetrics)
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Fig. 3.2 Integration of the data-driven frameworks proposed in this thesis with the policy
cycle

* Framework 1 (Data Analysis): Receives inputs from steps 3 and 4 of the policy
cycle on Problem Analysis, Appraisal, and feasible objectives. Framework 1 focuses
on identifying relevant data types and using machine learning techniques to analyse
multi-modal datasets. This helps in understanding the problem context and generating
feasible options for addressing the issue. By using techniques such as feature selection
and importance ranking, policymakers can focus on the most critical data points that
influence the problem, thereby enhancing the accuracy and relevance of the analysis.
The framework also provides inputs to steps 7,8,9 on implementation, monitoring, and

evaluation.

* Framework 2 (Validation): Integrated at the Maintenance, Monitoring & Review and
Evaluation stages, this framework validates the objectives of policy interventions using
historical and new data. It ensures continuous monitoring and assessment, helping to

make necessary adjustments and ensuring the policy remains effective.

* Framework 3 (Optimisation): Integrated between the Decision stage and the Imple-
mentation/Delivery stage, this framework uses simulation and multi-objective optimisa-
tion methods to find the most effective approach for policy implementation. It ensures

efficient resource allocation and maximises the impact of the policy commitments.

By aligning the data-driven frameworks proposed in this thesis with specific steps in the
policy cycle, the proposed frameworks enhance traditional policy-making methods, ensuring

that policies are based on robust evidence, continuously monitored, and adaptively improved.
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While Framework 2 on validating policy objectives is integrated with steps 8 and 9 on
monitoring and evaluation, it could also be part of the initial policy creation (steps 3 and 4)
or the policy refinement (next iteration of the policy cycle). The main difference is on the
availability of data and which dataset needs to be used in the framework. In the stages of
post implementation review and policy refinement, datasets from the transport system in both
cases of without policy implementation and with policy implementation are available, and the
framework will be applied to these datasets without raising any assumption. In the stages of
initial policy creation, only dataset from the transport system without policy implementation
is available. In this case, assumptions and plausible scenarios need to be developed to build
the most likely datasets for the transport system under the policy implementation. Further
details will be provided in Section 3.6.

More generally, data analysis can contributes to the step 1 of the policy cycle on Issue
Identification by highlighting trends, identifying emerging issues, and providing evidence to
support the need for policy action. By analysing large datasets, policymakers can uncover
patterns and correlations that may not be immediately apparent through traditional analysis
methods. For instance, machine learning algorithms can sift through vast amounts of data
to identify underlying factors contributing to a problem, thereby enabling a more precise
definition of the issue. Data analysis can contribute to the step 2 of the policy cycle in setting
realistic and measurable aims based on data insights and predictive analytics. By leveraging
historical data and predictive models, policymakers can set targets that are both ambitious
and achievable.

Data analysis and simulation models can contribute to step 4 of the policy cycle by helping
to determine the feasibility of objectives and predicting the outcomes of the preferred option.
By running simulations and scenario analyses, policymakers can anticipate potential impacts
and identify any risks or challenges associated with the preferred option. This enables a more
informed decision-making process and helps in setting realistic and achievable objectives.
Data visualisation and presentation tools can be used in step 5 on Final Consultation to

effectively communicate the policy options and their implications to stakeholders.

This section presented a comprehensive and transferable framework for the application
of data-driven approaches to policy design and evaluation. The integration of data-driven
methods with the traditional policy cycle was discussed to enhance the overall policy-making
process by providing a more robust, systematic, and evidence-based foundation for decision-
making. In the rest of this chapter, the details of the proposed data-driven frameworks will

be provided.
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Fig. 3.3 A framework for identifying data types that are relevant to a policy objective

3.5 Framework for Identifying Relevant Data Types

In this section, a framework is presented for identifying data types that are the most relevant to
a policy objective. The rationale behind designing this framework is to use well-established
machine learning methods that do not require an understanding of physical or chemical
properties but need sufficiently rich datasets. This framework sets the steps that need to be
taken in order to capture the complex nonlinear relationships between the measured quantities
and target variables in machine learning models.

The framework is presented in Figure 3.3. The first step in this framework is to analyse a
given policy objective to extract the variables that are important in assessing the successful
implementation of the policy intervention. These variables are the ones mentioned explicitly
in the intervention documents while specifying quantitatively how much they are expected to
change after the implementation of the policy intervention. Once these target variables are
identified, the next step is to analyse the data from these variables using machine learning
methods to measure their relative importance in predicting and affecting the objective of
the policy. This relative importance can then be used to select a subset of datasets that
make accurate predictions for assessing the policy objective. In order to compute the relative
importance of the data types and extract the important ones, two different data-driven methods
are used. The first one is based on Pearson correlation coefficient. The correlation takes
values in the interval [—1, 1], a value of +1 indicates that two variables are dependent linearly,
and values closer to 0 means they become independent of each other. A plus sign shows

positive relationship (i.e., increase in one variable leads to increase in the other variable) and a
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minus sign shows a negative relationship (i.e., increase in one variable leads to decrease in the
other variable). The second one is based on permutation feature importance, which computes
the importance of a feature by first training the model on the train dataset, then permuting
the feature and computing the increase in the prediction error of the model. If a feature is
important in making predictions, the prediction error should increase after permutation. If a
feature is unimportant, the change in the prediction error will be by doing the permutation.
In general, feature importance can take any values. The feature importance is normalised to
obtain values in the range [0, 1], which show the relative importance of the features.

In this framework, possible datasets must first be identified manually by experts, then
reviewed by the developed framework. It is definitely desirable to automate the process of
reviewing all possible datasets related to the policy objective rather than an initial manual
shortlist of such datasets. This is currently not possible due to the data barriers and concerns
described in a report by the Department for Transport (Northhighland worldwide consulting,
2018)? and were also encountered extensively in the initial stage of this PhD research. These
barriers and concerns about data sharing can be divided into the three categories of external

barriers, internal barriers, and cultural barriers (Catapult Transport Systems, 2017):

» External barriers: The organisations are fearful about data sharing because of GDPR

concerns. They are worried for breaking the security and safety.

* Internal Barriers: The organisations are worried about cost of open data and data
sharing. It may be because of lack of case studies to show them the benefit of open
data.

* Cultural barriers: The organisations do not have the right set of skills for standardisa-

tion, keeping and maintenance of open data.

In case datasets are used for developing sensitive policy options, such barriers may be
created intentionally to preserve confidentiality of the results. Massive data are currently
collected from various sources by different public agencies and private sectors which rarely
communicate with each other.

The identification of relevant datasets and the effective sharing of data between organisa-
tions are critical challenges that require more than just technical solutions. Expert knowledge
can navigate these complexities by providing the necessary contextual understanding and
strategic insights. Experts can identify the most relevant datasets for a given policy by leverag-

ing their deep understanding of the transport system, its dynamics, and the specific objectives

3https://assets.publishing.service.gov.uk/government/uploads/system/uploads/
attachment_data/file/730787/local-transport-data-summary.pdf
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of the policy intervention. Furthermore, they can facilitate data sharing by addressing legal,
ethical, and organisational concerns, such as data privacy, security, and proprietary interests.
By advocating for collaboration, experts help build trust between organisations, ensuring that
data is shared in a manner that is both secure and aligned with policy goals. This combination
of expert knowledge and strategic data management is essential for overcoming barriers and

ensuring that data-driven approaches can be effectively applied in transport policy-making.

3.6 Framework for Validating the Objectives of Policy In-

terventions

In this section, a framework is developed for checking how well the objectives of a policy
intervention are achieved. This framework is presented in Figure 3.4. The underlying idea
of this framework is to compare the behaviour of the transport system under study in the
two cases of with and without the policy intervention. Historical data and new data gathered
after applying a policy intervention can be used to construct machine learning models and
then make the comparison. This comparison will then be judged against the quantitative
objectives of the policy intervention. Since the validation could be part of the initial policy
creation, policy refinement, or a post implementation review, two distinguished scenarios can

be considered.

First Scenario: The policy intervention is not implemented in the real system yet. In
this case, only historical data is available. The target variables and data types relevant to
the policy is first obtained using the framework of Figure 3.3. Then, a machine learning
model can be trained on the historical data to predict the target variables in the future
without the application of the policy intervention (i.e., assuming that no policy intervention
is applied, what will happen in the future). It is also essential to understand what will happen
if a policy intervention is implemented. For this purpose, various techniques can be used
including: multi-agent simulation (Doniec et al., 2008), physics-based modelling (Pielke
and Uliasz, 1998; Rastgoftar and Jeannin, 2021), machine learning models (Suleiman et al.,
2019), or a combination of these approaches. For example, in air quality modelling, physical
meteorological models could be used that include Dispersion Models, Photochemical Models,
or Receptor Models (See for example (Pielke and Uliasz, 1998)). These mathematical models
are based on the natural behaviour of physical quantities (concentration of the gas/particle,
pressure, temperature, etc.), are time consuming to construct, and require iterative tuning of

their parameters based on measured data.
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Fig. 3.4 A framework for validating the objectives of a policy intervention and checking how
well the objectives are achieved
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The underlying principle of these prediction approaches is to raise assumptions on how
the policy intervention would affect various features in the system and subsequently make
predictions on the target variables. In Chapter 5, the historical dataset is modified based
on appropriately justified assumptions, and a second machine learning model is trained for

predicting target variables after the application of the policy intervention.

Second Scenario: The policy intervention is already implemented. In this case, data
gathered and stored can be divided into two parts: historical data from the transport system
before the implementation of the policy intervention, and the most recent data from the
system after the implementation of the policy intervention. The target variables and data
types relevant to the policy is first obtained using the framework of Figure 3.3. Next, a
machine learning model can be trained on the historical data to predict the target variables in
the future without the application of the policy intervention (i.e., assuming that no policy
intervention was applied, what would have happened in the future). Then, the predicted
target variables under no policy intervention are compared with the target variables measured
under the policy intervention. The new data obtained under policy intervention could also be
used for improving the quality of the models built in the previous scenario, for instance by a

better tuning of the model parameters.
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Fig. 3.5 Framework for finding the best implementation of policy commitments in transport
systems

3.7 Framework for Optimal Implementation of Policy Com-

mitments

This section presents the designed data-driven framework for finding the best implementation
of policy commitments in transport systems. The framework is shown in Figure 3.5. At
the heart of this framework is a model that generates the behaviour of the transport network
when a policy commitment is implemented. This could be an agent-based model, an imple-
mentation of the physics-based model, digital twin of the transport network, or a machine
learning model trained properly on a related dataset of the transport system. These models
should describe the behaviour of the system if a specific policy commitment is applied to
the system. These models are generally constructed starting from a baseline model. The
baseline model describes the current situation in the network and it should match the datasets
already available from the system. The model is then used in a loop to evaluate different
implementations of policy commitments and find the best implementation using optimisation
methods.

In order to demonstrate the application of the framework in Figure 3.5 to a case study,
a key policy in the transport sector of net zero emission strategy has been selected. The
policy will be achieved through various commitments including incentives for individuals and
companies to buy electric vehicles, and providing the required EV charging infrastructure. In



74 Methodology

order to achieve these commitments, the required number of electric vehicle charging points
and stations will be increased in on-street and public places to create a better availability and
accessibility of the charging points for the EVs.

A model is built for simulating the EV charging infrastructure to compute the increase
in the quantity of charging points with different types. The model includes two distinctive
stages of simulation and optimisation. The simulation stage of the baseline model has
been constructed in collaboration with the industrial partner of the PhD project, Arup Group
Limited (Arup and Limited, 2022). The assumptions used for the construction of this baseline
simulation model have been selected and revised according to the available data. The relevant
subsets of the output of the simulation model have been used for feeding the optimisation

stage of the model.

3.8 Programming Language for the Implementations

For the implementation of the methodology proposed in this thesis, analysing the data, and
applying the frameworks to case studies, Python is chosen as the primary programming
language due to its extensive support for data analysis and machine learning. Python’s
simplicity and readability streamline the coding process and its widespread use in the
machine learning community provides a robust support system for problem-solving and
development. When compared to R, MATLAB, or other popular programming languages for
data-driven approaches, Python stands out for several reasons:

* Flexibility: Python’s extensive library ecosystem, such as NumPy for numerical com-
puting, Pandas for data manipulation, and scikit-learn for machine learning, provides
versatile tools that are essential for implementing the methodology of this research and

applying to the selected case studies.

* Community and Support: Python has a large and active community, providing a
wealth of resources, documentation, and forums for troubleshooting, which is invalu-

able for research and development.

* Integration: Python offers excellent integration capabilities, allowing it to work

seamlessly with other programming languages and technologies.

* Open Source: Unlike MATLAB, Python is open-source, which eliminates the barriers
of licensing costs and restrictions, promoting a more collaborative and accessible

research environment.
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Table 3.2 Advantages of Python programming language used in the thesis

Advantage of Python Description

Flexibility Extensive library ecosystem (NumPy, Pandas, scikit-learn)
Community and Support | Large and active community with extensive resources
Integration Possibility of integration with other languages and technologies
Open Source No licensing costs, collaborative and accessible

The above reasons are summarised in Table 3.2. Specific libraries selected for their
respective strengths and relevance to each chapter of this thesis, summarised in Table 3.3, are
as follows:

* NumPy and SciPy are used for their efficient numerical computations, which are

indispensable for data pre-processing and complex mathematical operations.

* Pandas is chosen for its data structures and tools that are designed for quick and easy

data manipulation and analysis, particularly when dealing with structured data.

* Scikit-learn is employed for its extensive range of machine learning algorithms,
providing a comprehensive toolkit for regression and classification tasks.

» Keras allows for the construction and training of machine learning models including

neural networks with a user-friendly interface for quick prototyping.

» Matplotlib and TorchMetrics are incorporated for data visualisation, which aids in
the analysis and presentation of results.

* GDAL is particularly relevant for spatial data manipulation and analysis, which aligns
with the transport and geospatial aspects of this research used for obtaining the results
of Chapter 6.

A summary of using these libraries in each technical chapter of this thesis are reported in
Table 3.1. Each library’s use in this thesis aligns with its capabilities and suitability for the
research tasks at hand. This strategic choice of programming language and libraries ensures
that the developed methodology is not only efficient and effective but also grounded in the

latest technology standards in data science and machine learning.

3.9 Conclusions

This chapter discussed the current state of practice in evidence-based policy-making and

the impact of data-driven methods on the policy-making process. Building on this founda-
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Table 3.3 Advantages of specific Python libraries used in the thesis

Python Library Usage in Thesis

NumPy and SciPy Numerical computations and data pre-processing

Pandas Data manipulation and analysis

Scikit-learn Machine learning algorithms for regression, classification
Keras neural network construction

Matplotlib and TorchMetrics | Data visualisation

GDAL Spatial data manipulation and analysis

tion, three data-driven frameworks were introduced, each designed to address the research
questions of this thesis. These data-driven frameworks include

(a) framework for identifying relevant data types,
(b) framework for validating the objectives of policy interventions, and
(c) framework for optimal implementation of policy commitments.

The chapter illustrated how each framework supports different stages of the policy
development process for a generic policy. The integration of the frameworks within the

policy cycle was visually represented in the accompanying diagram, which showed

* Framework 1 (Data Analysis) aids in Problem Analysis & Appraisal by identifying

relevant data types.

* Framework 2 (Validation) ensures Maintenance, Monitoring & Review and Evaluation

by validating objectives and outcomes.

* Framework 3 (Optimisation) supports Implementation & Delivery by optimising policy

implementation.

It was discussed that unlike traditional policy-making, which relies heavily on expert judge-
ment and qualitative analysis, the proposed frameworks integrate systematic and quantitative
data-driven methods. This approach enhances the robustness and objectivity of the policy-
making process.

Finally, the choice of programming language for implementing the methodology and
applying the frameworks to case studies in subsequent chapters were presented. Next
technical chapters will show how to apply the frameworks of this chapter to the case studies
while reporting the obtained results. This will be followed by a discussion chapter before

concluding the thesis.



Chapter 4

Machine Learning & Relevant
Data-Types for Clean Air Zone Policy

A framework was proposed in the previous chapter for identifying data types that are the
most relevant to a policy objective. This chapter shows how to apply the framework to the
use case of a clean air zone where the objective is to improve air quality in areas where
there are currently nitrogen dioxide (NO,) exceedances. The intervention implemented in
the clean air zone is considered to be in the form of specific charges on vehicles entering the
zone dependent on their emission levels. The datasets from the Newcastle Urban Observatory
are used.

This chapter tackles the challenge of finding datasets that are relevant to the policy
objective. Focusing on the reduction of NO; concentrations, different machine learning
algorithms are used to build models. The rationale behind using the framework on the use
case is that well-established machine learning methods do not require an understanding of
air pollutants’ physical or chemical properties but need sufficiently rich datasets. These are
datasets that have a comprehensive range of features and examples necessary to train effective
models. These datasets must be adequately large and diverse to capture the complexities
of the quantities they aim to model or predict. The designed framework sets the first steps
that need to be taken in order to capture the complex nonlinear relationships between the
concentration of air pollutants and meteorological variables in machine learning models.

As part of the framework, suitable machine learning classification models are chosen.
The selected models are Decision Tree, Light Gradient Boosting Machine, K-Nearest Neigh-
bour, and Gradient Boosted Decision Tree. The details of these models were presented in
Section 2.4.6. The test metrics for comparing the accuracy of machine learning algorithms
employed in this research are also given, which can be used to assess the performance of the

learned models.
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This chapter is organised into the following sections. With focus on the clean air zone
and data use, Section 4.1 maps the generic steps of the policy cycle described in Section 3.1
to the steps taken in defining and evaluating the clean air zone intervention. A description
of data collection and preparation is provided in Section 4.2 for the geographical area of
Newcastle upon Tyne and for the clean air zone case study. Section 4.3 is focusing on the
data analysis providing the preprocessing steps performed to prepare and clean the raw
data before it is fed into a machine learning model. It also gives the details of applying
statistical methods for exploration, analysis, and visualisation of the data gathered from
Newcastle Urban Observatory for air quality. Section 4.4 gives the policy objective for the
use case of clean air zone considered in this chapter. Sections 4.5-4.6 gives the complete
definitions of Pearson Correlation and Feature Importance needed as part of the framework.
The test metrics for assessing the performance of the machine learning models are given
in Section 4.7. These metrics include accuracy, precision, recall, F1 score, and confusion
matrix. Section 4.8 gives the details of the architecture and implementation of the machine
learning models, describes data splitting for model training and evaluation, and presents the
results of applying the framework on the dataset from Newcastle Urban Observatory. Finally,
the chapter is concluded in Section 4.9. The code for reproducing the results of this chapter
is provided in Appendix B.

The content of this chapter is based on the following articles published during the PhD
study.

* Farhadi, Farzaneh, Roberto Palacin, and Phil Blythe. "Machine Learning for Transport
Policy Interventions on Air Quality." IEEE Access (2023). DOI: https://doi.org/10.
1109/ACCESS.2023.3272662

 Farhadi, F,, Palacin, R. and Blythe, P., 2022. Machine Learning Methods for Identifying
Relevant Data in Transport Policy Interventions. Universities Transport Study Group
(UTSG), Edinburgh Napier (July 2022).

4.1 Steps of the Policy Cycle for Clean Air Zone

This section describes how the generic steps of the policy cycle described in Section 3.1 are

mapped into the steps taken in defining and evaluating the clean air zone intervention.

1. Issue Identification: Local authorities recognise that air quality levels, particularly
NO,, exceed legal limits, primarily due to road traffic emissions. Public health data

indicates significant negative health impacts, such as respiratory and cardiovascular


https://doi.org/10.1109/ACCESS.2023.3272662
https://doi.org/10.1109/ACCESS.2023.3272662
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illnesses, associated with poor air quality. The UK Government’s “Air Quality Plan for
NO, in UK” (2017) mandated cities with illegal NO, levels to take action. Newcastle
was identified as having NO, levels above the legal limit, primarily due to road traffic
emissions.

Data Use: Continuous air quality monitoring data from stations throughout the city
is analysed to identify areas with the highest pollution levels. Epidemiological data
linking air pollution to health outcomes is also reviewed to highlight the urgency of the
issue. Newcastle City Council used air quality monitoring data to pinpoint problem

areas like the Central Motorway and City Centre where NO, exceeded legal limits.

2. Aims: Authorities establish clear aims for the policy, such as reducing NO; levels
to meet legal standards within a specified time frame, improving public health, and
reducing vehicle emissions. The Air Quality Action Plan for Newcastle and Gateshead
set the aim to reduce NO; levels to meet legal limits and improve public health.
Data Use: Baseline data on current NO, levels and health statistics is used to set
specific, measurable targets (e.g., achieving a certain amount of reduction in NO,

concentrations within a specific time frame).

3. Problem Analysis and Appraisal: A thorough analysis of the sources of NO; emis-
sions (e.g., diesel vehicles) is conducted to understand the problem’s scope. Different
strategies are appraised, such as charging high-emission vehicles, improving public
transport, or promoting active travel (walking, cycling).

Data Use: Traffic flow data, emission models, and cost-benefit analysis are used to as-
sess the potential impact and feasibility of different options. Health impact assessments
evaluate the effects of air quality improvements on public health outcomes. The “Clean
Air Zone for Newcastle and Gateshead — Delivery Plan” (2021) provides a detailed
analysis of air quality data, sources of emissions, and potential policy measures. The
business case included emissions modelling and traffic analysis data to understand the
sources of pollution. Various scenarios, such as charging different classes of vehicles

or providing exemptions, were appraised for their effectiveness and feasibility.

4. Preferred Option and Feasible Objectives: Authorities identify the most viable
policy option to achieve the aims set earlier. Newcastle opted for a charging clean air
zone targeting non-compliant vehicles.

Data Use: Emissions modelling data is used to predict the impact of different options
on air quality. Economic impact assessments help understand the costs and benefits to
different stakeholders. These data inputs guide the selection of the preferred policy.
The preferred option for Newcastle involved targeting vehicles that do not meet certain
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standards. Emission reduction projections and cost-benefit analysis data supported this

decision among the available options.

. Final Consultation: Before finalising the policy, a consultation phase is conducted

with the public, businesses, and other stakeholders to gather feedback and refine the
policy.

Data Use: Data collected during consultations (e.g., survey responses, public meetings,
feedback submissions) is analysed to identify concerns, levels of support or opposition,
and potential adjustments needed to the policy. The report on “Clean Air Zone Public
Consultation” by Newcastle City Council ! documented responses from over 19,000
participants through online surveys, public meetings, and stakeholder workshops. Data
from this consultation was used to refine the policy, such as adjusting the types of

vehicles charged and considering additional support measures for affected groups.

. Decision: Local authorities, in collaboration with central government agencies, make

a final decision on the clean air zone policy based on the consultation results, data
analysis, and strategic objectives.

Data Use: Aggregated data from consultation feedback, emissions modelling, and
economic impact studies are used to justify and support the decision. Risk assessments
ensure potential challenges are identified and managed. The details are documented
in the “Minutes of Newcastle City CouncilAAZs Cabinet Meeting” (2020) where the

decision to implement a clean air zone was finalised.

. Implementation and Delivery: The policy is put into action, including establishing

infrastructure (such as signage, cameras, and enforcement mechanisms), informing
the public, and launching any supporting schemes including grants or exemptions for
certain vehicles (Newcastle Clean Air Zone Implementation Plan, 2021).

Data Use: Newcastle collects real-time data from monitoring systems (such as cam-
eras) to enforce the policy and track compliance. Traffic flow and air quality data are

continuously monitored to adjust implementation as needed.

. Maintenance, Monitoring, and Review: Continuous monitoring of the clean air

zone’s impact on air quality, traffic patterns, and public health is conducted to ensure
it remains effective. Authorities review the policy to make adjustments, such as
modifying zone boundaries or updating vehicle exemptions.

Data Use: Ongoing air quality monitoring, traffic data, public health statistics, and

Thttps://www.newcastle.gov.uk/citylife-news/transport/final-air-quality-consultation-under-way


https://www.newcastle.gov.uk/citylife-news/transport/final-air-quality-consultation-under-way
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compliance rates are analysed to assess whether the policy objectives are being met

and if adjustments are necessary.

9. Evaluation: A comprehensive evaluation is conducted to determine whether the clean
air zone has achieved its objectives, such as reducing NO, levels and improving health
outcomes.

Data Use: Evaluation involves comparing post-implementation air quality data against
baseline levels to measure changes. Data on health outcomes, economic impacts, and
compliance rates are also analysed to assess the policy’s overall success and inform

future policy decisions.

At each step, data is crucial for informing decisions, setting objectives, analysing options,
engaging stakeholders, implementing policies, monitoring progress, evaluating outcomes,
and refining the clean air zone policy throughout its life cycle.

This chapter is focused on applying the proposed framework for identifying relevant
data types proposed in Chapter 3 to the Newcastle clean air zone. This framework can be
integrated with steps 3 and 4 of the policy cycle in problem analysis, preferred option and

feasible objectives as discussed in Fig 3.2.

4.2 Data Collection and Preparation

As part of the data search for applying the proposed framework to clean air zone, the relevant
organisations were contacted. After extensive discussions with the contact persons of the
related organisations, the datasets most relevant to the case studies were identified (a list
of the contacted persons can be found in Appendix A). For the clean air zone case study in
this Chapter and in Chapter 5, the primary data source is the Newcastle Urban Observatory,
which has datasets of time-stamped quantities on air quality, weather, and traffic.

4.2.1 Geographical Area: Newcastle upon Tyne, United Kingdom

The city of Newcastle upon Tyne in the United Kingdom has been chosen as the geographical
area for this research, which aims to validate the effectiveness of clean air zones. Newcastle
upon Tyne is the largest city in the North East of England with approximate population of
300,000. It is a densely populated urban area with a high level of air pollution, making it an
ideal location for testing and implementing measures to improve air quality. Through this

research, the impact of clean air zones on air quality can be studied in depth.
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4.2.2 Data for Clean Air Zone

The Newcastle Urban Observatory (UO) was developed with a multi-million-pound invest-
ment to serve as a large-scale data capturing infrastructure. The UO was initially funded
under the UK Collaboratorium for Research in Infrastructure and Cities (UKCRIC).? The
open dataset of UO is used by community groups, local and national government, and re-
search projects ranging from cyber-security to quantifying the impact of COVID measure and
flood forecasting. The data handled by the UO covers a wide range of city metrics including
mobility, air quality, climatic variables, and infrastructure.

The volume of data in UO is in the order of billions of data points that are published
as anonymous open data (James et al., 2020). The dataset includes 900 million data points
measured since 2016, 60 data types, and 2000 observations every minute. Figure 4.1 shows
the geographical locations of sensors that measure and send data to the UO. The majority of
the sensors are located in Newcastle upon Tyne and its surrounding areas. The map shows
clusters of sensors for a better visualisation. Note that the measurements stored in the UO
are raw data and needs to be processed for improving the quality of the data. A subset of the
measurements relevant to the research of this thesis are used and preprocessed as described

in Section 4.3.

4.3 Data Analysis

As highlighted in Figure 2.3, the pipeline of machine learning includes data preprocessing.
The goal of preprocessing is to prepare and clean the raw data before it is fed into a machine

learning model. Common objectives of preprocessing include

* Data Cleaning: Identifying and handling missing or erroneous data points to ensure
the dataset is accurate and reliable.

* Normalisation/Standardisation: Scaling numerical variables to a standard range or stan-
dardising them. This helps in preventing variables with larger scales from dominating

the learning process.

* Handling Categorical Data: Converting categorical variables into a numerical format

that the model can understand.

* Removing Outliers: Visual inspection of data to remove extreme values or anomalies
such as negative values for positive quantities and measurements outside the bounds of

quantities.

Zhttps://urbanobservatory.ac.uk/explore/ukcric
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Fig. 4.1 Geographical locations of sensors that measure and send data to the Newcastle Urban

Observatory

» Data Splitting: Dividing the dataset into training, validation, and test sets to evaluate

the model’s performance on unseen data.

* Handling Time-Series Data: Ensuring that the temporal aspect is considered appropri-

ately, and features are engineered accordingly.

In the next subsection, preprocessing and analysing is performed on the datasets gathered

from UO.

4.3.1 Preprocessing and Analysing Data from UO

The data being monitored and stored at UO sites include different themes and each theme

has different variables. The themes considered for the clean air zone case study include

air quality, weather, traffic, and timestamp.

There are different sensors for monitoring these themes. These sensors are installed in various

locations of Newcastle. The considered sensors are close to Newcastle City Centre to have a

better understanding of the air quality at the centre of Newcastle. Each theme has different

variables. The variables considered for the air quality theme include



84 Machine Learning & Relevant Data-Types for Clean Air Zone Policy

Table 4.1 Data themes and variables for Clean Air Zone case study

Theme Variables Description Source

Air Quality | CO, PM; 5, PMy, PMjq, | Air pollutants Newecastle Urban Ob-
PMy, O3, NO, NO, servatory

Weather Wind Direction, Wind | Climatic variables | Newcastle Urban Ob-
Speed, Solar Radiation, servatory

Solar Diffuse Radiation,

Pressure, Rain Duration,
Rain ACC, Max Wind

Speed
Traffic Traffic Flow, Average | Traffic metrics Newcastle Urban Ob-
Speed servatory, Urban Traf-
fic Management and
Control
Timestamp | Year, Month, Day, Hour, | Time of data col- | Newcastle Urban Ob-
Minute, Second lection servatory

CO, PM2.5, PM], PMI(), PM4, 03, NO, and NOz.
The variables considered for weather theme include

Wind Direction, Wind Speed, Solar Radiation, Solar Diffuse Radiation, Pressure, Rain
Duration, Rain ACC and Max Wind Speed.

The variables considered for the traffic theme include
Traffic Flow and Average Speed,

which are both collected by the Newcastle UO and by the Urban Traffic Management and

Control at a greater fidelity. The dataset also has timestamp theme with variables
Year, Month, Day, Hour, Minute, and Second.

This means the measurements are taken in general every second and stored in the database of
the UO. A summary of the above themes and variables can be found in Table 4.1.

Reducing NO; is the main objective of the policy intervention (cf. 4), thus the availability
of NO, data in each year is considered. After analysing the NO; data gathered and stored
by the Urban Observatory, the study is focused on the dataset for the year 2018 that has
the largest number of measured values. The dataset of the year 2018 has over one million
data entries, while the other years have a substantially smaller number of measurements.
Therefore, the year 2018 is chosen for training and validating the policy objective. Table 4.2
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shows the statistics of the dataset for the year 2018. The table shows respectively the mean,
standard deviation, minimum, 25® percentile (lower quartile), 50t percentile (Median), 75th
percentile (upper quartile), and the maximum of each variable.

The preprocessing, computations, and visualisations of this chapter are done using Python
programming language. The preprocessing takes into account measurements with obvious
errors. For instance, any negative measurement of positive quantities is eliminated from the
dataset. Any measurement outside the bounds of quantities are also eliminated (e.g., any
outlier sensor reading that is a few times higher that other readings). Any data entry stored in
the format of text and is supposed to be number is also eliminated.

The traffic flow measured and stored by Urban Observatory is the fofal the number of
buses, coaches, private cars, taxis, vans and heavy goods vehicles. The clean air zone affects
these types of vehicles differently. For instance, it is designed to put restrictions and charge
commercial vehicles without affecting private cars. In order to make accurate predictions
on how the clean air zone reduces the NO, concentrations, it is essential to have separate
datasets for traffic flow of different vehicle types. The available dataset of the total traffic
flow is divided into four different traffic flow for different vehicle types including

1. buses and coaches,

2. heavy goods vehicles (HGVs),
3. cars and taxis, and

4. two-wheeled motor vehicles.

Since the available dataset includes only the total number and does not give separate
numbers for four vehicle types, the road traffic statistics published by the Department of
Transport (Department for Transport, 2022) is used to get the percentages of each vehicle

type in Newcastle upon Tyne. According to this report, the percentages are as follows:
* Traffic flow of buses and coaches = 1.24% of the total traffic flow,
e Traffic flow of HGVs = 18.13% of the total traffic flow,
e Traffic flow of cars and taxis = 80% of the total traffic flow,

e Traffic flow of two-wheeled motor vehicles = 0.63% of the total traffic flow.
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Table 4.2 Statistics of the dataset from UO

269.53 | 332.38 | 0.09 2332 | 137.87 |438.24 | 2111.90
3.65 4.01 0.18 1.20 2.15 4.43 44.06
6.87 7.86 0.37 2.48 4.11 8.12 92.28
9.99 8.46 0.18 4.78 7.59 12.00 134.13
13.56 17.62 | 0.98 5.39 8.38 15.16 323.95
98.17 256.44 | 0.02 5.94 17.56 63.80 8091.09
58.99 38.44 | 7.29 31.07 | 49.88 77.10 247.87
55.22 49.77 | 0.34 19.32 | 41.02 74.37 313.73
9.48 6.41 0.00 4.00 9.00 14.00 50.76
3.99 2.99 0.0 0.90 2.87 5.10 15.54
74.54 140.12 | 0.014 | 0.24 2.19 92.85 9.4.55
196.17 | 36.31 |106.33 | 169.55 | 207.02 | 225.28 | 276.40
3.34 1.91 0.00 1.92 2.93 4.402 16.05
62.83 91.19 |1.01 1.48 11.19 94.08 531.15
9.63 8.69 1.73 6.26 7.99 10.42 152.87
1005.81 | 13.64 | 969.07 | 993.39 | 1007.22 | 1017.30 | 1033.12
12.35 11.19 | 0.00 1.15 10.08 22.14 44.05
57.16 14.65 | 26.17 |44.64 |51.93 72.35 80.00




4.3 Data Analysis 87

4.3.2 Data Visualisation

The available datasets in 2018 are visualised to extract useful knowledge and find suitable
information. Figures 4.2—4.3 show the time series of air pollutant concentrations (NO;,
NO, O3, CO, PM|, PM; 5, PMy, PM|(). Figures 4.4—4.5 show the time series of weather
conditions (rain duration, solar radiation, solar diffuse radiation, rain accumulation, pressure,
max wind speed, wind speed, and wind direction). Figure 4.6 show the time series of traffic
metrics (traffic flow and average speed). The statistics of these variables are presented in
Figures 4.7-4.9.

Data exploration reveals interesting insights on the trends of the variables. Higher levels
of NO;, CO, and PM are observed during the early months of the year, particularly in January
and February. These high levels are likely due to winter heating and lower wind speeds,
which reduce pollutant dispersion. As the year progresses, the pollutant levels decrease,
reflecting seasonal changes and possibly better air quality measures. O3 levels peak during
the warmer months, showing how weather impacts air quality.

That pressure fluctuates throughout the year due to changing weather systems. Wind
speed spikes during certain periods, indicating storms or strong weather events. Rain
accumulation and duration increase during mid-year, aligning with the rainy season. Solar
radiation peaks in the summer months and decreases in winter, demonstrating the seasonal
changes in sunlight exposure.

The average speed graph shows that speeds are generally high but dip during peak hours
and congested periods, indicating traffic jams. The traffic flow graph highlights higher vehicle
volumes during rush hours, with significant peaks in the early morning and late afternoon,
reflecting daily commuting patterns. There is an increase in traffic flow towards the end of
the year, likely due to holiday activities.

After this data exploration and visualisation, the dataset is filtered to have the values
of variables as time series. The dataset is also unified and transformed into an appropriate
format to be compatible with machine learning methods.
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Time Series of NO2 (Nitrogen Dioxide) Concentrations
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Fig. 4.2 Time series of air pollutant concentrations (NO;, NO, O3, and CO)
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Time Series of PM1 (pg/m3)
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Time Series of Rain Duration (h)
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Traffic Flow (Passenger Car Units)

Average Speed (KmPH)
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Fig. 4.6 Time series of traffic metrics (traffic flow and average speed)
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Fig. 4.7 Visualisation of “Air Quality” theme datasets
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Fig. 4.8 Visualisation of “Weather” theme datasets

4.4 Policy Objective and the Intervention

The cabinet members at Newcastle and Gateshead Councils have confirmed the plans for

introducing a clean air zone to operate in Newcastle city centre (Breathe, 2020). The zone
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Fig. 4.9 Visualisation of “Traffic” and “TimeStamp” themes datasets

will include the city centre of Newcastle and routes over the Tyne, High Level, Swing and
Redheugh bridges. The intervention will impose charges on all buses, taxis, coaches, vans
and heavy goods vehicles (HGVs) that do not meet the emissions standards of EURO IV
for petrol and EURO VI for diesel vehicles. The primary goal of the clean air zone in
Newcastle is to improve the poor air quality. Therefore, the objective of the introduced policy

is considered to be the following:

After introducing the clean air zone at Newcastle, the concentration of NO, will reduce.
More specifically, the time duration when the concentration of NO; is unhealthy (NO;
concentration above 100 parts per billion) will be reduced by 10%.
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Note that 10% reduction is selected as an example for a proof of concept to demonstrate the
usefulness of the frameworks designed in this chapter. This reduction can be estimated by
the Clean Air Zone experts in their technical documents backed up by air quality modelling,
operational cost modelling, and behavioural response estimates.>

Justification of the selected air quality target. The UK Air Quality Standards Regulations
(2010)* have set two limit values for NOy:

(a) the annual mean concentration of NO, must not exceed the limit 40 [%] , and

(b) there should be no more than 18 exceedances of the hourly mean limit value (concen-
trations above 200 [%]) in a single year.

The work of the thesis studies NO; concentrations as time series with hourly time stamps.
Therefore, the hourly limit value of 200 [%} and the number of times this limit is exceeded
are relevant to the research of this thesis. The considered policy objective is 10% reduction in
the time duration when the concentration of NO, is unhealthy. This is related to the number
of exeedances of the NO; concentration limit of 100 [ppb]. The value 100 [ppb] is selected
based on the divisions proposed by the Office of Air and Radiation (6301A) (2011)° with
respect to the risk of NO, for the general population as described in Section 4.8.
o

by the UK Air Quality Standards Regulations (2010). Note that the objective is set to require
a certain percentage of reduction relative to the zone without the implementation of policy

The calculations below show that 100 [ppb] = 188 [“—;} , which is close to the limit set

intervention since this is more appropriate than requiring an absolute reduction in the number
of exeedances (i.e., any new intervention is expected to make improvements relative to the

current state of the zone).
Translating ppb to [%] . The thesis reported the concentrations in parts per billion (ppb).
The relation between ppb and [;L—ﬁ'] is as follows:
c rMgY . g . :
oncentration | —= | = molecular weight | ——1| x Concentration [ppb] - 24.45
m mol

The molecular weight of NO; is 46.01 [
1.88 [%} and 100 ppb — 188 [%}

|. This relation means for NO, that 1 ppb =

8
mol

Shttps://cleanairgm.com/technical-documents
“https://www.gov.uk/government/statistics/air-quality-statistics/ntrogen-dioxide
https://www.airnow.gov/sites/default/files/2018-06/n02.pdf.


https://cleanairgm.com/technical-documents
https://www.gov.uk/government/statistics/air-quality-statistics/ntrogen-dioxide
https://www.airnow.gov/sites/default/files/2018-06/no2.pdf.

4.5 Pearson Correlation Coefficient 97

4.5 Pearson Correlation Coefficient

As part of the framework in Figure 3.4, the correlation between different datasets and target
variables can be computed using available data and statistical methods. The correlation
coefficient gives a way to assess how much two variables are associated with each other.
The correlation coefficient takes values in the interval [—1, 1]. A value of £1 indicates that
two variables are dependent linearly. As the correlation coefficient goes towards 0O, the
relationship between the two variables will be weaker (they become independent of each
other). A plus sign in the correlation coefficient shows a positive relationship (an increase in
one variable will result in an increase in another variable) and a minus sign shows a negative
relationship (an increase in one variable will result in a decrease in another variable). More
precisely, for two random variables x,y modelling two datasets, the correlation coefficient is
defined as
E[(x—my)(y —my)]

= 4.1
pxay GxGy Y ( )

where K is the expectation operator, m,,m, are the means and o, 0, are the variances of
x,y. The correlation coefficient is computed using the following formula when a dataset

{(x1,51), (x2,¥2), -, (xn,yn)} of size n is available for x, y:

i1 (i =X i —y)
VI (i — %) /X (i — )2 ’

where X,y are the empirical means of x, y.

Pxy = 4.2)

4.6 Permutation Feature Importance

As part of the framework in Figure 3.4, the permutation feature importance computes the
importance of a feature by first training the model on the train dataset, then permuting the
feature and computing the increase in the prediction error of the model. If a feature is
important in making predictions, the prediction error should increase after permutation. If
a feature is unimportant, the change in the prediction error will be negligible by doing the
permutation. In general, feature importance can take any values. The feature importance is
normalised to obtain values in the range [0, 1], which show the relative importance of the

features.
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4.7 Test Metrics

It was discussed in Subsection 2.4.4 that validating the objectives of a policy interventions
using data is well-suited for study through supervised learning methods. The choice of
supervised learning algorithms will be with respect to their robustness to noise, outliers, and
changes in data distribution, which can be influenced by dataset characteristics including
size, dimensionality, and noise. Consequently, it is a common practice to employ multiple
algorithms to identify those models suitable for specific data properties, assess the robustness
and generalisability across diverse datasets, and compare accuracy to evaluate predictive
performance and efficiency.

There are five metrics for assessing the performance of the classification machine learning
models. It is worth noting that if the performance of the model is high (by appropriate
selection of the hyperparameters), this means that the model can capture the essential
relations in the dataset and can provide more accurate predictions to be used by policy
evaluators and policy makers. A summary of the advantages and disadvantages of these
metrics are presented in Table 4.3 with their definitions as follows.

* Accuracy score: The first metric is accuracy, which is defined as the total number of
correct predictions divided by the total number of predictions. Accuracy can be written

as
TP+TN

A —
Uy = TP+ TN+ FP+ FN

* Precision score: It is defined for each class as the ratio of true positives to the sum of

true and false positives:
TP

TP+ FP
In other words, for all instances classified positive, what percent was correct.

Precision =

* Recall score: It shows the ability of a classifier to find all positive instances. For each
class it is defined as the ratio of true positives to the sum of true positives and false

negatives:
TP

TP +FN
In other words, for all instances that were actually positive, what percent was classified

Recall =

correctly.

* F1 score: This score is the harmonic mean of precision and recall:

2 % Precision x Recall
Fl =

Precision + Recall
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Table 4.3 Advantages and disadvantages of different test metrics for machine learning
classification models

Metric Advantages Disadvantages

Accuracy Simple and easy to understand, suit- | Can be misleading in imbalanced
able for balanced class distributions. | datasets, may not be appropriate for

skewed data.

Precision Focuses on the positive class, useful | Sensitive to imbalanced datasets.
when false positives are costly.

Recall Emphasises capturing all positives, | May result in more false positives,
useful when false negatives are | may not be ideal for precision-
costly. critical tasks.

F1 Score Balances precision and recall. Sensitivity to class imbalance.

Confusion | Provides detailed breakdown of pre- | Does not provide a single perfor-

Matrix dictions, Offers insights into true/- | mance metric.
false positives/negatives.

It can take its best value (one) when both precision and recall are equal to one. In worst

case, it can be zero.

Confusion Matrix: The precision score defined above is very useful but does not
contain all the information needed to judge the performance of a classification model.
This is in particular important when the dataset is imbalanced (i.e., some of the labels
may appear much less than other labels). The confusion matrix is a matrix that includes
the statistics of the correct classes and predicted classes when the trained model is

applied on the test dataset to make predictions.

By definition, a confusion matrix C is a square matrix with dimension n equal to the
number of classes, where the entry C;; is equal to the number of predictions known to
be in group i and predicted to be in group j. For binary classification (two classes),
the count of true negatives is Cy, false negatives is Cjg, true positives is Cj; and false
positives is Cpj. The performance of a classification is judged to be good if the diagonal

entries of the confusion matrix is close to 1 and the off-diagonal entries are close to 0.

Each machine learning model also has its own hyperparameters. For example the Decision

Tree classifier has the maximum depth as a hyperparameter. This can be chosen by computing

the accuracy of the classifier as a function of maximum depth. The best maximum depth can

be selected such that the accuracy of the classifier is maximised.
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4.8 Results of Applying the Framework

The dataset is divided randomly into 70% training data for learning the model and 30% test
data for assessing the accuracy of the trained model. The 70-30 split is a popular choice in
machine learning for a balance between having enough data to train on and enough data to
test the model’s accuracy effectively. This is done using train_test_split function of sklearn
package in Python. The sensor measurements of NO, contain continuous quantities. These
values are divided into five different ranges based on their risk for the general population
(Office of Air and Radiation (6301A), February 2011). The range of values is based on parts
per billion (ppb), which is defined as the number of units of mass of NO, per billion units of
total mass. These ranges are

1. “Good" for NO; concentration between 0 — 50 ppb. The NO; concentrations in this
range are expected to have no impact on health.

2. “Moderate" for NO; concentration between 51 — 100 ppb. This range of NO; is
considered to be harmful for people who are sensitive to NO,. These people should

consider limiting extended outdoor exertion.

3. “Unhealthy for Sensitive Group" when the NO, concentration is between 101 — 150
ppb. This range of NO; is considered to be harmful for people with lung disease, for
children and older people. They should /imit extended outdoor exertion.

4. “Unhealthy" for NO;, concentration between 151 — 200 ppb. Children, older people,
and anyone with lung disease should avoid extended outdoor exertion. Anyone else
should limit extended outdoor exertion.

5. “Very Unhealthy" for NO; concentration between 201 — 300 ppb. Children, older
people, and anyone with lung disease should avoid all outdoor exertion. Anyone else
should limit outdoor exertion.

Figure 4.10 represents the number of NO, measurements inside these five classes: Very
unhealthy (VU), Unhealthy (U), Unhealthy for sensitive group (US), Moderate (M), and
Good (G). The data has been ordered from most to least unhealthy. As it can be seen also
from Figure 4.10, Very Unhealthy class has the highest number of measurements between
these five classes. Therefore, it is expected that the machine learning models and the training
learn the Very Unhealthy class quite well. On the other hand, the number of data entries for
Unhealthy class is relatively smaller. Averaging is used to change the time resolution of the
measurements from second to hour. This will make the dataset a better representation of the

hourly average quantities and make them more robust against measurement noises.
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Fig. 4.10 The number of NO; measurements in five different classes

The most popular machine learning models are used, which include Decision Tree (DT),
Light Gradient Boosting Machine (LGBM), K-Nearest Neighbour (KNN), and Gradient
Boosted Decision Tree (LGBM), to build models that can accurately capture the important
information in the dataset, make accurate predictions, and help us to extract relevant important
data types according to the framework in Figure 3.3. A description of these classification
models were provided in Section 2.4.6. Note that the computation of Pearson Correlation
for the framework can be done without the need for training a classification model, but the
Feature Importance needs constructing a classification model first and then computing the
importance values by shuffling the dataset.

4.8.1 Applying the Framework Using Pearson Correlation

The correlations between different features and the NO; concentration are computed accord-
ing to Equation (4.2) to find the most relevant variables related to the NO; according to
the first framework in Figure 3.3. The result is presented in the right column of Table 4.4
after normalising the values. The feature importance does not have a specific range. To
make them comparable, the correlation coefficient and permutation feature importances are
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normalised, and the percentages are reported in the table. The numbers in the table are now
in the range [0, 100]. These numbers show the relative importance of the features. The cut-off
value 1% is used as a proof of concept to identify the most important features. In general,
this cut-off value should be selected with respect to the size of the dataset and the available
computational resources.

The measured variables are written in the left column of Table 4.4 and they are colour-
coded to indicate each theme. The variables in the Air Quality Theme are in green colour,
the variables in the Timestamp Theme are in red colour, the variables in the Weather Theme
are in yellow colour, and the variables in the Traffic Theme are in dark blue colour.

The normalised correlation coefficient reported in the right column show that the two
highest coefficients belong to the variables O3 and the number of cars and taxis. It is also
beneficial to look at coefficients across each theme separately. From the Air Quality Theme
(green variables), O3, NO, and CO have the highest correlation with NO, but PMy4 has a
negligible correlation. In the Timestamp Theme (red variables), Month and Day have the
highest correlation. In the Weather Theme (yellow variables) Pressure and Wind Direction
have the higher correlation, and in the Traffic Theme (dark blue variables), Cars and Taxis
give the highest correlation. Note that although HGVs have a high emission factor, they have

a negligible correlation because there is a small numbers of them.

4.8.2 Models Architecture and Implementation for Feature Importance

The selected classification models are Decision Tree (DT), Light Gradient Boosting Machine
(LGBM), K-Nearest Neighbour (KNN), and Gradient Boosted Decision Tree (LGBM), to
build models that can accurately capture the important information in the dataset, make
accurate predictions, and help us to extract relevant important data types according to the
framework in Figure 3.3. A description of these classification models were provided in
Section 2.4.6. A description of the architecture of these models and their implementation are
provided below.

1. Decision Tree (DT). The model architecture is based on the following hyperparameters.

* Max Depth: 10
The maximum depth of the tree, set to 10, to prevent overfitting and ensure the

model captures relevant patterns without becoming too complex.

* Min Samples Split: 2
Minimum number of samples required to split an internal node.



4.8 Results of Applying the Framework

103

Table 4.4 Normalised Feature Importance computed from different machine learning methods

and the normalised correlation

Measured Variables LGBM | DT | KNN | GBDT | Correlation

O3 36.3 | 28.7 | 45.5 29.1 19.6

NO 1.4 1.8 4.3 2.1 3.1

CcO 1.9 2.9 8.6 5.5 5.7

PM; 1 0.6 09 0.8 1.2

PM; 5 1.9 1.8 0.9 1.6 1.6

PMy 1 0.6 0.9 0.8 0.5

PM; 2.9 1.2 09 1.6 2.1

19.1 18.7 | 8.6 15 5.7

4.8 135 | 69 8.7 94

1.2 2.6 1.9 2.2 2.4

Pressure 5.7 6.4 4.3 4.7 8.6
Wind Speed 1 1.8 0.9 0.8 0.8
Rain Duration 1 3.5 09 1.6 1.2
Max Wind Speed 1.9 1.2 1.4 1.2 4.9
Solar Diffuse Radiation 1 0.6 0.8 0.7 0.9
Wind Direction 29 1.2 4.3 0.8 10.6
Solar Radiation 1 1.8 2.6 1.6 1.2
Rain Acc. 1 0.2 0.2 0.1 0.9
134 | 11.7 | 103 | 23.6 16.4

1.4 2.1 1.7 2.21 3.1

0.1 0.1 0.1 0.1 0.1
0.00 | 0.00 | 0.00 0.00 0.00

0.1 0.1 0.9 0.2 0.9

* Min Samples Leaf: 1
Minimum number of samples required to be at a leaf node.

* Random State: 1234 ( to ensure reproducibility of results).

The DT model is implemented according to the following Python code.

from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
Xs_of_train = trainx18.values

Ys = trainyl8.values

Ys_of_train = np.zeros(Ys.shape)
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for i in range(len(Ys)):

if(¥s[i] == ’Good?):
Ys_of_train[il = 0

elif (Ys[i] == ’Moderate’):
Ys_of_train[i] = 1

elif (Ys[1i] >Unhealthy for sensitive group?’):
Ys_of_train[i] = 2

elif (Ys[i] == ’Unhealthy’):
Ys_of_train[i] = 3

elif (Ys[i] == ’Very unhealthy’):

Ys_of_train[i] = 4

]

DT18 = DecisionTreeClassifier (max_depth=10, min_samples_split=2,
min_samples_leaf=1, random_state=1234)

DT18.fit (Xs_of_train, Ys_of_train)

DT18_train_res = DT18.predict(Xs_of_train)

dtacc_trainc = accuracy_score(DT18_train_res, Ys_of_train)

print (f’Training accuracy : {dtacc_trainc*1003}7%’)

2. Light Gradient Boosting Machine (LGBM). The model architecture is developed
using the following hyperparameters.

* Number of Leaves: 31
Controls the complexity of the tree model. A higher number of leaves can increase

model accuracy but may lead to overfitting.

* Learning Rate: 0.05
Determines the step size at each iteration while moving towards a minimum of
the loss function. A smaller learning rate requires more trees but can lead to
better generalization.

* Feature Fraction: 0.8
The fraction of features to be used for each tree. Reduces overfitting by introduc-

ing randomness.

* Bagging Fraction: 0.8
The fraction of data to be used for each iteration. Also helps in reducing overfit-
ting.

* Max Depth: -1 (unlimited, but can be adjusted to prevent overfitting)

The maximum depth of each tree. Limits the growth of the tree to prevent
overfitting.

* Random State: 1234 (to ensure reproducibility of the results).



4.8 Results of Applying the Framework 105

The LGBM model is implemented based on the following Python code.

from lightgbm import LGBMClassifier

from sklearn.metrics import accuracy_score

Xs_of_train = trainxl18.values
Ys = trainyl8.values
Ys_of_train = np.zeros(Ys.shape)

for i in range(len(Ys)):

if(Ys[i] == ’Good’):
Ys_of_trainl[i] = 0
elif (Ys[i] == ’>Moderate’):
Ys_of_train[i] = 1
elif (Ys[i] == ’Unhealthy for sensitive group’):
Ys_of_train[i] = 2
elif (Ys[i] == ’Unhealthy’):
Ys_of_train[i] = 3
elif (Ys[i] == ’Very unhealthy’):
Ys_of_train[i] = 4

logl8 = LGBMClassifier (random_state=1234, num_leaves=31,
learning_rate=0.05,
feature_fraction=0.8,
bagging_fraction=0.8,
max_depth=-1)

logl8.fit(Xs_of_train, Ys_of_train)

logl8_train_res = logl8.predict(Xs_of_train)

com_acc_train = accuracy_score(logl8_train_res, Ys_of_train)

print (f’Training accuracy : {com_acc_train*x100}%°’)

3. K-Nearest Neighbour (KNN). The model architecture is developed using the follow-
ing hyperparameters.

* Number of Neighbours (k): 5

Set to 5 to balance between noise reduction and capturing local patterns.
* Distance Metric: Euclidean distance

Commonly used metric to calculate the distance between points.

The KNN model is implemented using the following Python code.

from sklearn.neighbors import KNeighborsClassifier

from sklearn.metrics import accuracy_score
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Xs_of_train = trainxl18.values
Ys = trainyl18.values
Ys_of_train = np.zeros(Ys.shape)

for i in range(len(Ys)):

if (¥Ys[i] == ’Good’):
Ys_of_train[i] = 0
elif (Ys[i] == ’Moderate’):
Ys_of_train[i] = 1
elif (Ys[i] == ’Unhealthy for sensitive group’):
Ys_of_train[i] = 2
elif (Ys[i] == ’Unhealthy’):
Ys_of_train[i] = 3
elif (Ys[i] == ’Very unhealthy’):
Ys_of_train[i] = 4

KN18 = KNeighborsClassifier(n_neighbors=5)

KN18.fit (Xs_of_train, Ys_of_train)

KN18_train_res = KN18.predict(Xs_of_train)

knacc_trainc = accuracy_score (KN18_train_res, Ys_of_train)

print (f’Training accuracy : {knacc_traincx*1003}7%’)

4. Gradient Boosted Decision Tree (GBDT). The model architecture is developed using
the following hyperparameters.

* Max Depth: 10
Set to 10 to prevent overfitting while capturing significant patterns.

* Learning Rate: 0.1
Controls the contribution of each tree.

¢ Number of Estimators: 100

Number of trees in the ensemble.

* Random State: 1234 (to ensure reproducibility of the results).
The GBDT model is implemented according to the following Python code.

from sklearn.ensemble import GradientBoostingClassifier

from sklearn.metrics import accuracy_score

Xs_of_train = trainxl18.values
Ys = trainyl8.values
Ys_of_train = np.zeros(Ys.shape)

for i in range(len(Ys)):
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if(Ys[i] == ’Good’):
Ys_of_train[i] = 0
elif (Ys[i] == ’Moderate’):
Ys_of_train[i] = 1
elif (Ys[i] == ’Unhealthy for sensitive group?’):
Ys_of_train[i] = 2
elif (Ys[i] == ’Unhealthy’):
Ys_of_train[i] = 3
elif (Ys[i] == ’Very unhealthy’):
Ys_of_train[i] = 4

BRT18 = GradientBoostingClassifier (max_depth=10, learning_rate=0
.1, n_estimators=100,
random_state=1234)

BRT18.fit(Xs_of_train, Ys_of_train)

BRT18_train_res = BRT18.predict(Xs_of_train)

brtacc_trainc = accuracy_score(BRT18_train_res, Ys_of_train)

print (f’Training accuracy : {brtacc_trainc*100}%’)

4.8.3 Data Splitting for Model Training and Evaluation

In machine learning, the dataset is split into distinct training and evaluation datasets. In order

to compare different machine learning models and measure their performance, the following

techniques can be used for data splitting:

1. Fixed Training and Evaluation Sets. Models are trained on the same training set and

evaluated on the same evaluation set to measure their performance.

. k-Fold Cross-Validation. The dataset is divided into k equally sized folds. The model
is trained k times, each time using k-1 folds for training and the remaining fold for
evaluation.

. Leave-One-Out Cross-Validation. This is a special case of k-fold cross-validation,
where k equals the number of data points. Each data point is used once as a test

instance while the remaining points form the training set.

. Repeated Randomised Splitting. The dataset is divided randomly into distinct
training and evaluation datasets multiple times, a fixed number of models from each
class are trained and evaluated on each split, and the average and standard deviation of
the performance metrics are reported for each class of models.
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For the purpose of this research, repeated randomised splitting is selected due to the

following reasons:

(a) Fixed splitting may result in training or evaluation sets with disproportionate class
distributions in the imbalanced dataset of this research. This will lead to biased
performance metrics, and the performance estimate can be highly sensitive to the
particular split of the data. This dependence on the initial split can undermine the

reliability of model comparisons.

(b) k-Fold cross-validation may not preserve the proportion of classes in each fold, leading

to high variance in model evaluation.

(c¢) Leave-One-Out cross-validation is effective in small datasets, but increases the risk
of overfitting for the large datasets of this research and requires excessively large
computational time since the number of trained models is equal to the size of the

dataset.

In contrast, repeated randomised splitting gives the empirical average of the performance
metric for each class of models, which is more robust to disproportionate class distributions.
Moreover, the standard deviation of the performance metric across trained models gives a
measure of reliability and robustness of computed models.

The accuracy of the models of this chapter will be computed and repeated 10 times. The
results reported in the rest of this chapter show that the standard deviation of the performance

is less than 1%, which shows a robust and reliable model learning.

4.8.4 Applying the Framework Using Feature Importance

After training the four classification models, the Feature Importance values for all these
models are computed. The result is presented in Table 4.4. In each column, the relative
importance values more than 1% are highlighted in magenta colour. For LGBM model, O3
and Month have the highest importance. The following variables have the highest importance
value in each theme: O3 from the Air Quality Theme, Month from the Timestamp Theme,
Pressure from the Weather Theme, and Car and taxis from the Traffic Theme.

For DT model, Oz and Month have the highest importance. The following variables have
the highest importance value in each theme: O3 from the Air Quality Theme, Month from the
Timestamp Theme, Pressure from the Weather Theme, and Car and Taxis from the Traffic
Theme.

For KNN model, O3 and Car and taxis have the highest importance. The following

variables have the highest importance value in each theme: O3 from the Air Quality Theme,
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Month from the Timestamp Theme, Pressure and Wind Direction from the Weather Theme,
and Car and Taxis from the Traffic Theme.

For GBDT model, O3 and Car and taxis have the highest importance. The following
variables have the highest importance value in each theme: O3 from the Air Quality Theme,
Month from the Timestamp Theme, Pressure from the Weather Theme, and Car and Taxis
from the Traffic Theme.

Feature importance is generally superior to correlation coefficient for several reasons:

* Non-linear Relationships: Feature importance captures non-linear relationships be-
tween features and the target variable, whereas correlation only measures linear rela-

tionships that may miss complex patterns.

* Feature Interactions: Feature importance accounts for interactions between features
within the model, providing a more holistic view of their impact on predictions.

Correlation, being pairwise, does not consider these interactions.

* Model-Specific Relevance: Feature importance is derived directly from the model
and reflects how each feature contributes to the model’s accuracy. Correlation, on the
other hand, is a general statistical measure that does not reflect the model’s predictive

context.

As Table 4.4 shows for the dataset of the clean air zone case study, all the feature
importances and correlation coefficients share common conclusions about the importance of
different variables in predicting NO; and validating the intervention that involves reduction
of NO», but also have slight differences. The conclusions of these models could be used in
a voting mechanism to decide on the importance of features (similar to ensemble learning
(Polikar, 2012)). For this voting mechanism, machine learning models are trained, the relative
feature importances are computed, and the features indicated as important by the majority
of these models are extracted. For instance, most of these models used in the framework
state that O3, Month, Day, Pressure, and the Number of Cars and Taxis are important. On the
other hand, Wind Speed and Number of two-wheeled motor vehicles are less important in
building a model for validating the objectives of the intervention. These findings are also
confirmed by the general intuitive observations about air quality: there is evidence of high
correlation between NO, and O3 (Dimitrievici et al., 2017; Han et al., 2011; Zhao et al.,
2020); the month is important as the air quality can get impacted duo to the seasons and
weather conditions; the day will impact the air quality as usually traffic volume might be
higher during the working days and lower over the weekends. In the dataset of this chapter,

the average difference in traffic volume between weekends and the rest of the week is 35%.
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There are also differences between the importance values computed using these models.
This is mainly due to the nature of these algorithms that elements of randomness in their
computations. The randomness is originating from the optimisation used to lean the model
(exploring the parameter space of the model randomly), from the random initialisation of the
optimisation, and from random splitting of the dataset to train-test data (Witten and Frank,
2002). Therefore, any conclusion taken from the computations should be balanced with the
accuracy of the constructed model. for instance, as it will be discussed in the rest of this
subsection, the accuracy of the LGBM model is lower compare to other models. Therefore,
the results obtained based on this model should be discounted appropriately for making the

final decision.

4.8.5 Evaluation of the Classification Models

The metrics Accuracy, Confusion Matrix, F1 score, Precision, and Recall are used to evaluate
the obtained classification models (See Subsection 4.7 for the definition of these metrics).
Using the repeated randomised data splitting approach, the accuracy of the models are
computed and repeated 10 times to account for different training and test split of the dataset.
The average accuracy of the LGBM model is 88%, the average accuracy of DT model is
85%, the average accuracy of KNN model is 80%, and the average accuracy of GBDT model
is 84%. The standard deviation of these accuracies is less than 1%. Among all these methods
LGBM has the highest average accuracy and KNN model has the lowest average accuracy.
This shows that the LGBM model can predict the correct class in almost 9 out of 10 cases.
While this is an excellent outcome, the accuracy should be considered along other metrics to
have the full understanding of accuracy in each class. Therefore, the confusion matrix is also
reported.

Figures 4.11-4.14 show the Normalised Confusion Matrix for the four classification
models respectively for GBDT, DT, KNN, and LGBM models. The numbers associated with
different classes are: 0 for Good, 1 for Moderate, 2 for Unhealthy Sensitive Group, 3 for
Unhealthy, and 4 for Very Unhealthy. Recall that for a good classification, the diagonal entry
of the confusion matrix should be close to one and the off-diagonal entries should be close to
zero. As you can see from these Confusion Matrices, the models have learned the classes
1,2,3,4 relatively well, but the performance is not good for class number 3. This is mainly
due to the fact that the dataset used in this chapter has a different number of data points in
each class, and the number of data points in the Unhealthy class is much smaller than in
other classes. Note that confusion matrix is used to ensure that the imbalanced classes do not

give misleading conclusions.
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Normalised confusion matrix for GBDT Classifier
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Fig. 4.11 Normalised Confusion Matrix for the GBDT classification model

Normalised confusion matrix for DT Classifier
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Fig. 4.12 Normalised Confusion Matrix for the DT classification model
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Normalised confusion matrix for KNN Classifier
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Fig. 4.13 Normalised Confusion Matrix for the KNN classification model

Normalised confusion matrix for LGBM Classifier
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Fig. 4.14 Normalised Confusion Matrix for the LGBM classification model
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Fig. 4.15 Precision score for each method

Figures 4.15—4.17 shows the comparison between the trained models using Precision, F1
score and Recall score. The figures provide these metrics for all five classes separately. The
number of data points of classes are different as reported in Figure 4.10, the machine learning
algorithms have different performances in capturing the relations in the data: the class
Unhealthy with the smallest data points has the lowest score and the class Very Unhealthy
with the largest data points has the highest score.

4.9 Conclusions

This chapter described how the generic steps of the policy cycle are mapped into the steps
taken in defining and evaluating the clean air zone intervention with reference to the use of
data. Throughout this chapter, the proposed framework for identifying the relevant data types
was applied to a policy objective on air quality that reduces NO, concentrations through
the implementation of a clean air zone. The chapter demonstrated how machine learning
can effectively aid in finding and understanding the critical data types that align with the
objective of this policy intervention.
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To demonstrate applying the framework, data from the Newcastle Urban Observatory
was utilised. This chapter described the datasets collected and prepared for applying the
methodology of the thesis and the designed frameworks to clean air zone case study in
the geographical area of Newcastle upon Tyne. Furthermore, data analysis provided the
preprocessing steps performed to prepare and clean the raw data before it is fed into a machine
learning model. It also gave the details of applying statistical methods for exploration,
analysis, and visualisation of the data gathered from Newcastle Urban Observatory for air
quality.

The application of machine learning classifiers including Decision Tree, Light Gradient
Boosting Machine, K-Nearest Neighbour, and Gradient Boosted Decision Tree, provided
valuable insights into the importance of different features in predicting NO, levels. Among
these models, Light Gradient Boosting Machine stood out with its highest accuracy of 88%.
While this is an excellent outcome, the accuracy should be considered along other metrics to
have the full understanding of accuracy in each prediction class. Therefore, the confusion
matrix was also reported.

The main advantage of using these machine learning models is that their training does not
require an understanding of air pollutants’ physical or chemical properties. The structures
and properties of machine learning models allow us to incorporate complex nonlinear
relationships between the concentration of air pollutants and meteorological variables.

The next chapter will utilise the relevant data types identified through this framework to
validate the objective of the intervention. This validation will be accomplished using a time
series method.






Chapter 5

Machine Learning & Validating the
Objective of Clean Air Zone

A framework was proposed in Chapter 3 for validating the objectives of policy interventions.
This chapter shows how to apply the framework to the use case of a clean air zone where the
objective is to improve air quality in areas where there are currently nitrogen dioxide (NO,)
exceedances. The framework addresses the challenge of validating the policy objective by
comparing the NO; concentrations of the zone in the two cases of with and without the
intervention.

A time series machine learning model is developed for predicting the NO, concentrations
using dataset from the Newcastle Urban Observatory. As part of the framework, a suitable
time series model is chosen. The selected model is Long Short-Term Memory with it details
presented in Section 2.4.6. The test metric for assessing the performance of the LSTM model
employed in this research is also given.

This chapter is organised into the following sections. The details of the policy objectives is
discussed in Section 5.1. Time series prediction using LSTM is presented in Section 5.2. The
details of the architecture and implementation of the LSTM model are given in Section 5.3.
The test metric for assessing the performance of the LSTM model is also given in this section.
Section 5.4 presents the results of applying the framework on the selected policy objective
and the dataset from the Newcastle Urban Observatory. Finally, the chapter provides the
conclusions in Sections 5.5. The code for reproducing the results of this chapter is provided
in Appendix C.

The content of this chapter is based on the following articles published during the PhD
study.
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 Farhadi, Farzaneh, Roberto Palacin, and Phil Blythe. "Machine Learning for Transport
Policy Interventions on Air Quality." IEEE Access (2023). DOI: https://doi.org/10.
1109/ACCESS.2023.3272662

* Farhadi, Farzaneh, Roberto Palacin, and Phil Blythe. "Data-driven framework for
validating policies: Air quality case study." 2022 IEEE 25th International Conference
on Intelligent Transportation Systems (ITSC). IEEE, 2022. Published. DOI: https:
//doi.org/10.1109/ITSC55140.2022.9922587

 Farhadi, F., Palacin, R. and Blythe, P., 2023. Machine Learning Methods for Policy
Interventions. ECTRI Young Researchers, Lisbon, Portugal (May 2023).

5.1 Policy Objective and the Intervention

For the objective of the intervention, it is considered to be 10% reduction in the time duration
when the concentration of NO, is unhealthy (NO, concentration above 100 ppb). The limit
of 100 ppb is selected based on the divisions proposed by the Office of Air and Radiation
(6301A) (2011)! with respect to the risk of NO, for the general population as described in
Section 4.8. The objective is equivalent to 10% reduction in the number of NO, exeedances
of 188 [%] , which is close to the limit value of 200 [}%’} set by the UK Air Quality Standards
Regulations (2010).

Since the clean air zone of Newcastle is at the very early stage of being implemented,
only historical data before the implementation of the intervention is available. To develop a
machine learning model for predicting the concentration of NO, after the implementation
of the clean air zone, the historical dataset is modified based on the assumptions mentioned

next.

* Implementation of the clean air zone of Newcastle will result in at least 20% reduction
in the number of cars and taxis, 10% reduction in the number of buses and coaches,
and 20% reduction in the number of HGVs.

* The implementation of the zone will result in an average reduction in the air pollution
concentrations. To make this assumption quantitative and realistic, the Emissions
Factors Toolkit (EFT) published by the Department for Environment, Food & Rural
Affairs (Defra) of the united Kingdom is used to estimate the average concentrations
based on the traffic flow before and after the intervention. The difference between

https://www.airnow.gov/sites/default/files/2018-06/n02.pdf.
https://www.gov.uk/government/statistics/air-quality-statistics/ntrogen-dioxide


https://doi.org/10.1109/ACCESS.2023.3272662
https://doi.org/10.1109/ACCESS.2023.3272662
https://doi.org/10.1109/ITSC55140.2022.9922587
https://doi.org/10.1109/ITSC55140.2022.9922587
https://www.airnow.gov/sites/default/files/2018-06/no2.pdf.
https://www.gov.uk/government/statistics/air-quality-statistics/ntrogen-dioxide
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these two concentration estimations is taken and is deducted from the original dataset.
This means the particles from the Air Quality Theme are modified as follows: CO —
18, PM, 5 — 16, PM| — 10, PMjg — 21, PMy — 23, O3 — 29, NO - 18, NO, — 24, and
NO, - 25.

These assumptions are used to demonstrate the applicability of the developed framework.
The next subsections discuss how to apply the framework presented in Section 3.6 to this

clean air zone intervention.

5.2 Time Series Prediction and Evaluation Metrics

The dataset of air quality from the Newcastle Urban Observatory includes measurements
of the features as a function of time. These measurements can be seen as a sequence of
data points that are sequential and are dependent along the time axis. As discussed in
Chapter 4 of this thesis, the structures and properties of machine learning models allow us to
incorporate complex nonlinear relationships between the concentration of air pollutants and
meteorological variables.

The Long Short-Term Memory (LSTM) model is chosen for predicting NO, concentra-
tions. Selecting LSTM over other types of models is due to the following reasons:

» Temporal dependencies: LSTM networks are specifically designed to handle time-
series data and capture long-range dependencies (Van Houdt et al., 2020), which
are crucial when working with air quality data. Air quality variables including NO,
concentrations are influenced by past values and trends, making LSTMs more suitable

for than deep neural networks, which do not explicitly model temporal dependencies.

* Handling of vanishing and exploding gradients: LSTMs are designed to overcome
the vanishing and exploding gradient problems often encountered in training standard
recurrent neural networks (Graves, 2012). These issues make it difficult for recurrent
neural networks to learn long-range dependencies in time-series data. LSTMs, with
their gating mechanisms, can efficiently learn long-range dependencies without the

gradient problems, making them more appropriate for predicting NO, concentrations.

* Robustness to missing data (Tian et al., 2018): In real-world air quality datasets,
missing data is a common issue. LSTMs are more robust to missing data than deep
neural networks due to their ability to maintain hidden states over time. This allows
LSTMs to better handle gaps in the data and still provide accurate predictions.
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The accuracy of time series models in making correct predictions on the dataset is

evaluated by a metric called “Root Mean Square Error (RMSE)”, defined as

1 & R
RMSE = [~} [y = 5if? (5.1)
t=1

where y; is the true output (vector of labels) and ; is the output predicted by the time series

model. Two time Series Models are trained in this chapter:

1. The first LSTM model is developed to predict NO, concentrations in the future without
the application of the intervention. This model is trained on the historical time series
data. The RMSE in (5.1) is computed with y; being the true NO; concentration levels
in the dataset and with §; being the NO, concentration levels predicted by the trained
model.

2. The second LSTM model is developed to predict NO, concentrations in the future with
the application of the intervention. Since the clean air zone of Newcastle is at the early
stage of implementation and the dataset under the intervention is not available yet,
the historical dataset is modified based on the assumptions mentioned in the previous
section. The RMSE in (5.1) is computed with y; being the NO; concentration levels
obtained under assumptions of Section 5.1 and with y; being the NO, concentration
levels predicted by the model trained on the modified dataset.

5.3 Model Architecture and LSTM Implementation

The details of LSTM model were described in Section 2.4.6. The model is developed using

the following hyperparameters.

 Units: 200
Number of LSTM units in the layer. This parameter determines the dimensionality of
the output space.

 Input Shape: (trainx18.shape[1], trainx18.shape[2])
Defines the shape of the input data. The model expects data with this shape for training.

* Loss Function: Mean Squared Error (MSE)
The loss function used to measure the difference between predicted and actual values.

* Optimizer: Stochastic Gradient Descent (SGD)

Optimization algorithm used to update the weights of the network.
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* Epochs: 500

Number of times the learning algorithm will work through the entire training dataset.

e Batch Size: 1

Number of samples per gradient update.
The LSTM model is implemented according to the following Python code.

# Model definition

modell8 = Sequential ()

model18.add (LSTM (200, input_shape=(trainx18.shapel[l], trainx18.shapel
2100

modell18.add(Dense (1))

modell8.compile(loss="mean_squared_error", optimizer=’sgd’)

# Model training

historyl8pre = modell18.fit(trainx18, trainlabl8, epochs=500,

validation_data=(testx18, testlabl8), batch_size=1, verbose=2,
shuffle=True)

# Plot training history
plt.plot(historyl8pre.history[’loss’], label=’Train’)
plt.plot(historyl8pre.history[’val_loss’], label=’Test?’)
plt.xlabel (’Epoch’)

plt.xlim(xmin=0)

plt.ylabel (’MSE’)

plt.legend ()

plt.show ()

# Model evaluation

from sklearn.metrics import mean_squared_error

yhat18 modell8.predict (testx18)

rmsel8 = np.sqrt(mean_squared_error (testlabl8, yhatl8))

total_rms = np.sqrt(mean_squared_error (testlabl8, np.zeros(len(
testlabl18.values.tolist()))))

rmsel8per = 100 * rmsel8 / total_rms

print (f’Test RMSE for 2018: {rmsel8:.3f}’)
print (f’Test root mean square for 2018: {total_rms:.3f}’)
print (f’Prediction root mean square for 2018:
{np.sqrt(mean_squared_error (yhatl8,
np.zeros (len(testlab18.values.tolist())))):.3f1}7)
print (£ ’Test RMSE percent for 2018: {rmsel8per:.3f}’)
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5.4 Results of Applying the Framework

Since the clean air zone of Newcastle is at the early stage of implementation, the framework
in Figure 3.4 is used under the first scenario, where only the historical data before the
implementation of the intervention is available. The LSTM model is used for training on
the historical time series data and predict NO, concentrations (or its level) in the future
without the application of the intervention. An LSTM model is also developed for predicting
the concentration of NO, with the implementation of the clean air zone using the dataset
modified according to Section 5.1. The dataset of the year 2018 is divided into the first 10
months for training and evaluation, and the next two months for prediction.

Figure 5.1 shows the percentages of each class of NO, predicted by the two LSTM
model for the year 2018 with and without the intervention. According to Figure 5.1, the NO,
concentrations of this year under no intervention will be 37.34% Very Unhealthy, 3.77%
Unhealthy, 8.74% Unhealthy for Sensitive Group, 30.46% Moderate, and 19.69% Good.
Figure 5.1 also shows that the NO;, concentration of this year under intervention will be
37.16% Very Unhealthy, 0.84% Unhealthy, 7.84% Unhealthy for Sensitive Group, 15.02%
Moderate, and 39.14% Good. As it can be seen, the number of NO, concentrations that are
Very Unhealthy, Unhealthy, or Unhealthy for Sensitive Group and Moderate is reduced and
the number of NO, concentrations that are Good is increased. The largest reduction is in the
Moderate class (15.44% reduction) and the smallest reduction is in the Very Unhealthy class
(0.18% reduction).

Figures 5.2-5.3 shows the LSTM prediction of NO, concentrations with and without
the intervention in the available data points of months 11 and 12 (not used for training the
models). The horizontal axes of these figures indicate the available time points ordered in
a sequence. The vertical axes are the classes of NO; concentrations for these time points
predicted by the LSTM models. Figure 5.4 shows the Cumulative Distribution Function
(CDF) in the LSTM predictions with and without the intervention. According to the CDF, the
classes 0 and 1 (good and moderate) have more amount than other three classes compared
with the case of no intervention.

Note that Figure 5.1 shows a consistent result on NO; reduction: the number of NO,
concentration levels that are Good is increased under the intervention, and the number of
NO, concentration levels in the other four classes (Very Unhealthy, Unhealthy, Unhealthy
for Sensitive Group, and Moderate) is reduced.

Figures 5.2-5.3 show that overall the NO; concentration levels are reduced in most
cases under the policy intervention (the green curve is below the red curve in most time
points). There are a few exceptions to this reduction, which is quite natural since the NO,
concentration has a complex behaviour that may depend on many variables in the dataset
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Fig. 5.1 Percentages of each class of NO, (number of hourly NO, measurements in each
class divided by the total number of hours)

from the previous time instances, thus the two curves for NO, concentration levels before
and after the policy intervention should not be compared is a point-by-point fashion (they are
the outputs of two LSTM models trained on different datasets). The air quality is expected
to be improved in average and not throughout a time period. This is backed by all three
Figures 5.1-5.3 (concentration levels may increase in some time instances but will reduce in
many other time instances).

While a clean air zone can lead to substantial improvements in air quality, achieving
consistent year-round pollution reduction requires the clean air zone to be complemented by
broader measures including addressing various pollution sources and promoting sustainable

transportation alternatives.

5.4.1 Outcome of the Framework Applied to the Dataset

The number of NO; concentrations that are unhealthy is the sum of three classes: Very
Unhealthy, Unhealthy, and Unhealthy for Sensitive Group. According to Figure 5.1, this is
37.34% +3.77% + 8.74% = 49.85% without implementing the intervention and is 37.16% +
0.84% +7.84% = 45.84% with the implementation of the intervention. This shows the total
reduction of 49.85 —45.84 = 4.01% and relative reduction of 4.01/49.85 = 8%. Therefore,
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Predictions for the 11th Month
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Fig. 5.2 LSTM prediction for NO, concentrations for the 11! month

the objective of the intervention which is 10% reduction will not be achieved and further

adjustment of the intervention may be needed to reach the 10% reduction.

5.4.2 Time Series Model Evaluation

The RMSE from Equation (5.1) is used to assess the performance of the learned LSTM
models. The value of the RMSE for the model without the intervention is 0.946, while the
RMSE for the model with the intervention is 0.850. This shows that the two models are
performing similar to each other in terms of capturing the behaviour of data. Figure 5.5 shows
the loss value of the training with and without the intervention as a function of epoch number
(i.e., the number of times that the learning algorithm will work through the entire training
dataset for updating the model). The loss starts from a high value and gradually decreases
until converging to a fixed value while the learning algorithm finds the best parameters for
the LSTM model.
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Predictions for the 12th Month
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Fig. 5.3 LSTM prediction for NO, concentrations for the 12" month
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Fig. 5.4 CDF of the LSTM method with and without the intervention
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Fig. 5.5 LSTM loss with and without the intervention as a function of epoch number

5.5 Conclusions

In this chapter, the potential impacts of a clean air zone intervention were investigated using
a time series analysis method, specifically Long Short-Term Memory (LSTM). The aim of
the proposed intervention was to reduce the NO; concentrations. This chapter showed how to
apply the framework in Figure 3.3 and presented in Section 3.5 to this intervention to tackle
the specific challenge of validating the policy objective using machine learning techniques.
However, since the intervention is in the early stage of implementation at Newcastle, an
LSTM model was used to predict the NO; levels under appropriate assumptions.

The LSTM model was employed to analyse the historical data from 2018 and to predict
NO; concentrations under existing conditions, simulating a scenario without the clean air
zone intervention. Subsequently, using a set of assumptions to represent the effects of a clean
air zone, the LSTM model was used again to forecast NO, concentrations in the presence
of the intervention. This comparison provides a valuable understanding of the potential
effectiveness and impacts of such a clean air zone policy.

The historical data from the first 10 months were used to build and evaluate the LSTM
model, and the predictions were made for the last two months. It was observed that the
LSTM model can successfully predict the NO;, concentrations with root mean square error

of 0.95. This result indicates that time series forecasting with LSTM is a powerful method
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for predicting air pollution levels in a given location over time. By analysing historical data
on air pollution levels and other relevant factors, LSTM models can identify patterns and
trends that can be used to predict future levels of pollution with a high degree of accuracy.
This can help policymakers to plan and implement policies that are better aligned with the
actual trends and patterns of air pollution in their area.

The framework used in this chapter is flexible and can be adapted to different policy
objectives. It does not incorporate information from physical or chemical models of pollutants
but offer proof-of-concept in situations where post-policy implementation data is not yet
available. The presented results show the use of machine learning methods in analysing
and validating interventions in transportation systems. The role of machine learning can
be summarised as predicting what is going to happen in the future if the policy is not
implemented (using available historical data), and predicting the air quality and other related
variables using transport behaviour changes in response to the implemented policy.

The next chapter will focus on applying the data-driven framework proposed in Figure 3.5
of Chapter 3 for the implementation of the policy commitment on use case of expanding the

electric vehicle charging infrastructure.






Chapter 6

Multi-Objective Optimisation & Electric
Vehicle Charging Infrastructure

This chapter applies the framework of Chapter 3 that combines simulation and multi-objective
optimisation to efficiently implement transportation policy commitments, using as a case
study the electric vehicle (EV) charging infrastructure in Newcastle upon Tyne. The frame-
work uses a baseline simulation model developed by the industry partner, Arup Group
Limited, to estimate EV demand and quantities from 2020 to 2050. A multi-objective optimi-
sation approach is then employed to determine the optimal types, locations, and quantities
of charging points, along with the corresponding total capital and operational expenditures
(CapEx and OpEXx) and charging point operating hours.

Four future energy scenarios are considered, providing predictions of EV quantities and
energy demand for Newcastle upon Tyne. The optimisation results highlight the benefits of
diversifying charging point types, demonstrating reduced total expenditure while maintaining
satisfactory performance in meeting charging demand. Sensitivity analysis further confirms
the importance of charging point diversity in optimising the charging infrastructure.

Quantitatively, the optimal solutions recommend installing higher number of fast charging
points to reduce the percentage of slower charging points from the current 60% to around 25%
in the four scenarios. The optimal solutions still put priority on the slower charging points
(around 25%), with faster charging points having smaller portions each around 10%-13%.
The optimisation shows that while 7kW charging dominates the market currently, it is more
beneficial to improve charging efficiency and reduce investment costs with other types of
charging points in the future installations. Moreover, in the leading scenario for the year
2042 with 134,606 EVs, a total of 4,753 charging points are recommended, resulting in an
average operating time of 7.57 hours per charging point. The results also illustrate the spatial

distribution of charging points, with higher concentrations in urban areas and near major
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roads. Note that the variations of the portions of different types of charging points for the four
scenarios are relatively small and within 3% range of the total number of charging points.

The methodology’s robustness is demonstrated through sensitivity analysis, examining
variations in EV numbers and charging point types. The analysis reveals the adaptability of
the optimisation framework to different scenarios, providing valuable insights for decision-
making and highlighting potential areas for improvement.

Overall, the results of this chapter offer a scientific and comprehensive approach to
support the implementation of transportation policy commitments, particularly in the context
of achieving net-zero emissions. It serves as a valuable tool for optimising EV charging
infrastructure and can be applied to other regions and datasets to inform evidence-based
decision-making.

This chapter is organised as follows. After an introduction in Section 6.1, With focus
on the expansion of EV charging infrastructure and data use, Section 6.2 maps the generic
steps of the policy cycle described in Section 3.1 to the steps taken in defining and evaluating
the plans for expansion of the EV charging infrastructure. A scheme for applying the third
framework of this thesis to the case study on expansion of the EV charging infrastructure
is provided in Section 6.3. A description of data collection and preparation is provided in
Section 6.4 for the geographical area of Newcastle upon Tyne. Regarding the geographical
area, the area of Newcastle upon Tyne is divided into smaller unified regions, called LSOAs,
and are used to perform a refine analysis of the EV charging infrastructure. The EV charging
simulation model is discussed in Section 6.5 together with the details of the estimation
methods for finding the future number of EVs and their total energy demand. Section 6.6
discusses the novel multi-objective genetic algorithm and apply it to the EV infrastructure
planning. The results of applying the framework based on the optimisation are discussed in
Section 6.7. Sensitivity analysis of the results of the multi-objective optimisation are provided
in 6.8. Further considerations and concluding remarks are provided in Sections 6.11-6.12.
The code for reproducing the results of this chapter is provided in Appendix D.

The content of this chapter is based on the following articles published during the PhD
study.

* Farhadi, Farzaneh, Shixiao Wang, Roberto Palacin, and Phil Blythe. "Data-driven

multi-objective optimization for electric vehicle charging infrastructure." iScience
(2023). DOI: https://doi.org/10.1016/j.is¢i.2023.107737

» Farhadi, F., Wang, S., Palacin, R. and Blythe, P., 2023. Efficient electric vehicle charg-
ing infrastructure planning using data-driven optimization. Institution of Engineering
and Technology (IET). DOI: https://doi.org/10.1049/icp.2023.3116
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* Farhadi, F,, Palacin, R. and Blythe, P., 2023. Data-Driven Framework for Implementing
Policy Commitment, Universities Transport Study Group (UTSG), Cardiff (July 2023),
Nominated for Smeed prize.

* Farhadi, F., Palacin, R. and Blythe, P., 2023. Multi-Objective Optimisation Method
for Electric Vehicle Charging Infrastructure, 8th Annual Electric Vehicle Conference,
Edinburgh Napier (June 2023).

6.1 Introduction

In order to help local authorities and other governmental organisations plan for the EV
charging infrastructure, this chapter applies the framework proposed in Chapter 3 using
the scheme described in Section 6.3 to the case study on expansion of the EV charging
infrastructure. As part of the scheme, an optimisation method based on a modified genetic
algorithm is used. The goal of the optimisation is to consider and optimise the following
factors needed to design and expand the EV charging infrastructure

1. Charging point type,

2. Charging point location,

3. Charging point quantity,

4. Total capital and operational expenditures, and

5. Operating hours of charging points.

The open-access statistics published by the official authorities are used in the modelling and
optimisation developed in this chapter. Section 6.4 gives the references for data collection
and preparation. The geographical divisions and vehicle data are presented and analysed
in Chapter 6.4. LSOAs of Newcastle are selected as geographical divisions that are small
enough for capturing essential details in an accurate simulation model, and at the same time
large enough for reducing computational complexity of the developed simulation model.
In order to better investigate multiple aspects of EV infrastructure planning at the same
time, this research uses genetic algorithm, which is improved based on the concepts of Long
Short-Term Memory (LSTM) networks and fuzzy logic. The main contributions of this
chapter are as a follows.

1. By drawing on LSTM networks from machine learning literature, the traditional
genetic algorithm is extended and combined with fuzzy logic to design a multi-purpose

decision model for multi-objective optimisation problems.
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2. The developed new optimisation framework is used to optimise multiple objectives

such as total capital and operational expenditures, and charging point efficiency.

. The designed model removes the need to compress multiple objective functions into a

single objective function. Instead, the underlying simulation environment is modelled
using actual data, enabling a transition from function-driven to data-driven optimisation

and evaluation.

. An implementation of the computations are provided using vector and matrix represen-

tations. Matrices give a compact way of handling large volumes of data and updating

values efficiently.

6.2 Steps of the Policy Cycle for Expansion of the EV Charg-

ing Infrastructure

This section discusses how the generic steps of the policy cycle described in Section 3.1 are

mapped into the steps taken in defining and evaluating the expansion of the EV charging

infrastructure.

1. Issue Identification: The need to reduce carbon emissions from the transport sector

is identified as a critical goal to meet the UK’s net zero targets by 2050. The “North
East Combined Authority (NECA) Transport Manifesto” (2016) and the “North East
Transport Plan” (2021) identified the need to reduce carbon emissions from road
transport to meet the UK’s climate goals and improve air quality. Increasing the
adoption of EVs is seen as a key solution, but insufficient charging infrastructure is
identified as a barrier to EV uptake. The NECA identified that the limited availability
of public EV charging infrastructure was a barrier to the uptake of EVs.

Data Use: Data showing the correlation between EV adoption rates and the availability
of charging stations highlights gaps in current infrastructure. Local transport data is
also used to identify areas with high potential demand for EV charging.

. Aims: The aim is to expand EV charging infrastructure to support the transition to

electric vehicles, reduce greenhouse gas emissions, and improve air quality. Specific
objectives may include increasing the number of public chargers by a certain percentage
or ensuring that every resident is within a reasonable distance of a charging station.
“Go Ultra Low North East Programme Outline” (2016) set out specific aims to support
EV adoption in the North East by expanding charging infrastructure and increasing
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public awareness of EV benefits.

Data Use: Baseline data on the current number and distribution of charging stations
is used to set specific, measurable targets (e.g., installing a specific number of new
chargers by a certain time frame). For example, the objective mentioned in the Go
Ultra Low North East Programme was to create a network of public charging points
that would support the region’s goal of becoming a leader in sustainable transport. The
plan aimed to install charging hubs in key locations, such as urban centres and major
travel routes.

3. Problem Analysis and Appraisal: Authorities analyse the existing EV charging
network, user demand patterns, grid capacity, and the costs and benefits of various
expansion strategies. This involves assessing different types of chargers (rapid, fast,
slow) and suitable locations (e.g., residential areas, highways, shopping centres).
Data Use: Geographic Information System (GIS) data, traffic flow analysis, and user
surveys are used to identify optimal locations for new chargers. Data on grid capacity
and power demand forecasts help appraise the feasibility of different expansion options.
“Electric Vehicle Charging Infrastructure Strategy for Newcastle” (2024) analysed
existing charging infrastructure and current and projected demand. The analysis
emphasises using data and transport modelling to identify gaps in the charging network

and prioritise areas for new charging points.

4. Preferred Option and Feasible Objectives: A preferred strategy for expanding the
EV charging network is selected. This might include a mix of public and private
investment, partnerships with businesses and energy providers, and prioritising specific
types of chargers or locations.

Data Use: Cost-benefit analysis data is used to evaluate different expansion options.
Market data on EV adoption trends and charging behaviour informs decisions on the

mix and placement of chargers.

5. Final Consultation: A public consultation phase is conducted to gather input from
key stakeholders, such as local communities, businesses, energy providers, and EV
users, on the proposed expansion plans.

Data Use: Data from surveys, public meetings, and feedback submissions is analysed
to gauge support, address concerns, and refine the policy. Feedback is also sought from

technical experts on infrastructure requirements and grid impacts.

6. Decision: Local authorities, in collaboration with national government bodies and pri-
vate sector partners, make a final decision on the EV charging infrastructure expansion
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plan.

Data Use: Aggregated data from consultations, market analysis, and technical assess-
ments is used to justify and support the decision. Risk assessments ensure any potential
challenges, such as grid constraints or public opposition, are managed.

. Implementation and Delivery: The chosen strategy is implemented, including secur-

ing funding, installing chargers, and integrating with the existing grid and transport
infrastructure. A roll-out plan is created to guide the deployment of chargers over time.
Data Use: Real-time data from smart chargers is used to monitor usage patterns and
identify areas of high demand. Data from grid operators is also used to ensure sufficient
electricity supply and manage load distribution.

. Maintenance, Monitoring, and Review: The infrastructure is regularly maintained to

ensure reliability and performance. Authorities continuously monitor usage patterns,
grid impacts, and public feedback to ensure the network meets demand.

Data Use: Data from smart charging systems, user feedback, and grid operators is
analysed to identify maintenance needs, optimise charger placement, and adapt to

changing demand patterns. Regular reporting ensures transparency and accountability.

. Evaluation: A comprehensive evaluation is conducted to determine whether the

expansion has met its objectives, such as increasing EV adoption rates and reducing
emissions.

Data Use: Evaluation involves comparing post-implementation data (e.g., number of
EVs, charging station usage, emissions levels) with baseline data. Surveys and user
feedback are also collected to assess user satisfaction and identify areas for further

improvement.

Throughout the expansion of EV charging infrastructure and at each step, data is crucial

for informing decisions, setting objectives, analysing options, engaging stakeholders, im-

plementing policies, monitoring progress, evaluating outcomes, and refining the expansion

policy throughout its life cycle.

This chapter is focused on applying the proposed framework for optimising policy

implementation proposed in Chapter 3 to the expansion of EV charging infrastructure in

Newcastle. This framework can be integrated with steps 6 and 7 of the policy cycle in

Decision and Implementation/Delivery as discussed in Fig 3.2. The framework was described

in Figure 3.5 that requires building a simulation model. This simulation model will be

described in the next section.
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Fig. 6.1 A scheme for applying the framework of Figure 3.5 to the case study on expansion
of the EV charging infrastructure

6.3 Scheme for Building the Simulation Model

The scheme for building the simulation model and integrate it with optimisation is presented
in Figure 6.1. The scheme shows the process of gathering the suitable datasets relevant to the
policy commitment and build a model that can simulate future scenarios for optimisation
purposes to achieve a better implementation of policy commitments in transport systems.
The following steps are taken to build the scheme.

1. Selecting transport policy commitment from net zero emission strategy as a case study.

2. Analysing the policy commitment of providing EV charging infrastructure by perform-
ing a suitable literature review in order to understand the objectives and outcomes of
the policy commitment.

3. Analysing assumptions, datasets, and calculations in the construction of the baseline
simulation model.

4. Analysing future energy scenarios developed by National Grid and used for construct-
ing the simulation model.

5. Computing the estimated power demand and EV quantities for the years 2020-2050
for four future energy scenarios.
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6. Building an optimisation approach using the simulation model for providing an efficient
expansion of EV electrical infrastructure with respect to the charging point quantities,

their types, locations, costs, and operating hours.

In developing the optimisation solution for this research, several innovative approaches
have been employed to address the limitations of traditional methods, enhancing the accuracy,
flexibility, and overall effectiveness of the solution. These innovations are as follows:

* Integration of data with a simulation model: To overcome the limited capabilities of
traditional genetic algorithms, the optimisation method incorporates available data with
a simulation model. This integration not only enhances the decision-making process
but also produces more accurate and realistic solutions tailored to the specific context
of electric vehicle charging infrastructure planning.

* Fuzzy logic for objective ranking and combination: When handling multiple objectives
in optimisation problems, the proposed method employs fuzzy logic to combine and
rank the various objectives. This approach is flexible and intuitive, eliminating the
need to compress multiple objectives into a single one. As a result, the optimisation
solution delivers more comprehensive and balanced outcomes that accurately reflect
real-world priorities and trade-offs.

* Inspiration from Long Short-Term Memory (LSTM): Recognising that traditional
optimisation methods often struggle to remember useful information from previous
generations, the optimisation solution incorporates concepts from LSTM in machine
learning. This innovation enables the optimisation method to retain important infor-
mation over time, thereby improving its performance by leveraging knowledge from

previous generations.

These key innovations demonstrate the methodological advancements made in the optimi-
sation solution, resulting in a more effective and robust approach to electric vehicle charging
infrastructure planning. By integrating data with simulation models, employing fuzzy logic
for objective ranking and combination, and incorporating the concept of LSTM, the proposed
optimisation solution addresses the challenges faced in traditional methods and delivers more
reliable and practical results.

The overview of the genetic optimisation solution inspired by the LSTM model and
using fuzzy logic has been summarised in Figure 6.2. The optimisation uses a simulation
environment that simulates the EV energy demand, EV quantity, and EV locations. The
EV charging points are considered as genes in the genetic algorithm. Each gene encodes

variables including the location and type of the charging point. These genes are generated
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randomly. The performance of the genes in the simulation environment is assessed based
on the utilisation and costs of the charging points. Then some of the genes with high
performance are kept and new genes are generated randomly again. The iteration is continued
until converging into a solution.
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Fig. 6.2 Overview of the genetic optimisation solution inspired by the LSTM model and
using fuzzy logic

In conclusion, the integration of fuzzy logic and LSTM with genetic algorithm has shown
promising results in solving multi-objective optimisations by handling complex and non-

linear problems and improving the convergence speed and accuracy of genetic algorithms.

6.4 Data Collection and Preparation

The city of Newcastle upon Tyne in the United Kingdom has been chosen as the geographical
area for this research, which aims to expand the electric vehicle charging infrastructure.
The UK government has set a target of phasing out petrol and diesel cars by 2030 and
has designated Newcastle upon Tyne as one of the cities to receive funding for expanding
electric vehicle charging infrastructure. The city’s existing infrastructure, including its public
transport system and electric vehicle charging points, provides a good basis for the expansion
of the electric vehicle charging network. Through this research, the expansion of electric
vehicle charging infrastructure can be studied in depth.

There are three geographical divisions used for statistical purposes. These are called
Output Areas (OAs), Lower Layer Super Output Areas (LSOAs), and Middle Layer Super
Output Areas (MSOAs). The number of people and households in any of these areas is stated
in Table 6.1 (data from Office for National Statistics). The OAs are the smallest division.
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The LSOAs have an average of 1,600 residents and 670 households. Currently, there are
34,753 LSOAs in England (32,844) and Wales (1,909). MSOA s have an average population
of 7500 residents or 4000 households.

Table 6.1 Geographical divisions used for statistical purposes (data from Office for National
Statistics)

Area type Lower threshold Upper threshold
People | Households | People | Households
Output Areas 100 40 625 250
Lower Layer Super Output Areas (LSOAs) 1,000 400 3,000 1,200
Middle Layer Super Output Areas (MSOAs) | 5,000 2,000 15,000 6,000

In order to divide the geographical area of Newcastle upon Tyne to smaller unified regions,
LSOAs are used to perform a refine analysis of the EV charging infrastructure. Figure 6.3
shows the LSOAs of Newcastle upon Tyne on its map. This map contains 175 LSOAs. The
Table 6.2 shows the data of the LSOAs with 175 entries and with latitudes and longitudes of
the centre points of each LSOA.

For this chapter, a data-driven baseline model is used from the industrial partner of this
PhD project, Arup Group Limited. Datasets have been collected from different sources such
as the Department for Transport, National Grid, Census, Bloomberg Professional Services,
Open Charge Map, Geotab and Met Office. These datasets provide valuable information on
electric vehicle charging infrastructure simulation for demand estimation. The outputs of the
simulation have been used for making the simulation environment as part of the proposed
framework. These datasets are described in the next subsection.

6.4.1 Data for EV Charging Infrastructure
A summary of the datasets used in the baseline demand prediction is as follows.

1. Department for Transport:

* National Trip End Model (NTEM) (Transport, 2022) is a travel generation model
designed by the Department for Transport. It can predict travel conditions in

England and Scotland using official population, household and employment data.

— Car Ownership (Transport, 2022): Forecast registered vehicles at the MSOA
level.

— Region Trip End Data By Availability (Transport, 2022): Forecast quantity
of trips ending at the MSOA level by purpose, mode and car availability.



6.4 Data Collection and Preparation 139

Fig. 6.3 LSOAs of Newcastle upon Tyne with 175 LSOAs in the map as geographical
divisions
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Table 6.2 LSOAs of Newcastle upon Tyne with latitudes and longitudes of the centre points
of each LSOA

LSOA/DZ centre point latitude LSOA/DZ centre point longitude

0 54.9765 -1.67682
1 54.9756 -1.66885
2 54.9684 -1.66731
3 54.9669 -1.65558
4 54.9794 -1.68239
170 55.0026 -1.70740
171 54.9974 -1.68732
172 54.9973 -1.70406
173 54.9967 -1.71593
174 55.0059 -1.71914

— Region Trip End Data By Direction(Transport, 2022): Forecast quantity of
trips ending at MSOA level by purpose, mode, time period and trip type.

— Zones (Transport, 2022): Matching Zone IDs, MSOA names and Local
Authority.

 Charger Profiles

— Electric Charge Point Analysis 2017 Domestics Tables (Transport, 2018a):
Quantity of domestic home charging point plug-in events against time of
day.

— Electric Charge Point Analysis 2017 Public Sector Fasts Tables (Transport,
2018c¢): Quantity of public fast charging point plug-in events against time of
day.

— Electric Charge Point Analysis 2017 Rapids Revised (Transport, 2018b):
Quantity of public rapid charging point plug-in events against time of day.

* National Travel Survey

— Average trips (Planning, 2013): Data on number of trips made and distance

travelled, produced by Department for Transport.
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— Annual mileage of cars by ownership (Driving and Transport, 2013a): Data

on vehicle mileage and occupancy, produced by Department for Transport.

— Average distance travelled by rural urban classification (Driving and Trans-
port, 2013b): Data about travel by region and mode of transport, produced
by Department for Transport.

2. National Grid (NationalGrid, 2022b): The report by National Grid titled “A Net Zero
Future" presents a range of different, credible ways to decarbonise the energy system.
In another report titled “Future Energy Scenarios" (NationalGrid, 2022a), the National
Grid provides forecasts of the quantity of battery electric vehicles (BEV) on the road

and total vehicles assuming different scenarios.
3. Census:

* Office for National Statistics (Statist, 2021) provides the quantity of households
in each LSOA by dwelling type: detached, semi-detached, terrace, flat, apartment
and mobile home.

— Nomis is a service provided by the Office for National Statistics (Nomis,
2013b). It provides the quantity of households in each data zone by dwelling
type: detached, semi-detached, terrace, flat, apartment and mobile home.

— Nomis provides the statistics of car and van availability (Nomis, 2013a):
Quantity of cars or vans in households for each data zone. The dataset has
the following classification of households: no car, 1 car, 2 cars, 3 cars, 4 or
more cars.

— Nomis provides the statistics of movement of people and distance between
local authorities (LAs) (Nomis, 2013c). Data is showing the living location,
working time, and working location of people.

* Central Statistics Office (Census, 2016): Quantity of households in each SA
by dwelling type: detached, semi-detached, terrace, flat, apartment and mobile
home.

4. Bloomberg Professional Services provides a detailed dataset of battery electric vehi-
cles and Plug-in hybrid electric vehicles in the market. The dataset contains the battery

size, year, make, model and price of the cars (Services, 2022).

5. Open Charge Map (OpenChargeMap, 2021): A detailed list of registered charging

points.
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Table 6.3 Datasets used in EV charging baseline model

Source Details
Department for | — National Trip End Model: Forecast registered vehicles and
Transport trips at the MSOA level (Transport, 2022).

— Charger Profiles: Quantity of charging point plug-in events
(Transport, 2018a,b,c).

— National Travel Survey: Data on trips, mileage, and distance
travelled (Driving and Transport, 2013a,b; Planning, 2013).

National Grid — Reports on decarbonising the energy system and forecasts of
BEVs (NationalGrid, 2022a,b).
Census — Office for National Statistics: Quantity of households by

dwelling type (Nomis, 2013a,b,c; Statist, 2021).

— Central Statistics Office: Household data by dwelling type
(Census, 2016).

Bloomberg Pro-| — Dataset of battery and hybrid electric vehicles (Services,
fessional Services | 2022).

Open Charge Map | — List of registered charging points (OpenChargeMap, 2021).
Geotab and Met | — EV efficiency against temperature (Geotab and Office, 2022).
Office

6. Geotab and Met Office (Geotab and Office, 2022): Data defining EV efficiency
against temperature.

To have a reliable prediction of the number of EVs and simulate a realistic environment,
the above datasets are used. The general approach that is taken in this chapter is to predict
the average vehicle mileage demand in each region and then obtain the EV charging demand
using the datasets from the number of regional vehicle registrations and regional vehicle
miles travelled. The trips are then considered to be either home based or non-home based.
A home-based trip is a trip that starts and ends in the same LSOA. A non-home based trip
is a trip that starts and ends in different LSOAs. Table 6.3 shows a summary of the above
datasets.

In the next subsection, the above datasets are analysed.

6.4.2 Analysing Data for EV Charging Simulation Model

As the first step in the framework of Figure 6.1, the relevant historical data is analysed to
gain an understanding of the current behaviour in the EV infrastructure and its usage. The

key statistics of the current charging provisions in the UK are as follows:
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Fig. 6.4 Number of public UK charging points between 2016 and 2022 (data from Zap-Map)

* Figure 6.4 shows the number of public UK charging points from 2016 until now (data
from Zap-Map retrieved in October 2022). The charging points are divided into four
categories based on their speeds or power ratings: Slow (3-6kW), Fast (7-22kW),
Rapid (25-99kW) and Ultra-rapid (100kW+). The number of these charging posts
across UK in 2022 are: 8,702 Slow points, 20,568 Fast points, 4,373 Rapid points, and
2,135 Ultra-rapid points. Therefore, there are 35,778 Slow to Fast charging points,
compared to 6,508 Rapid and above charging devices.

* Figure 6.5 shows the number of public UK charging points per 100,000 of population
by UK country and region (data from DfT on January 2022). On average there are
approximately 35 charging devices per 100,000 population, excluding London as an
outlier.

* Considering the two categories of Slow to Fast and Rapid to Ultra-Rapid points, the
average split of chargers between these two categories is 77 and 33.

Figure 6.6 shows the distribution of charging points by geographical area in the UK (data
from Zap-Map retrieved in October 2022). Statistics similar to the above can be obtained
for Newcastle upon Tyne, and gives results that show the same trend normalised with the
respective population of Newcastle upon Tyne. The key statistics of the current charging
provisions in this local authority is as follows. The detailed data is provided on the DfT
website. !

* The total public charging points in Newcastle upon Tyne is 146.

Thttps://maps.dft.gov.uk/ev-charging-map/index.html
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Fig. 6.5 Number of public charging points per 100,000 of population by UK country and
region (data from DfT)
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Fig. 6.6 Distribution of charging points by geographical area in the UK with the total charging
points of 35,778 (data from Zap-Map)

* Total public rapid charging devices is 28.
* The number of charging points per 100,000 population is 47.6.

Note that the charging points installed privately at home or at workplace locations
are not included in the above statistics, which are estimated to be more than 400,000
(ZapMap, 2022a). This is due to the fact that the focus of this study is on the location and
quantity of charging points that will be installed by local authorities under the related policy
commitments. The new regulations set by the UK government should see up to 145,000
extra charging points installed across England each year in the run up to 2030.> These
statistics show the current status of the available EV charging infrastructure, which should be
expanded as the number of EVs increases in the future.

To properly predict the requirements for expanding the EV charging infrastructure, the
current demand for road use by EV’s are analysed. The Department for Transport (DfT)
has provided the statistics of the road use in a report (Department for Transport, 2016). The
report integrates the information and data sources on vehicles, travel, and traffic. Relevant
to the work of this chapter, the report identifies the percentage of car trips by mileage. The
distribution of travel mileage has stayed the same (number of trips with the same mileage
divided by the total number of journeys has remained roughly the same). Short trips less than
5 miles account for 56% of total trips. These statistics also show that 94% of all car trips
were less than 25 miles. This portion has not changed since 2002. Therefore, it is essential to

Zhttps://www.zap-map.com/electric-vehicle-charging-2022/
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Fig. 6.7 Energy consumption of sample EVs available in the market (from the UK Electric
Vehicle Database)

adapt the future EV charging infrastructure to the aggregate behaviour of users with respect
to the statistics of the length and frequency of their travels.

EVs available in the market have different battery capacities with different efficiencies.
Figure 6.7 shows the energy consumption of some of the EVs available in the market in
terms of [Wh/mile], with the full list available in the UK Electric Vehicle Database.> The
average consumption over 189 type of EVs is 315 wh/mile, obtained by taking the average
over the EVs in the mentioned database. Considering a 30kWh battery capacity on the low
end of the spectrum and the average consumption of 315 wh/mile, such a battery capacity
can service the vast majority of trips in a day, assuming the vehicle completes less than 4
trips a day each less than 25 miles. These computations will be used in the sequel sections
for estimating the required energy consumption and the charging points of EVs.

Locations of charging points. Charging points will serve users differently. In the following,
four types of location for charging points are described.

* Home Location Type. This location type is associated with Charging points installed
for off-street parking. The charging points with this location type typically have 3kW
or 7kW rates. The dwell times in these charging points are relatively long (overnight

with 10 hours or longer).

* Destination Location Type. charging points associated with attractions, such as
supermarkets, shopping centres and work. Charger ratings will typically range between
7kW and 150kW, with dwell times expected to be between 1 hour and 8 hours.*

3https://ev-database.uk/cheatsheet/energy-consumption-electric-car
“https://www.rac.co.uk/drive/electric-cars/charging/electric-car-charging-speeds/
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* On-Street Residential Location Type. Charging points associated with on-street
deployment or similar, meeting the needs for those who cannot charge at home due to
limited off-street parking access. These charging points are likely to be 7kW and 11kW
rated, dependant on the site electricity circuit. Examples of these charging points could
include cable gullies, retrofitting existing lighting columns and bollard/pillars. Each of

which would be dedicated bays on-street or in car parks close to residential housing.

* On-Route Location Type. Chargers that are Rapid and above are the closest charging
equivalent to the ICE vehicle petrol/diesel refuelling. These charging points are
most appropriately placed at fuel courts and service stations in close proximity to the
SRN/Highway. Dwelling times are expected to be less than 1 hour.

In this study, two broad categories are considered for the location types to make a better
connection with the trips estimated from road use statistics:

» Off-street Location Type. charging that is related to Home Charging above.

* Public Location Type. charging that is an aggregation of destination, on-street

residential charging, and on-route charging mentioned above.

The chargers of electric vehicles are categorised by the charger ratings (KW). The current
popular charger ratings are summarised below (ZapMap, 2022a). Note that the charging point
technology might change in the future, therefore more charger ratings can be introduced to
the EV charging infrastructure, and the below definitions and names might change.

 Slow charging points: These types are 3 kw chargers. The length of charging with
these charging types usually takes around 6-12 hours. This type of charger is mostly
used for household purposes.

* Fast charging points: These types are 7 kw, 11 kw and 22 kw. It can take around 3-4

hours to fully charge some models.

* Rapid charging points: These types are 50 kw. These chargers usually can charge to
80% in 30-50 minutes.

* Untra-Rapid charging points: are 100 kw and up to 150 kw. These chargers are
added in order to charge quickly as possible within 20-30 minutes.

These types of charging points can be further classified based on the underlying charging
power method that could be either Alternating Current (AC) or Direct Current (DC). The
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Table 6.4 Priorities of charging types computed by combining multiple factors

Charger Priority
Chargers AC DC
Types Slow Fast Rapid | Ultra-Rapid
3 7 (11122} 50 {100 | 150
Priority weights (%) | 68 |72 |80 | 76 | 56 32 32

power that comes from the power grid is always AC. Electronic devices can have a converter
built into the plug to store the power in the battery using DC.

In order to get a measure of priority for these types of charging points, six key factors for
each of the charger ratings (KW) are considered. These factors include infrastructure and
installation costs, utilisation, impact on the grid, future proofing, and tariff (Nicholas, 2019).
Table 6.4 shows the average prioritisation computed as a weighted sum of these factors. A
priority weight of 100% means that the charger is the most suitable option, whereas a priority

weight of 0% indicates the charger is not as suitable.

The above analysis based on relevant datasets gives an understanding of the current
demand for road use by EV’s and the current EV charging infrastructure. This analysis
will be used on this chapter to predict the requirements for expanding the EV charging
infrastructure based on the future likely demand and building a simulation model that

generates the future demand to be used as part of applying the framework in Figure 3.5.

6.5 Electric Vehicle Charging Simulation

To plan and develop the transport infrastructure including EV charging points, it is essential
to develop scenarios that clarify how users might engage and interact with the transport
infrastructure and how the current set of policies affects this interaction at large scale. The
future travel scenarios are constructed based on a range of factors that affect the future of
the transport as elaborated in the rest of this section. It is important to emphasise that such
scenarios are not predictions as there are large uncertainties around the user behaviours
and technological developments, but they provide plausible futures. These scenarios are
not intended to be good or bad statements, but are aimed at formulating the most plausible
combinations of uncertain factors, and find possible actions that need to be taken or adapted
to these scenarios as more certainties are revealed over time.

Despite the recent advances in the EV technology and the EV charging facilities (Aruna
and Vasan Prabhu, 2021; Hutchinson et al., 2019), the number of EVs and the charging points
are relatively low at the moment. As of March 2023, there are only 735,000 EVs on UK
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roads, which is less than 2% of the total licensed vehicles.? This leads to large uncertainties
in the future user charging behaviours. The requirements on the EV charging infrastructure
depend on charging behaviours, the availability of the off-street parking, and mobility trends.
This section describes scenarios considered by National Grid in making predictions on the
number of EVs in the future. It then discusses the scenarios considered by Arup that is based
on the predictions of the number of EVs provided by National Grid.

National Grid has considered four future energy scenarios to forecast the EV numbers.
These four scenarios are based on the set of policies, the speed of decarbonisation and the

level of societal changes. The four scenarios are as follows.

1. Steady Progression: a pessimistic scenario with a slow speed of decarbonisation of
the energy vectors and low level of societal change, slow adoption of EVs and slow
installation of charging points. The ban on the sale of new petrol and diesel vehicles is

achieved in 2035 by cars and in 2040 by vans.

2. System Transformation: a scenario with a moderate speed of decarbonisation and
middle level of societal change. Charging points for EVs are installed ahead of the
need. The ban on the sale of new petrol and diesel vehicles is achieved in 2032.

3. Consumer Transformation: a scenario with a moderate speed of decarbonisation and
higher level of societal change. Drivers adopt EVs ahead of charging provisions. The

ban on the sale of new petrol and diesel vehicles is achieved in 2030.

4. Leading The Way: an optimistic scenario with a fast speed of decarbonisation and
highest level of societal change. The ban on the sale of new petrol and diesel vehicles
is achieved in 2030.

Arup has developed four scenarios to forecast the number of EVs. These scenarios
are adapted from the National Grid ones, and are as follows. (1) Baseline: A baseline set
of assumptions that relies on the behaviour of consumers to date to forecast EV energy
demand and charging point quantities. (2) Consumer Efficiency: A scenario that assumes
EV purchases are done mainly for every day short distance use. EV owners use more lower
charger speeds and operate between 20%-80% to optimise their battery life. (3) Government
On-Street: Public residential chargers are made available through appropriate government
schemes. (4) Rapid Dominant: Rapid and above charging points are made available to
reduce consumer dwell times, which are SOkKW charging points and above.

Figure 6.8 shows the estimation of the number of EVs for Newcastle upon Tyne, which is

obtained using the future energy scenarios of the National Grid proportioned to the number of

Shttps://www.zap-map.com/ev-stats/ev-market/
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cars Newcastle. These estimations are also used in the scenarios developed by Arup. Three
of the four curves in Figure 6.8 show a reduction in the number of EVs on the road between
2042 and 2048. Steady Progression scenario shows a peak in 2050. The fall in EV numbers
in the three scenarios meeting net zero by 2050 is due to the National Grids assumptions
surrounding other forms of propulsion, automated self-driving vehicles and public transport.
According to the Figure 6.8 the peak year for Consumer Transformation is in year 2046, for
Leading the Way is in year 2042, for Steady Progression is in year 2050 and for System
Transformation is in year 2048. The maximum estimated number of EVs and the year in

which the maximum occures are reported in Table 6.5.

Newcastle FES EV uptake curves

System Transformation Steady Progression Leading The Way = —Consumer Transformation
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Fig. 6.8 Estimation of the number of EV's for Newcastle upon Tyne using the future energy

scenarios of national grid

Table 6.5 The maximum number of estimated EVs and the year in which the maximum

Year

occurs based on future energy scenarios of National Grid for Newcastle upon Tyne

Future Energy Scenarios | Maximum Number of Estimated EVs | Peak Year
Steady Progression 160,403 2050
System Transformation 146,617 2048
Consumer Transformation 145,345 2046
Leading The Way 134,606 2042

6.5.1 Estimating the Number of EVs in Each LSOA

Next it is discussed how to estimate the number of EVs in each LSOA. Define the EV uptake
percentage as the total number of forcasted EVs divided by the total registered vehicles from
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the National Trip End Mode (NTEM). The NTEM also provides the fotal registered vehicles
for each MSOA. This total registered vehicles for MSOA is split into the number of vehicles
for LSOAs using a proportional split determined by the 2011 Census. The forecasted number
of EVs in each LSOA is the number of registered vehicles in the LSOA multiplied by the EV

uptake curve percentage:

Vehr s0A cen
Y 1.s0a Vehrsoa cen

EVLsoa = EVyptake X Vehysoa NTEM X (6.1)

Note that this proportional split can be further refined by considering demographics and
household income that may mean ownership in some LSOA will grow in different ways to
others. The optimisation methodology of this chapter is general and can be adapted to take
into account such factors. Section 6.6 will discuss the results of the optimisation for Base
Scenario from Arup in a combination of the estimated number of EVs for Newcastle upon
Tyne from Future Energy Scenarios in peak years for public locations.

6.5.2 Construction of the Simulation Model

In order to simulate the EV charging infrastructure of Newcastle upon Tyne, the datasets of
Section 6.4.1 and the assumptions and calculations of this section have been used to estimate
the total EV travel mileage, the energy demand, and the power demand. A summary of the
calculations for estimating the average daily EV mileage is as follows. The national trip
end model has been used for the Origin/Destination data. This dataset is open source and is
provided by the Department for Transport. The dataset defines two types of origin: Home
based and Non-home based. Each LSOA is assigned an urban-rural classification as defined
by the Census data, for which the average annual mileage and the average number of car/van
driver trips are used to define an average trip mileage for each of the four urban-rural classes.
For all home-based trips, the average trip mileage for each rural and urban classification
is applied. The non-home based trips is split into non-home based trips that start within
the Local Authority area and non-home based trips that start outside of the given Local
Authority area, using a census Local Authority origin destination dataset. For non-home
based trips that start within the given Local Authority, the average trip mileage determined in
the previous stage is applied. For non-home based trips that start in another Local Authority
area, the travelled distance is calculated using spatial mapping. The EV travel mileage is
computed by considering the total travel mileage, the trend in the growth of registered EVs
and the total number of registered vehicles, as well as to the EV battery range. The general

overview of the simulation is shown in Figure 6.9. The simulation has a Destination Model
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Fig. 6.9 An overview of the Destination Model: connecting data-driven inputs to estimate
EV energy demand and power demand

that seamlessly integrates multiple data sources to estimate EV energy demand and power
demand at a granular geographical level.

6.6 Optimisation Approach

This section investigates multi-objective optimisation methods in order to inform on the
future EV charging infrastructure and find the best quantity of charging points, their types
and locations whilst minimising the total capital and operational expenditures. Based on
the existing optimisation methods, a new optimisation solution is proposed in this section
to address the limitations of the standard single-objective optimisation methods. More
specifically, the optimisation solution of this section is different from previous ones in the
following directions: (a) it is guided by Long Short-Term Memory (LSTM) models from the
Machine Learning literature; (b) it does not compress the multiple objectives into a single
objective, but combines and ranks multiple objectives through fuzzy logic; (c) it extends
the capabilities of the traditional genetic algorithms by integrating available data with a
simulation model.

6.6.1 Optimisation Steps for EV Charging

The optimisation model of this chapter is designed to adopt the most central idea of genetic
algorithms, which is to simulate nature for selection, evolution and reproduction. By con-

structing a genotype complete with the main parameters possessed by a charging point, traits
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and expressions are designed to describe the characteristics of a charging point and how it
will behave in a given environment. The main idea of the genetic algorithm for solving the
problem of finding the best location of charging points is as follows. The EV power demand
generated from the EV users will be responded to by the EV chargers depending on the
location of EVs and the charging points. The number of EVs that need to be charged will
be different over time (different generations or iterations). The algorithm deploys different
types of charging points at various locations to select the best locations and types.

Next it is discussed how to apply the optimisation for the EV charging infrastructure
planning. The following assumptions are made based on the processed data: (1) EVs will be
charged according to EV charging demand, which means that users will charge according to
their needs and will not necessarily wait for the EV battery to run out of charge completely;
(2) Users prefer more powerful charging points, which will allow them to have shorter waiting
times for charging, but users will consider a combination of distance and time; (3) Projected
based on data, the initial number of EVs is selected according to Table 6.5. (4) EVs requiring
charging are randomly generated within the LSOAs; (5) After comprehensive consideration,
six types of charging points are selected for optimisation: 7kW, 11kW, 22kW, 50kW, 100kW
and 150kW.

The steps for constructing the new optimisation model are as follows.

1. Analysis and processing of data to determine the subject and environment of optimisa-

tion.

2. Construct gene vectors, determine genotypes and score types, and construct the initial

solution vector space, i.e. construct the initial population.

3. Through the processing of real data, a resource vector is designed through mapping

and an environment matrix is constructed.

4. Study the specific expression of the design score type through the influencing factors

of the real problem, and complete the construction of multiple objective functions.
5. Use the elite strategy of fuzzy logic to rate the score types.

6. Memorise and eliminate the initial solution vector matrix based on the ratings by
constructing a transformation matrix. This is similar to the memory gate and forgetting
gate of LSTM models.

7. Generate the next generation of children based on the rating content and child genera-

tion matrix, and add them to the solution vector matrix space.
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8. The environment matrix is regenerated according to the mapping rules.

9. Rating by calculating the score type and then calculating the crowding by the inner
product for the exemplar elite, so that the crowding is in the right zone to ensure species

diversity and also the right direction for optimisation and search.

10. Repeat steps 5 to 9 until the generational requirements are satisfied.

6.6.2 Constructing the Solution Vector Spaces

Based on the optimisation method proposed in the previous section, gene vectors are con-

structed for each EV charging point as
XJM = (al7a27a37a47a57b17b27b3)7 (62)

where a; is the gene ID, a; represents the latitude, a3 represents the longitude, a4 is the
charging type, as is the charging point total capital and operational expenditures, b represents
the number of charges score, b, represents the charging point operating hours score, b3
represents the generation of birth in the optimisation algorithm. The relationship between
these values will be discussed after introducing the environment matrix.

The total investment is computed according to the following equation: (Jia et al., 2012;

Zhou et al., 2022)
r()(l + ro)"-VW

T(1+rg)ear — 1

where ry is the inflation rate which is set to 10%, C; is the construction cost of each charging

as = +M, (63)

point that includes the acquisition cost, the land price, and the cost of replacement of the
charging point at the end of its life span. M is the maintenance costs and ny,,;, is the planned
life span set to 15 years (Leone et al., 2022).

After designing the genetics of the charging point, the 175 LSOAs of Newcastle upon
Tyne are considered with random selection of charging points of any type in the centre of

each LSOA. These gene vectors are then added to the space of solutions.

6.6.3 Generating the EV Power Demand

A Heat Map of the EV charging power demand is shown in Figure 6.10 for the peak year
(2042) of the Leading The Way scenario. The initialisation of EVs in one LOSA 1is presented
in Figure 6.11. The behaviour of the EVs is simulated using the EV peak power demand as
described in the previous section. The required number of EVs in each LSOA is generated
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Fig. 6.11 Initialisation and EV charging power demand
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randomly within a circle around the centre points of the LOSA. Normal distribution is used

to generate the location of EVs according to the following formulas

Ui,y ~ A (0,1), A~%(—m,m)
EV Latitude = CL, + 11Rcos(A)
EV Longitude = CL, + t;Rsin(A) (6.4)

R= \/ LS (Ma; — L. + (Moi — CL,)?).
n i=1

The above formulas mean that the scaling factors u;, u, are selected randomly according to
the normal distribution with zero mean and standard deviation equal to one .4 (0, 1). The
angle A is selected according to uniform distribution from the range [, 7] to cover the
whole circle. The latitude and longitude of the EV are then computed from the centre point
of the LSOA (CL,,CL,). These formulas ensure a normal distribution of EV numbers from
the centre to the edges of LSOAs.

The radius R is calculated as the average distance of the (Ma;, Mo;) to the centre points.
Here, (Ma;,Mo;) are the latitude and longitude of the i marginal point. Since regional
centres are mostly commercial centres or transport hubs, this means that EVs are likely to be
there more often using normal distribution to simulate this behaviour. EVs may engage in
cross-region charging behaviour for a number of reasons, e.g., when the charging points in
other region are full.

The following equations are used to generate the total power demand, which is then used

for creating the charging requirements of EVs.

n~ N<07 1)7
P = (1+£n) x EV Peak Power Demand (6.5)
0 < P <2 x Max Power Demand.

In the above equations, 7 is the deflation factor. Adopting a normal distribution means that
EV users rarely charge when their battery is empty or full (due to anxiety factor), but rather
when it is below a threshold. A limit is placed on the total EV power demand P, which is
two times the maximum power demand.

]

location, demand and quantity as described above. ¢y represents the latitude, ¢y, represents

Now the resource vector ?j[l and environment matrix Ell are constructed using the
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the longitude, and c 3 represents the power demand of EVs:
Yl[li] €11,€12,€13
?j[i] _ (Cj1,Cj2,Cj3), gl ?[’] _ 021,0?2,623 6.6)
7, Cal s Cns Cr3

The shortest route of the EV to be charged, the total expenditures and the electrical load

are considered in the optimisation. The goal of the optimisation is that the EV charging

points be used for as many EVs as possible, the EV charging points work for as long as

possible, and the least amount of total expenditures is invested to place the right type of

charging points in the right locations. Therefore, these factors need to be optimised at the

same time as a multi-objective optimisation problem. This is shown in Figure 6.12.

Genetic performance score

| | y
(as, by, b,)

ao, as,
Genotype MWM' . WAL

| Reaction score

L

Environmental

considerations o> Elite Elite
£ Excellent Excellent
n‘:“ General General
Failed Failed
Comprehensive Ratings 2 | |
v v v ¥
Champions Excellent General Failed
(Al elite) (Any is excellent) (All General) (Any Failed)

Fig. 6.12 Example of a single gene in the genetic optimisation

6.6.4 Selecting the Elite

An elite strategy is set up for each score through fuzzy logic as in Table 6.6. The multiple

objective functions are integrated through such a combination of elite strategies to obtain a

solution set for the optimisation. The percentages in the Elite Strategy Rating depend on the

specifics of the problem under study. The percentages are set heuristically and then are tuned

based on the behaviour of the gene vectors in the solution set of the optimisation. In the case

study, the bottom 20% are considered as unhealthy individuals that will be eliminated during
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the iterative process. The top 10% of individuals will generate 1 or 2 offspring individuals at
random, and the 10% to 50% of individuals will only generate 1 offspring individuals, and

the 50% to 80% of individuals will generate O or 1 offspring individuals.

Table 6.6 Elite Strategy Rating

Rank Elite Excellent General Failed
Rating interval [09%,10%] (10%,50%] (50%,80%] (80%,100%]
Number of offspring lor2 1 Oorl 0

6.6.5 Utilisation Rate

The utilisation rate is expressed in the following equation:

Number of Feeded EV 1 & (b —Tre)?
Utilisationrate:Wl( SLlba s S)+W2 (1——2(2T—26)>. 6.7)
n:

Total Number of EVs

The rate is formed as the weighted sum of two terms. The first term indicates the portion
of EVs with their charging requested being satisfied. The working time of the charging
points are expected to be around 7,,. The quantity 7, represents the recommended working
time for the charging points, which is [10, 15] hours (de Mattos Affonso and Kezunovic,
2018). The second term shows the deviation of the charging point working hours from 7.

This term decreases by larger deviations. Here, T, = 10 hours is chosen with the weights
W1 =0.6,W, =04.

6.7 Results of Applying the Framework

The optimisation approach is applied for obtaining the charging locations in Newcastle
upon Tyne considering the peak years of the four different scenarios reported in Table 6.5.
Figure 6.13 shows the cluster map of the results for Leading The Way scenario. The numbers
written on the circles represent the number of EV charging points within the related areas.
The clustering is done by setting the map size to be 15,000 smaller than the actual size. The
colours of the circles represent the proportion of the total number of charging points in the
area to the total number of charging points (red colour for higher portions). Figure 6.14 shows
the spatial distribution of the genes in the optimisation representing EV charging points.
Colour of the dots in the figure shows the type of the charging points. The optimisation

results indicate that by taking 4753 charging points and arranging them in the areas shown in
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Figure 6.14, a more appropriate efficiency of the charging points can be gained with lower
total capital and operational expenditures. The two Figures 6.13—6.14 indicate that in rural
areas where demand is low, fewer charging points are placed and close to the main roads. In
urban areas, where there is a high demand, the number of charging points is high and they
are located close to residential areas, shopping malls and major roads.

The relatively large number of charging points is computed by the optimisation under
the current and predicted road use behaviour. In case policies are deployed that encourage a
major shift to public transport and deter substantially the wide spread of private car usage, it
is necessary to revise the scenarios, assumptions of the baseline model, and the predicted

energy demand. This in turn affects the required number of charging points.

Fig. 6.13 The cluster map of the results for Newcastle upon Tyne

Table 6.7 gives the optimisation results for the peak years of the four scenarios. The total
number of charging points, average operating hours, and the total costs are reported. As can
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Fig. 6.14 Spatial distribution of the genes in the optimisation representing EV charging points

Table 6.7 Optimisation results for peak years in different scenarios

. Leading The Consumer System Transforma- | Steady Pro-

Scenario Transforma- . .

Way . tion gression
tion

Peak year 2042 2046 2048 2050

Quantity of EVs | 134,606 145,345 146,617 160,403

Total number of |-, 5167 5386 5817

charging points

Total Cost (£) 8,195,000 8,859,400 9,117,900 9,880,200

Average oper-

ating hours of | 5 7.77 7.81 7.95

charging points

(h)

be seen from the table, the required total number of charging points will increase with their

total expenditures increasing as well. In contrast, the average operating hours of charging

points is in the range [7.5,8], and goes up from 7.57 to 7.98 hours.
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Figure 6.15 shows the portion of 6 types of charging points for the four scenarios. The
variations of the portions of different types are relatively small (within 3% range of the
total number of charging points). It is found that regardless of the chosen initialisation of
the optimisation process, the optimal solution puts priority on the slower charging points
(respectively 7kW, 11kW, and 22kW). The faster charging points (150kW, 100kW, and
50kW) have smaller portions each around 10%-13%. This means that while 7kW charging
dominates the market currently, it is more beneficial to improve charging efficiency and
reduce the total investment costs by installing more from faster types of charging points.

MAP OF THE 6 TYPES POINTS PERCENTAGE OF DIFFERENT MAP OF THE 6 TYPES POINTS PERCENTAGE OF DIFFERENT

TYPES OF CHARGING POINTS TYPES OF CHARGING POINTS
(YEAR=2042 EV QUANTITY = 134606 TYPES=6) (YEAR=2046 EV QUANTITY = 145345 TYPES=6)
(FES SCENARIO = LEADING THE WAY) (FES SCENARIO = CONSUMER TRANSFORMATION)
m7kW m1kW =22kW =50kW = 100kW m 150kW w7kW w11kW =22kW =50kW = 100kW = 150kW

MAP OF THE 6 TYPES POINTS PERCENTAGE OF DIFFERENT MAP OF THE 6 TYPES POINTS PERCENTAGE OF DIFFERENT
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Fig. 6.15 Portion of 6 types of EV charging points for the four scenarios

6.7.1 Visualisation of the Iterative Optimisation

The optimisation process is visualised in Figure 6.16. The algorithm initially places a number
of charging points with different types in the centre of the 175 areas. In the next step, the
algorithm scores the available solutions by fuzzy logic and filters the better ones for the
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Fig. 6.16 Optimisation process of the multi-objective genetic algorithm

mutation-based generation of offspring. The generation of children in the next iteration of
the algorithm expands the search direction and the search space. The first phase of the total
iterations rapidly approximates the optimal envelope in the solution space. The second phase
then combines different objectives through fuzzy logic to converge to an optimal solution.
These two phases are also shown in Figure 6.17 that provides the total number of EV charging
points in each iteration of the optimisation. The first phase is indicated by the red colour
and the second phase by blue colour. The results are for four different scenarios and 100
iterations. The total number of charging points starts from a very small value (initialisation
of the algorithm) and gradually increases to a peak value (first phase), then slightly decreases
until converging to an optimal solution (second phase).

Figure 6.18 shows the number of 6 types of EV charging points in each iteration of the
optimisation. Results are for four different scenarios and 100 iterations. Similar to the total
number of charging points, the number of each type starts from a small value and gradually
increases to a peak value, then slightly decreases until converging to an optimal solution. A

similar trend is observed in the total expenditure presented in Figure 6.19.

6.7.2 Spatial Distribution of the Future Charging Infrastructure

Figure 6.20 shows the current and computed spatial distribution of the charging points. The
left figure shows the existing charging points (source: ZAP-MAP) and the right figure shows
the solution of the optimisation for future installations. The red ellipsoids represent similari-

ties between the current charging points and the computed solution; The purple ellipsoids
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Fig. 6.17 Total number of EV charging points in each iteration of the optimisation

indicates areas with no installation but future installations is needed. This corresponds to

residential areas that do not have a relevant arrangement of charging points at the moment.

6.8 Sensitivity Analysis of the Optimisation Solution

Sensitivity analysis is an important validation technique to test the robustness of an optimi-

sation framework. In this study, sensitivity analysis has been conducted by altering input

parameters, such as the number of electric vehicles and the types of charging infrastructure.

By analysing the impact of these changes on the outcomes, it is demonstrated that the frame-

work can adapt to different scenarios and produce meaningful results. This also helps to

identify potential limitations and areas for improvement in the optimisation method.

6.8.1 Sensitivity to the Number of EVs

The sensitivity of the solution to the estimated number of EVs is studied by increasing and

decreasing the EV numbers with 10%. The baseline for comparison is Leading The Way

scenario for the year 2042, EV quantity 134606, and 6 types of EV charging points (cf.
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Fig. 6.18 Number of 6 types of EV charging points in each iteration of the optimisation

Table 6.5). The results are reported in Table 6.8. The percentages are obtained by taking
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Fig. 6.20 Spatial distribution of the charging points obtained from the optimisation

A 10% increase in the number of EVs to be charged increases the total number of charging
points by 27.5%, increases the total expenditure by 30.4%, decreases the number of EVs to
be charged by a single charging point by 10.5%, and reduces the average operating hours of
a single charging point by 17.5%.

In contrast, a 10% reduction in the number of initial EVs would reduce the total number
of charging points by 5.3%, reduce the total expenditure by 7.8%, increases the number of
EVs to be charged by a single charging point by 14.1%, and increases the average operating
hours of a single charging point by 6.5%.

Table 6.8 Sensitivity to the number of EV's

Changes in the EV numbers +10% -10%
Total number of charging points +27.5% -53%
Total expenditure (£) +30.4% -7.8%
Average number of EVs charged by a single charging point | -10.5% +14.1%
Average operating hours of charging points (h) -17.5%  +6.5%

6.8.2 Sensitivity to the Number of Charging Types

Given the rapid developments in the charging point technologies, two different cases are
considered to study the sensitivity of the optimisation with respect to the diversity in the
types of charging points. In the first case, it is assumed that only 5 types of charging points
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are available in the network by eliminating 150kW charging points. In the second case, it is
assumed that an additional type of 350kW charging point is also available (in total 7 types).

The results are summarised in Table 6.9 by considering the base of comparison to be
Leading The Way scenario for the year 2042, EV quantity 134606, and 6 types of EV charging
points (cf. Table 6.5). The percentages are obtained by taking average over 6 runs of the
optimisation. The table shows that the number of charging points should be increased by
10.5% when charging points with higher powers are not available. However, smaller number
of charging points are needed with high powers charging points available in the network. A
small variation is also observed in the total expenditure, which is 3.36% more when larger
number of charging points with smaller powers need to be installed. The changes in the
number of charging points in turn influences the average number of EVs charged by a single
charging point: smaller (larger) number of charging points will serve higher (lower) number
of EVs in average when the demand is staying roughly the same (note that the network has a
fixed number of EVs). Finally, the average operating hours of charging points has stayed
almost the same. This means that the EV charging infrastructure should consider installing
high power charging points when they become available and increase the diversity of the
charging types.

Figure 6.21 shows the portions of different types of charging points when the network
has only 5 types, and compares it with the 6 types. As can be seen in the left figure, 36% of
charging points are 7kW, but this is replaced in the right figure by 22% 7kW and 14% 150kW.
Therefore, the optimisation algorithm suggests that a portion of increase in the number of
7kW charging points should be covered by installing high power 150kW charging points.

Table 6.9 Sensitivity to the number of charging types

Number of charging point types 7 types S types
Total number of charging points -1.87%  +10.5%
Total expenditure (£) -0.85% +3.36%
Average number of EVs charged by a single charging point | +7.39% -9.43%
Average operating hours of charging points (h) -1.03% +0.24%

6.9 Testing the Load Carrying Capacity

Load carrying capacity (LLC) is a concept used in various engineering disciplines to assess
the reliability of system under extreme loads before any failure happening in the system
(Abdullah et al., 2014; Randolph et al., 2004). The goal of this section is to apply the LLC

concept to the EV charging infrastructure and study its reliability under extreme conditions.
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Fig. 6.21 Portions of different types of charging points

For this purpose, the optimisation of this chapter is applied to design the EV charging
infrastructure for the Leading The Way scenario for the year 2042 with EV quantity 134,606.
The number of EVs is then increased to 300,000 (more than twice) and the response of the
charging infrastructure to this extremely large demand is studied.

Table 6.10 shows the results of the LCC test. The number of EVs reported in the table
is increased from 134,606 (Leading The Way Scenario) to 300,000 in order to capture an
extreme situation. This means 123% more EVs are visiting Newcastle upon Tyne from other
areas and need charging their EV batteries. With this increase in the number of EVs, the
average operating hours of charging points will increase by 41%. This is due to the fact
that the distribution of additional charging requests among the charging points does not
have the same proportion as the distribution of the base charging requests. The additional
charging requests are served more by Rapid and Ultra-Rapid charging points than by Slow
and Fast charging points. Charging the EVs by Rapid and Ultra-Rapid charging points takes
less time than charging the EVs by Slow and Fast charging points. Therefore, it takes in
average less time to serve the additional charging requests. This means the designed EV
charging infrastructure has the capability of absorbing the increased charging demand with

the increased average operating hours.

6.10 Comparison With Traditional Genetic Algorithm

When dealing with multi-objective optimisation problems, traditional genetic algorithms

typically compress and integrate multiple objectives into a single function, converting the
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Table 6.10 Testing the load carrying capacity for Leading The Way scenario
Case Normal Extreme Percentage of change
Number of EVs 134,606 300,000 123%
Number of charging point types 6 types 6 types 0%
Total number of charging points 4753 4753 0%
Total expenditure (£) 8,195,000 8,195,000 0%
Average operating hours of charging 7.57 10.69 41%
points (h)

problem into a single-objective optimisation. This approach demands additional knowledge
of the trade-offs between different objectives and necessitates multiple iterations of tuning
the weights in the objective function. This process can be costly and time-consuming.

In contrast, the optimisation method proposed in this chapter retains the multi-objective
nature of the problem and provides a solution that automatically captures the trade-offs
between the objectives. This is particularly advantageous when considering the distribution
of total expenditures and quantities across different charging types. As Figure 6.22 (top)
shows, the traditional genetic algorithm suggests higher total expenditures for satisfying the
EV energy demand. The quantities of six charging types obtained from the traditional genetic
algorithm and the proposed optimisation is shown in Figure 6.22 (bottom). The approach of
this chapter suggests having higher number of slow and fast charging points, while traditional
genetic optimisation suggest a more uniform distribution for installing charging points.

By maintaining the multi-objective structure of the problem, the new optimisation method
offers a more comprehensive and efficient approach to balancing total expenditures and
quantities across various charging types. This allows for more informed decision-making
and resource allocation when designing and planning electric vehicle charging infrastructure,

ultimately contributing to a more sustainable and accessible transportation ecosystem.

6.11 Further Considerations

This section aims to clarify the rationale behind the optimisation model’s output that empha-
sises the slower charging types (e.g., 7kW) based on the data and insights derived from the
developed baseline scenario, and addresses the evolving expectations for public EV charging
infrastructure.

While the baseline scenario employed in the analysis of this chapter provided a solid
foundation, it is significantly influenced by the availability of data, reflecting current trends
and consumer behaviours in EV usage and charging practices. This scenario offers a realistic

projection of short- to medium-term infrastructure requirements. It aligns with the gradual
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Fig. 6.22 Comparing the new optimisation method with the traditional genetic algorithm

transition towards electric mobility, ensuring that infrastructure development is both feasible
and reflective of current technological and societal trends.

While the baseline scenario focuses on the current state and near-future projections, it
is expected that the industry’s trajectory will be shifted towards integrating faster, rapid,
and ultra-rapid charging points. This shift is driven by advances in battery technology,
increasing EV range, and consumer demand for shorter charging times, especially in high-
traffic public areas. The optimisation framework of this thesis is designed with the flexibility
to adapt to evolving charging technologies and future energy scenarios. As new data becomes
available and consumer preferences shift towards rapid charging solutions, the framework
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can incorporate these changes, ensuring that the EV charging infrastructure recommendations
remain relevant and forward-looking. Any observed new trend can also be incorporated in

the underlying assumptions used to build the data-generating baseline simulations.

6.12 Conclusions

With focus on the expansion of EV charging infrastructure and data use, this chapter mapped
the generic steps of the policy cycle to the steps taken in defining and evaluating the plans
for expansion of the EV charging infrastructure. This chapter applied the framework of
Chapter 3 to the use case of EV charging infrastructure in Newcastle upon Tyne. A model for
simulating the net zero emission policy commitment on EV charging infrastructure was built
to compute the increase in the quantity of charging points with different types. The model
includes two distinctive stages of simulation and optimisation. The simulation stage of the
baseline model has been taken from the industrial partner, Arup Group Limited. The data of
travelled distances were utilised and the model was customised to simulate the interaction
between EV users and charging points within the model. The main contribution of the results
presented in this chapter was on the development of a novel optimisation approach to find
the optimal location of EV charging points (best implementation of the policy commitment)
utilising the baseline simulation model. The relevant subsets of the output of the simulation
model is used for feeding the optimisation stage of the model.

With focus on the EV charging infrastructure of Newcastle upon Tyne, the optimisation
model was used to estimate and optimise the charging points types, charging points quan-
tity, charging points locations, total expenditures, and utilisation of charging points. The
optimisation was performed for four different future energy scenarios and the demand and
EV quantities of the peak years for Newcastle upon Tyne were used. Quantitatively, the
optimal solutions recommend installing higher number of faster charging points to reduce
the percentage of slower charging points from the current 60% to around 25% in the four
scenarios. Still, the optimal solutions put priority on the slower charging points (around 25%),
with faster charging points having smaller portions each around 10%-13%. The optimisation
shows that while 7kW charging dominates the market currently, it is more beneficial to
improve charging efficiency and reduce investment costs by having a higher percentage of
installations from other types of charging points in the future installations. Moreover, in the
leading scenario for the year 2042 with 134,606 EVs, a total of 4,753 charging points are
recommended, resulting in an average operating time of 7.57 hours per charging point. The
results also illustrate the spatial distribution of charging points, with higher concentrations in

urban areas and near major roads.
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In order to study the factors influencing the outcome of the optimisation, a sensitivity
analysis was carried out on the number of EVs and the type of charging points. The
optimisation results confirmed that having more diversity in the charging point types and
installing more high power points can reduce the total expenditure while having similar
performance in addressing the charging demand. The analysis revealed the adaptability of
the optimisation framework to different scenarios, providing valuable insights for decision-

making and highlighting potential areas for improvement.






Chapter 7
Discussions and Conclusions

This chapter provides a comprehensive discussion of the research findings and their implica-
tions for validating the objectives of transport policy interventions and implementing policy
commitments.

A critical review of the previous research works was covered in Chapter 2. The reviewed
papers revealed the limited work in which the success of a policy intervention is assessed
using data, and showed the need for a framework to validate policy interventions against
their objectives and implement policy commitments using data. The review identified the
following research questions in integrating machine learning and optimisation methods for
validating transport policy objectives and implementing the policy commitments: RQ1.
Given the large volume of data, what data types are relevant to the objectives of a policy
intervention? RQ2. What machine learning techniques are suitable for combining large
datasets and validating the intervention objectives? RQ3. Could these data-driven techniques
be used for efficient optimal implementation of policy commitments?

In order to answer the above research questions, the following objectives were considered:
O1. Identify, gather, preprocess and analyse data types relevant to a policy from different
sources. O2. Develop suitable machine learning models based on the input processed data
and the considered policy objectives and commitments. O3. Analyse and simulate future
scenarios under the implementation of the policy commitments to gain insights on their
impact in the transport network. Q4. Study methods for validating the outcome of machine
learning methods. Select and use metrics that can best describe the accuracy of the outcome
and validate the outcome against domain knowledge. OS. Determine the potential use of
optimisation methods for transport policy commitment implementation. O6. Apply the
designed frameworks to case studies on validating the policy objectives of clean air zone and
the expansion of the electric vehicle charging infrastructure, which are critical for achieving

the UK’s target of net-zero emissions by 2050.
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By combining machine learning techniques for validating policy intervention objectives
and optimisation methods for implementing policy commitments in transport, the designed
research aimed to provide valuable insights and practical solutions for transport planning and
policy-making. The innovative use of these methods in the chosen case studies demonstrated
the potential benefits and challenges of using such technologies to improve transport systems
and enhance the decision-making process.

The novelty of the research was in the selection of case studies and in proposing frame-
works that combine machine learning and optimisation methods for validating the objectives
of policy interventions and implementing policy commitments. For Chapters 4 and 5, the
air quality case study was chosen due to its significant impact on public health and the
environment. While previous studies have applied machine learning techniques to air qual-
ity monitoring and prediction, this research extended the application of machine learning
methods to validating the objectives of policy intervention, specifically focusing on clean air
zone. In Chapter 6, the electric vehicle charging infrastructure planning was selected as it
addresses a crucial challenge in the transition towards sustainable transport systems. While
optimisation techniques have been used in various infrastructure planning domains, this
research contributed to the literature by developing a multi-objective optimisation framework
that integrates machine learning techniques with simulation models to effectively address the
challenges, real-world constraints, and multiple conflicting objectives associated with the

rapid growth of electric vehicles.

7.1 Addressed Research Questions

The research questions of this study and a brief description of how they were addressed are

as follows.

Research Question 1: Given the large volume of data, what data types

are relevant to the objectives of a policy intervention?

After a comprehensive literature review in Chapter 2, this thesis proposed a framework to use
machine learning methods for identifying the data types that are relevant to a policy objective
in Chapter 3. The framework was applied to air quality and clean air zone intervention as a
case study in Chapter 4 while considering the policy objective of reducing the concentration
of NO,. The datasets from the Urban Observatory in Newcastle, United Kingdom, were
used.
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Machine learning classifiers of decision trees (DT), K-nearest neighbours (KNN), gradient-
boosted decision trees (GBDT), and light gradient-boosting machine (LGBM) were used to
analyse the data from the Newcastle Urban Observatory. Correlation coefficient and feature
importances were computed using these models, which were then normalised to get the
relative importance of the features. A cut-off value of 1% was used as a proof of concept to
identify the most important features. It was shown that the constructed models share common
conclusions about the importance of features in predicting NO,, which could be used in a
voting mechanism to decide on the importance of features.

The machine learning models used in the framework stated that O3, Month, Day, Pressure,
and the Number of Cars and Taxis are important features. On the other hand, Wind Speed
and Number of two-wheeled motor vehicles were less important in building a model. These
findings are also confirmed by the general intuitive observations and evidences about air
quality that

* There is a high correlation between NO; and Og;

* The month is important as the air quality can get impacted duo to the seasons and
weather conditions; and

* The day will impact the air quality as usually traffic volume might be higher during
the working days and lower over the weekends. In the dataset used for building the
models, the average difference in traffic volume between weekends and the rest of the
week was 35%.

The implementations showed that among the selected learning models, LGBM had the
highest average accuracy (88%) and KNN model has the lowest average accuracy (80%)
in capturing the relations in the dataset. This shows that the LGBM model can predict the
correct class in almost 9 out of 10 cases. While this is an excellent outcome, the accuracy
was considered along other metrics including confusion matrix to have the full understanding
of the learning and prediction performance in each class.

The findings highlighted the importance of specific data types in predicting NO; levels
and demonstrated the potential of machine learning in identifying key features for policy
objectives.
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Research Question 2: What machine learning techniques are suitable for
combining large datasets and validating the objectives of the interven-
tion?

This thesis proposed a framework in Chapter 3 to use machine learning methods for validating
the objectives of transport policy interventions and checking how well the objectives of the
policy intervention are achieved. The framework was applied to air quality and clean air zone
intervention as a case study in Chapter 5 while considering the policy objective of reducing
the concentration of NO,. The datasets from the Urban Observatory in Newcastle, United
Kingdom, were used. The framework was applied using long short-term memory (LSTM)
models for validating the Clean Air Zone policy objective. By utilising historical datasets
and assumptions about the policy implementation, the chapter successfully built an LSTM
model that predicted NO, concentrations with high accuracy without the implementation of
the clean air zone. The historical data from the first 10 months of a year were used to build
and evaluate the LSTM model, and the predictions are made for the last two months. The
LSTM model predicted the NO; concentrations with root mean square error of 0.95.

The results demonstrated the use of machine learning methods in analysing and validat-
ing the objectives of transport policy interventions. The role of machine learning can be
summarised as predicting what is going to happen in the future if the policy is not implement
(using available historical data), and predicting the air quality and other related variables
using transport behaviour changes in response to the implemented policy.

Table 7.1 shows the concepts from machine learning used in Chapters 4-5.

Research Question 3: Could these data-driven techniques be used for

efficient optimal implementation of policy commitments?

This research question was addressed in thesis by proposing a framework in Chapter 3 that
integrated data with simulation and optimisation for implementing policy commitments. The
framework was applied to the use case of EV charging infrastructure expansion by creating
computational models that are capable of simultaneous global search and unsupervised
learning.

The study presented in Chapter 6 built a model to simulate the net-zero emission policy
commitment related to EV charging infrastructure. This model calculated the increase in the
quantity of charging points of different types, incorporating two distinct stages of simulation
and optimisation. The simulation stage utilised a baseline model customised to simulate the

interaction between EV users and charging points using data on travelled distances.
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Table 7.1 Summary of the concepts from machine learning used in Chapters 4—-5

Concept

Purpose

Usage in the thesis

Feature Importance

Identifies influential fea-
tures on the model out-
come.

Identifying data types relevant to
a policy objective.

Classification Models

Used to determine feature
relevance.

Classifiers can discern the most
predictive features, aiding in
decision-making for transport
policies.

Time Series Models

Analyse data collected over
time for prediction.

LSTMs are chosen for their abil-
ity to handle long-term dependen-
cies, crucial for predicting pollu-
tion levels like NO, concentra-
tions.

Performance Metrics

Evaluate the performance
of the model in making pre-
dictions.

Metrics including accuracy, pre-
cision, recall, F1 score, and con-
fusion matrix determine the ef-

fectiveness of models in making
accurate predictions.

The primary contribution of the presented results lay in the development of a novel
optimisation approach for determining the optimal location of EV charging points, effectively
implementing the policy commitment. Relevant subsets of the simulation model output fed
into the optimisation stage.

Focusing on the EV charging infrastructure in Newcastle upon Tyne, United Kingdom,
the optimisation model estimated and optimised charging point types, quantities, locations,
total expenditures, and utilisation. The optimisation was conducted for four different future
energy scenarios, using peak-year demand and EV quantities for Newcastle upon Tyne.
Quantitatively, variations in charging point types were within a 3% range of the total,
prioritising slower charging points in optimal solutions.

The study revealed that while 7kW slow charging dominated the market at the time, future
installations should prioritise improving efficiency and reducing costs with other charging
point types. In the leading scenario for 2042, with 134,606 EVs, the optimal recommendation
was 4,753 charging points. The results also depicted the spatial distribution of charging
points, with higher concentrations in urban areas and near major roads.

To understand the factors influencing the optimisation outcomes, a sensitivity analysis
was conducted on the number of EVs and charging point types. Results confirmed that greater

diversity in charging point types and increased installation of high-power points could reduce
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total expenditure while maintaining performance in addressing charging demand. The analy-
sis underscored the adaptability of the optimisation framework to different scenarios, offering
valuable insights for decision-making and identifying potential areas for improvement.

The proposed optimisation approach proved to be generalisable and applicable to any
baseline model providing estimates of future EV charging demands in specific areas. The
multi-objective optimisation framework is poised to have offered more scientific and com-
prehensive support for EV charging infrastructure within the context of a net-zero emission
strategy.

The term ‘framework’ was employed in reference to the presented approaches, as they
are characterised by a high level of flexibility, making them applicable to various policy
objectives. The specifics and selection of machine learning models can be tailored based on

the unique requirements of the intended policy objective.

7.2 Key Findings and Implications for Transport Policy

Evaluation

The research presented in this thesis extends our understanding of how advanced techniques
such as machine learning, multi-objective optimisation, and simulation can be utilised in
validating the objectives and implementing transport policies. It offers valuable insights for
local authorities involved in designing and implementing policies including the clean air
zone and expansion of EV charging infrastructure in Newcastle upon Tyne.

The Newcastle clean air zone that levies charges for non-compliant taxis, buses, coaches,
and heavy goods vehicles, and is set to extend to vans and light goods vehicles, necessitates
an evaluation of its effectiveness in enhancing air quality within legal limits and mitigating
traffic-related pollution in the city centre. The proposed frameworks play a crucial role
in modelling and comprehending the relationship between collected data, implemented
charges, and the reduction of air pollution in Newcastle. This research contributes to
fostering a more sustainable urban environment by offering insights into the efficacy of
clean air zone interventions. These interventions, focused on improving air quality, reducing
NO; concentrations, and promoting sustainable transportation solutions, aid Newcastle in

advancing toward its climate and air quality objectives.
The main takeaways from the research of this thesis are:
* Identifying Relevant Data for Transport Policy Objective Validation: This research

underlined the role of accurate data selection and gathering in the context of transport

policy objectives. Using machine learning classification methods, various data types
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related to the policy objectives were identified and analysed. This approach rein-
forced the significance of finding and incorporating relevant datasets into the objective

validation processes of policy interventions.

* Machine Learning for Validating Policy Objectives: The application of machine
learning techniques for validating policy objectives indicated considerable potential,
performing strongly in both classification and time-series forecasting tasks. The
proposed use of machine learning with simulations of actual transport conditions offers
a potential advancement towards more pragmatic policy objective validation.

* Multi-objective Optimisation and Simulation for Policy Commitment Implemen-
tation: The research underscored the effectiveness of employing multi-objective
optimisation and simulation for policy planning and execution. This method provides
a mechanism to strike a balance between disparate objectives, resulting in more sus-
tainable and efficient policy outcomes. It demonstrated significant efficacy, especially
in planning an optimal EV charging infrastructure, where factors like cost, location,

and user demand were considered.

* Flexible Data-Driven Frameworks: The frameworks proposed in this thesis are
designed to be high-level and flexible, able to cater to different policy objectives. The
specifics can be adjusted based on the unique requirements of each policy objective.
This flexibility makes them a valuable tool for policymakers, providing them with an
evidence-based methodology to guide their decisions and design effective interventions.
Utilising machine learning and data analysis, policymakers can understand which

aspects of their transport system have the most significant impact.

* Value of Data-Driven Approaches: The research emphasised the role of data-driven
methodologies in policy-making. Utilising real-world data, the models produced more
accurate and reliable results, highlighting the importance of quality data in evaluating
policy objectives. This approach can facilitate better policy decisions and enhancing

the efficiency of the implementation.

* Bridging Theory and Practice: The findings of this research contribute towards
narrowing the gap between academic research and practical application in transport
policy-making. It exhibits the real-world application of machine learning, multi-
objective optimisation, and simulation in tangible policy contexts, providing a solid

direction for both practitioners and researchers.

In summary, the findings of this research provide practical insights that can guide more

effective decision-making and enrich the application of data-driven techniques in transport
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policy. The study underscores the importance of employing machine learning techniques
and optimisation methods to develop frameworks that can assist in the analysis, objective
validation of policy interventions, and implementation of transport policy commitments. The
three frameworks discussed in this study represent innovative and effective approaches to
addressing various challenges and uncertainties in the development and execution of transport

policies.

7.3 Limitations of the Proposed Data-Driven Frameworks

7.3.1 Technical and Data Limitations

The proposed frameworks utilise machine learning models based on data. The following
aspects should be considered that may limit the extend to which the framework can be
applied.

1. Data Quality: Machine learning models are highly dependent on the quality of data
that is used to train them. Poor quality data can lead to inaccurate or unreliable results,
biased models, and reduced genralisation of the model to new data points. This point
was observed when analysing the datasets from Newcastle Urban Observatory, which
included many invalid or inaccurate data points. These invalid data points and other
data points outside of the normal range of variables were discarded from the dataset,

otherwise they would have reduced the quality of the trained machine learning models.

2. Data Quantity: Machine learning models require datasets that are large enough to
achieve high levels of accuracy and performance. This can be a challenge when data
is scarce or difficult to obtain. This point was observed when analysing the datasets
from Newcastle Urban Observatory. By analysing and preprocessing the datasets and
eliminating invalid data points, it became clear that only one year worth of data can be
used regarding training and prediction of NO; concentrations. For making accurate
and long horizon predictions, the time duration in which accurate data is stored must

be larger.

3. Overfitting: Machine learning models can sometimes learn the training data too well,
capturing noise and random fluctuations as if they were genuine patterns. This would
result in poor performance on new or unseen data. To address overfitting, techniques
such as regularisation or using simpler models should be employed. Additionally,
increasing the size of the training dataset can help the model generalise better to new,

unseen instances. These points were considered in the first use case of this thesis on



7.3 Limitations of the Proposed Data-Driven Frameworks 181

air quality by having machine learning models with different levels of complexity,
changing the proportion of training and test dataset, and using appropriate loss functions

with regularisation in training the models.

4. Computing Power: Machine learning algorithms can be computationally expensive
and require significant computing power, making them difficult to implement on

smaller or less powerful devices.

5. Improving baseline simulation models: The accuracy and reliability of the optimisa-
tion solutions obtained by the framework used in Chapter 6 depend on the underlying
baseline model that generates the EV demands and also on the quality of the datasets
used. Since more data points are becoming available over time, the baseline model

must be continuously updated.

To improve the outcomes of the data-driven frameworks of this thesis, it is crucial to con-
tinue enhancing the quality of the data, reduce missing data points, and minimise observation
errors through precise sensor calibration. In doing so, the effectiveness of interventions can
be accurately measured and continually improved, further assisting policymakers in their

ongoing efforts to implement better policy interventions.

7.3.2 Limitations of the Frameworks in the Policy Design Cycle

Although the proposed data-driven frameworks contribute to improving and enhancing
various stages of the policy cycle, the application of data-driven methods to the transport

policy design and implementation has the following limitations:

* Focus on Measurable and Quantifiable Outcomes: Data-driven evaluations often
focus on easily quantifiable metrics like reduction in travel times or emission levels,
potentially neglecting equally important but less quantifiable aspects such as public
sentiment, long-term environmental impacts, improved quality of life, and social
cohesion. This may lead to missing broader lessons from qualitative analysis and
stakeholder feedback, such as community engagement and social equity impacts.

* Inadequate Qualitative Insights: Data-driven methods might not fully capture qual-
itative insights, such as user satisfaction or public acceptance, which are crucial for

evaluating the success and acceptance of transport policies.

* Bias in Data Availability: Data may be more readily available for urban areas with
advanced monitoring systems, leading to a focus on these regions while rural or

underserved areas with less data may be overlooked.
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Lack of Contextual Understanding: Relying solely on data might miss the underlying
causes of transport issues, such as social inequality or economic disparities, that are

not easily captured in quantitative datasets.

Overreliance on Simulation Models: Simulation models in transport can oversimplify
complex human behaviours and interactions, potentially leading to policies that do
not fully address real-world complexities. These models focus on average behaviours
and may ignore the diverse mobility needs of different population groups, such as the

elderly, disabled, or low-income individuals.

Inflexibility in Policy Design: Data-driven policies might not fully account for future
changes in technology, urban development, or social trends, leading to rigid solutions
that may become outdated. Therefore, the decisions made in the policy cycle needs to
be updated more frequently with respect to the availability of new data and technol-
ogy. Moreover, data-driven implementation plans may be too rigid, not allowing for
adjustments based on local conditions or unforeseen challenges, such as community

resistance or unexpected environmental impacts.

Risk of Misinterpretation: Complex data analyses and models can be misunderstood
by policymakers, leading to decisions that do not accurately reflect the underlying

issues and resulting in inefficient or counterproductive infrastructure investments.

Overconfidence in Predictive Models: Relying heavily on predictive models can
create a false sense of certainty, potentially underestimating risks and uncertainties

inherent in transport systems.

Political Manipulation: Data can be selectively used to support specific political
agendas, such as prioritising certain infrastructure projects for electoral gains rather

than based on actual need or effectiveness.

Implementation Gaps: Data-driven methods may not fully capture practical imple-
mentation challenges, like funding constraints, stakeholder coordination, or logistical

hurdles, leading to gaps between policy design and on-the-ground realities.

Insufficient Consideration of Human Factors: Overemphasis on data might neglect
the social and cultural aspects of transport policy, such as how people adapt to new

transport modes or infrastructure changes.

Attribution Challenges: In complex transport systems, it can be difficult to attribute

specific outcomes directly to particular policies, as many factors can influence re-
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sults. For instance, an observed decrease in air pollution might also be influenced by

economic downturns or changes in fuel prices that reduce the use of vehicles.

* Preventing Radical Policy Innovation: Overreliance on existing data can stifle
innovation by discouraging the exploration of new and untested ideas that lack historical
data support. For instance, innovative transport solutions like autonomous vehicles

might not have enough historical data to support their immediate implementation.

* Inertia: Data-driven methods can reinforce existing biases and practices, making
it difficult to implement novel solutions such as new public transport systems or

alternative mobility schemes.

* Robustness: A key challenge in data-driven policy design is dealing with uncertainty,
which can arise from various sources such as limited data availability, noisy data, or
structural misspecification. In the context of machine learning, policies derived from
data are particularly vulnerable to these uncertainties. If these policies are not robust
to errors in the underlying simulations or discrepancies between the simulated environ-
ment and real-world conditions, their effectiveness in real-world applications can be
significantly compromised. Ensuring that learned policies can withstand these uncer-
tainties requires further research for their successful implementation and adaptation to

complex and dynamic real-world scenarios.

» Explainability: Another aspect of data-driven policy design is the explainability of the
learned policies. In many cases, policies generated through machine learning models
can be complex, making it difficult for policymakers, stakeholders, and the public
to understand the rationale behind specific decisions. This lack of explainability can
lead to mistrust and resistance to policy implementation. To ensure that data-driven
policies are both effective and widely accepted, further research is needed to make the
learned policies interpretable by providing clear explanations of how they are derived,
the data and assumptions they rely on, and the underlying mechanisms driving their
recommendations. Enhanced explainability not only facilitates informed decision-
making but also builds trust and fosters greater accountability in the policy-making

process.

» Simplicity: For data-driven policies to be widely accepted, simplicity is a highly
desirable feature. Policies that are overly complex or intricate can be difficult for stake-
holders and the general public to comprehend and support. Clear and straightforward

policies are more likely to gain public trust, facilitate smoother implementation, and
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encourage broader compliance. Machine learning models can produce highly sophisti-
cated and nuanced outputs. Therefore, there is a risk that the resulting policies may
be seen as too complicated or inaccessible. Further research is needed for simplifying
these data-driven policies without compromising their effectiveness.

* Rate of change: A policy that changes too frequently can create confusion, reduce
compliance, and undermine trust among stakeholders, as constant adjustments may
be perceived as indecisiveness or lack of reliability. Conversely, a policy that remains
static for too long risks becoming outdated and unresponsive to evolving conditions
and emerging data. To strike the right balance, further research is needed to establish
a framework that allows policies to adapt at a pace that reflects the dynamics of the
environment they operate in. This can be achieved by continuously monitoring relevant
data, setting predefined thresholds or triggers for policy evaluation, and incorporating

feedback loops that inform when and how adjustments should be made.

Incorporating expert knowledge alongside data-driven methods is essential to mitigate the
limitations inherent in relying solely on quantitative data for transport policy design and
implementation. Experts bring contextual understanding, interpretative skills, and practical
experience that complement the empirical rigour of data-driven approaches. By integrating
qualitative insights, expert judgement, and nuanced perspectives, policymakers can ensure a
more comprehensive understanding of transport issues, addressing not only the quantifiable
aspects but also the social, cultural, and behavioural dimensions. This combination enhances
the flexibility, relevance, and responsiveness of policies, leading to more effective and
sustainable transport solutions that are better aligned with the diverse needs of communities

and the dynamic nature of urban environments.

7.4 Ethical Considerations

This research complies with ethical guidelines for data collection and analysis. All datasets
used are publicly available, and no personal or sensitive information has been accessed during
the research process.

7.5 Validity, Reliability, Scalability, and Transferability

In this thesis, various methods and techniques have been applied to address validity, reliability,

scalability, and transferability of research findings throughout the research process.
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7.5.1 Validity

The following approaches have been employed to ensure validity:

Expert validation: A key component of the validation process in this research involved the
collaboration with consultants from Arup. This partnership provided a deep pool of domain
knowledge that was invaluable in refining and validating the models developed in Chapters 4,
5, and 6.

In Chapter 5, the machine learning techniques used for policy objective validation in
the air quality case study were thoroughly vetted. The experts from Arup provided critical
feedback on the practical implications of the results obtained from these models. This ensured
that the machine learning results were grounded in practical considerations that are likely to
be effective in the real world.

In Chapter 6, the optimisation framework developed for electric vehicle charging infras-
tructure planning was subjected to the same rigorous review process. The experts provided
insight into realistic constraints, appropriate objectives, and relevant performance indicators
in this domain. Their expertise was instrumental in refining the framework, ensuring that it
aligns with industry best practices and real-world requirements.

The collaboration process across both chapters included the following:

* The findings and results were shared with the consultants.

* Meetings and discussions were conducted to obtain the consultant’s advice and insights.
» This advice was utilised to enhance the practicality and feasibility of the research.

* The improved research was presented back to the consultants for their agreement and
further validation.

By engaging with these experts, the research became more reliable and applicable.
Their insights ensured that the research outcomes were not just theoretically sound but also
practical, thereby increasing the likelihood of acceptance by stakeholders involved in air
quality improvement, electric vehicle charging station deployment, and policymakers.

Validating the Results of Chapters 4-5. In order to validate the results in Chapters 4 and 5,
where machine learning techniques have been applied for policy objective validation on the

air quality case study, the following approaches have been employed:

* Performance metrics: The performance of the classification and LSTM models has
been evaluated using relevant metrics such as precision, recall, F1-score, confusion
matrix and mean squared error. This helps to quantify the accuracy and effectiveness
of the models.
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* Model interpretability: To further validate the results, visualisations and explanations
of the feature importance and LSTM model’s results have been done. This will help to
understand the rationale behind the models’ predictions and the relationships between
the input features and the target variable (NO; concentrations).

Validating the Results of Chapter 6. By employing the following diverse validation meth-
ods, the robustness and reliability of the optimisation framework for electric vehicle charging
infrastructure planning are comprehensively demonstrated. These validation approaches
provide strong evidence of the effectiveness and generalisability of the method, increasing

confidence in the research findings and their potential applicability in real-world situations.

* Comparison with alternative methods: In this validation approach, the performance of
the proposed optimisation solution, which incorporates LSTM and fuzzy logic, has
been compared with a simpler genetic algorithm that does not use these techniques.
By comparing the outcomes, the added value of the approach is demonstrated. The
results showed that the solution provided lower costs and more accurate quantities for
the electric vehicle charging infrastructure, indicating that the optimisation framework

is more effective than the alternative method.

* Sensitivity analysis: Sensitivity analysis is an important validation technique to test the
robustness of an optimisation framework. In this study, sensitivity analysis has been
conducted by altering input parameters, such as the number of electric vehicles and
the types of charging infrastructure. By analysing the impact of these changes on the
outcomes, it is demonstrated that the framework can adapt to different scenarios and
produce meaningful results. This also helps to identify potential limitations and areas

for improvement in the optimisation method.

7.5.2 Reliability

Reliability refers to the consistency and stability of research findings across different contexts
and conditions. In this study, reliability has been addressed by using rigorous and systematic
methodologies, thorough data pre-processing, and employing a diverse set of validation
techniques for Chapters 4, 5 and 6, as detailed in the previous sections. By ensuring the
validity of the models and techniques employed, the reliability of the findings has been

improved.
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7.5.3 Transferability and Scalability

Transferability refers to the extent to which the research findings can be applied to other
contexts, settings, or populations. While the specific datasets and timeframes used in this
study may limit the transferability of the findings, the presented framework and the employed
methodologies can be applied to other datasets and timeframes, allowing for broader appli-
cability in future research. The diverse validation methods used in both Chapters 4 and 5,
including performance metrics, sensitivity analysis, and expert validation, demonstrate the
robustness and transferability of the proposed approaches.

In the Machine Learning literature, recent advances have highlighted the effectiveness of
transfer learning, which is a technique for re-using knowledge learned during data-driven
modelling of a problem to boost performance on the data-driven solution of a related problem
(Weiss et al., 2016). Transfer learning has been used recently for solving various problems in
intelligent transport systems (Baumann et al., 2018; Huang et al., 2021; Unlii, 2021). The
frameworks developed in this thesis can be extended in the context of transfer learning to
answer the research questions in other geographical areas. This will be highly effective when
the data is expensive or difficult to collect in the considered geographical area.

The frameworks and methodologies developed in this thesis are scalable with respect to

the following two aspects:

* The size of the available datasets: The models developed in this thesis using the
available datasets can be computed also for larger datasets with larger number of
physical variables. The required computational resources will increase with respect to

the size of the dataset, but the proposed frameworks will remain applicable.

* The size of the geographical area: The proposed methodologies can be applied to
other larger geographical areas. Note that the EV infrastructure case study utilises an
aggregate model of the energy consumption, which makes the simulations scalable

with respect to the number of EVs the in the network.

Based on the insights gained through the research of this thesis, future research directions
will be provided in the next chapter with the goal of setting an outlook for future use of

data-driven methods in transport systems.






Chapter 8
Outlook on Future Research

This thesis has presented a comprehensive investigation into transport policy objective vali-
dation and the implementation of policy commitments, with a primary focus on quantitative
modelling. The research findings have shed light on the effectiveness of machine learning
techniques for policy objective validation and the advantages of data-driven methodologies
for policy implementation. Through a combination of advanced data analytics, simula-
tion models, and optimisation algorithms, this research has provided valuable insights and
actionable recommendations for decision-makers in the transport sector.

One of the key findings of this research is the effectiveness of quantitative modelling in
validating the objectives of policy interventions. The application of machine learning models,
such as classification and time series models, has demonstrated their ability to predict and
evaluate the impacts of clean air zone interventions and the expansion of electric vehicle
charging infrastructure. By leveraging large and complex datasets, these models have offered
quantitative measures of policy outcomes, enabling a more evidence-based approach to
evaluation of policy interventions and implementation of policy commitments.

Quantitative modelling has proven advantageous in several ways. It enables the analysis
of vast amounts of data, capturing intricate relationships between variables and providing
quantitative indicators of policy effectiveness. The integration of simulation models and multi-
objective optimisation has allowed for the efficient implementation of policy commitments,
balancing multiple objectives and providing optimal solutions.

However, it is important to acknowledge that quantitative modelling should be comple-
mented by qualitative considerations. Qualitative factors, such as stakeholder engagement
and expert opinions, are vital in understanding the social, economic, and political dimensions
of transport policies. The integration of both quantitative and qualitative approaches offers a

comprehensive and holistic understanding of policy challenges and their potential solutions.
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As the field of transport policy continues to evolve, so does the need for advanced,
data-driven techniques for policy evaluation and implementation. The research conducted
in this thesis has opened up several avenues for future research in the field of transport
policy evaluation and commitment implementation. Moving forward, the following research
directions are considered to be influential in integrating data-driven methods with transport

systems.

* The first use case of this thesis focused on the aggregate effect of the policy intervention
on the vehicles entering the zone. It would be interesting to refine this aggregate
effect and study how different modes of transport will be affected by the intervention.
This will allow for a better understanding of the response of the transport users to
the implemented clean air zone, and will provide better insights into applying the

framework of this thesis for validating the objectives of policy interventions.

* The proposed frameworks have focused on utilising machine learning models that do
not include any information from the physical or chemical models of the variables.
The integration of these data-driven frameworks with physics-based models related to

the policy interventions could improve the accuracy and performance of the approach.

* To reduce uncertainty in the outcome of the learned models, these models could be
updated continuously whenever new additional data points become available. For
enabling this continuous model update with real-time data, machine learning models
need to be integrated with digital twin models of the transport systems under study. By
leveraging digital twin models, policymakers can create virtual replicas of transport
systems and simulate policy impacts in real-time. This approach would provide more
accurate and up-to-date insights, supporting adaptive policy decision-making.

* Additional work is needed to further enhance the simulation models of transport
systems by incorporating factors such as demographic and socioeconomic variables.

* Reducing computational effort of analysing and simulating large-scale transport sys-
tems remains a constant challenge in the future. Agent-based modelling is a potential

avenue in building simulation models for large-scale transport systems.

* Further exploration of advanced data analytics techniques can enhance the performance
and predictive capabilities of quantitative models. Deep learning algorithms, ensemble
modelling, reinforcement learning, and other emerging techniques offer opportunities
to improve the accuracy of predictions, capture complex relationships in transport data,

and handle large-scale and high-dimensional datasets. Future research should focus



191

on assessing whether the current data quality and data quantity available in relation to
transport policies are appropriate for such learning methods that may struggle when the
available dataset is limited, and that require a large amount of training data to perform

effectively and generalise well to new unseen examples.

Building on the work of Chapter 6, further research could explore the incorporation of
various data types in transport policy formulation and evaluation. This could involve
investigating the potential benefits and challenges of integrating unconventional data
sources, such as social media data into the transport policy-making process and policy

implementations.

As part of the approach of this thesis, reasonable assumptions were considered on the
aggregate response of the transport system to the policy interventions. Future research
could explore refining these assumptions and considering more granular aspects that
affect the transport policy objectives.

This research underscored the benefits of bridging the gap between theory and practice
in transport policy implementation and their objective validation. Future work should
continue to promote collaboration between researchers and practitioners, aiming to
facilitate the translation of research findings into practical solutions specifically focused
on different stages of data life cycle.

The results of this thesis, while developed with a focus on specific decarbonisation
strategies within the transport sector, have the potential to be applied to other areas,
such as active travel infrastructure investment, through an approach analogous to
transfer learning in machine learning (Huang et al., 2021; Torrey and Shavlik, 2010;
Weiss et al., 2016). Just as transfer learning involves taking a model trained on one
task and adapting it to perform well on a related but distinct task, the frameworks
and methodologies developed in this thesis can be adapted to other decarbonisation

policies.

The principles underlying the identification of relevant datasets, validation of policy
objectives, and optimisation of policy implementation are broadly applicable. However,
similar to how transfer learning requires fine-tuning a model for a new task, applying
these frameworks to different policy areas, such as active travel, would necessitate ad-
justments. These adaptations would address the unique datasets, stakeholder dynamics,

and implementation challenges specific to active travel infrastructure.

In situations where there are no existing equivalent implementations to learn from,

such as when dealing with a radical new policy approach, validating the objectives of
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the policy would rely heavily on simulations, pilot studies, and iterative feedback loops.
The framework would need to incorporate scenario analysis and modelling to predict
potential outcomes, using expert judgement to interpret these results. This approach
allows for the validation of policy objectives in a simulated environment, ensuring that
the policy is robust and aligned with desired outcomes even in uncharted territory. In
the absence of existing models to guide implementation, the optimisation framework
would focus on a flexible, adaptive strategy. This could involve phased rollouts, where
the policy is implemented incrementally, with continuous monitoring and adjustments
based on real-time data and feedback. The framework would employ adaptive manage-
ment principles, allowing policymakers to refine their approach dynamically as new
data and insights become available.

* With the current advances in the development of large language models (LLMs)
such as ChatGPT (Du, 2024), LLMs can parse and analyse vast amounts of existing
policy documents, research papers, and related literature to identify gaps, trends, and
innovative ideas that might not be immediately apparent through traditional methods.
LLMs can assist in generating new policy ideas by creatively combining concepts
from different domains, leading to the development of radical policies that break new
ground. This approach would require develOping an LLM that is trained specifically
on existing policy and technical documents.

The outlook for data-driven methods in validation of transport policy objectives and
their implementation is highly promising, with ongoing advancements and innovations
contributing to transformative changes. These data-driven methods will play a central
role in shaping effective and evidence-based transportation policies. They are expected
to contribute to evidence-based decision making, dynamic policy adjustments, optimising

resource allocation, and achieving environmental and sustainability goals.
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Appendix A

Contact List for the Datasets

The following persons were contacted related to the datasets relevant to the research of this

thesis. The list is in alphabetic order.

1.

2.

10.

11.

12.

13.

Nick Bec, City Modelling Lab Business Lead at Arup

Alastair Boswell, Director Future Mobility at Arup

. Grace Carol, Head of Private EV Charging Infrastructure Policy at DFT

. Gerard Casey, City Modelling Lab at Arup

Alex Finkel, Business Intelligence at Nexus

Rachelle Forsyth-Ward, Strategic Transport Advisor at Transport Northeast

. Patrizia Franco, Technical Lead in Transport and Demand Modelling at Connected

Places Catapult

. Martin Gilmour, Deputy director, Planning, Transport and Housing at DFT

. Louise Guidi, Head of Office and Private Secretary to Chief Scientific Adviser at DFT

Neil Harris, Research Associate at Newcastle University (Urban Observatory)
John Hodgson, Air Quality and Environmental Permitting at Arup

Philip James, Professor at Newcastle University, Director National Urban Observatory

Facility Newcastle

Jennine Jonczyk, Program Manager at Newcastle University (Urban Observatory)
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14. Tristan Joubert, Senior Consultant at Arup

15. Ben Kidd, Research Lead at Arup

16. Philip Meikle, Transport Strategy Director at Transport Northeast
17. Munyaradzki Mutyora, Senior Consultant at Arup

18. Lewis Reed, Intelligent Mobility Engineer at Arup

19. Dominic-AG Taylor, Transport Associate Director at Arup

20. Roger Witte, Principal Transport Modeller at DFT.



Appendix B

Python Code for the Results Reported in
Chapter 4

The results reported in Chapter 4 are computed by developing an extensive code in the Python

programming environment. The code is reported below.

import pandas as pd

import numpy as np

import yellowbrick

from sklearn.model_selection import train_test_split as tts

from sklearn.metrics import accuracy_score , precision_score ,
recall_score , roc_auc_score ,
confusion_matrix , fl_score

from sklearn.svm import SVC ,LinearSVC

import matplotlib.pyplot as plt

from matplotlib.pyplot import figure

figure(figsize=(27, 23), dpi=80)
plt.rc(’font’, size=24)

plt.rc(’axes’, titlesize=28)
plt.rc(’axes’, labelsize=28)
plt.rc(’xtick’, labelsize=28)
plt.rc(’ytick’, labelsize=28)
plt.rc(’legend’, fontsize=24)
plt.rc(’figure’, titlesize=24)
plt.rcParams["figure.figsize"] = (25,19)

plt.rcParams ["font.family"] = "Times New Roman"

plt.rcParams[’axes.facecolor’] = ’white’
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plt.rcParams[’figure.facecolor’] = ’white’
plt.rcParams ["font.weight"] = "bold"

plt.rcParams["axes.labelweight"] = "bold"
plt.rcParams[’axes.titleweight’] = "bold"

50
plt.rcParams[’axes.labelpad’] = 50

plt.rcParams[’axes.titlepad’]

import datetime

from datetime import datetime

from sklearn.preprocessing import MinMaxScaler
from keras.models import Sequential

from keras.layers import Dense, Dropout, LSTM
import tensorflow as tf

from sklearn.tree import DecisionTreeClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.ensemble import GradientBoostingClassifier
import seaborn as sns

from yellowbrick.target import FeatureCorrelation
from sklearn.metrics import ConfusionMatrixDisplay

from sklearn.linear_model import LogisticRegression

def set_tags_no2(labels):
templ=np.array(labels,dtype=’object’)
for i in range(len(labels)):
if labels[i]>200:
templ[i]=’Very unhealthy’
elif labels[i]<=200 and labels[i]>150:
templ [i]=’Unhealthy’
elif labels[i]<=150 and labels[i]>100:
templ[i]=’Unhealthy for sensitive group’
elif labels[i]<=100 and labels[i]>50:
templ [i]=’Moderate’
else:
templ[i]=’Good’

return templ

def parse(x):
return datetime.strptime(x, ’%Y %m %d %H?)
def to_integer (dt_time):
return 10000*dt_time.year + 100*dt_time.month + dt_time.day

def series_to_supervised(data, n_in=1, n_out=1, dropnan=True):
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n_vars = 1 if type(data) is list else data.shapel[1]
df = pd.DataFrame (data)

cols, names = 1list(), list()
# input sequence (t-n, ... t-1)
for i in range(mn_in, 0, -1):

cols.append(df.shift (i))
names += [(P’var%d(t-%d)’ % (j+1, i)) for j in range(n_vars)]
# forecast sequence (t, t+1, ... t+n)
for i in range(0, n_out):
cols.append(df.shift(-1i))
if 1 == 0:
names += [(’var’d(t)’ % (j+1)) for j in range(n_vars)]
else:
names += [(’var’/d(t+%d)’ % (j+1, 1)) for j in range(n_vars)]
# put it all together
agg = pd.concat(cols, axis=1)
agg.columns = names
# drop rows with NalN values
if dropnan:
agg.dropna(inplace=True)

return agg

def get_score_after_permutation(model, X, y, curr_feat):

""" return the score of model when curr_feat is permuted """

X_permuted = X.copy()

col_idx = list(X.columns).index(curr_feat)

# permute one column

X_permuted.iloc[:, col_idx] = np.random.permutation (

X_permuted [curr_feat].values)

permuted_score = model.score(X_permuted, y)

return permuted_score

def get_feature_importance(model, X, v, curr_feat):

""" compare the score when curr_feat is permuted """

baseline_score_train = model.score(X, y)
permuted_score_train = get_score_after_permutation(model, X, vy,

curr_feat)

# feature importance is the difference between the two scores
feature_importance = baseline_score_train - permuted_score_train

return feature_importance
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def permutation_importance(model, X, y, n_repeats=10):

"""Calculate importance score for each feature."""

importances = []
for curr_feat in X.columns:
list_feature_importance = []
for n_round in range(n_repeats):
list_feature_importance.append(

get_feature_importance (model, X, y, curr_feat))
importances.append(list_feature_importance)

return {’importances_mean’: np.mean(importances, axis=1),
’importances_std’: np.std(importances, axis=1),

’importances’: importances}

def plot_importantes_features(perm_importance_result, feat_name):

""" bar plot the feature importance """
fig, ax = plt.subplots(figsize=(10,20))

indices = perm_importance_result[’importances_mean’].argsort ()
y=perm_importance_result[’importances_mean’] [indices]
plt.barh(range(len(indices)),
v
xerr=perm_importance_result[’importances_std’] [indices],

color=’blue’)

ax.set_yticks(range(len(indices)))
_ = ax.set_yticklabels(feat_name[indices])
for i, v in enumerate(y):
ax.text (0, i, str(round(v, 2)), color=’black’, fontweight=’bold
?)
plt.legend )

def correlation(ino,oto):

X, y = ino, oto

# Create a 1list of the feature names

features = np.array(X.columns.tolist())

# Instantiate the visualizer

visualizer = FeatureCorrelation(labels=features)
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visualizer.fit(X, y) # Fit the data to the visualizer

visualizer.show ()

def confplt(classifier ,X_test,y_test,class_names):

titles_options = [
("Confusion matrix, without normalization", None),
("Normalised confusion matrix", "true"),

]

for title, normalize in titles_options:

disp = ConfusionMatrixDisplay.from_estimator (
classifier,
X_test,
y_test,
display_labels=class_names,
cmap=plt.cm.Blues,
normalize=normalize,

)

olaf=""

if str(type(classifier).__name__)=="LGBMClassifier":

olaf="LGBM Classifier"

elif str(type(classifier).__name__)=="DecisionTreeClassifier":
olaf="DT Classifier"

elif str(type(classifier).__name__)=="KNeighborsClassifier":
olaf="KNN Classifier"

else:

0laf="GBDT Classifier"
disp.ax_.set_title(title+" for "+olaf)
plt.tick_params (axis=u’both’, which=u’both’,length=0)
plt.grid(b=None)

"""#data processing"""

DF2018=pd.read_csv(’mix2018.csv’)
DF2018.reset_index (drop=True, inplace=True)

tf=DF2018[’Traffic Flow’].values
twmv=np.round (tf* 0.0063)

cat=np.round (tf*0.8)

bac=np.round (tf*0.0124)

lgvs=np.round (tf*0.1813)

DF2018[’two wheeled motor vehicles’]=twmv
DF2018[’cars and taxis’]=cat
DF2018[’buses and coaches’]=bac
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DF2018[’1lgvs’]=1gvs

labels2018=DF2018[’N02’]

templ2018=set_tags_no2(labels2018)

DF2018 .NO2=templ2018

trainx18,testx18,trainyl18,testy18=tts(DF2018.drop(’N02°’, axis=1),
DF2018[°N02’] ,test_size=0.30,
random_state=300)

DF2018.info ()
DF2018.describe (include = [object])

"m"hgclassifiers
LGBMClassifier

mnnn

Xs_of _train=trainx18.values
Ys=trainyl8.values
Ys_of_train=np.zeros(Ys.shape)
for i in range(len(Ys)):
if(Ys[i]==?Good?):
Ys_of_train[i]=0
elif (Ys[i]l==’>Moderate’):
Ys_of_train[i]=1
elif (Ys[i]==’Unhealthy for sensitive group?’):
Ys_of _train[i]=2
elif (Ys[i]==’Unhealthy’):
Ys_of _train[i]=3
elif (Ys[il==’Very unhealthy’):
Ys_of _train[i]=4

logli8 = LGBMClassifier(random_state=1234, num_leaves=31,
learning_rate=0.05,
feature_fraction=0.8,
bagging_fraction=0.8, max_depth=-1
)

logl18.fit(Xs_of_train, Ys_of_train)

logl8_train_res = logl8.predict(Xs_of_train)

com_acc_train = accuracy_score(logl8_train_res, Ys_of_train)

print (f’Training accuracy : {com_acc_train*x100}%’)
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""hgclassifiers

DecisionTree

nnn

Xs_of_train=trainx18.values
Ys=trainyl8.values
Ys_of_train=np.zeros(Y¥Ys.shape)
for i in range(len(Ys)):
if (Ys[i]==’Good’):
Ys_of_train[i]=0
elif (Ys[i]l==’>Moderate’):
Ys_of _train[i]=1
elif (Ys[i]==’Unhealthy for sensitive group?’):
Ys_of _train[i]=2
elif (Ys[i]==’Unhealthy’):
Ys_of _train[i]=3
elif (Ys[il==’Very unhealthy’):
Ys_of _train[i]=4

DT18 = DecisionTreeClassifier (max_depth=10, min_samples_split=2,
min_samples_leaf=1, random_state=1234)
DT18.fit(Xs_of_train, Ys_of_train)

DT18_train_res = DT18.predict(Xs_of_train)
dtacc_trainc = accuracy_score(DT18_train_res, Ys_of_train)

print (f’Training accuracy : {dtacc_trainc*1003}7%°’)

"nihrgclassifiers

KNeighbors(Classifier

mnn

Xs_of_train=trainx18.values
Ys=trainyl8.values
Ys_of_train=np.zeros(Ys.shape)
for i in range(len(Ys)):
if (¥Ys[i]=="Good’):
Ys_of _train[i]l=0
elif (Ys[i]==’>Moderate’):
Ys_of_train[i]=1
elif (Ys[i]==’Unhealthy for sensitive group?’):
Ys_of_train[i]=2
elif (Ys[i]==’Unhealthy’):
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Ys_of_train[i]=3
elif (Ys[i]==’Very unhealthy’):
Ys_of_train[i]=4

KN18=KNeighborsClassifier(n_neighbors=5)
KN18.fit (Xs_of_train, Ys_of_train)

KN18_train_res = KN18.predict(Xs_of_train)
knacc_trainc = accuracy_score (KN18_train_res, Ys_of_train)

print (f’Training accuracy : {knacc_trainc*100}%’)

"mihgclassifiers

GradientBoostingClassifier

mnnn

Xs_of_train=trainx18.values
Ys=trainyl8.values
Ys_of _train=np.zeros(Ys.shape)
for i in range(len(Ys)):
if(Y¥Ys[i]==’Good’):
Ys_of _train[i]=0
elif (Ys[i]==’>Moderate’):
Ys_of_train[i]=1
elif (Ys[i]==’Unhealthy for sensitive group’):
Ys_of _train[i]=2
elif (Ys[i]==’Unhealthy’):
Ys_of_train[i]=3
elif (Ys[i]==’Very unhealthy’):
Ys_of_train[il=4

BRT18 = GradientBoostingClassifier (max_depth=10, learning_rate=0.1,

n_estimators=100, random_state=1234)
BRT18.fit (Xs_of_train, Ys_of_train)

BRT18_train_res = BRT18.predict(Xs_of_train)
brtacc_trainc = accuracy_score(BRT18_train_res, Ys_of_train)

print (f’Training accuracy : {brtacc_trainc*x100}%’)

mnnn

correlation"""

Ys=DF2018["N02"] .values
Ys_of_train=np.zeros_like(Ys)

for i in range(len(Ys)):
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if (Ys[i]l==’Good’):
Ys_of_train[il=0
elif (Ys[i]==’Moderate’):
Ys_of_train[il=1
elif (Ys[i]==’Unhealthy for sensitive group?’):
Ys_of _train[i]l=2
elif (Ys[i]==’Unhealthy’):
Ys_of_train[i]l=3
elif (Ys[i]==’Very unhealthy’):
Ys_of _train[i]l=4

correlation(DF2018.drop(’N0O2°’, axis=1),Ys_of_train)

nn H#results nnn

Xs_of_train=trainx18.values
Ys=trainyl8.values
Ys_of_train=np.zeros(Ys.shape)
for i in range(len(Ys)):
if(Ys[il==’Good’):
Ys_of _train[i]=0
elif (Ys[i]==’Moderate’):
Ys_of_train[i]=1
elif (Ys[i]==’>Unhealthy for sensitive group?’):
Ys_of _train[i]=2
elif (Ys[i]==’Unhealthy’):
Ys_of _train[i]=3
elif (Ys[il==’Very unhealthy’):
Ys_of _train[i]l=4

Xs_of_test=testx18.values
Ys=testyl8.values
y_test=np.zeros(Ys.shape)
for i in range(len(Ys)):
if (Ys[i]==’Good’):
y_test[i]=0
elif (Ys[i]==’Moderate’):
y_test[il=1
elif (Ys[i]==’Unhealthy for sensitive group?’):
y_test[il=2
elif (Ys[i]==’Unhealthy’):
y_test[i]=3
elif (Ys[i]==’Very unhealthy’):
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y_test[il=4

#LGBm

y_pred = logl8.predict(Xs_of_test)

print ("accuracy :", accuracy_score(y_pred, y_test))

print ("precision :",precision_score(y_test, y_pred, average=DNone))
print("recall:",recall_score(y_test, y_pred, average=None))

lgbml18_res=1[]
lgbml18_res.append(precision_score(y_test, y_pred, average=DNone))
lgbm18_res.append(recall_score(y_test, y_pred, average=None))
lgbm18_res.append(fl_score(y_test, y_pred, average=None))
lgbm18_res.append(accuracy_score(y_pred, y_test))
import warnings
warnings.filterwarnings (’ignore’)
perm_importance_result_train = permutation_importance (

logl18, trainx18, Ys_of_train, n_repeats=15)
class_names=/["Q", "1", "2" 3" n4qn]

confplt(logl8,Xs_of_test,y_test,class_names)

plot_importantes_features (perm_importance_result_train, trainxl8.

columns)

y_pred = DT18.predict(Xs_of_test)

print ("accuracy :", accuracy_score(y_pred, y_test))
print ("precision :",precision_score(y_test, y_pred, average=None))
print("recall:",recall_score(y_test, y_pred, average=None))

DT18 _res=[]

DT18_res.append(precision_score(y_test, y_pred, average=None))
DT18_res.append(recall_score(y_test, y_pred, average=None))
DT18_res.append(fl_score(y_test, y_pred, average=DNone))
DT18_res.append (accuracy_score(y_pred, y_test))

import warnings

warnings.filterwarnings (’ignore’)

perm_importance_result_train = permutation_importance (

DT18, trainx18, Ys_of_train, n_repeats=15)

ClaSS IlameS=[”O" Illll II2II IISII II4I|]
confplt (DT18,Xs_of_test,y_test,class_names)
plot_importantes_features (perm_importance_result_train, trainxl8.

columns)
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#KN
y_pred = KN18.predict(Xs_of_test)

print ("accuracy :", accuracy_score(y_pred, y_test))
print ("precision :",precision_score(y_test, y_pred, average=DNone))
print("recall:",recall_score(y_test, y_pred, average=None))

KN18_res=1[]
KN18_res.append(precision_score(y_test, y_pred, average=None))
KN18_res.append(recall_score(y_test, y_pred, average=None))
KN18_res.append (fl_score(y_test, y_pred, average=None))
KN18_res.append (accuracy_score(y_pred, y_test))
import warnings
warnings.filterwarnings (’ignore’)
perm_importance_result_train = permutation_importance (

KN18, trainx18, Ys_of_train, n_repeats=15)

ClaSS names:[lloll Illll II2II IISII II4I|:]
confplt (KN18,Xs_of_test ,y_test,class_names)
plot_importantes_features(perm_importance_result_train, trainx18.

columns)

#BRT18
y_pred = BRT18.predict(Xs_of_test)

print ("accuracy :", accuracy_score(y_pred, y_test))
print ("precision :",precision_score(y_test, y_pred, average=None))
print("recall:",recall_score(y_test, y_pred, average=None))

BRT18_res=1[]
BRT18_res.append(precision_score(y_test, y_pred, average=None))
BRT18_res.append(recall_score(y_test, y_pred, average=None))
BRT18_res.append (fl_score(y_test, y_pred, average=None))
BRT18_res.append(accuracy_score(y_pred, y_test))
import warnings
warnings.filterwarnings (’ignore’)
perm_importance_result_train = permutation_importance (

BRT18, trainx18, Ys_of_train, n_repeats=15)

ClaSS names:[lloll Illll ll2ll IISII Il4l|:]

confplt (BRT18 ,Xs_of_test,y_test,class_names)

plot_importantes_features (perm_importance_result_train, trainxl8.
columns)
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xaxis = [2,4,6,8]

xaxis_dec2 = [x-0.60 for x in xaxis]
xaxis_dec = [x-0.30 for x in xaxis]
xaxis_zer = [x for x in xaxis]
xaxis_inc = [x+0.30 for x in xaxis]
xaxis_inc2 = [x+0.60 for x in xaxis]
LABELS = ["LGBM", "DT", "GBDT", ’KNN?’]

recall_lgbm=1gbml18_res[1]
recall _DT=DT18_res[1]
recall_BRT=BRT18_res|[1]
recall_KNN=KN18_res[1]

recO
recl
rec?2
rec3

recéd

ax

= [recall_lgbm[0] ,recall _DT[0],recall BRT[O],recall _KNN[O0]]
= [recall_lgbm[1],recall _DT[1],recall _BRT[1],recall _KNN[1]]
= [recall_lgbm[2],recall _DT[2],recall _BRT[2],recall _KNN[2]]
= [recall_lgbm[3],recall_DT[3],recall _BRT[3],recall_KNN[3]]
= [recall_lgbm[4],recall _DT[4] ,recall _BRT[4],recall _KNN[4]]

plt.subplot(111)

ax.bar (xaxis_dec2, recO, width=0.15,color=’green’,align=’center’,

label = ’Good’)

ax.bar(xaxis_dec, recl, width=0.15,color=’orange’,align=’center’,

ax.b

ax.b

ax.b

ax.s
plt.
plt.

plt.
plt.
plt

xaxi
xaxi
xaxi

xaxi

label = ’Moderate’)

ar (xaxis_zer, rec2, width=0.15,color=’blue’,align=’center’, label
= ’Unhealthy for sensitive group’
)

ar (xaxis_inc, rec3, width=0.15,color=’purple’,align=’center’,
label = ’Unhealthy’)

ar (xaxis_inc2, rec4, width=0.15,color=’red’,align=’center’, label

= ’Very unhealthy?’)

et_ylim((0, 1))

xticks (xaxis, LABELS, fontsize=35)

legend (loc=’upper center’, bbox_to_anchor=(0.5, -0.05),
fancybox=True, shadow=True, ncol=5)

ylabel (’Recall’,fontsize=50,fontweight="bold’)

title("Recall score",fontsize:50,fontweight:’bold’)

.show ()

s = [2,4,6,8]

s_dec2 = [x-0.60 for x in xaxis]
s_dec = [x-0.30 for x in xaxis]
s_zer = [x for x in xaxis]
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xaxis_inc = [x+0.30 for x in =xaxis]
xaxis_inc2 = [x+0.60 for x in xaxis]
LABELS = ["LGBM", "DT", "GBDT", ’KNN’]

f1_lgbm=1gbml8_res[2]

£f1_DT

=DT18_res [2]

f1_BRT=BRT18_res[2]
f1_KNN=KN18_res[2]

recO
recl
rec?2
rec3

recéd

ax

= [f1_1gbm[0],£f1_DT[0],£f1_BRT[0],f1_KNN[O]]
= [f1_1gbm([1],£f1_DT[1],f1_BRT[1],f1_KNN[1]]
= [f1_1gbm[2],f1_DT[2],f1_BRT[2],f1_KNN[2]]
= [f1_1gbm[3],f1_DT[3],£f1_BRT[3],f1_KNN[3]]
= [f1_1gbm([4],f1_DT[4],f1_BRT[4],f1_KNN[4]]

plt.subplot(111)

ax.bar (xaxis_dec2, recO, width=0.15,color=’green’,align=’center’,

label = ’Good?)

ax.bar (xaxis_dec, recl, width=0.15,color=’orange’,align=’center’,
label = ’Moderate?)

ax.bar (xaxis_zer, rec2, width=0.15,color=’blue’,align=’center’, label

= ’Unhealthy for sensitive group’

)

ax.bar(xaxis_inc, rec3, width=0.15,color=’purple’,align=’center’,
label = ’Unhealthy’)

ax.bar (xaxis_inc2, recd4d, width=0.15,color=’red’,align=’center’, label

ax.se

= ’Very unhealthy?’)

t_ylim((0, 1))

plt.xticks (xaxis, LABELS,fontsize=40)

plt.1

egend (loc=’upper center’, bbox_to_anchor=(0.5, -0.05),

fancybox=True, shadow=True, ncol=5,fontsize=30)

plt.ylabel (’F1’,fontsize=50,fontweight=’"bold’)

plt.title("F1 score",fontsize=50,fontweight="bold’)
plt.show ()

xaxis = [2,4,6,8]

xaxis_dec2 = [x-0.60 for x in xaxis]

xaxis_dec = [x-0.30 for x in =xaxis]

xaxis_zer = [x for x in xaxis]

xaxis_inc = [x+0.30 for x in xaxis]

xaxis_inc2 = [x+0.60 for x in xaxis]

LABELS = ["LGBM", "DT", "GBDT", ’KNN?’]

preci

sion_lgbm=1gbm18_res [0]



230 Python Code for the Results Reported in Chapter 4

precision_DT=DT18_res [0]

precision_BRT=BRT18_res [0]

precision_KNN=KN18_res [0]

recO = [precision_lgbm[O],precision_DT[O0],precision_BRT[O],
precision_KNN[O]]

recl = [precision_lgbm([1],precision_DT[1],precision_BRT[1],
precision_KNN[1]]

rec2 = [precision_lgbm[2],precision_DT[2],precision_BRT[2],
precision_KNN[2]]

rec3 = [precision_lgbm[3],precision_DT[3],precision_BRT[3],
precision_KNN[3]]

rec4 = [precision_lgbm[4],precision_DT[4],precision_BRT[4],
precision_KNN[4]]

ax = plt.subplot(111)

ax.bar(xaxis_dec2, recO, width=0.15,color=’green’,align=’center’,

label = ’Good?)

ax.bar (xaxis_dec, recl, width=0.15,color=’orange’,align=’center’,
label = ’Moderate’)

ax.bar (xaxis_zer, rec2, width=0.15,color=’blue’,align=’center’, label

= ’Unhealthy for sensitive group’

)
ax.bar (xaxis_inc, rec3, width=0.15,color=’purple’,align=’center’,
label = ’Unhealthy’)
ax.bar(xaxis_inc2, recd4d, width=0.15,color=’red’,align=’center’, label

= ’Very unhealthy’)

ax.set_ylim((0, 1))

plt.xticks (xaxis, LABELS, fontsize=30)

plt.legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.05),
fancybox=True, shadow=True, ncol=5)

plt.ylabel (’Precision’, fontsize=50,fontweight=’bold’)

plt.title("Precision score", fontsize=80,fontweight=’bold’)

plt.show ()

xaxis = [1,2,3,4]

xaxis_dec = [x for x in xaxis]
xaxis_inc = [x for x in xaxis]
LABELS = ["LGBM", "DT", "GBDT", ’KNN?’]

acc_lgbm=1gbml8_res [3]
acc_DT=DT18_res [3]
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acc_BRT=BRT18_res [3]
acc_KNN=KN18_res [3]
rec0 = [acc_lgbm,acc_DT,acc_BRT,acc_KNN]

ax = plt.subplot(111)
ax.bar (xaxis_dec, recO, width=0.2,color=[’green’,’orange’,’blue’,’

pink’] ,align=’center’)

ax.set_ylim ((0, 1))

plt.xticks(xaxis, LABELS, fontsize=30)
plt.xlabel(’Methods’, fontsize=50,fontweight=’bold’)
plt.ylabel (’Accuracy’, fontsize=50,fontweight=’bold’)
plt.title("Accuracy score", fontsize=50,fontweight=’bold’)
plt.show ()






Appendix C

Python Code for the Results Reported in
Chapter 5

The results reported in Chapter 5 are computed by developing an extensive code in the Python

programming environment. The code is reported below.

DF2018=pd.read_csv(’mix2018.csv’)
DF2018.reset_index (drop=True, inplace=True)

tf=DF2018[’Traffic Flow’].values

twmv=tf*x 0.0063

cat=tf*0.8

bac=tf*x0.0124

lgvs=tf*0.1813

DF2018[’two wheeled motor vehicles’]=twmv
DF2018[’cars and taxis’]=cat
DF2018[’buses and coaches’]=bac
DF2018[’1lgvs’]=1gvs

DF2018=DF2018 .drop(’Traffic Flow’,axis=1)
DF2018=DF2018.drop(’Congestion’,axis=1)

DF2018.drop(’hour’,axis=1,inplace=True)
DF2018.reset_index (drop=True, inplace=True)

labels=DF2018[’N02’] .values
templ=set_tags_no2(labels)
DF2018 .NO2=templ
DF2018.fillna (0, inplace=True)
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uncoded_Y=DF2018.N02.values
Coded_Y=np.zeros (uncoded_Y.shape)
for i in range(len(uncoded_Y)):
if (uncoded_Y[i]==’Good’):
Coded_Y[i]=0
elif (uncoded_Y[i]==’Moderate’):
Coded_Y[il=1
elif (uncoded_Y[i]==’Unhealthy for sensitive group?’):
Coded_Y[i]=2
elif (uncoded_Y[i]==’Unhealthy’):
Coded_Y[i]=3
elif (uncoded_Y[i]==’Very unhealthy’):
Coded_Y[i]=4
DF2018 .N02=Coded_Y

DF18=DF2018
date18=1[]
for i in range(len(DF18)):
datel8.append (i+1)
DF18.drop([’year’,’month’,’day’] ,axis=1,inplace=True)
DF18[’date_by_day’]l=datel8

DF18.index = DF18[’date_by_day’]
DF18=DF18.sort_index (ascending=True, axis=0)
plt.figure(figsize=(16,8))

plt.ylim(ymin=0, ymax=4)
plt.plot(DF18[’N02’], label=’N02 level?’)

trainx18,testx18,trainyl8,testyl18=tts(DF18.drop(’N02’, axis=1),DF18[’
NO02’] ,test_size=0.30,random_state=
300)

#process 2018 data for Istm

scaler = MinMaxScaler (feature_range=(0, 1))
valuesl18 = scaler.fit_transform(trainx18)
trainx18 = series_to_supervised(values18, 1, 1)
tsvaluesl18 = scaler.fit_transform(testx18)
testx18 = series_to_supervised(tsvaluesl18, 1, 1)
testlabl8=testyl8
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trainlabl18=trainyl8

trainx18=trainx18.values

testx18=testx18.values

trainlabl18=trainlab18[1:]

testlabl18=testlabl18[1:]

trainx18 = trainx18.reshape((trainx18.shape[0], 1, trainx18.shapel[1l])
)

testx18 = testxl8.reshape((testx18.shapel[0], 1, testx18.shape[1l]))

print (trainx18.shape, trainlabl18.shape, testxl18.shape, testlabl8.
shape)

nn H#model nun
#2018

modell8 = Sequential ()
model18.add (LSTM (200, input_shape=(trainx18.shapel[l], trainxl18.shapel

215))
modell8.add(Dense (1))
modell8.compile(loss="mean_squared_error", optimizer=’sgd’)
# fit network
#,

historyl8pre = modell8.fit(trainx18, trainlabl8, epochs=500,
validation_data=(testx18,
testlabl18), batch_size=1, verbose=
2, shuffle=True)

# plot history

plt.plot(historyl8pre.history[’loss’], label=’Train’)

plt.plot(historyl8pre.history[’val_loss’], label=’Test’)

plt.xlabel (’Epoch?)

plt.xlim(xmin=0)

plt.ylabel (’MSE’)

plt.legend ()

plt.show ()

from sklearn.metrics import mean_squared_error
yhat18 = modell8.predict(testx18)

print (yhat18.tolist ())

testlabl8_new=testlabl18.values.tolist ()
print (testlabl18_new)

rmsel8 = np.sqrt(mean_squared_error (testlabl8, yhatl18))
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total_rms = np.sqrt(mean_squared_error(testlabl8, np.zeros(len(
testlabl18_new))))
total_rms2 = np.sqrt(mean_squared_error (yhatl8, np.zeros(len(

testlabl18_new))))

rmsel8per = 100*rmsel8/total_rms

print (’Test RMSE for 2018: 7.3f’ 7 rmsel8)

print (’Test root mean square for 2018: %.3f’ 7 total_rms)

print (’Prediction root mean square for 2018: 7.3f’ 7, total_rms2)
print (’Test RMSE percent for 2018: 7 .3f’ 7 rmsel8per)

predict_these=[2,8,10,20,30,40,50,60,70]
ys=modell18.predict (testx18[predict_these,:,:])

for i in range(len(predict_these)):
print (’predicted ’,np.round(ys[il),’for day’,predict_thesel[il],’of
2018. the true value is?’,

testlabl18_new[predict_these[i]])

DF18=pd.read_csv(’mix2018.csv’)
monthvals=DF18.month.unique ()

tf=DF18[’Traffic Flow’].values
twmv=np.round (tf*x 0.0063)
cat=np.round (tf*0.8)
bac=np.round (t£*0.0124)
lgvs=np.round(tf*0.1813)
DF18[’two wheeled motor vehicles’]=twnmv
DF18[’cars and taxis’]=cat
DF18[’buses and coaches’]=bac
DF18([’1lgvs’]=1gvs
DF18.drop(’Traffic Flow’,axis=1)
labels2018=DF18[’N02’]
templ2018=set_tags_no2(labels2018)
DF18.NO2=templ2018
Ys=DF18 ["N0O2"] .values
Ys_of_train=np.zeros_like(Ys)
for i in range(len(Ys)):
if(Y¥Ys[il==’Good?):
Ys_of_train[i]=0
elif (Ys[i]==’Moderate’):
Ys_of _train[i]=1

elif (Ys[i]l==’Unhealthy for sensitive group’):
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Ys_of_train[i]=2

elif (Ys[i]==’Unhealthy’):
Ys_of_train[i]=3

elif (Ys[i]==’Very unhealthy’):
Ys_of_train[i]=4

DF18.N02=Ys_of_train

print (monthvals)

for j in monthvals:

tempdf=DF18.1loc [DF18[’month’] == j]
trainx18=tempdf .drop(’N02°’, axis=1)

scaler = MinMaxScaler (feature_range=(0, 1))
values18 = scaler.fit_transform(trainxi18)
trainx18 = series_to_supervised(values18, 1, 1)

trainlabl18=tempdf [’N0O2’] .values

trainx18=trainx18.values
trainlabl8=trainlab18[:48]
trainx18 = trainx18.reshape((trainx18.shape[0], 1, trainx18.shapell

1)
trainx18 =trainx18[:,:,:48]
yhats = modell8.predict(trainx18)
scaler = MinMaxScaler (feature_range=(0, 4))
yhats = scaler.fit_transform(yhats)

plt.plot(yhats)

plt.yticks([0,1,2,3,4])

plt.xlabel(’Time and values serialized’)

plt.ylabel (’NO2 Labels prediction?’)

plt.title(’Prediction by month ’+str(j)+’th before intervention?’)
# 1st 2nd 3rd 4th 5th 6th 7th

plt.xlim(xmin=0)

plt.ylim(ymin=0, ymax=4)

plt.legend ()

plt.show ()

nn H#Policy numun

DF18=pd.read_csv(’mix2018.csv’)

DF18.reset_index (drop=True, inplace=True)
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tf=DF18[’Traffic Flow’].values
twmv=np.round(tf* 0.0063)

cat=np.round (tf*0.8)

bac=np.round (tf*0.0124)

lgvs=np.round (tf*0.1813)

DF18[’two wheeled motor vehicles’]=twmv
DF18[’cars and taxis’]=cat

DF18[’buses and coaches’]=bac
DF18[’1lgvs’]=1gvs

DF18=DF18.drop(’Traffic Flow’,axis=1)
DF18=DF18.drop(’Congestion’,axis=1)

DF18.drop(’hour’,axis=1,inplace=True)

DF18.reset_index (drop=True, inplace=True)

# 18

twmv18=DF18["two wheeled motor vehicles"].values
twmv18=np.round (twmv1i8x*0.8)
cat18=DF18["cars and taxis"].values
catl8=np.round(catl18x*0.8)
bac18=DF18["buses and coaches"].values
bac18=np.round(bac18*0.9)
lgvs18=DF18(["1gvs"] .values
lgvs18=np.round (lgvs18*0.8)
col18=DF18["C0"].values

col8=co18-18

pm2518=DF18 ["PM2_5"] .values
pm2518=-pm2518 -16
par18=DF18["Particle Count"].values
parl8=parl8 -10

pm118=DF18 ["PM1"] .values
pml118=pm118 -10

pm1018=DF18 ["PM10"] .values
pm1018=pm1018 -21

pm418=DF18["PM 4"] .values
pm418=pm418 -23

0318=DF18["03"] .values

0318=0318 -29

nol8=DF18["NO"] .values

nol8=nol8 -18
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nox18=DF18["NOx"] .values
nox18=nox18 -24
no218=DF18["N02"] .values
no218=no0218 -25

DF18["two wheeled motor vehicles"]=twmvi18

DF18["cars and taxis"]=cat18
DF18["buses and coaches"]=bacl8
DF18["1lgvs"]=1gvs18
DF18["C0"]=co18
DF18["PM2_5"]=pm2518
DF18["Particle Count"]=paril8
DF18["PM1"]=pm118
DF18["PM10"]=pm1018

DF18["PM 4"]=pm418
DF18["03"]=0318
DF18["NO"]=no18
DF18["NOx"]=nox18
DF18["N02"]=no218

labels18=DF18[’N02’].values
templl8=set_tags_no2(labelsl8)
DF18.NO2=templ18
DF18.fillna (0, inplace=True)

uncoded_Y=DF18.N02.values
Coded_Y=np.zeros (uncoded_Y.shape)
for i in range(len(uncoded_Y)):
if (uncoded_Y[i]==’Good’):
Coded_Y[i]=0
elif (uncoded_Y[i]==’Moderate’):
Coded_Y[il=1

elif (uncoded_Y[i]==’Unhealthy for sensitive group’):

Coded_Y[il=2
elif (uncoded_Y[i]==’Unhealthy’):
Coded_Y[i]l=3

elif (uncoded_Y[i]==’Very unhealthy’):

Coded_Y[i]l=4
DF18.N02=Coded_Y

Af18=DF18.N02.values
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trainx18,testx18 ,trainyl18,testyl18=tts(DF18.drop(’N02’, axis=1),DF18[’
NO02’] ,test_size=0.30,random_state=

300)
scaler = MinMaxScaler (feature_range=(0, 1))
valuesl18 = scaler.fit_transform(trainx18)
trainx18 = series_to_supervised(values18, 1, 1)
tsvalues18 = scaler.fit_transform(testx18)
testx18 = series_to_supervised(tsvaluesl18, 1, 1)

testlabl8=testyl8
trainlabl18=trainyl8

trainx18=trainx18.values

testx18=testx18.values

trainlabl8=trainlab18[1:]

testlabl8=testlab18([1:]

trainx18 = trainx18.reshape((trainx18.shape[0], 1, trainx18.shapel[1l])
)

testxl18 = testxl8.reshape((testx18.shape[0], 1, testx18.shape[1l]))

print (trainx18.shape, trainlabl18.shape, testxl18.shape, testlabl8.
shape)

DF18.columns

DF18

DF18.columns

DF18p=DF18
DF18p.drop([’year’,’month’,’day’],inplace=True ,axis=1)

exclude = [’NOx’, ’Brood’]

DF18["two wheeled motor vehicles"] = DF18["two wheeled motor vehicles
"] + 30

DF18["buses and coaches"] = DF18["buses and coaches"] + 0.89

DF18p = DF18p.loc[:, DF18p.columns.difference (exclude)]

DF18p.hist(figsize=(26,26), layout=(7,4), color = ’green’)
plt.xticks (fontsize=40)
font = {’family’ : ’normal’,

’weight’ : ’bold’,



241

’size’ : 40}
plt.rc(’font’, #*xfont)
plt.subplots_adjust (left=4, bottom=4, right=5, top=5)
plt.x1lim(xmin=0)
plt.show ()

# #print quartile plot for outlier detection

DF18p.plot(kind=’box’, subplots=True, figsize=(26,26), layout=(8,4),
sharex=False, sharey=False, fontsize=(18), color=’red?’)

plt.subplots_adjust (left=4, bottom=4, right=5, top=5)

plt.show ()

#2018
modell8a = Sequential ()
modell8a.add (LSTM (200, input_shape=(trainx18.shape[1], trainx18.shape

[21)))
modell8a.add (Dense (1))
modell8a.compile(loss=’mean_squared_error’, optimizer=’sgd’)
# fit network
#,

historyl8pos = modell8a.fit(trainx18, trainlabl8, epochs=500,
validation_data=(testx18,
testlabl18), batch_size=1, verbose=
2, shuffle=True)

# plot history

plt.plot(historyl8pos.history[’loss’], label=’Train’)

plt.plot(historyl8pos.history[’val_loss’], label=’Test’)

plt.xlabel (’Epoch?)

plt.ylabel (’MSE’)

plt.xlim(xmin=0)

plt.legend ()

plt.show ()

from sklearn.metrics import mean_squared_error
yhat18af = modell8a.predict(testx18)

testlabl18_new=testlabl18.values.tolist ()
print (testlabl8_new)

rmsel8 = np.sqrt(mean_squared_error (testlabl18, yhati18af))
rmsel8per = 100*rmsel8/np.sqrt(np.sum(testlabl8**2))
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print (’Test RMSE for 2018: 7.3f’ 7 rmsel8)
print (’Test RMSE percent for 2018: 7 .3f’ 7 rmsel8per)

predict_these=[2,8,10,20,30,40,50,60,70]
ys=modell8a.predict(testx18[predict_these,:,:])

print ("\n")
for i in range(len(predict_these)):

print (’predicted ’,np.round(ys[i]),’for day’,predict_thesel[i])

plt.plot(historyl8pre.history[’val_loss’], label=’Loss before policy’
,color= ’firebrick’,linewidth=5)

plt.plot(historyl8pos.history[’val_loss’], label=’Loss after policy’,
color= ’darkcyan’,linewidth=5)

plt.xlabel (’Epoch’,fontsize=40, fontweight=’bold’)

plt.ylabel (’MSE’,fontsize=40, fontweight=’bold’)

plt.ylim(ymin=0, ymax=2.5)

plt.xlim(xmin=0, xmax=280)

plt.legend(fontsize=40)

plt.show ()

DF18=pd.read_csv(’mix2018.csv’)
monthvals=DF18.month.unique ()

tf=DF18[’Traffic Flow’].values
twmv=np.round(tf* 0.0063)

cat=np.round (tf*0.8)

bac=np.round (tf*0.0124)

lgvs=np.round (tf*0.1813)

DF18[’two wheeled motor vehicles’]=twmv
DF18[’cars and taxis’]l=cat

DF18[’buses and coaches’]=bac
DF18[’1lgvs’]=1gvs

# 18

twmv18=DF18["two wheeled motor vehicles"].values
twmv18=np.round (twmv1i8%0.8)

cat18=DF18["cars and taxis"].values
catl8=np.round(catl18%*0.8)

bac18=DF18["buses and coaches"].values
bac18=np.round(bac18*0.9)
lgvs18=DF18["1lgvs"].values
lgvs18=np.round(lgvs18x*0.8)
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col18=DF18["C0"].values
col8=co018-18
pm2518=DF18["PM2_5"] .values
pm2518=pm2518 -16
par18=DF18["Particle Count"].values
parl8=parl8 -10
pm118=DF18["PM1"] .values
pml118=pm118 -10

pm1018=DF18 ["PM10"] .values
pm1018=pm1018 -21
pm418=DF18["PM 4"] .values
pm418=pm418 -23
0318=DF18["03"] .values
0318=0318 -29
nol18=DF18["NO"].values
nol8=nol8 -18
nox18=DF18["NOx"] .values
nox18=nox18 -24
no218=DF18["N02"] .values
no218=no218 -25

DF18["two wheeled motor vehicles"]=twmv18
DF18["cars and taxis"]=catl8
DF18["buses and coaches"]=bacl8
DF18["1lgvs"]=1gvs18
DF18["CO"]=col8
DF18["PM2_5"]=pm2518
DF18["Particle Count"]=paril8
DF18["PM1"]=pm118
DF18["PM10"]=pm1018

DF18["PM 4"]=pm418
DF18["03"]=0318

DF18["NO"]=no18

DF18 ["NOx"]=nox18
DF18["N02"]=no218

labels2018=DF18[’N02’]
templ2018=set_tags_no2(labels2018)
DF18.NO2=templ2018
Ys=DF18 ["NO2"] .values
Ys_of _train=np.zeros_like(Ys)
for i in range(len(Ys)):

if (Ys[i]==’Good’):
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Ys_of_train[i]=0
elif (Ys[i]l==’>Moderate’):
Ys_of_train[il=1
elif (Ys[i]==’Unhealthy for sensitive group?’):
Ys_of_train[i]=2
elif (Ys[i]==’Unhealthy’):
Ys_of_train[i]=3
elif (Ys[i]==’Very unhealthy’):
Ys_of _train[i]=4

DF18.N02=Ys_of_train

print (monthvals)

for j in monthvals:

tempdf=DF18.loc [DF18[’month’] == j]
trainx18=tempdf .drop(’N02°’, axis=1)

scaler = MinMaxScaler (feature_range=(0, 1))
values18 = scaler.fit_transform(trainxi18)
trainx18 = series_to_supervised(values18, 1, 1)

trainlabl8=tempdf [’N02’] .values

trainx18=trainx18.values
trainlabl18=trainlab18[:52]
trainx18 = trainx18.reshape((trainx18.shape[0], 1, trainx18.shapell

1)
trainx18 =trainx18[:,:,:52]
yhats = modell8a.predict(trainx18)
scaler = MinMaxScaler (feature_range=(0, 4))
yhats = scaler.fit_transform(yhats)

plt.plot (yhats)

plt.xlabel (’Time and values serialized’)

plt.ylabel (’NO2 labels prediction’)

plt.title(’Prediction by month ’+str(j)+’th after intervention?’)
plt.yticks([0,1,2,3,4])

plt.ylim(ymin=0, ymax=4)

plt.xlim(xmin=0)

plt.legend ()

plt.show ()

DF2018=pd.read_csv(’mix2018.csv’)
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# print (DF2019.head ())
DF2018.reset_index (drop=True, inplace=True)

labels2018=DF2018[’N02’]
templ2018=set_tags_no2(labels2018)
DF2018 .N0O2=templ2018

Ys=DF2018["N02"] .values
Ys_of_train=np.zeros_like(Ys)
for i in range(len(Ys)):
if (Ys[i]==’Good’):
Ys_of_train[i]=0
elif (Ys[i]==’>Moderate’):
Ys_of_train[i]=1
elif (Ys[i]==’Unhealthy for sensitive group’):
Ys_of_train[i]=2
elif (Ys[i]==’Unhealthy’):
Ys_of_train[i]=3
elif (Ys[il==’Very unhealthy’):
Ys_of _train[i]=4

B418=Ys_of_train

color=[’green’,’orange’,’blue’,’purple’,’red’]

labels=[’Good’,’Moderate’,’Unhealthy for sensitive group’,’Unhealthy’
,’Very unhealthy’]

fig, ax = plt.subplots(l,1, figsize=(18,10))

hist, bins = np.histogram(B418,bins=5,density=True)

hist=hist/hist.sum()

for w,x,y,z in zip(np.ceil(bins[:-1]), hist.astype(np.float32)*100,

color, labels):
ax.bar (w,x, color = y, width=(bins[1]-bins[0]), label = z)

ax.legend (loc=’upper center’, bbox_to_anchor=(0.5, -0.05),
fancybox=True, shadow=True, ncol=5,fontsize=18)

ax.set_ylim(ymin=0, ymax=40)

ax.set_title(’Before Intervention’,fontsize=28)

ax.set_ylabel (’NO2 Percentage’,fontsize=28)

fig, ax = plt.subplots(l,1, figsize=(18,10))

hist, bins = np.histogram(Af18,bins=5,density=True)
hist=hist/hist.sum()
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for w,x,y,z in zip(np.ceil(bins[:-1]), hist.astype(np.float32)*100,
color, labels):
ax.bar(w,x, color = y, width=(bins[1]-bins[0]), label = z)
ax.legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.05),
fancybox=True, shadow=True, ncol=5,fontsize=10)
ax.set_ylim(ymin=0, ymax=40)
ax.set_title(’After Intervention’,fontsize=28)

ax.set_ylabel (’NO2 Percentage’,fontsize=28)

xaxis = [3,9,16,23,30]

xaxis_dec = [x-0.5 for x in xaxis]
xaxis_inc = [x+0.5 for x in xaxis]
color=[’green’,’orange’,’blue’,’purple’,’red’]

labels=[’Good’,’Moderate’,’Unhealthy for sensitive group’,’Unhealthy’
,’Very unhealthy’]

hist, bins = np.histogram(B418,bins=5,density=True)
hist=hist/hist.sum()

hist2, bins2 = np.histogram(Af18,bins=5,density=True)
hist2=hist2/hist2.sum()

recO = [hist[0].astype(np.float32)+*100,hist[1].astype(np.float32)*100
,hist[2] .astype(np.float32)*100,
hist[3].astype(np.float32)*100,
hist[4] .astype(np.float32)*100]

recl = [hist2[0].astype(np.float32)*100,hist2[1].astype(np.float32)*

100 ,hist2[2] .astype(np.float32)*
100 ,hist2[3].astype(np.float32)*
100,hist2[4] .astype(np.float32)*

100]

ax = plt.subplot(111)

ax.bar (xaxis_dec, recO, width=0.5,align="center’, label = ’Before
policy’, color= ’firebrick?’)

ax.bar (xaxis_inc, recl, width=0.5,align=’center’, label = ’After
policy’, color= ’darkcyan’)

ax.set_ylim((0, 40))
plt.xticks (xaxis, labels, fontsize=18)
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plt.legend(loc=’upper center’, bbox_to_anchor=(0.5, -0.05),
fancybox=True, shadow=True, ncol=5,fontsize=30)

plt.ylabel (’NO2 Percentage’, fontsize=40,fontweight=’bold’)

plt.title("Before and After Policy", fontsize=40, fontweight=’bold’)

plt.show ()

count, bins_count = np.histogram(B418, bins=10)

pdf = count / sum(count)

cdf = np.cumsum(pdf)

plt.plot(bins_count[1:], cdf, label="CDF Before policy",color=
firebrick’,linewidth=10)

plt.legend (fontsize=30)

plt.xlabel (’Bins count’,fontsize=40, fontweight=’bold’)

plt.ylabel (’CDF’,fontsize=40, fontweight=’bold’)

plt.title (’CDF by Policy’,fontsize=40, fontweight=’bold’)

count, bins_count = np.histogram(Af18, bins=10)

pdf

cdf np.cumsum (pdf)

plt.plot(bins_count[1:], cdf, label="CDF After policy",color= ’
darkcyan’,linewidth=10)

count / sum(count)

plt.ylim(ymax=1.0)
plt.xlim(xmin=0)
plt.legend(fontsize=40)

plt.show ()

colors = [’purple’]

data=B418

bp=plt.boxplot (data, patch_artist = True,positions=[2],
notch =’True’, vert = 0,widths=0.4)

for patch, color in zip(bp[’boxes’], colors):

patch.set_facecolor (color)

for whisker in bp[’whiskers’]:
whisker.set (color =’#8B008B’,
linewidth 1.5,
linestyle =":")

for cap in bpl[’caps’]:
cap.set(color =’#8B008B°’,
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linewidth = 2)

for median in bp[’medians’]:
median.set (color =’red’,
linewidth = 3)

for flier in bp[’fliers’]:

flier.set (marker =’D’,
color =’#e7298a’,

alpha = 0.5)

plt.legend ()

colors = [’red’]
data=Af18

bp=plt.boxplot (data, patch_artist = True,positions=[1],
notch =’True’, vert = 0,widths=0.4)

for patch, color in zip(bp[’boxes’], colors):

patch.set_facecolor (color)

for whisker in bp[’whiskers’]:
whisker.set (color =’#8B008B’,
linewidth = 1.5,
linestyle =":")

for cap in bpl[’caps’]:
cap.set(color =’#8B008B’,
linewidth = 2)

for median in bp[’medians’]:
median.set(color =’red’,
linewidth = 3)

for flier in bp[’fliers’]:

flier.set (marker =°D’,
color =’#e7298a’,

alpha = 0.5)

plt.legend ()

plt.ylabel(’boxes’)

plt.title(’box distrobution of data’)
plt.show ()
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scaler
yhat18
yhat18af = scaler.fit_transform(yhatl8af)

MinMaxScaler (feature_range=(0, 4))

scaler.fit_transform(yhat18)

plt.plot(yhatl18, label=’Prediction by days before policy’, color=
firebrick?’,linewidth=3)

plt.plot(yhati8af, label=’Prediction by days after policy’, color=
darkcyan’,linewidth=3)

plt.ylabel (’N02 labels predictions?’)

plt.yticks([0,1,2,3,4])

plt.xlabel(’Serialised time and data’, fontweight=’bold’)

plt.title(’Prediction by days’, fontweight=’bold’)

plt.ylim(ymin=0, ymax=4)

plt.xlim(xmin=0)

plt.legend ()

plt.show ()

from IPython.core.pylabtools import figsize
DF18b=pd.read_csv(’mix2018.csv’)
monthvals=DF18b.month.unique ()

tf=DF18b[’Traffic Flow’].values
twmv=np.round(tf* 0.0063)
cat=np.round (tf*0.8)
bac=np.round (tf*0.0124)
lgvs=np.round (tf*0.1813)
DF18b[’two wheeled motor vehicles’]=twnmv
DF18b[’cars and taxis’]=cat
DF18b[’buses and coaches’]=bac
DF18b[’1lgvs’]=1gvs
DF18b.drop(’Traffic Flow’,axis=1)
labels2018=DF18b [’>N02’]
templ2018=set_tags_no2(labels2018)
DF18b.N02=templ2018
Ys=DF18b ["N02"] .values
Ys_of _train=np.zeros_like(Ys)
for i in range(len(Ys)):
if(Ys[i]l==?Good?):
Ys_of _train[i]=0
elif (Ys[i]==’>Moderate’):
Ys_of _train[i]=1
elif (Ys[i]==’Unhealthy for sensitive group’):
Ys_of _train[i]=2

)

)
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elif (Ys[i]==’Unhealthy’):
Ys_of_train[i]=3

elif (Ys[il==’Very unhealthy’):
Ys_of_train[i]=4

DF18b.N02=Ys_of_train

#after
DF18a=pd.read_csv(’mix2018.csv’)

monthvals=DF18a.month.unique ()

tf=DF18a[’Traffic Flow’].values
twmv=np.round(tf* 0.0063)

cat=np.round (tf*0.8)

bac=np.round (tf*0.0124)

lgvs=np.round (tf*0.1813)

DF18a[’two wheeled motor vehicles’]=twmv
DF18a[’cars and taxis’]=cat

DF18a[’buses and coaches’]=bac
DF18al[’lgvs’]=1gvs

# 18

twmv18=DF18a["two wheeled motor vehicles"].values

twmv18=np.round (twmv1i8x*0.8)
cat18=DF18a["cars and taxis"].values
cat18=np.round (cat18%*0.8)
bac18=DF18a["buses and coaches"].values
bac18=np.round(bacl18*0.9)
lgvs18=DF18a["1lgvs"].values
lgvs18=np.round(lgvs18*0.8)
col18=DF18a["C0"] .values

col8=co18-18

pm2518=DF18a ["PM2_5"] .values
pm2518=pm2518 -16
par18=DF18a["Particle Count"].values
parl8=parl8 -10

pm118=DF18a ["PM1"] .values
pm118=pm118 -10

pm1018=DF18a ["PM10"] .values
pm1018=pm1018 -21

pm418=DF18a["PM 4"] .values
pm418=pm418 -23

0318=DF18a["03"] .values

0318=0318 -29
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nol8=DF18a["NO"].values
nol8=nol18 -18
nox18=DF18a["NOx"] .values
nox18=nox18 -24
no218=DF18a["N02"] .values
no218=no218 -45

DF18a["two wheeled motor vehicles"]=twmvi18
DF18a["cars and taxis"]l=catl8
DF18a["buses and coaches"]=bacl8
DF18a["lgvs"]=1gvs18
DF18a["C0O"]=co18
DF18a["PM2_5"]=pm2518
DF18a["Particle Count"]=paril8
DF18a["PM1"]=pm118
DF18a["PM10"]=pm1018

DF18a["PM 4"]=pm418
DF18a["03"]=0318
DF18a["N0"]=no18
DF18a["NOx"]=nox18
DF18a["N02"]1=no218

labels2018=DF18a[’N02’]
templ2018=set_tags_no2(labels2018)
DF18a.N02=templ2018
Ys=DF18a["N0O2"] .values
Ys_of_train=np.zeros_like(Ys)
for i in range(len(Ys)):
if (Ys[i]==’Good’):
Ys_of_train[i]=0
elif (Ys[i]==>Moderate’):
Ys_of_train[i]=1
elif (Ys[i]==’Unhealthy for sensitive group’):
Ys_of _train[i]=2
elif (Ys[i]==’Unhealthy’):
Ys_of_train[i]=3
elif (Ys[i]==’Very unhealthy’):
Ys_of_train[i]=4

DF18a.N02=Ys_of_train

print (monthvals)

for j in monthvals:
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#before
tempdf=DF18b.loc [DF2018[’month’] == j]
trainx18=tempdf .drop(’N02’, axis=1)

scaler = MinMaxScaler (feature_range=(0, 1))

values18 scaler.fit_transform(trainx18)
trainx18 = series_to_supervised(values18, 1, 1)

trainlab18=tempdf [’N02’] .values

trainx18=trainx18.values
trainlabl18=trainlab18[:48]
trainx18 = trainx18.reshape((trainx18.shape[0], 1, trainx18.shapell

1)
trainx18 =trainx18[:,:,:48]
yhats = modell8.predict(trainx18)
scaler = MinMaxScaler (feature_range=(0, 4))

yhats = scaler.fit_transform(yhats)

#after
tempdf=DF18a.loc [DF2018[’month’] == j]
trainx18=tempdf .drop(’N02’, axis=1)

scaler = MinMaxScaler (feature_range=(0, 1))
values18 = scaler.fit_transform(trainxi18)
trainx18 = series_to_supervised(valuesl18, 1, 1)

trainlabl8=tempdf [’N0O2’].values

trainx18=trainx18.values

trainlabl18=trainlab18[:52]

trainx18 = trainx18.reshape((trainx18.shape[0], 1, trainx18.shapell
1)

trainx18 =trainx18[:,:,:52]

yhats2

scaler = MinMaxScaler (feature_range=(0, 2))

modell8a.predict (trainx18)

yhats2 = scaler.fit_transform(yhats2)

plt.plot(yhats, label=’Prediction before policy’,color= ’firebrick?’
,linewidth=5)

plt.plot(yhats2, label=’Prediction after policy’,color= ’darkcyan’,
linewidth=5)

plt.ylabel (’NO2 Concentration Class’,fontsize=60,fontweight=’bold’)

plt.yticks([0,1,2,3,4])

plt.xlabel(’Time Samples’,fontsize=60,fontweight=’bold’)

plt.title(’Predictions for the ’ + str(j)+ ’th’+ °> Month ’,fontsize
=60, fontweight="bold’)
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plt.ylim(ymin=0, ymax=4)
plt.xlim(xmin=0)
plt.legend(fontsize=60)
plt.show ()

DF2018=pd.read_csv(’mix2018.csv’)
DF2018.reset_index (drop=True, inplace=True)
labels2018=DF2018[’N02’]
templ2018=set_tags_no2(labels2018)
DF2018 .NO2=templ2018
Ys=DF2018["N0O2"] .values
Ys_of_train=np.zeros_like(Ys)
for i in range(len(Ys)):
if(Ys[i]==?Good?):
Ys_of_train[i]=0
elif (Ys[i]l==’Moderate’):
Ys_of_train[i]=1
elif (Ys[i]==’Unhealthy for sensitive group?’):
Ys_of_train[i]=2
elif (Ys[i]==’Unhealthy’):
Ys_of _train[i]=3
elif (Ys[i]==’Very unhealthy’):
Ys_of_train[i]=4

B418=Ys_of_train
DF18=DF2018
DF18.N02=B418

fig, ax = plt.subplots ()

DF2018 [’month’] .value_counts () .plot (ax=ax, kind=’bar’, color=[’brown’
, ’blue’, ’purple’, ’green’, ’
orange’, ’yellow’, ’red’], figsize
=(25,25), fontsize=(25))

plt.ylabel (’Value Counts’,fontsize=(30))
plt.xlabel (’Months’,fontsize=(30))
plt.xlim(xmin=0)

plt.show ()

DF2018[’N02°] .value_counts ()

DF18.columns

labels, counts = np.unique(DF18.month.values, return_counts=True)
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plt.bar(labels, counts, align=’center’,color="green")
plt.xticks (labels)

plt.ylabel ("count")

plt.xlabel ("month")

plt.xlim(xmin=0)

plt.show ()

labels, counts = np.unique(DF18.day.values, return_counts=True)
plt.bar(labels, counts, align=’center’,color="green")
plt.xticks (labels)

plt.ylabel ("count")

plt.xlabel("day")

plt.xlim(xmin=0)

plt.show ()

labels, counts = np.unique(DF18.hour.values, return_counts=True)
plt.bar(labels, counts, align=’center’,color="green")

plt.xticks (labels)

plt.ylabel ("count")

plt.xlabel ("hour")

plt.xlim(xmin=0)

plt.show ()

DF2018 . hist (figsize=(26,26), layout=(6,5), color = ’green’)
plt.xticks (fontsize=10)

plt.xlim(xmin=0)

plt.subplots_adjust (left=4, bottom=4, right=5, top=5)
plt.show ()



Appendix D

Python Code for the Results Reported in
Chapter 6

The results reported in Chapter 6 are computed by developing an extensive code in the Python

programming environment. The code is reported below.

import os

import random
import time

import pandas as pd
import numpy as np

import math as ma

from tqdm import *

from scipy import spatial

from operator import itemgetter, attrgetter
from collections import Counter

from copy import deepcopy

20

Initialize LSTM-GA

235

class LSTM_GA(Q):

def __init__(self, type= 6,

url = str(Q),
ev_quantity = int (),
generation_num = int (),
constant_ev_quantity = True,

output_dir = str(),
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worst_case_eval = False
)
self .type = type
self .type_list = [[7, 2], [11, 2], [22, 3], [50, 4], [100, 5]

, [150, 5], [200, 6]] #
available charger types [
Charging station capacity,
Cost share]
self .baseMoney = 550 # Basement of C(Cost share
self.dataset = self.load_dataset (url)
self .boundary = [[54.9641, -1.76835] , [565.059, -1.53996]] #
Using the coordinates of
the top-left and bottom-
right points to define
basic rectangular regions
self.ev_quantity = ev_quantity

self .generation_num = generation_num

self .population [l # Population pool of each generation

self .hunt_count [l # Prey captured in each generation:
Fully charged electric
cars

self .satisfy_demand = [] # Satisfaction rate in each

generation

self.elits = []*6

self .worst_case_eval = worst_case_eval

self .not_satisfied = [] # Uncaught prey in each generation:

Uncharged electric cars

self.ev_food_list [] # Food list in each generation:
List of electric cars

if self.type == 6:

self .type_use = self.type_list[:-1]
else:

self .type_use = self.type_list[:]

self.sum_charger_num = 0 # Counting the number of charging
stations
self .avg_work_time = 0 # Calculating the working time of
charging stations
self.sum_cost = [] # Total cost in each generation =
Basement of Cost share x
Cost share x Number
self.type_count = [] # Total type of chargers for each
generation

self.constant_ev_quantity = constant_ev_quantity
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self .utilization_rate = []

def load_dataset(self ,url,sheet_name=0):
if url.find(".xlsx"):
return pd.read_excel(url, sheet_name=sheet_name)
elif url.find(".csv"):

return pd.read_csv(url)

def select_items (self):
try:
self.latitude = self.dataset[’LSOA/DZ centre point
latitude’]
self.longitude = self.dataset[’LS0A/DZ centre point
longitude ’]
self .EV_power_demand = self.dataset[’Total EV power
demand’]
self.vehicles_exit_prob = self.dataset[’vehicles
percentage’]
except
raise ("The data columns are not suitable, please check

columns")

def cos_sim(self, vecl, vec2):

return 1 - spatial.distance.cosine(vecl, vec2)

def crossover (self, geneset3, geneset4d, base_prob = 0.2):
genesetl = deepcopy(geneset3)
geneset2 = deepcopy(geneset4d)
Crossover_prob = random.random()
if Crossover_prob > base_prob:
1 = random.randrange (0, 3, 1)

temp = genesetl[1]

genesetl [1] geneset2[1]

geneset2[1] = temp

mutation_prob_1 = random.random ()
if mutation_prob_1 > 0.5
genesetl = self.mutation(genesetl)
mutation_prob_2 = random.random()
if mutation_prob_2 > 0.5
geneset2 = self .mutation(geneset2)

return genesetl, geneset2

def mutation(self, geneset):

prob_lati = random.random ()
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if prob_lati > 0.5:
mut_lati = geneset[0] * (1 + 0.045 * (np.random.normal (
loc=0.0, scale=1.0,
size=None)))
else:
mut_lati = geneset [0]
prob_long = random.random ()
if prob_long > 0.5:
mut_long = geneset[1] * (1 + 0.058 * (np.random.normal (
loc=0.0, scale=1.0,
size=None)))
else:
mut_long = geneset[1]
prob_type = random.random ()
if prob_type > 0.5:
mut_type = random.sample(self.type_use, 1)
gene_type = mut_type[0] [0]
gene_cost = mut_typel[0][1]
else:
gene_type = geneset [2]
gene_cost = geneset [3]
return [mut_lati, mut_long, gene_type, gene_cost, 0, 0, O]
def initial_population(self):

start_time = time.time ()
get_food_score = 0
worktime_score = 0
generation = 0
pdbr = tqdm(range (0, self.latitude.size),leave = False, desc
= "initializing")
for i in pdbr:
type_sample = random.sample(self.type_use, 1)

self .population.append([self.latitude[i] ,self.longitudel[i
1,type_sample[0] [0],
type_sample[0] [1],
get_food_score,
worktime_score,

generation])

print (f’finish initial using time {(time.time()-start_time)l}’
)

return self.population
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def generate_food(self,last_ev_food_count):
# Clearing and regenerating
self.ev_food_list = []
for areas in range(0, len(self.vehicles_exit_prob)):

if random.random() > 0.5

areas_ev_quantity ma.ceil(self.vehicles_exit_probl[
areas] *

last_ev_food_count

)
else:
areas_ev_quantity = ma.floor(self.vehicles_exit_probl[
areas] *
last_ev_food_count
)
assert areas_ev_quantity != 0

for ev in range(areas_ev_quantity):

ev_lati self.latitude[areas] * (1 + 0.090 * np.
random.normal (loc=
0.0, scale=1.0,
size=None))
ev_long = self.longitudel[areas] * (1 + 0.116 * np.
random.normal (loc=
0.0, scale=1.0,

size=None))

if self.worst_case_eval:
ev_demand=self .EV_power_demand[areas]/
areas_ev_quantity
*(1 + np.
random.normal (
loc=0.0, scale
=1.0, size=
None))
else:
ev_demand=self .EV_power_demand [areas]/
areas_ev_quantity
* (2 - random

.random())

while (ev_demand > 240 or ev_demand <= 0):
ev_demand = self.EV_power_demand[areas] * (1 + np
.random.normal
(loc=0.0,
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scale=1.0,

size=None))

self.ev_food_list.append([ev_lati, ev_long, ev_demand

D

return self.ev_food_list

def hunt(self):
hunt_food_num = 0
for i in range(0, len(self.ev_food_list)):
distance = []
for j in range(0, len(self.population)):
distance.append([np.power ((np.abs(self.population[j][
0] - self.

ev_food_list[i] [0]
) + np.abs(self.
population[j]l[1] -
self.ev_food_list
(i1 011)),2),31)

distance.sort ()
for k in range(0, len(distance)):
work_hour_score = self.population[distance[k][1]][5]
+ \ self.
ev_food_list[i] [2]
/(self .population[
distance[k] [1]][2]
)
if ((work_hour_score) < 20 * 0.8):
self .population[distance[k] [1]][5] += self.
ev_food_list[i
1021 / self.
population [
distance [k] [1]
1[2]
self .population[distance[k] [1]][4] += 1
hunt_food_num += 1
break
self .hunt_count.append (hunt_food_num)
self .satisfy_demand.append (hunt_food_num/self.ev_quantity)

def check_list(self, generation_now:int, is_offspring=False):
data_set = []
for charger in range(len(self.population)):

for charger_other in range(len(self.population)):
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if charger_other == charger:
break
if self.cos_sim(self.population[charger], self.
population [
charger_other]) ==
1.:
self .population[charger_other] [0] = 0
is_in_boundry_x = self.boundary[0] [0] < self.populationl
charger] [0] < self.
boundary [1] [0]
is_in_boundry_y = self.boundary[0][1] < self.population|
charger] [1] < self.
boundary [1] [1]
if is_in_boundry_x and is_in_boundry_y:
if (generation_now == self.generation_num):
if self.population[charger][4] > 0 and self.
population [
charger] [6] >
0:
data_set.append(self.population[charger])
elif is_offspring:
self .population[charger] [4] = O
self .population[charger] [5] = 0
data_set.append(self.population[charger])
else:
if self.population[charger][4] > O and self.
population [
charger] [6] >
0:
self .population[charger][4] = O
self .population[charger] [5] = 0
data_set.append(self.population[charger])

self .population = data_set

def get_utilization(self):

wl = 0.6
w2 = 0.4
Tm = 10

self .utilization_rate.append(self.satisfy_demand[-1] * wl + (
1-((self.avg_work_time -
Tm) / Tm) *x 2) * w2)

def get_offsprings(self, generation_now:int):

offspring = []
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for

single in self.population:

other = random.sample(self.population, 1)
other = other[0]
if single[6] < generation_now - 4:

break

elif single[4] >= self.hunt_food_score[2] and single[5] >

= self.work_hour_rank|[
2] :
self .elits.append(single)

genesetl, geneset2 = self.crossover(single,
other)

genesetl [6] = generation_now

geneset2[6] = generation_now

offspring.append (genesetl)
offspring.append(geneset?2)

elif single[4] >= self.hunt_food_score[l] or single[5] >=

self .work_hour_rank[1

]:
genesetl, geneset2 = self.crossover (single,
other)
genesetl [6] = generation_now
geneset2[6] = generation_now
survivor_prob = random.random ()

if survivor_prob > 0.5:
offspring.append (genesetl)
offspring.append (geneset?2)

elif single[4] >= self.hunt_food_score[0] or single[5] >=

else:

self.work_hour_rank [0
]:
genesetl, geneset2 = self.crossover(single,
other)

genesetl[6] = generation_now
geneset2[6] = generation_now
survivor_prob = random.random()
if survivor_prob > 0.4:

survivor_prob = random.random()

if survivor_prob > 0.5:

offspring.append(genesetl)
else:

offspring.append(geneset2)
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single[0] = O
self .population += offspring
self.check_list(generation_now=generation_now, is_offspring=

True)
def get_rank(self,generation_now):

self .population.sort(key=itemgetter (4), reverse=True)

hunt_food_score_limit_top = self.population[0] [4]

hunt_food_score_limit_1 = hunt_food_score_limit_top * 0.2
hunt_food_score_limit_2 = hunt_food_score_limit_top * O.
hunt_food_score_limit_3 = hunt_food_score_limit_top * 0.9

self .population.sort(key=itemgetter(5) ,reverse=True)

work_hour_score_limit_top = self.population[0] [5]

work_hour_score_limit_1 work_hour_score_limit_top * 0.2

work_hour_score_limit_2 = work_hour_score_limit_top * 0.5
work_hour_score_limit_3 = work_hour_score_limit_top * 0.9
if self.elits != []:
temp = []
for elit in self.elits:
if elit[6]>= generation_now - 5:
temp.append(elit)
elif random.random() > 0.5:
temp.append (elit)
self .elits = temp
elits_mean = np.array(self.elits).mean(axis=0)
avg_time = elits_mean[5]
self .avg_work_time = avg_time
avg_hunt = elits_mean[4]
hunt_food_score_limit_1 = 0.8 * hunt_food_score_limit_1 +
0.2 * avg_hunt
hunt_food_score_limit_2 = 0.9 * hunt_food_score_limit_2 +
0.1 * avg_hunt
hunt_food_score_limit_3 = 0.99 * hunt_food_score_limit_3

+ 0.01 * avg_hunt

Il
o

work_hour_score_limit_1 .8 * work_hour_score_limit_1 +

0.2 * avg_time
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work_

work_

hour_score_limit_2 0.9 * work_hour_score_limit_2 +

0.1 * avg_time

hour_score_limit_3 0.99 * work_hour_score_limit_3

+ 0.01 * avg_time

self .work_hour_rank = [self.satisfy_demand[-1] * item for

item in [
work_hour_score_limit_1,
work_hour_score_limit_2,

work_hour_score_1limit_31]]

self .hunt_food_score = [self.satisfy_demand[-1] * item for

item in[
hunt_food_score_limit_1,
hunt_food_score_limit_2,

hunt_food_score_limit_3]]

def write_data(self):

try:

self.

self.

self.

self

self.

self.

sum_type = pd.DataFrame(data=self.
train_total_population
columns=[’Chargers Number’])
sum_cost = pd.DataFrame(data=self.sum_cost,

columns=[’Toral Cost’])
ev_quantity = pd.DataFrame (data=self.
train_total_evfood,
columns=[’Total EV
Quantity’])

.hunt_count = pd.DataFrame (data=self.hunt_count,

columns=[’Satisfied EV
Quantity?’])
satisfy_demand = pd.DataFrame (data=self.
satisfy_demand,
columns=[’Satisfied
Percentage’])
utilization_rate = pd.DataFrame(data=self.
utilization_rate,
columns=[’Utilization’

D)

df _concat = pd.concat([self.prpotion, self.sum_type, self

.sum_cost, self.
ev_quantity, \ self.

hunt_count, self.
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satisfy_demand, self.
utilization_rate ],
join=’inner’, axis=1)
writer = pd.ExcelWriter (output_dir)
self .population_details.to_excel( writer, sheet_name="
population_details",
index=False,)
df _concat.to_excel(
writer,
sheet_name="train_details",
index=False,
)

writer.save ()

except:

raise ("Data Output is wrong, please check it again")

def count_type(self):

self .population_details = pd.DataFrame (data=self.population,
columns=[’Latitude’,
Longitude’, ’Type of
charging pile (kW)?’, °
Economic costs?’, ’EV
Number of Charging Posts
Serviced’, ’Charging Posts
Operating Hours?’,
generation’])

self .type_count.append(list ((Counter (self.population_details/|[
>Type of charging pile (kW
)’1)) .values ()))

if len(self.type_use) == 6:
self .prpotion = pd.DataFrame(data=self.type_count,
columns=[’7kw’, ’11kw’
, ’22kw’, ’50kw’, °?
100kw’, >150kw’])

else:

self .prpotion = pd.DataFrame(data=self.type_count,

columns=[’7kw’, ’11kw’
, 222kw’, ’b0kw’,
100kw?’, ’150kw?’, °?
200kw’])

self.sum_cost.append(sum(self.population_details[’Economic
costs’]))
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def train(self):
self.train_total_population = []
self.train_total_evfood = []
self .select_items ()
self .population = self.initial_population ()
pdbr = tqdm(range (0, self.generation_num + 1), leave = False,
desc = "training")
strat_time = time.time ()
self .generate_food(self.ev_quantity)
for generation_now in pdbr:
self . hunt ()
is_last_generation = generation_now == self.
generation_num
if is_last_generation:
self.check_list(generation_now)
self.train_total_population.append(len(self.
population))
self.train_total_evfood.append(len(self.ev_food_list)
)
self.count_type ()
self.get_utilization ()
self .write_data ()
else:
self.get_rank(generation_now)
self.get_offsprings(generation_now)
self.train_total_population.append(len(self.
population))
self.train_total_evfood.append(len(self.ev_food_list)
)
self.count_type ()
self.get_utilization ()
if self.constant_ev_quantity:
self .generate_food(self.ev_quantity)
else:

self .generate_food(self.train_total_evfood[-1])

input_dir = r"./Train_dataset"

year_num = {
720427 : 134606,
720467 : 145345,
72048 : 146617,
2050’ : 160403,
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if os.path.isdir (input_dir):

files = os.listdir (input_dir)

for file in files:
url = os.path.join(input_dir, file)
file_name = file.split(".xlsx") [0]
output_dir = f’./result_{file_namel}.xlsx’
year = file_name.split("_")[0]
ev_quantity = year_num[file_name.split("_")[1]]
print (f’start training {year}, total EV quantity is {
ev_quantity}’)
lstm_ga = LSTM_GA(
url=url,
ev_quantity=ev_quantity,
generation_num=100,
output_dir = output_dir,
)
lstm_ga.train()
print (output_dir," finished train")
else:

print ("Please check input dir")
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