2= Newcastle
University

A network approach to the specification,
enhancement and representation of

synthetic biology designs

by
Matthew Crowther

Submitted for the degree of Doctor of Philosophy in the School of Computing, Newcastle
University
Supervised by Dr Angel Gofii Moreno and Professor Anil Wipat
January 2024

DECLARATION

I declare that this thesis is my work unless otherwise stated. No part of this thesis has previously
been submitted for a degree or other qualification at Newcastle University or any other institution.
Matthew Crowther

ACKNOWLEDGEMENTS

I'am immensely grateful to Professor Anil Wipat and Dr Angel Goi-Moreno for their guidance
and invaluable support throughout my research. Their insights and encouragement have been
fundamental to my work. Special thanks to my peers for their camaraderie and my family for their
support.

PUBLICATIONS ARISING FROM THIS THESIS

* Matthew Crowther, Anil Wipat, and Angel Goni-Moreno. “A Network Approach to Genetic Cir-
cuit Designs”. ACS Synthetic Biology 11:9, 2022. PMID: 36044984, pp. 3058-3066. DOI: 10 .
1021 /acssynbio.2c00255. eprint: https://doi.org/10.1021/acssynbio.2c00255. URL: https:

//doi.org/10.1021/acssynbio.2c00255

* Matthew Crowther et al. “ShortBOL: A Language for Scripting Designs for Engineered Biologi-
cal Systems Using Synthetic Biology Open Language (SBOL)”. ACS Synthetic Biology 9:4, 2020.
PMID: 32129980, PP 962-966. DOLI: 10. 1021/acssynbio.9beo470. eprint: https://doi.org/10.

1021/acssynbio.9b00470. URL: https://doi.org/10.1021/acssynbio.9b00470

¢ Matthew Crowther, Anil Wipat, and Angel Gofi-Moreno. “GENETTA: a Network-Based Tool
for the Analysis of Complex Genetic Designs”. ACS Synthetic Biology, 2023

* Hasan Baig et al. “Synthetic biology open language (SBOL) version 3.0.0”. Journal of Integrative
Bz’oz’nfbrmatz’c; 17:2-3, 2020, p. 20200017. DOI: doi : 10 . 1515/ jib - 2020 - 0017. URL: https :

//doi.org/10.1515/ji1b-2020-0017

¢ Esteban Martinez-Garcia et al. “SEVA 4.0: an update of the Standard European Vector Architecture
database for advanced analysis and programming of bacterial phenotypes”. Nucleic Acids Research
51:D1, 2022, pp. D1558-D1567. 1ssN: 0305-1048. DOI: 10.1093/nar/gkac1059. eprint: https :
/ / academic .oup.com/nar/article-pdf/51/D1/D1558 /48441442 / gkac1059 . pdf. URL: https:
//doi.org/10.1093/nar/gkac1059

http://dx.doi.org/10.1021/acssynbio.2c00255
http://dx.doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
http://dx.doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
http://dx.doi.org/doi:10.1515/jib-2020-0017
https://doi.org/10.1515/jib-2020-0017
https://doi.org/10.1515/jib-2020-0017
http://dx.doi.org/10.1093/nar/gkac1059
https://academic.oup.com/nar/article-pdf/51/D1/D1558/48441442/gkac1059.pdf
https://academic.oup.com/nar/article-pdf/51/D1/D1558/48441442/gkac1059.pdf
https://doi.org/10.1093/nar/gkac1059
https://doi.org/10.1093/nar/gkac1059

ABSTRACT

Synthetic biology incorporates many existing biological fields of study with an engineering ap-
proach to constructing new or redesigning physical parts into devices and systems, focusing on
assembling sets of standardised genetic components. A principle of the field is to structure bio-
logical systems into a hierarchy of abstract entities in a standardised fashion. However, in reality,
ad hoc procedures, colloquial languages, and informal data are still ubiquitous in the field. These
practices are acceptable when working with relatively simple systems, but as the field progresses
and complexity increases, they quickly become impractical, limiting the scale and complexity of
design. Efforts to implement standards in the field have thus far been limited. These efforts have
been limited in overcoming the complexities introduced by standards and the corresponding dis-
ruption to existing working practices, as they require a knowledge of often complex data struc-
tures. Synthetic biologists with limited knowledge of data representations may struggle to use
these standards without support. This research focuses on four areas that enable robust genetic
designs to be defined, captured, enhanced and explored using standard data structures without
exposing data complexity to practitioners of synthetic biology. Firstly, research was carried out to
enable the specification of genetic designs using a common language for use within synthetic bi-
ology. The outcome was ShortBOL, an extensible language backed by a standard which mapped
the fabricated language produced by standard formats to a more naturally understood vocabu-
lary. Secondly, approaches to improve the accessibility of design data were explored. Existing
design data was integrated and enhanced to form a weighted knowledge graph (WKG) enriched
with dynamic metadata. The metadata was designed to solve issues of uncertainty commonly
encountered within existing databases. The WKG is designed to learn and evolve through inter-
actions with human users and interfacing tools, fostering a dynamic exchange of insights. After
establishing the weighted knowledge graph and processes to maintain rich and structured under-
lying data, two examples were used to demonstrate the utility of the WKG from both human
and computational perspectives. The first use case illustrates the advantages a user can gain, en-
hancing the query system by offering tailored results, reducing the time needed to identify the
desired entity by ranking results and enabling feedback to improve future results. The second
use case demonstrated how the weighted knowledge graph could be harnessed computationally
to improve existing designs by automatically integrating existing data to reduce the manual bur-
den of retroactively upgrading design data. In this context, we explored introducing functional
information into existing designs, addressing the typical absence of such data. The final section
researched and developed a graph-based methodology for representing and visualising circuit de-
sign information. The approach transformed the design into dynamic network structures, which
could be automatically modified on demand according to user specifications. A significant focus
was on scale abstraction, providing an automatic sliding level of detail that further tailors the visu-
alisations to a given situation. In the ever-evolving field of synthetic biology, this research aims to
pave the way for a future where standardised language, enriched knowledge graphs, and dynamic

Abstract

visualisations empower scientists to unlock the full potential of genetic design, bridging the gap
between complexity and practicality.

CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

CHAPTER 1: INTRODUCTION

1
2
3

4

Background

Aims and Objectives

Contribution

31
3.2

Research

Tools

Structure

CHAPTER 2: BACKGROUND

1
2

Introduction
SyntheticBiology
21 CorePrinciples
2.2 Genetic Circuits o v i i s e
2.3 Designdata
2.4 Design, Build, Test, Learn (DBTL)
Graph Theory and Network Science
3.1 Introduction
3.2 Network Sciencein Biology
33 Fundamental methodsandterms
3.4 Typesof Graph L o oo
3.5 Problem Classes e
Interaction Networks
4.1 Genetic regulatory network (GRN)
4.2 Protein-protein interaction network (PPI)
4.3 Integrated networks L L L oo oo
4.4 Probabilistic functional integrated networks (PFIN)
4.5 Metabolicnetworks L
Networks in syntheticbiology
5.1 Networks for standardised exchange
5.2 Regulatory network and control design
5.3 Networks to generate and validate designs
5.4 Hierarchicalnetworks,

27
27
27
28
28
28
29

Contents

6 KnowledgeGraphs o o
6.1 The Resource Description Framework (RDF)
6.2 Ontologies
7 DataStandards Lo
7.1 Synthetic Biology Open Language (SBOL)
7.2 Advantages of standarddata Lo Lo
7.3 Challenges introduced by standards

CHAPTER 3: SHORTBOL - A LANGUAGE TO SPECIFY STANDARD DESIGN DATA VIA AN

EXTENSIBLE AND USER-FACING LANGUAGE.

1 Introduction
1.1 Existing specificationmethods
1.2 Aimsand Objectives L Lo o
2 Results e
21 Templates L
2.2 Template Instantiation Lo Lo L
23 Composite Templates L ...
2.4 Templatelibraries L oo o o
2.5 TheDocument i
2.6 Template expansion L L L oo
3 Methods e
3.1 Editor. e
3.2 Validation
3.3 Extensions e
3.4 CONVEILEr .« v v v v e e e e e e e e e e e e e e e e e
3.5 Tutorial Series
3.6 Documentation e e e e e e e e
3.7 Non-textual additions
3.8 Alternative representation L
4 Discussion e e e e e e e
4.1 Designchoices L L oo
4.2 Strengths L L
4.3 Limitations e
4.4 Futurework
5 Conclusion e

CHAPTER 4: USING WEIGHTED KNOWLEDGE GRAPHS TO QUANTIFY UNCERTAINTY

10

AND ENABLE COMMUNITY-BASED FEEDBACK

1 Introduction
1.1 A review of existing synthetic biology databases
1.2 A review of existing datasets L
1.3 What standards cannotprovide L L L
1.4 The issues with the current landscape of data capture
L5 A functional approach to synthetic biology

Contents

1.6 Dynamic knowledge graphs enable adaptation to changing conditions . 106
1.7 Aimsandobjectives L Lo Lo 106
Results e 109
2.1 Seeding an initial network by integrating networks 109
2.2 Data expansion to introduce functionaldata 114
Methods e 129
3.1 Networks e 129
Discussion L e e e 135
4.1 Strengths 137
4.2 Limitations e e e e 139
4.3 Futurework 140
4.4 Conclusion e 141

CHAPTER 5: ENHANCING DATA ACCESS AND DESIGNS BY LEVERAGING THE WEIGHTED

KNOWLEDGE GRAPH 143
1 Introduction e 143
1.1 Existing query methods and programmaticaccess 144
1.2 Time-consuming validation and costly preprocessing 151
1.3 Functional approach to geneticdesigns 152
1.4 Legacydesigndata 152
1.5 Weighted knowledgegraph 153
1.6 Aimsand Objectives L 155
2 Results e 157
2.1 Superior Interfacing using network features L. 157
2.2 Automatic enhancement of existingdesigns 169
2.3 GeNetta . . . v v v e e e e e e e e e e e e e e e e e 183
3 Methods e 186
3.1 Fuzzy stringmatching oo oL 186
3.2 Traversingmodules L L Lo oo 187
3.3 Projecting positional information 187
4 Discussion i i i e e e e e e e e e e e 190
4.1 The weighted knowledge graph as an interface to knowledge 190
4.2 Automating processes using the weighted knowledge graph 191
4.3 Futurework 191
4.4 Conclusion e 193

CHAPTER 6: DYNAMIC NETWORKS TO PRESENT MULTIPLE DESIGN ASPECTS AND SCALE

LEVELS OF COMPLEXITY. 195
1 Introduction 195
1.1 Existing specification methods, 195
1.2 Network analysis and representation systems and synthetic biology . . 205
1.3 Aimsand Objectives L L 205
2 Results e 206
2.1 Use Case: Interactions Networks 214

11

Contents

2.2 Use Case: Scaling Complexity 216

2.3 ComparingDesigns L. 218

2.4 BioDesign beyond geneticdesigns Lo oL 218

2.5 Genetta v o e e e e e e e e e e e 223

3 Methods e 229

3.1 Projectingnetworks L L oo oo 229

3.2 Graphcomparison L L oo 231

3.3 Protocol representationo 233

4 Discussion e e e e 235

4.1 Strengths of a network approach to genetic design visualisation 239

4.2 Limitations of networks in the current landscape 240

43 Futurework 240

4.4 Extending non-design visualisation 241

5 Conclusion e 241
CHAPTER 7: CONCLUSIONS AND FUTURE WORK 243
1 Introduction e 243

2 Specifying design data by abstracting language 243

3 Enhancing design data using weighted knowledge graphs 245

4 Tailored data representation by scaling complexity 246

5 Conclusion e 247
ACRONYMS 249
BiBLiOGRAPHY 251

12

L1sT OF FIGURES

Multipartite graph representing four datatypes (genes, proteins, complexes and
chemicals) with edges relating connections between types. The bipartite graph is
projected by compressing proteins and complexes into edges representing genes’
potential reaction to individual chemicals. The monopartite projection com-
presses all types apart from genes and relationships between them. Furthermore,
new edges are inferred by the indirect connection between nodes.

A simple bipartite network displaying Genes and the constituent parts. Right -
The visualisation of this network. Left-Top - The results for the Jaccard similar-
ity. Left-Bottom - The results for the Overlap similarity. For both algorithms,
only the top six results are displayed. oo 0oL

Three examples of pathfinding algorithms. Left - Dijkstras shortest path between
the source (Genel) and destination (Gene2). The algorithm can use edge weight
or the number of connections as a metric. For example, blue represents when
weights are not considered, and green is the shortest path with the least weight
cost. Middle - Breadth-First Search, the algorithm finds its nearest neighbours
and fans out, increasing the maximum distance each iteration. The algorithm
considers the nodes closest before the ones further away. Right - Minimal Span-
ning Tree uses weight to calculate the least costly path to eachnode.
A small pseudo-gene network to display types of centrality (Degree, Closeness
and Betweenness). The table represents the centrality of each node under the
givenpredicates. L L L L
Comparison between the representation of GenBank file and the same data rep-
resented as RDF when visualised as a graph. The files define the same TetR reg-
ulatory system taken directly from the IGEM parts repository. The Genbank
(TOP) can only encode a flat structure where the record links directly to direct
physical parts. In contrast, RDF (BOTTOM) can represent an arbitrary depth
structural hierarchy. Genbank also cannot explicitly encode the types of connec-
tions. However, RDF can explicitly explain the types of relationships between
entities. Hence, the node type can be expressed, creating anew node.
RDEF structure is described as “(s,p,0)”, subject, predicate and object.
Example of how RDF can be expanded to incorporate properties. Each node
contains akey and a type, and edges contain a type and confidence. Despite nodes
and edges not explicitly linking to a single URI, URIs are still used as property

values. e e e

13

List of Figures

10

14

Simple visualisation of how SBOL designs can be created from the SBOL on-
tology. Classes are defined within the SBOL ontology (ComponentDefinition,
DNA, Promoter, RBS, CDS and Terminator). These classes can then be instan-
tiated within a design by providing a specific name (part names, for example).
The instance of a design could then be visualised as the underlying network. . . 54
Overview of SBOL3 data model. The component is the core class with func-
tional (Blue) and structural (Red) classes directly or indirectly interfacing with a
component.[4] L o e 56
A GenBank file (Left) and SBOL encoded XML (Right) describing the same
Gene (promoter, RBS, CDS and Terminator). The SBOL is cut oft due to the
large size of thedocument. L L Lo Lo oL 57

NOR gate[19], represented within the SBOL visual. The design involves two
transcription factors that regulate genes in two directions, along with another
regulatory gene that represses a promoter that regulates three genes. One of these

genes is an output gene, and the other two regulate the initial transcription factors. 61
NOR gate[19] implementation represented as a sequence map, the arrowed squares
represent user-annotated genetic parts on the sequence, and colour denotes ge-

netic roles. Created using Benchling[111]. For convenience, large sequences have

been truncated. L. 62
NOR gate[19] implementation within Eugene programming language. The Prop-

erty keyword defines objects linked to defined PartTypes. PartType defines
classes (Promoter, RBS, CDS and Terminator). Interactions such as"REPRESSES"

can be defined between PartTypes. DEVICES are defined by providing con-
straints such as composition (What the structure of the device should be). Rule

sets can be defined further by providing functional and structural constraints.

In this case, relative location requirements of component parts. Finally, a set of
Device objects are created, specific variations of the design that adhere to all con-
SEraints. 64
Abstract NOR gate[19] described using pySBOL. Components refer to entities
within the design (genetic parts here). SubComponents are structural instances

of the Components added as features on the larger NOR circuit. Furthermore,
constraints are defined by the relative order of the parts of the structure. Two
interactions are defined with the participating entities. Finally, the document
(design) is created and writtenintoafile.o oL 65
Abstraction layer within electronic, instruction and programming languages. . 67
Template definition hierarchy from general to specialised. 1- The TopLevel class

is an abstract template representing all classes relating to top-level objects of an
SBOL document, and it inherits from the Identified template, which is not dis-
played here but is the based template for all templates. 2 - The SBOL compo-

nent class requires a type parameter (within brackets to distinguish it from the
parameter name). It inherits from the TopLevel class (1). 3 - The DNA class is an
abstraction of the Component (2) providing the type (DNA). 4 - A specialised

DNA (3) class which sets the optional role property to a promoter. 70

10

11

12

13

14

List of Figures

A single part (BBa_B0034) defined within ShortBOL. It consists of the instan-
tiation of a sequence template where the subject is assigned to the body of the
RBS template using the sequence alias predicate. 71

Graph representation of the requirements to define a two reactant interaction
within the SBOL3 data model. The Interaction requires two participation in-
stances, each requiring a SubComponent with definitions of Components. . . 72

A more complex instance of specialised templates. 1 - Interaction, Feature, Sub-
Component and Participation are standard specialised templates inheriting from
a general template and assigning variables. 2 - A composite template that per-
forms expansions and URT assignments within the template. 3 - The participa-
tions are created and assigned to the Interaction instead of the parent template.
4 - A specialised template inherits from the hasInteraction (3) template. 74

A comparison of the A: “Developer mode” and the B: “User mode” defining the
same protein-promoter inhibition. The composite (inhibition) within the “User
mode” is defined within another template as the context is required. 75

NOR gate described within ShortBOL. From top to bottom: the document im-
ports the SBOL3 template library and defines the default prefix, a named prefix,
molecules and proteins using resources from a named prefix namespace. Next,
the genetic parts are described; the subjects do not need to be prefixed with a
namespace as they come from the default prefix namespace. Within some ge-
netic parts, extra information is defined, namely DNA sequences and descrip-
tions. The NOR_gate module is defined, which encapsulates the design. It first
specifies the parts’ relative positions using the precedes composite template and
then defines several interactions using multiple specialised interaction compos-
ite templates. Finally, the SBOL3 extension is defined, which ensures the design
documentis SBOL compliant. 78

The overview of RDF graph generation from ShortBOL templates. 1- Template
inheritance, the Promoter template inherits from DNA which inherits from Com-
ponent and the rest, taking the properties defined in the hierarchy. 2 - The self
keyword is inserted as a placeholder for the Promoter’s name, which is unknown
at this point. Also, all properties (RDF type, SBOL type and SBOL role) are
inserted into the body of the promoter template. Note: the property names
and values are aliases for URIs. For example, i_promoter is an alias for the URI
http://identifiers.org/s0:0000167. 3 - A template table is a dictionary with
keys as the Promoter type, and values are the triples constituting a Promoter as
defined within the template. The subject uses self as a placeholder. 4 - The de-
sign document defining a sequence and promoter template. 5 - The final RDF
graph where all templates have been expanded, and substitutions made. 79

The ShortBOL web application editor. The editor enables the compilation of
ShortBOL documents and contains autocompletion and syntax highlighting. . 81
Example of a partial template hierarchy. Each node in the hierarchy contains re-
quirements for a candidate to be valid as this template. If a pass occurs, the same
comparison is made with childrennodes. o 0000 82

15

http://identifiers.org/SO:0000167

List of Figures

16

15

16

17

18

The automatically generated ShortBOL documentation page. Each template
from both levels of abstraction is displayed with a description, usage, description
of parameters, specialised components and a small example. 84

A) The options screen to choose a component to add to a document. B) The cus-
tomisation screen for the Interaction template. Enables additional information
and to choose specialised templates. L o000 85

The glyph representation generated by the ShortBOL web application. A simple
four-part construct is displayed asanexample. Lo 85

The sequence representation of an example design from the ShortBOL web ap-
plication. Each colour represents a genetic role and is contained within the length
of the region within thesequence.o o oL 86

A network representation of the PhIF protein degradation described within SBOL.
Each instance (node) references an accessible part of the web. Also, each instance
contains edges pointing to descriptive information such as RDF types or via ex-

ternal ontologies referencing genetic rolesor types. 929

A network representation of the two interactions, the LacI protein’s production
and the pLac promoter’s repression. The block lines represent interactions ex-
plicitly encoded. The dotted line represents a known interaction that is not en-
coded because the URISs are different despite the identical sequence data of the
EWO PIOMOTELS. v v v v v v o e e e e e e e e e 100

Representation of the LacI regulation system using nodes taken from instances
of Synbiohub. The datasets do not encode interactions and are not visualised
when represented as a network. Due to the parts being represented within a la-
beled graph, literals such as sequences are stored as properties on the nodes as
opposed tonodesin themselves. L o oo 102

A Plot displaying the count of the instances of each SBOL datatype within the
original Synbiohub instance. The number of sequence-centric data types (Com-
ponent, CompondentDefinition, SequenceAnnotation and Range) is consider-

ably higher than otherdatatypes. 103

A plot displaying the count of each SBOL instance within the IGEM parts sub-
graph within the original Synbiohub instance. Functional information, such as
Interactions and Modules, are absent in thisdataset. 104

When a design is conceptualised, it is usually around function, such as how en-
tities interact. However, when it is defined, the tooling is traditionally sequence-
based. While function is still often considered, it is not explicitly encoded, so
when the designs are captured (within a GenBank file, for example), they are
purely sequence-based. L Lo o oo o 105

Network representation of similarity between promoters. Each edge contains
a separate weight between 0 and 1, which could represent the strength of the
connection by a given metric. This representation encodes the weight by colour,
with green being closer to one and red closertozero. 107

10

11

12

13

14

15

16

List of Figures

A overview of the integration steps when seeding the WKG. Each dataset is se-
quentially added into the final network while finding copies, derived entities and
encoding confidence in relationships. o Lo
An example of features within the final integrated network. All instances con-
tain weights calculated initially based on the integration of that datatype. Left
- Usage is captured between the T7 promoter node and the BBa_B0034 RBS.
The confidence is initialised based on the number of times these two entities are
found within the same constructs. Middle - displays the provenance displayed
by the sequence similarity between two instances of GFP and canonical shown
by one version of GFP with a synonym node. The confidence is calculated based
on sequence similarity. Right - Interaction data is integrated into the network,
where confidence is calculated based on the number of times this interaction is
described within all datasets.
The expansion of abstract interaction data within the WKG. A) The TetR reg-
ulatory system is captured abstractly within a database. B) The same TetR reg-
ulatory system after expansion via domain knowledge, semantic querying, and
manipulation. L L L
A network representing AmtR repression. New synonyms are created from fea-
tures of nodes and edges within the design using simple static rules. Four new
synonyms are added with new synonym edges to the relevant nodes.
The derivatives expansion takes existing interactions and adds derivatives of par-
ticipants. The derivatives (BBa_I732100 and BBa_I732103) of the "LacI" CDS
have new edges (dotted lines) into an existing interaction component. The con-
fidence is calculated by parentConfidence * similarity.
Sample example of extracting information from an existing design into the WKG.
Dotted lines represent new information in the WKG based on the extraction.
Three matches are made between the design and WKG: a direct, synonym and se-
quence match. When matches are made, the information is extracted. Metadata
can also be extracted by matches (For example, the “TetR _sensor” is extracted as
a synonym for the “pTet” entity within the WKG).
Matching a partially complete interaction network with complete generic motifs.
Left: The partial interaction component encoded within the WKG. Right: A
sample of generic motifs without specific implementation details. The motifs
are matched with subgraphs within the interaction network until a close match
is made. The new activation node and edges are inserted into the WKG.
Sample of two components from the underlying interaction network projected
from the WKG. Top) The HylIR repression system. Bottom) The Arac regula-
tory system. The interaction components may contain multiple versions of the
same part, which are one another’s derivatives. For example, the pPBAD promoter
hasthreeversions.
Identifying the logical modules from a sample of interaction components. The
inputs and outputs are grouped and duplicated based on derivatives, so deriva-
tives are never in the same path. The graph is then traversed from each input and
each output, and the pathsaresaved. 0oL,

115

119

123

17

List of Figures

17 A representation of new module nodes within the interaction projection. The

module nodes connect to the constituent interactions which make up the mod-

ule using the "hasInteraction” predicate. L. 127
18 A representation of new module nodes within the interaction projection. The

module nodes connect to the constituent interactions which make up the mod-

ule using the "hasInteraction” predicate. 128
19 Example of a component from the WKG encoding multiple types of informa-

tion (Interactions, Synonyms, Derivatives and Modules). The edges display the

confidence weight, denoting the likeness that the relationship is valid. 130
20 Example of how a new module’s confidence can be set based on the confidence

of its constituent interactions. From the source node (pTrpR-Regulation), the

shortest path is found to each participating entity, the weight is the cost to tra-

verse an edge, and the highest score is taken because higher confidence indicates

more likeliness of being correct. All paths are combined and divided by the num-

ber of entities to create an initial confidenceof 65. 131
21 Example of identifying weakly connected components from a subnetwork. Each

component constitutes a weakly connected component. 132
22 Extended example of generic motifs manually outlined or identified within the

WKG. Each motif consists of generic nodes (nodes without references to virtual

entities) and interactionedges. L L o oL 134
23 Requirements graph for the underlying ontology. Incoming information is used

to traverse this network and checked against the Requirements of a Class node.

Starting with Entity, given the ontology terms within the data, the node created

within the network will capture an increasingly more specific until either another

more specific Class does not exist or the information does not encode terms to

makeitmorespecific. L L Lo oo 136

1 The SPARQL query the Synbiohub database uses to query its data. The input

queryis“Lacl”. L o 146
2 Types of objects within several existing SBOL designs and collections. 153
3 The same input query ("Lacl") can return different information based on the

search type. Pink: Walks the network for similarity using the synonym label.

Grey: walks the network for interactions occurring using the interaction labels.

Red: Traversal to find entities commonly used together. Blue: Walks the net-

work to find modules within which the entity is implicitly contained. From the

module, walk the network to find all interactions and parts that make up the

module. Green: returns the metadata of the search query. 159
4 Representation of identifying a canonical node from a query. The first stage in-

volves finding the synonym node “pTac” via a fuzzy string match between the in-

putand node name, which is then connected to the canonical node “BBa_K864400”. 161
5 The ranking of derivatives of part BBa_K082003. The graph is traversed from

the source node (BBa_K082003) to each derivative. The score of a node is cal-

culated based on the score of the previous node and the confidence of itself; the

higher rank indicates an entity that is thought to be closer to the source. 162

18

10

11

12

13

14

List of Figures

Example of three feedback terms used to update existing confidence or create
new edges and nodes. In this case, the confidence increase is set at 5. "AraC
repression pBad” maps directly to an existing edge; therefore, the confidence is
increased. "Ara inhibits pBad_repression”; this case creates new interactions be-
cause the edges do not currently exist and sets the confidence to the initial value.
"BBa_I732100 is not Arac” explains that these two values are not synonymous,
reducing the confidence of the existingedge. 164
Visualisation of identifying similar entities to genetic part BBa_E0040 from the
IGEM dataset. A breadth-firstsearch is performed from the source (BBa_E0040).
Because all derivatives graphs are disconnected, all related entities will be consid-
ered, and non-related ones will never be considered. Finally, the position of a

node during ranking is calculated by (parent N ode S corexnodeCon fidence) /100. 165

Identifying the interactions of results from the “Lacl sensor” query. A canonical
node (BBa_K864400) is found, a participant in a repression interaction. 166

Fuzzy string matching on nodes within the network. The ranking is based on
the fuzzy string score. Metadata searches often produce incorrect results. For
example, BBa_K2084000 is the T3 promoter when the user requested the T7
PIOMOTEL. . o o v v vttt e bt b e e e e e e e 167

Usage search performed from the source node (BBa_J107113). Returns all enti-
ties within the WKG that are thought to be compatible with the source. Rank is
based on confidence; feedback may remove edges if the confidence is zero. . . . 168

Identifying the functional module (p Tet-regulation) given the search query p Tet.
When the pTet node is found, all connected modules (modules implicitly con-
taining pTet) are returned. A subgraph is returned, denoting all the constituent
nodes and edges. On feedback, all edges connecting the module to the interac-
tionsareupdated. L L L o 169

Visualisation represents genetic parts, proteins, and chemicals as glyphs. Inter-
actions between physical entities are represented via lines. This AND gate [154]
design consists of two inverters flanking a NOR gate, resulting in an AND gate

Unenhanced AND gate design represents each genetic part as an individual note.

Node labels are truncated URIs for a more comprehensible visualisation, and

each node contains properties. Visualised here are the properties for the BBa_B0064
node. e e e e 171

The four cases can occur during WKG definitive canonical match and replace-
ment. A) When the design entity is identical to the canonical WKG entity. B)
When the name of the design entity is contained within a canonical WKG entity
but does not refer directly to the same resource, i.e., the final path in both URIs
is the same. C) When the sequence of the design entity directly matches an en-
tity within the WKG. D) When the design entity is captured as a synonym of a
canonical entity in the WKG. The design entity is replaced with the WKG entity
incasesB,CandD. 173

19

List of Figures

20

15

16

17

18

19

20

21

The three cases can occur when searching for direct external matches and replace-
ments. A) When the design entity directly references a real external resource. B)
When the name of the design entity is contained within an external entity but
does not refer directly to the same resource. C) When the sequence of the design
entity directly matches an external resource. Lo oL 174

The three cases can occur when searching for potential replacements. Because
matches are not absolute, matches are scored with a metric based on the match
type. A) When the design entity partially matches the sequence of two other
entities. The match score is based on sequence similarity; the highest score is
replaced in this case. B) When the name of the design entity fuzzily matches an
entity from the WKG. In this case, the match is a synonym of another node,
so the canonical node is swapped. The score is based on the fuzzy string match
score. Note that the names appear identical; however, one contains the character
l and the other I. C) When the name of the design entity is contained within the
metadata of an external entity. The score is based on the closeness of the two
strings (in this case, the surrounding words are also accounted for). 176

The canonical version of the AND logic gate. Each part refers to an actual re-
source that can be accessed within the WKG or external database. Node labels
are truncated URIs for a more comprehensible visualisation. No edges exist be-
cause no relational information is added during canonicalisation. 177

The process to transfer interaction data (in this case, the TetR and PhlF regula-

tory system) into the design graph. The match is made via the pTetand BBa_K1899004
nodes. Left- The design graph without any edges between nodes. Right - The in-
teraction information known for these parts is encoded within the WKG. Once

the match is made, these subgraphs can be merged into the design graph. 179

A network has been created that incorporates new interaction data extracted
from the WKG and integrated into the AND logic gate design. The newly added
nodes in this network represent the interactions between various physical enti-
ties. Correspondingly, the newly introduced edges in the network depict how
these physical entities participate in these interactions. 180

Network containing new interaction data extracted from the WKG and inserted
into the AND logic gate design. Also, the network is connected using the posi-
tions of genetic parts and the functional impact of their positioning. The context-
dependent expansion displays the projection of the relative positions of genetic
parts within the AND gate with one example, which attaches two regulatory sys-

Network containing AND gate with all interaction data. These interactions
are modularised relative to their regulatory function by matching each entity
within a WKG module with an element in the network. An example shows
the BBa_K1899004 regulatory system in the design graph and WKG. When all
matches (purple lines) in the WKG are satisfied, the module is encoded within
the design graph (yellowline). o 0. 184

22

23

24

25

List of Figures

Genetta’s query system. Takes written information and results information from
the WKG. A) The user can change the type of information to search. B) The re-
sults and neighbours can be visualised to understand the context. C) An aggre-
gated score ranks information depending on the search type. D) Feedback can
be given on which weights are updatedinthe WKG. 185

Genetta provides a user with a set of potential enhancements to a design. If the
user enables the integration of an enhancement, the confidence values are up-
dated withinthe WKG. o . 186

Example of how module subgraphs are derived from the module node. Pink:
Given the input (LacI), walks the network to find modules the entities that are
implicitly contained. Green: walks the network from the module to find all in-
teractions that make up the module. Red: finds all entities which participate in
theinteraction. e e 188

Example of how module subgraphs are derived from the module node. Pink:
Given the input (LacI), walks the network to find modules the entities that are
implicitly contained. Green: walks the network from the module to find all in-
teractions that make up the module. Red: finds all entities which participate in
theinteraction. e e 189

An example of a Plasmid Map which represents the AND[19] gate construct.
The coloured lines represent sequence annotations (Promoter or CDS, for ex-
ample) with restriction sites displayed on the outer edge. The visualisation was
created usingBenchling. o oo oL o 197

Visualisation where genetic parts, proteins and chemicals are represented as glyphs.
Interactions between entities, whether physical or conceptual, are represented via

lines. This AND gate [19] design consists of two inverters flanking a NOR gate
resultinginan AND gatedesign. L oL 198
Visualisation mirroring the electronic logic gate symbols. A more abstract rep-
resentation based on boolean interactions between entities. This representation
consists of two inverters flanking a NOR gate resulting in an AND gate design

[19]. . . o e e e e e e e 199
Conceptualisation of a potential SBOL document that explicitly encodes exper-
imental, metadata, structural and interaction data. Furthermore, each data type

also contains several more specialised types of data such as sequence, genetic parts

or the structural hierarchy in the case of structuraldata. 201
Example trivial social network, a multipartite graph containing multiple data

of data (people, places and activities), connected by various relationship types
(knows, likesand lives). 202
Example of a social network that encodes relationships between people, cities
where they live, and their interests. n=136, e=96. The network diagram is a ran-
domly generated visualisation that illustrates a complete dataset. 203
Interaction network encoding relationships between people only. Here, the net-

work is disconnected, and many isolated components exist. n=73,e=45 204

21

List of Figures

10

11

12

13

14

15

22

The logic gate and glyph representation of the NOR logic gate. A) The logic
gate with inputs (arabinose; alc) and output (YFP). B) The glyph representation
displays two promoters (pBAD and pTet) regulating a CDS, which represses the
expressionofasecond CDS. L L Lo oo

The NOR logic gate when directly represented as a network. The network is
unreadable but computationally tractable. Note that the figure omits labels due
to the size and cluttered visualisation.

A network is generated from the same design where only the physical elements
(i.e. DNA and molecular entities described) are shown. The nodes represent
physical entities (DNA, proteins, chemicals and complexes), while the edges rep-
resent that the entities are constituent entities of the NOR gate.

NOR gate visualised with a concentric layout and colour denoting genetic type
orrolewithinthedesign.

A potential abstraction hierarchy defining high-order cellular systems constitut-
ing several boolean devices of genetic parts defined within DNA fragments.

A hierarchical network of increasing abstraction, from modules to parts. A Glyph
representation of the digitalizer [183] synthetic circuit. The circuit is based on
two negative interactions between the regulatory protein Lacl and a small RNA.
It offers the ability to plug and play any gene of interest the user wants to dzgi-
talise—the reporter gfp gene is used for characterisation. The goal of the digi-
talizer circuit is to minimise the leakage expression of a specific gene of inter-
est while maximising the full production. That is to say, to enlarge its dynamic
range. B is the hierarchical network, nodes represent biological and conceptual
entities, i.e., nodes at the bottom represent DNA parts, nodes at higher levels
represent modules (the top node is the entire circuit), and edges represent hier-
archical direction. Circuit building details are highlighted within the network,
e.g. restriction sites or sequence to couple lac/ to msf-GFP.

A) Boolean gene circuit 0x87. The circuit couples four NOR logic gates and one
OR logic gate (top diagram) and uses three molecular reagents, five regulatory
proteins, five genes and ten promoters (bottom diagram). B) Network represen-
tation of the 0x87 design, where physical entities (nodes) and interactions (edges)
arepresented.

Adjusting network abstraction levels using a NOR gate design [206] modelled
in SBOL (see methods). A. The NOR gate design is turned into a network with
all molecular and genetic elements (nodes); and interactions between entities
(edges). B. Non-genetic elements, i.e., non-DNA-based elements, are merged
into the appropriate genetic elements. For instance, Araand Ara-araC are merged
into the pBAD node. C. Maximum abstraction into input-output data. The
colour scheme is constant regardless of abstractionlevels.

207

208

210

212

213

214

215

16

17

18

19
20

21

22

List of Figures

The intersection of two protein networks. In this case, protein network refers
to the abstraction of sequence and non-genetic nodes into the resultant proteins
and how the presence of this node affects the state of the design. A) Protein
network representation of Boolean gene circuit 0x4/[19]. B) Protein network
representation of Boolean gene circuit 0xF6[19]. C) Intersection (joint edges) of
AandBproteinnetworks. L oo o

The network of a gene circuit that uses arabinose as input can interact with the
arabinose degradation pathway. The top figure is an abstract network displaying
aNOR gate’s critical components and the arabinose pathway’s initial steps—the
bottom figure: links the corresponding extended networks.

NOR-gate experimental protocol formalised as a network structure. The net-
work can be interactively adjusted to show different levels of abstraction. Nodes

represent reagents or sub-protocols, and edges imply input/output relationships.

The user interface for the Genetta visualisationtool.

The editor tool, an extension of the visualisation tool that enables modifications
tobemadetoadesign. oo oL

The workflow for transforming designs into dynamic network structures. Bl)
The input design should be formalised using existing formats. We advocate for
using SBOL for genetic designs since it allows for capturing complex informa-
tion. B2) Input data is normalised into an internal structure by mapping seman-
tic labels or keywords to a pre-defined network data model. B3) The graph with
all design information is represented and ready for algorithmic analysis. B4).
The builder module of the software produces specific sub-networks based on
user requirements and the resulting analysis of the original structure. BS). The
visualiser calculates all visual-specific elements (layout, colour, shape, size) and
renders the graph accordingly. B6). The dashboard is the user aspect of the ap-
plication. It handles the graph rendering and user inputs by returning callback
requests to the server.B7). The editor dashboard provides the ability to add new
nodes and edges. When a network is projected (as is done within the visualiser),
aset of valid node types and edge types are provided to the user. B8.) The expan-
sion builder takes information from projected representations and expands it to
the underlying network, ensuring the same form is kept and that connections
between old and new information are made where necessary.

Displays the process to produce the protein effect network (abstract interaction
network displaying the effects of protein presence on the circuit). A) All design
information is visualised. Interactions are structured as nodes with interactant
edges connecting to the participating physical entities. B) The interaction net-
work is visualised by transforming information from the complete network. In-
teractions are formed by collapsing the node into new edges between the par-
ticipating physical entities. C) The protein eftect network is visualised from the
interaction network. Edges between proteins are formed by traversing from the
source protein until a different proteinisfound. oL

222
225

23

List of Figures

24

23

24

25

26

27

28

The graphs of 0xc7 and 0xF6 circuit as described in Nielsen ez 4/.[19] are ab-
stracted into protein interactions by transitive closure via depth-first-searches
(left) and intersected with another network (middle) to identify common nodes
and sub-graphs between the two (right). o 0.
Network of potential build instructions for NOR gate constituting opentrons
(OT2) movements (transfers from differentwells).
Modular build plan for the NOR gate design. Constitutes three abstract steps
(Assembly, Transformation and Validation).
The NOR gate build protocol’s input/output representation. Nodes represent
physical entities such as reagents, and abstract actions such as transferring liquids
and edges represent connections to sources and destinations.
The NOR gate build protocol’s process representation. Nodes represent reagents
(the inputand outputs of processes), and edges represent specific and abstract in-
tEractions.
Two abstract representations of the protocol process to build the NOR gate de-
sign. A) Abstracts specific actions into higher-level processes, for example, the
ligation step. B) Abstracts all processes into three modules (assembly, transfor-
mation and validation).

237

238

LisTt OF TABLES

N N

Keywords, definitions and small methods for networks
Example of three triples defining a simple Lacl regulation system. Subject and
Object columns define entities within the design and the predicate column de-
fines relationships between the subject and object.
Example of three triples defining a simple LacI regulation system. Subject and
Object columns define entities within the design and the predicate column de-
fines relationships between the subject and object. Some resources (IRI) define
accessible resources which reference external resources.
Core components and description of SBOL3 datamodel.

Overview of pruning process for the IGEM dataset before being integrated into
the WKG. e
Overview of the pruning process for the Cello dataset before integration.
Overview of the pruning process for the VPR Dataset before integration.

Overview of the integrated datasets and their characteristics.
The logical groups taken from components within the interaction projection
graph. Each group contains the input and outputs of the component without
any derivatives.

Several SBOL designs and collections and descriptions regarding their contents.

The process to perform the intersection of two graphs with an example of the
intersection of the graphs of 0xc7 and 0xF6 circuit as described in Nielsen ez
al.[19] that have been abstracted into protein interactions.

25

CHAPTER 1: INTRODUCTION

1 BACKGROUND

Synthetic Biology (SynBio) seeks to engineer either fully synthetic biological material or redesign
systems already found in nature[6]. Many principles adopted by SynBio are taken from other en-
gineering fields, namely, software engineering and computing science, by applying techniques to
build up levels of abstraction, such as parts, devices, and systems, using standardised and inter-
changeable building blocks[7]. This idea of programming living systems is a fundamental goal of
SynBio[8], and it involves applying the principles of information processing, control, and design
commonly used in computer programming to the field of biology. However, design data is fre-
quently captured within adhoc flat text formats, which cannot capture the information required
to realise these principles truly. Data standard formats have been developed specifically for SynBio,
for example, the Synthetic Biology Open Language (SBOL)[4], which aims to address these issues.
These formats are designed to replace older formats and specifically target the requirements within
synthetic biology, namely the ability to interface computationally with the data and the capacity
to define abstract modules. Data standards have been limited in widespread adoption because
of the inherent complexity introduced, burdening practitioners, the departure from established
working procedures and a lack of clarity on the benefits of implementing standards. Instead of
developing a genetic design at the sequence level with handwritten annotations, the intent of the
design must be encoded with precise labels specified within the standard[9]. While some efforts
have been made to reduce these barriers via specialised tooling, they may be too complex, may not
consider the community’s wide range of knowledge levels and may not provide sufficient motiva-
tion for such a considerable change to working practises.

2 AiMms AND OBJECTIVES

RESEARCH QUESTION : This thesis investigates how standard data structures can simplify the
specification, integration, enhancement, and representation of design data in synthetic biology,
ultimately reducing the burden on users. Aim: The main goal is to enhance the usability of syn-
thetic biology data by employing standard data structures that minimise the need for users to
interact directly with complex underlying systems.

OsjecTIVES : First, the thesis focuses on developing abstract methods for specifying design
data. This aims to simplify the complexities typically associated with such tasks, thus encourag-
ing wider adoption of standards like SBOL. Secondly, it seeks to create a centralised dynamic data
system that integrates and enhances existing design data. This system is designed to evolve and
adapt, reducing uncertainties within the existing knowledge base and making data management
more straightforward. The research also explores implementing user-centric interaction models.

27

Chapter 1: Introduction

Using approaches such as the WKG querying technique, the system provides tailored search re-
sults, handles abstract queries, ranks resources based on quality, and incorporates user feedback
to refine future outputs. Another objective is to facilitate automatic data integration. The study
investigates methods that allow the knowledge system to automatically integrate and update ex-
isting design data, thereby reducing the manual effort required and enhancing the efficiency of
data workflows. Lastly, the thesis examines the development of multiple representational meth-
ods. This involves creating various ways to view data derived from a single design to address the
needs of different users, tackling the challenge posed by the multi-dimensional nature of synthetic

biology data.

RESEARCH PRINCIPLES : The thesis adheres to three main principles. It treats all data as net-
works to facilitate complex analysis and easy modifications. It extends these networks into knowl-
edge graphs to enhance data consistency and tractability. Finally, it emphasises automation and
minimal human input to avoid comprehension issues and reduce the need for direct interaction
with data structures.

3 CONTRIBUTION

3.1 RESEARCH

The first research outcome explored how the natural language used within synthetic biology and
the language introduced by standards can be mapped together to provide user-facing language
interfaces. Next, the weighted knowledge graph (WKG) enabled the ability to normalise, canon-
icalise, and enhance existing synthetic biology databases. Once the WKG was established, two
use cases were examined from a human and computational perspective. From a human view, to
provide better access to data via an improved query system exploiting the features and metadata
encoded within the WKG. From a computational approach to remove requirements imposed on
a user by standards by automatically introducing extra information into an existing design which
is not commonly described. The final research output explored how standards can increase per-
ceived complexity and provide insight by using network projections to create new graphs con-
taining data relevant to a specific design aspect, such as graphs representing interactions between
biological or chemical entities.

3.2 TooLs

During this research, two tools were developed. ShortBOL is a tool developed parallel with ab-
stracting language research (Chapter 3). The tool contains a new language which abstracts much
of the unfamiliar language introduced with standards. Furthermore, it provides an easily exten-
sible template system that increasingly allows abstract representations to be captured given the
user’s requirements. Genetta is a tool that combines all methods developed during network-
centric research (Chapters 4,5, and 6), namely enhancing, validating, and representing genetic
designs within networks. The tool includes methods for user-customisable network visualisation,
evaluation, canonicalisation, enhancement and validation of genetic designs.

28

4 Structure

4 STRUCTURE

The remainder of this thesis is divided into seven chapters. Chapter two is the background, which
expands on the motivation, including the literature review and approaches to tackle the identified
research areas. Chapter three explores efforts to simplify and democratise language, specifically
new language not typical within synthetic biology introduced when data standards are imple-
mented. Chapter four explores how existing databases can be automatically canonicalised, that
is, the ability to create virtual analogues and introduce provenance into design data. From this, the
centralised database is used to explore how it can be expanded to include new information which
is not explicitly defined. Chapter Five covers how a user’s access to data can be improved and
how existing genetic designs can be enhanced using the centralised weighted knowledge graph es-
tablished previously. Chapter six combines the previous efforts of specification, canonicalisation,
and enhancement to represent genetic designs dynamically using network visualisation so that in-
formation can be tailored to a broad range of people. Finally, in chapter seven, the conclusion
summarises the research presented in the thesis and describes possible ideas for future work.

29

CHAPTER 2: BACKGROUND

1 INTRODUCTION

This section comprises a review and explanation of five topics that underpin the research. First, an
overview of synthetic biology is presented, encompassing its core principles, an analysis of devia-
tions from these ideals in practice, and an exploration of the underlying reasons. Furthermore, the
functioning of the design, build, test, and learn (DBTL) cycle in synthetic biology is explained,
along with the discussions surrounding automation within the DBTL framework and the neces-
sary conditions for successfully implementing this iterative process. Secondly, this introduction
covers the representation of synthetic biology information, particularly design data, as a network
of interconnected data points and explores the potential for data analysis. The background of
networks encompasses the core principles of network science and numerous established meth-
ods utilised throughout multiple research chapters. Next, this section explores the role of knowl-
edge graphs in computer science, their application to data in synthetic biology, and the benefits of
knowledge graphs compared to more loose data structures. Additionally, it explains ontologies,
a specific type of knowledge graph that can impose a structured framework and semantic guide-
lines on individual data sources. Finally, this section examines the general concept of standards
and their successful application across various fields to accelerate progress. The Synthetic Biology
Open Language (SBOL)[10] standard is reviewed as the primary standard used in this research.
This review discusses the benefits of utilising standards within synthetic biology and highlights
the challenges introduced during adoption. This section reviews existing data sources that cap-
ture structured and unstructured design data, shedding light on fundamental issues regarding
standardised design data.

2 SYNTHETIC BrorLoGgy

2.1 CORE PRINCIPLES

Synthetic biology applies engineering principles to biology, emphasising forward engineering[11]
to design or redesign biological entities as systems that either do not exist in nature or perform
functions not naturally carried out by biological systems[12]. Synthetic biology draws upon prin-
ciples from engineering disciplines, including computer science, and practical knowledge from
traditional biological fields like systems biology and molecular biology. Three core principles un-
derpin this field[13]. Modularisation concerns constructing a system from interchangeable build-
ing blocks, allowing for the substitution of biological components or constructs to ensure com-
patibility with the host or to alter local functionality within synthetic biology. Abstraction sim-
plifies or conceals complexity, presenting only relevant information to reduce the perception of
intricacy. In synthetic biology, abstraction is achieved by encapsulating sequence data into biolog-

31

Chapter 2: Background

ical parts, which, in turn, are encapsulated into devices and can increase arbitrary levels of detail.
Standardisation entails establishing a shared set of operational principles, terminology, processes,
structures, or protocols to facilitate interoperability among different entities. An example of stan-
dards in synthetic biology is the SEVA format[5], which provides a framework for assembling
components inside plasmid vectors, allowing for the exchange of genetic designs across various
host systems. When applied in the context of synthetic biology, these engineering principles pro-
mote the reusability of biological components and enhance the predictability and robustness of
design operations.

2.2 GENETIC CIRCUITS

The design and implementation of genetic circuits [14, 15, 16] that allow cells to perform pre-
defined functions lie at the core of synthetic biology[17, 18]. Furthermore, the engineering of
genetic circuits involves various genetic parts that play crucial roles in ensuring the functionality
and reliability of these systems. Key components include:

* Promoters and Operators: These DNA sequences regulate the transcription of genes. The
choice of promoter determines the conditions under which a gene is activated or repressed,
which is fundamental in creating circuits that respond to environmental stimuli or internal
cellular states.

* Ribosome Binding Sites (RBS): These sequences influence the translation initiation rate
of mRNA into protein, which is crucial for adjusting the protein output levels of genetic
circuits.

* Coding Sequences: These are the regions of DNA that are transcribed and translated into
protein, serving as the functional machinery or reporters in genetic circuits.

* Terminators: These sequences signal the end of transcription, ensuring proper demarca-
tion of genetic messages and preventing run-on transcriptions, which could disrupt circuit
functionality.

* Insulators and Scaffold Matrices: These elements help mitigate the effects of surround-
ing genetic elements, reducing crosstalk’ between adjacent modules and enhancing circuit

predictability and stability.

Genetic circuits are an instance of applying engineering principles such as modularisation and
abstraction to biology. Biological parts are assembled inside the cell to perform pre-defined func-
tions. An example is the engineering of increasingly complex Boolean logic circuits[19] that use
cascades of transcriptional regulators. Other circuits, such as switches[20], counterss[21] and
memories[22], are routinely engineered using transcriptional and post-transcriptional processes[23].
Different host organisms such as bacteria[24], yeasts[25] and mammalian[26] cells are used to test
circuits in several applications[27], ranging from pollution control[28] to medical diagnosis[29].
Furthermore, the functionalities of genetic circuits will only improve as scientists control the in-
formation processing abilities of biological systems: signal noise[30, 31] metabolic dynamics[32,
33], context-circuit interplay[34, 35], stability[36] and more[37].

32

2 Synthetic Biology

2.3 DESIGN DATA

Design data in synthetic biology refers to the information and specifications crucial for designing
and engineering biological systems for a particular purpose. Design data within synthetic biology
will contain a consortium of data not captured within traditional biology[38]. Here are some
critical aspects of design data in synthetic biology:

¢ Structural Information: Fundamentally, design data includes genetic sequences that en-
code the functions or characteristics of interest. However, the sequence data can be ab-
stracted into the component genetic parts, such as promoters, terminators, and other ge-
netic elements, which can then be further abstracted into more comprehensible modules[39].
Furthermore, the parts may reference a catalogue of standardised biological parts.

* Functional Information: Synthetic biologists design genetic circuits, which are combina-
tions of genes and regulatory elements that perform specific functions within a biological
system. Design data for genetic circuits includes information on the arrangement and reg-
ulation of these components[9].

¢ Computational Models: Computational models can predict the behaviour of biological
systems based on design data[40].

* DNA Synthesis and Assembly Instructions: Design data provides instructions for syn-
thesising and assembling DNA sequences[41].

¢ Characterisation Data: Designs are often context-dependent, and information on how
specific biological parts or genetic circuits behave under different conditions is essential [42].

Overall, design data in synthetic biology serves as the blueprint for creating and engineering bio-
logical systems. Design data in synthetic biology differs significantly from capturing natural bio-
logical systems in one significant way. Design data in synthetic biology focuses on the intentional
design, construction, and manipulation of biological systems for practical purposes while captur-
ing natural biological systems, which involves studying and documenting existing ecosystems and
organisms in their natural state without significant alterations. Although natural and synthetic
biology complement one another, the type of information captured differs. While attempting to
reduce complexity, the genetic circuit approach exposes some unique challenges. As circuits in-
crease in complexity, unintended interactions between genetic elements can occur, leading to un-
predictable behaviours. This complexity management is a significant hurdle in synthetic biology.
Also, different host organisms might respond variably to the same genetic circuit due to differ-
ences in their cellular machinery, impacting the performance consistency across difterent biologi-
cal contexts. Genetic circuits can be prone to mutations or epigenetic modifications, potentially
leading to circuit degradation or failure, especially in long-term applications. Finally, scaling up
from small test circuits to larger, more complex systems often introduces new challenges, includ-
ing maintaining the functionality of each component and integrating multiple circuits without
interference.

33

Chapter 2: Background

INTENT AND REALITY

While modularisation and abstraction are at the core of driving aims of synthetic biology more
often, the reality of applied synthetic biology is the opposite. Synthetic biology processes are more
commonly still considered at the primary structure level with no abstraction. Furthermore, data
is captured and stored in ad hoc and free-form formats, and processes can be specific to an indi-
vidual lab. For example, all descriptive data is stored as unconstrained written text in a Genbank
file. For example, experimental, functional, conformational, epigenetic, contextual, quantitive or
metadata can be captured formally within these files. Furthermore, a hierarchy of information,
such as abstract modules or even higher-order genetic information, such as cell-cell information,
cannot be encoded within a Genbank file. This type of information cannot be explicitly encoded
within these formats because they do not contain the infrastructure to define this type of informa-
tion, as they were initially described to capture natural sequence data, which will not be changed
over time. Furthermore, Genbank annotations are largely computationally intractable because
the context regarding what the annotations mean is written within free, meaning consistent com-
putational interpretation is impossible. While this works for traditional biology, where the focus
is on the sequence data, this goes directly against the principles of modularity and abstraction of
synthetic biology. In conclusion, while the intent is to express biological systems as genetic circuits
where modules can be swapped, the reality is that this is seldom achieved, even in theory, when
capturing the intent of a design.

2.4 DEs1GN, BuiLp, TEsT, LEARN (DBTL)

Design, Build, Test and Learn (DBTL)[43] is a circular workflow where each iteration aims to
learn from the previous and improve the biological system by the desired metric. DBTL is often
discussed with automation because the iterative nature combined with the ever-increasing com-
plexity of biological systems makes manual processes more unfeasible. For example, a biologist
could often manually carry out hundreds of pipetting steps during the build phase. Combined
with this, the cyclical nature of DBTL, where certain functions may be performed multiple times
over multiple iterations, is prime for automation, which excels at parallel or stable operations[44].
DBTL and automation will undoubtedly be crucial components for advancing synthetic biology.
However, like DBTL and automation, they are closely related, and automation and standards are
also commonly coupled. Because automation approaches do not benefit from a human under-
standing of abstract concepts, the data and processes must be formalised, i.e. a computer must un-
derstand information and instructions unambiguously. Therefore, another reason for synthetic
biology standards is automation, where the whole process is built from formalised data and pro-
cesses. When standards are applied, abstraction can be applied to the workflows and technologies,
allowing DBTL workflows to be used more generically among different labs. Because this research
is focused on standard data, the following sections discuss the computing science principles cen-
tral to this work and how they can be applied to represent standard synthetic biology design data.

34

3 Graph Theory and Network Science

3 GRAPH THEORY AND NETWORK SCIENCE

3.1 INTRODUCTION

"Networks are at the heart of complex systems” - Barabdsi Complex systems are massively challeng-
ing to understand by their nature[45]. Representing data that can be conceptualised as a network
helps considerably with comprehension. Networks are becoming common knowledge mainly
because of social media and the network of interconnected people. However, networks have also
been applied to solve problems with other complex datasets within numerous fields, including bi-
ology, security, city infrastructure and the World Wide Web. Networks can expand as new infor-
mation is discovered and change shape to meet requirements. Because of the multi-variate nature
of the data, a flexible structure is critical. Fundamentally, networks encode the interconnections
between a set of entities. Graphs are represented in the form of nodes (individual points of data)
and edges (relationships between the data) [46]. A node represents each entity, and edges represent
connections between nodes. For example, when building networks from circuit designs, a repres-
sion relationship edge links two nodes representing a regulator protein (e.g. alc) and its cognate

promoter (pTet).

3.2 NETWORK SCIENCE IN BrorLogy

Graph theory methods can assist the interrogation of network structures in several ways for cir-
cuit designs and produce sub-networks of particular interest hidden within design formats. What
has been termed network biology deals with the quantifiable representation of complex cellular
systems in graphs and their study to characterise functional behaviour. Furthermore, a network
approach is often successfully implemented within systems biology to represent both simulation
models and knowledge models [47] for example, to depict multiple omics data within a single
network. Within complex systems, networks exist that encode interactions between elements.
Genetic designs model complex systems that contain multiple networks such as transcriptional,
parts hierarchies or protein interaction networks. Network science has precedence as it has been
applied successfully to complete many tasks and provides confidence in using a network approach
to genetic designs.

3.3 FUNDAMENTAL METHODS AND TERMS

Many existing and fundamental network science methods have been combined to overcome spe-
cific challenges. This section will briefly discuss some of the methods used.

Table 1: Keywords, definitions and small methods for networks

Name Description Example
Graph A setof nodes N connected by edges E. | A graph could represent the synthetic
biology design.

property of a graph. vate a specific protein.

Structural metrics | Provide a measurement of a structural | The number of genes required to acti-

35

Chapter 2: Background

Global metrics

Provide measurements of the whole

graph.

To identify highly coupled entities
which are all responsible for the pro-
duction of some chemical.

Local metrics

Provide measurements on an individ-
ual node.

The number of coding regions acti-
vated by a specific promoter.

node.

Walk A set of edges within a graph. The effects of a repressed promoter on
a regulatory network.
Path A walkin which all theedgesand all the | The effects of a repressed promoter on
nodes are different. aregulatory network without feedback
loops.
Path Length The number of edges the path con- | The number of entities modified by a
tains. change in a regulatory network.
Shortest Path Shortest distance between nodes i and | The most efficient path in a regulatory
j- network to enable protein production.
Notation: d|d;;
Never contains self-loops or intersec-
tions.
Diameter Longest shortest path in a graph The maximum number of biochemi-
Notation: d;nqz cal reactions required to convert one
Distance between the two furthest | metabolite into another within the or-
nodes. ganism.
Average path | Average of the shortest paths between | The average number of biochemi-
length all pairs of nodes. cal reactions required to convert one
Notation:< d > metabolite into another within the or-
Formula: ganism.
1
Ny, 2
1,7j=1,Nil=j
Cycle A path with the same start and end | Toidentifyifa path within aregulatory

network feeds back on itself.

Eulerian Path

A path that traverses each edge exactly
once.

In a network where each node repre-
sents a nucleotide and edges represent
the order of assembly, the path would
reconstruct the entire synthetic DNA
molecule without overlaps or gaps.

Hamiltonian Path

A path that visits each node exactly
once.

In a network, each node represents an
amino acid residue, and edges repre-
sent potential interactions between ad-
jacent residues. The path through this
graph visits each residue exactly once.

36

3 Graph Theory and Network Science

Connectivity The minimum number of elements | Could be used to identify functional
that need to be removed to separate the | modules within a genetic design.
remaining nodes into two or more iso-
lated subgraphs.

Clique A subset where an edge connects all | May refer to a functional module with
nodes. complementary interactions.

Connected There is a path between every two | A connected regulatory network en-
nodes. sures that every gene can potentially in-

fluence or be influenced by others.

Strongly con- | There is a route between every two | A path indicating a feedback loop

nected nodes. within the regulatory network.

Complete There is an edge between every pair of | Complete protein-protein interaction
nodes. would imply that every protein inter-

acts directly with every other protein in
the network.

Disconnected At Least one instance of no path be- | This could indicate that there are iso-
tween nodes. lated metabolic pathways that do not

interact with each other.

Components Disconnected Sub-Graphs. The isolated metabolic pathways

within a disconnected network.

Weighted Graphs Network edges can have properties | A weight may indicate the levels of ex-
providing information about individ- | pression of a given protein.
ual edges. Weight is a specific numer-
ical property representing the cost of
traversing that relationship, whether
distance, time, cost or any other factor.

3.4 TyPES OF GRAPH

Based on the type of data represented and the resultant shape, graphs can be split into three cat-
egories: monopartite, bipartite and multipartite. A multipartite graph is a graph that contains
multiple types of data, for example, parts, interactions, measurements, and simulation data, and it
is the most likely type of graph for capturing design data. With large datasets, a multipartite graph
is the most likely result. However, a bipartite (two data types) or monopartite (a single data type)
graph is more desirable for analysis and comprehensible representation. Graph algorithms do not
consider (or can understand unless explicitly explained) the information (labels and properties),
and many datatypes complicate representation with large networks. Therefore, it is commonly a
requirement before analysis on graphs is performed to produce projections of a graph and perform
analysis on this projection. A projection is a compression of information by abstracting two or
more nodes (including edges) into a single node. Figure 1 displays a small example of how a mul-
tipartite graph (many datatypes in a single graph) can be projected into bipartite (two datatypes
in a graph) and monopartite (single datatype in a graph).

37

Chapter 2: Background

Multipartite

M contains

contains contains
-
Complex 2 v~

A

v

|Protein 1}=interacts— Gene 2 |

Ueacts

| Gene 1)

C
)
)

P

2/

rotein

{

Interacts

W reacts
contains \YQng

Interacts

\/x ,
Mteracts Interacts Gt

contains contains

Bipartite

Chemical 1

mayReact
Y mayReact mayReact ayReact
N s
mayReact mayReact mayReact mayReact

D

Chemical 2

)

Y

pve
N N

mayReact mayReact

Chemical 3 Chemical 4

C
C

Monopartite

Gene
J— /V |

Interacts

E
N
W

Interacts
Interacts

N

Figure 1: Multipartite graph representing four datatypes (genes, proteins, complexes and chemicals) with
edges relating connections between types. The bipartite graph is projected by compressing pro-
teins and complexes into edges representing genes’ potential reaction to individual chemicals. The
monopartite projection compresses all types apart from genes and relationships between them.
Furthermore, new edges are inferred by the indirect connection between nodes.

3.5 PrROBLEM CLASSES

Here, we briefly discuss some general groups of problems that can be solved using a network ap-

proach. These are problems that have been solved using networks and are often combined to solve
specific and more significant challenges. In each group, the type of problem being solved is dis-
cussed within the context of synthetic biology. Each group will be used several times within the
upcoming chapters, and the specifics will be discussed where relevant.

SIMILARITY

The similarity is how alike the two nodes are based on neighbouring nodes or node or edge prop-

erties. The similarity is a fundamental problem within network science because, without a solu-
tion, no methods for comparing within the network exist. Similar algorithms are commonly used
within a more extensive pipeline to quantify node similarity for some grander purpose. However,

38

3 Graph Theory and Network Science

one potential use of node similarity within synthetic biology could be identifying potentially ho-
mologous genes. A similarity measurement may be used based on the interaction of a gene with
other entities. If two genes have many of the same connections, that may describe some homo-
geneity. Node similarity compares nodes based on the number of shared neighbour nodes. This
type of similarity helps identify structural equivalence within a network. Node Similarity com-
putes pair-wise similarities based on the Jaccard metric[48](comparison between the sets relative
to the total number of unique elements in both sets) or the Overlap coeflicient[49](comparison
between the number of shared elements between the sets without considering the size of the sets
or the number of unique elements). Figure 2 displays a simple example of node similarity using
both metrics. The premise is based on the number of similar constituent parts between genes.
The Jaccard metric considers Gene2 and Genel to have 2/3 similarity because they share two of
the same parts out of a maximum possible three. However, the overlapping similarity provides a
score of one because all parts in Genel are also in Gene2.

* Jaccard metric (Jaccard Similarity Score)

_|AnB| |AN B|
- |AuB| A+ |B|—-|ANB|

J(A, B)

* Overlap coefficient (Szymkiewicz—Simpson coefficient)

|AN B

O B) = inliAl. 18]

PaTH FINDING

Pathfinding walks the network to find a path between two or more nodes. It can also be used to
find the shortest path or evaluate the availability and quality of paths between nodes in a network.
Pathfinding algorithms use the concept of cost, which is the cost for the pathfinding algorithm to
pass an edge. The cost could be the number of edges passed or based on a property on the edge. In
the upcoming examples, the weight is explained further. Like similarity algorithms, pathfinding
within networks is a fundamental task commonly combined with other algorithms to solve nu-
merous problems. Shortest path algorithms (a subset of pathfinding) could be used in isolation
to identify the most optimal pathway within metabolic pathway engineering. Determining the
shortest path could indicate an optimal pathway in a network where many paths exist from some
input chemicals to some output compound. Many algorithms exist to solve several problems by
focusing on different subproblems. A simple pseudo-gene network displays pathfinding between
genes in the upcoming explanations of the specific algorithms.

D1jksTRA’S SHORTEST PATH ~ The Shortest Path algorithm [50] calculates the shortest (weighted)
path between a pair of nodes. The shortest path is desirable for multiple usages. Figure 3 displays
the shortest path algorithm using both weights and the number of edges. For example, if weight
is not being used and simply reducing the number of edges is required, the algorithm finds a path

39

Chapter 2: Background

Jaccard Similarity

e J(Genez,Ginet) =

Nodel | Node2 Similarity
Promoter1
Gene2 | Gene3 1 5
— | Gene2 | Genel 0.666
Genel | Gene3 0.666
Gened4 | Gene5 |0.5 _ RBS
Gene2 | Gene4 0.25
Gene3 | Gene4 0.25
; An B |AnB|
JAB) =1 UB[JA|+|B[- AN B oSt

[AUB| — (2+3) -2

Overlap Similarity

Nodel | Node2 Similarity

Gene2 | Gene3 1 __Termmator‘l

— | Gene2 | Genel 1

Genel | Gene3 1

Gene4 | Geneb 1

|
=
2
. [0) .
>
)
w

Gene2 | Gene4 0.5

Gene3 | Gened 0.5

|ANB|
O(A,B) =
() min(|Al,|B)
— O 2. Genel) = —————— =
(Genez, Genel) min(|2],]3])

Figure 2: A simple bipartite network displaying Genes and the constituent parts. Right - The visualisation
of this network. Left-Top - The results for the Jaccard similarity. Left-Bottom - The results for
the Overlap similarity. For both algorithms, only the top six results are displayed.

of length three, but if weight is taken into account, then the result is a length of 4 with a weight
cost of 90.

BREADTH-FIRST SEARCH The Breadth First Search (BFS) algorithm starts at a source node and
traverses to nodes in order of increasing distance. BFS is useful when searching for nodes that fill
criteria, and the assumption is that closer nodes are more likely to match. The alternative to BFS
is Depth First Search (DFS), which traverses each path before returning. Figure 3 displays a BFS
where the source node (Genel) traverses to Gene2 before backtracking to Gene3, performing the
rest of the search in one traversal.

MINIMAL SPANNING TREE The Minimum Spanning Tree begins from a source node, finds
all reachable nodes, returns the edges between the source and destination, and the minimal cost

40

3 Graph Theory and Network Science

associated with reaching the node. Figure 3 displays the minimal spanning tree using the source
node (Genel) and finding the minimal cost to reach each node within the network.

Dijkstra Shortest Path Breadth-First Search Minimal Spanning Tree

Source: Genel, Destination Gene7 Source: Genel Source: Genel

Without weight (Blue): Paths:1. [Genel,Gene2] Dest:Gene2, Cost: 20, Path: [Genel,Gene2]

ath: [Genel,Gened,Gene5, Gene7] 2. [Genel,Gene3,Gened,Gene6,GeneS,Gene7] | [Dest:Gene3, Cost: 50, Path: [Genel,Gene3]

Final Path Distance: 4 Dest:Gene4, Cost: 60, Path: [Genel,Gene2,Gene4]

With weight (Green): Dest:Gene5, Cost: 90, Path: [Genel,Gene2,Gene4,Gene5]
Path: [Genel,Gene2,Gene4,Gene6,Gene7] Dest Gene6, Cost: 90, Path: [Genel,Gene2,Gene4,Gene6]
Final Cost: 100 Dest:Gene7, Cost: 100,Path: [Genel,Gene2,Gene4,Gene6,Gene7]

Figure 3: Three examples of pathfinding algorithms. Left - Dijkstras shortest path between the source
(Genel) and destination (Gene2). The algorithm can use edge weight or the number of con-
nections as a metric. For example, blue represents when weights are not considered, and green is
the shortest path with the least weight cost. Middle - Breadth-First Search, the algorithm finds its
nearest neighbours and fans out, increasing the maximum distance each iteration. The algorithm
considers the nodes closest before the ones further away. Right - Minimal Spanning Tree uses
weight to calculate the least costly path to each node.

CENTRALITY

Graph topology can be measured using centrality[51], which helps identify the most influential
nodes and their role in a network. These measures help identify which nodes play pivotal roles in
network structure, communication, or information flow. This information can be used to under-
stand group dynamics, for example, the lynchpin in a metabolic network given some predicate.
Centrality can be divided into four categories, each defining "important” nodes.

DEGREE Degree Centrality is the most straightforward measurement of centrality and is the
total direct links with the other nodes. It deems that popularity is the measurement of importance
and counts the number of incoming and outgoing edges from a node (degree). Degree Centrality
tells us how many direct connections a node has. This type of centrality can be used to find highly

41

Chapter 2: Background

connected nodes within networks, i.e. popular nodes. The degree centrality of node n can be
calculated by:
Cp(n) = deg(n)

, where deg is the node n’s degree. Figure 4 displays the degree centrality for all nodes within the
network. “Gene2” is the node with the highest degree centrality value because its degree is 3.

CroseENESs The Closeness Centrality detects nodes that can spread information efficiently
through a subgraph. It measures the average distance from a node to all other nodes. A node’s
score is the sum of all shortest paths to other nodes, and the nodes with the best closeness score
are likely the shortest distances to all other nodes. This type of centrality can be used to find the
node that can affect the most change in the network when removed or modified. The closeness
centrality of node n can be calculated by:

N
Coln) = =
Yo, d(n,v)
. The variable d,,,, represents the shortest path length between node n and v, while N indicates
the total number of nodes in the network. Figure 4 displays the closeness centrality with “Gene2”
and “Gene3”, providing the highest scores as the aggregation of the shortest paths to all reachable
nodes is 7.

BETWEENNESS The concept of Betweenness Centrality involves measuring a node’s influence
on the flow of a graph and its ability to connect other nodes on a path. It helps identify nodes that
act as bridges between other nodes, which are essential in a network. This measure can determine
which nodes have the most influence on the flow of the network. To calculate the Betweenness
Centrality of a node, the formula

gjk(n)

Cpln) = 9jk
j

j<k
is used, where g;, represents the number of shortest paths connecting j and k, and g, stands for

the number of shortest paths that include the node n. Within Figure 4, the highest betweenness
centrality is “Gene6” because all nodes must pass it to reach “Gene7”.

4 INTERACTION NETWORKS

Interaction networks are powerful tools in biology, providing a comprehensive view of how molecules
interact and regulate biological processes. This section explores gene regulatory, protein-protein
interaction, probabilistic functional integrated and metabolic networks, each focused on specific
aspects of molecular interactions within living systems.

42

4 Interaction Networks

Node Degree Closeness | Betweenness | (Gene7
Genel |2 0 0
Gene2 |3 1 3.8
Geneb
Gene3 |1 1 1.1
Gened |1 0.66 1.6
Gene5 |1 0.75 4.3 Gene3
Gene6 |1 0.66 5 Genes
Gene7 |0 0.4 0 Gened
Gened |0 0.66 0
1
Gene2 Gene
Gene8

Figure 4: A small pseudo-gene network to display types of centrality (Degree, Closeness and Betweenness).
The table represents the centrality of each node under the given predicates.

4.1 GENETIC REGULATORY NETWORK (GRN)

A Gene Regulatory Network (GRN) is a network that comprises genes and their interactions,
to describe the regulation of gene expression and other critical cellular processes[52]. These net-
works aim to understand how genes, proteins, and other molecular components work together
to perform biological functions[53] by capturing the interactions between genes and their regu-
latory elements. GRNs show how genes and their regulatory elements interact and demonstrate
the dynamic nature of these interactions, revealing how biological systems respond to internal
and external stimuli. GRNs help reveal the regulatory hierarchies, feedback loops, and signalling
pathways that modulate gene expression patterns and play a crucial role in understanding cel-
lular differentiation, development, response to environmental stimuli, and disease progression.
Moreover, GRNs provide a framework for understanding biological processes at a systems level.
They help to identify the emergent properties that arise from the interconnectedness of genes and
molecular components within regulatory interactions.

4.2 PROTEIN-PROTEIN INTERACTION NETWORK (PPI)

Protein-protein interaction (PPI) networks are higher order interaction networks describing in-
teractions between[54]. These networks provide a blueprint for the connections between pro-
teins, offering an understanding of cellular function. PPI networks can help understand how cells
communicate with each other, how metabolic processes work, and how regulatory cascades per-

43

Chapter 2: Background

form[55]. They help identify the proteins necessary for cellular function. They can reveal the in-
teractions between structural and regulatory proteins, giving insight into the emergent properties
of proteins in a biological environment[56]. Moreover, PPI networks offer a rich data source for
computational modelling and can help predict protein functions, identify new protein-protein
interactions, and simulate cellular behaviour under different conditions. By combining exper-
imental data with computational approaches, PPI networks provide a holistic view of cellular
interactions, making them useful for drug discovery[57], biomarker identification[58], and the
design of therapeutic interventions[59].

4.3 INTEGRATED NETWORKS

Integrated networks are computational models integrating omics data such as genomic, tran-
scriptomic, proteomic, and metabolomic information[60]. These networks provide a unified and
multi-layered graph that captures the complexity of biological systems. They represent a com-
prehensive approach to understanding the interplay of molecular components and regulatory
networks that underlie biological functions. Furthermore, integrated networks combine diverse
omics data streams, including genes, gene expression, proteins, and metabolites. This integra-
tion helps comprehend interactions and signalling pathways that control cellular functions and
behaviours.

4.4 PROBABILISTIC FUNCTIONAL INTEGRATED NETWORKS (PFIN)

Probabilistic Functional Integrated Networks (PFINs) are Integrated network that also encodes
probabilistic methodologies with functional genomics data[61]. They specifically focus on in-
corporating probabilistic methods, which capture and represent the uncertainty or probabilities
associated with the relationships between biological entities in the network. Like integrated net-
works, PFINs integrate various omics with a probabilistic context, allowing uncertainty estima-
tion and robust modelling of complex biological phenomena, resulting in a more comprehensive
and nuanced representation of biological systems’ dynamics[62].

4.5 METABOLIC NETWORKS

Metabolic networks display the biochemical reactions that capture the flow of metabolites (small
molecules crucial for cellular functions) as they perform substrate transformations[63]. They re-
veal the interconnected reactions that modulate cell biosynthesis, degradation, and conversion
of metabolites[64]. Moreover, metabolic networks offer a perspective, showcasing the relation-
ships between cellular components within the metabolic context, such as genes, proteins, and
enzymes. They enable systems-level analyses, allowing researchers to unravel emergent proper-
ties, identify key metabolic hubs, and decipher the underlying regulatory mechanisms directing
cellular metabolism. Metabolic networks integrate experimental data, computational modelling,
and network analyses to provide insights into metabolic fluxes[65], regulatory control[66], and
adaptive responses under varying environmental conditions[67].

44

5 Networks in synthetic biology

S NETWORKS IN SYNTHETIC BIOLOGY

The discussed networks have been employed successfully within systems biology, exploring natu-
ral systems, but they have also been adapted for engineered systems within synthetic biology. Net-
works within synthetic biology play crucial roles in designing and optimising synthetic systems,
which are not requirements when working with natural systems. This section explores some syn-
thetic biology-specific applications of a network approach or usage of the previously discussed
networks for a synthetic biology approach.

5.1 NETWORKS FOR STANDARDISED EXCHANGE

Genetic designs are a uniquely synthetic biology type of data structure because inherently natural
systems being characterised do not need an associated design. Networks are employed in rational
design approaches, facilitating the prediction and optimisation of engineered biomolecules such
as enzymes, ribozymes, or aptamers for specific functions. As discussed, synthetic biology-centric
information is commonly captured as a network (or in a format that can easily be transformed
into a network). For example, as discussed, SBOL is captured as RDF, which is already a graph-
based format. However, different types of information encoded within different formats can also
be converted. Some other formats within synthetic biology can be encoded as a network.

BuiLp PrOTOCOLS

As well as efforts to standardise genetic design, build protocols have been targeted for standard-
isation. For example, AutoProtocol[68] is a standardised language and framework designed to
facilitate the communication of experimental protocols and instructions between software sys-
tems and laboratory automation platforms. AutoProtocol is most commonly encoded within the
JavaScript Object Notation (JSON)[69], a human-readable data interchange format widely used
for data transmission and storage in computer systems. It is often used to represent structured
data objects in a format that is easy for humans and machines to read and write. JSON can be a
hierarchical network by representing nodes as JSON objects; edges represent hierarchy relation-
ships between the objects.

SIMULATION DATA

Simulations play a considerable role within synthetic biology to predict the function and charac-
teristics of engineered systems before building and testing a physical construct[70], reducing both
time and financial costs. While initially designed for systems biology, Systems Biology Markup
Language (SBML)[71] plays a crucial role in synthetic biology by providing a standardised for-
mat for representing computational models of biological systems. SBML is designed to describe
biological processes, interactions, and networks in a machine-readable and exchangeable format.
SBML, much like SBOL, can be easily represented as a network because it is captured within an
XMUL-like serialisation format and based on the RDF data model.

45

Chapter 2: Background

5.2 REGULATORY NETWORK AND CONTROL DESIGN

Regulatory network and control design in synthetic biology involves engineering genetic circuits
and biological systems to control and manipulate cellular functions[72]. These systems typically
consist of regulatory elements, such as promoters, transcription factors, genetic switches, and sig-
nalling pathways, designed to achieve specific control over gene expression, cellular processes, or
behaviour of biological systems. Currently, synthetic regulatory networks are struggling to reach
the complexity of natural regulatory systems[73] because of the inherent complexity in designing
functional systems at that scale. Therefore, synthetic regulatory networks are often smaller than
natural ones.

GENETIC CIRCUITS

Genetic circuits are synthetic biology-specific regulatory networks. They are designed systems
that mimic the behaviour of electronic circuits by controlling gene expression and cellular func-
tions[74]. These circuits were proposed to enable the engineering of biological systems with con-
trollable and predictable behaviours. They stemmed from the need to design and manipulate
cellular functions analogous to electronic circuits because biological systems’ analogue nature in-
troduces enormous complexity that is challenging to predict and comprehend. Genetic circuits
integrate various genetic elements and regulatory components to process input signals and pro-
duce specific output responses within living cells[75]. These circuits can be designed to perform
diverse functions, such as logic operations, signal amplification, temporal control of gene expres-
sion, and feedback regulation.

5.3 NETWORKS TO GENERATE AND VALIDATE DESIGNS

Modelling biological systems using networks is an established approach within synthetic biol-
ogy[76]. It involves creating computational representations or mathematical descriptions of bi-
ological processes to simulate, analyse, and predict their behaviour[77]. These models aim to cap-
ture the complexity of biological phenomena. Below is a discussion of two ways of modelling
biological systems using networks. One usage is validating existing designs by establishing the sys-
tems’ functionality, accuracy, and reliability before building them within a lab[78]. Validation
ensures the designed systems perform as intended and align with the expected behaviour[79]. For
example, biological networks allow for comparing simulated predictions and experimental data
by validating computational models against experimental results[80]. This comparison between
computational and experimental can be used to increase the accuracy and reliability of both the
design and model over time[81]. Instead of validating existing designs, creating novel designs has
also been targeted using a network approach([82]. Design generation involves developing, refining,
and enhancing biological systems to achieve some abstract function usually described by a prac-
titioner[83]. Automatic design creation is still an emerging technology within synthetic biology,
and the main successful approaches adopt a semi-automated approach to guide a practitioner’s ac-
tions during development. For example, they have been used to help optimise metabolic pathways
for producing specific compounds by representing the pathways as networks which can help pre-
dict cellular behaviours such as substrate availability, enzyme kinetics, and metabolic fluxes[84].

46

5 Networks in synthetic biology

5.4 HIERARCHICAL NETWORKS

In synthetic biology, hierarchies refer to hierarchically organising and arranging biological compo-
nents, systems, and processes[85]. The goal is to understand better, engineer, and control biolog-
ical systems at various scales to design biological systems with desired properties and behaviours
across multiple scales, from molecular interactions to whole organisms.[86] This approach allows
for more efficient and effective design and engineering of biological systems. As discussed, a hierar-
chy is a common network topology and can be easily represented as one. Two types of hierarchies
are common within synthetic biology: structural and functional.

STRUCTURAL NETWORKS

The structural hierarchy in synthetic biology refers to the hierarchical arrangement of biologi-
cal components and systems based on their physical or spatial levels of organisation[87]. It de-
scribes how biological entities are classified in scale, from smaller molecular components to larger
structures. Below is an example of a structural hierarchy. Molecular Level: At the lowest level,
synthetic biology deals with molecular components such as nucleotide or amino acid sequences
or individual small molecules. Genetic parts: Modular components at the molecular level in-
clude DNA sequences (Promoter, CDS, RBS, for example), regulatory elements, and molecular
components that perform specific functions within genetic circuits or biological pathways[27].
Constructs: Refers to organised assemblies of genetic parts designed and engineered to perform
specific functions or tasks. It involves the combination and arrangement of genetic parts into
functional units. Systems: A structural hierarchy can arbitrarily increase abstraction by defining
increasingly large structural entities.

FUNCTIONAL NETWORKS

The functional hierarchy in synthetic biology involves organising biological components and sys-
tems based on their functional roles, interactions, and behaviours rather than their physical struc-
ture[88]. It focuses on how biological systems operate and perform specific functions. Below is
an example of a functional hierarchy. Basic Functionality: Functional hierarchies begin with
understanding and engineering basic biological functions such as gene expression and regulation,
signalling, metabolism, and cell growth. Module and Subsystem Functions: Modular design
principles allow the construction of functional modules or subsystems[89]. These components,
comprising genetic circuits or pathways, perform specific tasks or processes within a larger sys-
tem. System-Level Functions: Synthetic biology assembles functional modules into larger sys-
tems capable of performing complex functions or behaviours. Systems may include regulatory
networks, metabolic pathways[90], or signalling cascades[91] engineered to achieve specific ob-
jectives. Application-Level Functionality: Like structural hierarchies, functional hierarchies
have room for growth. It may describe much higher-order information, such as cellular interac-
tions[92], complete gene networks or cellular computers[37].

47

Chapter 2: Background

6 KNOWLEDGE GRAPHS

Early efforts in modelling biological systems using networks had a limitation: the lack of structure
and the meaning of nodes and connections. For example, if two nodes representing proteins are
linked, it is helpful to know what type of connection this is, like a binding, repression, or acti-
vation interaction. Some recent efforts are based on knowledge graphs[93], networks that model
a real-world environment and can capture noisy real-world information in a structured domain,
allowing more abstract, unanticipated questions. Two main aspects make knowledge graphs, se-
mantic labels and rules regarding what data can connect.

* Semantic Labelling - Refers to entities within a knowledge graph containing standard
known labels which can be computationally detected and used, providing semantic stan-
dardisation.

* Relationship Rules - Refers to what types of data can connect by specific connection
types and provides structural standardisation to data, i.e. all potential connection types are
known beforehand.

Knowledge graphs have been widely used in biological sciences, from building knowledge bases to
predicting biological reactions and are used here as the basis for structuring input data[94]. The
addition of semantics allows for more complex control over the underlying data, e.g., the ability
to arrange information into several layers of abstraction.

6.1 THE REsOURCE DescrirTiON FRAMEWORK (RDF)

As discussed, file formats such as Genbank are semantically and structurally ambiguous and in-
compatible with a standard approach to synthetic biology[4]. For example, if a genetic design
reaches a level of complexity that considering it at the level of interacting genetic parts is no longer
possible, and comprehension is only achievable at some level of abstraction, explicitly storing this
detail is impossible; this is nothing to say of multi-cellular systems which intercellular interac-
tions cannot be defined. Furthermore, attributes of entities, such as genetic roles or interactions,
are captured within free-text annotations; therefore, dissemination is challenging. For example,
a representation of a coding region could be named CDS, Coding Region, Coding Sequence or
Protein Coding Region. As humans, we understand these are synonymous, but without the ex-
plicit knowledge, software attempting to use this knowledge would assume these to be different
genetic roles. Therefore, Genbank files have two fundamental flaws: the inability to capture ab-
stract structures, such as interactions or structural or functional modules and the inherent seman-
tic ambiguity that comes with free text. Resource Description Framework (RDF)[95] is a model
to represent data about physical objects and abstract concepts and express relationships between
entities using a graph format. RDF has been designed for the representation of corresponding
data on the web. Fundamentally, RDF is a foundational technology for defining standard mod-
els for unambiguous data exchange. Models defined in RDF primarily provide two mechanisms
that make it preferable over free-text descriptions: structure and semantics. Structure refers to the
shape of a dataset, that is, how entities within that set can connect. The Genbank format makes the
structure flat because it lists features related to a sequence. Where the structure is concerned with

48

6 Knowledge Graphs

how data can connect, semantics is the meaning of the underlying data. The Genbank format’s se-
mantics are not constrained; therefore, any characters in any order can be specified. The semantic
range of a Genbank file is largely unconstrained. While it is true that annotation qualifiers can be
loosely interpreted because they are contained within a large domain of values, the values of these
qualifiers are written annotations which cannot be reliably interpreted. This difference can be
seen when the data is represented as graphs within Figure 5; with Genbank, only the connection
between the document and annotations can be specified, but with RDF, the data points can inter-
connect with different types of connections. The ability to define arbitrary edge types produces
more robust networks that encode much more information than the flat structure of a Genabank
file. RDF allows describing anything: people, genes, objects, and concepts. RDF represent infor-
mation by statements in the following format:] <subject> <predicate> <object> ‘
As seen within Figure 6, concerning RDF in the context of a network, both the subject and ob-

jectare equivalent to nodes, and the predicate is equivalent to an edge between these nodes. Those
statements express a relation between the subject and the object, both resources in a dataset and
are known as triples. Table 2 displays the three triples, where each row within the subject and
object columns maps to a node and the predicate maps to an edge between the entities in that
row. Resources can be present in multiple triples but perform different functions. For example,

Table 2: Example of three triples defining a simple LacI regulation system. Subject and Object columns de-
fine entities within the design and the predicate column defines relationships between the subject

and object.
Subject Predicate Object
<IPTG> <bindsTo> <Lacl>
<Lacl> <bindsTo> <pLac>
<Lacl> <description> "Coding region for
the Lacl protein.”

take the Lacl resource used within multiple triples as the subject and object and perform different
functions. The resources in the example triples are all placeholder references to objects for this
example. However, in true RDF, resources can be IRIs, literals, blank nodes, and predicate IRIs.
IRI (Internationalized Resource Identifier) is a protocol standard and allows containing charac-
ters from the Unicode character set. Also, literals are fixed values, including strings, dates, and
numbers. Finally, blank nodes are placeholder nodes for either temporary or unknown values.
Table 3 removes the placeholders and introduces the full IRIs. While this appears more complex,

Table 3: Example of three triples defining a simple Lacl regulation system. Subject and Object columns de-
fine entities within the design and the predicate column defines relationships between the subject
and object. Some resources (IRI) define accessible resources which reference external resources.

Subject Predicate Object
<https://openwetware.org/wiki/IPTG> <http://identifiers.org/biomodels.sbo/SBO:0000177> <http://parts.igem.org/Part:BBa_C0012>
<http://parts.igem.org/Part:BBa_C0012> <http://identifiers.org/biomodels.sbo/SBO:0000177> <https://parts.igem.org/Part:BBa_R0010>
<http://parts.igem.org/Part:BBa_C0012> <http://purl.org/dc/terms/description> "Coding region for the Lacl protein."

the only change is thatlocal terms have been swapped with links to online resources. Components

49

Chapter 2: Background

685 bp DN 1
tetracycline represscr from transposon Tnil
BBa_c0040
BBa_C0040. 1 e ™

Location/Qualifiers

4..620

flabel=tetR
misc_feature 621..554

/label=SsrA

misc_featurs 661

18-Jan-2023

flabel=Help:Barcodes -

p
Barcode$
\jise_teature)/

-

1 atgtccagat tagataamaag tasagbgatt aacagcogeat tagagotget taatgaggte etR Y

BRa_RO04D 54 bp DA linear 18-Jan-2023 —

TetR repressible promoter
\oeal
promoter 0,25 ™, -~ /: ™

Bla_RO04D
Blia_RO04D. 1
/ y TN YO
Flabele-35 [Tetr 1 Ba_RO040, /35 Y [/ Temz 710 0
maan featurs e, !r"nsc. fﬁ?mu'\t\ll I. (misc_faatune) \ (promater) | |, (misc_teatu: _.l l. (promoter) |
flabel=TetR 2 'Y ’ N p \J " o \)
48 e’ — o —__ _

Location/Qualifiers
misc_feature 1..1%

flabel=TetR 1
misc_feature 1..54

-

promoter 43

QORIGIN
1t

cctateag tgatagagat tgacatcocct atcagtgata gagatactgs geoac

i

RDF

tetR_regulation a Collection; .
hasConstruct BBa_Cc0040; | Collection
hasConstruct BBa_R0040; .

hasConstruct
mEmtype
. mhasPart

- P ‘\.
— | tetR_regulation |

BBa_C0040 a DNA ; R
hasPart Barcodes ;
hasPart tetR
hasPart ssri

/ ™
[BBa_Coo4n}
A A

: P
DMA et {BBa_ROD4D|

BBa_RO040 a DNAR ; /
hasPart TetR 1 — __.--T-..__ - — —_— . iy -
hasPart BBa_R0040 { N I A ; N Id Sy e 4 Y
| R | | Ssra | Barcodeg | TelR L | y | TetR 2|
hasPart -35 i AN / N, / s \, J / i
hasPart TetR 2 T — ~— e ..»:.___, — - J—
hasPart -10

Barcodes a misc_feature ; y
tetR a CDS ; - ¥ ¥ ’.-'
ssrA a misc_feature ; e ""‘(‘- —E
TetR 1 a misc_feature ; . A mise_teamre | [promoter |
BBa_RO040 a misc_feature ; |':ll'.D‘.=.\" ‘____ __.‘.-" k. A
=35 a promoter ; '\ !

TetR Z a misc_feature ; S
_10

10 a promoter ;

Figure 5: Comparison between the representation of GenBank file and the same data represented as RDF
when visualised as a graph. The files define the same TetR regulatory system taken directly from
the IGEM parts repository. The Genbank (TOP) can only encode a flat structure where the
record links directly to direct physical parts. In contrast, RDF (BOTTOM) can represent an arbi-
trary depth structural hierarchy. Genbank also cannot explicitly encode the types of connections.
However, RDF can explicitly explain the types of relationships between entities. Hence, the node
type can be expressed, creating a new node.

representing resources display the power of RDF, combining and unifying information from dif-
ferent datasets.

50

6 Knowledge Graphs

Figure 6: RDF structure is described as “(s,p,0)”, subject, predicate and object.

6.2 ONTOLOGIES

As discussed, RDF alone does not inherently provide structural and semantics standardisation, as
seen within 5; despite being captured in RDF, there is no guarantee that another RDF file does not
use a different structure or semantics. Therefore, the shape or semantic labels between datasets are
not guaranteed to be unified. Ontologies[96, 97, 98] are generalised knowledge graphs, meaning
they only model general types of things that share certain properties but do not include infor-
mation about specific individuals. Ontologies can be conceptualised as blueprints (a contract on
structure and shape) to produce instances that are also knowledge graphs. It defines a set of classes
that can be instantiated and rules that dictate what objects can connect and in what ways. For ex-
ample, ontologies are used within synthetic biology to provide design blueprints. It may describe
the labels which pertain to biological roles, such as a promoter or RBS or types of biological parts
that can interact. In short, an ontology defines a common vocabulary for researchers who need to
share information in a domain. Ontologies provide several benefits:

* Information structure contracts are agreed upon among people or software agents, en-

abling interoperability.
* Ontologies can be reused, i.e. ontologies can use or extend other ontologies as needed.

* Domain assumptions can be easily changed irrespective of implementation if the knowl-
edge of the domain changes.

* Ontologies capture domain knowledge that software agents can use to specify operational

knowledge. The separation of the domain and operational knowledge allows operations to
be implemented irrespective of the domain.

51

Chapter 2: Background

In conclusion, ontologies limit complexity, organise data and enable computational tractability.
Therefore, if each individual agrees to a blueprint, this provides a standard approach to data cap-
ture, ensuring information can be easily captured, integrated and shared between potentially dis-
parate institutions or people.

RDF VS LABELLED GRAPHS FOR ONTOLOGIES

So far, a question may be raised comparing the RDF graph to the labelled graph. All RDF graphs
can be represented as a directed labelled graph, but not all labelled graphs can be represented as
an RDF graph. An issue that means that all labelled graphs can not be represented as an RDF
graph is that predicates (edges) cannot encode annotations, as displayed in Figure 6. For example,
weight is commonly used within network science to encode the strength of an edge relative to
some metric. Therefore, we define the knowledge graph during research as a directed labelled
graph where nodes and edges contain an arbitrary number of properties, as seen in Figure 7.

e N

Type:http://xmins.com/foaf/0.1/knows
Confidence: 0.75

Figure 7: Example of how RDF can be expanded to incorporate properties. Each node contains a key and
a type, and edges contain a type and confidence. Despite nodes and edges not explicitly linking
to a single URI, URIs are still used as property values.

7 Data Standards

7 DATA STANDARDS

Data formats such as Genbank are ubiquitous within synthetic biology. They allow simple an-
notations to be defined but are often open to interpretation due to a lack of complete standard
semantics and structure. Therefore, they are not conducive to the iterative nature of synthetic bi-
ology because the static, non-standard nature makes development challenging and is accentuated
with automation because computational handling is convoluted.

7.1 SYNTHETIC BroLoGgy OPEN LANGUAGE (SBOL)

Data formats that effectively capture and represent increasingly complex designs have emerged.
A leading example is a standard to implement a synthetic biology-centric knowledge graph: Syn-
thetic Biology Open Language([10] (SBOL), which describes both structural (e.g. DNA sequences)
and functional (e.g. regulation interactions) information. The SBOL community describes the
model as "An open standard for the representation of in-silico biological designs”. SBOL provides
several specific advantages:

* SBOL can be captured as RDF; therefore, all the advantages of RDF exist.
* SBOL provides a contract so all agents can comprehend others’ data.

¢ SBOL is an open language, and all features are free. A language which is synthetic biology
specific, catering to the specific requirements.

* SBOL can be used as a general container for different data types. For example, SBOL does
not have the mechanisms to define simulation models (this is not the focus of SBOL). How-
ever, Systems Biology Modelling Language (SBML), which defines simulation models, can
be linked to an SBOL document.

As explained, SBOL is captured using RDF; therefore, the model inherently has a high affin-
ity with the network approaches discussed. Practically, SBOL is a specification that provides a
contract for all users to abide towards if they want interoperability with other users. Figure 8 dis-
plays an example of the SBOL ontology providing classes for all users to create instances. If the
same terms and connections are adhered to, then the underlying semantics of all designs will be
the same. To this end, the Synthetic Biology Open Language (SBOL) data standard will capture
genetic design data. Below, the data model is explained in more detail to provide insight into its
usage. However, it must be noted that despite using the model for data capture, this research fo-
cuses not on the model itself but on using it to reach our goals. Therefore, the data model will be
hidden for the most part.

SBOL VERSIONS

* SBOL1- Theinitial release of SBOL, primarily a structured version of a Genbank file where
sequence data and annotations can be defined.

* SBOL 2 - Introduced the ability to define functional aspects of a design, such as interac-
tions.

53

Chapter 2: Background

SBOL Ontology SBOL

Y, XuLNS="NEtp: /v w307/ 2002/07 /oWl #">

Instance SBOL - Visual

~ittp://shortbolorg/v2488a Roodo/ T
dentifiers.org/s0/S0:0000167 /> mmmm—————""]

/bio €13, owl#DnaRegior
Yy bt or o Vet Rabse->

~"http://shortbol .org/v248Ba_B0034/ 1" |

displayId>
="http://shortbol .org/v2#BBa_B0O34'

5.0rg/50/50:0000167"/>

: Lopax. org/release/biopax. Level3 i bonaregion />
://identifiers.org/s0/50:0000139'

oL org/vasssa cooz/1'>

'S0, \
fopax-te m\
orarustien. (ot /o

~http://shortbolorg/ vz#8ga Bo91s/1"
dentifiers.org/so/S0:6000141"

isplayld>
. biopax. org/release/blopax. Level-oulsBmaggion*/
urce="http://shortbol.org/v2#88a B0G1S

5.0rg/50/50:0000130" />

d/s0/50:0000316

5.0rg/50/50:0000141°/>

Figure 8: Simple visualisation of how SBOL designs can be created from the SBOL ontology. Classes are
defined within the SBOL ontology (ComponentDefinition, DNA, Promoter, RBS, CDS and
Terminator). These classes can then be instantiated within a design by providing a specific name

(part names, for example). The instance of a design could then be visualised as the underlying
network.

* SBOL 3 - The most recent SBOL iterations, a simplified version of SBOL 2 designed to be
more accessible.

Below is the core classes for the SBOL3 version displayed in figure 9.

7.2 ADVANTAGES OF STANDARD DATA

Standardisation of data within synthetic biology provides many benefits when correctly imple-
mented and adopted. Here is an overview of some advantages of standardisation within the con-
text of design data.

TRACTABILITY

Increased tractability means software and databases can comprehend the underlying data more
efficiently and in greater detail. Currently, designs are most commonly shared via Genbank un-
structured and ambiguous files, often containing large amounts of free text data. Therefore, if
one agent (programmatic or human) creates a design, another agent must derive the encoded de-
tail from a vast range of potential values in a large domain of potential datatypes. When design
data is captured within a standard format, the structure is introduced by constraining the domain,
and semantic tags are used instead of free text to narrow the potential range of values.

INTEROPABILILITY

Interoperability[99] refers to software, users and databases’ ability to exchange data to understand
incoming and outgoing data. Data must be tractable because each agent that exchanges data must

54

7 Data Standards

Table 4: Core components and description of SBOL3 data model.

Class Description

Component The Component is the core class within
SBOL and can represent any entity. The
primary usage of this class is to represent
entities with designed sequences, such as

DNA, RNA, and proteins. However, it can

also represent any other entity part of a
design, such as simple chemicals, molecular
complexes, strains, media, light, and abstract

functional groupings of other entities.

Interaction The Interaction class describes the desired
functional behaviour of how the Feature
objects of a Component interact. For
example, this class can represent different
forms of genetic regulation, processes from
the central dogma of biology and other
fundamental molecular interactions.

Participation Each Participation represents the role of
features within an interaction.
Feature The Feature class composes Component
objects into a structural or functional
hierarchy.
Location The Location class represents the location

of Features on a Sequence.

Sequence The Sequence class represents a
Component object’s primary structure.

Constraint The Constraint class assert restrictions on
the relationships of pairs of Feature objects
relative to the Sequence they are attached to.

understand what is being received. Interoperability within design data is especially desirable be-
cause a single agent is unlikely to develop a design from beginning to end. Instead, multiple tools
focusing on a specific aspect combined with multiple humans with specific expertise will likely
interface with the design.

ABSTRACTION VIA MODULARITY

Modularity[100] refers to composing genetic parts into modules to perform a specific function.
Abstraction concerning design data is hiding genetic and physical parts with larger constructs
that perform a specific function. Therefore, modularising genetic designs increases abstraction
because modules to perform a specific function can be swapped for another module, which dif-
fers in implementation butis similar in function. Design standards such as SBOL enable grouping

55

Chapter 2: Background

gl [Structure
oce [] Function
t
Component —> Interaction
v {
]
[
Constraint e Feature [Participation
Location
i
Sequence

Figure 9: Overview of SBOL3 data model. The component is the core class with functional (Blue) and
structural (Red) classes directly or indirectly interfacing with a component.[4]

genetic parts into collections based on physical structure or function, which is a step towards ab-
straction via modularity.

ReEpucep HuMAN ERROR

The human error introduced during design can be costly if the error persists in the construction
of the system[101]. For example, the designer may take the sequence for a genetic part from a
database with expectations about function during design. However, with most data sources cur-
rently, there is no guarantee that this is the exact desired function or that the advertised function is
correct. While standards will certainly not remove all human error when design data is structured
with semantics errors due to ambiguity, it will undoubtedly be reduced.

7.3 CHALLENGES INTRODUCED BY STANDARDS

An issue introduced with SBOL is the increased complexity of the underlying data structure. For
instance, consider the difference between a Genbank file and an SBOL file. A Genbank file is a sim-
ple sequence combined with some textual annotations that describe the location of the sequence
in a common language. On the other hand, an SBOL file contains the same data but encodes all
the information to make the data computer-tractable. The Genbank file is less complex to read
because it only requires biological knowledge; there is no pre-existing knowledge of the data stan-
dard encoded. Because SBOL RDEF/XML is too verbose and complex for humans to edit designs

56

7 Data Standards

manually, particularly those involving many components and features, tools must be developed to
abstract this complexity. This difference can be seen in Figure 10, where the same small construct
is described within Genbank and SBOL. While technically describing the same information, the
SBOL version is much larger and less user-friendly. Software tools and libraries have been devel-
oped to manipulate SBOL, for example, libSBOLj[102] and pySBOL[103], which can be linked to
other software, enabling them to read, write, and manipulate SBOL data. These libraries support
tool developers and others with programming skills; using them presents a challenging learning
curve for most synthetic biologists.

GenBank SBOL (F/XML)

LOCUS xxxxx 1240 bp DNA PLN
DEFINITION tetR Inverter r
ACCESSION xxxxx
WERSION x000x.1
KEYWORDS
SOURCE E-Colii
TITLE Direct Submission
FEATURES Location/Qualifiers
source 1..1240
Promoter 1..55
R 56..68
cos 169..1197

Terminator 1187..1240
ORIGIN
1 tecctatcag toatagagat tgacatcect atcagtgata gagatactda geacaaggag
61 ccggtgtete tatcagace
121 gttteceqeg tggtgaacca ggecagecac gitctgega aaacgcgqga aazagtggaa
181 ttacattcce aaca:
241 cagtcgttge tgattggegt tgecacctee agtetggece tgeacgegee gtegeaaatt
301 ttaaatcteg
361 gaacgaageg ctataasgcg atcttctege
421 agtgggctga tcattaacta teogetggat gaccaggalg ceatigetgt ggaagetgee
481 tgcactaatg ttccggegtt atttcttgat gectctgace agacacccat caacagtatt
541 attttctcee atgaagacgg tacgegactg ggegtggage atctggtege attgggteac
601 cagcaaatcg coctgttage gggcccatta agttctotct cogcgegtct gegtctggct
661 aatatctcac
721 tgtccagttt categtiece
781 gcactgggeg
841
901 tcatgttata teccgeegtt aaccaccatc aaacaggatt ticgectact ggggcaaace
961 agegtggace geitgetgea acicictcag ggecaggegy tgaagggcaa teagetgttg

1021 cecgtetcac cgecteteee
1081 ccgatteatt titceegact

1141 cagttcagee aaaaaactta agaccgecgg tcttgtocac taccttgeag taatgcggty
1201 gacaggateg geggttttct ttctettct caa

Figure 10: A GenBank file (Left) and SBOL encoded XML (Right) describing the same Gene (promoter,
RBS, CDS and Terminator). The SBOL is cut off due to the large size of the document.

The background chapter serves as the foundation for the thesis, providing a comprehensive
overview of existing knowledge relevant to the research topic. It introduces synthetic biology,
which draws on engineering principles and borrows from diverse fields like computer science,
systems biology, and molecular biology. It applies forward engineering to design novel biological
systems not found in nature or to perform functions beyond natural capabilities. This field oper-
ates on three core principles: modularisation, abstracting complexity by encapsulating sequence
data into biological parts, abstraction, and standardisation, establishing shared principles and pro-
tocols to facilitate interoperability, fostering the reuse of biological components, and improving
design predictability. Next, graph theory and network science were established by introducing
their purpose: understanding and analysing complex systems. Furthermore, an introduction to
network science in biology to understand complex biological systems was outlined. Subsequently,
the fundamental terminology, methods and processes commonly used to solve challenges in many
domains were discussed. Finally, for the network background, a review of existing work of net-
works in Synthetic biology was reviewed. Once networks were established, knowledge graphs were
enabled, addressing the limitations of conventional networks by incorporating semantic labelling

57

Chapter 2: Background

and relationship rules, enhancing structural and semantic standardisation within the data and en-
abling more comprehensive control over the information, particularly relevant in biological sci-
ences for organising and predicting complex reactions. Next, the limitations of GenBank files and
the advantages of the Resource Description Framework (RDF) in effectively representing biolog-
ical data were explored. Finally, ontologies, as conceptualised blueprints providing structure and
shared vocabulary, facilitate standardisation and computational tractability, allowing easy data in-
tegration and sharing. Finally, data standards, such as SBOL, were shown, including usage, advan-
tages, and disadvantages and the core of the SBOL data model was described. From this, challenges
introduced by standards were identified, namely the introduction of considerable complexities.

58

CHAPTER 3: SHORTBOL - A LANGUAGE TO
SPECIFY STANDARD DESIGN DATA VIA AN
EXTENSIBLE AND USER-FACING LANGUAGE.

PUBLICATIONS ARISING FROM THIS CHAPTER

* Matthew Crowther et al. “ShortBOL: A Language for Scripting Designs for Engineered Biologi-
cal Systems Using Synthetic Biology Open Language (SBOL)”. ACS Synthetic Biology 9:4, 2020.
PMID: 32129980, pPp- 962-966. DOTI: 10. 1021 /acssynbio.9boo470. eprint: https://doi.org/10.

1021/acssynbio.9b00470. URL: https://doi.org/10.1021/acssynbio.9b00470

SOFTWARE ARISING FROM THIS CHAPTER

¢ ShortBol

1 INTRODUCTION

Synthetic biology, like in many domains, contains highly specialised language[104]. This language,
combined with the number of colloquialisms and aliases where different people use many syn-
onymous names, means that language within synthetic biology is highly nuanced. However, an
unconstrained language domain is an issue for attempts at standardisation because it is inher-
ently ambiguous [105]. However, while well-suited for precise machine communication, intro-
ducing standards does little to reduce unconstrained language problems because forcing a blanket
language change within synthetic biology is impossible. Furthermore, the semantics of the data
model introduced by SBOL are too verbose, complex and far removed from the existing language
for humans to manually edit designs, particularly those involving many components and features.

Software tools and libraries have been developed to manipulate SBOL, which can support tool
developers and others with solid programming skills; using them presents a highly challenging
learning curve for most synthetic biologists, not helped by the non-familiar semantics of the data
model. Computer-aided Design (CAD) and visualisation tools have also been developed to vi-
sualise designs and make the designs easier for humans to communicate. However, these visual
design tools are often limited in the features of the representation they can access, and visual edit-
ing is often a slow and somewhat manual process. Therefore, there is a need for a standard method
for specifying genetic designs, with the ability to define an array of datatypes at a scalable level of
abstraction using a system with a low barrier to entry.

59

http://dx.doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
https://github.com/intbio-ncl/shortbol

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

1.1 EXISTING SPECIFICATION METHODS

Methods for specifying genetic designs are not new concepts. Visual methods for specifying ge-
netic designs and domain-specific languages (DSL) exist within synthetic biology and related fields[106,
107]. DSLs are programming languages for specific domains, making it easier for non-programmers
to communicate ideas by providing higher abstraction and readability.

However, in synthetic biology, a language backed by a standard such as SBOL that can describe
an arbitrary level of detail is missing. This section reviews several existing methods for specifying
genetic designs, both visually and typed. During this review, the existing design of a NOR gate
(consisting of two transcription factors of bidirectional gene regulation of another regulatory gene
which represses a constituent promoter that co-regulates three genes, one output and two others
which regulate the initial transcription factors) built by Nielsen and colleagues[19] will be used to
display the visualisation and typed techniques.

VisuaL METHODS

Computer-aided Design (CAD) and visualisation tools have also been developed to visualise de-
signs and make the designs easier for humans to communicate. [108,109] These visual design tools,
however, are often limited in the features of the representation that they can access. Furthermore,
visual editing is usually slow, scales poorly with size and complexity and is generally automation-
unfriendly because, inherently, the visual process is designed for human use. Here we will briefly
discuss several different methods for visual design specification.

SBOL VisuaL formalises the ubiquitous glyph method of describing genetic designs at the se-
quence level. Figure 1 displays this concept where each genetic part is represented as an icon on a
linear sequence and may include abstract interactions illustrated by lines between glyphs. Many
tools exist that implement this specification, such as SBOL Canvas [110] and VisBol [109]. How-
ever, the glyph approach is far more commonly a manual and physical process where a person
quickly sketches on a physical whiteboard or lab book to convey a design to others, for example.

Advantages This approach offers the advantage of swiftly conveying a substantial amount of
information. For instance, small-scale design concepts can be visualised quickly, making it a faster
option when compared to similar methods. As previously mentioned, it is easily adaptable for
manual creation, making it accessible without familiarity with the SBOL data model, software,
or language. When applied with a standardised framework, this mapping facilitates the creation
of formal representations from a less structured approach, eliminating unnecessary complexities
while retaining the advantages of standardised data. Additionally, the glyph approach is already
an established method for prototyping designs, further reducing unfamiliarity issues and stream-
lining its adoption.

Disadvantages This approach becomes infeasible when dealing with complex designs due to
the glyphs representing the primary structure, which may not provide an adequate level of ab-
straction. For instance, in the case of a genome-scale design comprising thousands of genetic parts
represented as glyphs, comprehension becomes virtually impossible. Also, it primarily offers a per-
spective of design data limited to the primary structure and simple interactions. Consequently, it
cannot effectively visualize experimental data or abstract functions, limiting its utility for broader

60

1 Introduction

applications. While common glyphs like Promoter, RBS, CDS, and Terminator are easily rec-
ognizable, more specialized glyphs may not be immediately identifiable to all users, potentially
causing interpretation challenges.

rl'rl’? T

pTetpBAD ClI BBa_j23117 araC TetR YFP

Figure 1: NOR gate[19], represented within the SBOL visual. The design involves two transcription factors
that regulate genes in two directions, along with another regulatory gene that represses a promoter
that regulates three genes. One of these genes is an output gene, and the other two regulate the
initial transcription factors.

SEQUENCEMAP The most common approach for developing genetic designs involves sequence-
level editing and conceptualising them as plasmid maps. Benchling[111] is the most common tool
for sequence-focused editing and represents this as a linear or circular plasmid. When exported,
the design is captured within the Genbank file format. Figure 2 displays how the abstract NOR
gate can be edited at the individual nucleotide level. In this representation, parts or annotations
are displayed as coloured regions, which may be encoded by the user or automatically identified.

Advantages Currently, conceptualising a design at the sequence level is the most widely used
and accessible method for examining and making edits. Consequently, there are no challenges or
learning curves associated with adopting new techniques. Also, editing a design at the sequence
level offers the highest degree of control and precision possible. Moreover, tools like Benchling
even provide automated annotation of detailed features, including restriction sites, enhancing
the user’s capabilities in fine-tuning their designs.

Disadvantages Making alterations to a design at the sequence level can contradict the con-
cept of modularity within synthetic biology, as it often involves modifying individual nucleotides
rather than working with abstract modules, which hinders the principle of reusability and stan-
dardisation. Attempting to understand large designs at the sequence level is unfeasible due to the
complexity involved. For instance, deducing the function of a structure comprising 1000+ parts
would be an exceptionally labour-intensive process. Furthermore, this representation does not
inherently align with a standardised format. It predominantly encourages the use of flat file for-
mats like Genbank, as it primarily focuses on the primary sequence data without capturing the
modular and hierarchical aspects of the design.

EXISTING LANGUAGES

Languages to abstract complexity are not new. In large part, computing science achieves abstrac-
tion using programming languages that hide specific complexities. The process of creating ab-
straction languages is the history of programming languages and has significantly contributed to
the rapid progress of silicon-based technology over the last decades. For example, the C program-
ming language was initially developed due to the complexities and difficulties of engineering using
assembly language[112]. The synthetic biology community has long recognised the utility of such

61

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

BspDI
t1al HindIII

ttgacagcttatcatcgataagetttaatatgecatageatttttatccaaagaggagaaaatgagcacaaaaaagaaaccattaacacaagagecagettgaggacgeacgtegeettaa
aactgtcgaatagtagctattcgaaattatacggtatcgtaaaaataggtttctectettttactegtgttttttectttggtaattgtgttctegtegaactectgegtgeageggaatt
pTet f pBAD | B8a_B2934 [ud

T T T T T T
2 £ & £ 160 120

Cac8I
Nhel Bmtl

EcoP15I

agccaggcatcaaataaaacgaaaggctcagtcgaaagactggcttgacagetagetecagtectagggattgtgctagcaaagaggggacaatggetgaagecgecaaaatgateccetget
tcggtecgtagtttattttgetttecgagtecagettictgaccgaactgtegatcgagtcaggatecectaacacgategtttetecccetgttacegacttegegttttactaggggacga
BEa_B@e1@ BBa_J23117 A BBa_JG1108 L araC oe

T T T T T T
4 162 180 200 220 248

Dpnl
Sau3AT
fpn1T
BsTyI
Hhal Bruct
HinB11 AWl Mool Hpy188I

gcegggatactegtttaacgecccataaagacaggaccatgtecagattagataaaagtaaagtgattaacagegecattagagetgettaaaaagatecgatgatgegtaaaggagaagaa
cggecectatgageaaattgegggtatttctgtectggtacaggtctaatectattitcatttcactaattgtegegtaatctcgacgaatttttictaggetactacgeatttectettctt

arsC 3 BBa_T61181 o TetR BBa_j61102 R
T T T T T T
250 28 300 20 e)
Tsp509I
MooIl TspRI Tspse9I fuct BSTNI
BsnFI BtsiMutl TscAl fiLuct 8pnl PapGl

cttttcactggagttgtcccaattcttgttgaattagecaggcatcaaataaaacgaaaggetcagtcgaaagactgg
gasaagtgacctcaacagggttaagaacaacttaatcggtecgtagtttatttigetttccgagtecagetttetgacce,
YFF. BBa 88910

T T T T T T T |
370 380 EE 40 412 428 43¢

Figure 2: NOR gate[19] implementation represented as a sequence map, the arrowed squares represent
user-annotated genetic parts on the sequence, and colour denotes genetic roles. Created using
Benchling[111]. For convenience, large sequences have been truncated.

domain-specific languages. Languages such as the Genotype Specification Language [113] and
Eugene[114] have previously been developed, in particular, to enable automated assembly and the
exploration of the synthetic biological design space. Here we will briefly discuss several different
methods for language-based design specification.

GENETIC ENGINEERING OF L1viNGg CELLs (GEC) Genetic Engineering of Cells (GEC) [115]
is a language for defining transcriptional genetic designs. The language asks the user to define
abstract parts and interactions, which are then swapped with the standard MIT Registry of Stan-
dard Biological Parts to define genetics parts. To complement the language is a tool specifically
designed for the language. Furthermore, programs can also be translated into reactions, allowing
simulations to be carried out.

Advantages The approach can seamlessly interact with databases integrated into the language
implementation, which means that instead of users creating local terms, they can access virtual
counterparts from databases, ensuring standardised referencing. Additionally, GEC can generate
multiple designs for a given specification. This versatility in offering several potential solutions
can identify the most viable or optimised candidates to fulfil a specific function, enhancing the
design process.

Disadvantages The practical use of the language is currently challenging due to the absence
of active development and support for the software. Furthermore, incorporating the ability to
perform simulations into a language can introduce complexity that may not be necessary for all

62

http://parts.igem.org/Main_Page
http://parts.igem.org/Main_Page

1 Introduction

users. This inherent complexity is typically associated with languages that allow the definition of
complex features, potentially making the language less accessible to a broader user base.

EuGene Like SBOL, Eugene[114] is both a human and machine-readable language for specify-
ing the design of biological systems. Furthermore, like GEC, the language and underlying tooling
can generate solutions from abstract design specifications. The language uses constraints that
must be fulfilled, such as containing specific genetic parts within the final design. Figure 3 dis-
plays the NOR gate within Eugene. This definition is the minimally viable implementation and
could be expanded to produce multiple variations of the NOR gate, further constraints on part
position or interactions between parts.

Advantages An expressive language that enables the definition of logic can facilitate the gen-
eration of multiple design variants. Therefore, instead of users creating localized terms, they can
access virtual counterparts from databases, ensuring standardized references. Also, this approach
is particularly effective when dealing with larger and more complex designs, as it allows for the
modularisation and reuse of logic within a design file, streamlining the design process and pro-
moting modularity and reusability.

Disadvantages The language can be intricate and may pose challenges in interpretation due
to the multitude of features within Eugene, particularly for specifying constraints and logic. The
capability to define logical constructs can lead to a verbose language, which may demand more
manual effort for smaller designs when compared to similar tools. Furthermore, it is essential to
note that the language is still under development, and it may undergo significant changes in the
future, which could impact its stability and functionality.

PROGRAMMING LANGUAGE IMPLEMENTATION ~ While not DSLs, programming language im-
plementations of the SBOL data model, such as pySBOL[103], libJS[116] and libSBOL;j3[117],
exist, which are third-party libraries created within the given programming language. The lan-
guages use the native features of the language to enable SBOL specification. For example, within
object-orientated languages such as Python, the classes are defined for each SBOL class which can
connect with other instances.

Advantages Libraries written within an established programming language are typically more
reliable than domain-specific languages (DSLs) since they often benefit from larger user and sup-
port bases, contributing to their stability and robustness. Furthermore, programming language
implementations offer the advantage of integrating the standard model into a broader system,
making it compatible with automation pipelines and other specification tools, thereby enhancing
its versatility and utility within various contexts.

Disadvantages Libraries can sometimes appear verbose compared to custom, domain-specific
languages because the underlying general-purpose language must support a broader range of fea-
tures that may not be essential to the specific domain. For instance, a language designed to specify
the structure of genetic designs does not require capabilities for arithmetic operations. To utilise
these libraries, individuals need to have a working knowledge of the programming language and
be able to execute scripts, along with any additional processes inherent to the language. For exam-
ple, Figure 4 illustrates the NOR gate described in all figures in this review. Despite its small and
straightforward design, the associated file size can be relatively large, highlighting the potential for
increased complexity when using these libraries within a broader programming context.

63

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

y Name(txt);

ty Represses(txt);

ty InducedBy (txt);

ty PromoterType(txt);

y Pigeon(txt);

e SmallMolecule(Name);

e Promoter(Name, Pigeon);

e RBS (Name, Pigeon);

e Repressor(Name, Pigeon);

e CDS(Name, Pigeon);

e Terminator(Name, Pigeon);

r pl(.Name("pl"),.Pigeon("p
p2(.Name("p2"), .Pigeon("p
p3(.Name("f .Pigeon("p

- p4(.Name("p4"),.Pigeon("p

5 ¢3(.Name("c3"), .Pigeon("c c3 10"));
nator t1("tl", "t tl 11");
Terminator t2(.Name("t2"), .Pigeon("t t2 12"));
Terminator t3("t3","t t3 13");

> RepressingDevicel(Promoter, Promoter, RBS, Repressor, Terminator);
RepressingDevice2(Promoter, Promoter, RBS, Repressor, Terminator);
ReportingDevicel(Promoter, RBS, CDS, Terminator);
ce NorGate(RepressingDevicel, RepressingDevice2, ReportingDevicel);

Rule r(
ON NorGate:
pl BEFORE p3
p2 BEFORE p3
pl BEFORE p4
p2 BEFORE p4

ce[] 1lst = product(NorGate, strict);
num i=0; i<lst.size; i++) {
println(lst[i]);

}

pigeon(lst);

Figure 3: NOR gate[19] implementation within Eugene programming language. The Property keyword
defines objects linked to defined PartTypes. PartType defines classes (Promoter, RBS, CDS and
Terminator). Interactions such as "REPRESSES" can be defined between PartTypes. DEVICES

G4 are defined by providing constraints such as composition (What the structure of the device should
be). Rule sets can be defined further by providing functional and structural constraints. In this
case, relative location requirements of component parts. Finally, a set of Device objects are cre-
ated, specific variations of the design that adhere to all constraints.

1 Introduction

Component('pl’ 1 ole 0 PROMOTER])
Component(1 NA PROMOTER
Component (1 NA, roLe 0 PROMOTER
Component('p 18 NA,) PROMOTER]

mponent (' rk : 3 DNA, roles
mponent (: D role
omponent (' rk : 3 DNA, roles

DNA, rol
DNA, rol
DNA, rol

Mm M (M

. Component (' m S SBO DNA,roles | S0 TERMINATOR])
Component ("' . BO DNA,roles) TERMINATOR]
3.Component('term3’', - SBO DNA,roles = S0 TERMINATOR]

circuit
circuit.

.SubComponent (rbs1)
SubComponent
.SubComponent(rb

.SubComponent (cds1)
ubCol
SubComponent (cd

SubComp
SubComp
SubComp

rbs3, cdsl, c

circuit.constraints = o onstraint(sk SBOL PRECEDES, pl, rbsl

nstraint | SBOL PRECEDE rbsl, cdsl),

Constraint(sh SBOL PRECEDE .
nstraint | SBOL

Constraint/(SBOL PRECEDE
nstraint| SBOL PRECEDE

Constraint/(SBOL PRECEDES
nstraint | SBOL PRECEDE

Constraint| SBOL PRECEDES

onstraint| SBOL PRECEDE

onstraint| SBOL PRECEDE
nstraint(sb SBOL PRECEDES,

partl y13.Participation .SB0_INHIBITOR
par] ion(SBO_INHIBITO
part3 1 g ion SBO_INHIBITOR
part4 ion(SBO_INHIBIT!
rl = s | io 013.5B0 INHIBITION, [
i BOL INHIBITION, [part2, part

SORTED_NTRIPLES)

Figure 4: Abstract NOR gate[19] described using pySBOL. Components refer to entities within the de-
sign (genetic parts here). SubComponents are structural instances of the Components added as
features on the larger NOR circuit. Furthermore, constraints are defined by the relative ordergs’
the parts of the structure. Two interactions are defined with the participating entities. Finally, the
document (design) is created and written into a file.

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

1.2 Aims AND OBJECTIVES

As discussed, there are straightforward mechanisms for defining genetic designs, such as SBOL
visual, more detailed methods like Eugene and complete programmatic representations like pyS-
BOL. However, a mechanism which bridges the gap between manual visual editing tools, complex
DSLs and verbose programming language libraries that can resolve to a high-quality data standard
such as SBOL is missing. The inspiration for this research is from programming languages within
electronics that exist for one reason: to reduce complexity. Figure 5 shows that programming lan-
guages abstract machine code (the instructions given to the hardware), providing a more accessible
interface that focuses on the algorithms and applications instead of the underlying process. The
process within computing to abstract detail for a higher-level user is directly applicable here and
critical to enabling synthetic biology standards.

Aims

This chapter aims to explore how existing DSLs are implemented. Specifically, how DSLs pro-
vide a domain-specific interface without a complete language. Next, explore how programming
languages abstract technical complexity and provide user-friendly interfaces specifically for the
natural language used within synthetic biology, including any common terminology that may be
used. Finally, examine how object-oriented programming languages implement classes and inher-
itance to reduce complexity and promote reuse.

OBJECTIVES

The outcomes from this research can be broken down into the language and the tooling. The lan-
guage outcome is to develop an abstraction language that captures arbitrary datatypes, enabling
any synthetic biology design to be defined. Also, a direct mapping to the SBOL data model en-
sures all designs are SBOL compliant and, therefore, interoperable. The language must be easily
extensible to increase abstraction and promote reuse and must be simple by removing many usual
programmatic norms with more natural language features. For the tooling, the outcome is to
develop a tool to parse the language and generate SBOL complaint RDF graphs. Furthermore,
it must validate the generated graphs for SBOL compliance. The tools must remove technical
requirements to provide access to non-technical users and a user experience that makes the un-
derlying language accessible. The tooling must be robust so users can learn and use the language
without issue.

2 RESULTS

As discussed, there is a need for a simple and extensible language backed by a standard such as
SBOL, which sits in between abstract specification methods and complex written methods. Fur-
thermore, the language must bridge the gap between the manufactured language of a standard
and the natural language used within synthetic biology and related communities.

ShortBOL is a human-readable/writable shorthand for describing biological designs in SBOL.
This language allows SBOL data to be generated easily and quickly from simple textual descrip-
tions sharing many design aims and characteristics with existing languages. The fundamental abil-

66

2 Results

A

24eM)os

A3xa)dwo) buisealou]
uonoesnsqy buisealdus

2Jemp.eH

<<

-«

Figure S: Abstraction layer within electronic, instruction and programming languages.

ity of ShortBOL is to define a hierarchy of abstraction within the language, which provides a user
with the choice of high levels of control over the underlying model or to abstract the model en-
tirely, thereby simplifying the process considerably.

This language is for those who wish to rapidly sketch synthetic biology designs using a simple,
text-based scripting language instead of writing code that utilises the SBOL libraries. However,
being an abstraction of SBOL data, ShortBOL inherits the richness of the SBOL data model and
the ability to encapsulate design information of unique importance to synthetic biological con-
structs. Moreover, the ability to describe arbitrary RDF data in ShortBOL provides flexibility and
extensibility to produce greater abstraction, modularity, and concision. ShortBOL is designed
to be easy for synthetic biologists with minimal amounts of software development knowledge.
Those with software development training can also find ShortBOL useful as a rapid method of
producing SBOL more simply than by writing code that uses the SBOL libraries.

The core of the language is data structures similar to classes within traditional object-orientated
programming languages called templates which encapsulate data within a single object, which is
initially directly to the SBOL data model but eventually towards even more abstract representa-
tions focused more towards natural language within the domain. In detail, we will discuss the
template system, including the more abstract composite templates. It must be noted, however,
that defining these templates is usually not a task for the average user. Instead, these templates
will likely be defined within a template library (see template libraries).

2.1 TEMPLATES

Thelanguage of ShortBOL is built around templates, constructs denoting SBOL classes, or groups
of SBOL classes (see composite template) to provide abstraction and reduce complexity. Tem-

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

plates are language constructs conceptually similar to classes within programming languages, a
blueprint that defines the properties that objects of that class will possess. Without templates, a
document describing a design would be required to define each RDF triple explicitly. Figure 6
displays four templates (TopLevel, Component, DNA and Promoter) which define SBOL con-
structs at different levels of specificity. The templates within the language have several features
which enable the customisation and specialisation of templates.

INHERITANCE

Inheritance is a mechanism to derive a template from another template for a hierarchy of templates
that share properties. Inheritance allows new templates to extend existing templates, providing
consistency between the underlying data and the reuse of existing templates. Figure 6 displays the
inheritance between all four templates where the Promoter template inherits from DNA from
Component and, in turn, from TopLevel. For example, Figures 6 1 & 2 display how the "Com-
ponent” template defines the "TopLevel" template within its body. This statement tells the inter-
preter that the "Component” template inherits all of the properties of the "TopLevel" template.
Templates are critical within ShortBOL to provide abstraction and reduce complexity. Without
templates, a document describing a design would be required to define each RDF triple explicitly.
However, these features allow custom templates to be defined. However, they must be expanded
into RDF triples, constituting an SBOL complaint document (section expanding templates dis-
play how templates are instantiated and converted into graphs).

ALIASES

Entities within an RDF graph must be resources that refer to web entities called Uniform Re-
source Identifiers (URIs) and are essential for the interoperability and connectedness of a stan-
dard format, namely SBOL. However, URIs can appear complex and verbose to those unfamil-
iar with the RDF methodology. Therefore, requiring a user to define full URIs within tem-
plates (and later instances of designs) contrasts with the motivations of SBOL. Aliases that map
URIs to human-readable names can be defined to address this. Two examples shown in Figure
6 2 establish a namespace alias called "sbol_3" and a sufhix alias "<type>". Using the sbol3 alias
maps to the prefix http://sbols.org/v3#. It adds the "<type>" suffix to make a complete URI of
http://sbols.org/v3#type, which is a standard predicate URI defined within the SBOL ontol-
ogy to define entity types (DNA or protein, for example). Figure 6 4 also defines another alias
as "i_promoter”, which maps directly to the URL http://identifiers.org/so/s0:0000167, the
sequence ontology definition of a promoter.

PARAMETERS

Arguments can be provided by either the user, an inheriting template or within a composite tem-
plate (see composite templates) to provide a mechanism to customise a template further. Figure
61 & 2 requires a parameter named "type”, which can be used to specify the RDF type of this
template. In this case, this parameter will likely be fulfilled by another template which extends
this template as opposed to a user providing a value within the design document.

68

http://sbols.org/v3#
http://sbols.org/v3#type
http://identifiers.org/so/SO:0000167

2 Results

ASSIGNMENT

An assignment is a statement or operation that assigns a value to a variable or a data structure.
It is a fundamental concept in programming and allows the storage and manipulation of data
during the execution of a program. Within the context of the template system, ShortBOL uses
the "=" operator and allows properties to be set on a template. Assignment operations connect
the predicates to the objects within an RDF triple. For example, figure 6 2 assigns the parameter
"type"” value to the "<type>" alias of the template "Component”. Also, figure 6 4 assigns the role
of a template as a promoter.

2.2 TEMPLATE INSTANTIATION

So far, ShortBOL has been described as templates which can be defined to encapsulate entities.
However, the templates alone do not define a design document. Templates within ShortBOL
act as classes which can be instantiated to create instances of that template. Many instances of
the same template can be (and most likely will) defined within a design. For example, multiple
Promoters may be used within a single design. Therefore a mechanism is needed to create in-
stances of classes and the resultant RDF triples. The primary operator within ShortBOL is the
"is 2", which defines an instance of a template. For example, within Figure 7, "BBa_B0034 is a
RBS" introduces a new identifier, "BBa_B0034", whose properties will be set according to the
pattern described by the RBS template. Instance definitions can also contain a block of Short-
BOL expressions known as the body, which are the same bodies as within template definitions.
These are used to declare additional properties and their values. For example, within figure 7, the
template named "BBa_B0034" declares an additional property specifying the primary sequence.
One or more arguments can also parametrise templates. For example, the DNASequence tem-
plate expects a single argument containing a DNA string. This mechanism allows typical design
and composition patterns to be easily captured within templates without requiring a complete
programming language.

PrREFIX

RDF resources that refer to web entities are Uniform Resource Identifiers (URIs). However,
as Figure 7 shows, subjects within a ShortBOL design document do not contain the full URL
For example, BBa_R 0040 alone does not reference a resource but implicitly references <https://
synbiohub.org/public/igen/BBa_Roo40/1. However, much like the aliases explain in the templates
section, for a user to input the full URI for each template produces more difficult-to-comprehend
documents. Therefore, the default prefix can be set using the syntax "@prefix <prefix_uri>"and is
appended to all template names within a document. For example, "@prefix <https://synbiohub.
org/public/igem/>" will prefix all subjects with that partial URI, thus removing the requirement
for all namespaces to be typed.

However, different template subjects may have different prefixes. For example, a template may
reference a resource from <https://synbiohub.org/public/igem/ and another from <http://www.
virtualparts.org/terms#. Therefore, named prefixes must be enabled, which allows explicit defi-
nitions on a template name. The syntax foranamed prefixis: "@prefix prefix_name <prefix_uri>".
For example "@prefix sbh <https://synbiohub.org/public/igem/>". would make templates using

69

https://synbiohub.org/public/igem/BBa_R0040/1
https://synbiohub.org/public/igem/BBa_R0040/1
https://synbiohub.org/public/igem/
https://synbiohub.org/public/igem/
https://synbiohub.org/public/igem/
http://www.virtualparts.org/terms#
http://www.virtualparts.org/terms#
https://synbiohub.org/public/igem/

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

TopLevel(type)
(
Identified(type)

Component (type)

(
TopLevel (Component)
sbol 3.<type> = type

DNA ()
(
Component (i DNA)

Promoter()
(

DNA ()
sbol 3.role = 1 promoter

Figure 6: Template definition hierarchy from general to specialised. 1 - The TopLevel class is an abstract
template representing all classes relating to top-level objects of an SBOL document, and it in-
herits from the Identified template, which is not displayed here but is the based template for all
templates. 2 - The SBOL component class requires a type parameter (within brackets to distin-
guish it from the parameter name). It inherits from the TopLevel class (1). 3 - The DNA class is
an abstraction of the Component (2) providing the type (DNA). 4 - A specialised DNA (3) class
which sets the optional role property to a promoter.

70

2 Results

BBa B0034 seq is a ("aaagaggagaaa")
BBa B0034 is a ()
(

sequence = BBa B0034 seq

Figure 7: A single part (BBa_B0034) defined within ShortBOL. It consists of the instantiation of a se-
quence template where the subject is assigned to the body of the RBS template using the sequence
alias predicate.

this prefix follow the syntax”"sbh.BBa_R 0040 is a RBS()", which enables parts to be used from dif-
ferent sources.

EXTENSIONS

ShortBOL, the language, cannot perform computation. It provides a mechanism to capture and
the potential to parse user-defined templates and generate general RDF graphs. Therefore it can-
not manipulate or comprehend the underlying logic of the defined document. For example, it
does not guarantee that the RDF graphs generated are SBOL, and a user could create a template
library that is not SBOL compliant (either invalid entities or connections). The final graph would
still be generated. An extended feature of ShortBOL not displayed here is extensions (see meth-
ods for a deeper discussion of extensions). Extensions provide a way to execute Python code to do
additional, more complex processing of the RDF triples generated by expanding templates. The
syntax for calling extensions is: " @extension <extension_names>()". An extension used within
any ShortBOL document is "sbol3". In this extension, all SBOL objects in the final graph have
SBOL-compliant URISs, and if not, they attempt to modify the triples such that they are. The
"sbol3" extension implements specific data model knowledge during validation. Therefore, by
decoupling all data model knowledge into a single extension, the language and underlying tooling
do not need to be refactored in case of changes to the data model.

2.3 CoMPOSITE TEMPLATES

An issue with the standard template system is a one-to-one mapping between templates and the
entities they define. Therefore, each object must be explicitly invoked within the design docu-
ment. Without being able to cluster multiple objects within a single template limits the potential
to increase abstraction. For example, suppose a design defines an interaction within the SBOL
data model. In that case, the creator must define several objects to ensure SBOL compliance dis-
played within Figure 8. For an Interaction with two reactants, two Participations and two Sub-
components must be defined from two initial physical entities. While these objects serve a pur-
pose, they can often be inferred from other design aspects. For example, within SBOL, if a repres-
sion object is defined, it can be assumed that there will be a repressor entity and a repressed entity

71

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

without a user being required to define the participants. These inferences cannot be encoded us-
ing the standard template system within ShortBOL; therefore, a new template type is introduced.
Composite templates are an advanced extension of the template system where template instances

Interaction Node Color

@l Interaction

@ Participation
SubComponent

@l Component

Edge Color

Fertcipation2 gEEB hasParticipation
hasFeature
@ instanceOf

Participationl

SubComponent1 SubComponent2

Componentl Component2

Figure 8: Graph representation of the requirements to define a two reactant interaction within the SBOL3
data model. The Interaction requires two participation instances, each requiring a SubCompo-
nent with definitions of Components.

can be defined within other templates and assigned. Composites aim to increase abstraction by
removing SBOL-specific constructs and the required writing on the user side.

In Figure 9 1, the standard templates (Interaction, Feature, SubComponent and Participation)
are initially defined in line with the SBOL data model. Next, figure 9 2 represents a composite
template (hasInteraction) which appears much more complex within the definition. This tem-
plate takes five parameters, the components, participation types and interaction type. Initially, the
template instantiates two SubComponents. Internally instantiated templates do not have user-
provided names and must be created automatically. The subject here is "self.partl._sc", which
concatenates three values to create a URI as a name.

72

2 Results

* "self" is a keyword used to refer to the parent object within the design. The parent is the
subject name of the template instances within the design document.

* "partl” refers to the parameter given to the template.

* "_sc"is aliteral string value which ensures the name is unique.

Next, the SubComponent instances are assigned as properties to the parent. The parent refers to
the template instance within the design document. Next, an Interaction template is instantiated
(and all intermediate templates) inside the hasInteraction template (figure 9 3). Again, the name
of the Interaction and Participation templates must be calculated based on the inputs, ensuring a
unique name is generated. However, when the instances of the Participation objects are assigned,
they are set to the new Interaction instance instead of the parent. It should be noted that this
composite template is unlikely to be instantiated by the user. Instead, it would be inherited by a
specialised template, as in figure 9 4. This template is an example of a specialised version of the
composite template, which defines a repression interaction by providing the participation and
interaction types using aliased URIs. It must be noted that templates cannot accept an arbitrary
number of arguments. Therefore a base composite template must be written for each number of
participants within an interaction. For example, this template cannot define an interaction with
three participants.

2.4 TEMPLATE LIBRARIES

As discussed, templates are structures defining an object within a given domain. However, users
of ShortBOL are not required to define their templates for every design. Instead, template libraries
exist which define multiple templates for use.

Currently, ShortBOL contains two libraries (Developer and User) which define genetic parts,
interactions, proteins and other non-genetic materials at two different levels of abstraction. These
libraries differ by using composite templates in the case of the "User" library.

Figure 10 displays the usage of both libraries when defining the same design, a simple system
describing the lacI & pLlac regulatory mechanism. The "User” templates provide a much more
streamlined definition of a genetic design, removing the requirements to explicitly define the ver-
bose methods of describing interactions within SBOL. However, the "Developer” mode does pro-
vide some benefits that being finer control. For example, take an interaction which contains an
arbitrary number of participants. With the "User” mode, a template would be required for ev-
ery potential number of participants. However, with the former, a single template can account
for any number of participants. Furthermore, the composite templates require context (whom
the internal templates connect to) and, therefore, must be instantiated inside a parent’s body, as
seen within Figure 10, where the "inhibition" composite template is instantiated inside the par-
ent FunctionalEntity. Therefore, while the more abstract "User” mode is the most applicable in
most circumstances, in exceptional cases, the "Developer” templates should be used. One template
library does not need to be used exclusively within a document. Instead, both can be used simul-
taneously. The ability to mix and match libraries is a crucial feature of the underlying language
because it allows the user to choose what level of detail they need to encode a piece of information.
(see discussion for an extension of this point).

73

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

Interaction(type)
(
Identified(Interaction)

sbol 3.<type» = type

Feature(type)
(
Identified(type)

SubComponent { component)
(
Feature(SubComponent)

instance0f = component

Participation(subComponent, role)

(
Identitied(Participation)
sbol_3.<role» role

participant subComponent

self.partl. sc is a

self.part2. sc is a

hasFeature = self.partl._sc

hasFeature = self.part2._sc

self.partl. .type. with .part2 is a

(
._.partl._.part_1_type is a (
._.part2._.part_2 _type is a {

articipation = self._ .partil._.part_1_type

hasParticipation = self._ .part2. .part_2 type
)
hasInteraction = self.partl._.type. with_.part2

inhibition{inhibitor, inhibited)
¢

hasInteraction(inhibitor, i_inhibitor, inhibited, i inhibited, i_inhibition)

Figure 9: A more complex instance of specialised templates. 1 - Interaction, Feature, SubComponent and
Participation are standard specialised templates inheriting from a general template and assigning
variables. 2 - A composite template that performs expansions and URI assignments within the
template. 3 - The participations are created and assigned to the Interaction instead of the parent
template. 4 - A specialised template inherits from the hasInteraction (3) template.

74

2 Results

A B

pLlac is a pLlac is a @)
lacI_p is a lacI_p is a Q)

pLlac_sc is a LacI_inhibition_module is a
lacI_p_sc is a ¢
inhibition(lacI_p,pLlac)
lacI_inhibitor is a
pLlac_inhibited is a
pLlac_inhibition is a @)
(
hasParticipation = lacI_inhibitor
hasParticipation = pLlac_inhibited

LacI_inhibition_module is a

(
hasFeature = pLlac_sc
hasFeature lacI p_sc

hasInteraction = pLlac_inhibition

Figure 10: A comparison of the A: “Developer mode” and the B: “User mode” defining the same protein-
promoter inhibition. The composite (inhibition) within the “User mode” is defined within an-
other template as the context is required.

75

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

IMPORT

Template libraries and existing ShortBOL objects do not need to be within the same document
as the design. Import statements can import external documents using the syntax: "use <docu-
ment_name>". For example, "use <sbol3>" will import all SBOL3 templates and aliases defined
within the library available for use. Furthermore, multiple imports can be used within a docu-
ment enabling templates from difterent domains to be used within the same design (see future
work). Furthermore, importing template libraries enables reuse and standard language interfaces
instead of each user defining a set of local templates.

2.5 THE DOCUMENT

So far, we have discussed templates, composite templates, instantiation of templates and other
language features. However, it is only when all of these are combined that a ShortBOL document
is created. Figure 11 displays the NOR gate built by Nielsen and colleagues[19] as a ShortBOL
design document, which was used when discussing previous specification methods.

The statements contained in shorthand documents are interpreted sequentially, and an RDF
graph is generated from each template statement. The union of these graphs is then serialised
as RDF/XML to produce a valid SBOL document. Here we will briefly discuss the statements
sequentially from figure 11.

* Import statements: Import URIs are resolved to ShortBOL documents. For example,
figure 11 imports the SBOL3 template library.

* Prefix statements: Prefixes identifiers map to their aliases (None if default prefix) available
for use within the design document. Figure 11 displays the default prefix referring to https:
//synbiohub.org/public/igem/ and a named prefix (Icp) which aliases the URI https://
synbiohub.programmingbiology.org/public/.

* Template instantiation: Templates are associated with their subject identifier. If the
name of a template application matches a registered template, this template will be ex-
panded (see template expansion). Figure 11 displays many templates and composite tem-
plates. Some templates have bodies which contain extra information such as sequence in-
formation, descriptions or connections to other template subjects in the case of the NOR
module, which defines structural and functional relationships between its constituents.

* Extension statements: The extension name is looked up, and the appropriate Python
function is found and executed when the graph is generated. Figure 11 displays the sbol3
extension, which ensures the final graph (providing the ShortBOL document is valid) is
SBOL compliant.

While all extra language features (import, prefix and extensions) can be used to customise fur-
ther, a ShortBOL document, like in Figure 11, is unlikely to be the document a user would see
if they were using the tooling developed alongside the language(see methods for a discussion of
the tooling around the language). The import, prefix and extension statements do not need to be
explicitly defined, as they would be inferred within the tool and inserted automatically into the

76

https://synbiohub.org/public/igem/
https://synbiohub.org/public/igem/
https://synbiohub.programmingbiology.org/public/
https://synbiohub.programmingbiology.org/public/

2 Results

document before it is parsed. These insertions aim to reduce the user’s requirements to interface
with them because they introduce unneeded complexity.

2.6 TEMPLATE EXPANSION

So far, we have discussed how templates are defined and instantiated. While a user can create and
develop ShortBOL documents using existing templates or create new ones without knowledge of
the underlying processes, we will discuss how ShortBOL templates are compiled to RDF triples.
Figure 12 will be referenced during the explanation as an outline of how this process occurs where
templates are expanded and substituted when a design document (figure 12) references these tem-
plates, and then RDF triples are created. The generation of the RDF graph can be broken down
into two stages.

TEMPLATE TABLE CREATION

Before any design documents are considered, the first stage is to generate the template table from
the imported templates or locally defined templates. A template table maps each template type
defined in the template library or the design document to the RDF graph for that template. Tem-
plate tables enable substitution within the design document where instantiations are looked up
in this table. The first stage is to generate to gather all properties of a template. For example, figure
12 1 displays the inheritance feature of the ShortBOL language. When a template inherits from
another, all properties are substituted inside the template’s body. As seen within Figure 12 2, all
properties from the Promoter template and all parent classes are inserted inside the body. Fur-
thermore, the keyword "self” is used. Within this context, "self” can be considered a Blank node, a
substitute until an instance of this template is created.

Finally, the template table is generated by adding each template type as the keys and the RDF
graph as the object. The result of a single table entry is represented in Figure 12 3. The RDF
graph is generated by resolving each property within the template’s body, where each property
corresponds to a triple. For example, "sbol_3.role = i_promoter” resolves to the triple "self” -
http://sbols.org/v3#role - http://identifiers.org/S0:0000167 where aliases (SbOB, role and
i_promoter) map to full or partial URD’s.

DEsiGN GENERATION

The final design RDF graph can be generated by substituting template types with the correspond-
ing triples and generating triples from properties. Figure 12 4 + S displays how instances of tem-
plates can be converted into RDF. The first step is using the type of template (in this case, Pro-
moter) and searching the template table for the template definition. If a match is made, the RDF
graph value is taken, and the Blank node is substituted with the template instance subject name.
Secondly, the custom properties defined within the body of the template instance are translated
into triples.

77

http://sbols.org/v3#role
http://identifiers.org/SO:0000167

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

1 @use <sbol3>
2 @prefix <https://synbiohub.org/public/igem/>
3 @prefix lecp = <https://synbiohub.programmingbiology.org/public/>
4
lcp.arabinose is a ()
lep.ATC is a
lep.TetR is a
lep.CI_p is a
lcp.AraC is a
10
11 BBa_R@@48 is a O
12 (
13 hasDNASequence("tccctatcagtgatagagattgacatccctatcagtgatagagatactgagcac™)
14
15
16 BBa_I0@500 is a 9]
17 ¢
18 description = "pBad promoter”
19)
20 BBa_B@@34 is a QO
21 BBa_C@@51 is a 9)
22 BBa_B@@1@ is a 0]
23 BBa_J23117 is a ()
24 BBa_J6110@ is a 0]
25 BBa_K1088005 is a O
26 BBa_J61101 is a 0]
27 BBa_C@@4@ is a QO
28 BBa_j61102 is a 9]
29 BBa_K59211 is a 9]
30
31 NOR_gate is a)
32 (
33 precedes(BBa_Re@4e, BBa_I6568)
34 precedes(BBa_I0500, BBa_Bee34)
35 precedes(BBa_B@@34, BBa_C@e51)
36 precedes(BBa_C@e51, BBa_Bee1e)
37 precedes(BBa_B@e@le, BBa_J23117)
38 precedes(BBa_J23117, BBa_J6llee)
39 precedes(BBa_J61180, BBa_K1088805)
48 precedes(BBa_K1088e85, BBa_l611@1)
41 precedes(BBa_J61101, BBa_Cee4@)
42 precedes(BBa_C0040,BBa_j61102)
43 precedes(BBa_j61102,BBa_K592161)
44 precedes(BBa_K592101,BBa_Bee1e)
45
46 inhibition(ATC,TetR)
47 inhibition(arabinose,araC)
48 inhibition(TetR,BBa_Re848)
49 inhibition(AraC,BBa_I@588)
50 inhibition(CI_p,BBa_J23117)
51 geneticProduction(BBa_Cee51,CI_p)
52 geneticProduction(BBa_K1088605,araC)
53 geneticProduction(BBa_Cee4e,TetR)
54)
55
56 @extension <sbol3>()

Figure 11: NOR gate described within ShortBOL. From top to bottom: the document imports the SBOL3

78

template library and defines the default prefix, a named prefix, molecules and proteins using re-
sources from a named prefix namespace. Next, the genetic parts are described; the subjects do not
need to be prefixed with a namespace as they come from the default prefix namespace. Within
some genetic parts, extra information is defined, namely DNA sequences and descriptions. The
NOR_gate module is defined, which encapsulates the design. It first specifies the parts’ relative
positions using the precedes composite template and then defines several interactions using mul-
tiple specialised interaction composite templates. Finally, the SBOL3 extension is defined, which
ensures the design document is SBOL compliant.

2 Results

1. Template 3. Template Table
Library

ied(type)

Legend

H . Template Table
3Expan5|on Generation
Lookup and
Substitution
Design
Generation

rdf.<type

:>self is a Promoter()
N (self , httg NW.W3.0rg/1999/02/22-rdf-s X-ns h ols.org/v3#Component),

biopax-level3.owl#DnaRegion),
7)

rdf.<type> = Component
sbol 3.<type> = i DNA
sbol 3.role = i promoter

4. Template Instantiation
BBa_R0040_seq is _a DNASéquence("tta

(BBa_R0040_seq, ht
BBa R0040 is a (BBa_R0040_s: p://sb
((BBa_R0040, e, /s 3#Component),
) (BBa_R0040 , s ype , ! org/release/biopax-level3.owl#DnaRegion),
sequence = BBa_R0040_seq—— (BBa_R0040 , http://s ole , http://identifiers.org/S0:0000167),
S —>(BBa_R0040, sbols sequence , BBa_R0040_seq)

— (BBa_R0040, http://purl.org ements/1.1/title, "pTetR™)

]

Figure 12: The overview of RDF graph generation from ShortBOL templates. 1 - Template inheritance,
the Promoter template inherits from DNA which inherits from Component and the rest, tak-
ing the properties defined in the hierarchy. 2 - The self keyword is inserted as a placeholder for
the Promoter’s name, which is unknown at this point. Also, all properties (RDF type, SBOL
type and SBOL role) are inserted into the body of the promoter template. Note: the prop-
erty names and values are aliases for URIs. For example, i_promoter is an alias for the URI
http://identifiers.org/s0:0000167. 3 - A template table is a dictionary with keys as the Pro-
moter type, and values are the triples constituting a Promoter as defined within the template.
The subject uses self as a placeholder. 4 - The design document defining a sequence and pro-
moter template. 5 - The final RDF graph where all templates have been expanded, and substitu-
tions made.

79

http://identifiers.org/SO:0000167

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

3 METHODS

When designing the ShortBOL language, a software package and web application were also de-
veloped to complement the language. The software package can be used from the command
line (https://github.com/intbio-ncl/shortbol) and primarily contains the compiler to produce
SBOL from ShortBOL documents. However, it also includes documentation to compile Short-
BOL text files to SBOL XML files. Furthermore, a web application (http://shortbol.org/) was
developed to reduce the barrier to entry that a manual installation presents and provides several
utilities. Here we will discuss the tool’s features that are not inherent to the language discussed.

3.1 EpIrTor

Like all DSLs and programming languages, Integrated development environments (IDEs) pro-
vide several utilities, namely, writing assistance[118]. IDEs are designed to improve productivity
by reducing the time required to focus on trivial tasks and increasing comprehension of the writ-
ten document. The ShortBOL web application editor provides two utilities to assist with writing
ShortBOL, autocompletion and syntax highlighting. Firstly, the autocompletion looks up poten-
tial values from the current document (the text inside the editor) and the template libraries that
have been imported. This feature provides the user quick access to existing templates and instances
of templates and property names. Secondly, syntax highlighting will colour text depending on
what it represents, for example, templates, connections, comments and literals, which increases
comprehension, especially on large designs. Figure 13 displays the editor, containing two tem-
plates with comments where each type of text is coloured differently.

3.2 VALIDATION

Two cases may occur that causes errors within the ShortBOL application:

* If'a user makes a syntactic mistake in the code, i.e. an incorrect argument or missing brace,
the language parser will be unable to deconstruct templates. ShortBOL can identify syn-
tactical errors within the code during runtime and return user-friendly errors when the
language parser detects an error, such as line numbers, positions and the type of error.

* If the document is syntactically valid but, when compiled, is not SBOL compliant. For
example, two entities are connected via an invalid predicate. When ShortBOL code is exe-
cuted, the output is validated for compliance with the SBOL specification, ensuring Short-
BOL output will interoperate with other SBOL tooling. The errors are checked relative to
the SBOL best practices.

3.3 EXTENSIONS

As discussed, extensions are a feature of ShortBOL that provides a way to execute Python code
to do additional, more complex processing of the RDF triples generated by expanding templates.
The combinatorial derivation extension is an implemented example where the extension will ex-
pand a Combinatorial Derivation SBOL object and generate all possible construct variants. An

80

https://github.com/intbio-ncl/shortbol
http://shortbol.org/

3 Methods

Run || Reset || Choose file | No file chosen ?

1 # Declare a promoter named pTetR
2 pTetR is a
(
CA-SAVEME Protein

[Ydgls Promoter
ProteinSequence
Product

Declare a CDS named pTetR
lacI_CDS is a ()

(

name = "lacI"

description = "LacI protein coding region"

Figure 13: The ShortBOL web application editor. The editor enables the compilation of ShortBOL docu-
ments and contains autocompletion and syntax highlighting.

81

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

extension can be written to perform any modifications, analysis, or validation on the graph. The
software package contains examples, each with an existing extension and its usage.

3.4 CONVERTER

ShortBOL can be used to develop new genetic designs but has no inherent mechanism to edit ex-
isting designs captured within SBOL. Therefore, the ShortBOL software package contains a tool
to generate ShortBOL from SBOL enabling a "round trip" between the two formats. In conjunc-
tion with SBOL, the converter can convert Genbank and FASTA files. However, as discussed,
the resultant ShortBOL will likely be of lower quality using GenBank and FASTA files due to the
inferior data formats.

Briefly explained, the converter produces the expanded template table, which contains the triples
a template would generate when expanded. From this, a requirements hierarchy is formed where
each template is positioned relative to its parent and derived templates. Figure 14 displays a sample
of the template hierarchy where each node represents a template and the requirements for a tem-
plate to be upgraded from its parent template. Each object within an SBOL graph (the existing
design data) then traverses this hierarchy, comparing itself against the requirements and becoming
the most specialised template possible. While a conversion can occur, the resultant ShortBOL will
be of the lower abstraction "developer” code. "User” mode conversion is not possible because some
structural data is lost when attempting to derive the abstract constructs. For example, if a com-
posite template represents inhibition between two entities, one being the inhibitor and the other
inhibited. In that case, which component performs which role without specialised data model
knowledge is unclear.

TopLevel
Requirements:
Has: RDF Type

|
v Y

Component Interaction
Requirements: Requirements:
RDF Type = Component RDF Type = Interaction

I I
| v v v

DNA Protein Inhibition Activation
Requirements: Requirements: Requirements: Requirements:
sbol-type = DNA shal-type = Protein shal-rale = Inhibition shal-rale = Activation

Figure 14: Example of a partial template hierarchy. Each node in the hierarchy contains requirements for a
candidate to be valid as this template. If a pass occurs, the same comparison is made with children
nodes.

82

3 Methods

3.5 TUTORIAL SERIES

A fundamental issue with any new language is the steep learning curve when adapting to a new
paradigm. Tutorials and examples are excellent for providing templates to learn a language; they
are practical examples that map the new language to the specific domain and can be used as a
starting point for another project. Therefore, a tutorial describing how to use ShortBOL intro-
duces features of the SBOL data model. This tutorial begins with the smallest possible examples
and expands with increasing complexity. Secondly, an example series contains examples for each
template within the library combined with complete design examples, such as a NOR gate imple-
mentation. Furthermore, tutorials and examples exist for both “Developer” and “User” template
libraries.

3.6 DOCUMENTATION

While tutorials provide specific examples of initial usage, they cannot be relied on to explain each
aspect exhaustively. Therefore, along with the tutorials and examples, the ShortBOL web appli-
cation contains exhaustive documentation on all templates within the underlying library. The
documentation page is a self-generating document based on the documentation within the tem-
plate library. Therefore it does not need to be updated if the ShortBOL libraries are expanded.
Figure 15 displays the generating documentation page for both user and developer modes. The
documentation contains names, parameters and descriptions of the templates. Furthermore, it
describes the specialised template (inherited templates) and small usage examples.

3.7 NON-TEXTUAL ADDITIONS

Another resource for novice users is the ability to create instances of templates without typing
using the forms system where each template within the library is displayed, allowing users to in-
sert them. This system was implemented as a teaching mechanism to provide a custom example
to users without being required to modify the existing examples. Figure 16 displays the system
where each template class is offered and can then be customised relative to a user’s requirements.
Furthermore, specialised templates of the base template can be used. Figure 16 A displays all tem-
plate base templates from the SBOL template libraries. When a template is chosen, figure 16 B
displays the required and optional parameters and any specialised templates that inherit from this
template.

3.8 ALTERNATIVE REPRESENTATION

One advantage of compiling to a standard format is that other tools can also use this data. The
ShortBOL web application also presents some visualisations of genetic designs discussed during
the review. These additions are so that new users can see how changes to the design affect the final
SBOL when presented in the formats they may be more familiar with. Here we briefly discuss
these two alternative visualisation methods.

83

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

Component

The fundemental templates for creation of enitites in a biclogical design.
Usage: Use to represent parts in a design such as DNA or a Protein.

Parameters

- i_DNA

- i_RNA

- i_protein

- i_smallMolecule

- i_complex

- i_functionalEntity

type Category of the Component such as DNA or Protein.

Specialised Components: - DNAComponent - DMNA - RMACompaonent - RMA - ProteinComponent - Protein -
SmallMoleculeComponent - SmallMolecule - ComplexComponent - Complex - FunctionalEntity - Promaoter - RBS - CDS -
Terminator - Operator - EngineeredGene - mRMA - CDS_RMA - sgRMA - Effector - TranscriptionFactor

Description:
These templates create a blueprint of a part, an instances of these are created using FunctionalComponents.

Usage Example:

Creates Four Components,
Components can be thought as blueprints,
It can be noted that the two RES Companents
although written differently are functionally the identical.
pTetR is a Promoter()
(
description = "pTet promoter”

lacl_CDS is a COSY

lacl_RBS is a RBS(])
lacl_RE5_2 is a Component(i_DMNA)
(

role = i_rbs

lacl_term is a Terminator()

Figure 15: The automatically generated ShortBOL documentation page. Each template from both levels
of abstraction is displayed with a description, usage, description of parameters, specialised com-
ponents and a small example.

84

3 Methods

aaaaaaaa

............

‘‘‘‘‘‘‘‘‘

Figure 16: A) The options screen to choose a component to add to a document. B) The customisation
screen for the Interaction template. Enables additional information and to choose specialised
templates.

GLYPH VISUALISATION

As discussed in the background, the glyph representation is a powerful method for fast compre-
hension of relatively small designs. Therefore, to supplement the language, the web application
implements a simple glyph visualisation mechanism that displays the compiled SBOL. Figure 17
displays a generated representation of a single gene defined within ShortBOL.

Sequences and Components

tetRInverter
Rinverter_pTetR_c verter_lacl_RBS_c¢ verter_lacl_CDS_c erter_lacl_term_c

Figure 17: The glyph representation generated by the ShortBOL web application. A simple four-part con-
struct is displayed as an example.

SEQUENCE REPRESENTATION

Also discussed in the background, the sequence representation is comfortable for biologists. There-
fore, to supplement the language, the web application implements a linear sequence view that
includes the regions within the DNA of parts and constructs. Figure 18 displays the sequence
representation where each component in the design is displayed as a coloured region.

85

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

@Graphic View () Simpiffied View
v

tetRInverter-DNA

tewRinverter_pTetR_c telRInvertér_lacl_RBS_c ®)

g

E
g

a t a c g at gt c g c agawgc¢t act g
t

T g g a t g ¢ t a c a g c gt c t c at a c g

[NoSeuencer > teiRInverter_lacl CDS ¢

¢ g gt gt c t c t t at cagacocoagtt t coccgc gt g gt g aacoecaggocecageceacg

g ¢ ¢ a ¢ a g a g aat agt ct g g c aaagggc gc accact t g gt ccggt cggt goc
tetRInverter_lacl_CDS_c

t ¢t g c g aaaacogoc g g g aaaaagt g g aagec g gc g atggc g gagoect goaa.t

a a a g a c g c t t t t g c g e e c t t t t t cacc t t c g cc g ct acocgecct cgact toa
tetRInverter_lacl CDS ¢

t a t t c a g ccaaaaaacttaawgacocagoecoecoagogtoecttgtoecocactacecdt tg

a t a a g t ¢ g g t t t t t t g aatt ct ggcggccagaacagagtltgatgagaac

tetRInverter_lacl_CDS_c o T o Jio

Figure 18: The sequence representation of an example design from the ShortBOL web application. Each
colour represents a genetic role and is contained within the length of the region within the se-
quence.

4 DISCUSSION

This work aimed to explore the gap between natural language and language introduced by a stan-
dard and how mappings can be made to reduce the barrier to entry to define genetic designs stored
in s standard format within synthetic biology. While existing language mappings and DSLs exist,
this work focused on mapping to standard data, a simple syntax, and a more natural language. This
simplified approach contrasts with the often more verbose languages that implement more com-
plex syntax and language to provide extended functionality. The outcome of this research was a
new language called ShortBOL that employs an extendable template system where templates can
be defined to represent any physical or conceptual entity and encapsulate detail. Furthermore,
templates can be defined and instantiated inside other templates. The mechanism to recursively
define templates means an abstraction hierarchy of arbitrary depth can be defined. Moreover, this
section introduced two initial template libraries that map to the SBOL data model in two different
levels of abstraction, one of which is a close mirror to SBOL and a more abstract library aimed to
reduce language dissonance. With the language of ShortBOL, a software package and web appli-
cation were developed to reduce further some of the challenges a new user may find when using
the language.

This section will discuss the design choices, strengths and limits of ShortBOL. Furthermore,
the potential future directions for research will be discussed based on the challenges faced in this
work.

4 Discussion

4.1 DESIGN CHOICES
DECOUPLING LOGIC AND DATA VIA AN OBJECT APPROACH

The first design decision was identifying how SBOL classes would be captured within this lan-
guage. The choice to employ an object approach instead of a functional one was made for two
primary reasons. Firstly, the logic and the data model would be more likely to be coupled because
afunctional approach would consist of functions which are static blocks of computation with im-
mutable data. Secondly, because the logic and data are coupled, the functional approach requires
a more extensive and complex language because the language contains mechanisms to perform
computation.

Once the decision to employ an object approach is made, the following design decision is the
implementation detail. A complete class system, such as objects with member functions, is un-
necessary because it would increase language complexity and promote logic encoded within the
methods. Therefore, the minimal required features are added to templates.

* Instantiation refers to the production of instances of a template. ShortBOL uses the key-
words "is a" to instantiate instances. The design decision is not to implement the instantia-
tion system alone because it is a required feature but to decide on the keyword. The "isa "
keyword was decided over symbols such as "=" because it makes the language appear more
like a natural language than a programming language.

* Inheritance is creating new specialised templates that extend existing templates. Inher-
itance was decided as a language feature because it enables consistency between levels of
the abstract hierarchy present within template libraries and increases the reuse of existing
templates.

* Aliases are synonyms for URIs. For example, within ShortBOL, the alias "description”
is synonymous with the URI http://purl.org/dc/elements/1.1/description. Aliases are
used because many URIs within a document quickly make documents incomprehensible.
Alias names are designed to be similar to the resource subject without creating naming
collisions inside the libraries.

* Properties are values assigned inside the body of a template. In ShortBOL, the "=" syntax
is implemented to allow further customisation by the user because defining a template for
every possible property is infeasible.

* Parameters are user-provided arguments that further customise a template. Parameters
are needed for undeterminable properties, such as sequence data or free text descriptions,
or for required properties, such as template types.

* The Context within ShortBOL is the template name on which the property is being set.
The keyword "self" refers to the direct template that a property is set inside and was imple-
mented to provide control within composite templates. Context should not be a feature
for users only using and not writing templates.

87

http://purl.org/dc/elements/1.1/description

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

TARGETTED TERMS FOR DIFFERENT USERS

The first template library, "developer”, had few design decisions because it was simply a transla-
tion of the SBOL data model. The library mainly defines the classes within SBOL and specialised
classes, which map to the recommended URIs specified within the SBOL specification. The sec-
ond template library, "user”, was created to increase abstraction further and move away from the
SBOL data model. The primary design decision was to introduce composite templates, which
enabled existing templates to be instantiated within a template definition, removing the user’s re-
quirements to keep the design document in line with the SBOL structure. Furthermore, some
non-SBOL templates, such as "hasDNASequence”, were introduced to make the language appear
more naturally written.

REMOVING COMPLEXITY TO ENABLE USER-FRIENDLINESS

A conscious effort was made to reduce the complexity via templates. However, another design
choice was to remove the requirements for a detailed understanding of the language. For example,
the language initially required the namespace (the template library name) to prefix all templates
with a dot operator. The requirement to prefix templates gave the user more control because
multiple template libraries could be used within a single document without naming collision.
However, the document appeared very verbose, and it was clear that this would alienate the user
base to whom this language was designed. Many decisions like this were made, which resulted in
alanguage with a small and straightforward syntax.

ACTIVE DEVELOPMENT AND SUPPORT OF SHORTBOL

A longstanding issue of academic software, especially within a smaller and less mature field such
as synthetic biology, is the inability to provide development and support once the research is con-
cluded. Thisissue is mainly because of the limited resources that can be allocated once the original
research goals are finished. The result is that software can often not advance with changes in the
field and provide active support to new users. This issue was considered from the inception of the
implementation of ShortBOL, and design choices were made to address it. A common principle
within software engineering is the separation of concerns, which involves keeping entities separate
so that changes to one component have minimal impact on others, thereby increasing modularity
and ease of maintenance. This principle was achieved within shortBOL by decoupling the model
(SBOL), interface (Software implementation) and logic (ShortBOL libraries). Practically, this
means that if one of the entities changes, all others can remain unchanged and still be functional.
For example, if changes are made to the SBOL data model, the software system, i.e. the method
to transform ShortBOL documents to SBOL-RDF, will not need to be changed. This approach
substantially reduces the maintenance requirements of ShortBOL because the logic is contained
within the libraries and will be the only part that needs to be changed. Currently, ShortBOL has
two usage methods. Firstly, the live web application enables users to access the tool quickly. How-
ever, resource constraints may mean that this application cannot be maintained in the future. In
this case, an offline version, which can be installed easily on an individual system, is available. Fur-
thermore, several educational and training resources were created during development, including
various examples, a tutorial system, a dynamic documentation system and videos. When com-

88

4 Discussion

bined, these resources will reduce the likelihood that a user will be required to interface with the
developers of ShortBOL.

4.2 STRENGTHS

ShortBOL has three strengths that make it viable for defining genetic designs.

ABSTRACTION HIERARCHY FOR CONSISTENCY AND REUSE

Templates are at the core of ShortBOL. As discussed, they are constructs similar to classes within
programming languages and ontologies where templates can extend existing templates to provide
further specialisation. Furthermore, templates can be composed within other templates abstract-
ing detail from a user. Therefore, ShortBOL can define an arbitrary level of abstraction and can be
used to target any level of knowledge. Furthermore, by extending existing templates, consistency
is kept within the ShortBOL libraries and can clarify the levels of specialisation.

DECOUPLED LOGIC AND DATA FOR REUSABILITY AND ADAPTABILITY

Template libraries (the data) provide two main benefits, independent of the underlying language
(mechanisms to generate graphs). Firstly, the language syntax, parsing of documents and the gen-
eration of RDF graphs do not have any SBOL-specific information (this is present within the
existing template libraries and extensions). Therefore, the underlying mechanisms can be reused
for any data instead of rewriting logic coupled to the data model. Secondly, changes to the data,
such as changes to the SBOL data model, do not require changes to the system’s internal logic.
Instead, changes to the library are required, which is a considerably smaller operation.

ENABLES THE DEFINITION OF MULTIVARIATE DATA

Many of the discussed design specification mechanisms can only capture a small number of data
types. For example, the SBOL glyph approach can only capture sequence data and abstract in-
teractions. However, the SBOL data model has classes encapsulating different datatypes such
as experimental data, combinatorial designs and simulation models. ShortBOL implements all
classes within the SBOL ontology and provides mechanisms to connect these datatypes. Further-
more, expanding the previous two strengths, ShortBOL has mechanisms to define facades where
non-SBOL and SBOL data are contained within abstract templates providing a unified interface.

4.3 LIMITATIONS
This section discusses some shortfalls of the ShortBOL language and tooling stemming from de-
sign choices or are inherent to the process.

MANUAL APPROACH TO DESIGN SPECIFICATION

While ShortBOL can define implementation agnostic designs, details must be specified to gen-
erate a complete SBOL design. However, synthetic biology is moving towards automation due
to the increased size and complexity of designs. Therefore, it is questionable how much further

89

Chapter 3: ShortBOL - 4 language to specify standard design data via an extensible and
user-facing language.

purely manual design specification will be feasible. For example, defining a library of designs con-
taining many constructs would be infeasible within ShortBOL. However, this is not inherent to
ShortBOL. Manual specification techniques such as SBOL visual will also be infeasible if no au-
tomatic mechanism exists to generate the data.

USER DEPENDENCE TO PROVIDE QUALITY INPUT

The ShortBOL language and libraries can produce compact documents that promote modularity
and are comprehensible by people unfamiliar with the SBOL data model. However, like any spec-
ification or programming language, this depends on the person writing the document. The writer
must intend to employ good practices while creating designs, such as reusing existing templates
and specifying all possible data. ShortBOL does have mechanisms to promote good standards,
such as the templating system but does not have any inherent mechanisms to ensure these.

LiMITED RESOURCES FOR DEVELOPMENT

Programming languages and DSLs require continuous support, especially if mapping to a stan-
dard. For example, if the developers of SBOL decide to change the model, the ShortBOL libraries
will need to update. Furthermore, despite creating a simplified language which focuses on acces-
sibility and a shallow learning curve, a user must still interface with a software application. Most
applications require maintenance, user testing over a long period and iterative improvement, es-
pecially with user feedback. While these are not inherent to the ShortBOL language or imple-
menting tools, they seriously reduce the likelihood of longevity when resources do not exist for
maintenance.

4.4 FUTURE WORK

This section discusses three potential extensions for this work based on limitations or improve-
ments identified after the project.

USING VIRTUAL ANALOGUES TO REMOVE REFERENTIAL INCOMPATIBILITY

ShortBOL allows users to define local terms (template names) without validating whether the
resultant URI is a real resource. However, local terms which do not resolve to a shared resource are
adverse to the intent of RDF, where each element references a resource. Furthermore, this breaks
the idea of virtual analogues within synthetic biology, where each part or module within a design
references the same virtual analogue. Therefore, in future, the mechanisms which implement the
language could either provide a mechanism for the user to interface with standardised databases
such as Synbiohub or automatically find the virtual analogues.

NEW TEMPLATE LIBRARIES

Currently, two libraries at different abstraction levels exist. While the second template library in-
creases abstraction and reduces complexity, the language still holds artefacts from the language
defined within SBOL. Therefore, a more abstract and robust template library that captures ac-
tual terms used within synthetic biology would be beneficial. Furthermore, providing libraries at

20

S Conclusion

several layers of abstraction would provide more options for a user based on their requirements
and knowledge level. To extend this future work, to decide upon a set of universal terms is not a
trivial task and is a challenging social task requiring input from multiple members of the synthetic
biology community, which specialise in many sub-domains within the field.

DIFFERENT APPLICATIONS OF THE TEMPLATE SYSTEM

As discussed, a design choice during development was to decouple the language and implementa-
tion from the data model (SBOL). Therefore, while the language (template libraries) are genetic
design focused, the underlying technology could be applied to specify any datatype provided the
template libraries are written. For example, to establish build protocols or designing and specify-
ing experiments.

GENERATING DESIGNS FROM ABSTRACT SPECIFICATIONS

As discussed within the limitations, design specification is moving towards automated and semi-
automated approaches. ShortBOL can define designs without implementation details, that s, the
shape of the design without the biological mechanisms. Therefore, intent can be specified with-
out the knowledge of the implementation. A potential future project for ShortBOL would be
to take the existing specification and automatically generate a set of designs that fulfil the require-
ments specified within the structure. For example, a user could provide a partial parts list, required
interactions or high-level functions such as logical gate function, i.e. NOR or OR gates.

S CONCLUSION

In conclusion, this chapter explored the abstraction of unfamiliar language to be more accessible
to a larger group of synthetic biologists. Furthermore, the ability for language to be often more
expressive within a smaller footprint provides a new mechanism for designing complex biological
systems which cannot be as quickly met using visual means. During this research, we developed
ShortBOL, the language with a web application with several benefits over similar languages, pri-
marily the backing of SBOL, which allows the underlying data to be structured and can benefit
from existing semantic web tooling due to being based on RDF. Furthermore, the ability to create
template libraries that can abstract previous template libraries provides the mechanism for hierar-
chical abstraction levels based on the requirements.

91

CHAPTER 4: USING WEIGHTED KNOWLEDGE
GRAPHS TO QUANTIFY UNCERTAINTY AND
ENABLE COMMUNITY-BASED FEEDBACK

PUBLICATIONS ARISING FROM THIS CHAPTER

* Matthew Crowther, Anil Wipat, and Angel Gofi-Moreno. “GENETTA: a Network-Based Tool
for the Analysis of Complex Genetic Designs”. ACS Synthetic Biology, 2023

SOFTWARE ARISING FROM THIS CHAPTER

* Genetta

1 INTRODUCTION

Synthetic biology aims to compose sequence data into structural and functional modules to en-
able forward engineering[119]. Defining reusable and abstract modules introduces unique chal-
lenges not present when working solely at the sequence level. Standards such as the SBOL move
towards this goal by enabling the construction of these modules so that they can be unambigu-
ously connected using semantic labels and rules regarding how data connects, enabling the po-
tential for standardised data. While this focus has been achieved to a mixed degree[120], as genetic
circuits increase in size and complexity, abstraction away from a sequence-centric approach will
become required. In an ideal case, a modular system allows the reuse of existing functions explic-
itly validated by use in past circuits and designs.

However, some issues are not inherently fixed by employing standards. Firstly, the employment
of standard structures does not force certain types of information to be described. For example,
sequence data overwhelmingly covers the data encoded within datasets and abstract functional
information is seldom described despite being crucial for comprehension. Secondly, if a compos-
ite is stored in a database for sharing, standards may not prevent collisions with other composites.
For instance, identical composite names can make it difficult to determine the original entity, even
if they are conceptually synonymous. Also, if a composite is stored for reuse, there is no assurance
that the advertised entity functions as intended. Often, a part may be labelled as a specific com-
ponent in a database but might include extra sequence data, rendering it non-functional, which
could be exasperated when used in a different context, such as a different host. This discrepancy,
likely stemming from human error, can result in costly consequences for those who rely on the
data as-is. Finally, The data can be in a standard format but captured within unstructured free
text blocks that humans can interrogate but are unusable within computation approaches.

93

https://github.com/BiocomputationLab/genetta-frontend

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

The result is large databases with existing biological and design knowledge that vary hugely
in accessibility, accuracy and type of information encoded[121]. While this may be an acceptable
process now, for synthetic biology to generate increasingly complex constructs, unreliable and flat
data sharing must be reduced. Therefore, there is a need for datasets which encode more abstract
and functional-centric information alongside the sequence data and features to increase the relia-

bility of the underlying data.

1.1 A REVIEW OF EXISTING SYNTHETIC BIOLOGY DATABASES

In this context, a database refers to the software system that captures datasets, which are specific
collections of information. Databases can store multiple datasets and export them in various for-
mats. This analysis will focus on existing databases to identify their advantages and disadvantages.
Reviewing these databases helps ascertain which features are beneficial and where potential short-
comings lie. Additionally, understanding the structure of the information provides insights into
its potential utilisation and manipulation, particularly in computational approaches.

SYNBIOHUB

SynBioHub is a web-based platform for storing, retrieving, and sharing synthetic biology de-
signs[122]. It aims to facilitate the sharing and exchange of biological design data and promote the
development of synthetic biology. Synbiohub holds existing biological constructs encoded within
SBOL from individual parts to full designs, including translations of the IGEM parts reposi-
tory[123] and the Cello parts library[124]. All information within Synbiohub is stored within
a graph database in the form of an RDF triplestore in SBOL format but can be exported using
several formats such as Genbank and FASTA but also different formats such as plasmid maps or
CSV sheets.

Advantages Synbiohub offers various instances, including the original Synbiohub, the living
computer project (A project to apply computer science principles to synthetic biology), and Se-
vahub[5] (storage for SEVA vectors, the standard representation of vector plasmids within the
SBOL framework). These instances allow for customising specific databases, tailoring them to
specialise in particular data types. SBOL-encoded data within Synbiohub facilitates program-
matic access, enabling handling large volumes of data. Moreover, Synbiohub provides an appli-
cation programming interface (API) that grants programmatic access to its contents, a crucial
feature for automated processes. These Synbiohub instances house a wide range of datasets, some
capturing libraries of full designs while others focus on genetic parts. As a result, a substantial
amount of valuable information can be extracted from these instances. Being created around a
standard data format (SBOL), the database can handle robust data types such as functional and
structural information. Therefore, the mechanisms to access the data can take advantage of this.

Disadvantages While the datasets within Synbiohub instances are SBOL encoded, they typi-
cally contain information similar to that of a Genbank file, encompassing sequence data and anno-
tations. Also, Synbiohub lacks a mechanism for verifying the presence of existing elements when
incorporating new designs into the database, potentially resulting in the same entity under mul-
tiple resource names. The software implementation of Synbiohub is not particularly robust and
suffers from numerous faults, which can pose challenges for users. Furthermore, Synbiohub’s in-

94

1 Introduction

terface often has the underlying data model bleeding out into the controls, which can introduce
a steep learning curve to users uncomfortable with SBOL.

INVENTORY OF COMPOSABLE ELEMENTS

Inventory of Composable Elements (ICE)[125] is a registry platform that stores DNA compo-
nents. ICE differs from Synbiohub primarily because it is a traditional relational database with
entities that contain properties. Information can be exported using several formats, such as SBOL,
Genbank and FASTA.

Advantages The database offers numerous analysis tools, including the capacity to edit con-
structs stored in the database, making it a more comprehensive software package than Synbiohub.
Additionally, it allows users to share constructs with others or keep them private as needed.

Disadvantages The database faces limited support and has not gained widespread adoption.
Its programmatic access is restricted, making seamless integration into automated pipelines im-
practical. The underlying database employs flat structures with keywords representing abstract
information, including abstraction levels and functional categorisation.

ADDGENE

Addgene[126] is a platform primarily designed for scientists to share DNA, particularly plasmids.
While it does function as a repository, its core purpose is to facilitate the exchange of plasmid DNA
among researchers rather than to serve as a traditional database. These plasmids, extensively used
in molecular biology and genetics, are primarily represented in a circular format at the primary se-
quence level in Addgene. The software system around the database attempts to self-annotate new
plasmids when added to the repository. Additionally, the repository provides valuable resources
like protocols and educational materials.

Advantage AddGene is frequently used by scientists across diverse fields. Its extensive collec-
tion of plasmids and vectors, numbering approximately 130,000. The representations revolving
around a plasmid map are familiar to practitioners and do not require changes to current working
practices.

Disadvantages AddGene lacks standardised data export formats and primarily emphasises the
primary structure, exporting sequences without annotations. The database employs a flat organ-
isational structure with broad categorisations like "Plasmid," "Antibodies," and "Preps.” Notably,
AddGene does not specifically cater to the objectives of synthetic biology, such as modularity and
abstraction, as it is not a synthetic biology-centric database. Additionally, the software associated
with the database does not provide an application programming interface (API), rendering pro-
grammatic access unfeasible.

KyoTo ENcycLoPEDIA OF GENES AND GENOMES (KEGG)

KEGG][127] provides information on biological pathways, diseases, drugs, and organisms. The
data can be exported as an image (PNG, JPEG), text-based (KEGG Markup Language, plain text),
database (TSV, SQL), data exchange (JSON, XML) or bioinformatic (FASTA, GFF) format de-
pending on the information explored.

95

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

Advantages KEGG provides detailed information on metabolic, regulatory, and signalling
pathways and integrates various types of biological data, including genomic, chemical, and sys-
temic information. Furthermore, it includes information on diseases, associated pathways and
drug information, chemical structures and interactions with biological molecules.

Disadvantages KEGG specialises in natural systems, which may not always be appropriate for
all synthetic biology applications. Also, KEGG requires a paid subscription for bulk download,
which may be an issue with computational approaches. While KEGG covers a wide range of
organisms, the depth of information may vary. Some species may have more comprehensive data
than others, and the information for non-model organisms might be limited. Also, it primarily
relies on curated data, and the availability of experimental data might vary.

1.2 A REVIEW OF EXISTING DATASETS

Numerous datasets exist in synthetic biology and related areas. Some of these datasets specialise in
providing information about specific data types, such as metabolic networks, while others serve as
general-purpose datasets, containing sequence information and general biological features. Even
within general-purpose datasets, unique characteristics may be observed in terms of data capture
and stored information, and all datasets exhibit variations in quality. Reviewing datasets becomes
relevant in this context, as some databases, like Synbiohub, host multiple datasets. However, the
focus will be on the format and structure a dataset may assume when extracted, as this aspect plays
a critical role in integration and computational applications.

IGEM REGISTRY OF STANDARD BrorLoGICAL PARTS

The IGEM parts repository[123] contains over 50,000 categorised records, including individual
genetic parts, composite constructs, experimental data, plasmid details, cellular attributes, and
protein information. The IGEM parts repository’s representation is exported from the SynBio-
hub database encoded within SBOL for this review. However, it must be noted that SBOL encod-
ing does not guarantee quality data that is tailored for the task, i.c. that each entity is referentially
valid and encodes a broad domain of information.

Advantages The repository hosts detailed information about some of the most thoroughly
tested and experimentally characterised genetic parts. Notably, iGEM records include additional
metadata not typically found in the Synthetic Biology Open Language (SBOL) format, providing
insights into whether a part is untested, low-quality, or unused. This additional metadata is based
on usage and feedback within the iGEM parts repository.

Disadvantages iGEM information is captured ad-hoc within free-text descriptions, making ex-
tracting structured data beyond sequence information challenging. The quality of records within
the iGEM parts repository exhibits significant variation, with a notable presence of unusable
records. Additionally, the repository includes numerous duplicate and redundant records, which
can complicate data management and utilisation.

CELLO

The Cello parts are a collection of genetic components used within the Cello tool (an applica-
tion that converts design specifications to transcriptional logic circuits)[124] to build a series of

96

1 Introduction

genetic circuits. This collection is a small but highly characterised collection of frequently used
genetic entities. Furthermore, multiple datasets exist, with the primary general dataset and other
variants targeting different hosts. The Cello dataset can be exported from the LCP instance of the
SynBiohub database encoded within SBOL.

Advantages The components in this collection are extensively characterised and frequently
employed, thus increasing their reliability. The SBOL encoding utilised for these parts is of high
quality. It provides additional information about interactions, functional attributes, and struc-
tural details, enhancing their utility in synthetic biology research and applications.

Disadvantages The dataset is relatively small, 300, unlike the thousands contained within
other datasets. Although explicitly encoding interactions, sometimes they are highly abstracted,
often obscuring critical interactions.

VIRTUAL PARTS REPOSITORY (VPR)

The virtual parts repository (VPR)[128] is a dataset of virtual genetic parts. This dataset aims to
create extensive models that assist in designing large-scale biological systems through model-driven
methods. Genetic components within the VPR dataset are expressed as a mathematical model in
the form of the Systems Biology Markup Language (SMBL)[71] and as SBOL.

Advantages Every record in the dataset refers to a unique canonical entity, ensuring the absence
of duplicates. The VPR dataset encompasses a diverse range of genetic parts and their interactions,
providing a comprehensive genetic research and analysis resource.

Disadvantages Most of the dataset primarily focuses on interactions between sigma factors
and proteins, which may not align with the needs of a more abstract network. Furthermore, the
dataset adopts a localised approach, employing terms and terminology specific to VPR, rendering
the records less interoperable with external sources. Consequently, when entities from different
datasets correspond, the only commonality often resides at the sequence level.

1.3 WHAT STANDARDS CANNOT PROVIDE

Standards like SBOL, while valuable, do not inherently eliminate all the issues they aim to address.
Even when design data is expressed within a standard data format, issues like low quality, inac-
curacies, inconsistencies, and ambiguities can persist. Consequently, the user is responsible for
employing standards to produce reliable data. Moreover, as standards such as SBOL progress in
defining reusable and abstract modules, they introduce unique challenges that do not arise when
working solely at the sequence level. This section explores the nuances of standardisation, high-
lighting instances where consistent enforcement of standards may be lacking and the limitations
in using standards to enforce certain data features.

TYPES OF STANDARDISATION

Even when data is encoded within a standard like SBOL, encoding does not guarantee that data
is entirely standardised. The following sections will discuss three distinct definitions of a stan-
dard for an SBOL document. Figure 1 features a detailed network representation of PhlF protein
degradation, encoded using SBOL. In this figure, it is necessary to use complete IRIs to describe

97

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

specific standardisations fully. Regarding edges, the entire IR is directly associated with a par-
ticular colour. However, the colour determines the common prefix with nodes and is combined
with the node’s label to generate the full IRI. The standardisation of this SBOL representation
will be analysed concerning all three definitions within their respective sections.

Semantic standardisation concerns utilising a predetermined collection of ontological terms
to describe data in a design[129]. It enables entities and their properties to be measured relative
to others. For example, if the genetic role of two entities is defined within a finite and known
domain, they can be compared for similarities or differences. SBOL enforces this standardisation
by defining ontology terms to describe specific features. Figure 1 is semantically standardised be-
cause each object within the network references known SBOL types (Interaction, Participation,
Feature and Component from the SBOL ontology) via the RDF type predicate. Furthermore,
some objects also reference external ontologies, namely the systems biology ontology (SBO), to
encode information such as genetic type (Protein) and interaction type (Degradation).

Structural standardisation ensures that every component within a design is connected only
to other valid components. This structure normalisation enables predictable assumptions during
analysis, allowing for traversal based on the rules defined within the standard. For instance, when
an Interaction is specified, it is expected to have participants, and this understanding guides the
analysis of the graph because computational approaches can make these assumptions. SBOL en-
forces structural standardisation by defining which components can connect and how. In Figure
1, structural standardisation is displayed by the connections between components that adhere to
SBOL standards. For instance, a Participation object representing an entity’s involvement in an
interaction must reference a Feature through the hasFeature predicate from the SBOL ontology.

Referential standardisation involves each entity referencinga virtual analogue, a URI, which,
in turn, points to an actual record within an accessible dataset. It provides a framework for repre-
senting, linking, and exchanging data on the web, enabling interoperability, machine readability,
and flexible data modelling. Specifically, this standardisation facilitates computational compar-
isons among instances within a design. For instance, if two promoters reference the same virtual
part, computational approaches can identify them as identical. While SBOL offers the means
to name entities using these resources, it does not mandate referential standardisation, and an
SBOL-encoded design can be considered SBOL valid without it. However, the instance of an
SBOL-encoded system depicted in Figure 1 adheres to referential standardisation as it draws ob-
jects from the "programmingbiology” (LCP) instance of Synbiohub. Consequently, the URIs
resolve to real and accessible resources, enabling an interconnected system beyond the local net-
work.

FEATURES UNENFORCEABLE BY A STANDARD

Some features can be explicitly enforced or implicitly promoted by a standard, such as the three
types of standardisation discussed previously. However, despite these features being critical for the
robust functioning of databases, they cannot be enforced by a standard because they are products
of how an instance is implemented. The following explores some of these features.

COLLISIONS AND MISSES BETWEEN ENTITIES Even if a standard enforces referential standard-
isation, there is no assurance that the references are canonical, i.e., each part refers to a single virtual

928

1 Introduction

Node Prefix Color Edge Color

synbiohub.programmingbiology.org/public/Cello_Parts/PhiF_protein_degradation/ [] http://sbols.org/v3#hasParticipation
B sbols.org/v3# ! http://sbols.org/v3#hasFeature
B identifiers.org/ B http://sbols.org/v3#instanceOf
synbiohub.programmingbiology.org/public/Cello_Parts/ R http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type
http://sbols.org/v3#type

W http://sbols.org/v3#ole

PhiIF_degradation_interaction/1

Interaction

PhiF_protein/1

SBO:0000179

Participation SBO:0000010

PhIF_protein/1

Feature

PhIF_protein/1

Component SBO:0000252

Figure 1: A network representation of the PhIF protein degradation described within SBOL. Each instance
(node) references an accessible part of the web. Also, each instance contains edges pointing to
descriptive information such as RDF types or via external ontologies referencing genetic roles or

tprS.

929

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

entity. In this case, the IRIs of the entities within a design may differ. However, the data they point
to is conceptually identical, for example, the same sequence in the case of sequence-based entities
(see methods for a discussion on identifying conceptual equivalence for different datatypes). For
example, as seen in Figure 2, dataset 1 represents a short regulatory mechanism of LacI -pLac re-
pression, and Dataset 2 represents the pLac promoter in isolation. While the sequences for both
pLac from D1 and BBa_R0100 from D1 are identical, an issue of specificity arises. The LacI pro-
tein from dataset 1 should repress the promoter from D2 but does not because the network is
unaware that the two promoters are synonymous. Because of this, computational tractability is
challenging. This issue is guaranteed when comparing datasets where design elements are defined
locally, i.e. the names are only known within the design. Therefore, a computational approach
must identify that these two virtual parts reference the same physical entity.

Node Color Edge Color

CDS Genetic Production
Protein Repression
Promoter

synbichub.programmingbiclogy.org/public/Cello_Parts/Lacl_protein/ 1

synbiohub.programmingbiology.org/public/Cello_Parts/Lacl/ 1 synblohub.programmingbiology.org/public/Cello_Parts/plac/1

synbichub.org/public/igem/BBa_R0O010/1

Figure 2: A network representation of the two interactions, the Lacl protein’s production and the pLac
promoter’s repression. The block lines represent interactions explicitly encoded. The dotted line
represents a known interaction that is not encoded because the URIs are different despite the
identical sequence data of the two promoters.

QUANTIFYING THE CORRECTNESS OF INFORMATION Standards cannot ensure that the in-
formation encoded within is correct. If a composite is stored to be reused, there is no guaran-
tee that the presented entity is functional or that the function is desired. Therefore, users must
either trust the individual user uploading the data or thoroughly interrogate all information ac-
quired. For example, One of the many instances of the LacI CDS within the iGEM parts reposi-
tory (BBa_C0013) explicitly states "No Barcode", referring to a fragment in the sequence to iden-
tify the part. However, when analysed, this barcode is present within the sequence. While this
example demonstrates an individual part and is relatively trivial to identify, the larger a construct,
the more difficult it is to identify these discrepancies.

THE CHANGE OF ENTITIES OVER TIME Provenance within the context of the datasets refers to
capturing the change of entities, such as genetic parts, over time. For example, if a genetic part is
taken and modified within a dataset, the new part is classified as derived from the original. Cap-

100

1 Introduction

turing provenance within this context allows the ability to track the history of an entity but also
enables the clustering of very similar entities. For example, if a user is looking for an alternative part
for a genetic design, tracking the connections of derived components will provide an easy method
for suggesting alternatives. Standards may provide a mechanism to capture provenance, such as
SBOL, by leveraging the existing PROV-O ontology[130] among others, but cannot enforce the
capture of provenance. Furthermore, in practice, provenance is seldom captured.

USAGE RELATIONSHIPS BETWEEN ENTITIES ~ Generally, datasets exclusively encompass design-
agnostic information (unless it is a collection of designs), ensuring that it does not rely on the spe-
cific context of any particular design. For instance, they exclude position-dependent regulation,
where the functioning of genetic components (like genes, promoters, enhancers, and other regu-
latory elements) hinges on their relative positions within the genome. This omission of context-
dependent information stems from the impracticality of encoding every potential combination.
However, knowing usage relationships between entities may be valuable even if a dataset does not
explicitly define combinations. Once again, standards such as SBOL do inherently enable the us-
age of entities to be defined, but seldom from a design-agnostic approach. For example, a standard
may enable a hierarchical relationship, such as a promoter and CDS, to be contained within the
same construct defined within a design but do not describe methods to describe the experiences
of parts being used together. However, it will not define a relationship from a dataset perspective,
describing that two genetic parts have some interplay from a design-agnostic perspective, such as
two genetic parts being very commonly used together within designs.

1.4 THE ISSUES WITH THE CURRENT LANDSCAPE OF DATA CAPTURE

Asdiscussed, standard formats, such as SBOL, provide the mechanisms to promote rich databases
by capturing the information in computer-readable formats that can capture information be-
yond DNA sequences. However, these features are rarely implemented for three primary reasons.
Firstly, when design information is encoded within a standard format, it is often a translation of
legacy information captured using flat file formats such as Genbank, potentially with extra free-
text metadata encoded, often making up the most significant amount of database content. When
translating this information to a standard format, the processes are usually direct translations, re-
sulting in structures encoding the same flat information such as DNA sequence, annotations and
handwritten descriptions. Therefore, much of this information is missing when translated into a
standard format. Figure 3 displays the network representation of several genetic parts taken from
the Synbiohub database (see database review for a further discussion on Synbiohub) that con-
stitutes the Lacl regulatory system. Here, all encoded are nodes with properties (sequence and
descriptive text) and do not encode entity relationships, such as interactions with other entities
within the dataset. Currently, specification methods backed by standards are often manual pro-
cesses. For example, the SBOL visual[110] approach requires users to define the genetic design one
glyph at a time. Therefore, all the extra information that can be encoded must be explicitly speci-
fied, which is not feasible, especially as designs become more complex, and undoubtedly shortcuts
will be taken and information will be missing. Standards such as SBOL are designed for a specific
design and do not consider the databases that may capture design data. Therefore, very commonly,
there is no inherent mechanism to define meta-relationships which do not pertain to a specific de-

101

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

https://synbiohub.org/public/igem/Bea_co012/1 Node Color
Properties Promoter

ESequence: atggtgaaty tgaaa
ccagl aacgttatac... C DS
EDescripiion: Coding region for
! the Lacl profein with an LVA Small Molecule

degradation tail and
without an RBS...

https://synbiohub.org/public/igem/BBa_R0O010/1

Properties :
Sequence: caatacgcaaccicte
ccegegegtt..
Description: The plLac regulatolyé
region is & 243 base-pair i
sequence with standard
BioBrick prefix and suffix ...

https://synbiohub.programmingbiology.org/public/Eco1C1GITT/IPTG/ 1

:Properties
escription: Isopropyl B-D-1-thiogalactopyrancside (IPTG)
is a molecular biology reagent. The compound is a
molecular mimic of allolactose, a lactose metabolite
that triggers transcription of the lac operon, and it is
used fo induce recombinant protein expression
¢ where the gene is under the control of the lac operator,

Figure 3: Representation of the Lacl regulation system using nodes taken from instances of Synbiohub.
The datasets do not encode interactions and are not visualised when represented as a network.
Due to the parts being represented within a labeled graph, literals such as sequences are stored as
properties on the nodes as opposed to nodes in themselves.

sign within the standard framework. What follows is a discussion of two prominent symptoms of
the current state of data capturing within synthetic biology, namely the gaps of knowledge within
the domain and the uncertainty within existing information.

GAPS IN DOMAIN DATA

Because the definition and capture of designs is sequence-centric, current design data is over-
whelmingly sequence data with written annotations. Take any current database or tool; the most
common method to export data is via a flat-file format such as GenBank[131], which cannot for-
mally encode any other information. While sequence data implicitly encodes more information,
explicit definition of more abstract and broad types of information is required to reduce some
perceived complexity. While standards such as the SBOL[132] enable the format specification of a
much larger domain such as interaction, structural and functional hierarchies, experimental and
build protocols or simulation models, the reality is that these are seldom defined. Figure 4 dis-
plays the count of each SBOL instance within the original Synbiohub[133], a database capturing
design data in the SBOL data format[134]. Approximately 7% of the ComponentDefinition cases
within the database encode Interactions (even more concerning is that all of these interactions
come from the same collection encoding the VPR dataset reviewed previously). The data variance
is even more limited with specific datasets within the database, such as the International Geneti-
cally Engineered Machine (IGEM)[135] parts repository. Despite being one of the most extensive
datasets of genetic design information within synthetic biology, containing over 30,000 records

102

1 Introduction

Number of matches of each SBOL type within Synbichub.

120000 117898 117888
100000
]
£ 80000 -
=} 72152
= 7215:
S
w“
S 60000 1
@ 51208
o 48981
£
=]
= 40000
20000 1
10333 10333
4923 5052 4923
0 1 6 50 1 29 [1 42 [35 18
% X S X
FONFCh & & & & & 5P .?55'% PN E e)
L S o I R A
: [s) & i) D od
& & 4;5’& ;5‘6) \(.5’6\ & &?g\ & & g O &é) & Q?}\c,
o <& & &
e & & & © &
@ F £ F

Figure 4: A Plotdisplaying the count of the instances of each SBOL datatype within the original Synbiohub
instance. The number of sequence-centric data types (Component, CompondentDefinition, Se-
quenceAnnotation and Range) is considerably higher than other data types.

in a structure with the mechanisms to capture more information, no records formally encode any
information beyond sequence (Figure S) data because they translate the written descriptions into
SBOL properties. Therefore, despite the ability to define structured information, the bridge be-
tween the goal of synthetic biology and the current landscape necessitates a broader domain of
knowledge to be explicitly encoded, such as a clear definition of the desired function within the
design framework[136].

INFORMATION UNCERTAINTY

Reproducibility is a significant problem within synthetic biology[137]. Consistently, experiments
cannot be replicated[138], and the acceptable error range is high[139]. While not the primary cause,
permitting most open data sources to insert uncurated information introduces uncertainty where
quantifying fidelity is challenging, which does not alleviate these problems. Even with a rich and
broad domain of design information, there is no guarantee of quality or correctness. If a design
reuses parts that another has deposited onto a database, there is no guarantee that the underlying
entity performs the function stated[140]. For example, very commonly, a part will be advertised in
adatabase as a specific part but will contain extra sequence data that makes the part non-functional
when added to another context. Although likely due to simple human error, it can be costly to
others who take this data at face value. Uncurated databases cause an issue of confidence within
the underlying datasets. Most databases do not have mechanisms to quantify whether the infor-
mation uploaded by users is correct or accurate. Reliance on data is exaggerated within open-
source, such as Synbiohub, where anyone can upload information. While manual curation of

103

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

Number of matches of each SBOL type within the iGEM representation in Synbiohub.

TI3367 TI3367

100000 A
w
(7]
‘S 80000
] 70437
£
% 60000
o
2
£ 400004 38365 36595
=1
=2

20000

373
0 : 1 .
.\&‘\‘ -\'c°° P zo& & & &
" 3 S~ o ol
& &8 & g © <@
& & <& F &
d & K
& q}‘b
R &
(53 F
RDF Type

Figure S: A plot displaying the count of each SBOL instance within the IGEM parts subgraph within the
original Synbiohub instance. Functional information, such as Interactions and Modules, are ab-
sent in this dataset.

all data is infeasible, mechanisms to quantify the confidence (likelihood a piece of information is
correct) would enable users to make more informed decisions on whether to use it. The IGEM
parts repository[123] contains well over 40 records describing some YFP. With so many records
categorised as the same or similar entity, it raises a key issue when the tracking of differences be-
tween records, the implications and reasoning are not captured; it is unclear which genetic part
should be used within a design, which is exacerbated within computational approaches because
software is unable to interpret written text without complex natural language approaches which
in themselves are often prone to inaccuracies. Therefore, not only the uncertainty of correctness
but also relationships is an issue. For example, provenance (the change of entities over time) is
critical in identifying how the function of an entity may have changed and the editor’s intent.
However, unlike the uncertainty of correctness, the standards often enable provenance to be de-
scribed (PROV-O), as previously mentioned. However, this type of information is seldom en-
coded within existing datasets, and while, of course, this information can be derived, it can be a
challenging and laborious process.

1.5 A FUNCTIONAL APPROACH TO SYNTHETIC BIOLOGY

Concerning synthetic biology, a "function” refers to the specific role a biological component plays
within a system([141, 142]. When it comes to design data, it can encompass the intended purpose of
a particular aspect of the design — essentially, what the expected functionality of an entity should
be before it undergoes building and testing[143]. A functional approach to design data means
encoding interactions and other more abstract information[144]. This approach provides many
benefits:

* Reduce Perceived Complexity - Explicitly capturing abstract functional information can

reduce perceived complexity because practitioners with less understanding of the design
will not be required to decipher the function from sequence data.

104

1 Introduction

* Met Expectations - By defining functional modules with existing standard genetic parts,
the design is more likely to perform as expected by validation within previous usage.

* Flexibility - Functional genetic designs may be initially defined without specific imple-
mentation details, which can be iteratively refined[15].

* Rational Design - Functional synthetic biology encourages a rational and systematic ap-
proach to designing biological systems. By understanding individual components’ func-
tions and interactions, informed design decisions can be made, leading to more effective
and efficient constructs.

Designing and encoding designs from a functional perspective is not a new or impossible prac-
tice[92]. Practitioners already conceptualise functions at different levels of abstraction. For ex-
ample, a genetic part such as a regulatory coding sequence is not usually considered at the se-
quence level but instead its function and impact within a biological system[143]. Despite this, a
sequence-centric approach is taken when defining and capturing the design because the sequence
data is required when the design comes to be built. For example, design tools such as Benchling, a
sequence-based editor, are ubiquitous despite the inability to describe any level of functional in-
formation and are exported in flat file formats such as GenBank, which again have no mechanisms
to capture abstract details formally. Figure 6 displays how, as a design moves from a concept to a
concrete implementation, the level of abstraction decreases, and the design is conceptualised less
functionally and more sequence-based. It may seem that choosing between function and sequence
approaches is a crucial one[39], but a fully functional approach currently appears infeasible be-
cause designs are unable to be built from abstract parts and small nucleotide changes are common
practise. However, if both the functional and abstract information and the sequence data are
captured, the level of detail can be adjusted per some requirements [31]. Synthetic biology aims to

Concept Definition Capture

) ESR Py S i P

GGAAACATTCTTGGACACAAATTG

_/a/ ’ AGACAAACAAAAGAATGGAATCAAAGTTAAC. .

ATACAACTATAACTCACACAATGTATACATCATGG

A
7

Decreasing functional conceptualisation

N

Increasing abstraction

Figure 6: When a design is conceptualised, it is usually around function, such as how entities interact. How-
ever, when it is defined, the tooling is traditionally sequence-based. While function is still often
considered, it is not explicitly encoded, so when the designs are captured (within a GenBank file,
for example), they are purely sequence-based.

modularise sequence data into functional modules[145]. However, composing abstract reusable
modules requires rich underlying data which can communicate and connect. The gap between

105

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

the aims and reality of design data within synthetic biology is more significant than simply mod-
ularising sequence data. To truly modularise genetic design data, they must explicitly encode the
desired function because modularisation aims to reduce the perceived complexity. Conceptualis-
ing a design in terms of intent is a form of complexity reduction by abstracting sequence data into
abstract interactions between genetic parts[146].

1.6 DYNAMIC KNOWLEDGE GRAPHS ENABLE ADAPTATION TO CHANGING
CONDITIONS

More robust systems outside of synthetic biology[147] use a pseudo-feedback system that takes
previous activity to drive future information provision. Search engines such as Google use simi-
lar approaches where results are based on the popularity of a website, implicitly ranked by other
agents. Over time, the best results for a specific query rise to the top and inaccurate or useless
information is filtered to the bottom, meaning a user rarely has to search far for desired resources.
Weights are commonly used features within network science, referring to numerical values associ-
ated with entity relationships[148]. These weights measure the strength of a relationship between
entities in a network given a specific metric[149]. Figure 7 displays an example of how weights
can be encoded to describe the similarity of promoters, calculated given some metric. There-
fore, a weighted knowledge graph (WKG) defines a knowledge graph where connections between
data encode weights which capture some level of strength given some metric. Furthermore, these
weights can be updated as more information is learned, for example, as evidence proving or dis-
proving a piece of information is provided. A WKG could encode a broad range of information
and swiftly adapt to new data. This adaptability empowers networks to respond effectively to
changing conditions.

1.7 AIMS AND OBJECTIVES

This analysis explored some existing datasets within the field of synthetic biology, finding their
unique attributes, advantages, and drawbacks. Next, the possibilities and limitations of establish-
ing data standards were studied. Following this, a critical evaluation of the prevailing issues sur-
rounding synthetic biology data capture and storage was conducted. In short, the intricate land-
scape of synthetic biology databases unveils persistent challenges, including unstructured data,
fragmented knowledge repositories, redundant information, and inherent uncertainties. Next,
the exploration revealed the advantages of adopting a functional approach within synthetic biol-
ogy. This strategic approach emphasises the design and construction of biological systems based
on the functionality of individual components. Such a modular and standardised approach en-
ables the customisation and tailoring of biological systems, ensuring a rational and predictable
design process. In response, a promising avenue emerges in the form of networks that demon-
strate remarkable efficacy in encoding and adapting to complex biological information. Networks,
with their inherent capacity for dynamic interactions and knowledge representation, stand out
as a potential solution to the challenges posed by the intricate nature of synthetic biology data.
Moreover, integrating a dynamic knowledge system augments the potential of a functional ap-
proach. This dynamic system adapts to evolving information and facilitates iterative design and
optimisation. In summary, the challenges faced by synthetic biology databases, including issues

106

1 Introduction

Node Color Edge Color
& Promoter @ Weight

BBa_K264006 BBa_K264006

BBa_K264005

BBa_K264003 BBa_K264004

BBa_K264001

Figure 7: Network representation of similarity between promoters. Each edge contains a separate weight
between 0 and 1, which could represent the strength of the connection by a given metric. This
representation encodes the weight by colour, with green being closer to one and red closer to zero.

107

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

of data structure, knowledge fragmentation, redundancy, and uncertainty, demand innovative
solutions. Networks and a functional approach emerge as promising methodologies to address
these challenges. The combination of these approaches offers a transformative pathway forward,
showcasing the adaptability and resilience required in the dynamic landscape of synthetic biology.
This proposal outlines integrating existing design data into a WKG, incorporating several key
features for addressing uncertainty-related issues. The proposed network encodes dynamic meta-
data within the network. Confidence is the trust of the user base of the information[150], that
is, the likelihood that the encoded information is believed to be correct. It impacts rankings, the
order in which information is presented to the querying agent (human or software). Usage de-
fines how commonly a piece of information is encountered. Usage may be how often the data
is accessed within the network. However, it can also capture other usage scenarios, such as how
frequently two genetic parts are encountered together within a design. Again, This metadata can
impact how often information is presented to a user but could also be used to provide validation
of entities being used together within a specific design, for example. Provenance captures the
similarity between different entities within the network[151]. For example, provenance may cap-
ture the case when a genetic part is modified from an existing part, which may assist with repro-
ducibility as the change in function can be tracked with sequence changes. However, provenance
can also assist with a more query-based system, such as suggesting alternative parts. Provenance
also encapsulates the idea of canonicity within databases, which ensures that each entity has a
single definition. For genetic parts, it means that a canonical genetic part has a unique underly-
ing sequence in the dataset, which guarantees an accurate comparison of designs using the same
genetic parts. While useful alone, once initialised, the metadata can be updated given feedback
(explored further in Chapter 5) from external sources, promoting correct and high-quality infor-
mation and increasing the speed and accuracy of the synthetic biology community’s access to de-
sign data. This approach aims to foster a more circular transfer of knowledge where the graph can
learn from human interactions and tools interfacing with it[152]. The proposed system is a stan-
dardised weighted knowledge graph encoding a larger canonical domain of information (namely
functional) with dynamic metadata to provide greater certainty of the presented information.

A1Mms

To effectively utilise data resources, various databases must be explored to identify potential datasets
that can be incorporated into a sparsely connected network. Once suitable datasets are identi-
fied, the next step is to explore methods for normalising and integrating these datasets, which
may be partially disparate. Finally, investigate strategies for enhancing the network’s knowledge
base, especially when starting with limited information by implementing network-based inference
methodologies.

OBJECTIVES

The initial task involves constructing a foundational knowledge graph by unifying and normalis-
ing existing databases by integrating datasets into a singular, structured graph. After establishing
the base, the goal is to expand the knowledge graph by incorporating newly inferred information
by analysing patterns and relationships within the data to generate additional insights, including
metadata, like confidence levels. Finally, the goal is to verify that the knowledge graph maintains

108

2 Results

the desired features. It involves regularly assessing the graph to ensure it aligns with the predefined
goals and requirements, such as accuracy, comprehensiveness, and relevance.

2 REsSULTS

2.1 SEEDING AN INITIAL NETWORK BY INTEGRATING NETWORKS

The natural growth of sparse and small networks can be slow, as described by Barabdsi in his study
on scale-free networks, where a low degree often signals limited connections between nodes[153].
Such networks face significant challenges, notably in individual nodes’ limited visibility and quan-
tifiability. A practical issue arising from this characteristic is the difficulty in determining which
nodes should receive new, partial information, such as data introduced into genetic circuits. Com-
mon regulatory elements like LacI-pLac, TetR-pTet, and araC-pBad, which are extensively char-
acterised, can provide essential connection points that facilitate the initial formation of the net-
work. When encoding with detailed functiona and structural information, these elements act
as reliable hubs to which other data can be linked, effectively guiding the integration of new in-
formation and stabilising the network’s expansion. To initiate the WKG, a high-quality dataset
containing these common regulatory elements was employed to create a foundational core. This
core allows for structured growth by ensuring that subsequent data additions enhance the net-
work’s robustness and functionality. The integration process starts with identifying and refining
constituent datasets, which are then pruned for quality and redundancy, producing a subset that
significantly improves the initial network. The methods and implications of this integration are
demonstrated using three distinct datasets; each discussed in detail to illustrate their integration
into the larger network framework.

* International Genetically Engineered Machine (iGEM)[135]: contains an extensive
dataset with many genetic parts, much of the information encoded informally.

* Cello[154]: features genetic components similar to iGEM but defined under different names,
showcasing the canonicalisation process in the WKG.

* Virtual Parts Repository (VPR)[128]: contains modular models of biological compo-
nents, focusing on proteins and binding sites, explicitly encoding numerous interactions.

It must be noted that the process aims to be dataset-agnostic and does not exploit specific features
of the datasets or individual records. These datasets are examples to display the process and how
datasets specialising in different data types can supplement one another. However, combining
data with low crossover creates an underlying network that will be disconnected at the points of
the datasets.

INTERNATIONAL GENETICALLY ENGINEERED MACHINE (1IGEM)

The International Genetically Engineered Machine (IGEM)[123] parts repository holds 50,000+
records with diverse information, including parts, composites, experiments, plasmids, cells, pro-
teins, and project-specific details. However, two issues need attention. IGEM data is primarily
in free text, making it challenging to extract information beyond sequences. Also, Synbiohub,

109

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

an SBOL-encoded repository, includes IGEM data but may have varying data quality and rele-
vance because the records are directly translated from the free text IGEM parts. The process for
preprocessing the IGEM parts repository involved removing inappropriate records and merging
duplicates. When using Synbiohub with IGEM data, 38,365 records can be retained because this
was the size of the data when initially translated into Synbiohub. However, data quality varies, ne-
cessitating a filtering process to remove irrelevant or low-quality records. Table 1 outlines each step
of this pruning process, reducing the dataset’s size and explaining the reasons for record removal.

Table 1: Overview of pruning process for the IGEM dataset before being integrated into the WKG.

Name Removed Remaining Comment

number of | number of
records records

Total N/A 38365 The original Synbiohub dataset.

SBH Filter Type 24259 14106 IGEM categorises records into
broad categories, and unwanted
categories are removed.

Internal Compo- | 472 13634 Records representing composites

nents (multiple parts) are not required.

Invalid ~ Sequence | 792 12842 Remove entities with no sequence

Data data.

Invalid Metadata 61 12781 The IGEM parts repository contains
low-quality records which are unin-
terpretable and are removed based
on tags.

Discontinued 667 12114 IGEM contains discontinued
records which are removed.

Failures/Issues 256 11858 Parts that failed in tests are unused
and removed.

Unused 4877 6981 Records are untested. Remove
records which are not used in at least
one other construct.

Duplicates 142 6839 Merge records with identical se-
quences.

Final N/A 6839 The final number of records taken
forward.

CELLO

The Cello parts dataset[124] is smaller than IGEM but explicitly details interactions crucial for
understanding genetic circuits in the Cello application, which converts design specifications into
transcriptional logic circuits. Interactions are essential, as inferring this data from text descrip-
tions can be challenging. Interactions, especially when represented as a network, can assist with

110

2 Results

the abstraction of perceived complexity by enabling the consideration of abstract interactions in-
stead of granular sequence data. However, the Cello dataset presents some new challenges. Firstly,
It comprises two smaller datasets for different hosts, possibly with overlapping entities and inter-
actions, requiring consolidation. Also, It defines non-DNA entities like proteins, complexes, and
non-genetic molecules in interaction descriptions. Identifying duplicates for these entities is not
straightforward. The process for preprocessing the Cello parts repository consists of merging the
two smaller datasets. Table 2 displays the breakdown of omitted entities, where duplicates are
merged or removed when redundancies (duplicates) are found within the datasets.

Table 2: Overview of the pruning process for the Cello dataset before integration.

Name Removed number | Remaining num- | Comment
of records ber of records
Total N/A Components: 258 | The original Cello
Interactions: 90 dataset.
Internal Components Components: 39 | Components: 219 | Records represent-
Interactions: 0 Interactions: 90 ing composites are
removed because

the dataset already
presents constituent

parts.
Sequence Duplicates Components: 49 | Components: 170 | Merge records with
Interactions: 12 Interactions: 78 identical sequences.

Inter-dataset redun- | Components: 15 | Components: 155 | Datasets encode du-
dancy Interactions: 8 Interactions: 70 plicate non-DNA en-
tities. Merge dupli-
cate entities and re-
move redundant in-

teractions.
Final N/A Components: 155 | The final number of
Interactions: 70 records.

VPR

The Virtual Parts Repository (VPR)[128] is a model repository of virtual genetic parts, each rep-
resenting a canonical entity. Genetic components in the VPR are represented using the Systems
Biology Modeling Language (SBML)[71] and SBOL. The VPR dataset contains one primary issue
that needs to be addressed. While the VPR dataset offers numerous genetic parts and interactions,
many entities are unnecessary for this application. For instance, it includes low-level interactions
like protein phosphorylation because they are constitutive interactions within abstract interac-
tions. The process for preprocessing the VPR consists of removing inappropriate entities and in-
teractions. However, it is free from duplicates, redundancy, or low-quality data. Table 3 outlines
the pruning process, eliminating undesired or disconnected interactions to create a more focused
dataset of components and interactions.

111

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable

commaunity-based feedback

Table 3: Overview of the pruning process for the VPR Dataset before integration.

1070 Interactions:
266

11393 Interactions:
4317

Name Removed number | Remaining num- | Comment
of records ber of records
Total N/A Components: The original VPR
12463 Interac- | Dataset.
tions: 4583
Unwanted Interactions | Components: Components: The dataset contains

low-level interac-

tions, which are

removed based on
labels.

Remove protein pro-

Disconnected Interac- | Components:
10882 Interac-

tions: 4098

Components: 511

tions Interactions: 219 duction interactions
when the produced
protein does not par-
take in other interac-
tions.

The

Interactions: 219 of

Final N/A final

records

number
taken

Components: 511

forward.

INTEGRATING EXISTING DATASETS

So far, the resultant datasets have not been unified and integrated into a network. Unifying dis-
connected datasets enables all information to be reasoned from a single point. For example, while
the IGEM parts repository provides information on a large domain of biological parts, it does not
capture more abstract information, such as formal interactions. However, the Cello and VPR
datasets can begin to alleviate these knowledge gaps. Therefore, this section discusses how the
final network is built, ensuring it is canonical, capturing provenance, encoding confidence in the
information, and capturing contextual usage when integrating each dataset. The final stage (fig-
ure 8) combines all information within the built datasets, ensuring no duplicates, edges encode
confidence, provenance between entities and common usage of parts are described. The process
can be broadly categorised as extracting ComponentDefinitions (physical entities), Interactions,
and all related information. For ComponentDefinitions, duplicates are checked based on the en-
tity type (DNA or Protein, for example) to find if they are already present in the WKG. If this
is true, then the name is added as a synonym on the existing entity, and if it is false, potentially
similar entities are found, and a new edge is added to the most similar. Finally, the new node is
added to the network if no duplicate exists. Interactions are also checked against the WKG for
duplicates, and the confidence is increased if they are present, or a new interaction is added if not.

CANONICAL
hensive solution to match parts, as no user ambiguity is introduced. Therefore, between datasets

: Sequence alignment to gauge similarity between entities is the most compre-

(and within), two records are identified as synonymous if they contain the exact sequences (see

112

2 Results

provenance for similar sequences). Confidence: Confidence captures the likeness that a piece of
information is correct. It is encoded as weight and set based on the number of times the informa-
tion was encountered during integration and can be dynamically updated (see feedback). While
alone, this will not validate the information; quantitying confidence enables a user to gauge how
much some data can be trusted.

PROVENANCE : When a new physical entity containing sequence information is added to the
network, existing entities are aligned with it, and the highest similarity is found. If the score exceeds
a given threshold, a new edge is established between the nodes, denoting one being derived from
the other. Because this new connection is not absolute, a higher sequence similarity implies a more
likely relationship. The confidence of this edge is set based on the score. For example, a sequence
similarity of 92% forms a confidence level of 0.92. Performing a sequence alignment for every
sequence-based entity within the network upon adding a new node can be resource-intensive. As
a result, a filtering process is implemented to mitigate this computational burden. This filtration
involves identifying candidates with common attributes, such as being of the same type (e.g., pro-
moter, operator, or terminator). Furthermore, candidates are selected based on the similarity in
their sequence lengths, significantly narrowing down the pool of potential candidates.

USAGE : Some datasets, such as the IGEM parts repository, contain records which define con-
structs, which are composed of other records representing genetic parts. While these records en-
coding composites are not added to the network, they can be used to identify entities commonly
used together. The confidence of this edge is set based on the number of times the entities are
found being used together within different records or designs. Also, the value is dynamic and,
once set, can be updated based on new findings (see extracting designs).

Table 4 displays the breakdown of each dataset when integrated into a single network. From
three datasets, IGEM, Cello, and VPR, 7,970 Nodes and 2,350 edges are present. Only 244 du-
plicates are present, 4 between databases, and 240 are internal duplicates. However, many more
derived (similar) parts are found at 1,550, but only 17 between datasets. The small inter-set con-
nections show that the datasets are largely unique but often contain similar internal entities. The
result is that despite attempting to create a small connected network, most of the network is dis-
connected nodes or smaller components that only connect specific datatypes. Still, the network
constitutes a small number of components which encode the required information. Figure 9
displays how a small sample of the final WKG appears, and three examples that combined dis-
play the desired network’s features are achieved. The confidence requirement is described in the
appropriate sections because the calculation depends on the datatype. Usage is described by an
edge between entities (T7 and BBa_B0034), found together three times, resulting in a confidence
of 0.15 (3*0.5 where 0.5 is the standard confidence step). Canonical entities are displayed with a
node (BBa_K1897033) with an edge pointing to a synonym (BBa_K1893032) with a confidence
of 1 because the sequences are identical and, therefore, conclusive. An example of provenance is
displayed between two canonical nodes (BBa_K1897033 and BBa_K1893032) with an edge con-
taining a confidence of 0.98 (98% sequence similarity). Several interactions are defined, which
make up an instance of the LuxR repression system. The confidence is calculated based on the
number of times found within the initial datasets (0.5 * 4, where 0.5 is the standard confidence
step), resulting in a confidence of 0.20.

113

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

Table 4: Overview of the integrated datasets and their characteristics.

Integrated | Changes Node Size Edge Size
Dataset
IGEM Duplicates: 176 (All Internal) | Total: 6839 Parts: | Total: 1634 Syn-
Derivatives: 1458 (All Internal) 6663 Synonyms: | onym: 176 Deriva-
176 Interactions: 0 | tive: 1458 Interac-
tions: 0
Cello Duplicates: 68 (4 IGEM 64 Inter- | Total: 7240 Parts: | Total: 1876
nal) Derivatives: 53 (12IGEM 411In- | 6926 Synonyms: | Synonyms: 244
ternal) 244 Interactions: | Derivative: 1511
70 Interactions: 121
VPR Duplicates: 0 Derivatives: 39 (4 | Total: 7970 Parts: | Total: 2350
IGEM 1 Cello 34 Internal) 7437 Synonyms: | Synonyms: = 244
244 Interactions: | Derivative: 1550
289 Interactions: 559

2.2 DATA EXPANSION TO INTRODUCE FUNCTIONAL DATA

Three datasets were integrated during the seeding process. However, the resulting knowledge
graph shows a notable disparity between the abundance of parts and the lack of interactions.
Specifically, a substantial portion of the knowledge graph, comprising 7511 parts, lacks any en-
coding of interactions. The primary reason for this absence of interaction data is that the most
extensive dataset (IGEM) does not provide any interaction data. Such data is only available when
redundancies or duplicates are identified across different datasets. Consequently, many entities
within the knowledge graph do not contain valuable functional information. As previously dis-
cussed, interaction data plays a crucial role in elevating design data analysis to a more abstractlevel.
This abstraction, in turn, simplifies the comprehension of the dataset and enhances its potential
for turther development. When a substantial, well-structured dataset is represented as a knowl-
edge graph, it becomes amenable to reasoning and inference, thus identifying connections and
insights. Several methods are proposed to expand the WKG, alleviating this initial limitation.

EXPANDING DATA VIA DOMAIN KNOWLEDGE

Designs and databases can hold information in abstract forms, namely interaction data, because
practitioners often conceptualise abstract representations of interactions[155]. For example, within
regulatory systems, proteins (and the interactions around them) are sometimes abstracted; in-
stead, all interactions use the CDS entity. For example, CDS represses Promoter. This abstraction
may be because designs are usually captured at the DNA level only, and proteins and non-genetic
elements are implicit. However, capturing information more granularly is beneficial because it
enables a more robust system that provides more significant insights and opportunities to gather
information on more data types. Also, comparing designs via interactions encoded at different
levels is challenging. As discussed, the WKG is encoded using semantic labels and within a stan-
dard format, allowing non-DNA elements to be captured and reasoned over using some level of

114

2 Results

Databases

=]
4. Virtual

e e

~Jnerged entity_~

{ No—3-(

™S No

([Add Dervative
Yes. dd Derivat

1. Cello
Parts Parts 5. IGEM
L B Reposnory‘ L
—— ~ — 1
[
Integrate
For each componentDefinition (CD): For each Interaction (1)
- Yes—p|
/\hvesa y)
b Yes. isapart N\
i e
exist
N) U Verge Interaction
O«

» ‘Add Node N

nerease Confidence>

<Confidence = Score>

!

"
Weighted
Knowledge
Graph

—

Figure 8: A overview of the integration steps when seeding the WKG. Each dataset is sequentially added
into the final network while finding copies, derived entities and encoding confidence in relation-

ships.

domain knowledge. Figure 10 displays how domain knowledge rules can automatically expand an

abstract regulatory system.

* Remove abstract interactions - Lacl - pTac repression and IPTG - pTac activation.

* Add protein production interaction - LacI-Lacl.

* Add repression interaction - Lacl - pTac.

* Add complex - IPTG-Lacl.

Add binds interaction - IPG - LacI - IPTG-Lacl.

* Add activation interaction - IPTG - pTac.

While these changes appear trivial, they are required for more complex enhancements to take place
because the level of detail is unified within the dataset, which allows more assumptions to be made

in future.

CREATING LOGICAL SYNONYMS

Capturing synonyms enables matches between networks where the node labels are not identi-
cal, which is pertinent when parts often have multiple names. However, all synonyms within the
WKG are currently created when duplicates are found when it was built. Genetic parts often

115

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

Node Color Edge Color
@ Promoter s Degradation = activator derivative
= RBS SR Binds == activated usage
CDS W Profein Production g reqctant repressor
= Small Molecule Synonym mmm femplote SN repressed
mam Complex @S Repression =mm poduct S hasiferaction
mmm Protein @ Module synonym
Provenance m= Activation .
- Functional 8Ba_C0062
BBa_K1893032 superfolded-GFP . pLuxStar
098 1
Usage
17
BBa_K1897033
015 ‘

RN N
+ ‘_

Figure 9: An example of features within the final integrated network. All instances contain weights calcu-
lated initially based on the integration of that datatype. Left - Usage is captured between the T7
promoter node and the BBa_B0034 RBS. The confidence is initialised based on the number of
times these two entities are found within the same constructs. Middle - displays the provenance
displayed by the sequence similarity between two instances of GFP and canonical shown by one
version of GFP with a synonym node. The confidence is calculated based on sequence similarity.
Right - Interaction data is integrated into the network, where confidence is calculated based on
the number of times this interaction is described within all datasets.

116

2 Results

Node Color Edge Color
@s Promoter B Repression
CDS Activation
Small Molecule Binds
s Complex Protein Production
s Protein
A B alc aTe-TetR
alc
plet
TetR

TetR TetR

Figure 10: The expansion of abstract interaction data within the WKG. A) The TetR regulatory system is
captured abstractly within a database. B) The same TetR regulatory system after expansion via
domain knowledge, semantic querying, and manipulation.

have extra suffixes, such as genetic roles, added to the resource names. Therefore, a static set of
synonyms can be added to the network based on the semantic labels denoting types and interac-
tions attached to genetic parts. Figure 11 displays how synonyms can be automatically generated
from information within the network, from simple additions such as adding the genetic type suf-
fix to adding the role of a part on an interaction. Again, while these changes appear simple, they
will enable easier identification of conceptually identical entities that do not reference the same
resource. This enhancement is beneficial for comparing the WKG with external datasets such as
existing design data.

EXPANDING INTERACTIONS INTO DERIVATIVE PARTS

As discussed, the weighted knowledge graph has two notable features: the ability to find similar
genetic parts and the confidence that the information within the graph is correct. Currently, net-
work interactions are only between the individual parts captured during integration. However,
depending on the parts’ similarity, the derivatives may encode the same interaction. Here, two
features are used to add the interactions to the derived parts and set the confidence based on the
similarity between the two parts. Figure 12 displays how new edges are added to connect deriva-
tives (BBa_1732100 and BBa_I1732103) of the "Lacl" CDS to the interactions. The confidence of
the derivatives and the interaction is known, and the confidence of the new edges can be calculated
by interactionConfidence*similarity. Even though adding these new edges is a simple expansion,
they enable identifying new potential interactions. While the information encoded by this edge
could be implicitly derived, the confidence would be unknown. Only when the edge is inserted,
and the confidence can be updated through feedback can the likelihood that the interaction is still
functional between derivatives be quantified.

117

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
community-based feedback

Node Color Edge Color

Bl Promoter BB Repression
CDS Protein Production

@m Profein m synonym
. Synonym

AmtR-cds pAmMtR-promoter

ol | *
B *.

AmiR AR " pAMIR

PAMtR-repressor AmtR-sensor

Figure 11: A network representing AmtR repression. New synonyms are created from features of nodes
and edges within the design using simple static rules. Four new synonyms are added with new

synonym edges to the relevant nodes.

118

2 Results

Node Color Edge Color
[0 Promoter [repressor
CDS N repressed
BBa_I732100 Lacl BBa_I732103 = Small Molecule eactont
Q.92 0.98 s Complex @ template
@S Protfein . roduct
N Repression @ derivative
0_354.,' 0.35 ',.»%34 @ Degradation a octivator
—— Binds @ activated
@l Protfein Production
s Activation
IPTG

Lacl

IPTG-Lacl

Figure 12: The derivatives expansion takes existing interactions and adds derivatives of participants. The
derivatives (BBa_I732100 and BBa_I732103) of the "LacI” CDS have new edges (dotted lines)
into an existing interaction component. The confidence is calculated by parentConfidence *

similarity.

119

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

EXTRACTING INFORMATION FROM EXISTING DESIGNS

Databases often play a pivotal role in refining and advancing genetic designs. Nevertheless, these
designs may contain unknown or extra information, as well as supporting or conflicting evidence.
Consequently, established designs can serve as valuable inputs into the WKG, contributing to its
expansion and enhancing the accuracy of the existing knowledge. Integrating design information
from diverse sources can be challenging when the underlying semantics are not unified, and con-
ceptually synonymous entities may reference different resources. However, the same techniques
employed in identifying synonymous or analogous entities during dataset integration can also be
applied to identify canonical entities connecting the design with the WKG. The process of trans-
ferring data from the design graph to the WKG can be divided into two key steps: firstly, identi-
fying matches between the two graphs and, secondly, extracting the relevant data. Figure 14 will
be referenced throughout this discussion, which illustrates interactions and metadata integration
into the WKG. It is important to note that this figure represents just a small sample of the WKG
and the potential extractions that can be made.

IDENTIFYING MATCHES

* A direct match is made where the resource URI in both networks is identical. Figure 13
displays a direct match between the "ATC" input chemical.

* A synonym match is made where the resource in the design graph matches a synonym
within the WKG. In this case, the canonical entity is found and used instead. Figure 13
displays a synonym match between "TetR" and BBa_K1475003.

* No resource name matches are made, but a direct sequence match is made. Figure 13 dis-
plays a sequence match between "TetR _sensor” and "pTeT".

* No match is made using any metric. If the information can be extracted from the design
graph, the design graph entities are inserted into the WKG as the canonical values.

EXTRACTING DATA Once entity matches have been established between the design and the
WXKG, the next step involves extracting and integrating this information into the WKG. This
extracted information may pertain to explicit design data, such as interaction data, as shown in
Figure 13, which includes adding the TetR regulatory element. Additionally, it may encompass
metadata, such as the identification of new relationships, like the synonymous relationship be-
tween "TetR _sensor” and "PTeT," or the common association of "mCherry" with the same pro-
moter. However, some interactions may be context-specific and unsuitable for WKG inclusion.
For instance, interactions predicated solely on the relative position of genetic entities within a
sequence should be omitted from the integration process. Also, certain interactions may already
exist within the WKG, albeit with different IRIs. In such cases, a conceptual match must be identi-
fied (as described in the methods section), meaning that the interaction type and the participating
entities must align between the design and the WKG interaction.

120

2 Results

Node Color Edge Color
m Promoter Bl Degradation [repressor WM activated

CDS @ Binds B rcpressed @ hasSynonym
@ Small Molecule @ Protein Production mmmm reactant B8 usedWith
e Complex |l Activation mmm femplate Bl Direct Match
mmm Protein @S Synonym e product Synonym Match
e Repression @ activator Bl Sequence Match

‘Design Graph 'WKG

ATC ATC
arabinose Y
TetR .
. BBa_K1475003
PBAD TetR

TetR_sensor

mCherry

TetR_sensor pleT "M mCherry

mCherry

Figure 13: Sample example of extracting information from an existing design into the WKG. Dotted lines
represent new information in the WKG based on the extraction. Three matches are made be-
tween the design and WKG: a direct, synonym and sequence match. When matches are made,
the information is extracted. Metadata can also be extracted by matches (For example, the
“TetR _sensor” is extracted as a synonym for the “pTet” entity within the WKG).

121

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

INFERRING MISSING INTERACTIONS BY EXAMPLE

Incomplete interaction networks are common within existing designs. Missing interactions may
occur for several reasons. Firstly, it is unknown to the person encoding the design due to an over-
sight or gaps in knowledge. Alternatively, itis implicit within the design and not explicitly encoded
because the creator assumes a level of self-evidence. Partial interaction subgraphs may be adapted
from existing designs because they were assumed to be complete. Partial interaction networks can
cause many issues when captured within the WKG because they can cause half-truths to be per-
petuated into future designs[156], introducing more uncertainty. A network-based methodology
incorporates the concept of topology, which involves the examination of how nodes and edges
are organised within a network. This approach aids in comprehending the fundamental struc-
ture and characteristics of complex systems[157]. When examining the topology of interaction
networks, certain recurring patterns become evident among interaction components[158, 159].
As illustrated in Figure 14, this represents a subset of potential motifs that can manifest within
the interaction networks (for details on motif identification, refer to the methods section). These
motifs include small regulatory mechanisms like "negative feedback"[159] and "repression feedfor-
ward"[159] to more intricate systems like the NOR gate[160]. These predefined shapes can provide
insights into potentially absent connections within an established interaction sub-network in con-
junction with semantic labels. Figure 14 illustrates the process of identifying a missing edge based
on the presence of existing motifs. When the "repressor feedforward” motif is detected as a partial
match within the sub-network encoded in the WKG, the missing Activation displayed with the
dotted nodes and edges can be introduced.

DEFINING LOW-LEVEL FUNCTIONAL MODULES

A functional module in the design context refers to a discrete, self-contained design unit intended
to perform a specific function or set of functions. These modules can range from small regulatory
constructs to large logic-based systems and beyond. Abstract modules defining groups of interact-
ing entities provide several benefits.[161]. Modules can reduce the perceived complexity of larger
designs with many interactions by abstracting some unnecessary detail. Also, modules enable
substituting design aspects which can perform the same function through different mechanisms.
A modular approach can provide solutions for scenarios where the desired abstract function is
known without a specific implementation. These modules are curated to contain entities often
utilised together, increasing the likeliness of correctness when integrated into a design. The WKG,
which encodes context-independent information, contains a subgraph encoding interactions be-
tween entities, consisting of many components. The projected network encoding interactions are
composed of components because some interactions and the resultant physical entities (partici-
pants of an interaction) are not related to other genetic parts. For example, the Lacl regulatory
system does not affect the TetR regulatory system; therefore, no edges between them are present.
Therefore, low-level modules can be derived that encapsulate these components into modules
because all of the entities within the components are inherent to the system. Interaction com-
ponents are not always present within the whole network because other data types, such as meta
connections (derivatives, synonyms and usage), may connect nodes which do not have functional
relationships. Therefore, a subnetwork is projected to identify the interaction components con-
taining interactions and the physical constituent participants. Figure 15 displays a sample of the

122

2 Results

Node Color Edge Color
[Promoter IS Repression [0 repressor - @l product
CDs I Binds N repressed M activator
[0 Small Molecule @l Protein Production B reqctant @8 octivated
I Complex W Activation IS template
I Protein
WKG BBQ_K1114204 Common topologies
Negative feedback
Repressor feedforward ‘

Partial network

~ ~a.

o L - @~ i

NOR gate
0-0.0, 0.9 0.
ALl B
Ara-AraC “q.‘ v J//
g0

Figure 14: Matching a partially complete interaction network with complete generic motifs. Left: The
partial interaction component encoded within the WKG. Right: A sample of generic motifs
without specific implementation details. The motifs are matched with subgraphs within the
interaction network until a close match is made. The new activation node and edges are inserted

into the WKG.

123

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

underlying interaction network (HylIR and AraC regulatory systems). The interaction projection
is a bi-partite, directed graph and is achieved by identifying each interaction within the network
and connecting the inputs and outputs from each interaction. The Weakly Connected Compo-

Node Color Edge Color
Promoter @ Degradation repressor @l activated
CDS | Binds BB repressed @I synonym
Small Molecule @l Protein Production gmmm reactant
am Complex e Activation mmm template
s Protein @ product
W Repression mm octivator
PHIYIIR

HiyIIR HIyIIR

&Fs
tks

pHIYIIR-H1

AraC BBa_K1015005

BBa_K1114204 PBAD

Figure 15: Sample of two components from the underlying interaction network projected from the WKG.
Top) The HylIR repression system. Bottom) The Arac regulatory system. The interaction com-
ponents may contain multiple versions of the same part, which are one another’s derivatives. For
example, the pBAD promoter has three versions.

nents (WCC) algorithm can quickly identify the interaction components within the projected
network. The algorithm finds sets of connected nodes in directed and undirected graphs. Two
nodes are connected if a path exists between them—the set of all connected nodes form a com-
ponent. Derivatives within the network define similarities of genetic parts within the network.
However, derivatives may commonly encode the same interaction that shares participants, mean-
ing that network components may not directly map to a module. This feature is present within
Figure 16; for example, the AraC and BBa_K1088005 nodes are derivatives connected within the

124

2 Results

interaction projection. Therefore, the individual systems must be extracted based on derivatives to
define each logical module from the topological components. From the two components within
Figure 15, the inputs HIyIIR, AraC, and BBa_K1114204 and outputs pHIyIIR, pHIyIIR-HI,
BBa_K1015005 and pBad are derived. To identify logical modules, inputs and outputs are iden-
tified based on each node’s degree (number of edges). Inputs are categorised as nodes with a zero
in-degree, and outputs as nodes with a zero out-degree. Next, inputs are grouped and duplicated
where necessary, ensuring that each set of inputs and outputs does not contain derivates. Once
the inputs and outputs are identified, the projection is traversed from each input to each reach-
able output. Six groups, displayed within Table 5, are derived from the initial inputs to ensure no
overlap of derivatives.

Table 5: The logical groups taken from components within the interaction projection graph. Each group
contains the input and outputs of the component without any derivatives.

Group Number Inputs Outputs

1 HIyIIR pHIyIIR

2 HIyIIR pHIyIIR-H1

3 BBa_K1114204, Ara BBa_K1015005
4 BBa_K1114204, Ara pBAD

5 Arac, Ara BBa_K1015005
6 Arac, Ara pBAD

For each grouping defined within Table S, a traversal is performed from the inputs to the out-
puts displayed in Figure 16, where a different coloured line defines a group of paths. The com-
bination of paths generated within each group is defined as logical components. Finally, once
the logical components are identified, they must be added as new conceptual entities within the
WKG. Each path is concatenated to produce the final module. Within the network, a module
comprises a node denoting the module and new edges to each interaction which constitutes the
module. The interaction edges are the only ones required because all other information (Inputs,
outputs, and parts, for example) can be derived. Figure 17 represents the new modules when in-
serted into the interaction projection. Each container border is coloured to represent a specific
path established within Figure 18 to display how these paths map to the newly established mod-
ules.

GENETTA

During the studies conducted within chapters 4, 5 and 6, a tool was developed which implements
the procedures and methods described. Here, the WKG (and the methods to normalise, clean, in-
tegrate and expand it) is enabled by Genetta. Furthermore, the use cases described within Chapter
S (advanced query and design enhancement) are implemented, and the visualisation techniques
from Chapter 6 can be applied to the WKG. Figure 18 displays an example of how the WKG can be
visualised within the visualisation tool discussed in Chapter 6. Finally, the tools use cases discussed
in Chapter 5 are implemented within Genetta utilising the WKG discussed here. Alongside the
WKG and related methods, the application includes the following:

125

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
community-based feedback

Edge color
@R derivative
mm Path 1
w Path 2
W Path 3
E—
[
[

Path 4
Path 5
Path 6

BBa_K10150056

5a_K1114204 PBAD

Figure 16: Identifying the logical modules from a sample of interaction components. The inputs and out-
puts are grouped and duplicated based on derivatives, so derivatives are never in the same path.
The graph is then traversed from each input and each output, and the paths are saved.

126

2 Results

: ; ¢ Node Color Edge Color
PHIYIIR-HT Repression Module pHIYIIR Repression Module = Promotor S represtir
HiylIR HiylIR HIyIR HiylIR CDs Em repressed
@ SmallMolecule wmmm reactant
pHIyIR : B Complex = femplate
s Protein mmm product
PHIYIRH = Repression mmm activator
s Degradation mmm activated
> s Binds @ hasinteraction
@ Protein Production
m Activation
@R Module
Border Color
= Poth | @SB Poth 4
| Path2 smmmm Poth 5
PHIyIIR-H1-Repression pHIyll-Repression e Poth3 e Pathé

BBa_K1015005 Regulation Module

AraC Ara

BBa_K1015005-Regulation

BBa_K1015005

PBAD Regulation Module

AraC Ara

PBAD-Regulation

BBa_K1015006 Regulation Module

Ara

BBa_K1114204
—

BBa_K1015005-Regulation

BBa_K1015005

PBAD Regulation Module

Ara

AGC Ara_AraC

BBa_K1114204

PBAD-Regulation

Figure 17: A representation of new module nodes within the interaction projection. The module nodes
connect to the constituent interactions which make up the module using the "hasInteraction”

predicate.

127

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable

commaunity-based feedback

¢ Instructions on how to run all tools within the application.

* Documents describing use cases and examples.

* Independant access and manipulation (add, remove and export) of designs uniquely as-

signed to users.

The software application is accessible from the repository at Genetta-Github, and an online in-
stance can be sampled here: Genetta-instance. Technically, the tool comprises two parts: the back-

Options

Preset

O Provenance

O Synonym

O Interaction

O Module

O Interaction Protein
O Interaction 10
OPrune

View

O Provenance

O Synonym

O Interaction

O Module

O Interaction-10

O Interaction-Protein
O Interaction-Verbose
O Interaction
OPruned

Layout

O Breadth-First
OCircle

O Cola

O Concentric
O Cose Bilkent
O Dagre
OEuler

O Spread

s80. K147005

BB ecz0ze

Node Color

CDS

Edge Color
H Similarity

Synonym View g Interaction view

@ Terminator
. Promoter
© @mm Operator
s Synonym
Edge Color
BES synonym

-+ Node Color

CDS
Promoter
s Profein
Small Molecule

o IR Complex

Edge Color
@l Repression
Binds
W Protfein Production
I Activation

Node Color Edge Color
P Promoter repressor
) CDS @l repressed
[] .‘ ‘. Small Molecule mm reactant
. ; s Complex = template
B el — m Protein = product
aecf .) s Repression s activator
? SR 1 e Binds Bl activated
. ('. i@ L [@ Protein Production
7] w" s Activation
bl o ‘ e
. 80130 wm P
@ e [] : L]
® e ./,%A % .
]
=
® L]

Figure 18: A representation of new module nodes within the interaction projection. The module nodes
connect to the constituent interactions which make up the module using the "hasInteraction”

predicate.

end, which stores the graph and the frontend, which is presented to a user for usage. The two parts
are distinct such that different tools can interface with the neo4j environment, holding the WKG
without adopting the Genetta frontend systems each time. The backend comprises a neo4j datas-
tore that holds the weighted knowledge graph and any designs uploaded by users in a single graph.
The underlying graph contains features that enable robust and safe access to the WKG and design

subgraphs.

128

https://github.com/BiocomputationLab/genetta-frontend
http://138.4.92.244

3 Methods

* Each node and edge contain a property describing the name of the containing graph.

* Nodes and edges of more than one design will have multiple graph names, ensuring the
datastore is not cluttered with redundancies. However, entities within the WKG will only
encode the WKG graph name, ensuring the graph is disconnected from any other data.

* A node within the datastore will always consist of two labels: the name URI and the type
such as Promoter, Activation or Synonym.

* Edges within the datastore will always have a single label describing the type, for example,
repressor, hasInteraction, or similarEntity.

* All entities within the WKG are structured given a set of semantic terms and structural
rules described below.

The front end provides users access to the WKG and holds the tools implemented. Genetta en-
sures that all subgraphs coexist within the same neo4j environment by providing an abstraction
layer over the service using the previously discussed network features.

* Genetta maps graph names to usernames when a new graph is introduced, and users can
not access or manipulate graphs they do not own. When manipulation occurs on an entity
with multiple graph names, the entity will always persist in its original form.

¢ Users cannot directly interface with the WKG and must use tools such as query, enhance-
ment or visualisation systems. If a case occurs where a user can directly access the WKG,
for example, from the fault of a tool developed in future, specific keywords to modify the
graph are blacklisted within queries.

* When a user changes one of their designs explicitly or implicitly, these changes are made to
the subgraph within the data store. However, they are also staged as changes to be made to
the original data stored on the server. When the design is exported, the changes are applied
sequentially to the design.

The WKG is powered by the FLASK micro web framework, which means that a user is not re-
quired to install software or perform any technical tasks and can access the services within the web.
The frontend and backend communicate via the BOLT protocol, a neo4j-specific communication
protocol carried via typical TCP connections.

3 METHODS

3.1 NETWORKS

This chapter focuses heavily on network approaches, especially integration and unification meth-
ods. While the background chapter has covered some general network concepts, this section ex-
pands on some processes used explicitly within this chapter.

129

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

EDGE WEIGHTS TO REPRESENT STRENGTH

Edge weights in a graph are numerical values linked to the edges. These weights express difter-
ent attributes or properties associated with the connections between nodes. In this context, the
weights specifically indicate confidence levels, although they have the flexibility to represent any
numerical value. Technically, edge weights are attributes assigned to an edge, characterized by a
string key and a corresponding numerical value. In Figure 19, a segment of the WKG is show-
cased, illustrating various types of information. Notably, each edge in the network has a weight,
serving as a measure of confidence.

Node Color Edge Color
Promoter @ Degradation repressor @ hasSynonym
CDS Binds @ repressed @ haslnteraction
@l Protein @S Protein Production g reactant
[] R’epression [] Temp|01’e
BN Synonym s product
@S Module

pBM3R1-Repression

pBetl-Repression

Betl
Betl pBet

Betl 1004

BMB3R1-protein
pBM3R1-Repression

Betl-Protein

Figure 19: Example of a component from the WKG encoding multiple types of information (Interactions,
Synonyms, Derivatives and Modules). The edges display the confidence weight, denoting the
likeness that the relationship is valid.

GRAPH TRAVERSALS TO FIND ROUTES IN NETWORKS

Pathfinding in networks is critical for identifying efficient network routes or connections. It aims
to determine the optimal sequence of nodes and edges between a network’s source and target
node. In this context, pathfinding is essential for connecting genetic entities and understand-
ing how they relate. Within design data, it utilises established algorithms, such as Dijkstra’s al-
gorithm[162], which may consider the weights assigned to the edges within the network. These
algorithms consider various factors, including the confidence and usage metadata associated with
each connection, to determine the most suitable paths based on specific criteria. Pathfinding using
weights has been used several times within this section, for example, to identify missing interac-
tions and the confidence of the missing edge based on the confidence of the nearby interactions
or, as displayed within Figure 20, to calculate the confidence of the edges constituting a new mod-

130

3 Methods

ule. Here, the initial confidence is set by traversing to the participating physical entities using the
shortest path to each, where the cost to pass the edge is the confidence. Because higher confidence
indicates an edge to be more likely valid, the highest cost is taken here. Once all paths are found,
they are added and divided by the number of paths.

All shortest path (Source: pTrpR-Regulation) Node Color Edge Color
PTPR - 40 Promoter repressor
TreR - 95 CDS S repressed
TroR - 85 Small Molecule I reactant
tryptophan-TrpR : 45 | Complex BN template
tryptophan: 60 N Protein @ oroduct
)] S Repression s hasinteraction
New weight(pTrpR-Regulation) BN Degradation @ activator
(40+95+85+45+60)/5 = 65 [0 Binds .
S Profein Production T acfivated
S Module
W Activation
fryptophan

65
TroR S =}
65
" pTrpR-Regulation
30 65+
oTrOR fryptophan-TrpR
4<O ‘ 45

pTrpR-Activation

Figure 20: Example of how a new module’s confidence can be set based on the confidence of its constituent
interactions. From the source node (pTrpR-Regulation), the shortest path is found to each par-
ticipating entity, the weight is the cost to traverse an edge, and the highest score is taken because
higher confidence indicates more likeliness of being correct. All paths are combined and divided
by the number of entities to create an initial confidence of 65.

WEAKLY CONNECTED COMPONENTS TO IDENTIFY MODULES

Community detection refers to identifying groups or communities of nodes within a network
where nodes within the same group are more densely connected than nodes in other groups.
These communities are often considered substructures or clusters within the more extensive net-
work. Modules are subsets of nodes within the network that share a high degree of interconnect-
edness, which could represent coherent functional units[163]. Weakly connected components

131

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

(WCC)[164, 165] refer to sets of nodes within the network with a path between any two nodes
and were used to identify modules. WCC is the simplest form of community detection. A WCC
of a directed graph is a subgraph in which all vertices are connected by some path, ignoring the
direction of the edges. The process begins with the projection of the interaction network. Next,
begin traversing the graph from a given node. If two nodes are reachable, they are part of the
same component. The algorithm continues its traversal until all nodes in the graph are visited
and assigned to a weakly connected component. Figure 21 displays an example of identifying two
weakly connected components. It simply identified the two components within the network be-
cause they are not connected.

Node Color Edge Color
Promoter B Repression repressor @ activator
CDS s Degradation @l rcpressed @M octivated
Small Molecule Binds e reactont @B hasinferaction

@mm Complex @R Profein Production mmmm template

@m Profein @m Activation Emm product

PBAD

Ara-AraC-Degradation
PBAD-Activation

IPTG

\ IPTG-Lacl

IPTG-Lacl-Bind

Ara

4

Ara-AraC-Bind

BBa_K142004 | i proguction

IPTG-Lacl-Degradation

pBAD-Repression

AraC-Degradation

BBa_K301000-Activation
Lacl-Degradation

AraC-Production

BBa_K301000-Repression
Weakly Connected Components
{BBa_K142004, Laci-Production.Lacl,
BBa_K1114204 i Lacl-Degradation, BBa_K301000-Repression, BBa_K301000,
i BBa_K301000-Activation, IPTG-Lacl, IPTG-Lacl-Degradation,
IPTG-Lacl-Bind,IPTG}
BBa_K301000 {BBa_K1114204, AraC-Production,AraC,
i AraC-Degradation Ara-AraC-Bind,Ara,
Ara-AraC Ara-AraC-Degradation,pBAD-Activation,
PBAD,pBAD-Repression}

Figure 21: Example of identifying weakly connected components from a subnetwork. Each component
constitutes a weakly connected component.

CONCEPTUAL EQUIVALENCE

Examples throughout this section have displayed short names for any entities, enabling compre-
hension when graphs are presented visually in this work. However, knowledge graphs utilise Inter-
nationalized Resource Identifiers (IRIs) to identify resources, uniquely offering human-readable
and computer-readable naming conventions. For instance, when "LacI" has been used as a label
within a real network, it would correspond toan IRIsuch ashttps: //synbiohub.programmingbiology.
org/public/Cello_Parts/LacI/1. While IRIs provide unique identification, they do not guaran-

132

https://synbiohub.programmingbiology.org/public/Cello_Parts/LacI/1
https://synbiohub.programmingbiology.org/public/Cello_Parts/LacI/1

3 Methods

tee the encoded information’s equivalence or conceptual uniqueness. Different IRIs may repre-
sent the same genetic part, such as encoding identical sequences. Equivalence is evaluated through
two metrics: referential equivalence (when two entities directly point to the same resource) and
conceptual equivalence (where IRIs, while not identical, contain equivalent information). Iden-
tifying referential equivalence is simple because the IRIs will be identical. Identifying conceptual
matches has been critical for unifying datasets because different datasets seldom have referential
equivalence. Physical entities are equivalent when the underlying sequences are equal. Inter-
actions are equivalent when the interaction type, interacting entities and how they interact are
equal.

IDENTIFYING PROVENANCE

In this chapter, provenance is defined by a network with no duplicates, and edges are present when
the underlying sequences of two nodes are similar. A simple direct comparison can be made to
identify if two nodes have the same sequence. However, identifying the similarity between two se-
quences is more challenging, especially with many sequences to match, as in the case of the WKG.
Here, sequence similarity is achieved using sequence alignment, a fundamental technique to com-
pare and identify similarities between two or more biological sequences. However, sequence align-
ment on each sequence-based entity within the network each time a new sequence-based physical
entity is added is not feasible from a computational perspective. Therefore, filtering can be ap-
plied to reduce the number of candidates. Firstly, entities not of the same genetic role as the input
node can be removed. For example, a Promoter and CDS clearly can not be derivatives. Next,
if an input is aligned with a node in the dataset and they are not a match (the score is below the
threshold), then all of the derivatives of the existing node within the WKG can also be removed
as candidates. When integrating a new node into the network, these filters reduce the number of
alignments by approximately 80% on average.

ESTABLISHING MOTIFS

Motifs were used to identify potentially missing interactions during expansion[159]. Initially, they
were defined as a static set of networks. This initial set is required to seed the WKG because ex-
tracting motifs from a graph known to be incomplete will produce incomplete motifs. Later, the
template motifs could be expanded using the WKG itself. If it can be guaranteed that areas of the
WKG are complete, then motifs can be extracted from it. For instance, if a particular topology
was frequently observed, its generic structure could be extracted and applied to complete missing
interactions in different regions or when new subgraphs were introduced. Figure 22 displays an
extended set of motifs defined beforehand or generated from extracting shapes within the WKG.
It must be noted that two motifs may be topologically identical but contain different physical en-
tities or interactions at different points. For example, there could be a repression bi-fan, which has
the same topology as the activation bi-fan but has a different semantic makeup. With large net-
works, identifying the instance of subgraphs can be computationally intensive. Subgraph isomor-
phism, a key component of subgraph matching, is an NP-hard problem. Determining whether a
given graph contains a subgraph thatis isomorphic to another graph (the motif being searched for)
falls into the class of NP-hard problems, which means no known algorithm can solve the subgraph
isomorphism problem for arbitrary graphs in polynomial time. As the size of the graphs increases,

133

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

the computational complexity of finding subgraph isomorphism grows significantly. Usually, ap-
proximations are made because of this; however, the motifs here can be identified within the In-
teraction projection (a subgraph containing only interaction data), which is considerably smaller
than the full network. Furthermore, semantic labels can help further reduce the search space. For
example, regions of the network that do not have nodes that match the type labels of the motif in
question can be removed from the candidates.

Node Color Edge Color

[Promoter I Repression repressor il product
CDS W Binds @B (cpressed M activator

000 Small Molecule @B Protein Production B8 reactant @ octivated

| Complex W Activation BN template

@ Protein

Biparallel repression Repressor feedforward

Activation Bl-Fan

< <&
< <

Negative feedback Bl-negative feedback

NOR gate

‘.*:»0*

Figure 22: Extended example of generic motifs manually outlined or identified within the WKG. Each
motif consists of generic nodes (nodes without references to virtual entities) and interaction

edges.

134

4 Discussion

INTERNAL STRUCTURE

To enable tractability between entities, either individual nodes or subgraphs, knowledge graphs
must follow rules that dictate what nodes can connect and what labels are needed for an entity
to be categorised as a specific real-world entity. In the context of RDF (Resource Description
Framework) and OWL (Web Ontology Language), these rules play a crucial role in defining the
structure and semantics of the knowledge graph. To unify several datasets into an initial WKG, the
proposed knowledge graph must have unified semantics and structure to connect each database.
RDF provides a standardised format for representing data and its relationships, while OWL of-
fers a rich vocabulary for defining ontologies and specifying constraints. Without this unified
base, even if the datasets describe the same or similar information, the underlying network will
constitute separate components for each dataset. This implementation defines its internal model
because of the need for easily extensible and unified semantics in RDF/OWL. Figure 23 displays
a sample of the classes defined within the ontology for this exercise. The ontology is structured
to transform information automatically by giving "requirements,” a set of constraints that must
be held within the data to be considered an instance of one of the classes. For example, the data is
initially an "Entity” class, which can then either become a "Physical” or "Conceptual” Entity based
on external and common ontological terms present within its data. This increase in specificity
can then expand another level of detail if this data fulfils any other requirements. When added to
the WKG, this approach enables each entity to be the most precise and aligns with the principles
of RDF and OWL, facilitating semantic interoperability and knowledge integration. It must be
noted that this is not a truly generic method for turning unstructured data into formalised struc-
tures. This system will only transform information which encodes different ontological terms
within itself that are known to the internal ontology. General formalisation methods are an open
challenge within semantic web approaches and are outside this report’s scope.

4 DISCUSSION

This section proposed a dynamic weighted knowledge graph to provide a more robust data con-
trol system by describing a broad domain of information, ensuring network features and encod-
ing metadata. In this scenario, a functional approach[144] was prioritised by encoding interac-
tions among network entities. This method simplifies design comprehension by reducing per-
ceived complexity, especially for increasingly complex systems[14]. Additionally, interaction com-
ponents were grouped to reduce complexity[89], promote reuse[166], and facilitate parts-agnostic
design prototyping modules. Research began by exploring different compatible existing datasets
within synthetic biology. From this, three datasets (iGEM, Cello, VPR) were identified, all with
different features to exemplify this workflow. Next, the datasets were normalised by removing
unwanted information given several metrics to create a manageable initial dataset. Once the can-
didate datasets were compatible, they were connected by an integration process, ensuring the net-
work had certain features (canonical and containing functional information) and encoded specific
metadata (confidence, usage, provenance). Once an initial network was established, several meth-
ods for expansion were developed to introduce new information and further connect the internal
information. For example, expansions provided the ability to add missing interactions and create
low-level modules from the components within the network. This section evaluates the outcomes

135

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable

commaunity-based feedback

g0:0003700

nv:TranscriptionFactor

nv:Protein

nv:Compl

biopax:Complex

$0:0000234 nvmRNA 55:0001998

nvisgRNA

nv:RNA

biopax:Protein
biopax:RnaRegion

iex
biopax:SmallMolecule

nv:SmallMolecule

nv:PhysicalEntity

s0:0000167 50:0001091
nv:NonCov!
nv:Promoter
50:0000316
nv:CDS

50:0000057

nv:Operator

nv:DNA

nv:EngineeredRegion

50:0000280
nv:StartCodon
nv:EngineeredTag nv:Terminator

50:0000141

Color Shape
Entity @ Closs
PhysicalEntity "
ConceptualEntity W Recuirement
Requirement
chebi:35224
nv:Effector
$b0:0000589

nv:GeneticProduction
sb0:0000179

sb0:0000177)
nv:Degradation

. nv:Binds
Sitebiopax:DnaRegion biopax:Interaction nv-Activation
nv:Entity nv:Module)
biopax:Dna biopax:Interaction
biopax:PhysicalEntity nv:Interaction $b0:0000170
0000704 nv:Repression
S0
intersectionOf
NCIT_C52469
nv:Gene nv:Conceptual Entity
;! sb0:0000169
nviSynonym nv:Conversion
$0:0000139 nv:BiochemicalReaction
nv:RBS sbo:0000182
50:0000318 nv-Transcription $00:0000176

sbo:0000183

biopax:ComplexAssembly
nv:NonCovalentBonding

nv:Reaction

nv:Translation

sbo:0000184

Figure 23: Requirements graph for the underlying ontology. Incoming information is used to traverse this
network and checked against the Requirements of a Class node. Starting with Entity, given the
ontology terms within the data, the node created within the network will capture an increasingly
more specific until either another more specific Class does not exist or the information does not
encode terms to make it more specific.

136

4 Discussion

of this work. Furthermore, the potential future directions for research are discussed based on the
challenges faced in this work.

4.1 STRENGTHS

DATASET AND DOMAIN AGNOSTIC ENABLES THE REPURPOSING OF PROCESSES AND
METHODS

Here, the process was displayed using three datasets. However, once the input datasets are nor-
malised by removing unwanted entities to prevent flooding the initial WKG with useless informa-
tion, the process is not inherently fixed to any specific information. For example, it is conceivable
that non-synthetic datasets, such as natural metabolic networks, may be captured using the same
system. Furthermore, using the integration techniques, providing some unifier exists, datasets
from different computational and synthetic biology domains could be merged to provide unseen
insight. Therefore, the creation, expansion and usage of the WKG system could take an arbitrary
number of datasets to find information with different levels of affinity. Genetta enables an arbi-
trary number and types of information to be introduced within the dataset. It must be noted,
however, that the quality of the outcome invariably hinges upon the quality of the information,
and the input structure must be understood by Genetta, such as SBOL or Genbank.

ABILITY TO QUANTIFY DATA VIA META-CHARACTERISTICS

Within most synthetic biology-centric databases, there is a notable absence of information that
comprehensively describes features from a user-centric viewpoint. By incorporating weights and
specific features into the database architecture, users gain the capability to scrutinise information
at a meta-level, particularly in terms of correctness. This enhancement is strategically designed
to bolster the probability of software systems or human users accessing accurate information. As
highlighted earlier, these characteristics are implemented with the overarching goal of facilitating
correct information retrieval and streamlining the process of manual information interrogation,
thereby minimising the time required for thorough examination and validation. When the initial
WXKG is built within Genetta, the metadata is automatically calculated, given the features of the
larger datasets. For example, if a piece of information is encountered multiple times across the
input datasets, the confidence will be higher to reflect this.

IMPROVEMENT OVER TIME VIA COMMUNITY FEEDBACK

While the weights enable quantification of some metric regarding the underlying information, it
will only be set relative to the information encoded within the input datasets. However, with the
ability to accept evidence from external sources (user or software) as feedback, the weights can be
continuously updated, further improving their accuracy. Updating information given conflicting
or complementary information provides two main benefits. Firstly, the ability to suppress incor-
rect information and reward correct information will filter out incorrect information over time
and leave a smaller and more accurate information core. Secondly, no individual is an expert on
all entities and domains within biology. For example, one user may be an expert on a specific reg-
ulatory mechanism while another is knowledgeable on the performance of fluorescent proteins.

137

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

Currently, the literature must be combed for this expertise, which can be time-consuming. Exist-
ing uncurated datasets are largely shielded from the context of the information provider. Further-
more, an expert curating a database is a slow and arduous task, and the amount of existing curated
data is minimal. The ability to provide feedback can bridge the gap between uncurated and cu-
rated datasets by providing experts on a specific aspect of a dataset to provide explicit feedback
on a small section of the network, which spreads a burden which is traditionally put on a small
group of volunteers. It must be noted that the specifics of feedback are discussed within Chapter
S, where use cases for the WKG are discussed. Genetta can take feedback from both the enhancer
and query system (in the future, any tools that interface with the WKG will also be able to use
this) and automatically update the weights or introduce new instances of features. Furthermore,
in cases where custom behaviour is described for a specific weight or feature, such as redesignating
the provenance edge based on the confidence of a similarity edge, Genetta can automatically make
these changes.

A FUNCTIONAL-CENTRIC APPROACH MOVES TOWARDS ABSTRACTION

While a knowledge graph facilitates the encoding of functional and abstract information, existing
databases in synthetic biology (not explicitly focused on interaction networks) often fall short of
capturing this comprehensive range of data. The integration of datasets specifically prioritised the
derivation of functional information. As discussed, encoding functional information can reduce
the perceived complexity, increase the likeliness of a successful design and increase flexibility. Fur-
thermore, a deliberate emphasis was placed on introducing abstract functional information, such
as modules, during the expansion process. This abstraction has been a core principle since the
conceptualisation of synthetic biology but has never come to fruition within the domain. Intro-
ducing high-level abstracting is not a simple process within synthetic biology because genetic parts
and mechanisms, such as the environment, are highly context-dependent and do not function in
isolation[18]. Context dependency makes defining functional modules challenging because it may
not be clear what the information will represent, such as inputs and outputs[37]. However, here,
defined low-level modules suffer less from the context of a design and do not need to be manually
defined by a user, which may introduce uncertainty. It is crucial to acknowledge that inferring
interactions solely through a network approach poses challenges, and this aspect has not been ex-
haustively explored in the current study, leaving room for future investigation (see future work).

BeNEFITS OF WKGSs FROM THE ’LEARN’ PERSPECTIVE IN THE DBTL CYCLE

From the perspective of the "Learn’ phase in the DBTL cycle, WKGs offer substantial benefits.
The structured nature of knowledge graphs facilitates more effective knowledge, which is crucial
for learning and refining synthetic biology processes. Specifically, Weighted Knowledge Graph
Embedding, a technique where nodes and relationships are mapped into a continuous vector
space, enables embedding complex, high-dimensional data in a form amenable to machine learn-
ing applications. This representation allows for applying advanced analytics, including predictive
modelling and similarity searches, which are vital for the iterative learning processes in synthetic
biology. By integrating these techniques, researchers can uncover hidden patterns and infer new
knowledge, thus accelerating the learning phase of the DBTL cycle. This approach not only en-

138

4 Discussion

riches the dataset with inferred relationships but also enhances decision-making processes by pro-
viding deeper insights into the biological systems being studied.

4.2 LIMITATIONS
INABILITY TO MOVE TOWARDS A FULLY FUNCTIONAL APPROACH

Shifting the focus solely to the function of a biological system would be a groundbreaking ad-
vancement within synthetic biology. However, a complete abstraction of sequence data is not
feasible. Fully reusable parts remain unrealised because tailored changes to sequence data are com-
mon practice, mainly due to biological systems’ context dependency. Therefore, making stan-
dardised parts that conveniently fit into all designs elusive and choosing from a range of existing
entities based on function is a larger overarching goal of the field. However, this does not stop
conceptualising and capturing functional information alongside the traditional sequence-based
data capture, as this allows for a hybrid design comprehension and development approach.

NORMALISING CONSTITUENT DATASETS

While this research aimed to enable a dataset-agnostic approach, some level of dataset-specific nor-
malisation is required before it can be integrated into a WKG. The data type, how it is structured
and relates to the other datasets are critical before integration. If the datasets are disparate, in-
tegration is futile as the resultant network constitutes disconnected components concerning the
number of input datasets. However, even with complementary datasets, due to the broad domain
of possible shapes in which the data could be structured, custom pre-processing must be provided
beforehand. Assuming all input datasets followed a specific format (SBOL, for example) would
be achievable.

ARBITRARY PRIMARY SOURCE

When duplicates are found within datasets and one entity is labelled as the “primary source” and
the rest as synonyms, this identification is arbitrary based on the first identification of the en-
tity during computation. However, it may be the case that a particular name is more commonly
known within the community than the one the WKG deems canonical. While this is not an issue
of usage within the WKG because it has the mechanisms to identify the synonyms, if the canon-
ical entity is exported, a less-used entity may be communicated. An improvement would be to
label the primary source based on the most commonly used entity within existing designs.

A NAIVE APPROACH TO IDENTIFYING CHANGE OF FUNCTION

The expansion method, which transfers functional information into derivatives of a part, is naive
in quantifying if the function would persist relative to the change in sequence. The relationship
between change in sequence and change in function is not easily derivable and often requires
experimental validation. With the confidence system, this issue would eventually be removed by
negative user feedback, causing incorrect interactions to be removed. However, the expansion
process itself may introduce incorrect information into the system.

139

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

4.3 FUTURE WORK
EXTEND THE EXPANSIONS TO INFER AND ABSTRACT FUNCTIONAL INFORMATION

Currently, the methods to identify missing interactions use a rule-based approach based on pre-
viously seen interaction subnetworks, which must be defined beforehand (or extracted from ex-
isting designs). However, this is only an initial effort that could be explored to infer interaction
data from network topology. Related fields such as systems biology have made efforts to topo-
logical link prediction of partial networks and could be adapted to fulfil this gap within synthetic
biology design data[167]. However, it must be noted that natural and engineered systems difter
because the motifs and topology are often different. Therefore, the data used within systems bi-
ology may not be usable to predict missing interactions in engineered systems. The expansion
to introduce modules within the WKG only introduced low-level modules describing small tran-
scriptional mechanisms. However, an expansion method could be introduced, further expanding
on modularising higher-level systems such as functional logic gates.

LANGUAGE MODELS FOR SYNTHETIC BIOLOGY PARTS AND INTERACTIONS

An apparent issue with the formalisation of datasets largely consisting of written information is
the challenges of interpreting the context computationally. For example, a dataset like the iGEM
parts repository encodes much of its information, including interactions with genetic parts within
other records. However, because this is an ambiguous written statement, it is unusable to form a
structured network without the ability to comprehend natural language. Efforts are underway to
tulfil these limitations already. The SBKS project[136] is exploring many topics, but the relevant
one here is the machine learning methods to generate ontology annotations automatically. These
methods will establish connections between data in different repositories and extract relevant in-
formation from publications. The ability to transform written information into semantic labels
will provide a huge step forward in automatic formalisation.

IDENTIFYING PROVENANCE BEYOND SEQUENCE

The current implementation of our network leverages sequence similarity to infer initial prove-
nance. However, many entities are functionally homologous and distant in primary structure, so
they will not be caught using a sequence similarity approach. Predictive modelling could enable
the network to infer complex biological relationships and evolutionary patterns not detectable
through sequence similarity alone. For instance, machine learning models could be trained on a
dataset of genetic sequences and their known histories to predict provenance with higher accu-
racy and efficiency. This approach would be increasingly beneficial as the WKG increases in size.
The ability of machine learning to manage and interpret large-scale data would allow for a more
nuanced representation of these variants in the provenance subgraph.

REPRESENTING LARGE SETS OF VARIANTS

Within this instance of the WKG, the number of genetic parts was relatively small. However, some
processes may produce datasets that contain thousands of parts alone. For example, thousands of
mutant variants may be generated with directed evolution. The WKG could adopt a clustered

140

4 Discussion

or hierarchical graph structure for future developments in these cases. This method would in-
volve grouping mutants based on certain similarity thresholds or functional characteristics, thus
reducing the complexity of the graph while preserving essential information about variant rela-
tionships. Such an approach would streamline the visual and computational management of the
data and enhance the WKG’s scalability to accommodate the exponential growth. Combined
with the machine learning approach of identifying functional similarity, this representation strat-
egy would provide a robust framework for tracking the provenance and evolution.

4.4 CONCLUSION

This chapter established a weighted knowledge graph (WKG), which integrates existing design
datasets enriched with metadata and features, increasing users’ accessibility, confidence and com-
putational tractability. Furthermore, methods to expand the existing data were designed to in-
crease the connectedness of the underlying datasets. The unique aspect of the WKG lies in its in-
corporation of weight values that describe metadata related to biological information, here defin-
ing confidence and usage. Quantifying such values in the data allows for assessing quality based on
prior experiences, encompassing individual parts and utilising the information presented. Never-
theless, initial static values may not accurately reflect the actual values because they are estimated
from the initial data, which is likely unvalidated. Thus, the ability to update these values (ex-
plored further in chapter 5), with input from external agents, enables a circular knowledge trans-
fer from the user, increasing the metadata’s accuracy. This process was illustrated with an exam-
ple involving three datasets (IGEM[135], Cello[154], and VPR[128]), combining them to create
a centralised data source. Starting with an initial dataset collection that shared similarities, they
were integrated into an initial network, duplicates were removed, metadata was encoded, and all
relevant information was extracted, thus establishing a robust foundational dataset. Next was a
sample of the expansion process to the WKG, which enables the extraction and inference of new
data from the existing network information. This process is a fundamental element of the de-
scribed weighted knowledge graph approach, connecting potentially loosely coupled datasets by
extracting and inferring new information from a centralised dataset. Furthermore, the expansion
process demonstrates the network’s capabilities by utilising network tasks to infer new data and
seamlessly integrate it into the knowledge graph. In this section’s introduction, some features that
cannot be enforced by standards alone were identified, and the challenges with current methods
for capturing design data within synthetic biology were highlighted. These challenges primarily
revolve around uncertainties concerning the creator’s intent, data accuracy, and contextual infor-
mation, aftecting both human users and computational applications. The functional approach
tackled the uncertainty of intent by explicitly encoding abstract interaction information within
the WKG. Explicit incorporation of functional information into design data facilitates abstrac-
tion, diminishing the perceived complexity[168] of designs, promoting a hierarchical approach
to design data in synthetic biology[169] and eliminating the need to infer function solely from
sequence data. Additionally, to mitigate concerns about data correctness, metadata encoding, in-
cluding confidence values, was employed to quantify information quality and support informed
decision-making. Introducing dynamic weights within a knowledge graph provides contextual
information around captured data. This approach aids in mitigating the common uncertainty
found in existing design databases through community-driven validation. Furthermore, weights

141

Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable
commaunity-based feedback

such as the confidences were employed to address concerns related to data accuracy. Incorporating
dynamic weights within a knowledge graph adds valuable contextual information to the captured
data, helping alleviate the pervasive uncertainties often encountered in current design databases
through community-driven validation efforts. These dynamic weights enable the quantification
of information quality and facilitate well-informed decision-making by establishing more reliable
data sources, ensuring users can access desired information promptly. The challenge of contex-
tual uncertainty, or how knowledge interconnects, was addressed by introducing new edges that
depict relationships between elements, such as the provenance of genetic parts. This introduc-
tion allows for measuring related entities by some defined metric, enhancing our understanding
of information context. One type of existing network approach may be seen as competitive to
the WKG. Artificial Neural Networks (ANNs) are computational models that excel at learning
from data and recognising complex patterns. Despite their proficiency in predictive modelling for
synthetic biology, ANNs often operate as "black boxes,” making their decision-making processes
opaque and hard to trust in fields where interpretability is critical. In contrast, WKGs offer high
interpretability with explicit logical mappings of entity relationships. Therefore, WKGs facilitate
both computational and human inputs for integrating new data. Rather than being competitive,
ANNs and WKGs are complementary; WKGs might utilise ANNs to enrich analysis rather than
replace one with the other. In conclusion, the most important and valuable resources within syn-
thetic biology are the practitioners and the invaluable knowledge they possess. However, with the
current landscape of knowledge transfer, this wealth of resources is not exploited to the extent it
deserves, resulting in a significant redundancy of effort. With the introduction of the WKG, spe-
cific information, such as newly designed genetic parts, can be shared, as well as the researchers’
experience around the creation and usage of their and other’s work. Encoding this knowledge can
increase comprehension in cases where a user is unfamiliar with the domain or help them identify
solutions to problems that others have already addressed, saving valuable time in both cases.

142

CHAPTER 5: ENHANCING DATA ACCESS AND
DESIGNS BY LEVERAGING THE WEIGHTED
KNOWLEDGE GRAPH

PUBLICATIONS ARISING FROM THIS CHAPTER

¢ Matthew Crowther, Anil Wipat, and Angel Gofii-Moreno. “GENETTA: a Network-Based Tool
for the Analysis of Complex Genetic Designs”. ACS Synthetic Biology, 2023

SOFTWARE ARISING FROM THIS CHAPTER

* Genetta

1 INTRODUCTION

Standards are crucial in synthetic biology, deeply intertwined with its practices and evolution.
Early discussions in synthetic biology at the beginning of the 21st century, though not explicitly
labelled as data standards, already emphasised the importance of standardised genetic parts and
abstraction hierarchies[170]. This discussion highlights a foundational recognition of the need
for standardisation in the field[171]. A critical issue that has limited the adoption of standard data
formats such as SBOL within synthetic biology is the complexity introduced by requiring a prac-
titioner to learn a new skill, i.e. comprehending the data model and the tooling around it. For
example, a typical design process involves sequence-based editing, outlining function intent using
ad-hoc glyphs using literature to help guide decision-making. However, a data standard approach
would require a practitioner to learn new, more technical tools, often requiring knowledge of the
underlying data model. Furthermore, it would also require a user to explicitly encode a much
broader range of information, such as functional information, which was previously encoded im-
plicitly. From an experimentalist perspective, the benefits of adopting standards are unclear, and
the challenges are too significant. Two goals must be fulfilled for the adoption of standards within
synthetic biology to be genuinely successful within the community. Firstly, the barrier to entry of
tooling and any requirements to learn any aspect of complex data models must be removed. Sec-
ondly, the tooling and benefits with standards must be superior to the current ones. When com-
bined, a community would be naturally drawn to new working practices instead of being forced,
which thus far has not been successful. Therefore, the effectiveness of data standards within syn-
thetic biology has been somewhat limited, primarily when implemented for user-facing applica-
tions. For example, databases that contain datasets encoded within standard data structures, such
as the iGEM parts, are encoded within SBOL and stored on the Synbiohub database. Despite con-
forming to the SBOL standard, the data’s quality remains low and is often challenging to handle

143

https://github.com/BiocomputationLab/genetta-frontend

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

computationally. This issue arises because much of the information is in written text, containing
duplicate entries that hinder proper identification, and there are no assurances regarding the ac-
curacy of the underlying data. These shortcomings are not inherent flaws in the data standard or
the tools utilised; instead, they highlight the reality that existing user-facing tools do not entirely
resolve all associated issues despite aligning with standards. Compounding this point, methods
to present the data, such as querying tools, do not address these issues, and the small regions of
quality information are not presented to the user. In Chapter 4, a weighted knowledge graph
(WKG) was established to enable enhanced access to one or more datasets. The features of this
new network can be used to implement systems that can target some challenges with accessing
data from both a user and computational perspective.

1.1 EXISTING QUERY METHODS AND PROGRAMMATIC ACCESS

A database’s methods to provide queries and results from a dataset vary from system to system. For
the most part, however, within synthetic biology databases, these systems offer results using simple
string-matching approaches, which are ordered arbitrarily. While many databases’ specific imple-
mentations are unknown as they are hidden from the user, some techniques can be deciphered.
This section explores how several databases query and return results given a specific input. Where
known, the particular mechanisms will be analysed. Otherwise, the means will be interpreted.
Furthermore, if these databases offer programmatic access, such as via API calls, the usefulness of
these will also be quantified. Therefore, the evaluation of each database will be broken down into
amanual and programmatic approach. Within the manual approach, how the input query is han-
dled, how the database performs the search, how the results of the search are handled and finally,
how these results are presented to the user. From a computational approach, how the program-
matic approach interfaces with the database, how the database performs the search (if different to
the manual method) and the structure of the results. Again, these points are predicated on them
being available for evaluation.

SYNBIOHUB

The database Synbiohub has been discussed in the background and in chapter 4. In short, Syn-
BioHub, a web-based platform [122], is a repository for synthetic biology designs and houses bio-
logical constructs in SBOL format stored in a graph database. The functions of this database are
known, and the specific methods can be disseminated.

ManuaL QUERY The user’s query is input directly into the search mechanisms without pre-
processing or error correction, failing to address potential issues such as misspelt information.
Additionally, although the advanced querying option allows for specifying the SBOL type (like
ComponentDefinition) being sought, this feature is notably absent in the standard query system,
limiting its functionality.

Synbiohub is an extension of the RDF data model, and the most common method for query-
ing RDF triplepacks is via the SPARQL[172] query language, which is how Synbiohub performs
the searching. SPARQL allows users to retrieve specific information, make connections between
different pieces of data, and perform operations like filtering, joining, and aggregation on RDF

144

1 Introduction

data. The language consists of various query types that enable users to retrieve information from
RDF datasets. Figure 1 displays the exact SPARQL query to search the Synbiohub graph. The
"PREFIX" lines define prefixes used as shortcuts for longer URIs within the query. For instance,
"sbol2", "dcterms", "sbh", and "rdf" are aliases for longer URIs, making the query more readable
and concise. This "SELECT" section specifies the variables the query will retrieve for each match-
ing result. These variables include "?subject”, "?displayld"”, "?version”, "?name”, "?description”,
and "?type". The "WHERE" is the main part of the query where the conditions for selecting data
are specified. The FILTER clause filters results based on whether the entities’ displayld, name, or

description contain the case-insensitive string "Lacl’.
* ?subjecta "?type” retrieves triples where "?subject” is of type "?type".

* ?subject” sbh:topLevel "?subject” selects entities where "?subject” is the top-level entity in
SynBioHub.

* The OPTIONAL clauses retrieve additional information about the "?subject” entity, such
as its displayld, version, name, and description. The OPTIONAL keyword means that if
these properties are unavailable for an entity, it will not exclude the entity from the result
set.

* The LIMIT clause limits the number of results returned by the query to 50. It ensures that
only the first 50 matching entities are retrieved.

In short, this SPARQL query aims to find up to 50 distinct biological entities whose "displayld”,
"name”, or "description” contains the case-insensitive string ’Lacl’. It retrieves additional informa-
tion about these entities, such as their identifiers, versions, names, descriptions, and types, from a
dataset modelled using SBOL and SynBioHub ontologies.

While SPARQL query language is robust, this implementation is shallow because it simply
searches for direct case-insensitive names. It does not consider misspelt or alternative names, nor
enables a user to query via different types of information such as sequence, functional or abstract
features such as contextual usage. Also, from a technical perspective, the query uses the FILTER
clause, CONTAINS, and Icase functions to perform case-insensitive substring matching within
displayld, name, and description. This approach can be computationally expensive, especially
on large datasets, as it might not utilise indexing efficiently. Additionally, using multiple CON-
TAINS clauses in a FILTER might result in slower performance due to multiple string compar-
isons.

SPARQL is an excellent choice for searching within an RDF data store, but one potential issue
may arise with the results. The default ordering behaviour might vary across difterent SPARQL
implementations or datasets. Therefore, relying on the default order might resultin unpredictable
outcomes and for consistent ordering of results. From observation, Synbiohub does not change
the order of the results from the initial search because Synbiohub uses a Virtuoso (a specific RDF
triple store and graph database), which orders based on the internal indexing when presented to
a user by default, are ordered arbitrarily giving no promotion to better results.

Once a desired result is identified within Synbiohub, this entity’s information is used within
several representation and visualisation techniques to display features. General information - Pro-
vides a textual overview of the most prominent information, such as names, sequences and de-

145

Chapter S: Enbancing data access and designs by leveraging the weighted knowledge graph

PREFIX sbol2: <http://sbols.org/v2#>

PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX sbh: <http://wiki.synbiohub.org/wiki/Terms/synbiohub#>
PREFIX rdf: <http://www.w3.0rg/1999/02/22-rdf-syntax-ns#>

SELECT DISTINCT
?subject
?displayId
7version
?name
?description
Ttype

WHERE {
FILTER ((CONTAINS(lcase(?displayld), lcase('LacI'))]|]
CONTAINS(lcase(?name), lcase('LacI'))]|]|
CONTAINS(lcase(?description), lcase('Lacl'))))

?subject a ?type .

?subject sbh:topLevel ?subject

OPTIONAL { ?subject sbol2:displayId ?displayId . }
OPTIONAL { ?subject sbol2:version ?version . }

OPTIONAL { ?subject dcterms:title ?name . }

OPTIONAL { ?subject dcterms:description ?description . }

LIMIT 50

Figure 1: The SPARQL query the Synbiohub database uses to query its data. The input query is “LacI”.

146

1 Introduction

scriptive information. SBOL Visual - Provides a glyph representation of the data where appropri-
ate. Sequence visualisation - Provides a circular plasmid representation of sequence data where
appropriate. Metadata - Provides contextual information on the design when encoded. Synbio-
hub provides many different mechanisms for comprehending the information. However, two
issues are present. Firstly, information is presented using SBOL-specific terms, confusing users
and making exploring content manually challenging. Secondly, many options to represent the
design are unused or broken, which complicates and reduces confidence from a user perspective.

PROGRAMMATIC ACCESS SynBioHub offers an API that enables programmatic access to its
functionalities, allowing users to interact with the repository, retrieve information, upload data
and query designs, search via sequence and many administrative commands. The SynBioHub
API provides endpoints that cover a range of functionalities and is very robust computationally.
However, Synbiohub cannot return results based on partial sequence matches or via abstract or
contextual questioning such as usage. The database will search the data using the same mecha-
nisms as via a manual approach. The Synbiohub returns results via a standard JSON format that
is consistent between different API calls. These standard and determinable results make accessing
data computationally trivial.

INVENTORY OF COMPOSABLE ELEMENTS

Inventory of Composable Elements (ICE)[125] is a software platform designed to manage and
facilitate tracking biological parts, plasmids and strains, and it provides a repository-style system to
organise, store, and share genetic resources. This database is mainly sequence-centric and, unlike
Synbiohub, is not based on a standard data standard.

MANUAL QUERY Like Synbiohub, the user’s query is directly used to find results without pre-
processing. However, ICE allows adding sequence searches and other filters, such as partial names,
to reduce the search space. Ice uses a traditional relational database and performs its searches pri-
marily via full-text indexing, which searches for matches within large sets of textual data. While
this indexing enables matches to be made on partial or indirect matches with very little structure,
querying on specific datatypes is virtually impossible. ICE presents many similar features within
the results list, such as IDS, name and other metadata. However, one unique feature of the ICE
database is the relevance measurement based on the similarity between the search query and a
record. This similarity is calculated based on how close the query string is to the match made
within the record and the number of times a match is made. For example, if the search query
"Lac" and a record containing "LacI" despite not having a direct match, the record will be taken
with a lower relevance. With the ability to compare records to one another via relevance, the re-
sults can be ranked and present "better” results at the top of the list, reducing the burden on the
user. While this is a valuable feature, the metric to quantify relevance does not consider other
features away from simple close string matching and limits its applied usage. For example, it does
not consider quality, context of datatypes or correctness. The presentation of results within ICE
is more sequence-centric and is based on a plasmid (circular and linear) map. While these features
overall are less, the quality and elements of this aspect are superior. For example, it enables a user

147

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

to perform operations such as identifying open reading frames or searching for regions on the
sequence. In contrast, the Synbiohub implementation is a more static representation.

PrROGRAMMATIC ACCESs ICE offers an API that enables programmatic access similar to Syn-
biohub. However, it exposes different endpoints, such as one to modify existing data, which is
notoriously challenging within Synbiohub[173]. However, overall, the API provides similar cov-
erage to Synbiohub; therefore, all of the same issues are present here. The database will search the
data using the same mechanisms as via a manual approach. Like Synbiohub, ICE returns results
via a standard JSON format that is consistent between API calls. However, unlike Synbiohub,
which returns only the requested information, ICE will return all known information, which can
be problematic with large result sets.

KyoTo ENcycLoPEDIA OF GENES AND GENOMES (KEGG)

The Kyoto Encyclopedia of Genes and Genomes (KEGG)[127] is a database and resource for
understanding biological systems related to genes, proteins, pathways, and diseases. It provides
a comprehensive collection of information on various aspects of molecular biology, genomics,
bioinformatics, and systems biology. Unlike Synbiohub and ICE, which are general-purpose
synthetic biology repositories, KEGG is a systems biology-centric database more specialised for
genetic interactions. It has been chosen for review because the data is inherently interaction
network-centric.

MaNuAL QUERY KEGG allows users to specify the query type, offering a tailored approach to
data retrieval. Users can focus their search on specific categories like pathways, genes, diseases,
drugs, or enzymes. However, it is noteworthy that KEGG, similar to Synbiohub, does not im-
plement data manipulation features, such as autocorrecting spelling errors, meaning users must
ensure the accuracy of their input queries. The inner workings of KEGG’s search system are not
tully disclosed, but certain inferences can be made. For instance, when a user selects a specific
dataset for their query, KEGG excludes other datasets from the search scope, effectively narrow-
ing the search effort and potentially speeding up the retrieval process. KEGG contains results
based on the datasets but does not rank results based on relevance or quality metrics. In KEGG,
the results are presented based on the datasets queried. However, the system does not use relevance
or quality-based ranking to present these results, so users must manually filter the results to find
the most pertinent information. KEGG excels in providing tools for pathway analysis, network
visualisation, and data interpretation. These tools are handy for exploring biological pathways,
offering an interactive and detailed way to analyse and understand complex biological data.

PrROGRAMMATIC ACCESS KEGG offers an Application Programming Interface (API) for pro-
grammatic access to its vast data collection and functionalities. Additionally, it provides a File
Transfer Protocol (FTP) site for bulk data downloads, a feature especially beneficial for users need-
ing large amounts of data without the limitations typically associated with repeated API calls.
Programmatically, the database searches in KEGG are conducted using the same mechanisms as
manual searches. Specific datasets can be targeted, and logical filters can be applied, such as retriev-
ing only biological compounds within a particular molecular weight range, thereby allowing for

148

1 Introduction

more refined and focused data retrieval. KEGG returns results in a structured format, using stan-
dard responses such as JSON or XML. This consistency in data formatting across different API
calls simplifies the computational handling of the data. These results’ predictable and structured
nature makes it easier for computational tools to process and integrate KEGG data into various
applications and analyses.

REACTOME

Reactome[174] is a curated and comprehensive knowledge base focused on biological pathways
and processes related to primarily human biology (model organisms are also included), namely
cellular processes, molecular interactions, and signalling pathways. While Reactome is consider-
ably distant from the other reviewed databases, it is an example of a fully curated dataset com-
bined with a high-quality system. This database has many tools for querying, including pathway
browsers, which visualise the pathways within the database as networks.

MANUAL QUERY Reactome will suggest similar names and autofill partial names when inputting
a query, enabling misspells to be fixed and providing a guide for the user. Also, the system will use
fuzzy string matching like the ICE database, even if an incorrect spelling is inputted. Reactome
also filters the search by several factors, such as species or reaction type. While this system does not
enable contextual filtering, such as based on feedback from other users, the database is curated, so
it may not be so relevant. Reactome is modelled as a knowledge graph of interconnected terms.
Furthermore, it is captured as a labelled graph using the neo4j datastore. Because Reactome uses a
neo4j[175] datastore to capture information, it uses the Cypher query language[176] and system to
fetch results. It can perform various operations such as creating, updating, querying, and deleting
nodes, relationships, properties, and graph patterns. Reactome uses a prepared query approach,
which consists of template queries filled in based on what type of information is queried. This
approach provides many benefits over the other databases explored here, namely, the ability to
integrate not only the desired information but the context of the information, i.e. its neighbours.

When handling the results, Reactome considers many aggregated factors which impact the or-
der in which results may be presented. It considers the relevance to the query much like ICE and
other factors, such as the completeness of the pathway, which promotes results that are much
more likely to be preferred when combined. Reactome does not consider user activity, such as
how often a piece of information is accessed, which contrasts with more general-purpose search
engine systems. However, this may not be relevant as assurances can be made that all information
is high quality. Reactome’s presentation of an individual record is based on the type of informa-
tion that is accessed. For example, a record capturing an interaction will visualise the interaction
network for that reaction or a chemical compound of the constituent chemicals. However, gener-
ally, it emphasises the network representation of the information by visualising the entities within
the record and their neighbours or linking them to neighbour records via links. This approach
lets users explore the database quickly by passing seamlessly between records, but it could confuse
people without knowledge of the networks.

PROGRAMMATIC ACCESS Reactome provides an API called the Reactome Content Service
(RCS). The RCS ofters programmatic access to the biological pathway data stored in the database.

149

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

The API enables querying and analysing pathway-related information in a structured and stan-
dardised manner. Much like manual querying, the programmatic approach varies based on the
type of information being searched and accessed. However, the underlying data model must be
understood because the API requests and responses reference the types of entities within the graph
datastore. RCS returns most results via standard formats, such as JSON or XML, enabling consis-
tency between API calls. These standard and determinable results make accessing data computa-
tionally trivial. However, RCS also enables the retrieval of graphical representations of pathways
and molecular events, which could still be serialised as JSON/XMUL or graph-specific formats such
as GraphML or XGMML.

GENBANK/NCBI

GenBank[177] is a comprehensive, general-purpose repository that captures curated and uncu-
rated information. Within all fields of biology, this database is one of the largest and most accessed.
The more extensive database contains information about DNA, RNA, proteins, taxonomy, and
many other types of information. Therefore, this review will only cover the datasets that capture
DNA-centric information, such as the Nucleotide subset.

ManNuaL QUERY This database enables different datasets to be chosen depending on the user’s
desires, such as the nucleotide, genes or genome datasets. Furthermore, it enables further filters,
such as based on sequence length or the species related to a sequence. Also, it contains a mecha-
nism like Reactome to autofill or correct misspelt inputs, reducing incorrect inputs, which will
likely require optimised text indexing due to the sheer size of this database. Searching database
NCBI’s process to implement query handling is unknown, so some assumptions based on ob-
servation will be made here. Once an input query is submitted, no close string matching is per-
formed, so a single character difference will either return different or no results. Furthermore, the
search process will match against all of the written textual information often encoded within Gen-
bank file formats. Without complete standardisation of the underlying information, such asin the
case of Synbiohub or Reactome, more comprehensive approaches would be impossible without
complex algorithms to analyse the sequence or text. While the process of handling results again
is unknown, some observations can be made. The database enables the user to rank the results
based on metrics such as accession number, date modified, release date, organism name, taxon-
omy ID or sequence length. Presenting information is based on the type of information; however,
for sequence-based results, the information presented is relatively consistent. The presentation is
sequence-centric, displaying the underlying Genbank structure and a linear sequence which can
be manually explored. With such a sequence-centric approach, the more abstract and higher-level
representations established with the functional approach to synthetic biology are impossible to
represent.

PROGRAMMATIC ACCESS NCBI offers programmatic access via the Entrez Programming Util-
ities (EPU). These utilities can perform searches, retrieve specific data records, fetch sequences,
access metadata, and more through a series of HTTP requests. Much like the manual approach,
EPU’s process to search the data is unknown. However, observations show the results are the
same when using the same input query and parameters. Like the other databases, EPU returns

150

1 Introduction

a structured and standardised format, ensuring that data retrieved through programmatic inter-
faces is easily parsable by software applications. EPU most commonly returns information in
XML, JSON, Tabular Formats or Custom Formats for specialised information.

1.2 TIME-CONSUMING VALIDATION AND COSTLY PREPROCESSING

The type and quality of information and the methods to return it vary, given the source[178].
However, the results are often poor if a database does not curate its information because there is no
context to the quality. Even in cases where a database may return reasonable results given the input
query, this does not mean that the underlying information can be trusted. This section discusses
the analysis and assessments that must be performed when information is manually extracted and
the preprocessing and normalisation that must be performed during a computational approach
when extracting data from existing databases. Leveraging information from databases is common
practice, yet designers must critically analyse this data due to varying quality. Databases gather ge-
netic sequences and biological components from various sources. However, these databases often
vary in accuracy, completeness, and reliability. Inaccuracies and outdated or conflicting data can
arise due to differences in experimental methods or annotation techniques[179]. Before integrat-
ing information into designs, designers must conduct quality assessments. It includes verifying
source credibility, cross-referencing across multiple databases, and evaluating supporting experi-
mental data[180]. Furthermore, designers validate this data using in-silico analysis, experimental
tests, or computational simulations to validate the functionality and reliability of genetic com-
ponents before their integration into designs[181]. Also, it is common for practitioners to reach
out to the community, which provides designers access to shared experiences. While databases
are valuable resources, designers must critically assess and validate the information obtained from
these sources, which can be time-consuming and financially costly. Furthermore, even the evalu-
ation is open to human error, which can further introduce potential points of failure.

When programmatically accessing existing design information from a database for use in a
computational or programmatic approach, several preprocessing steps are crucial to ensure the
data’s reliability and usability. Before utilising the accessed data, addressing inconsistencies, er-
rors, and missing values is essential[136]. This process includes resolving any evident errors in the
retrieved information. Furthermore, even with the backing of a data standard, ensuring unifor-
mity across different datasets or entries and making them consistent and compatible is required
because dataset-specific features may be present[182]. Also, checks are required to evaluate the
data quality obtained and flag data that does not meet certain quality criteria, such as unreliable
sources, incomplete records, or conflicting information. These checks require methods to validate
the accuracy and reliability of the retrieved data, which may involve cross-referencing information
with other sources and performing consistency checks to ensure the data’s correctness. Much like
the manual approach, a computational approach must evaluate and check the information ob-
tained from these sources, which can require a lot of manual intervention or complex checking
algorithms. These requirements have been seen within Chapter 4 as the example datasets needed
to be cleaned and normalised before integration, which was not a trivial process.

151

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

1.3 FUNCTIONAL APPROACH TO GENETIC DESIGNS

Synthetic biology’s essence lies in engineering intricate logic in living systems. While progress has
been made, larger and more complex genetic circuits require a departure from a purely sequence-
focused approach. Synthetic biology aims to integrate sequence data into functional modules to
reduce complexity and facilitate the forward engineering of complex systems. At its core, syn-
thetic biology is driven by function. It centres on orchestrating functional modules to simplify
complexity by prioritising function over low-level sequence data[9]. The functional approach
in synthetic biology design was established within Chapter 4 and emphasised defining biolog-
ical components based on their roles within a system. It was explained that this offers advan-
tages: reducing complexity by capturing abstract functional information, meeting expectations
through standardised genetic parts, enabling flexible design iterations, and encouraging system-
atic decision-making. Furthermore, it was also established that functional information is seldom
encoded within datasets of design data. When looking at the designs themselves, it can be seen
that this is also missing information.

1.4 LEGACY DESIGN DATA

As described in the previous section, functional information is rarely explicitly encoded within
a design. This point can be expanded to describe all data types that cannot be derived from the
small amount of structured data in a Genbank file (sequence and positional annotations). The
lack of information is because most existing designs are taken from these sparse datasets discussed
in Chapter 4 or are translations of designs encoded within other formats, such as Genbank files.
Quantifying the general composition of existing designs is more challenging than the datasets.
However, some collections of designs exist which can provide an estimate of the trends. The col-
lections have been taken from the URLs in Table 1 with a description of the collection for con-
text. It must be noted that the SBOL community has a chronic shortage of available developed
designs encoded within SBOL, making this review not entirely representative of how designs may
appear. However, this in itself further proves the limited adoption of this standard. Once these
designs have been evaluated, the constituent datatypes are categorised in the chart displayed in Fig-
ure 2. Despite SBOL enabling modules, structural and functional hierarchies, interactions, and
experimental and simulation data, to name a few, these features usage remains limited and under-
specified, and designs still mainly consist of sequence and annotation data. If so much existing
information is SBOL compatible but does not capture the extra information it supports, it raises
the question of how it can be retroactively introduced. While it is true that several methods and
tools exist to edit designs manually, such as SBOL Visual[132], ShortBOL[2], and many program-
ming language packages[103, 116], processes to enhance existing data retroactively or automate the
addition of this information during development, have been explored much less. Currently, the
most common approach for bringing existing non-standard designs into a standardised workflow
and introducing extra information is converting the data into a basic standard representation, for
example, translating Genbank into SBOL and using the specification tools described above to en-
hance the data manually. However, the number of records and adhoc structure of the existing
information make retrospectively updating manually unfeasible.

152

1 Introduction

Table 1: Several SBOL designs and collections and descriptions regarding their contents.

Collection URL

Description

Digitalizer

A genetic device to digitalise gene expression
into a sharp on/off signal[183].

Devices from the iGEM 2016 interlab

A collection of devices used in the 2016 iGEM
inter-lab study.[184]

RepressionModel

Cas9, guide RNA CRISPR repression sys-

tem.

Toggle Switch

TetR-Lacl genetic toggle switch.

Capturing Multicellular System Designs
Using Synthetic Biology Open Language
(SBOL)

Several multicellular designs of decreasing ab-
straction[185].

GitHub - SynBioDex/SBOLTestSuite

Many small SBOL examples are used for test-
ing within the SBOL development commu-
nity.

Number of matches of each SBOL type within existing designs.

2321
2195

2000 |

1259
1139

Number of matches

RDF Type

Figure 2: Types of objects within several existing SBOL designs and collections.

1.5 WEIGHTED KNOWLEDGE GRAPH

Chapter 4 explored the weighted knowledge graph (WKG), designed to provide a more robust

data source that could enable a more consistent interface with the ability to query different types

of data away from the current sequence-centric databases. The WKG has specific features and
interrogation methods that could help with some of the challenges discussed.

STANDARDISED KNOWLEDGE GRAPH

- The graph is standardised from a semantic and struc-

tural perspective. The semantic standardisation attaches labels from a defined domain (an on-

tology) to all nodes and edges in the network, ensuring unambiguous comparisons of individual

entities like genetic parts or interactions. Meanwhile, structural standardisation permits only spe-

cific nodes to connect via edges with designated labels, which ensures predictable traversals based

on the topology of the data. For instance, if a node exists within a network, it can only have a
predefined type of connection with other labels. Overall, this standardised approach enables data

153

https://synbiohub.org/public/Digitalizer/Digitalizer_collection/1
https://synbiohub.org/public/iGEM_2016_interlab/iGEM_2016_interlab_collection/1
https://sbolstandard.org/zip/RepressionModel.zip
https://sbolstandard.org/zip/Toggle_Switch.zip
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176
https://pubs.acs.org/doi/10.1021/acssynbio.0c00176
https://github.com/SynBioDex/SBOLTestSuite

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

to be casily merged and integrated into the WKG, providing that the incoming information has
the same structure or a mapping can be made. Ultilising a network-centric approach for storing
synthetic biology design data in a graph format is highly beneficial due to the graph-like nature
of such data. This method removes the need for data normalisation, allowing for more natural
and intuitive storage, as it mirrors the interconnectedness of biological systems. The graph-based
structure also enables quick traversal and retrieval of data, particularly for nodes near a selected
starting point, which facilitates speedy and efficient analysis of connected network segments, of-
fering insights that might be challenging to obtain with traditional relational databases.

CanonNicAL - The graph is canonical, meaning no duplicate exists within the network. For
example, no two genetic parts with the same sequence exist. Furthermore, the processes around
the WKG can identify a conceptually identical match where the underlying data is equal, even if
the URIs are not identical. Also, the WKG can encode multiple names and URIs for one entity.
In practice, this enables matches to be made within and outside of the WKG even when the URI
is not identical, which is a valuable mechanism from a computational approach where a human
is not available to judge conceptual matches.

PROVENANCE - The network contains relationships between entities predicted to be derived
from one another or homogenous. For example, if two genetic parts are thought to be function-
ally similar because one is a modified version of the other. Capturing provenance enables similar
entities to be grouped, alternative entities to be swapped, and incorrect information to be identi-
fied and cluster functionally similar entities.

FuncTioNAL - The methodologies associated with the WKG, particularly those related to ex-
pansion techniques, are primarily aimed at incorporating and enriching functional information.
This emphasis on encoding functional information is significant as it allows for integrating this
crucial data into existing designs where it is often absent. From a user’s standpoint, this capability
facilitates more abstract and function-focused queries. For instance, users can search for a desired
functionality to be included in their design without being limited to a specific implementation.
By enabling the encoding of functional information, the WKG thus supports a more flexible and
intuitive approach to design queries and modifications.

CoNFIDENCE - The WKG encodes confidence as a weight, measuring the perceived accuracy of
the information it contains. This encoding of confidence is crucial in quantifying the likelihood
of correctness, thus reducing uncertainty. From a computational viewpoint, this feature helps
prevent the integration of incorrect information into designs. For users, it assists in discerning
more reliable data, as higher confidence values can highlight more trustworthy information, guid-
ing decisions and analyses. This dual benefit enhances the overall reliability and usability of the
WKG in both computational and user-focused applications.

UsaGeE - The WKG encodes entities not derived from one another but related from a contextual
perspective, such as some experience a practitioner has had previously using two parts together.
From a user perspective, usage can provide some context of the success or failure of the practical

154

1 Introduction

implementation of two entities together. For example, if two genetic parts have some level of
interplay that is not immediately apparent, this may be highlighted within usage.

The reviews undertaken within Chapter 4 show that these meta characteristics and weights are
seldom encoded within databases. However, combined, they may alleviate issues around access-
ing and using uncurated databases from a manual and computation approach within synthetic

biology.

1.6 Aims AND OBJECTIVES

This introduction began by reviewing the methods to handle input queries, the process to identify
results, how results are presented and computational access to the contents of several databases.
The result was that databases vary not just in quality established within Chapter 4 but also in
the robustness of the systems to present information to a user both manually and computation-
ally. However, uncurated open databases generally present data poorly because of the inherent
uncertainty in the underlying data without any mechanisms to regulate or alleviate it.

Next, the issues and hurdles arising from this type of access were discussed. It emphasised that
databases can vary in accuracy, completeness, and reliability due to differences in sources, exper-
imental methods, or annotation techniques. Additionally, it touched upon the essential manual
analysis that must be performed when using information from databases and the preprocessing
steps required when programmatically accessing data from databases. The conclusion was that
manual and computational approaches require thorough evaluation, checking and filtering of in-
formation obtained from these databases, which can involve extensive manual intervention, com-
plex checking algorithms or testing.

From this, the functional approach to synthetic biology idea, which highlights a shift from a
purely sequence-focused approach to defining functional modules, was expanded from a purely
design context. It emphasised establishing a functional approach in synthetic biology design,
defining biological components based on their roles within a system. This approach offers ad-
vantages such as reducing complexity, using standardised genetic parts, enabling flexible design
iterations, and encouraging systematic decision-making. However, a limitation was defined: the
absence of functional information encoded within datasets of design data and the designs them-
selves, indicating that functional information is missing despite its critical role in synthetic biol-
ogy design. Because of this discovery, an evaluation was extended to include various data types
beyond what is typically found in a Genbank file (which primarily contains sequence and po-
sitional annotations) and functional information. It was found that despite the capabilities of
SBOL to encompass various features, their usage remains limited, likely due to their reliance on
sparse datasets discussed earlier or designs translated from other formats, such as Genbank files,
which can be seen as the original composition from integrating datasets in chapter 4 was sequence
centric.

Finally, the WKG from Chapter 4 was reintroduced, designed to provide a more robust data
source that could enable a more consistent interface with the ability to query different types of
data away from the current sequence-centric databases. Because of this, the WKG was proposed
as a backbone to assist with the issues established.

In summary, the introduction covered database variability, emphasising the challenges posed
by data quality, manual analysis, and the absence of functional information in design datasets,

155

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

proposing the WKG as a potential solution. Therefore, this chapter explores how the WKG rep-
resented in chapter 4 can be used to provide solutions to data access from both a user-facing per-
spective, namely the querying process to identify information for a design manually, and a com-
putational approach which can be used to introduce the information commonly missing within
a design automatically.

As discussed, generally, querying synthetic biology-centric databases is achieved by matching
the search query with record names, metadata or sequence data[121]. This simplified search con-
trasts strategies with established search engines, which consider additional information when iden-
tifying matches[186] that often produces answers more accurately. With the knowledge graph
previously established, more comprehensive methods can be established. The user-facing use case
aims to describe methods for superior querying to provide better results to a practitioner quicker
by exploiting the features of the WKG. Furthermore, Chapter 4 briefly explored how the WKG
can access feedback, which can update the weights and features of the network by user-provided
feedback on the quality or correctness of this information. This will explore this feature further
by giving a specific example of how this information may be integrated into the network.

As highlighted before, most existing designs (and design information collections) contain mini-
mal or no extra information that SBOL enables. Designs and datasets could be enhanced by trans-
ferring the extra information encoded within the WKG. Therefore, the second computational-
centric use case explores how the missing information not commonly encoded within design data
can be automatically enhanced with a focus on adding missing interactions and identifying po-
tential functional modules to add a hierarchical structure to a design.

A1Mms

Explore the practical application of the established WKG to address data access challenges in syn-
thetic biology from user-facing and computational perspectives. The user-facing aim is to develop
and implement superior querying methods leveraging the features of the WKG to enhance the ef-
ficiency and accuracy of information retrieval for practitioners engaged in synthetic biology design
processes. Furthermore, it will investigate and illustrate how the WKG can facilitate the integra-
tion of user-provided feedback to update network weights and features, thereby improving the
quality and correctness of information retrieval mechanisms. For the computational use case, de-
velop and implement approaches leveraging the WKG to supplement design data automatically
by incorporating missing interactions and identifying potential functional modules. Also, this
aim is to introduce hierarchical structures within designs and improve the comprehensiveness of
design information through automated data enrichment methodologies.

OBJECTIVES

Develop methods for querying, focusing on providing quicker and more accurate results for prac-
titioners in synthetic biology by using the features of the WKG to provide improved access to
data. Furthermore, the goal is to provide a detailed example of how the WKG can incorporate
user-provided feedback to update network attributes, emphasising enhancing information qual-
ity. Next, from a computational application, demonstrate the potential enhancements of exist-
ing designs and design information collections by incorporating additional SBOL-enabled infor-
mation within the WKG. This goal focuses on developing computational-centric approaches to

156

2 Results

automatically supplement design data by adding missing interactions and identifying potential
functional modules, utilising information from the WKG to introduce hierarchical structures
within designs.

2 RESULTS

This section comprises two parts, each focusing on distinct cases. The first part explores a user-
centric approach, examining how the manual querying process can be significantly improved by
applying the Weighted Knowledge Graph (WKG) and its features, as outlined in Chapter 4. The
second part shifts focus to an automated context, demonstrating how the WKG can seamlessly
integrate into computational pipelines to enrich existing designs with previously missing infor-
mation. Collectively, these illustrate the versatility and effectiveness of the WKG, showcasing its
utility from both manual and automated perspectives.

2.1 SUPERIOR INTERFACING USING NETWORK FEATURES

As seen when reviewing database query systems, interfacing with synthetic biology-centric databases
via queries is commonly achieved by matching the search query with each record’s name, metadata
or sequence data. The results are usually ranked arbitrarily or by the number of direct matches.
This simplified search contrasts strategies with established search engines. These search engines
take into account more information when identifying matches, such as the intent of a query
and ranking results based on several factors, such as how much a resource has been used in the
past[147]. The holistic approach often produces answers to questions more accurately relative to
intent, and the desired results can be identified faster and more accurately. However, most ex-
isting databases cannot implement superior querying because neither the underlying data, struc-
ture, nor metadata capture the required information. Using the knowledge graph previously es-
tablished, more comprehensive methods can be established using the new metadata (confidence),
meta characteristics (provenance and usage) and extra information (interactions) encoded within
the network and methods (feedback). The encoded confidence can be used to rank results to
highlight information likely of higher quality. Provenance within the network can provide a user
with similar entities by function or sequence given an original entity. Users can provide abstract
requirements such as interaction data instead of names or sequence data as a query. Other parts
commonly used with a genetic part can be provided based on previous usage. When query results
are provided, feedback on these results may be given, resulting in new information added to the
dataset or updated values within the network.

NON-SEQUENCE-BASED QUERIES

Genetic parts are commonly searched using sequence or direct name matching. However, a user
may want to search for records using several different metrics, for example, based on the function
of a genetic part or similarity with other parts. As discussed, unlike many databases, which usually
encode a small number of datatypes (usually sequence), the WKG we have built encodes several,
each providing a unique insight into the data. The different search mechanisms will be displayed

157

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

using the same query input to show that the search method and results change based on the desired
information. This example is illustrated in Figure 3.

DERIVATIVES AND PARTIAL SEQUENCES : Partial sequence matching over large datasets is not
feasible when performing queries because the computational requirements are too great. How-
ever, as discussed, the WKG contains Derivatives edges, which refer to genetic parts believed to
have some homogeneity, perhaps because one is a modification of the other. Therefore, these
edges enable the fast identification of similar entities, which may provide similar functionality. A
graph traversal is performed from all derivatives edges. This process will take the derivative com-
ponent (The subgraph of derivatives of the subject node), providing an exhaustive list. Figure 3
pink traversals from the source (LacI) to BBa_I732100 and then BBa_I732103, as the latter is still
implicitly a derivative of the query node.

INTERACTIONS : Interactions between entities enable a more function-focused approach to
query for genetic entities. With the WKG, it is possible to specify functional requirements for
a part instead of identifying parts and then function. Figure 3 grey shows where the query node
(LacI) interactions are found by finding direct neighbours with interaction edges. Like the deriva-
tive search, the interaction search could be expanded to cover the entire interaction compery.
onent in the graph and return the whole regulatory system that controls the source node.

USAGE : Parts used within a design can have an unknown and undesired interplay even when
seemingly independent. Due to biology’s inherent complexity, experimental approaches are the
only way to identify this interplay reliably. The WKG captures a relationship between entities,
which describes cases when parts are commonly found together within designs. While not an
absolute metric, it could provide a higher guarantee level from previous designs to validate the
feasibility of future designs. Figure 3 red displays the usage, where the specific edge is queried
(usage), and the resultant nodes are returned (BBa_B0034).

MoDULES : Previously, abstract functional modules were defined within the WKG. Modules
may be valuable for several reasons, such as identifying implementation from function, increas-
ing the likeliness of correctness, abstracting biological complexity and fast prototyping. Once the
modules are described within the WKG, the modules can be identified by traversals. Unlike the
previous example, this query will return a subgraph instead of an individual node within the net-
work (See network for creating module subgraphs). Figure 3 blue displays an example of returning
the pLacregulatory module given an individual genetic part source (LacI). It must be noted that
an entity may be part of multiple modules so that these traversals may find multiple modules.

METADATA : Although not particularly useful from a network approach, the written textual
information may be helpful for users requiring a more natural description of an entity. Figure 3
green also displays that metadata can be returned from the same search query.

158

Query input:lacl Node Color
0 Promoter
Derivatives CDS
; | Small Molecule
@B Interactions Complox
@S Usage mmm Profein
Bl Viodule BB Repression
g Binds
@ Metadata J @R Protein Production
@l Module
BBa_BO034 W Activation
Bl RBS

BBa_I732103 lacl (M qcl Properties
Coding region for the
Lacl protein.
BBa_1732100

2 Results

Edge Color

repressor
repressed
reactant
template
product
hasinteraction
activator
activated
derivative
usage

IPTG-Lacl

pLac-regulation

Figure 3: The same input query ("LacI") can return different information based on the search type. Pink:
Walks the network for similarity using the synonym label. Grey: walks the network for interac-
tions occurring using the interaction labels. Red: Traversal to find entities commonly used to-
gether. Blue: Walks the network to find modules within which the entity is implicitly contained.
From the module, walk the network to find all interactions and parts that make up the module.

Green: returns the metadata of the search query.

159

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

INDIRECT ENTITY MATCHING (SYNONYMS/CANONICAL & Fuzzy)

Issues arise when information querying moves away from sequence matching because one input
may match multiple records. For example, multiple records from different databases may use the
same name to define the part (in many cases, collisions occur within the same dataset). While
this is not an issue within the WKG, as it ensures that each record is canonical, the opposite may
arise where a single genetic part has many names. While it is impossible to know all potentially
colloquial names, when found, the duplicate can be transformed into a "Synonym" node when du-
plicates are found instead of removing the duplicate. Figure 4 shows how this is structured within
the network; it is simply a "Synonym" node (pTac and LacI) connecting to the canonical node
(BBa_K864400). Although a genetic part or entity may have extra information capturing com-
mon aliases, it is impossible to capture every possible derivation. For example, retake the synonym
node "pTac"; instead of querying the exact word, a user searches for "pTac promoter”. No results
will be returned if this query is directly searched within the network. In this case, approximate
string matching may be employed to find "close” matches. Approximate string matching searches
for strings similar or equal to a given pattern, even if they are not an exact match. For example,
in Figure 4, if the user now searches "pTac promoter” and no matches are found directly, approx-
imate string matching (see methods) can be employed to show that this input may be similar to
the "pTac” synonym and, therefore, the conceptual match is found despite not being syntactically
identical. It must be noted that this is a limited solution, but a more robust solution is complex
and is outside this work’s scope (see discussion).

RANKING RESULTS

When executing abstract queries, multiple results are often presented. For instance, tasks like de-
riving genetic part derivatives or conducting metadata searches may yield numerous outcomes.
Traditional databases equipped with simplistic search systems tend to rank results arbitrarily, for
example, by their order of discovery or alphabetically. However, this approach disregards crucial
factors like data quality, reliability, and utility, burdening users to filter through the information.
Advanced search engines, on the other hand, consider diverse external elements such as popularity,
context relevance, and resource quality. These considerations establish a refined system wherein
end-users seldom need to navigate beyond the first subset of results to discover an appropriate
answer. Therefore, by embedding confidence metrics within the network and incorporating ca-
pabilities for precise matching (including partial sequence and fuzzy string matching), a query
system emerges that takes strides toward presenting more pertinent outcomes. Using a breadth-
first-search method, figure5 shows how derivatives are ranked when the graph is traversed from
a source node (the query input BBa_K082003). Each node is assigned a score calculated by the
formula: score = (parentScore * confidence) / 100. This scoring system is applicable because the
provenance subgraph forms a forest structure, meaning each node has a degree of either 0 or 1 and
thus can have only one score. After scoring, the nodes are ranked, with the highest scores placed
at the top.

160

2 Results

R synonym [Canonicall

BBa_K864400

plac., Laci-sensor

n,
- +. "
S s
“a

"
a" "

Query: BTC:IC_DI'UH"IUT;T

Figure 4: Representation of identifying a canonical node from a query. The first stage involves finding the
synonym node “pTac” via a fuzzy string match between the input and node name, which is then
connected to the canonical node “BBa_K864400”.

161

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

B Score EE Similarity (Confidence)
BRa_K1142011 BBa_K14180462 EBa_KA0&000 BBa_MAST1E

99 99 Q9
80 81 81

82|98

BBa_K 1896004 BBa_K1911005
BBo_K 1894001

Q9 Q1
83 76

84/95

BB K 1893032

@8

Rank — BBa_K 1897033

BB K1897033 89 87

BAcy_ K 1825052 B

BAo_K1896001 84

BAca_ K 18246006 a3 8{; 89

BBo_K208000 82

BBa MAST1A 81

BBo_K1418062 81

BRc_ K1142001 B

BBo K1911005 74

BEo_KO22003

Figure 5: The ranking of derivatives of part BBa_K082003. The graph is traversed from the source node
(BBa_K082003) to each derivative. The score of a node is calculated based on the score of the
previous node and the confidence of itself; the higher rank indicates an entity that is thought to
be closer to the source.

162

2 Results

INTEGRATING FEEDBACK

A key feature of the WKG is to accept feedback from agents, whether human users or automati-
cally extracting information from sources of information. Feedback can be positive and negative,
updating the confidence encoded inside all concerned edges. Confidence measures the likelihood
that a piece of information is correct, thereby reducing uncertainty. Figure 6 displays three exam-
ples of how statements can be fed back into the WKG, where the integration method is specific
to the datatype and if the information already exists in the WKG. When providing information
from the knowledge graph directly to a human, the information may be reformed and not in the
same structure. The restructuring is often because the underlying format is designed to capture
large and complex structures, which means the connections between data are not always intuitive.

END-END QUERY EXAMPLES

This section covers some practical end-end use-case examples of how the WKG can enable supe-
rior querying with a technical explanation of how it is achieved using several scenarios, including
normalising free text inputs, ranking results and integrating feedback into the network. See the
Genetta section for a tool which implements this query system and can be used to replicate these
results.

SCENARIO - RETURN SIMILAR GENETIC PARTS TO BBA_E0040 This example 7 accepts the
input BBa_E0040, which is already a canonical entity, identifies similar entities via the datatype,
ranks these results based on similarity to the input, and accepts a feedback statement. The follow-
ing steps are undertaken to execute a query for BBa_E0040, which is identified as the canonical
entity:

* Initiate a breadth-first search on the derivative projection graph starting from the node rep-
resenting BBa_E0040. Itis important to note that this derivative graph consists of multiple
disconnected components because not all parts are derivatives of one another; therefore,
edges do not exist, which makes a connected graph. This search aims to traverse the com-
ponent containing BBa_E0040, and the search begins from it.

* Each record encountered is returned during the search, which means that as the search pro-
gresses through the derivative graph, each node connected directly or indirectly to BBa_E0040
is identified and listed.

* Upon retrieving these records, they are ranked based on similarity to the initial query entity,
BBa_E0040. This ranking process evaluates how closely each record matches or relates to
BBa_E0040.

* For each record, a scoring mechanism is applied. The score is calculated using the formula:
Score = (previous_confidence * current_confidence) /100. This formula considers the con-
fidence levels of the previous and current nodes, providing a normalised score that reflects
the cumulative confidence of the pathway leading to each record.

163

Chapter S: Enbancing data access and designs by leveraging the weighted knowledge graph

Node Color Edge Color

[Promoter @m Degradation e activator B product
CDS W Binds mmm activated synonym

00 Small Molecule @B Protein Production s reactant 0 repressor

mm Complex Synonym mmm template WM repressed

IS Protein W Repression

w Activation

AraC repression pBAD
Ara inhibits pBad_repression
BBa_1732100 is not AraC

.5(+.5) 5(+ 5)
9'Q. .

Ara-AraC

AraC

AraC A45(+.5)

10(-.5)

BBa_1732100

Figure 6: Example of three feedback terms used to update existing confidence or create new edges and
nodes. In this case, the confidence increase is set at 5. "AraC repression pBad" maps directly
to an existing edge; therefore, the confidence is increased. "Ara inhibits pBad_repression”; this
case creates new interactions because the edges do not currently exist and sets the confidence to
the initial value. "BBa_I732100 is not Arac” explains that these two values are not synonymous,
reducing the confidence of the existing edge.

164

2 Results

* If the user provides feedback on the search results, this is used to adjust the confidence
levels. Specifically, positive feedback increases the confidence score of the presented records,
thereby refining the search process based on user input. If the revised confidence score for
a record is higher than the confidence level of the derivative node it is connected to, the
existing edge is removed. Subsequently, a new edge is created that connects the node with
the highest confidence score. This step ensures that the graph continually adapts to the
most reliable and relevant connections based on the dynamic confidence scores influenced

by user feedback.
Match: BBa_E0040 Node Color
BFS - BBO_E0040 Em Canonical
BBa_K6060643 Fdge e

BBa_K371021

BBa_k125500 99
BBa_K592101

Rank: BBa_K6060643 ‘
BBa_K6060643 (99)

BBa_K371021 (98.1) 00 00

BBa_k 125500 (97.2)
BBa_K592101 (97.2)
Feedback:
BBa_K592101(Positive) BBa_K371021 BBa_k125500 BBa_K592101
New confidence: 100

Remove edge BBa_K6060643 -> BBa_K592101

Add edge BBa_E0040 -> BBa_K592101

Figure 7: Visualisation of identifying similar entities to genetic part BBa_E0040 from the IGEM dataset.
A breadth-first search is performed from the source (BBa_E0040). Because all derivatives graphs
are disconnected, all related entities will be considered, and non-related ones will never be con-
sidered. Finally, the position of a node during ranking is calculated by (parentNodeScore *
nodeCon fidence)/100.

SCENARIO - RETURN REGULATORS OF Lacl This example identifies 8 the interactions that
the Lacl entity has. The input is the "LacI-sensor”, which is not a canonical entity within the
network and must be resolved. In this case, only one interaction is found, so ranking is arbitrary.
When feedback is provided, all physical entities involved in the interaction have their confidence
increased. Initiate the query specifically for the "LacI-sensor”, which is not a canonical entity:

* Identify the canonical edge from the "LacI-sensor” node designated as BBa_C0012 in the
database.

165

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

* Begin walking the network, starting from the BBa_C0012 node. This process involves
traversing the network to explore each interaction edge originating from BBa_C0012.

* As the network is traversed, focus on identifying specific types of interactions, in this case,
the repression node. If an interaction edge from BBa_C0012 is identified as one of these
regulatory types, that interaction is selected and returned.

* After identifying the relevant interactions, the next step is to rank each. This ranking is
based on the confidence level associated with the interaction between BBa_C0012 and the
interacting entity.

* If user feedback is provided during or after the query process, it updates all participants’
confidence levels in each interaction. This change means that the confidence scores of both
BBa_C0012 and the entities it interacts with are adjusted based on user input.

Match: Laci-Sensor Node Color
Identify canonical: Lacl-5ensor uummm %anonicol
N Repression
BBa_K864400 Synonym
Traverse from BBa_.K864400: Edge Color
Lacl_pTac_repression (5) synonym
Rank: repressor

Lacl_pTac_repression (5) BBa_K864400 @ repressed
Feedback:

Lacl_pTac_repression (Positive)

New confidence: 10 Lacl- DrO‘reln

Increase confidence of all edges:
Lacl_pTac_repression -> *

Lacl-pTac Repression

Figure 8: Identifying the interactions of results from the “Lacl sensor” query. A canonical node
(BBa_K864400) is found, a participant in a repression interaction.

SCENARIO - RETURN ALL WILD-TYPE T7 PROMOTERS. This scenario displays accessing meta-
data within the nodes of the network. The input query "wild-type t7 promoter” is queried where
a fuzzy string search is performed within the metadata fields of each node. This displays the issues
with written information; without complex language models (see future work), basic approaches
to matching textual information will nearly always produce superfluous results alongside the de-
sired results. A fuzzy text index query on all canonical nodes by the following procedure:

* Initiate a fuzzy text index query across all canonical nodes in the database. The query iden-
tifies BBa_K2084000 and BBa_K2150031 as the relevant nodes in this specific instance.
These nodes are selected based on their similarity to the search terms used, as determined
by the fuzzy text search algorithm.

166

2 Results

* Once these nodes are identified, they are ranked according to a fuzzy string score. This
score quantifies the closeness of the match between each node’s name and the search query.
Nodes with a higher fuzzy string score are deemed more relevant to the search terms and

are thus ranked higher.

* If feedback is received from a user, it is used to refine synonym connections. Specifically, a
synonym node is created for the canonical node to which the feedback pertains.

Maitch: wild-type t7 promoter Node Color
Fuzzy match: BBa_k2084000 W Canonical
BBa_K2084000 Pesrrats |
BBa_k2150031 Ine prosence of T

RG n k: RNA polumerase. |
BBa_K2084000 (80) Metadata
BBa_k2150031 (50) oo e’
Feedback: 0% higher e tha
BBa_k2150031 (positive) = " pomoer

Add new edge: BBO_K2]5003]
BBa_k2150031 - synonym -> wild-type t7 promoter

of wild-type t7

Figure 9: Fuzzy string matching on nodes within the network. The ranking is based on the fuzzy string
score. Metadata searches often produce incorrect results. For example, BBa_K2084000 is the T3
promoter when the user requested the T7 promoter.

SCENARIO - RETURN ALL ENTITIES COMMONLY USED WITH BBa_J107113 This query re-
turns all entities with relationships of the usage type with the input query (BBa_J107113), which
is the canonical entity within the WKG. Rank is based on the confidence of each usage, and when
feedback is applied, these values are updated. The following steps are taken to query for entities
known to be used with the canonical entity BBa_J107113:

* The system identifies the canonical entity BBa_J107113, which involves locating the node
corresponding to this unique identifier. Once the canonical entity is identified, the system
then queries for all usage edges connected to it.

* These usage edges are then ranked based on the confidence level associated with each edge.

* Ifuser feedback is provided, it is used to update the weights of these edges. A specific action
is taken if an edge’s confidence drops to zero. In this scenario, if the edge connected to
node BBa_K10114 is found to have zero confidence, it is removed from the network. This

167

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

removal is based on the understanding that an edge with zero confidence no longer reliably
represents a meaningful or accurate connection in the network.

Matich: BBa_J107113 Node Color
Match canonical: BBa_BOU6A @s Canonical
BBa_J107113 . Fdge Color
Rank: 30 Haee
BBa_B0044 (30) BBa_K1725040

BBa_K 1725040 (15) 15 BBa J107113
PSrER (15)

SreR (10) 5 10
BBa_J107113 (5) 15

Feedback: . . .
BBa_J107114 (Negative) BBq J107113 PSR SR

New confidence: 0
Remove edge BBa_J107113 -> BBa_J107113

Figure 10: Usage search performed from the source node (BBa_J107113). Returns all entities within the
WXKG that are thought to be compatible with the source. Rank is based on confidence; feedback
may remove edges if the confidence is zero.

SCENARIO - RETURN PTET REGULATORY SYSTEM This example identifies modules contain-
ing the input query (pTet). In this specific case, a module encodes the regulatory mechanism.
Broadly, a module is identified by searching for interactions and then the modules which contain
the interactions. A module search will return a subgraph, which identifies all interactions and
constituent parts (see methods for an extended explanation of decoding modules). The confi-
dence of a module for ranking is based on the average confidence of the constituent edges. When
teedback is provided, all the edges are inputted. The following steps are undertaken to query for
the pTet regulatory module:

* Begin by querying for the canonical entity, in this case, pTet, by identifying the specific
node that corresponds to it.

* The next step is to identify all the interactions in which pTet is a participant, in this case
pTet-Activation and pTet-Repression. For each identified interaction, the system queries
for any modules that contain this interaction, in this case, the pTet-Regulation module that
encompasses the pTet-related interactions.

* The process involves traversing each identified module to find all constituent interactions.
This step aims to map out the complete network of interactions that form the basis of the
module.

168

2 Results

* The next step for each interaction within the module is to identify all the participant enti-
ties, which involves mapping out all the nodes (entities) involved in each interaction, pro-
viding a complete view of the entities that constitute the network. This process results in a
subgraph that includes all the nodes and edges related to the pTet regulatory module.

* If feedback is provided, it is used to update the confidence levels of all the edges within the

module.
Match: pTet Node Color Edge Color
Match canonical: Promoter repressor
pTet CDs EER repressed
Identify Subgraphs: Small Molecule mmmm reactant
pTet-regulation = {TetR-aTe-degradation, — ComP'eX e template
pTet-activation, @R Profein @mm product
plet-repression, @S Repression mmm octivator
TetR-aTe-ind - giﬁg;o‘m“o” EEm octivated
TefR-degradation, @ Protein Producﬂon- hasinferaction
TetR-production, e S Actvation
pret, mmm Module
alc-TetR,
TetR,
ale, \eﬂ?—cﬂc-bind alc-TetR TetR-aTc-degradation
TetR

1
Feedback:
pTet-regulation(Positive)
New confidence: 10
Increase confidence of all edges
pTet-regulation -> *

pTet-activation

plet-repression

TetR TetR-production

plet-regulation

Figure 11: Identifying the functional module (p Tet-regulation) given the search query pTet. When the pTet
node is found, all connected modules (modules implicitly containing pTet) are returned. A sub-
graph is returned, denoting all the constituent nodes and edges. On feedback, all edges connect-
ing the module to the interactions are updated.

2.2 AUTOMATIC ENHANCEMENT OF EXISTING DESIGNS

Incorporating additional information beyond sequence data into a genetic design is beneficial be-
cause it enriches the design with a broader context and deeper insights, which can significantly
improve the understanding and manipulation of genetic systems[181]. A more comprehensive

169

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

view of the biological system is achieved by integrating data such as functional annotations, reg-
ulatory elements, interaction networks, and environmental response factors[187]. This enriched
perspective facilitates more informed decision-making in design processes, enables the prediction
of system behaviour under different conditions, and enhances the ability to engineer more robust
and efficient genetic constructs. However, as discussed, this information is seldom defined within
databases or individual designs. This gap arises because most existing standardised designs are di-
rect translations of designs originally encoded within formats that do not support including such
information. Furthermore, the burden of manually inputting this extra information is often im-
practical for practitioners due to limited resources, time constraints, and a lack of incentives or
clear guidelines on how to do so. This situation significantly underutilises potentially valuable
data, limiting the depth and applicability of genetic designs.

The second use case proposes the computational application of the WKG to address this is-
sue by automatically enriching design data with this often-missing information. This approach
aims to streamline the process of incorporating diverse data types into designs, thereby overcom-
ing the limitations of current practices and significantly enhancing the richness and utility of ge-
netic design data. The design is a modified form of an AND gate by Jones and colleagues[154].
This example will help demonstrate how these enhancements can be practically implemented.
This AND gate consists of two inverters whose outputs are fed into a NOR gate, ensuring the
only output is when both inputs are high. The desired representation can be seen in Figure 12,
where the interaction data is encoded. However, only sequence data with annotations are defined

i 1]
TCT

pTet SrpR pTac BM3R1 pSrpRpBM3R1 PhIF pPhIF YFP

Figure 12: Visualisation represents genetic parts, proteins, and chemicals as glyphs. Interactions between
physical entities are represented via lines. This AND gate [154] design consists of two inverters
flanking a NOR gate, resulting in an AND gate design.

within the initial design data because this information would be extracted from a Genbank file.
The names of annotations (genetic parts) are mixed, i.e. entities containing the canonical name,
synonymous name, exact or close sequence, names similar to WKG entities or the name encoded
within the metadata to explain multiple possible outcomes. The initial design network can be seen
in Figure 13, which is a simple network where nodes denote each genetic part that constitutes the
network. Currently, the network contains no edges because a flat design format does not encode
any information about relationships between entities. However, each node will contain proper-
ties, represented in figure 13, by displaying the properties for BBa_B0064. Properties are encoded
within nodes instead of individual nodes with edges to the subject because they do not play a role
in the network’s topology. The names and properties of parts are mixed, such as some containing
sequence data and some not. This large domain of types and quality of information is designed
to display each possible use case.

170

2 Results

Tet_promoter
PhIF_terminator Tac_promoter NOde COIOr
[Promoter
@ RBS
L3S3P22 SrpR_sensor CDS
‘ ‘ s Terminator
BBa_J133450 PBMB3R1_promoter
pPhIF

yellow_fluorescent_protein

‘BBa_B0064 Properties
: Description: This is a single bp change |
PhIF from BOO34. It'sstrengthis .+ BB BO064
approximately 35% that of | -~
B0034.
iSequem:e: AAAGAGGGGAAA

DntR

BMB3R1_repressor

SrpR Al

my_rbs ‘

Figure 13: Unenhanced AND gate design represents each genetic part as an individual note. Node labels
are truncated URIs for a more comprehensible visualisation, and each node contains properties.
Visualised here are the properties for the BBa_B0064 node.

171

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

CANONICALISE

An expansion is only possible if the existing data is tractable between designs. For example, if two
designs use the part BBa_R0040 aka pTetR and the two designs use the alternative names (one
BBa_R0040 and one pTetR). While humans understand they are synonymous, it is challenging
to identify this computationally. Therefore, before a design can be enhanced, it must be first
canonicalised relative to the WKG or resources on external databases, i.c. mapped to the exact
virtual analogue.

WKG REPLACEMENTS The first step to canonicalising a design is to find matches between the
design graph and the WKG. Matches with the WKG are the most desirable outcome because this
graph will likely encode more information than an external database. Figure 14 displays the four
potential match cases explained below.

Canonical entity - The entity is already canonical within the WKG. Figure 14 A displays the
case when the entity (BBa_B0064) within the design graph is already canonical. In this case, no
changes are made. Canonical name - The entity is not canonical but has the same name as a canon-
ical entity within the WKG. A name usually pertains to the suffix of a resource but can also be any
shortcode or name. Figure 14 B displays when the name (encoded within the properties of a node)
matches the suffix of a WKG entity (Al). In this case, the WKG entity replaces the design graph
entity.

Identical sequence - The entity has no matches within the resource name, but instead, the se-
quence is identical to a canonical entity within the WKG. Figure 14 C displays when the sequence
of a design entity (encoded within the properties of a node) matches exactly an entity within the
WKG (pTet). In this case, the WKG entity replaces the design graph entity.

Synonym of canonical entity - The entity is a synonym of a canonical entity within the WKG.
Figure 14 D displays the case when the name of an entity within the design graph matches a syn-
onym node within the WKG (SrpR _sensor). In this case, the graph is traversed to find the canoni-
cal entity (BBa_K1899004) and replaces the resource within the design graph. If all of these checks
have been made without a successful match, then the entity does not directly reference any entity
in the WKG by name or sequence.

EXTERNAL REPLACEMENTS The ideal outcome is that each entity within a design maps to a
canonical entity within the WKG. However, it is impossible to encode each entity due to an in-
calculable number of potential genetic parts. Therefore, cases may occur when no matches occur.
Therefore, because an entity does not exist within the WKG, this does not mean there is not a
virtual analogue. An analogue may exist on external databases not contained within the WKG.
Figure 15 displays the three potential match cases similar to identifying on the WKG but using
external datasets, which are explained below.

External canonical entity - The entity already references an accessible external resource. Fig-
ure 15 A displays when the entity within the design graph references an actual resource. In this
case, no changes are made.

External canonical name - The entity resource does not resolve to an accessible external re-
source but has the same name as an external resource. Figure 15 B displays when the name (en-

172

Canonical entity

B

Canonical name

C

Direct sequence

Syonym of
canonical entity

2 Results

Action Color Edge Color Node Color

@ Match synonym ' Promoter

@ Replace e RBS
Synonym

Design graph

https://synbiohub.org/public/igem/BBa_B0064/1

Weighted knowledge graph

https://synbiohub.org/public/igem/BBa_B0064/1

https://synbiohub.org/public/igem/Al1/1

Properties

https://synbiohub.programmingbiology.org/
public/Cello_Parts/A1/1

Name: Al——]

https://synbiohub.org/public/igem/Tet_promoter/1

Properties

https://synbiohub.programmingbiology.org/
public/Cello_Parts/pTet/1

Properties

Name: Tet_promoter
Sequence: TACTCCAC
(CGTTGGCTTTTTICCCT
ATCAGTGATAGAGATTG
ACATCCCTATCAGTGAT

[Name: pTet

Sequence: TACTCCAC
(CGTIGGCTTTTTICCCT
ATCAGTGATAGAGATIG|

AGAGATAATGAGCAC

https://synbiohub.programmingbiology.org/
public/Gokseleco1C1G 1T72/SrpR_sensor/ 1

ACATCCCTATCAGIGAT
AGAGATAATGAGCAC

SrpR_sensor

https://synbiohub.org/public/igem/
BBa_K1899004/1

Figure 14: The four cases can occur during WKG definitive canonical match and replacement. A) When
the design entity is identical to the canonical WKG entity. B) When the name of the design entity
is contained within a canonical WKG entity but does not refer directly to the same resource, i.c.,
the final path in both URIs is the same. C) When the sequence of the design entity directly
matches an entity within the WKG. D) When the design entity is captured as a synonym of a
canonical entity in the WKG. The design entity is replaced with the WKG entity in cases B, C

and

D.

173

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

coded within a node’s properties) matches an external entity’s suffix. In this case, the external

entity replaces the design graph entity.

External identical sequence - The entity has no name matches; instead, the sequence matches
an external resource. Figure 15 C displays when the sequence of a design entity (encoded within
the properties of a node) matches exactly an external entity. In this case, the external entity replaces

the design graph entity.

External entity

B

External name

C

Direct sequence

Action Color Node Color

@ Match Promoter
@S Reploce @B RBS
CDS

Design graph

https://synbiohub.org/public/igem/BBa_J133450/1

https://synbiohub.org/public/igem/SprR/1

Properties
Name: SropR——

https://synbiohub.org/public/igem/DntR/1

Properties
Name: DntR

Sequence: GIGAGGG
TGAGGTC

External databases
https://synbiohub.org/public/igem/BBa_J133450/1

https://synbiohub.programmingbiology.org/
public/Cello_Parts/SrpR/1

https://synbiohub.org/public/igem/BBa_1723131/1

Properties

Name: BBa_[723131
Sequence: GTGAGGCG
IGAGGIC

Figure 15: The three cases can occur when searching for direct external matches and replacements. A)
When the design entity directly references a real external resource. B) When the name of the
design entity is contained within an external entity but does not refer directly to the same re-
source. C) When the sequence of the design entity directly matches an external resource.

POTENTIAL REPLACEMENTS

Despite searching both the WKG and external resources for canon-

ical versions of entities, the case may still occur where no match is made because no absolute evi-
dence can be found, likely because the URT s a purely local term and does not route to an available
resource. In this case, potential replacements can be explored. These are replacements in which
some evidence of a relationship exists, but it is not absolute, such as in the case of a direct sequence
match. Figure 16 displays the three potential match cases, which are explained below. With a fully
automated approach, it is unlikely to be integrated (see semi-automated enhancements for further
discussion) because it is highly likely to introduce errors in the design. For example, if the sequence
is not a direct match, the function may not be the same and may break the design somehow.

Partial sequence matching - A common approach to finding related entities is via sequence
alignment algorithms to measure similarity. The scores of partial matches here are based on se-
quence similarity, where a higher score equates to a more similar primary structure. Figure 16
A displays a case where the sequence of the design entity partially matches two entities from the

174

2 Results

WXKG. In this case, the highest score is taken. However, it is not always the case that the entity
with the highest score (or any entity) is genuinely the canonical version.

Fuzzy string matching - Names of entities can often be conceptually identical but syntac-
tically different. For example, if there is a spelling mistake, extra information or even lower or
upper case differences, the entities are syntactically different despite conceptually referring to the
same entity. While fuzzy string matching can help alleviate this issue, it is a massive challenge
within computational approaches (such as enhancing designs) because it is unclear when entities
become conceptually different relative to syntactic changes. This simple approach implements
fuzzy string name matches for cases where entity names are similar but not identical. While this
is not an infallible solution, no other quickly deployable processes that focus on the language
within synthetic biology, such as part names (see future work), are available. Therefore, the score
is based on the Levenshtein distance, the minimum number of single-character edits required to
change one word into another. Figure 16 B displays an interesting occurrence where the design
and WKG entities appear identical. However, the URI does not resolve to a valid resource due to
asmall spelling mistake (i is used instead of 1, which looks identical when upper case). In this case,
the incorrect entity is replaced with the canonical version.

Metadata matching - Another case is when matches occur within an entity’s metadata. Even
when a direct match is found within metadata, without context, it is unclear if the match refers to
the containing entity. For example, within the IGEM part: BBa_C0012, the written information
states, "Lacl binds to the pLac regulator BBa_R0010". Humans can understand this information,
but it is challenging to understand context computationally because it is impossible to account
for all the possible combinations in which information can be written. Therefore, taking the code
"BBa_R0010" as synonymous with BBa_C0012 is incorrect and thus why matching within meta-
data are only taken as potential replacements (see future work). Due to limitations, direct matches
within written text metadata are taken as a potential replacement. Therefore, metadata matches
are based on fuzzy string scores over the description sentence. Figure 16 C displays the occurrence
where the design entity’s name is contained within the description of an external entity. Despite a
direct string match within the description, the score is relatively low because neighbouring words
are also considered. In this case, the external entity replaces the design entity. Once all entities
have been considered potentially replaced (providing a replacement is found), the current AND
gate network can be represented within Figure 17, which is identical to Figure 13. However, each
entity is now labelled with the canonical URISs either from the WKG or via an external resource.

TRANSFERRING KNOWLEDGE

So far, the design contains a set of physical entities denoting genetic parts, which refers to virtual
analogues within several existing datasets. However, this process aims to provide a standard frame-
work to introduce functional information, namely interaction data. Therefore, the first step to
introduce new data is to transfer any information from the WKG into the design directly. Extract-
ing interaction data from the WKG is simple, providing that the physical entities exist within both
networks. An assumption is made here that if an entity is contained within the design network, it
is valid and canonical. However, this does not ensure that an entity that should be within the net-
work to satisfy defining an interaction is present, i.e. none-genetic elements that may play a role
in an interaction which can not be defined within a Genbank file. Furthermore, this assumption

175

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

Partial Sequence:

Fuzzy name

Metadata

A

B

C

Action Color

Edge Color Node Color

@l Vatch synonym Promoter Synonym

@S Replace e RBS Bl Terminator
CDS

Design graph Weighted knowledge graph

https://synbiohub.org/public/igem/
Tac_promoter/1

Properties

Name: Tac_promoter
Sequence: AACGATG
GTTGGCIGTGITGACAA
TTATTCATCGGCICGTA
TAATGAGTIGGAATTGT

GAGCGCTCACAATT

Properties
Name: PhIF
https://synbiohub.org/public/igem/PhlIF/1

https://synbiohub.org/public/igem/L3S3P22/1

Properties

e

75

https://synbiohub.org/public/igem/BBa_M31370/1

Properties

Name: BBa_M31370

CTCGIATAATGIGIGG
AATTGTGAGCGGATAA
CAATTTICACACA
https://synbiohub.programmingbiology.org/
public/Cello_Parts/pTac/1

Properties

Name: pTac
Sequence: AACGATCG|
TTGGCIGIGTIGACAA
TTAATCATCGGCTCGTA
e S[TAATGIGIGGAATIGTG
AGCGCTICACAATT

https://synbiohub.programmingbiology.org/
public/Cello_Parts/PhiF/1

Properties
Name: PhiF

\

https://synbiohub.org/public/igem/
BBa_K1725040/1

https://synbiohub.org/public/igem/BBa_J107113/1

Properties

Name: L3S3P22

\

Name: BBa_I723131
Description: L3S3P22
terminator

Figure 16: The three cases can occur when searching for potential replacements. Because matches are not
absolute, matches are scored with a metric based on the match type. A) When the design entity
partially matches the sequence of two other entities. The match score is based on sequence sim-
ilarity; the highest score is replaced in this case. B) When the name of the design entity fuzzily
matches an entity from the WKG. In this case, the match is a synonym of another node, so the
canonical node is swapped. The score is based on the fuzzy string match score. Note that the
names appear identical; however, one contains the character 1 and the other I. C) When the name
of the design entity is contained within the metadata of an external entity. The score is based on
the closeness of the two strings (in this case, the surrounding words are also accounted for).

176

plet

BBa_J107115 .

BBa_J107113

BBa_J133450

BBa_E0030

BBa_K1725040

BM3R1

SrpR
B3

2 Results

pTac Node Color
0 Promoter
‘ @ RBS
PSR CDS

@m Terminator

PBM3R1
BBa_K1899004

BBa_B0O064

BBa_1723131

Al

Figure 17: The canonical version of the AND logic gate. Each part refers to an actual resource that can
be accessed within the WKG or external database. Node labels are truncated URIs for a more
comprehensible visualisation. No edges exist because no relational information is added during

canonicalisation.

177

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

of canonical entities does not extend towards interactions. Identifying a specific resource that ref-
erences a specific interaction is often impossible because the exact interaction and combination
of participants will unlikely be defined within existing datasets. Figure 18 shows how matches are
made between the design and WKG, and data is transferred into the network. The process is sim-
ple: find matches of physical entities denoted by nodes within the design graph and the WKG. In
this case, a match on the pTet and BBa_K1899004 promoters is found between the design graph
and WKG. Here, the network will transfer all known and relevant functional information into
the network. Because the WKG contains irrelevant information to be inserted into a design, such
as synonyms, the whole subnetwork is not merged. Instead, the interaction subgraph is projected
from the WKG and merged. Two minor considerations must be met. Firstly, interaction partici-
pants must also be transferred if not present within the design graph. For example, with Figure 18,
the original design does not encode proteins and other non-genetic elements, which are incorpo-
rated. Secondly, if the design already contains a semantically and structurally identical interaction,
the WKG interaction is not added. The interaction does not have to be referentially identical be-
cause, as discussed, it is highly uncommon for interactions to be encoded within datasets. It is
even less common for inter-designed references of the same interaction. A conceptual interaction
match is made by checking that the participants (physical entities involved) are equal and how they
interact, i.c., the labels on the edges are identical (see methods for an extended explanation). At
the end of this transfer, 21 new interactions are added, as displayed when the design graph is visu-
alised within Figure 19, where each interaction within the network references a virtual analogue.
This process displays the power of having data encoded semantically, structurally and primarily
referentially because no complex and potentially stochastic methods are required to reason within
and between datasets. However, all information extracted so far from the WKG is agnostic of the
design, meaning that the information is not specific to the features of the design, such as the struc-
tural positioning of genetic elements. Context-dependent information is not encoded within the
WKG because it is highly coupled to a specific design, meaning it would be useless outside its con-
text. The network representation (figure 19) shows the effects of missing contextual interactions,
where several independent components are present, each defining a regulatory system. With a
complete network, these should be connected based on the design composed from a positional
perspective.

CONTEXT DEPENDANT EXPANSION Integrating and expanding existing datasets into the WKG
creates a dataset of design-agnostic information, which means that no information that depends
on the context of a specific design is contained. For example, position-dependent regulation where
the effects of genetic parts (such as genes, promoters, enhancers, and other regulatory elements)
may rely on their position relative to other parts within the genome. Context-dependent infor-
mation is not captured within the WKG for this exact reason; it may be the case that the specific
makeup of a design does not apply to any other design in existence, and therefore, the requirement
to encode every potential combination is impossible. The only exception to this rule is in the case
of functional modules, where the overall function may depend on the module’s context, for ex-
ample, the relative position of transcription factors. Context-dependent information is essential
to build a more complete design network. As seen in Figure 19, the current representation of the
design is incomplete; it consists of several small components and some individual nodes with no
edges. This section explores methods to derive context-specific information based on the existing

178

2 Results

Node Color Edge Color
0 Promoter s Protfein repressor W activator
e RBS B Repression Bl repressed MM activated
CDS s Degradation @ reactant
mmm Terminator f@Em Binds) s femplate
Small Molecule Sl Protein Production mmmm product
= Complex W Activation
: Design Graph Tt o it Weighted Knowledge Graph
BBa_J107115 pTac
BBa_J107113 PSR
TefR TerR
pTet ﬂ i
BBa_J133450 PBM3R1
BBa_E0030 BBa_K1899004
aTc-TetR aTc
BBa_K1725040 BBa_B0044 BBa_K1899004
BM3R1 BBa_I723131 "
PhIF
SrpR Al
BBa_K 1725040

Figure 18: The process to transfer interaction data (in this case, the TetR and PhlF regulatory system) into
the design graph. The match is made via the pTet and BBa_K1899004 nodes. Left - The design
graph without any edges between nodes. Right - The interaction information known for these
parts is encoded within the WKG. Once the match is made, these subgraphs can be merged into
the design graph.

179

Chapter S: Enbancing data access and designs by leveraging the weighted knowledge graph

Node Color Edge Color
BBa_K1725040 | Promoter repressor
BBa_J107113 BBa_J133450 BBa_J107115 BBa_E0030 s RBS Bl repressed
CDS | reactant
B3 Al BBG1723131 BBa_BO0G4 s Terminator s template
Small Molecule @B product
m Complex W activator
SrpR BMI3R1 mmm Protein e activated
BRI B Repression
e Degradation
@ Binds
@l Protfein Production
I Activation
BM3R1 TetR
SPR Lacl
BBa_K1899004
BBa_E0030
PSR VpBM3I?1

PTG

YFP

IPTG-Lacl

- Tet
pTac ple

Figure 19: A network has been created that incorporates new interaction data extracted from the WKG and
integrated into the AND logic gate design. The newly added nodes in this network represent the
interactions between various physical entities. Correspondingly, the newly introduced edges in
the network depict how these physical entities participate in these interactions.

180

2 Results

information encoded within the design. Positional information (the location of genetic parts on
the sequence) is always encoded within design information, even with semi or not-structured for-
mats such as Genbank. Some interactions can be inferred purely based on the relative position of
agenetic part on the primary sequence. Therefore, an addition to the functional side of the design
is to encode the interaction between upstream promoters of CDS, which initiate their translation.

Positional interactions can be inferred through context-dependent expansion, as illustrated in
Figure 20. Firstly, a network is projected based on the original design’s relative positioning of
genetic entities (see methods for the projection of the positional network). This network is tra-
versed starting from each promoter, and interactions are added as the traversal encounters a CDS.
When a terminator is reached, the traversal concludes. Figure 20 illustrates the absolute posi-
tions of entities with nucleotide positions and demonstrates the initiation of BBa_E0040 by the
BBa_k189904 promoter, thereby connecting the PhIF regulatory system to BBa_E0040 protein
production. Four additional connections are not depicted in this context for comprehension.
However, they are applied, resulting in the final design represented in Figure 20, which demon-
strates the integration of regulatory mechanisms from the WKG into a single-component network
based on interactions derived from promoter-CDS positions.

MODULARISING GROUPS Functional modules that are interchangeable components that per-
form specific aggregate biological functions were established within Chapter 4. These modules are
often standardised units of genetic information or biological parts that can be combined and re-
combined to create novel biological systems or organisms with desired functionalities[9]. Within
the context of enhancement, modules can be added with designs in two different states: a design
with interactions and one without interactions present. However, because the previous enhance-
ment would add all of the interactions within the modules, the assumption is that the design
either already contains interactions or has recently applied the previous enhancement. Module
matches are made in the design graph using a much simpler approach than establishing the mod-
ules in Chapter 4. Because the specific implementations of these modules are now known, the
computational cost and complexity of subgraph matching are not required. If the design graph is
canonicalised relative to WKG, it is as simple as checking for matches between the two graphs on
individual nodes.

Figure 21 displays how modules are introduced via direct node matching between the design
graph and WKG. Each node within a module (this check requires that each node has the same
edges) is searched for within the design graph, and when all nodes of a module are found, the
module is integrated into the design graph. The example given is the BBa_K1899004 regula-
tory system, where each match is made between design and WKG between the physical entities
(BBa_K1899004, PhIF and BBa_K1725040) and the interactions (GeneticProduction, Repres-
sion and Degradation). However, as discussed, it must be noted that the interactions are not
checked for referential matches because the reality of standards is that the URIs seldom refer to
the same virtual analogue (see methods). The module is integrated into the design graph when
all matches are made. This figure presents the module nodes within the design graph as boxes
around the constituent parts for easier comprehension, where, in reality, the module node and
edges would be transferred. One consideration that must be made, however, is to identify what
parts of the module must be added to the design graph and which are already present. For ex-
ample, even if a design is canonical relative to the WKG, some entities may not be present in the

181

Chapter S: Enbancing data access and designs by leveraging the weighted knowledge graph

Lacl

IPTG

| Lacl
E plac IPTG-Lacl pTet

SrpR BBa_J107113 BBa_J133450 BBa_J107115

BM3R1
BM3R1 SrpR
:DBMSR PSR
BBa_K1725040
PhIF
BBa_K1899004
BBa_E0030

:
X3

TetR Node Color Edge Color
[Promoter repressor
s RBS @ repressed

CDS @W reactant
| Terminator s femplate
50 Small Molecule s product
mmm Complex m activator
@ Protein W activated
s Repression
s Degradation
@ Binds
@R Profein Production
W Activation

B3 Al BBa_1723131 BBa_BO0&4

Context dependant expansion

3113 . 74

2393 plet
Y BBa E0030 BB BO0G <86
SrpR
2375, 83
728
. BBa_K1899004
BBa_J133450 ’
2309,
761
.BBO_JIO7H5
@
2259
"832

BBa_K1725040

BBa_[723131 .
>
Al
. BM3R1

+ PBM3RI
1622 BBa J107113 410
PSIPR]

M <
15656 1474

1656”

Figure 20: Network containing new interaction data extracted from the WKG and inserted into the AND
logic gate design. Also, the network is connected using the positions of genetic parts and the
functional impact of their positioning. The context-dependent expansion displays the projec-
tion of the relative positions of genetic parts within the AND gate with one example, which

attaches two regulatory systems.

182

2 Results

design graph, such as protein, non-genetic elements or even nucleotide-based parts, which could
be unknown to the designer.

A question may be raised about why these modules cannot be added when the regulatory sys-
tems are introduced in Figure 19. While this is true, in this case, with low-level modules introduced
into a system which only contains interactions taken from the WKG, these modules could have
been inferred. However, different cases would make this impossible. Firstly, if the design that is
being enhanced already contains the interactions, then the interaction enhancer discussed would
never be applied to the design. Also, if the design already has a partial set of interactions, the con-
stituent interactions of these modules would not be fully transferred. To expound on these points,
the modules discussed in this section have been context-independent and relatively small. How-
ever, in the future, modules could be more extensive and context-dependent and even contain
modules within themselves (a module of modules). Therefore, the low-level interaction enhancer
would not be concerned with these modules. In short, if all interactions from modules are trans-
ferred, the module could also be defined in the design simultaneously. However, this is not done
because this cannot be guaranteed, and enhancements are designed to be isolated changes to the
network (see Genetta for an implementation of an enhancer pipeline).

2.3 GENETTA

Genetta is a tool established within Chapter 4 and contains an implementation of the WKG.
Genetta also implements the mechanisms to realise the two use cases discussed within this chap-
ter, namely a query and enhancer (both automatic and semi-automatic). The software application
is accessible from the repository at Genetta-Github and an online instance can be sampled here:
Genetta-instance. Genetta implements a query system which interfaces with the WKG given hu-
man inputs. An example is displayed in Figure 22 and has several features. Firstly, it enables the
type of query to be specified, as described in figure 22 A. For example, the query can be tailored
to search for functional modules, usage, derivatives, metadata or sequences. The next feature is
the ability to visualise the results (Figure 22 B). Each returned entity can be visualised using the
techniques established within Chapter 6 to gain insight into the primary data, its neighbours,
and the context of the information in the larger dataset. The results will be ranked based on the
weights within the network (Figure 22 C). For example, information with higher confidence will
be placed higher. The query system can take the user’s feedback (Figure 22 D) for each result pro-
vided. The confidence and other weights are updated based on the relationship of the input query
with the result being examined. Genetta implements an enhancer system which can enhance de-
signs. All enhancements have been presented in this section as atomic changes made directly to a
design document. However, with information within a dataset which is not guaranteed, incorrect
information may be passed into a design. The implementation of the enhancer within Genetta
can run automated or semi-automated. With the automated version, a design will be provided,
and each enhancement within Genetta will perform operations on the network and add, remove
or modify a specific type of information (seen in all examples so far). The semi-automated version
is similar, but after each enhancer identifies improvements, Genetta will ask the user to validate
them before they are added. A semi-automated approach also provides a second benefit, the abil-
ity to gauge user feedback, which is impossible with the automated approach. Figure 23 displays
a sample of the enhancements described within the enhancements use case, which introduced a

183

https://github.com/BiocomputationLab/genetta-frontend,
http://138.4.92.244

Chapter S: Enbancing data access and designs by leveraging the weighted knowledge graph

BM3R1

pPBM3R1

pTac-Regulation
Lacl
PTG
Lacl
~—_
pTac . IPTG-Lacl
BM3R1 PSIPR-
Repression

BBa_K1899004-
Repression

BBa_K1899004

BBa_K1725040

YFP

BBa_E0030

pTet-Regulation

Node Color
[Promoter
. RBS
CDS
S Terminator
Small Molecule
| Complex
I Protein
N Repression
S Degradation

_ m Binds

E Protein Production
I Activation
Il Module
Edge Color
repressor
I repressed
I reactant
S template
s product
[activator
I activated
@ hasinteraction

... Action Color

TetR
ale
I ale-TetR
SR
SrpR
PSR
BBa_K1899004-Repression
BBai_K18990

mm Matfch
[Addition

Figure 21: Network containing AND gate with all interaction data. These interactions are modularised
relative to their regulatory function by matching each entity within a WKG module with an el-
ement in the network. An example shows the BBa_K1899004 regulatory system in the design
graph and WKG. When all matches (purple lines) in the WKG are satisfied, the module is en-
coded within the design graph (yellow line).

184

A

2 Results

Derivative ~ BBa_E0030
Returns the canonical version of a genetic part
Confidence Entity Description Load Feedback
ng https://synbiohub.org/publicigem/BBa_K411202/1 BBa_K411202 B\M\ \EHE\
99 https://synbiohub.programmingbiology.org/public/Cello_Parts/YFP/1 YEP ‘m‘ ‘EHE‘
99 hitps://synbiohub.org/public/igen/BBa_K606043/1 BBa_K606043 ‘M‘ ‘EHE‘
» 80 https://synbiohub.org/public/igem/BBa_J15103/1 BBa_J15103 ‘m‘ ‘EHE‘
99 hitps://synbiohub.org/public/igem/BBa_K411201/1 BBa_K411201 \m\ \EHE\
91 hitps://synbiohub.org/publicigem/BBa_K1676031/1 BBa_K1676031 | visuaise | \EHE\
91 https://synbiohub.org/publicigem/BBa_K1676029/1 BBa K1676029 | visuaise | \EHE\
91 https://synbiohub.org/public/igem/BBa_K1676030/1 BBa_K1676030 ‘m‘ ‘EHE‘
o1 hitps://synbiohub.org/public/igem/BBa_K1676035/1 BBa_K1676035 ‘m‘ ‘EHE‘
91 hitps://synbiohub.org/public/igem/BBa_K1676033/1 BBa_K1676033 ‘M‘ ‘EHE‘
91 hitps://synbiohub.org/publicigem/BBa_K1676014/1 BBa_K1676014 | visuaise | ‘EHE‘
91 hitps://synbiohub.org/public/igem/BBa_K1676015/1 BBa_K1676015 ‘m‘ ‘EHE‘
91 https://synbiohub.org/public/igem/BBa_K1676028/1 BBa_K1676028 ‘m‘ ‘EHE‘
91 https://synbiohub.org/public/igem/BBa_K1676032/1 BBa_K1676032 ‘m‘ ‘EHE‘

D

Figure 22: Genetta’s query system. Takes written information and results information from the WKG. A)
The user can change the type of information to search. B) The results and neighbours can be
visualised to understand the context. C) An aggregated score ranks information depending on
the search type. D) Feedback can be given on which weights are updated in the WKG.

185

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

set of interactions from the WKG on the AND gate example. Here, a simple box-check system
offers both the WKG and contextual enhancements. If an enhancement is accepted, it is added to
the design using the same methods the enhancer uses in the automatic approach. However, the
enabled enhancements will also have their confidence values increased. It must also be noted that
some enhancers do not directly use the WKG to identify improvements. For example, Figure 23
displays the positional enhancement discussed previously and doesn’t use the WKG because the
information is derived from a contextual aspect of the design. In this case, feedback would not
be applied to the WKG because it would be meaningless. Genetta can export the network in the

Potential Changes
Node Color Edge Color
Promoter e template
Truthinteractions CDs EEm product
. Profein synonym
e s Degradation repressor
Score Description Enable Emm Profein Production repressed
5 PhIF_protein_interaction - Participants: PhIF_protein-product, BBa_K1725040-template bl Synonym
Fa @ Repression
5 PhIF_pPhIF_repression - Participants: PhiF_protein-repressor, BBa_K1899004-repressed i PHIF-profein
5 TetR_pTet_repression - Participants: TetR_protein-repressor, pTet-repressed BBa_K1899004
L) -) - BBa_K1725040 1 <5)
5 SrpR_protein_interaction - Participants: SrpR_protein-product, SrpR-template u] , 4 .g’
) 5 5
5 Lacl_pTac_repression - Participants: Lacl_protein-repressor, pTac-repressed 1 Ph\F's 1
5 BM3R1_protein_interaction - Participants: BM3R1_protein-product, BM3R1-template *"\\
5 SrpR_pSrpR_repression - Participants: SrpR_protein-repressor, pSrpR-repressed PhIF pPRIF
5 BM3R1_pBM3R1_repression - Participants: BM3R1_protein-repressor, pBM3R1-repressed
Positional
Score Description Enable
100 pTet Activates SrpR a]
100 pTac Activates BM3R1
100 PSrpR Activates BBa_K1725040
100 PBMB3R1 Activates BBa_K1725040 C
100 BBa_K1899004 Activates BBa_E0030 o

Figure 23: Genetta provides a user with a set of potential enhancements to a design. If the user enables the
integration of an enhancement, the confidence values are updated within the WKG.

SBOL format for usage within different tools when all enhancements have been made to a design.
Exporting is achieved by making all changes applied to the network to the design, which is stored
locally within the tool.

3 METHODS

3.1 Fuzzy STRING MATCHING

Despite the attempt to formalise all data within a dataset into a structured and standardised knowl-
edge graph, this is infeasible due to the inability to formalise written text consistently and the large
domain of potential names for entities. The challenge of formalising written ad hoc information
into a formal structure is a complex one that has yet to be solved[136] and is outside this work’s
scope. However, several times during this chapter, the requirement to match names and small sen-
tences which may not match directly is required when querying the WKG. Text indexes are data

186

3 Methods

structures used in database systems to accelerate the retrieval of text-based data. These indexes
enable efficient searching, matching, and retrieval of textual content within large collections of
documents or datasets. Fuzzy string matching, within the context of text indexes, refers to find-
ing approximate or similar matches to a given string or query in a text-based index. Unlike exact
string matching, which seeks exact matches, fuzzy string matching considers variations, errors, and
similarities in the compared strings. The Levenshtein distance algorithm, crucial in fuzzy string
matching, is a mathematical formula to quantify the difference between two strings. It calculates
this difference by determining the minimum number of single-character edits required to change
one string into another. These edits include insertions, deletions, and substitutions of characters.
For example, to transform the string "apple” into "aple,” one deletion is required (removing the
second ’p’), giving a Levenshtein distance of 1. Similarly, changing "test” to "tent” involves a single
substitution (replacing ’s’ with ’n’), also resulting in a Levenshtein distance of 1. The algorithm
systematically counts these operations to give a clear numerical value representing the distance, or
difference, between any two given strings.

3.2 TRAVERSING MODULES

During both use cases, modules returned results or enhanced designs. However, within the WKG,
a module is captured via a single node and "hasInteraction” edges. This structure was decided
because all other information, such as inputs, outputs and constituent parts, can be derived from
this. Therefore, a traversal must take place to identify the component interactions and physical
entities. Figure 24 displays how the subgraph of a module can be derived:

* Pink: The module is found to be given input (the LacI node) via a reverse traversal via the
"hasInteraction” edge.

* Green: A traversal to all interactions via the "hasInteraction” edges is performed.

* Red: Another traversal is performed from each interaction using the interaction edges (de-
pendent on the interaction node type) to all the participating physical entities.

The outcome is a subgraph containing all interactions and physical entities.

3.3 PROJECTING POSITIONAL INFORMATION

During the expansion process, context-dependent interactions were added to the design to unify
the interaction network within the design. However, to derive these interactions, a positional
network was projected. The resultis asimple network consisting of nodes (genetic parts) and edges
(the relative positions of the parts to one another). This positional information is also described
when the design is first converted into a network. Figure 25 displays a subgraph of the AND
gate used during the enhancement section and how the relative position is encoded within the
topology. The "Position" nodes always contain two edges: the position of a specific entity and
the position of the next "Position" on the sequence. When encoded in this way, the contextual
interactions can be derived.

187

Chapter S: Enbancing data access and designs by leveraging the weighted knowledge graph

Query input:lacl Node Color Edge Color
@ Identify Module [gggnoter L] represso(r:i
.) @B represse
s Complex s template
@m Protein @ product
= I;?péession @m hasinteraction
@ Binds — .
@B Protein Production p— ac'gva:o(rj
e Module activate
@ Activation
Lacl
IPTG

\

IPTG_Lacl

>

pLac-regulation

Figure 24: Example of how module subgraphs are derived from the module node. Pink: Given the input
(LacI), walks the network to find modules the entities that are implicitly contained. Green:
walks the network from the module to find all interactions that make up the module. Red:
finds all entities which participate in the interaction.

188

3 Methods

Node Color Edge Color
g Promoter @ positionOf

@ RBS s next
CDS
s Terminator
BBa_E0030 PTef @ Position
B3 . BBa_BO064
SrpR

BBa_K1899004

BBa_J133450

BBa_J107115
plac

BBa_K1725040
BBa_I723131

Al

BM3R1

PBM3RI BBa_J107113
DSOR

Figure 25: Example of how module subgraphs are derived from the module node. Pink: Given the input
(LacI), walks the network to find modules the entities that are implicitly contained. Green: walks
the network from the module to find all interactions that make up the module. Red: finds all

entities which participate in the interaction.

189

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

4 DI1SCUSSION

During this work, two use cases explore how the WKG established within Chapter 4 can be used
to reduce the issues with accessing and using data from uncertain data sources without time and
resource-heavy manual analysis. This section will discuss a review of the two use cases and the
performance of the WKG in these two applications, along with some opportunities for future
work.

4] THE WEIGHTED KNOWLEDGE GRAPH AS AN INTERFACE TO KNOWLEDGE

During the introduction, a review of existing databases and their systems to provide access to in-
formation was reviewed. The outcome was databases of mixed quality and approaches. For exam-
ple, Reactome[174] provides excellent access to information by providing features to handle query
inputs and present results from a user-centric perspective, implements a structured network ap-
proach which can explore the context around the search query and ranks the results based on sev-
eral factors to reduce manual filtering. However, some other databases act as thin barriers between
the user and the data, often requiring the user to interpret the data and its quality. From this, it
was established that database-derived information, though valuable, demands critical assessment
due to varied reliability, necessitating users to rigorously validate, cross-reference, and ensure data
quality before integration, a process consuming time and resources whether approached manually
or computationally.

The primary advantage of the approach described in this section is that the search method can
be specified depending on what aspect of the dataset is being interrogated. This approach con-
trasts with many previously reviewed systems in which a user may be able to specify the datatype,
but this will not change the search method. For example, the user can search for specific datatypes
such as Interactions with some of the databases reviewed within the introduction. However, the
method to search will be the same as any other data type. The method used to search within the
WKG depends on the type of information that is being searched. For example, searching for mod-
ules will yield a subgraph of that module rather than solely the module node, whereas searching
for derivatives of parts will return a list of nodes because the method employed is difterent.

This query process also has some other key advantages. Firstly, the quality of results can be
quantified, enabling them to be ranked relative to one another. The ability to promote certain
records above others can reduce the requirement of manual filtering, which is very common when
using lower-quality systems. Another benefitis introducing context to the results due to the struc-
tured network approach. A network approach enables the results to be presented by displaying
the individual result, its neighbours, and the relationships between them. For example, a user
may be interested in seeing how a node denoting a physical entity interacts with other physical
entities or identifying other commonly used parts. With other systems, this information may be
written in metadata or, if encoded structurally, deriving it from mining the context. In a network
approach, the context is encoded within the topology and can be traversed. The final main benefit
of this querying is that feedback can be presented, thereby updating the WKG where applicable.
Feedback is critical for the success of a system such as the WKG because, without it, the weights
and features encoded when the network was built will remain static, removing one of the main
reasons to implement a network approach: their dynamic nature. As discussed, the ability to up-

190

4 Discussion

date the network over time with the expertise of practitioners will create a more trustworthy and
robust system, reducing wasted time and redundant effort.

4.2 AUTOMATING PROCESSES USING THE WEIGHTED KNOWLEDGE GRAPH

Also, during the introduction, a proposal highlighting the functional side of design was estab-
lished. This functional approach was an extension of a discussion beginning in Chapter 4. It pro-
posed how synthetic biology emphasises engineering intricate logic in living systems, integrating
functional modules over sequence-focused approaches to simplify complexity yet acknowledging
the scarcity of encoded functional information within design datasets, posing challenges in cap-
turing and leveraging functional details in genetic designs. Extending this, a review of the number
of information standards like SBOL can capture within related databases (chapter 4) and in exist-
ing designs was extremely low. Two main reasons for this were highlighted: most SBOL-encoded
designs and datasets are direct translations of information encoded within older formats such as
Genbank, which cannot capture this information, and there is a lack of tooling to introduce this
information retroactively.

From this, the second use case displayed how the recently established WKG can enhance exist-
ing designs automatically, removing users’ requirement to define this information manually. The
use case covered several "enhancers”, which were methods to introduce new information into the
design mainly by using the information encoded within the WKG. The main advantage of this
enhancement system combined with the WKG is that once the design graph is canonical relative
to the WKG, enhancements which extract information from it are a trivial integration because the
nodes and edges in both graphs are comparable. Therefore, the focus can be on the data and cre-
ating increasingly valuable enhancers as opposed to requiring complex and potentially stochastic
integration techniques.

This enhancement process also has some other key advantages. Firstly, with the confidence
metric encoded across the WKG, the quality of individual enhancements to a design can be quan-
tified. For example, a rule could specify that only enhancements over a specific confidence value
can be accepted into the design. Another benefit is that each enhancement is atomic, determinis-
tic, observable and isolated. Furthermore, the enhancement is transparent and can be quantified
regarding its impact on the network. This approach contrasts with a "black-box" approach where
the system’s inner workings are unknown, such as some machine learning approaches such as deep
neural networks[188] and random forests[189]. The WKG’s features combined provide a much
higher control over the system and can benefit from human manipulation of the information.
Genetta implements each of the "enhancers” discussed within this section, which are sequentially
applied to the design. Furthermore, a feature of Genetta is the ability to define and apply new
enhancers easily because each method is applied in isolation.

4.3 FUTURE WORK

GENERATING DESIGNS FROM ABSTRACT SPECIFICATIONS

One use case explored was taking existing designs and introducing some commonly missing in-
formation. Another similar use case could be applied using features of the WKG, which is to
automatically generate new designs given a set of abstract requirements from a user. These re-

191

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

quirements could be from an abstract perspective, such as defining inputs and outputs or some
conceptual procedure that must occur within the system to specific implementation details, such
as specific genetic parts that must be used. The network structure would enable a pathfinding
approach in which traversals are performed within the WKG, and each resultant path constitutes
a design. Within these traversals, they must fulfil the requirements, such as containing specific
genetic parts, or the start and end nodes must indicate specific inputs and output. Furthermore,
the quality of a potential design could be based on the aggregated confidence score to provide a
potential accuracy metric. As discussed, the WKG consists of design-agnostic information, and
therefore, these designs will not be stored persistently within it but instead generated at a time of
need.

INTRODUCING DIFFERENT DATATYPES

Fundamentally, the weighted knowledge graph and the enhancement application are not coupled
specifically to functional information. While a focus here, functional information is only one
of the many different datatypes rarely encoded within designs. The knowledge graph could be
adapted to different datatypes as discussed within Chapter 4 - future work. Therefore, different
design aspects could be enhanced. For example, a design could be enhanced from a structural hi-
erarchy approach. Structural entities (organisation of biological components based on physical
levels of complexity) could be contained within the WKG based on usage within previously en-
countered designs. The hierarchy could be added to the design based on matches between itself
and the WKG.

WKG as A UNIFIER FOR DBTL

Within synthetic biology, the Design, Build, Test, and Learn cycle is an effort to design, imple-
ment, and perform workflows in which future iterations learn from previous executions. How-
ever, a persistent challenge is how the distantly related information from each stage is captured
and integrated. A true solution would require connections between design, protocol, experimen-
tal and performance information. The WKG could be used as a unifier (centralised source) of all of
this information and to make connections between it. As discussed, networks are inherently able
to connect information provided that a mapping exists between them, but the WKG could use
some of its designed features to enhance these capabilities. For example, modularising subgraphs
within the DBTL could provide different perspectives of a DBTL workflow where the informa-
tion could be relayed at different levels of detail. One level of detail may capture iterations as an
individual node, which could be used to analyse the workflow as changes to designs after the con-
clusion of each cycle or another to represent the mapping of information, providing insights into
the flow of information between stages of a cycle. Even within functional information, the scope
could be expanded. For example, the modules introduced into the design were relatively low-level
(abstract regulatory systems, for example). However, as the process to identify modules during
WXKG expansion discussed in Chapter 4 future work was implemented, these can be further used
to enhance designs from a hierarchical perspective.

192

4 Discussion

PARSING USER-AMBIGUOUS INFORMATION

Assignificantissue was identified while establishing the WKG and the superior querying technique
sections. This problem is the difficulty of handling written ambiguous information, i.e., being
able to transfer written information into a format structure. Specifically, this section established
it as an issue within the query approach where a user inputs written information to be processed
before querying the system. With the current simple close string matching approach established,
two issues can occur. Either the user inputs an input that is just dissimilar enough that the match-
ing algorithm does not pick up on a match, or the input is similar to many entities and matches
with many spurious entities within the WKG. Both of these are caused by the approach’s inability
to account for context. Therefore, this challenge must be overcome for a query system comparable
to established general-purpose search engines. Generative language models[190], which can struc-
ture written text by understanding the contextual relationships between words, sentences, and
paragraphs, could be a significant breakthrough to this ongoing challenge within standardisation
efforts in general.

4.4 CONCLUSION

Chapter 4 established a weighted knowledge graph (WKG) with integration and expansion tech-
niques to keep a structured and rich dataset with meta characteristics and weight to provide more
significant insights into the data. This section identified several issues with data access within
synthetic biology and, more specifically, open-source databases with partial or no standardisa-
tion. These issues include poor-quality information, a narrow domain of knowledge, substan-
dard query systems and lack of context. Therefore, in this section, two examples demonstrate its
utility from both human and computational perspectives, aiming to address some of these issues.
The first use case leveraged the WKG integrated with enriched metadata to create superior
querying methodologies. This approach encompassed several essential methods, including incor-
porating confidence metrics to promote higher-quality information, harnessing provenance data
to identify analogous or identical entities, accommodating abstract query requirements, and con-
tinually integrating user feedback mechanisms to update datasets and refine result accuracy. Users
can benefit substantially from the WKG’s capabilities through this multifaceted approach. This
initiative provides great potential for increasing search accuracy and speed within synthetic biol-
ogy databases. Leveraging enriched metadata and a robust knowledge graph framework provides
more sophisticated querying techniques. This use case exemplifies the transformative potential
of integrating advanced knowledge graphs and metadata enrichment strategies in synthetic bi-
ology databases and across various domains. One limitation of this section is the challenge of
comprehending natural language, i.e. the query inputs. Automating the formalisation of natural
language presents several challenges. Firstly, natural language is inherently ambiguous; the same
text can convey different meanings in different contexts. To accurately resolve this ambiguity, a
system must possess an in-depth understanding of language and the capability to contextualise
and infer meaning. Additionally, the significance of words or phrases often shifts depending on
their contextual usage, making it difficult to represent this information accurately in a formalised
system. In this research, addressing these complexities was not the primary focus. Instead, where
written information was required, it was processed using established, simpler methods such as
fuzzy string matching, bypassing the more intricate aspects of natural language formalisation.

193

Chapter 5: Enbancing data access and designs by leveraging the weighted knowledge graph

Integrating additional information beyond sequence data is pivotal in advancing design method-
ologies. Beyond the raw sequence, functional data serves as a crucial layer, offering a higher level
of abstraction that streamlines the construction of designs. Nevertheless, a prominent absence of
this critical information prevails within numerous databases and individual design frameworks.
This absence is primarily rooted in standardised designs from formats incapable of accommodat-
ing such specific details. Therefore, The second use case utilised the WKG, showcasing compu-
tational approaches to enhance existing designs. This approach aimed to supplement and incor-
porate the absent information, which conventionally remains unencoded within design datasets.
Central to this approach is the concept of canonicity within the WKG, facilitating the normalisa-
tion of entities within the design network. This normalisation enables seamless data transfer and
exchange, introducing functional information into pre-existing designs. As previously discussed,
the pivotal focus lies in rectifying the persistent absence of such crucial data, yielding various ben-
efits derived from explicit and comprehensive descriptions[27]. The main result is introducing a
system that can remove significant entry barriers to implementing standards. These barriers typi-
cally encompass the time-consuming manual definition of intricate information and the inherent
complexity of the underlying data structures necessary for defining and incorporating this crit-
ical data. This system addresses the current limitations and provides an approach toward more
streamlined and enriched design methodologies, positioning them for greater adaptability and ef-
ficacy within diverse applications. The primary limitation of the current enhancement system lies
in its limited scope, particularly in the types and complexity of the modules it can introduce. For
instance, the system can add basic modules, but there is potential for incorporating more substan-
tial and intricate modules. Future developments should broaden the system’s scope to encompass
the integration of these larger and more complex modules. Such an expansion would facilitate the
creation of more sophisticated genetic designs. This enhancement would entail diversifying the
range of modules in the knowledge graph and improving the algorithms responsible for matching
and integrating these modules into existing designs. Enhancing the system this way would likely
lead to a more automated and streamlined design process capable of handling more complex de-
signs.

194

CHAPTER 6: DYNAMIC NETWORKS TO PRESENT
MULTIPLE DESIGN ASPECTS AND SCALE LEVELS
OF COMPLEXITY.

PUBLICATIONS ARISING FROM THIS THESIS

* Matthew Crowther, Anil Wipat, and Angel Goni-Moreno. “A Network Approach to Genetic Cir-
cuit Designs”. ACS Synthetic Biology 11:9, 2022. PMID: 36044984, pp. 3058-3066. DOI: 10.
1021 /acssynbio.2c00255. eprint: https://doi.org/10.1021/acssynbio.2c00255. URL: https:

//doi.org/10.1021/acssynbio.2c00255

SOFTWARE ARISING FROM THIS CHAPTER

* Genetta

1 INTRODUCTION

Designs are often the first step in each iteration of a synthetic biology project, and an implemen-
tation can be challenging without a well-conceived design and a solid understanding of the design
and its constraints. Mathematical and computational tools[191], automation methods[83, 192],
knowledge-based systems[136, 187] and repositories[133] can assist circuit design to minimise the
iterations within the design-build-test-learn research cycle. These processes generate a diverse set
of information beyond DNA sequences, such as functional modules, abstraction hierarchies, im-
plementation instructions, dynamical predictions and validation strategies. This multivariate na-
ture of the data, which encodes much more than sequence data, cannot be represented entirely as
a sequence-level representation. Furthermore, complex and large genetic designs are infeasible to
conceptualise at the sequence level simply due to the inability to comprehend a complex system
at a high level of detail. Therefore, there is a need for a more generic approach that can visualise
arbitrary datatypes with the ability to expand and retract detail.

1.1 EXISTING SPECIFICATION METHODS

Various tools and methods for representing and visualising genetic designs are available in diverse
forms. This discussion will provide a brief overview of several existing approaches and tools, high-
lighting their advantages, shortcomings, and missing features. In this review, we will use the ex-
isting design of an AND gate (comprising two inverters connected to a NOR gate) created by
Nielsen and colleagues[19] to illustrate the visualisation techniques.

195

http://dx.doi.org/10.1021/acssynbio.2c00255
http://dx.doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
https://github.com/BiocomputationLab/genetta-frontend

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

DESIGN REPRESENTATION WITH PLASMID MAPS

The most common visualisation of genetic-centric data is the plasmid map, where the sequence
is circularly represented relative to its position on the plasmid, and genetic annotations are dis-
played sequentially. Figure 1 illustrates how the abstract AND gate may appear within a plasmid
map, with parts or annotations depicted as coloured regions. Benchling[111] is a widely used tool
for sequence-focused editing, offering both linear and circular plasmid representations. Many
databases and services implement a plasmid map representation, including AddGene[193], Bench-
ling[111], NCBI[194], and Seva vector[195]. Most existing tools and databases offer several for-
mats to export data, but exporting Genbank or European Nucleotide Archive (ENA) files is over-
whelmingly the most popular.

Advantages This representation implicitly displays all the information required to compre-
hend the design at a genetic level because all features can be derived from the sequence data. It is
also the most comfortable method for most users, as it is the most commonly expressed represen-
tation of a design.

Disadvantages Sequence visualisation cannot encode interactions and becomes impractical
when designs become larger and more complex. For example, in a system with numerous interac-
tions between thousands of entities, deciphering the function would be almost impossible. Ad-
ditionally, the fundamental principle of modularity in synthetic biology cannot be adequately
represented with this approach. Therefore, while visualising the plasmid map helps make mi-
nor sequence-level modifications, it becomes incompatible with the dynamic and core princi-
ples of synthetic biology. Furthermore, representing design features at other layers of molecu-
lar biology, such as transcription, translation, protein modification, protein interactions, path-
ways, metabolism, multi-cellular systems, phenotype, and physiology, is also unfeasible using this
method.

DESIGN REPRESENTATION USING STANDARDISED PART GLYPHS

Another common visualisation method is abstracting sequence data into glyphs representing ge-
netic parts positioned linearly based on the relative position of the part, adding non-genetic enti-
ties such as proteins, regulatory chemicals, and interactions. Figure 2 displays this concept where
each genetic part is represented as an icon on a linear sequence and may include abstract interac-
tions illustrated by lines between glyphs. Many tools implement this specification, such as IGEM
parts brown2007igem, SBOL Canvas [110] and VisBol [109]. Many glyph representations are
backed by the SBOL visual standard[132], which refers to graphical symbols and glyphs used to
represent genetic and biological parts and their interactions. SBOL Visual provides a standardised
way to visually represent DNA components, such as genes, promoters, terminators, and other
genetic elements, using easily understandable symbols that can map directly to the SBOL data
standard.

Advantages The mapping of genetic parts to glyphs is a well-known practice within the syn-
thetic biology community. Consequently, like other established methods, it demands relatively
little adaptation from the broader community. Also, the glyph approach abstracts all SBOL classes
and necessitates no prior knowledge of the SBOL data model, software, or language. These sim-
plified representations can be derived from a standard data model. This mapping to a standard
allows for the creation of formal representations from a more informal mechanism, eliminating

196

1 Introduction

Dralll,Btgl

BseYI

BsiET
MNmeAIIT, Taul

Bpul@l
Bpulel

BmrI
BtsI
Btsal
Eael
BpmI
Tatl BstBI,+2

BeoDI
BsmAlL +2

Acul
Btgl
Neol

NmeAIIT Styl

Faul
Pfol
Faul

AND

+1 NspI

+1 2889 bp Btsl
Acul Btsal
BtgZl

BstEII
Begl
Eael ApalI
BmrT
BseRT
ApalLl
BsiWI
HineII,Hpal
Asel

Agel
Nhel,BmtI, AvrIL, Styl

Dral AloI, Nhel,BmtI, Aval,BsoBT
BspEI BmgBI
Dralll

Figure 1: An example of a Plasmid Map which represents the AND[19] gate construct. The coloured lines

represent sequence annotations (Promoter or CDS, for example) with restriction sites displayed
on the outer edge. The visualisation was created using Benchling.

197

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

unnecessary complexity while retaining the advantages of the standard data. Moreover, the glyphs
approach can scale detail down by abstracting proteins and regulatory chemicals participating in
an interaction.

Disadvantages Understanding large and complex designs can remain challenging with this vi-
sualisation, mainly when they encode numerous interactions, making it difficult to discern the in-
tended function. Also, this visual representation is tied to specific data types, including sequence,
parts, proteins, chemicals, complexes, and interactions, making it incapable of representing di-
verse data types. For instance, hierarchical information, experimental data, or metadata cannot
be effectively visualised. Furthermore, static representations have limitations in scaling the level
of detail. For instance, glyphs are inadequate for representing increasingly abstract systems and
their interactions.

TetR Lacl

707

pTet SrpR pTac BM3R1 pSrpRpBM3R1 PhIF pPhIF YFP

Figure 2: Visualisation where genetic parts, proteins and chemicals are represented as glyphs. Interactions
between entities, whether physical or conceptual, are represented via lines. This AND gate [19]
design consists of two inverters flanking a NOR gate resulting in an AND gate design.

DESIGN REPRESENTATION USING LOGIC GATE SYMBOLS

The logic gate visualisation represents a design most abstractly. It visualises modules of a design
as boolean logic gates used within electronics design. Figure 3 displays three abstract logic gates,
which constitute an implementation of an AND gate. The figure shows the same circuit as figure
2 but uses a different mechanism at a different level of abstraction.

Advantages This approach abstracts a significant portion of the implementation details, con-
centrating primarily on conveying intent. This simplification enables the comprehension of very
complex designs. The analogy employed in synthetic biology, likening genetic circuits to func-
tional modules, directly parallels their basis in electronic logic gates and circuits. Disadvantages
While eftectively conveying the intended design, this representation lacks specificity regarding im-
plementation details. For example, Figure 3 does not provide insights into how the inverters or
NOR gates are implemented. Furthermore, it primarily visualises a narrow domain of design in-
formation, limiting its ability to represent interactions that resemble analogue systems and cannot
be quantified within the confines of boolean logic. For example, complex processes like inter-
nal degradation or those using evolutionary mechanisms are challenging to visualise within this
framework. The three visualisation methods discussed, while each unique with specific advan-
tages and disadvantages, all share a fundamental flaw, the lack of dynamism and, therefore, the
inability to be tailored to focus on the interests of a specific individual. Furthermore, no individ-
ual tool can present a scaling level of detail as each offers a narrow range or contains too much
detail, which is problematic when the scale of a genetic design’s size and complexity can vary con-

siderably.

198

1 Introduction

Figure 3: Visualisation mirroring the electronic logic gate symbols. A more abstract representation based
on boolean interactions between entities. This representation consists of two inverters flanking a

NOR gate resulting in an AND gate design [19].

CHALLENGES AND OPPORTUNITIES IN REPRESENTING MULTI-DIMENSIONAL GENETIC
DESIGN DATA

As genetic circuits become increasingly sophisticated, the size and complexity of data about their
designs increase. The data captured goes beyond genetic sequences alone; information about cir-
cuit modularity and functional details improves comprehension, performance analysis, and de-
sign automation techniques. For example, within figure 4, a single design document can hold mul-
tiple datatypes. However, new data types expose new challenges around the accessibility, visualisa-
tion and usability of design data (and metadata). As discussed, understanding multi-dimensional
design data with a single representation is challenging.

Data standards such as SBOL contain the mechanisms for users to explicitly capture multiple
datatypes, which allows the design to be presented in various perspectives depending on an in-
dividual’s requirements. For example, a design containing sequence, functional, structural, meta
and experimental data can be represented from the perspective of each of these data types. There-
fore, as potential datatypes encoded within a genetic design expand, the opportunity to target the
representation to the user’s requirements becomes feasible. However, this benefit of standard data
has not been exploited; instead, each tool focuses on a specific datatype.

SPECIALISED REPRESENTATION

Design documents may encode multiple instances of many types of information. However, each
can be expressed at different levels of abstraction or further specialised. For example, in figure 4,

199

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

the datatypes discussed in the previous section can be expanded to present several more specialised
representations. These representations could be specialised subsets explicitly defined within the
data, such as genetic parts or where new information is inferred from existing where it is not ex-
pressly described in the case of abstract interaction networks. Further specialisation expands the
issues of current methods to represent and visualise genetic designs because the tools only repre-
sent a single data type and cannot scale or specialise in detail. It is unfeasible to create a new suite
of mechanisms to represent arbitrary levels of detail that may occur as more data is encoded within
designs.

NETWORK VISUALISATION

Network visualisation presents networks of connected entities where nodes represent data points,
and edges are relationships between data points[196]. A significant advantage of a network ap-
proach over the discussed visualisation techniques is the ability to represent multiple aspects of
the original data and scale abstraction, which is especially attractive when visualising complex sys-
tems. Data is often captured in a multi-dimensional format, where many types of information
are aggregated, and relationships between data can represent different relationship types. For ex-
ample, social networks often contain multiple data types, such as friends, locations and interests,
as seen in figure 5. When represented as a network, the graph is called multipartite. However,
when networks encode many data types, or the size of the underlying dataset is large, visualising
comprehensible multipartite graphs becomes infeasible. Several reasons make complex multivari-
ant networks challenging to comprehend. For example, the significance of connections between
nodes is lost if the intent behind visualisation is not established. Also, as humans, we cannot
comprehend the entire dataset simultaneously when the size of the information passes a thresh-
old. Figure 6 displays an extended example of a social network where many interconnected data
points are visualised. The network is a randomly generated network to display a larger dataset. The
nodes represent people, cities and activities, with edges representing their relationships. The net-
work is the complete dataset visualised in its native structure. Making visual inferences around this
dataset, such as potential friend groups within the network, is challenging because other datatypes
can obscure this information. Furthermore, even this network is negligible when considering real
social networks, which could contain billions of nodes, further displaying the infeasibility of raw
network visualisation of complex multivariate data.

However, unlike the representation methods discussed previously, networks can represent ar-
bitrary datatypes. Therefore, the network can be modified and tailored for a more suitable rep-
resentation. As displayed, new representations can be created from the original dataset, which
produces a more comprehensive visualisation by focusing on a single datatype and reducing size.
For example, figure 7 displays a version of figure 6 that only shows the relationship between peo-
ple. The result is a disconnected graph of components. An inference could be made that each
component represents a potential friend group within the dataset, which is more hidden within
the previous figure as the activities and locations of people mask this.

200

1 Introduction

Specialisations

Assembly

Plan Description

Datatypes

Creation
Date

Sequenced
Data

Regulatory

Abstract
Modules

Protein

Protein SEIEDEE

00
ol0

Figure 4: Conceptualisation of a potential SBOL document that explicitly encodes experimental, meta-
data, structural and interaction data. Furthermore, each data type also contains several more
specialised types of data such as sequence, genetic parts or the structural hierarchy in the case
of structural data.

201

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

Junior Fisher Worcester Node COIOI'
S Person
0 City
Activity

Edge Color

Knows
0 Lives
 Likes

Carlo Hanpa

Live music

Figure 5: Example trivial social network, a multipartite graph containing multiple data of data (people,
places and activities), connected by various relationship types (knows, likes and lives).

202

1 Introduction

Public speaking N Od e CO I or

i Person
[City

Activity
Edge Color

Knows
mmLives
iLikes

People watching

Nola Newman
Spending time with family

Lewis Osborne

Peterhorough

Dulce Nichgléon
Tatiana Wilkinson

itus Brady Amari Douglas

Katrina Macias

Sﬂﬂr\ Sanchi
Sl Diamand Kidin Colton Blair

riled

tt o
istening to miusic ester

Dariglle Rogerson

Camping
Michaela Anderson Carl Baraia: Juikelishely

Mara Mathe Degb ¢ Stevense

Odin Mercer

Payter] Chen

Cason Jenkins

any Combs Davon|Guerrero ginia Houston

Alina Matdonald
Elliot Powers

Lawrenke Dudley
we Imusic Greys:

mmy Gardner

Christian Hughe

Kenyon Cefvantes

Amirah $tafford
Marc Hughes

aven Lutz_

Jamarion’ Waters
Naort\EEgkfing sporting events

ueia

Dakota Elfig=" ~ lLeL
" Marisol Lester
Keyla Mcmahon Cress Jousnj Hendricks. Gaiyn Wit
Arielle Kemp
Leah Hood
Gaing to the ballel/ dance performances
Alison Ross pending time with friends
— ‘Coventr
=N fighd

Abdiel Mart

Maximo Christensen N I Al
o cas
Sydnee Peters . &

l, Suarez Traveling
3 ~ sunderfan!
ching movies ™ (=,

imohg Swanson

ayami Benjamin

Quings How

Alonso Méody
Audreg|Suatez
winchester Cali Sheffon 4
Playing videg-Games .«: : Nathan/amald
Makenna Romero Loreldi Baird

Figure 6: Example of a social network that encodes relationships between people, cities where they live,
and their interests. n=136, e=96. The network diagram is a randomly generated visualisation that

illustrates a complete dataset.

203

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

Rosa Bartiatt Brycen Savage Rachael Jaris
... Node Color
R [Person
Jamarian Watars
. Edge Color
Kola Stevenson K
Ardonis Hafpar nows
Jurice Fishar GCadence Barajas
Titus Brady
Luctana Harper
Carlo Hanna Baxima Christensen
Haven Lutz Valeria Wi
Karina Macias Maggie Huber faven u
Sehastian Sngh
Marc Hughes Ariel Suaraz Leah Hood Levi Delgado Christian Hughes Kenyon Cervanies
Gavyn Wiliams Jovani Hendricks Cagon Jenking
Aryana Enghsh
Coltan Manning Narah Harris
Greysan Sima
Alyson Watare
Darielie Serran
A ° . Hola Nawman Paylan Chan
Michales Jacobson Jazlene Schultz
W Dougies . Lowis Qapard Virginia Houston
Abdiel Martitez Ayden Tumer
Davon Guarraro Diamond Kigin
Aumiitah Stattord Dukee Nicholson August Rowe Mathan Amold .
Cristian Goodman
Michaela Anderson
Jermaing Watsan Tiffany Comtes Jair Martin
Arielie Karp Quiney Howatd Tristen Fowler .
Alina Macdonaid Cali Shalton Naomi Cobb Kimora Swanson Karsyn Braun
Alison Ross
Keagan Guberfez Auey Suare: Marisol Laster Daikea Kans T

Figure 7: Interaction network encoding relationships between people only. Here, the network is discon-

nected, and many isolated components exist. n=73, e=45

204

1 Introduction

1.2 NETWORK ANALYSIS AND REPRESENTATION SYSTEMS AND SYNTHETIC
BIOLOGY

Network visualisation is a foundational tool within systems biology[197]. It provides insights
into various interaction networks, including gene regulatory networks, protein-protein interac-
tion networks, and metabolic networks. Furthermore, network visualisation enables the explo-
ration of the structure and function of complex biological systems and aids in discovering key
regulatory mechanisms, disease markers, and potential therapeutic targets[198]. In this context,
biological data is typically portrayed as a network comprising nodes (representing biological enti-
ties such as genes, proteins, or metabolites) and edges (representing interactions such as physical
interactions, regulatory connections, and metabolic reactions)[199]. This representation allows
for understanding how different elements within a biological system communicate and influence
one another. Furthermore, systems biology often deals with dynamic data, such as how inter-
actions change over time. Network visualisation accommodates this by enabling the depiction
of temporal changes in interactions, providing insights into the dynamic aspects of biological
processes[200]. Network visualisation also seamlessly integrates with omics data, such as tran-
scriptomics, proteomics, and metabolomics. This integration enables experimental data to be
superimposed onto the network, enriching the visualisation further[201]. In summary, network
visualisation is a versatile tool in systems biology, oftering insight into the complex interactions
that underlie biological systems with the ability to depict dynamic changes and overlay different
data types. Because network analysis and visualisation are already established in systems biology,
the question may be posed as to why these mechanisms cannot be reused within synthetic biology.
While it is true that some overlap will occur, several reasons make the analysis, representation and
visualisation of a design different from systems biology. Within systems biology, networks mainly
describe interaction names such as gene regulatory, protein-protein interaction, metabolic and
co-expression networks. Within synthetic biology, these interaction networks are only one area
of potential representation because of the different information captured, such as structural hi-
erarchy, functional modules, and build protocols, which can all be represented as a network and
then visualised. Secondly, within systems biology, the networks are designed to convey the actual
or predicted systems. In contrast, when representing a design in synthetic biology, the system por-
trayed is a desired outcome, as it encapsulates the intended function. Consequently, even when
interaction-based networks are employed, the representations may diverge, reflecting the distinc-
tive approach of synthetic biology, emphasising presenting information from a developmental
perspective, making it readily adaptable for modifications.

1.3 Aims AND OBJECTIVES

This research explores some aspects of visualising genetic designs within synthetic biology. Dur-
ing the review of existing visualisation techniques, the represented data is often closely coupled
with the representation and visualisation mechanisms. For example, the glyph approach cannot
be used to describe any other type of data encoded within a genetic design because each glyph and
the linear structure are inherent to the representation of the parts. Therefore, while several meth-
ods exist that can represent specific data types, users must use various tools to inspect multiple
data types. Furthermore, the level of detail is often fixed because it is inherent to the underlying

205

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

representation. Here, we explore how networks can be used to represent genetic designs. The
focus is tailoring the resultant visualisation to the user’s data types and complexity requirements.

A1Ms

This study investigates the common aspects of genetic designs that users are interested in to iden-
tify patterns and preferences within these designs. Additionally, the research explores method-
ologies for generating network representations directly from existing data sources, focusing on
assessing the efficiency and accuracy of these projection methods. A key objective is to evaluate
the scalability of detail in network representations. Another aim is to associate discrete values
with specific projections to establish the optimal level of detail representation based on varying
data values. The final aim of this study is to analyse strategies for reducing complexity in visual
representations. This aim will be achieved by mapping complex data to simpler visual features to
enhance comprehensibility while preserving essential information.

OBJECTIVES

The main objective is establishing procedures for projecting diverse views within a design dataset,
highlighting specific, desired data features to ensure a comprehensive dataset representation. Also,
to develop techniques that adjust the complexity level of these representations, allowing for a fine-
tuned approach that caters to varying degrees of detail as per user-defined requirements. Another
key objective is to introduce mechanisms that mitigate the continuous complexity inherent in the
dataset, effectively streamlining and simplifying representations to enhance user comprehension.
Additionally, the study seeks to develop integrated methods that collectively provide a complete
representation of complex genetic designs, ensuring that the portrayal of the data is both holistic

and thorough.

2 REsSULTS

Here, we present a method to transform circuit designs into networks and showecase its potential
to enhance the utility of design data. Since networks are dynamic structures[202], initial graphs
can be interactively shaped into sub-networks of relevant information based on requirements such
as the hierarchy of biological parts or interactions between entities. A significant advantage of a
network approach is the ability to scale abstraction, providing an automatic sliding level of detail
that further tailors the visualisation to a given situation. Additionally, several visual changes can
be applied, such as colouring or clustering nodes based on types (e.g., genes or promoters), re-
sulting in easier comprehension from a user perspective. This approach allows circuit designs to
be coupled to other networks, such as metabolic pathways or implementation protocols captured
in graph-like formats. Here, we discuss each step, from representing design data as networks to
representing specific design features and visualising a comprehensible network.

REPRESENTING DESIGNS AS NETWORKS

e first stage is to take a design file and represent this information as a network. As discussed in
The first stage is to take a design file and rep t this informat twork. As d d
previous chapters, a network is composed of nodes, individual points or collections of data and

206

2 Results

edges, connections between points of data. Synthetic biology design data can be conceptualised
as this, for example, interactions between genetic and non-genetic parts, structural usage, or meta-
data relating to some entity within a design. The NOR circuit is frequently built since assembling
these gates can achieve any logic function. We used the design of the NOR logic gate built by Tam-
sir and colleagues as an example. This gate outputs 1 (i.e., target gene expressed) if both inputs are
0 and outputs O (i.e., target gene not expressed) in any other case. Figure 8 displays the circuit and
glyph representations for context. As discussed and addressed in Chapters 4 and 5, the quality and
variance of the input data are fundamental to meaningful representation. Expressive visualisation
is not feasible without rich data, irrespective of the visualisation method. Here, we used a high-
quality design of the NOR logic gate in SBOL format, which captur Figure 9 shows the results

Ara

alc

o— YFP

B \ ' I
C T T
oBAD plTet BBa J23117

Figure 8: The logic gate and glyph representation of the NOR logic gate. A) The logic gate with inputs
(arabinose; dIc) and output (YFP). B) The glyph representation displays two promoters (pBAD
and pTet) regulating a CDS, which represses the expression of a second CDS.

of building a network with all data and metadata in the original design file. The complete design
graph is a multipartite containing numerous data types, such as parts, interactions, sequences and
metadata (e.g. entity role, free text descriptions or data type). Before building this graph, design

207

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

data was converted into an intermediate data structure that is the same regardless of input format;
the resulting graphs are compatible and not format-dependent (see Methods).

V-

z .
A .

y

Figure 9: The NOR logic gate when directly represented as a network. The network is unreadable but com-
putationally tractable. Note that the figure omits labels due to the size and cluttered visualisation.

ProJECTING NETWORKS

As discussed (and represented within Figure 9), complex multipartite graphs, when visualised, are
highly challenging to comprehend for several reasons.

* A human cannot simultaneously understand each connection’s meaning and, therefore,
cannot form a more abstract understanding of the whole system.

208

2 Results

* Visualisations are presented within a finite space (usually a computer screen). Past a given
threshold of nodes and edges, the real estate will be exhausted, and sections of the informa-

tion will be hidden.

* The underlying data structure may not be understandable by the user because the model
generally aims to capture data. For example, the SBOL data model encodes interactions
as nodes, with participation nodes denoting the conceptual instances of physical entities
within an interaction. However, humans would more likely conceptualise interactions of
edges between two nodes indicating physical entities.

Projections are specific views of the data which focus on a more compact representation, more
likely of a commonly understood representation that a user can easily conceptualise. Thus, the
data’s projections are often visualised to produce meaningful visualisation instead of the entire
network. Projections can be achieved by aggregating, removing or inferring new nodes and edges
and usually, the final network representation will be monopartite or bipartite. A simple projec-
tion produces the network of Figure 10, an example of how to query the initial structure. It is a
specific sub-graph that focuses on physical elements only (e.g., DNA and molecular entities) and
omits metadata details according to user requirements. By presenting a single perspective, overall
cognition is increased. However, projections alone do not ensure a comprehensible visualisation
and, in some cases, may obfuscate necessary information. For example, in retaking Figure 10, two
key issues are present. Firstly, the roles of nodes (such as genetic roles) are abstracted. Secondly,
the nodes are presented randomly, meaning that nodes often overlap, resulting in a confusing
visualisation.

VisuAL ADDITIONS

As discussed, visualising a design in network form does not inherently ensure a comprehensible
representation. Transformations to the represented data must simplify the graph and tailor the
data before visualisation. However, nodes and edges encode many continuous and categorical
values, which, in some cases, are inherent to the design and cannot be removed or modified—for
example, genetic roles, names or interaction types. Therefore, we will present another set of purely
visual modifications which can be applied to reduce perceived complexity further. These visual
additions aim to remove clutter, such as textual labels, replace them with a visual medium, or
manipulate existing visual features.

GRAPH INFORMATION (COoLOR) The nodes and edges which encode information from the de-
sign may contain properties, which are attributes of the entity. One choice to represent this in-
formation is adding another node with an edge connecting the property to the entity, which is
impractical for non-trivial designs as the number of nodes could grow exponentially, resulting in
a verbose graph which is less comprehensible. Colour can be used to represent any categorical
information (biological or network features)—for example, the type of interaction or the cluster-
ing coefficient to display the connectedness of a node. Mapping categorical attributes to colour
can increase detail without increasing perceived complexity. However, the number of categories
should be no more than 26 due to the finite number of colours a human can differentiate[203].

209

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

BBa_B0033

BBa_B0015

BBa 123117
- tetR

Clp

PBad\
atc_tetr
arabinose madule

eIowitz_RBS\'\ ~
Ara_arac_—
ﬂﬁ: pTet

tetR_p

t

I_
araC ATC —

Figure 10: A network is generated from the same design where only the physical elements (i.e. DNA and
molecular entities described) are shown. The nodes represent physical entities (DNA, proteins,
chemicals and complexes), while the edges represent that the entities are constituent entities of

the NOR gate.

210

2 Results

Different means can be used for quantitive data, such as size. In Figure 11, the genetic roles are
represented as distinct colours to differentiate them.

SPATIAL LAYOUT AND POSITIONING (LAYouT) If many nodes with many connections are vi-
sualised, edges will inevitably overlap within a finite canvas. While this factor is unavoidable with
data of non-trivial size, the layout of nodes relative to one another, when visualised, can help to
reduce the number of overlaps and, therefore, make the final visualisation more evident. Layouts
can be taken a step further by matching the type of layout with the data projected. However, we
will discuss this further with design projections. Algorithms to calculate layout can be broadly
broken into three categories. Geometric layouts organise the graph into common geometric
shapes and are usually the simplest. Hierarchical layouts contain the graph in a hierarchical
structure based on the direction of edges. Force-directed layouts are a collection of algorithms
which emulate a physical approach where nodes are positioned based on a simulated repelling or
attracting of one another, which can be based on a given predicate such as node degree. For this
example, in Figure 11, the concentric layout organises the nodes into a concentric circle based on a
given metric, in this case, the relationship to the NOR gate. However, in the upcoming use cases,
more complex layouts are displayed.

NETWORK FEATURES (S1ZE) Quantitative data is more challenging to visualise because it can-
not be categorised into manageable groups, which are then mapped to a visual medium. Instead,
scalable visual changes must be employed, for example, by changing the size of nodes and edges
based on some predicate. It is not represented in Figure 11 due to the simplicity; size examples can
be seen within the user cases discussed next. In what follows, we explore three use cases which
convey several complex features of network designs that showcase the benefits (and limitations)
of having data captured by dynamic structures. The focus is on a specific aspect of the data and
thus reduces complexity.

UsE Case: HIERARCHICAL TREES

Here, hierarchical trees refer to structuring genetic parts into conceptual entities, which are used
to constitute more abstract conceptual entities. For example, Figure 12 displays the analogy of
biological systems where smaller components are structured into higher-order components that
tulfil a specific function. When implemented, this analogy produces a hierarchical tree because the
physical parts are leaves, and the roots and branches are abstract systems and modules. Hierarchi-
cally representing genetic parts is a core principle to promote engineering in biology [204] because
this provides structure to increasingly complex circuits. A ¢ree data structure is a fundamental net-
work topology commonly used and represents data hierarchically and atan arbitrary depth. Figure
13 shows the hierarchical network corresponding to the digitalizer genetic circuit[183]. Its hier-
archical tree (Figure 13B) displays the conceptual modules into which single parts are structured.
This information is often particular for each circuit- even similar or identical circuits- since it fol-
lows the author’s conceptual framework. In this case, the top module represents the whole device
and is broken down into four modules, which are, in turn, leading either to the final parts (e.g.,
promoters Pm and P_A1/04S) or to smaller sub-modules (e.g., GFP cassette). Specific structural
details that refer to implementation strategies are essential in those genetic circuits whose goal is

211

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

e A Node Color

DNA

CDS

Promoter

RBS
Terminator
Protein

Small Molecule
Complex

atc-tetr tetR

arabinose

BBa_J23117

elowitz_RB

BBa_B0033

_B0015

Figure 11: NOR gate visualised with a concentric layout and colour denoting genetic type or role within
the design.

212

2 Results

System

Device

Parts

DNA

Figure 12: A potential abstraction hierarchy defining high-order cellular systems constituting several
boolean devices of genetic parts defined within DNA fragments.

213

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

to let users modify parts of them. The digitalizer circuit is an example where the user is meant to
switch the reporter gene to their gene of choice. By browsing through the network in Figure 13B,
the user can find a module where the reporter is included (named GFP cassette) and the hard-
coded procedure for cutting out the gene (restriction sites Nbel and EcoRI) without looking at
the genetic sequence of the design.

Hierarchical representations are formed by finding “parent-child” relationships (ownership la-
bels attached to edges to denote a node “owns” another node) encoded within semantic tags. The
graphs displayed in 13 biological roles are mapped to colour to encode information without an
increase in perceived complexity. Also, the pyramid shape of the nodes (layout) helps transmit
information concerning the hierarchical nature, with each level of the hierarchy decreasing in ab-
straction from the top-bottom. Finally, another small change is made with size, where the further
down the tree a specific node is, the smaller it becomes to convey further the hierarchal structure
of increasingly complex and abstract entities.

A SRN&) Node DNA
l l colour: CDS

@ RBS1 Pat/04s Terminator
' E Promoter
lacl msf-GFP D—m/cC
Pm RBS2 | Lacl T digitalizer cirouit
U/
B
Pacl Pm module Pa1,04s Module Spel
>
S Lacl cassette GFP cassette MCS SRNA cassette
[©]
2 Pm RBS T500 T1.TE Patsoas
s = = o o= c -
8 8222845 % g N 8 3
g s <= 28 £ o E s
S £ d 2

Figure 13: A hierarchical network of increasing abstraction, from modules to parts. A Glyph representa-
tion of the digitalizer [183] synthetic circuit. The circuit is based on two negative interactions
between the regulatory protein LacI and a small RNA. It offers the ability to plug and play any
gene of interest the user wants to digitalise—the reporter gfp gene is used for characterisation.
The goal of the digitalizer circuit is to minimise the leakage expression of a specific gene of in-
terest while maximising the full production. That is to say, to enlarge its dynamic range. B is
the hierarchical network, nodes represent biological and conceptual entities, i.e., nodes at the
bottom represent DNA parts, nodes at higher levels represent modules (the top node is the en-
tire circuit), and edges represent hierarchical direction. Circuit building details are highlighted
within the network, e.g. restriction sites or sequence to couple lac/ to msf-GFP.

2.1 Use CASE: INTERACTIONS NETWORKS

The information captured by designs can be broadly splitinto two groups (discounting metadata).
Firstly, constructional details, i.e., the DNA sequence and related data. Secondly, functional infor-

214

2 Results

mation, i.e., non-genetic elements and their relationships once built. While constructional details
are commonly communicated, functional elements are often less clear and can provide insight
that the former cannot offer. Therefore it is essential to complement sequence-based designs and
visualisations with regulatory information. Specific interaction networks can provide a higher-
level understanding by visualising regulatory proteins and abstracting relationships. For example,
the mechanisms that allow a regulator to bind its cognate promoter and repress a downstream
gene’s expression into another regulator can be abstracted into a simple network with two nodes
(one per regulatory protein) with an edge-denoting effect. While this network lacks structural in-
formation at the sequence level (e.g., implementation details), it maximises the functional aspect
of the circuit. Figure 14 displays the boolean logic circuit and interaction network for the 0x87
design described in "Genetic circuit design automation"[19], constituting several logic gates. The
interaction network displays all physical entities interacting with other entities as nodes and the
interactions between the entities as edges.

A ATC

IPTG Beitl

PhiF

Ara

B & V4 Node Color

CDs

pTet TelR Promoter
Protein
Small Molecule

HiylIR HiylIR Betl Betl Complex
Edge Color

Repression
Activation

Binding

Protein Production

pTac Lacl

PTG IPTG-Lacl AmiR AmiR YFP YEP

pBAD Arac

Ara Ara-AraC PhiIF PhlE

Figure 14: A) Boolean gene circuit 0x87. The circuit couples four NOR logic gates and one OR logic
gate (top diagram) and uses three molecular reagents, five regulatory proteins, five genes and ten
promoters (bottom diagram). B) Network representation of the 0x87 design, where physical
entities (nodes) and interactions (edges) are presented.

215

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

2.2 UsE CASE: SCALING COMPLEXITY

So far, we have discussed how multiple projections can be created from a genetic design. How-
ever, numerous potential projections may exist within a specific data type (or collection of data
types). For example, retake interaction networks where interactions between all entities explicitly
encoded within the dataset are projected. The ontology that a design implements can be used to
define data types for nodes and edges and can represent incrementally more abstract terms. There-
fore, that interaction projection is at a specific level of detail based on the information encoded
within the original data. However, the level of detail can be further modified to present a perspec-
tive which is not explicitly encoded within the original data. For example, an interaction network
may omit details to simplify a representation, increase details for a more in-depth view, or infer
new data from existing information. Here, we explore how projections can be further modified by
increasing or decreasing the level of detail to tailor a representation further. Interaction networks
provide a high-level metric with the potential to scale, and this view of the data has been chosen
to display dynamic abstraction.

The network in Figure 15A displays all molecular, genetic, element types and relational infor-
mation, i.e. an interaction network. An interaction network is generated by querying the data to
find nodes and edges with semantic labels denoting interactions and transforming the following
structure (See methods for a more in-depth description). Physical entity (node) -> interaction
(edge) -> physical entity (node) Until now, the process has been the same as explained within the
Use Case: Interactions Networks.

One example is to abstract all non-genetic elements (Figure 15B), limiting the information to
only the indirect effects of DNA-based features (e.g., promoters and genes) on one another. In
this case, relational information remains; for instance, when expressing, the coding sequence 272 C
represses the promoter node BBa_J23117. Therefore, the visualisation is simplified by abstract-
ing mechanistic details such as the production of regulatory proteins. The automatic level of
detail can be taken to a conclusion by displaying input and output elements for the whole system
((Figure 15C). The highest abstraction level allows for quick circuit performance communication
while abstracting all implementation details and internal workings. This over-simplification may
be excessive for a relatively simple design but could benefit more extensive and complex structures.
Scaling abstraction is achieved using transitive closure, i.c. the reachability matrix to reach node
n from node v. It estimates the costs of different paths across the network to merge nodes along a
path [205] (see methods for an expanded explanation). All graphs displayed in 15 biological roles
and conceptual processes (interaction types) are mapped to colour to encode information with-
out increasing perceived complexity. For example, two nodes: y/p (yellow) and YFP (red), are
connected by an edge denoting protein production (yellow). As the projection moves away from
the original data’s structure, calculating the value of edges is likely more challenging despite know-
ing an edge exists. In this case, the type of interaction is calculated by tracking how the regulatory
edges affect one another during the collapsing of a path (see methods for further explanation). Fi-
nally, the arrangement of the nodes (layout) helps transmit the flow of information. In this case,
data flows from inputs (upper nodes) to outputs (lower nodes).

216

2 Results

abstraction

B

C
aTc ,{BAD /, pTet Ara aTc
N
aTc-tetR araC cl-lva tetR YFP
AN S
\éB/BELJ%W 17
[

TetR

yip
Ara
elR o— YFP
alc
BBa_u23117
y Node cDs Edlge _ B Repression
0 colour: @ Promoter colour: e Activation
mm Protein @ Bind
‘ YEP #m Small molecule Protein production
mm Complex

Figure 15: Adjusting network abstraction levels using a NOR gate design [206] modelled in SBOL (see
methods). A. The NOR gate design is turned into a network with all molecular and genetic
elements (nodes); and interactions between entities (edges). B. Non-genetic elements, i.c., non-
DNA-based elements, are merged into the appropriate genetic elements. For instance, Ara and
Ara-araC are merged into the pBAD node. C. Maximum abstraction into input-output data.
The colour scheme is constant regardless of abstraction levels.

217

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

2.3 COMPARING DESIGNS

The requirement to compare multiple designs is common in iterative synthetic biology projects,
such as finding shared sub-systems between designs or tracking how a design has changed over
several iterations. However, current visualisation methods cannot represent differences and simi-
larities within multiple designs and often rely on manual identification and representation, such
as comparing designs visualised using the glyph approach. In the work described above, each net-
work maps to one design. However, a single network may encode multiple designs, which can
be used to identify similarities or differences between these designs. When multiple designs are
merged into a single network, nodes within both designs are combined, so connecting edges from
both designs will be present. It must be noted that for the unification of two designs, the labels of
conceptually equivalent nodes must be referentially equivalent. That is, they reference the same
resource. Otherwise, they will be considered different and will not be merged. We have discussed
these issues within Chapter 4, and here we will assume that all nodes contain the same labels when
conceptually identical. The ability to project networks and then apply a comparison makes net-
work comparisons even more powerful because it enables comparison with any data or level of
detail. Figure 16 displays the intersection (similarities) between two circuits where a protein inter-
action network is projected (Network with protein (nodes) and interaction (edges) representing
negative regulation) and only where interaction processes are utilised across both designs. The
process to generate the intersection of two graphs is simple: each edge from graph one is queried
in graph two, and if the edge is found, it is added to the intersection graph. The comparison could
also be applied to find differences within the design. Alternatively, node-only comparison where
connections between nodes are not considered only the elements, for example, with interaction
graphs, the discovery of cross-talk between systems when coupled. Graph comparison will be es-
pecially beneficial with designs of higher-order complexity or when comparing a consortium of
designs, i.e. when the manual inspection is not feasible due to scale.

2.4 B1I0ODESIGN BEYOND GENETIC DESIGNS

An advantage of a network approach is that data integration is easier when the underlying infor-
mation is represented as graphs with unified semantics. While this is useful when representing
designs, as many types of data constitute a design, this characteristic can excel in unifying more
disparate or loosely coupled data. We briefly cover two such elements, namely metabolic pathways
and experimental protocols, and discuss the potential of networks to provide a general framework
for biodesign efforts.

METABOLIC NETWORKS

Genetic circuits 7un inside a cellular host (except cell-free systems[207]), and the host context,
particularly its metabolism, impact circuit performance. Synthetic biology aims to enhance ge-
netic circuits by exploiting metabolic mechanisms that offer dynamics beyond the existing ge-
netic toolkits[33]. A question that needs to be answered regarding the design process is whether
metabolic systems can be merged into a genetic design[208]. To this end, we show in Figure 17
that the descriptions of a NOR logic gate and a metabolic pathway can dynamically interact if en-
coded into compatible data structures. Specifically, the NOR logic gate uses arabinose as input,

218

2 Results

Q TetR

AraC

Lacl

TetR

AraC

TetR

Lacl

HiylIR

Figure 16: The intersection of two protein networks. In this case, protein network refers to the abstrac-
tion of sequence and non-genetic nodes into the resultant proteins and how the presence of this
node affects the state of the design. A) Protein network representation of Boolean gene circuit
0x41[19]. B) Protein network representation of Boolean gene circuit 0xF6[19]. C) Intersection
(joint edges) of A and B protein networks.

219

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

which interacts with the same node of the arabinose degradation pathway. Having this informa-
tion within the same network allows for formalising the impact of metabolic dynamics on one of
the inputs of the target genetic circuit. Metabolic pathways are added by simply merging the new
data into the graph. However, ensure the data is encoded within the graph as nodes are not dupli-
cated and new edges are attached to old nodes. Unlike genetic designs, which describe a system’s
intent, metabolic pathways capture dynamics such as reaction rates. Within existing metabolic
networks, kinetic parameters or dynamic behaviours of metabolic reactions are encoded within
the nodes or edges of the graph. For example, consider a metabolic pathway involving the conver-
sion of substrate S to product P catalysed by enzyme E. Within the graph; nodes represent each
physical entity (S, P, and E) and an edge from S to P through E represents the catalytic reaction.
This edge stores dynamic information, such as the current reaction rate, which updates based
on substrate availability and enzyme activity. With values encoded within the edges, which may
change when information changes propagate through the network, visualisation methods must
be applied to address this information. Firstly, projections can be generated based on the current
values within the network. This approach enables the network to be compared in different states.
Furthermore, parameters could be set from a user perspective, and the visualisation could be up-
dated to highlight proposed feature changes in distant network regions. Also, the network layout
can be adjusted to emphasise pathways or make significant changes. For example, pathways with
higher activity could be more centrally located or displayed more prominently. Finally, edges can
change colour based on the reaction rate they represent. For example, a gradient from blue (low
activity) to red (high activity) could indicate the current reaction rate.

PROTOCOL VISUALISATION

The goal of all circuit designs is to be built and validated experimentally. However, formalising
implementation protocols into well-characterised steps and their representation in standard data
structures is still a significant challenge[209, 152, 179] that deserves more attention. Therefore, fi-
nally, we showrcase the use of networks for representing experimental protocols. Figure 18 shows
the network corresponding to the protocol for building and testing the NOR gate used as an ex-
ample. Here, we chose (from the many options available) to represent materials and methods as
nodes and information flow as edges. As in other examples, protocol graphs can also be adjusted
at different levels of abstraction. For instance, the assembly node (18) includes processes such as
restriction, purification and ligation—which are conveniently clustered to provide an overview
of the inputs (i.c., what the assembly process gets) and outputs (i.e., what it returns). This net-
work can be linked to the NOR graph at the top node of the hierarchy, having genetic circuits
and protocols within the same data structure. The integration and visualisation of protocol data
are similar to handling design data but with a critical difference. Primarily, the protocol data was
encoded using the autoprotocol standard, while all design data displayed was modelled using the
SBOL standard. However, when the input data has been transformed into a formalised knowl-
edge graph, the same processes of querying semantic labels to produce focused sub-graphs can be
applied (See methods for further discussion).

220

2 Results

AraB AraA

| -ribulo- L-arabinose
kinase Isomerase

gene circuit

\

- - < alc

L-ribulose-5P L-ribulose

\ /
metabolic pathway

gene circuit

7

metabolic pathway

Figure 17: The network of a gene circuit that uses arabinose as input can interact with the arabinose degra-
dation pathway. The top figure is an abstract network displaying a NOR gate’s critical com-
ponents and the arabinose pathway’s initial steps—the bottom figure: links the corresponding
extended networks.

221

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

competent
cells

construct

expanding protocol details

T

Node @8 Reagent Edge 0 Source
colour Assembly colour @ Destination

0 Transformation

Figure 18: NOR-gate experimental protocol formalised as a network structure. The network can be interac-
tively adjusted to show different levels of abstraction. Nodes represent reagents or sub-protocols,
and edges imply input/output relationships.

222

2 Results

2.5 GENETTA

Genetta is a tool developed during this network-based research. This tool implements the new
methods discussed previously such that a user can quickly load and visualise a design without
knowledge of graphs. Genetta’s code can be accessed here: Genetta-frontend and as a service here:
Genetta-application Below, we discuss the usage of Genetta, such as features and user-facing ap-
plications. From this, we will discuss how visualisation is actualised within Genetta by explaining
the pipeline that takes genetic design data and produces a tailored visualisation.

GENETTA Ul

This section briefly covers the usage of Genetta, namely how users upload, load, visualise, cus-
tomise and edit designs.

LOADING DESIGNS Before any designs can be visualised, they must be provided. Genetta cur-
rently supports two primary data formats, SBOL and Genbank. However, SBOL is recommended
over Genbank because it allows for more rich data capture, including functional and structural
data. While traditional data formats such as Genbank are ubiquitous, visualisation will be worse
than if an SBOL file is provided in nearly all cases without adding more information. Within
Genetta, these files can either be uploaded or pasted or the address of an external resource, such
as a Synbiohub ID, can be provided. When uploaded, the user will have exclusive access to this
design, which will persist through multiple visits. Furthermore, the design can be exported, in-
cluding any changes made.

VisuaLISATION The visualiser provides the projection and visualisation design data discussed
earlier. The focus is hiding the complexity behind a series of button presses, which will change
a specific visualisation feature. This section will refer to figure 19, which is Genetta’s UT for the
visualisation tool.

The first step is to load designs from the previously uploaded designs (1). The visualisation tool
can load multiple designs and integrate them into a single graph where the load predicate dictates
how multiple graphs are connected with options of Union (All data in all graphs are loaded), Dif-
ference (elements that only exist within one graph are loaded) and Intersection (elements that exist
within all graphs are loaded). If a single design is loaded, the type of load predicate is redundant.

Once the graph is loaded, it is visualised within the dynamic graph panel, allowing manual in-
spection. Depending on the chosen view, nodes (2.1) represent single data points within a design,
such as genetic parts, interactions or metadata. Edges (2.2) represent connections between data in
adesign, such as interactions between entities or to describe structure. Edges will take the shortest
path between the two connected nodes.

The options panel (3) primarily takes inputs and renders the output from the visualiser using
asynchronous communication between the client and server, allowing users to view the graph
during computation.

Four buttons provide specialised features.

* Documentation (3.1) - Provides information on how each option affects the projected graph.

223

https://github.com/Biocomputation-CBGP/genetta-frontend
http://138.4.92.244/

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

* Layout customisation (3.2) - Provides further customisation of the layout algorithm used
to calculate the positions of nodes on the canvas.

* Canvas Changes (3.3) - The button allows manual manipulations of the canvas and graph,
such as colour changes and node removal.

* Network information (3.4) - The information button provides graph-centric technical in-
formation from the node and edge count to more specific information, such as the number
of components.

The rest of the options are groups of buttons that make specific projection or visualisation changes.

* Presets (3.5) are collections of options (modes, views, layouts and other visual changes)
that, when combined, provide a preset insight into the data.

* Modes (3.6) are similar to the load predicate (discussed in the loading designs section) and
allow further data manipulation. For example, set operations directly applied to the node

or edge labels.

* Views (3.7) are data projections that focus on a specific aspect by rearranging, aggregating
or making inferences on the complete network—for example, Interaction between entities
or a parts hierarchy.

* Layouts (3.8) are algorithms to calculate the coordinate positions of nodes on the screen
and can be broken into three types force-directed, hierarchical or geometric.

* Several remaining options (3.9) are not displayed here, such as colour, text, size and shape
based on features and datatypes within the network. For example, colours that map to
genetic roles. Furthermore, the options to export the visual and data representations of the
current projection.

* Legend (4) maps categorical values to colour and is automatically generated from changes
made within the options panel.

EDITING DESIGNS An extension of the visualisation tool is the editor. The editor tool has the
same functionality but allows users to add new nodes and edges to a design. A key feature of
the editor is adding new information to the discussed projections, which is disseminated and ex-
panded to keep the original data’s structure. For example, if a user wants to add a new interaction
between entities, the interaction graph can be projected, and additions changed will be propagated
backwards. This section will refer to figure 20, Genetta’s UI for the editor tool.

Firstly, nodes can be added to the network directly by taking several required and optional val-
ues. The primary requirement is a node key (1.1), a unique name for adding the node. The fol-
lowing required value is the node type (1.2), which classifies the category of information inserted
into the design. Metadata (1.3) are optional additions such as sequence data, which will also be
added as new node properties depending on the information type. When submitting (1.4) nodes
to be added to a network, the node key will be checked to ensure it resolves to a valid resource, for

224

Load Design CD

Load Design
Load Predicate

Options(3)

&) 62 &3

Preset

O Hierarchy

O Interaction Explicit
@ Interaction Standard
QO Interaction Genetic
Q Interaction Protein
O Interaction 10
OPrune

Mode

O Edge Difference

O Edge Intersection
O Node Difference

O Node Intersection
@ Network

O Union

OTree

View

OFull

O Hierarchy

O Interaction-Explicit
O Interaction-Genetic
O Interaction-10

O Interaction-Protein
O Interaction-Verbose
@ Interaction

O Pruned

Layout

O Breadth-First
OCircle
O Cola

@0

2

83

. @
I
&7

Figure 19: The user interface for the Genetta visualisation tool.

2 Results

Node Color
| Comf)lex

w small Molecule
[0 Protein

[0 DNA

Edge Color
B bind

[repression .
_ protein production
[activation

225

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

example, synbiohub.org/public/igem/BBa_Reo10/1. Suppose the IRI provided does not resolve to
an accessible resource. In that case, Genetta will attempt to find a set of candidates which could
be used instead, using methods to identify canonical entities discussed within Chapter 4. Finally,
when the final value of the node is chosen, this node will be automatically added to the design,
ensuring the information is in line with the underlying structure.

Edges representing relationships between nodes can also be integrated into the design. The
predicate (2.1) is the first choice made and represents the type of connection between two data
points. The predicate options are dependent on the current projection. For example, if the in-
teraction graph is projected, predicates such as repression, activation and genetic production will
be options. The subjects (2.2) in a relationship are filtered and presented based on their types
and whether they are valid with the predicate. For example, if the user chooses the predicate "pro-
tein production”, the input node must be a coding region and the output subject a protein node.
Sequential filtering means invalid information is not accidentally added to the network via a pro-
jection that does not support it and makes integration easier. Once the abstract edge between two
data points within the connection is defined, the data can be submitted (2.3), and the new edge
will be added to the design. When working on the projection of the data, the new edge and add
all the information required for this new piece of information to align with the complete data
structure.

GENETTA PIPELINES

This section describes how the underlying methods of Genetta visual and editor are achieved at a
high level. Each aspect is described relative to figure 21.

MODIFYING GRAPHS AND MANAGING DATA Genetta stores the input data as a labelled graph
where labels are semantic tags. An initial step is to convert (B2) the input data into a shape valid
for the knowledge graph. Conversion to a knowledge graph provides several benefits, such as a
structure tailored for a network approach, and new input data types can be quickly introduced.
Genetta contains an internal ontology containing several classes, each defining a set of require-
ments which must be fulfilled to be eligible to become an instance of that class. Furthermore, the
data model defines an inheritance hierarchy where more specific classes inherit information from
more general classes. For example, the DNA class is derived from a physical entity class, and then
an RBS class is derived from the DNA class, and when combined, these features mean that all
converted data is always the most specific object possible.

All data within Genetta is stored within a single "world graph". This neo4j[210] graph database
management system allows storing and accessing graphs whose sizes are infeasible to hold in mem-
ory. Therefore, behind the scenes, all designs currently stored in Genetta are stored within a single
graph where nodes and edges shared between designs will be connected. To identify ownership,
i.e. what pieces of data belong to which design, nodes, and edges contain a property defining what
graphs own them. Storing all information within a single graph helps reduce the application’s size
because duplicates are not stored within multiple graphs. However, it also allows reasoning on a
larger dataset instead of single designs, which is beneficial for identifying any general patterns that
may occur. Furthermore, because the data has been converted in line with an ontology, the persis-
tent graph is a knowledge graph with semantic labels on nodes and edges and specific constraints

226

synbiohub.org/public/igem/BBa_R0010/1

2 Results

LOAD DESIGN

Load Design
Load Predicate X

MODIFY GRAPH

ADD NODE(D)

Node Key Node Type v Metadata (Optional)
Sequence
@ @ @D(?S(H;)HUH‘)
ADD EDGE (2)

Subject v Predicate v Object v ADD EDGE
[Aoo seLecTen nooes |

@)
Options ® ® Node Color

| Comfwlex
= Small Molecule
[Protein
[DNA
Edge Color
. W binds
[repression
Preset prg_tein_ production
O Hierarchy [activation
O Interaction Explicit
@ Interaction Standard
O lInteraction Genetic
O lInteraction Protein

QO Interaction 10
OPrune

Mode

O Edge Difference

O Edge Intersection
O Node Difference

O Node Intersection
@ Network

O Union

OTree

View

OFull

O Hierarchy

O Interaction-Explicit
O Interaction-Genetic
O Interaction-10

O Interaction-Protein
O Interaction-Verbose
@ Interaction

O Pruned

Layout

O Breadth-First
O Circle

O Cola .
00

Figure 20: The editor tool, an extension of the visualisation tool that enables modifications to be made to
adesign.

o0

227

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

specifying what nodes can connect. The resultant knowledge graph is one where data will auto-
matically connect when introduced, and the semantic labels and structure allow for more abstract
questions to be asked.

VIsUALISATION The visualisation tool uses a pipeline system, where the currently loaded graph
is provided, and the output is all the information required to visualise a comprehensible represen-
tation. Multipartite graphs (B3), such as the full graph described above, can rarely be successfully
visualised in their entirety, mainly because the presented data domain is too large. Therefore, spe-
cific views of this data are projected (usually bipartite or monopartite). These views focus on a
particular aspect of the data, such as the interactions between physical entities or the conceptual
hierarchy common within synthetic biology. Building (B4) a specific projection is unique (build-
ing an interaction network differs from a parts hierarchy), but some high-level processes persist.
A projection will likely only represent one or two classes. Therefore, we query the data using the
semantic labels for the classes in question, and this step may be required to produce an under-
standable representation. An optional step to scale the level of detail within the graph to further
fit the requirements of a user. Scaling abstraction is achieved by transitive closure, which involves
traversing the graph from a node looking for a target node and collapsing the traversed path.

The second module group is responsible for presenting the projected graph visually according
to user requirements. The modules use dash-Cytoscape, a Python library for creating interactive
network visualisations. Itis built on top of Dash[211], a web application framework which enables
graph visualisations to be modified in real-time, and Cytoscape.js[212], a JavaScript graph visuali-
sation library. The visualiser module (B5) computes visual elements such as layout, colour, shape,
and size to help the user further comprehend the data. The module receives the projection and a
set of requirements (user inputs) from the dashboard. For each requirement, each node and edge
is provided with a value (size of a node, for example). Finally, the visual elements are combined
with the projection graph (nodes are given screen positions, RGB colours, for example) and sent
back to the dashboard to be presented to the user. The dashboard (B6) is the user interface of
Genetta and takes inputs, begins the pipeline of processes previously discussed and renders the
output from the visualiser. A significant advantage of the dashboard and the technology it is built
on is that user inputs are sent via callbacks to enable asynchronous communication between client
and server, allowing a user to view the graph during computation.

Epitor Theeditoris an extension of the visualiser tool that can take information from the user
and integrate it into the design. The key feature is the ability to take information that is not speci-
fied within the structure of the underlying data model and transform it into a valid format which
is then integrated into the design data. The editor dashboard (B7) enables adding new nodes and
edges. When a network is projected (as is done within the visualiser), a set of valid node types
and edge types are provided to the user. These types are specific to the current projection. They
are calculated within the expansion builder (B8) module, which queries the underlying ontology
for restrictions encoded between classes (rules defining what entities can connect using specific
edge types). For example, if the structural hierarchy is projected, interaction nodes and edges will
not be offered as new information to be added because it is not the type of information being
displayed here. If a genetic part node is chosen to be added, the optional metadata will present
specific information, such as sequence data. The dynamic system, which constrains user input

228

3 Methods

based on previous inputs, ensures that only valid information is returned to the builder. Finally,
the editor automatically updates the figure when the expansion builder returns an updated view.

The expansion builder takes information from projected representations, which may not align
with the underlying data structure. It then expands this information and integrates it into the un-
derlying network while ensuring the same form is retained and connections between old and new
information are established as needed. While it is true that each projection module integrates data
differently (adding interactions is not the same as genetic parts, for example), specific processes are
worth discussing. In most cases, a user will add a new edge to signify a connection between entities.
For example, a new interaction between two physical entities is created using a new edge. How-
ever, the underlying data structure likely does not encode an interaction with a single edge. For
instance, in SBOL, interactions are represented using several classes, such as Interaction, Partic-
ipation, Functional Component, and ModuleDefinition classes, with multiple edges connecting
instances of these classes. Therefore, each projection includes a method for mapping this abstract
piece of information to expand it into all the required information to align with the underlying
structure.

A significant challenge with the expansion arises when the level of detail in a design is highly
abstracted, as seen in the protein interaction network. This abstraction illustrates the impact of a
protein’s presence on the production of other proteins within the design. These projections are
achieved using transitive closure to collapse paths and create a simplified representation. However,
when a user specifies a new interaction between two proteins, it becomes unclear how this inter-
action affects the larger design. Consider our protein interaction abstraction: when a user defines
that pl represses p2, they are not specifying direct repression; instead, p1 represses a transcription
factor upstream of the p2 coding region. Therefore, the implicit reference encoded within the
newly projected data must be identified. Therefore, the protein example is reexamined to calcu-
late the likely transcription factor. The complete interaction network is projected, and a traversal
is performed from pl to p2. It is assumed that the promoter element nearest to p2 on this pro-
jection is the subject of this interaction. If a promoter is found, a new repression interaction is
established between pl and the identified promoter.

3 METHODS

3.1 PROJECTING NETWORKS

The ability to project networks that will be visualised is at the core of the visualisation process.
As discussed, projections are subgraphs with different structures (likely more familiar to natural
networks, so the comprehension of the underlying data model is not required) to provide insights
into the data, which may not be apparent when looking at the whole graph. Here, we will describe
how an intermediate projection of the interaction network is made from the entire graph and how
projections can be chained, thus changing the final representation (in this case, to produce more
abstract output). The complete network (figure22 A) contains all information within the native
structure. Note that due to the network size, the labels are only presented on the areas of the net-
works that are being discussed. The interaction network (figure22 B) is projected by querying for
all interactions. When an interaction is found, a transformation step is applied where instead of
projecting the interaction node, directed edges between the inputs and outputs are added. In this

229

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

Client

@ Extends
@ Initialisation
@ Callback

Server
Client

Bl input B2 conversion B3 Graph B4 Builder B5 visualiser B6 Dashboard
Genbank H Normalise internal (Rep all encoded data - (Graph instance of internal _} (for visual options. _J+———+-(Bind callback, Starts server.]
lepresentation. _— data model + builders
eries | procedures (© mine Calculates Node/Edge
P g
data. {Calculates J) {layout, color, size, shape. | (Activates server callbacks.
[Feums eaeddan} (Retms viewgrapn) (Boids visvaed grapn 4 {Fotms igwe o)
L] |
/ e . s
it i .
S =
/ [I
|
IV | !
——
B 8 Expansion Builder B7 Editor
I :
P
(imtegrate new information __}———{Information expansion. } Add Projected Node.
Add Projected Edge.
View updated Figure updated

Figure 21: The workflow for transforming designs into dynamic network structures. B1) The input design

230

should be formalised using existing formats. We advocate for using SBOL for genetic designs
since it allows for capturing complex information. B2) Input data is normalised into an internal
structure by mapping semantic labels or keywords to a pre-defined network data model. B3) The
graph with all design information is represented and ready for algorithmic analysis. B4). The
builder module of the software produces specific sub-networks based on user requirements and
the resulting analysis of the original structure. BS). The visualiser calculates all visual-specific
elements (layout, colour, shape, size) and renders the graph accordingly. B6). The dashboard is
the user aspect of the application. It handles the graph rendering and user inputs by returning
callback requests to the server.B7). The editor dashboard provides the ability to add new nodes
and edges. When a network is projected (as is done within the visualiser), a set of valid node
types and edge types are provided to the user. B8.) The expansion builder takes information
from projected representations and expands it to the underlying network, ensuring the same
form is kept and that connections between old and new information are made where necessary.

3 Methods

case, the "Binds" node is added as "Binds" edges from "ATC" and "tetR" to "ATC-tetR". Once the
interaction network is projected, the protein network (a network displaying the effects of the pres-
ence of one protein on the rest of the network) can be projected by finding transitive connections
between proteins. figure22 C displays this final network, which displays how the presence of a
specific protein affects the circuit. The network is established by transitive closure by performing
a Dijkstra shortest path traversal from each protein node and terminates when all reachable pro-
tein nodes are found. When these paths have been found, the route is collapsed into a single edge.
For example, a path between "BM3R1" and "SrpR" is found, which is collapsed into a single edge.
However, despite identifying an existing edge, it is unclear what it means (in this case, what type
of interaction is taking place). In the case of interaction projections, the regulatory edges (activa-
tion and repression) flip the regulation. For example, with figure22 C, because "BM3R1" represses
the promoter, which initiates transcription of "SrpR", the resultant edge has a "Repression” type.
However, this process is dependent on projections and becomes more challenging to derive as the
representation structure moves further away from the initial configuration.

3.2 GRAPH COMPARISON

Graph comparison, as discussed previously, is a relatively trivial process once the semantics of the
graphs are unified. Table 1 displays the stages of producing a third interaction network. Further-
more, the table contains an example using two protein projection networks and is visualised in
Figure 23. In short, it involves identifying common nodes and then common edges between these
nodes.

Table 1: The process to perform the intersection of two graphs with an example of the intersection of the
graphs of 0xc7 and 0xF6 circuit as described in Nielsen ez a/.[19] that have been abstracted into
protein interactions.

Action Description Change

Identify Common Nodes The common nodes between V={AraC, Lacl, AmtR, PhIF,
the two input graphs by com- TetR, YFP }
paring their node sets.

Create Intersection Graph A new graph to represent the G =(V, {})
intersection. The new graph
is created with the common
nodes in the previous step.

Iterate over Edges Iterate over the edges of one G=(V{
of the input graphs and check {AraC,AmtR},{AmtR,PhIF},
if the corresponding edges ex- {AmtR YFP},{PhIF,AmtR},
ist in the other graph. If an {PhIFYFP},{Lacl,PhIF},
edge is found in both graphs, {TetR,PhIF},{TetR,YFP} })

it is added to the intersection

graph.

231

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

C-tetR /

/
et

Figure 22: Displays the process to produce the protein effect network (abstract interaction network dis-
playing the effects of protein presence on the circuit). A) All design information is visualised.
Interactions are structured as nodes with interactant edges connecting to the participating phys-
ical entities. B) The interaction network is visualised by transforming information from the

232 complete network. Interactions are formed by collapsing the node into new edges between the
participating physical entities. C) The protein effect network is visualised from the interaction
network. Edges between proteins are formed by traversing from the source protein until a dif-
ferent protein is found.

3 Methods

TetR Lacl AraC

AraC Lacl
PhIF AraC Lacl AmtR

M — AmR _PhF TeR
AmtR SrpR TetR PhIF

YFP
a YFP

Figure 23: The graphs of 0xc7 and 0xF6 circuit as described in Nielsen ez 4/.[19] are abstracted into pro-
tein interactions by transitive closure via depth-first-searches (left) and intersected with another
network (middle) to identify common nodes and sub-graphs between the two (right).

3.3 PROTOCOL REPRESENTATION

For conveying purely biological systems (genetic designs and metabolic pathways), SBOL has the
mechanisms to capture all the required information. However, when representing protocols as
networks, a new format must be found because SBOL does not have an established solution for
describing build protocols. Here, initially, the raw opentrons log files were used by presenting in-
dividual steps taken during execution as a node and edges representing the order. These files are
unstructured post-execution log files that capture a specific robot’s granular activities, precisely
the movements and actions of a liquid handler over time. Figure 24 shows the outcome of visualis-
ing this information as a network where the result is a linear set of liquid transfers. However, these
visualisation types are of minimal value because they are simply a linear connection of nodes and
edges with abstract information that does not utilise network features. Furthermore, these trans-
fers have no context, such as what equipment the transfers are occurring within or temporal infor-
mation, such as how long an activity would take. The primary issue with the previous approach
was that the visualisation was too specific to the opentrons process and resulted in an incom-
prehensible visualisation. Furthermore, the creation of the representation cannot leverage any
processes that made visualising designs valuable because the underlying log data is a flat structure
that does not encode any context or abstract information, similar to many of the pitfalls of repre-
senting and visualising genetic designs encoded within Genbank discussed previously. Therefore,
instead of using data from a specific robot within a particular process, the building protocol has
been defined more robustly with more detail within a standard experimental protocol language
named Autoprotocol. Autoprotocol is a standardised language designed for laboratory automa-
tion and experiment control and allows the definition and execution of complex experimental
protocols. Much like SBOL, autoprotocol uses a standard specification, ensuring all protocols

233

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

trash

| well
Source
. [Destination
P [Transfer

None - a
c1 - None

al - None wellplate_360ul

temperature-module \

temperature-module

temperature-module

tiprack_1000ul b1 - None

tiprack_1000ul

tuberack_falcon_15ml

- None
None - a1 temperature-module oo module None - al temperature-module
wellplate_360ul
tuberack_falcon_15ml
a2 -al
al - None
tiprack_1000ul temperature-module
temperature-module 22 - None
temperature-module

b1 - None al - None

tuberack_falcon_15ml

None - a1 temperature-module

a2 - None
temperature-module

temperature-module

None - al

wellplate_360ul

temperature-module

Figure 24: Network of potential build instructions for NOR gate constituting opentrons (OT2) move-
ments (transfers from different wells).

234

4 Discussion

are defined using these terms and interchangeable, providing a standard interface convenient for
creating networks. For this process, Autoprotocol enables two specific features to abstract spe-
cific actions into modules and to name and provide information on particular actions. Figure 25
displays the example NOR gate protocol defined within Autoprotocol. The protocol constitutes
three major modules, with further levels of abstraction and then specific actions. Within each
module, less abstract but still non-specific actions are defined, such as DNA purification. These
abstract actions list specific, actionable instructions, such as the instructions to wash said DNA.
This more detailed and structured representation enables the same visualisation techniques to
be applied to visualising genetic designs. Figure 26 displays a similar representation as figure 25,
which displays the inputs and output of each step but contains much more detail. For exam-
ple, unlike the previous representation, the liquids transferred between containers are labelled.
Furthermore, when visualised, it displays that the protocol is not linear and specific steps can be
executed in parallel. When described within a robust standard format, it is also possible to repre-
sent the protocol differently. Figure 27 displays the same protocol but with a different structure.
Instead of an input/output approach, edges represent the actions, and nodes represent physical
entities such as reagents. Like design visualisation, these two examples are possible representations
of many that can be projected when data is formatted in a standard format, and the underlying
data is rich. In conjunction with changing the representation, it is also possible to modify the
level of detail because it is explicitly encoded within the original data (see Figure 25). Figure 28
displays two representations with the same structure as figure 27 but with increasingly abstract
representations. Both metabolic and protocol network visualisation displayed here are initial ef-
forts and could be expanded to provide more robust representations and insightful visualisation
(see conclusion for further discussion). However, it further displays the power of network visu-
alisation as many of the same processes used to generate design representations can be applied to
metabolic and protocol visualisation. Furthermore, as discussed when displaying how metabolic
networks can be represented, any information can be visualised in conjunction, providing that
the underlying structure is unified.

4 DISCUSSION

This work explored how genetic designs can be visualised to provide multiple insights, making
complex systems more comprehensible. Some methods are already established to represent and
visualise genetic designs but commonly produce static sequence-based representations which only
provide a single representation and scale poorly. Network visualisation is an established method
for understanding complex systems by revealing valuable insights and facilitating the discovery of
hidden patterns. Furthermore, networks can represent any arbitrary datatype so that the repre-
sentation can focus on any information (or interpretation) defined within the dataset and is not
explicitly bound to an individual type of information, such as many existing visualisation tech-
niques. Also, networks are malleable, so the structure can be changed to fit specific requirements.

Here, we developed new methods that employ the existing network visualisation techniques for
genetic design visualisation. The key to this work is to project new representations from the whole
design to produce several insights at differing levels of detail. Furthermore, the projections are de-
signed to be comprehensible even when the underlying data model is not understood. Here, we

235

Protocol - NOR Gate

inputs Assembly
Hardware Reagents Restriction Purification Ligation
1, Opentrons 1. Plasmid Spin (LH) Bind Wash
2.Thermocycler 2. gBlock (NOR)
3. Magnetic Plate 3. Restriction Enzyme Reaction Mix - gilock
4 Sn,.._uu_wwﬁ 4. DNA Purification kit Merotuge 1. Transter 200ul Bincing |] 1. Add 200ul Wash bufer to
S8 Sl e 3 bulter 1 giock. glack.
6. Compotent Cells (Ecoli) Plasmi : 1ug 1. Mix gBlock. 2. Transles 200ul Bincing 2. Acd 200 vrash bufer o
7. Growth Media 2. Mix Plasmid. bufer plasnvd. plasmid.
1. Reaction with DNA. 3. Cenif 30 3
- 2 Roastion with Plasmid 4 4. Cenifuge galock 30 secs.
Incubate Heat S = 1 i
DINA Elution Butfer
Cantents: gblock, plasmid ‘Contents: gblock. plasmid
Tomp: 37 °C Temp: 80 °C 1. Add 6ul Eluion Buffer fo
L Time: 10min _ Time: 20min ‘aBlock:
2. Add Gul Eluton Bufer to
pilsmid
3. Incubae 1min
4 Gentrituge 30 ses.
Transformation
Prepare Cells. Heat Shock Outgrawih
Thaw Mix (LH) Cool Heat Transfer (LH) Incubate
Frozen el g oy Contents: Plasmid + Gells T R Oulgrouth Medum Gonterns: Plasmid Mixture +
Mix >
o Medium: IGE | Temp: 42°C |-l
S ool o R 1, Add 1l containing Lpg of el Tine: 30 sec o Tranater CGoM iyt Tomp: 42 °C
2 Plasmid DNA o cell mxture. medium o plasmid mixure. Time: 12hour
2 Lightly Mix Colls + plasmid
| |
Cool
Contems: Plasmid + Cells
M
Mediu: ICE
Time: 2min
Validation outputs
Colony PCR Sequence
Colony Pick My) Transfer (LH) Heat - Denaturation
peesthe b o Contents: Mixture
Ravaia i Mastor Mix Tomp: 98°C
1 Exract Colony. |—] ol 1 Teanster Master x|l Time: 1054
L bl Eorward Primer uih Master DA e Cyeles: 30 BlackBox
Mk m
2. Mix Reverse Primer with Maste
M.
| el Clone With Correct Insert
Heat - Annealing Heat - Extension Heat - Extension Final Run Gel
Coments: Mixure: Contents: Mixiure Contonts: Mixiure e
“Tomp: 60°C Temp: 72°C Tomg: 72 °C R
Time: 20s¢c - Time: 20sec - Tive: 2min | sample Mixure
Cycles: 30 Cycles: 30 Cycles: 1 4. Mix Sample Sul with 10l Dye.
1. Load 6 Micure onto el
2. AppYy Constant vollage.

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

formation and Validation).

Figure 25: Modular build plan for the NOR gate design. Constitutes three abstract steps (Assembly, Trans-

236

gBlock-nor
>

water.

o

restriction-enzyme

<
restriction-buffer
X

gBlock-nor.
>

v
binding-buffer

6 A
wash-buffer

X
elution-buffer

. purified gBlock-nor
Y
< \

ligase

lig:

. compotent-

ased-dna

cells

@

master-mix
>

forward-primer
>

reverse-primer
>

growth-media

[B

‘proto-clones

A

Transfer

“culture-plate

® oo

4 Discussion

Node Color
Reagent
Restriction
Purification
Transfer
Thermocycle
Incubate
Spin

Gel Seperate
Autopick
Sequencing

Edge Color
[Source
W Destination

S colony

I\
\ g RR
> P

. \ | \ |
N purliledi\asmld / | SN \ / | \

The NOR gate build protocol’s input/output representation. Nodes represent physical entities
such as reagents, and abstract actions such as transferring liquids and edges represent connec-
tions to sources and destinations.

plasmid
> S

Dlasmld

Figure 26:

Node Color
W Reagent

Edge Color
Restriction
Purification
Transfer
Colony Pick
Seperate Gel
Thermocycle
Spin
Incubate
Sequencing

plasmid

purified plasmid compotent-cells growth-media

o .0

ligased-dna proto-clones

&

culture-plate

> >

» ,,K/ VS

gBlock-nor gBlock-nor purified gBlock-nor

Figure 27: The NOR gate build protocol’s process representation. Nodes represent reagents (the input
and outputs of processes), and edges represent specific and abstract interactions.

237

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

Node Color
A I Reagent
Edge Color
0 Restriction
plasmi plasmid e Purification
. . Ligation
. > > purified plasmid @ Prepare Cells
. e HeatShock
] h
water v bindin -buffer s -_— g:lt(fjr:?;%ll
» B e Sequencing
4
restriction-enzyme v elution-buffer 1'
. 4
restriction-buffer “d

4 O\
purified gBlock-nor
A e -
gBlock-nor gBlock-nor :

v
<

B

restriction-buffer Node Color
W Reagent

. Edge Color
I Assembly

i Transformation
binding-buffer @ Validation

compotent-cells

=]
[
5]
[}

_growth-media

<
<
a4
A

ction-enzyme

restri ligased-dna culture-plate

\ 4

reverse-primer \ 4

v
v

elution-buffer ¥

4

« ~ forward-primer

master-mix

Figure 28: Two abstract representations of the protocol process to build the NOR gate design. A) Ab-
stracts specific actions into higher-level processes, for example, the ligation step. B) Abstracts all
processes into three modules (assembly, transformation and validation).

238

4 Discussion

also explored how mapping categorical and continuous information to visual features can further
reduce complexity. Finally, some other applications of applying network visualisation, namely,
the ability to compare designs, coupling metabolic networks to genetic designs and picturing ex-
perimental build protocols. This section evaluates the outcomes of this work. Furthermore, the
potential future directions for research are discussed based on the challenges faced in this work.

4.1 STRENGTHS OF A NETWORK APPROACH TO GENETIC DESIGN VISUALISATION
TAILORED NETWORK REPRESENTATION FOR MULTIVARIATE GENETIC DESIGN DATA

Existing methods within synthetic biology can only represent a specific subset of the design mainly
because the visualisation mechanism is coupled to the types of information. For example, the
glyph approach can only represent abstract sequence-based information. However, genetic de-
sign data is not only sequence data. For example, it includes functional, metadata, experimental
and design constraints. With network visualisation, any information can be presented because
network visualisation is decoupled from a specific datatype. The outcome is that any information
within a genetic design can be visualised. Presented previously (interaction networks, structural
hierarchies, protocol flows and merging design and metabolic information) were a sample of the
potential information that can be presented. If new information that is not currently considered
relevant needs to be presented, this would be inherently impossible with existing methods. How-
ever, with a network approach, a new projection strategy would be defined, and this new infor-
mation could be visualised without a requirement for the user to understand the structure of the
original dataset or comprehend a domain-specific representation. Furthermore, another dimen-
sion is enabled because designs can also be merged, compared or contrasted within the projections.
For example, two designs could be compared to how designs are similar from an interaction per-
spective butare similar from a structural. In short, a vital advantage of this approach is the options
provided to a user by exploiting the dynamic nature of networks.

Genetta, the accompanying tool, enables users to upload an existing design file, which is trans-
formed into a network. The user is then able to interrogate the different aspects of the design
quickly with no requirement for them to understand the technicalities of how networks work
but also the underlying data structure, such as SBOL. Furthermore, the user can further develop
the design within these projections views, which is automatically expanded and integrated, ensur-
ing the underlying data structure is maintained.

SCALING GENETIC DESIGN COMPLEXITY

The complexity and size of genetic designs can vary massively. Because of this, a single level of de-
tail can never be optimal for all designs. For example, a high level of detail may be desired for more
moderate designs but will become incomprehensible with large designs because of the unmanage-
able amount of information. A network approach can scale complexity because the visualisation
method is decoupled from the underlying data. Furthermore, given some requirements, networks
have the inherent ability to retract and expand. Here, the ability to expand and merge nodes and
edges was exploited in line with how practitioners within synthetic biology may consider a design.
For example, with an interaction-based network, sometimes the interactions explicitly encoded
within a design are not at the desired level of detail. Take a classic regulatory mechanism where

239

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

a coding sequence transcribes a protein which binds to an operator, inhibiting a promoter and
stopping the production of another protein. A network could merge nodes and edges to present
alternative representations, such as how the presence of proteins affects the production of another
protein by merging all genetic elements (promoter and CDS in this case).

In conclusion, a key feature of networks is the ability to create a more or less detailed version of
a specific representation, further enabling users to tailor the visualisation to their requirements.
Combined with the ability to present multiple representations of the same design, Genetta can
also scale the complexity (where applicable) to provide further specialised insight to a user by in-
creasing or decreasing the detail of the network.

4.2 LIMITATIONS OF NETWORKS IN THE CURRENT LANDSCAPE
USER UNFAMILIARITY WITH REPRESENTING DESIGNS AS NETWORKS

Currently, sequence-level visualisation and considering genetic designs at the sequence level is still
ubiquitous within synthetic biology. Therefore, such a drastic change in visualisation would be a
challenge for the user to use, especially if this user is unfamiliar with networks. This issue is not a
limitation of network visualisation but a social challenge within the community. It is a challenge
that is valid for all efforts to introduce standards into synthetic biology, that is, the challenges of
changing the everyday working practises of established groups.

RELIANCE ON RICH INPUT DATA

Strong network visualisation requires rich underlying data. For example, network visualisation
cannot visualise sequence data without a pre-processing method to mine explicit features (see en-
hancing designs) from the sequence. Therefore, for a network approach to representation and
visualisation within synthetic biology to become more widely accepted, standardisation and fos-
tering the capture of rich data must be advanced.

LIMITED USAGE WITH TRIVIAL DESIGNS

Network visualisation excels in reducing and representing complexity. However, the advantages
of these methods are less apparent with smaller-sized datasets because they are less complex. There-
fore, itis likely that the difficulties that a network approach introduces, such as unfamiliarity with
the visual output, outweigh the advantages.

4.3 FUTURE WORK
CONNECTING NETWORK VISUALISATION TO DESIGN SPECIFIC METHODS

As discussed, the advantages of network visualisation are less clear with small datasets, such as
small genetic designs, and existing visualisation methods, such as the SBOL glyphs approach; in
future, it may be advantageous to explore how these two methods could be coupled. For example,
if a user is exploring a design at a macro level, network visualisation is applied. However, when
inspecting the specifics of an area within the design, the representation could be converted to a
glyph representation. It provides a user with the best representation of the data they inspect.

240

S Conclusion

AUTOMATIC SCALING OF DETAIL

These network manipulations are only an initial effort into the many possibilities available[168]
since network science[213] is an active field with applications in many disciplines, including life
sciences[169, 149]. Currently, the processes to scale abstraction are designed for a specific aspect
of the data genetic interactions or protein networks, for example. However, future efforts could
explore how any aspect of the data could be expanded or retracted, creating a method for scaling
abstraction to any point desired. For example, community detection [163] is partitioning the net-
work into multiple communities, which may present a specific level of abstraction within certain
projections.

4.4 EXTENDING NON-DESIGN VISUALISATION

A key feature of network visualisation is the ability to capture and connect multiple data types.
We described how the protocol and metabolic information could be visualised. However, these
efforts were only a short example of how this data could be connected and visualised. In future,
this work could be extended to:

* Integrate these data types fully such that the underlying dataset is captured in a standardised
format.

* Create comprehensible representations that display how the different data types connect.

* Create visualisations specifically targeted to reduce complexity, especially when different
types of information connect.

S CONCLUSION

Here, we present a graph-based methodology for representing, analysing, and visualising circuit
design information. Our approach transforms design files into networks, dynamic structures that
can be automatically modified on demand according to user specifications. When molecular enti-
ties, relationships, and other information (e.g. types and roles) are encoded into nodes and edges
using semantic labels, a network representation of a genetic design can be established. We have
showcased the benefits of this approach by converting into networks the structural and functional
data available within several genetic circuits. Specifically, we showed that design networks could
be automatically adjusted to display different levels of detail, from full molecular representation to
input/output information only and single-type graphs (e.g., protein interactions). The selection
of abstraction as a metric to showcase the potential of networks is rooted in the intrinsic complex-
ity of designs and the need to separate high-value information from superfluous details for a given
purpose—thus improving understanding.

From a user perspective, this network visualisation approach provides many benefits beyond
merely another method for visualising designs. Firstly, due to the complexity inherent in stan-
dard data formats, what a designer intends a genetic circuit to be versus what is captured can
differ markedly. Network visualisation is a powerful tool for quickly conveying these discrepan-
cies, enabling designers to verify and adjust their designs more effectively as they iterate on them.

241

Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.

Secondly, changes made during the design process can often be subtle and not immediately ap-
parent; network visualisation provides a clear means to compare designs and highlight differences
or modifications, ensuring that all changes are intentional and well-understood. Moreover, while
individual parts of genetic designs are frequently reused, the overall connections and interactions
within full designs are less commonly visualised. Displaying these connections through graphs can
be incredibly beneficial, illustrating how commonly used components interact in various config-
urations. This is particularly useful for the original designers and others in the community who
may be utilising shared designs. For someone who has not been involved in the initial develop-
ment, network visualisation offers an intuitive way to comprehend the function and structure of
a design, facilitating more straightforward modification, replication, or enhancement of existing
circuits.

The robust nature of networks enables any information to be described. We displayed that
designs can be compared to one another using a network approach by performing graph opera-
tions (union, intersection and difference) on design projections so these operations can even be
applied to the human-friendly representations. A network approach to design representation and
visualisation could be a key to fast comparisons of libraries of designs, tracking the lineage, that
is, the change of a design over several iterations or identifying small changes to designs of high
complexity.

The intrinsic modularity of networks allows for coupling genetic circuit designs to other data
types, providing these are also represented in graphs. We have demonstrated this in two different
ways. We showed thata genetic circuit that uses arabinose as input could be automatically coupled
to the arabinose degradation pathway graph. By doing this, circuit designs can be extended to
include information from their host context, improving the functional description of the device.
Secondly, we have represented an implementation protocol in network format. While this is just
a preliminary effort, which deserves further attention, it shows that protocol networks can also
interact with circuit designs for the sake of building a data structure that can be shared along the
design-build-test-learn[214] (DBTL) research cycle. In short, when data is represented as a graph,
merging and clustering potentially disparate entities becomes a far less challenging task, and the
graph could be the key to unifying data.

Designers should capture as much information as possible to generate high-quality and information-
rich networks. Indeed, networks can only work with the provided data—networks cannot fabri-
cate entirely new data, only derived from existing sources. While commonly used formats, such as
GenBank, still capture information beyond genetic sequences, this information can be challeng-
ing to manage computationally due to the inherent informality and loose connections. Therefore,
we advocate using knowledge graphs because more abstract questions can be formed, and more in-
depth analyses can be made with the data. More specifically, a knowledge graph that implements
the Synthetic Biology Open Language (SBOL) standard since it represents formal information,
such as modularity or hierarchy, that cannot be captured otherwise.

As the complexity of genetic circuits increases, we advocate for networks to manipulate, anal-
yse and communicate design information. We hope networks can maximise the efficiency of de-
sign automation procedures and help unification by providing standard[215] data structures for
merged mathematical, genetic, protocol, and other prominent datasets established during syn-
thetic biology projects.

242

CHAPTER 7: CONCLUSIONS AND FUTURE WORK

1 INTRODUCTION

Implementing data standards in synthetic biology has been slow and has yielded limited success
thus far. Traditional methods and tools to promote the usage of standards often require users to
interface closely with the underlying structure, learn new languages decoupled from established
domain languages or undertake additional manual steps to ensure that data conforms to stan-
dards. Moreover, introducing standards alone does not inherently resolve all issues associated
with unstructured data; challenges such as reliability and redundancy persist. These issues were
identified during a review of specification tools, datasets and their qualities, databases, how they
store and serve data, and the techniques used to present the information. This research aimed
to make the integration of standards into workflows more accessible, primarily by leveraging the
power of networks, which allow for the modelling, manipulation, and analysis of complex sys-
tems. The topics presented in this thesis, encompassing ShortBOL, the weighted knowledge
graph (WKG), and the network visualisation of genetic designs, collectively mark a significant
stride forward in addressing these challenges. These tools are designed around robust standards,
enhancing traceability and promoting interoperability across different systems and users in the
field. This standard-backed approach ensures that every piece of data and every genetic design can
be integrated and utilised across various platforms and projects, facilitating a more cohesive and
collaborative research environment. Moreover, by leveraging the power of networks, these tools
efficiently capture and unify complex biological data, offering a holistic view of genetic designs
that is both comprehensive and comprehensible. This network-centric methodology significantly
reduces the cognitive load on users, simplifying complex concepts and processes into more man-
ageable and understandable components. It enables practitioners to easily navigate, manipulate,
and derive insights from data, reducing the time and effort traditionally required in genetic design.
Integrating network visualisation into this suite of tools further enhances this approach, provid-
ing dynamic and scalable visual representations of genetic data that enhance understanding and
facilitate more informed decision-making. Together, these tools effectively tackle the challenges of
standardisation and complexity in synthetic biology. They lay the groundwork for future develop-
ments in the field, offering methods that could lead to more efficient, accessible, and collaborative
ways of working. The final chapter will revisit each research chapter’s main discoveries and con-
tributions relative to the motivation for this work. Additionally, the implications of the findings
for current research practices will be reiterated, and suggestions for future work will be addressed.

2 SPECIFYING DESIGN DATA BY ABSTRACTING LANGUAGE

Chapter 3 explored how domain-specific languages (DSLs) directly mapped to the standard lan-
guage (SBOL) can reduce the gap between standard and natural language. The outcome was

243

Chapter 7: Conclusions and future work

ShortBOL, an extensible DSL where libraries of custom entities can be defined. ShortBOL has
two main advantages. Firstly, it enables the specification of genetic designs where users can create
reusable abstract templates accessible to other users. Language within synthetic biology is essen-
tially unconstrained, and many-many mappings may occur between terms, i.e. a word may have
different definitions between difterent groups. Therefore, enforcing a universal standard language
would be infeasible. Next, the template system allows for the language to be extended by any user.
It has the potential for any number of terms to be mapped together, enabling the language to be set
by the practitioners and increasing the likelihood of comprehension. The extensibility is achiev-
able because ShortBOL is essentially a generated template library that can define arbitrary terms
(providing it can be defined in RDF) and is not coupled directly to SBOL (instead, the SBOL
is a specific template library). Also, ShortBOL bridges the gap between abstract methods, such
as SBOL visual and verbose ones, such as programming implementations. The outcome is a lan-
guage that can be comprehended easily but can still handle complexity (an issue that arises with the
visual approaches) and compiles into SBOL a standard format. A potential criticism of ShortBOL
is that the library developed simultaneously with the language, which is not truly a user-facing set
of terms and, in some places, directly maps to an SBOL term. Therefore, one potential improve-
ment of ShortBOL would be to invest further time into creating a user-facing set of terms (and
capturing their meaning and interrelationships) used within the field instead of locally defined
terminology. This future work can be divided into two projects: a social and technical challenge.
The social challenge is to decide on a set of terms encompassing the largest language used within
the community. Even if a set of terms that are more user-facing than the current ones are decided
upon, the terms will invariably have a bias towards the creators and their backgrounds. For exam-
ple, from a synthetic biology perspective, a gene may encompass a composite of promoter, RBS,
CDS and terminator. However, others from a natural biology perspective may define a gene as the
coding region and binding sites of transcription factors. Other definitions may include additional
elements, such as enhancers, introns, and other regulatory sequences, which play roles in gene ex-
pression, regulation, and function. Although it is used to describe nucleotide-based sequences
encoding some related information, the definition has changed over time as more discoveries are
made—furthermore, the definition changes based on the specific domain of biology[216]. The
gene is a single example of the differences in the nomenclature within biology, and while some
things have specific agreed-upon names, others are abstractand open to interpretation. Therefore,
the challenge is to identify an inclusive set of terms which will require the input of large groups
of practitioners within the community, and the outcome may be a much larger set of terms that
overlap, for example, words with multiple meanings or an inherent abstraction hierarchy of terms
and grouped within other terms. Because the language is much broader and more complex, the
set of terms decided upon will contain many nuances that may overlap or are contained within
one another and will be more challenging to define than the relatively simple set of terms decided
upon during language development. As a result, future technical efforts should focus on structur-
ing these complex and nuanced terms into a well-defined and inclusive ontology. This ontology
must encompass a comprehensive array of terms and their intricate relationships and hierarchies.
This task is critical for accurately representing the language’s richness and depth.

244

3 Enhancing design data using weighted knowledge graphs

3 ENHANCING DESIGN DATA USING WEIGHTED KNOWLEDGE
GRAPHS

The fourth chapter initially examined the ongoing challenges with existing data capture systems
and their underlying data. Many issues were identified, namely a narrow range of datatypes and no
guarantee of correctness. Therefore, weighted knowledge graphs were introduced to reduce un-
certainty within synthetic biology design data by creating a centralised and canonical knowledge
system. The weighted knowledge graphs, meta characteristics, metadata and integration strategies
provide several advantages. Firstly, encoding functional information reduces perceived complex-
ity, alignment with expected outcomes through defined functional modules, flexibility for itera-
tive refinement, enabling a rational and systematic approach to designing biological systems, and
allowing adjustments in detail levels to suit specific requirements. Also, the ability to quantify ac-
curacy reduces the burden on the user to identify the correctness of a piece of information, which
enhances trust in the data’s reliability and facilitates more informed decision-making processes. A
standardised network approach ensuring features such as canonicity enables the data to remain
consistent, providing computational tractability so more focus can be applied to analysis instead
of integration strategies. In conclusion, the weighted knowledge graph provides an environment
that aims to reduce the burdens often put on practitioners or developers of tooling to quantify
the information from databases before using it. A significant issue not addressed during this re-
search is bridging the gap between ubiquitous handwritten informal storage methods and formal
standards such as SBOL. Even if, in future, standards are employed in mass, legacy information
previously informally captured must be either manually or automatically translated. However,
automatically formalising natural language is challenging because it is ambiguous. For example,
text can have multiple interpretations depending on the context, the meaning of a word or phrase
can change based on context, and natural language can refer to entities that do not have specific
dictionary definitions, such as genetic part names. Resolving this ambiguity requires a deep un-
derstanding of the vast amount of domain-specific language and the ability to infer meaning, and
translating this contextual information into a formal system is challenging. During this research,
formalising free text was outside of the scope. In cases where written information was used, it was
formalised using established and simple methods such as fuzzy string matching. Some efforts, such
as SBKS[13¢6], are underway to tackle this challenge and are well-needed additions to standardisa-
tion within synthetic biology. From the establishment of the WKG, chapter S explored two use
cases. The first was an advanced query system using the weighted knowledge graph to handle
more complex queries and return more accurate results. This query system was achieved by ex-
ploiting the unique features of the weighted knowledge graph, namely, robust datatypes encoded
using semantic labels, capture provenance, capture confidence, usage and functional information.
This approach has several advantages over its contemporaries. Incorporating confidence metrics
enables the promotion of information that is more likely to be correct, boosting trust in query
results. Also, leveraging provenance data to identify analogous or identical entities allows entities
to be clustered, aiding users in finding more relevant information. The ability to accommodate
abstract query requirements allows users to search for information using broader, less specific cri-
teria, expanding the scope of retrievable data. Integration of user feedback mechanisms enables
ongoing dataset updates and result refinement, ensuring that the information retrieved remains

245

Chapter 7: Conclusions and future work

accurate and up-to-date and can utilise the greater knowledge of a community. The main limita-
tion of this query system is the inability to handle written inputs properly. This limitation is an
extension of the issue with the WKG and has used simple matching when a more complex natural
language processing solution is necessary. Specifically, in this case, the ability to understand the
context of a larger text block. For example, if the query input is aimed at searching for a repression
system, it is crucial to understand which part of the query is the repressor and which is repressed.
Chapter Five also displays how the knowledge graph can be used to automate the enhancement of
existing genetic designs, thus reducing users’ requirements to interface with the underlying stan-
dard. The enhancement takes advantage of the canonical feature of the weighted knowledge graph
and the techniques used to create conceptually identical but syntactically different entities. Fur-
thermore, once a match between the existing design and the weighted knowledge graph is found,
the extra information encoded within the weighted knowledge graph is transferred to the design.
Leveraging canonicity to normalise entities within the design network enables seamless data trans-
fer and integration of information into existing designs without large amounts of manual work.
Next, integrating functional data beyond raw sequence information streamlines the construction
of designs, providing a higher level of abstraction crucial for advancing design methodologies. By
correcting the absence of crucial data and introducing a system that streamlines the addition of
explicit and comprehensive descriptions, the approach removes significant entry barriers in im-
plementing standards, reducing the manual definition of intricate information and simplifying
the perceived complexity of underlying data structures. The main limitation of this enhancement
system, however, is its scope. For example, The modules introduced were relatively small by ab-
stracting individual regulatory systems. Therefore, future work would be to expand the scope of
this enhancement system to include the integration of larger and more complex modules, allowing
for more comprehensive and sophisticated genetic designs. This work would involve increasing
the variety and complexity of modules available in the knowledge graph. Doing so could further
automate and streamline the design process, accommodating more advanced and intricate genetic
constructs. Additionally, enhancing the system to better handle the complexities of multidimen-
sional data and interdependencies within larger modules could significantly reduce the time and
expertise required to develop functional genetic systems. In summary, synthetic biology’s most
valuable assets are its practitioners and their extensive knowledge. However, the current land-
scape of knowledge transfer underutilises these resources, leading to significant duplication of
effort and wasted time. The introduction of the WKG offers a solution by enabling the sharing of
specific information, including newly designed genetic parts and researchers’ experiences. Encod-
ing this knowledge enhances comprehension for users unfamiliar with the domain and facilitates
problem-solving by leveraging solutions already identified by others, ultimately saving valuable
time. Both use cases underscore a user-centric approach and emphasise the inefficiencies in cur-
rent working methods, highlighting the potential for significant time and effort savings.

4 TAILORED DATA REPRESENTATION BY SCALING COMPLEXITY
The final chapter established a pipeline to visualise genetic designs by presenting several network

representations in line with structures commonly seen within biological data. The key to the work
was projections, which are individual processes to create subgraphs representing difterent aspects

246

S Conclusion

of the data by focusing on representing a subset of the complete design, likely by creating a new
user-facing network structure. Once the projections are established, many can be scaled in com-
plexity by merging or expanding edges to further fit the level of detail in the representation to fit
the user’s needs. These choices and several aspects can be "mixed and matched” based on the re-
quirements. Users can select the labels for nodes and connections relevant to the projection. Also,
they can determine which algorithm should be used to calculate the positions of nodes on the can-
vas for layout purposes. There are also options to choose which categorical data is represented by
the colours of the nodes and edges or what the sizes of nodes and edges represent, using them to
encode continuous data. When combined, the network visualisation approach provides choices,
which is often a limitation of other established visualisation techniques. Currently, the number of
projections is limited, focusing solely on functional and structural visualisation. A future project
may explore visualising a broader array of data types prevalent in genetic design. For instance,
incorporating visualisations that portray gene expression levels under various conditions or illus-
trating epigenetic modifications could substantially deepen the comprehension of gene function
and regulation. This future work could include the development of interactive visualisation that
demonstrates the intricate interactions of genes within complex biological pathways or networks.
Such models could also clarify the impact of environmental factors on gene expression, offering
a more dynamic and comprehensive view of genetic processes. These enhancements would not
only foster a better understanding of genetic mechanisms but also aid in developing more effective
genetic engineering strategies. During this chapter, other data types, such as metabolic networks
and experimental protocols, were visualised. However, these visualisations represented only pre-
liminary efforts and have significant potential for expansion and refinement. For instance, future
work could focus on creating more detailed and interactive visualisations that provide deeper in-
sights into the interplay between the designed systems and the metabolic networks. Addition-
ally, enhancing the visual representation of experimental protocols could involve adding layers of
information, such as step-by-step procedural details, equipment used, and time frames for each
step. Expanding this visualisation to illustrate the genetic design and the corresponding protocol
for constructing the genetic construct is an ambitious yet promising direction. This dual visu-
alisation would necessitate a comprehensive mapping system to link the genetic design elements
with the specific steps and conditions outlined in the experimental protocols. Such an integrated
visual tool would aid in better understanding the practical aspects of genetic engineering and fa-
cilitate more efficient planning and execution of experimental designs. This future work could be
expanded to use a network approach as a unifier for all information within the development pro-
cess. For example, the design, simulations, build protocol, experimental data, and performance
measurements can all be captured as a network that can be visualised using representations that
display how each information group maps together.

S CONCLUSION
The tools and methodologies developed in this research were designed to overcome existing chal-
lenges in establishing standards within synthetic biology by developing solutions backed by a data

standard. A pivotal outcome was the creation of ShortBOL, a novel language for specifying ge-
netic designs, which emphasises natural language terms over more complex standard terminolo-

247

Chapter 7: Conclusions and future work

gies. This approach focused on an extensible framework that allowed ShortBOL to incorporate
customisable templates and a level of abstraction that facilitated the creation of modular designs
that could be easily adapted to various needs. Further enhancing the utility of these developments,
the weighted knowledge graph emerged as a key asset. It functioned as a central repository, merg-
ing data from various sources into a unified, comprehensive dataset. This outcome not only of-
fered a holistic view of different genetic entities beyond singular databases but also maintained the
uniqueness of information through its emphasis on canonicity. Additionally, by encoding weights
into the graph, the system could address and quantify the uncertainties often inherent in open-
source data. This feature was particularly valuable for automating tasks based on the data model,
such as refining genetic designs or providing reliable access to complex information. Regarding
data representation, the research focused on network visualisation as an effective tool for depicting
complex systems. This method differs from existing approaches that present only singular facets
of genetic designs. Network visualisation enabled the projection of various sub-networks, includ-
ing interaction networks or parts hierarchies, thus offering a more complete and integrated view
of the genetic designs. However, this research also highlighted significant challenges that still im-
pede the widespread adoption of standards in synthetic biology. One of the most notable issues is
the difficulty converting vast amounts of written information into structured, standardised data.
This gap remains a critical hurdle for standardisation within synthetic biology. In conclusion, the
work presented here substantially contributes to mitigating these challenges and enhancing the
appeal of standard adoption in synthetic biology. It supports the broader objectives of the field
by fostering a community that can effectively share knowledge and reduce the burdens on prac-
titioners. This research provides practical tools and methodologies, raises crucial questions, and
identifies areas for future exploration, setting the stage for further advancements in the standard-
isation and effectiveness of synthetic biology practices.

248

ACRONYMS

API
AraC
BBa
CAD
CDS
CRISPR
CSvV
DBTL
DSL
ENA
EPU
FTP
GEC
Genbank
GRN
ICE

IDE
IGEM
IRI
JSON
KEGG
Lacl
LCP
libSBOL;j
NCBI
PDF
PFIN
PPI
PROV-O
pTet
pySBOL
RCS
RDF
RNA

SB
SBML

Application Programming Interface
Arabinose Repressor

BioBrick Part

Computer-aided Design

Coding Sequence

Clustered Regularly Interspaced Short Palindromic Repeats
Comma-Separated Values

Design, Build, Test, and Learn
Domain-Specific Language

European Nucleotide Archive

Entrez Programming Ultilities

File Transfer Protocol

Genetic Engineering of Cells

Genetic Sequence Database

Gene Regulatory Network

Inventory of Composable Elements
Integrated Development Environment
International Genetically Engineered Machine
Internationalized Resource Identifier
JavaScript Object Notation

Kyoto Encyclopedia of Genes and Genomes
Lactose Repressor

Living Computer Project

libSBOL Java Library

National Center for Biotechnology Information
Portable Document Format

Probabilistic Functional Integrated Networks
Protein-Protein Interaction Network
Provenance Ontology

Tetracycline Promoter

Python SBOL Library

Reactome Content Service

Resource Description Framework
Ribonucleic Acid

Synthetic Biology

Systems Biology Markup Language

249

Acronyms

250

SBO
SBOL
SEVA
ShortBOL
SPARQL
SVG
URL
VPR
wCC
WKG
XML

Systems Biology Ontology

Synthetic Biology Open Language
Standard European Vector Architecture
ShortBOL

SPARQL Protocol and RDF Query Language
Scalable Vector Graphics

Uniform Resource Locator

Virtual Parts Repository

Weakly Connected Components
Weighted Knowledge Graph

eXtensible Markup Language

BIBLIOGRAPHY

10.

11.

12.

Matthew Crowther, Anil Wipat, and Angel Gofii-Moreno. “A Network Approach to Ge-
netic Circuit Designs”. ACS Synthetic Biology 11:9, 2022. PMID: 36044984, pp. 3058—
3066. DOTI: 10. 1021 /acssynbio.2c00255. eprint: https://doi.org/10.1021/acssynbio.
2c00255. URL: https://doi.org/10.1021/acssynbio.2c00255.

Matthew Crowther et al. “ShortBOL: A Language for Scripting Designs for Engineered
Biological Systems Using Synthetic Biology Open Language (SBOL)”. ACS Synthetic Biol-
ogy 9:4,2020. PMID: 32129980, pp. 962-966. DOL: 10.1021/acssynbio.9beo47e. eprint:
https://doi.org/10.1021/acssynbio.9b00470. URL: https:/ /doi.org/10. 1021/
acssynbio.9boo470.

Matthew Crowther, Anil Wipat, and Angel Gofii-Moreno. “GENETTA: a Network-Based
Tool for the Analysis of Complex Genetic Designs”. ACS Synthetic Biology, 2023.

Hasan Baig et al. “Synthetic biology open language (SBOL) version 3.0.0”. Journal of In-
tegrative Bz'oz'nfbrmﬂtz'cs 17:2-3, 2020, p. 20200017. DOI: doi : 10. 1515/ jib-2020-0017.
URL: https://doi.org/10.1515/jib-2020-0017.

Esteban Martinez-Garcia et al. “SEVA 4.0: an update of the Standard European Vector
Architecture database for advanced analysis and programming of bacterial phenotypes”.
Nucleic Acids Research 51:D1, 2022, pp. D1558-D1567. 15sN: 0305-1048. DOT: 10.1093/
nar / gkac1059. eprint: https://academic.oup.com/nar /article-pdf/51/D1/D1558/
48441442 /gkac1059.pdf. URL: https://doi.org/16.1093/nar/gkac1059.

Shankar Mukherji and Alexander Oudenaarden. “Synthetic biology: Understanding bi-
ological design from synthetic circuits”. Nature reviews. Genetics 10, 2009, pp. 859-71.
DOI: 10.1038/nrg2697.

Christina M Agapakis. “Designing synthetic biology”. ACS synthetic biology 3:3, 2014, pp. 121-
128.

Christopher Langton. Artificial life: proceedings of an interdisciplinary workshop on the
synthesis and simulation of living systems. Routledge, 2019.

Ibrahim Aldulijan etal. “Functional synthetic biology”. Synthetic Biology 8:1,2023, ysad006.

Curtis Madsen et al. “Synthetic biology open language (SBOL) version 2.3”. Journal of
integrative bioinformatics 16:2, 2019.

George Church etal. “Realizing the potential of synthetic biology”. Nature reviews. Molec-
ular cell biology 15, 2014. DOI: 10.1038/nrm3767.

Priscilla Purnick and Ron Weiss. “The second wave of synthetic biology: From modules
to systems”. Nature reviews. Molecular cell biology 10, 2009, pp. 410-22. DOT: 10. 1038/

nrm2698.

251

http://dx.doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
https://doi.org/10.1021/acssynbio.2c00255
http://dx.doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
https://doi.org/10.1021/acssynbio.9b00470
http://dx.doi.org/doi:10.1515/jib-2020-0017
https://doi.org/10.1515/jib-2020-0017
http://dx.doi.org/10.1093/nar/gkac1059
http://dx.doi.org/10.1093/nar/gkac1059
https://academic.oup.com/nar/article-pdf/51/D1/D1558/48441442/gkac1059.pdf
https://academic.oup.com/nar/article-pdf/51/D1/D1558/48441442/gkac1059.pdf
https://doi.org/10.1093/nar/gkac1059
http://dx.doi.org/10.1038/nrg2697
http://dx.doi.org/10.1038/nrm3767
http://dx.doi.org/10.1038/nrm2698
http://dx.doi.org/10.1038/nrm2698

Bibliography

13. Ernesto Andrianantoandro et al. “Synthetic biology: new engineering rules for an emerg-
ing discipline”. Molecular Systems Biology 2, 2006, pp. 2006.0028-2006.0028.

14. Yaakov Benenson. “Biomolecular computing systems: principles, progress and potential”.
Nature Reviews Genetics 13:7, 2012, pp. 455-468.

15. Jennifer AN Brophy and Christopher A Voigt. “Principles of genetic circuit design”. Na-
ture methods 11:5, 2014, pp. S08-520.

16. Martyn Amos and Angel Goni-Moreno. “Cellular Computing and Synthetic Biology”.
In: Computational Matter. Springer, 2018, pp. 93-110.

17. Simon Auslinder, David Auslinder, and Martin Fussenegger. “Synthetic biology—the
synthesis of biology”. Angewandte Chemie International Edition 56:23, 2017, pp. 6396
6419.

18. Ernesto Andrianantoandro et al. “Synthetic biology: new engineering rules for an emerg-
ing discipline”. Molecular systems biology 2:1, 2006, pp. 2006-0028.

19. Alec AK Nielsen etal. “Genetic circuit design automation”. Sczence 352:6281, 2016, aac7341.

20. Chunbo Lou et al. “Synthesizing a novel genetic sequential logic circuit: a push-on push-
oft switch”. Molecular systems biology 6:1, 2010, p. 350.

21. AriEFriedland etal. “Synthetic gene networks that count”. science 324:5931,2009, pp. 1199-
1202.

22. Seth L Shipman et al. “Molecular recordings by directed CRISPR spacer acquisition”. Scz-
ence 353:6298, 2016, aaf1175.

23. Shunsuke Kawasakietal. “RNA and protein-based nanodevices for mammalian post-transcriptional
circuits”. Current Opinion in Biotechnology 63, 2020, pp. 99-110.

24. Adison Wong et al. “Layering genetic circuits to build a single cell, bacterial half adder”.
BM(C biology 13:1, 2015, pp. 1-16.

25. Ye Chen et al. “Genetic circuit design automation for yeast”. Nature Microbiology 5:11,
2020, pp. 1349-1360.

26. Gabriele Lillacci, Yaakov Benenson, and Mustafa Khammash. “Synthetic control systems
for high performance gene expression in mammalian cells”. Nucleic acids research 46:18,

2018, pp. 9855-9863.

27. Fankang Meng and Tom Ellis. “The second decade of synthetic biology: 2010-2020”. Na-
ture Communications 11:1, 2020, pp- 1-4.

28. Victor De Lorenzo et al. “The power of synthetic biology for bioproduction, remediation
and pollution control: the UN’s Sustainable Development Goals will inevitably require
the application of molecular biology and biotechnology on a global scale”. EMBO reports
19:4, 2018, e45658.

29. Shimyn Slomovic, Keith Pardee, and James] Collins. “Synthetic biology devices for in
vitro and in vivo diagnostics”. Proceedings of the National Academy of Sciences 112:47,
2015, pp. 14429-14435.

252

30.

31.

32.

33.

34.

3s.

36.

37.

38.

39.

40.

41.

42.

43.

44.

Bibliography

Angel Goni-Moreno et al. “Deconvolution of gene expression noise into spatial dynamics
of transcription factor—promoter interplay”. ACS synthetic biology 6:7, 2017, pp. 1359—
1369.

Avigdor Eldar and Michael B Elowitz. “Functional roles for noise in genetic circuits”. Na-
ture 467:7312, 2010, pp. 167-173.

Felix Moser et al. “Dynamic control of endogenous metabolism with combinatorial logic
circuits”. Molecular systems biology 14:11, 2018, €8605.

Angel Goni-Moreno and Pablo I Nikel. “High-performance biocomputing in synthetic
biology—integrated transcriptional and metabolic circuits”. Frontiers in bioengineering and
biotechnology 7, 2019, p. 40.

Huseyin Tas et al. “Contextual dependencies expand the re-usability of genetic inverters”.
Nature communications 12:1, 2021, pp. 1-9.

Alice Boo, Tom Ellis, and Guy-Bart Stan. “Host-aware synthetic biology”. Current Opin-
ton in Systems Biology 14, 2019, pp. 66-72.

Ronghui Zhu etal. “Synthetic multistability in mammalian cells”. Sczence 375:6578, 2021,
eabg9765.

Lewis Grozinger et al. “Pathways to cellular supremacy in biocomputing”. Nature com-
munications 10:1, 2019, p. 5250.

Paul S. Freemont. “Synthetic biology industry: data-driven design is creating new oppor-
tunities in biotechnology”. Emerging Topics in Life Sciences 3:5, 2019, pp. 651-657. 1sSN:

2397—8554.I)OI:10.1042/ETLS20190040.eprhjt:https://portlandpress.com/emergtoplifesci/

article-pdf/3/5/651/869674/etls-2019-0040c.pdf. URL: https://doi.org/10.1042/
ETLS20190040.

Jacob Beal et al. “Communicating structure and function in synthetic biology diagrams”.
ACS synthetic biology 8:8, 2019, pp. 1818-1825.

Yiannis N Kaznessis. “Models for synthetic biology”. BMC systems biology 1, 2007, pp. 1-
4.

Linda] Kahl and Drew Endy. “A survey of enabling technologies in synthetic biology”.
Journal of biological engineering 7, 2013, pp. 1-19.

Richard Kitney and Paul Freemont. “Synthetic biology—the state of play”. FEBS letters
586:15, 2012, pp- 2029-2036.

Jianzhi Zhang et al. “Accelerating strain engineering in biofuel research via build and test
automation of synthetic biology”. Current Opinion in Biotechnology 67, 2021, pp. 88-98.
1SSN: 0958-1669. DOTI: https://doi.org/16.1016/j.copbio.2021.01.016. URL: https:
//www.sciencedirect.com/science/article/pii/S095816692100015X

Benjamin Pouvreau, Thomas Vanhercke, and Surinder Singh. “From plant metabolic en-
gineering to plant synthetic biology: The evolution of the design/build/test/learn cycle”.
Plant Science 273, 2018. Synthetic Biology Meets Plant Metabolism, pp. 3-12. 1ssN: 0168-
9452.D(H:https://doi.org/10.1016/j.plantsci.2018.03.035JURL:https://www.

sciencedirect.com/science/article/pii/S0168945217311809.

253

http://dx.doi.org/10.1042/ETLS20190040
https://portlandpress.com/emergtoplifesci/article-pdf/3/5/651/869674/etls-2019-0040c.pdf
https://portlandpress.com/emergtoplifesci/article-pdf/3/5/651/869674/etls-2019-0040c.pdf
https://doi.org/10.1042/ETLS20190040
https://doi.org/10.1042/ETLS20190040
http://dx.doi.org/https://doi.org/10.1016/j.copbio.2021.01.010
https://www.sciencedirect.com/science/article/pii/S095816692100015X
https://www.sciencedirect.com/science/article/pii/S095816692100015X
http://dx.doi.org/https://doi.org/10.1016/j.plantsci.2018.03.035
https://www.sciencedirect.com/science/article/pii/S0168945217311809
https://www.sciencedirect.com/science/article/pii/S0168945217311809

Bibliography

45. Albert-Liszlé Barabdsi and Mdrton Pésfai. Network science. Cambridge University Press,
Cambridge, 2016. URL: http://barabasi.com/networksciencebook/.

46. Lothar Krempel. “Network visualization”. The SAGE handbook of social network analysis,
2011, pp. 558-577.

47. Jingwen Yan etal. “Network approaches to systems biology analysis of complex disease: in-
tegrative methods for multi-omics data”. Briefings in Bioinformatics19:6,2017, pp. 1370—
1381. 1SSN: 1477-4054. DOI: 16. 1093 /bib/bbxo66. eprint: https://academic.oup.com/
bib/article-pdf/19/6/1370/27119423/bbx066.pdf. URL: https://doi.org/16.1093/bib/
bbxe66.

48. Mathieu Bouchard, Anne-Laure Jousselme, and Pierre-Emmanuel Doré. “A proof for the
positive definiteness of the Jaccard index matrix”. International Journal of Approximate
Reasoning 54:5, 2013, pp. 615-626.

49. MK Vijaymeena and K Kavitha. “A survey on similarity measures in text mining”. Ma-
chine Learning and Applications: An International Journal 3:2, 2016, pp. 19-28.

50. Bruce Golden. “Shortest-path algorithms: A comparison”. Operations Research 24:6,1976,
pp. 1164-1168.

51. Stephen P. Borgatti. “Centrality and network flow”. Social Networks 27:1, 2005, pp. 55—
71. 1ssN: 0378-8733. DOI: https: //doi.org/10.1016/7j .socnet.2004 .11 .008. URL:
https://www.sciencedirect.com/science/article/pii/S0378873304000693.

52. William JR Longabaugh, Eric H Davidson, and Hamid Bolouri. “Computational repre-
sentation of developmental genetic regulatory networks”. Developmental biology 283:1,
2005, pp. 1-16.

53. Michael Hecker et al. “Gene regulatory network inference: data integration in dynamic
models—a review”. Biosystems 96:1, 2009, pp. 86-103.

S4. Daniel R Rhodes et al. “Probabilistic model of the human protein-protein interaction net-
work”. Nature biotechnology 23:8, 2005, pp. 951-959.

5S. Andrea Franceschini et al. “STRING v9. 1: protein-protein interaction networks, with
increased coverage and integration”. Nucleic acids research 41:D1, 2012, pp. D808-D815.

56. Alexiou Athanasios et al. “Protein-protein interaction (PPI) network: recent advances in
drug discovery”. Current drug metabolism 18:1, 2017, pp. 5-10.

57. Yoichi Murakami et al. “Network analysis and in silico prediction of protein—protein in-
teractions with applications in drug discovery”. Current opinion in structural biology 44,
2017, pp. 134-142.

58. Suresh Kumar. “COVID-19: A drug repurposing and biomarker identification by using
comprehensive gene-disease associations through protein-protein interaction network anal-
ysis”, 2020.

59. Alicia L Richards, Manon Eckhardt, and Nevan] Krogan. “Mass spectrometry-based protein—
protein interaction networks for the study of human diseases”. Molecular systems biology
17:1, 2021, e8792.

254

http://barabasi.com/networksciencebook/
http://dx.doi.org/10.1093/bib/bbx066
https://academic.oup.com/bib/article-pdf/19/6/1370/27119423/bbx066.pdf
https://academic.oup.com/bib/article-pdf/19/6/1370/27119423/bbx066.pdf
https://doi.org/10.1093/bib/bbx066
https://doi.org/10.1093/bib/bbx066
http://dx.doi.org/https://doi.org/10.1016/j.socnet.2004.11.008
https://www.sciencedirect.com/science/article/pii/S0378873304000693

60.

6l.

62.

63.

64.

65.

66.

67.

68.
69.

70.

71.

72.

73.

74.
75.

Bibliography

Sepideh Sadegh et al. “Network medicine for disease module identification and drug re-
purposing with the NeDRex platform”. Nature Communications 12:1, 2021, p. 6848.

Insuk Lee et al. “A probabilistic functional network of yeast genes”. science 306:5701,
2004, pp. 1555-1558.

Katherine James, Anil Wipat, and Jennifer Hallinan. “Integration of full-coverage proba-
bilistic functional networks with relevance to specific biological processes”. In: Data Inte-
gration in the Life Sciences: 6th International Workshop, DILS 2009, Manchester, UK, July
20-22, 2009. Proceedings 6. Springer. 2009, pp. 31-46.

Vincent Lacroix et al. “An introduction to metabolic networks and their structural analy-
sis”. IEEE/ACM transactions on computational biology and bioinformatics 5:4,2008, pp. 5S94—
617.

Oliver Fiechn and Wolfram Weckwerth. “Deciphering metabolic networks”. Enropean Jour-
nal of Biochemistry 270:4, 2003, pp. 579-588.

Maciek R Antoniewicz. “Dynamic metabolic flux analysis—tools for probing transient
states of metabolic networks”. Current opinion in biotechnology 24:6, 2013, pp. 973-978.

Lee] Sweetlove and Alisdair R Fernie. “Regulation of metabolic networks: understanding
metabolic complexity in the systems biology era”. New Phytologist 168:1, 2005, pp. 9-24.

Douglas E Biancur et al. “Compensatory metabolic networks in pancreatic cancers upon
g p y p p
perturbation of glutamine metabolism”. Nature communications 8:1, 2017, p. 15965.

URL: https://autoprotocol.org/.

Felipe Pezoa etal. “Foundations of JSON schema”. In: Proceedings of the 25th international
conference on World Wide Web. 2016, pp. 263-273.

Gabriele Gramelsberger. “The simulation approach in synthetic biology”. Studies in His-
tory and Philosophy of Science Part C: Studies in History and Philosophy of Biological and
Biomedical Sciences 44:2, 2013, pp. 150-157.

Michael Hucka et al. “The systems biology markup language (SBML): a medium for rep-
resentation and exchange of biochemical network models”. Bioinformatics 19:4, 2003,
pp- 524-531.

Fei He, Ettore Murabito, and Hans V Westerhoff. “Synthetic biology and regulatory net-
works: where metabolic systems biology meets control engineering”. Journal of The Royal
Society Interface 13:117, 2016, p. 20151046.

Roberta Kwok. “Five hard truths for synthetic biology: can engineering approaches tame
the complexity of living systems? Roberta Kwok explores five challenges for the field and
how they might be resolved”. Nature 463:7279, 2010, pp. 288-291.

Chris] Myers. Engineering genetic circuits. CRC Press, 2016.

Adrian L Slusarczyk, Allen Lin, and Ron Weiss. “Foundations for the design and imple-
mentation of synthetic genetic circuits”. Nature Reviews Genetics 13:6, 2012, pp. 406—
420.

255

https://autoprotocol.org/

Bibliography

76.

77.

78.

79.

80.
81.

82.

83.

84.

8s.

86.

87.

88.

89.

90.

91

92.

256

Thomas E Gorochowski. “Agent-based modelling in synthetic biology”. Essays in biochem-
istry 60:4, 2016, pp. 325-336.

Yuting Zheng and Ganesh Sriram. “Mathematical modeling: bridging the gap between
concept and realization in synthetic biology”. Journal of Biomedicine and Biotechnology
2010, 2010.

Stéphanie Rialle et al. “BioNetCAD: design, simulation and experimental validation of
synthetic biochemical networks”. Bioinformatics 26:18, 2010, pp. 2298-2304.

Zach Zundel et al. “A validator and converter for the synthetic biology open language”.
ACS Synthetic Biology 6:7, 2017, pp. 1161-1168.

Hiroaki Kitano. “Computational systems biology”. Nature 420:6912,2002, pp. 206-210.

Goksel Misirli. “Data integration strategies for informing computational design in syn-
thetic biology”. PhD thesis. Newcastle University, 2013.

Anze Verbi¢, Arne Praznik, and Roman Jerala. “A guide to the design of synthetic gene
networks in mammalian cells”. The FEBS Journal 288:18, 2021, pp. 5265-5288.

Evan Appleton et al. “Design automation in synthetic biology”. Cold Spring Harbor per-
spectives in biology 9:4, 2017, 2023978.

Lachlan] Munro and Douglas B Kell. “Intelligent host engineering for metabolic flux op-
timisation in biotechnology”. Biochemical Journal 478:20, 2021, pp. 3685-3721.

Jiirgen Pleiss. “The promise of synthetic biology”. Applied microbiology and biotechnology
73,2006, pp. 735-739.

Michal Galdzicki et al. “The Synthetic Biology Open Language (SBOL) provides a com-
munity standard for communicating designs in synthetic biology”. Nature biotechnology
32:6, 2014, pp. 545-550.

Elizabeth HC Bromley et al. “Peptide and protein building blocks for synthetic biology:
from programming biomolecules to self-organized biomolecular systems”. ACS chemical
biology 3:1, 2008, pp. 38-50.

Deepak Chandran, Frank T Bergmann, and Herbert M Sauro. “TinkerCell: modular CAD
tool for synthetic biology”. Journal of biological engineering 3:1, 2009, pp. 1-17.

Sascha Rolli¢, Michael Mangold, and Kai Sundmacher. “Designing biological systems:
systems engineering meets synthetic biology”. Chemical Engineering Science 69:1, 2012,
pp- 1-29.

Gregory Stephanopoulos. “Synthetic biology and metabolic engineering”. ACS synthetic
biology 1:11, 2012, pp. 514-525.

Michael M Kampf and Wilfried Weber. “Synthetic biology in the analysis and engineering
of signaling processes”. Integrative Biology 2:1, 2010, pp. 12-24.

Shankar Mukherji and Alexander Van Oudenaarden. “Synthetic biology: understanding
biological design from synthetic circuits”. Nature Reviews Genetics 10:12, 2009, pp. 859—
871.

Bibliography

93. Aidan Hogan et al. “Knowledge graphs”. ACM Computing Surveys (CSUR) S4:4, 2021,
pp- 1-37.

94. Sameh K Mohamed, Aayah Nounu, and Viét Novécek. “Biological applications of knowl-
edge graph embedding models”. Briefings in bioinformatics 22:2, 2021, pp. 1679-1693.

95. Eric Miller. “An introduction to the resource description framework.” D-lib Magazine,
1998.

96. Mike Uschold and Michael Gruninger. “Ontologies: Principles, methods and applications”.
The knowledge engineering review 11:2,1996, pp. 93-136.

97. Balakrishnan Chandrasekaran, John R Josephson, and V Richard Benjamins. “What are
ontologies, and why do we need them?” JEEE Intelligent Systems and their applications
14:1,1999, pp. 20-26.

98. Steften Staab and Rudi Studer. Handbook on ontologies. Springer Science & Business Me-
dia, 2010.

99. Pasquale Pagano, Leonardo Candela, and Donatella Castelli. “Data interoperability”. Data
Science Journal 12, 2013, GRDI19-GRDI25.

100. Jieying Chen et al. “Ontology extraction for large ontologies via modularity and forget-
ting”. In: Proceedings of the 10th International Conference on Knowledge Capture. 2019,
pp- 45-52.

101. Ran Chao etal. “Engineering biological systems using automated biofoundries”. Mezabolic
Engineering 42,2017, pp. 98-108.

102. Zhen Zhangetal. “libSBOLj 2.0: A Java Library to Support SBOL 2.0”. IEEE Life Sciences
Letters 1:4, 2015, pp. 34-37. DOI: 10.1109/LLS.2016.2546546.

103. Bryan A. Bartley et al. “pySBOL: A Python Package for Genetic Design Automation and
Standardization”. ACS Synthetic Biology 8:7,2019. PMID: 30424601, pp.1515-1518. DOTI: 10.
1021 /acssynbio. 8b00336. eprint: https://doi.org/10.1021/acssynbio.8b00336. URL:
https://doi.org/10.1021/acssynbio.8b00336.

104. Maureen A. O?Malley. “Making Knowledge in Synthetic Biology: Design Meets Kludge”.
Biological Theory 4:4,2009, pp. 378-389. DOI: 10.1162/biot_{a}_00006.

105. Peter McMahan and James Evans. “Ambiguity and Engagement”. American Journal of
Socz'ology 124:3, 2018, pp. 860-912. DOL: 10.1086/701298. eprint: https: //doi.org/10.
1086/701298. URL: https://doi.org/10.1086/701298.

106. Federica Ciocchetta and Jane Hillston. “Bio-PEPA: A framework for the modelling and
analysis of biological systems”. Theoretical Computer Science 410:33, 2009. Concurrent
Systems Biology: To Nadia Busi (1968-2007), pp. 3065-3084. 1ssN: 0304-3975. DOI: https:
//doi.org/10.1016/j.tcs.2009.02.037. URL: https://www.sciencedirect.com/science/
article/pii/S0304397509001662.

107. Rosara Lakin et al. “Visual DSD: A design and analysis tool for DNA strand displace-
ment systems”. Bioinformatics (Oxford, England) 27, 2011, pp. 3211-3. DOI: 10 . 1093/
bioinformatics/btr543.

257

http://dx.doi.org/10.1109/LLS.2016.2546546
http://dx.doi.org/10.1021/acssynbio.8b00336
http://dx.doi.org/10.1021/acssynbio.8b00336
https://doi.org/10.1021/acssynbio.8b00336
https://doi.org/10.1021/acssynbio.8b00336
http://dx.doi.org/10.1162/biot_{a}_00006
http://dx.doi.org/10.1086/701298
https://doi.org/10.1086/701298
https://doi.org/10.1086/701298
https://doi.org/10.1086/701298
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.02.037
http://dx.doi.org/https://doi.org/10.1016/j.tcs.2009.02.037
https://www.sciencedirect.com/science/article/pii/S0304397509001662
https://www.sciencedirect.com/science/article/pii/S0304397509001662
http://dx.doi.org/10.1093/bioinformatics/btr543
http://dx.doi.org/10.1093/bioinformatics/btr543

Bibliography

108.

109.

110.

111.
112.

113.

114.

115.

116.

117.

118.

119.

120.

121.

258

Michael Zhang et al. “SBOLDesigner 2: An Intuitive Tool for Structural Genetic De-
sign”. ACS Synthetic Biology 6:7, 2017. PMID: 28441476, pp. 1150-1160. DOI: 10. 1021/
acssynbio.6b00275. Cpl‘int: https://doi.org/10.1021/acssynbio.6b00275. URL: https:
//doi.org/10.1021/acssynbio.6b00275.

James Alastair McLaughlin etal. “VisBOL: Web-Based Tools for Synthetic Biology Design
Visualization”. ACS Synthetic Biology 5:8, 2016. PMID: 26808703, pp. 874-876. DOI: 10.
1021 /acssynbio.5b00244. eprint: https://doi.org/16.1021/acssynbio.5b00244. URL:
https://doi.org/10.1021/acssynbio.5b00244.

Logan Terry et al. “SBOLCanvas: A Visual Editor for Genetic Designs”. ACS Synthetic
Bz'ology, 2021. DOI: 16.1021/acssynbio.1c00096.

Benchling. nttps: / /www.benchling.com/. Accessed: 25/07/2023.

Dennis M. Ritchie. “The Development of the C Programming Language”. In: History
of Programming Languages—II. Association for Computing Machinery, New York, NY,
USA, 1996, pp. 671-698. 1sBN: 0201895021. URL: https://doi.org/10.1145/234286.
1057834,

Erin H Wilson et al. “Genotype specification language”. ACS Synthetic Biology 5:6, 2016,
pp- 471-478.

Lesia Bilitchenko, Adam Liu, and Douglas Densmore. “The Eugene language for synthetic
biology”. In: Methods in enzymology. Vol. 498. Elsevier, 2011, pp. 153-172.

Michael Pedersen and Andrew Phillips. “Towards programming languages for genetic en-
gineering of living cells”. Journal of the Royal Society, Interface / the Royal Society 6 Suppl
4,2009, S437-50. DOI: 16.1098/rsif.2008.0516. focus.

James Alastair McLaughlin et al. “sboljs: Bringing the Synthetic Biology Open Language
to the Web Browser”. ACS Synthetic Biology 8:1,2019, pp.191-193. DOI: 10. 1021/acssynbio.
8b00338. eprint: https://doi.org/10.1021/acssynbio.8b00338. URL: https://doi.org/
10.1021/acssynbio.8b00338.

Zhen Zhangetal. “LibSBOL;j 2.0: A Java library to support SBOL 2.0”. JEEE Life Sciences
Letters 1, 2016, pp. 1-1. DOI: 10.1109/LLS.2016.2546546.

Iyad Zayour and Hassan Hajjdiab. “How much integrated development environments
(ides) improve productivity?” /. Softw. 8:10, 2013, pp. 2425-2431.

Domitilla Del Vecchio. “Modularity, context-dependence, and insulation in engineered bi-
ological circuits”. Trends in biotechnology 33:2, 2015, pp. 111-119.

Thomas Decoene et al. “Standardization in synthetic biology: an engineering discipline
coming of age”. Critical reviews in biotechnology 38:5, 2018, pp. 647-656.

Uriel Urquiza-Garciéa, Tomasz Zieliriski, and Andrew] Millar. “Better research by efhi-
cient sharing: evaluation of free management platforms for synthetic biology designs”.
Synthetic Biology 4:1, 2019, ysz016.

http://dx.doi.org/10.1021/acssynbio.6b00275
http://dx.doi.org/10.1021/acssynbio.6b00275
https://doi.org/10.1021/acssynbio.6b00275
https://doi.org/10.1021/acssynbio.6b00275
https://doi.org/10.1021/acssynbio.6b00275
http://dx.doi.org/10.1021/acssynbio.5b00244
http://dx.doi.org/10.1021/acssynbio.5b00244
https://doi.org/10.1021/acssynbio.5b00244
https://doi.org/10.1021/acssynbio.5b00244
http://dx.doi.org/10.1021/acssynbio.1c00096
https://www.benchling.com/
https://doi.org/10.1145/234286.1057834
https://doi.org/10.1145/234286.1057834
http://dx.doi.org/10.1098/rsif.2008.0516.focus
http://dx.doi.org/10.1021/acssynbio.8b00338
http://dx.doi.org/10.1021/acssynbio.8b00338
https://doi.org/10.1021/acssynbio.8b00338
https://doi.org/10.1021/acssynbio.8b00338
https://doi.org/10.1021/acssynbio.8b00338
http://dx.doi.org/10.1109/LLS.2016.2546546

122.

123.

124.

12s.

126.

127.

128.

129.

130.
131.
132.

133.

134.

135.

136.

137.

138.

139.

Bibliography

James Alastair McLaughlin et al. “SynBioHub: A Standards-Enabled Design Repository
for Synthetic Biology”. ACS Synthetic Biology 7:2, 2018. PMID: 29316788, pp. 682-688.
DOI: 160.1021/acssynbio.7b00403. eprint: https://doi.org/16.1021/acssynbio.7b00403.
URL: https://doi.org/10.1021/acssynbio.7b00403.

James Brown. “The iGEM competition: building with biology”. IET Synthetic Biology 1:1,
2007, pp. 3-6.

Goksel Misirli et al. “A Computational Workflow for the Automated Generation of Mod-
els of Genetic Designs”. ACS Synthetic Biology 8, 2018. DOI: 10.1021/acssynbio. 7b00459.

Timothy S Ham et al. “Design, implementation and practice of JBEI-ICE: an open source
biological part registry platform and tools”. Nucleic acids research 40:18, 2012, e141-el41.

Joanne Kamens. “The Addgene repository: an international nonprofit plasmid and data
resource”. Nucleic Acids Research 43:D1, 2015, pp. D1152-D1157.

Minoru Kanehisa. “The KEGG database”. In: Tn silicosimulation of biological processes:
Novartis Foundation Symposium 247.Vol. 247. Wiley Online Library. 2002, pp. 91-103.

Goksel Mistrli et al. “Virtual Parts Repository 2: Model-driven design of genetic regulatory
circuits”. ACS Synthetic Biology 10:12, 2021, pp. 3304-3315.

Bettina Berendt et al. “A roadmap for web mining: From web to semantic web”. In: Web
Mining: From Web to Semantic Web: First European Web Mining Forum, EWMF 2003,
Cavtat-Dubrovnik, Croatia, September 22, 2003, Invited and Selected Revised Papers. Springer.
2004, pp. 1-22.

Timothy Lebo et al. “Prov-o: The prov ontology”. W3C recommendation 30, 2013.

Dennis A Benson et al. “GenBank”. Nucleic acids research 41:D1, 2012, pp. D36-D42.

Hasan Baig et al. “Synthetic biology open language visual (SBOL visual) version 2.2”. Jour-
nal of Integrative Bioinformatics 1:ahead-of-print, 2020.

James Alastair McLaughlin et al. “SynBioHub: a standards-enabled design repository for
synthetic biology”. ACS synthetic biology 7:2, 2018, pp. 682-688.

Chris] Myers et al. “A standard-enabled workflow for synthetic biology”. Biochemical So-
ciety Transactions 45:3, 2017, pp. 793-803.

Christina D Smolke. “Building outside of the box: iGEM and the BioBricks Foundation”.
Nature biotechnology 27:12, 2009, pp. 1099-1102.

Jeanet Mante et al. “Synthetic Biology Knowledge System”. ACS synthetic biology 10:9,
2021, pp. 2276-2285.

Mathew M Jessop-Fabre and Nikolaus Sonnenschein. “Improving reproducibility in syn-
thetic biology”. Frontiers in bioengineering and biotechnology 7, 2019, p. 18.

Marc P Raphael, Paul E Sheehan, and Gary] Vora. “A controlled trial for reproducibility”.
Nature 579:7798, 2020, pp. 190-192.

Ryan McDaniel and Ron Weiss. “Advances in synthetic biology: on the path from proto-
types to applications”. Current opinion in biotechnology 16:4, 2005, pp. 476-483.

259

http://dx.doi.org/10.1021/acssynbio.7b00403
https://doi.org/10.1021/acssynbio.7b00403
https://doi.org/10.1021/acssynbio.7b00403
http://dx.doi.org/10.1021/acssynbio.7b00459

Bibliography

140. Gil Alterovitz, Taro Muso, and Marco F Ramoni. “The challenges of informatics in syn-
thetic biology: from biomolecular networks to artificial organisms”. Briefings in bioinfor-
matics 11:1, 2010, pp. 80-95.

141. Ernesto Andrianantoandro et al. “Synthetic biology: new engineering rules for an emerg-
ing discipline”. Molecular Systems Biology 2:1,2006, p. 2006.0028. DOI: https: //doi.org/
10.1038/msb4100073. eprint: https://www.embopress.org/doi/pdf/10.1038/msb4100073.
URL: https://www.embopress.org/doi/abs/10.1038/msb4100073.

142. Steven A Benner and A Michael Sismour. “Synthetic biology”. Nature reviews genetics 6:7,
2005, pp. 533-543.

143. Mario A Marchisio and J6rg Stelling. “Computational design tools for synthetic biology”.
Current opinion in biotechnology 20:4, 2009, pp. 479-485.

144. Ibrahim Aldulijan etal. “Functional Synthetic Biology”. Synthetic Biology 8:1,2023, ysad006.
1SSN: 2397-7000. DOI: 10. 1093/ synbio/ysadeos. eprint: https://academic.oup.com/
synbio/article-pdf/8/1/ysadoe6/49937590/ysadeo6.pdf. URL: https://doi.org/10.
1093/synbio/ysadooé.

145. Priscilla EM Purnick and Ron Weiss. “The second wave of synthetic biology: from mod-
ules to systems”. Nature reviews Molecular cell biology 10:6, 2009, pp. 410-422.

146. Matthias Heinemann and Sven Panke. “Synthetic biology—putting engineering into bi-
ology”. Bivinformatics 22:22, 2006, pp. 2790-2799.

147. Niel Chah. “OK Google, What Is Your Ontology? Or: Exploring Freebase Classification
to Understand Google’s Knowledge Graph”. 4rXiv abs/1805.03885, 2018.

148. Alain Barrat et al. “The architecture of complex weighted networks”. Proceedings of the
national academy of sciences 101:11, 2004, pp. 3747-3752.

149. Albert-Laszlo Barabasi and Zoltan N Oltvai. “Network biology: understanding the cell’s
functional organization”. Nature reviews genetics 5:2, 2004, pp. 101-113.

150. Debajyoti Mukhopadhyay, Debasis Giri, and Sanasam Ranbir Singh. “An approach to con-
fidence based page ranking for user oriented web search”. ACM SIGMOD Record 32:2,
2003, pp. 28-33.

151. Daniel W Margo and Margo I Seltzer. “The Case for Browser Provenance.” In: Workshop
on the Theory and Practice of Provenance. 2009.

152. Jacob Beal et al. “An end-to-end workflow for engineering of biological networks from
high-level specifications”. ACS Synthetic Biology 1:8, 2012, pp. 317-331.

153. Albert-Ldszlé Barabdsi and Eric Bonabeau. “Scale-free networks”. Scientific american 288:5,
2003, pp. 60-69.

154. Timothy S Jones et al. “Genetic circuit design automation with Cello 2.0”. Nature proto-
cols 17:4, 2022, pp. 1097-1113.

155. Trey Ideker and Nevan J Krogan. “Differential network biology”. Molecular systems biol-
ogy 8:1, 2012, p. 565.

260

http://dx.doi.org/https://doi.org/10.1038/msb4100073
http://dx.doi.org/https://doi.org/10.1038/msb4100073
https://www.embopress.org/doi/pdf/10.1038/msb4100073
https://www.embopress.org/doi/abs/10.1038/msb4100073
http://dx.doi.org/10.1093/synbio/ysad006
https://academic.oup.com/synbio/article-pdf/8/1/ysad006/49937590/ysad006.pdf
https://academic.oup.com/synbio/article-pdf/8/1/ysad006/49937590/ysad006.pdf
https://doi.org/10.1093/synbio/ysad006
https://doi.org/10.1093/synbio/ysad006

Bibliography

156. Jin-Hee Cho et al. “Uncertainty-based false information propagation in social networks”.
ACM Transactions on Social Computing 2:2, 2019, pp. 1-34.

157. Tomas Fencl, Pavel Burget, and Jan Bilek. “Network topology design”. Control Engineer-
ing Practice 19:11, 2011, pp. 1287-1296.

158. Arvind Kumar Yadav, Rohit Shukla, and Tiratha Raj Singh. “Chapter 22 - Topological pa-
rameters, patterns, and motifs in biological networks”. In: Bioznformatics. Ed. by Dev Bukhsh
Singh and Rajesh Kumar Pathak. Academic Press, 2022, pp. 367-380. 1sBN: 978-0-323-
89775-4. DOI: https://doi.org/10.1016/B978-0-323-89775-4.00012-2. URL: https:
//www.sciencedirect.com/science/article/pii/B9780323897754000122.

159. Ron Milo et al. “Network motifs: simple building blocks of complex networks”. Science
298:5594, 2002, pp. 824-827.

160. Alvin Tamsir, Jeffrey] Tabor, and Christopher A Voigt. “Robust multicellular comput-
ing using genetically encoded NOR gates and chemical ‘wires™. Nature 469:7329, 2011,
pp- 212-215.

161. Luis Serrano. Synthetic biology: promises and challenges. 2007 .

162. Yunming Zhang et al. “Optimizing ordered graph algorithms with graphit”. In: Proceed-
ings of the 18th ACM/IEEE International Symposium on Code Generation and Optimiza-
tion. 2020, pp. 158-170.

163. Santo Fortunato. “Community detection in graphs”. Physics reports 486:3-5, 2010, pp. 75—
174.

164. Richard] Anderson and Heather Woll. “Wiait-free parallel algorithms for the union-find
problem”. In: Proceedings of the twenty-third annual ACM symposium on Theory of com-
puting. 1991, pp. 370-380.

165. Michael Sutton, Tal Ben-Nun, and Amnon Barak. “Optimizing Parallel Graph Connec-
tivity Computation via Subgraph Sampling”. In: 2018 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 2018, pp. 12-21. DOI: 16.1109/IPDPS.2018.

00012,

166. JV Mante. “Promotion of Data Reuse in Synthetic Biology”. PhD thesis. University of
Colorado at Boulder, 2022.

167. Chengwei Lei and Jianhua Ruan. “A novel link prediction algorithm for reconstructing
protein—protein interaction networks by topological similarity”. Bioinformatics 29:3,2013,
pp- 355-364.

168. Marko Gosak et al. “Network science of biological systems at different scales: A review”.
Physics of life reviews 24, 2018, pp. 118-135.

169. Erzsébet Ravasz et al. “Hierarchical organization of modularity in metabolic networks”.
science 297:5586, 2002, pp. 1551-1555.

170. D Ewen Cameron, Caleb J Bashor, and James] Collins. “A brief history of synthetic biol-
ogy”. Nature Reviews Microbiology 12:5, 2014, pp. 381-390.

171. Sergi Valverde et al. “The software crisis of synthetic biology”. BioRxzv, 2016, p. 041640.

261

http://dx.doi.org/https://doi.org/10.1016/B978-0-323-89775-4.00012-2
https://www.sciencedirect.com/science/article/pii/B9780323897754000122
https://www.sciencedirect.com/science/article/pii/B9780323897754000122
http://dx.doi.org/10.1109/IPDPS.2018.00012
http://dx.doi.org/10.1109/IPDPS.2018.00012

Bibliography

172. Jorge Pérez, Marcelo Arenas, and Claudio Gutierrez. “Semantics and complexity of SPARQL”.
ACM Transactions on Database Systems (TODS) 34:3, 2009, pp. 1-45.

173. Uriel Urquiza-Garcia, Tomasz Zieliniski, and Andrew] Millar. “Better research by eflicient
sharing: evaluation of free management platforms for synthetic biology designs”. Synthetic
Biology 4:1, 2019. ysz016. 1sSN: 2397-7000. DOI: 10.1093/synbio/ysz016. eprint: https:
/ / academic . oup.com/synbio/article-pdf/4/1/ysz016 /33640438 /ysz016 . pdf. URL:
https://doi.org/10.1093/synbio/ysz016.

174. Antonio Fabregat et al. “The reactome pathway knowledgebase”. Nucleic acids research
46:D1, 2018, pp. D649-D655.

175. Jim Webber. “A programmatic introduction to neo4j”. In: Proceedings of the 3rd annual
confference on Systems, programming, and applications: software for hbumanity. 2012, pp. 217-
218.

176. Nadime Francis et al. “Cypher: An evolving query language for property graphs”. In: Pro-
ceedings of the 2018 international conference on management of data. 2018, pp. 1433-1445.

177. Eric W Sayers et al. “GenBank”. Nucleic acids research 47:D1, 2019, pp. D94-D99.

178. Michal Galdzicki et al. “Data Model Standardization for Synthetic Biomolecular Circuits
and Systems”. Design and Analysis of Biomolecular Circuits: Engineering Approaches to
Systems and Synthetic Biology, 2011, pp. 281-293.

179. Inaki Sainz de Murieta, Matthieu Bultelle, and Richard I Kitney. “Toward the first data
acquisition standard in synthetic biology”. ACS synthetic biology 5:8, 2016, pp. 817-826.

180. AnnaBernasconi. “Data quality-aware genomic data integration”. Computer Methods and
Programs in Biomedicine Update 1, 2021, p. 100009.

181. Savas Konur et al. “Toward full-stack in silico synthetic biology: integrating model speci-
fication, simulation, verification, and biological compilation”. ACS Synthetic Biology 10:8,
2021, pp. 1931-1945.

182. Hasan Baig et al. “Synthetic biology open language visual (SBOL Visual) version 2.3”.
Journal of Integrative Bioinformatics 18:3, 2021.

183. Belén Calles, Angel Gofi-Moreno, and Viéctor de Lorenzo. “Digitalizing heterologous
gene expression in Gram-negative bacteria with a portable ON/OFF module”. Molecular
Systems Biology 15, 2019.

184. Jacob Beal et al. “Reproducibility of fluorescent expression from engineered biological
constructs in E. coli”. PloS one 11:3, 2016, €0150182.

185. Bradley Brown et al. “Capturing Multicellular System Designs Using Synthetic Biology
Open Language (SBOL)”. ACS Synthetic Biology 9:9, 2020, pp. 2410-2417.

186. Amy N Langyville and Carl D Meyer. Google’s PageRank and beyond.: The science of search
engine rankings. Princeton university press, 2006.

187. Goksel Misirli et al. “Data integration and mining for synthetic biology design”. ACS syn-
thetic biology 5:10, 2016, pp. 1086-1097.

262

http://dx.doi.org/10.1093/synbio/ysz016
https://academic.oup.com/synbio/article-pdf/4/1/ysz016/33640438/ysz016.pdf
https://academic.oup.com/synbio/article-pdf/4/1/ysz016/33640438/ysz016.pdf
https://doi.org/10.1093/synbio/ysz016

188.

189.

190.

191.

192.

193.

194.

195.

196.

197.

198.

199.

200.

201.

202.

203.

Bibliography

Vivienne Sze et al. “Efficient processing of deep neural networks: A tutorial and survey”.
Proceedings of the IEEE 105:12, 2017, pp. 2295-2329.

Leo Breiman. “Random forests”. Machine learning 45, 2001, pp. 5-32.

Gunther Eysenbach etal. “The role of ChatGPT, generative language models, and artificial
intelligence in medical education: a conversation with ChatGPT and a call for papers”.
JMIR Medical Education 9:1,2023, e46885.

Annunziata Lopiccolo etal. “Alast-in first-out stack data structure implemented in DNA”.
Nature communications 12:1, 2021, pp. 1-10.

Richard Kitney et al. “Enabling the advanced bioeconomy through public policy support-
ing biofoundries and engineering biology”. Trends in biotechnology 37:9, 2019, pp. 917—
920.

Joanne Kamens. “The Addgene repository: an international nonprofit plasmid and data
resource”. Nucleic Acids Research 43:D1, 2014, pp. D1152-D1157.18sN: 0305-1048. DOTI: 10.
1093 /nar /gku893. eprint: https://academic.oup.com/nar/article-pdf/43/D1/D1152/
7330438/gku893.pdf. URL: https://doi.org/10.1093/nar/gku893.

Kim D Pruitt, Tatiana Tatusova, and Donna R Maglott. “NCBI Reference Sequence (Ref-
Seq): a curated non-redundant sequence database of genomes, transcripts and proteins”.
Nucleic acids research 33:suppl_1, 2005, pp. D501-D504.

Esteban Martiénez-Garciéa et al. “SEVA 4.0: an update of the Standard European Vector

Architecture database for advanced analysis and programming of bacterial phenotypes”.
Nucleic Acids Research 51:D1, 2023, pp. D1558-D1567.

Artem Lysenko etal. “Representing and querying disease networks using graph databases”.
BioData mining 9:1, 2016, pp. 1-19.

Michael Baitaluk et al. “BiologicalNetworks: visualization and analysis tool for systems
biology”. Nucleic acids research 34:suppl_2, 2006, W466-W471.

AviMa’ayan. “Introduction to network analysis in systems biology”. Science signaling 4:190,
2011, trS—trS.

Hiroaki Kitano. “Systems biology: a brief overview”. science 295:5560, 2002, pp. 1662—
1664.

Guillermo G Zampar et al. “Temporal system-level organization of the switch from gly-
colytic to gluconeogenic operation in yeast”. Molecular systems biology 9:1, 2013, p. 651.

Marc Legeay et al. “Visualize omics data on networks with Omics Visualizer, a Cytoscape
App”. F1I000Research 9, 2020.

Christiane VR Hitter et al. “Network cartographs for interpretable visualizations”. Na-
ture Computational Science 2:2, 2022, pp. 84-89.

Brent Berlin and Paul Kay. Basic color terms: Their universality and evolution. Univ of Cal-
ifornia Press, 1991.

263

http://dx.doi.org/10.1093/nar/gku893
http://dx.doi.org/10.1093/nar/gku893
https://academic.oup.com/nar/article-pdf/43/D1/D1152/7330438/gku893.pdf
https://academic.oup.com/nar/article-pdf/43/D1/D1152/7330438/gku893.pdf
https://doi.org/10.1093/nar/gku893

Bibliography

204.

205.

206.

207.

208.

209.

210.

211.

212.

213.

214.

215.

216.

264

Matthias Heinemann and Sven Panke. “Synthetic biology—putting engineering into bi-
ology”. Bioinformatics 22:22, 2006, pp. 2790-2799. 1ssN: 1367-4803. DOI: 10 . 1693 /
bioinformatics/bt1469. eprint: https://academic.oup.com/bioinformatics/article-
pdf/22/22/2790/48838388/bioinformatics_22_22_2790.pdf. URL: https://doi.org/
10.1093/bioinformatics/bt1469.

Percy Liang and Mayur Naik. “Scaling abstraction refinement via pruning”. In: Proceed-
ings of the 32Nd ACM SIGPLAN Conference on Programming Language Design and Im-
plementation. 2011, pp. 590-601.

Alvin Tamsir, Jeffrey J. Tabor, and Christopher A. Voigt. “Robust multicellular comput-
ing using genetically encoded NOR gates and chemical ‘wires’. Nature 469:7329, 2011,
pp- 212-215. 1SSN: 1476-4687. DOI: 10. 1038/ nature09s65. URL: https://doi.org/10.
1038/nature09565.

Aidan Tinafar, Katariina Jaenes, and Keith Pardee. “Synthetic biology goes cell-free”. BALC
biology 17:1, 2019, pp. 1-14.

Max Chavarria et al. “A Metabolic Widget Adjusts the Phosphoenolpyruvate-Dependent
Fructose Influx in Pseudomonas putida”. mSystems 1, 2016, €00154-16. DOI: 10 . 1128/
mSystems.00154-16.

Fusun Yaman, Aaron Adler, and Jacob Beal. “Al challenges in synthetic biology engineer-
ing”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1. 2018.

Justin] Miller. “Graph database applications and concepts with Neo4j”. In: Proceedings of
the southern association for information systems conference, Atlanta, GA, USA. Vol. 2324.
36.2013, pp. 141-147.

Carson Sievert. Interactive web-based data visnalization with R, plotly, and shiny. CRC
Press, 2020.

Michael E Smoot et al. “Cytoscape 2.8: new features for data integration and network vi-
sualization”. Bioinformatics 27:3, 2011, pp. 431-432.

Albert-Ldszl6 Barabdsi. “Network science”. Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 371:1987, 2013, p. 20120375.

Jonathan Tellechea-Luzardo etal. “Fast biofoundries: coping with the challenges of bioman-
ufacturing”. Trends in Biotechnology, 2022.

Jacob Beal et al. “The long journey towards standards for engineering biosystems: Are the
Molecular Biology and the Biotech communities ready to standardise?” EMBO reports
21:5,2020, eS0521.

»»

Petter Portin and Adam Wilkins. “The evolving definition of the term “gene””. Genetics

205:4, 2017, pp. 1353-1364.

http://dx.doi.org/10.1093/bioinformatics/btl469
http://dx.doi.org/10.1093/bioinformatics/btl469
https://academic.oup.com/bioinformatics/article-pdf/22/22/2790/48838388/bioinformatics_22_22_2790.pdf
https://academic.oup.com/bioinformatics/article-pdf/22/22/2790/48838388/bioinformatics_22_22_2790.pdf
https://doi.org/10.1093/bioinformatics/btl469
https://doi.org/10.1093/bioinformatics/btl469
http://dx.doi.org/10.1038/nature09565
https://doi.org/10.1038/nature09565
https://doi.org/10.1038/nature09565
http://dx.doi.org/10.1128/mSystems.00154-16
http://dx.doi.org/10.1128/mSystems.00154-16

	Acknowledgements
	Abstract
	Chapter 1: Introduction
	Background
	Aims and Objectives
	Contribution
	Research
	Tools

	Structure

	Chapter 2: Background
	Introduction
	Synthetic Biology
	Core Principles
	Genetic Circuits
	Design data
	Design, Build, Test, Learn (DBTL)

	Graph Theory and Network Science
	Introduction
	Network Science in Biology
	Fundamental methods and terms
	Types of Graph
	Problem Classes

	Interaction Networks
	Genetic regulatory network (GRN)
	Protein-protein interaction network (PPI)
	Integrated networks
	Probabilistic functional integrated networks (PFIN)
	Metabolic networks

	Networks in synthetic biology
	Networks for standardised exchange
	Regulatory network and control design
	Networks to generate and validate designs
	Hierarchical networks

	Knowledge Graphs
	The Resource Description Framework (RDF)
	Ontologies

	Data Standards
	Synthetic Biology Open Language (SBOL)
	Advantages of standard data
	Challenges introduced by standards

	Chapter 3: ShortBOL - A language to specify standard design data via an extensible and user-facing language.
	Introduction
	Existing specification methods
	Aims and Objectives

	Results
	Templates
	Template Instantiation
	Composite Templates
	Template libraries
	The Document
	Template expansion

	Methods
	Editor
	Validation
	Extensions
	Converter
	Tutorial Series
	Documentation
	Non-textual additions
	Alternative representation

	Discussion
	Design choices
	Strengths
	Limitations
	Future work

	Conclusion

	Chapter 4: Using weighted knowledge graphs to quantify uncertainty and enable community-based feedback
	Introduction
	A review of existing synthetic biology databases
	A review of existing datasets
	What standards cannot provide
	The issues with the current landscape of data capture
	A functional approach to synthetic biology
	Dynamic knowledge graphs enable adaptation to changing conditions
	Aims and objectives

	Results
	Seeding an initial network by integrating networks
	Data expansion to introduce functional data

	Methods
	Networks

	Discussion
	Strengths
	Limitations
	Future work
	Conclusion

	Chapter 5: Enhancing data access and designs by leveraging the weighted knowledge graph
	Introduction
	Existing query methods and programmatic access
	Time-consuming validation and costly preprocessing
	Functional approach to genetic designs
	Legacy design data
	Weighted knowledge graph
	Aims and Objectives

	Results
	Superior Interfacing using network features
	Automatic enhancement of existing designs
	Genetta

	Methods
	Fuzzy string matching
	Traversing modules
	Projecting positional information

	Discussion
	The weighted knowledge graph as an interface to knowledge
	Automating processes using the weighted knowledge graph
	Future work
	Conclusion

	Chapter 6: Dynamic networks to present multiple design aspects and scale levels of complexity.
	Introduction
	Existing specification methods
	Network analysis and representation systems and synthetic biology
	Aims and Objectives

	Results
	Use Case: Interactions Networks
	Use Case: Scaling Complexity
	Comparing Designs
	BioDesign beyond genetic designs
	Genetta

	Methods
	Projecting networks
	Graph comparison
	Protocol representation

	Discussion
	Strengths of a network approach to genetic design visualisation
	Limitations of networks in the current landscape
	Future work
	Extending non-design visualisation

	Conclusion

	Chapter 7: Conclusions and future work
	Introduction
	Specifying design data by abstracting language
	Enhancing design data using weighted knowledge graphs
	Tailored data representation by scaling complexity
	Conclusion

	Acronyms
	Bibliography

