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Abstract

EEG (electroencephalography) is a method for recording the brain’s electrical activity in
real-time by placing electrodes on the subject’s scalp or, in some circumstances, surgically
within the cranium, allowing for the measurement of neural signals. Analysing dynamic
brain patterns with EEG is crucial for diagnosing and treating epilepsy. Statistical anal-
ysis of EEG data commonly relies on p × p covariance (or correlation) matrices derived
from pre-processed signals, where p represents the number of electrodes. However, the
space of covariance (or correlation) matrices is not a vector space with the usual additive
structure, and so analysis of samples or time series of covariance (or correlation) matrices
must make some geometrical assumptions about the underlying space. Fortunately, both
the set of p × p non-singular covariance and correlation matrices form Riemannian man-
ifolds. Riemannian geometry provides a systematic mathematical framework that allows
conventional linear statistical methods to be adapted to the non-linear geometrical setting.

The number of electrodes p can be large, necessitating dimensional reduction to make
analysis more computationally tractable. Moreover, electromagnetic artefacts and high
correlations between sets of electrodes can result in rank deficiencies in the observed
matrix-valued time series. These singularities make analysis more difficult and represent
redundancies in the data. To address this, we employ dimensional reduction techniques
by identifying linear combinations of channels and selecting channel subsets. These ap-
proaches ensure that the reduced time series of covariance (or correlation) matrices remain
strictly positive definite, and the data thereby lie on certain smooth manifolds with the
natural Riemannian structure.

Our focus is on modelling time series {Si : i = 1, . . . , n} of full-rank covariance (or
correlation) matrices. This data can be examined within one of three spaces: C+(p) ⊂
S+(p) ⊂ Sym(p). In this context, Sym(p) comprises symmetric matrices and is equipped
with the Frobenius norm for Euclidean geometry. S+(p) represents the space of symmetric
positive definite matrices, equipped with an affine invariant metric that preserves invari-
ance under affine transformations, especially for high-magnitude covariance matrices. By
factoring out variances from covariance matrices, the set of full-rank correlation matrices
is represented in the quotient geometry, denoted as C+(p). Thus, we intrinsically analyse
EEG matrix-valued time series data within these three spaces.

Although manifold-valued data have gained substantial attention and applications in
various fields recently, the literature on manifold-valued time series remains limited. This
research aims to address two main objectives. First, we aim to develop manifold-adapted
models for time series of matrix-valued EEG data with interpretable parameters for differ-
ent possible modes of EEG dynamics. The model specifies a distribution for the tangent



direction vector at any time point, combining an autoregressive term, a mean-reverting
term, and a form of Gaussian noise. This model effectively captures a wide range of po-
tential dynamics governing the evolution of EEG data, from a smooth progression along
geodesics to a noisy mean-reverting random walk within the underlying manifold. Sec-
ondly, we aim to explore the extent to which modelling results are affected by the choice
of the manifold and its associated geometry. Manifold-adapted models are implemented in
different tangent spaces of Sym(p), S+(p), and C+(p). This enables modelling time series
of covariance matrices in Sym(p) and S+(p), and time series of correlation matrices in
Sym(p), S+(p), and C+(p). Note that Sym(p) can be specified as a Riemannian manifold
and is convenient to present it in that way for comparison with geometries on S+(p) and
C+(p). The comparison of these geometries sheds light on their relative advantages.

To handle the potentially large number of parameters, we simplify the general manifold-
adapted model to two simpler models with fewer parameters. These simplified coefficients
reveal the relative coefficients of each dynamics mode at each time point for each pair of
electrodes. Parameter inference is carried out through maximum likelihood estimation.
The Mahalanobis distance serves as a metric to gauge the dissimilarity of seizures based
on estimated coefficients and their asymptotic covariance matrices. The results effectively
discriminate between epileptic ictal (during a seizure) and interictal (between seizures)
periods in patients and quantify the dissimilarity among seizures. The affine invariant
geometry and quotient geometry also provide a better fit for time series of covariance
matrices and correlation matrices, respectively.

In this research, we primarily construct manifold-adapted models for time series of
covariance and correlation matrices derived from EEG data for epilepsy patients. We also
contribute to the research on correlation matrix space by introducing a quotient metric
inspired by the affine invariant metric in the covariance matrix space. The geometric
concepts within the Riemannian structure of three spaces open avenues for future work
related to non-Euclidean statistical models using manifold-valued data.
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Chapter 1

Introduction

1.1 Background of EEG data analysis

Electroencephalography (EEG) is a method of measuring electrical fields in the brain. In
EEG, electrodes are placed either on the surface of the scalp or on the exposed surface of
the brain to record the electrical activity generated by currents in and around neurons.
Since EEG is a direct real-time measurement of neural activity, it can characterise the
integrity of specific neurophysiological pathways, states of consciousness/sleep, and the
precise temporal dynamics of brain functions (Kiloh et al., 2013; Biasiucci et al., 2019).
Therefore, analysing brain dynamic patterns from EEG data can help specialists study
disorders related to the electrical activity of the brain, such as epilepsy, brain tumours,
memory problems, etc. (Klimesch, 1997; Noachtar & Rémi, 2009; Preuß et al., 2015).

Focal epilepsy is characterised by spontaneous recurrent seizures arising from localised
cortical sites (Rosenow & Lüders, 2001). An open question is how much seizures them-
selves vary among individual patients. Past studies have shown that seizures in individual
patients share common features and evolve through similar sequences or characteristic
pathways in spatiotemporal neural dynamics (Truccolo et al., 2011; Schindler et al., 2011;
Burns et al., 2014; Karoly et al., 2018). Meanwhile, there is evidence that seizures may
vary in the same patient. Clinically, some patients have multiple seizure onset sites, each
of which produces its own unique seizure dynamics (Spencer et al., 1981). Additionally,
long-term EEG recordings suggest that a subset of patients have multiple seizure evolu-
tions, and seizure patterns may vary within the same patient (Cook et al., 2016; Freestone
et al., 2017; Naftulin et al., 2018). This variability likely stems from fluctuations in under-
lying brain states, suggesting that background neural activity influences seizure evolution
and affects seizure severity (Badawy et al., 2009; Karoly et al., 2017). Therefore, seizures
are not a completely deterministic sequence of abnormal brain activity patterns. A given
treatment may only address a subset of the patient’s seizures; for example, a single neu-
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rostimulation regimen may not control all seizures, and a single prediction algorithm may
not predict all seizures (Freestone et al., 2017).

To design optimal and comprehensive treatments, we need to understand the preva-
lence and characteristics of the variability of patients’ and within-patient seizures. Hy-
pothesising that fluctuations in certain features captured in continuously recorded EEG
may serve as biomarkers of epilepsy regulatory processes (Höller & Nardone, 2021), several
studies have focused on quantifying and characterising seizure variability in the evolution
of epileptic networks (Kuhnert et al., 2010; Burns et al., 2014).

An EEG procedure using q electrodes records q real-valued time series, each measuring
the strength of electrical signals received from each electrode throughout a time period
(referred to as channels). Covariance and correlation matrices are then computed to
delineate relationships between the activity recorded from channels situated in different
regions of the brain. Analysing these relationships can yield more detailed information
about brain dynamics than examining the raw, real-valued signal data (Keogh et al., 2019).
Currently, a relevant and straightforward method involves evaluating functional network
dynamics (also known as functional connectivity patterns) to uncover the evolutions of
seizure networks (Schindler et al., 2008; Burns et al., 2014; Schroeder et al., 2020).

Nowadays, the utilisation of Riemannian geometries for matrix-valued EEG data is
gaining increasing attention due to accumulating evidence of its simplicity, accuracy, ro-
bustness, and transfer learning capabilities (Yger et al., 2016; Congedo et al., 2017). While
most geometrical models are centred around image processing in Diffusion Tensor Imaging
(DTI), seizure detection, clustering/classification, etc. (Congedo et al., 2017; Guan et al.,
2019; Yamamoto et al., 2020), the analysis of brain dynamics from EEG time series data
based on Riemannian geometry remains underexplored, particularly in measuring seizure
variability.

1.2 Matrix-valued data analysis

Covariance and correlation matrices are symmetric positive semi-definite, but we further
restrict datasets to strictly positive definite matrices to avoid redundancies in experimen-
tal data. Then, the set of p× p symmetric positive definite matrices forms a differentiable
manifold with a natural Riemannian structure (Bhatia, 2009). In this research, we argue
that it is important not only to take this restriction into account but also to consider the
curvature of the space when viewed as a Riemannian manifold. Analysis of matrix-valued
data is attracting increasing research attention in statistics and machine learning due to
the availability of increasing volumes of such data generated by a range of different exper-
imental techniques in data science. An excellent overview of the area and related topics
is given by Marron & Alonso (2014). Directional data (Jupp & Mardia, 2009) and some
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shape data (Dryden & Mardia, 2016) lie on Riemannian manifolds, and manifold-based
statistics play an important role in medical image analysis (Pennec et al., 2019). Analysis
of datasets of symmetric positive definite matrices has received particular attention in this
context (Pennec et al., 2019, Chapter 5), due to the tractable nature of the geometry and
the range of applications, especially in different forms of medical imaging such as DTI
(Lenglet et al., 2006). Datasets of covariance matrices arise in a number of different ex-
perimental contexts, and Dryden et al. (2009) describe several alternative geometries for
the space of p× p covariance matrices. Some of these geometries take rank deficiency into
account, but this can make mathematical analysis more involved since data then lie on a
manifold-stratified space (Marron & Alonso, 2014, Section 6). Since we assume the data
consist of full-rank matrices, it follows that they lie on a manifold equipped with different
Riemannian metrics (called manifold-valued data), for example, the Log-Euclidean metric
(Arsigny et al., 2006), the affine invariant metric (Moakher & Zéraï, 2011; Lenglet et al.,
2006), and the Bures-Wasserstein metric (Malagò et al., 2018; Han et al., 2021).

A variety of statistical methods have been developed for manifold-valued data. The
definition of the sample mean in Euclidean space does not generally apply on a manifold,
so an intrinsic mean was developed (Fréchet, 1948), together with associated theory for
asymptotic properties (Bhattacharya & Patrangenaru, 2003, 2005). Analogs to principal
component analysis (Fletcher et al., 2004; Huckemann & Ziezold, 2006) and linear regres-
sion (Fletcher, 2013) have been proposed, replacing straight lines in Euclidean space with
geodesics in Riemannian manifolds, and other higher dimensional subspaces to replace lin-
ear Euclidean subspaces (Jung et al., 2012). Manifold-valued Gaussian processes have been
developed and applied to functional data on manifolds (Mallasto & Feragen, 2018). Fur-
thermore, there is an existing method for learning trajectories from manifold-valued lon-
gitudinal data (Schiratti et al., 2015). Recently, continuous-time manifold-valued Markov
processes, which are analogs of the Euclidean Ornstein-Uhlenbeck process, have been de-
veloped (Bui et al., 2023). However, the literature on manifold-valued time series appears
to be more limited.

To the best of our knowledge, the affine invariant geometry has been widely acknowl-
edged as a comprehensive and popular Riemannian framework, and used in a variety of
applications involving covariance matrices of EEG signal data (Congedo et al., 2017; Yger
et al., 2016). While correlation matrices can be computed from covariance matrices, shar-
ing the same rank, there are limited tools available for the intrinsic computation with
correlation matrices from a geometric standpoint. Correlation matrices are often treated
as symmetric positive definite matrices within the affine invariant geometry (Varoquaux
et al., 2010). Interestingly, recent discussions have explored full-rank correlation matrices,
which constitute a strict sub-manifold of the cone of symmetric positive definite matrix
space, referred to as the quotient manifold (Thanwerdas & Pennec, 2021; David, 2019).
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However, these discussions on characteristics in the quotient manifold are limited and its
applications are still evolving, with ongoing research in this area.

1.3 Aims of the research and contributions

Let Sym(p) denote the set of (real) symmetric p × p matrices and let S+(p) ⊂ Sym(p)

denote the subset of symmetric positive definite matrices. When modelling a time series
of p × p covariance (or correlation) matrices {Si ∈ S+(p): i = 1, . . . , n}, it is natural to
consider representing the (i+ 1)th matrix as

Si+1 = Si + Vi + ϵi, (1.1)

where Vi ∈ Sym(p) is a deterministic perturbation which might depend on preceding
matrices in the time series or some covariates, and where ϵi represents the noise. For
example, a very simple model is defined by Vi = Si+1 − Si, so that Vi is an estimate
of the ‘direction of travel’ of the time series at the ith time point, and by assuming
that elements of ϵi are distributed according to some appropriate multivariate normal
distribution. However, without additional constraints on Vi and ϵi, the right-hand side
of Equation (1.1) will not generally be positive definite, and so the model is ill-defined
in the sense that it gives probability mass to regions of the sample space that cannot
contain data. The additive model in Equation (1.1) therefore needs modifying in order
to take into account the non-Euclidean nature of the space of p × p positive definite
matrices (see Figure 1.1). This can be achieved canonically by regarding S+(p) as a
Riemannian manifold, and working intrinsically within the Riemannian geometry. The
notion of perturbing a matrix Si ∈ S+(p) in some direction Vi ∈ Sym(p), expressed in
Equation (1.1) by the simple addition, is instead achieved by the Riemannian exponential
map which operates intrinsically within S+(p).

As a key part of this study, we analyse time series {Si : i = 1, . . . , n} with the standard
Euclidean geometry on Sym(p), and compare the results to those obtained when the
model is adapted to work intrinsically within Riemannian manifolds equipped with the
affine invariant geometry on S+(p) and the quotient geometry on C+(p), representing
the set of p × p full-rank correlation matrices, where C+(p) ⊂ S+(p) ⊂ Sym(p). To
achieve this, we construct closed formulae for the various operations we require in order
to specify our model, for example Riemannian metrics, logarithm and exponential maps,
parallel transports, orthonormal coordinate systems, and Fréchet sample means in these
geometries.

Moreover, electromagnetic artefacts and high correlations between sets of electrodes
can result in rank deficiencies in the observed matrix-valued time series, and so we propose
two distinctive dimensional reduction methods to ensure that the reduced time series of
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Si−1

Si Si+1

Si+2

S+(p)

Vi
Si + Vi

Sym(p)

Figure 1.1: Diagram representing a time series {Si : i = 1, . . . , n} of full rank covariance (or
correlation) matrices. The ambient space is the space of p × p symmetric matrices Sym(p), while
the shaped surface represents the manifold of symmetric positive definite matrices S+(p) embedded
within Sym(p). A perturbation of Si by an arbitrary estimated ‘velocity’ Vi ∈ Sym(p) does not
necessarily lie within the manifold S+(p).

covariance (or correlation) matrices remain strictly symmetric positive definite. As a
result, the data thereby lie on certain smooth manifolds with the natural Riemannian
structure.

In addition to assessing the effect of underlying geometries, we propose a model which
is capable of capturing different data dynamics within the time series {Si : i = 1, . . . , n},
with the aim of providing an interpretable set of parameters for each data set. Specifically,
the tangent (or direction) vector Vi is modelled as the sum of three terms: an autoregres-
sive term, a mean-reverting term, and a noise term. By combining these terms, the model
is able to capture various possible dynamics for the evolution of EEG data, from smooth
flow along geodesics to a noisy mean-reverting random walk on the underlying manifold,
for example. Furthermore, leveraging the model results allows for an easy measurement of
seizure dissimilarity within epileptic patients and variations among patients. It overcomes
the difficulties of differences in electrode numbers and placements between patients. Al-
though we apply the model to EEG data in Sym(p),S+(p), and C+(p), it is formulated in
a general way and could be applied to data on other Riemannian manifolds.

1.4 Thesis outline

In this chapter, we introduce the basic background of EEG data analysis and applications
of manifold-valued data. We also outline the main aims and contributions and provide an
overview of the general structure of this thesis.

Chapter 2 will describe Riemannian geometries on different manifolds. Without loss
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of generality, Section 2.1 sets out the basic notions on a smooth manifold and discusses
geometrical statistics. Since our matrix-valued time series EEG data are covariance and
correlation matrices, and based on their properties, we introduce three different Rieman-
nian manifolds: the symmetric matrix space (Sym(p), geuc) equipped with the Frobenius
norm in Section 2.2, the symmetric positive definite matrix space (S+(p), gaff) equipped
with an affine invariant metric in Section 2.3. We also consider a newly developed Rie-
mannian manifold of p × p full-rank positive definite correlation matrices, named the
quotient manifold (C+(p), gquo) in Section 2.4. Existing literature about this manifold is
limited, and formulae for certain aspects of the geometry, such as parallel transport and
orthonormal coordinate systems, have not previously been established. Therefore, Section
2.4 develops these formulae required in our proposed model and extends them to a more
general tool for geometrical statistics.

After acquiring original EEG signals from an open source, we perform dimensional re-
duction for preprocessing covariance and correlation matrices to ensure that the reduced
matrix-valued time series remain strictly positive definite. The data thereby lie on cer-
tain smooth manifolds with a natural Riemannian structure, as described in Chapter 2.
Moreover, preliminary analysis on reduced covariance and correlation matrices has been
done by comparing the Fréchet sample variance of seizure series and corresponding inter-
ictal (i.e., normal EEG recorded between seizures) series and performing multidimensional
scaling plots using different Riemannian metrics at the end of Chapter 3.

Following this preliminary analysis, we next construct manifold-adapted models for
the manifold-valued time series data in Chapter 4. This model specifies a distribution
for the tangent direction vector at any time point, combining an autoregressive term, a
mean-reverting term, and a form of wrapped Gaussian noise, as described in Sections 4.1
and 4.2. The model effectively captures a wide range of potential dynamics governing
the evolution of EEG data. Model inference and fitness are discussed, followed by model
specification in Sections 4.3 and 4.4. To check the validity and efficiency of manifold-
adapted models and model inference, Section 4.5 simulates the manifold-valued data with
fixed parameters and performs model inference to verify the initial setting.

Chapter 5 discusses the model results from different perspectives, including parameter
structures and data set types (covariance and correlation matrices) in Section 5.1. This
section also interprets estimated parameters in the model with respect to brain dynamics
in seizures. As one of the key parts of this research, Section 5.2 compares the results
when the model is adapted to work intrinsically within (Sym(p), geuc), (S+(p), gaff), and
(C+(p), gquo) and explores the extent to which modelling results are affected by the choice
of manifold and its associated geometry. Lastly, we propose the Mahalanobis distance to
measure the seizure dissimilarity between and within epileptic patients in Section 5.3.

Finally, Chapter 6 discusses the limitations and future work of this research.
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1.5 R package: geomTS

In this research, we have introduced various operations in different Riemannian manifolds,
including the Euclidean symmetric geometry on (Sym(p), geuc), the affine invariant geom-
etry on (S+(p), gaff), and the quotient geometry on (C+(p), gquo). While the R package
Riemann provides some metric functions and statistical models, several essential opera-
tions necessitating this research remain undefined. Notably, a newly developed quotient
manifold is still in progress, and there are currently no related open packages for this area.

Therefore, a significant contribution of this research is the development of a compre-
hensive R package, named geomTS, to assist researchers working with the aforementioned
manifolds. This package addresses the gaps left by existing tools and provides essen-
tial operations such as parallel transport and orthonormal coordinate systems in differ-
ent geometries. Furthermore, the package includes dimensional reduction methods and
manifold-adapted models discussed in this thesis. Interested readers can install the pack-
age from GitHub:

# install.packages("devtools")
devtools::install_github("TaoDing2/geomTS")
library(geomTS)
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Riemannian geometry and
statistics for manifold-valued data

In this chapter, we provide a concise overview of essential concepts of Riemannian ge-
ometry relevant to our analysis. While we refrain from much of the detail of differential
geometry and Lie groups, comprehensive resources such as textbooks by Do Carmo &
Flaherty Francis (1992), Lang (2012), and Gallier & Quaintance (2020) offer in-depth ex-
planations. We present this material in the context of a general Riemannian manifold and
general geometrical statistics in Section 2.1. Subsequently, we proceed to furnish explicit
formulae for specific instances of Riemannian manifolds encompassing the symmetric ma-
trix space with the Euclidean metric (Sym(p), geuc) in Section 2.2, the symmetric positive
definite matrix space with the affine invariant metric (S+(p), gaff) in Section 2.3, and the
full-rank correlation matrix space with the quotient metric (C+(p), gquo) in Section 2.4.

2.1 Introduction

This section commences with an introduction to the fundamental concepts of a general
Riemannian manifold. Following this, we delve into geometrical statistics, introducing
ideas such as the wrapped Gaussian distribution and the Fréchet sample mean, which are
indispensable for analysing manifold-valued data within statistical models. Finally, as the
EEG data we obtained consists of covariance and correlation matrices, we conclude by
presenting basic operations for matrix computations.

2.1.1 Basic notions on smooth manifolds

Smooth manifolds are mathematical structures that exhibit local similarities to Rm, where
m represents a fixed dimension. However, unlike vector spaces, smooth manifolds are more
general in nature and can incorporate curvature. A smooth manifold, denoted as M, is
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accompanied by charts, which are maps φ : U ⊂ M → φ(U) ⊂ Rm. These charts
collectively cover the entire manifold M and satisfy a compatibility condition. For any
pair of charts (φ,U) and (ψ, V ), the transition map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is a
smooth, bijective function with a smooth inverse.

A path γ : [a, b] → M is considered smooth if, when composed with every chart,
φ ◦ γ : [a, b] → Rm, it becomes a smooth map. The tangent vector to the curve γ at a
given point t, denoted as γ′(t), represents the derivative of γ at t. Thereby, the tangent
space TxM at a point x ∈ M can be understood as the vector space consisting of direction
vectors associated with smooth paths passing through x.

A Riemannian metric, denoted as g, defined on a smooth manifold M is a mapping
that assigns an inner product gx to each tangent space TxM in a smooth manner, where
x varies over M. Consequently, a smooth manifold equipped with a Riemannian metric
g is referred to as a Riemannian manifold, denoted as (M, g). For a given smooth path
γ : [a, b] → M, the Riemannian norm of its velocity at a point t ∈ [a, b] is denoted
as gγ(t)(γ′(t), γ′(t))1/2. This norm represents the square root of the inner product of the
velocity vector with itself. By integrating this, the Riemannian norm along the path yields
the length of the path γ. Specifically, let x and y be any two points in the manifold M.
The quantity dg(x, y) denotes the infimum of the lengths of all smooth paths connecting
x to y, where the lengths are calculated using the Riemannian norm. It is worth noting
that dg satisfies the properties of a metric on M. A path between x and y that achieves
this infimum is referred to as a geodesic, which corresponds to the shortest path between
x and y in terms of Riemannian length.

The Riemannian exponential map, denoted as Expx : TxM → M, is defined for tangent
vectors of sufficiently small norm at a point x. It can be visualized as the result of following
a geodesic from x in the direction of a specific tangent vector. For example, if we have
a tangent vector v ∈ TxM, then the path Expx(tv) defined for t ∈ [0, 1] represents a
geodesic from x to Expx(v). The inverse of the exponential map at x, known as the
Riemannian logarithm map, is denoted as Logx : M → TxM. Typically, it is defined
within a neighbourhood of x. For two points x and y in M, the logarithm map Logx(y)

can be understood as the tangent vector at x corresponding to the geodesic that connects
x and y. In the case of the specific class of manifolds being considered, the exponential
map is defined for the entire tangent space TxM at each point x in M. Likewise, the
logarithm map Logx(y) is defined for all pairs of points x and y belonging to M.

When the manifold M is the Euclidean space Rm, the tangent spaces Tγ(t)Rm along
any path γ(t) are naturally isomorphic to Rm, t ∈ [0, 1]. This means that at any point
γ(t), the tangent vector v also belongs to Tγ(t)Rm. However, for a curve γ connecting
two points x and y on a general manifold, Riemannian geometry allows for a natural
isomorphism between TxM and TyM through the process of parallel transport along γ,
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denoted as Px→y : TxM → TyM. This can be achieved using the concept of the covariant
derivative of a vector field with respect to Levi-Civita connection. Specifically, a Levi-
Civita connection on M, compatible with Riemannian metric and being torsion free, is a
R-bilinear map ∇ : X(M)×X(M) → X(M), where ∇γ′V ∈ X(M) is called the covariant
derivative of a vector field V ∈ X(M) with respect to a vector field γ′ ∈ X(M). A vector
field V along γ is parallel iff ∇γ′V = 0.

Importantly, the parallel transport map Px→y preserves the Riemannian inner prod-
uct g and, therefore, is an isometry. Consequently, if we have an orthonormal basis
{wi : i = 1, . . . ,m} for TxM, then for any point y ∈ M, the vectors vi = Px→y(wi) form
an orthonormal basis for TyM. A Riemannian manifold that possesses a globally defined
smooth parallel orthonormal basis of vector fields is referred to as a parallelizable man-
ifold. This implies that there exists a set of vector fields defined on the entire manifold
such that, at every point, these vector fields form an orthonormal basis. It is crucial to
recognize that the property of being parallelizable manifold does not necessarily imply
that the manifold is diffeomorphic to Euclidean space. In other words, the existence of
a parallel orthonormal basis does not guarantee that the manifold shares the same geo-
metric properties as Euclidean space: examples of parallelizable manifolds include certain
spheres, such as S1, S3, S7, and S+(p) with the affine invariant geometry.

2.1.2 Statistics on Riemannian manifolds

Gaussian distributions on manifolds

There are several different ways to define Gaussian distributions for statistics on Rieman-
nian manifolds. We will adopt an approach first developed in the context of directional
data (Jupp & Mardia, 2009) and use wrapped Gaussian distributions. Given a Riemannian
manifold M, let {wi : i = 1, . . . ,m} be an orthonormal basis in TxM, and let Σ be an
m×m covariance matrix. A random point X ∈ M has the wrapped Gaussian distribution
centered at x ∈ M with covariance Σ in the basis {wi : i = 1, . . . ,m} if

Y = (Y1, . . . , Ym)T ∼ N(0,Σ),

U =
m∑
i

Yiwi, and

X = Expx(U)

(2.1)

Here N(0,Σ) is the zero-mean multivariate Gaussian distribution on Rm with covariance
Σ. When Σ is a diagonal matrix, the distribution is defined independently of any basis.

The wrapped Gaussian distribution represents a bump of density around the point x,
with the degree of spread and shape of the density contours determined by the matrix
Σ. In fact, we will work with a related set of distributions obtained by adding a non-zero

10



Chapter 2. Riemannian geometry and statistics for manifold-valued data

mean u ∈ Rm to the Gaussian distribution in Equation (2.1). In this case, we write

U ∼ NTxM(u,Σ) (2.2)

to denote the distribution of the random tangent vector U . The resulting distribution of
the random point X = Expx(U) closely approximates the wrapped Gaussian with zero
mean centered at the point Expx(

∑
iwiui) when the vector ui is sufficiently small (Mallasto

& Feragen, 2018), and wi is the ith orthonormal basis in TxM, i = 1, . . . ,m.

The Fréchet mean

Since the addition operation is not defined for points on a general manifold, the definition
of a sample mean needs to be adapted. Given a set of data points {xi : i = 1, . . . , n} ∈ M,
define the Fréchet function F by

F(y; {xi}) =
1

n

n∑
i=1

dg(y, xi)
2 (2.3)

where dg is the geodesic distance in M. A point x̃ ∈ argmin
y

F(y; {xi}) is called a Fréchet
sample mean of the data {xi : i = 1, . . . , n}. Considering the Fréchet function F as
an objective function, the gradient descent algorithm is commonly used to find its local
minimum. Additionally, the value of F at the Fréchet sample mean is called the Fréchet
sample variance. However, Fréchet sample means do not necessarily exist for all data sets
on a general manifold, nor are they generally unique. Of course, on Rm with the Euclidean
metric, the Fréchet sample mean and standard sample mean coincide.

2.1.3 Matrix computations

Let M(p) denote the space of p× p real matrices. The subset of p× p symmetric matrices
in M(p) is denoted by

Sym(p) = {A ∈ M(p), AT = A}.

A symmetric matrix A is positive definite, iff xTAx > 0 for any non-zero vector x, or
equivalently, if all eigenvalues of matrix A are greater than 0. The open subset of p × p

symmetric positive definite matrices in S+(p) is denoted by

S+(p) = {A ∈ Sym(p),xTAx > 0 for all x ∈ Rp\{0}}.

The exponential of a matrix A ∈ M(p) is given by the convergent series

exp(A) =
∞∑
k=0

Ak

k!
, k ∈ Z+.

11
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The logarithm of any B ∈ Sym(p) is defined to be solutions of the matrix equation
exp(A) = B. If all the eigenvalues of B are small enough, logarithm of a matrix B ∈
Sym(p) is given by a convergent series

log(B) = −
∞∑
k=1

(Ip −B)k

k
, k ∈ Z+,

where Ip is the p× p identity matrix.
The square root of the symmetric matrix A can be defined as:

A1/2 = {B ∈ Sym(p), B2 = A},

with the property that
A1/2 = exp

(
1

2
log(A)

)
.

Suppose A ∈ S+(p), and A could be written in diagonal form as A = UΛUT , Λ =

Diag(λ1, . . . , λp). Then, we have

(1) A1/2 = UDiag(λ
1/2
1 , . . . , λ

1/2
p )UT

(2) exp(A) = UDiag(eλ1 , . . . , eλp)UT

(3) log(A) = UDiag(log(λ1), . . . , log(λp))U
T

The above matrix definitions and computations can be found in books Curtis (2012)
and Golub & Van Loan (2013).

2.2 The Euclidean geometry on (Sym(p), geuc)

When M(p) = Sym(p) ⊂ Rp×p with the dimension of m = p(p + 1)/2, which denotes
the set of symmetric matrices, it can be shown that every tangent space is a copy of
Sym(p). A Riemannian metric is then defined at S ∈ Sym(p) for any two tangent vectors
V,W ∈ TSSym(p) = Sym(p) as follows:

geucS ⟨V,W ⟩ = Tr
(
V TW

)
. (2.4)

This implies the inner product is in fact independent of the base point S. The corre-
sponding Riemannian geometry is exactly that of the symmetric matrices equipped with
the standard Euclidean (or Frobenius) distance. Specifically, it is straightforward to show
that for S1, S2 ∈ Sym(p) :

dgeuc(S1, S2) = ∥S1 − S2∥F (2.5)

12



Chapter 2. Riemannian geometry and statistics for manifold-valued data

where ∥·∥F is the Frobenius norm and it is computed by ∥A∥F =
√∑

i

∑
j a

2
ij , where aij is

an element in matrix A, i, j = 1, . . . , p. Furthermore, given a tangent vector V ∈ Sym(p)

at the base point S ∈ Sym(p), the exponential map is defined as:

ExpS(V ) = S + V. (2.6)

Substituting tV for the tangent vector in the exponential map for any t ∈ [0, 1] gives the
geodesic from S in the direction V as S+tV , i.e. the straight line segment in the direction
V . The inverse map of the exponential map, known as the logarithm map, is given by:

LogS1
(S2) = S2 − S1. (2.7)

Since parallel transport of V does not change along the geodesic, we have

PS1→S2(V ) = V. (2.8)

Let ei denote the ith standard basis vector in Rp, where ei = (0, ..., 1, ..., 0)Tp . For any
1 ≤ i ≤ j ≤ p, we can construct an orthonormal basis in TSSym(p) for all S ∈ Sym(p) as

Eij =

eieTj if i = j, and
√
2
2

(
eie

T
j + eje

T
i

)
if 1 ≤ i < j ≤ p,

(2.9)

To simplify the notation, let Eij denote as Er where r = 1, ...,m = p(p+1)/2. It represents
the rth basis vector in any tangent space TSSym(p) at the point S ∈ Sym(p).

The Fréchet sample mean of the set of matrices {Si : i = 1, . . . , n} ∈ Sym(p) with
respect to dgeuc is the standard Euclidean mean

S̃ =
1

n

n∑
i=1

Si. (2.10)

Since positive definiteness is a convex property, if Si ∈ S+(p) for all i it follows that the
Euclidean mean is also positive definite.

2.3 The affine invariant geometry on (S+(p), gaff)

Let Mp = S+(p) denote the set of p×p symmetric positive definite matrices, i.e. S+(p) =

{A ∈ Mp, A
T = A;xTAx > 0 for all x ∈ Rp\{0}}. This set yields a differentiable

manifold equipped with a natural Riemannian structure (Moakher & Zéraï, 2011). Various
Riemannian metrics in S+(p) have been introduced in literatures, for example, the Log-
Euclidean metric (Huang et al., 2015), the Bures-Wasserstein metric (Bhatia et al., 2019;
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Han et al., 2021), and the affine invariant metric (Moakher, 2005; Pennec et al., 2006).
In this section, we explain the reasons why we choose the affine invariant metric on

covariance matrix space of (S+(p), gaff) and give explicit formulae for this metric, exponen-
tial and logarithm maps, parallel transport, orthonormal coordinate system, and Fréchet
sample mean.

2.3.1 The affine invariant metric

The affine invariant geometry on (S+(p), gaff) arises naturally from the information geom-
etry of multivariate normal distributions with zero mean (Skovgaard, 1984; Lenglet et al.,
2006). The metric satisfies the property

dgaff (AS1A
T , AS2A

T ) = dgaff (S1, S2) (2.11)

for all S1, S2 ∈ S+(p) and A is an element in the linear group GL(p), so in other words,
it is invariant under changes of basis in Rp when S1 and S2 are symmetric positive defi-
nite matrices. This is particularly relevant when analysing covariance matrices from EEG
recordings: the overall scale of measurements is affected by instrument sensitivity and
positioning which between electrodes and so is largely artefactual. The metric is invariant
under re-scaling of the signal from each electrode, which corresponds to the action of a
diagonal matrix A with positive entries in Equation (2.11). The affine invariant geometry
offers additional advantages over the Euclidean geometry, for example, in that the de-
terminant of matrices along geodesics is better behaved. (In the Euclidean geometry the
determinant can become inflated relative to its value at the endpoints of the geodesic.)

Suppose S ∈ S+(p), it is straightforward to show that TSS+(p) = Sym(p) for all S.
The Riemannian inner product on TSS+(p) is defined by

gaffS ⟨V,W ⟩ = Tr
(
S−1/2V S−1/2S−1/2WS−1/2

)
= Tr

(
S−1V S−1W

)
, (2.12)

where V,W ∈ TSS+(p). It follows that

dgaff (S1, S2) =
∥∥∥log (S−1/2

1 S2S
−1/2
1

)∥∥∥
F
=

(
p∑

r=1

log2 λi

)1/2

, (2.13)

where λr, r = 1, . . . , p are the eigenvalues of the matrix S−1/2
1 S2S

−1/2
1 .
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2.3.2 Exponential and logarithm maps

The Riemannian exponential map, which projects a tangent vector V1 ∈ TS1S+(p) back
to the manifold S+(p), is given by

ExpS1
(V1) = S

1/2
1 exp(S

−1/2
1 V1S

−1/2
1 )S

1/2
1 . (2.14)

Inversely, we can uniquely map a matrix S2 ∈ S+(p) back to the tangent space TS1S+(p)

at S1 ∈ S+(p) via a logarithm map:

LogS1
(S2) = S

1/2
1 log(S

−1/2
1 S2S

−1/2
1 )S

1/2
1 . (2.15)

The general geodesic curve γ(t) ∈ S+(p) emanating from S1 = γ(0) ∈ S+(p) in the
direction V1 = γ′(0) ∈ TS1S+(p) has the form of

γ(t) = ExpS1
(tV1), (2.16)

where t ∈ [0, 1]. Therefore, the unique geodesic joining S1 and S2 has the shortest path
length and is given by

γ(t) = ExpS1
(tLogS1

(S2))

= S
1/2
1 exp(t log(S

−1/2
1 S2S

−1/2
1 ))S

1/2
1

= S
1/2
1

(
S
−1/2
1 S2S

−1/2
1

)t
S
1/2
1 .

(2.17)

In Figure 2.1, there are paths γ(t) and γ∗(t) both connecting S1 to S2. However, the
shortest path of γ(t), t ∈ [0, 1] (bold line) is called a geodesic on the surface of S+(p). The
tangent vector V1 = LogS1

(S2) lies in the grey tangent space TS1S+(p). Its exponential
map ExpS1

(·) gives us a collection of one-to-one and complete maps of the manifold,
centred at point S1. Pennec et al. (2006); Moakher & Zéraï (2011) provide detailed
descriptions of these formulae, and matrix computations such as square root, exponential,
and logarithm map can be found in Section 2.1.3.

2.3.3 Parallel transport and orthonormal coordinate system

In Euclidean space, for any vector V ∈ Tγ(0)Sym(p), it can be straightforwardly moved
along the curve γ(t), where t ∈ [0, 1]. This means that at any point γ(t), the tangent
vector V remains in Tγ(t)Sym(p). However, when dealing with a curved manifold, the
presence of curvature influences the behaviour of the vector during translation, making
the definition of parallel transport more intricate.

The papers by Sra & Hosseini (2015) and Yair et al. (2019) provide a comprehensive
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S+(p)

V1

γ∗(t)

S2

S1

TS1S+(p)

γ(t)

Sym(p)

Figure 2.1: Diagram of geodesic, exponential and logarithm maps. γ(t) (bold line) and γ∗(t)
(dashed line) are two paths in S+(p), and γ(t), t ∈ [0, 1] is the geodesic, which is the unique
and shortest path connecting S1 and S2. The exponential map projects V1 in the tangent space
TS1

S+(p), coloured grey, onto the point S2 ∈ S+(p). The inverse map, the logarithm map,
computes the tangent vector V1 ∈ TS1

S+(p) of S2 at S1. Note that the tangent vector V1 does not
necessarily lie within the manifold S+(p) but must be in Sym(p).

explanation of the definition of parallel transport in S+(p). Briefly, parallel transport
involves the translation of a tangent vector V1 from the tangent space TS1S+(p) at point
S1 ∈ S+(p) to the tangent space TS2S+(p) at point S2 ∈ S+(p), and its mathematical
formula is given by:

PS1→S2(V1) =WV1W
T . (2.18)

Here, W = S
1/2
1 exp

(
1
2S

−1/2
1 LogS2

(S1)S
−1/2
1

)
S
−1/2
1 , and it can be simplified to W =

(S2S
−1
1 )1/2 (Yair et al., 2019).

An orthonormal basis in TSS+(p) for each S ∈ S+(p) can be defined via parallel
transport of a choice of orthonormal basis in the tangent space at the identity matrix
Ip ∈ TIpS+(p). The matrices {Er : r = 1, . . . ,m = p(p+ 1)/2}, defined in Equation (2.9),
determine an orthonormal basis in the tangent space at Ip with respect to the Riemannian
inner product in Equation (2.12). Therefore, given any point S ∈ S+(p), we can obtain
an orthonormal basis in TSS+(p) using the Equation (2.18) as

ES
r = PIp→S(Er) = S1/2ErS

1/2. (2.19)

This basis can be thought of as a global smooth section of the frame bundle of the Rieman-
nian manifold (S+(p), gaff). By definition, it follows that (S+(p), gaff) is parallelizable.

For statistical operations, we can define the classical operator V ec that maps the sym-
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metric tangent vectors into m = p(p+ 1)/2 dimensional coordinate vectors which realizes
an explicit isomorphism between TSS+(p) and Rm with the canonical metric (Pennec
et al., 2006). Thereby, we have the following definition of vectorizing projection of V ec.

Definition 2.1. Given any tangent vector V ∈ TSS+(p) at the base of S ∈ S+(p), we can
calculate its orthonormal coordinate vector v = (v1, ..., vm)T in Rm by the vectorization
operator Vec(V ) as

vr = gaffS ⟨V,ES
r ⟩

= ⟨V, S1/2ErS
1/2⟩S

= Tr(S−1/2V S−1/2Er),

(2.20)

where Er is the orthonormal basis in TIpS+(p) as shown in Equation (2.9) and r =

1, . . . ,m.

2.3.4 Fréchet sample mean and variance

To obtain the intrinsic mean in a Riemannian manifold, we can find it by minimizing the
Fréchet function F as defined in Equation (2.3), giving x̃ ∈ argmin

y
F(y, {xi}). It has

been proved that the Fréchet mean exists and is unique when the smooth manifold has
non-positive sectional curvature (Karcher, 1977), which is the case for the affine invariant
geometry on (S+(p), gaff) (Skovgaard, 1984; Kendall, 1990). Therefore, given a sample of
points {Si : i = 1, . . . , n} ∈ S+(p), the Fréchet sample mean in the affine invariant manifold
could be obtained by minimizing the Fréchet function using the geodesic distance dgaff as

S̃ = argmin
S̃

1

n

n∑
i=1

dgaff (Si, S̃)
2. (2.21)

Generally, this can be derived by the numerical gradient descent algorithm with the
step operator S̃k+1 = S̃k − δ∇F , where δ is the step size and ∇F is the derivative of the
Fréchet function F . More detailed processes of this can be found in Lenglet et al. (2006).
We show the final step operator for computing the Fréchet sample mean in S+(p) as

S̃k+1 = ExpS̃k

(
− δ

n

n∑
i=1

LogS̃k
(Si)

)

= S̃
1/2
k exp

(
δ

n

n∑
i=1

log
(
S̃
−1/2
k SiS̃

−1/2
k

))
S̃
1/2
k

(2.22)

whose associated flow converges toward the Fréchet sample mean for initial guess S̃0 ∈
S+(p), and δ ∈ [0, 1] is the step size, which should be small. The geometrical interpretation
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of the gradient approach for the computation of the Fréchet sample mean can be referred
to in Kume & Le (2003).

Another distinctive approach to compute the Fréchet sample mean involves utilizing
Sturm’s algorithm (Sturm, 2003). This method iteratively computes the sample mean
along the geodesics γ, connecting any point in the data set {Si : i = 1, . . . , n} ∈ S+(p)

to the iterated point S̃k, and the iterated point S̃k eventually converges to the Fréchet
sample mean (See Algorithm 1).

Algorithm 1 Sturm’s algorithm for Fréchet sample mean
Require: Data {Si : i = 1, . . . , n} ∈ S+(p), initial guess S̃0 ∈ S+(p), and maximum

iterations max.ites.
k = 1
while k > max.ites or

∣∣∣ 1n∑n
i=1 dgaff (Si, S̃k)

2 − 1
n

∑n
i=1 dgaff (Si, S̃k+1)

2
∣∣∣ < 10−4 do

Select a random point S0 ∈ S+(p) from the data set {Si : i = 1, . . . , n}.
Update the Fréchet sample mean S̃k = γ(tk), where γ(tk) is the geodesic connecting

the iterated mean S̃k and S0 at tk, where tk = 1/(1 + k).
Update k = k + 1.

end while

We implement the gradient descent algorithm using the step operator in Equation
(2.22) and Sturm’s algorithm (Algorithm 1) on a given data set {Si : i = 1, . . . , n} ∈
S+(p). As an example, we use the reduced seizure data of 15 × 15 full-rank covariance
matrices with the time length of 116 seconds in S+(15) from Seizure 1 within Patient ID18
(Data information will be provided in Chapter 3). The step sizes in the gradient descent
algorithm are set as dt = 0.1, 0.25, 0.5, 0.75, 1, 1.25, and 1.5. Iterations continue until
either the iteration count reaches the maximum iteration steps (set to max.ites = 200)
or the difference between consecutive values of the Fréchet function is small enough (set
to 10−4), represented as

∣∣∣ 1n∑n
i=1 dgaff (Si, S̃k)

2 − 1
n

∑n
i=1 dgaff (Si, S̃k+1)

2
∣∣∣ < 10−4. Figure

2.2 displays iterations and their corresponding values of the Fréchet function F under
different parameter settings. Sturm’s algorithm fails to converge within the maximum
iteration limit. The step size reaches its breakdown point at 1.5 within the given range of
dt. The remaining curves of F achieve convergence at different iteration steps. The x-axis
records the final iterative steps when the convergence criterion is met. For instance, the
first (red) line with a step size of dt = 0.1 converges after the 54th iteration.

To identify an appropriate algorithm and optimal step size, we considered the conver-
gence time. After implementing the aforementioned algorithms, we observed the following
iteration time lengths: 31.03s, 12.97s, 6.43s, 3.57s, 5.25s, 24.56s, 108.98s for the different
step size dt, and 34.74s for Sturm’s algorithm, respectively. To mitigate the risk of local
minimization of the objective function and to save computing time, in this research, we
prefer to select a step size of dt = 0.75 for the gradient descent algorithm to compute the
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Figure 2.2: Values of Fréchet function for the gradient descent algorithm with various step sizes,
ranging from dt = 0.1 to 1.5 and Sturm’s algorithm. The x-axis represents iterative steps, and the
y-axis represents the values of Fréchet function F . The ticks on the x-axis indicate the iterative
steps at which the algorithm converged.

Fréchet sample mean in the affine invariant geometry on (S+(p), gaff) across all seizure
data sets. Readers may choose other parameters within the range of 0.1 to 1.25 depending
on their real data.

2.4 The quotient geometry on (C+(p), gquo)

In this section, we will describe a newly developed Riemannian manifold consisting of the
set of full-rank p × p correlation matrices, named as the quotient manifold (C+(p), gquo).
This includes basic concepts of the Riemannian metric gquo, exponential and logarithm
maps, parallel transport, orthonormal coordinate system, and geometrical statistics within
this space, analogous to the covariance matrix space of (S+(p), gaff). To aid readers in
understanding the fundamental concepts of the quotient manifold, we briefly elaborate on
the concepts of Riemannian submersion, a mapping that takes the manifold (S+(p), gaff)
to the quotient manifold (C+(p), gquo) along with its corresponding properties. Additional
detailed information can be found in Section 18.3 and Section 23.3 of the book by Gallier
& Quaintance (2020) and in a PhD thesis by (Lueg, 2023, Chapter 3). It is assumed that
readers possess basic knowledge of differential geometry, Lie groups, and group actions.
Alternatively, relevant background information can be found in the aforementioned book
and thesis.
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2.4.1 Riemannian submersion and quotient manifold

Riemannian submersion

Here, we briefly recall the definition of Riemannian submersion.

Definition 2.2. Let ϕ : M → N be a smooth map of Riemannian manifolds from (M, g)

to (N , h).

(1) The smooth map ϕ is a submersion of M into N iff the derivative dϕx is surjective
for all x ∈ M.

(2) The smooth map ϕ is a local isometry between tangent spaces (TxM, gx) and (TxN , hϕ(x))

such that every x ∈ M and every u, v ∈ TxM,

⟨u, v⟩x = ⟨dϕx(u), dϕx(v)⟩ϕ(x) ,

And, ϕ is an isometry iff it is a local isometry and a diffeomorphism.

Then, ϕ is a Riemannian submersion from Riemannian manifold (M, g) to Riemannian
manifold (N , h) if the above properties hold.

Quotient manifold on (C+(p), gquo)

Now, we will see that Riemannian submersion arises when N is obtained from a free and
proper action of a Lie group acting by isometries on M. The definitions related to Lie
groups and group actions can be found in the textbook by Gallier & Quaintance (2020).

Theorem 2.1. Given a Riemannian manifold (M, g), let · : G ×M → M be a smooth,
free, and proper action, with G a Lie group acting by isometries of M. Then there is
a unique Riemannian metric on N = M/G such that π : M → N is a Riemannian
submersion.

The proof can be found in (Gallier & Quaintance, 2020, Theorem 23.14). As a case of a
Riemannian submersion, the quotient manifold N is obtained from a Lie group G acting on
a Riemannian manifold M by isometries. Considering the covariance matrices equipped
with the affine invariant manifold (S+(p), gaff), the set of correlation matrices generates a
quotient manifold (C+(p), gquo) through the Riemannian submersion π : S+(p) → C+(p).
We have the following definition.

Definition 2.3. The Lie group D+(p) of diagonal matrices with positive entries acts
smoothly, properly, and freely on the affine invariant manifold (S+(p), gaff) via the action
ϕ : D+(p)× S+(p) → S+(p) at every point S ∈ S+(p):

ϕD(S) = DSD,
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where D ∈ D+(p). Subsequently, the quotient manifold C+(p) = S+(p)/D+(p), result-
ing from the Riemannian submersion π : S+(p) → C+(p) = S+(p)/D+(p), is a smooth
manifold with a unique metric.

For example, a full-rank correlation matrix is calculated from a covariance matrix by

π : S ∈ S+(p) → C = ∆−1
S S∆−1

S ∈ C+(p),

where ∆S =
√
Diag(S) and Diag(S) ∈ D+(p) is the diagonal matrix of S (David, 2019,

Theorem 2.1). For every C ∈ C+(p), π−1(C) ⊂ S+(p) is the fibre/orbit of S, i.e., the point
S in the fibre is computed by S ∈ π−1(C) = {DCD |D ∈ D+(p)}. Notably, the map π as
defined above is a surjective submersion (Lueg, 2023, Theorem 3.5.1).

Decomposition of the tangent space TSS+(p)

Generally, given a tangent space TxS+(p) at x ∈ M, it can be decomposed into two
subspaces:

TxM = Vx ⊕Hx,

where Hx and Vx are horizontal and vertical subspaces of TxM, respectively. They are
orthogonal, i.e., Hx = (Vx)

⊥. This means any tangent vector v ∈ TxM can be decomposed
into the vertical component w in the vertical subspace Vx and the horizontal component
u in the horizontal subspace Hx, i.e., v = w + u.

A tangent vector v ∈ TxM is said to be horizontal if and only if v ∈ Hx (equivalently,
if w = 0).

Because π is a Riemannian submersion, dπx gives a linear isomorphism between Hx

and Tπ(x)N , and the differential geometry of N can be studied by ‘lifting’ from N to M
(Gallier & Quaintance, 2020, Section 18.3). The following commutative diagram shows
the relations between different manifolds and tangent spaces, taking an example of π :

S+(p) → C+(p):

S+(p) C+(p)

TSS+(p) = VS ⊕HS TCC+(p)

π

Log.

dπS

Specifically, given any point S ∈ S+(p) and Riemannian submersion π, we can find the
quotient manifold C+(p) and corresponding point C = π(S) ∈ C+(p) to S. After perform-
ing the logarithm map at the base S, a tangent vector V ∈ TSS+(p) splits into a vertical
component W in the vertical subspace VS and a horizontal component U in the horizontal
subspace HS (the orthogonal complement of VS , i.e., V =W +U). Figure 2.3 gives an il-
lustration of Riemannian submersion from the affine invariant manifold (S+(p), gaff) to the
quotient manifold (C+(p), gquo) and the decomposition of tangent vectors V ∈ TSS+(p).
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fibre π−1(C)

S V

S+(p)

HS

VS

X

C

C+(p)

TCC+(p)

dπS π

HS

VS

W V

US

Figure 2.3: Illustration of Riemannian submersion and the decomposition of the tangent space
TSS+(p). The submersion π maps any point S ∈ S+(p) to C = π(S) ∈ C+(p). dπS is the
derivative of π at S, which projects the tangent vector V ∈ TSS+(p) to X ∈ TCC+(p). The grey
colored horizontal subspace HS is isomorphic to the grey tangent space TCC+(p), and S is an
arbitrary element in the fiber π−1(C). The tangent vector V ∈ TSS+(p) can be decomposed into
the horizontal component U ∈ HS and the vertical component W ∈ VS .

Lemma 2.1. Given any tangent vector V ∈ TSS+(p), the vertical and horizontal compo-
nents of V are computed as follows:

(1) The vertical component W ∈ VS:

W = DpS + SDp

where Dp = Diag((S−1 ◦ S + Ip)
−1diag(S−1V )). Here, diag(·) is the diagonal vector

of matrix (·), Diag(·) is the diagonal matrix with diagonals (·), and operation ◦ is the
Hadamard product on matrices defined by [A ◦B]ij = AijBij.

(2) The horizontal component U ∈ HS is the complement of W :

U = V −W
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Proof. (2) is obvious as it follows the definition of the decomposition of V ∈ TSS+(p).
Now, we prove the (1).

Let γ(t) be a geodesic in the affine invariant manifold (S+(p), gaff), t ∈ [0, 1] and
γ(0) = S, V = γ′(0) ∈ TSS+(p) be the velocity of the geodesic at the point S. π is a
Riemannian submersion between S+(p) and C+(p). We can compute the derivative of π
at S with respect to V as:

dπS(V ) =
∂π(γ(t))

∂t

∣∣∣∣
t=0

=
∂
√
Diag(γ(t))

−1
γ(t)

√
Diag(γ(t))

−1

∂t

∣∣∣∣∣
t=0

=

∂γ− 1
2

ii (t)γij(t)γ
− 1

2
jj (t)

∂t

p

i,j=1

∣∣∣∣∣
t=0

=

∂
(
−1

2γ
− 3

2
ii (t)γ′ii(t)γij(t)γ

− 1
2

jj (t)

)
∂t


p

i,j=1

∣∣∣∣∣
t=0

+

∂γ− 1
2

ii (t)γ′ij(t)γ
− 1

2
jj (t)

∂t

p

i,j=1

∣∣∣∣∣
t=0

+

∂
(
−1

2γ
− 1

2
ii (t)γij(t)γ

− 3
2

jj (t)γ′jj(t)

)
∂t


p

i,j=1

∣∣∣∣∣
t=0

= −1

2
∆−3

S Diag(V )S∆−1
S +∆−1

S V∆−1
S − 1

2
∆−1

S S∆−3
S Diag(V )

= ∆−1
S [V − 1

2
(∆−2

S Diag(V )S + SDiag(V )∆−2
S )]∆−1

S , (2.23)

where ∆S =
√
Diag(S).

Since dπS gives a linear isomorphism between HS and TSS+(p) by Riemannian sub-
mersion, we have

dπS(V ) = dπS(W + U) = dπS(U), and

dπS(W ) = 0,

where U is the horizontal component in the horizontal subspace HS and W is the vertical
component in the vertical subspace VS . Thereby, for any point S ∈ S+(p), a characteri-
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zation of the vertical subspace W ∈ VS is given by

W ∈ VS ⇐⇒ dπS(W ) = 0

⇐⇒ ∆−1
S [W − 1

2
(∆−2

S Diag(W )S + SDiag(W )∆−2
S )]∆−1

S = 0

⇐⇒W =
1

2
(Diag(S)−1Diag(W )S + SDiag(W )Diag(S)−1)

⇐⇒Wij =
1

2
Sij

(
Wii

Sii
+
Wjj

Sjj

)
, for all i, j = 1, ...p

⇐⇒W ∈ {DpS + SDp |Dp ∈ D(p)},

where Dp is a diagonal matrix in diagonal matrix space D(p), which is the set of diagonal
matrices.

Furthermore, a characterization of the horizontal component U ∈ HS is given by

U ∈ HS ⇐⇒ Tr(S−1WS−1U) = 0

⇐⇒ Tr(S−1(DpS + SDp)S
−1U) = 0 for allDp ∈ D(p),

⇐⇒ Tr(DpUS
−1 +DpS

−1U) = 0

⇐⇒ US−1 + S−1U ∈ Hol(p) ⇔ S−1U ∈ Hol(p) ⇔ US−1 ∈ Hol(p)

where Hol(p) is the vector space of symmetric matrices with vanishing diagonals (sym-
metric hollow matrices), i.e, Hol(p) = {H = (hij)

p
i,j=1 ∈ Sym(p) : hii = 0, i = 1, . . . , p}.

Hence, U ∈ HS iff it is the unique solution to Sylvester’s equation for some H ∈ Hol(p)

(Sylvester, 1884), such that, S−1U + US−1 = H.
Since V = W + U , it also can be written as V = (DpS + SDp) + U . We left multiply

matrix S−1 to both sides of this equation and consider the diagonal vector diag(·) ∈ Rp as

V = (DpS + SDp) + U

⇐⇒ diag(S−1V ) = diag(S−1(DpS + SDp) + S−1U)

⇐⇒ diag(S−1V ) = diag(S−1DpS +Dp) (asS−1U ∈ Hol(p))

⇐⇒ diag(S−1V ) = (S−1 ◦ S + Ip)diag(Dp)

⇐⇒ diag(Dp) = (S−1 ◦ S + Ip)
−1diag(S−1V ),

where operation ◦ is the Hadamard product on matrices. Therefore, Dp = Diag((S−1 ◦
S + Ip)

−1diag(S−1V )) and W = DpS + SDp as proved.

Simply, we also represent the horizontal component of V as U = hor(V ) ∈ HS and the
vertical component of V as W = ver(V ) ∈ VS such that V = hor(V ) + ver(V ) for every
V ∈ TSS+(p). When V is a horizontal vector, V = hor(V ), i.e. ver(V ) = 0.
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Horizontal lift

Because π is a submersion, dπS gives a linear isomorphism between HS and Tπ(S)C+(p)

for every S ∈ S+(p)(Gallier & Quaintance, 2020, Definition of 18.3). This implies we can
study geometry on C+(p) by ‘lifting’ from C+(p) to S+(p) (see Figure 2.4).

horizontal lift: X♯ = (dπS)
−1(X)

π−1(C)

S

S+(p)

X
C

C+(p) c(t), t ∈ [0, 1]

HS
X♯

TCC+(p)

Figure 2.4: An illustration of the horizontal lift. Given a point C ∈ C+(p) and its tangent vector
X ∈ TCC+(p), we can obtain an element S on the fibre π−1(C) ⊂ S+(p). The horizontal lift X♯

is computed by pulling X back into the horizontal subspace HS . Note that c(t), t ∈ [0, 1] is the
geodesic in C+(p).

Definition 2.4. Given a Riemannian submersion π : S+(p) → C+(p) and an isomorphism
dπS between HS and Tπ(S)C+(p), for every C ∈ C+(p), S ∈ π−1(C) ⊂ S+(p), and X ∈
TCC+(p), the unique horizontal lift X♯ in horizontal subspace HS at S ∈ S+(p) is defined
as

X♯ = hor(∆SX∆S) ∈ HS . (2.24)
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Recalling the first derivative of submersion π at S as shown in (2.23), we have :

dπS(X
♯) = dπS(hor(∆SX∆S))

dπS(ver(∆SX∆S))=0
= dπS(∆SX∆S)

= ∆−1
S [∆SX∆S − 1

2
(∆−2

S Diag(∆SX∆S)S + SDiag(∆SX∆S)∆
−2
S )]∆−1

S

Diag(X)=0
= X − 1

2
∆−1

S (∆−2
S Diag(∆SX∆S)︸ ︷︷ ︸

=0

S + SDiag(∆SX∆S)︸ ︷︷ ︸
=0

∆−2
S )∆−1

S

= X

as shown in Definition 2.4. Notably, in the forth line, we use the condition thatX ∈ Hol(p).
This could be verified as following:

Diag(X) = Diag(dπS(V ))

= Diag

(
∂π(γ(t))

∂t

∣∣∣∣∣
t=0

)

=

∂γ− 1
2

ii (t)γii(t)γ
− 1

2
ii (t)

∂t

p

i=1

∣∣∣∣∣
t=0

= 0.

This illustrates that each tangent space in the quotient manifold can be seen as a copy of
the space Hol(p) consisting of symmetric hollow matrices.

In particular, the horizontal lift at C ∈ S+(p) is X♯ = hor(X).

2.4.2 The quotient metric

For any C ∈ C+(p), X,Y ∈ TCC+(p), and S ∈ π−1(C) in S+(p), there exists a unique
horizontal lift X♯ and Y ♯, both in the horizontal subspace HS , such that dπS(X♯) = X

and dπS(Y ♯) = Y . Since dπS is a linear isomorphism between the horizontal subspace HS

and tangent space TSC+(p), we have the following formula for the quotient metric gquo:

Definition 2.5. The unique quotient metric in the quotient manifold (C+(p), gquo) is
defined as

gquoC ⟨X,Y ⟩ = gaffS ⟨X♯, Y ♯⟩, (2.25)

which makes TCC+(p) isometric to HS.

Theorem 2.2. The quotient metric gquoC does not depend on the choice of S in the fibre
π−1(C) ⊂ S+(p).

Proof. Firstly, we recall the following properties of Lie group action and Riemannian
submersion:

26



Chapter 2. Riemannian geometry and statistics for manifold-valued data

(1) Recalling the group action ϕ : S+(p)×D+(p) → S+(p) acts smoothly and transitively
on S+(p), for any S1, S2 ∈ π−1(C) , there exists D ∈ D+(p) such that ϕD(S1) =

DS1D = S2, and thus (dϕD)S1(V ) = DVD, where V is a tangent vector in TS1S+(p).
Hence, for given a point S1 ∈ S+(p) and two tangent vectors V,W ∈ TS1S+(p), we
have

gaffϕD(S1)
⟨(dϕD)S1(V ), (dϕD)S1(W )⟩ = Tr[(DS1D)−1DVD(DS1D)−1DWD]

= Tr[S−1
1 V S−1

1 W ]

= gaffS1
⟨V,W ⟩.

This also illustrates the diffeomorphism ϕD : S+(p) → S+(p) is an isometry ((dϕD)S1 :

TS1S+(p) → TϕD(S1)S+(p) for all S1 ∈ S+(p)).

(2) The chain rule gives (dπ)ϕD(S1) ◦ (dϕD)S1 = (dπ)S1 (Lueg, 2023).

Therefore, given any C ∈ C+(p) and tangent vectors X,Y ∈ TCC+(p), we have

gaffS1
⟨X♯, Y ♯⟩ = gϕD(S1)⟨(dϕD)S1(X

♯), (dϕD)S1(Y
♯)⟩

= gϕD(S1)⟨(dϕD)S1

(
(dπS1)

−1(X)
)
, (dϕD)S1

(
(dπS1)

−1(Y )
)
⟩

= gϕD(S1)⟨
(
(dπ)ϕD(S1)

)−1
(X),

(
(dπ)ϕD(S1)

)−1
(Y )⟩

= gϕD(S1)⟨X
♯, Y ♯⟩,

where ·♯ is the horizontal lift from C+(p) to S+(p), and two points S1 and ϕD(S1) both lie
in the fibre π−1(C). It follows that the quotient invariant metric (C+(p), gquo) in Equation
(2.25) does not depend on the chosen S ∈ π−1(C).

Subsequently, given any C ∈ C+(p) and tangent vectors X,Y ∈ TCC+(p), the quotient
metric is defined by pull-backing through the horizontal lift:

gquoC ⟨X,Y ⟩ = gaffS ⟨X♯, Y ♯⟩

= gaffS ⟨hor(∆SX∆S), hor(∆SY∆S)⟩

= gaffS ⟨∆SX∆S − ver(∆SX∆S),∆SY∆S − ver(∆SY∆S)⟩

= gaffS ⟨∆SX∆S ,∆SY∆S⟩ − gaffS ⟨∆SX∆S , ver(∆SY∆S)⟩

− gaffS ⟨∆SY∆S , ver(∆SX∆S)⟩+ gaffS ⟨ver(∆SX∆S), ver(∆SY∆S)⟩

= gaffS ⟨∆SX∆S ,∆SY∆S⟩ − gaffS ⟨ver(∆SX∆S), ver(∆SY∆S)⟩.

Here, S is the any point in the fibre π−1(C) ⊂ S+(p).
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Geodesic distance

Lemma 2.2. If γ is a geodesic in S+(p) such that γ′(0) is a horizontal vector, then γ is
horizontal geodesic in S+(p) (which means that γ′(t) is a horizontal vector for all t), and
c(t) = π(γ(t)) is a geodesic in C+(p) of the same length with γ(t), t ∈ [0, 1].

The proof can be seen in (Huckemann et al., 2010). The specific computation equation
will be introduced in Equation (2.32).

In case of an isometric action ϕD, we have that any horizontal geodesic segment γ
joining S1 and S2 in S+(p) has the same length as the geodesic segment c = π(γ) joining
π(S1) and π(S2). Hence the geodesic distance in C+(p) can be computed by

dgquo(π(S1), π(S2)) = dgaff (S1, S2)

for any S1, S2 ∈ S+(p), and thus

dgquo(π(S1), π(S2)) = inf
D∈D+(p)

dgaff (S1, ϕD(S2)).

where ϕD(S2) is said to be in the optimal position to S1.

Definition 2.6. Given any two points C1, C2 ∈ C+(p) and chosen C1 = IpC1Ip ∈ π−1(C1),
the geodesic distance in C+(p) is computed by

dgquo(C1, C2) = inf
D∈D+(p)

dgaff (C1, DC2D), (2.26)

where D ∈ D+(p). C1 and DC2D ∈ π−1(C2) are optimally positioned.

In general, optimally positioned points will not be uniquely determined (Huckemann
et al., 2010). Moreover, the relation being in optimal positions may not be transitive
(Ziezold, 1977, p.602).

2.4.3 Optimizing along the fibre

Recalling the Riemannian metric between C1, C2 ∈ C+(p) in Equation (2.26), it is calcu-
lated via minimizing the affine invariant distance between data point C1 ∈ C+(p) (also in
S+(p)) and the point in the fibre π−1(C2) ⊂ S+(p) over C2 ∈ C+(p) as

dgquo(C1, C2) = inf
D∈D+(p)

dgaff (C1, DC2D)

= inf
D∈D+(p)

∥∥∥log (C−1/2
1 DC2DC

−1/2
1

)∥∥∥
F

= inf
D∈D+(p)

Tr
[
log2(C

−1/2
1 DC2DC

−1/2
1 )

]1/2
.

(2.27)
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Although there is no mathematical solution for D ∈ D+(p) in the above equation,
fortunately, David (2019) proposed a gradient descent algorithm which seeks the optimal
position along the fibre numerically and checked its convergence. Inspired by this, we
employ a simple gradient descent algorithm to the objective function in Equation (2.27),
rewritten as

f(D) =
1

2
dgaff (C1, DC2D)2

=
1

2
Tr
(
log2(C

−1/2
1 DC2DC

−1/2
1 )

)
.

(2.28)

with respect to D ∈ D+(p) such that C1 and C∗
2 = DC2D ∈ S+(p) are in optimal positions.

To find the gradient descent of f(D), we give the following facts which are essential in
the development of our analysis.

(1) Given a smooth matrix-valued function X(t) of a real variable t ∈ [0, 1] such that
X−1(t) exists for all t, we have the lemma given in Moakher (2005) that

d

dt

1

2
Tr
[
log2(X(t))

]
= Tr

[
log(X(t))X−1(t)X ′(t)

]
. (2.29)

(2) Tr(AB) = Tr(BA).

(3) A log(B)A−1 = log(ABA−1).

Now, we take
X(t) = C

−1/2
1 s(t)C2s(t)C

−1/2
1

where s(t) is a geodesic in the Riemannian manifold (D+(p), gaff) which preserves the same
affine invariant metric as defined in (S+(p), gaff) such that

s(t) = ExpD(t∆) = D1/2 exp(tD−1/2∆D−1/2)D1/2

starting from s(0) = D with the direction s′(0) = ∆. Subsequently, we have X(0) =

C
−1/2
1 DC2DC

−1/2
1 , and X ′(0) = C

−1/2
1 (∆C2D+DC2∆)C

−1/2
1 . Therefore, the gradient of

the objective function f(D) at t = 0 using the above facts is computed by

d

dt
f(D)

∣∣∣∣∣
t=0

=
d

dt

(
1

2
Tr
(
log2

(
C

−1/2
1 s(t)C2s(t)C

−1/2
1

))) ∣∣∣∣∣
t=0

Facts(1)
= Tr

(
log(C

−1/2
1 DC2DC

−1/2
1 )(C

−1/2
1 DC2DC

−1/2
1 )−1C

−1/2
1 (∆C2D +DC2∆)C

−1/2
1

)
= Tr

(
log(C

−1/2
1 DC2DC

−1/2
1 )C

1/2
1 D−1C−1

2 D−1∆C2DC
−1/2
1

)
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+Tr
(
log(C

−1/2
1 DC2DC

−1/2
1 )C

1/2
1 D−1∆C

−1/2
1

)
Facts(2)
= Tr

(
(C2DC

−1/2
1 ) log(C

−1/2
1 DC2DC

−1/2
1 )(C2DC

−1/2
1 )−1D−1∆

)
Tr
(
C

−1/2
1 log(C

−1/2
1 DC2DC

−1/2
1 )C

1/2
1 D−1∆

)
Facts(3)
= Tr

(
log(C2DC

−1
1 D)D−1∆

)
+Tr

(
log(C−1

1 DC2D)D−1∆
)
.

Let the initial direction of geodesic s(t) be s′(0) = ∆ = Ip. Then, we take the
Hadamard product with respect to Ip to guarantee this quantity restricted to diagonal
matrices in D+(p) such that

▽f(D) = Ip ◦
[
D−1 log(C2DC

−1
1 D) +D−1D log(C−1

1 DC2D)D−1
]

Facts(2)
= Ip ◦

[
D−1 log(C2DC

−1
1 D) + (D−1 log(C2DC

−1
1 D))T

]
= Ip ◦ 2Sym

[
D−1 log(C2DC

−1
1 D)

]
,

where symmetrization operator Sym(A) = 1
2(A+AT ).

Therefore, we can minimize the objective function f(D) via following iterative steps
with the step size δ > 0 at the kth iteration:

∆k = Ip ◦ 2Sym
[
D−1

k log(C2DkC
−1
1 Dk)

]
;

Dk+1 = Dk − δ∆k

= ExpDk
(−δ∆k)

= D
1/2
k exp(−δD−1/2

k ∆kD
−1/2
k )D

1/2
k

(2.30)

until the iteration reaches the maximum iteration or the difference of two successive values
from objective function is less than 10−4. The detailed algorithm can be seen in Algorithm
2. Once we find an optimal Lie group element D∗ ∈ D+(p), as a result of the minimum
of the objective function f(D), we write our optimal element in fibre over C2 as C∗

2 =

D∗C2D
∗ ∈ π−1(C2).

Now, we test the above algorithm via the following simulation. We draw any two
points S1, S2 ∈ S+(15) from a wrapped Gaussian distribution as described in Equation
(2.1) with zero mean and covariance Σ = 0.2I120, resulting in two correlation matrices
C1, C2 ∈ C+(15). By implementing the gradient descent algorithm with various step sizes
δ = 0.01, 0.05, 0.1, 0.15, and 0.2, along with a maximum iteration limit of max.ite = 200,
we compute the values of the objective function f(D) that minimizes the geodesic distance
between C1 and C∗

2 , as shown in Figure 2.5.
Indeed, it is important to recognize that larger step sizes in the algorithm tend to

converge faster. However, caution must be exercised to ensure that the step size remains
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Algorithm 2 Optimization along the fibre via the gradient descent algorithm
Require: Observations C1, C2 ∈ C+(p), initial point D0 ∈ D+(p) and ∆ = Ip, step size
δ > 0
k = 0
while k > max.ite or |f(Dk+1)− f(Dk)| < 10−4 do

∆k = Ip ◦ 2Sym
[
D−1

k log(C2DkC
−1
1 Dk)

]
Dk+1 = D

1/2
k exp(−δD−1/2

k ∆kD
−1/2
k )D

1/2
k

k = k + 1
end while
D∗ = Dk

C∗
2 = D∗C2D

∗ ∈ π−1(C2)

11.5

11.6

11.7

11.8

481375 2000 40 80 120 160 200
Iterations

f(
D

)

Stepsize dt =  0.01 dt =  0.05 dt =  0.1 dt =  0.15 dt =  0.2

Figure 2.5: Convergence of the gradient descent algorithm with various step sizes, ranging from
0.01 to 0.2. The x-axis represents iterative steps, and the y-axis represents the values of the
objective function f(D). The ticks on the x-axis indicate the iterative steps at which the algorithm
converged.

within an appropriate range. If the step size becomes too large, the algorithm may over-
shoot the minimum and fail to converge properly. For instance, using a step size of δ = 0.2

or larger can result in the breakdown of the algorithm.
To strike a balance between convergence and stability, it is crucial to carefully select

a step size that allows the algorithm to progress efficiently while avoiding overshooting
and maintaining convergence to the desired solution. In this thesis, we choose the default
δ = 0.05 in our following research. Also, readers can choose other values depending on
their data.
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Moreover, David (2019) demonstrated the convergence of the proposed method and
compared it with other approaches. However, the theoretical proof for the uniqueness
and even existence of the minimizer D∗ in his thesis remains elusive. Although Lueg
(2023) established the coercivity of the objective function to be minimized, implying the
existence of a solution to Equation (2.27), the uniqueness of the optimally positioned
point has not been explicated. We will not explore this further in this thesis. Instead, we
utilize the numerical minimizer D∗ to obtain points in their optimal positions directly and
discuss that the uniqueness of optimal positions does not impact our statistical analysis
(see Theorem 2.4 and Proposition 2.1).

2.4.4 Exponential and logarithm maps

Theorem 2.3. The geodesic c(t) in the quotient manifold is a projection of the horizontal
geodesic γH(t) in the manifold S+(p). The geodesic connecting any two points in optimal
positions is horizontal.

The proof can be seen in (Huckemann et al., 2010). Generally, it is not true that two
points on a horizontal geodesic segment are in optimal positions.

Based on Theorem 2.3, we can define exponential and logarithm maps in the quotient
manifold (C+(p), gquo).

Definition 2.7. For any point C ∈ C+(p) and tangent vector X ∈ TCC+(p) at the base
point C, we can ‘lift’ X from TCC+(p) to the horizontal subspace HC and apply the
exponential map in S+(p) which is defined in (2.14). Finally, π is used to project this
point back into the quotient manifold so that the exponential map in C+(p) is defined as

ExpC(X) = π(ExpC(X
♯)) = π(C1/2 exp(C−1/2hor(X)C−1/2)C1/2), (2.31)

where ExpC(X
♯) is the exponential map as defined in the affine invariant geometry on

(S+(p), gaff).

Subsequently, supposing that c(0) = C, c′(0) = X, the geodesic c(t) in the direction
c′(0) = X ∈ TCC+(p) is

c(t) = π(C1/2 exp(tC−1/2hor(X)C−1/2)C1/2), t ∈ [0, 1]. (2.32)

According to the preceding subsection, given any C1, C2 ∈ C+(p), we can find the op-
timal position in the fiber π−1(C2) ⊂ S+(p) with respect to C1 ∈ S+(p) by optimizing the
objective function, i.e., obtaining C∗

2 = DC2D ∈ π−1(C2) ⊂ S+(p), so that LogC1
(C∗

2 ) ∈
TC1S+(p) is a tangent vector, also a horizontal vector, i.e., LogC1

(C∗
2 ) = hor(LogC1

(C∗
2 ))

according to Theorem 2.3 and LogC1
(C∗

2 ) is the logarithm map defined in the affine in-
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variant geometry on (S+(p), gaff). Consequently, we can define the logarithm map in the
quotient manifold (C+(p), gquo).

Definition 2.8. Given C1, C2 ∈ C+(p), C∗
2 ∈ π−1(C2) and C1 are in optimal positions in

S+(p). The logarithm map in C+(p) is defined as

LogC1
(C2) = dπC1(hor(LogC1

(C∗
2 ))) = dπC1(LogC1

(C∗
2 )) ∈ TC1C+(p), (2.33)

where LogC(C
∗
2 ) is the logarithm map as defined in the affine invariant geometry on

(S+(p), gaff).

Before introducing the theorem of the uniqueness of the tangent vector X ∈ TCC+(p),
we give the following lemma.

Lemma 2.3. Given a Riemannian submersion π : S+(p) → C+(p), dπS gives a linear iso-
morphism between HS and Tπ(S)C+(p) and it is surjective, i.e., the derivative of horizontal
vectors along the fibre is uniquely determined in TCC+(p).

Proof. A proof for the first part (linear isomorphism) can be found in the book by (Gallier
& Quaintance, 2020, Section 18.3). Since π is a surjective submersion (Lueg, 2023), dπS
will be a surjective map from HS to Tπ(S)C+(p) as well. Specifically, for every C ∈ C+(p)

and the tangent vector X ∈ TCC+(p), the horizontal lift from TCC+(p) to HS is defined as
X♯ = (dπS)

−1(X), for any S ∈ π−1(C). This implies that for any S1, S2 both in the fibre
π−1(C), i.e., π(S1) = π(S2) = C ∈ C+(p), the tangent vector field X could be uniquely
horizontally lifted to the horizontal subspace HS1 as (X♯)S1 or the horizontal subspace HS2

as (X♯)S2 . Since dπS1 (or dπS2) is an isomorphism between HS1 (or HS2) and TCC+(p),
we have dπS1(X

♯) = dπS2(X
♯) = X. Therefore, the derivative of horizontal vectors at any

base point in the fibre π−1(C), is unique in TCC+(p).

Theorem 2.4. Given any two points C1, C2 ∈ C+(p), the logarithm map X = LogC1
(C2)

as defined in Equation (2.33) is unique.

Proof. Given any two points C1, C2 ∈ C+(p), the logarithm map can be written as X =

LogC1
(C2) ∈ TC1C+(p), which is the tangent vector along the geodesic c(t), t ∈ [0, 1]

connecting C1 to C2. Suppose C1, S1 are both in the fiber π−1(C1), C∗
2 , S

∗
2 are both in the

fibre π−1(C2), and C1, C
∗
2 and S1, S

∗
2 are in optimal positions (see Figure 2.6). Tangent

vectors LogC1
(C∗

2 ) and LogS1
(S∗

2) are both horizontal, and their connection is a horizontal
geodesic according to Theorem 2.3. Therefore, according to Lemma 2.3, we have

dπC1(LogC1
(C∗

2 )) = dπS1(LogS1
(S∗

2)).

Additionally, if it is true that the optimal positions may not be uniquely determined,
there exists another optimally positioned C ′

2 with respect to C1 such that V ∗ = LogC1
(C∗

2 )
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and V ′ = LogC1
(C ′

2) are both horizontal in the horizontal subspace HC1 . According to
Theorem 2.3, dπC1(V

∗) = dπC1(V
′) still holds true, which means the logarithm map

X = LogC1
(C2) does not depend on the optimal positions C∗

2 along the fibre π−1(C2).
In summary, given any two points C1, C2 ∈ C+(p), the definition of the logarithm map

X = dπC1(LogC1
(C∗

2 )) is uniquely determined even if the optimal position C∗
2 ∈ π−1(C2)

with respect to C1 is not unique. Similarly, the logarithm map in (C+(p), gquo) does not
depend on the chosen point in the fibre π−1(C1).

S+(p)

C+(p)

C1

C2

X

π

C1

S1

C∗
2

S∗
2

π−1(C1) π−1(C2)

γHC1,C∗
2

γHS1,S∗
2

LogC1
(C∗

2 )

HC1

HS1

LogS1
(S∗

2 )

c(t), t ∈ [0, 1]

Figure 2.6: Optimal positions along fibres. C1 and S1 are both on the fibre π−1(C1), C∗
2 and S∗

2

are both on the fibre π−1(C2), and C1&C
∗
2 and S1&S

∗
2 are in optimal positions. Geodesic γHC1,C∗

2

(γHS1,S∗
2
) connecting two optimal positions C1 and C∗

2 (S1 and S∗
2 ) is horizontal. LogC1

(C∗
2 ) and

LogS1
(S∗

2 ) are both horizontal vectors lying in the horizontal subspaces HC1 and HS1 , respectively.

2.4.5 Parallel transport

Le (2003) characterizes the parallel transport on the shape space in terms of its behaviour
on the pre-shape space via Riemannian submersion. This follows from an important
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theorem presented below.

Theorem 2.5. Given a Riemannian submersion π : M → N for two Riemannian mani-
folds, M and N , each equipped with its respective Levi-Civitá connections, denoted by ∇
and ∇̇, respectively:

(1) For any given tangent vectors u1, u2 both in the tangent space TyN at y, and their cor-
responding horizontal lift to the horizontal subspace Hx as u♯1, u

♯
2, where x ∈ π−1(y) ⊂

M, the relationship dπ(∇
u♯
1
u♯2) = ∇̇u1u2 holds true.

(2) Let vH ∈ TxM be a tangent vector field along the horizontal geodesic γH(t), t ∈ [0, 1]

with an initial velocity γH
′
(0) = vH1 , which is horizontal. The projection dπ(vH) is

the parallel transport of dπ(vH1 ) along π(γH) ∈ N if and only if

dπ(∇vH1
vH) = 0.

The proof follows from Lemma 1 and Theorem 1 of Le (2003). Part (1) of Theorem
2.5 gives the relationship of Levi-Civitá connections for both manifolds M and N . Part
(2) explains the condition of parallel transport in C+(p). When the tangent vector vH ∈
TxM is horizontal, i.e., its vertical component is 0, vV = 0, we say that vH ∈ TγHM is
parallel along γH if and only if ∇γH′vH = 0 (Gallier & Quaintance, 2020, Definition 15.6).
This follows the definition of parallel transport in the quotient manifold. Specifically, the
horizontal lift u♯1 ∈ HS could be considered as an initial velocity of the horizontal geodesic
γH

′
(0) ∈ S+(p). Horizontal lift u♯ is a horizontal vector field along the horizontal geodesic

γH. Therefore, ∇
u♯
1
u♯ = 0 such that dπ(∇

u♯
1
u♯) = dπ(∇vH1

vH) = 0 = ∇̇u1u holds true.
Now, we can give the definition of parallel transport in the quotient manifold (C+(p), gquo).

Definition 2.9. Given any two points C1, C2 ∈ C+(p) and a tangent vector X ∈ TC1C+(p),
we can find an optimal position with respect to C1 ∈ S+(p) in the fibre π−1(C2) as
C∗
2 = DC2D ∈ π−1(C2), which guarantees the geodesic γ(t), t ∈ [0, 1] in S+(p) joining

γ(0) = C1 ∈ S+(p) and γ(1) = C∗
2 ∈ S+(p) is horizontal. Henceforth, the parallel transport

of X from tangent space TC1C+(p) to tangent space TC2C+(p) is defined as

PC1→C2(X) = dπC∗
2

(
PC1→C∗

2
(LogC1

(C∗
2 ))
)

= dπC∗
2

((
C∗
2C

−1
1

)1/2
LogC1

(C∗
2 )
(
(C∗

2C
−1
1 )1/2

)T) (2.34)

where C∗
2 ∈ S+(p) is the optimal position in π−1(C2) with respect to C1 ∈ S+(p) and

LogC1
(C∗

2 ) is the logarithm map in the affine invariant geometry on (S+(p), gaff) for given
optimal positions C1, C

∗
2 ∈ S+(p).
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S+(p)

C+(p)

C1
C∗

π−1(C2)π−1(C1)

PC1→C∗(X#)

X#

γH(t), t ∈ [0, 1]

π

C1

C2

X1

X2,1 = dπC∗(PC1→C∗(X#))

c(t), t ∈ [0, 1]

TC1
C+(p)

TC2
C+(p)

Figure 2.7: The diagram of the parallel transport in C+(p) for any given C1, C2 ∈ C+(p) and
X1 ∈ TC1

C+(p). The general steps are: (i) find the optimal position C∗
2 = DC2D ∈ S+(p) in

the fibre π−1(C2) with respect to C1 ∈ S+(p); (ii) calculate the horizontal lift X♯ of horizontal
vector X ∈ TC1C+(p) onto HC1 ; (iii) parallel transport horizontal lift X♯ from horizontal subspace
HC1 to horizontal subspace HC∗

2
along horizontal geodesic γH connecting from C1 to C∗

2 ; (iv)
project the transported vector PC1→C∗

2
(X♯) onto the tangent space TC2C+(p) by the derivative of

the submersion π at C∗
2 , i.e. X2,1 = dπC∗

2
(PC1→C∗

2
(X♯)).

The detailed process of parallel transport in the quotient manifold (C+(p), gquo) is
illustrated in Figure 2.7.

Analogous to the uniqueness of logarithm map in C+(p), we have the following theorem
on the parallel transport in C+(p).

Proposition 2.1. Given any C1, C2 ∈ C+(p) and tangent vector X ∈ TC1C+(p), parallel
transport PC1→C2(X) as defined in Equation (2.34) is unique.

Proof. The geodesic connecting two optimal positions C1, C
∗
2 is horizontal such that the

parallel transport of horizontal vectors along such geodesic is horizontal everywhere. Ac-
cording to the proof of Theorem 2.4, we know that dππ−1(C2) is a surjective map; and it
is uniquely determined without considering the uniqueness of optimal positions and the
choice of base point in the fibre π−1(C1), i.e. dπS2(PS1→S2(X

♯)) is uniquely determined
iff any S1 ∈ π−1(C1) and S2 ∈ π−1(C2) are optimally positioned.

Alternatively, we can compute parallel transport directly by the definition of Levi-
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Civitá connection ∇̇ in the quotient geometry on (C+(p), gquo) as(
∇̇X(Y )

)
|C

= dCY (X) + sym
[
Diag(X♯)Y ♯ +Diag(Y ♯)X♯ +Diag(X♯C−1Y ♯)C

−X♯C−1Y ♯ − 1

2
Diag(X♯)CDiag(Y ♯)− 3

2
Diag(X♯)Diag(Y ♯)C

]
,

where dCY (X) is the derivative of X with respect to Y at the base C for every C ∈ C+(p)

and X,Y ∈ TCC+(p) (Thanwerdas & Pennec, 2021). If
(
∇̇X(Y )

)
|C

= 0, then we can

solve the parallel translated vector Y along the geodesic c(t) ∈ C+(p), t ∈ [0, 1] with the
initial velocity X = c′(0) such that parallel transport in quotient manifold is well-defined.
However, the computation is a huge challenge and it is not clear how to solve

(
∇̇X(Y )

)
|C

.

Therefore, in this research, we compute the parallel transport in C+(p) using Equation
(2.34) with the numerical computation.

2.4.6 Orthonormal coordinate system

Recalling the orthonormal basis in the tangent space TIpS+(p) at the identity point Ip ∈
S+(p) and decomposing it into horizontal and vertical components as

Eij =

{
hor(Eij) = 0; ver(Eij) = eie

T
j if i = j

hor(Eij) =
√
2
2 (eie

T
j + eje

T
i ); ver(Eij) = 0 if 1 ≤ i < j ≤ p

(2.35)

Since the horizontal subspace HS is diffeomorphic to Tπ(S)C+(p) under dπS for every
S ∈ S+(p), we can use the push-forward to define an orthonormal basis in the tangent
space TIpC+(p) at the identity point Ip ∈ C+(p) as

E
Ip
ij = dπIp(hor(Eij)) = Eij ,

where 1 ≤ i < j ≤ p. Obviously, Eij is the basis both in the horizontal subspace HIp and
the tangent space TIpC+(p). (It is easy to check that the horizontal lift (Eij)

♯
Ip

= Eij).
To distinguish the orthonormal basis in TIpS+(p) and TIpC+(p) with different dimen-

sions, we introduce a new notation Fij = Eij as the orthonormal basis in HIp and TIpC+(p)

for i ̸= j and simplify it as Fr = Fij , r = 1, . . . ,m = p(p− 1)/2.
According to the definition of parallel transport in C+(p) as Equation (2.34), we can

define the orthonormal basis in any tangent space TCC+(p).

Definition 2.10. The orthonormal basis in tangent space TCC+(p) at any base point
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C ∈ C+(p) is defined as

FC
r = PIp→C(Fr) = dπC†

[
(C†I−1

p )1/2(Fr)
♯((C†I−1

p )1/2)T
]

= dπC†

[
C†1/2FrC

†1/2
] (2.36)

where C† = DCD ∈ π−1(C) is the optimal position with respect to Ip, and r = 1, . . . ,m =

p(p− 1)/2.

Theorem 2.6. The tangent space in the quotient manifold (C+(p), gquo) is parallelizable.

Proof. At every point S ∈ π−1(C) ⊂ S+(p), the geodesic connecting two optimal positions
S and Ip is horizontal such that the tangent vectors {FS

r : r = 1, . . . ,m} provide a set of
basis for the horizontal subspace HS as FS

r = S1/2FrS
1/2 defined in Equation (2.19). It

follows that the differentiable horizontal subspace HS is parallelizable.
In accordance with Lemma 2.3 and Proposition 2.1, the orthonormal basis EC

r =

dπS
(
S1/2FrS

1/2
)
, r = 1, . . . ,m, defined in (2.36), in the quotient manifold is uniquely

determined by the diffeomorphism dπS . Thus, the tangent space in C+(p) possesses a
frame of global sections, i.e., the tangent space TCC+(p) at C ∈ C+(p) is trivial. More-
over, a manifold whose tangent space is trivial is parallelizable, as proven by (Gallier &
Quaintance, 2020).

Subsequently, we can define the vectorization of any tangent vector X ∈ TCC+(p)

obtaining a coordinate vector V ec(X) ∈ Rm.

Definition 2.11. Given any tangent vector X ∈ TCC+(p) at the base point C ∈ C+(p),
the vectorization of tangent vector X ∈ TCC+(p), written as V ec(X) = u ∈ Rm, is defined
as

ur = gquoC (X,FC
r )

= gaffS (X♯, (FC
r )♯)

=
〈
X♯, (FC

r )♯
〉
S
, (whereS ∈ π−1(C))

=
〈
hor(∆SX∆S), hor(∆SF

C
r ∆S)

〉
S

=
〈
hor(∆SX∆S), hor

(
∆SdπC†(C†1/2FrC

†1/2)∆S

)〉
S

(2.37)

=
〈
hor(∆C†X∆C†), C†1/2FrC

†1/2
〉
C†

(whenS = C†)

= Tr
(
C†−1/2

hor(∆C†X∆C†)C†−1/2
Fr

)
(2.38)

where S ∈ π−1(C) is any point in the fibre π−1(C) and u = (u1, . . . , ur)
T , r = 1, . . . . ,m =

p(p− 1)/2. C† is the optimal position with respect to Ip.
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In general, Equation (2.37) is the vectorization solution V ec(X) for any point S ∈
π−1(C) as the quotient metric does not depend on the chosen S ∈ π−1(C). Note that
Equation (2.38) relies on finding optimally positioned S = C† in the fibre π−1(C). The
diagram in Figure 2.8 shows the whole processes of the vectorization of X ∈ TCC+(p) to
the coordinate vector u ∈ Rm in a general way.

Ip

HIp Fr

dπIp(Fr)

I TIpC+(p)

Fr

C

TCC+(p)

X

FC
r

(dπS)
−1

SHS
X♯

(FC
r )♯

π−1(C)

c(t), t ∈ [0, 1]

S+(p)

C+(p)

Figure 2.8: Illustration of V ec(X) in C+(p). (i): project horizontal basis in HIp into tangent space
TIpC+(p); (ii): do parallel transport of basis Fr from TIpC+(p) to TCC+(p). (iii): pull back X and
translated basis in FC

r to the horizontal subspace HS by the horizontal lift and S is any base point
in π−1(C). (iv): vectorize the tangent vector X by calculating Riemannian metric gaffS ⟨X♯, (FC

r )♯⟩.

The above push-forward method for computing the vectorization of tangent vector
X ∈ TCC+(p) can be simplified without considering the orthonormal basis in TCC+(p).

Lemma 2.4. Let Ip ∈ S+(p) and C† ∈ π−1(C) be in optimal positions. The horizontal
orthonormal basis in HC† is C†1/2FrC

†1/2. Lifting X from smooth vector field TCC+(p)

to horizontal subspace HC†, we can compute the affine invariant metric between (X♯)C†

and orthonormal basis C†1/2FC†1/2, and then the vectorization of any tangent vector
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X ∈ TCC+(p) also could be defined as

ur = gaffC†(X
♯, C†1/2FrC

†1/2)

=
〈
X♯, C†1/2FrC

†1/2
〉
C†

= Tr
(
C†−1/2

hor(∆C†X∆C†)C†−1/2
Fr

)
= Tr

(
C†−1/2

hor(∆C†X∆C†)C†−1/2
Fr

)
(2.39)

Apparently, the above result of Equation(2.39) is exactly the same as from Equation
(2.38) when S is chosen by the optimal position C† with respect to Ip. Figure 2.9 shows
the construction of the vectorization V ec(X) ignoring the definition of orthonormal basis
in TCC+(p).

(dπ)−1

C

C†
HC†

TCC+(p)c(t), t ∈ [0, 1]

S+(p)

X

X♯ C†1/2FrC
†1/2

C+(p)

Figure 2.9: Coordinate vectors by the horizontal lift. C† = π−1(C) = D†CD† ⊂ S+(p) is in
optimal positions with respect to I ∈ S+(p). C†1/2hor(Er)C

†1/2 is the orthonormal basis in the
horizontal subspace HC† , r = 1, ..., 12p(p− 1).
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Remark 1. In Lemma 2.4, we cannot lift X into an arbitrary horizontal subspace HS,
where S is any point in the fiber π−1(C). Only optimal positions with respect to Ip ∈ S+(p)

are eligible for Equation (2.39). Alternatively, we can horizontally lift the orthonormal
basis as defined in Equation (2.36) and the tangent vector X ∈ TCC+(p) together onto any
horizontal subspace HS. In this case, S could be selected at any point in the fibre π−1(C).

The basis ES in the tangent space TSS+(p) can be decomposed into its horizontal
component EHS = hor(ES) and vertical component EVS = ver(ES), represented as
ES = EHS ⊕EVS . The condition F S = EHS holds if and only if Ip and S are in optimal
positions, where F S = S1/2FS1/2 denotes the orthonormal basis in the horizontal subspace
HS . This condition arises from the fact that the geodesic connecting Ip and S is horizontal,
ensuring that the vectors along this geodesic are horizontal everywhere. However, in
general, there is no guarantee that any S in the fibre π−1(C) possesses an orthonormal basis
F S that is horizontal. Furthermore, the orthonormal basis in the horizontal subspace EHS

cannot simply be considered as the horizontal components of F S , i.e., EHS ̸= hor(F S) if
Ip and S are not optimally positioned. This is why we lift X ∈ TCC+(p) to the horizontal
subspace HC† in Figure 2.9, as Ip and C† are in optimal positions.

In practice, ensuring that FC† ∈ HC† is entirely horizontal is rarely feasible. This
is because C† is typically computed numerically using the gradient descent algorithm, as
described in Section 2.4.3. Improving the precision of optimal positions is a topic for
further research and will not be addressed in this thesis.

2.4.7 Fréchet sample mean and variance

Karcher (1977) has proved the existence and uniqueness of the Riemannian Fréchet mean
for manifolds with non-positive sectional curvature. However, the determination of the sec-
tional curvature’s sign for the quotient geometry on (C+(p), gquo) remains elusive (Thanwer-
das & Pennec, 2021). In this thesis, we will not attempt to calculate the sign of the sectional
curvature either.

We will assume that Fréchet sample mean in (C+(p), gquo) with the quotient geome-
try exists and is unique. The definition of the Fréchet sample mean in (C+(p), gquo) is
analogous to the definition in (S+(p), gaff) and can be defined as follows:

Definition 2.12. The Fréchet sample mean in the quotient manifold (C+(p), gquo) is
computed by minimizing the Fréchet function, which finds a point C̃ such that

C̃ ∈ arg inf
C̃

n∑
i=1

1

n
dgquo(Ci, C̃)

2, (2.40)
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where the distance between Ci and C̃ is given by

dgquo(Ci, C̃)
2 = inf

Di∈D+(p)
dgaff (DiCiDi, C̃)

2,

and Di is solved by optimizing the objective function f(D), defined in Equation (2.28), for
all {Ci : i = 1, ..., n}.

Although Riquelme (2021) does not prove the existence and uniqueness of the Fréchet
mean in C+(p), he directly computes optimal positions for all observations with respect
to an iterated mean estimate C̃k and then obtains the Fréchet mean of these optimal
positions in S+(p) as S̃k. Finally, the intrinsic mean in C+(p) is the submersion of S̃k, i.e.,
C̃k+1 = π(S̃k) ∈ C+(p). Based on the assumption that the Fréchet sample mean exists and
is unique, we can compute it directly using the Sturm algorithm in C+(p). Specifically,
we update the iterated mean C̃k along the geodesic c(tk), tk ∈ [0, 1], i.e., C̃k+1 = c(tk)

at tk = 1/(k + 1) along the geodesic c(t)(t ∈ [0, 1]), which connects the iterated mean
C̃k to any random data point Ci, i = 1, . . . , n at the kth iteration. The detailed process
of computing the Fréchet sample mean using Sturm’s algorithm could be extended from
Algorithm 1.
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Figure 2.10: Values of the Fréchet function for the same data set in the affine invariant geometry
on (S+(p), gaff) (red), using Sturm’s algorithm on (C+(p), gquo) (green), and using the submersion
of the Fréchet sample mean in S+(p) (blue).

We consider a time series of 116 correlation matrices with p = 15 for Seizure 1 within
Patient ID18 (data information will be provided in Chapter 3), and compute Fréchet
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sample means using the affine invariant and quotient geometries separately. Figure 2.10
shows the Fréchet function values using different Riemannian metrics for the same corre-
lation matrices (this is applicable as the correlation matrices also lie on (S+(p), gaff), i.e.,
C+(p) ⊂ S+(p)). We find that the Fréchet function values using the quotient metric are
lower than those computed using the affine invariant metric. This is because the quotient
metric aims to find the two optimal positions in S+(p) by minimizing the affine invariant
distance. Furthermore, Sturm’s algorithm converged in the quotient geometry for this ex-
ample. There are minor variations in the values of the Fréchet functions at each estimated
iterated mean C̃k using Riquelme’s method.
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Chapter 3

Data reduction and preliminary
analysis

Instead of modelling the raw time series of EEG data, researchers often analyse the co-
variance or correlation between channels to compress the information from all recording
channels into a meaningful measure. In this chapter, we will introduce the basic infor-
mation about an open-source EEG dataset from patients with epilepsy. Following this
introduction, we will construct covariance and correlation matrix-valued time series data,
as discussed in Section 3.1. The high dimensionality of raw covariance or correlation
matrices presents a computational challenge for analysis. Additionally, electromagnetic
artefacts and high correlations between channel sets can lead to rank deficiencies in the
observed matrix-valued time series. These issues complicate the analysis further by in-
troducing singularities. To address these challenges, Section 3.2 proposes two distinct
dimensional reduction approaches. In Section 3.3, we continue our analysis by examin-
ing covariance and correlation matrix-valued time series EEG data that lie on different
manifolds discussed in Chapter 2. We utilise multidimensional scaling plots for this pur-
pose. Furthermore, we compare the Fréchet sample variances between interictal (between
seizures) and ictal (seizure) periods to provide insights into the data.

3.1 Data acquisition

In this study, we analyse an open-source dataset of EEG recordings from patients with
drug-resistant focal epilepsy, available from http://ieeg-swez.ethz.ch/. This data
was collected at the Sleep-Wake-Epilepsy-Center (SWEC) of the University Department
of Neurology at the Inselspital Bern (Burrello et al., 2019). The full dataset includes
116 seizures captured during 2656 hours of long-term intracranial electroencephalography
(iEEG) signals from 18 patients. The number of electrodes varies from 24 to 128 between
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patients, and the length of recording varies from 2 to 12 days. Samples were recorded at
a rate of either 512 or 1024 Hz, depending on the experimental subject. The stored iEEG
data were provided in a preprocessed form. Specifically, signals were median-referenced
and band-pass filtered with a broad bandwidth (0.5-120 Hz) using a 3rd order Butter-
worth filter (forward and backward). To ensure the reliability and validity of the iEEG
recordings, an experienced epileptologist visually inspected all iEEG recordings to identify
seizure onset and termination, and to exclude channels with persistent artefacts. These
steps were conducted independently of this study and resulted in the publicly available
data and annotations. All subjects formally consented to their iEEG data being used for
research purposes. Without loss of generality, we will use ‘EEG’ rather than ‘iEEG’ in
the following contexts as they both refer to electrical signals, with electrodes placed either
on the scalp or on the exposed surface of the brain.

The initial dataset used in this study consisted of 18 patients (designated ID1 to
ID18) who were part of the epilepsy surgery programme. The number of seizures for each
patient varied from 2 to 23, while the total duration of interictal recordings ranged from
41 to 293 hours. To better understand differences in seizure evolution, for each seizure
we identified a comparator interictal period exactly 2 hours before the seizure, lasting for
the same duration as the seizure (as suggested by the epileptologist). This comparator
period was unavailable for three seizures out of the total 116 seizures from 18 patients,
and so these were removed from consideration (Seizure 1 and 20 of Patient ID9, Seizure
1 of Patient ID10). Additionally, one seizure with a duration of less than 10 seconds
was also removed (Seizure 11 of Patient ID4), giving a remaining set of 112 seizures and
associated interictal periods. Table 3.1 provides an overview of the number of electrodes,
total number of seizures, overall recording duration, and seizure duration in seconds for
each patient.

The complete dataset is extensive, with data recorded hundreds of times per second for
thousands of hours across tens of electrodes in each patient. After the signal pre-processing
mentioned above, an EEG recording for a single seizure consists of a time series {zi ∈ Rq},
where i = 1, . . . ,m, and i represents the index across time. The coordinates j = 1, . . . , q

are referred to as channels, with each channel recording activity at a specific electrode.
Each time series encompasses seizures along with interictal periods.

Rather than modelling the raw time series zi of EEG signals, researchers often analyse
the covariance (or correlation) between channels, as the primary scientific interest lies in
dependencies between channels rather than the absolute measurement at each channel
(Prabhu et al., 2020). To calculate a sample covariance or correlation matrix, measure-
ments zi within a sliding window are used. While the use of a sliding window to derive time
series of covariance or correlation matrices is common in EEG data analysis, it presents
challenges. Specifically, the length of the window chosen can impact the dynamics revealed
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Table 3.1: Patient information.

Duration No. of No. of Seizure duration (Seconds)
Subject (Hours) electrodes seizures Minimum Maximum Mean
ID01 293 88 2 589 613 601
ID02 235 66 2 86 89 88
ID03 158 64 4 60 68 64
ID04 41 32 13 31 68 44
ID05 110 128 4 15 17 16
ID06 146 32 8 29 126 45
ID07 69 75 4 14 98 69
ID08 144 61 4 17 413 189
ID09 41 48 21 22 136 40
ID10 42 32 16 61 106 70
ID11 212 32 2 83 99 91
ID12 191 56 9 106 194 146
ID13 104 64 7 40 188 103
ID14 161 24 2 46 60 53
ID15 196 98 2 69 119 94
ID16 177 34 5 120 245 190
ID17 130 60 2 97 98 98
ID18 205 42 5 71 300 199
Total 2656 112
Average 58 86 169 122

by the data. To detect faster oscillations, which are known to play a crucial role in seizure
initiation (Schindler et al., 2011), we employ a sliding window of 1 second in this research,
and the window contains 512 or 1024 samples, denoted as f = 512/1024, depending on
subjects. This approach is also recommended by the dataset reference (Burrello et al.,
2019).

We assume that there are f EEG measurements per second and that we use non-
overlapping sliding windows of exactly 1 second duration to compute covariance (or cor-
relation) matrices, so that m = f × n where m is the length of the time series zi and n

is the length of the matrix-valued time series {S′
i (or C ′

i)}, for i = 1, . . . , n. Thereby, we
obtain the full q × q sample covariance (or correlation) matrices

S′
i = Cov

(
{z(i−1)f+1, . . . , zif}

)
,

C ′
i = Corr

(
{z(i−1)f+1, . . . , zif}

)
.
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3.2 Dimensional reduction on covariance and correlation ma-
trices

Following data acquisition and preprocessing, we derive the raw covariance matrix S′
i and

correlation matrix C ′
i, where i = 1, . . . , n. However, the large number of electrodes q may

be overwhelming, requiring dimensional reduction to achieve computational tractability
in the analysis. Moreover, electromagnetic artefacts and high correlations among sets of
channels can lead to rank deficiencies in the observed matrix-valued time series. These
singularities pose challenges to the analysis and signify redundancies in the data.

3.2.1 Methods

Some form of dimensional reduction is often performed over Rq. This serves two purposes.
First, the computation time of analysis typically increases polynomially in the number
of channels q, but q can be large so dimensional reduction is required for computational
feasibility. Secondly, certain linear combinations of channels can have very low variance.
These represent a redundancy in the data set, and removing these speeds up analysis,
as well as ensuring the covariance (or correlation) matrices obtained are strictly positive
definite. The end result of these steps is a time series {Si (or Ci) : i = 1, . . . , n} of p × p

symmetric positive definite matrices where p ≤ q, and i now indices the sequence of
windows.

We propose two methods for the dimensional reduction. The first aims at selecting
linear combinations of channels that maximize the variation in the raw time series zi.
The second aims to remove redundancies and identifies a set of channels to retain in the
dimensionally-reduced data, as opposed to a set of linear combinations of channels.

Method I: Maximizing variation. Computing the full q× q sample covariance ma-
trices {S′

i : i = 1, . . . , n}, we seek linear combinations of channels u ∈ Rq which maximize
1
n

∑
i u

TS′
iu, where (·)T denotes the transpose. In other words, we find the eigenvectors

u1, . . . , up of 1
n

∑
i S

′
i with the largest p eigenvalues. The time series of covariance (or cor-

relation) matrices {Si} (or {Ci}) are then defined as the sample covariance (or correlation)
of these linear combinations:

Si = Cov
(
{Uz(i−1)f+1, . . . , Uzif}

)
= US′

iU
T

or Ci = Corr
(
{Uz(i−1)f+1, . . . , Uzif}

)
,

where the p× q matrix U has rows uT1 , . . . , uTp .
For the interictal time series, dimensional reduction was performed (i) independently

from the corresponding seizure time series and (ii) with the same U matrix obtained from
dimensional reduction of the seizure data, thereby giving two comparators of interictal
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time series. The first set of interictal series retains a higher proportion of variance, but
parameters estimated from the data, such as the Fréchet mean of covariance matrices,
cannot be directly compared to estimates obtained from the seizure data since they are
in different coordinates. The second set of interictal series retains a lower proportion of
variance, but direct comparisons can be made with the corresponding seizure data. We will
elucidate the methods of dimensional reduction for interictal time series used according to
the different scenarios in the following studies.

Method II: Minimizing redundancy. If a covariance (or correlation) matrix has
a zero eigenvalue, then there is a linear combination of channels with zero variance. This
implies redundancy in the data, as the value of one or more channels can be derived
from the other channels, at least over the time interval represented by the covariance (or
correlation) matrix. Our aim is to select channels to avoid such redundancies as follows.
Suppose we have a set of channels C, and let S′

i(C) (or C ′
i(C)) denote the restriction of the

full covariance (or correlation) matrix S′
i (or C ′

i) to C. Also, define

ω(C) =
1

n

∑
i

minσ[S′
i(C)]

orω(C) =
1

n

∑
i

minσ[C ′
i(C)]

where σ(A) denotes the set of eigenvalues of A ∈ Sym(p), and the minimum is taken over
this set for each i. A greedy algorithm was used to construct sets C that maximize ω(C)
for a fixed value of p. Specifically, we first consider every set C consisting of a pair of
channels to find the optimal set C2. Then, we consider every set C containing C2 and one
additional channel to find the optimal set C3, and so on, until the last channel has been
added to C.

Similarly, two comparators are considered for the reduced interictal time series by
Method II: (i) the same set of channels C with the seizure data and (ii) the set of chan-
nels C independently from the seizure. The advantages and disadvantages will be the
opposite cases of these comparators for the reduced interictal time series by Method I.
When analysing the linear relationship between pairs of channels, our primary interest
lies in comparing the same set of channels with the interictal series. Therefore, we opt to
use the same C for seizures and corresponding interictal series for the series comparison.
Additionally, the independent set of channels C of the interictal period will be used to
analyse the data dynamics of interictal series. We will expound upon the methods used
in the subsequent studies according to the research purposes.
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Discussion

Generally, the dimensional reduction of Method I decided above involves performing prin-
cipal component analysis (PCA) on the average covariance matrix of EEG time series.
The top p eigenvectors associated with the largest p eigenvalues of the average covariance
matrix could be considered as a filter, such that the reduced covariance matrix of sig-
nals retains most of the variation of the raw data. Although this method has the great
advantage of trying to capture the greatest variation in the data, the artefact suppres-
sion still exists, which makes the reduced covariance (or correlation) matrices potentially
have small eigenvalues, ensuing matrices are not strictly positive definite. Furthermore,
it loses interpretability since it works with linear combinations of channels, not individual
channels.

The channel selection of Method II aims to identify the combination of individual
channels, which bounds the eigenvalues of the matrices away from zero. This technique
substitutes highly correlated covariance (or correlation) of channels with a single chan-
nel that exhibits a close evolutionary pattern of signals, resulting in small eigenvalues
in covariance (or correlation) matrices. As a result, the reduced data strictly adheres
to being strictly positive definite, lying within the Riemannian manifold (S+(p), gaff) (or
(C+(p), gquo)). However, a significant drawback of this approach is that it loses the infor-
mation of channels which are removed.

3.2.2 Results

Since Method I and Method II have different properties, two statistics are used to evaluate
the efficiency of these methods separately: (i) the proportion of variance retained in the
reduced dataset, defined as ∑p

i=1 λi∑q
j=1 λj

, (3.1)

where λ1 ≥ · · · ≥ λq ≥ 0 are the eigenvalues of the matrix 1
n

∑n
i=1 S

′
i, and (ii) observed

ω(C) in the reduced dataset with different chosen values of p.
Literally, the reduced covariance and correlation matrices from Method I are both

obtained from the filtered signals U , i.e., Si = Cov
(
{Uz(i−1)f+1, . . . , Uzif}

)
and Ci =

Corr
(
{Uz(i−1)f+1, . . . , Uzif}

)
, where the filter U is the top p eigenvectors associated with

the largest p eigenvalues of the mean sample covariance matrices, i = 1, . . . , n indices the
sequence of windows, and f is EEG measurements per second. Henceforth, we will only
show the proportion of explained variance for the covariance matrices as both covariance
and correlation matrices have the same proportion of the explained variance of the reduced
data. Figure 3.1 illustrates the proportion of explained variance for the reduced covariance
matrix, as defined in Equation (3.1), across 112 seizures. This analysis was conducted
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using both methods across three different dimensions: p = 10, 15, 20 in this research. It is
evident that Method II of dimensional reduction, which identifies sets of channels, yields
inferior results in terms of the proportion of variance retained during seizures.
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Figure 3.1: Proportion of variance retained in seizures after reduction to p = 10, 15, 20 dimensions.
Each boxplot shows the distribution across 112 seizures. Method I and II are coloured by red and
green, respectively.

In experimental EEG data, electrodes are placed by epileptologists to monitor the
real-time signal dynamics of brain regions ensuring no two electrodes yield the exact
same covariance between channels. Moreover, due to the nature of neural activities, the
covariance magnitudes between channels are typically large, leading to very large values of
ω(C). Therefore, the reduced covariance matrices obtained from both methods are strictly
positive definite. In contrast, channel correlations represent scaled data that factor out
the channel variances, ranging from -1 to 1. This scaling can result in some eigenvalues of
the correlation matrix approaching zero, leading to considerably smaller values of ω(C).
Therefore, Figure 3.2 only illustrates log10(ω(C)) of the reduced correlation matrices across
112 seizures, following dimensional reduction to p = 10, 15, and 20, as well as the full q for
the comparison. Opting for a smaller p in Method II allows for the elimination of highly
correlated channels, replacing them with a single channel that closely mirrors the signal’s
evolutionary pattern. However, as the dimension p increases, the advantages of Method
II over Method I begin to diminish. This is because additional channels can explain more
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variance, but they also introduce more highly correlated channel pairs.
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Figure 3.2: log10(ω(C)) values from Method I (coloured by red) and Method II (coloured by green)
with respect to the reduced data set for correlation matrices across 112 seizures choosing p = 10, 15,
and 20. The value of log10(ω(C)) for original full q × q correlation matrices is coloured by black.

Based on the properties of Methods I and II, along with the insights provided by
Figures 3.1 and 3.2, we have chosen to employ Method I for reducing the dimensionality
of covariance matrices, setting p = 15. This choice enables us to capture over 80% of
the explained variance from the original data for more than 80% of seizure time series.
Thereby, we opt to use p = 15 for all patients and seizures with a reduced covariance
matrix. Conversely, for correlation matrices, we opt for Method II with the objective
of minimizing channel redundancies. While Method II does not significantly outperform
Method I in terms of the log10(ω(C)) values for the reduced correlation matrices, it offers
more interpretable results for modelling functional brain networks. This is because Method
II preserves more channel information in the reduced data, making the functional network
modelling more explainable. To maintain consistency and ensure that all ω(C) values are
larger than 10−2, we finalize our choice of p = 15 for the reduced correlation data.

Figures 3.1 and 3.2 only list results of dimensional reduction with three dimensions
p = 10, 15 and 20 and we finally choose p = 15 for both the reduced covariance and
correlation matrices in this thesis based on the above discussions. Notably, these may
not be the best and unique choice of p, readers can set different reduced dimensions p
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according to different data sets and discover the corresponding results.

3.3 Data exploration

In this section, an initial analysis of seizure and interictal matrix-valued time series data is
carried out using the Euclidean, the affine invariant, and the quotient geometries. Notably,
the interictal time series was prepared with dimensional reduction independent from the
seizure time series in this section. This analysis involves: (i) calculating sample means and
variances, and (ii) performing multidimensional scaling (MDS) (Mead & A., 1992). Due
to the substantial quantity of the data, we do not present a comprehensive set of results;
instead, we provide results for a representative selection of patients. Patient ID18’s results
will be emphasized throughout the thesis, and results for Patient ID6, ID7, and ID13 can be
found in Appendix A. The selection of these patients is based on the number and duration
of seizures, aiming for representativeness. Specifically, Patient ID6, ID7, ID13, and ID18
were chosen as they have more than 2 seizures but less than 8, with the occurrence and
duration of seizures varying as much as possible within each patient. This information for
these patients is highlighted in bold in Table 3.1.

3.3.1 Covariance matrices in (Sym(p), geuc) and (S+(p), gaff)

Figure 3.3 displays the Fréchet sample variances for each seizure time series and the
corresponding interictal time series, categorized by patient ID, using the affine invariant
metric. The plot illustrates a significant increase of the variance in seizure series compared
to interictal series for all patients. We do not show the sample variance for time series
using the Euclidean metric as the sample variance of seizures is considerably larger than
that of corresponding interictal time series by orders of magnitude.

Figure 3.4 shows the results of MDS plots of the seizure time series and one interictal
series for Patient ID18, using Euclidean and the affine invariant metrics respectively. Note
that metric MDS is used throughout this thesis. It minimizes the loss function which is
the residual sum of squares:

Stress =

√ ∑
i ̸=j=1,...,n

(dij − ∥xi − xj∥)2, (3.2)

where dij is the Riemannian manifold metrics, e.g. dgeuc , dgaff ; xi, xj are points in R2 after
MDS. Optimization is performed by stress majorization. Lower stress values indicate a
better fit. The stress values with percentages are shown behind the seizure titles within
brackets in each MDS plot in Figure 3.4. The interictal time series were prepared with
dimensional reduction independent from the seizure time series. MDS plots with the affine
invariant metric for seizures 1, 2, 4, and 5 are quite similar: the plots show evolution in
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Figure 3.3: The Fréchet sample variance for each seizure time series and the corresponding interictal
time series, broken down by patient ID, using the affine invariant metric. Dimensional reduction
was performed independently for the interictal series. The median points of the interictal and
seizure distributions for each patient are linked by a line to highlight the increase.

each case along a curving trajectory but with a degree of local noise. Seizure 3 is of shorter
duration and a curved trajectory is less apparent. For the interictal period, there is no
apparent trajectory over time, and the plot largely resembles noise. This was also the case
for the interictal periods for the other seizures.

3.3.2 Correlation matrices in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo)

Similarly, we conduct a preliminary analysis on seizure and interictal time series data
for full-rank reduced correlation matrices. Assuming the uniqueness of the Fréchet sample
mean in quotient geometry (C+(p), gquo), as discussed in Section 2.4.7, Figure 3.5 illustrates
the Fréchet sample variances for all seizures and their corresponding interictal time series.
In general, more variation is observed in seizures compared to their corresponding interictal
time series. However, in some seizures, larger variation is exhibited in interictal time
series than in seizures. This may be explained by the loss of information from dimensional
reduction, leading to the higher Fréchet sample variance in interictal time series.

To visualize trajectories of seizure time series for Patient ID18 under different geome-
tries, we compute different distance matrices for the reduced correlation matrices using the
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(a) MDS using the Euclidean metric dgeuc

−2

0

2

4

−10 −5 0 5 10
x

y

30

60

90

Time

Seizure 1 (19.06%)

−5.0

−2.5

0.0

2.5

−5 0 5 10
x

y

100

200

Time

Seizure 2 (21.03%)

−2

0

2

4

−4 −2 0 2
x

y

20

40

60

Time

Seizure 3 (35.13%)

−3

0

3

−5 0 5 10
x

y

50

100

150

200

Time

Seizure 4 (22.18%)

−5.0

−2.5

0.0

2.5

5.0

−5 0 5 10
x

y

100

200

300
Time

Seizure 5 (23.71%)

−2

0

2

−5.0 −2.5 0.0 2.5
x

y

100

200

300
Time

Interictal 5 (37.87%)

(b) MDS using the affine invariant metric dgaff

Figure 3.4: MDS of seizure time series for Patient ID18 using the Euclidean and affine invariant
metrics to construct matrices of distance dgeuc in (3.4a) and dgaff in (3.4b). Patient ID18 has 5
seizures (first 5 panels). Panel 6 shows the result for the interictal period corresponding to Seizure
5. Plots are coloured to show the development of time series over time. Each panel title in brackets
shows the stress majorization of 2-dimensional MDS.
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Figure 3.5: The Fréchet sample variance for each seizure time series and the corresponding interictal
time series, broken down by patient ID on quotient geometry. Interictal series keep the same
selected channels by dimensional reduction to seizure series. The median points of the interictal
and seizure distributions for each patient are linked by a line to highlight the increase.

Euclidean metric on (Sym(p), geuc), the affine invariant metric on (S+(p), gaff), and the
quotient metric on (C+(p), gquo) (See Figure 3.6). This is due to the fact that a correlation
matrix is a symmetric positive definite matrix with 1s on the diagonal, i.e., existing as
nested manifolds C+(p) ⊂ S+(p) ⊂ Sym(p).

In Figure 3.4, there are distinguishing differences of MDS plots between the Euclidean
and affine invariant metrics with respect to covariance matrices, and the shape of trajec-
tories in the affine invariant metric is easily discernible. However, we can rarely find any
particular patterns of trajectories, neither with the Euclidean metric, the affine invariant
metric, nor the quotient metric for correlation matrix-valued time series data in Figure
3.6. Compared to covariance matrices with a high magnitude of variance/covariance, a
correlation matrix is the scaled data explaining the linear relationship between pairs of
channels. This explains why the ranges of the x and y axes in the three sub-figures are
close to each other. MDS plots using the quotient metric have similar percentages of
stress to each other. Although the MDS results under the quotient geometry do not show
advantages over other geometries, these are more apparent when we perform statistical
modelling in subsequent chapters.
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(a) MDS using the Euclidean metric dgeuc
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(b) MDS using the affine invariant metric dgaff
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(c) MDS using the quotient metric dgquo

Figure 3.6: MDS of seizure time series for Patient ID18 using the Euclidean, affine invariant,
and quotient metrics to construct matrices of distance dgeuc in (3.6a), dgaff in (3.6b), and dgquo

in (3.6c). Patient ID18 has 5 seizures (first 5 panels). Panel 6 shows the result for the interictal
period corresponding to Seizure 5. Plots are coloured to show the development of time series over
time. Each panel title in brackets shows the stress majorization of 2-dimensional MDS plots.
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Chapter 4

Manifold-adapted models for
matrix-valued time series data

In Chapter 2, we discussed different Riemannian geometries for time series of covariance
and correlation matrices. We also conducted preliminary analysis on the EEG time series
dataset in Chapter 3. To capture and delineate diverse modes of evolution within time
series of seizures, comprising covariance and correlation matrices, this chapter constructs
manifold-adapted time series models and corresponding inference through maximum like-
lihood estimation (MLE).

Section 4.1 outlines the rationale behind the manifold-adapted model, which includes
three terms: an autoregressive term, a mean-reverting term, and a noise term, each elu-
cidating a distinct brain dynamics pattern in Section 4.2. Subject to the specific model
assumptions discussed in Section 4.4, we employ MLE to find the coefficients in manifold-
adapted models and discuss their asymptotic distribution in Section 4.3. Lastly, Sec-
tion 4.5 simulates covariance and correlation matrices under the framework of manifold-
adapted models in the affine invariant geometry on (S+(p), gaff) and the quotient geometry
on (C+(p), gquo). Simulation results underscore the validity and efficiency of the model
specification and inference, importantly affirming the robust performance of our code in
the R package: geomTS.

4.1 Rationale

When modelling a time series of p × p covariance (or correlation) matrices {Si : i =

1, . . . , n}, a natural approach is to express the (i+ 1)th matrix as follows:

Si+1 = Si + Vi + ϵi (4.1)
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Here, Vi ∈ Sym(p) serves as a deterministic perturbation, potentially dependent on pre-
ceding matrices in the time series or some covariates, and ϵi represents noise. Section 1.3
and Figure 1.1 demonstrate the necessary modification of the additive model in Equa-
tion (4.1) to account for the non-Euclidean nature of the space of p × p positive definite
matrices. This research will work the data set {Si : i = 1, . . . , n} intrinsically within Rie-
mannian geometries. The notion of perturbing a matrix Si in some direction Vi, expressed
in Equation (4.1) by simple addition, is instead achieved by the Riemannian exponential
map, which operates intrinsically.

There are two types of matrix-valued time series data: covariance matrices (referred
to as Si) and correlation matrices (referred to as Ci). In light of the definitions pertaining
to manifold-valued data and their corresponding properties, our initial analysis centres on
the time series of covariance matrices {Si : i = 1, . . . , n}. We approach this analysis by
considering the data as residing within the Riemannian geometries on (Sym(p), geuc) and
(S+(p), gaff). Concurrently, we consider the time series of correlation matrices {Ci : i =

1, . . . , n}, which are derived from the covariance matrices Si and also lie on (S+(p), gaff).
In this regard, we analyse the time series {Ci} by regarding the data as situated within
Riemannian geometries on (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo), in turn. The
primary objective here is to discern dissimilarities in the outcomes of our modelling efforts
and to observe how these disparities vary based on the underlying geometries we have
imposed.

While our central focus revolves around processed EEG data represented as covariance
(or correlation) matrices, it is important to note that we adopt a cohesive approach within
a single overarching model. This model is adept at accommodating the diverse dynamics
intrinsic to the time series {Si} (or {Ci}), aiming to yield a set of interpretable parameters
for each data set. Specifically, the tangent vector Vi (or Xi) is modelled as the sum of
three terms:

(1) An autoregressive term which combines direction vectors at previous lagged time
points. For certain parameter values, this term can, for example, give rise to approxi-
mate movement along a geodesic in the manifold if this term dominates the other two
terms. In the Euclidean setting, this would correspond to drift in an approximately
constant direction.

(2) A mean reverting term. It is plausible that the brain has some ‘mean’ state about
which it varies, and that observed EEG data should also have a tendency to return to
a certain point or region of the state space. In the absence of the autoregressive term,
the mean reverting and noise term could be considered as a discrete-time analogue of
an Ornstein-Uhlenbeck process (Maller et al., 2009).

(3) A noise term. This is a multivariate normal distribution on the tangent space, which
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gives rise to the so-called wrapped Gaussian distribution on the manifold as described
in Section 2.1.2. If this term dominates, then the time series will resemble a type of
random walk over the manifold.

By combining these terms, the model is able to capture various possible dynamics for
the evolution of EEG data, from smooth flow along geodesics to a noisy mean reverting
random walk on the underlying manifold, for example.

4.2 Model specification

In this section, we propose a model for a time series {Si : i = 1, . . . , n} ∈ M for a par-
allelizable Riemannian manifold (M, g). A simpler version is also specified for manifolds
that are not parallelizable. The general model is formulated in terms of distributional
assumptions for Si+1 based on the preceding values Si, . . . , S1. Specifically, we develop a
linear model in the tangent space TSiM for the direction vector Vi = LogSi

(Si+1) of Si+1

at the base point Si. As described in Section 4.1, the expression for Vi has three terms,
each corresponding to a different possible type of dynamics for the time series.

4.2.1 General model

Here, we set up notation and specify a general version of our model. Let Vi = LogSi
(Si+1) ∈

TSiM, for i = 1, . . . , n− 1, be the direction vector at time i and define:

Vil = PSi−l→Si(Vi−l)

for l = 1, . . . , L and i > L. Here, L is some fixed maximum lag, and Vil is the parallel
translation of the direction vector Vi−l at Si−l to the tangent space TSiM at time i. The
model for Si+1 is specified by:

Si+1 = ExpSi
(Vi)

Vi =
L∑
l=1

Al(Si)Vil +BLogSi
(S∗) + ϵi,

ϵi ∼ NTSi
M(0,ΣSi)

(4.2)

The terms in the model are defined as follows:

1. Autoregressive Term: The sum
∑

lAl(Si)Vil is a manifold-adapted version of a
conventional vector autoregressive (VAR) model. For each l, Al(S) is an endomor-
phism of TSM, which varies smoothly with S. Each term in the sum results from a
linear map acting on the lagged direction vector Vi−l parallel transported to TSiM.
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Given a parallel orthonormal basis {wr(S) : r = 1, . . . ,m} of TSM, one way to de-
termine the bundle endomorphisms Al(S) is via a constant matrix representation
in this basis. Each matrix Al is of dimension m × m, where m is the dimension
of M (for example, m = 1

2p(p + 1) when M = S+(p), and m = 1
2p(p − 1) when

M = C+(p)). Defined in this general way, the model has a very large number of
parameters, and we will discuss lower dimensional parametrizations below.

2. Mean Reversion Term: Like the terms Al(S), the term B(S) is an endomorphism
of TSM which varies smoothly with S. The vector LogSi

(S∗) is the direction from
the current point towards a fixed ‘attractor’ point S∗ ∈ M. The attractor point
S∗ ∈ M can either be fixed a priori or estimated in some way from the data. We
do not call S∗ a mean point; it is not necessarily the Fréchet mean of a set of
data generated according to the model, for example. In the same way as for the
autoregressive terms if M is parallelizable, we can use a fixed m×m matrix B and
the parallel basis {ωr(S)} to define B(S) globally. The term BLogSk

(S∗) models a
tendency to move towards the attractor point S∗, and we refer to this as a mean
reversion term.

3. Noise Term: The distribution of the random tangent vector ϵi ∈ TSiM is deter-
mined by a covariance matrix ΣSi ∈ Sym(m), and this definition implicitly depends
on the existence of some orthonormal basis of TSiM. Using the parallel orthonormal
basis {ωr(S)}, we can take ΣSi to be a fixed matrix in this basis, denoted as Σ.

We model each seizure independently within and between patients. In order to better
understand differences in seizure evolution, we identify a comparator interictal period
exactly 2 hours before the seizure, and lasting for the same duration as the seizure. Note
that each paired seizure and interictal series are prepared using the same dimensional
reduction to ensure that the Fréchet sample mean of the interictal series is in the same
basis as the seizure series.

4.2.2 Vectorization of tangent vectors

In order to conduct statistical analysis of the geometric data, it is essential to establish an
orthonormal coordinate system that isomorphically maps the tangent space TSM onto Rm,
which is equipped with a canonical metric (Pennec et al., 2006). This can be accomplished
by calculating the Riemannian metric between the tangent vector V ∈ TSM and the
orthonormal basis {ωr(S) : r = 1, . . . ,m} in the tangent space TSM as:

vr = gS⟨V, ωr(S)⟩, r = 1, . . . ,m,
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where gS represents the Riemannian metric on (M, gS). In general, any tangent vector
V ∈ TSM can then be vectorized as a coordinate vector v = (v1, . . . , vm)T ∈ Rm by vector-
ization V ec(V ). In our proposed general model (4.2), we need to vectorize three different
types of tangent vectors: the response vector Vi = LogSi

(Si+1), the parallel translated
lagged vector Vil = PSi−l→Si(Vi−l), and the mean-reverting vector Vi0 = LogSi

(S∗).
Here, we recall the vectorization V ec(V ) in different Riemannian manifolds: (Sym(p), geuc),

(S+(p), gaff), and (C+(p), gquo), all defined in Chapter 2. The vectorization V ec(V ) of the
tangent vector V ∈ TSSym(p) in the Euclidean geometry on (Sym(p), geuc) is:

vr = geucS ⟨V,Er⟩ = Tr(V Er), r = 1, . . . ,m,

where the orthonormal basis {Er} is defined in Equation (2.9) and the inner product is
independent of the base S ∈ Sym(p). m is the dimension of the Euclidean geometry. It
follows that v = (V11,

√
2V12, . . . ,

√
2V1p, V22,

√
2V23, . . . ,

√
2V2p, . . . , Vpp)

T ∈ Rp(p+1)/2 if
Si is a covariance matrix, i.e., the vector v consists of the diagonals of matrix V and its
upper triangular elements multiplied by

√
2. Analogously, when we consider correlation

matrices {Ci : i = 1, . . . , n}, the dimension of M will be (p − 1)p/2, henceforth, v =

(V12, . . . , V1p, V23, . . . , V2p, . . . , V(p−1)p)
T ∈ R(p−1)p/2, which are the elements from the strict

upper triangular matrix of matrix V .
In (S+(p), gaff), the vectorization V ec(V ) is defined in Equation (2.20) as:

vr = gaffS ⟨V, S1/2ErS
1/2⟩ = Tr(S−1/2V S−1/2Er), r = 1, . . . ,m.

Subsequently, the coordinate vector v by the vectorization V ec(V ) is isometric with the
tangent space TSM and it is computed as v = (W11,

√
2W12, . . . ,

√
2W1p,W22, . . . ,Wpp)

T ∈
Rm, where W = S−1/2V S−1/2 and m = p(p+ 1)/2.

In (C+(p), gquo), recalling the vectorization V ec(X) in the quotient manifold as defined
in Equation (2.39) for every X ∈ TCC+(p), we have

v = gquoC ⟨X,FC⟩ = Tr
(
C†−1/2

hor(∆C†X∆C†)C†−1/2
Fr

)
,

where C† ∈ S+(p) is the optimal position with respect to the identity matrix Ip, and
{Fr : r = 1, . . . ,m} is the orthonormal basis in TIpC+(p). Since X is a hollow matrix with
vanishing diagonals, the dimension of v ∈ Rm is m = (p− 1)p/2.

Subsequently, the final model with reduced parameters from the general model (4.2)
can be represented as

vi =
L∑
l=1

Alvil +Bvi0 + ϵi, (4.3)

where vi,vil, and vi0 are all mapped vectors in Rm, representing the tangent vector Vi,
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lagged tangent vectors Vil, and mean-reverting vector Vi0, separately, and ϵi ∼ N(0,Σ).
A1, . . . , AL, B,Σ, S

∗ and the lag L are unknown parameters in the model as defined above.

4.2.3 Models with reduced parameters

In a conventional VAR model, the model coefficients Al and B should be m×m matrices.
Therefore, there are (L+2)m2 unknown autoregressive parameters (including mean rever-
sion and noise terms). However, considering the potentially large number of parameters
required by the general model (4.3) is unnecessary for the following reasons:

(1) In the practical analysis of EEG data, a comprehensive evaluation of interaction effects
between pairs of channels is infrequent. Typically, the analysis focuses solely on the
evolution pattern of data for individual channel pairs. This implies components in
the vectorized vector v ∈ Rm are independent. In this case, the effective structure of
regression coefficients Al can be represented as a diagonal matrix, denoted by Al =

Diag(al1, . . . , alm) for l = 1, . . . , L.

(2) The reduced model, characterized by (L+2)m parameters as described above, remains
challenging for the general interpretation of patterns in brain dynamics. It is assumed
that the regression coefficients alr, r = 1, . . . ,m for the rth pair of coordinates are
independently and normally distributed with a mean of αl ∈ R. As a result, we can
simplify Al to scalar coefficients, denoted as Al = Diag(al1, . . . , alm) = αlIm, where Im
represents an identity matrix. This simplification facilitates a more straightforward
quantification of the strength of directional influence from Vi−l to Vi.

(3) Particularly, when the Riemannian manifold is not parallelizable, the time series model
(4.3) with scalar coefficients is well-defined. This is due to the unavailability of a basis
with a dimension of m that is orthogonal. After applying the vectorization V ec(·),
the model with scalar coefficients disregards the linear relationship among bases and
consolidates all components with the same regression coefficient for each lagged vector.

In summary, there are two types of lower reduced parameters in the manifold-adapted
models which we fit to data in practice.

Diagonal model. We assume that the matrices Aℓ, B, and Σ are all diagonal:

Al = Diag(al1, . . . , alm),

B = Diag(b1, . . . , bm), and

Σ = Diag(σ21, . . . , σ
2
m).

It should be noted that these models are diagonal in the m-dimensional tangent space
TSM. There is one parameter for every pair of coordinates. For p = 15, we have m = 120,
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so for example, the reversion term and the noise term each involve 120 scalar parameters.
Scalar coefficient model. We assume that the matrices Aℓ, B, and Σ are all scalar

multiples of the identity on TSM:

Al = αlIm, B = βIm, Σ = σ2Im.

Generally, with this set of assumptions, the model is defined independently of the basis
{ωr(S)} and so it can be applied to a manifold which is not parallelizable.

4.3 Model inference and selection

For a fixed L and attract point S∗, we introduce model inference through MLE for the
remaining parameters. Estimating these parameters reduces to a set of linear regressions
within each tangent space, as discussed in Subsection 4.3.1. Subsequently, Subsection 4.3.2
computes the asymptotic covariance matrix of these estimates. Subsection 4.3.3 discusses
methods of model selection to determine the optimal maximum value for L.

Differentiating the likelihood function with respect to S∗ is not straightforward, making
joint MLE of S∗ and the other parameters challenging. As a result, when analysing a
seizure time series {Si : i = 1, . . . , n}, we fix S∗ to be the Fréchet sample mean of the
corresponding interictal series, assuming the brain has a tendency to return to the ‘rest’
state. Furthermore, to ensure that the Fréchet sample mean of the interictal series is in
the same basis as the seizure series, this research applies the same dimensional reduction
to paired seizure and interictal series.

4.3.1 Model inference

MLE is a statistical approach that allows for the estimation of probability distribution
parameters. To perform MLE, a probability distribution is initially selected to represent
the observed data. Subsequently, using the observed data, the likelihood of the data
is calculated for different values of the distribution’s parameters. In order to facilitate
mathematical calculations, it is often convenient to take the natural logarithm of the
likelihood function and then differentiate it with respect to each parameter. By setting
the derivatives equal to zero, the resulting equations can be solved to obtain the parameter
values that maximize the likelihood function. This approach allows for the determination
of the parameter values that are most likely to have generated the observed data.

Assuming ϵ is normally distributed, the likelihood function of our manifold-adapted
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model (4.3) is

L(A1, . . . , AL, B,Σ|v) =
n∏

i=L+1

(2π)−
m
2 |Σ|−

1
2

× exp

−1

2

(
vi −

L∑
l=1

Alvil −Bvi0

)T

Σ−1

(
vi −

L∑
l=1

Alvil −Bvi0

) .

(4.4)

The following two subsections give the detailed description of MLE, considering two dif-
ferent types of reduced parameters in the model involving scalar coefficients and diagonal
matrix coefficients. We also discuss the asymptotic covariance of the estimated parameters
in both reduced parameter models but in the next subsection.

MLE for the model with scalar coefficients

Assume all coefficients are scalar values and denote θ = (α1, . . . , αL, β)
T and Σ = σ2Im.

Taking the logarithm of likelihood function L calculated in Equation (4.4) for the scalar
coefficient model, we have

ℓ = −m(n− L)

2
log(2π)−m(n− L) log(σ)− 1

2σ2

n∑
i=L+1

∥∥∥∥∥vi −
L∑
l=1

αlvil − βvi0

∥∥∥∥∥
2

, (4.5)

where ∥ · ∥2 is the Euclidean norm. For example, ∥x∥2 =
∑n

i x
2
i for any x ∈ Rn.

Subsequently, we can calculate its first derivatives with respect to αl(l = 1, . . . , L) and
β as

∂ℓ

∂αl
=

1

σ2

n∑
i=L+1

vT
il(vi −

L∑
l=1

αlvil − βvi0) = 0

∂ℓ

∂β
=

1

σ2

n∑
i=L+1

vi0
T (vi −

L∑
l=1

αlvil − βvi0) = 0.

Therefore, parameter vector θ̂ = (α̂1, ..., α̂L, β̂)
T is solving by

n∑
i=L+1



∥vi1∥2 vT
i1vi2 · · · vT

i1viL vT
i1vi0

vT
i2vi1 ∥vi2∥2 · · · vT

i2viL vT
i2vi0

...
... . . . ...

...
vT
iLvi1 vT

iLvi2 · · · ∥viL∥2 vT
iLvi0

vi0
Tvi1 vi0

Tvi2 · · · vi0
TviL ∥vi0∥2





α1

α2

...
αL

β


=

n∑
i=L+1



vT
i1vi

vT
i2vi

...
vT
iLvi

vi0
Tvi


,
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such that θ̂ = (ZTZ)−1ZTY , where Z =
∑n

i=L+1


∥vi1∥2 · · · vT

i1vi0

... . . . ...
vi0

Tvi1 · · · ∥vi0∥2

 and Y =

∑n
i=L+1


vT
i1vi

...
vi0

Tvi

 for i = L+ 1, ..., n.

Additionally, σ̂ is solved by computing the first derivative of log-likelihood function ℓ

with respect to σ and letting it be 0, so that

∂ℓ

∂σ
= −m(n− L)

σ
+

1

σ3

n∑
i=L+1

∥vi − v̂i∥2

σ̂ =

√√√√ 1

m(n− L)

n∑
i=L+1

∥vi − v̂i∥2,

where v̂i =
∑L

l=1 α̂lvil − β̂vi0 is the estimated values.

MLE for the model with diagonal coefficients

When Al = Diag(al1, . . . , alm), B = Diag(b1, . . . , bm), and Σ = Diag(σ21, . . . , σ
2
m) are diag-

onal matrices, we can represent model (4.3) as

vi =

L∑
l=1


vil,1 · · · 0

... . . . ...
0 · · · vil,m



al1
...
alm

+


vi0,1 · · · 0

... . . . ...
0 · · · vi0,m



b1
...
bm

+


ϵi1
...
ϵim


=

L∑
l=1

uilal + ui0b+ ϵi,

where u are diagonal matrices of v, i.e. u = Diag(v1, . . . , vm); al = (al1, ..., alm)T , b =

(b1, ..., bm)T are vectors from diagonal matrix Al, B, l = 1, . . . , L. Furthermore, ϵi ∼
N(0,Σ) and Σ = Diag(σ21, . . . , σ

2
m).

The log-likelihood function is then written as

ℓ = −m(n− L)

2
log(2π)− n− L

2
log(σ21 · · ·σ2m)

− 1

2

n∑
i=L+1

(
vi −

L∑
l=1

uilal − ui0b

)T

Σ−1

(
vi −

L∑
l=1

uilal − ui0b

)
.

(4.6)

According to the process of MLE, the first derivative of log-likelihood with respect to
coefficients Al and B are calculated and set to 0. Then, the estimated Θ̂ = (â1, ..., âL, b̂)

T
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is solved by
Θ̂ = (ZTZ)−1ZTY,

where Z =
∑n

i=L+1


ui1ui1 · · · ui1uiL ui1ui0

... . . . ...
...

uiLui1 · · · uiLuiL uiLui0

ui0ui1 · · · ui0uiL ui0ui0

 and Y =
∑n

i=L+1


ui1vi

...
uiLvi

ui0vi

.

Similarity, σ̂r is solved by its the first derivative of log-likelihood ℓ as

∂ℓ

∂σr
= −n− L

σr
+

1

σ3r

n∑
i=L+1

(vi − v̂i)
2
r = 0

σ̂r =

√∑n
i=L+1 (vi − v̂i)

2
r

n− L
,

where (vi − v̂i)r is the rth component of residual vector
∑n

i=L+1 (vi − v̂i)
2, r = 1, ...,m.

It follows the estimated Σ̂ as Σ̂ = Diag(σ̂1, . . . , σ̂m).

4.3.2 Asymptotic covariance matrix of estimates

The asymptotic covariance matrix of maximum likelihood estimates of Φ = (α1, . . . , αL, β, σ)
T

in the scalar coefficient model (or Φ = (a1, . . . ,aL, b,σ)
T in the diagonal coefficient model)

is used to construct confidence intervals and provides a measurement of the uncertainty
associated with the estimated parameters.

Fisher information matrix of estimates in the scalar coefficient model

In model (4.3) with scalar coefficients, we firstly compute the Hessian matrix, which is the
second derivative of log-likelihood function defined as

H(ℓ) =



∂2ℓ
∂α2

1
· · · ∂2ℓ

∂α1∂αL

∂2ℓ
∂α1∂β

∂2ℓ
∂α1∂σ

... . . . ...
...

...
∂2ℓ

∂α1∂αL
· · · ∂2ℓ

∂α2
L

∂2ℓ
∂αL∂β

∂2ℓ
∂αL∂σ

∂2ℓ
∂α1∂β

· · · ∂2ℓ
∂αL∂β

∂2ℓ
∂β2

∂2ℓ
∂β∂σ

∂2ℓ
∂α1∂σ

· · · ∂2ℓ
∂αL∂σ

∂2ℓ
∂β∂σ

∂2ℓ
∂σ2


where the second cross-partial derivative of ℓ is

∂2ℓ

∂αl∂αo
= − 1

σ2

n∑
i=L+1

vT
ilvio
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∂2ℓ

∂αl∂β
= − 1

σ2

n∑
i=L+1

vT
ilvi0

∂2ℓ

∂σ2
=
m(n− L)

σ2
− 3

σ4

n∑
i=L+1

∥∥∥∥∥vi −
L∑
l=1

α̂lvil − β̂vi0

∥∥∥∥∥
2

∂2ℓ

∂αl∂σ
=

∂

∂αl

−m(n− L)

σ
+

1

σ3

n∑
i=L+1

∥∥∥∥∥vi −
L∑
l=1

α̂lvil − β̂vi0

∥∥∥∥∥
2


=
∂

∂σ

(
1

σ2

n∑
i=L+1

vT
il

(
vi −

L∑
l=1

α̂lvil − β̂vi0

))

= − 2

σ3

n∑
i=L+1

vT
il

(
vi −

L∑
l=1

α̂lvil − β̂vi0

)

where l, o = 1, . . . , L.
Recall the model vi =

∑L
l=1 α̂lvil + β̂vi0 + ϵi. We have

E

[
vi −

L∑
l=1

αlvil − βvi0

]
= 0

E

∥∥∥∥∥vi −
L∑
l=1

αlvil − βvi0

∥∥∥∥∥
2
 = mσ2.

Consequently, the negative expectation of the second partial derivative of ℓ are

−E
[

∂2ℓ

∂αl∂αo

]
=

1

σ2

n∑
i=L+1

vT
ilvio

−E
[
∂2ℓ

∂αl∂β

]
=

1

σ2

n∑
i=L+1

vT
ilvi0

−E
[
∂2ℓ

∂σ2

]
= −m(n− L)

σ2
+

3

σ4

n∑
i=L+1

E

∥∥∥∥∥vi −
L∑
l=1

αlvil − βvi0

∥∥∥∥∥
2


= −m(n− L)

σ2
+

3

σ4

n∑
i=L+1

mσ2

= −m(n− L)

σ2
+

3m(n− L)σ2

σ4

=
2m(n− L)

σ2

−E
[
∂2ℓ

∂αl∂σ

]
= − 2

σ3

n∑
i=L+1

(
E[vT

il ]E

[
vi −

L∑
l=1

αlvil − βvi0

])
= 0
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Therefore, the Fisher information matrix is

I(Φ) = −E[H(ℓ)]

=
1

σ2

n∑
i=L+1


vT
i1vi1 · · · vT

i1viL vT
i1vi0 0

... . . . ...
... 0

vT
i0vi1 · · · vT

i0viL vT
i0vi0 0

0 · · · 0 0 2m


Fisher information matrix of estimates in the diagonal model

Analogously, we can obtain the Fisher information matrix of maximum likelihood esti-
mates: Φ = (a11, . . . , a1m, a21, . . . , aLm, b1, . . . , bm, σ1, . . . , σm)T from the Hessian matrix.
Recalling the log-likelihood function of the manifold-adapted model with diagonal matrix
coefficients and rewriting them as vectors, the log-likelihood function in (4.6) could be
written as

ℓ =− m(n− L)

2
log(2π)− n− L

2
log(σ21 · · ·σ2m)

− 1

2

n∑
i=L+1

(
m∑
r=1

1

σ2r
(vir −

L∑
l=1

alrvil,r − vi0,rbr)
2

) (4.7)

where r = 1, . . . ,m; l = 1, . . . , L; i = L + 1, . . . , n. Compute the first derivatives of log-
likelihood function with respect to all parameters as

∂ℓ

∂alr
=

1

σ2r

n∑
i=L+1

vil,r(vi,r −
L∑
l=1

alrvil,r − brvi0,r)

∂ℓ

∂br
=

1

σ2r

n∑
i=L+1

vi0,r(vi,r −
L∑
l=1

alrvil,r − brvi0,r)

∂ℓ

∂σr
= −n− L

σr
+

1

σ3r

n∑
i=L+1

(
vi,r −

L∑
l=1

alrvil,r − brvi0,r

)2

,

and their second derivatives are

∂2ℓ

∂alr∂αko
= − 1

σ2r

n∑
i=L+1

vil,rvik,o

∂2ℓ

∂ako∂alr
= − 1

σ2o

n∑
i=L+1

vil,rvik,o

∂2ℓ

∂alr∂br
= − 1

σ2r

n∑
i=L+1

vil,rvi0,r
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∂2ℓ

∂alr∂σr
= − 2

σ3r

n∑
i=L+1

vil,r(vi,r −
L∑
l=1

alrvil,r − brvi0,r)

∂2ℓ

∂br∂alr
= − 1

σ2r

n∑
i=L+1

vi0,rvil,r

∂2ℓ

∂b2r
= − 1

σ2r

n∑
i=L+1

v2i0,r

∂2ℓ

∂bo∂alr
= − 1

σ2o

n∑
i=L+1

vi0,ovil,r

∂2ℓ

∂br∂σr
= − 2

σ3r

n∑
i=L+1

vi0,r(vi,r −
L∑
l=1

alrvil,r − brvi0,r)

∂2ℓ

∂σr∂alr
= − 2

σ3r

n∑
i=L+1

vil,r(vi,r −
L∑
l=1

alrvil,r − brvi0,r)

∂2ℓ

∂σr∂br
= − 2

σ3r

n∑
i=L+1

vi0,r(vi,r −
L∑
l=1

alrvil,r − brvi0,r)

∂2ℓ

∂σ2r
=
n− L

σ2r
− 3

σ4r

n∑
i=L+1

(
vi,r −

L∑
l=1

alrvil,r − brvi0,r

)2

∂2ℓ

∂σo∂alr
=

∂ℓ2

∂σo∂br
=

∂ℓ2

∂σo∂σr
= 0,

where l, k = 1, . . . , L; r, o = 1, . . . ,m.
Therefore, we can obtain a large Hessian matrix of dimension ((L+ 2)m× (L+ 2)m)

as

H(ℓ) =



∂2ℓ
∂a211

· · · ∂2ℓ
∂a11a1m

· · · ∂2ℓ
∂a11∂aLm

∂2ℓ
∂a11∂b1

· · · ∂2ℓ
∂a11∂σ1

· · · ∂2ℓ
∂a11∂σm

. . . . . . . . . . . .
∂2ℓ

∂a1m∂a11
· · · ∂2ℓ

∂a21m
· · · ∂2ℓ

∂a1m∂aLm

∂2ℓ
∂a1m∂b1

· · · ∂2ℓ
∂a1m∂σ1

· · · ∂2ℓ
∂a1m∂σm

. . . . . . . . . . . .
∂2ℓ

∂aLm∂a11
· · · ∂2ℓ

∂a2Lm
· · · ∂2ℓ

∂a2Lm

∂2ℓ
∂aLm∂b1

· · · ∂2ℓ
∂aLm∂σ1

· · · ∂2ℓ
∂aLm∂σm

∂2ℓ
∂b1∂a11

· · · ∂2ℓ
∂b1aLm

· · · ∂2ℓ
∂b1∂aLm

∂2ℓ
∂b21

· · · ∂2ℓ
∂b1∂σ1

· · · ∂2ℓ
∂b1∂σm

. . . . . . . . . . . .
∂2ℓ

∂σ1∂a11
· · · ∂2ℓ

∂σ1a1m
· · · ∂2ℓ

∂σ1∂aLm

∂2ℓ
∂σ1∂b1

· · · ∂2ℓ
∂σ2

1
· · · ∂2ℓ

∂σ1∂σm

. . . . . . . . . . . .
∂2ℓ

∂σm∂a11
· · · ∂2ℓ

∂σma1m
· · · ∂2ℓ

∂σm∂aLm

∂2ℓ
∂σm∂b1

· · · ∂2ℓ
∂σm∂σ1

· · · ∂2ℓ
∂σ2

m


Now, we compute the expectation of each derivative in the above Fisher information
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matrix which is defined as the negative expectation of Hessian matrix H(ℓ), i.e., I(Φ) =
−E[H(ℓ)] . According to the model, it is known that

E

[
vr −

∑
l

alrvl,r − brv0,r

]
= 0

E

[
(vr −

∑
l

alrvl,r − brv0,r)
2

]
= σ2r .

It follows that

−E
[

∂2ℓ

∂alr∂σr

]
= −E

[
∂2ℓ

∂br∂σr

]
= E

[
∂2ℓ

∂σr∂alr

]
= E

[
∂2ℓ

∂σr∂br

]
= 0

−E
[
∂2ℓ

∂σ2r

]
= −n− L

σ2r
+

3(n− L)

σ2r
=

2(n− L)

σ2r
.

The Fisher information matrix is then

I(Φ) =
n∑

i=L+1



v2i1,1
σ2
1

· · · vi1,1vi1,m
σ2
1

· · · vi1,1viL,m

σ2
1

vi1,1vi0,1
σ2
1

· · · 0 · · · 0

. . . . . . . . . . . .
vi1,mvi1,1

σ2
m

· · · v2i1,m
σ2
m

· · · vi1,mviL,m

σ2
m

vi1,mvi0,1
σ2
m

· · · 0 · · · 0

. . . . . . . . . . . .
viL,mvi1,1

σ2
m

· · · viL,mvi1,m
σ2
m

· · · v2iL,m

σ2
m

viL,mvi0,1
σ2
m

· · · 0 · · · 0

vi0,1vi1,1
σ2
1

· · · vi0,1vi1,m
σ2
1

· · · vi0,1viL,m

σ2
1

v2i0,1
σ2
1

· · · 0 · · · 0

. . . . . . . . . . . .
0 · · · 0 · · · 0 0 · · · 2

σ2
1

· · · 0

. . . . . . . . . . . .
0 · · · 0 · · · 0 0 · · · 0 · · · 2

σ2
m



.

Asymptotic covariance matrices of maximum likelihood estimates

Given Φ = (α1, . . . , αL, β, σ)
T in the scalar coefficient model or Φ = (a1, . . . ,aL, b,σ)

T

in the diagonal model, the maximum likelihood estimator is asymptotically normal for
sufficiently large n:

√
n(Φ̂−Φ) converges to a multivariate normal distribution with zero

mean and covariance matrix I(Φ)−1 (Newey & McFadden, 1994, Theorem 3.3), i.e.,

√
n(Φ̂− Φ) → N(0, I(Φ)−1).
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More precisely, for ‘large’ n, the distribution of the vector Φ̂ can be approximated by a
multivariate normal distribution with mean Φ and covariance matrix

1

n
I(Φ)−1.

Hence, we can establish 95% confidence intervals for the estimated parameters of Φ:

Φ̂j ± 1.96I(Φ)
−1/2
jj

where j = 1, . . . , J and J is the total number of estimated parameters, e.g., J = L+ 2 in
the scalar coefficient model and J = (L+ 2)m in the diagonal matrix model.

4.3.3 Model selection

There are many methods for model selection with respect to time series models. We
review two typical approaches in this research: the Akaike Information Criterion (AIC)
(Burnham & Anderson, 2004) and the partial autocorrelation function (PACF) (Box et al.,
2015).

Akaike Information Criterion

In the process of assessing which model best fits the data, it is crucial to acknowledge
that the objective function, the log-likelihood ℓ, always improves when extra parameters
are introduced. As a result, the strategy is to counterbalance increasing complexity by
implementing a penalty, as represented by the AIC value, given by:

AIC(L) = −2ℓ+ 2K,

where ℓ is the log-likelihood at the MLE and K denotes the total number of parameters.
The penalty grows with the increase in K. Finally, the optimal model is selected by
minimizing AIC(L).

Partial autocorrelation function

The AIC takes into account the goodness of fit of a model while penalizing for the number
of parameters used. A high lag suggested by AIC might indicate that the model is over-
fitting the data by including unnecessary parameters. Additionally, a high lag could be
capturing random fluctuations or noise in the data, which may not have any meaningful
relationship with the underlying process. To overcome this issue, we need to measure the
direct relationship between the current observation and its lagged values while controlling
for the effects of the intermediate lags. That is to say, the partial autocorrelation at lag
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l is the autocorrelation between vi and vi−l that is not accounted for by lags 1 to l − 1

(l = 1, . . . , L).
In practice, there are algorithms for computing the partial autocorrelation based on

the sample autocorrelations (Box et al., 2015; Brockwell & Davis, 1991). Without delv-
ing into the mathematical details of the partial autocorrelation function, there is a sim-
ple method for obtaining partial autocorrelation yielding the same results (Hyndman &
Athanasopoulos, 2018). Specifically, the first partial autocorrelation is identical to the
first autocorrelation, and each subsequent partial autocorrelation can be estimated as the
last coefficient in an autoregressive model. For example, the PACF value at lag L can be
simply considered as αL from the autoregressive model AR(L). Note that the PACF value
of L − 1 should be estimated by the model AR(L − 1) (the last regression coefficient in
the model AR(L− 1)) rather than αL−1 in AR(L).

Subsequently, we will check for significant PACF values at particular lags, suggesting
that those lags are important in explaining the current value of the series. Typically,
PACF values beyond a given lag, denoted as L, exhibit independence and behave as
approximately independent random variables following a N(0, 1/n) distribution. This
implies that around 95% of sample PACF values beyond lag L are expected to lie within
the range of ±1.96/

√
n (Brockwell & Davis, 2002).

4.4 Model diagnostics

Considering the intricacies inherent in our model, defined on Riemannian manifolds, tra-
ditional stationary tests designed for Euclidean spaces are deemed inappropriate. This is
due to the dynamic nature of the endogenous variables, which undergo continuous changes
owing to the parallel translation between tangent spaces on the manifold. Departing from
conventional practices in time series analysis, we choose not to assess stationarity directly
within the manifold-valued time series. Instead, this thesis pivots towards scrutinizing the
stationarity of model residuals, which assume a pivotal role as an indicator of the model’s
effectiveness in capturing the latent structures embedded in the data. In evaluating our
model, we place emphasis on the desired properties of residuals generated by a robust
regression model. Ideally, these residuals should exhibit characteristics such as indepen-
dence, homoscedasticity, normality, and stationarity, representing essential qualities that
validate the adequacy of our manifold-adapted time series model.

Therefore, this section will analyse the residuals ϵ = v− v̂ by checking the assumptions
mentioned above, and additionally, we will assess the goodness of modelling fit.
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4.4.1 Residual analysis

Due to the independence among components of ϵ, tests for m-dimensional residuals should
be assessed independently through:

(1) Normality: Each component should independently and identically follow a normal
distribution, specifically N(0, σ2Im) or N(0,Σrr) where Σ = Diag(σ21, . . . , σ

2
m) and

r = 1, . . . ,m. To satisfy this condition, it is imperative to subject each dimension to
a normality test, ensuring that residuals exhibit both a mean of zero and constant
variance. This requirement is particularly crucial when employing the maximum like-
lihood estimation in our model.

Kolmogorov–Smirnov test is a nonparametric test with the null hypothesis that the
sample is drawn from the reference distribution N(0, σ̂2) or N(0, Σ̂) (Berger & Zhou,
2014).

(2) Stationarity: In the context of time series analysis, the stationarity of residuals
is a critical consideration to prevent spurious regressions. This stationarity implies
that both the mean and variance of residuals remain constant over time. When the
individual components of residuals exhibit independent stationarity, it indicates that
the model has effectively captured all the temporal characteristics of the time series
data, and consequently, no systematic patterns can be discerned in the residuals over
time.

Augmented Dickey-Fuller (ADF) test: The ADF test is a commonly used test for
stationarity (Mushtaq, 2011). It tests the null hypothesis that a unit root is present
in time series, which would indicate non-stationarity.

(3) Independence: The errors should not exhibit temporal correlation, indicating that
they should resemble white noise, devoid of any discernible patterns over time.

Ljung-Box test is a statistical test that tests whether the residuals of the time series
model are independently distributed (Box & Pierce, 1970). It is a common method
to check for the presence of autocorrelation in time series residuals, particularly at
different lags.

4.4.2 Goodness of fit

Like a general regression model, the R-squared (R2) is used to assess the goodness of
modelling fit. We directly compute the R2 values for our manifold-adapted models as
follows:

R2 = 1− Unexplained variation
Total variation = 1−

∑n
i=1 ∥vi − v̂i∥2∑n
i=1 ∥vi − v̄∥2

. (4.8)
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Here, ∥ · ∥2 represents the Euclidean norm of vectors. For example, ∥vi∥2 =
∑

r v
2
ir. v̄i is

the mean vector of v, i.e. v̄ = 1/n
∑n

i=1 vi.

4.5 Simulation studies

In this section, simulation studies will be conducted to test our models and model infer-
ence. The underlying approach involves generating initial points from a wrapped Gaussian
distribution. Subsequently, with fixed lags and initial parameters Φ = (A1, ..., AL, B,Σ)

T ,
the matrices Si+1 under the general manifold-valued model (4.2) are generated. After
discarding a burn-in period, the simulated manifold-valued data are utilized to perform
MLE and model selection using AIC, obtaining estimated parameters. A comparison is
then conducted between these estimated parameters and the initial parameters.

4.5.1 Simulation study on the scalar coefficient model

Covariance matrices on the affine invariant geometry (S+(p), gaff)

We start the simulation study using the affine invariant geometry on (S+(p), gaff) and
the scalar coefficient model described in (4.2). Specifically, given initial set of points
S1, ..., SL+1 within S+(p), we proceed to generate the subsequent points through the fol-
lowing steps:

Step 1 Autoregressive terms:

Vi−l = LogSi−l
(Si−l+1),

Vil = PSi−l→Si(Vi−l),

vil,r = gaffSi
⟨Vil, ESi

r ⟩,

where l = 1, . . . , L and {ESi
r : r = 1, . . . ,m} is the orthonormal basis in the tangent

space TSiS+(p) such that vil = (vil,1, . . . , vil,m)T ∈ Rm. Refer to Section 2.3 for
detailed operations in the affine invariant geometry.

Step 2 Mean reversion term:

Vi0 = LogSi
(S∗),

vi0,r = gaffSi
⟨Vi0, ESi

r ⟩,

where S∗ is the attract point, and r = 1, . . . ,m.
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Step 3 Wrapped Gaussian distribution:

vi ∼ N(

L∑
l=1

αlvil + βvi0, σ
2Im),

Vi =

m∑
r=1

virE
Si
r ,

Si+1 = ExpSi
(Vi).

Here, we provide an example of a manifold-adapted model (4.2) with scalar coefficients
in S+(10). We set the maximum lag to L = 3 and initialize the parameters (α1, α2, α3) ∼
N(0, 0.42), β ∼ Γ(5, 25), and σ ∼ Γ(5, 30). We simulate a set of 10 × 10 covariance
matrix-valued time series with a length of n = 300 and an attract point S∗, all drawn
from a wrapped Gaussian distribution as defined in Equation (2.2) with zero mean and
covariance matrix Σ = 0.2I10 at the identity matrix I10. For the sake of illustrating
simulation results and model inference, we choose fixed values for the initial parameters:
(α1, α2, α3)

T = (−0.167,−0.282, 0.413)T , β = 0.252, and σ = 0.212.

2

4

6

8

0 100 200 300
Time

A
ffi

ne
 in

va
ria

nt
 m

et
ric

Successive distance

−2

−1

0

1

−1 0 1 2
Coordinate 1

C
oo

rd
in

at
e 

2

Time

25

50

75

100

mMDS plot (33.88%)

−1000

0

1000

1 2 3 4 5 6 7 8 9 10
Lags

A
IC

 v
al

ue
s

−0.2

0.0

0.2

0.4

α1 α2 α3 β σ

Parameter

V
al

ue

95% Confidence intervals of estimators

Figure 4.1: Top Left: Successive distances via the geodesic distance dgaff . We omit the burn-in
period and fit the model to the last 100 data points, highlighted in red. Top Right: Connected
scatter plot. Utilizing the affine invariant metric, the plot exhibits a gradient of colours from red
to green, culminating in blue. The percentage value in brackets represents the stress of the metric
MDS plot. Bottom Left: AIC values. AIC values for lags 1 to 10 are depicted. The red point is
selected by minimizing AIC values. Bottom Right: Estimated parameters and confidence intervals.
The plot displays estimated parameters (red points) along with 95% confidence intervals (vertical
intervals). True parameters are marked in blue.
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Following a burn-in period in the simulated data, we extract the last 100 data points
(depicted by the red line) in the successive distance plot shown in Figure 4.1. The attract
point is computed using the Fréchet sample mean of the extracted data. Subsequently,
our model is applied to fit this simulated data set. The resulting connected scatter plot
on the right side of Figure 4.1 employs a gradient colour scheme ranging from red to blue.
Notably, through model selection, we infer that a lag value of L = 3 represents the optimal
choice for the simulated data set, aligning with the initial configuration. Consequently,
MLE is employed to estimate the parameters. These estimated parameters are listed in
Table 4.1, and the bottom-right panel shows 95% confidence intervals, which include both
the estimated parameters (depicted by red dots) and the initially set parameters (depicted
by blue dots).

Table 4.1: True and estimated parameters with 95% confidence intervals.

True parameters Estimates 95% CI
α1 -0.167 -0.168 (-0.194 , -0.141)
α2 -0.282 -0.280 (-0.303, -0.257)
α3 0.413 0.408 (0.386, 0.430)
β 0.252 0.273 (0.251 , 0.294)
σ 0.212 0.214 (0.210, 0.218)

Moreover, the goodness of the model fit is assessed using R2, defined in Equation
(4.8), yielding a value of 58.03%. This implies that 58.03% of the variation in the response
variables is explained by the autoregressive and mean-reverting terms.

Correlation matrices on the quotient geometry (C+(p), gquo)

Similarly, we extend our simulation to data generated under the model with scalar coef-
ficients in the quotient geometry (C+(p), gquo). The simulation process in (C+(p), gquo) is
inherently more intricate compared to that in (S+(p), gaff). The following steps encapsu-
late the simulation procedure:

Step 1 Optimal positions within the fibre π−1(Ci) with respect to Ip are denoted as Si,
ensuring that both Ip and Si are optimally positioned within S+(p). Following this,
we define optimal positions within the fibres π−1(Ci−1), . . . , π

−1(Ci−L), π
−1(C∗),

represented as Si−1, . . . , Si−L, S
∗ ∈ S+(p) with respect to Ip.

Step 2 Autoregressive terms:

Xi−l = LogCi−l
(Ci−l+1),

X♯
il =

(
PCi−l→Ci(Xi−l)

)♯
,

uil,r = gaffSi
⟨X♯

il, F
Si
r ⟩,
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where l = 1, . . . , L. Here, X♯
il represents the horizontal lift of Xil, computed by

parallel transporting Xi−l from the tangent space TCi−l
C+(p) to TCiC+(p). We

lift the tangent vector Xil ∈ TC1C+(p) to the horizontal subspace HSi , where
Si ∈ π−1(Ci) and Ip are optimally positioned within S+(p). The set {FSi

r : r =

1, . . . ,m} forms an orthonormal basis in the horizontal subspace HSi , such that
uil = (uil,1, . . . , uil,m)T ∈ Rm. For further details on these operations in quotient
geometry, please refer to Section 2.4.

Step 3 Mean reversion term:

Xi0 = LogCi
(C∗),

ui0,r = gaffSi
⟨X♯

i0, F
Si
r ⟩,

where C∗ is the attract point and r = 1, . . . ,m.

Step 4 Wrapped Gaussian distribution:

ui ∼ N(
L∑
l=1

αluil + βui0, σ
2Im),

Vi =
m∑
r=1

uirF
Si
r ;Xi = dπSi(Vi),

Ci+1 = ExpCi
(Xi).

The simulated results are presented in Figure 4.2. In this case, we generated 300
covariance matrices (n = 300) and an attract point S∗ from a wrapped Gaussian distribu-
tion with zero mean and covariance matrix Σ = 0.2I10 at the identity matrix I10 and then
computed their correlation matrices. Obtaining the data set of correlation matrices, we
selected the data from the last 100 data points, which is in the post-burn-in period. The
goodness of modelling fit with R2 value was 43.77%. To avoid redundant descriptions of
predictable simulation results, we have omitted the display of estimated parameters and
95% confidence intervals in a table. Instead, the bottom-right panel illustrates Φ̂ with
red points and confidence intervals depicted by vertical intervals. The true (initial set)
parameters are denoted in blue.

It is notable that there are variations in the estimated parameters α̂3, β, and σ̂ com-
pared to the real setting parameters. This discrepancy arises from the fact that the
estimated Fréchet sample mean C̃ computed from the simulated data is not close to the
real attractor point C∗, leading to a higher β̂ and slightly lower α̂3 after the model infer-
ence. We also attempted to use the original setting point C∗ as the attractor, but yielded
the similar results. It also may be due to the incremental variation in optimization for
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Figure 4.2: Top Left: Successive distance via the geodesic distance dgquo . We omit the burn-in
period and fit the model to the last 100 data points, highlighted in red. Top Right: Connected
scatter plot. Utilizing the quotient metric, the plot exhibits a gradient of colours from red to green,
culminating in blue. The percentage value in brackets represents the stress of the metric MDS plot.
Bottom Left: AIC values. AIC values for lags 1 to 10 are depicted. The red point is selected by
minimizing AIC values. Bottom Right: Estimated parameters and confidence intervals. The plot
displays estimated parameters (red points) along with 95% confidence intervals (vertical intervals).
True parameters are marked in blue.

seeking the optimal positions (described in Section 2.4.3) leads to this outcome. Specifi-
cally, for every simulated Ci, we consistently find an optimal position with respect to Ip as
Si ∈ π−1(Ci) ⊂ S+(p), ensuring that any tangent vector along the geodesic from Ip to Si is
horizontal. However, in practice, the numerical experiment results of Si cannot guarantee
that the horizontal basis in HIp to HSi remains horizontal. This results in the Riemannian
submersion of the basis in TCiC+(p) being not completely orthonormal when implemented
as the computer code. In practice, the inner product of the basis gquoCi

⟨FCi
r , FCi

r ⟩ is close
but not equal to 1, and gquoCi

⟨FCi
r , FCi

o ⟩ is close but not equal to 0, where r, o = 1, . . . ,m,
and r ̸= o.

In the future research, improving the precision of optimization for seeking an optimal
position and proving the uniqueness of the Fréchet sample mean in the quotient geometry
may be the key to overcome the above limitations.
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4.5.2 Simulation study on the diagonal matrix coefficient model

Covariance matrices on the affine invariant geometry (S+(p), gaff)

Similar to the simulation study under the framework of the model with the scalar coeffi-
cients in (S+(p), gaff), the only necessary adjustment is to modify Step 3, incorporating
the wrapped Gaussian distribution of vi from the previous subsection as follows:

vi ∼ N

(
L∑
l=1

Alvil +Bvi0,Σ

)
,

Vi =

m∑
r=1

virE
Si
r .

For a more comprehensive comparison with the simulation study on the model with
scalar coefficients, we generate the diagonals of A1, A2 and A3 following normal distribu-
tions with the means of α1, α2 and α3 and variance of 0.12. B and Γ follows the same
distributions with β and σ. Specifically, we establish the following parameter values based
on the setting parameters in Section 4.5.1:

p = 10, L = 3,

a1r ∼ N(−0.167, 0.12), a2r ∼ N(−0.282, 0.12), a3r ∼ N(0.413, 0.12),

br ∼ Γ(5, 25),

σr ∼ Γ(5, 30),

where Al = Diag(al1, . . . , alm), B = Diag(b1, . . . , bm), and Σ = Diag(σ21, . . . , σ
2
m) are diag-

onal matrices and l = 1, 2, 3; r = 1, . . . ,m.
In practical implementation, we set the variance of distributions of diagonals in Al and

B being 0.12, as a larger standard deviation was found to lead to simulation instability.
Following the implementation of the simulation process with these parameters, we extract
simulated data after the burn-in period. Subsequently, model inference and selection are
performed to obtain the estimated parameters, as depicted in Figure 4.3.

The goodness of the modeling fit, measured by R2 value, is 70.47%. To assess param-
eter distributions, we employ the two-sample Kolmogorov-Smirnov test, comparing each
pair of parameters. The null hypothesis is that, for example, Diag(Al) and Diag(Âl) are
drawn from the same probability distribution (See Table 4.2). Importantly, we accept all
hypotheses indicating that our manifold-adapted model with diagonal coefficients, along
with the model inference, effectively captures data dynamics and performs exceptionally
well.

We can also examine the confidence intervals for each element alr, br, σr (l = 1, 2, 3; r =
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Figure 4.3: Top left: Successive distance via the geodesic distance dgaff . After discarding the burn-
in period, the plot showcases the last 100 data points, highlighted in red. Top right: Connected
scatter plot. Utilizing the affine invariant metric, this plot exhibits a gradient of colors from red
to green, culminating in blue. The percentage value in brackets represents the stress of the metric
MDS plot. Bottom left: AIC values. AIC values for lags 1 to 10 are displayed, with the red point
selected by minimizing AIC values. Bottom right: Boxplots of parameters. This plot presents
boxplots comparing setting parameters (in red) with estimated parameters (in green).

Table 4.2: Two sample Kolmogorov-Smirnov test for two sets of parameters.

A1&Â1 A2&Â2 A3&Â3 B&B̂ Σ&Σ̂

Statistic 0.16 0.15 0.11 0.16 0.13
p value 0.46 0.61 0.90 0.46 0.77

1, . . . ,m), resulting in a total of (L+ 2)×m = 275 intervals. However, to conserve space,
we will not present the comparison of the initial and estimated parameters along with
their 95% confidence intervals in this thesis. Interested readers can access the code and
computed results through our R package: geomTS.

Correlation matrices on the quotient geometry (C+(p), gquo)

Within our R package, another simulation study is available for the model with diagonal
matrix coefficients in the quotient geometry (C+(p), gquo) generating time series of covari-
ance matrices. To prevent redundant representation of results similar to simulations in
(S+(p), gaff), we exclusively present Figure 4.4 from simulation studies on (C+(p), gquo).
This presentation includes successive distance, MDS, AIC values, and distributions of
initial and estimated parameters. The goodness-of-fit for the model is 66.88% in this
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simulation study.
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Figure 4.4: Top left: Successive distance via the geodesic distance dgquo . After discarding the burn-
in period, the plot showcases the last 100 data points, highlighted in red. Top right: Connected
scatter plot. Utilizing the quotient metric, this plot exhibits a gradient of colours from red to
green, culminating in blue. The percentage value in brackets represents the stress of the metric
MDS plot. Bottom left: AIC values. AIC values for lags 1 to 10 are displayed, with the red point
selected by minimizing AIC values. Bottom right: Boxplots of parameters. This plot presents
boxplots comparing setting parameters (in red) with estimated parameters (in green).

A noteworthy observation is that B̂ exhibit different distributions compared to B.
Potential reasons for this discrepancy have been discussed in the previous subsection,
primarily stemming from numerically experimental results for optimal positions and the
uniqueness of the Fréchet sample mean on the quotient geometry. Despite the slight bias
in the estimated parameters, we believe the manifold-adapted model with diagonal matrix
coefficients in the quotient geometry’s has an ability to effectively capture data dynamics.

4.5.3 Summary

Based on the simulation studies conducted on our manifold-adapted models with scalar
and diagonal matrix coefficients for covariance and correlation matrices under different
geometries on (S+(p), gaff) and (C+(p), gquo), we assessed the effectiveness of our models,
model inference, and the code in the R package geomTS. The estimated parameters obtained
from the simulated data fitted into the models with scalar and diagonal matrix coefficients
are statistically identical to the initial settings, despite a slight bias in the results on the
quotient manifold due to numerical optimization issues. The questions regarding the
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presence of numerical rounding errors and the uniqueness of the Fréchet sample mean in
(C+(p), gquo) still pose an open mathematical challenge.
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Chapter 5

Applications to EEG data

The general manifold-adapted model in (4.2) comprises three components: the autoregres-
sion term, the mean reversion term, and the noise term. The first component assesses the
influence of historical data on the current data, with regression coefficients Al, l = 1, ..., L

representing the extent of this influence. It is expected that the influence decreases as
the lag increases, meaning that data further in the past has a diminishing effect on the
present state. The second component quantifies the strength of the mean reversion, re-
ferring to the tendency of the data to revert to the attractor point. The parameter B
determines the intensity of this attraction. In practical applications, the Fréchet sample
mean of the interictal series corresponding to the seizure series is used as the attractor
point S∗ or C∗. The third component accounts for the presence of noise in the model.
Noise represents random fluctuations or unpredictable elements in the data that cannot
be attributed to any specific influence or pattern. It adds variability to the model and
captures the unexplained portion of the observed data.

In this chapter, we present model results for an exemplar patient, Patient ID18, demon-
strating the application of covariance matrix-valued time series data in the Euclidean ge-
ometry on (Sym(p), geuc) and the affine invariant geometry on (S+(p), gaff). The goal is
to discover the evolution of the covariance of pairs of channels during the seizure period.
Additionally, after factoring out the variance amplitudes for pairs of channels, correlation
matrix-valued time series data can explicitly depict the data dynamics of linear relation-
ships, and we will discuss model results in geometries on (Sym(p), geuc), (S+(p), gaff), and
the quotient geometry on (C+(p), gquo). The comparison of covariance (or correlation)
matrix data in different geometries and the influence of choices of geometry on the model
will be discussed in Section 5.2. Before that, we first introduce the results of the manifold-
adapted model in (S+(p), gaff) and (C+(p), gquo) with respect to the covariance matrix
and correlation matrix in Section 5.1 as an example showing how to interpret model re-
sults under the manifold-adapted models and diagnose model effectiveness. Models with
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different reduced parameters are discussed in Section 5.1 as well. Lastly, Section 5.3 will
measure the seizure variability within the individual patient and across patients.

5.1 Brain dynamics of EEG data under manifold-adapted
models

In the preceding sections, the primary objective of the general manifold-adapted model
in (4.2) has been to understand the intricate dynamics inherent in brain activity. In this
section, we apply the manifold-adapted model to EEG data from Patient ID18, aiming to
elucidate how the model interprets brain dynamics across five seizures and one interictal
series for Patient ID18. Notably, the comparative analysis of the interictal series is selected
by the last interictal time series corresponding to the final seizure time series (refer to more
examples of Patients ID6, ID7, and ID13 in Appendix A).

The Riemannian geometries explored in this section involve time series of covariance
matrices on (S+(p), gaff) and correlation matrices on (C+(p), gquo). By presenting the es-
timated parameters separately for models with scalar and diagonal coefficients, we seek
to clarify the evolution of EEG signals between pairs of channels during seizure and in-
terictal periods in subsection 5.1.1. By checking R2 values for the goodness of model fit
with different lags L in subsection 5.1.2 and discussing model selection in subsection 5.1.3,
we conduct model diagnostics to assess adherence to model assumptions with the fixed L
in subsection 5.1.4. Finally, subsection 5.1.5 summarizes the model results of EEG time
series data.

5.1.1 Model interpretation in scalar coefficient and diagonal coefficient
models

To mitigate the computational burden and align our approach with real-life brain dy-
namics, we restrict the temporal influence to the preceding eight seconds exclusively,
configuring a fixed default lag (denoted as L = 8) within the general model (4.3). Follow-
ing the model inference process applied to the EEG time series data of all seizures, AIC
always suggests a maximum lag L = 8 for both scalar coefficient and diagonal models. As
a result, we compile the estimated parameters from both models in Figure 5.1. The box
plot illustrates the distributions of diagonal elements in matrices Âl, B̂, Σ̂, for l = 1, . . . , 8,
in each panel (seizure), with the red points representing the estimated scalar coefficients
α̂l, β̂, σ̂, for l = 1, . . . , 8, situated within the boxes.

It is evident that the estimated values of α̂l and Âl, where l = 1, . . . , 8, are often
negative in both geometries on (S+(p), gaff) and (C+(p), gquo), according to Figure 5.1.
Negative values suggest oscillatory behaviours. To investigate this, we first used specific
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Figure 5.1: The estimated coefficients in the scalar and diagonal coefficient model (4.2) with
fixed lags L = 8 for five seizures and an interictal period within Patient ID18 in geometries
on (S+(p), gaff) (top panel) and (C+(p), gquo) (bottom panel). In the top panel, the red points
represent the estimated scalar coefficients in the model with constant parameters. The boxes
depict the distribution of estimated diagonals in the model with diagonal coefficients. The x-axis
displays Â1 to Â8, as well as B̂, and Σ̂.
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window sizes (non-overlapping windows of size 0.5 seconds, 2 seconds, and 3 seconds) to
obtain the time series of covariance matrices. The negative inferred values persisted across
these repeated analyses of data reduction and model fitting for the scalar coefficient model,
suggesting oscillatory behaviour at different time scales.

Next, we calculated the quantities gaffSi
(Vi, Vi,1)/∥Vi∥∥Vi,1∥ for i = 2, . . . , n, for each

seizure for Patient 18 under the affine invariant geometry as an example. The values were
negative, confirming the tendency for tangent vectors to reverse direction. Therefore,
our conclusion is that the oscillatory behaviour indicated by the negative autoregressive
coefficients is genuine at these time scales. However, the autoregressive terms might not
be capturing the long-term evolution of the seizure trajectories observed in the MDS plots
depicted in Figures 3.4 and 3.6, which illustrate a locally oscillatory pattern in the data.
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Figure 5.2: Histograms of normalized inner products between tangent vectors Vk and Vk,1 for 5
seizures and an interictal series of Patient 18.

Notably, the absolute magnitude of α̂l and Âl diminishes as the lag increases, signifying
that data with higher lags exert a reduced impact on the current state. Additionally, the
estimated values of β̂ and B̂ remain positive. This can be explained by the fact that brain
states oscillate around an attractor point, and the velocity of the pathway returns to this
attractor point at each time point. Overall, parameters with larger absolute values exert
a more pronounced influence on the current data.

For a comprehensive representation of the distributions of Âl, B̂, and Σ̂, please refer
to the heatmap in Figure 5.3. Here, we present the diagonal matrix coefficients as p × p

matrices, where each cell denotes the estimated values âlr or br, with l = 1, . . . , L and
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r = 1, . . . ,m. These values signify the strength of the influence of historical lagged vectors
of l to the r-th pair of channels. It is noteworthy that the model in S+(p) has more p
dimensions than C+(p), as it considers not only the covariance of each pair of channels
but also the variance of channels. Visually, this heatmap offers a direct illustration of the
evolution of brain dynamics for each pair of channels with different lags. For instance,
Seizure 3 and the remaining seizures exhibit varying colour gradients in the heatmap,
highlighting their differences. (The same colour gradient scheme is applied in each Rie-
mannian geometry, with darker colours indicating larger influence values on the current
brain states.)

Comparing the scalar and diagonal matrix coefficients between Figures 5.1a and 5.3a,
we observe that scalar coefficients α̂l approximate the median of diagonals and primarily
fall within the interquartile range of diagonal elements of Âl. However, β̂ appears notably
distant from the median of B̂. This suggests that constant parameters in the scalar
coefficient model are not as sensitive in capturing the real pattern of the mean reversion
term as they are in autoregressive terms. Furthermore, the diagonals in Figure 5.1a with
respect to the attractor point term B̂ are notably lighter than others. These are attributed
to the Fréchet sample mean computed from the interictal time series, which has a higher
magnitude of channel variance compared to the covariance of pairs of channels. To balance
the value of the maximum log-likelihood function, the diagonals in the heatmap of B̂ are
close to 0, and β̂ approaches 0 as well. Fortunately, this limitation is overcome by the
property of the quotient manifold consisting of correlation matrices (see Figure 5.3b),
where we only consider the linear relationship among pairs of channels. This is also
reflected in Figure 5.1b where all estimated scalar coefficients in this context lie within the
75% quantile of estimated diagonal elements when examining the linear relationship for
pairs of channels. Further comparisons of modelling results underlying different geometries
will be discussed in Section 5.2.

In summary, although confirming that αl, β, σ represent the mean or median of the
distributions of diagonal elements in Al, B,Σ poses a challenge, the results suggest that
the scalar coefficients closely approximate the diagonal median and primarily fall within
the interquartile range of diagonal matrices. This insight indicates that scalar parameters
elucidate the overall influence of lagged ‘brain behaviours’ on the current ‘brain state’
within the scalar coefficient model. However, when investigating the lagged influence of
each pair of channels, the model with diagonal coefficients would be more appropriate.

Furthermore, by selecting an interictal time series collected within the 2-hour window
preceding Seizure 5, the final panel in Figures 5.1 and 5.3 illustrates that the interictal
data is primarily influenced by the attractor point. This difference between seizure data
and interictal data is evident as α̂l, Âl ≈ 0 for l = 1, . . . , L, while β̂, B̂ ≈ 1 in Figure 5.1,
and lighter colours indicating autoregression terms and darker red colours indicating mean
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Figure 5.3: The heatmap of the distributions of diagonal matrix coefficients Âl and B̂ for Patient
ID18, where l = 1, . . . , L. The colours represent values ranging from the minimum in black, 0 in
white, to the maximum in red.
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reversion terms in Figure 5.3.
Notably, we observe that the values of α̂l and Âl, where l = 1, . . . , L, for high lags are

close to zero for both models under different geometries. This observation suggests that
the influence of data with very high lags is not substantial. Section 5.1.3 will explain the
reasons behind this and explore the selection of an appropriate maximum lag L.

5.1.2 Goodness of modelling fit

Like a traditional regression model, we implemented R2 values to assess the goodness of
modelling fit, defined in Equation (4.8). Table 5.1 and 5.2 display R2 values for models
featuring various types of coefficients (Sca. and Diag. represent the model with scalar and
diagonal matrix coefficients, separately) and lags from 1 to 8. It is important to note that
while R2 values around 0.5 may not be deemed high in a low-dimensional context, they
can still be considered reasonable and acceptable in high-dimensional settings where data
complexity and noise levels are more pronounced.

Table 5.1: The goodness of modelling fit by R2 for Patient ID18 with different types of reduced
parameters and lags using covariance matrices in (S+(p), gaff).

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Interictal 5
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

lag=1 0.290 0.371 0.348 0.404 0.482 0.537 0.363 0.433 0.358 0.418 0.615 0.623
lag=2 0.313 0.386 0.396 0.436 0.499 0.555 0.417 0.464 0.405 0.446 0.616 0.624
lag=3 0.323 0.395 0.414 0.449 0.506 0.565 0.435 0.476 0.427 0.462 0.616 0.625
lag=4 0.328 0.403 0.423 0.457 0.509 0.576 0.447 0.487 0.437 0.471 0.616 0.627
lag=5 0.331 0.411 0.427 0.461 0.514 0.587 0.452 0.492 0.443 0.476 0.616 0.628
lag=6 0.332 0.416 0.432 0.467 0.516 0.596 0.457 0.499 0.449 0.482 0.616 0.630
lag=7 0.332 0.422 0.437 0.472 0.513 0.599 0.459 0.503 0.451 0.486 0.617 0.632
lag=8 0.331 0.428 0.439 0.476 0.514 0.607 0.461 0.507 0.454 0.490 0.617 0.634

Table 5.2: The goodness of modelling fit by R2 for Patient ID18 with different types of reduced
parameters and lags using correlation matrices in (C+(p), gquo).

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Interictal 5
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

lag=1 0.517 0.549 0.550 0.592 0.501 0.531 0.521 0.550 0.533 0.575 0.623 0.629
lag=2 0.531 0.564 0.562 0.600 0.509 0.545 0.540 0.565 0.557 0.591 0.623 0.630
lag=3 0.538 0.574 0.569 0.606 0.510 0.551 0.549 0.573 0.567 0.598 0.623 0.631
lag=4 0.540 0.580 0.575 0.611 0.515 0.563 0.553 0.579 0.574 0.603 0.623 0.633
lag=5 0.542 0.588 0.579 0.615 0.519 0.574 0.557 0.584 0.578 0.607 0.623 0.634
lag=6 0.543 0.595 0.582 0.619 0.523 0.586 0.560 0.589 0.581 0.611 0.623 0.636
lag=7 0.543 0.602 0.585 0.623 0.522 0.592 0.562 0.593 0.584 0.615 0.623 0.637
lag=8 0.544 0.607 0.587 0.626 0.526 0.604 0.564 0.596 0.587 0.618 0.623 0.638

Upon closer examination of the tables, it becomes evident that models with higher lags
consistently exhibit slightly larger R2 values. This trend primarily arises from their inclu-
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sion of more autoregression terms to capture dynamic patterns. This observation holds
true for the model with diagonal matrix coefficients as well. Furthermore, the diagonal
model consistently demonstrates a better fit than the scalar coefficient model due to its
incorporation of more explanatory parameters, which account for the covariance/correla-
tion of every pair of channels. However, it should be noted that the improvement in R2 is
not substantial, and the inclusion of more explanatory parameters in the model also leads
to increased computational burden.

More importantly, if the manifold is not parallelizable and the goal is to obtain a
single index for assessing the influence of historical data on current brain dynamics, it is
recommended to opt for the manifold-adapted model (4.3) with scalar coefficients. Con-
versely, if the aim is to evaluate brain dynamics for each pair of channels, and the geometry
space allows for parallelization, the model (4.3) with diagonal matrix coefficients can more
accurately describe the systemic pattern of brain dynamics.

5.1.3 Model selection of lags

The model selection criteria employed in simulation studies, as described in Section 4.5,
effectively demonstrate their capability to identify suitable lag settings for both scalar
and diagonal coefficient models. However, when utilizing the AIC criteria and estimating
parameters in both models as shown in Figure 5.1 and 5.3, it becomes evident that the
values of α̂, Âl, l = 1, . . . , L for high lags are close to zero. On the other hand, it has
been demonstrated that the higher lagged terms in autoregressive terms do not improve
the modelling fit with desirable levels as discussed in Section 5.1.2. These results suggest
that the influence of data with very high lags is not substantial. The reason behind this
phenomenon lies in the nature of the AIC, which balances model goodness of fit with a
penalty for the number of parameters utilized. A high lag recommended by AIC might
imply the ill-specified model, including unnecessary parameters, or the capture of random
fluctuations or noise that lacks a meaningful relationship with the underlying process.

To address this challenge, it is essential to directly assess the relationship between the
current observation and its lagged values while accounting for the effects of intermedi-
ate lags. The PACF is employed to determine the order of autoregressive components
in an autoregression model as described in Section 4.3.3. A significant PACF value at a
specific lag indicates that this lag is crucial in explaining the current value of the time
series. Therefore, PACF helps identify the genuine lagged dependencies for autoregressive
terms. It is generally assumed that the partial autocorrelations of lags are approximately
independent and normally distributed with a mean of 0 (Quenouille, 1949). Confidence
intervals can be constructed by dividing a chosen z-score by

√
n. Lags with partial au-

tocorrelations falling outside the confidence interval are considered significant. Figure 5.4
visually represents the partial autocorrelation function for seizures within Patient ID18,
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including blue lines indicating the confidence intervals.
In Figure 5.4, only the lower confidence intervals of PACF values are presented. This

choice stems from the observation of negative relationships between predictors and re-
sponse variables in the autoregressive term, as discussed in the previous Section 5.1. Con-
sequently, based on the PACF analysis, it is advisable to employ the model with reduced
scalar coefficients while utilizing lower lags. Regarding the model with diagonal matrix
coefficients, it is impractical to generate PACF plots for each pair of channels with vary-
ing lags. Therefore, in Figure 5.5, we represent 0-1 heatmaps. These heatmaps highlight
significant cells of âlr or b̂r, with values marked in black if they fall outside the confidence
interval, and in white if within.

To achieve a balance between model complexity and capturing direct dependencies,
thereby avoiding overfitting and enhancing the efficiency of comparing seizure variability
using our models, we examined PACF values across all 112 seizures for covariance matrix-
valued time series using the scalar coefficient model, as an example. Specifically, for each
value of L, a 95% confidence interval was constructed for αL to test the hypothesis that
αL = 0. The value of L for each time series was determined as the largest for which
the null hypothesis was not rejected. This procedure for selecting the maximum lag L

resulted in a value of L = 0 for the vast majority of interictal series. For seizures, the
majority had L = 1 or 2. These results are consistent across both geometries (Sym(p), geuc)

and (S+(p), gaff), and are depicted in Figure 5.6. Similar results can be obtained for the
diagonal model and the dataset of correlation matrices, as observed in the example of
Patient ID18 (see Figure 5.4 and 5.5).

Consequently, we chose to fit all models from this point onwards with L = 4 for
the following reasons. First, it was essential to use the same value for all time series to
facilitate the comparison of seizures between patients. Secondly, selecting L = 4 ensured
consistency across most series, as it was greater than or equal to the value observed in
the vast majority of cases. However, it is noteworthy that opting for L = 4 resulted
in estimated parameter values close to zero for larger values of l in many time series.
Nonetheless, to maintain consistency, we decided on a fixed lag of L = 4 for both models
across all datasets. Following this decision, we further investigated the validity of the
models by examining the residuals after fitting.

5.1.4 Residual analysis after modelling fit with fixed maximum lag L = 4

The maximum likelihood estimator assumes that residuals are normally distributed. Since
the dimensions of coordinate vectors v ∈ Rm are mutually independent (i.e., Riemannian
manifold is parallelizable), we implement the Kolmogorov–Smirnov test to check if the
residuals are drawn from a normal distribution N(0, Σ̂). Furthermore, the Ljung-Box test
is used to check the independence of residuals for each dimension. Ideally, there should be
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Figure 5.4: PACF for 5 seizures and an interictal data within Patient ID18 in the scalar coefficient
model. The maximum lags are 8. Since all partial correlations are negative, only lower bounds of
confidence intervals with blue dashed lines are shown in the plot.
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(a) Covariance matrices in S+(p)
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(b) Correlation matrices in C+(p)

Figure 5.5: PACF for 5 seizures and an interictal data within Patient ID18 in the diagonal model.
The maximum lags are 8. The black cells indicate the estimated âlr are outside the 95% confidence
intervals.
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Figure 5.6: Histograms of the value of L selected for the scalar coefficient model fitted to seizure
and interictal series in Euclidean and affine invariant geometries.

no autocorrelation among residual variables with any lags. More importantly, stationary
residuals indicate that the model has adequately accounted for the autoregressive dynam-
ics. This is often checked by the Augmented Dickey–Fuller test, which computes the test
for the null hypothesis that the residual has a unit root.

Implementing the tests to check assumptions for each dimension, Tables 5.3 and 5.4
present the counts of dimensions satisfying the specified assumptions in (S+(p), gaff) and
(C+(p), gquo) for covariance and correlation matrices, respectively. Note dimensions of
tangent vectors in TSS+(p) and TCC+(p) are p(p+1)/2 = 120 and (p− 1)p/2 = 105 when
p = 15. In general, the model with diagonal matrix coefficients leverages brain dynamics
for each pair of channels, resulting in a better modelling fit. Consequently, the estimated
parameters for binary channels are unbiased for both geometries.

Table 5.3: Counts of dimensions satisfying assumptions for covariance matrices in (S+(p), gaff)
within Patient ID18.

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Interictal 5
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Normality 107 112 97 100 101 105 100 107 98 101 103 119
Independence 94 118 76 118 107 120 101 119 81 116 100 120
Stationarity 112 117 120 120 103 84 120 120 120 120 120 120

In (S+(p), gaff), the majority of dimensions of residuals satisfy the three assumptions
mentioned earlier, and we consider the remaining dimensions that deviate from these as-
sumptions as outliers. When examining the dimensions that deviate from the assumptions,
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Table 5.4: Counts of dimensions satisfying assumptions for correlation matrices in (C+(p), gquo)
within Patient ID18.

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Interictal 5
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Normality 77 89 14 47 74 90 44 63 38 50 76 91
Independence 83 100 78 96 93 105 82 96 72 96 96 105
Stationarity 104 104 105 105 88 81 105 105 104 105 105 105

it is interesting to note that the variance of channels tends to exhibit more complicated
patterns compared to the covariance of pairs of channels. That is, dimensions which are
against the normality assumptions are mainly covered by the variance of channels, i.e.,
the diagonal indices in Al, B, l = 1, . . . , L = 4.

Unfortunately, this is not the case for the quotient geometry on (C+(p), gquo), consisting
of the set of correlation matrices. When focusing solely on the linear relationships for pairs
of channels, a high number of observations of residuals are not normally distributed with
zero mean and variance Σ̂, even with the model employing diagonal matrix coefficients.
We have investigated all dimensions of residuals obtained from the model in (C+(p), gquo),
and most of them are ‘close’ to following the normal distribution N(0, Σ̂), either with their
mean approaching 0 or their variance being the same as σ̂2 by histogram plots of residuals.
The solution to solve this problem may involve a new, more precise dynamical model. In
this research, we temporarily assume these dimensions are outliers and do not influence
our final measurement of seizure dissimilarity.

5.1.5 Summary

We have verified that the diagonal model consistently fits the data better than the scalar
model for covariance and correlation matrices. However, it is important to note that the
results from the diagonal model fitted by the reduced covariance matrices are challenging to
interpret. This is due to the reduced covariance matrices losing their electrode information,
making it difficult to explain the estimated parameters for pairs of channels. Conversely,
the scalar coefficient model is more convenient for demonstrating how brain dynamics
evolve during seizures in a general way. Additionally, when examining the correlation
matrices, it is crucial to acknowledge that the dimension of the affine invariant geometry
is different from the Euclidean and quotient geometries, which have more p dimensions.
In this case, the results from the diagonal model are also challenging to interpret.

To further EEG data analysis for seizure variability, the scalar coefficient model is
suggested for our research for the following reasons: (i) The comparison of model results
underlying different geometries demonstrates that the scalar coefficient model can effec-
tively capture brain dynamics. This is evident in terms of the goodness of modelling fit
and the satisfaction of model assumptions. (ii) There are no significant differences in

95



Chapter 5. Applications to EEG data

results between the scalar coefficient and diagonal models. (iii) The parameters from the
scalar coefficient model provide a more straightforward demonstration of general brain
dynamics, avoiding the intractable interpretation of the results from the diagonal model.

5.2 Comparing model results on different geometries

5.2.1 Covariance matrix-valued time series in (Sym(p), geuc) and (S+(p), gaff)

For the covariance matrix-valued time series of EEG data after dimensional reduction by
Method I described in Section 3.2.1, it lies on two manifolds: the Euclidean geometry
on (Sym(p), geuc) and the affine invariant geometry on (S+(p), gaff). We implement our
manifold-adapted model with scalar coefficients based on both spaces. Figure 5.7 presents
the estimated parameters Φ̂ = (α̂1, . . . , α̂4, θ̂, σ̂)

T for seizures and interictal periods for
Patient ID18.
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Figure 5.7: Scalar coefficients for Patient ID 18: comparison of estimated values for five seizures and
corresponding interictal series, using Euclidean and affine invariant geometries (Top and bottom
row, respectively). The values of model coefficients α11, . . . , α4, β, and σ are shown with 95%
confidence intervals marked.

Figure 5.7 shows the estimated parameters α1, . . . , α4, β and σ in the Euclidean and
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affine invariant geometries for seizures and interictal periods for Patient 18. We first
consider the results for the affine invariant geometry before comparing the geometries
below. The results under the affine invariant geometry (bottom row) show that for the
interictal series, the autoregressive terms αl are close to zero, while the mean reversion
coefficient β is close to 1. In contrast, for the seizure data, the αl are negative, with 95%

confidence intervals which do not include zero, and with decreasing absolute value as l
increases. The mean reversion coefficient β for the seizures is close to zero apart from the
value for seizure 3. The inferred values are quite homogeneous between seizures with the
exception of seizure 3, which had a noticeably different trajectory in the previous MDS
analysis (see Figure 3.4b). These results suggest that during interictal periods, the brain
dynamics follow a mean-reverting random walk in (S+(p), gaff), while during seizures, the
mean reversion behaviour is weaker with a significant autoregressive component which
gives rise to the trajectories observed in the MDS plots. The procedure for selecting
the maximum lag L (see Figure 5.6) showed that across the entire data set, a number of
seizures had no significant autoregressive terms (L = 0). These mainly consisted of shorter
time series for which the confidence region for α1 was large.

Next, we compare the results for the affine invariant geometry with those under the
Euclidean geometry (top row in Figure 5.7). The values of αl and β are similar for
the two geometries and show qualitatively similar dynamics for seizures and interictal
series as the affine invariant model. However, there is greater heterogeneity between
series for the estimated parameters under the Euclidean geometry. Greater differences
between geometries are apparent in the estimated values of σ shown in the right-hand
panel of Figure 5.7. There are very substantial increases in σ between interictal periods
and seizures under the Euclidean geometry, while the estimated values under the affine
invariant geometry are broadly similar between interictal and seizure series. Thus under
the Euclidean model, much of the variation in seizure data is modelled as noise.

Furthermore, to provide a more comprehensive evaluation of the model’s performance
across different geometries, we have computed the R2 values to assess the goodness of
the modelling fit. The results are summarized in Table 5.5. It shows substantially better
model fit for the affine invariant model across all seizures and interictal periods, and this
was also the case for other patients. This is a result of the intrinsic nature of the model in
the affine invariant geometry. For both geometries, the R2 values are higher for interictal
series than the corresponding seizures.

Table 5.5: The goodness of modelling fit by R2 in (Sym(p), geuc) and (S+(p), gaff) for Patient ID18

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Interictal 5
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Sym(p) 0.12 0.26 0.12 0.22 0.34 0.43 0.20 0.27 0.22 0.29 0.43 0.44
S+(p) 0.33 0.40 0.42 0.46 0.51 0.58 0.45 0.49 0.44 0.47 0.62 0.63
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Residual analysis has been discussed in Section 5.1.4 for Patient ID18. Although there
are a few dimensions of residuals that deviate from the assumptions, we consider them
as outliers but still believe the scalar coefficient model is suitable for capturing the brain
dynamics by the covariance of pairs of channels based on the boxplots (in Figure 5.1a)
and R2 values (in Table 5.1).

Additional examples of model results for covariance matrices can be found in Ap-
pendix A, specifically for Patient ID6, ID7, and ID13.

5.2.2 Correlation matrix-valued time series in (Sym(p), geuc), (S+(p), gaff),
and (C+(p), gquo)

For full-rank correlation matrix-valued time series of EEG data after dimensional reduction
by Method II described in Section 3.2.1, it lies on three different Riemannian geometries:
the Euclidean manifold (Sym(p), geuc), the affine invariant manifold (S+(p), gaff), and the
quotient manifold (C+(p), gquo). It is well-known that C+(p) ⊂ S+(p) ⊂ Sym(p). This
means correlation matrix-valued time series can be modelled in any of these three nested
spaces and then fitted to the model with scalar coefficients. The estimated parameters
underlying these nested spaces are shown in Figure 5.8.

Analogous to the result analysis in the previous subsection for covariance time series in
(Sym(p), geuc) and (S+(p), gaff), the estimated α̂l and β̂ show a similar trend pattern for
brain dynamics considering the correlation matrix-valued time series. It is coincided that
the interictal time series is a random walk centred at an attract point in these three spaces.
Observing estimated parameters in Figure 5.8, Seizure 3 has more variation compared to
other seizures in (Sym(p), geuc), and there is less dissimilarity among seizures underlying
the geometry on (S+(p), gaff) and (C+(p), gquo), excluding the high strength of β̂ in the
mean-reverting term in (C+(p), gquo).

As the correlation matrix is the scaled covariance matrix factoring out the variance of
channels, the influence of data magnitude on model results is rarely found. This implies
that the estimated coefficients under different geometries show a similar pattern. One of
the main benefits of analysing correlation matrix-valued time series in the quotient ge-
ometry on (C+(p), gquo) is that it considers the curvature of parallel-transported tangent
vectors, similar to what the affine invariant geometry does in S+(p) with covariance ma-
trices. While it is true that the correlation matrix is symmetric positive definite and the
data set could be analysed in (S+(p), gaff), the dimension of (S+(p), gaff) is m = p(p+1)/2,
whereas the dimensions of (Sym(p), geuc) and (C+(p), gquo) are m = (p−1)p/2. Therefore,
it is hard to interpret the estimated parameters in diagonal indices for the model with
diagonal matrix coefficients.

On the other hand, under the model assumptions as described in Section 4.4, R2 values
are computed for different models with reduced parameters and in different geometries

98



Chapter 5. Applications to EEG data

Interictal Seizure

α1 α2 α3 α4 β α1 α2 α3 α4 β

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

−0.5

0.0

0.5

1.0

Parameter

V
a

lu
e

Estimated sigma

E
u

c
.

A
ff. In

v
.

Q
u

o
.

Interictal Seizure

0.4

0.5

0.30

0.35

0.40

0.45

0.50

0.35

0.40

0.45

0.50

Dataset

Seizure Seizure1 Seizure2 Seizure3 Seizure4 Seizure5

Figure 5.8: Scalar coefficients for Patient ID 18: comparison of estimated values for five seizures
and corresponding interictal series, using Euclidean, affine invariant, and quotient geometries (Top,
middle, and bottom row, respectively). The value of model coefficients α1, . . . , α4, β and σ are
shown with 95% confidence intervals marked.

(See Table 5.6). Apparently, the quotient manifold-valued model with a diagonal matrix
coefficient has better performance than others, but there is an insignificant improvement
in the model with scalar coefficients. This is explained by the pairs of channels being
independent, and the means of diagonals are close to scalar coefficients.

Table 5.6: The goodness of modelling fit by R2 in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo)
for Patient ID18.

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Interictal 5
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Sym(p) 0.298 0.339 0.314 0.344 0.367 0.428 0.328 0.357 0.357 0.379 0.456 0.465
S+(p) 0.437 0.495 0.462 0.498 0.500 0.566 0.469 0.501 0.489 0.520 0.628 0.635
C+(p) 0.540 0.580 0.575 0.611 0.515 0.563 0.553 0.579 0.574 0.603 0.623 0.633

Recalling the residual analysis from Section 5.1.4, the boxplots in Figure 5.1b and R2

values in Table 5.2 collectively affirm the reliability of the manifold-adapted model with
scalar coefficients. Despite the non-normality of residuals for the majority of dimensions,
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as indicated in Table 5.4, we believe that our model, specifically designed for the quotient
geometry (C+(p), gquo), provides a better fit for correlation matrix-valued time series than
other geometries.

5.2.3 Summary

When comparing the model results across various geometric settings, it becomes apparent
that the performance of the affine invariant geometry surpasses that of Euclidean space
when examining covariance matrices. The goodness of modelling fit significantly improves
in (S+(p), gaff), benefiting from the affine invariant transformation for high magnitudes.
However, when scrutinizing correlation matrices, both Euclidean and affine invariant ge-
ometries produce similar results to quotient geometries. This is because the correlation
matrices are the scaled data fitted in the models, such that the affine invariant metric
loses its advantages, and there is less variation in statistical operations between Euclidean
geometry and Riemannian geometry. For example, vectorization and parallel transport in
(S+(p), gaff) and (C+(p), gquo). Nevertheless, the quotient geometry still demonstrates a
superior goodness of fit than others.

In summary of the findings from the previous subsections, the affine invariant manifold-
valued model proves to be sensitive in capturing the real brain dynamics, particularly
considering the covariance of pairs of channels. When it comes to the data dynamics of the
linear relationship of pairs of channels, the quotient manifold-valued model demonstrates
superior performance compared to other manifolds. The use of Euclidean geometry for
comparison purposes reveals that Riemannian properties can aid in analysing matrix-
valued data and are superior to traditional Euclidean space.

More broadly, we have constructed a Riemannian framework for geometric statistical
analysis of symmetric positive definite matrix-valued data. Beyond time series models,
this research has the potential to inspire the development of more non-Euclidean statistical
models, incorporating a geometric perspective into statistical ideas.

5.3 Seizure and patient variability

Conventional brain dynamic analysis, such as the model of functional network dynam-
ics, heavily relies on channel information and electrode locations (Schindler et al., 2008;
Schroeder et al., 2020). These methods assess the evolution of the recording signal for
specific channels and compare the sectional functions of the brain based on electrode
placements. However, the dependence on channel information poses limitations. To over-
come these limitations and evaluate overall brain dynamics, our manifold-adapted models
generate a set of parameters that succinctly describe general brain evolution patterns,
providing a simpler way to measure seizure dissimilarity.
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Using the estimated parameters, as illustrated in Figures 5.7 and 5.8 for Patient ID18,
this section will delve into quantifying the dissimilarity among seizures between and within
patients with epilepsy. This becomes particularly relevant when seizures do not exhibit
significant visual differences from each other.

5.3.1 Seizure variability within patients

As the estimated parameters are obtained through MLE, we can leverage the asymptotic
covariance matrices (computed in Section 4.3) to establish a quantitative measurement of
seizure dissimilarity.

Let Φ = (Â1, . . . , Â4, B,Σ)
T denote the set of all estimated parameters. The seizure

dissimilarity between any two seizures, indexed by i and j, is defined using the Mahalanobis
distance as follows:

di,j =
1

2

(√
(Φi − Φj)TV

−1
j (Φi − Φj) +

√
(Φj − Φi)TV

−1
i (Φj − Φi)

)
Here, V represents the asymptotic covariance matrix of estimates. As demonstrated in
Section 4.3.2, the distribution of Φ̂ is asymptotically normal with the mean of Φ and
covariance matrix 1

nI(Φ)
−1. It is important to note that the division by n is necessary

because the asymptotic covariance matrix represents the covariance matrix of
√
n(Φ̂−Φ),

whereas we are interested in the covariance of Φ̂ (Newey & McFadden, 1994). Therefore, to
approximate the asymptotic covariance matrix of MLE, we utilize the Hessian estimator,
computing it as V = I(Φ)−1.

By applying the above procedure, we can construct the dissimilarity matrix for seizures
within Patient ID18 by Mahalanobis distance using estimated parameters in the scalar
coefficient model. Table 5.7 shows the seizure dissimilarity for covariance matrix data in
(S+(p), gaff). A smaller distance value represents less variation in seizure evolution. We
can observe that Seizure 4 and Seizure 5 have highly similar evolution, while Seizure 3 is
remarkably different from the others. This is also validated by the appearance of MDS
plots in Figure 3.4b and estimated parameter plot in Figure 5.7.

Table 5.7: Seizure dissimilarity in (S+(p), gaff) using covariance matrices for Patient ID18

Seizure 1 Seizure 2 Seizure 3 Seizure 4
Seizure 2 16.329
Seizure 3 31.750 39.380
Seizure 4 22.195 14.883 50.572
Seizure 5 26.518 18.603 50.498 9.529

Table 5.8 provides the seizure dissimilarity in the quotient manifold (C+(p), gquo) using
correlation matrices. Overall, Table 5.8 elucidates a different pattern of seizure dissimi-
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larity for brain dynamics involving the relationship of pairs of channels compared to the
covariance of channels in Table 5.7. Notably, Seizure 2 and Seizure 3 exhibit the closest
similarity of brain dynamics with the lowest Mahalanobis distance.

Table 5.8: Seizure dissimilarity in (C+(p), gquo) using correlation matrices for Patient ID18

Seizure 1 Seizure 2 Seizure 3 Seizure 4
Seizure 2 25.952
Seizure 3 13.180 7.993
Seizure 4 12.958 35.761 19.284
Seizure 5 13.250 25.001 11.292 12.471

5.3.2 Seizure variability between patients

Table 5.7 and Table 5.8 both provide insights into seizure variability, capturing the dynam-
ics of covariance and linear relationships for pairs of channels, respectively. To assess the
efficacy of measuring seizure variability, considering Patient ID6, ID7, ID13, and ID18 as
examples to illustrate the variation among the total of 24 seizures, we compute a dissimilar-
ity matrix for all these seizures based on estimated parameters from the manifold-adapted
model using Mahalanobis distance. The results are depicted as scatter plots in Figure
5.9. These plots demonstrate that seizures within individual patients consistently cluster
closely under both geometries using covariance and correlation matrices, despite the pres-
ence of some outliers. This observation aligns with findings from Burnham & Anderson
(2004); Truccolo et al. (2011); Schindler et al. (2011); Karoly et al. (2018), suggesting that
seizures in individual patients tend to share common features and evolve with a similar
pattern of neural dynamics. It is notable that the arrangement of seizures for each fixed
patient within the plots follows some time-ordering, suggesting that differences between
seizures depend on the order in which they occur. Furthermore, lower percentages of
stress value indicate a better fit to the original distances after MDS, defined in Equation
3.2. This suggests that epileptic seizure variability has been sensitively detected among
patients.

To further illustrate seizure variability among patients, scatter plots of seizure dissim-
ilarity for all patients have been measured in the affine invariant and quotient geometries
separately (see Figure 5.10). In total, there are 112 seizures considered, taking into account
the time series of covariance matrices in the affine invariant geometry on S+(p) (shown
in the left panel) and the time series of correlation matrices in the quotient geometry on
C+(p) (shown in the right panel).

The objective of this subsection is to illustrate the variability in seizures both within
and across patients. Our manifold-adapted models reveal distinct groups clustered by pa-
tients, confirming clinical evidence that seizures within patients exhibit variability while
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Figure 5.9: Metric MDS of Mahalanobis distances between seizures for Patient ID6, ID7, ID13 and
ID18. Each epileptic patient, with a different number of seizures, is represented by a unique colour
and shape. Points representing seizures for each patient are linked with a line representing the time
ordering of seizure occurrence. The stress of the metric MDS is represented in the proportion shown
in the subfigure titles. The left panel illustrates seizure variability in the affine invariant geometry
on (S+(p), gaff) using covariance matrices, while the right panel displays seizure variability in the
quotient geometry on (C+(p), gquo).
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also sharing common features or characteristics of brain dynamics. While it is possible
to compute seizure dissimilarity using Mahalanobis distance with maximum likelihood
estimates for two seizures across patients, such results may appear inconclusive in epilep-
tic research, given the substantial variation observed in single seizures across different
patients. Consequently, the subsequent subsection will focus on measuring patient vari-
ability, considering information from all seizures for each patient with epilepsy.

5.3.3 Patient variability

The placement of electrodes and their numbers vary across patients in EEG datasets, mak-
ing it challenging to measure patient variability based on a single seizure. To address this
issue, we propose a method called weighted maximum log-likelihood estimation (wMLE),
which evaluates a single parameter vector for all seizures within a patient.

Suppose there are J seizures for a patient, with time lengths of n1, ..., nJ , separately.
We define the weighted maximum log-likelihood function of the manifold-adapted model
(4.3) for all seizures within this patient as:

ℓ =
J∑

j=1

wjℓj

where wj denotes the weight assigned to the jth seizure, j = 1, ..., J , which is calculated as
the ratio of its time length nj to the total length of all seizures, i.e., wj = nj/(n1+ ...+nJ)

and
∑J

j=1wj = 1 (Each patient has a limited number of seizures, as well as a limited
duration for each seizure.). ℓj is the log-likelihood function for Seizure j. Subsequently,
wMLE is implemented to estimate unknown parameters of α, β, and σ. The process of
model inference is highly similar to the model inference of the scalar coefficient model in
Section 4.3. Briefly, we can compute the first derivative of ℓ to obtain θ̂ = (α̂1, . . . , α̂L, β̂)

T

and σ̂ and let them be 0 as:

∂ℓ

∂αl
=

J∑
j=1

ωj

nj∑
i=L+1

vj
il

T
(vj

i −
L∑
l=1

αlv
j
il − βvj

i0) = 0

∂ℓ

∂β
=

J∑
j=1

ωj

nj∑
i=L+1

vi0
T (vsei

i −
L∑
l=1

αℓv
j
il − βvj

i0) = 0

∂ℓ

∂σ
=

J∑
j=1

ωj

(
1

σ2

nj∑
i=L+1

∥∥∥vj
i − v̂j

i

∥∥∥2 −m(nj − L)

)
= 0,

where vj
il and vj

i0 are coordinate vectors of autoregressive and mean-reverting terms as
defined in Section 4.2 for the jth Seizure. Note that we do not fix an attract point for all
seizures. That is, the attract points for each seizure still are the Fréchet sample mean of
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their corresponding interictal data, and we compute the coordinate vectors vj
0 for the jth

seizure. Subsequently, we can construct the matrix formulation with unknown parameter
vectors θ = (α1, . . . , αL, β, σ)

T as:

J∑
j=1

ωj

nj∑
i=L+1


∥vi1∥2 · · · vT

i1viL vT
i1vi0

... . . . ...
...

vT
iLvi1 · · · ∥viL∥2 vT

iLv
∗
i

vi0
Tvi1 · · · vi0

TviL ∥vi0∥2


j 

α1

...
αL

β

 =

J∑
j=1

ωj

nj∑
i=L+1


vT
i1vi

...
vT
iLvi

vi0
Tvi


j

where [·]j represents the data matrix of jth seizure, j = 1, ..., J .
Utilizing weighted maximum log-likelihood estimation for all seizures within a patient,

we compute dissimilarities of brain dynamics among patients. The left panel of Figure 5.11
displays the estimated parameters, while the right panel presents the heatmap of dissim-
ilarities among patients. These results are demonstrated in two geometries, (S+(p), gaff)

and (C+(p), gquo), positioned on the top and bottom, respectively.
The analysis of Patient ID5 reveals noticeable differences from other patients in both

geometries, (S+(p), gaff) and (C+(p), gquo). These distinctions are visually apparent, and
upon further investigation, it is observed that all seizures of this patient have a very short
time length, with a mean of 15 seconds for 4 seizures (see Table 3.1). Additionally, the
estimated coefficient β̂ in (S+(p), gaff) is not as high as in (C+(p), gquo). This difference is
attributed to the high magnitude of variance of channels for covariance time series data,
as further elaborated in the first subsection of Section 5.2.

However, despite these characteristics, the model still demonstrates efficacy, with the
variation of β̂ across patients ranging from 0 to 0.3. This pattern is particularly evident in
the quotient geometry on (C+(p), gquo), indicating a higher correlation for the current brain
state with the interictal state concerning pairs of channels. Consequently, the influence
of autoregressive terms has less impact on the current state compared to the covariance
matrix data in the affine invariant geometry.

The heatmaps presented showcase patient variability, with the gradient colour from
white to black. Larger and darker values indicate higher dissimilarity among patients. To
provide a better visualization of patient variability, metric MDS plots for the dissimilarity
distance matrix under both geometries are presented in Figure 5.12. Two scatter plots
depict the relative distances among patients, reflecting the relative variability of seizures.
The percentages in brackets indicate the stress values of the cost function for metric MDS,
where a lower value indicates a better fit.
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(a) Estimated parameters and patient dissimilarity in S+(p) for covariance matrices in (S+(p), gaff).
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Figure 5.11: Estimated parameters (left panel) and patient dissimilarity (right panel) for 18 pa-
tients. Each epileptic patient is represented by a unique colour.
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Figure 5.12: Metric MDS of Mahalanobis distances between patients in different geometries using
covariance and correlation matrices, separately. Each epileptic patient, with a different number of
seizures, is represented by a unique colour and shape. The percentages in brackets represent stress
values from metric MDS plots.

107



Chapter 5. Applications to EEG data

5.3.4 Summary

It is important to emphasize to readers that the process of generating reduced covariance
matrices involves using PCA methods. This results in reduced data that captures the most
significant proportion of the original covariance matrix. On the other hand, when working
with reduced correlation matrices, the selection of channel combinations aims to maximally
reduce the redundancy of the linear relationship between channels. Regardless of the
specific dimensions chosen in our model, variations in results are inevitable, potentially
influencing the values of seizure dissimilarity. Therefore, the seizure variability presented
in our analysis serves as a recommendation for neuroscientists, providing insights into the
potential impact of different manifolds with different reduced data representations on the
results.
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Discussion

6.1 Summary

In this research, we conducted a comprehensive analysis of manifold-valued time series
data, exploring different manifolds, including the symmetric Euclidean manifold (Sym(p), geuc),
the affine invariant manifold (S+(p), gaff), and the quotient manifold (C+(p), gquo). Our
approach involved introducing manifold-adapted models to analyse matrix-valued time se-
ries data with the aim of revealing the brain dynamics associated with seizures in epileptic
patients. We delved into the examination of seizure variability within patients and epilep-
tic patient variability by fitting the manifold-adapted models to covariance and correlation
matrices in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo). Importantly, the general na-
ture of our model formulation allows for its application to data on other Riemannian
manifolds. It also provides the basic tools for further geometrical statistics with applica-
tions to other fields.

Given that electromagnetic artefacts and high correlations between sets of channels
can result in rank deficiencies in the observed matrix-valued time series, we proposed two
different approaches to dimensional reduction: (i) capturing the maximum variance of the
reduced data set and (ii) substituting highly correlated channels with a single channel.
These approaches ensure that the reduced covariance and correlation matrices are strictly
positive definite, lying on certain smooth manifolds with a natural Riemannian structure.

Inspired by the widespread use of non-Euclidean statistical tools, this research intro-
duced geometrical operations for statistical analysis in the affine invariant geometry on
(S+(p), gaff) and the quotient geometry on (C+(p), gquo), which is a newly developed man-
ifold (David, 2019; Thanwerdas & Pennec, 2021). Therefore, our research constructed
closed formulas for the various operations we require to specify our model, including
Riemannian metrics, logarithm and exponential maps, parallel transports, orthonormal
coordinate systems, and Fréchet sample means.
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To capture different dynamics for EEG matrix-valued data intrinsically, we modelled
the direction vector as the sum of three terms: an autoregressive term, a mean-reverting
mean, and a noise term. This manifold-adapted additive model was able to capture various
possible dynamics for the evolution of EEG data, from smooth flow along geodesics to a
noisy mean-reverting random walk on the underlying manifolds.

Considering the potentially large number of parameters required by our model, we
simplified the manifold-adapted model to two simpler models with fewer parameters: the
scalar coefficient model and the diagonal model. Both models could uncover the brain
dynamics effectively according to the model diagnostics. Comparing the scalar coefficient
and diagonal models with respect to covariance and correlation matrices separately sug-
gested that the diagonal model had slightly better performance than the scalar coefficient
model. However, the scalar coefficient model is more flexible and straightforward to in-
terpret the brain dynamics with a desirable goodness of model fit. Specifically, when
the manifold is not parallelizable, the diagonal model is ill-defined. The scalar coefficient
model generates general strength values that describe the tendency of lagged vectors and
mean reversion term to the current brain state. When we investigated the detailed signal
evolution of pairs of channels, the diagonal model is the best choice.

Comparing the model results on different geometries, it became evident that the affine
invariant geometry exhibited superior performance compared to Euclidean space when
examining covariance matrices. The goodness of modelling fit significantly improved in
(S+(p), gaff), benefiting from the affine invariant transformation for high-magnitude co-
variance matrices. However, upon analysing correlation matrices, the Euclidean and affine
invariant geometries yielded similar results to the quotient geometries, as they all relied
on scaled data. Notably, a higher goodness of fit was still observed in the quotient ge-
ometry. Furthermore, the dimensions of the affine invariant geometry differed from other
geometries, as they still accounted for the values of the diagonal elements in the correlation
matrix.

Maximum likelihood estimators and their asymptotic distributions were used to gauge
seizure and patient variability. By mapping the dissimilarity matrices of seizures across
patients, we verified that there are variations among seizures within the patients and
the seizures within patient share some common features of brain dynamics (Burnham &
Anderson, 2004; Truccolo et al., 2011; Schindler et al., 2011; Karoly et al., 2018) .

Another significant contribution of this work is that we developed an R Package:
geomTS. The package includes all operations in Riemannian manifolds, (Sym(p), geuc),
(S+(p), gaff), and (C+(p), gquo), manifold-adapted models, and model inference. It will be
continuously updated.

In summary, our research delved into the analysis of matrix-valued time series of EEG
data from epileptic patients, utilizing manifold-adapted models to describe the brain dy-
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namical patterns for each pair of channels. The estimated model coefficients shed light
on the influence of historical brain states on current brain states and the proximity of the
seizure period to the interictal period. By quantifying these strengths, our research effec-
tively characterized seizure and patient variability in the evolution of epileptic networks.

It is important to emphasize to readers that the process of generating reduced covari-
ance matrices involves using PCA methods. This results in reduced data that captures
the most significant proportion of the original covariance matrix. On the other hand,
when working with reduced correlation matrices, the selection of channel combinations
aims to maximally reduce the redundancy of the linear relationship between channels.
Regardless of the specific dimensions chosen in our model, variations in results are in-
evitable, potentially influencing the values of seizure dissimilarity. Therefore, the seizure
variability presented in our analysis serves as a recommendation for neuroscientists, pro-
viding insights into the potential impact of different manifolds with different reduced data
representations on the results.

6.2 Limitations of the study

The manifold-adapted model, though flexible and applicable to various types of manifold-
valued time series data, possesses inherent limitations that should be acknowledged, as
they may influence the final results.

Upon downloading the EEG dataset from open sources, determining the optimal sliding
window size becomes crucial. Currently, there are no specific criteria for choosing the best
window size and overlaps, and the various combinations of these factors may impact the
model results (Zhuang et al., 2020). For detecting faster oscillations and avoiding large
size of data, a sliding window of 1 second without overlap was chosen in this research.
Literally, we also employed different window sizes (i.e., 0.5s and 2s) to fit the manifold-
adapted model and evaluate estimator variability. However, the main conclusions drawn
from the model results remained consistent across these variations.

Two approaches to dimensional reduction, based on maximizing variation and min-
imizing redundancy, were explored. The first method involves performing PCA on the
average covariance of signals over time, resulting in the dimensions of the reduced covari-
ance matrix losing the positions of electrodes. Consequently, for the diagonal coefficients
model, the estimated parameters for each pair of channels are interpretable. Conversely,
the second method of dimensional reduction avoids this problem by identifying the most
effective and exclusive combinations of channels. However, this approach loses some in-
formation for discarded channels, potentially leading to large variation in model results.
Importantly, the final choice of dimensions remains an open question, requiring careful
consideration to balance model efficiency and computation resources.
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Currently, there is no mathematical solution to find the optimal position along the
fiber concerning any point in (S+(p), gaff). Although David (2019) proposed a gradient
descent algorithm to find it numerically, variations in the optimization process may impact
the precision of the operations in the quotient manifold, including logarithm map, parallel
transport, and orthonormal coordinate system. Specifically, optimal positions for each
of these operations in the quotient geometry on (C+(p), gquo) need to be determined,
and variations in these increments may lead the model to insensitively capture the data
evolution, as evident in simulation studies on the quotient geometry.

The uniqueness of the Fréchet sample mean in the quotient manifold remains an un-
solved problem. Lueg (2023) was the first to discuss this issue, but a definitive solution is
still elusive. This research assumed that the Fréchet sample mean in the quotient manifold
is unique and computed by submerging the Fréchet sample mean in S+(p), determined
by all optimal positions concerning the iterated mean S̃k in (S+(p), gaff). However, the
uniqueness of the Fréchet sample mean is not mandatory, as the attract point in the model
does not have to be the Fréchet sample mean. Since the interictal time series is a random
walk at the centre point, any Fréchet sample mean of correlation matrices of interictal
data could serve as the attract point. Intuitively, we believe that the Fréchet means will
be close to each other.

Some dimensions of residuals from the quotient manifold-adapted model against nor-
mality with zero mean and estimated variance may be attributed to the numerical opti-
mization of optimal positions in (S+(p), gaff). Upon checking these residuals, it is evident
that they are nearly normally distributed, with means approaching 0 and variance ap-
proaching σ̂2. Unfortunately, in this research, the proposed quotient manifold-adapted
model was not optimized to enhance model precision, which would have better aligned the
model’s assumptions with the requirement of normality.

6.3 Future Research

The aforementioned limitations offer valuable insights for future research. Although widely
used to analyse EEG data, the use of a sliding window to derive time series of covariance
or correlation matrices is problematic in that the choice of the length of the window af-
fects the dynamics which can be revealed by such data. A more consistent approach to
modelling might be to adopt a continuous time model for the underlying covariance pro-
cess, like the mean reverting diffusion developed by Bui et al. (2023), with the raw EEG
signals zi arising as discrete-time observations from a Gaussian with the underlying co-
variance process. Nonetheless, incorporating autoregressive or other components suitable
for modelling seizures into such a continuous time model could be challenging.

Given the absence of a general expectation for the uniqueness of the intrinsic mean
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within (C+(p), gquo), Huckemann introduced the concept of the principal component mean
in Huckemann & Ziezold (2006) and Huckemann et al. (2010). Drawing inspiration from
PCA on shape spaces, this concept utilizes generalized geodesics. Extending this method-
ology to the quotient manifold, we can compute the principal component mean as the
attract point. Furthermore, refining the gradient descent algorithm for optimizing optimal
positions could enhance the precision of Riemannian operations in the quotient geometry
on (C+(p), gquo).

To explore the EEG dynamical network for epileptic patients more comprehensively,
improvements to our manifold-adapted model are necessary for better data fitting, espe-
cially concerning correlation matrix-valued time series in the quotient manifold.

Lastly, we have developed geometric statistical tools for analysing Riemannian mani-
fold time series data. Future research could delve into more applications of such data on
different geometries, exploring various perspectives of geometrical ideas. Non-Euclidean
statistics will be a primary focus in the near future.
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Model results for Patient ID6,
ID7, and ID13

In this appendix, we present MDS plots and scalar coefficient model results for Pa-
tient ID6, ID7, and ID13 separately. We utilize the time series of covariance matrices
in (Sym(p), geuc) and (S+(p), gaff), as well as the time series of correlation matrices in
(Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo).

For each patient, we represent the MDS plots for covariance matrices in (Sym(p), geuc)

and (S+(p), gaff), followed by the estimated parameters in both geometries. Lastly, the
goodness of modelling fit by R2 is shown in the table.

Analogously, MDS plots, estimated parameters, and R2 values are presented for cor-
relation matrices in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo).
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A.1 Patient ID6

A.1.1 Covariance matrices in (Sym(p), geuc) and (S+(p), gaff)
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Figure A.1: MDS plots for Patient ID6 using the Euclidean and affine invariant metrics.
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Table A.1: Goodness of modelling fit by R2 in (Sym(p), geuc) and (S+(p), gaff) for Patient ID6

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Seizure 6 Seizure 7 Seizure 8 Interictal 8
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Sym(p) 0.081 0.293 0.170 0.287 0.390 0.472 0.079 0.339 0.187 0.445 0.025 0.154 0.066 0.249 0.179 0.266 0.301 0.320
S+(p) 0.356 0.506 0.389 0.511 0.376 0.511 0.388 0.523 0.355 0.504 0.271 0.417 0.323 0.462 0.391 0.443 0.447 0.489
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A.1.2 Correlation matrices in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo)
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(b) MDS using the affine invariant metric dgaff .
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Figure A.3: MDS plots for Patient ID6 using the Euclidean, affine invariant and quotient metrics.
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Figure A.4: Estimated parameters for Patient ID6 in (Sym(p), geuc) (left panel), (S+(p), gaff) (
middle panel), and (C+(p), gquo) (right panel).

Table A.2: Goodness of modelling fit by R2 in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo) for
Patient ID6.

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Seizure 6 Seizure 7 Seizure 8 Interictal 8
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Sym(p) 0.381 0.474 0.337 0.456 0.311 0.422 0.329 0.445 0.291 0.432 0.255 0.395 0.286 0.419 0.341 0.386 0.391 0.414
S+(p) 0.472 0.575 0.480 0.590 0.431 0.542 0.488 0.594 0.467 0.596 0.415 0.530 0.432 0.547 0.459 0.503 0.518 0.547
C+(p) 0.484 0.582 0.488 0.594 0.441 0.546 0.482 0.606 0.458 0.592 0.423 0.544 0.434 0.541 0.466 0.512 0.539 0.561
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Appendix A. Model results for Patient ID6, ID7, and ID13

A.2 Patient ID7

A.2.1 Covariance matrices in (Sym(p), geuc) and (S+(p), gaff)
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Figure A.5: MDS plots for Patient ID7 using the Euclidean and affine invariant metrics.

119



Appendix A. Model results for Patient ID6, ID7, and ID13
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Figure A.6: Estimated parameters for Patient ID7 in (Sym(p), geuc) (left panel) and (S+(p), gaff)
( right panel).

Table A.3: Goodness of modelling fit by R2 in (Sym(p), geuc) and (S+(p), gaff) for Patient ID7

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Interictal 4
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Sym(p) 0.467 0.642 0.389 0.453 0.385 0.464 0.387 0.472 0.420 0.469
S+(p) 0.492 0.762 0.466 0.545 0.493 0.571 0.453 0.522 0.551 0.583

120



Appendix A. Model results for Patient ID6, ID7, and ID13

A.2.2 Correlation matrices in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo)
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(b) MDS using the affine invariant metric dgaff .
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Figure A.7: MDS plots for Patient ID7 using the Euclidean, affine invariant and quotient metrics.
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Interictal Seizure
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Figure A.8: Estimated parameters for Patient ID7 in (Sym(p), geuc) (left panel), (S+(p), gaff) (
middle panel), and (C+(p), gquo) (right panel).

Table A.4: Goodness of modelling fit by R2 in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo) for
Patient ID7.

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Interictal 4
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Sym(p) 0.380 0.669 0.375 0.448 0.396 0.456 0.389 0.442 0.464 0.492
S+(p) 0.454 0.720 0.501 0.577 0.519 0.575 0.500 0.544 0.540 0.563
C+(p) 0.445 0.724 0.508 0.578 0.510 0.561 0.496 0.540 0.530 0.554
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Appendix A. Model results for Patient ID6, ID7, and ID13

A.3 Patient ID13

A.3.1 Covariance matrices in (Sym(p), geuc) and (S+(p), gaff)

0e+00

−5e+05 5e+05
x

y

Time

10

20

30

40

Seizure 1 (7.13%)

−5e+05

0e+00

−5e+05 0e+00 5e+05 1e+06
x

y

Time

20

40

60

80

Seizure 2 (20.05%)

−4e+05

0e+00

−5e+05 0e+00 5e+05 1e+06
x

y

Time

10

20

30

40

50

Seizure 3 (11.16%)

0e+00

1e+06

0e+00 1e+06 2e+06
x

y

Time

50

100

150

Seizure 4 (24.31%)

−5.0e+05

5.0e+05

1.5e+06

0e+00 1e+06
x

y

Time

30

60

90

120

Seizure 5 (25.50%)

−1e+06

0e+00

1e+06

0e+00 1e+06 2e+06
x

y

Time

50

100

150

Seizure 6 (23.32%)

−5e+05

0e+00

−5e+05 0e+00 5e+05
x

y

Time

10

20

30

40

50

Seizure 7 (9.57%)

−1e+05

0e+00

0e+00 2e+05
x

y

Time

10

20

30

40

50

Interictal 7 (14.86%)

(a) MDS using Euclidean metric dgeuc .
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Figure A.9: MDS plots for Patient ID13 using the Euclidean and affine invariant metrics.
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Figure A.10: Estimated parameters for Patient ID13 in (Sym(p), geuc) (left panel) and (S+(p), gaff)
( right panel).

Table A.5: Goodness of modelling fit by R2 in (Sym(p), geuc) and (S+(p), gaff) for Patient ID13.

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Seizure 6 Seizure 7 Interictal 7
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Sym(p) 0.244 0.292 0.187 0.282 0.080 0.333 0.310 0.395 0.257 0.352 0.308 0.377 0.136 0.235 0.486 0.520
S+(p) 0.316 0.447 0.312 0.372 0.351 0.482 0.367 0.420 0.282 0.367 0.392 0.443 0.335 0.439 0.503 0.562
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Appendix A. Model results for Patient ID6, ID7, and ID13

A.3.2 Correlation matrices in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo)
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(a) MDS using the Euclidean metric dgeuc .
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(b) MDS using the affine invariant metric dgaff .

−4

−2

0

−2 0 2 4
x

y

Time

10

20

30

40

Seizure 1 (32.41%)

−2

0

2

−4 −2 0 2 4
x

y

Time

20

40

60

80

Seizure 2 (32.14%)

−3

−2

−1

0

1

−1 0 1 2
x

y

Time

10

20

30

40

50

Seizure 3 (35.42%)

−2

0

2

4

−2 0 2
x

y

Time

50

100

150

Seizure 4 (32.69%)

−4

−2

0

−4 −2 0 2
x

y

Time

30

60

90

120

Seizure 5 (33.77%)

−2

−1

0

1

2

3

−2 0 2
x

y

Time

50

100

150

Seizure 6 (33.85%)

−1

0

1

2

−2 −1 0 1 2
x

y

Time

10

20

30

40

50

Seizure 7 (34.28%)

−1

0

1

−2 −1 0 1
x

y

Time

10

20

30

40

50

Interictal 7 (36.79%)
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Figure A.11: MDS plots for Patient ID13 using the Euclidean, affine invariant and quotient metrics.
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Figure A.12: Estimated parameters for Patient ID13 in (Sym(p), geuc) (left panel), (S+(p), gaff) (
middle panel), and (C+(p), gquo) (right panel).

Table A.6: Goodness of modelling fit by R2 in (Sym(p), geuc), (S+(p), gaff), and (C+(p), gquo) for
Patient ID13.

Seizure 1 Seizure 2 Seizure 3 Seizure 4 Seizure 5 Seizure 6 Seizure 7 Seizure 7
Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag. Sca. Diag.

Sym(p) 0.390 0.491 0.273 0.327 0.361 0.433 0.311 0.345 0.281 0.329 0.322 0.363 0.379 0.460 0.473 0.525
S+(p) 0.480 0.591 0.409 0.465 0.463 0.523 0.423 0.465 0.386 0.445 0.449 0.495 0.464 0.537 0.541 0.585
C+(p) 0.482 0.591 0.417 0.468 0.457 0.515 0.439 0.473 0.424 0.466 0.460 0.497 0.460 0.534 0.531 0.574
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