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— The combination of some data and an aching desire for an

answer does not ensure that a reasonable answer can be

extracted from a given body of data.
John W. Tukey (1986)
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Abstract

Groundwater networks provide a critical resource across the world by supplying

fresh water for a wide array of scenarios including extraction for drinking water and

irrigation. Protection of these naturally occurring geological features is an important

component of the wider climate problem. Pollution to groundwater networks can

occur in many forms, including nitrates, radioactive material and the focus of this

thesis, hydrocarbons. Due to their carcinogenic nature, data is collected at ground-

water monitoring sites for regulatory compliance and to ensure safe concentration

levels are not exceeded. Data collection involves extraction of a water sample, in

situ, to be later analysed in a laboratory capable of measuring hydrocarbon concen-

trations above a certain “non-detection” limit. This process is less than desirable

as our data is left-censored at laboratory-dependent thresholds and it requires the

construction of several groundwater monitoring wells. Furthermore, observations

may be missed due to faulty wells, unsafe working conditions and other potential

obstructions.

Hence, the aim of this thesis is to investigate whether statistical modelling of hydro-

carbon concentrations based on measurements of predictors that are easier to obtain

can provide more insight with less information. Models proposed in this thesis take

the form of a regression where the dependent variable is a left-censored analyte

of interest and the regressors are indicators of water quality such as temperature,

pH and dissolved oxygen that could be more feasibly obtained using sensors and

telemetry in the future.

An application with such complexity requires an inter-disciplinary approach and

this thesis presents an exploratory data analysis, machine learning methods and

mechanistic transport models based on physical laws. Following these results, we
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propose models that avoid replacing censored data with half the detection limit;

leverage the high correlation between analytes; apply mixture models to deal with

non-linearity and a varying intercept model that makes use of the spatial aspect of

the wells from which the data are sampled.
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Chapter 1

Introduction

1.1 Motivation

Groundwater monitoring of hydrocarbons is a key element to risk assessment and

remediation for companies who deal with transportation, storage and distribution

of refined petroleum products and crude oil, making these analytes of particular

interest (CL:AIRE, 2017).

Groundwater monitoring sites are concerned with a variety of possible pollutants

that affect groundwater quality and must establish sustainable practises during op-

eration with minimal social and environmental disruption. This could take the form

of extensive data collection, monitoring and understanding to aid early detection

and proactive action. Alternatively, after an incident has taken place and ground-

water has been impacted, there is a need to delineate and evaluate the evolution of

groundwater quality over time.

1



Chapter 1. Introduction

Figure 1.1: Model Toxics Control Act (Department of Ecology, State of Washing-
ton).

Once a location is retired and no longer used for processing raw materials containing

hydrocarbons, it must be remediated to allow the land to be used for other purposes.

Figure 1.1 shows a typical strategy for this process with emphasis on public partic-

ipation. Due to the increase of extreme weather events (Pörtner et al., 2022) it

is increasingly important that any remediation measures are also resilient to any

unexpected changes (Interstate Technology & Regulatory Council, 2021).

Most commonly, hydrocarbon groundwater monitoring methodology involves data

collection of hydrocarbons, which we will refer to as ‘analytes’ as described in Ap-

pendix A, where samples are collected from multiple wells within a site that are to

be analysed later. Photoionisation detectors are one such example in widespread

use (Adamson et al., 2012) that are capable of measuring the volatile organic com-

pounds we are interested in. However, technologies such as field portable gas chro-

matographs or the UviLux fluorometer, by Chelsea technologies, allow for in situ

measurements with the trade-off of a higher cost investment for the equipment and

requisite training (Adamson et al., 2012).

During this groundwater monitoring it is common to take measurements of water

quality parameters such as, but not limited to, pH and temperature. Each of these

2



Chapter 1. Introduction

variables can be classified as physical, chemical or biological as described in Summers

(2020) but we make no such distinction. While these data are collected from the

same sample used for the analyte variables, or in the field, the measurements may

at times occur several days apart leading to some inter-sample variation. The focus

of this work will be on the water quality (WQ) parameters: electrical conductivity

(EC), oxidation reduction potential (ORP), dissolved oxygen (DO), pH and temper-

ature. These WQ parameters are routinely measured during groundwater sampling

campaigns, and may allow for a more cost effective solution where analyte concen-

trations are inferred from remote measurements that are supplied on-line from a

sensor or internet of things (IOT) infrastructure. The term ‘predictors’ will be used

in this thesis to refer to the WQ parameters: conductivity (EC), oxidation reduction

potential (ORP), dissolved oxygen (DO), pH and temperature. More details on each

variable used can be found in Appendix A.

By more efficiently monitoring analytes, there is potential to develop an early de-

tection system that would alert groundwater site employees to a potential event of

interest allowing for more prompt and effective intervention.

Alternatively, groundwater sampling costs incurred can be reduced via optimising

well sampling schedules, identifying optimal locations for additional wells or remov-

ing redundant wells that offer little extra information about a site (McLean et al.,

2019).

Hydrocarbon pollution of groundwater is one of many concerns within a greater

context where other pollutants are also under study. Toxic elements, arsenic and

barium, are considered in Sahoo & Hazra (2021) and radionuclides such as uranium

are investigated in Schmidt et al. (2018). Most, if not all, models and methodology

in this thesis can be applied to a general groundwater contamination context, when

the distinct properties of each contaminant are taken into account.

3



Chapter 1. Introduction

1.2 Literature Review

Understanding the mechanisms and states of groundwater is a highly complex issue

with many advocating for a multidisciplinary approach. Since two identical looking

sites can have clearly heterogeneous geologies beneath the ground, such as different

rock type, average temperature, aquifer shape and many more complexities, no single

model will work in all applications. Any statistical model we propose is to fit within

a larger toolbox of models that may arise from machine learning, chemistry, geology,

hydrology, fluid dynamics or any discipline of interest. Therefore, it is useful to

understand what modelling techniques are already available for this set of problems.

Note that some of this literature review is deferred to Chapter 3.

1.2.1 GWSDAT

The groundwater spatial data analysis tool (GWSDAT), created during a collabo-

ration between the University of Glasgow and Shell Global Solutions International

BV, is a software package and accompanied Shiny application with Excel add-in

(Jones et al., 2014). It is able to analyse hydrocarbon groundwater monitoring data

and present visualisations such as concentration maps and time series, enact trend

analysis and determine contamination plume characteristics through the use of spa-

tiotemporal smoothing (Jones et al., 2015).

The scope of the software is to model analyte data independently of other data

collected from that water sample and focus solely on the spatiotemporal nature of the

data. Prior to GWSDAT, spatiotemporal modelling was often achieved by fitting a

spatial model at successive time slices, however, the spatiotemporal model employed

by the GWSDAT appears to “borrow strength” across time when compared to a

simpler spatial model (McLean et al., 2019).

4
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The methodology of GWSDAT relies on penalised splines (P-splines), as proposed

by Eilers & Marx (1996). P-splines are described as a flexible data smoother that act

by minimising the penalised least squares, subject to some choice of penalty. For a

more detailed overview see Mclean (2018) and Evers et al. (2015) and for discussion

about splines in general see Eubank (1999).

An advantage to the spatiotemporal model is that less data is lost per well removed

(McLean et al., 2019), allowing reduced operational risks and costs for little to no in-

formation loss. GWSDAT has been implemented in multiple case studies including

Malander (2016) where a consultant applied GWSDAT to groundwater monitoring

data involving detections of light non-aqueous phase liquid (LNAPL), to be de-

scribed in Section 1.5, groundwater elevation and hydrocarbon concentrations from

analytes such as gasoline additive MTBE (methyl tert-butyl ether) and those de-

noted in BTEX (benzene, toluene, ethylbenzene, xylenes). From these analyses,

recommendations were made on an individual well-by-well basis that contributed to

a decrease in the number of wells to be sampled and sampling frequency for some

wells.

1.2.2 Telemetry

The original scope of our research included the potential of real-time prediction of

analyte concentrations using the aforementioned predictors. Trivially, such a proce-

dure would require models that can be fit efficiently to ensure the predictions can be

composed as quickly, if not quicker, than the rate of sampling of conductivity (EC),

oxidation reduction potential (ORP), dissolved oxygen (DO), pH and temperature.

Such an approach is defined as telemetry where data collection is automated by

sensors.

5
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The advantages of telemetry for groundwater monitoring applications are plentiful

as data collection is at a high cost due to

• well construction and maintenance;

• labour costs associated with water sample extraction;

• analysis of the water sample to measure key water quality indicators.

Hence, it should not be surprising that a similar approach has been presented such

as Schmidt et al. (2018) where in-situ “water quality data” is used to “estimate

contaminant concentrations”. The contaminant in Schmidt et al. (2018) refers to

tritium and uranium concentrations and we shall investigate if such techniques can

be reproduced with hydrocarbon concentrations.

Alternatively, instead of separating these analytes and predictors into distinct groups

as we do in regression models described in Chapter 5, one could jointly model all

types of water quality variables, including our analytes and predictors, as multi-

variate species (Gong et al., 2021). Gong et al. (2021) applies this approach to air

pollution over much larger distances than seen in data pertinent to our application

but reveals how we can fit a spatially motivated multivariate regression to “borrow”

information from variables of a similar nature.

The idea of leveraging sensors is not an original idea proposed in this research and

has been considered for groundwater monitoring in detail for Morocco, over a decade

prior (Taffahi et al., 2013). Taffahi et al. (2013) highlights that this is not only a

statistical task but also poses engineering problems with how the sensors are to be

built to a reliable standard and a business problem to assess the business feasibility.

Of great interest to us are the sensors for pH and electrical conductivity with more

details given on extracting pressure measurements which could be a worthwhile

predictor for our data to include in the future, if feasible.

6
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1.3 Thesis Structure

Throughout this thesis we introduce our approach of modelling the log concentra-

tions of analytes methyl tert-butyl ether (MTBE) and benzene using the predictors

electrical conductivity (EC), oxidation reduction potential (ORP), dissolved oxygen

(DO), pH and temperature for a specific site using a variety of tools and models.

Chapter 2 introduces our case study dataset that was shared with us under the terms

of pseudonymisation and will be described throughout as case study A. Before any

modelling is enacted we perform an exploratory data analysis to better understand

patterns in these data, some of which are specific to this site and others can hopefully

be generalised to other groundwater monitoring sites. A mechanistic dataset is

presented in Chapter 3 as a representation of our expectations under a reactive

transport model (RTM) that is based on well established physical laws, for example

conservation of energy and conservation of solute mass. In conjunction with our

exploratory analysis, we apply a black box machine learning method in Chapter 4 to

potentially elicit any quantitative relationships that are easily missed in approaches

used in the exploratory data analysis. We explain how these random forest models

operate but more detailed explanations can be found elsewhere such as Breiman

(2001).

The remaining chapters in this thesis begin with regression models where imputation

methods and Tobit models (Tobin, 1958) are compared and then applied to our

case study, as appropriate. Each subsequent chapter aims to build upon these

baseline models and improve parameter estimation or predictive power as described

in Section 1.6.
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Chapter 6 aims to leverage high prior correlation between analytes with:

1. multivariate normally distributed analytes;

2. matrix-variate normally distributed analytes.

However, these generalisations are also presented as a trade-off since a multivariate

censored regression (Tobit) model would require data augmentation to be described

in Section 1.5.4 or a multivariate probability density function (PDF) that we have

not considered here.

Chapter 7 considers the apparent non-linearity and “phase”-like behaviour of these

data as suggested by RTM simulations. Leveraging mixture modelling, specifically

mixture of regressions with concomitant variables, allows us to fit a clustering step

and regression step into a single mixture of experts (MoE) model framework (Gorm-

ley & Frühwirth-Schnatter, 2019) and estimate piecewise linear relationships in a

Bayesian context.

Chapter 8 applies a more pragmatic approach for our case study with a renewed focus

on the variation within a single hydrocarbon groundwater monitoring site. This is

done through a special case of a linear mixed effects model where the intercept term

is defined to be different per well. With these varying intercept models, prediction

for observed wells can be improved and inter-well variation is directly modelled

leading to more accurate parameter estimates (Revie et al., 2017).

By repeating the same prediction scenarios, to be defined in Section 1.6, for each

of these comparable models we can employ model comparison techniques to find

the most suitable model within each chapter. Moreover, we can compare the ‘best’

models from each chapter and quantify how much each generalisation improves over

the baseline censored regression model introduced in Chapter 5. The results of which

are included in the concluding chapter, Chapter 9.
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1.4 Data Structure

Data arising from hydrocarbon groundwater monitoring wells is very typical of envi-

ronmental statistics with key idiosyncrasies including the spatiotemporal component

and left-censoring, to be defined in Section 1.5. Note that all data has associated

metadata including the observation time and spatial location, the difference for these

data is that the spatiotemporal data has a tangible impact on the observed values

(Oliver et al., 2015). To better visualise these data, consider Figure 1.2 where we

plot left-censored analyte benzene from the dataset to be fully explored in Chapter 2.

Immediately one can observe the temporal nature of these data, the more frequent

data collection at “Well-01” and the high degrees of censoring at remote locations

such as “Well-46”. For groundwater data we wish to model, this is extended as there

may be as many as 50 wells, each with associated spatial coordinates not shown.

Similarly, several analytes such as MTBE, benzene, toluene and several predictors

such as conductivity (EC) and pH are observed per water sample that is extracted

from the monitoring site.
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Figure 1.2: Time series of benzene concentrations for three specified wells.

9



Chapter 1. Introduction

Suppose we have 𝑛𝑠 observations that are uniquely identified by the sample iden-

tifiers, a combination of the well name and sample date, where the frequency may

vary by well from quarterly to yearly. Within each observation, we observe at most

𝑛𝑥 predictors and 𝑛𝑦 analytes. It is common for sample dates between these sets

to differ by a few days. As a simplification, we combine these measurements into a

single sample if they are from the same well and the difference in sample dates is

less than 1 week for the datasets discussed in Chapter 2.

Our complete analyte data takes the form of a matrix

𝑌 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑦11 … 𝑦1𝑛𝑦

⋮ ⋱ ⋮
𝑦𝑛𝑠1 … 𝑦𝑛𝑠𝑛𝑦

⎞⎟⎟⎟⎟⎟⎟
⎠

, (1.1)

where each element 𝑦𝑖𝑗 represents the log concentration for the 𝑖𝑡ℎ sample and 𝑗𝑡ℎ

analyte variable that is typically left-censored. We apply a log transformation due

to the high level of right skew in these data. Figure 1.3 shows evidence of this by

visualising all analyte data from the site to be explored in Chapter 2. If one was

to also include the censored observations, the data would only get more skewed but

these data have been omitted as they typically occur as the same value many times

within a site, by design. Further investigation into detection limits and censoring

levels can be found in Section 2.3.
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Figure 1.3: Histogram of all uncensored observations within hydrocarbon ground-
water site, 𝑦-axis represents frequency.

As with the analyte data, the 𝑖𝑡ℎ sample measurement of the 𝑗𝑡ℎ predictor is denoted

𝑥𝑖𝑗 and we compactly collate these data in a single matrix

𝑋 =
⎛⎜⎜⎜⎜⎜⎜
⎝

1 𝑥11 … 𝑥1𝑛𝑥

⋮ ⋮ ⋱ ⋮
1 𝑥𝑛𝑠1 … 𝑥𝑛𝑠𝑛𝑥

⎞⎟⎟⎟⎟⎟⎟
⎠

,

with an “intercept” column of ones prepended, unless stated otherwise. It is often

necessary to standardise predictors to assist with interpretation within a regression

context and to ensure varying scales do not impact inferences (Gelman et al., 1995).

We express metadata of each sample as a coordinate of length 𝑑, say

𝐬𝑖 = (𝑠𝑖1, … , 𝑠𝑖𝑑)𝑇 . For groundwater monitoring applications considered in

this thesis, well locations and sample dates yield spatiotemporal coordinates

(𝑠𝑖𝑥, 𝑠𝑖𝑦, 𝑠𝑖𝑡)𝑇 , however, this highlights a key data gap in these data where depth

information is missing.
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1.5 Censoring

Left-censoring is a key idiosyncrasy of environmental data that occurs when the

concentration to be measured is less than some detection limit (DL), sometimes

referred to as a reporting level (RL). This can be for many reasons, such as equipment

tolerance or dilution of samples causing harder to detect concentrations. Since the

observation is known to be at a safe level, substantially below any regulatory limit,

no follow-up analysis is done and the information given is that the data point must

lie in the interval (0, DL] for some detection limit DL.

Further complicating this issue is the fact that this limit of detection may change

on a per-sample basis as samples may be sent to different facilities for analysis and

facilities may replace their equipment over time with a higher or lower detection

limit. Statistical methods have been developed for single DL datasets (Zoffoli et al.,

2013) and multiple DL datasets (Helsel, 2005). Multiple DL data can be recoded as

single DL by combining all censored data to be censored at the maximum detection

limit (MDL) but this will lead to a loss of information. Since data considered in

Chapter 2 contains instances where DLs may be different even at the same well, we

make no such assumption that all DLs are at the same level.

In a hydrocarbon context, our data should be thought of as interval-censored since

a high concentration will be obscured by the presence of non-aqueous phase liquid

(NAPL). For instance, the pure-phase solubility of benzene (100% single component)

is 1790 mg/L, however a ‘typical European fuel’ containing other components will

have an effective solubility of around 18 mg/L, 1% of the original solubility (Tomlin-

son et al., 2014). By definition, these values represent the maximum groundwater

concentration to be expected adjacent to a release of light non-aqueous phase liquid

(LNAPL) so any concentrations exceeding their effective solubility are right-censored
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observations. However, since effective solubility is situational and highly dependent

on the composition of the contaminant it is difficult to model this in practice. Hy-

drocarbon groundwater monitoring investigations record any signs of LNAPL at the

time of sample extraction. For our data, this is rarely a concern.

Suppose the log of the level of detection when measuring the 𝑗𝑡ℎ analyte at the

𝑖𝑡ℎ sample, determined by the measuring equipment, is denoted by 𝑐𝑖𝑗 > 0. There

exists some theoretically uncensored (log) concentration, 𝑦∗
𝑖𝑗, that we are interested

in, but we only observe the pairing (𝑦𝑖𝑗, 𝛿𝑖𝑗) for each sample 𝑖 = 1, … , 𝑛𝑠 and analyte

𝑗 = 1, … , 𝑛𝑦 where

𝑦𝑖𝑗 =
⎧{
⎨{⎩

𝑐𝑖𝑗, if 𝑦∗
𝑖𝑗 < 𝑐𝑖𝑗

𝑦∗
𝑖𝑗, otherwise

,

and censoring indicator 𝛿𝑖𝑗 = 𝕀(𝑦∗
𝑖𝑗 < 𝑐𝑖𝑗) where 𝕀 is the indicator function taking

the value of one when the supplied argument is true and zero otherwise.

This convention of coding the indicator to one when the value is a “non-detect” is

antonymic to the convention used in survival analysis where observed values are

coded with a one and censored values with a zero (Kleinbaum et al., 2012).

1.5.1 Substitution Methods

Left-censored data are often seen as sub-quality data but the statistical field of

survival analysis demonstrates rigorous and principled ways of dealing with censored

data (Kleinbaum et al., 2012). One method that is often presented as a worst-

case scenario (George et al., 2021) is the naïve removal of the data, also known as

complete cases only. A key flaw in removal is that the data that has been censored

is, by definition, missing not at random (MNAR); the probability of an observation

being censored is directly dependent on the underlying concentration. Expectedly,

13



Chapter 1. Introduction

removing censored data leads to highly biased estimates (George et al., 2021; Zoffoli

et al., 2013) and should not be suggested in any scenario.

A more common approach is that of substitution; each censored value is replaced

by a function of the detection limit, 𝑦𝑖𝑗 = 𝑓(𝑐𝑖𝑗). This idea has been used in the

literature in various forms:

• replacement by half DL, 𝑓(𝑐𝑖𝑗) = 𝑐𝑖𝑗/2, (Jones et al., 2015);

• replacement by factor of DL, say 𝑓(𝑐𝑖𝑗) = 𝑐𝑖𝑗/
√

2, (Hornung & Reed, 1990);

• replacement by the maximum value, 𝑓(𝑐𝑖𝑗) = 𝑐𝑖𝑗;

• replacement by the minimum value, 𝑓(𝑐𝑖𝑗) = log(𝜖), for some chosen minimum

feasible value 𝜖 > 0;

• stochastic replacement, 𝑓(𝑐𝑖𝑗) = 𝑢 where 𝑢 ∼ 𝑈(0, 𝑐𝑖𝑗), (Baize et al., 2009).

Replacement by half of the detection limit, which we refer to as the “DL/2” method,

is one of the most frequently used ways of dealing with censoring (Helsel, 2005; Singh

& Nocerino, 2002). It has been claimed that the DL/2 method may be accurate in

some instances where the proportion of censored data does not exceed 10% (Helsel,

2005), however, the literature overwhelmingly concludes that substitution methods

lead to unsatisfactory inferences and results in the majority of cases. Early research

on the topic claimed a “significant loss of information” for DL/2, replacement by

DL and replacement by 0 (Helsel & Cohn, 1988). Evidence that all considered

substitution methods result in biased and inaccurate estimates to varying degrees,

except in very specific cases, can be found in Helsel (2005) and Zoffoli et al. (2013).

The prevailing theory is that the DL/2 method in widespread use is biased (Singh

& Nocerino, 2002; Helsel, 2011; George et al., 2021).

The main issue with DL/2 is that the fraction of the detection limit is arbitrary

with no justification, as evidenced by the use of 1/
√

2 in some instances (Hornung
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& Reed, 1990). Helsel (2011) enacts a simulation study where the fraction of the DL

used varies between 0 and 1; it is found that the estimates of the mean, standard

deviation, correlation coefficient, regression slopes and 𝑡-tests are all highly sensitive

to this choice.

Additionally, when considering the DL/2 method it may be, and usually is, the case

that better methods exist. For example, when dealing with left-censored environ-

mental data, rank-sum tests are recommended over 𝑡-tests by the United States

Geological Survey (Helsel et al., 2020). Usage of DL/2 can be justified as a trade-off

where efficiency is gained at the cost of analysis-induced bias which may be ap-

propriate for some applications as discussed in George et al. (2021). For example,

GWSDAT provides a smoothed surface of an entire groundwater site in a reasonable

time frame using DL/2 (Molinari, 2014; Mclean, 2018).

1.5.2 Regression on Order Statistics

Regression on order statistics, as proposed by Helsel & Cohn (1988), is a parametric

method that combines an assumption about the distribution of censored data (or

entire dataset) and the uncensored data to estimate likely values. Following these

calculations, estimates of censored values can then be imputed in a similar way to

any substitution method.

The intuition behind this method is to construct “plotting positions”, yet to be

defined, that represent theoretical quantiles commonly used in a normal Q-Q plot.

A linear model is then fit to the (log) uncensored observations where the only ex-

planatory variable is plotting positions. Imputation is enacted by using this linear

model where censored data predictions, based on plotting positions, can be used as

imputation values. We can ensure these imputed values are strictly positive by log

transforming before fitting and exponentiating any predictions from the model.
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To make this process clear, we apply regression on order statistics (ROS) to the

same example given in Helsel & Cohn (1988), that is,

< 1, < 1, < 1, < 1, < 1, < 1, 3, 7, 9, < 10, < 10, < 10, 12, 15, 20, 27, 33, 50

Suppose we have 𝑚 detection limits, 0 < 𝑑1 < ⋯ < 𝑑𝑚, and then for each detection

limit calculate

1. number of uncensored observations between 𝑑𝑗 and 𝑑𝑗+1, denoted 𝐴𝑗;

2. number of all observations below 𝑑𝑗, denoted 𝐵𝑗;

3. number of censored observations only known to be below detection limit 𝑑𝑗,

denoted 𝐶𝑗.

It follows that the conditional probability of exceeding some threshold, 𝑑𝑗 is given

iteratively,

𝑝𝑗 = 𝑝𝑗+1 + 𝐴𝑗
𝐴𝑗 + 𝐵𝑗

(1 − 𝑝𝑗+1),

for 𝑗 = 𝑚, 𝑚−1, … , 1 where we set 𝑝𝑚+1 = 0. In the worked example where 𝑑2 = 10
and 𝑑1 = 1, we count observations such that 𝐴1 = 3, 𝐴2 = 6, 𝐵1 = 6, 𝐵2 = 12, 𝐶1 =
6, 𝐶2 = 3 and then derive

𝑝2 = 𝑝3 + 𝐴2
𝐴2 + 𝐵2

(1 − 𝑝3) = 1
3 ≈ 0.333

𝑝1 = 𝑝2 + 𝐴1
𝐴1 + 𝐵1

(1 − 𝑝2) = 15
27 ≈ 0.556.

Plotting positions use the complement of the probability of exceedance, say 𝑞𝑗 =
1 − 𝑝𝑗, as we desire a quantile function. By using Weibull plotting positions (Helsel

& Cohn, 1988) we assign plotting positions to be equidistant points within their

respective interval.
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For uncensored observations,

𝑃 𝑃(𝑖)(𝑢𝑛𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑) = 𝑞𝑗 + (𝑞𝑗+1 − 𝑞𝑗) ( 𝑟
𝐴𝑗 + 1) ,

where 𝑟 is the rank of the 𝑖𝑡ℎ uncensored observation above the 𝑗𝑡ℎ detection limit,

for which there are 𝐴𝑗 total. Whereas, for censored observations,

𝑃𝑃(𝑖)(𝑐𝑒𝑛𝑠𝑜𝑟𝑒𝑑) = 𝑞𝑗 ( 𝑟
𝐶𝑗 + 1) ,

where 𝑟 is the rank of the 𝑖𝑡ℎ censored observation below the 𝑗𝑡ℎ detection limit, for

which there are 𝐶𝑗 total.

We plot the results of this worked example in Figure 1.4 where the key plotting

position boundaries, 𝑞1 and 𝑞2 are marked. Plotting positions for uncensored obser-

vations are equidistant between the respective marked boundaries, whereas plotting

positions for censored observations are equidistant between the respective upper

marked boundary and zero. This has the unintentional effect that some observa-

tions may share a plotting position at 0.5 as shown. Arrows denoting a change from

detection limit to imputed value shows how each new value may move above the

original detection limit. While undesirable, imputing by a value above the detection

limit is intentional to extend the (log) linearity of the uncensored data to the cen-

sored data and demonstrates how an intentional inaccuracy for specific observations

may be used for the benefit of the overall shape of these data. A further disadvan-

tage of this approach is the assumption of normality which the method makes use

of extensively.
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Figure 1.4: Quantile plot of worked example showing ROS imputation by arrow.

1.5.3 Maximum Likelihood Estimation

We can avoid substitution entirely if we follow a parametric approach where the

distribution of the underlying data is assumed known. Constructing a likelihood

based on censored data can be done using some cumulative distribution function

(CDF), say 𝐹(⋅), for censored observations and using a probability density function

(PDF), say 𝑓(⋅), for uncensored data. That is,

𝐿(Θ) =
𝑛𝑠

∏
𝑖=1

𝑓(𝑦𝑖)1−𝛿𝑖 𝐹(𝑦𝑖)𝛿𝑖, (1.2)

where 𝑦𝑖 are the recorded values whose nature depends on the censoring indicator

𝛿𝑖 and Θ are parameters of the distribution.

Rather than choosing 𝐹(⋅) and 𝑓(⋅) functions directly, they are derived from the

assumed distribution. For our groundwater monitoring data to be introduced in

Chapter 2, a good candidate distribution would be the normal distribution with
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mean 𝜃𝜇 and standard deviation 𝜃𝜎. By maximising (1.2) with respect to 𝜃𝜇 and 𝜃𝜎

we can

1. estimate the mean and standard deviation of these data using

Θ̂ = argmax
Θ

𝐿(Θ);

2. fit a likelihood-based model to the data as in Section 5.3;

3. evaluate the log likelihood to perform likelihood-ratio tests (Helsel, 2011).

This approach is not without disadvantages; the MLE approach has been shown

to perform poorly with small datasets of around 25-50 total observations (Helsel,

2011). Similarly, if there are too few uncensored observations, due to a high degree

of censoring, the inferred parameters of the assumed distribution will be unreliable

and this approach should not be used. We see this limitation explicitly in a similar

approach known as the method of median semi-variance where parameters of a half-

normal distribution are estimated using the upper half of the data (Zoffoli et al.,

2013). For trivially apparent reasons, this method is not to be used on data that

exceeds 50% censoring.

1.5.4 Data Augmentation

In general, data augmentation (DA) is a set of techniques where artificial data is

generated from existing data to improve data quality. For our purposes, DA is

the imputation of incomplete data at each iteration of a Markov chain Monte Carlo

(MCMC) algorithm through the use of a conditional distribution; see Appendix B for

a primer on Markov chain Monte Carlo (MCMC) methods. Incomplete observations

in our application are solely censored data but may also include missing observations

(Lockwood et al., 2004).
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This approach has been leveraged in spatial statistics (Fridley & Dixon, 2007) and

specifically groundwater contamination in Lockwood et al. (2004) where a truncated

normal was used as the conditional distribution for each censored observation. One

can consider this method as assigning each censored observation to be an unknown

parameter with a restricted domain a priori, say (0, DL) for some detection limit.

1.6 Model Prediction

There are numerous scenarios within a groundwater monitoring site in which we

could apply a model to produce predictions to be communicated. In this thesis

we consider the task of predicting several holdout wells, to be chosen for our case

study in Section 2.2. Once these wells to be predicted are identified, we consider

two hypothetical scenarios that differ by how much of the holdout well data is made

available for model fitting and hyperparameter tuning.

1. Leave-multiple-well-out (LMWO), a generalisation of leave-one-well-out

(LOWO) (Evers et al., 2015) where analyte concentrations from the holdout

wells are to be predicted;

2. holdout future, analyte concentrations are observed for all wells up to a

specified date, after this point only non-holdout wells observe concentrations.

In both cases, we assume our predictors are fully observed at all samples and are

therefore available for use in prediction.

Motivating the LMWO scenario is the concept of telemetry where we could feasi-

bly be asked to predict analyte concentrations for many candidate locations for a

new well, with predictor data being supplied by in situ sensors. The holdout future

scenario is pragmatic because there are many reasons why we may have historical

data up to some terminating point for a well. Well closures can occur for many rea-
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sons including deterioration beyond safe working conditions and to increase financial

feasibility of the groundwater monitoring site.

In both scenarios, it is imperative that the described out-of-sample data is inde-

pendent of any model building decisions to mitigate the risk of overfitting to these

site-specific data. The consequence of this decision is that any hyperparameter to

be determined, such as number of available predictors in Section 4.3.2 and number

of components in Chapter 7, must further split the data with techniques including

cross-validation. We adopt the nomenclature typical in machine learning to make

the role of each observation clear:

1. training data describes observed data to be used in all model fitting steps,

for example calculating maximum likelihood estimates (MLE) or executing an

MCMC algorithm;

2. validation data denotes out-of-sample data used during hyperparameter tun-

ing. Models are compared to decide on a “best” hyperparameter value;

3. test data forms the unseen data to be predicted that will provide an unprej-

udiced evaluation of a final model.

The diagram in Figure 1.5 presents a simplified case of an approach to be applied

to the random forest model (Section 4.5.1). An initial split is made based on wells

and then any subsequent hyperparameter tuning can only act on the reduced data.

Here, candidate models are fit and used to make predictions on the corresponding

validation group for a total of 5 times; by evaluating a yet to be defined metric on

these predictions, a single validation score is aggregated per candidate model. A

final model using the “best” hyperparameter is fit to the initial training data and

makes predictions on the test data resulting in a test score, an indicator of model

predictive performance when facing previously unseen data.
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Figure 1.5: Diagram of training, validation and test data with 5-fold cross validation.

1.7 Model Comparison

Throughout this thesis, we assess predictions qualitatively using the holdout wells de-

fined in Section 1.6. However, we also want methodology to quantify each model’s

predictive performance using a chosen metric relative to some other comparable

model. Possible options include the Akaike information criterion (AIC) (Watan-

abe & Opper, 2010) and the related Bayesian information criterion (BIC) (Schwarz,

1978). In this thesis, we use the log pointwise predictive density (LPD) for goodness-

of-fit tests and a combination of the widely applicable information criterion (WAIC)

and the arguably more robust Pareto-smoothed importance sampling (PSIS) (Ve-

htari et al., 2017).

For models described in this thesis, the primary goal is to accurately predict

completely new (out-of-sample) data subject to constraints. Hence, WAIC is

utilised since it is an estimate of pointwise out-of-sample predictive accuracy and

will asymptotically converge to the leave-one-out (LOO) measure of predictive

accuracy (Watanabe & Opper, 2010). Calculating LOO directly would require the
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computationally infeasible task of fitting each model to be compared for as many

observations as exist in the dataset while permuting the OOS data to be a single

observation. Additionally, the pointwise nature of LPD, WAIC and PSIS allow for

per-observation diagnostics that can identify influential observations and detect

when other methods such as K-fold cross validation should be used. We opt to

compare models using PSIS due to the robustness of these diagnostics whereas

WAIC highlights issues in the predictive posterior using empirical values (Vehtari

et al., 2017).

Suppose we want a measure of model accuracy using 𝑛∗
𝑠 known analyte log concen-

trations, say 𝐲∗ = (𝑦∗
1, … , 𝑦∗

𝑛∗𝑠
). For our use-case, 𝐲∗ either denotes our in-sample

data, where the same data is used to fit the model and produce the accuracy metric

(so 𝐲∗ = 𝐲), or out-of-sample data where data used to asses the model’s accuracy is

different from data used to fit the model. For our cross-validation approach, we make

use of the two scenarios, LMWO and hold-out future, as described in Section 1.6.

The aim of each metric is to estimate the expected log pointwise predictive density, a

measure of predictive accuracy for 𝑛∗
𝑠 potentially unseen data points (Vehtari et al.,

2017). It is defined as

ELPD =
𝑛∗

𝑠

∑
𝑖=1

∫ log(𝜋(𝑦∗
𝑖 |𝐲))𝜋𝑡(𝑦∗

𝑖 )𝑑𝑦∗
𝑖 ,

where 𝜋(𝑦∗
𝑖 |𝐲) is the posterior predictive density but the true data generating process,

𝜋𝑡(𝑦∗
𝑖 ), is the unknowable truth so this quantity cannot be calculated and will have

to be estimated. We now consider several options.
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1.7.1 LPD

One option is to consider the log pointwise predictive density (LPD),

LPD =
𝑛∗

𝑠

∑
𝑖=1

log 𝜋(𝑦∗
𝑖 |𝐲) =

𝑛∗
𝑠

∑
𝑖=1

log ∫ 𝜋(𝑦∗
𝑖 |𝜽)𝜋(𝜽|𝐲)𝑑𝜽,

under the assumption 𝑦∗
𝑖 independent to 𝐲|𝜃. LPD can be estimated using the Monte

Carlo estimate for posterior simulations, 𝑠 = 1, … , 𝑆 of the model parameters, 𝜽.

That is,

ÊLPDLPD =
𝑛∗

𝑠

∑
𝑖=1

log { 1
𝑆

𝑆
∑
𝑠=1

𝜋(𝑦∗
𝑖 |𝜽(𝑠))} . (1.3)

When supplying the in-sample data to (1.3), we produce an overestimate of the

ELPD for future data because it is evaluated on the data from which the model

was fit (Vehtari et al., 2017). That is, solely focusing on maximising this estimate

will likely lead to an overfitted model that predicts observed data very well but may

struggle with novel data.

1.7.2 WAIC

The widely applicable information criterion (WAIC) estimate subtracts a penalty

term from the log pointwise predictive density estimate,

ÊLPDWAIC = L̂PD − ̂𝑝WAIC,

where the penalty is a Monte Carlo estimate of the effective number of parameters,

given by the sum of the sample variances (over posterior simulations) of each data

point,

̂𝑝WAIC =
𝑛∗

𝑠

∑
𝑖=1

Var {log 𝜋(𝑦∗
𝑖 |𝜽(𝑠))} .
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The WAIC estimate will asymptotically equal the leave-one-out (LOO) cross val-

idation estimate of out-of-sample prediction (Watanabe & Opper, 2010), however

for finite 𝑛∗
𝑠 the estimate may be unreliable and empirical evidence shows that the

estimate is unreliable when any of the summands that make up ̂𝑝WAIC exceed 0.4
(Vehtari et al., 2017).

1.7.3 PSIS

Pareto-smoothed importance sampling (PSIS) is more robust than WAIC as it pro-

vides an estimate of ELPD as well as formalised diagnostics to check the validity of

the estimate on a per-observation basis.

Suppose the model is trained on all available data, say 𝐲, except for the 𝑖𝑡ℎ obser-

vation, we denote this subset by 𝐲−𝑖. Raw importance sampling would estimate the

LOO predictive distribution by

𝜋(𝑦∗
𝑖 |𝑦−𝑖) ≈ ∑𝑆

𝑠=1 𝑟(𝑠)
𝑖 𝜋(𝑦∗

𝑖 |𝜽(𝑠))
∑𝑆

𝑠=1 𝑟(𝑠)
𝑖

,

with importance ratios

𝑟(𝑠)
𝑖 ∝ 𝜋(𝜽(𝑠)|𝐲−𝑖)

𝜋(𝜽(𝑠)|𝐲) .

We avoid raw importance sampling as these ratios may have high or even infinite

variance and so use PSIS where this estimate is altered by smoothing the top 20%
of importance ratios with a generalised Pareto distribution as described in Vehtari

et al. (2015). Given the importance ratios are smoothed into new importance ratios,

say 𝑤(𝑠)
𝑖 , the PSIS estimate of the ELPD is

ÊLPDPSIS =
𝑛∗

𝑠

∑
𝑖=1

log {∑𝑆
𝑠=1 𝑤(𝑠)

𝑖 𝜋(𝑦∗
𝑖 |𝜽(𝑠))

∑𝑆
𝑠=1 𝑤(𝑠)

𝑖
} .
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The upshot of this procedure is that the estimated shape parameter of the generalised

Pareto distribution, 𝑘̂, is representative of the shape of the upper 20% of importance

ratios where exceeding certain values of 𝑘̂ imply the importance ratios have infinite

mean or infinite variance due to the properties of the Pareto distribution. That is,

• 𝑘̂ < 0.5 implies finite variance of the importance ratios so a reliable estimate;

• 0.5 ≤ 𝑘̂ ≤ 1 implies the ratios may have infinite variance but a mean exists;

• 𝑘̂ > 1, ratios have no mean and infinite variance (Vehtari et al., 2017).

One can also use the per-observation shape parameter estimates as a measure of

leverage and produce diagnostic plots such as Figure 5.9.

1.7.4 Application

Since each of the aforementioned metrics estimate a (pointwise) log density, it is

expected that each pointwise contribution and the sum will be negative; in special

cases where a pointwise density evaluates to a value higher than 1, the log density

contribution will be positive meaning all ELPD estimates may take any real value.

Alternatively, some may prefer to multiply each ELPD estimate by −2 to convert

the metrics to a deviance scale where smaller values imply a better model (Vehtari

et al., 2017). As we present the metrics on the original scale, the model that produces

the greatest value, typically the least negative value, is asserted to be the ‘best’

predictive model based on the model, training data and test data provided.

For comparable models, we show the LPD, WAIC and PSIS relative to the ‘best’

value for that metric since the absolute values have little interpretability and we only

describe model performance as ‘good’ or ‘bad’ when compared to the performance of

another model. In other cases where models are incomparable, such as an identical

model applied to different analytes, each metric is given on the original scale.
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All metrics are calculated with the loo R package (Vehtari et al., 2023) and pre-

sented alongside a standard error (SE). There is nuance in the interpretation of

these measures of variability. When the metric is shown on the original scale, the

errors shown are given by

SE (ÊLPD) = √𝑛𝑠 Var (ÊLPD𝑖),

where ÊLPD can be any of our aforementioned metrics with associated pointwise

elements ÊLPD𝑖 for 𝑖 = 1, … , 𝑛𝑠. Intuitively, this quantity represents the standard

deviation of 𝑛𝑠 independent components. The shortcomings of this approach are

two-fold (Vehtari et al., 2017),

1. components are not strictly independent as they are all computed from the

same posterior samples 𝜽(𝑠);

2. the terms ÊLPD𝑖 may follow a highly-skewed distribution which implies using

variance as a measure of uncertainty may not be advisable.

During model comparison, it is favourable to present the standard error of the

difference in models, as opposed to the difference of the standard errors. Hence,

when model comparisons are presented relative to the ‘best’ model, the standard

error is calculated using a paired estimate,

SE (ÊLPD − ÊLPD
(𝑏𝑒𝑠𝑡)

) = √𝑛𝑠 Var (ÊLPD𝑖 − ÊLPD
(𝑏𝑒𝑠𝑡)
𝑖 ).

We make use of each of these metrics and standard errors to compare models within

a chapter and then again to compare models from different chapters in Chapter 9.
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Chapter 2

Case Study

2.1 Data Availability

For this project, data from two hydrocarbon groundwater monitoring sites were

provided by Shell Global Solutions International BV. As these are commercially

sensitive data, we anonymise both sources as Site A and Site B; all modelling and

data is assumed to be from site A unless stated otherwise. Following data cleaning

for each site, a common problem is not enough overlap between observations of

analyte concentrations and predictors defined in Section 1.1. This leads to a small

number of of observations where a relationship can be inferred. In the sites we

have seen, analyte concentrations can often be found for the entire lifespan of the

groundwater monitoring site but corresponding data for our predictors have not

been as prevalent with fewer historical observations as shown in Figure 2.1, and in

some cases the data was not digitised. As such, we focus our modelling efforts on a

single case study referred to as site A that has been pseudonymised; these data serve

as representations of a site dealing with constituents of particular interest where our

predictors were also recorded for most samples.
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Figure 2.1: Sample alignment between analyte concentrations and predictors.
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Figure 2.1 shows the variation in sample dates described in Section 1.4 where mea-

surements of analyte and predictor data may be taken days apart. At site A, 1259
observations had both variable groups measured on the same day, 398 were 1 to 4
days apart and the remaining 252 observations found no match and are removed at

the modelling stage. Site B is shown as a contrast where 43% of analyte measure-

ments have no predictor measurement counterpart, there exists more re-alignment

of dates and some wells such as “Well-06” have no data despite them being listed

in the coordinates data. Leaving a sample, even for a few days, can drastically

impact the composition of the water sample and introduces unnecessary variation;

we ignore these issues by fuzzy joining of the data where analyte observations are

matched to predictor observations when the sample dates are sufficiently ‘close’ and

not necessarily equal. Note that directly modelling this added measurement error

could be an avenue for future work.

Unique to site A, we were also supplied with multiple analyte measurements for

the same sample, potentially arising from different laboratories, as part of a quality

assurance and quality control procedure. We reduce these duplicates into a single

observation and concede losing information about the measurement error, but this

is not straightforward when dealing with censored data. As such, we propose the

following pragmatic approach to be applied to each analyte variable independently

in the data cleaning stage to ensure sample uniqueness. That is, for each set of

observations coming from the same sample,

• replace groups of uncensored observations with the mean of the measurements

as an uncensored observation;

• replace groups of censored observations with the lowest detection limit as a

censored observation;
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• discard any censored observations exceeding, or equal to, an uncensored ob-

servation, for example ND < 0.2 and 0.1 become 0.1;

• otherwise, the point is conflicting and we take the maximum uncensored mea-

surement as a censored observation, for example ND < 0.3 and 0.4 become

ND < 0.4.

While the latter option is less than ideal due to conflicting information, it is expected

to happen when the true value is close to the detection limit relative to the measure-

ment error. Thankfully, this happens infrequently in our data and of the 11, 413
analyte measurements made in Site A, 10, 192 (89.3%) were uniquely assigned to

a single sample identifier, 671 (5.9%) were duplicated but uncensored, 513 (4.5%)

were duplicated but wholly censored. Only 37 measurements were duplicated with

different censoring indicators, 20 (0.18%) were in the congruent third scenario shown

above and the remaining 17 (0.15%) were conflicting measurements.

2.2 Well Analysis

In some spatial and spatiotemporal studies we see well locations drawn uniformly

at random on a unit square (Molinari, 2014) or by using a pattern such as a Latin

square or regular grid (Fridley & Dixon, 2007; Sahoo & Hazra, 2021). Our data

reveals a more pragmatic approach where well locations tend to cluster around high-

risk locations such as facility buildings or storage facilities with fewer perimeter

wells sparsely surrounding the general area as shown in Figure 2.2. Further investi-

gation on the optimal well placement and by extension the sampling frequencies of

these wells is beyond the scope of this project but is actively considered elsewhere

(Sreekanth et al., 2017; Mclean, 2018).

31



Chapter 2. Case Study

Adjacent

Focus

Perimeter

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00

Relative Easting ( ≈ 5.5 Km)

R
el

at
iv

e 
N

or
th

in
g 

(≈
4 

K
m

)

Sampling Frequency Annually (Q3) Quarterly

Figure 2.2: Well locations with site-relative coordinates.

As described in Section 1.6, we want to select several wells to be our holdout wells

to form the basis of our prediction. Our choice of wells highlights key edge cases to

reflect the main aims of this research; the best model is one that is able to predict

extreme cases without sacrificing predictions elsewhere. The choice was also based

on well locations and prior expectations communicated by the data providers, that

is,

• adjacent is a well that is on-site and could be susceptible to spikes in hydro-

carbon concentrations by proximity;

• focus is the nearest neighbour to the well with the most activity in the his-

torical data;

• perimeter is a perimeter well that is expected to report low concentrations

unless a contamination plume moves a ‘large’ distance.
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2.2.1 Inter-Well Variation

Inter-well variation is a key component of the total variation of these data and de-

scribes the difference between two observations of the same quantity, taken at the

same time from two separate wells that are some defined distance apart. To inves-

tigate this, we plot overlapping time-series for a specific quantity where each colour

represents a well with distinct identifier and model inter-well variation explicitly in

Chapter 8. If most of the series coalesce in these visualisations, as is the case for

temperature (Figure 2.4), it suggests that there is minimal variation between wells

for that variable. The converse also holds true, where seemingly independent time

series would imply little to no spatial correlation. These deductions are consistent

with the more principled approach, described in Section 2.5, involving empirical

variograms.
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Figure 2.3: Multiple time series visualisation for analytes. Each colour represents a
different well.
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Figure 2.3 suggests that most wells with uncensored data could be spatially hetero-

geneous with no clear global trend or seasonality, separate time series plots (not

shown) reveals that uncensored observations are heterogeneous in average concen-

tration and in behaviour as some wells present a decreasing concentration over time

while others appear to stabilise. On the other hand, censored data will often overlap

perfectly due to the assumed site-wide detection limits. These visualisations also

illuminate several key attributes of these data. Censoring levels differ over time

more frequently than they differ by well and it is indeed the case that these detec-

tion limits can increase or decrease as time increases. High correlation in analytes

is supported by the fact that the wells with the highest average log benzene con-

centrations are also shown to have the highest average log MTBE concentrations,

although this is not always the case. The overlapping data that follows the detection

limits implies that there are several wells (specifically, perimeter wells) that report

only censored values or very few uncensored data.
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Figure 2.4: Multiple time series visualisation for predictors. Each colour represents
a different well.

Figure 2.4 foreshadows which explanatory variables are most likely to be statistically

significant in explaining analyte variation. There is a clear seasonal trend with

temperature that is likely to overshadow any relationship our models would hope to

infer. For conductivity, we see more inter-well variation with potentially multimodal

data as most values exist in the [0, 5] range but some wells contain data that is almost

double these values, on average. Potential site-wide outliers exists for ORP, three

clear troughs that occur for a large proportion of the wells, and pH, a singular

spike in the final quarter of 2018. The data providers of site A investigated and
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checked historical calibration reports and found no reason to believe these values

are erroneous.

A key difference between Figure 2.3 and Figure 2.4 is the 𝑥-axis and range of sample

dates, showing analyte observations several years before the first predictor observa-

tions. As mentioned in Section 2.1, a key challenge of telemetry within groundwater

monitoring sites is ensuring sufficient data availability across both variable groups.
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Figure 2.5: Multiple time series for analytes with holdout wells highlighted.

A weakness of such visualisations is the lack of well information shown beyond

arbitrary colouring. Figure 2.5 highlights the holdout wells to be predicted and

shows the heterogeneity of these wells. Furthermore, we observe that not all wells

have existed since the inception of the groundwater monitoring site and it is not

infeasible that extra monitoring wells may be added over time.
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2.3 Censoring

The aim of any hydrocarbon groundwater monitoring, either during or after site

operation, is to firstly understand the human impact on the groundwater and then to

assist in the act of keeping this environment clean from pollution through preventive

or remedial measures. It is then expected that the censoring level, defined as the

percentage of observations that are left-censored, would increase if the site is being

managed effectively. Combine this with the fact that new wells may be built over

time and in site A, these wells are predominantly highly-censored perimeter wells.

To validate these expectations, we can plot the censoring level, aggregated by the

year recorded in the sample date, as shown in Figure 2.6.
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Figure 2.6: Percentage of censored observations per year, data before 2005 is omitted
due to small sample size.

Since we have data for each analyte separately, variable groups common in these type

of data such as BTEX (benzene, toluene, ethylbenzene and total xylenes) and TPH
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(total petroleum hydrocarbons) have been removed in the data cleaning process. For

Site A, the remaining analytes are the BTEX hydrocarbons, the polycyclic Naph-

thalene and methyl tert-butyl ether (MTBE) which showed the highest proportion

of uncensored observations as shown in Figure 2.6.

Throughout this project we focus on the analyte with the lowest censoring level

(MTBE) and the ubiquitous hydrocarbon, benzene, that has been formally classified

as a carcinogen (World Health Organization, 2010). The argument behind this

approach is that we are predominantly interested in modelling BTEX, however the

average censoring level across all BTEX analytes is 63.4%, so we aim to leverage

the correlated MTBE that exhibits less censoring overall. A simpler approach that

would also be viable would be to model all analytes as dependent variables, this

would similarly benefit from high correlation at the cost of more computationally

intensive models. We explore this approach in Chapter 6.

2.4 Correlation

Computing a measure of correlation between variables where left-censoring may

occur is less than straightforward. There exists three possible scenarios:

1. doubly-censored data (analyte, analyte);

2. singly-censored data (analyte, predictor);

3. fully observed data with no censoring (predictor, predictor).

The Pearson correlation coefficient is a function of the data and the means of both

variables, this is only non-trivial in the latter case where no censoring occurs. A

straightforward solution to this issue would be to impute the analyte data using

DL/2, ROS or other substitution methods but this would be less than satisfactory

due to poor estimation discussed in Section 1.5.1.
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2.4.1 Doubly-Censored Data

In the case where we are interested in the correlation between two analytes such

as benzene and toluene, we have doubly censored data. Helsel (2011) recommends

using an adapted version of Kendall’s Tau for these data as an alternate measure

of correlation. Brown Jr et al. (1973) adapted the original rank-based method to

work with censored data where one would assume overlapping intervals such as

ND < 1 and 0.864 are a tie. This method has several advantages including the

lack of an assumption about distribution and the metric is unaffected by monotonic

transformations such as the log transformation we apply to the analytes.

A parametric approach to doubly-censored data can be found in Newton & Rudel

(2007) where maximum likelihood estimates (MLE) are used. Recall from Sec-

tion 1.5.3 that for a single censored variable with recorded values 𝑦𝑖 and censoring

indicator 𝛿𝑖, for 𝑖 = 1, … , 𝑛𝑠, we can express the likelihood as

𝐿(Θ) =
𝑛𝑠

∏
𝑖=1

𝑓(𝑦𝑖)1−𝛿𝑖 𝐹(𝑦𝑖)𝛿𝑖. (2.1)

Extending (2.1) to a bivariate case can be done using the properties of the bivariate

normal distribution where the parameters, Θ, are the mean and standard deviation

of both variables and a correlation parameter. That is,

𝐿(Θ) =
𝑛𝑠

∏
𝑖=1

𝐺𝑖 (2.2)

where

𝐺𝑖 =

⎧{{{{{
⎨{{{{{⎩

𝑓(𝑥𝑖, 𝑦𝑖) if neither censored,

𝑓(𝑥𝑖)𝐹(𝑥𝑖|𝑦𝑖) if only 𝑥𝑖 is censored,

𝐹 (𝑥𝑖|𝑦𝑖)𝑓(𝑦𝑖) if only 𝑦𝑖 is censored,

𝐹 (𝑥𝑖, 𝑦𝑖) otherwise,
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where the parameters of each PDF and CDF are omitted for the sake of brevity and

𝑓(⋅, ⋅), 𝐹(⋅, ⋅) are the bivariate generalisations of the aforementioned PDF and CDF.

Maximising (2.2) subject to the 5 parameters can lead to issues such as convergence

on local, rather than global, maxima or non-convergence in a feasible time frame

(Newton & Rudel, 2007). A further disadvantage to this approach is the bias that

occurs when these data are multiply censored, as is the case in a typical groundwater

monitoring site. A possible solution to convergence includes using (2.1) to estimate

both variables to give variables’ mean and standard deviation separately and then

consider the quantities fixed in maximising (2.2). When the physical size of the water

sample is known, bias can be mitigated using a technique described in Newton &

Rudel (2007).

Our approach initially involved using data augmentation in a Bayesian linear model

with a potentially censored response and explanatory variable. At each iteration

of the MCMC-based Gibbs sampling algorithm, we impute censored data in the

response variable and single explanatory variable iteratively using the derived full

conditional distributions (FCD); a conjugate prior was assumed to produce analyti-

cal FCDs. By fitting this model we obtain a distribution representing correlation by

calculating the Pearson’s correlation coefficient between each imputed data, where

uncensored data are unchanged throughout the imputation step. We present no

results from this method in this thesis as preliminary models showed a bias when

the data has multiple detection limits.
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2.4.2 Singly-Censored Data

With the specification of the likelihood in (2.1), one can fit a censored regression

model between a censored dependent variable and an arbitrary number of real-valued

explanatory variables; more detail is given in Chapter 5. Using this linear model,

we can estimate the correlation between censored and uncensored data using the

coefficient of determination as a measure of how well these data fit to a straight line

(Helsel, 2011). Alternatively, in a Bayesian paradigm, one can use data augmentation

and calculate the correlation between imputed data as described in Section 2.4.1.

2.4.3 Uncensored Data

The most straightforward case is computing the correlation between two predictors

since we can calculate Pearson’s sample correlation coefficient directly due to lack of

censoring. Relationships between these water quality predictors are studied in vari-

ous water systems including groundwater networks, but also rivers and larger bodies

of water (Summers, 2020). One must be cautious of generalising these relationships

to all water systems.

Further complicating these results is the variety of environments in which groundwa-

ter systems inhabit. Silva et al. (2017) found highly significant (𝑟 = 0.70, 𝑝 < 0.001)

correlation between oxidation reduction potential (ORP) and dissolved oxygen (DO)

during the warm rainy season whereas the other colder periods and the data taken

as a whole showed no significant correlation. Figure 2.7 shows the same positive

correlation between ORP and DO but is not limited in describing the complex rela-

tionships. We explore a simulation-based model in Chapter 3 to better describe our

expectations of the relationships that occur in a groundwater network.
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Figure 2.7: Pairs visualisation between unnormalised predictors showing correlation
values, scatter and density plots.
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2.5 Variograms

To understand the spatial correlation of these data it is important to recall the first

law of geography,

“… everything is related to everything else, but near things are more

related than distant things,” (Tobler, 1970).

And so our aim is to quantify when the spatial correlation between two arbitrary

points is not non-existent, but negligible. To achieve this, we make use of a sta-

tistical visualisation known as the empirical variogram and also fit a variogram

model for demonstrative purposes. Suppose our input is a spatial sample such as

{𝑦11(𝐬1), … , 𝑦𝑛𝑠1(𝐬𝑛𝑠
)} denoted to be a sample of our first analyte as a function of

the corresponding spatial information, 𝐬𝑖 = (𝑠𝑖𝑥, 𝑠𝑖𝑦). Note that we have dropped

the temporal information, 𝑠𝑡, from 𝐬 for this section only as our focus here is purely

spatial, not spatiotemporal.

Our task is then to estimate the semi-variance between our random variable observed

at arbitrary spatial coordinates 𝐬, and another location 𝐬 + 𝐡 where we define 𝐡 to

be the distance between the two locations. That is,

𝛾(𝐡) = 1
2 Var(𝑍(𝐬) − 𝑍(𝐬 + 𝐡)), (2.3)

where 𝑍 is a random variable (Oliver et al., 2015). For our groundwater monitoring

data, these vectors are 2-dimensional with 𝑥 and 𝑦 coordinates but (2.3) applies to

higher dimensional 𝐬 and 𝐡. An assumption of second order stationarity, where the

random variable has a constant mean at 𝐬 and 𝐬 + 𝐡, would typically be required

for (2.3) and such an assumption may not be reasonable in certain applications.
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A weaker assumption of intrinsic stationarity (Matheron, 1963),

𝐸(𝑍(𝐬) − 𝑍(𝐬 + 𝐡)) = 0,

where the expected differences are 0 can also be used to ensure the validity of

(2.3). Thus, the variogram is a plot of the semi-variance, 𝛾(𝐡), against specified lag

distances 𝐡.

The structure of a variogram can be described in three main quantities,

1. the nugget denotes the estimated semi-variance at lag 𝐡 = 𝟎;

2. the range is the estimated lag distance at which semi-variance “levels off”;

3. the sill denotes the estimated semi-variance for all lags greater than or equal

to the range.

In this thesis, we present results from the gstat R package (Pebesma, 2004) that

estimates empirical variograms based on log imputed analyte data and normalised

predictors. A spherical variogram is also shown as a solid line in Figure 2.8 to

make the nugget, sill and range more clear; better choices may exist since this

model assumes our data is isotropic, which may not be true for our groundwater

application. No variogram model is shown for Figure 2.9. The power of these

models are made clear when combined with Gaussian processes or Kriging, where the

estimated nugget, sill and range can be used to specify kernel function parameters.

In this thesis, variogram results are not directly used in any later analyses and are

presented for demonstration only.
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Figure 2.8: Empirical variogram of imputed (log) analyte data with spherical vari-
ogram model line.
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As the spatial coordinates are scaled to [0, 1] in both directions, any distances are

relative to the overall length and width of the site given in Figure 2.2. We see that

the variograms for the analyte data roughly follow a similar pattern, expected due

to the high correlation of these data. Based on Figure 2.8, we expect the variance

between two points to “level off” after a range of approximately 0.1 implying that

our data only exhibits non-negligible spatial correlation for distances up to 10% of

the groundwater monitoring site.

The empirical variograms in Figure 2.9 suggest a nugget-only model where the fitted

line would be horizontal, the range would be effectively 0 and the sill would be equal

to the nugget. Conductivity may have a similar correlation structure to the analytes

over short distances. DO, ORP both appear to have increasing spatial variance over

increased lag distances but we mostly observe little spatial correlation for these data.

For groundwater monitoring data, we have no reason to expect that the spatial vari-

ance will be identical in both directions due to the complex geological landscape of

the underground aquifers. Further work in this area could involve different types of

variograms, altering specified lag distances and investigating potentially anisotropic

data; this can be achieved with a bi-directional variogram as demonstrated in Oliver

et al. (2015). Alternatively, in models yet to be described in Section 6.2 and Chap-

ter 8 we define length-scales for both 𝑠𝑥 and 𝑠𝑦 and would expect similar posterior

distributions for each if these data are isotropic.

Variogram results presented here suggest a spatial correlation in the analytes,

whereas the predictors show no evidence of substantial spatial correlation. This

could be due to several reasons including the measurement error overpowering any

spatial effect or the range at which spatial correlation “levels off” is much smaller

than we expected.
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2.6 Conclusion

Throughout this chapter we have considered one of the supplied datasets from a

groundwater monitoring site as a case study, presenting our insights alongside the

exploratory analysis and visualisations. Subsequent chapters will use these data as

an example for how one could apply the respective methodology to any groundwater

monitoring site. While there is a clear heterogeneity between sites that should be

accommodated and taken into account, there are also key features that we would

expect to see at similar sites.

As with many other industries, logistical challenges arise and produce irregular sam-

pling strategies. For groundwater monitoring sites, this takes the form of extracting

water samples from the environment up to several times per year, but tends to re-

sult in irregular time intervals between observations from the same well. Sample

collection can also be sporadic as wells may be decommissioned due to asset damage

or changing business requirements. Further complications include inter-sample vari-

ation, which may be considerable due to different data collection strategies where

measurements of analytes and water quality predictors may occur several days apart.

Censoring is a major component of these data as intermediate steps are required

for application of models including linear regression and random forests. Multiple

detection limits are present and must be accounted for. While censoring levels

are high and occur at various detection limits, further investigation has shown this

to be skewed by perimeter wells that are necessary for assurances that the site is

not contaminating areas beyond the site’s operational area. That is, increases in

censoring shown in Figure 2.6 can be partly explained by the construction of new

perimeter wells. Moreover, excessive censoring in analytes may be indicative of

smaller concentrations which makes those analytes less of a concern.
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Correlation between analytes is known a priori and this is reflected in these data.

However, quantifying the correlation between two random variables with censoring

at multiple detection limits is a non-trivial task and has not been fully explored in

this thesis. Another difficult task that is more pertinent to our aims is understanding

correlation between each analyte and each predictor. Such a relationship does not

appear to be straightforward and is thought to be highly sensitive to external factors

such as geological composition or rainfall (Newton & Rudel, 2007).

Groundwater monitoring sites follow a similar well construction scheme with most

wells concentrated around an area of interest with sparse wells surrounding the

perimeter. This can make for interesting challenges in estimating spatial correlation

as the inter-well correlation may not be the same over larger distances. Analyte

variograms show spatial autocorrelation which can be explained by groundwater

flow. Unfortunately, we have not been able to leverage groundwater flow data and

similar inferences have not been reproduced for the water quality predictors.
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Reactive Transport Model

3.1 Introduction

Within such a complex environment such as groundwater, there is a clear need for

interdisciplinary analysis and collaboration. This is resonated in water resources re-

search where groundwater flow and transport model simulations have already been

combined with statistical spatial models to assist in the problem of optimal place-

ments of groundwater wells (Sreekanth et al., 2017). Therefore, we consider a mech-

anistic model beyond the typical scope of solely statistical research, the reactive

transport model (RTM). Built by combining several key scientific laws, for exam-

ple conservation of momentum, RTM models are able to describe coupled physical,

chemical and biological processes in Earth systems at a range of spatial and time

scales (Steefel et al., 2005).

RTM models have been applied to areas of research very closely aligned with our

hydrocarbon monitoring application (Ng et al., 2015) in the critical zone, typically

characterised as where “rock meets life”. The critical zone is the veneer between

the planet surface and the bottom of any groundwater networks (Li et al., 2017)
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where many random geophysical properties such as groundwater, atmosphere and

rock interact creating the potential for complex chemical, physical, and biological

interactions. Therefore, a key advantage to the RTM is that we not only utilise

equations representative of reality from other disciplines, such as those in the fol-

lowing list (Steefel et al., 2005), but we also describe the coupling between these

processes:

• conservation of energy;

• conservation of momentum (Navier-Stokes, Darcy’s Law, Cauchy Equation);

• conservation of mass;

• conservation of solute mass.

An appropriately designed RTM model, with appropriate initial values can simulate

a wide range of processes within a hypothetical aquifer (Li, 2023) including:

• fluid flow (single or multiphase);

• solute transport (advective, dispersive, and diffusive transport);

• geochemical reactions (e.g. precipitation);

• biogeochemical processes (e.g. oxidation–reduction reactions).

The ability to simulate these heterogeneous environments means we can analyse a

groundwater monitoring facility with any desired sampling scheme that would be

infeasible practically, and then analyse these simulated data. However, the statistical

analysis of any simulated data will be limited by the closeness of the simulations to

reality and, given the complexity and numerous possible chemical reactions, this is

no trivial task. One method to improve the parity between simulation and reality

would be to extend the processes and laws known to apply, a priori, to consider

application-specific processes, for example, effect of partial oil saturation through the
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application of relative water permeability (Ng et al., 2015). Alternatively, extracting

more information about the groundwater monitoring site such as aquifer composition

or location may also improve simulations, but further work is required to confirm

the efficacy of this approach.

A key application of interest to us is the ability to model the transport of hydro-

carbon chemical species through porous media; Ng et al. (2015) applies an RTM

to the infamous Bemidji site in an effort to understand secondary water quality im-

pacts. While similar to our aims, the paper focuses on the impact on groundwater

quality that arise from remediation techniques that introduce organic matter to the

system that will enhance biodegradation but could do so to the detriment of the

overall health of the environment. We present simulations from Delft University of

Technology (TU Delft) in Section 3.2 based on the Bemidji, Minnesota case study.

3.2 Simulation

To produce a RTM-based dataset we collaborated with Wetsus, European centre of

excellence for sustainable water technology, and TU Delft. The dataset provided

was created to represent the Bemidji case study (Essaid et al., 2011) and developed

iteratively where each revision to the model should increase the accuracy of the

simulated data. In these simulated mechanistic data, the sampling scheme can be

arbitrarily changed and all spatial or temporal units are only to help with comparison

to the real world application. As such, we observe data from 5 wells, each with

3 different screening depths, over a period of 42 years with a monthly sampling

frequency. We label these wells numerically as shown in Figure 3.1 and use the

three suffixes S (shallow), M (medium) and D (deep) to denote screening depths of

4, 8 and 12 metres. Multiple screening depths arise from sites where there is a benefit
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in collecting samples from the same well at different depths due to the geological

landscape causing different concentrations and behaviour at different depths.

Well−1
Well−2

Well−3
Well−4 Well−50.5

50 100 150 200 250
Easting

N
or

th
in

g

Figure 3.1: Well locations of simulated RTM dataset.

Simulated variables differ from what we observe in groundwater monitoring sites.

Volatile organic compounds such as the hydrocarbons in BTEX are simulated along-

side non-volatile organic compounds, short chain alkanes and long chain alkanes.

Predictors arising from these simulations include the aforementioned pH, electrical

conductivity (EC), dissolved oxygen (DO) and a new predictor, 𝑝𝑒, that represents

the tendency of a compound to either gain or lose electrons and is therefore expected

to be correlated with oxidation reduction potential (ORP). For our purposes, we con-

sider inorganic compounds to be potential predictors of hydrocarbon concentrations

that would require further data collection. Hence, we extend our set of predictors to

include iron, manganese, sulfur and calcium. The RTM models compounds such as

iron in various oxidation states, for example Fe2+ and Fe3+, but we combine these

measurements.

Performing an exploratory data analysis on the RTM dataset reveals a clear pattern

to the data that we will describe as “phases”. In these data, wells either have two

phases, such as Figure 3.2, or three phases as seen in Figure 3.3. Recall that simu-

lated reactions inform the system through differential equations based on physical

laws described in Section 3.1. Of all feasible reactions, one is expected to dominate
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the system and become the main influence on hydrocarbon concentrations and pre-

dictor observations until some critical point. It is this dominating behaviour that

informs the aforementioned phases.

Built into these data generating processes is the introduction of hydrocarbon species,

as may occur at groundwater monitoring sites, therefore all hydrocarbon concentra-

tions report 0 before this inflection point. A consequence of synthetically introducing

the hydrocarbons at a single point is that we observe different analyte concentrations

and behaviour due to a different well location or different depth. Hydrocarbons are

introduced at the surface so deeper wells are further away and must wait the longest

time to detect any non-zero hydrocarbon concentrations.

All wells share a starting state where there is some level of dissolved oxygen that

depletes over time from some initial value. The physical interpretation of this is

that when there is sufficient dissolved oxygen in the groundwater system, an aerobic

degradation is able to occur up to some point in time when there is insufficient

dissolved oxygen. Following this point in time, we then observe an anaerobic reaction

that continues to decrease the hydrocarbon concentration in a reaction pathway

involving some number of inorganic compounds including iron and manganese.
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Figure 3.2: Time series visualisations of key variables. Well-1S, RTM.
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Care must be taken with these visualisations due to the differences in the 𝑦-axis

limits. In some cases, a relationship may be present but due to the minimal change

in a predictor, say an increase in pH of 0.004, it is unlikely that this relationship will

be observed due to the measurement error and other stochastic processes occurring

within the groundwater system.

Due to the omission of measurement error, the variable 𝑝𝑒 appears very similar to

a discontinuous step function as shown in Figure 3.2 and more clearly in Figure 3.3.

The nature of this quantity would make a poor predictor in the typical regression

sense, to be described in Chapter 5, as there are many values of benzene per one

‘true’ value of 𝑝𝑒. Instead, we may be able to utilise some of these predictors to

cluster our observations according to several data generating processes to help deal

with the non-linearity suggested by the RTM model. A statistical model motivated

by this concept is defined and considered in Chapter 7.
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Figure 3.3: Time series visualisations of key variables. Well-3M, RTM.
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3.3 Conclusion

Geological modelling aims to calculate the composition of a system at equilibrium.

This is achieved by aiming to find the fewest independent variables that are capable

of fully describing the state of equilibrium (Appelo & Postma, 2005). This is similar

to our statistical approach where we want to find the fewest independent variables to

describe a state of equilibrium, subject to some random, but quantifiable, variation.

Consider the task of clustering hydrocarbon concentrations within a groundwater

monitoring network: some geological models may require in excess of 20 complex

governing equations required to describe the system, clustering may reduce this

number by combining some clusters and ignoring others. That is, many of our

goals can be achieved by leveraging a sub-model and it may not be worth adding

complexity if no benefit is added.

The mechanistic model presented and analysed in this chapter is invaluable and can

be used in several ways.

1. Description of elemental and nutrient fluxes between major Earth reservoirs

(Steefel et al., 2005);

2. better understanding of a groundwater site by simulating a synthetic site de-

signed to mirror reality;

3. simulate forward in time based on some initial conditions;

4. elicit expert opinion on reactions that are key to the groundwater monitoring

network.

Furthermore, this approach has motivated our use of the Mixture of Experts (MoE)

model, to be introduced in Chapter 7, where data is clustered and then fit to separate

regressions. Key modelling decisions like choosing the number of components is

based on lessons learned from these mechanistic models like the RTM.
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Random Forests

4.1 Introduction

Motivated by the desire to understand the limits of how well we can explain our

analyte concentrations using our chosen predictors, we turn to machine learning

methods for comparison and to act as a baseline. One such method, ‘random forests’

(RF), are ensemble learning methods often used for classification problems but can

also be applied to a regression context (Breiman, 2001). The motivating idea is

to use tree models, that often result in low bias but high variance, then reduce

the variance by averaging over multiple trees. We model each dependent variable

separately using the same predictors.

A further complication is the left-censored nature of our data. For this chapter we

impute our data using the DL/2 imputation method described in Section 1.5.1 and

accept the imperfections of this method in the name of pragmatism. Further work on

random forests applied to groundwater monitoring data could include an extension

to the case where the dependent variable is left-censored. Oblique random survival

forests may be used for situations where the dependent variable is right-censored,
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however, the feasibility of such methods is not completely understood (Jaeger et al.,

2023).

The output of each RF model is multi-faceted and will be considered once we have

completed all necessary tuning of the model. Model artefacts include

• feature sampling that yields importance measures offering insight;

• partial dependence plots (PDP) which visualise marginal effects between

a single analyte and single predictor;

• predictions to be generated given some new explanatory data.

The main disadvantage is the opaqueness of such a black-box method where a misun-

derstanding of the methodology can lead to applying these models in an unsatisfac-

tory way. As such, we cover the basic manner in which these models are constructed

in Section 4.2.

4.2 Methodology

Even though we leverage the random forest as a black-box tool to understand com-

plex relationships at a preliminary stage, there is some benefit in understanding

some simple concepts related to this method. Moreover, even partially understand-

ing machine learning techniques can help when applying these concepts. We build

up the concept of a random forest starting with a single tree.

4.2.1 CART

Classification and regression trees (CART) were originally proposed by the same au-

thor of the random forests approach (Breiman et al., 1984). These tree-based models

operate by assigning all observations to a single root node and then deciding on some
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‘best’ split where the data is partitioned into a left and right node. Such a process

is repeated recursively until some stopping criteria is met such as all terminating

nodes have fewer than 𝑚 observations or fewer than 𝑘 classes in the classification

context. When a node is terminating, it can contain one or several observations

with known dependent variable values. Prediction can then be executed by finding

a terminating node using the new explanatory data, then taking a summary of the

dependent data contained within that node; in regression we typically use the mean

and classification would use the most popular vote.

| |ORP>=0.3578

EC< 0.1958

DO>=−0.3619

EC< −0.06559

EC< −0.6991

DO>=−0.2786

EC>=1.982

EC< 0.2857

−6.82 −5.19
−2.91

−5.29
−4.11 −2.78

−3.24
−1.98 −0.288

Figure 4.1: CART output showing maximal (left) and pruned with labels (right)
trees. MTBE imputed by DL/2.

Figure 4.1 shows an example of a maximal tree when applied to our Site A data

without the three wells to be predicted in Section 4.5. A pruned tree is a simplified

version of the original tree with minimal loss in predictive performance. While we

do not consider pruning here since it is not used in random forest models, we can

apply pruning using the rpart R package (Therneau & Atkinson, 2022) to show a

much simpler tree, with labels.
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Choosing the best split is done by minimising a cost function, 𝐶(𝑡), that is repre-

sentative of the impurity of node 𝑡. Suppose we have 𝑛 observations at an arbitrary

node, 𝑡, to be split into a left node, 𝑡𝐿, and right node, 𝑡𝑅. Let 𝑛𝐿 and 𝑛𝑅 repre-

sent the sample sizes of the left and right node respectively. Then, we define the

within-node impurity to be minimised as

𝑛𝐿
𝑛 𝐶(𝑡𝐿) + 𝑛𝑅

𝑛 𝐶(𝑡𝑅).

Equivalently, we can think of this problem as the maximisation of increase in purity

caused by the split, where that quantity is

𝐶(𝑡) − (𝑛𝐿
𝑛 𝐶(𝑡𝐿) + 𝑛𝑅

𝑛 𝐶(𝑡𝑅)) .

For regression, we simply consider the cost function to be the variance defined as

𝑉 (𝑡) = 1
𝑛 ∑

𝑖∶𝑦𝑖∈𝑡
(𝑦𝑖 − ̄𝑦𝑡)2,

where 𝑦𝑖 ∈ 𝑡 if and only if observation 𝑖 is allocated to node 𝑡 and ̄𝑦𝑡 denotes the mean

of the 𝑛 observations at node 𝑡 (Genuer et al., 2020). While the misclassification

rate would be a viable cost function for classification trees, uniqueness of the ‘best’

split would not be guaranteed (Genuer et al., 2020) and so we advise minimising the

Gini impurity function,

𝜙(𝑡) =
𝐾

∑
𝑘=1

̂𝑝𝑘
𝑡 (1 − ̂𝑝𝑘

𝑡 ),

where ̂𝑝𝑘
𝑡 is the probability of picking an observation with label 𝑘 at node 𝑡, which

is calculated for all 𝐾 possible labels.

One of the main issues of CART models suffer is a high sensitivity to the training

data. That is, a slight change in the training data may result in a different root

node and the recursive nature of tree-based models would develop a vastly different
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maximal tree further causing the optimal tree after pruning to be different. The

random forest model originally proposed in Breiman (2001) mitigates this via a

combination of bagging, explained in Section 4.2.3, and using random input trees in

place of CART trees.

4.2.2 Random Input Trees

A random input (RI) tree is constructed in a very similar way to a CART tree with

two distinct differences.

1. No pruning is performed on a RI tree;

2. each potential node split can only use a randomly sampled subset of the avail-

able predictors.

With the introduction of the latter point, we have a new tuning parameter for these

trees, denoted 𝑝𝑓 , that represents the number of randomly selected predictors; we

discuss how to choose a value of 𝑝𝑓 in Section 4.3. In a CART model, we produce

several competing splits based on each predictor and pick the best split to improve

node purity. Whereas, for RI, the exact predictors to be made available will be a

subset of all predictors, randomly sampled without replacement. It is important to

note that while each node of the RI tree will have the same number of predictors

available, the predictors that can be used for splitting will be different per node.

4.2.3 Random Forest Random Input

Random forest models are ensemble learning methods where the predictions of many

models are collated to form a final prediction, ideally with less variance than any

single model. This approach is appealing when dealing with high-variance models

such as CART or RI. One way to allow our model to benefit from ensemble learning
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is the application of bootstrap aggregation, otherwise known as bagging. Bootstrap

sampling is a method where all observations are randomly sampled, with equal prob-

ability and with replacement, to produce a new dataset of the same size. For observa-

tions indexed by {1, 2, 3, 4, 5}, examples of bootstrap samples include {1, 1, 2, 5, 5},

{5, 4, 3, 3, 2}, and {4, 2, 4, 4, 3}. The motivation for applying this method to each

tree-based model within a RF is to encourage heterogeneity between the models and

to improve the accuracy of the final aggregated estimate.

Randomness is further perpetuated by the use of RI trees instead of CART trees.

We use the randomForest R package (Liaw & Wiener, 2002) to implement this

particular version of the random forest model based on the original Fortran code

developed by Leo Breiman.

A preliminary model attempted to incorporate spatiotemporal information by defin-

ing a new predictor to be some function of the sample’s spatiotemporal data, say

𝑓(𝑥, 𝑦, 𝑡) in our case. In hindsight, this approach applied to a tree-based model

would likely lead to clustering of the data based on the associated well or sample

date. One can see how this would lead to overfitting and since our aims are to

predict previously unseen information, this model was swiftly deprecated.

4.3 Parameter Tuning

4.3.1 Number of Trees

There is a trade-off when choosing the number of trees. Too many trees will increase

the duration of each step such as model fitting and calculating partial dependence

in Section 4.4.3, but too few trees lead to poor estimation. In the extreme case

when only one tree is used, problems present in CART models may also present

themselves.
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We take the number of trees to be 500 in all random forest models with the justi-

fication that the results do not change substantially as more trees are added. Con-

versely, the model only becomes sensitive to the choice of the number of trees when

considerably fewer trees are used.

4.3.2 Number of Predictors

When fitting a random forest with random input tress we have to set tuning param-

eter, 𝑝𝑓 , that controls the number of predictors that are randomly sampled at each

split. A reasonable rule of thumb, for regression, is to let 𝑝𝑓 = 𝑛𝑥/3, however, this

may not always be the most optimal value (Genuer et al., 2020) and so we opt to

use grid search of all possible values, 𝑝𝑓 = 1, … , 𝑛𝑥 and K-fold cross validation to

tune this quantity. As described in Section 2.2, we do not include our hold-out wells

at the model fitting stage or at any parameter tuning stage.

We split the data to be used for parameter tuning into 𝐾 groups, called ‘folds’,

with the intention of fitting several candidate random forest models to be defined.

For each model fit, a single fold is allocated to the validation set and all other

folds are allocated to the training set. Each model is then trained on its respective

training data and constructs predictions for the validation set that can be assessed

qualitatively or quantitatively using model comparison metrics.

Since the random forest model does not define a likelihood, we can not use LPD,

WAIC or PSIS and instead we obtain a model performance metric in the form of

the root mean square error,

RMSE = √∑𝑛𝑠
𝑖=1(𝑦𝑖 − ̂𝑦𝑖)2

𝑛𝑠
, (4.1)

where ̂𝑦𝑖 is the predicted concentration.
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One concern of this cross-validation methodology is the sensitivity of the results due

to its inherent randomness. To alleviate this we can repeat the process 𝑀 times.

Hence, each candidate model has to be fit and produce predictions for 𝐾×𝑀 distinct

partitions, consequently the impact of any especially favourable splits are reduced.

A random forest model is valid if the number of permutable predictors is 𝑝𝑓 ∈
{1, … , 𝑛𝑥}. Since there are relatively few predictors for our dataset, we execute an

exhaustive grid search over the whole parameter space and fit a total of 𝐾 ×𝑀 ×𝑛𝑥

random forest models for each analyte to be modelled.

4.4 Leave-One-Well-Out (LOWO)

To demonstrate the importance and partial dependence output of the random forest

models, we fit several random forest models in a leave-one-well-out (LOWO) scenario

(Evers et al., 2015). Splitting the data into partitions based on the corresponding well

identifier allows us to fit models to hypothetically predict a single ‘left out’ well using

the data from all other wells for training the model. This approach should highlight

any high-influence wells while serving as an illustrative example of importance and

partial dependence. Additionally, the impact on our models of adding or removing a

well is highlighted which could be useful information when optimising well placement

and sampling frequency of groundwater monitoring networks (Mclean, 2018).

4.4.1 Pseudo R-Squared

For the regression version of the random forest model, we obtain a goodness-of-fit

metric in the pseudo R-squared statistic, defined as

𝑅2 = 1 − (RMSE)2

Var(𝑦) , (4.2)
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where RMSE denotes the root mean square error as defined in (4.1) and Var(𝑦) is

the sample variance of all log concentrations 𝑦1, … , 𝑦𝑛𝑠
.

Unlike the coefficient of determination, this quantity can be outside the conventional

range of [0, 1] where negative values imply that the mean of the data provide a better

fit to the data than the model. Hence, the interpretation that (4.2) is the proportion

of explained variation is spurious. Using too few trees, say fewer than 10, will lead

to poor 𝑅2 values and therefore a poor model fit. On the other hand, adding more

trees to an existing forest will lead to a fit that is typically no worse than a fit with

fewer trees, according to the aforementioned pseudo 𝑅2.

4.4.2 Importance

Variable importance ranks all predictors, ordered by the impact they have on the

dependent variable. We consider two importance metrics as calculated in Liaw &

Wiener (2002).

To construct the first importance score, out-of-bag (OOB) evaluation is used. Since

bagging is used, there often exists a subset of the data that was not used to create

the tree and we define this to be the out-of-sample subset for this tree. We also

formulate an alternate version of these data, where the values of the 𝑗𝑡ℎ predictor

are randomly permuted. Then the importance contribution of a single tree for the

𝑗𝑡ℎ predictor is the difference in prediction error when the original out-of-sample

data is used and when the perturbed out-of-sample data is used (Liaw & Wiener,

2002). For this process, we require a function to represent the prediction error, for

example misclassification rate for classification. We use mean square error in our

regression context.
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An alternative importance metric can also be constructed by considering the effect

an arbitrary predictor has on the change in node purity. At each node where the

predictor in question is used to make a split, we observe an increase in node purity

that is solely due to that predictor that can be recorded during creation of each tree.

By calculating the weighted mean of this change in node purity, weighted by the

proportion of observations in the node, we can generate an importance contribution

from each tree (Breiman, 2001).

4.4.3 Partial Dependence Plots (PDP)

The motivation of partial dependence plots (PDP) is to provide an insightful visual-

isation of the relationship between the predicted concentrations and the predictors.

When the predictors of interest, say 𝐱𝑙, are single dimensional this is straightforward

using a scatter plot, and a contour plot can be used for two dimensional inputs;

higher dimensions of 𝐱𝑙 become very problematic to visualise. The proposed solu-

tion is to estimate the marginal effect that some subset of our explanatory variables

has on our predictions (Friedman, 2001). A PDP can be made for any “black box”

method including, but not limited to, neural networks, support vector machines and

random forests.

Suppose we are able to make predictions using some arbitrary model and a vector of

predictors, say 𝐱; we denote these predictions as ̂𝑓(𝐱). By partitioning our predictors

into a chosen subset 𝐱𝑙 of size 𝑙 and the complementary 𝐱−𝑙, these functions can be

expressed as
̂𝑓(𝐱) = ̂𝑓(𝐱𝑙, 𝐱−𝑙),

where we intend to marginalise over the complement predictors to obtain a function

of chosen predictors only.
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In fact, Friedman (2001) posits that if the dependence on the complement set is

not too strong, then a useful measure of the partial dependence is defined as the

expectation
̄𝑓𝑙(𝐱𝑙) = 𝐸𝐱−𝑙

[ ̂𝑓(𝐱)] = ∫ ̂𝑓(𝐱𝑙, 𝐱−𝑙)𝑝−𝑙(𝐱−𝑙)𝑑𝐱−𝑙,

where 𝑝−𝑙(𝐱−𝑙) is the marginal probability density of the complement set.

We estimate this quantity by averaging over the same data that trained the model,

that is,
̄𝑓𝑙(𝐱𝑙) ≈ 1

𝑛𝑠

𝑛𝑠

∑
𝑖=1

̂𝑓(𝐱𝑙, 𝐱(𝑖)
−𝑙),

where 𝐱(𝑖)
−𝑙 denotes the complement predictors for observation 𝑖 ∈ 1, … , 𝑛𝑠. Intu-

itively, we can create a partial dependence plot by supplying values for the chosen

subset and then calculating the average prediction where the values for the comple-

ment set of predictors are based on the training data.

In practice, we leverage the partial R package (Greenwell, 2017) and loop through

each predictor so the chosen subset is always of size 1. As a consequence, all plots

produced are only two-dimensional scatter plots showing the marginal effect of vary-

ing a single predictor by plotting these estimated concentrations against the input

values. We also include a rug plot below the plotting area to highlight values ob-

served in the training data to avoid unnecessary extrapolation.
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4.5 Groundwater Application

We apply the models described in this chapter in three scenarios, each with different

motivations.

1. Cross validation, with 𝐾 = 5 folds and 𝑀 = 10 repetitions, is applied to

all non-holdout wells in Section 4.5.1 to discern the number of predictors

hyperparameter for all other models;

2. LOWO models are applied to datasets that are constructed by specifying a

single well to be predicted and all non-holdout wells are available for model

fitting. Section 4.5.2 highlights the influence of each well by visualising key

model artefacts including importance and partial dependence plots (PDP);

3. final models, shown in Section 4.5.3, imagine a scenario where data to be

predicted is truly unseen as prediction is enacted on the holdout wells that

were not used in choosing model hyperparameters.

Decisions common to all scenarios include the choice of the number of trees and

available predictors. All random forests consist of 500 trees, as discussed in Sec-

tion 4.4.1, and assume that the variables to be randomly sampled from at each

node split are the entire collection of available predictors: pH, conductivity (EC),

temperature, dissolved oxygen (DO) and oxidation reduction potential (ORP).

4.5.1 Number of Predictors

To determine the number of predictors to be sampled at each node split we apply

the approach described in Section 4.3.2 with 𝐾 = 5 folds and 𝑀 = 10 repetitions.

Each model provides a value denoting our model comparison metric, say RMSE,

that is then plotted.
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Figure 4.2: RMSE for all tuning random forest fits. Both analytes imputed by DL/2.

By clustering points according to the choice of number of predictors and colouring

points to denote the specific data partition we can see if any choice of this hyperpa-

rameter produces a consistently better performing model. We see from Figure 4.2

that the difference in RMSE is relatively negligible, for both analytes, in almost all

cases suggesting that these models are highly insensitive to the choice of 𝑝𝑓 . More-

over, since we have used colour to distinguish different splits in the data, we observe

that the model with the lowest RMSE for each candidate model tends to come from

the same data partition. We opt to take the tuning parameter that minimises av-

erage RMSE, per analyte, and therefore assume 𝑝𝑓 = 2 for MTBE and 𝑝𝑓 = 1 for

benzene are the best choices for random forest models applied to site A. A further

simplification we have not explored would be to choose a common 𝑝𝑓 value for all

analytes.
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4.5.2 LOWO Models

Many visualisations designed for a single random forest can be applied to our collec-

tion of random forest models by allowing each LOWO data partition to be denoted

with a different colour. As such, we present model outputs and diagnostics for

multiple partitions formed by changing the well missing from the training data but

present in the validation data.

4.5.2.1 Pseudo R-Squared

By plotting this metric against the number of trees used one can see that increasing

the number of trees leads to diminishing returns. In the LOWO models when there

are very few trees used, almost all models have a 𝑅2 value less than zero as shown

in Figure 4.3. Even as the number of trees used increases, we see that each model

struggles to explain more than 50% of the variation in analyte concentrations.
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Figure 4.3: Pseudo 𝑅2 against the number of trees for each LOWO model. Each
colour represents a different LOWO model. Both imputed by DL/2.
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4.5.2.2 Importance

Recall from Section 4.4.2 that we have two metrics to convey predictor importance.

To read the importance plots, the 𝑦-axis represents the change in mean square

error when the corresponding predictor is perturbed, whereas the 𝑥-axis denotes the

average change in node purity across all splits that use the corresponding predictor.
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Figure 4.4: Importance metrics for each LOWO model. MTBE and benzene imputed
by DL/2.

We see many similarities between the importance plots for both analytes. The

impact of changing the well not used in model training is minimal in all but a few

outlier cases. For the MTBE plot in Figure 4.4, two atypical points with node

purity change between 3, 000 and 3, 500 correspond to wells “Well-22” and “Well-

29” which are located to the east-side of the “Focus” holdout well with respective

relative easting and northing of (0.24, 0.32) and (0.35, 0.44), as shown in Figure 2.2;

a priori, we know the contamination event occurred close to the “Focus” holdout
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well and MTBE had a tendency to be transported eastwards. Similarly, for benzene,

two atypical points close to 1% MSE change both correspond to the LOWO model

where the left-out well is “Well-04” which is on the west side of the operating area

with a relative easting and northing of (0.13, 0.39), as shown in Figure 2.2. These

“middling” wells showing a decreased importance for some predictors behave most

like the “Adjacent” holdout well with concentrations much higher than perimeter

wells but an order of magnitude less than wells near the contamination event like

“Focus”.

Conductivity (EC) appears to have the greatest average importance to both analyte

concentrations. On the other hand, temperature is seemingly unimportant in all

models for both analytes which foreshadows the regression coefficients discussed

in Chapter 5. One reason for this could be the noise and seasonality around the

temperature data where minor fluctuations are overshadowed by bigger changes that

are irrelevant to the hydrocarbon concentrations. While the ordering of importance

appears to be fairly similar, DO and pH are more alike in terms of importance for

benzene than MTBE.

Further work on importance metrics could be useful, for example suppose our in-

terests were fixed on interaction effects, effects from two or more predictors that

may be more or less than the sum of the effects separately. Then, we could look

into extending the permutations of a single predictor to multiple (Gregorutti et al.,

2015).

73



Chapter 4. Random Forests

4.5.2.3 Partial Dependence Plots (PDP)

Figure 4.5 and Figure 4.6 show partial dependence plots for MTBE and benzene,

respectively. As before, we combine plots using colour to discern LOWO models.
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Figure 4.5: Partial dependence plots with observed data marked below. Each colour
represents a different LOWO model. MTBE, imputed by DL/2.

Other than temperature, most partial dependence plots are showing non-

monotonically increasing functions implying that any relationships in the data

may be non-linear. For example, pH appears to increase slowly then drop harshly

around the mean value of zero and then increases afterwards. Since the predictors

are normalised, the change-point value of zero corresponds to the average pH

observation at this site: 6.82. Considering the physical meaning of this predictor,

predictions where pH is negative are more likely to be basic and positive pH implies

a higher chance that the water sample was acidic.
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Figure 4.6: Partial dependence plots with observed data marked below. Each colour
represents a different LOWO model. Benzene, imputed by DL/2.

The predictor DO also mirrors the non-linear trend but one must exercise caution

with the higher values as extrapolation into outlier values are not as reliable; the

rug plot below each PDP showing a line for each observed value should assist with

this.

4.5.3 Final Models

In all random forest models fitted so far, we have not used any data from the three

holdout wells as described in Section 2.2. This is intentional as we want to get

out-of-sample predictions based on completely new data, which we can only obtain

if the hyperparameter tuning was completed without those out-of-sample data as

we have done in Section 4.3. Recall that we sample two predictors at each split in
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each tree when modelling MTBE, so 𝑝𝑓 = 2 and only a single predictor is sampled

at each split for benzene, so 𝑝𝑓 = 1.

For each of the predictions, calculating uncertainty is not trivial but can be done

using quantile regression forests (Meinshausen & Ridgeway, 2006) or the empirical

distribution of out-of-bag errors (Zhang et al., 2019). We have not explored such

methods with a clear opportunity for further work. A naïve approach would involve

recognising that RFs are ensemble learning algorithms and so each prediction shown

is the average of several predictions, one from each tree. Using all trees to elicit some

predictive uncertainty may produce sound results in some cases but, by construction,

these trees were formed with heterogeneity in mind and are unlikely to yield rigorous

prediction intervals.
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Figure 4.7: Random forest predictions with comparison to truth in black. MTBE
imputed by DL/2, LMWO.

Figure 4.7 shows how the heterogeneity of groundwater monitoring wells lead to

unsatisfactory predictions for all three holdout wells. Recall, the ‘Focus’ well is an

edge case where all analyte concentrations are the second highest on average, and
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so most models including RFs will underpredict the truth for this well. However,

all ‘Focus’ well predictions exceed almost all predictions and true values from the

other two wells implying this model may be able to detect a problem without giving

a sense of severity; further investigation is required.

We observe that predictions for all three holdout wells of similar value and that

value appears to be close to the average MTBE concentration (after imputation).

Such predictions are expected to be similar to the null model where no predictors

are supplied and the linear predictor is replaced by a common mean parameter.

By comparing to prediction of the censored regression model to be introduced in

Section 5.3, we see very similar predictions with a less-opaque model. All points

that are penitent to MTBE also apply to the results when fitting a RF to benzene;

Figure 4.8 is included for completeness.
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Figure 4.8: Random forest predictions with comparison to truth in black. Benzene
imputed by DL/2, LMWO.
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4.6 Conclusion

The attraction of a random forest model is to find underlying patterns that may

be undetectable to human perception or classical models and to explain most of

the variation where possible. A model suspected of overfitting would still afford us

insight into how each analyte at this specific groundwater site, site A, are correlated

with our chosen predictors. Instead, we have not been able to explain over half of

the variation as shown in Figure 4.3 where 𝑅2 values never exceed 0.5 for either

analyte. We argue this is could be due to poor signal-to-noise ratio between the

analyte concentrations and predictors or a limitation of random forest models not

allowing left-censored data and therefore requiring biased imputation methods such

as DL/2.

As an illustrative example, consider how temperature is correlated with MTBE con-

centrations. While it is expected that any chemical reaction increasing or decreasing

the analyte concentration will affect the temperature of the groundwater network,

it still remains unclear if this would be detectable over the natural seasonality of

the temperature reading caused by regional changes in weather and temperature.

Similar concerns around other predictors persist but these models have suggested

that we would see the most information from conductivity (EC) and ORP through

the importance measures produced.

4.6.1 Further Work

By understanding these models, we could hypothesise a RF model where left-

censored data is used. This would require some measure of location to aggregate

observations on the terminating nodes and a measure of spread to be assigned to

node impurity and the cost function to be minimised by each split. Potentially we
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could adopt ROS as described in Section 1.5.2 and Helsel & Cohn (1988), however,

preliminary models showed little benefit over DL/2 for random forest models. A

more rigorous investigation with a variety of datasets would be enlightening and

could allow the RF model to be applied to a broader range of applications.

Random forests are still an instrumental tool for any analysis and the PDP output

have called into question our assumption of linearity as we continue with regression

models in Chapter 5 and Chapter 6.
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Regression Models

5.1 Introduction

The approach to modelling throughout this project is to start with a linear regres-

sion model within a Bayesian context and address any incorrect assumptions or

shortcomings of this model with various extensions to be introduced in subsequent

chapters. Advantages of these regression models are numerous:

• relative computational simplicity allows us to fit these models to our site A

data in minutes and easily scale to bigger sites with more data;

• interpretability of regression coefficients empower us to quantify change in

analyte log concentration per unit change in standardised predictors;

• given only predictor values, we can predict analyte concentrations.

These benefits are aligned with our motivations of better understanding the general

relationship between analyte concentrations and predictors. This is in contrast to

time series models which may produce more accurate localised predictions, but may

not generalise to other groundwater monitoring sites.
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As discussed in Section 1.5, the approaches to left-censored data are plentiful and

each model discussed makes it clear which approach is being used in their respective

chapters.

5.2 Univariate Linear Regression

Our initial approach is a multiple linear regression,

𝑦𝑖𝑗 = 𝐱𝑇
𝑖 𝜷𝑗 + 𝜖𝑖𝑗, (5.1)

for each analyte, indexed by 𝑗 = 1, … , 𝑛𝑦, where 𝜖𝑖𝑗
iid∼ 𝑁(0, 𝜏−1

𝑗 ) for

𝑖 = 1, … , 𝑛𝑠. Hence, the parameters of this model are the regression coeffi-

cients 𝜷𝑗 = (𝛽0𝑗, … , 𝛽𝑛𝑥𝑗)𝑇 and precision parameters 𝜏𝑗.

Advantageous to these models is the interpretability of the parameters, where 𝛽𝑘𝑗 is

the impact of the 𝑘𝑡ℎ predictor on the concentration of the 𝑗𝑡ℎ analyte. Similarly, we

have a precision parameter, 𝜏𝑗, per analyte where higher values represent a smaller

degree of measurement error in the recording of the concentrations of the 𝑗𝑡ℎ analyte.

To further understand the role of 𝜏𝑗, suppose there exists a true log concentration

𝑦∗
𝑖𝑗 and observed log concentration 𝑦𝑖𝑗 = 𝑦∗

𝑖𝑗 + 𝜖𝑖𝑗, not subject to censoring, where

𝜖𝑖𝑗 ∈ ℝ denotes the additive measurement error on the log scale. On the original

scale,

exp(𝑦𝑖𝑗) = ̃𝜖𝑖𝑗 ⋅ exp(𝑦∗
𝑖𝑗),

where we define ̃𝜖𝑖𝑗 ≔ exp(𝜖𝑖𝑗) > 0 to be the multiplicative measurement error. In

reality, measurement error is indeterminable and we have used a random variable,

𝜖𝑖𝑗 ∼ 𝑁(0, 𝜏−1
𝑗 ), to describe this uncertainty. It follows that ̃𝜖𝑖𝑗 ∼ 𝐿𝑁(0, 𝜏−1

𝑗 ) and

we know from the properties of this log normal distribution that (1−𝛼)% of plausible
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values lie in the, not necessarily symmetric, range

0 ± exp (𝜏− 1
2

𝑗 Φ−1 (𝛼
2 )) ,

where Φ−1 is the inverse cumulative distribution of the standard normal distribution

𝑁(0, 1). For small values of 𝜏𝑗, say 0.2, a 95% highest density interval (HDI) would

be (0.01, 80.05) implying observations may be wrong by several orders of magnitude.

For larger values of 𝜏𝑗, say 2, a 95% HDI would be (0.25, 4.00) implying an observed

concentration of 1 mg/L could be up to 4 times as large in truth.

To model each analyte independently, we express model (5.1) as a collection of

multivariate normals,

𝐲𝑗|𝑋𝜷𝑗, 𝜏𝑗 ∼ 𝑁𝑛𝑠
(𝑋𝜷𝑗, 𝜏−1

𝑗 𝐼𝑛𝑠
), (5.2)

for all 𝑗 = 1, … , 𝑛𝑦 where 𝑋 is the 𝑛𝑠 by 𝑛𝑥 + 1 design matrix, intercept column

included, introduced in Section 1.4.

Using the compact (5.2), we can express the likelihood of the model parameters,

Θ = 𝜷1, … , 𝜷𝑗, 𝜏1, … , 𝜏𝑗, as

𝐿(Θ) =
𝑛𝑦

∏
𝑗=1

𝜋(𝐲𝑗|𝑋, 𝜷𝑗, 𝜏𝑗),

where the likelihood contribution of the 𝑗𝑡ℎ analyte is, up to proportionality,

𝜋(𝐲𝑗|𝑋, 𝜷𝑗, 𝜏𝑗) ∝ 𝜏𝑛𝑠/2 exp {−𝜏𝑗
2 (𝐲𝑗 − 𝑋𝜷𝑗)𝑇 (𝐲𝑗 − 𝑋𝜷𝑗)} .
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5.2.1 Prior

Before defining our prior choice, note that a conjugate prior exists for this model.

By this we mean for any choice of prior 𝜋(𝜽) in some family of distributions F , the

posterior must also be inside this family, 𝜋(𝜽|𝐲𝑗, 𝑋) ∈ F . For (5.2), the conjugate

prior takes the form of a multivariate normal gamma distribution where 𝜷𝑗|𝜏𝑗 is

conditionally multivariate normally distributed and the precision 𝜏𝑗 follows a gamma

distribution or alternatively a Chi-squared distribution (Gelman et al., 1995).

While this conjugacy is an appealing property, we have no reason to believe the

impact of each predictor is conditional on the variation of the analyte and our prior

assumptions should reflect this. As such, we opt for a conditionally conjugate (or

semi-conjugate) prior distribution where the prior and posterior for each parameter

arise from the same family, conditional on a further random variable. While condi-

tionally conjugacy is a weaker assumption than full conjugacy, an advantage of this

property is that we are guaranteed standard full conditional distributions (FCD) for

use in a Gibbs sampling algorithm; see Appendix B for a primer on Markov chain

Monte Carlo (MCMC) methods. Hence, we assume a priori,

𝜷𝑗 ∼ 𝑁𝑛𝑥+1(𝐦𝛽, 𝑉𝛽),

𝜏𝑗 ∼ 𝐺𝑎(𝑎𝜏 , 𝑏𝜏),

(5.3)

where 𝐦𝛽, 𝑉𝛽, 𝑎𝜏 and 𝑏𝜏 are hyperparameters to be chosen and we have assume

independence between these distributions and hence 𝜋(𝜷𝑗, 𝜏𝑗) = 𝜋(𝜷𝑗)𝜋(𝜏𝑗).

5.2.2 Bayesian Inference

Since we described a semi-conjugate model and do not have full conjugacy, we

implement a specific type of Markov chain Monte Carlo (MCMC) algorithm known

as the Gibbs sampling algorithm. For conditional conjugacy it must be the case
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that the conditional posterior for 𝜷𝑗 is multivariate normal, moreover

𝜷𝑗|𝐲𝑗, 𝑋, 𝜏𝑗 ∼ 𝑁𝑛𝑥+1(𝐦∗
𝛽, 𝑉 ∗

𝛽 ),

𝐦∗
𝛽 = (𝑉 −1

𝛽 + 𝜏𝑗𝑋𝑇 𝑋)−1 (𝑉 −1
𝛽 𝐦𝛽 + 𝜏𝑗𝑋𝑇 𝐲𝑗),

𝑉 ∗
𝛽 = (𝑉 −1

𝛽 + 𝜏𝑗𝑋𝑇 𝑋)−1 .

(5.4)

To see why this is the case, we require an alternate form of a multivariate normal

probability distribution function.

Proposition 5.1. If 𝜽 ∈ ℝ𝑝 has a density, given up to proportionality,

𝜋(𝜽) ∝ exp {𝜽𝑇 𝐛 − 1
2𝜽𝑇 𝐴𝜽} ,

then 𝜽 ∼ 𝑁𝑝(𝐴−1𝐛, 𝐴−1) given some invertible matrix 𝐴 and column vector 𝑏.

Proof. Assume 𝜽 ∼ 𝑁𝑝(𝝁, Σ) for some mean matrix 𝝁 and covariance matrix Σ to

be determined. Then,

𝜋(𝜽) ∝ exp {−1
2(𝜽 − 𝝁)𝑇 Σ−1(𝜽 − 𝝁)} ,

∝ exp {−1
2 (𝜽𝑇 Σ−1𝜽 − 2𝜽𝑇 Σ−1𝝁 + 𝝁𝑇 Σ−1𝝁)} ,

∝ exp {−1
2𝜽𝑇 Σ−1𝜽 + 𝜽𝑇 (Σ−1𝝁)} ,

∝ exp {𝜽𝑇 𝐛 − 1
2𝜽𝑇 𝐴𝜽} ,

where 𝐴 = Σ−1 and 𝐛 = Σ−1𝝁. It is then clear that 𝝁 = 𝐴−1𝐛 and Σ = 𝐴−1 and

the distribution must be multivariate normal.

Rather than prove (5.4) directly, we can prove the more general case in Proposi-

tion 5.2 and then set Σ = 𝜏−1
𝑗 𝐼𝑛𝑠

.
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Proposition 5.2. Suppose 𝐲|𝑋, 𝜷, Σ ∼ 𝑁𝑛(𝑋𝜷, Σ) takes the form of a univariate

linear regression likelihood and 𝜷 ∼ 𝑁𝑝(𝐦, 𝑉 ) takes the form of a general normal

prior parametrised by mean vector 𝐦 and covariance matrix 𝑉 . It then follows that

𝜷|𝐲, 𝑋, Σ ∼ 𝑁(𝐦∗, 𝑉 ∗)

𝑚∗ = (𝑉 −1 + 𝑋𝑇 Σ−1𝑋)−1(𝑉 −1𝐦 + 𝑋𝑇 Σ−1𝐲)

𝑉 ∗ = (𝑉 −1 + 𝑋𝑇 Σ−1𝑋)−1.

Proof. By Bayes’ theorem,

𝜋(𝜷|𝐲, 𝑋, Σ) = 𝜋(𝐲|𝑋, 𝜷, Σ)𝜋(𝜷)
𝜋(𝐲|𝑋, Σ)

∝ 𝜋(𝐲|𝑋, 𝜷, Σ)𝜋(𝜷)

∝ exp {−1
2(𝐲 − 𝑋𝜷)𝑇 Σ−1(𝐲 − 𝑋𝜷)} exp {−1

2(𝜷 − 𝐦)𝑇 𝑉 −1
𝛽 (𝜷 − 𝐦)}

∝ exp {𝜷𝑇 𝑋𝑇 Σ−1𝐲 − 1
2𝜷𝑇 𝑋𝑇 Σ−1𝑋𝜷 − 1

2𝜷𝑇 𝑉 −1𝜷 + 𝜷𝑇 𝑉 −1𝐦}

∝ exp {𝜷𝑇 (𝑉 −1𝐦 + 𝑋𝑇 Σ−1𝐲) − 1
2𝜷𝑇 (𝑉 −1 + 𝑋𝑇 Σ−1𝑋) 𝜷} .

and then using Proposition 5.1 we recognise the normal density with the mean and

covariance parameters stated above.

Similarly, we can derive the full conditional distribution for the measurement preci-

sion parameter,

𝜏𝑗|𝐲𝑗, 𝑋, 𝜷𝑗 ∼ 𝐺𝑎(𝑎∗
𝜏 , 𝑏∗

𝜏),

𝑎∗
𝜏 = 𝑎𝜏 + 𝑛𝑠

2 ,

𝑏∗
𝜏 = 𝑏𝜏 + 1

2(𝐲𝑗 − 𝑋𝜷𝑗)𝑇 (𝐲𝑗 − 𝑋𝜷𝑗),

(5.5)

as proven in Proposition 5.3.
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Proposition 5.3. If

𝜋(𝜏|𝐱, 𝝁) ∝ 𝜋(𝐱|𝝁, 𝜏) 𝜋(𝜏),

where 𝐱|𝝁, 𝜏 ∼ 𝑁𝑛(𝝁, 𝜏−1𝐼𝑛) is a normally distributed 𝑛-length vector and 𝜏 ∼
𝐺𝑎(𝑎, 𝑏), then it must be that

𝜏|𝐱, 𝝁 ∼ 𝐺𝑎 (𝑎 + 𝑛
2 , 𝑏 + 1

2(𝐱 − 𝝁)𝑇 (𝐱 − 𝝁)) .

Proof. By direct calculation, we observe

𝜋(𝜏|𝐱, 𝝁) ∝ 𝜋(𝐱|𝝁, 𝜏) 𝜋(𝜏)

∝ 𝜏 𝑛
2 exp {−𝜏

2(𝐱 − 𝝁)𝑇 (𝐱 − 𝝁)} 𝜏𝑎−1 exp(−𝜏𝑏)

∝ 𝜏𝑎+ 𝑛
2 −1 exp {−𝜏 [𝑏 + 1

2(𝐱 − 𝝁)𝑇 (𝐱 − 𝝁)]} ,

is a Gamma density and hence 𝜏|𝐱, 𝝁 follows the Gamma distribution given.

Once these distributions have been derived we can implement the Gibbs sampling

algorithm in Algorithm 1; executing the algorithm several times with different initial

values for 𝜏 (0)
𝑗 produces several “chains”. As described in Appendix B, 𝑀 draws are

generated but we must discard some amount of draws as “burn-in” to yield only

𝑀∗ < 𝑀 posterior samples. Details of each MCMC algorithm including burn-in

and thinning are presented alongside results.
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Algorithm 1 Univariate linear regression (conditionally conjugate)

1: Initialise 𝜏 (0)
𝑗

2: for 𝑠 = 1, … , 𝑀 do
3: compute 𝐦∗

𝛽 and 𝑉 ∗
𝛽 using (5.4) where 𝜏𝑗 = 𝜏 (𝑠−1)

𝑗
4: sample 𝜷(𝑠)

𝑗 ∼ 𝑁𝑛𝑥
(𝐦∗

𝛽, 𝑉 ∗
𝛽 )

5: compute 𝑎∗
𝜏 and 𝑏∗

𝜏 using (5.5) where 𝜷𝑗 = 𝜷(𝑠)
𝑗

6: sample 𝜏 (𝑠)
𝑗 |𝐲𝑗, 𝑋, 𝜷𝑗 ∼ 𝐺𝑎(𝑎∗

𝜏 , 𝑏∗
𝜏)

7: end for

5.3 Censored Linear Regression

All regression techniques covered so far assume uncensored data and, as such, we

have to choose some imputation method as described in Section 1.5. None of these

methods adequately express the data accurately since each imputation replaces ob-

servations that are known only up to some range with a set value such as DL/2.

Throughout this project our aims involve modelling the censored data, with their

intrinsic uncertainty, within a Bayesian paradigm where censored observations are

often treated as unknown quantities. We will achieve this either by specifying the

likelihood directly or using data augmentation as introduced in Section 1.5.4.

Consider a censored regression model as a generalisation of the Tobit model (Tobin,

1958). In the original Tobit model, it is assumed that all censored observations are

censored at a common detection limit and further that limit must be zero. While

this was sufficient for the application of economic surveys of households where some

expenditures were left-censored at zero, hydrocarbon groundwater monitoring data

contains non-zero detection limits that vary by observation or analyte and are de-

termined by availability of facilities and equipment.
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Instead, we define the likelihood as in (1.2) such that each contribution from an

uncensored observation uses the probability density function (PDF) and each contri-

bution from a censored observation uses the cumulative distribution function (CDF).

In this case, the likelihood contribution for each modelled response variable is

𝜋(𝐲𝑗|𝜹𝑗, 𝑋, 𝜷𝑗, 𝜏𝑗) =
𝑛𝑠

∏
𝑖=1

𝑓(𝑦𝑖𝑗|𝐱𝑇
𝑖 , 𝜷𝑗, 𝜏𝑗)1−𝛿𝑖𝑗𝐹(𝑦𝑖𝑗|𝐱𝑇

𝑖 , 𝜷𝑗, 𝜏𝑗)𝛿𝑖𝑗 , (5.6)

where 𝐲𝑗 = (𝑦1𝑗, … , 𝑦1𝑛𝑠
)𝑇 represents the observed analyte concentration and 𝜹𝑗 =

(𝛿1𝑗, … , 𝛿1𝑛𝑠
)𝑇 is a vector of censoring indicators introduced in Section 1.5 where 𝛿𝑖𝑗

equals 1 when 𝑦𝑖𝑗 is censored and 0 when 𝑦𝑖𝑗 is uncensored. As we assume normality

in these data, we use the normal PDF and CDF for 𝑓(⋅) and 𝐹(⋅) respectively, both

parameterised by mean 𝐱𝑇
𝑖 𝜷𝑗 and precision 𝜏𝑗.

5.3.1 Bayesian Inference

Our prior information for this model is identical to the priors stated in Section 5.2

𝜷𝑗 ∼ 𝑁𝑛𝑥+1(𝐦𝛽, 𝑉𝛽),

𝜏𝑗 ∼ 𝐺𝑎(𝑎𝜏 , 𝑏𝜏),

for 𝑗 = 1, … , 𝑛𝑦. Due to the change to the likelihood to explicitly include censoring,

we can no longer assume conjugacy or even conditional conjugacy. As such, we

resort to more general Markov chain Monte Carlo (MCMC) algorithms to sample

from the posterior distribution for this model.

We use JAGS (Plummer et al., 2003), a program for Bayesian Graphical modelling

that allows the user to fit advanced models in a declarative programming language

similar in syntax to R. One of the main advantages of JAGS is the ability to declare

a model, data and prior information and leave the specifics of the algorithm to the

software. For example, JAGS will recognise the conditional conjugacy of the models
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described in this chapter and use a Gibbs sampler as we have explained. For the

censored regression model, where conjugacy is not present, JAGS will use a slice

sampling algorithm (Neal, 2003).

When the data is both censored and multivariate, as is the case in the hydrocarbon

groundwater monitoring application we are interested in, expressing the likelihood

in a closed form is non-trivial. For example, benzene and MTBE have different

censoring indicator values for approximately 30% of the observations within Case

Study A. Modelling multiple correlated dependent variables that are potentially

censored is not considered in this thesis in great detail but has been applied to traffic

accident data by Anastasopoulos et al. (2012) and can also be improved through

the use of varying effects within that particular application (Zeng et al., 2017). One

would expect parameter estimates of the multivariate model to be similar to the

respective parameters of each univariate model but jointly modelling analytes could

improve overall prediction due to a high correlation.

5.4 Simulation Study

Of the two models proposed in this chapter, the substitution of censored values by

half their detection limit takes substantially fewer computational resources but may

introduce bias (Helsel & Cohn, 1988). Therefore, we will enact a simulation study

to compare the relative strengths and weaknesses of the models,

1. Bayesian univariate multiple linear regression with imputed response data, as

described in Section 5.2;

2. Bayesian univariate multiple censored regression, as described in Section 5.3.

Simulated data is used throughout this thesis to verify the validity of models, miti-

gate any errors during the model development stage and improve overall confidence
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in each respective model. For the sake of brevity, only a single demonstrative simu-

lation study is shown.

We simulate 𝑛𝑠 = 100 data points where 𝑥𝑖𝑘
iid∼ 𝑁(0, 1), for 𝑖 = 1, … , 100 and

𝑘 = 1, 2, 3 denote our explanatory data; normalisation is applied such that each

explanatory variable has zero mean and unit variance. A single response variable is

simulated according to (5.2) where the regression coefficients, 𝜷1, are arbitrarily set.

In this case,

𝜷1 = (3, 4, 1, 2)𝑇 .

The precision parameter, 𝜏1, is chosen to be 0.1 based on preliminary investigations

into our groundwater application data, shown in Chapter 2. Once the response

variable is simulated, we post-process the output by artificially censoring; all values

lower than the 60𝑡ℎ percentile of the data are replaced with non-detect observations

with a detection limit equal to this calculated percentile. Note that this mecha-

nism yields singly censored data unlike the multiply censored data that arises from

groundwater monitoring networks. The univariate multiple linear regression with

imputed response data does not allow for these censored data and replaces all cen-

sored observations with half the detection limit.

For both models, assume vague prior information using (5.3) where

𝜷1 ∼ 𝑁𝑛𝑥+1(𝟎𝑛𝑥+1, 0.01−1𝐼𝑛𝑥+1),

𝜏1 ∼ 𝐺𝑎(1, 1).

We obtain 10, 000 posterior samples for each model by running the respective MCMC

algorithm for 70, 000 samples then discarding the first 20, 000 as burn-in and then

“thinning” by 5 (discarding all but every 5𝑡ℎ sample).

90



Chapter 5. Regression Models

0.0

0.5

1.0

1.5

0.0 2.5 5.0

β01

0.0

0.5

1.0

1.5

0 2 4 6

β11

0.0

0.5

1.0

1.5

0 2 4 6

β21

0.0

0.5

1.0

1.5

0 2 4 6

β31

0

5

10

15

0.0 0.1 0.2 0.3

τ1

Censored

Imputed

Figure 5.1: Marginal posterior densities of 𝜷1 = (𝛽01, … , 𝛽31) and 𝜏1, true values
marked by dashed lines.

Figure 5.1 shows overlapping posterior distributions of the precision parameter for

the models but the location of the true value, shown as a dashed line, is within the

posterior distribution produced from the censored regression and even outside the

95% interval of the imputed model’s posterior samples for the quantity. The models

differ in regression parameters, shown in Figure 5.1, where the posterior uncertainty

for the censored regression appears larger while also showing a larger density around

the ‘true’ value of each parameter. It is worrying that the imputation methods are

not only incorrect in the inference of the regression parameters but also confident

enough to show a smaller credible interval around said incorrect value.
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5.5 Groundwater Application

Here, we only apply the censored regression model (5.6) and not the imputed linear

model, (5.2), because of the simulation study results, which show imputed models

struggle even in more ideal circumstances. The complexity of groundwater systems

with varying geological landscapes between sites and a multitude of possible reac-

tions to be modelled means we must have more confidence in our models and their

uncertainty.

For Site A, introduced in Chapter 2, we focus on two main analytes:

• benzene, the quintessential aromatic hydrocarbon that is a confirmed carcino-

genic and of most concern to regulators (World Health Organization, 2010);

• methyl tert-Butyl Ether (MTBE), the least censored (28.5%) analyte.

These data must be pre-processed to be used in a regression model including steps

to match analyte and predictors by closest date and summarising repeated analyte

measurements with a single observation, as discussed in Chapter 2.

Applications such as hydrocarbon groundwater monitoring have many personnel

that are responsible for data at a site or sometimes a group of sites. As such, these

experts can offer valuable insight within a Bayesian paradigm through the use of

prior elicitation such as the web-based tool MATCH (Morris et al., 2014) or an expert

aggregation tool such as SHELF (Williams et al., 2021). However, a drawback of

these methods is the time requirement from each expert which was unfortunately

not secured for this project. Therefore, we implement a vague prior approach, for

all analytes 𝑗 = 1, … , 𝑛𝑠,

𝜷𝑗 ∼ 𝑁𝑛𝑥+1(𝟎𝑛𝑥+1, 0.1−1𝐼𝑛𝑥+1),

𝜏𝑗 ∼ 𝐺𝑎(2, 0.1).

(5.7)
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A symmetrical distribution around 0 is used for our regression coefficients where the

diagonal of the covariance matrix quantifies our prior uncertainty. We have found

that our posterior draws are fairly insensitive to the choice of prior precision with

vague and precise priors leading to very similar results.

Since the gamma distribution has a strictly positive support and is conjugate in the

non-censored case, it is a satisfactory distribution to describe our prior beliefs for

𝜏𝑗. Rather than choosing shape and rate parameters, it is more intuitive to describe

the distribution in terms of mean and variance. Recall from Section 5.2 that each

𝜏𝑗 describes the feasible amount of multiplicative measurement error on the original

scale; setting 𝜏𝑗 = 20 corresponds to 95% HDI, (0.65, 1.55), of viable measurement

errors. This interval seems reasonable given our knowledge of measurement uncer-

tainty and the data collection process in groundwater monitoring and so we take 20
to be the prior mean and choose the final free parameter, variance, as a measure

of our prior uncertainty. As with regression coefficients, changing the prior to say

𝜏𝑗 ∼ 𝐺𝑎(20, 1) has very little impact on the results to be shown and highlights a

certain degree of prior insensitivity.

We fit the censored regression model to our analytes of interest within site A, benzene

and MTBE, in two different scenarios as discussed in Section 1.7. These splits of

the data differ by the training data used:

• LMWO uses all data except the holdout wells;

• hold-out future uses all data except samples taken after January 1𝑠𝑡, 2015
from the holdout wells.
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5.5.1 Regression Parameters

A key advantage of this model is the clear interpretability of linear regression coef-

ficients. We consider changes in our predictors to be based on the sample standard

deviation change and not the unit change as we have normalised the predictors; our

inferences are independent of the choice of units for each predictor, decided in the

data collection stage. For example, 𝛽DO MTBE, represents the expected change in

log concentration of MTBE per increase in DO by one sample standard deviation,

and similarly for other analyte and predictor combinations. The intercept terms are

sensitive to the units used as they represent the expected concentration when all

predictors take their mean value, which is 0 after normalisation. All analytes are

reported in the same units within the data.

Figure 5.2 shows a substantial prior to posterior update and regression coefficients

for each analyte tend to have identical sign, as expected given the high correlation.

As expected, the intercept for MTBE is greater than the benzene intercept as the

MTBE concentrations are typically higher within this specific groundwater moni-

toring site. Discussions with those involved in generating the RTM data revealed

a preliminary expectation that conductivity (EC) would have a positive correlation

with any analyte which is supported by this model that estimates a significant pos-

itive coefficient for the predictor.

Interestingly, the impact of temperature on MTBE as shown in Figure 5.2 has

a posterior density with a mode at 0, implying no significant effect, but with a

much higher peak than the prior. This is not quite the case with benzene, but

any effect from temperature on benzene is quite small relative to the intercept and

other coefficients. From this we can infer that temperature has very little utility in

describing the variation of MTBE or benzene as suggested from the random forest

results in Section 4.4.2.
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Figure 5.2: Marginal posterior density of regression coefficients, prior distribution
shown by dashed line. LMWO, censored regression.

We also consider the joint posterior distributions of the regression coefficients by

presenting a series of scatter plots. Individual plots below the main diagonal of

Figure 5.3 visualise the bivariate posteriors of 𝜷1 (MTBE) and the remaining plots

visualise bivariate posteriors of 𝜷2 (benzene). Many of the plots show a reasonably

circular pattern which implies little to no correlation between these posterior dis-

tributions. Some relationships may be weakly correlated such as 𝛽ORP MTBE and

𝛽DO MTBE which displays a very slight downward trend.
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Figure 5.3: Joint posterior plots of regression coefficients; MTBE (benzene) shown
in lower (upper) triangular region. LMWO, censored regression.
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5.5.2 Precision Parameters

Figure 5.4 shows the trace-plot for the precision parameter, after thinning and re-

moving burn-in, with a similar appearance to a “hairy caterpillar”. Trace-plots for

several chains and other parameters such as the regression coefficients and observed

data log likelihood (based on in-sample data) have a similar appearance but are not

shown. This visual quality gives us no evidence that the MCMC algorithm has not

converged.

By inspection, the measurement precision parameter for the MTBE model fit is

larger than the benzene counter-part. In both cases, the posterior mean for the

precision is very low. For instance if we set 𝜏𝑗 = 0.1 then the additive measurement

error on the log scale, 𝜖𝑖𝑗, follows a normal distribution where approximately 95%
of the draws are expected to lie between 2 standard deviations, 2𝜎𝑗 = 6.32 which is

more than half the observed range of MTBE. The posterior distributions for 𝜏1 and

𝜏2 show the main issue with these data: the signal-to-noise ratio may be too low for

us to meaningfully infer any association.
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Figure 5.4: Marginal posterior trace-plots of 𝝉 . LMWO, censored regression.
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5.5.3 R Squared

The coefficient of determination (R squared) of a model is an effective measure of

how much variation in the analytes can be explained by our predictors, as utilised

in Chapter 4. Within a Bayesian context, with a posterior sample of the unknown

quantities 𝜽(𝑠), 𝜎2,(𝑠) for 𝑠 = 1, … , 𝑆, we can obtain a posterior sample of the

coefficient of determination by applying the conventional definition,

𝑅2 (𝑠)
classic = Var(𝐸[𝐲|𝑋, 𝜃(𝑠)])

Var(𝐲) , (5.8)

for each posterior sample 𝑠 = 1, … , 𝑆. However, this definition is not ideal since

the value can exceed 1 as noted in Gelman et al. (2019). Instead we opt to use the

definition suggested by Gelman et al. (2019),

𝑅2
𝑠 = Var(𝐸[𝐲|𝑋, 𝜃(𝑠)])

Var(𝐸[𝐲|𝑋, 𝜃(𝑠)]) + Var(𝜎2 (𝑠)), (5.9)

where Var(𝐸[𝐲|𝑋, 𝜃(𝑠)]) and Var(𝜎2 (𝑠)) represent the variance of the fitted values

and variance of the residual variance respectively for each posterior sample 𝑠 =
1, … , 𝑆.

Figure 5.5 contains the densities of each 𝑅2 distribution for both analytes and details

the posterior mean. Both models observe a proportion of variance explained less than

35% which highlights the inability of this model to explain the data and suggests

that there may not be enough of a signal in the chosen predictors.
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Figure 5.5: Bayesian 𝑅2 posterior densities, posterior mean shown in title. LMWO,
censored regression.

While Bayesian 𝑅2 is a useful measure in a linear regression, it is not without

limitations. Both 𝑅2 score higher with overfitted models making them unsuitable

for model comparison; model comparison in this thesis is based on metrics described

in Section 1.7. Equation (5.9) assumes that the residual variance is consistent across

observations, but this may not be the case such as in the mixture of experts model,

to be introduced in Chapter 7. Moreover, the denominator in (5.9) is a function of

the fitted values and residual variance and, in a Bayesian context, this is a function

of both data and model; the denominator of (5.8) is purely data-based. Thus, the

original interpretation as proportion of explained variation is not applicable here

and it is better presented as a data-based estimate of this proportion (Gelman et al.,

2019) as is done here.
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5.5.4 Prediction

Figures 5.6 and 5.7 show posterior predictive summaries alongside true analyte log

concentrations in black for MTBE and benzene respectively. The posterior predictive

mean is shown as a blue point, whereas pointwise 95% prediction intervals are

denoted by the light blue shading. For the censored regression model, our point

predictions are similar to the predictions made by the random forest model, but

now we can quantify our uncertainty in these predictions. For the holdout well

“Focus”, where analyte measurements are higher than average, we see predictions

are poor for both analytes where most ‘true’ observations are close to the upper

boundary of the 95% prediction interval. At this well, both analyte predictions

around 2012 are substantially lower than the other predictions of the same analyte;

this reveals an issue in this model where any outlier or valid extreme value in a

predictor can vastly affect predictions.
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Figure 5.6: Predictions with comparison to truth in black. MTBE, LMWO, censored
regression.
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Figure 5.7: Predictions with comparison to truth in black. Benzene, LMWO, cen-
sored regression.

Figure 5.7 shows consistent underprediction for the more censored analyte benzene;

this highlights one key shortcoming of this model. All data is assumed to come

from the same process, however due to the nature of data collection in groundwa-

ter monitoring there may be oversampling of several low-activity wells to validate

expectations of low concentrations. This leads to a skew in the data and a lower

sample average which would substantially affect inference on the intercept term.

The current model does not mitigate this unequal data collection through a more

careful prior or by incorporating the spatial aspect of these data. As such, this

model tends to underpredict concentrations and in the application of hydrocarbon

monitoring, this would be dangerous and detrimental to any early detection system.

We propose an extension to this model, to be introduced in Chapter 8, where the

globally estimated mean, 𝛽01, … , 𝛽0𝑗, is replaced by a localised well-specific mean.

Another issue with the efficacy of these predictions, over both analytes, is the wide

uncertainty shown by the 95% prediction intervals. All analyte data are on the log
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scale so a range of (−20, 5), as is common in Figure 5.7, corresponds to measurements

of (2 × 10−9, 148) mg/L where the highest measurement in the entire Case Study A

is 150 mg/L from 2003.
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Figure 5.8: Predictions with comparison to truth in black. MTBE, holdout future,
censored regression.

Furthermore, this model is unable to leverage data arising from the well to be

predicted, as in Chapter 8, meaning the prediction for both LMWO and hold-out

future are extremely similar since the model training data has only changed by a

handful of observations. To see this clearly one can compare the latter predictions

in Figure 5.6 with all predictions in Figure 5.8. The hold-out future predictions for

benzene have been omitted for the sake of brevity, but follow a similar pattern.
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5.5.5 Model Metrics

To quantify the quality of predictions we can calculate the metrics introduced in

Section 1.7 where more negative values suggests a worse fit to that specific data.

Further recall that a comparison between MTBE and benzene would be invalid and

reflect very little about relative model quality. Each quantity is calculated for both

the data the model is trained on (in-sample) and the data arising from the wells to be

predicted (out-of-sample) and then collated in Table 5.1 and Table 5.2 respectively.

LPD (SE) WAIC (SE) PSIS (SE)

MTBE, in-sample -3159.2 (34.9) -3168.5 (35.2) -3168.5 (35.2)

Benzene, in-sample -2434.0 (53.6) -2445.2 (54.3) -2445.3 (54.3)

Table 5.1: Model fit metrics based on in-sample data. LMWO, censored regression.

LPD (SE) WAIC (SE) PSIS (SE)

MTBE, out-of-sample -244.1 (16.1) -246.4 (16.7) -246.4 (16.7)

Benzene, out-of-sample -205.0 (17.1) -207.0 (17.7) -207.0 (17.7)

Table 5.2: Model fit metrics based on out-of-sample data. LMWO, censored regres-
sion.

Metrics of incomparable model fits as shown in this chapter, are difficult to interpret

as a measure of predictive quality and these metrics are better used for comparison.

As each metric is based on the log score, less negative values indicate a better fit.

Once all models are fully described and fit to the data we can form a complete

comparison between all models in this thesis; such a comparison will take place in

Chapter 9.
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Note that the values for WAIC and PSIS are similar and tend to be so for most

scenarios. As such, we shift our focus to PSIS estimates as a more rigorous version

of the WAIC estimate where we can also leverage the fitted 𝑘 parameter of the

Pareto distribution to find high-leverage observations and report the reliability of

the estimate. For example, we can plot these 𝑘 values in Figure 5.9. We observe

many values below the 0.7 and even 0.5 values that are highlighted in Vehtari et al.

(2017) implying the estimates for this relatively straightforward model are reliable.
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Figure 5.9: PSIS diagnostics based on observed data log likelihood. LMWO, cen-
sored regression.

104



Chapter 5. Regression Models

5.6 Conclusion

In this chapter we have considered variations on a univariate multiple linear regres-

sion including

• imputing censored observations with half of the associated detection limit;

• censored regression (Tobit) model that modifies the likelihood for censored

data.

Simulation results presented are consistent with the literature that claim the DL/2

method leads to inconsistent estimators. As such, we only present results for our

case study from the censored regression and will use these results in the remainder

of the thesis as a baseline to be compared to.

Regression coefficients provide interpretable parameters for each combination of our

analytes, MTBE and benzene, and the chosen water quality predictors conductivity

(EC), oxidation reduction potential (ORP), dissolved oxygen (DO), pH and tem-

perature. The sign of each coefficient is consistent with our expectations but the

magnitude of the true effects are not well established due to the heterogeneity of

groundwater sites.

Similar to the random forest results in Chapter 4, we observe further evidence that

the noise of the hydrocarbon groundwater monitoring system may be excessive. For

these models, this appears in the form of a lower than expected precision parameter,

𝜏𝑗, for both analytes considered.
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Multivariate Models

6.1 Multivariate Linear Regression

A clear criticism of (5.2) is that each analyte is modelled independently, whereas

hydrocarbon concentrations are often highly correlated. To model this correlation

structure directly, suppose we let 𝐵 = {𝛽𝑖𝑗} contain all previously defined regression

coefficients for 𝑖 = 1, … , 𝑛𝑥 + 1 and 𝑗 = 1, … , 𝑛𝑦 with the same interpretation

described in Section 5.2. The model is then compactly denoted by

𝑌 = 𝑋𝐵 + 𝐸, (6.1)

where 𝑌 is the analyte data in matrix form as defined in (1.1) and 𝐸 is a matrix

formed by joining row vectors 𝝐𝑇
𝑖 ∼ 𝑁𝑛𝑦

(𝟎, Σ𝑦) as 𝑛𝑠 independently and identically

distributed rows parameterised by the same positive definite matrix Σ𝑦 that we will

refer to as the among-columns covariance matrix.

The diagonal of the covariance matrix is a measure of spread for each analyte,

whereas the off-diagonal terms are to be interpreted as the covariance between each

analyte and are assumed to be high, a priori, in hydrocarbon groundwater mon-
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itoring. Analyte concentrations, specifically those with similar number of carbon

atoms, are components of a greater mixture, say petroleum, and any introduction

of an analyte into the closed groundwater system is expected to correspond with

the introduction of several analytes at the same time. That is, a high benzene con-

centration implies that we are more likely to observe high concentrations of other

hydrocarbons and vice versa. On the other hand, differences in the analytes’ intrinsic

properties that impact the flow of these concentrations, such as molecular mass, may

lead to lower correlation over time as the physical distance between concentration

‘hotspots’ will increase.

The multivariate normal regression model described here generalises (5.2) to account

for among-column covariance in 𝑌 by relaxing the assumption of independent errors

among the columns of 𝐸. A further generalisation that relaxes the assumption of

independent errors among the rows of 𝐸 is described in Section 6.2 where a matrix-

variate normal distribution is introduced.

Since a multivariate normal density is assumed, the likelihood is therefore

𝜋(𝑌 |𝑋, 𝐵, Σ𝑦) =
𝑛𝑠

∏
𝑖=1

(2𝜋)−𝑛𝑦/2|Σ𝑦|−1/2 exp (−1
2(𝑌 − 𝑋𝐵)𝑇 Σ−1

𝑦 (𝑌 − 𝑋𝐵)) .

We can express this likelihood in an alternative form based on a special case of the

matrix normal density, to be discussed in Section 6.2, with independent among-row

covariance, Σ𝑠 = 𝐼𝑛𝑠
. Hence, using the properties of the trace operator and ignoring

any constants of proportionality (Rossi et al., 2012, p.32),

𝜋(𝑌 |𝑋, 𝐵, Σ𝑦) ∝ |Σ𝑦|−𝑛𝑠/2 etr (−1
2(𝑌 − 𝑋𝐵)𝑇 (𝑌 − 𝑋𝐵)Σ−1

𝑦 ) ,

where etr(𝑥) ≡ exp(tr(𝑥)).
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6.1.1 Prior

Recall the univariate model introduced in Section 5.2 had a conjugate prior where the

regression parameters were normal conditional on some measure of spread. Similarly,

a normal-inverse-Wishart prior distribution is conjugate for the multivariate case

(Gelman et al., 1995) where we can define the prior distributions marginally, for

𝑗 = 1, … , 𝑛𝑦, as

𝜷𝑗|Σ𝑦 ∼ 𝑁 (𝐦0, Σ𝑦) ,

Σ𝑦 ∼ 𝐼𝑊 (𝑑0, 𝑆0) .

The inverse Wishart (𝐼𝑊 ) distribution can be intuited as a generalisation of the

inverse gamma distribution with positive-definite matrix support (Iranmanesh et al.,

2010). We say that Σ follows an inverse Wishart distribution, Σ ∼ 𝑊 −1
𝑞 (𝑄, 𝑎), with

real positive definite scale matrix 𝑄 ∈ ℝ𝑞×𝑞 and degrees of freedom 𝑎 > 0 if its

probability density function is

𝑓(Σ) = 2−𝑞(𝑎+𝑞−1)/2

Γ{(𝑎 + 𝑞 − 1)/2}|𝑄|(𝑎+𝑞−1)/2|Σ|−(𝑎+2𝑞)/2 etr (−1
2Σ−1𝑄) .

where etr(𝐴) is the exponential of the trace of square matrix 𝐴. For intuition,

the expectation of Σ is (𝑎 − 2)−1𝑄 for 𝑎 > 2. See Iranmanesh et al. (2010) for

a more general inverse matrix gamma distribution for which the inverse Wishart

distribution is a special case.

As with the univariate model, we assume the regression parameters have no depen-

dence on the covariance matrix, a priori, and therefore use a conditionally conjugate

prior instead as detailed in (6.2). For these distributions a prior mean and variance,

𝐦𝛽 and 𝑉𝛽 respectively, are to be chosen for the regression parameters, whereas

a prior scale matrix and degrees of freedom, 𝑆−1
Σ𝑦

and 𝑑Σ𝑦
respectively, are to be
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chosen for the covariance parameter such that

𝜷𝑗 ∼ 𝑁 (𝐦𝛽, 𝑉𝛽) ,

Σ ∼ 𝐼𝑊 (𝑆Σ𝑦
, 𝑑Σ𝑦

) .

(6.2)

6.1.2 Bayesian Inference

By repeating the methodology of Section 5.2.2, we are able to derive the full con-

ditional distributions (FCDs) of all model parameters then construct a Gibbs sam-

pling algorithm to generate our posterior samples. The semi-conjugate nature of

our prior guarantees that the FCDs can be tractably sampled from and omits the

need for a different Markov chain Monte Carlo (MCMC) algorithm. Iranmanesh

et al. (2010) describes a conjugate multivariate normal regression using the inverse

matrix gamma distribution as a prior distribution in place of the inverse Wishart.

Hoff (2009, pp. 108) provides a derivation of FCDs for the non-regression case where

a constant mean is used in place of the linear predictor.

Since we consider the multivariate normal regression model to be a special case

of the matrix normal regression model, to be described in Section 6.2, we use the

same software to fit both models. Stan is chosen over the aforementioned JAGS

because of wider base functionality including evaluation of covariance functions used

in Gaussian processes and potential, but not guaranteed, efficiency gains since it

generates and compiles the necessary algorithm in C++ (Stan Development Team,

2023). Pertinent to this semi-conjugate model, both JAGS and Stan have great

efficiency gains when a conjugate distribution is identified.
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6.2 Matrix Normal Regression

In the previous section we generalised our model to account for covariance among

our dependent variables. By leveraging the matrix-variate normal distribution, we

can model our response variable as a compact matrix with two covariance matrices,

among-rows and among-columns. A real random 𝑝 by 𝑞 matrix, 𝑋, follows a matrix

normal distribution, 𝑋 ∼ 𝑀𝑁𝑝,𝑞(𝑀, 𝑃 , 𝑄), if its probability density function is

𝑓(𝑋) = (2𝜋)−𝑝𝑞/2|𝑄|−𝑝/2|𝑃 |−𝑞/2 exp [−1
2 tr{𝑄−1(𝑋 − 𝑀)𝑇 𝑃 −1(𝑋 − 𝑀)}] ,

where 𝑀 is a 𝑝 by 𝑞 real mean matrix, 𝑃 and 𝑄 are positive definite scale matrices

of dimensions 𝑝 by 𝑝 and 𝑞 by 𝑞 respectively. It is worth noting than an equivalent

representation exists. That is,

𝑋 ∼ MN𝑝,𝑞(𝑀, 𝑃 , 𝑄),

if and only if,

vec(𝑋) ∼ 𝑁𝑝𝑞(vec(𝑀), 𝑄 ⊗ 𝑃),

where ⊗ is the Kronecker product and vec(⋅) is the vectorisation of a matrix by

stacking each column of the matrix into a single column vector sequentially. Hence,

suppose we have our data in compact form,

𝑌 = 𝑋𝐵 + 𝐸,

and we make the assumption that

𝑌 ∼ MN(𝑋𝐵, Σ𝑠(𝑆, 𝑆), Σ𝑦), (6.3)

where Σ𝑠(𝑆, 𝑆) is a among-row covariance matrix to be defined in Section 6.2.2 and

Σ𝑦 is the same among-column covariance matrix introduced in Section 6.1.
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If one assumes model (6.1), then Σ𝑠(𝑆, 𝑆) is set to be the identity matrix of appro-

priate size and observations are assumed independent given the model parameters.

The spatial matrix-variate normal regression model (6.3) relaxes this assumption

and assumes our observations are correlated in space and time.

A naive approach would assume Σ𝑠 is a stochastic parameter to be estimated, po-

tentially with a prior from the same parametric family as the prior used for Σ𝑦.

However, a considerable difference between these covariance matrices are the sizes

of each. We observe 1500 observations in the leave-multiple-well-out (LMWO) pre-

diction scenario and could fit up to 6 analytes for groundwater site A specifically.

The number of parameters within a 𝑁 by 𝑁 covariance matrix is equal to 𝑁+𝑁 (𝑁−1)
2

due to the symmetry; Σ𝑠 would be a symmetric matrix of 1, 125, 750 unknown pa-

rameters as opposed to the, at most, 21 unknown parameters required to construct

Σ𝑦. To deal with this intractability we leverage Gaussian processes (GP) and the

corresponding spatiotemporal data associated with each row in 𝑌 and 𝑋.

6.2.1 Gaussian Processes

Consider a Gaussian process (GP) as a generalization of the normal distribution.

The support of the normal distribution can be scalar, a vector of scalar values

or a matrix when considering the matrix normal distribution, whereas a GP is a

distribution of continuous functions (Rasmussen et al., 2006). In practical terms,

we only ever evaluate these functions at a finite number of vector inputs denoted

𝐬 which allows us the desirable property that the joint distribution of these finite

elements is Gaussian. Therefore, we define the Gaussian process,

𝑓(𝐬) ∼ 𝐺𝑃(𝑚(𝐬), 𝑘(𝐬, 𝐬′)),
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to be a collection of random variables following a multivariate normal distribution,

that is completely defined by some mean function 𝑚(𝐬) and covariance function,

𝑘(𝐬, 𝐬′), which we refer to as a kernel function.

We can make use of these distributions as a method for defining covariance matrices

over a field, say ℝ𝑑, for the spatiotemporal data 𝑆 described in Section 1.4. To this

end, we consider two kernel functions that are both radial basis functions, a function

that depends only on distance not location. We incorporate characteristic length-

scales, that is a different length-scale parameter per input dimension, by defining

each kernel function in terms of the weighted distance,

𝑑 = ∥ ̃𝐬 − ̃𝐬′

𝜸 ∥ =
√√√
⎷

𝐷
∑
𝑑=1

( ̃𝑠𝑑 − ̃𝑠′
𝑑)2

𝛾2
𝑑

,

for each input dimension 𝑑 = 1, … , 𝐷. The two kernels we have considered can then

be expressed as

1. squared exponential kernel, with amplitude 𝛾𝛼,

𝐾𝑆𝐸(𝑑) = 𝛾2
𝛼 exp (−𝑑2

2 ) ;

2. Matérn kernel, with 𝜈 = 3/2 and amplitude 𝛾𝛼,

𝐾Matérn(𝑑) = 𝛾2
𝛼 (1 +

√
3𝑑) exp (−

√
3𝑑) .

These kernels are related since the Matérn kernel is 𝜈 − 1
2 times differentiable and

the squared exponential is the limiting case where 𝜈 → ∞ (Beckers, 2021). Since

we have no explicit prior knowledge about the existence of higher order derivatives,

and we have found the Matérn to be more computationally stable, we opt to use

the Matérn kernel function in our analyses.
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The use of characteristic length-scales in the squared exponential kernel, where 𝛾𝑑

is a different parameter per dimension, is also referred to as the automatic rele-

vance determination (ARD) extension (Rasmussen et al., 2006). We describe in

Section 8.2.2 how we can assume several, to be defined, well effects follow a GP

with characteristic length-scales a priori.

6.2.2 Among-Row Covariance

For the matrix-variate regression model considered in this thesis, we assume there

is a spatiotemporal effect that we can model directly over the 𝑛𝑠 observations cor-

responding to the rows of 𝑌 , 𝑋 and 𝑆. To this end, we require a function that can

convert spatiotemporal data to a covariance matrix reflecting the spatial structure

of the inputs. Thus, suppose we have two spatiotemporal matrices with each column

corresponding to a different spatiotemporal dimension, say

𝑆 =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐬1

⋮
𝐬𝑛𝑠

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑠1𝑥 𝑠1𝑦 𝑠1𝑡

⋮ ⋮ ⋮
𝑠𝑛𝑠𝑥 𝑠𝑛𝑠𝑦 𝑠𝑛𝑠𝑡

⎞⎟⎟⎟⎟⎟⎟
⎠

;

𝑆′ =
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐬′
1

⋮
𝐬′

𝑛𝑠

⎞⎟⎟⎟⎟⎟⎟
⎠

=
⎛⎜⎜⎜⎜⎜⎜
⎝

𝑠′
1𝑥 𝑠′

1𝑦 𝑠′
1𝑡

⋮ ⋮ ⋮
𝑠′

𝑛′𝑠𝑥 𝑠′
𝑛′𝑠𝑦 𝑠′

𝑛′𝑠𝑡

⎞⎟⎟⎟⎟⎟⎟
⎠

.

We then define Σ𝑆(𝑆, 𝑆′) to be a function that maps 𝑆 and 𝑆′ to a covariance matrix

such that the 𝑘, 𝑙𝑡ℎ element is given by

{Σ𝑆(𝑆, 𝑆∗)}𝑘𝑙 = 𝐾(𝑑𝑘𝑙|𝛾𝛼, 𝛾𝑥, 𝛾𝑦, 𝛾𝑡),

where the kernel function 𝐾 and GP hyperparameters Γ = (𝛾𝛼, 𝛾𝑥, 𝛾𝑦, 𝛾𝑡)𝑇 including

the amplitude 𝛾𝛼 and characteristic length-scales per dimension are to be specified
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For our data, the scaled distance is given by

𝑑𝑘𝑙 = √(𝑠𝑘𝑥 − 𝑠′
𝑙𝑥)2

𝛾2𝑥
+

(𝑠𝑘𝑦 − 𝑠′
𝑙𝑦)2

𝛾2𝑦
+ (𝑠𝑘𝑡 − 𝑠′

𝑙𝑡)2

𝛾2
𝑡

.

As shown in (6.3), these matrices need not be distinct and assuming 𝑆 = 𝑆′ results

in a symmetric covariance matrix.

For the model described in (6.3) we avoid an identifiability issue by setting the

amplitude parameter 𝛾𝛼 equal to 1. An alternate solution to be investigated further

would fix Σ𝑦 to be a correlation matrix with an appropriate prior specification such

as using the LKJ distribution (Lewandowski et al., 2009). To see why this is required,

consider the covariance,

Cov(𝑦𝑖𝑗, 𝑦𝑖′𝑗′) = {Σ𝑦}𝑗𝑗′𝐾(𝑑𝑖𝑖′|Γ), (6.4)

where {Σ𝑦}𝑗𝑗′ , the 𝑗𝑡ℎ row, 𝑗′𝑡ℎ column of Σ𝑦, denotes the covariance between

analytes 𝑗 and 𝑗′. Then, we could produce the same covariance by multiplying this

term by some constant as long as we divide the amplitude parameter by the same

value. We present a model where the amplitude parameter is determined to be

stochastic and estimated in Chapter 8.

The parameters of model (6.3) are 𝐵, Σ𝑦 and the GP hyperparameters

Γ = (𝛾𝛼, 𝛾𝑥, 𝛾𝑦, 𝛾𝑡)𝑇 since the among-row covariance is deterministic given

the choice of kernel function and associated hyperparameters and observed

spatiotemporal data 𝑆. Hence, the likelihood is given by

𝐿(𝐵, Σ𝑦, Σ𝑠) = (2𝜋)−𝑛𝑠𝑛𝑦/2|Σ𝑦|−𝑛𝑠/2|Σ𝑠|−𝑛𝑦/2 etr (−1
2Σ−1

𝑦 (𝑌 − 𝑋𝐵)𝑇 Σ−1
𝑠 (𝑌 − 𝑋𝐵)) ,

For the spatial matrix-variate normal regression model, we have assumed Σ𝑠 =
Σ𝑠(𝑆, 𝑆) and for the multivariate normal regression model, let Σ𝑠 = 𝐼𝑛𝑠

.
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6.2.3 Prior

The priors for the parameters 𝐵 and Σ𝑦 remain unchanged from Section 6.1.1 due

to the generalising nature of the matrix normal model. For a fully specified prior,

we must also define our prior beliefs for each GP length-scale. Hence, we assume an

identical gamma prior for each length-scale as there is little information a priori to

discern each dimension and the strictly positive support reflects the strictly positive

nature of length-scale parameters

𝛾𝑥, 𝛾𝑦, 𝛾𝑡 ∼ 𝐺𝑎(𝑎𝛾, 𝑏𝛾) independently.

We determine a reasonable prior mean by investigating the resultant correlation

matrix for each choice of 𝑎𝛾 and 𝑏𝛾 until the correlation matrix seems appropriate.

Prior variance is then chosen to reflect our confidence in the prior and can be changed

to investigate the sensitivity of this choice. For example, preliminary analyses found

𝐺𝑎(0.2, 1) gave too much prior weight to extreme values in the tail and we opted to

refit the model with 𝐺𝑎(2, 10).

6.2.4 Bayesian Inference

As described in Section 6.1, we use Stan (Stan Development Team, 2023) to fit

these models due to the efficiency gains that make these models tractable. Another

justification is that Stan already defines kernel functions as proprietary methods

and allows user-supplied functions to extend these kernels as modular components.

This is very desirable when investigating the impact of different kernels used.
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6.3 Prediction

In this section we detail how to obtain the posterior predictive of new data for the

matrix normal regression model. All steps also apply to the special case multivariate

regression model where we can set Σ𝑠 = 𝐼𝑛𝑠
. Once the posterior predictive distribu-

tion is defined we can follow the steps described in Appendix B.1 to obtain posterior

predictive samples to be presented in Section 6.4.

Suppose that in addition to our observed data, 𝑌 , 𝑋, 𝑆, which is modelled according

to (6.3), we want to predict new data 𝑌 ∗ conditional on our posterior beliefs, new

predictors 𝑋∗, and new spatiotemporal metadata 𝑆∗. We assume there are 𝑛∗
𝑠

new observations, but the number of predictors, 𝑛𝑥, and assumed spatiotemporal

dimensions 𝑑 are the same for both observed and new data. Similarly, we aim to

compose predictions for all 𝑛𝑦 analytes that appear in the observed data.

By using the equivalent multivariate normal parameterisation of the matrix-variate

distribution, as described in Section 6.2, we can express (6.3) as

vec(𝑌 ) ∼ 𝑁𝑛𝑠𝑛𝑦
(vec(𝑋𝐵), Σ𝑦 ⊗ Σ𝑠(𝑆, 𝑆)),

where ⊗ is the Kronecker product and vec(⋅) is the vectorisation of a matrix by

stacking each column of the matrix into a single column vector sequentially. We

also assume this model for the data to be predicted, that is,

vec(𝑌 ∗) ∼ 𝑁𝑛∗𝑠𝑛𝑦
(vec(𝑋∗𝐵), Σ𝑦 ⊗ Σ𝑠(𝑆∗, 𝑆∗)).
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Under this assumption, multivariate normal distributions of observed and new data

can be combined into a joint multivariate normal distribution, we can then condition

on the joint density in the usual way. Therefore, suppose

⎛⎜⎜
⎝

vec(𝑌 )
vec(𝑌 ∗)

⎞⎟⎟
⎠

∼ 𝑁(𝑛𝑠+𝑛∗𝑠)𝑛𝑦
⎛⎜⎜
⎝

⎛⎜⎜
⎝

vec(𝑋𝐵)
vec(𝑋∗𝐵)

⎞⎟⎟
⎠

, ⎛⎜⎜
⎝

Σ11 Σ12

Σ21 Σ22

⎞⎟⎟
⎠

⎞⎟⎟
⎠

,

where

Σ11 = Σ𝑦 ⊗ 𝐾(𝑆, 𝑆),

Σ12 = Σ𝑦 ⊗ 𝐾(𝑆, 𝑆∗),

Σ21 = Σ𝑦 ⊗ 𝐾(𝑆∗, 𝑆),

Σ22 = Σ𝑦 ⊗ 𝐾(𝑆∗, 𝑆∗).

Note that this constructed covariance matrix assigns the expected covariance we

have defined in (6.4) but it is not identical to

Σ𝑦 ⊗ 𝐾 ⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝑆
𝑆∗

⎞⎟⎟
⎠

, ⎛⎜⎜
⎝

𝑆
𝑆∗

⎞⎟⎟
⎠

⎞⎟⎟
⎠

.

Therefore, the posterior predictive distribution for the spatial matrix-variate regres-

sion model is

vec(𝑌 ∗)|𝑌 = 𝑦, 𝑋, 𝑆, 𝑆∗, Θ ∼ 𝑁𝑛∗𝑠𝑛𝑦
(𝝁𝑌 ∗|𝑌 , Σ𝑌 ∗|𝑌 ) ,

𝝁𝑌 ∗|𝑌 = vec(𝑋∗𝐵) + Σ12Σ−1
22 vec(𝑦 − 𝑋𝐵),

Σ𝑌 ∗|𝑌 = Σ11 − Σ12Σ−1
22 Σ21.
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6.4 Groundwater Application

We specify both models in Stan, to be fit with the Hamiltonian Monte Carlo (HMC)

algorithm (Stan Development Team, 2023). When the spatial matrix-variate normal

regression model is fit to our groundwater monitoring site, 1500 observations for the

LMWO prediction scenario described in Section 1.6, we find evaluation of the log

density takes between 1 and 3 seconds. The ramifications of this is that the model

will not fit within a couple of days but will require weeks or even months because the

HMC algorithm evaluates this gradient several times per MCMC iteration. More-

over, this algorithm would have to be run several times during the process of model

checking, for example, fitting the model with various starting values to obtain differ-

ent chains and improve confidence of convergence. Therefore, we present no results

for matrix-variate models and instead advise the reader to use the varying intercept

model as described in Chapter 8 for a spatially-based model. We concede further

work on matrix-variate distributions such as efficiency analysis, approximations and

emulation would lead to interesting results we did not investigate.

Accordingly, all results presented in this section are therefore produced from the

Bayesian multivariate multiple linear regression as described in Section 6.1 where

observations (water samples) are modelled independently but analyte covariance is

modelled directly. We again assume independent and identically distributed stan-

dard normals with unit variance and zero-valued mean for each regression coefficient.

For the inverse Wishart prior distribution, we fix the scale matrix

𝑆Σ𝑦
= ⎛⎜⎜

⎝

1 0.5
0.5 1

⎞⎟⎟
⎠

,

to reflect our prior beliefs of positive correlation between the analytes and then allow

the degrees of freedom, 𝑑Σ𝑦
≥ 𝑛𝑦, to be reflective our prior certainty.
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Using the prior draws as a check, we have chosen 𝑑Σ𝑦
= 20. We also considered

letting 𝑑Σ𝑦
= 2 and 𝑑Σ𝑦

= 200 a priori and also fit models (not shown) with

these choices to investigate the sensitivity of this choice. We found no noticeable

difference when the prior was made more vague, that is 𝑑Σ𝑦
= 2, but were able

to very slightly affect the posterior distributions with a more precise prior, that is

𝑑Σ𝑦
= 200. However, these changes only decreased the log likelihood estimates by

less than 0.5% on average.

As described in Section 5.5, the LMWO and holdout future prediction scenarios

produce overlapping observed data since holdout future scenario is identical to the

LMWO scenario with pre-2015 observations from holdout wells added. As expected,

we do not observe any substantial impact on the parameter estimates between these

inferences. Hence, output relating to parameter estimates for the model trained in

the holdout future case are omitted.

6.4.1 Regression Parameters

When analyte covariance is directly modelled as is the case in the imputed multivari-

ate multiple regression model, we notice that the regression coefficients associated

with benzene are all less extreme than the univariate censored case shown in Fig-

ure 5.2. That is, our posterior beliefs increase in their certainty and hold more

density closer to 0 as shown in Figure 6.1. We previously justified modelling MTBE

as a proxy to better understand, typically left-censored (> 50%), benzene concen-

trations and so we expected more informative regression coefficients here.

On the other hand, this bivariate relationship can not be the only reason that we see

posterior densities “moving” closer to 0 as both intercepts and oxidation reduction

potential (ORP) effects on both analyte concentrations are estimated to have a

smaller impact in the multivariate case.
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Figure 6.1: Marginal posterior density of regression coefficients, corresponding pa-
rameter from univariate regression shown for comparison. LMWO, imputed mult-
variate multiple linear regression.
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6.4.2 Among-Column Covariance
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Figure 6.2: Posterior density of marginal variance and covariance terms in Σ𝑦
LMWO, imputed multvariate multiple linear regression.

Since we have only modelled two analytes, MTBE and benzene, the model param-

eter Σ𝑦 is a 2 by 2 matrix comprising three parameters. The main diagonal of

Σ𝑦 corresponds to the marginal variances and the non-diagonal entries are equal

by symmetry and represent the marginal posterior distribution of the covariance

between MTBE and benzene. Thus, all three marginal posterior distributions are

shown as densities in Figure 6.2.

Comparing with univariate model parameters for measurement error shown as

marginal precisions (inverse variance) in Figure 5.4, we notice that the posterior

precisions for both analytes have increased. In particular, the posterior mean of the

marginal precision associated with MTBE increased from 0.09 to 0.13, for benzene

the posterior mean changed from 0.03 to 0.10. Residual variance not explained by

the model is decreased for both analytes when jointly modelled, more so for the

more frequently censored benzene concentrations.

We parameterise our model with a covariance parameter as opposed to a precision

matrix to help with interpretability of the non-diagonal terms. Positive covariance
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between analytes, as shown, reflect that our posterior beliefs are aligned with our

prior beliefs of high correlation between these analytes. Furthermore, we could

decompose the covariance parameter Σ𝑦 into a correlation parameter Σ̃𝑦 for all

MCMC iterations 𝑚 = 1, … , 𝑀 such that

Σ̃(𝑚)
𝑦 = 𝐷(𝑚)Σ(𝑚)

𝑦 𝐷(𝑚),

where 𝐷(𝑚) is a diagonal matrix where the diagonal elements are equal to the inverse

square root of the diagonal elements in Σ(𝑚)
𝑦 . Using the draws from the off-diagonal

of this posterior correlation matrix yields our estimated posterior correlation be-

tween MTBE and benzene; the multivariate multiple regression model estimates the

correlation between our two analytes to be between (0.592, 0.654) based on the 95%
symmetric credible interval.

We have described in Section 2.4.1 how estimating analyte correlation is difficult

when both variables are doubly censored. Future work could investigate the feasi-

bility of using the Bayesian multivariate multiple regression model to estimate the

correlation between two censored analytes; censoring would have to be dealt with

using imputation or data augmentation. The approach could be compared to exist-

ing methods such as Kendall’s Tau (Helsel, 2011) and bivariate maximum likelihood

estimation (Newton & Rudel, 2007) as described in Section 2.4.1.

6.4.3 Prediction

In the univariate model predictions shown in Section 5.5.4, we observed a much

lower prediction for benzene log concentrations with some prediction intervals lower

than −20 on the log scale. By jointly modelling both analytes we would expect lower

concentrations of benzene to be estimated to be closer to the MTBE concentration,

given the moderate inter-analyte correlation in the posterior. Figure 6.3 shows that
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this is the case for the LMWO prediction scenario where benzene is now predicted

to be much higher when the model jointly predicts MTBE and benzene in one step

using the bivariate normal posterior predictive distribution.

As with Chapter 5, we omit prediction results for holdout future scenarios as pre-

dictions after 2015 look identical to Figure 6.3.
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Figure 6.3: Predictions with comparison to truth in black. LMWO, imputed mult-
variate multiple linear regression.
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6.4.4 Model Comparison

For our model comparison metrics described in Section 1.7 we must evaluate the log

likelihood for each MCMC iteration. Previously, we have extracted the log pointwise

predictive density (LPD) for each analyte per MCMC iteration. With the multivari-

ate multiple regression model, the bivariate density in the log likelihood means we

can only obtain a single contribution per observation and per MCMC iteration. If a

matrix-variate regression was to be compared, we would not be able to evaluate the

log pointwise predictive density (LPD) as the density is evaluated with the entire

dataset 𝑌 , 𝑋 and 𝑆. The upshot of this is that when comparing multivariate models,

we are comparing the predictive performance of the model based on all analytes, as

shown in Table 6.1 and Table 6.2. As described in Section 1.7.4, each metric value

shown is relative to the ‘best’ model as we present the average standard error of

the difference in models, not the difference of the standard errors; consequently, the

best model is easily identified by a zero value.

Δ LPD (SE) Δ WAIC (SE) Δ PSIS (SE)

Univariate 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Multivariate -1562.5 (64.2) -1560.4 (64.6) -1560.4 (64.6)

Table 6.1: Model comparison metrics based on in-sample data. Both analytes,
LMWO, imputed multvariate multiple linear regression.

Δ LPD (SE)

Univariate 0.0 (0.0)

Multivariate -98.7 (20.9)

Table 6.2: Model comparison metrics based on in-sample data. Both analytes,
LMWO, imputed multvariate multiple linear regression.
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We speculate that while benzene prediction may have improved due to the presence

of MTBE, it could also be the case that prediction of MTBE has suffered due to

the overly-censored benzene. Another difference between these two models is that

censoring was not dealt with in a principled way and the imputation technique, DL/2,

as defined in Section 1.5.1 was used for the multivariate model. Table 6.1 shows

that the multivariate model is considerably worse on the in-sample data. Similarly,

Table 6.2 highlights that the univariate model is likely better at predicting new data

since the log pointwise predictive density (LPD) is approximately 5 standard errors

greater.

On the other hand, one should be careful to draw conclusions from these results as

the log density of the multivariate model must be evaluated on the imputed data.

That means the univariate model has an unfair advantage since it is easier to predict

an observation that “agrees” with ND < 1 yielding a higher CDF contribution than

to predict a value close to half the detection limit, 0.5. To mitigate this issue, further

work could consider assessing model performance based on an ‘important’ subset of

the uncensored data and potentially using simpler metrics such as RMSE.

6.5 Conclusion

We have shown how jointly modelling analyte concentrations within hydrocarbon

groundwater monitoring could improve upon the predictive power of our models.

Qualitative assessments of prediction show more appropriate prediction intervals for

benzene. On the other hand, model comparison metrics such as widely applicable

information criterion (WAIC) and Pareto-smoothed importance sampling (PSIS)

refute that prediction is improved, but this could be due to the differing nature of

the log likelihoods for each model.
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No regression coefficients were shown for the univariate imputed case due to the

apparent bias demonstrated in the simulation study from Section 5.4. For the same

reason, one should be sceptical of the regression coefficients presented in this chapter

but we have highlighted how the true effect of each predictor may be smaller in

magnitude than the univariate model suggests. Since these parameters represent our

estimated effects of each of our predictors, electrical conductivity (EC), oxidation

reduction potential (ORP), dissolved oxygen (DO), pH and temperature on the

MTBE and benzene concentrations, we further explore the potential inaccuracy in

Chapter 8.

To keep the number of modelled analytes general, such that 𝑛𝑦 can be any positive

integer, we have presented the multivariate multiple linear regression as a trade-off

where directly modelling correlation is beneficial, but is done at the cost of needing to

impute the censored data, as no appropriate general censored multivariate density

can be used. Further work could investigate if a compromise where the number

of analytes is restricted to at most 2 and a new likelihood is composed using the

likelihood defined in Newton & Rudel (2007).

Alternatively, data augmentation as described in Section 1.5.4 could be employed

to deal with the censoring where each censored observation is regarded as a random

variable. This approach is more computationally expensive and may not be worth

the gains of modelling the analytes jointly as evidenced by similar predictions in

Figure 6.3 and Figures 5.6 and 5.7.
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Mixture of Experts

7.1 Motivation

In Chapter 3, we presented the reactive transport model (RTM) which highlighted

potential non-linearity between analytes and predictors since each relationship was

determined by a “phase”, or current state, of the groundwater network that is being

monitored. By generalising to a mixture modelling framework, we can improve

model performance when applied to the idealised mechanistic data, simulated from

the RTM. We then investigate if this generalisation improves our fit to case study

A, introduced in Chapter 2.

To relax our assumption of a linear relationship between analytes and predictors,

we assume a mixture model where observations are split into components to be

determined, and within each component there is a local linear relationship. One

could find component allocations for each observation using 𝐾-means clustering

(MacQueen et al., 1967) or a similar algorithm, but here we opt to integrate the par-

titioning of the observations within the model description. The Mixture of Experts

(MoE) model was originally described in the neural network literature (Jacobs et al.,
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1991) but is also referred to as the concomitant variable mixture regression model

(Wedel, 2002) in the statistical literature. A more explanatory description found in

Frühwirth-Schnatter (2006) refers to the model as

“a finite mixture of regressions models with observation-dependent

weight distribution.”

In our model, the weight distribution represents the different phases of the ground-

water system and we are making the assumption that these phases can be inferred

using observations of our water quality predictors. Hence, one can think of these

models as a two-stage approach,

• split the data into 𝐾 discrete components;

• perform regressions within each of these components.

The power of this model comes from the ability to describe complex and potentially

non-linear relationships using multiple linear regression coefficients. These models

are very suitable for our aims of predicting analyte concentrations using the pre-

viously defined water quality predictors such as conductivity (EC) and oxidation

reduction potential (ORP) because our predictors that will inform the regressions

and component membership are intrinsic to the geological system. That is, we rea-

sonably expect that the EC, ORP or even pH of a water sample is indicative of the

fluctuations in the groundwater system affecting components, whilst also presenting

a quantifiable impact on specific analyte concentrations.
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7.2 Model Specification

Consider a finite mixture model (McLachlan & Peel, 2000), which can be expressed

as a convex combination of 𝐾 finite parametric distributions, 𝑓1, … , 𝑓𝐾,

𝑓(𝑦𝑖|𝜼, 𝜽) =
𝐾

∑
𝑘=1

𝜂𝑘𝑓𝑘(⋅|𝜽𝑘), (7.1)

for each observation 𝑖 = 1, … , 𝑛𝑠, where 𝜼 = (𝜂1, … , 𝜂𝐾)𝑇 and 𝚯 = {𝜽1, … , 𝜽𝐾}.

The set of parameters for the 𝑘𝑡ℎ distribution are denoted by 𝜽𝑘, for 𝑘 = 1, … , 𝐾,

and 𝜂1, … , 𝜂𝐾 are non-negative weights that sum to one. We refer to each distribu-

tion as a “component”, where the total number of components, 𝐾, is assumed to be

unknown a priori and discussed further in Section 7.4.

If 𝑓𝑘 also depends on covariates, 𝐱𝑖, Equation (7.1) describes a mixture of regressions

model. Allowing a mixture of regressions model to possess weights that also depend

on these covariates yields a MoE model as described in (7.2) (Frühwirth-Schnatter

et al., 2019)

𝑓(𝑦𝑖|𝐱𝑖, 𝝎, 𝜽) =
𝐾

∑
𝑘=1

𝜂𝑘(𝐱𝑖|𝝎𝑘)𝑓𝑘(⋅|𝐱𝑖, 𝜽𝑘), (7.2)

where a gating function, 𝜂𝑘, performs clustering based on weighting parameters

𝝎𝑘 and covariates 𝐱𝑖. Each parametric distribution, otherwise known as an expert

(Jacobs et al., 1991), depends on component-specific distribution parameters 𝜽𝑘 and

covariates.

7.2.1 Likelihood

Using the general model (7.2), we can extend the original censored regression model

(5.2) to allow for clustering. In a groundwater application, we restrict component

membership to be shared across analytes, 𝑗 = 1, … , 𝑛𝑦, meaning 𝑦𝑖𝑗 corresponds to

component 𝑘 if and only if 𝑦𝑖𝑗′ corresponds to component 𝑘 for all 𝑗′ = 1, … , 𝑛𝑦.
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Given the physical interpretation of the components as phases of groundwater net-

work systems, this restriction is appropriate.

The censored mixture of experts model for multiple analytes, is given by the likeli-

hood

𝑓(𝐲𝑖|𝐱𝑖, Ω, 𝐵̃, 𝑇 ) =
𝐾

∑
𝑘=1

𝜂𝑘(𝐱𝑖|𝝎𝑘)𝑓𝑘(𝐲𝑖|𝐱𝑖, 𝐵𝑘, 𝝉𝑘), (7.3)

for 𝑖 = 1, … , 𝑛𝑠, where 𝜂𝑘(𝐱𝑖|𝝎𝑘) represents the probability that observation 𝑖 is

associated with component 𝑘 based on choice of weighting function 𝜂, covariates 𝐱𝑖

and weighting parameters 𝝎𝑘. For our left-censored dependent variables, 𝑓𝑘 denotes

the normal probability density function (PDF) when 𝑦𝑖𝑗 is uncensored and the nor-

mal cumulative distribution function (CDF) otherwise, an approach introduced in

the censored regression model (5.6). The parameters of this multivariate model are

• Ω = (𝝎1 … 𝝎𝐾), a 𝑛𝑥 + 1 by 𝐾 matrix of weighting parameters. A greater

𝜔𝑗𝑘 represents a greater probability than an observation is associated with

component 𝑘, assuming all other weighting parameters are fixed and the 𝑗𝑡ℎ

predictor is positive, the converse holds true for negative predictor values;

• 𝐵̃, an array of dimension 𝑛𝑥 +1×𝑛𝑦 ×𝐾 that contains 𝐾 regression coefficient

matrices, 𝐵𝑘 for 𝑘 = 1, … , 𝐾,

– for convenience, we define 𝜷𝑗𝑘 to be the 𝑗𝑡ℎ column of 𝐵𝑘 representing

the impact of each intercept and predictor on the 𝑗𝑡ℎ analyte under com-

ponent 𝑘;

• 𝑇 = (𝝉1 … 𝝉𝐾), a 𝑛𝑦 × 𝐾 matrix of component-specific and analyte-specific

precision parameters.

By design, the regression coefficients vary among components, but whether the

precision parameters should be considered distinct across all components is more

ambiguous as measurement error could be expected to be independent to the “phase”
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of the groundwater network. We allow the measurement precision to vary by analyte

and component with the remark that if these parameters are identical, the more

general model will allow for this case. If all precision estimates appear to be identical,

we can refine the model by imposing the restriction of a single precision parameter

to improve estimation quality.

Note that it may be the case that the predictors used in the regression context could

differ from the predictors used in the clustering context. For instance, consider the

role of 𝑝𝑒, a measure of electron activity, in the RTM data. This variable almost

exactly informs the phase of the mechanistic system but seemingly has less utility

in predicting the simulated concentration of any analyte. More nuanced variable

selection is beyond the scope of this work and we incorporate all predictors for both

weighting and regression where it is implied that 𝐱𝑇
𝑖 denotes the same predictors

in both cases. Furthermore, our estimates of these coefficients provide a crude

assessment of variable importance as we observe with temperature in Section 7.6.

7.2.2 Latent Variables

Suppose there exists latent allocation variables 𝑧𝑖 for each observation 𝑖 = 1, … , 𝑛𝑠

that determine which component each extracted water sample 𝑖 belongs to, as shown

in (7.4). Using these allocation variables, we can extend the univariate (5.2) and cen-

sored (5.6) linear regression models to have distinct parameters for each component

and enact clustering with a multinomial logistic model. This alternative parameter-

isation can be a useful form as the generated quantity 𝐳 = (𝑧1, … , 𝑧𝑛𝑠
) can assist in

post-processing algorithms like label switching to be discussed in Section 7.3.

𝑦𝑖𝑗|𝐱𝑖, 𝑧𝑖 = 𝑘 ∼ 𝑁(𝐱𝑇
𝑖 𝜷𝑗𝑘, 𝜏−1

𝑗𝑘 ),

Pr(𝑧𝑖 = 𝑘|𝐱𝑖) = 𝜂𝑘(𝐱𝑖|𝝎𝑘).

(7.4)
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While a meaningful interpretation of 𝐳 = (𝑧1, … , 𝑧𝑛𝑠
)𝑇 is not required to be used

effectively (Frühwirth-Schnatter et al., 2019), we can perceive each 𝑧𝑖 as nominal

data that labels the phase of a complex geophysical system as shown in the RTM

model, Chapter 3.

Obtaining maximum likelihood estimates (MLEs) from likelihood (7.3) is not

straightforward but can be determined using an expectation maximisation (EM)

algorithm (Dempster et al., 1977). During the EM algorithm, the likelihood (7.3)

is computed and then maximised with respect to the model parameters. This

procedure is then enacted iteratively until the model parameters converge on a local

maxima (Gormley & Frühwirth-Schnatter, 2019, pp.277). A possible alternative to

the likelihood used in the “E” step is the conditional expectation of the complete

data likelihood. The complete data likelihood is the likelihood we would construct

if we assume the latent variable 𝐳 was known. For a MoE model described in (7.4),

the complete data likelihood is

𝐿𝐶(𝜽, 𝝎) =
𝑛𝑠

∏
𝑖=1

𝑛𝑦

∏
𝑗=1

𝐾
∏
𝑘=1

{𝜂𝑘(𝐱𝑖|𝝎𝑘)𝑓𝑘(𝑦𝑖𝑗|𝐱𝑖, 𝛽𝑗𝑘, 𝜏𝑗𝑘)}𝕀(𝑧𝑖=𝑘) ,

where 𝕀(𝑧𝑖 = 𝑘) equals one if 𝑧𝑖 = 𝑘 and zero otherwise.

7.2.3 Weighting Function

For this model to be fully defined, it remains to choose weighting function, 𝜂𝑘,

that is capable of mapping our covariates to the 𝐾-dimensional simplex denoted

S 𝐾. This restriction is required so the output can be used as probabilities. We

generate a weighting linear predictor, 𝐱𝑇
𝑖 Ω, to be passed to the softmax function,

otherwise known as the inverse multinomial logit function. Explicitly, the allocation
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probabilities for components 𝑘 = 1, … , 𝐾 are given by the column vector

𝜼𝑖 = (𝜂1(𝐱𝑖|𝝎1), … , 𝜂𝐾(𝐱𝑖|𝝎𝐾))𝑇

= softmax(𝐱𝑖𝝎1, … , 𝐱𝑖𝝎𝐾)

= ( exp(𝐱𝑖𝝎1)
∑𝐾

𝑘′=1 exp(𝐱𝑖𝝎𝑘′)
, … , exp(𝐱𝑖𝝎𝐾)

∑𝐾
𝑘′=1 exp(𝐱𝑖𝝎𝑘′)

)
𝑇

.

Further work could investigate better choices of 𝜂𝑘 and take inspiration from neural

networks where the rectified linear unit (RelU) function can be chosen over other

“activation” functions due to more satisfactory properties (Goodfellow et al., 2016).

Hence, the censored MoE model with latent variables (7.4) can be more compactly

expressed as

𝜋(𝑦𝑖𝑗|𝛿𝑖𝑗, 𝐱𝑖, 𝑧𝑖 = 𝑘) = 𝑓(𝑦𝑖𝑗|𝐱𝑇
𝑖 , 𝜷𝑗𝑘, 𝜏𝑗𝑘)1−𝛿𝑖𝑗𝐹(𝑦𝑖𝑗|𝐱𝑇

𝑖 , 𝜷𝑗𝑘, 𝜏𝑗𝑘)𝛿𝑖𝑗 ,

𝑧𝑖 ∼ Multinomial𝐾(1, 𝜼𝑖),

𝜼𝑖 = softmax(𝐱𝑇
𝑖 𝝎1, … , 𝐱𝑇

𝑖 𝝎𝐾),

(7.5)

where 𝑓 and 𝐹 are the PDF and CDF of the normal distribution, 𝛿𝑖𝑗 is as defined

in Section 1.5 where 𝛿𝑖𝑗 = 1 when 𝑦𝑖𝑗 is censored and zero otherwise.

7.2.4 Identifiability

Since 𝜼𝑖 lies on the simplex and must sum to one, we are trying to estimate 𝐾
parameters with only 𝐾−1 degrees of freedom leading to an issue with identifiability,

a necessary condition for the existence of consistent estimators (Hennig, 2000). The

MoE model is not identifiable but it is generically identifiable, up to label switching,

as the “set of non-identifiable parameters has zero measure” (Allman et al., 2009). To

make this issue explicit, consider Proposition 7.1 where we infinitely many weighting

parameters yield the same allocation probabilities, that is 𝜼∗
𝑖 = 𝜼𝑖.
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Proposition 7.1. Suppose that for any arbitrary constant, 𝐶 ∈ ℝ, we let

𝝎∗
𝑘 = 𝝎𝑘 + 𝐶𝐞𝑗,

for all 𝑘 = 1, … , 𝐾 where 𝐞𝑗 is a unit vector where the 𝑗𝑡ℎ element is 1 and all

other elements are zero. Intuitively, we are adding 𝐶 to all elements in the 𝑗𝑡ℎ row

of the weighting matrix Ω = (𝝎1, … , 𝝎𝐾). It follows that the allocation probabilities

produced in (7.5) are identical.

Proof. To show 𝜼𝑖 = 𝜼∗
𝑖 it suffices to show that any 𝑘𝑡ℎ element is equal, that is,

𝜂∗
𝑖𝑘 = exp(𝐱𝑇

𝑖 𝝎∗
𝑘)

∑𝑘
𝑘′=1 exp(𝐱𝑇

𝑖 𝝎∗
𝑘′)

= exp(𝐱𝑇
𝑖 𝝎𝑘 + 𝐶𝑥𝑖𝑗)

∑𝑘
𝑘′=1 exp(𝐱𝑇

𝑖 𝝎𝑘′ + 𝐶𝑥𝑖𝑗)

= exp(𝐱𝑇
𝑖 𝝎𝑘)

∑𝑘
𝑘′=1 exp(𝐱𝑇

𝑖 𝝎𝑘′)
⋅ exp(𝐶𝑥𝑖𝑗)

exp(𝐶𝑥𝑖𝑗)

= 𝜂𝑖𝑘.

We consider two approaches to solve the identifiability problem with the weighting

coefficients which will help improve estimation. The first is a corner constraint as em-

ployed by Kruschke (2014) where for some choice of reference pivot, 𝑟 ∈ {1, … , 𝐾},

we reparameterise 𝝎∗
𝑘 = 𝝎𝑘 −𝝎𝑟. This has the effect that 𝝎𝑟 is a vector of zeros and

all interpretations of the weighting coefficients are relative to that reference compo-

nent. Alternatively, one can impose a sum to zero constraint on each row of the

matrix Ω. One way to achieve this is by subtracting the means of the corresponding

rows leading to a different interpretation where each weighting coefficient is relative

to a mean value.
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A distinction between these two constraints that will become relevant in Section 7.4

is the property of independence from irrelevant attributes (Kruschke, 2014). In this

context, independence from irrelevant attributes asserts the ratio of probabilities

between two components is unchanged in the presence of more components. This

property is desirable when our approach to choosing the number of components

involves fitting the model at various candidate values of 𝐾. When using a corner

constraint, the weighting variable is transformed into 𝜔𝑗𝑘 −𝜔𝑗𝑟 for some components

𝑘 and reference component 𝑟 and this quantity remains independent of 𝜔𝑗𝑘∗ for

𝑘∗ ∉ {𝑘, 𝑟}. Using the sum to zero constraint violates this property as the weighting

variable is now transformed into 𝜔𝑗𝑘 − 𝜔̄𝑇
𝑗 , where 𝜔̄𝑇

𝑗 would change in the presence

of more components.

In a groundwater monitoring application, our interpretation of each component is a

different possible phase of the system with very little meaning given to the average

phase. For this reason and the desirable independence from irrelevant attributes

property, we adopt the former approach and set 𝝎1 = 𝟎 as the reference pivot. One

could utilise a baseline phase representing an uncontaminated system at equilibrium

as the pivot component, but this is a non-trivial task specific to each groundwater

monitoring site.

7.2.5 Prior

For all regression coefficients in 𝐵̃, we assume independent normal distributions with

mean 0 and specified precision a priori. This is consistent with previous models

but we could manufacture a more precise prior if there was more information on the

underlying assumed components that represent “phases” of the groundwater network.

A similar reasoning produced independent and identical gamma prior distributions

for the analyte-specific and component-specific precision parameters 𝑇 .
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Weighting coefficients, Ω, take on a similar role to 𝐵̃ as the stochastic component

of a linear predictor and so we assume, a priori, independent and identical normals.

However, the prior certainty of these distributions will commonly exceed the prior

certainty of the regression coefficients since prior predictive checks (Stan Develop-

ment Team, 2023) highlighted weighting coefficients greater in magnitude than 1
tends to dominate component probabilities. Our decision of reducing the prior vari-

ance for the weighting coefficients is reflective of our prior beliefs that the system

is controlled by multiple phases. This is seen in Section 7.5 where Ω is an order of

magnitude less than 𝐵̃ to ensure a comprehensive simulation study that contained

equal data in each component.

7.2.6 Bayesian Inference

Once again, we adopt a Bayesian approach to inference and sample from the pos-

terior distribution via an MCMC algorithm, as described in Appendix B. The par-

ticular MCMC algorithm is slice sampling (Neal, 2003) that is enacted through the

use of the JAGS software (Plummer et al., 2003) where we specify all distributions

in (7.5) and all requisite prior distributions.

7.3 Label Switching

When dealing with nominal data such as 𝐳 = (𝑧1, … , 𝑧𝑛) we assign numerical labels

arbitrarily, say 1, 2, … , 𝐾; trivially, a perfectly valid alternative configuration exists

if we were to choose different labels. There are 𝐾! permutations of this labelling con-

figuration that would yield the same results and the corollary is that the likelihood

has 𝐾! modes, invariant to any relabelling. Within a Bayesian context, using a sym-

metric prior extends this issue to the posterior distribution. This leads to the label
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switching problem within our MCMC algorithm where the algorithm may converge

to one likelihood and switch to another of the equally valid 𝐾!−1 likelihoods within

that chain or even between chains due to different initial values (Redner & Walker,

1984). If our interest was purely in prediction, using posterior predictive densities,

there would be no problem due to invariance to these label changes. However, our

interests in estimating the component-specific parameters, 𝐵̃, Ω, 𝑇 , require a solu-

tion since posterior draws of these parameters are vastly affected by label changes

(Redner & Walker, 1984).

7.3.1 Existing Solutions

One such solution to the label switching problem is to impose an ordering constraint,

with the reasoning being if the prior is asymmetric, the posterior should be also.

However this method can lead to unsatisfactory results, as shown by Stephens (2000),

where multimodality persists even after imposing an ordering constraint. Further

consider that in the multivariate MoE case, ordering multidimensional parameters

is not trivial.

Stephens (2000) follows up criticism of ordering constraints with an alternative deci-

sion theoretic approach. Defining a loss function that takes some relabelling action

and true parameters and outputs a value that is representative of the loss incurred

allows Stephens to rephrase the problem as a minimisation problem. Advantageous

to this approach is the generality and wide range of problems this can be applied to

including latent variables (Boys & Henderson, 2002). In particular, this motivated

further methods including Boys & Henderson (2002) where a loss function represents

dissimilarity to a rolling marginal posterior mode that is updated each MCMC itera-

tion. For comparison of similar methods, the R software package label.switching

(Papastamoulis, 2016) allows users to apply a range of solutions including Stephens
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(2000); Papastamoulis (2016) also applies each solution to examples of label switch-

ing highlighting strengths and weaknesses of each.

A more automatic approach (Frühwirth-Schnatter, 2006) applies some form of 𝐾-

means clustering to the MCMC output. This may be done sequentially allowing for

on-line implementation (Celeux, 1998) or enacted once all raw MCMC iterations are

found (Zens, 2019). One benefit of such a method is to assist in determining if the

model is overfitting due to a poor choice of 𝐾. Section 3.7.7 of Frühwirth-Schnatter

(2006) asserts that if the relabelling configurations produced from such an algorithm,

say 𝜈𝑚(𝑘) for MCMC iterations 𝑚 = 1, … , 𝑀 , are not a permutation of {1, … , 𝐾}
this may be indicative of overfitting the number of components. That is,

𝐾
∑
𝑘=1

𝜈𝑚(𝑘) = 𝐾(𝐾 + 1)
2 ,

does not hold for a substantial fraction of iterations.

Rephrasing label switching as a by-product of these MCMC algorithms instead of

a problem leads to an interesting solution where instead of enforcing convergence

of a single posterior mode, one aims to explore the whole posterior; this is difficult

for random walk algorithms (Jasra et al., 2005). Neal (1996) proposes tempered

transitions to jump between these distant modes of the multi-modal posterior dis-

tribution. Tempering is possible with JAGS (Plummer et al., 2003) although we do

not leverage this functionality in this thesis. Further discussion of tempering can be

found in Neal (1996), Jasra et al. (2005).

Care must be taken when applying these methods in a MoE setting due to the

corner constraint for reasons to be explained in Section 7.3.2. For implementation

of a relabelling technique applied to a MoE model, see Zens (2019) where a random

permutation is introduced to force balanced label switching and draws that do not

create a unique permutation of {1, … , 𝐾} are discarded. Both Zens (2019) and
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Neal (1996) are interested in fully exploring the posterior sample space whereas our

method, defined in Section 7.3.4, is mainly interested in estimation and convergence

around a single posterior mode.

7.3.2 Further Consideration

In addition to dealing with the label switching problem that is present in a finite

mixture model or even a hidden Markov model (Boys & Henderson, 2002), there is

the further issue that our weighting parameters are invariant to translation as shown

in Section 7.2.4. To see why this complicates the issue, suppose we are estimating

𝝎 = (𝜔1, 𝜔2, 𝜔3) = (0, 2, −2),

where the pivot is the first label so 𝜔1 = 0. If the labels 1 and 3 were to switch we

would be estimating 𝝎 = (−2, 2, 0) but due to the presence of the pivot, an estimate,

say from some MCMC algorithm, would appear to be 𝝎̂ = (0, 4, 2).

Even in this simple example, a hypothetical scenario could be that the model fit-

ting algorithm estimates 0, 2 and −2 for the first 𝑀/2 posterior samples and then

estimates 0, 4 and 2 for the latter 𝑀/2 posterior samples. This would cause severe

issues for the 𝐾-means post-processing as suggested by Frühwirth-Schnatter (2006)

and used in Zens (2019).

7.3.3 Example

As an illustrative example of label switching, we simulate data from (7.5) with 𝐾 = 3
assumed and do not apply any censoring. In the MCMC analysis, we notice some

odd behaviour in the trace-plots that indicate the chains may not have converged.

This is most clearly seen in Figure 7.1 where each column and colour represents a
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different component and each row is a different simulated explanatory variable or

the intercept term. A change-point, specifically a change in series variance, can be

observed at around the same iteration index for the first two components.
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Figure 7.1: Marginal posterior trace-plots of regression coefficients. Label switching
example, MoE, 𝐾 = 3.
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Further supporting the hypothesis that label switching has occurred is the diagnostic

provided by the allocation raster visualisation, Figure 7.2. Since the allocation

variable data is discrete, a trace-plot would not be very useful and so we instead

create a raster image where the rows are the unique sample identifiers, columns

are MCMC iterations and the colour of each equally sized rectangle encodes the

discrete allocation data. Figure 7.2 indicated label switching but also conveys the

uncertainty around each allocation since any observation that is more “uncertain”

will exhibit a more varied row of colours representing the components.

Figure 7.2: Component allocation plot. Label switching example, MoE, 𝐾 = 3.
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7.3.4 Proposed Solution

We propose a modified version of the relabelling method described in Boys & Hender-

son (2002) that allows for the corner constraint producing a label switching solution

that accommodates the MoE model.

Suppose we fit our model to the data and produce raw MCMC output denoted as

𝐳(𝑚), 𝐵(𝑚), Ω(𝑚) for iterations 𝑚 = 1, … , 𝑀 . For some chosen amount of burn-in

iterations, 𝑚0, where ideally no label switching occurs, we apply Algorithm 2 to

iteratively reverse any label switching by comparing with the marginal posterior

mode up to that point.

Algorithm 2 Relabelling algorithm for MoE models
1: for 𝑚 = 𝑚0 + 1, … , 𝑀 do
2: set ̂𝐳(𝑚−1) equal to the marginal posterior mode, that is, for 𝑖 = 1, … , 𝑛,

̂𝑧(𝑚−1)
𝑖 = argmax

𝑘∈{1,…,𝐾}

𝑚−1
∑

𝑚∗=1
𝕀 (𝑧(𝑚∗)

𝑖 = 𝑘) ;

3: choose 𝜈𝑚 from the set of all 𝐾! permutations to minimise ‘disagreement’,

𝐷 = −
𝑛

∑
𝑖=1

𝕀 (𝜈𝑚(𝑧(𝑚)
𝑖 ) = ̂𝑧(𝑚−1)

𝑖 ) ;

4: apply permutation 𝜈𝑚 to output 𝐳(𝑚), Ω(𝑚), 𝐵(𝑚);
5: translate Ω(𝑚) by subtracting modified reference column vector 𝝎(𝑚)

𝑟 .
6: end for

By applying this algorithm to the example introduced in Section 7.3.3, we can revisit

the trace-plot and diagnostic behaviour to verify the algorithm has had the intended

effect. As such, we recreate Figures 7.1 and 7.2 in Figures 7.3 and 7.4 respectively.
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Figure 7.3: Marginal posterior trace-plots of regression coefficients, after relabelling.
Label switching example, MoE, 𝐾 = 3.
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Figure 7.4: Component allocation plot, after relabelling. Label switching example,
MoE, 𝐾 = 3.

While Figure 7.4 highlights that the first component is underutilised and this model

may be overfitted when 𝐾 = 3 is assumed, we see that the algorithm has corrected

any label switching issues and we are now able to compute posterior means of the

regression coefficients. Not all issues are fixed by this procedure and one can see an

inconsistency in the output for the second component near the 500𝑡ℎ and 2, 500𝑡ℎ

MCMC samples. These are indicative of potential bimodality, or even multimodal-

ity, within our simulated example which highlights a key complication where the

MCMC algorithm may converge to none of the 𝐾! posterior global modes and in-

stead converge to a local maxima.
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7.4 Choice of 𝐾

So far we have assumed that the number of components, 𝐾, is fixed and known.

In any groundwater monitoring application there exist numerous possible reactions

dominating the system and affecting the phase, meaning it is not a straightforward

task to let 𝐾 represent the total number of substantial system phases.

7.4.1 Existing Methods

Ideally, one would jointly infer the number of components and the model param-

eters in a single model, but this is difficult to achieve. A rigorous version of the

expectation-maximisation (EM) algorithm has been developed that allows penalised

maximum likelihood estimation in an unsupervised context without the requirement

of knowing the number of components beforehand (Chamroukhi, 2016). The upshot

of this methodology is the decreased sensitivity to initialisation when compared to

a more standard EM algorithm. Within a Bayesian approach, one can leverage a re-

versible jump Markov chain Monte Carlo (RJMCMC) algorithm that allows chains

to traverse over parameter spaces and thus relax the requirement that 𝐾 is known

a priori (Richardson & Green, 1997). Practically, the RJMCMC algorithm allows

two key steps:

1. splitting one component into two, or combining two in one;

2. the birth and death of an empty component,

where a superfluous component is declared empty when associated with too few

observations or it is too similar to another component. RJMCMC acts upon the fact

that when the number of fitted components exceeds the true number of components,

as in Section 7.5, either parameter estimates will converge to similar values or the

allocation probability will decrease towards zero (Frühwirth-Schnatter et al., 2019).

145



Chapter 7. Mixture of Experts

In a Bayesian framework, there is no need to assume that 𝐾 is known a priori and

we can relax this assumption by making use of a Dirichlet process prior (Ferguson,

1973). A Dirichlet process, parameterised by a base distribution and concentration

parameter, produces realisations that are also probability distributions. The advan-

tage of this non-parametric approach is that one can apply a stick-breaking approach

where each successive component takes some proportion, less than 1, from a unit

stick for countably infinitely many components (Gelman et al., 1995). Since each

realisation is a random distribution with associated probability density function, we

have generated a generalisation of (7.2) for infinitely many components. There are

other approaches that we do not cover here for the sake of brevity.

Our approach is to treat the total number of components, 𝐾, as a hyperparameter

to be “tuned”. That is, fit the model to several candidate values of 𝐾 and use

model comparison metrics, such as those introduced in Section 1.7, to decide on

the ‘best’ number of components (Huynh, 2019; Gormley & Frühwirth-Schnatter,

2019). Frühwirth-Schnatter et al. (2019) provides a thorough discussion of various

metrics such as AIC, BIC and the deviance information criterion (DIC) used for

this purpose. Candidate values can be obtained by non-parametric methods such as

𝐾-means clustering, preliminary analysis or fitting incrementally more components

until signs of overfitting are found.

7.4.2 Signs of Overfitting

When choosing a value for 𝐾 it is important to understand the interpretation of

our weighting parameters and how these parameters will behave when there are too

many components. Suppose, without loss of generality, there is only one explanatory

variable, and no intercept is used. We choose our reference cluster to be 𝑟 = 1 and,

without knowing the true value of 𝐾, we wrongly assume 𝑀 > 𝐾 components.
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The true value of our weighting matrix is therefore

Ω = (0 𝜔2 − 𝜔1 … 𝜔𝐾 − 𝜔1) .

For 𝑚 = 𝐾 + 1, … , 𝑀 , it must be the case that 𝜂𝑖𝑚 = Pr(𝑧𝑖 = 𝑚) = 0 since these

components are empty, but our model will not allow zero probabilities since the ex-

ponential of any finite value can never equal zero. Instead, the allocation probability

of some arbitrary empty component, 𝜂𝑖𝑚 → 0, tends to zero as the respective linear

predictor, 𝑥𝑖1𝜔∗
𝑚 → −∞, becomes more negative, where 𝜔∗

𝑚 = 𝜔𝑚 − 𝜔1. Hence,

an empty component can be inferred from extremely negative weighting coefficients.

The argument here requires the property of independence from irrelevant attributes

as described in Section 7.2.4. A negative weighting coefficient implies a unit increase

in 𝑥𝑖1 makes the event 𝑧𝑖 = 𝑚 less likely, relative to the event 𝑧𝑖 = 1; trivially, the

converse holds true.

Further methods of empty component identification such as prior-to-posterior up-

dates (Section 7.5.1) or convergence to similar values (Frühwirth-Schnatter et al.,

2019) should also be considered when assessing the output of these models.

7.4.3 Proposed Solution

We implement a quantitative approach that uses the model comparison metrics

introduced in Section 1.7. If we were to assume our data to be predicted is a

true test dataset, then our out-of-sample data would be completely hidden from the

model decision making process and we would base our metric on the in-sample data

only. The LPD based on in-sample data is the observed data log likelihood and

would choose the most complex model meaning it is unreliable and will likely lead

to overfitting; we expect the LPD score for each model to increase at a declining

rate as more components are added. To account for increasing model complexity, we
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make use of the PSIS measure as an approximation to leave-one-out cross validation.

Alternatively, one could view the data to be predicted as a validation dataset which

can be used to choose an optimal value of some tuning parameter, in this case 𝐾. In

this context we can use the LPD as a log-scoring rule (Gneiting & Raftery, 2007) to

asses each model’s predictive power and choose the optimal value of 𝐾 accordingly.

Further work could explore the impact of choosing a training-validation-test data

split on reliably estimating the correct number of components.

These two approaches may not always agree, as shown in Section 7.5.1. Hence,

we opt for a pragmatic approach to this decision problem where the implicit multi-

attribute utility function depends not only on a model’s predictive performance, but

also computational time requirements and model interpretability.

7.5 Simulation Study

To demonstrate how the mixture of experts (MoE) model responds to various cir-

cumstances we investigate with multiple simulation studies where we simulate data

from a univariate MoE model and fit using the same model. To simulate the data,

we must choose a total number of components, 𝐾; we assume 𝐾 = 3 with the

caveat that we cannot use this fact in the model fitting stage and must instead use

methods described in Section 7.4 to choose a suitable total number of components.

We present two datasets of size 𝑛𝑠 = 1000, where parameters 𝐵, Ω and allocation

variables 𝐳 are the same each time but we produce a different signal-to-noise ratio

by setting a common precision parameter, 𝜏1𝑘 = 4, or 𝜏1𝑘 = 36,for all 𝑘. In this

instance, we arbitrarily set

𝜷11 = (9 2 4)
𝑇

, 𝜷12 = (6 3 7)
𝑇

, 𝜷13 = (5 1 8)
𝑇

,
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where 𝜷1𝑘 represents the regression coefficients of component 𝑘. We arbitrarily set

Ω on a different scale to ensure each component has a reasonable sample size as

shown in Table 7.1, that is,

Ω =
⎛⎜⎜⎜⎜⎜⎜
⎝

0.0 0.6 0.0
0.0 −0.2 −0.4
0.0 1.2 0.5

⎞⎟⎟⎟⎟⎟⎟
⎠

.

Data is then artificially censored at the 15% level, that is, all values less than the

15𝑡ℎ percentile are taken to be left-censored with a common detection limit set to the

15𝑡ℎ percentile. Note that 𝝉 is kept constant across components in the simulation

of these data, whereas the model to be fit allows for component-specific precisions.

7.5.1 Identifying 𝐾

As 𝐾 is unknown at the model fitting stage, we fit candidate models with 𝐾 =
1, … , 5 to both datasets. Consider the fit where we erroneously assumed 𝐾 = 5;

two components are superfluous and our posterior beliefs should reflect this. Firstly,

Figure 7.5 shows that the regression coefficients for all predictors in the final two

components have a larger posterior variance relative to the other three components

and, moreover, they tend to more closely resemble draws from the prior. One

possible explanation is that there is a smaller volume of data in these superfluous

components affecting the posterior estimation, although, a small prior to posterior

change could be due to other issues with estimation.
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Figure 7.5: Marginal posterior trace-plots of regression coefficients. Simulated ex-
ample, high precision, MoE, 𝐾 = 5.

Further supporting the claim that this data is overfitted and the extra components

may not be needed is the posterior allocation probabilities. Suppose we define our

estimate of the allocation probability for observation 𝑖 based on 𝑀 posterior samples

as

̂𝜂𝑖𝑘 = 1
𝑀

𝑀
∑
𝑚=1

𝕀(𝑧(𝑚)
𝑖 = 𝑘),

for 𝑘 = 1, … , 𝐾 and then let

𝜼̂𝑘 = 1
𝑛𝑠

𝑛𝑠

∑
𝑖=1

̂𝜂𝑖𝑘

= 1
𝑛𝑠

𝑛𝑠

∑
𝑖=1

1
𝑀

𝑀
∑
𝑚=1

𝕀(𝑧(𝑚)
𝑖 = 𝑘),
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denote the estimated posterior total allocation probabilities for all observations

𝑖 = 1, … , 𝑛𝑠. Table 7.1 reflects this quantity when estimated from our posterior

draws with the true latent variables that we store during the simulation stage. We

see that the extra components, 𝐾 > 3 have small probabilities with very few data

associating with these components which explains the poor inference of each super-

fluous component; the remaining probabilities are close to the truth in this particular

simulation study.

Component Index Estimated Probability True Probability

𝜼1 28.36% 28.60%
𝜼2 51.49% 49.40%
𝜼3 19.07% 22.00%
𝜼4 0.52% 0.00%
𝜼5 0.56% 0.00%

Table 7.1: Estimated posterior total allocation probabilities. Simulated example,
high precision, MoE, 𝐾 = 5.

When assessing model comparison metrics to choose an appropriate value of 𝐾,

we notice distinct patterns depending on the precision, relative to the regression

coefficients. Models with a higher precision, 𝜏𝑗𝑘 = 36, are compared in Table 7.2 and

we see that the best model has 3 components. While using more components than

necessary results in a ‘worse’ model, it is preferred to fitting too few components

as evidenced by the poor score of 𝐾 = 2 and 𝐾 = 1. We see similar scores

between models for the low signal-to-noise model shown in Table 7.3 implying that

adding more components while increasing model complexity, is not improving model

performance.
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Δ LPD (SE) Δ WAIC (SE) Δ PSIS (SE)

K = 1 -716.1 (21.0) -709.0 (21.4) -708.9 (21.4)

K = 2 -377.9 (23.9) -377.8 (24.4) -377.8 (24.4)

K = 3 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

K = 4 -3.2 (0.4) -3.3 (0.4) -3.3 (0.4)

K = 5 -8.2 (0.6) -8.2 (0.6) -8.2 (0.6)

Table 7.2: Model comparison metrics based on in-sample data. Simulated example,
high precision, MoE, 𝐾 = 5.

Δ LPD (SE) Δ WAIC (SE) Δ PSIS (SE)

K = 1 -357.3 (18.0) -346.5 (18.6) -346.4 (18.6)

K = 2 -98.4 (17.5) -97.2 (19.0) -97.1 (18.9)

K = 3 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

K = 4 -2.8 (0.4) -3.6 (0.5) -3.6 (0.5)

K = 5 -5.7 (0.8) -6.5 (0.8) -6.5 (0.8)

Table 7.3: Model comparison metrics based on in-sample data. Simulated example,
low precision, MoE, 𝐾 = 5.

Our simulations suggest that even in an idealised scenario with all model assump-

tions met, noise dominating the regression coefficients may lead to poor mixing and

could lead to difficulty recovering the true value of 𝐾. Overfitting may cause poor

mixing and unreliable posterior samples, but these symptoms can also be caused by

other factors such as multimodality. It is therefore important to leverage further

diagnostics to ensure this is not due to other issues with the model assumptions or

data.
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7.6 Groundwater Application

One advantage of modelling each analyte as conditionally independent, where in-

dependence is conditional on the latent variable 𝑧𝑖 for all observations, is that we

need only choose the number of components once per prediction scenario introduced

in Section 1.6. Here, we only present results from the LMWO prediction scenario

since the analyses appear very similar and little to no benefit is attained from sup-

plying historical data for the wells to be predicted within this model framework,

unlike Chapter 8. As with other models, we run the algorithm from 4 different

initial values to produce 4 chains with 5, 000 burn-in samples discarded and 10, 000
saved posterior samples. Our prior information as specified in Section 7.2.5 allows

us to use the same prior information as Section 5.5 for all regression coefficients

and precision parameters although an argument could be made to assign different

prior information per component. Given our prior assumption that the weighting

coefficients are an order of magnitude smaller than the regression coefficients, we

assume 𝜔𝑗𝑘 ∼ 𝑁(0, 10−1) for all non-pivot components 𝑘 = 2, … , 𝐾.

7.6.1 Choosing 𝐾

Candidate models for several appropriate choices of number of components up to

𝐾 = 4 are fit, including the special case 𝐾 = 1 that was shown in Chapter 5. No

label switching occurred in these fits and so no relabelling algorithm was employed.

Each model is fit with 4 chains, as described in Appendix B, with different initial

values drawn from the prior to verify convergence and highlight any issues such as

algorithm sensitivity to starting values.

For both prediction scenarios, LMWO and hold-out future, when we assume 𝐾 = 2
we find that the MCMC algorithm converges on two distinct posterior modes sug-

153



Chapter 7. Mixture of Experts

gesting a potential problem with multimodality. Interestingly, we found no evidence

of the sampler switching between these modes and instead found convergence was

dependent on the starting values of the model parameters. We can rule out these

issues as label switching, since the log likelihood is different between chains even

though it is invariant to relabelling. The reasoning for poor consistency could be

due to the suspected low signal-to-noise ratio of these groundwater data from site

A. As the posterior predictive draws are indistinguishable between the two posterior

modes, we opt for the pragmatic approach of presenting the model fit with the best

log score given by calculating the LPD on the out-of-sample data. Multimodality

becomes an increasingly prevalent problem as the assumed number of components

increases with evidence of potential multimodality seen in these analyses for 𝐾 ≥ 3;

various modes produce similar posterior predictive samples and are likely to be a

product of the non-identifiability of the MoE models. As such, we find sufficient

evidence that assuming more than 𝐾 = 4 components leads to poor parameter

estimation with no benefit to prediction and so these are not considered as viable

models.

Qualitative methods to choose the optimal number of components such as visualising

component allocations and identifying “empty” components that are similar to other

components or contain very few observations are difficult to apply to many models.

Calculating posterior allocation probabilities, as done in Section 7.5.1, can also help

identify such “empty” components quantitatively. Further complicating this process

is the seemingly random relabelling between chains that are caused by different

starting values. Instead, we initially apply the quantitative method of comparing

the model metrics when applied to the in-sample and out-of-sample datasets.
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Δ LPD (SE) Δ WAIC (SE) Δ PSIS (SE)

K = 1 -868.6 (38.8) -802.1 (39.9) -801.7 (39.9)

K = 2 -276.7 (22.2) -228.4 (23.3) -228.0 (23.2)

K = 3 -94.5 (14.4) -69.2 (15.3) -68.9 (15.2)

K = 4 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Table 7.4: Model comparison metrics based on in-sample data. LMWO, MoE,
𝐾 = 1, ..., 4.

Δ LPD (SE)

K = 1 -34.7 (8.6)

K = 2 0.0 (0.0)

K = 3 -23.5 (7.3)

K = 4 -6.8 (10.3)

Table 7.5: Model comparison metrics based on out-of-sample data. LMWO, MoE,
𝐾 = 1, ..., 4.

Table 7.4 and Table 7.5 show model comparison metrics log pointwise predictive den-

sity (LPD), widely applicable information criterion (WAIC) and Pareto-smoothed

importance sampling (PSIS) based on the pointwise log likelihood for both analytes.

In-sample metrics show that including more components will improve the fit with

diminishing returns as the assumed number of components 𝐾 increases. LPD is ex-

pected to increase as the number of total components increases because the model

is more overfitted each time; it is surprising that WAIC and PSIS follow a similar

trend as these metrics take into account the number of parameters in the model. We

hypothesise that there is an optimal in-sample number of components that leads to
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the ‘best’ WAIC and PSIS where adding more components will not increase LPD

enough to offset the increase in model complexity.

However, we opt to not fit more than 𝐾 = 4 components based on the out-of-sample

LPD scores and increasingly poor chain mixing to be discussed. The combination of

which suggests that adding more components to these models may improve in-sample

model comparison metrics without improving the models’ predictive performance

on previously unseen data. In the calculation of the PSIS metric, a diagnostic

corresponding to an estimated shape parameter, 𝑘̂, as defined in Section 1.7 is

produced (Vehtari et al., 2017). All values of 𝑘̂ are reliable for the censored regression

special case where 𝐾 = 1 and no diagnostic values exceed 1 for any candidate models.

Fewer than 5 PSIS pointwise estimates are spurious for the model with 𝐾 = 4
assumed number of components as the diagnostic values falls into [0.5, 1). PSIS

approximates leave-one-out (LOO) cross-validation and so problematic 𝑘̂𝑖 values

are indicative of very different marginal posteriors when all data is used and all

data except observation 𝑖 is used. It is expected that the PSIS estimate will only

become less reliable as more components are included.

In summary, choosing the assumed number of components 𝐾 can be viewed as

a multi-attribute decision problem with no objective best answer. Moreover, the

qualitative appearance of our predictions and quantitative LPD scores indicate that

each models’ predictive performance on previously unseen data is fairly insensitive

to this choice. Therefore, we opt for the simpler model in terms of computational

speed and number of parameters with 𝐾 = 2 assumed components over 𝐾 = 4
assumed components; we avoid the model where 𝐾 = 3 components are assumed

due to poor mixing and relatively low LPD (OOS) score. Comparison to the model

with 𝐾 = 1 will be included in Chapter 9 as part of a thesis-wide model comparison.
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7.6.2 Regression Parameters
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Figure 7.6: Marginal posterior density of regression coefficients, censored regression
in grey for comparison. LMWO, MoE, 𝐾 = 2.
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Since we assume only two components, we visualise regression coefficients for each

component with baseline results from Section 5.5.1 in the same panel for comparison,

as shown in Figure 7.6. One might expect that the baseline posterior densities would

tend to lie between the posterior densities where 𝐾 = 2 was assumed but this is not

the case as shown by the impact of pH on both MTBE and benzene concentrations.

This is the case for the intercept coefficients where this model appears to favour

placing extreme observations in an intercept only sub-model that would be the case

if all regression coefficients for that component were 0 valued. Further work could

investigate if a prior distribution that is not centred on 0 would produce alternative

posterior densities or agree with our results that show no evidence that the predictors

have an effect on benzene concentrations, conditional on being in component 2.

Electrical conductivity (EC) appears to have a positive impact on either analyte

concentration with a posterior mean greater than 0.5 for all densities shown except

the second component associated with benzene concentrations.
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7.6.3 Weighting Parameters
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Figure 7.7: Marginal posterior density of weighting coefficients. LMWO, MoE, 𝐾 =
2.

For each of the candidate models fit, we have taken the first label, 𝑘 = 1 to be our

pivot component to maintain identifiability. Therefore, only posterior draws associ-

ated with the 𝑘 = 2 component are shown in Figure 7.7. The posterior mean of the

intercept weighting coefficient is negative which suggests that when all normalised

predictors are at the observed average and take the value of 0, it is more likely that

observation will be in the first component. Combining this inference with Figure 7.6,

where component 1 is shown to have a more negative intercept for both MTBE and

benzene concentrations, reveals that average predictor values lead to low analyte

concentrations. This is consistent with our initial assumption that many perimeter

wells deflate the sample mean of each analyte concentration.

159



Chapter 7. Mixture of Experts

We observe that even though the regression parameter for electrical conductivity

(EC) had a significant impact, the corresponding weighting coefficient shows very

little prior to posterior update. Similarly, temperature presents a lack of a posterior

effect in either set of predictors corroborating its low importance in the random

forest models from Section 4.4.2.

Weighting estimates appear to stay within the [−2, 2] range which is reasonable

when comparing to the simulation study in Section 7.5. The posterior uncertainty

of these weighting parameters appear to be consistent with EC and temperature

showing more precise posterior distributions than the other predictors shown.

Interpretability of weighting coefficients is more difficult than the regression coef-

ficients since the impact of a unit increase in ORP on the allocation probabilities

is more difficult to parse. On the other hand, there is information in the sign of

each weighting coefficient and we observe that oxidation reduction potential (ORP),

dissolved oxygen (DO) and pH all have greater density for negative values and do

not contain zero in their 95% credible interval. Hence, an increase in ORP, DO or

pH decreases the estimated posterior probability of the corresponding observation

being in the second component.
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7.6.4 Precision Parameters
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Figure 7.8: Marginal posterior density of precision parameters, censored regression
in grey for comparison. LMWO, MoE, 𝐾 = 2.

For the precision parameters, we observe posterior draws that are shown as estimated

densities in Figure 7.8. Again, we see similarity in component behaviour due to the

shared component allocations and high correlation of these dependent variables. In

particular, the component 𝑘 = 1 reveals an estimated precision that is greater than

the baseline parameter from Chapter 5 but with greater posterior uncertainty. The

component 𝑘 = 2 shows an even bigger increase in posterior mean and also an

increase in posterior uncertainty. While this may be due to a better fit to these

data, we have anecdotally found a tendency to group censored observations when

censoring is explicitly modelled in a mixture of experts model. In the extreme case

where one component contains all left-censored observations, that component would

have a smaller variance and therefore a larger precision.
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7.6.5 Latent Variables

To better understand the latent structure we have observed affecting model param-

eters, we visualise posterior allocations by combining two types of plots:

1. stacked histogram representing estimated posterior allocation probabilities,

per observation and ordered by analyte concentration;

2. ordered quantile plot of the data with censoring shown.

We composite these plots into a single visualisation per analyte by ordering the 𝑦-axis

by observed concentrations or detection limits. Figure 7.9 for MTBE and Figure 7.10

for benzene, show that analyte concentrations are a key driver in the posterior

distributions of the latent variables with many censored observations corresponding

to the first component. That is, a censored observation is more likely to be in

the first component, a posteriori, whereas a higher than average concentration is

more likely to be in the second component. For uncensored concentrations closer

to the median value, we see uncertainty and changes between components during

the MCMC algorithm as evidenced by the probabilities closer to 0.5 than 0 or

1. While a trend is clear in Figure 7.9, it is not a perfect relationship with analyte

concentrations implying that predictors are having a greater influence on component

allocation probabilities for some high-leverage observations.

Posterior allocation probabilities, by definition, are conditional on all supplied data

𝑌 and 𝑋; a greater signal in weighting parameters could lead to model fits where

the component allocations are more dependent on the predictors. Recreating these

visualisations for models with more components assumed, say 𝐾 = 4, reveals a

similar trend of allocation probabilities depending on analyte concentrations. This

is not too surprising as the posterior distributions for each components’ intercept

term are clearly separated, as shown in Figure 7.6.
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Figure 7.9: Estimated posterior probabilities (left) and quantile plots of MTBE data
(right). MTBE, LMWO, MoE, 𝐾 = 2.
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Figure 7.10: Estimated posterior probabilities (left) and quantile plots of benzene
data (right). Benzene, LMWO, MoE, 𝐾 = 2.

When applied to highly censored data, it is common to observe the role of at least

one component to contain many censored observations leading to a potentially better

model than 𝐾 = 1. This is most noticeable in Figure 7.10, most censored data can

be identified due to sorting by benzene concentration and corresponding allocation

probabilities overwhelmingly favour 𝑘 = 1. For 𝐾 = 2, similar results were found in

Terry et al. (2019) where a linear regression was improved upon by classifying the

data into plume and non-plume observations. This explanation may not necessarily

hold true for all data. For instance, we observe a mix in allocation variable posterior

modes used in prediction of the “Focus” holdout well, shown in Figure 7.11.
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7.6.6 Prediction

−20

−10

0

10

2010 2015 2020

lo
g(

M
T

B
E

)

Focus

−20

−10

0

10

2010 2015 2020

Adjacent

−20

−10

0

10

2010 2015 2020

Perimeter

−20

−10

0

10

2010 2015 2020

lo
g(

B
en

ze
ne

)

Focus

−20

−10

0

10

2010 2015 2020

Adjacent

−30

−20

−10

0

10

2010 2015 2020

Perimeter

Non−detect? No Yes Posterior mode 1 2

Figure 7.11: Predictions with comparison to truth in black. LMWO, MoE, 𝐾 = 2.

Prediction of MTBE, as shown in Figure 7.11, is fairly accurate for the adjacent well

and underestimates the edge-case focus well as expected; predictions for the perime-

ter well appear to be much more volatile than the measured values maintaining an

average at the common detection limit but not below it. The MoE extension has

somewhat improved the outlier prediction for the observation circa 2012 Q2 from
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the “Focus” holdout well, which was previously predicted to be around −10 (log

scale) in Figure 5.6. However, for extreme ORP and DO values we observe a much

wider prediction interval, tending toward extreme negative values, as seen for the

2016 observation from the adjacent well.

Prediction of benzene follows a similar trend to MTBE with a slight improvement

on the perimeter well as most predictions are below the observed detection limit.

However, Figure 7.11 highlights an idiosyncrasy of the censored MoE model that is

made more prominent when too many components are assumed; for components with

few observations or too few uncensored observations, the prediction intervals become

much wider. This is due to the regression coefficient estimates having wide credible

intervals. Wide prediction intervals are desired for a component with minimal data

but when combined with extreme outliers in the predictors, as shown in Figure 2.4,

the model will produce extreme point estimates with similarly extreme prediction

intervals.

7.7 Conclusion

Mixture of Experts (MoE) describes a whole suite of models capable of clustering

data into some chosen number of components to deal with non-linearity. The process

of splitting the observed data into partitions is shared with random forest models

and we see evidence in Chapter 4 and this chapter of a low-signal process. In these

Bayesian models, further issues such as potential multimodality, label switching

and poor mixing highlight a problematic posterior distribution which is only made

worse by the presence of censoring. These issues can be dealt with by an experienced

practitioner with domain knowledge of the data to tease out interesting relationships.
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Our results highlight the dual purpose of hydrocarbon groundwater monitoring sites:

monitoring analyte concentrations within

1. a general area (including perimeter wells);

2. a specific area around a base of operations (excluding perimeter wells).

We include all perimeter well observations into the training data to better under-

stand the underlying correlation between analytes and predictors but in our case

study, there is little information in these perimeter wells. A more expert-driven

model would incorporate these beliefs into each low-concentration well through the

use of a more granular per-well prior distribution.

Within a MoE model, one may want to jointly model the analytes as we have done

in Chapter 6, using data augmentation as described in Section 1.5.4 or defining a

component-specific version of the bivariate likelihood (2.2). However, since we have

defined a model where all analytes are only independent conditional on the latent

variables then they are unconditionally dependent by definition. That is, through

the mechanism of the estimating component membership based on the predictors

we have captured some of the high correlation between the analytes.

In summary, results shown have revealed evidence that the relationships between

analyte concentrations and our defined predictors can be heterogeneous within a

site. In particular, non-detect observations where analyte concentrations are known

to be an order of magnitude lower are better modelled separately due to different

relationships, evidenced by different regression coefficients in Section 7.6.2. These

results concur with the mechanistic reactive transport model (RTM) introduced in

Chapter 3 where each component can be viewed as a different “phase” with disparate

dominating reactions such as aerobic and anaerobic degradation.

167



Chapter 8

Varying Intercept

8.1 Introduction

For censored regression models from Chapter 5, and mixture of experts (MoE) from

Chapter 7, there is very little difference between our training data within each

prediction scenario that was introduced in Section 1.6, LMWO and hold-out future.

This chapter aims to reconcile this by leveraging key metadata from the observations

using the corresponding wells as a natural grouping to help explain more of the

residual variation.

Linear mixed effects models can be more suitable than other models when such

a natural grouping of the data exists, unlike MoE models where groups are not

observed and must be inferred by some clustering method. For example, suppose we

are interested in modelling academic performance using a test score as the dependent

variable and our dataset contains multiple schools, each student would correspond

to a single observation that would be inherently associated with one of the schools

(Gelman et al., 1995). A linear mixed effects model would be appropriate if we

believed the parameters to vary between groups.
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In a hydrocarbon groundwater monitoring context, a natural grouping we implement

is to use the well identifiers that each observation is associated with. We could reduce

the number of groups by further classifying these wells into categories, for example,

• off-site wells;

• boundary wells;

• downgradient pumping wells.

Well classifications were provided for some, not all, groundwater network datasets

made available to us, and any potential grouping is highly dependent on the specific

operations of each site. Therefore, we will not pursue this possibility but there is a

clear opportunity for further work.

In general, suppose 𝑦𝑖𝑘 is the 𝑖𝑡ℎ observation from the 𝑘𝑡ℎ group, then a linear mixed

effects regression takes the form

𝑦𝑖𝑘 ∼ 𝑁(𝛼𝑘 + 𝐱𝑇
𝑖𝑘𝜷𝑘, 𝜏−1

𝑘 ),

for 𝑖 = 1, … , 𝑛𝑠 and 𝑘 = 1, … 𝐾 where 𝐾 is the total number of groups and param-

eters 𝛼𝑘, 𝜷𝑘 and 𝜏𝑘 are allowed to vary between groups. Parameters are

• the same across groups, which we refer to as a common effect;

• or group-specific, which we refer to as a varying effect.

Other literature may refer to these terms as fixed and random effects respectively,

however we find these nomenclature inappropriate for a Bayesian context and not

having a single unambiguous definition (Gelman, 2005).
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We can more compactly express these models as an extension to (5.2) for all analytes

𝑗 = 1, … , 𝑛𝑦 as

𝐲𝑗 = 𝑋𝜷𝑗 + 𝑍𝜸𝑗 + 𝝐𝑗

where all predictors collected in the 𝑋 matrix are multiplied by common effects

𝜷, all predictors collected in the 𝑍 matrix are multiplied by varying effects 𝜸 and

𝜖𝑖𝑗
iid∼ 𝑁(0, 𝜏−1

𝑗 ) for all 𝑖 = 1, … , 𝑛𝑠 as before.

The decision to make a parameter common or varying within each groups is com-

pletely dependent on the context. We consider two special cases,

1. varying intercept: varying 𝛽0𝑗 but common 𝛽1𝑗, … , 𝛽𝑛𝑥 𝑗;

2. varying slopes model: varying all regression coefficients.

While the varying slopes model is appealing, our main interest in the regression

coefficients is to assist in understanding a relationship between each analyte and

predictor that may be generalisable to other groundwater sites. Varying the re-

gression coefficients will not help us achieve this goal as interpretation will rely on

the groundwater well from which data was sampled making it difficult to extend

inference to a new well within the same site and impossible to compare analyses at

different sites. Instead, we are motivated by Revie et al. (2017) to use a varying

intercept model to “sweep up” inter-well variation by modelling it directly.

Due to irregular sampling schedules described in Section 2.1, it is more natural to

describe our varying intercept model by

𝑦𝑖𝑗 = 𝛾𝑤𝑖 𝑗 + 𝐱𝑇
𝑖 𝜷−0 𝑗 + 𝜖𝑖𝑗 (8.1)

where 𝑤𝑖 indexes the well that produced the water sample from which the log an-

alyte concentration 𝑦𝑖𝑗 and predictors 𝐱𝑖 were measured from. We denote 𝜷−0 𝑗 =
(𝛽1𝑗, … , 𝛽𝑛𝑥 𝑗)𝑇 to be all regression coefficients corresponding to analyte 𝑗 except
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the intercept 𝛽0𝑗; exclusion of the intercept is to help with interpretation. If an

intercept was also included then 𝛾𝑤𝑖 𝑗 would represent the deviation from a common

intercept at well 𝑤𝑖, without the common intercept we interpret the variable 𝛾𝑤𝑖 𝑗

to be the expected concentration of analyte 𝑗 at well 𝑤𝑖 when all normalised pre-

dictors take their mean value, 𝐱𝑖 = 𝟎𝑛𝑥
. We will refer to these varying parameters,

𝜸𝑗 = (𝛾1𝑗, … , 𝛾𝑛𝑤 𝑗), as well effects where 𝑛𝑤 denotes the number of wells in the

observed training data.

8.2 Prior

Since this model is an extension of the censored regression described in (5.2), we

assume the same prior for 𝛽−0 𝑗 and 𝜏𝑗, that is,

𝜷−0,𝑗 ∼ 𝑁𝑛𝑥
(𝐦𝛽, 𝑉𝛽),

𝜏𝑗 ∼ 𝐺𝑎(𝑎𝜏 , 𝑏𝜏).

(8.2)

For the regression coefficients we typically set 𝑉𝛽 = 𝑐 𝐼𝑛𝑥
for some scalar 𝑐 as we

lack information a priori that these regression coefficients would be correlated. In

contrast, we do have prior information suggesting that the well effects are correlated

and even spatially correlated. Therefore, we present two models with different prior

assumptions for the well effects.

1. A hierarchical normal prior that will induce correlated effects, to be described

in Section 8.2.1;

2. Spatial prior that leverages Gaussian processes (GP) as introduced in Sec-

tion 6.2.1 applied to the spatial data associated with each groundwater well,

to be described in Section 8.2.2.

171



Chapter 8. Varying Intercept

8.2.1 Hierarchical

The hierarchical prior for these models takes the form

𝛾𝑤𝑗 ∼ 𝑁(𝛾𝜇𝑗, 𝛾−1
𝜏𝑗 ),

𝛾𝜇𝑗 ∼ 𝑁(𝑚𝛾𝜇
, 𝑝−1

𝛾𝜇
),

𝛾𝜏𝑗 ∼ 𝐺𝑎(𝑎𝛾𝜏
, 𝑏𝛾𝜏

),

where 𝑚𝛾𝜇
, 𝑝−1

𝛾𝜇
, 𝑎𝛾𝜏

and 𝑏𝛾𝜏
are prior hyperparameters to be chosen for each analyte

𝑗 = 1, … , 𝑛𝑠. The upshot of this prior specification is that the multivariate marginal

prior distribution of 𝜸𝑗 = (𝛾1𝑗, … , 𝛾𝑛𝑤𝑗)𝑇 will have identical marginal expectations

for each element and a covariance matrix where the main diagonal variances exceed

the off-diagonal positive covariances inducing positive covariance between each effect.

That is, suppose 𝛾𝑤𝑗 = 𝛾𝜇𝑗 +𝜖𝑤𝑗 where 𝜖𝑤𝑗 ∼ 𝑁(0, 𝛾−1
𝜏𝑗 ) are independent to 𝛾𝜇𝑗 and

we assert 𝑤 ≠ 𝑤′, then

𝐸(𝛾𝑤𝑗) = 𝐸(𝛾𝜇𝑗) + 𝐸(𝜖𝑤𝑗) = 𝑚𝛾𝜇𝑗
,

Var(𝛾𝑤𝑗) = Var(𝛾𝜇𝑗) + Var(𝜖𝑤𝑗) = 𝑝−1
𝛾𝜇

+
𝑏𝛾𝜏

𝑎𝛾𝜏
− 1,

Cov(𝛾𝑤𝑗, 𝛾𝑤′𝑗) = Cov(𝛾𝜇𝑗 + 𝜖𝑤𝑗, 𝛾𝜇𝑗 + 𝜖𝑤′𝑗) = 𝑝−1
𝛾𝜇

.

Note that the independence assumption ensured Cov(𝛾𝜇𝑗, 𝜖𝑤𝑗) and Cov(𝜖𝑤𝑗, 𝜖𝑤′𝑗)
were 0 valued and the law of total variance with properties of the inverse gamma

distribution are needed to derive Var(𝜖𝑤𝑗).

The important takeaway for our application in these models is that the correlation

of wells 𝑤 and 𝑤′ must be between 0 and 1 with a higher correlation corresponding

to smaller values of Var(𝜖𝑤𝑗) = 𝑏𝛾𝜏
𝑎𝛾𝜏 −1 , that is determined a priori.
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In fact,

Cor(𝛾𝑤𝑗, 𝛾𝑤′𝑗) = Cov(𝛾𝑤𝑗, 𝛾𝑤′𝑗)
√Var(𝛾𝑤𝑗)√Var(𝛾𝑤′𝑗)

=
𝑝−1

𝛾𝜇

𝑝−1𝛾𝜇
+ 𝑏𝛾𝜏

(𝑎𝛾𝜏
− 1)−1 .

8.2.2 Spatial

The grouping in (8.1) relates to wells with corresponding spatial coordinates and

we want to assume, a priori, that wells that are closer together are more correlated

(Tobler, 1970). A Gaussian process (GP) with Matérn kernel function is assumed

since the grouping is spatially motivated, but a similar prior can be recreated with

any metadata about the observations. At hydrocarbon groundwater monitoring

sites, this approach is especially appealing since most wells are clustered together

around an operational base as shown in Figure 2.2 and prediction of more sparsely

located perimeter wells, that typically report lower concentration and more non-

detect measurements, can be aided by stronger prior beliefs.

We construct a subset of the per-observation spatiotemporal coordinates, described

in Section 1.4, that correspond to the unique spatial locations of all wells in the

training data. That is, ̃𝑆 = ( ̃𝐬1, … , ̃𝐬𝑛𝑤
)𝑇 where ̃𝐬𝑤 = ( ̃𝑠𝑤𝑥, ̃𝑠𝑤𝑦) denotes the spatial

coordinates of well 𝑤. The well effects are then assumed, a priori,

𝜸𝑗 ∼ 𝐺𝑃(𝟎, 𝑘( ̃𝐬, ̃𝐬′|Θ𝑘)),

for arbitrary spatial coordinates ̃𝐬 and ̃𝐬′, choice of covariance function 𝑘 and hy-

perparameters Θ𝑘. We assume the mean of the Gaussian process is zero-valued

everywhere for notational simplicity but this need not be the case (Rasmussen et al.,

2006). We choose the Matérn covariance function with the 𝜈 parameter fixed at 3/2
using the same justifications used in Section 6.2.1, that is,

𝐾Matérn( ̃𝐬, ̃𝐬′) = 𝛾2
𝛼 (1 +

√
3𝑑) exp (−

√
3𝑑) ,
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where 𝛾2
𝛼 is the amplitude hyperparameter and 𝑑 is the weighted distance between

two wells, after weighting by characteristic length-scales 𝜸 = (𝛾𝑥, 𝛾𝑦)𝑇 , explicitly

defined as

𝑑 = ∥ ̃𝐬 − ̃𝐬′

𝜸 ∥ = √( ̃𝑠𝑥 − ̃𝑠′𝑥)2

𝛾2𝑥
+ ( ̃𝑠𝑦 − ̃𝑠′𝑦)2

𝛾2𝑦
.

We considered a squared exponential kernel function with automatic relevance de-

termination (ARD) in preliminary simulation studies (Beckers, 2021). That is,

𝐾ARD( ̃𝐬, ̃𝐬′) = 𝛾2
𝛼 exp (−𝑑2

2 ) .

However, we found the Matérn 3/2 to be consistently more computationally stable

and able to recover true characteristic length-scales with equal or less difficulty than

the ARD kernel in almost all simulations. Future iterations of this model could

look into more complex choices of kernel functions including non-isotropic kernels

motivated by a groundwater monitoring application.

For the prior to be fully specified, it remains to define prior distributions for the

GP hyperparameters Γ𝐾 = (𝛾𝛼, 𝛾𝑥, 𝛾𝑦). Both characteristic length-scales have a

positive support and are assumed to follow gamma distributions a priori. We take

the same approach applied to precision parameters and fix the prior mean and inves-

tigate sensitivity by changing the prior variance. Suitability of this prior mean can

be verified by comparing expert opinion to the correlation matrix produced when 𝛾𝛼

is fixed at 1. Even though 𝛾𝛼 has a vastly different interpretation to the other GP

hyperparameters, it is still a strictly positive parameter and is only ever evaluated

in the chosen kernel as 𝛾2
𝛼. We have found that results are somewhat insensitive to

choice of prior with truncated normal and gamma prior distributions producing sim-

ilar posterior draws for all model parameters and no change to posterior predictive

draws. Hence, we opt for the arguably more interpretable prior 𝛾𝛼 ∼ 𝐺𝑎(𝑎𝛾𝛼
, 𝑏𝛾𝛼

).
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8.3 Novel Well Effects

To produce draws from the posterior predictive distribution which quantify our

predictions and uncertainty, we make use of draws from the posterior distribution of

the model parameters with justification given in Appendix B.1. For these varying

intercept models, the situation may arise where a groundwater well, not observed

in the original training data, exists in the new data to be predicted. In fact, the

LMWO prediction scenario guarantees this very situation. Therefore, there exists

two scenarios where analyte concentrations to be predicted either correspond to a

• well observed in the training dataset with an already defined well effect;

• novel well, with no historical data observed in the training data, and so the

well effect has not been defined.

This distinction motivates the nomenclature of observed well effects that are depen-

dent on prior choice and observed data, and novel well effects that are dependent

on the prior specification and posterior observed well effects. Posterior draws of ob-

served well effects are generated during the model fitting algorithm so it only remains

to describe how to obtain posterior predictive draws for the novel well effects.

Suppose we denote 𝑛𝑤
∗ novel well effects as 𝜸∗ = (𝛾∗

1, … , 𝛾∗
𝑛𝑤∗)𝑇 and observed well

effects as 𝜸𝑜 = (𝛾𝑜
1 , … , 𝛾𝑜

𝑛𝑤𝑜)𝑇 , where we have made the analyte-specific subscript 𝑗
implicit as all statements hold for all 𝑗 ∈ {1, … , 𝑛𝑦}. For both choice of priors the

joint distribution of all well effects is assumed normal, a priori,

⎛⎜⎜
⎝

𝜸∗
𝑗

𝜸𝑜
𝑗

⎞⎟⎟
⎠

∼ 𝑁 ⎛⎜⎜
⎝

⎛⎜⎜
⎝

𝝁∗

𝝁𝑜

⎞⎟⎟
⎠

, ⎛⎜⎜
⎝

Σ∗ Σ∗𝑜

Σ𝑜∗ Σ𝑜

⎞⎟⎟
⎠

⎞⎟⎟
⎠

,

where 𝝁∗ and 𝝁𝑜 are the marginal expectations of the respective well effects and the

covariance matrix is as shown.
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It follows from properties of the multivariate normal distribution that the conditional

distribution of our novel well effects is also normal, specifically,

𝜸∗|𝜸𝑜 ∼ 𝑁(𝝁∗|𝑜, Σ∗|𝑜),

𝝁∗|𝑜 = 𝝁∗ − Σ∗𝑜Σ−1
𝑜 (𝜸𝑜

𝑗 − 𝝁𝑜),

Σ∗|𝑜 = Σ∗ − Σ∗𝑜Σ−1
𝑜 Σ𝑜∗.

Posterior draws for the novel well effects are then obtained by drawing from the

conditional distribution

𝜸∗|𝜸𝑜 = 𝜸𝑜 (𝑚) ∼ 𝑁(𝝁∗|𝑜, Σ∗|𝑜),

where 𝜸𝑜 (𝑚) denotes the 𝑚 = 1, … 𝑀 posterior draws of the observed well effects.

8.4 Groundwater Application

There are a total of 4 models for both hierarchical and spatial priors applied to both

prediction scenarios, LMWO and holdout future. When there is more information

in the form of historical data, we notice that our inferences and predictions are less

dependent on the choice of prior. In the holdout future models where all well effects

are observed and thus based on historical data, we may present a single model to

act as representative for the near identical model outputs.

We assert the same prior hyperparameters described in (5.7) for the parameters

shared with the censored regression model and repeat prior choices for both analytes.

For the hierarchical prior, we assume 𝑚𝛾𝜇
= 0, 𝑝−1

𝛾𝜇
= 1.5, 𝑎𝛾𝜏

= 2 and 𝑏𝛾𝜏
= 1.

These choices correspond to a sufficiently vague prior on 𝛾𝜏 while inducing a specified

prior well-to-well correlation of 0.6, appropriate for site A. A better prior could be

elicited from experts, but we found each analysis is fairly insensitive to these choices.
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While the prior distributions of the GP hyperparameters are all gamma distributions,

it is imperative to specify different parametrisations for the amplitude and length-

scale hyperparameters due to their differing interpretation. By viewing the resultant

correlation matrix for different values of 𝛾𝑥 and 𝛾𝑦, we have found that values of

0.2 for both is consistent with expectations and “range” values we can obtain from

the variograms shown in Figure 2.8. However, asserting a 𝐺𝑎(0.2, 1) distribution

leads to poor mixing and unrealistic length-scales in the 𝑦 direction, this appears to

be indicative of the eastwards movement of analyte solute where our data has very

little information about correlation in the 𝑦 direction. To rectify this, we reduce

the prior density on large length-scale values by decreasing prior variance of 𝛾𝑥 and

𝛾𝑦. As the most difficult parameter to estimate, it should not be surprising that our

analyses are highly sensitive to the choice of characteristic length-scale prior. Hence,

𝛾𝛼 ∼ 𝐺𝑎(2, 1),

𝛾𝑥, 𝛾𝑦 ∼ 𝐺𝑎(2, 10).

8.4.1 Regression Parameters

We expect the marginal posteriors of the regression coefficients to be similar for

either choice of well effect prior, hierarchical or spatial, as the correlation between

wells should not affect the impact of some predictor, say electrical conductivity (EC),

on an analyte such as MTBE. Similarly, since the training data for each prediction

scenario, LMWO and holdout future, have a substantial overlap this choice should

have little impact on the regression coefficients. Our results are in line with these

expectations and we only show Figure 8.1 for effects on MTBE and Figure 8.2 for

effects on benzene, with models using a hierarchical prior producing very similar

plots (not shown) highlighting the aforementioned prior insensitivity.
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Figure 8.1: Marginal posterior density of regression coefficients. MTBE, LMWO,
varying intercept (spatial prior) compared to censored regression.
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Figure 8.2: Marginal posterior density of regression coefficients. Benzene, LMWO,
varying intercept (spatial prior) compared to censored regression.
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By including a varying intercept or well effect in the analysis of the site A data,

we observe that the sign of each regression coefficient is typically unchanged but

the magnitude of all parameters is reduced. The impact of ORP on MTBE log

concentrations shows a density with a posterior mean of roughly −1.3, with common

intercept, reduced to approximately −0.05 when a varying intercept is used. The

coefficients corresponding to benzene concentrations shown in Figure 8.2 show even

more reduction than coefficients corresponding to MTBE concentrations; parameters

for all predictors except conductivity (EC) contain a 0 in the 95% credible interval

implying that only EC has a significant impact on benzene within site A, directly

contradicting Figure 5.2.

Due to decreases in effect magnitude, it may be the case that some predictors that

were significant in the censored regression described in Chapter 5 are no longer

significant in the corresponding varying intercept model. The outcome of these

models suggest that the impact of our predictors on analyte concentrations such as

MTBE and benzene may be overestimated in a censored regression where inter-well

variation is not adequately taken into account.

8.4.2 Precision Parameters

The varying intercept models were motivated by a desire to “sweep up” the inter-

well variation and reduce the overall residual variation. We quantify how well these

models succeed in this goal by comparing the precision of the varying intercept

models to the counterpart model with a common intercept. Again, we notice little

difference between the posterior draws for each proposed prediction scenario and

choice of well effect prior.

Our expectations are met again as the precision of both analytes, MTBE and ben-

zene increase by a order of magnitude. We also observe the posterior uncertainty on
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the precision increase substantially for the varying intercept models which is not too

surprising as the more complex model splits the variation into measurement error

and inter-well variation leading to a more difficult to estimate parameter.
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Figure 8.3: Marginal posterior density of precision for both analytes. LMWO, vary-
ing intercept (spatial prior) compared to censored regression.

8.4.3 Well Effects

Our inferences of the well effects naturally fall into the two categories defined in

Section 8.3, observed well effects and novel well effects. We find that the marginal

posteriors of the observed well effects are mainly based on data and so the results

are not affected by choice of prior or prediction scenario; this is the same behaviour

we have noticed in the regression and precision parameters. On the other hand, the

novel well effect parameters are based on the posterior draws of the observed well

effects and the correlation between each novel well and observed well is specified

differently, a priori, by design.
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Figure 8.4: Marginal posterior densities of observed well effects. MTBE, LMWO,
varying intercept with spatial prior.
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Figure 8.5: Marginal posterior densities of observed well effects. Benzene, LMWO,
varying intercept with spatial prior.
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If the marginal posterior distributions of the observed well effects were similar, the

varying intercept model would not be suitable as it would hold little benefit over a

fixed intercept. On the contrary, we notice clear heterogeneity of the wells for both

MTBE, Figure 8.4, and benzene, Figure 8.5 with a clear ranking of each well. Of

particular interest is “Well-03” that was highlighted as a key location of interest due

to the historically high concentrations, relative to the other wells in the site.

The height of the peaks in these posterior densities correspond to the posterior

certainty of each well effect; well effects with the lowest posterior means tend to

also be the most uncertain. Perimeter wells, for example “Well-43”, “Well-44” and

“Well-45”, typically report non-detect observations between 80% and 100% of the

time where each concentration is bounded above by a relatively low detection limit.

Therefore, the observed well effects with a posterior mean below average and poste-

rior uncertainty above average are in line with what we expect when investigating

hydrocarbon groundwater monitoring networks.
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Figure 8.6: Marginal posterior predictive densities of novel well effects. MTBE,
LMWO, varying intercept.
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Figure 8.7: Marginal posterior predictive densities of novel well effects. Benzene,
LMWO, varying intercept.

For the holdout wells, we either obtain observed well effects based on partial data in

the holdout future scenario (not shown) or novel well effects in the LMWO scenario.

Figure 8.6 highlights a situation where the spatial prior could yield some benefit

over the non-spatial hierarchical prior; the focus well effect is increased based on its

proximity to high concentration reporting “Well-03”. The variation of the posterior

distributions for the other two novel well effects is shown to decrease for the relatively

close “Adjacent” well and increase for the remote “Perimeter” well. A similar pattern

can be discerned for benzene but the magnitude of the described changes is much

smaller and could be due to randomness in the data. When there is little to no

information in the data, as we believe may be the case for benzene, the posterior

distributions shown in Figure 8.7 are much more insensitive to the choice of prior.
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8.4.4 Hyperparameters

Hyperparameters of the hierarchical prior, (𝛾𝜇, 𝛾𝜏)𝑇 , and spatial prior, (𝛾𝛼, 𝛾𝑥, 𝛾𝑦)𝑇 ,

are estimated during the MCMC algorithm and can provide us with valuable insight.

One should be careful to understand the nuance of the differing interpretations be-

tween 𝛾𝜇 and the fixed intercept 𝛽0 described in Chapter 5. That is, 𝛾𝜇 represents

the expected mean of several analyte concentrations arising from a novel well when

no spatial information is used and the predictors are measured to be at their re-

spective averages. On the other hand, 𝛽0 represents the expectation of a single

analyte observation, given average predictor observations. We remark that both

of these parameters have similar marginal posterior means that are both similar

to estimates of the mean concentration of each respective analyte for the observed

training data. However, due to the aforementioned differences we also see a greater

posterior uncertainty for 𝛾𝜇 in Figure 8.8.

Due to the higher degree of censoring, benzene is expected to be the more difficult

analyte to model and we do observe a less precise well effect mean and lower expected

well effect precision, 𝛾𝜏 , as shown in Figure 8.8. Another reason for this heightened

uncertainty of the well effects could be that benzene is able to be transported quicker

than MTBE which is consistent with the fact that benzene has a smaller molecular

mass. However, expert opinion from data providers and an independent analysis

with GWSDAT (Jones et al., 2014), as introduced in Section 1.2.1, contradicts this

possibility showing MTBE as the more mobile species within the site.
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Figure 8.8: Marginal posterior densities of hierarchical hyperparameters. LMWO,
varying intercept with hierarchical prior.

For the spatial prior, we are interested in the posterior distributions of the amplitude

parameter, 𝛾𝛼, and characteristic length-scales, 𝛾𝑥, 𝛾𝑦, as presented in Figure 8.9,

where a smaller length-scale corresponds to smaller correlation over the same dis-

tance. We see a similar inference for the amplitude parameter for both MTBE and

benzene, a high variance for the well effects. That is, consider the variance of a well

effect which is equal to the square of the amplitude parameter as all other terms in

the kernel are redundant when the distance is zero. For example, a value of 𝛾𝛼 = 5
corresponds to marginal variances all equal to 25 for each well effect.

Our analysis of each analyte differs in the length-scale inferences. For MTBE, we

note a prior-to-posterior update in the form a reduction from prior mean of 0.2 to a

smaller posterior mean. Relative similarity between the marginal posteriors implies

a simplified kernel with common length-scales would be adequate. Figure 8.9 shows
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the greatest prior to posterior update for the length-scale in the 𝑥 direction for well

effects corresponding to benzene where reasonable values are an order of magnitude

smaller than the 𝑦 direction. We infer from these results that the spatial correlation

diminishes much quicker in the 𝑥 direction than the 𝑦 direction and future work could

confirm this empirically using a bi-directional variogram as discussed in Section 2.5.

Key differences in the MTBE-based parameters and benzene-based parameters

shown in Figure 8.8 and Figure 8.9 remind us that while a high correlation is almost

guaranteed for these analytes it is not a perfect correlation. As such, it is important

to remember that each of the chemical species have different intrinsic properties

that can affect the data motivating our decision to present results from both.
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Figure 8.9: Marginal posterior densities of Gaussian process hyperparameters.
LMWO, varying intercept with spatial prior.
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8.4.5 Prediction

For the holdout future prediction scenario, the linear predictor which will be used in

the posterior predictive distribution is based on observed well effects, not novel well

effects. Hence, we would not expect the choice of prior to impact our predictions

since it has not had a substantial impact on the observed well effects and so we

again use the spatial prior as a representative of model output that is identical up

to the randomness of the MCMC algorithm.

Considering Figure 8.10 and Figure 8.11, predictions for holdout wells close to the

base of operations, that is “Focus” and “Adjacent”, are extremely similar and insen-

sitive to prior choice and prior hyperparameters. On the other hand, predictions

for the holdout well “Perimeter” are only pragmatically similar since all predictions

and intervals lie below the true non-detect observations. In fact, we notice a more

uncertain posterior predictive distribution for the spatial prior than the hierarchical

prior. This highlights a key issue with the Gaussian process (GP) approach, where

a length-scale that results in an appropriate prior covariance between “Focus” and

“Adjacent” may lead to an inappropriate covariance between “Focus” and “Perime-

ter”. Our choice of prior mean for the characteristic length-scales were based on the

cluster of wells in Figure 2.2, but we would ideally have a prior covariance equal

to that of the hierarchical prior for distances exceeding 50% of the site. Future

work could look into a GP kernel that tends to a lower limit instead of 0 for “large”

distances to emulate a site-wide correlation and spatial correlation that we would

expect from these data.
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8.4.5.1 Holdout Future
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Figure 8.10: Predictions with comparison to truth in black. MTBE, holdout future,
varying intercept with spatial prior.

−20

−10

0

10

2010 2015 2020

lo
g(

B
en

ze
ne

)

Focus

−20

−10

0

10

2010 2015 2020

Adjacent

−30

−20

−10

0

10

2010 2015 2020

Perimeter

Non−detect? No Yes

Figure 8.11: Predictions with comparison to truth in black. Benzene, holdout future,
varying intercept with spatial prior.
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In the holdout future case, we see similarities for MTBE, Figure 8.10, and benzene,

Figure 8.11. By using historical data, prediction for the “Focus” well is much better

than a common intercept model and this is impressive given the edge-case nature of

this well that reports the second highest average concentrations. Prediction is not

as good with the “Adjacent” well, likely due to a concentration that decreases over

time leading to consistent overprediction in this case.

The combination of these two results highlights the power and shortcomings of

the varying intercept models. We have reframed the problem of predicting analyte

concentrations to predicting deviations from the mean within analyte concentrations.

In either case, if there is a low signal-to-noise ratio in these data as we expect based

on the results in Chapter 4, prediction is going to be a difficult task. Moreover, for

time series with a downward trend that is common in groundwater monitoring there

is a material risk of overestimation, as we see with “Adjacent”. The ramifications

for upward trends in analyte concentrations are much worse as these models may

underestimate concentrations leading to worse decision making.

We observe little difference in the quantitative predictive metrics for in-sample data

shown in Table 8.1 and out-of-sample data shown in Table 8.2 with near identical

results omitted when the modelled analyte was benzene. These results are consistent

with our previous assertion that these models are less sensitive to prior choice, spatial

or hierarchical, when there exists historical data for all wells to be predicted.

Δ LPD (SE) Δ WAIC (SE) Δ PSIS (SE)

MTBE, Spatial -0.1 (1.2) 0.0 (0.0) 0.0 (0.0)

MTBE, Hierarchical 0.0 (0.0) -0.5 (1.4) -0.5 (1.5)

Table 8.1: Model comparison metrics based on in-sample data. MTBE, holdout
future, varying intercept.
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Δ LPD (SE)

MTBE, Spatial 0.0 (0.0)

MTBE, Hierarchical -0.2 (0.1)

Table 8.2: Model comparison metrics based on out-of-sample data. MTBE, holdout
future, varying intercept.

8.4.5.2 LMWO, Hierarchical Prior

All hierarchical prior predictions appear to be very similar across the wells. This

is overtly expected as the model has no method of distinguishing each holdout well

and so all novel well effects are drawn from the same distribution. Our observed

values to be predicted still fall within the prediction intervals shown but since all of

the predictive power lies with the predictors, this model does not appear to have a

benefit over the common intercept models from a qualitative standpoint.

Figure 8.12 and Figure 8.13 show the LMWO predictions of MTBE and benzene

concentrations respectively when a hierarchical prior is assumed. Trivially, each

prediction is similar because this model does not use any information about each

well and identical data for all predictors would lead to identical posterior predictive

distributions to be drawn from. Comparing the prediction intervals of Figure 8.12

to Figure 5.6 shows that the uncertainty is only slightly increased for MTBE con-

centrations. Whereas, comparing Figure 8.13 to Figure 5.7 shows a greater increase

in uncertainty. This could be due to heterogeneity of the observed well effects as

evidenced by the smaller estimated precision 𝛾𝜏 visualised in Figure 8.8.

191



Chapter 8. Varying Intercept

−20

−10

0

10

2010 2015 2020

lo
g(

M
T

B
E

)

Focus

−20

−10

0

10

2010 2015 2020

Adjacent

−20

−10

0

10

2010 2015 2020

Perimeter

Non−detect? No Yes

Figure 8.12: Predictions with comparison to truth in black. MTBE, LMWO, varying
intercept with hierarchical prior.
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Figure 8.13: Predictions with comparison to truth in black. Benzene, LMWO,
varying intercept with hierarchical prior.
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8.4.5.3 LMWO, Spatial Prior

When using the spatial prior to predict MTBE as shown in Figure 8.14, we present

good prediction of the “Focus” well for these models and even mirror the downward

change halfway through 2012. The more spatially remote wells “Adjacent” and

“Perimeter” get progressively worse with overprediction posing a potential problem.

The true values shown for both these wells fall within our prediction intervals high-

lighting reasonable predictions qualitatively.
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Figure 8.14: Predictions with comparison to truth in black. MTBE, LMWO, varying
intercept with spatial prior.

We see that these models struggle with the excessively censored analyte benzene,

showing more uncertain predictions in the spatial case, Figure 8.15, than in the

hierarchical case, Figure 8.13. These predictions may be improved if we chose a

GP prior that was specific to benzene instead of choosing a GP prior based on all

analytes. However, it is likely the case that there is too little information in these

data due to high censoring.
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Figure 8.15: Predictions with comparison to truth in black. Benzene, LMWO,
varying intercept with spatial prior.

8.4.5.4 LMWO, Comparison

To make quantitative comparisons between the spatially motivated and hierarchical

prior choices we construct four tables for each unique combination of modelled ana-

lyte, MTBE or benzene, and prior choice. Table 8.3 contains the model comparison

metrics based on in-sample data for MTBE and Table 8.4 reports the same informa-

tion for benzene. Both tables show very little difference in prior choice, which is to

be expected as the in-sample data must only contain observed well effects with no

novel well effects by definition. As such, we see a similar comparison to the holdout

future scenario and conclude there is no evidence that the choice of prior impacts

predictive performance of the observed data.
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Δ LPD (SE) Δ WAIC (SE) Δ PSIS (SE)

MTBE, Spatial -0.0 (1.1) 0.0 (0.0) 0.0 (0.0)

MTBE, Hierarchical 0.0 (0.0) -0.7 (1.3) -0.4 (1.4)

Table 8.3: Model comparison metrics based on in-sample data. MTBE, LMWO,
varying intercept.

Δ LPD (SE) Δ WAIC (SE) Δ PSIS (SE)

Benzene, Spatial -0.3 (0.4) 0.0 (0.0) -0.2 (0.4)

Benzene, Hierarchical 0.0 (0.0) -0.1 (0.4) 0.0 (0.0)

Table 8.4: Model comparison metrics based on in-sample data. Benzene, LMWO,
varying intercept.

The most pertinent scenario for these varying intercept models corresponds to when

we assess the models’ ability to not only predict completely new data but to predict

new data from a novel well. To this end, we consider model comparison metrics based

on out-of-sample data for the model trained in the LMWO scenario in Table 8.5 for

MTBE and Table 8.6 for benzene. The quantitative results agree with the qualitative

results for MTBE corroborating our conclusions that better prediction of the wells

close to the site, “Focus” and “Adjacent”, is worth the trade-off of a wider prediction

interval for the remote “Perimeter” well. On the other hand, benzene shows how

the GP prior may perform worse than a hierarchical prior in some cases; different

inferences for the GP hyperparameters for MTBE and benzene may indicate that

the spatial information is less useful to prediction of the benzene concentrations.
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Δ LPD (SE)

MTBE, Spatial 0.0 (0.0)

MTBE, Hierarchical -51.4 (10.9)

Table 8.5: Model comparison metrics based on out-of-sample data. MTBE, LMWO,
varying intercept.

Δ LPD (SE)

Benzene, Spatial -3.9 (0.7)

Benzene, Hierarchical 0.0 (0.0)

Table 8.6: Model comparison metrics based on out-of-sample data. Benzene,
LMWO, varying intercept.

8.5 Conclusion

In this chapter we have explored a modification from a site-wide intercept to a

well-specific intercept as an improvement to model fit, parameter estimation and

model prediction. We are able to directly model these well effects within a Bayesian

linear mixed effects model and have provided two prior distributions that allow for

different types of positive correlation between these wells. Within a hydrocarbon

groundwater monitoring site, the Gaussian process (GP) prior is well motivated with

a clear rationale whereas the hierarchical prior may be better suited to applications

where the spatial information is less pertinent.

A clear advantage to these models is the ability to quantify the impact of observed

wells and still be able to predict never before seen novel wells that may be purely

hypothetical. When the spatial component of these well effects are leveraged, we
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see a substantial yet expected increase in accuracy of novel well effects which di-

rectly impact the models’ predictive performance on new data. Such an increase is

dependent on the spatial information contained within the data and may negatively

impact the prediction of perimeter wells.

Moreover, prediction within these models appear to rephrase the problem of predic-

tion. Instead of relying on the predictors to estimate unknown analyte concentra-

tions, we are now tasked with estimating a deviation from the sample mean obtained

from historical data. That is, even with better predictive performance we are no

closer to being able to use predictor measurements to make statements about the

direction of future analyte concentrations, a key statistic required by groundwater

site managers.

Similarly, the varying intercept models have revealed how estimated regression co-

efficients from previous models may be spurious and biased, not only due to the

presence of left censoring but also due to a tangible well effect. More accurate well

effects should lead to more accurate estimates of other parameters including the

measurement precision 𝜏𝑗 and regression coefficients 𝜷−0 𝑗 by “sweeping up” excess

residual variation not explained by the model (Revie et al., 2017). Results from our

case study, site A, highlight the potential of false-positive errors within our baseline

censored regression models. Repeating these analyses at other hydrocarbon ground-

water monitoring sites would be required to increase our confidence in the estimated

general impact of each predictor on analyte concentrations.

Further work could take lessons learned from McLean et al. (2019) and extend these

models to also include a temporal effect and leverage the entire spatiotemporal data

instead of just the spatial aspect. Previous attempts at modelling the spatiotemporal

effect jointly in Section 6.2 have proven difficult to fit, so a separated well effect and

temporal effect would be of great interest.
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Conclusion

Throughout this thesis, we have been single-mindedly focused on a single hydrocar-

bon groundwater monitoring site, site A, in our attempts to elicit a relationship

between the log concentrations of analytes, MTBE and benzene, and predictors,

electrical conductivity (EC), oxidation reduction potential (ORP), dissolved oxygen

(DO), pH and temperature. Another key interest is the prediction of some influen-

tial holdout wells in multiple prediction scenarios based on hypotheticals that are

expected to occur at a groundwater monitoring site. Given more data availability

we could have applied all techniques to multiple sites to demonstrate where these

models and inferences would generalise to other hydrocarbon groundwater monitor-

ing sites and maybe even groundwater monitoring sites interested in other analytes

of particular concern.

Chapter 1 established the background and motivated the problem. This was followed

by an in-depth look into these data in Chapter 2. Chapter 3 set expectations using

models that are not common in the statistics literature including mechanistic reac-

tive transport models (RTM) and tree-based random forest models were described

in Chapter 4. Using the univariate censored regression model described in Chapter 5
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as a baseline model, we have presented new models as possible extensions through-

out the subsequent chapters, each dealing with a problematic assumption such as

analyte independence, linearity and spatial independence. Specifically, Chapter 6

allowed our analytes to be modelled using multivariate or even matrix-variate distri-

butions; Chapter 7 investigated phases motivated by the RTM model in a mixture

modelling framework known as mixture of experts and Chapter 8 directly modelled

a well effect by using a varying intercept model, a special case of a linear mixed

effects model.

Each model extension can potentially improve prediction in some areas, but at

the expense of others; we favour the pragmatic approach of focusing on wells at

key locations as opposed to the best average prediction because of the presence

of perimeter wells within these data. Regression coefficient estimates unfortunately

agree with our initial assessment of a low signal-to-noise ratio since each time a model

is improved, any significant effect is seen to be biased and presenting a spurious effect.

This is definitely the case for predictors like temperature but may not be the case

for more promising predictors such as EC and ORP. Harbingers of this difficult to

detect effect existed in the low 𝑅2 values of the random forest models that have

a tendency to overfit and in the simulated RTM data based on Bemidji (Ng et al.,

2015) where noiseless predictor observations have smaller changes than the expected

measurement error that would exist in the real data.

With sufficient motivation, one could exploit the generality of each extension and

combine several key ideas, for example a varying intercept model with concomitant

variables in a mixture of experts framework would be possible if one was to answer

key questions including if the varying intercepts should further vary by component.

In a reality where computational resources were much larger, maybe due to the intro-

duction of quantum computing, one could even fit a matrix-variate regression with
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varying intercepts and concomitant variables. However, such a model is definitely

computationally infeasible currently and we would like to remind the reader that

the simpler model is preferred and commonly just as good, if not better, than the

overly complex model in terms of our comparison metrics.

9.1 Final Comparison

Our original intent was to compare the best model from each of the modelling

chapters. However, for reasons discussed in Section 6.5, the multivariate models

described in Chapter 6 do not deal with censoring which may lead to incomparable

models. Therefore, we present our final model comparison tables for the univariate

models only including the censored regression from Chapter 5, the mixture of experts

model with 𝐾 = 2 components from Chapter 7 and both versions of the varying

intercept models from Chapter 8.

9.1.1 Leave-Multiple-Well-Out (LMWO)

Δ LPD (SE) Δ WAIC (SE) Δ PSIS (SE)

Censored Regression -2611.2 (71.8) -2549.7 (75.9) -2547.5 (76.1)

MoE, 2 Components -2019.3 (62.7) -1976.0 (66.8) -1973.9 (66.9)

Varying Intercept, Spatial -0.3 (1.3) 0.0 (0.0) 0.0 (0.0)

Varying Intercept, Hierarchical 0.0 (0.0) -0.6 (1.5) -0.3 (1.6)

Table 9.1: Model comparison metrics based on in-sample data. Both analytes,
LMWO.
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Again, we use the LMWO prediction scenario to calculate metrics for the in-sample

data with near identical tables resulting from the holdout future scenario. We

see a continuation of the variable performance of the varying intercept models as

Table 9.1 shows the ‘best’ model based on in-sample data is the varying intercept

model. Another conclusion from Table 9.1 is that the mixture of experts model

shows considerable increase over the single component censored regression. Finally,

we are reminded that for in-sample data, the choice of prior for the observed well

effects is of little consequence.

Δ LPD (SE)

Censored Regression -34.7 (8.6)

MoE, 2 Components 0.0 (0.0)

Varying Intercept, Spatial -47.5 (24.2)

Varying Intercept, Hierarchical -94.2 (16.1)

Table 9.2: Model comparison metrics based on out-of-sample data. Both analytes,
LMWO.

When interested in our holdout wells in the out-of-sample case, we observe that

with the introduction of novel well effects into the varying intercept models, con-

centrations are better predicted using the spatial prior as evidenced by Table 9.2.

However, we present results slightly favouring the 2 component MoE model. As

mentioned in Section 8.4.5.4, this could be due to poor estimation of the novel well

effects for benzene concentrations regardless of prior choice, spatial or hierarchical.

Since the increase in log pointwise predictive density (LPD) is small relative to the

other models, we assume all models within 3 standard errors could be viable models.
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9.1.2 Holdout Future

Changing to the prediction scenario where historical data for each holdout well, up

to 2015, is also observed in model training and focusing on the task of predicting

observations post-2015 reveals expected results. Table 9.3 appears contradictory to

the LMWO case since varying intercept models are favoured by approximately 5
standard errors over the next best model. This is expected since the well effects

are better estimated from data observed at that well and the sensitivity of choice of

prior, spatial or hierarchical, is lowered drastically.

Δ LPD (SE)

Censored Regression -98.8 (17.1)

MoE, 2 Components -65.1 (13.3)

Varying Intercept, Spatial 0.0 (0.0)

Varying Intercept, Hierarchical -0.2 (0.1)

Table 9.3: Model comparison metrics based on out-of-sample data. Both analytes,
future.
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9.2 Further Work

Several opportunities for extending upon this body of work have been described in

the relevant section and we will summarise those ideas here. We avoid discussing

the optimal well placement or removing wells in this section as we are aware of such

work ongoing in the University of Glasgow (Radvanyi et al., 2023) and want to avoid

overlap.

Anecdotally, random forest models appear to have become very popular with data

scientists in recent times and we have recognised the key requirements that are

asked of the dependent variable data. That is, a random forest can be built to

handle censoring if one can define a measure of location, for example a mean, and a

measure of spread to define impurity. Some methods of defining a mean from left-

censored data including MLE would be inappropriate as the nodes most distant from

the root will have very few observations, by design. However, if further work could

compose a sample mean function and sample variance function for left censored data,

it would be straightforward to construct a left-censored random forest model.

Some models may be improved by existing methods and supplementary investiga-

tions would reveal the feasibility of each. One could revisit the matrix-variate regres-

sion model with solutions to computational infeasibility using gradient-free methods,

sub-sampling of the training data before model fitting or emulation techniques. Sim-

ilarly, we could alleviate the multimodality from Chapter 7 using reversible jump

Markov chain Monte Carlo (RJMCMC) (Richardson & Green, 1997) or tempering

to fully explore each posterior mode (Neal, 1996, Jasra et al. (2005)).

When there are only 2 analytes of interest, we have a bivariate left-censored regres-

sion that uses a correlation parameter to be estimated (Newton & Rudel, 2007).

Future work looking into the impact this would have on each of the univariate mod-
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els would be very interesting and require less work than other suggestions since we

have already used likelihood-based approaches such as slice sampling (Neal, 2003)

and Hamiltonian Monte Carlo (Stan Development Team, 2023). A more challeng-

ing approach would be to create a generalised multivariate distribution for several

potentially censored analytes that is capable of defining a density for any possible

combination of censoring indicators.

In the interest of predicting analyte concentrations with previously defined predic-

tors, we have avoided time series approaches to these data. The benefit of this

decision is that we are able to predict analyte concentrations without requiring the

previous observation of that variable. Moreover, missing data and irregular sampling

patterns, common in groundwater monitoring, has little to no impact on other obser-

vations for these models. However, there is clearly a temporal dependence in both

analyte and predictor data as evidenced by the use of time-series plots throughout

the thesis and noticeable autocorrelation. Further work could investigate including

a temporal aspect into the model such as drift, removing any potential seasonal-

ity or autoregressive parameters. While these opportunities are not the focus of

our research, more effectively modelling the residual variance by removing temporal

dependence could improve estimation and prediction as we have shown in Chapter 8.

While all aforementioned suggestions would be of great interest to the statistical

community, the best approach for research impact would be to investigate repeata-

bility and reproducibility at other groundwater monitoring sites. That is, organisa-

tions investigating hydrocarbon concentrations in addition to sites with a focus on

some other water quality indicator, for example lead pollution, nitrate pollution or

radioactivity within the water sample.
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Glossary

A.1 Analyte Collections

In hydrocarbon groundwater monitoring data it is common to see grouping of vari-

ables as a representative of the highly correlated analytes.

• BTEX: benzene, toluene, ethylbenzene and all xylenes;

• Total Petroleum Hydrocarbons (TPH): total crude oil hydrocarbons with

6 to 35 carbon atoms, sometimes split into various ranges such as

– Gasoline Range Organics (TPH-GRO): 𝐶6 to 𝐶10 alkanes, lower

boiling point than TPH-DRO (Environmental Protection Agency, 2015);

– Diesel Range Organics (TPH-DRO): 𝐶10 to 𝐶28 alkanes;

• Other groups may classify these hydrocarbons with more groups such as

– Low Range Hydrocarbons (LRH) for 𝐶5 to 𝐶8 alkanes;

– Mid Range Hydrocarbons (MRH) for 𝐶9 to 𝐶18 alkanes;

– High Range Hydrocarbons (HRH) for 𝐶19 to 𝐶35 alkanes.
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A.2 Analytes

• Benzene (𝐶6𝐻6): petrochemical with a rigid hexagonal shape formed from

6 carbon atoms with a hydrogen bond for each. Has been confirmed to be

carcinogenic and a major health concern (World Health Organization, 2010).

• Toluene (𝐶7𝐻8): alternatively 𝐶6𝐻5 𝐶𝐻3, a methyl group (𝐶𝐻3) attached

to a phenyl group, that is a benzene ring minus one of the hydrogen atoms.

• Ethylbenzene (𝐶8𝐻10): alternatively 𝐶6𝐻5 𝐶𝐻2 𝐶𝐻3, a further deviation

from benzene where one bond is replaced by phenyl group (𝐶6𝐻5) and another

by methylene [𝐶𝐻2].

• Xylene (𝐶8𝐻10): alternatively (𝐶𝐻3)2 𝐶6𝐻4, structurally is a benzene ring

with a methyl group replacing two hydrogen bonds. Data is provided as total

xylenes or by a further classification depending on the locations of the two

methyl groups as shown in Figure A.1:

– ortho-xylene neighbours or 1-2;

– meta-xylene neighbours once removed or 1-3;

– para-xylene: opposite vertices of hexagon or 1-4.

Figure A.1: Illustrative schematic of IUPAC nomenclature of alicyclic compounds.
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• Methyl tert-butyl ether (MTBE) ((𝐶𝐻3)3𝐶𝑂𝐶𝐻3): volatile flammable

liquid that is a fuel additive as opposed to a crude oil compound that has

multiple uses including raising the oxygen content of gasoline.

• Naphthalene (𝐶10𝐻8): has the appearance of two fused benzene rings shar-

ing two carbon atoms, for this reason it is the simplest polycyclic aromatic

hydrocarbon.

A.3 Predictors

• pH: measure of acidity of the water sample; since values are already on the

log scale one could also use the activity of the hydrogen ions in the solution,

say 𝑎𝐻+ , where pH = − log(𝑎𝐻+).

• Conductivity (EC): direct measurement of how well the sample can conduct

electricity per volume.

• Temperature: the temperature of the water during analysis.

• Dissolved Oxygen (DO): the concentration of oxygen gas that has been

incorporated into the water

• Oxidation Reduction Potential (ORP): water quality parameter, re-

ported in volts or millivolts, that conveys the presence of an oxidising agent

from a high ORP measurement or the presence of a reducing agent from a

low ORP measurement.
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Markov chain Monte Carlo

(MCMC) Methods

The nature of MCMC algorithms involve drawing samples from the desired posterior

distribution, or stationary distribution, which is extremely appealing when the target

is intractable due to a complex normalising constant (Gamerman & Lopes, 2006). To

further validate these methods, we often start the algorithm at a variety of starting

values and assess multiple outputs, known as chains. This thesis utilises several

MCMC-based algorithms including

• Gibbs sampling, (Section 5.2.2);

• Slice sampling, (Neal, 2003);

• Hamiltonian Monte Carlo, (Stan Development Team, 2023).

Output of any of these MCMC methods is said to have good mixing if the target

distribution is well explored; it follows that algorithms producing draws with low

autocorrelation are likely to have better mixing than one with many autocorrelated

draws. Mixing is impacted by several factors such as model complexity, data used,
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prior information or parameter starting values. For each model fit we have assessed

the mixing of each chain using several diagnostics including density, trace and au-

tocorrelation plots and numerical quantities such as effective sample size.

Convergence is also a desirable property where we want the output to converge

to the target stationary distribution in a relatively short time and to converge to

the same solution regardless of the algorithm’s initialisation state. Multiple chains

converging on the same distribution improves our confidence convergence. Further

discussion around assessing convergence can be found in Gelman et al. (1995).

Initial samples from MCMC output, known as “burn-in”, are typically discarded as

it can take time for the algorithm to reach the stationary distribution and these

samples may not be representative of the stationary distribution. An alternate

method of discarding samples involves “thinning” the output where only every 𝑘𝑡ℎ

sample is kept; while thinning can reduce autocorrelation yielding more information

per sample, many argue that it is often unnecessary and inefficient (Link & Eaton,

2012), although there is much debate around this topic. Any output we have thinned

has been for pragmatic reasons such as computational feasibility or to obtain less

autocorrelated samples without increasing output storage requirements.

B.1 Posterior Predictive Densities

Consider the general case where we observe some training data as a collection of

dependent variables 𝑌 , independent variables 𝑋 and potentially some metadata 𝑆
that often takes the form of spatiotemporal coordinates in our application. All are

assumed to be matrices with 𝑛𝑠 rows or observations and a number of columns

specified in the corresponding model description.
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By performing Bayesian inference with some chosen model on these data, we es-

timate the posterior distribution of the model parameters Θ. That is, by Bayes’

theorem

𝜋(Θ|𝑌 , 𝑋, 𝑆) = 𝜋(𝑌 |𝑋, 𝑆, Θ) 𝜋(Θ)
𝜋(𝑌 , 𝑋, 𝑆) ∝ 𝜋(𝑌 |𝑋, 𝑆, Θ) 𝜋(Θ).

When new data is observed, say 𝑌 ′, 𝑋′, 𝑆′, our objective is to make predictions with

quantifiable uncertainty on the response variables 𝑌 ′. This is achieved through the

use of the posterior predictive distribution,

𝜋(𝑌 ′|𝑌 , 𝑋, 𝑆, 𝑋′, 𝑆′) = ∫ 𝜋(𝑌 ′|𝑋, 𝑆, 𝑋′, 𝑆′, Θ) 𝜋(Θ|𝑌 , 𝑋, 𝑆) dΘ,

which is the joint posterior density 𝜋(𝑌 ′, Θ|𝑌 , 𝑋, 𝑆, 𝑋′, 𝑆′) with the model param-

eters marginalised out. In practice, these distributions are realised in the forms of

finite draws that are based on the Monte Carlo estimate,

𝜋(𝑌 ′|𝑌 , 𝑋′, 𝑆′) ≈ 1
𝑀

𝑀
∑
𝑚=1

𝜋(𝑌 ′|Θ(𝑚), 𝑋′, 𝑆′),

where Θ(𝑚) denotes the 𝑚𝑡ℎ posterior draw of the model parameters.
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Model Code

One of the primary motivations behind this project included transparency and con-

tributing to open-source projects where possible. To this end, several R packages

were produced and made publicly available on code repository services like GitHub

and GitLab.

• Chapter 5 uses the mixture of experts code with 𝐾 = 1 components assumed;

• Chapter 6 uses the bmnr package, https://github.com/nclJoshCowley/bmnr;

• Chapter 7 uses the bmoe package, https://github.com/nclJoshCowley/bmoe;

• Chapter 8 uses the visp package, https://github.com/nclJoshCowley/visp.

All packages are open source and will be made public in due course and will improve

with new users and feedback. Hence, we include the original model code here for

reproducibility.
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C.1 Bayesian Mixture of Experts

JAGS code used to fit Bayesian mixture of experts model (Chapter 7).
1 var regr[p_regr, n_y, k], prec[n_y, k], unnormalised_probs[n_s, k];
2 data {
3 # Ones trick
4 for (i in 1:n_s) { for (yi in 1:n_y) { ones[i, yi] = 1 }}
5 C = 10000
6 }

7 model {
8 # Transformed parameters
9 for (i in 1:n_s) {

10 for (ki in 1:k) {
11 unnormalised_probs[i, ki] = exp(x_wt[i, ] %*% wt[, ki])
12 }
13 }

14 # Likelihood
15 for (i in 1:n_s) {
16 z[i] ~ dcat(unnormalised_probs[i, 1:k])

17 for (yi in 1:n_y) {
18 ones[i, yi] ~ dbern(L[i, yi] / C)
19 L[i, yi] = ifelse(is_nd[i, yi], y_cdf[i, yi], y_pdf[i, yi])

20 y_cdf[i, yi] = pnorm(y[i, yi], mean[i, yi], prec[yi, z[i]])
21 y_pdf[i, yi] = dnorm(y[i, yi], mean[i, yi], prec[yi, z[i]])

22 mean[i, yi] = x_regr[i, ] %*% regr[, yi, z[i]]
23 }
24 }

25 # Prior
26 for (ki in 1:k) { for (yi in 1:n_y) {
27 prec[yi, ki] ~ dgamma(prec_shape, prec_rate)
28 }}

29 for (j in 1:p_regr) { for (yi in 1:n_y) { for (ki in 1:k) {
30 regr[j, yi, ki] ~ dnorm(0, regr_prec)
31 }}}

32 for (j in 1:p_wt) {
33 for (ki in 2:k) { wt[j, ki] ~ dnorm(0, wt_prec) }
34 wt[j, 1] = 0
35 }
36 }
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C.2 Bayesian Multivariate Normal Regression

Stan code for Bayesian multivariate normal regression models (Chapter 6).
1 data {
2 // Dimensions
3 int<lower=1> n_s;
4 int<lower=1> n_y;
5 int<lower=1> n_x;

6 // Data
7 matrix[n_s, n_y] y;
8 matrix[n_s, n_x] x;

9 // Prior Hyperparameters
10 real<lower=0> regr_prec;
11 real<lower=0> covar_y_df;
12 cov_matrix[n_y] covar_y_scale;
13 }

14 parameters {
15 matrix[n_x, n_y] regr;
16 cov_matrix[n_y] covar_y;
17 }

18 model {
19 matrix[n_y, n_y] L_covar_y = cholesky_decompose(covar_y);
20 matrix[n_s, n_y] mean_y = x * regr;

21 // Prior
22 for (yi in 1:n_y) regr[, yi] ~ normal(0, 1 / sqrt(regr_prec));
23 covar_y ~ inv_wishart(covar_y_df, covar_y_scale);

24 // Likelihood
25 for (ii in 1:n_s) y[ii, ] ~ multi_normal_cholesky(mean_y[ii, ], L_covar_y);
26 }
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C.3 Varying Intercept

Stan code for varying intercept models (Chapter 8).

Spatial Prior
1 functions {
2 #include /functions/lcens_norm.stan
3 #include /functions/gp_matern32_cov_ard.stan
4 }

5 data {
6 // Dimensions
7 int<lower=1> n_s;
8 int<lower=1> n_x;
9 int<lower=1> n_groups;

10 int<lower=1> n_gp_dims;

11 // Optional Left-Censoring
12 int<lower=0, upper=1> is_left_cens;

13 // Data
14 vector[n_s] y;
15 int<lower=0, upper=1> is_nd[is_left_cens ? n_s : 0];
16 matrix[n_s, n_x] x;
17 int<lower=0, upper=n_groups> groups[n_s];
18 vector[n_gp_dims] coords[n_groups];

19 // Prior Hyperparameters
20 real<lower=0> regr_prec;
21 real<lower=0> prec_shape;
22 real<lower=0> prec_rate;

23 // GP Prior Hyperparameters
24 real<lower=0> gp_scale_shape;
25 real<lower=0> gp_scale_rate;
26 real<lower=0> gp_length_shape;
27 real<lower=0> gp_length_rate;

28 // GP Parameters (Assumed known)
29 real<lower=0> gp_nugget;
30 }

31 parameters {
32 vector[n_x] regr;
33 real<lower=0> prec;
34 vector[n_groups] vary_eff;
35 real<lower=0> gp_scale;
36 vector[n_gp_dims] gp_length;
37 }

38 model {
39 // Priors
40 regr ~ normal(0, sqrt(1 / regr_prec));
41 prec ~ gamma(prec_shape, prec_rate);
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42 // GP Prior
43 gp_scale ~ gamma(gp_scale_shape, gp_scale_rate);
44 for (k in 1:size(gp_length)) {
45 gp_length[k] ~ gamma(gp_length_shape, gp_length_rate);
46 }

47 matrix[n_groups, n_groups] gp_covar;
48 gp_covar = gp_matern32_cov_ard(coords, gp_scale, gp_length);

49 for (g in 1:n_groups) gp_covar[g, g] = gp_covar[g, g] + gp_nugget;

50 vary_eff ~ multi_normal_cholesky(
51 rep_vector(0, n_groups),
52 cholesky_decompose(gp_covar)
53 );

54 // Likelihood
55 vector[n_s] y_mean = vary_eff[groups] + (x * regr);
56 if (is_left_cens) {
57 y ~ lcens_norm(is_nd, y_mean, sqrt(1 / prec));
58 } else {
59 y ~ normal(y_mean, sqrt(1 / prec));
60 }
61 }

215



Appendix C. Model Code

Hierarchical Prior
1 functions {
2 #include /functions/lcens_norm.stan
3 }

4 data {
5 // Dimensions
6 int<lower=1> n_s;
7 int<lower=1> n_x;
8 int<lower=1> n_groups;

9 // Optional Left-Censoring
10 int<lower=0, upper=1> is_left_cens;

11 // Data
12 vector[n_s] y;
13 int<lower=0, upper=1> is_nd[is_left_cens ? n_s : 0];
14 matrix[n_s, n_x] x;
15 int<lower=0, upper=n_groups> groups[n_s];

16 // Prior Hyperparameters
17 real<lower=0> regr_prec;
18 real<lower=0> prec_shape;
19 real<lower=0> prec_rate;

20 // Hierarchical Prior Hyperparameters
21 real<lower=0> vary_eff_mean_prec;
22 real<lower=0> vary_eff_prec_shape;
23 real<lower=0> vary_eff_prec_rate;
24 }

25 parameters {
26 vector[n_x] regr;
27 real<lower=0> prec;
28 vector[n_groups] vary_eff;
29 real vary_eff_mean;
30 real<lower=0> vary_eff_prec;
31 }

32 model {
33 // Priors
34 regr ~ normal(0, sqrt(1 / regr_prec));
35 prec ~ gamma(prec_shape, prec_rate);

36 // Hierarchical Prior
37 vary_eff_mean ~ normal(0, sqrt(1 / vary_eff_mean_prec));
38 vary_eff_prec ~ gamma(vary_eff_prec_shape, vary_eff_prec_rate);
39 vary_eff ~ normal(vary_eff_mean, sqrt(1 / vary_eff_prec));

40 // Likelihood
41 vector[n_s] y_mean = vary_eff[groups] + (x * regr);
42 if (is_left_cens) {
43 y ~ lcens_norm(is_nd, y_mean, sqrt(1 / prec));
44 } else {
45 y ~ normal(y_mean, sqrt(1 / prec));
46 }
47 }
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C.4 Stan Functions

Matérn 3/2 Kernel with Characteristic Length Scales

This Stan function extends the built-in gp_matern32_cov to have characteristic

length-scales.
1 /*
2 * Matern 3/2 Kernel with Characterstic Length Scales
3 *
4 * @param x array of vector. Distance between these two vectors are needed.
5 * @param gp_scale real. Multiplicative amplitude of the kernel function.
6 * @param gp_length vector. Multiple length scales, one for each dimension.
7 *
8 * @return Covariance matrix with 'size(x)' rows and columns
9 */

10 matrix gp_matern32_cov_ard(vector[] x, real gp_scale, vector gp_length) {
11 int n_r = size(x);
12 matrix[n_r, n_r] out;

13 real gp_scale_sq = pow(gp_scale, 2);
14 real dist;

15 for (i in 1:(n_r - 1)) {
16 out[i, i] = gp_scale_sq;

17 for (j in (i + 1):n_r) {
18 dist = sqrt(dot_self((x[i] - x[j]) ./ gp_length));
19 out[i, j] = gp_scale_sq * (1 + sqrt(3) * dist) * exp(-1 * sqrt(3) * dist);
20 out[j, i] = out[i, j];
21 }
22 }

23 out[n_r, n_r] = gp_scale_sq;

24 return out;
25 }
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Left-censored Normal Log Likelihood

We define a custom distribution for the univariate left-censored response variable

using the _lpdf syntax.
1 /*
2 * Increment with Left-censored Normal Log-likelihood
3 *
4 * @param y Vector, either observed value (is_nd = T), otherwise detection limit.
5 * @param is_nd Array of T/F, TRUE implies censoring for that observation.
6 * @param mu Vector, linear predictor.
7 * @param sigma Real, standard deviation.
8 *
9 * @return lp__

10 */
11 real lcens_norm_lpdf(vector y, array[] int is_nd, vector mu, real sigma) {
12 real result = 0;

13 int n_cens = sum(is_nd);
14 int n_obs = rows(y) - n_cens;

15 int which_cens[n_cens];
16 int which_obs[n_obs];

17 int i_cens = 1;
18 int i_obs = 1;

19 for (i in 1:rows(y)) {
20 if (is_nd[i] == 1) {
21 which_cens[i_cens] = i;
22 i_cens += 1;
23 } else {
24 which_obs[i_obs] = i;
25 i_obs += 1;
26 }
27 }

28 result += normal_lpdf(y[which_obs] | mu[which_obs], sigma);
29 result += normal_lcdf(y[which_cens] | mu[which_cens], sigma);

30 return result;
31 }
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