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Abstract

Thermodiffusively (TD) unstable lean hydrogen flames, a promising alternative to the

combustion of hydrocarbons, have been studied using direct numerical simulation with

complex chemistry over a wide range of reactant and turbulent conditions to develop a better

understanding of the fundamental behaviour of TD-unstable flames, with a specific focus on

the flame speed, which will be used to inform turbulent flame speed models used for device

scale simulations.

Firstly the thesis investigates the fundamental behaviour of the TD-instability for

3-dimensional laminar freely-propagating flames over a wide range of reactant conditions. It

is shown that the instability parameter ω2 extends well to 3-dimensions and a model is

proposed that has good predictive capabilities for local flame acceleration and thinning

arising from the reactant conditions.

Next, the work is extended to turbulent flames at a scale over a wide range of reactant and

turbulent conditions. It is found that turbulence intensifies the TD-response and is found that

the mean local flame speed scales well. This the square-root of the Karlovitz number, provided

the laminar TD-instability is accounted for using ω2.

Next, the integral length scale as well as the Karlovitz number over a range of reactant

conditions are considered to evaluate the combined effect of reactant conditions, turbulent

intensity and length scale on both the local and global flame statistics with a focus on the

turbulent flame speed. It is found that length scale does not effect the local flame statistics, but

does effect the global flame statistics where the turbulent flame speed adheres to Damköhler’s

small scale limit.

Lastly, a method for a well resolved (DNS-style) G-equation capable of simulating

TD-unstable flames is proposed and presented, which could be used in future studies to

simulate larger domains due to its lower computational cost.
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Chapter 1. Introduction

The combustion of hydrocarbons in the form of fossil fuels has been the backbone of society

since the industrial revolution. Fossil fuels have become essential to almost every aspect of

modern life, from transportation to food production. Despite the benefits to society, the

combustion of hydrocarbons has significant and severe effects on global and local climate as

well as human and environmental health [11]. It is now widely accepted that a swift transition

away from fossil fuels is essential, and significant global research, innovation and societal

change is required to facilitate the green energy transition.

There are many potential alternatives to burning hydrocarbons; clean electrification has formed

a central component of the energy transition, with promising uses and adoption in heating,

passenger vehicles and public transportation; in recent years there has even been some

adoption for electric heavy-goods vehicles (HGVs) [84]. However, there are several

disadvantages to electrification. Firstly the required infrastructure development required to

supply clean renewable energy at a high demand is a challenge, which can be even more

difficult in rural areas [128]. This challenge becomes even more complex in developing

countries or countries that are large energy importers with limited space for renewable energy

generation. There are still around 1.4billion (2011) people lacking access to electricity [26].

Additionally, some industrial processes and transport (such as long-hall flights and maritime

transport) do not have a clear path to electrification, with some major hurdles still to overcome.

The energy intensive, typically polluting process of mining and manufacturing large batteries

has significant environmental impacts which currently disproportionately effects developing

nations [155].

It is the view of the author that it is likely that to fully decarbonise and achieve net-zero,

electrification alone will not suffice. Therefore, significant effort to investigate alternatives

have been explored. The most promising options involve burning liquid fuels or gasses which

have a net-zero carbon release. Examples of these include biofuels (see [69] for review),

ammonia (see [175] for review) and the focus on this project, hydrogen. Hydrogen is a

carbon-free fuel with a high energy density that can be used as a clean energy carrier and
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allows the combination of electricity, heating and transportation into a single energy market

[95]. Naturally, hydrogen combustion is a promising substitute for carbon emitting traditional

fuels for transport, heating and re-electrification [177]. Due to the unique characteristics of

hydrogen, its combustion can be performed lean, resulting in the stable operation at lower

combustion temperatures, significantly reducing NOx [64] which is a pollutant harmful for

humans and the environment [37]. However, lean hydrogen can be thermodiffusivly (TD)

unstable. The flame physics during combustion are different than traditional fuels which can

result in hotter and faster flames than would usually be expected. Therefore, a better

understanding of the underlying physics of hydrogen and modification of the models used to

develop hydrogen combustors to facilitate future global adoption [161].

1.1 Device Scale Simulations and the Scope of Direct Numerical Simulations

Typically, engine (combustor) designers heavily utilise simulations; namely

computational-fluid-dynamics to perform design tasks. It is important that the simulation

codes achieve answers quickly with minimal computational costs. A great deal of small scale

physics cannot be directly computed from fundamental equations of motion and chemical

kinetics, thus models must be used to approximate the large scale effects of the small scale

physics. The more accurate the model, the more useful to designers the code will be. One of

the key values to calculate is the consumption based turbulent flame speed (the speed of which

the flame burns fuel). This global value depends entirely on the small scale physics, and how

turbulence and chemistry interact, which cannot be calculated at the device scales hence, a

model must be used. This becomes increasingly challenging with TD-unstable hydrogen

flames, which typically deviate from the well understood physics used in existing turbulent

flame speed models. Existing turbulent flame speed models have been developed mostly with

traditional carbon-based fuels in-mind, which are TD-stable. TD-unstable flames which often

burn hotter and faster than their stable counterparts result in inaccurate turbulent flame speed

predictions from traditional turbulent flame speed models. This project studies TD-unstable

flames to gain better insight into the fundamental physics of a TD-unstable hydrogen flames to

propose modifications to turbulent flame speed models. There are two historically appropriate

ways to study the fundamental physics of flames, experimentally (typically with a bunsen
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flame) or numerically utilising direct numerical simulations. Experiments, despite being able

to study real world effects, often lack the ability to study the small scales behaviours which

enhance our understanding of the underlying physics. This project focuses on using DNS to

study the underlying flame physics.

DNS is a method of performing numerical simulations where all turbulent scales are resolved

on the computational grid from the large integral scale to the small Kolmogorov micro-scales,

therefore no turbulence modelling is required. Combustion follows a similar philosophy where

the flame scales must also be resolved. For DNS of reacting flows, both the turbulence and the

flame have to be fully resolved. For turbulence, the grid size must be sufficient to resolve the

smallest scale with a domain size large enough to capture the larger turbulent length scale. As

turbulent intensity increases the smallest scales that need to be resolved decrease, which will

increase the computational cost of the simulation [139]. Additionally, pressure decreases the

flame scale which then requires a finer computational grid to resolve the flame. Thus highly

turbulent flames at pressure (which is typical for most combustors) require significant

computational expenditure and cannot be undertaken at device scales. A practical example of

this is shown in Figure 1.1 which shows the surface of a turbulent hydrogen flame (burning out

towards the reader) using DNS at high pressure (40 atm). The flame has a domain width of

only 0.8mm and consists of 768 computation cells across the domain width requiring a total of

1.8 billion computational cells to simulate. If this same simulation was to be conducted at the

size of a combustor with similar conditions (a reciprocating internal combustion engine for a

HGV, for example) an estimated 4000 trillion computational cells would be required. Due to

the extra size, the flame would take longer to burn though the computational domain thus

requiring more time steps, totalling unfeasible computational requirements. For reference, for

device scale simulation codes, the size of the entire domain of Figure 1.1 is roughly the size of

one computational cell.

1.2 Vectis and the Reciprocating Internal Combustion Engine

Realis Simulation develop Vectis, a 3-dimensional simulation tool for device scale internal

combustion engines. Vectis is capable of simulating the entire engine cycle, allowing for

essential insight into engine behaviour for more effective design and optimisation [2]. To
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Figure 1.1: Example of a turbulent hydrogen flame isosurface in DNS.

achieve device scale simulations, Vectis utilises the unsteady Reynolds Averaged

Navier-Stokes Equations for laminar or turbulent, in-compressible or compressible flows

[166]. Coupled with tabulated kinetics with laminar and turbulent flame speed models to allow

for the simulation of combustion, Vectis also utilises an unstructured grid and moving

boundaries for the simulation of a full engine cycle [2]. A reciprocating internal combustion

engine converts chemical energy stored in a liquid or gaseous fuel, such as hydrogen, into

mechanical and thermal energy through the combustion of the fuel. Hydrogen reciprocating

internal combustion engines follow a typical Otto cycle where:

• Air is drawn into the combustion chamber via an expanding cylinder and hydrogen is

injected into the chamber and mixes with the turbulent air, creating a premixed air-fuel

mixture.

• The piston compresses the air-fuel mixture.

• A spark plug ignites the mixture via a spark resulting in a small flame kernel. The flame

kernel rapidly burns through the mixture, expanding the products through adiabatic
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expansion forcing the piston and cylinder head apart, increasing the cylinder volume.

• The exhaust gases are expelled from the cylinder.

1.3 Aims and Thesis Structure

The aims of this project are, by utilising direct numerical simulations, to improve the current

understanding of the underlying flame physics of TD-unstable premixed hydrogen flames.

Specifically, how flame conditions such as pressure, temperature, equivalence ratio and

turbulence affect the underlying flame physics relevant to turbulent flame speed modelling. In

particular, the local flame speeds and structure (Chapters 4 and 5), global flame structure and

the turbulent flame speed (Chapter 6). Using this insight, an appropriate modified turbulent

flame speed model(s) will be proposed, to be used in device scale simulation codes such as

Vectis.

This thesis is organised into the following chapters:

• Chapter 2, background; focuses on the key theory and background relevant to

understanding the main concepts utilised throughout this thesis. This includes the

fundamental equations of motion for reacting flows, relevant turbulence theory, laminar

premixed flames, both flat unstretched and multidimensional freely-propagating flames

and the consequences of Lewis number, turbulent flames and turbulent flame speed

modelling.

• Chapter 3, methods; focuses on the methods used to conduct the simulations and

analysis, starting with the direct numerical simulation code and the turbulence forcing,

followed by the resolution requirements and the methods used to attain flame statistics.

• Chapter 4, focuses on laminar, freely-propagating flames, where the effects of flame

conditions (pressure, temperature and equivalence ratio) have on the freely propagating

flame speed, thickness and structure. This chapter also proposes a local freely

propagating flame speed and thickness model.

• Chapter 5, builds upon chapter 4 by studying the effect of flame conditions and turbulent

intensity on the local flame speed, thickness and flame structure. Chapter 4, also
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proposes a model used for predicting the local flame acceleration and thinning under a

variety of flame and turbulent conditions.

• Chapter 6, focuses on the effects of the TD-instability, turbulent intensity and turbulent

integral length scale on the local and global flame statistics. Chapter 6 also uses the data

from Chapter 5 to develop and propose an improved turbulent flame speed model.

• Chapter 7, proposes a DNS style G-equation for simulating lean hydrogen flames

without the computational cost of computing chemistry.

• Chapter 8, concludes the thesis with a summary of the key findings of the work and

recommended future considerations.
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Chapter 2. Background

The goal of this chapter is to introduce the fundamental concepts required to follow the

proceeding research chapters. The background chapter will be divided into the following key

sections: Conservation equations for reacting flows, Fundamentals of turbulence,

Fundamentals of unperturbed laminar premixed flames, Laminar freely-propagating flames,

Turbulent flames and turbulent flame speed modelling. The thesis is solely focused on

sub-sonic premixed flames, thus non-premixed flames and compressible reacting flows will not

be covered in this background. This assumption is sensible provided the combustion velocity

(and fluid velocity) is independent of pressure waves, which usually correlates with flame

speeds and flows sufficiently slower than the speed of sound (Ma). The flows used throughout

this project will be adequately sub-sonic (approximately 0.01Ma). A premixed flame is a flame

where the fuel and oxidiser is supplied premixed. This means that, ahead of the flame, the gas

will contain a fuel (for this project, the fuel is Hydrogen H2), Oxygen O2 and Nitrogen N2.

Given sufficient reactant conditions, nitrogen will not be an inert gas and can react to form

NOx, however nitrogen kinetics are beyond the scope of this project and will not be discussed

further.

2.1 Conservation Equations for Reacting Flows

The following section provides an overview of the fundamental equations of energy

conservation in incompressible reacting flows. The equation below will be revisited again

when discussing the direct numerical simulation code base (PeleLM) in Section 3.1.

Typically, in three-dimensional reacting flows there are 5 +N variables:

• The three velocity components.

• The energy, which can be expressed as a temperature, enthalpy or pressure.

• The fraction of species (typically given as a mass fraction of each of the N species).
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2.1.1 The Control Volume

To attain the conservation equations, a control volume approach will be used. Detailed

explanations of the control volume approach and the corresponding conservation equations are

summarised in [100] and [10] (other supplementary reading includes [27, 173, 139, 137]). The

premise of the control volume approach is to take a blob of fluid with a volume V , a surface S

and a unit normal vector n as a fixed frame of reference. The control volume has a velocity

vector u flowing through it. Simply, the density-weighted velocity is caused by the sum of the

velocity of each species (ρkuk), where k is the kth species. The difference between the

individual species velocity and the bulk velocity is the molecular diffusion

Uk = uk − u. (2.1)

The momentum of the fluid is also equal to sum of the momentum of each species in the fluid

N∑
k=1

ρkuk = ρu. (2.2)

where N is the number of species and ρk is the density of species k. Given a fluid property Φ

and the corresponding “density” of Φ per unit volume of fluid ϕ, then the rate of change of Φ,

is the sum of the change of Φ within the fluid blob volume V and the gain and losses of Φ as

the result of fluxes through the surface is defined as [100]

δΦ

δt
=

∂

∂t

ˆ
V

ϕ dV +

ˆ
S

ϕ(u · n) dS. (2.3)

By using Gauss’s divergence theorem, which for a given vector field V in a fluid blob of

volume V with surface S ˆˆ

V

ˆ
(∇ · V) dV =

¨

S

(V · n) dS, (2.4)

allows for the following to be true
ˆ
V

(∇ · ϕu) dV =

ˆ
S

ϕ(u · n) dS. (2.5)

This then allows for the definition of the rate of change of a fluid property, as

δΦ

δt
=

ˆ
V

(
∂ϕ

∂t
+∇ · ϕu

)
dV. (2.6)
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S

S = Sn

V

u

Figure 2.1: Visualisation of the control volume, as influenced by Law’s book [100].

2.1.2 Conservation of Mass

The rate of change of the mass is the sum of the loss and gain of mass through fluxes across the

surface S of the fluid blob and the temporal change of mass within the fluid volume, therefore

by substituting mass m and density ρ into Equation (2.6) the conservation of mass can be

written as
δm

δt
=

ˆ
V

(
∂ρ

∂t
+∇ · ρu

)
dV. (2.7)

As mass cannot be created or destroyed
ˆ
V

(
∂ρ

∂t
+∇ · ρu

)
dV = 0, (2.8)

and as the control volume is arbitrary, the continuity equation can be defined as

∂ρ

∂t
+∇ · (ρu) = 0. (2.9)

2.1.3 Conservation of Momentum

There are several steps to defining the momentum equation. Firstly, we must define the

temporal change in momentum using Equation (2.6) and substituting Φ for momentum M of

the flow and the ϕ for the momentum flux ρu. The temporal change in momentum is then

δM

δt
=

ˆ
V

(
∂ρu

∂t
+∇ · ρuu

)
dV. (2.10)
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By adhering to Newton’s second law of motion the rate of change of momentum depends on

the force acting on the fluid. This force can be divided into a surface force and volume force.

The surface force can be represented by the stress tensor σ and the density weighted

volumetric force F . The rate of change of momentum can then be defined as a sum of the

surface and volume forces

δM

δt
= −
ˆ
S

(σ · n) dS +

ˆ
V

F . (2.11)

By combing Equation (2.4) and (2.11)

δM

δt
= −
ˆ
V

(−∇ · σ +F) dV. (2.12)

Then, by combining Equation (2.10) with equation (2.12), the momentum equation becomes

∂ρu

∂t
+∇ · ρuu = −∇ · σ +F . (2.13)

For this project, volume forces are limited by the forcing used to maintain homogeneous and

isotropic turbulence. Details on this method will be detailed in Section 3.1.3.

2.1.4 Conservation of Species

In reacting flows there are more than one species (for example in the Burke mechanism [46]

there are 13 species), which must be conserved. Unlike mass, the species mass can change due

to both combustion and diffusion. It is now important to define the conservation of species by

taking Equation 2.6 for the mass and density of the kth species, then

δmk

δt
=

ˆ
V

(
∂ρk
∂t

+∇ · ρku
)

dV. (2.14)

The presence of chemical reactions can result in the production or destruction of species k,

thus ω̇k is the production of species k per unit volume. The diffusive transport is caused

through molecular collisions which has a magnitude proportional to the mass flux ρkUk caused

by the random motion of the molecules, therefore

δmk

δt
=

ˆ
V

ω̇k dV︸ ︷︷ ︸
reaction

−
ˆ
S

(ρkUk · n) dS︸ ︷︷ ︸
diffusion

, (2.15)

δmk

δt
=

ˆ
V

(ω̇k −∇ · ρkUk) dV. (2.16)
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When Equation 2.14 and 2.16 are combined, the conservation of species is defined as

∂ρk
∂t

= ω̇k −∇ · (ρk (u+Uk)) . (2.17)

Typically Equation 2.17 is presented as a species mass fraction Yk where

Yk =
ρk
ρ
. (2.18)

Therefore Equation 2.17 becomes

∂ρYk

∂t
= ω̇k −∇ · (ρYk (u+Uk)) . (2.19)

2.1.5 Conservation of Energy

The internal energy E within the system must be conserved. The total internal energy is the

sum of the sensible es, chemical ec and kinetic u2/2. Therefore using the control volume

approach Equation 2.6 becomes

δE

δt
=

ˆ
V

(
∂ρ (es + ec + (u2/2))

∂t
+∇ · ρu

(
es + ec +

(
u2/2

)))
dV. (2.20)

The internal energy can be changed by three sources [100]:

• Q1 the energy flux Q normal to boundary of the system.

• Q2 the work done on the fluid blob by the surface force Fs.

• Q3 the work done by the body forces on the kth species FV,k.

Therefore the rate of change of internal energy is

∂E

∂t
= Q1 +Q2 +Q3. (2.21)

Q1 can be defined as

Q1 = −
ˆ
S

(Q · n) dS = −
ˆ
V

∇ ·Q dV, (2.22)

Q2 can be defined as

Q2 = −
ˆ
S

u dFs = −
ˆ
S

u · (σ · n) dS = −
ˆ
V

∇ · (u · σ) dV, (2.23)
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where the negative sign means that the velocity vector u is pointed in the same direction of the

surface force dFs away from the surface, then work is being added to the fluid. Q3 can be

defined as

Q3 =
N∑
k=1

ˆ
V

uk · dFV,k =
N∑
k=1

ˆ
V

uk · (ρkfk) dV, (2.24)

as Uk = uk − u

Q3 =
N∑
k=1

ˆ
V

(Uk + u) · (ρkfk) dV. (2.25)

Equation (2.21) now becomes

∂E

∂t
= −
ˆ
V

∇ ·Q dV −
ˆ
V

∇ · (u · σ) dV +
N∑
k=1

ˆ
V

(Uk + u) · (ρkfk) dV. (2.26)

Then, by combining with Equation (2.20), yields

∂ρ (es + ec + (u2/2))

∂t
+∇ · ρu

(
es + ec +

(
u2/2

))
=

−∇ ·Q−∇ · (u · σ) +
N∑
k=1

(Uk + u) · (ρkfk) .

(2.27)

Following [137] the energy equation can be defined in terms of enthalpy

∂ρh

∂t
+∇ · (ρhu+Q) = ρ

N∑
k=1

(Uk + u) · (Ykfk). (2.28)

For the cases studied throughout this thesis the RHS is equal to zero, thus reduces to

∂ρh

∂t
+∇ · (ρhu+Q) = 0. (2.29)

2.1.6 Species Transport and Diffusive Fluxes

When at rest, species can still be transported through molecular diffusion. The kth species

diffusive flux vector is defined as

Fk = −
N∑
l=1

ρDk,ldl −
ρYkDth,k

T
∇T, (2.30)

where Dth,k is the thermal diffusion coefficient of species k, Dk,l is the mass diffusion

coefficient of species k to species l, dl is the driving diffusion force of species l and T is the
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temperature. The temperature gradient term represents the Soret effect, and historically is

absent in most combustion codes. The thermal conductivity is defined as

Dt =
λ

ρcp
, (2.31)

where λ is the thermal conductivity and cp is the specific heat capacity. The driving diffusion

force is defined as

dl = ∇Xl
Xl − Yl

p
∇p, (2.32)

where p is the pressure field and Xl is the mole fraction of species l. Each species of mass

fraction requires a transport equation and can be given by

∂ρYk

∂t
+∇ · (ρYku) = −∇ · Fk + ρω̇k. (2.33)

2.1.7 Chemical Kinetics

Given a chemical system that contains N number of species which have M number of reaction

for a given kth species Sk, the reversible reaction can be generalised as

N∑
k=1

Cf
k,lSk −−⇀↽−−

N∑
k=1

Cb
k,lSk, (2.34)

where Cf
k,l and Cb

k,l is the forward and backward stoichiometric coefficient for the kth species in

the lth reaction. The rate of change in the concentration of the kth species is given by

dck
dt

= Wk =

NR∑
l=1

(
Cf
k,l − Cb

k,l

)(
W f

k,l −W b
k,l

)
for l = 1, NR, (2.35)

where W f
k,l and W b

k,l is the forward and backward reaction rate of species k from reaction j,

and NR is the number of reactions. Forward and backward reaction rates can be modeled by

W f
k,l = Kf

k ρ
∑N−1

k=1 Cf
k,l

N−1∏
k=1

(
Yk

Mk

)Cf
k,l

(2.36)

and

W b
k,l = Kb

kρ
∑N−1

k=1 Cb
k,l

N−1∏
k=1

(
Yk

Mk

)Cb
k,l

, (2.37)

where Mk is the molar weight of species k and Kf
k and Kb

k are the forward and backward

reaction rate constants. N − 1 is used because the N th species is associated with a third body
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reaction [108]. The molar weight of species are approximated from the generalised Arrhenius

empirical relation

Kf
k = Af

k exp

(
− Ef

l

RoT

)
, (2.38)

and

Kb
k = Ab

k exp

(
− Eb

l

RoT

)
, (2.39)

where Ef
l and Eb

l is the activation energy for forward and backward reaction l. R0 is the

universal gas constant and Af
k and Ab

k is the forward and backward pre-exponential which can

be divided into a constant and a temperature exponent

Af
k = Af

kT
Bf

k , (2.40)

and

Ab
k = Ab

kT
Bb

k , (2.41)

where Af
k , Bf

k , Ab
k and Bf

k are constants. From these, the reaction rate of kth species ω̇k can be

given as

ρω̇k =

NR∑
l=1

(
Cb
k,l − Cf

k,l

)(
W f

k,l −W b
k,l

)
. (2.42)

2.2 Fundamentals of Turbulence

Turbulence is present in almost all real world combustors, especially internal combustion

engines. It will therefore be important to establish a fundamental understanding of how

turbulence behaves so it can later be studied in the context of turbulent flame interactions

as-well as to gain an appreciation and justification for the appropriate methodology.

Turbulence as defined by Bradshaw [41] is “a 3-dimensional time dependent motion in which

vortex stretching causes velocity fluctuations to spread to all wavelengths between a maximum,

determined by the boundary conditions of the flow and minimum determined by viscous

forces”. Turbulence in the context of this project will mostly be assumed as statistically

stationary, in-compressible, homogeneous and isotropic (HIT). The turbulence’s statistical

properties are independent of the coordinate axes, spatial position and time. Unless stated

otherwise, the section below has made the HIT assumption.
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2.2.1 Structural Description of Turbulence

To better describe the structure of turbulence, there are four key velocities; the instantaneous

velocity (u(x, t)), the mean flow velocity (which is the ensemble average of the instantaneous

velocity (⟨u(x, t)⟩) , the instantaneous velocity fluctuation

u′′(x, t) = u(x, t)− ⟨u(x, t)⟩ (2.43)

and the root-mean-square of the velocity fluctuation

u′ =
√

⟨u′′2
x ⟩ =

√
⟨u′′2

y ⟩ =
√

⟨u′′2
z ⟩, (2.44)

which is the typical velocity of the large eddies [57].

The velocity correlation function Qij(r,x, t) is defined as

Qij = ⟨ui(x)uj(x+ r)⟩ (2.45)

and is a measure of the degree to which the velocity components at different points are

correlated to each other. For example, if Qij = Qxx, then two positions of distance r have the

velocity fluctuation of the x-components velocity correlated, i.e.

Qxx = ⟨(ux)x(ux)x+r⟩. (2.46)

From Equation (2.45) and following the assumption of HIT where statistics are independent of

position (i.e. x) longitudinal and lateral velocity correlation functions can be defined as

Qxx(rex) = u2f(r), (2.47)

Qyy(rex) = u2g(r). (2.48)

This allows for another important turbulent quantity to be defined, the integral length scale (ℓI)

ℓI =

ˆ ∞

0

f(r)dr. (2.49)

This definition will be used to deine the integral length scale for the rest of the thesis. The

integral length scale is a decent measure of the region over which velocities are correlated,

which coincides with the size of the larger eddies. At r = 0, f(r) = 1, and as r tends to
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infinity and f(r) tends to zero as very large eddies occur less frequently than smaller eddies.

As u represents the turnover velocity of the larger eddies (around integral length scale) the

turbulent turnover time can be defined as

τI =
ℓI

u′ . (2.50)

2.2.2 The Energy Cascade

Richardson’s Energy Cascade

Richardson [144] proposed that turbulence has a range of turbulent eddies of different sizes,

where an ’eddy’ is a turbulent motion, localised within a region of a given size ℓR [139], where

a region of larger eddies can also have smaller eddies inside the same region. Eddies of size r

also have a characteristic velocity of u(ℓR) and a turnover time of τ(ℓR) = ℓR/u(ℓR).

Richardson’s proposal of the energy cascade is that eddies are unstable, and are inclined to

break up; where their energy is transferred into progressively smaller and smaller eddies.

Therefore, the turbulent kinetic energy injected into the system (Ek,in) at the large scales is

progressively cascaded into progressively smaller and smaller scales involving a “hierarchy of

vortices” [57] until the molecular viscosity is effective in dissipating the kinetic energy. The

Reynolds number (Re, conceptualised by Stokes [158] and implemented by Reynolds [143]),

is a dimensionless quantity that measures the ratio of the inertial and viscous forces in a fluid

flow. It is defined as

Re(ℓR) = u(ℓR)ℓR/ν, (2.51)

where u(ℓR) is the fluid velocity at a length ℓR, and ν is the kinematic viscosity. It can be seen

from Equation (2.51) that as the length scale decreases, the Reynolds number is decreased and

the effect of viscosity is increased. Therefore as the Reynolds number is sufficiently low

(which will occur at the smaller length scales) the viscous forces will be effective at dissipating

the kinetic energy. Alternatively, a sufficiently higher Reynolds number will occur at the larger

length scales, say the integral scales (u′, ℓI), which will be discussed in more detail below) for

example

Re = u′ℓI/ν, (2.52)
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the turbulent flow at the larger scales are independent of viscosity. The rate of energy

dissipation ε describes the rate of which energy is dissipated from the large scales to the small

scales; Richardson predicts that the rate of energy dissipation from the large scales to the small

scales and ultimately the rate energy is dissipated due to viscosity and is independent of ℓ thus

at a given time ε is constant. The energy cascade can then be described as

Ek,in = ΠA = ΠB = ΠC = ε, (2.53)

where ε can also be described as the energy dissipation due to viscosity and Π is the energy

cascade at scale ℓ = A to ℓ = B and so-on.

Kolmogorov’s Hypotheses

Kolmogorov in 1941 published two landmark papers [92, 93] (English translation [94]) which

among others provided, a mathematical description of Richardson’s cascade and proposed

three hypotheses [139]:

1. Local Isotropy Hypothesis:

• In every turbulent flow at sufficiently high Reynolds number, the statistics of the

small-scale motions of size ℓR are statistically isotropic if ℓR ≪ ℓI.

2. First Similarity Hypothesis:

• In every turbulent flow at sufficiently high Reynolds number, the statistics of the

small-scale motions (ℓR < ℓEI, where ℓEI ≈ 1
6
ℓI) have a universal form that is

determined uniquely by the rate of energy dissipation (ε) and the viscosity (ν).

3. Second Similarity Hypothesis:

• In every turbulent flow at sufficiently high Reynolds number, the statistics of the

small-scale motions of scale are ℓR larger than the Kolmogorov length scale (η) and

smaller than the integral length scale (ℓI), i.e. η ≪ ℓR ≪ ℓI have a universal form

determined only by energy dissipation (ε) and independent of viscosity (ν).

The local isotropy hypothesis is based on the idea that the large eddies are isotropic and

therefore influenced by the boundary conditions and mean flow. Kolmogorov proposed that the
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information is lost as the energy is cascaded to smaller scales due to the chaotic

“scale-reduction process”. Thus at sufficiently high Reynolds number, the small-scale

turbulent motions of size ℓR are statistically isotropic if ℓR ≪ ℓI.

Naturally this leads to the first similarity hypothesis where Kolmogorov argued that the

small-scale motions are the same in all high Reynolds number turbulent flows (statistically

universal state [139]). It can then be asked, at what scale does this state occur? By defining a

length scale ℓEI which represents a length that is too small for to have information of the mean

flow and boundary conditions. When ℓR < ℓEI there are logically two primary processes; the

continuation of the transfer of energy to progressively smaller scales and the dissipation of

energy into heat from viscosity (viscous dissipation), where the key parameters are the rate of

which small-scales receive energy from the large scales (ΠEI), and the kinematic viscosity.

Assuming that the field is statistically steady the rate of energy dissipation from viscosity ε

must equal the energy entering the smaller scales from the larger scales, thus ε = ΠEI, which is

identical to equation (2.53) at the smaller scales. Thus in every turbulent flow at sufficiently

high Reynolds number, the statistics of the small-scale motions (ℓR < ℓEI, where ℓEI ≈ 1
6
ℓI)

have a universal form that is determined uniquely by the rate of energy dissipation (ε) and the

kinematic viscosity (ν).

The length-scale range of ℓR < ℓEI is known as the universal equilibrium range, where the

timescales at this size are small compared with the larger scales (i.e. τ(ℓR) ≪ τ(ℓI)).

Therefore, in this range the turbulent eddies adapt quickly to changes in the flow field which

maintains the “dynamic equilibrium” [139] thus always has the energy transfer rate of ΠEI.

Kolmogorov then proposed three scales (length, velocity and time) from only the energy

dissipation rate and kinematic viscosity, which will be referred to as the Kolmogorov length,

velocity and time.

η =

(
ν3

ε

)1/4

, (2.54)

uη = (εν)1/4 , (2.55)

τη =
(ν
ε

)1/2
. (2.56)

The definitions indicate that the Kolmogorov scales characterise the small dissipative eddies. It
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can be seen that the Kolmogorov scale (ℓR = η) and the Reynolds number tends to unity

Re(η) =
ηuη

ν
= 1. (2.57)

It can be seen that in flows which are more inviscid, the scales at which viscosity is effective at

dissipating energy (i.e. the Kolmogorov length scale) are smaller. The opposite is true in

energy dissipation rate where the larger the energy dissipation rate the smaller the Kolmogorov

length scale. The energy dissipation rate is given by

ε = ν

(
uη

η

)2

. (2.58)

To illustrate the consequences of the hypothesis, assuming a high Reynolds number at a fixed

point in time at (x0), by normalising the coordinates by Kolmogorov length and the velocity

field by Kolmogorov velocity, two dimensionless parameters can be formed. However, it is not

possible to form a non-dimensional parameter for energy dissipation rate and kinematic

viscosity; thus the non-dimensional field cannot depend on energy dissipation rate or

kinematic viscosity. As a consequence, at the small scales (specifically |x− xo| < ℓEI) all

points are statistically identical, thus “on the small scales, all high-Reynolds-number turbulent

velocity fields are statistically similar; that is, they are statistically identical when they are

scaled by the Kolmogorov scales” [94, 139]. Using the assumption that the rate of energy

dissipation is controlled by the larger scales (i.e. Equation 2.53) and viscosity only controls the

scales of which energy dissipation occurs, the energy dissipation is

ε ∼ (u′)3

ℓI

, (2.59)

which then allows for the following relations;

η

ℓI

∼ Re−3/4, (2.60)

uη

u′ ∼ Re−1/4, (2.61)

τη
τI

∼ Re−1/2. (2.62)

It can now be seen why sufficiently high Reynolds number is essential, because if the ratio of

the dissipative length scale and the large turbulent scales is too small, then dissipation can

happen at the larger scales. Assuming that the Reynolds number is sufficiently high, the ratio
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of the dissipative scales are very small compared to the large scales. There is a large range of

scales between these, i.e. η ≪ ℓR ≪ ℓI, where the Reynolds number at these length scales is

sufficiently large that there is little effect from viscosity, thus the flow is independent of

viscosity. This leads to the second similarity hypothesis: In every turbulent flow at sufficiently

high Reynolds number, the statistics of the small-scale motions of scale ℓR larger than the

Kolmogorov length scale (η) and smaller than the integral length scale (ℓI) i.e. η ≪ ℓR ≪ ℓI

have a universal form determined only by energy dissipation (ε) and independent of viscosity

(ν).

The energy cascade can be split into the following length scale ranges (see Figure 2.2 showing

the schematic diagram of the different turbulent length scales).

• Energy-containing range;

– the largest scales where the large amount of kinetic energy resides and where

kinetic energy is added to the system.

• Inertial sub-range;

– where energy is cascaded from the larger scales to the smaller scales, but the

Reynolds number (Re(ℓR)) is sufficiently high that the effect of viscosity is

negligible.

• Dissipation range;

– the smallest scales where Reynolds number is low and the viscosity is effective at

dissipating the kinetic energy.

Next it is required to know how the turbulent kinetic energy is distributed at the different

length scales. By considering Fourier transform of the two point correlation (Equation 2.45)

using the spatial Fourier mode

e−iκ·r = cos(κ · r) + i sin(κ · r), (2.63)

which is constant in the planes normal to the wave number vector (κ) and varies sinusoidally

with wavelengths ℓR = 2π/|κ| in the direction of κ. The velocity spectrum tensor (Φi,j(κ, t))
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η ℓDI ℓEI ℓI L

Ek inEk out (ε)

Dissipation range Inertial subrange Energy containing range

Ek transfers to smaller scales
where ε = Π(ℓDI) = Π(ℓR) = Π(ℓEI)

Figure 2.2: Schematic diagram of the energy cascade at a sufficiently high Reynolds number,

inferred from Figure 6.2 in Pope [139].

is

Φi,j(κ, t) =
1

(2π)3

ˆ ∞̂

−∞

ˆ
= e−iκ·rQi,j(r, t) dr, (2.64)

where i2 = −1, with the inverse transform of

Qi,j(r, t) =

ˆ ∞̂

−∞

ˆ
Φi,j(κ, t) dr, (2.65)

The energy wave number spectrum function can then be defined as

E(κ, t) =

ˆ ∞̂

−∞

ˆ
1

2
Φii(κ, t)δ(|κ| − κ) dκ. (2.66)

By defining a range of spherical region of wave numbers which has a radius of κ = |κ|,

integrating over all wave numbers gives the total fluctuation kinetic energy
ˆ ∞

0

E(κ, t) dκ =
1

2
⟨uiuj⟩. (2.67)

Therefore, E(κ, t) shows the contribution all modes |κ| in the range κ ≤ |κ| ≤ κ+ dκ have to

the turbulent kinetic energy 1
2
⟨uiuj⟩. Given a range of wavenumbers (κa, κb) the total

fluctuation kinetic energy is ˆ κb

κa

E(κ, t) dκ. (2.68)
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log(E(κ))

log(κ)
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Large scales Small scalesInertial subrange

larger νlarger ℓI or u′

Energy out

Energy in

κEI

2π/ℓEI

κDI

2π/ℓDI

Figure 2.3: Energy cascade in wavenumber space.

The dissipation rate from turbulent motions in the range of (κa, κb) is

ε(κa,κb) =

ˆ κb

κa

2νκ2E(κ) dκ. (2.69)

From Kolmogorov’s first and second hypothesis in the inertial range, there is an independence

from viscosity where the spectrum is defined as

E(κ) = Cε2/3κ−5/3, (2.70)

which is Kolmogorov’s minus five-thirds law. The works of Williams followed by

Kolmogorov gives rise to the famous energy cascade shown in Figure 2.3.

2.3 Fundamentals of Unperturbed Laminar Premixed Flames

This section provides a quick overview on the fundamentals of an unperturbed unstretched

premixed laminar flame. A description of a 1D unperturbed premixed laminar flame is where a

’deflagration wave’ propagates through a mixture of fuel and oxidiser at a given speed which is
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dependent on the properties of the fuel, the equivalence ratio, the chamber pressure and

premixed fuel temperature. For convenience, the processes of the flame can be split into four

zones: unburnt-mixture, preheat, reaction and burnt. The first theoretical description of the

unperturbed premixed laminar flame was proposed by Zeldovich and Frank-Kamenetzki [179]

and since has been described in many texts (Poinsot and Veynante [137], Law [100] and

Lipatnikov [108] for example).

2.3.1 Flame Structure

To describe an unperturbed unstretched laminar flames it is easiest to use the example of a

1-dimensional flame with a fixed frame of reference (i.e. the flame position can be seen as

stationary and thus as an unchanging x position). Imagining this flame in a 1-dimensional

combustor with an inlet on the left, sufficiently far away from the flame so not to interrupt

natural processes, provides a constant laminar flow of premixed fuel at a velocity uu,

temperature Tu and equivalence ratio ϕ. The equivalence ratio is defined as the ratio of the fuel

(f) to oxidiser (o) for stoichiometric conditions,

ϕ =
mf/mo

(mf/mo)st
. (2.71)

Therefore if the mixture is lean, stoichiometric or rich the equivalence ratio ϕ is < 1, = 1 and

> 1, respectively. On the right (again, sufficiently far away from the flame so not to disturb the

flame’s processes) there is an outlet which allows the combustion products to flow unrestricted

out of the domain at a velocity ub and temperature Tad also known as the adiabatic flame

temperature. A diagram of this configuration is shown in Figure 2.4A. For the flame to remain

stationary, the flame speed, normal to the flame which in the case of a steady, unperturbed,

unstrained, laminar flame is referred to as the laminar flame speed sL and must equal the

unburnt fluid velocity, thus (uu = sL). As the fluid flows through the flame, the temperature is

increased, due to a net exothermic reaction (from reactants to products) the burnt temperature

is referred to as the adiabatic flame temperature Tad. Additionally, as a result of the increase in

temperature, the density of the fluid is decreased, thus from the continuity Equation (equation

(2.9)),

ub = uu
ρu
ρb

∝ uu
Tad

Tu

, (2.72)
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the burnt velocity ub must be greater than the unburnt velocity, where the ratio of the burnt and

unburnt density is referred to as the density ratio

σ =
ρu
ρb

. (2.73)

Figure 2.4B, shows the flame sheet of a typical lean premixed flame showing the profiles of

temperature, fuel, reaction rate ω̇ characteristic thicknesses, and the diffusion directions.

Starting from the left at the unburnt mixture, as the fluid approaches the flame it is gradually

warmed by heat that is conducted out of the reaction zone (high ω̇) until reactants are hot

enough to start reactions. This zone is known as the pre-heat zone. Transport in this zone is

dominated by convection and diffusion where reactants can diffuse into the reaction zone. The

reaction zone (which is much smaller than the preheat zone) is where the bulk of the reactions

occur, where the fuel oxidises until fully consumed. These reactions have a net heat release,

which heats the nearby fluid through thermal diffusion. In this zone the balance is controlled

almost entirely by diffusive transport where diffusion of combustion products and heat are

diffused into the unburnt mixture.

As the progress of the consumption of fuel mass fraction or oxidiser mass fraction or

temperature is a monotonically increasing or decreasing value, a progress variable c can be

constructed to describe the current progress of the combustion at any given position in the

domain from 0 to 1,

c =
θ − θu
θb − θu

, (2.74)

where θ is a variable that monotonically increases or decreases (usually temperature or fuel

mass fraction). A progress variable value can be given to represent the surface of a flame,

which can define normals to the surface as

n =
∇c

|∇c|
. (2.75)

A more complete review on the choice of isosurface and progress variable will be given later in

Section 3.

2.3.2 Flame Speed and Thickness

The laminar unstretched thermal thickness ℓL is a common value used to characterise the flame

thickness, which then in-turn is used to characterise non-dimensionalised parameters such as
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A

uu

Tu

ρu

ub

Tad

ρb

B

x

Tu

Tad

Y[H2]

ℓL

ℓω̇

preheat zone

ω̇

Figure 2.4: A) Basic diagram showing inflow outflow conditions for a flame with a fixed frame

of reference. Orange shows the flame position. B) Example diagram of a 1-dimensional flame

profile, showing the changes in fuel, temperature as-well as the thermal and reaction zone thick-

nesses and the directions of diffusion. The red arrow indicates the diffusion of products and heat

into the preheat zone and the blue arrow indicates the diffusion of reactants into the reaction

zone (ℓω).
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Karlovitz number and Damköhler number (to be discussed later). The flame thickness is

classically defined as the ratio of the thermal diffusivity Dth and the flame speed [137]

ℓmL =
Dth

sL

=
λ

ρucpsL

, (2.76)

where λ is the thermal conductivity and cp is the coefficient of heat. The thermal thickness is is

estimated as the length between the unburnt temperature and the adiabatic temperature if the

gradient between the two temperatures was a constant at the peak value, i.e.

ℓL =
Tad − Tu

max |∇T |
. (2.77)

The flame speed can be calculated by integrating the species transportation equation over the

entire domain for the fuel F , thus Equation (2.33) becomes
ˆ ∞

−∞

∂ρYFu

∂ζ
dζ =

ˆ ∞

−∞

(
∂FF

∂ζ
+ ρω̇F

)
dζ. (2.78)

At −∞ the conditions will be unburnt and at ∞ the conditions will be burnt. By substituting

the unburnt velocity uu for the flame speed sL, Equation (2.78) becomes

ρbYF,bub − ρuYF,usL = FF,b − FF,u +

ˆ ∞

−∞
ρω̇F dζ. (2.79)

The diffusive fluxes are zero; far away from the flame and from the continuity equation

ρbub = ρusL, therefore the consumption based laminar flame speed is

sL = − 1

ρu (YF,u − YF,b)

ˆ ∞

−∞
ρω̇F dζ. (2.80)

2.4 Freely-Propagating Premixed Laminar Flames

In the context of this project a laminar freely-propagating flame is a premixed flame that can

propagate naturally, unrestricted by combustor geometry, external fluid velocity, turbulence

and any external forcing. Any changes in the flame speed or behaviour will be the direct result

of chemistry and the fluid response to the flame. Freely-propagating flames are rare in real

world combustors, especially RICE, however as will be shown throughout this project, for lean

hydrogen flames understanding the freely-propagating behaviour is a prerequisite to the

successful study and modelling of TD-unstable flames. Many multidimensional freely

propagating flames have complex behaviour where flame structures can naturally form and
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variation in stretch can result in varying flame speed along the flame surface. This is especially

true for lean hydrogen flames. This section introduces the key concepts of a freely-propagating

flame relevant to lean hydrogen flames and the effects of intrinsic flame instabilities on the

flame speed.

2.4.1 Intrinsic Flame Instability

An intrinsic instability is an instability caused by the flame itself without the influence of

external factors. There are two intrinsic premixed flame instabilities; the Darrieus-Landau

(DL) instability [56, 96] and the thermodiffusive (TD) instability. The DL instability results

from the interaction between the high density of the premixed fuel and the lower density of the

hot burnt gasses. This density jump increases the fluid velocity in regions of negative curvature

and decreases the fluid velocity in regions of positive curvature.

The TD instability results from a disparity in the diffusion of heat and the diffusion of fuel.

This ratio of thermal diffusion to fuel diffusion is expressed as the Lewis number. The Lewis

number can be defined as

Lek =
Dt

Dk

. (2.81)

Where Dt is the thermal diffusion and Dk is the diffusion of species k. A common measure of

a premixed mixtures Lewis number is the effective Lewis number, which is given as [118]

Leeff =



LeO +ALeF

1 +A
, A = 1 + β (ϕ−1 − 1) if lean mixture ϕ < 1,

LeF +ALeO

1 +A
, A = 1 + β (ϕ− 1) if rich mixture ϕ > 1,

LeF + LeO

2
, if stoichiometric mixture ϕ = 1,

(2.82)

where LeF and LeO is the Lewis number of the fuel and oxidiser, β is the Zeldovich number

and ϕ is the equivalence ratio of the air-fuel mixture (which will be defined later in section

2.3). It will be shown that the effective Lewis number is a very useful quantity for predicting

flame behaviour. In low Lewis number flames (Le < 1), in regions of positive curvature, the

fuel diffuses into the region quicker than the heat, resulting in a focusing of heat and fuel (for

more details see books [137, 97]). The focusing results in an increase in fuel consumption rate

and therefore an increase in local fuel consumption based flame speed. The opposite is true for
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Figure 2.5: LHS shows the flame surface of a typical laminar 2-dimensional TD unstable flame

(a flame finger) with the surface coloured by the local fuel consumption based flame speed. (A)

shows a low positively curved region with near to slightly enhanced flame speed, (B) shows

a strongly positively curved region resulting in greatly enhanced flame speed and (C) which

points to a region of strongly negative curvature and therefore low speed. RHS shows the same

points illustrated on a JPDF of surface flame speed as a function of curvature [80].

regions of negative curvature resulting in regions of reduced local flame speed. Figure 2.5

from [80] shows an example of this affect by Howarth and Aspden [80]. The variation of flame

speed along the surface then results in flame structures forming, increasing the flame surface

area and the global fuel consumption rate. An example of this effect is illustrated in 2D by

Berger et al. [36]. In the context of lean hydrogen flames the TD-instability is considerably the

leading order instability and therefore will be the focus of this background.

Local Flame Speed

Markstein [115], using experimental evidence, proposed a dependence of the local burning

velocity on the local flame front curvature. Additional later works [119, 130, 54] found that the

local flame speed depended on both local curvature and hydrodynamic strain, leading to a

prediction of the local flame speed of

sloc = sL − LK = sL − L (sLκ+ E) , (2.83)

where L is a characteristic length (now referred to as the Markstein length), κ is the local flame

curvature, K is the flame stretch rate and E = −n · Si,j · n is the flame strain (and Si,j is the
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strain rate tensor). This is often referred to as stretch which is the fractional rate of change of a

flame surface area, [86, 172, 116] for example. The analysis was originally used to describe

the stabilising effects of perturbed stable flames, where a positively curved flame fronts burn

slower than un-stretched regions and trailing negatively regions burn faster, stabilising the

flame. This behaviour is typical of a negative Markstein length, which is typical for traditional

carbon based fuels. However, explained above lean hydrogen flames often accelerate with

positive curvature, typical of positive Markstein lengths ([77, 148, 164, 29, 30] for example).

Numerical work has observed that for lean hydrogen flames the mean local flame speed

increases above the laminar unstretched value [36]. The increase in the mean local flame speed

is often referred to in the literature as stretch factor (Io) [42],

I0 =
sT

sL

A

AT

=
sloc

sL

, (2.84)

where sloc is the mean local consumption based flame speed.

Global Flame Speed and Structure

Laminar flame structure has been extensively studied for DL-instabilities [78, 118, 117, 68] for

example, TD-unstable structures has seen less attention, especially numerically in 3D with

complex chemistry. In 2D, TD-unstable structures commonly form flame fingers (shown in

Figure 2.5), these have been observed numerically by [6, 7, 5, 36, 80] for example. These

flame fingers have strongly positively curved tips, with significantly enhanced local flame

speeds, local thinning and super adiabatic temperatures. Additionally, the size of the structures

appears to depend on the reactant conditions, as pressure increases the flame fingers become

thinner, faster and hotter and lead to the formation of new flame fingers. 3D freely-propagating

flames exhibit a different structure, and the flame fingers in 2D are represented by bulb-like

structures, with strong leading points and edges with trailing extinction channels and points as

shown in [59, 32] for example. It is currently unclear, how this difference in flame structure

will affect the local flame statistics and global flame structure will vary over a large range of

conditions. This question will be one of the primary focuses of Chapter 4.
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2.4.2 Linear Stability Analysis and Flame Characteristics

In the context of premixed laminar flames, linear stability analysis is a method used to

anticipate the growth rate of a perturbed flame based on the reactant conditions and wave

number. By considering a flame surface of the form F (x, t) = Aeωt+ikx, Matalon et al. [118]

formulated a dispersion relationship for the growth rate of an instability based off the thermal,

molecular and viscous diffusion contributions

ω =
1

σ + 1

(√
σ3 + σ2 − σ − σ

)
︸ ︷︷ ︸

ωDL

sLk− [B1 + βB2 (Leeff − 1) + PrB3]︸ ︷︷ ︸
ω2

ℓLsLk
2 + ... , (2.85)

where ωDL is the DL contribution, k is the wave number, σ = ρu/ρb is the density ratio arising

from the thermodynamic expansion from the heat released from combustion, Pr is the Prandtl

number, β is the Zeldovich number of the reaction and the Leeff is the effective Lewis number.

The values B1, B2 and B3 are positive values that represent the thermal, molecular and viscous

diffusion respectively on flame stability. As noted by Matalon [117] the thermal and viscous

diffusion has a stabilising effect on the flame. The molecular diffusion can have a stabilising

(when Leeff > 1) or destabilising (Leeff < 1). If ω2 is positive the flame will be TD-unstable.

Howarth and Aspden [80] showed that for 2D lean hydrogen flames, the mean local flame

speed increases linearly with an instability parameter ω2 in the high pressure regime and

exponentially in the low pressure regime. The inverse is true for the mean local thermal

thickness

sloc ≈

exp (0.057ω2) if low pressure regime,

1 + 0.22ω2 if high pressure regime,
(2.86)

ℓloc ≈

exp (−0.045ω2) if low pressure regime,

(1 + 0.13ω2)
−1 if high pressure regime.

(2.87)

It was noted that from Equation 2.85 that the Zeldovich number has a strong effect on the

value of ω2. Figure 2.6 shows a contour plot of ω2 for different values of equivalence ratio and

pressure at temperatures 300K and 700K. At a given temperature there are three distinct

regions; stable, low pressure unstable and high pressure unstable with the most unstable

surface (ridge) separating the high and low pressure regime. To separate the low pressure and
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Figure 2.6: Contour of ω2 over a range of equivalence ratios and pressures for temperatures

300K and 700K with different regimes labelled.

high pressure regime a critical pressure is calculated,

pc = pref

(
20ϕ

7− 2 T
Tref

)150/
(
21+10 T

Tref

)
, (2.88)

where Tref = 300K and pref = 1atm and if
p < pc and ω2 ≤ 0 TD stable regime,

p < pc and ω2 > 0 TD unstable low pressure regime,

p > pc TD unstable high pressure regime.

(2.89)

It remains unanswered in the literature as to what effect different zones have on the 3D laminar

and turbulent flames and how it effects the local and global flame statistics as well as the flame

structure. These unknowns will be researched in Chapters 4, 5 and 6.

2.5 Turbulent Flames

Most combustors inducing RICE are turbulent, where the flame experiences rapid, chaotic

fluctuations of the velocity field, which can manipulate the flame, both altering the local

burning rates and increase the flame surface area which can then enhance the turbulent flame

speed. The turbulent flame speed is the staple for the majority of device scale reacting

simulation codes such as Vectis. The turbulent flame speed defines how much fuel is being
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consumed; the resulting burning velocity burns normal to the flame brush and is

interchangeable with “burning velocity” and “consumption based turbulent flame speed”; not

to be confused with displacement speed. As typical flames, such as kernels, continually grow

and therefore change size, it is useful to define global flame statistics relative to the

cross-sectional area.

2.5.1 Damköhler 1940

As described in Damköhler’s landmark paper [55] and later explained by Peters [134, 135],

who presented the theoretical expression of the turbulent flame speed, two primary burning

regimes to describe the interaction between turbulence and flame surface area were presented.

These are the small-scale and large-scale turbulence.

Large-Scale Limit (Damköhler’s First Hypothesis)

At the large-scale it was assumed that the interaction between turbulence and the flame front is

purely kinematic. Given a mass flux ṁ with a laminar flame speed sL and a flame surface area

AT , the mass flux though a cross-sectional area Ax with a turbulent flame speed sT gives

ṁ = ρusLAT = ρusTAx, (2.90)

This configuration is presented as an example of a flame kernel in Figure 2.7A which shows an

example for a typical flame kernel burning outwards. This example is valid for other types of

burners such as a bunsen flame, where a flame surface is wrinkled by the turbulence which

in-turn increases the flame surface area. The flame surface then burns at the local consumption

based flame speed sloc (assumed as sL in most texts) normal to the flame surface. The flame

burns at the turbulent flame speed sT normal to the mean line of the flame surface (dotted line),

which for the kernel example would be radially outwards. From Damköhler’s definition, this

means that the turbulent flame speed must be the flame surface wrinkling multiplied by the

averaged local flame speed (assumed as sL)

sT = sLΨT, (2.91)

Where ΨT is the flame surface wrinkling

ΨT =
AT

Ax

. (2.92)
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An alternative visual example for a steady premixed flame in a duct is shown in Figure 2.21 in

Peters’ book [135]. Following a geometrical analogy with a bunsen flame, it was then shown

by Damköhler that the increase in the flame surface area, relative to the cross-sectional area is

proportional to the r.m.s. velocity u′ over the laminar flame speed

sT

sL

∼ 1 +
u′

sL

. (2.93)

For large values of u′ applied to the laminar flame speed Equation (2.93) becomes the

large-scale limit

sT ∼ u′. (2.94)

Equation (2.93) has proven to be remarkably robust ([109] for example).

Small-Scale Limit (Damköhler’s Second Hypothesis)

For small-scale turbulence, it was argued that turbulence modifies the transport between the

reaction zone and the unburnt gas [55, 135]. Given the scaling relation for the laminar flame

speed

sL ∼
√

DL

τ
, (2.95)

where DL is the laminar diffusivity and τ the chemical time scale. By using a theoretical

turbulent diffusivity DT Equation (2.95) becomes

sT ∼
√

DT

τ
, (2.96)

where τ remains unchanged. By combining Equation (2.95) and (2.96)

sT ∼ sL

√
DT

DL

. (2.97)

Given that DT is proportional to u′ℓI and DL is proportional to sLℓL then

sT ∼ sL

√
u′

sL

ℓI

ℓL

, (2.98)

by using the dimensionless quantities ΥL = u′/sL and ΛL = ℓI/ℓL equation (2.98) becomes

sT ∼ sL

√
ΥLΛL. (2.99)

Ultimately this shows that for small-scale turbulence the turbulent flame speed ratio (sT/sL)

depends both on the relative turbulent fluctuation u′ and the relative turbulent length scale ℓI.
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Ax

sT sT sT

sloc sloc

sloc

A)

B)

AT

sloc

Figure 2.7: Neglecting thermal expansion for simplicity. A). 2-dimensional diagram showing

the magnification of a turbulent flame kernel presented as a turbulent flame surface (bold curves)

within a given control volume of width Ax, with local consumption based flame speed sloc prop-

agating normal to the flame surface. From Damköhler’s 1st [55, 135], the global consumption

based flame speed sC is then the ratio of the flame surface area AT to cross-sectional area of the

control volume width Ax (ΨT = AT/Ax) multiplied by the averaged local global consumption

based flame speed sloc. B). Diagram of the same flame as in A, but with the flame stretched flat

so that it has a length of AT and propagates normal to the new flame image at sloc.
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At a fixed integral lengthscale, as the turbulent regime transitions from small-scale turbulence

to large-scale turbulence, this causes a bending from the large-scale gradient (sT ∝ u′) to the

small-scale gradient (sT ∝
√
u′), which is often referred to as the bending effect. For an

in-depth numerical study of the bending effect a highly recommended text is the thesis of

Nivarti [125]. An example of the proposed regime is shown in Figure 2.8A, where the

Damköhler number DaL and Reynold’s number will be discussed later.

However, if sloc ̸= sL (for example in non-unity Lewis number flames) then an adjustment is

required and the turbulent flame speed can be defined as

sT = slocΨT, (2.100)

or using the stretch factor notation

sT = I0sLΨT. (2.101)

A key point is that, regardless of the turbulent regimes (large-scale or small-scale), the

turbulent flame speed is increased with increasing r.m.s velocity and if in the small-scale

turbulence also increases with integral length scale. Note that Damköhler’s analysis assumes a

laminar flame speed which is independent of the turbulence, thus is only evaluating the effects

of turbulence on the flame surface area and therefore the large-scale limit is

ΨT = sL + u′, (2.102)

and the small-scale limit is

ΨT ∼
√
ΥLΛL. (2.103)

2.5.2 Turbulent Combustion Regimes

As in Section 2.2, turbulence represents a range of eddies ranging in size (ℓR) from the integral

scales ℓR = ℓI to the Kolmogorov scales ℓR = η with a turnover time of

τ(ℓR) =
ℓR

u′(ℓR)
=

ℓ
2/3
R

ε1/3
, (2.104)

where ε is the kinetic energy dissipation rate. The Damköhler number (Da) is a dimensionless

quantity representing the ratio of the turbulent timescale (eddy turnover time) at scale ℓR
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(τt(ℓR)) to the flame to the chemical time scale (τc). By defining the chemical time scale as the

time it takes for a flame to burn through one thermal thickness (τc = ℓL/sL) then

Da(ℓR) =
τt(ℓR)

τc
=

ℓRsL

u′(ℓR)ℓL

. (2.105)

It can be seen that as the eddy size decreases from the large scales to the smallest scale the

Da(ℓR) is decreased as the chemical timescale becomes larger than the turbulent time scale. As

a result at the smaller scales, the flame has influence on the turbulent scales and therefore

Damköhler is not well-defined at these scales. Damköhler is typically used to describe the

large scales, where the turbulent time is much larger than the chemical time, thus the integral

scales are used (ℓR = ℓI and u′(ℓR) = u′) therefore Damköhler number will be defined as

DaL =
sLℓI

u′ℓL

=
ΛL

ΥL

, (2.106)

again where the dimensionless quantities are ΥL = u′/sL and ΛL = ℓI/ℓL. Following from

Damköhler’s work, if DaL ≫ 1 the turbulent flame is in the large-scale limit and if DaL ≪ 1

the turbulent flame is in the small-scale limit (shown in Figure 2.8A).

A second dimensionless number, the Karlovitz number, is used to characterise the interaction

between the smallest scales and describes the ratio of the turbulent time at the Kolmogorov

scale to the chemical timescale, thus

KaL = Da(η)−1 =
τc

τt(η)
=

u′(η)ℓL

ηsL

. (2.107)

Using Equation (2.54), (2.59) and (2.76) Karlovitz number can be defined as

KaL =

√
ε/ν

sL/ℓL

, (2.108)

where ν is the kinematic viscosity of the unburnt gas.

Kolmogorov similarity hypotheses applied to turbulent premixed flames

It was discussed in [22] that from the classical Richardson/Kolmogorov turbulent cascade, if it

is assumed that the turbulent intensity is sufficient for the turbulent inertial sub-range to extend

to the flame scale (i.e. the thin reaction zone, discussed below), dilatation modifies the

turbulent structure at the flame scale, disrupting the classical dissipation sub-range. It is
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discussed at length in Towery et al. [162] that the energy is still dissipated by viscosity at the

small scales, but not in the traditional Kolmogorov length scale as in the constant-density

non-reacting flow. For this reason, Aspden et al. [22] argued if the Karlovitz number is defined

as the characteristic of turbulence-flame interaction at the flame scale then it would be illogical

to define the Karlovitz number in terms of Kolmogorov scales. The energy dissipation rate is

constant through the inertial sub-range, therefore can be written in terms of integral length. A

general length r between the integral length and flame thickness and the flame thickness

ε =
u′3

ℓI

=
u′3

r

r
=

u′3
ℓL

ℓL

, (2.109)

where the latter represents the energy dissipation rate at the flame scale, which is inside the

inertial sub-range. By normalising the turbulent velocity at the flame scale u′
ℓL by the flame

speed gives
u′

ℓL

sL

=
u′

sL

(
ℓL

ℓI

)1/3

= Ka
2/3
L , (2.110)

thus the Karlovitz number is defined as

KaL =

√
u′3

s3L

ℓL

ℓI

=

√
Υ3

L

ΛL

, (2.111)

which is the preferred approach in this thesis. Later in Chapter 6, this approach is supported by

having the same turbulent-flame interactions independently from length scale. Note that this

definition is identical to that explained in Peters [135] under different assumptions.

Using the same assumptions, the turbulent Reynolds number defined in Equation (2.51)

becomes

ReL =
u′ℓI

sLℓL

= ΥLΛL. (2.112)

Using the dimensionless quantities of Damköhler DaL and Karlovitz KaL numbers three

different burning regimes can be identified (referred to as the classical burning regimes, see

[40]) which can be shown graphically in Figure 2.8A and is referred to as the classic regime

diagram. The regimes identified were separated by Damköhler’s small and large-scale limit

and the Klimov-Williams criterion (which defines the point where turbulence at the

Kolmogorov length can enter the flame KaL = 1 = and η = ℓL):
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• KaL < 1, the chemical time scale is shorter than the turbulent time and the flame

thickness is smaller than the Kolmogorov length scale (i.e. ℓL < η). When this is the

case, the turbulence cannot penetrate the flame and the flame profile closely resembles a

laminar flame profile, therefore the turbulence can only wrinkle the flame surface. This

regime is referred to as the flamelet regime. The flamelet regime can be further divided

into the corrugated (ΥL > sL) and the wrinkled (ΥL < sL) flamelets. If ΥL < sL, then it

is argued that the turbulent motions are too slow to wrinkle the flame, thus the flame

structure.

• KaL > 1 and DaL > 1, the chemical time is still smaller than the turbulent time, but

Kolmogorov turbulent scales are smaller than the flame thickness and therefore can

penetrate the flame and modify the internal flame structure and the flame internal

structure can no longer resemble a flamelet. This regime is call the distributed reaction

zone.

• Da < 1, the chemical time is larger than the turbulent time, therefore the mixing is fast

between the products and the reactants and is referred to as the well stirred reactor

regime.

For more details on the history of the turbulent regimes see [38, 173, 133].

Most modern papers and texts referring to the turbulent regime diagram often are referring to

the Peters’ regime diagram of which its final form was presented in [134] shown in Figure

2.8B. In this approach the regimes are solely based off the Karlovitz number and the velocity

ratio (u′/sL). Firstly the flamelet regime is the same in Peter’s proposal. Peters then defines a

new regime based of the mixing length (also called the Zimont scale [186, 183]) which is the

size of an eddy within the inertial sub-range that has a turnover time equal to the time needed

to diffuse heat over the flame thermal thickness

ℓZ =

√
ε

(
ℓ2L
D

)3

. (2.113)

The physical effects of this is that an eddy of a size of the Zimont length (ℓR = ℓZ) will be able

to transport preheated fluid within a region the size of the Zimont length. Peters explains that

smaller eddies would also do this, but the contribution would be small compared to the larger
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A
DaL = 1

ΥL

ΛL

Re
L =

1

laminar

distributed reaction zone

ΥL = 1

wrinkled flamelets

KaL = 1

corrugated flamelets

well stirred reactor

B

ΥL

ΛL

Re
L =

1

laminar

ΥL = 1

wrinkled flamelets

KaL = 1

corrugated flamelets

Kaδ = 1

thin reaction zone

distributed flames

Figure 2.8: A). Classical regimes [137]. B). The modern regime diagram as proposed by Peters

[134].
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eddies. For eddies larger than the Zimont length the turnover time will be longer and thus

would only be able to transport larger structures which have a larger timescale. Thus the

Zimont length has been interpreted by Peters [134, 135] as the maximum length preheated

fluid can be transported ahead of the flame, thus broadening the preheat zone. This zone is

referred to as the thin reaction zone and can only occur when the Kolmogorov length scale is

smaller than the flame thickness (i.e. ℓZ > ℓL). The upper limit of this regime is when the

Kolmogorov length scale reaches a critical value ℓδ where the turbulent eddies can penetrate

the flame reaction zone, this region is called the broken reaction zone or the distributed

burning regime. Typically, distribution occurs at KaL > 100, although this is dependent on

reactant conditions, for more details see [20].

2.6 Turbulent Flame Modelling

2.6.1 Direct Numerical Simulation

Utilising DNS to simulate turbulent flows, all the scale of turbulence need to be resolved,

including the smallest Kolmogorov length scales; therefore the numerical cell size required to

resolve the smallest scales is

∆x ∼ C∆xη, (2.114)

where CN is a constant (Yeung and Pope [176] suggest CN = 2 for example). Given that the

size of the integral lengthscale is typically related to the size of the combustor or numerical

domain and a cube domain of size Lx then the relation η/ℓI ∼ Re−3/4 becomes

Lx ∼ ℓI ∼ Re3/4η, (2.115)

therefore the number of computational cells Ncells in the domain is given as

Ncells ∼
(
Lx

∆x

)3

∼ L3
x

C3
Nη

3
∼ Re9/4

C3
N

, (2.116)

which according to [176], yields

Ncells ≥
1

8
Re9/4. (2.117)

Given that in an explicit time-stepping numerical scheme, to maintain stability of the scheme a

time stepping constraint is required and is given as

∆t = CCFL∆x/u, (2.118)
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where CCFL is a constant relating to the numerical stability (referred to as the CFL number and

is dependent on the numerical methods used). Given Equation (2.114) then

∆t = CCFLC∆x
η

u
(2.119)

Given that the computation cost for a simulation is proportional to the number of time steps

and the number of cells then

Cost ∼ Re3. (2.120)

DNS is a tool only suited to investigate the small-scales, thus turbulence and combustion

modelling of the physics is required for practical combustor sizes. There are two primary

simulation approaches practical for multi-dimensional, transient reacting flows, Large Eddy

Simulation (LES) and Unsteady Reynolds Averaged Navier Stokes (URANS). URANS

models all scales of turbulence and the flame and the computational grid is used to compute

mean flow. LES is a hybrid of DNS and RANS, where the large energy containing eddies are

computed and the smaller scales are modelled using a turbulence model where the scales

modelled vs computed are separated via a filter cutoff wavelength (κc). This method does

require a finer computational grid (dependent on the cutoff length), but often does yield more

accurate results but can significantly increase the computational cost of the simulation. An

additional modelling approach with the aim to reduce the computational cost of DNS is an

implicit LES (ILES) method. ILES under-resolves the smallest scales and allows the

numerical scheme to naturally dissipate the energy at the grid scale; consistent with the energy

cascade, see [75] for a more detailed description of ILES. This approach will be discussed in

more detail in Section 3.1.4. Figure 2.9 shows a diagram of the turbulent energy kinetic

spectrum as modelled or computed by the different simulation approaches.

2.6.2 Averaging the Balance Equations

Given a quantity f which contains mean f and a fluctuating f ′′ components

f = f + f ′′. (2.121)
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log(E(κ))

log(κ)κLES κILESκF

Modelled in LES

Modelled in (U)RANS

Under-resolved in ILES

Figure 2.9: Energy cascade in wavenumber space with the different scales at with modelling

approaches compute or model. κLES is the filter cutoff wavenumber and κF is the size of the

flame thickness in wavenumber space.

By applying a mass-weighted average (also known as Favre average [67, 137]) of quantity f

then

f̃ =
ρf

ρ
, (2.122)

where the favre average of the fluctuating component is zero (i.e. f̃ ′′ = 0), then the Favre

average of the balance equations (2.9), (2.13), (2.33) and (2.29) is given as:

∂ρ

∂t
+∇ · (ρũ) = 0, (2.123)

∂ρũ

∂t
= −∇ · σ +F −∇ · ρũũ−∇ ·

(
ρũ′′u′′

)
, (2.124)

∂ρỸk

∂t
= ρ˜̇ωk −∇ · Fk −∇ ·

(
ρỸkũ

)
−∇ ·

(
ρỸku′′

)
. (2.125)

∂ρh̃

∂t
+∇ · Q̃+∇ ·

(
ρh̃ũ

)
+∇ ·

(
ρ̃h′′u′′

)
= 0. (2.126)

This leaves some unclosed-terms, namely the Reynolds stress (ũ′′u′′), turbulent transport of

species (Ỹ ′′u′′), the enthalpy (h̃′′u′′) and (˜̇ωk). A traditional approach to modelling the terms
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in the form Ṽ ′′u′′ is using an eddy-viscosity-based model approach; for example for the

Reynolds stress

ũ′′u′′ = −νT∇ũ, (2.127)

where νT is the eddy viscosity which can be seen as the product of some velocity scale uT and

length scale ℓT ,

νT = uT ℓT . (2.128)

The popular turbulence model k − ε model [140] which is used in Vectis and many device

scale engine simulation tools is defined as

νT = C
k2

ε
, (2.129)

where C is some constant. Turbulence modelling is a vast subject and many other popular

models exist and is beyond the scope of this project, thus for a comprehensive summary see

[171]. For a summary of models for the reacting closure terms in the form of Ṽ ′′u′′ see [137].

Closing ˜̇ωk is a challenging and ongoing problem in combustion research, which has been

made more challenging for TD-unstable flames. There are many approaches, some brief

examples (not intended to be a comprehensive list) include [137]:

• Arrhenius approach, which relates the reaction rate to the mean values of density and

reduced temperature. This model is better known as the no-model and contains no

sub-grid modelling, thus is only really appropriate in low turbulence where DaL ≪ 1,

thus is not typically used to model real world combustors such as internal combustion

engines.

• Eddy Break Up [157] assumes high turbulence where ReL ≫ 1 and DaL ≫ 1 and

assumes turbulent motions, namely the turbulent time controls the reaction rate, not the

chemistry [137].

• Flame surface density models divide the reaction rate into the mean local flame speed

(typically sL) and a flame surface area (typically worded as the consumption rate per

available unit of flame area). However, the transport equation for the flame surface area

requires additional closures and sub-grid modelling, see [137] for more details.
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• Probability density function PDF [138] determines the mean reaction rate though a

function that measures the probability of a variable namely temperature takes a

particular value and the corresponding reaction rate at that value, naturally the PDF

approach has difficulties if the chemical reaction is determined by more than one

progress variable [137].

• Bray Moss Libby [44, 43] assuming high turbulence where ReL ≫ 1 and DaL ≫ 1

assumes a one-step irreversible chemical reaction between the fresh gasses and the

products, uses a statistical approach using a probability density function combined with

physical analysis.

• Level set method [134], describes the flame propagation using the level set G-equation

model where the flame can be tracked following the level set G which ranges from

unburnt to burnt with an infinity thin interface. This is the approach adopted in Vectis

(see [2]).

2.6.3 Turbulent Flame Speed Modelling

The turbulent flame speed sT is an essential parameter in some sub-grid ˜̇ωk closure models.

The approach that will be adopted in this project is modelling sT through turbulent flame speed

correlations with DNS data. An example of this is Damköhler’s small and large scale limits

(Equation (2.99) and (2.94)). Burke et al. [45] presents a good overview of turbulent flame

speed correlations. A summary of popular models is presented in Table 2.1. The way these

correlations are currently organised can make comparing models challenging. By rearranging

the models in terms of the dimensionless quantities ΛL = ℓI/ℓL, ΥL = u′/sL, DaL and

categorising the models into four categories; the Damköhler’s small scale limit, Damköhler’s

large scale limit, the geometric mean of both Damköhler’s small and large-scale limits and

other, the small scale limit is written as:

sT = sR

(
1 +AΥLDa

0.5
L

)
, (2.130)

the large-scale limit

sT = sR (1 +AΥL) , (2.131)
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and the geometric mean

sT = sR

(
1 +AΥLDa

0.25
L

)
. (2.132)

The rearranged and categorised versions of the correlations shown in [45] are presented in

Table 2.2. It can be seen that many of the presented models fall within the small-scale,

large-scale and geometric mean limits. The “other” models are more difficult to evaluate. By

plotting the other models as contour plots in Λ−ΥL space it can be more clearly seen how

they relate to the small and large scale limits, these contours are presented in Figure 2.10. It

can be seen that the KPP, Gouldin and Peters models are different attempts at a blended

function between the small and large scale limits. Gouldin appears to have the slowest blend,

with KPP as the quickest. Due to the difficulties with experimentation (both physically and

numerically) over these large ranges of ΛL and ΥL it is still unclear what blending function is

most effective, and how these functions depend on the type of fuel and reactant conditions. For

more details on turbulent flame speed modelling see the review by Lipatnikov and Chomiak

[109] and Burke et al. [45].
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Table 2.1: Turbulent flame speed correlations from various authors as presented by Burke et al.

[45]. For values of the constants shown see table)Table 3 in [45].
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Table 2.2: Turbulent flame speed correlations (same as table)Table 2.1). Written in terms of

dimensionless quantites ΛL, ΥL and DaL.
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Small-Scale Limit Large-Scale Limit

KPP Mantel & Borghi

Gouldin Abdel-Gayed & Bradley

Peters

Figure 2.10: Contour plots in ΛL−ΥL space showing how the different “other” models compare

to Damköhler’s limits. The colour bar shows relative turbulent flamespeed for each model.
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Chapter 3. Methods

This chapter focuses on the methods used throughout this thesis, with details of the codes used,

the methodology for using the codes to run accurate DNS simulations and the post-processing

strategy.

The simulation strategy for this thesis is to use the conical flame-in-a-box, where the flame is

contained in a high aspect ratio domain with periodic walls where the domain is as thick as it is

wide (i.e. Lx = Lz). The top of the domain has an outlet and the bottom is either an inlet (for

freely-propagating flames) or a slip adiabatic wall (for turbulent flames). The idea behind this

simple approach is to gather statistically stationary flame statistics to learn about the

underlying flame or turbulent-flame behaviour with minimal influences from geometry or

domain configuration.

3.1 The Code (PeleLM)

For the multi-dimensional direct numerical simulations of reacting flows used throughout this

thesis, PeleLM has been used. PeleLM has been chosen due to its:

• Low Mach number implementation which allows for a significant increase in time step

duration.

• Well implemented adaptive mesh refinement (AMR) for the reduction of total number of

computational cells required for a well resolved simulation.

• Highly efficient scalability with multi CPU machines such as ARCHER2 (a 28 PFlop/s

Cray EX supercomputer).

• Has a rich history of successful use in previous published works for example; 2D H2, 3D

freely-propagation H2 and 3D turbulent.

PeleLM is an open-source, multidimensional, adaptive-mesh, low Mach number,

hydrodynamics code used for the direct numerical simulation of reacting flows available at:

https://github.com/AMReX-Combustion/PeleLM
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(a) All levels (levels 0,1 and 2) (b) Level 1 and 2 (c) Level 2

Figure 3.1: A 2D flame example coloured by the AMR criteria, showing the 3 levels of AMR.

Lead by M. Day and J. Bell, PeleLM was developed in 2000 at the Centre for Computational

Sciences and Engineering at Lawrence Berkeley National Laboratory under the name LMC.

Since its conception, PeleLM has seen enhancements supported by the US Department of

Energy (ASCR) and is now supported by the Exascale Computing Project under the Pele

Project. PeleLM depends upon and utilises the AMReX framework (formerly known as

boxlib) for the data structures and tools to allow them to be run on massively parallel

machines. PeleLM builds on from IAMR, a variable-density in-compressible Navier-Stokes

equations with AMR integration.

3.1.1 AMReX

AMReX is a software framework that provides functionality to write massively parallel,

block-structured adaptive mesh refinement (AMR) codes [180]. The AMR algorithm uses a

hierarchical grid structure of uniform grids. Level 0 (the coarsest level) covers the entire

domain which is referred to as the base grid. Higher levels can be dynamically allocated and

de-allocated based on a user defined criteria (for example a specific temperature). The higher

levels have a reduced cell size divided by a refinement ratio (for this project the refinement

ratio is 2), for a 2D example of AMR see Figure 3.1. The full details of AMReX and the

associated algorithms are beyond the scope of this PhD, therefore the reader is referred to

[181] [131].
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3.1.2 The PeleLM Model

PeleLM solves the reacting Navier-Stokes flow equations in the low Mach number regime

detailed in [58]. PeleLM follows the model for low Mach number combustion as introduced

and derived in [142, 113] thus assuming there are no spatial gradients in thermodynamic

pressure. PeleLM uses the mixture-average model for species diffusion [168, 89] ignoring

Soret, Dufort, body forces and radiative heat transfer effects and that bulk viscosity is small

compared to shear viscosity. For full details on the equations, algorithm and multilevel

approach used see papers [131, 4, 58, 126, 127].

Equation Set

This section follows the equation set used in PeleLM following the paper [58] and the

documentation [1]. PeleLM solves the equations conservation of mass, momentum, species,

energy (written as enthalpy), an equation of state and a system closure.

∂ρ

∂t
+∇ · (ρu) = 0, (3.1)

∂ρu

∂t
+∇ · (ρuu+ τ) = −∇π + ρF , (3.2)

∂ρYm

∂t
+∇ · (ρYmu+Fm) = ρω̇m, (3.3)

∂ρh

∂t
+∇ · (ρhu+Q) = 0, (3.4)

p0 = ρRT
∑ Ym

Wm

, (3.5)

h =
∑
m

YmHm, (3.6)

where ρ is the density, u is the velocity, τ is the stress tensor, π is a dynamic pressure, F is an

external forcing term, Ym is the mass fraction of species m, Fm is the species diffusion fluxes,

ω̇m is the molar production rate of species species m, h is the mass-weighted enthalpy, Q is

the heat flux, p0 is the thermodynamic pressure, Wm is the species m molecular weight, R is

the specific gas constant, T is the temperature and Hm is the standard-state molar enthalpy

(which incorporates the heat of formation for each species). Under the stated assumptions, the

stress tensor is approximated as

τi,j = µ

(
2

3
δi,j

∂uk

∂xk

−
(
∂ui

∂xj

+
∂uj

∂xi

))
(3.7)
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where µ is the shear viscosity and δi,j is the Kronecker delta function. The heat flux is

approximated as

Q =
∑
m

hmFm − λ′∇T, (3.8)

where λ′ is the partial thermal conductivity and the species diffusion flux is approximated as

Fm = −ρ
∑
k

YmDm,k∇Xm, (3.9)

where ∇Xm is the gradient of the molar concentration and Dm,k is the diffusion matrix.

To solve these equations, a constraint is required, following the low Mach number assumption,

the thermodynamic pressure can be assumed constant giving

Dp0
Dt

= 0, (3.10)

which leads to

∇ · u =
1

T

DT

Dt
+W

∑
m

1

Wm

DYm

Dt
= S. (3.11)

where W is the the mean molecular weight. DT/Dt can be evaluated as

DT

Dt
=

1

ρcp

(
∇ · λ∇T +

∑
m

(hm∇ ·Fm −∇ · hmFm − hmρω̇m)

)
, (3.12)

where λ is the thermal conductivity and cp is the specific heat capacity.

Chemical Kinetics

Given Ns species interacting through Mr reactions are expressed as

Ns∑
m=s

v′m,jXm ⇌
Ns∑
m=s

v′′m,jXm, for j ∈ [1,Mr], (3.13)

where v′m,j and v′′m,j are the stoichiometric coefficients for the reactant and product side

respectively and Xm is the molar concentration of species m. The rate of reaction j

(represented by Rj) is expressed as

Rj = kf,j

Ns∏
m=1

X
v′m,j
m − kr,j

Ns∏
m=1

X
v′′m,j
m , (3.14)
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where kf,j and kr,j represent the forward and backward reaction rate coefficients respectively.

The forward reaction rate coefficient is given from the Arrhenius equation

kf = AT β exp

(
−Ea

RT

)
, (3.15)

where A is a pre-exponential factor, β is the temperature exponent and Ea is the activation

energy. The backward reaction rate coefficient is given by

kr,j =
kf,j

exp
(

∆S0
j

R
− ∆H0

j

RT

) (
p0
RT

)∑Ns
k=1 (v′′k,j−v′k,j)

, (3.16)

where ∆S0
j is the change in entropy of the reaction j and ∆H0

j is the change in enthalpy of the

reaction j. Note that the low Mach number assumption allows for the denominator to be a

function only of temperature, the products of reaction j and the thermodynamic properties of

the reactants. The net production rate is then defined as the sum of the creation and destruction

of species m over all reactions

ω̇m =

MR∑
j=1

Rj

(
v′′m,j − v′m,j

)
. (3.17)

Thermodynamic Properties

Following the assumption of a mixture of ideal gas, the species m enthalpies Hm and entropies

Sm are functions of only temperature and are given from [73] by polynomial fits of the species

molar heat capacities (Cp,m)

Cp,m = R
(
am,1 +

am,2

2
T +

am,3

3
T 2 +

am,4

4
T 3 +

am,5

5
T 4
)

(3.18)

molar enthalpy of species m is approximated as

Hm = R
(
am,1T +

am,2

2
T 2 +

am,3

3
T 3 +

am,4

4
T 4 +

am,5

5
T 5 + a6,m

)
(3.19)

molar entropy of species m

Sp,m = R
(
am,1 ln(T ) + am,2T +

am,3

2
T 2 +

am,4

3
T 3 +

am,5

4
T 4 + am,7

)
(3.20)

where ak,m are model constants.
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PeleLM Algorithm

The numerical implementation of the PeleLM is behond the scope of this thesis, the full details

of the algorithm please see [58], therfore a breife)therefore a brief summary is given here as

described in [65].

PeleLM uses a finite volume approach on a Cartesian grid with discrete spacing. The variables

u, ρ, ρh, ρYm and T are the cell averages and the pressure field π is defined at the nodes. The

momentum equation is solved using a predictor/corrector method shown in [4, 131]. The

transport terms are computed using a spectral deferred correction time advancement scheme

[127] which is used to ensure the tight coupling of the fast diffusion and reaction to the slow

advection, while enforcing the low Mach number constraint [65]. The advection terms are

computed using a second-order Godunov scheme, the diffusion terms are computed with a

Crank-Nicholson scheme and the reaction terms are solved using the CVODE integrator

detailed in [25]. AMReX’s native geometric multi-grid solver computes the solution of the

linear system arising from the implicit diffusion and velocity projections.

3.1.3 Turbulent Forcing

A flame-in-a-box at the scales simulated in this project does not have the natural large scale

energy injection that would be present in real world systems. If the turbulence is initialised

without a maintained source term appropriately, injecting turbulent kinetic energy then the

turbulent field would decay too quickly to attain statistically stationary flame statistics.

Maintaining a realistic homogeneous isotropic turbulent (HIT) field at DNS scale is a

challenging topic with many different approaches.

A popular approach is to have a turbulent inflow, where turbulent kinetic energy is injected into

the domain via a turbulent inflow and the turbulence is allowed to freely decay throughout the

domain ([123, 34] for example). A major advantage of this method is that the turbulence is

allowed to decay naturally and there is no risk of artificial forcing near the flame. A

disadvantage of this approach is that the turbulence decays and the turbulent kinetic energy

decreases as distance from the inlet increases which will result is distance dependent

turbulence properties. Thus a flame position closer to the inlet will experience a different
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turbulent intensity than a different part of the flame.

Another possible approach is the turbulent kinetic energy ahead of the flame is maintained and

as the turbulent forcing stops just ahead of the flame, to ensure no interference with the natural

flame response. An advantage of this method is that the turbulence experienced by the flame is

not dependent on the flame location relative to the inlet, which in theory makes the turbulence

experienced by the flame at all locations similar. A disadvantage to this is that there is still

some variation of the turbulence experienced by the flame, especially when comparing the

leading part of the flame to the trailing parts.

The method used throughout this project is to maintain the turbulent field using a forcing term

in the Navier-Stokes moment equation denoted F in Equation 3.2. A zero-mean

time-dependent low-wave number forcing term was implemented by Aspden et al. [23]

F (x, t) =
∑

κ|∈[0,4
√
3]

ai,j,k cos (fi,j,kt+Ai,j,k) cos (2πκix+ Bi,j,k)

cos (2πκjy + Ci,j,k) cos (2πκkz +Di,j,k) ,

(3.21)

where there are random amplitudes ai,j,k ∈ [0, 1], frequencies fi,j,k and phases Ai,j,k, Bi,j,k,

Ci,j,k and Di,j,k ∈ [0, 2π]. For full details on the implementation and analysis see [23]. This

approach maintains the turbulence within the domain resulting in a statistically-steady

turbulent field over time. The key benefit of this approach is that turbulent intensity has a

statistically-steady mean value, allowing for the extraction of statistically stationary flame

statistics ([19, 20] for example). The key advantage of this method, and the reason this method

was chosen over the others, is the turbulence experienced by the flame will be the same

regardless of its location, which erases many of the data extraction difficulties. However, a

major criticism of this method is that the flame could, in theory, be artificially forced by the

turbulent kinetic energy injects which could suppress or enhance the natural flame response to

turbulence. [13] considered turning the forcing off when close to the flame and did not see a

notable difference. Note that throughout the project, there are some cases with a small KaF.

The Reynolds number of these cases are small, where the Reynolds number can be as small as

Re ∼ 10. It could therefore be argued that Kolmogorov’s hypotheses discussed previously are

not valid.
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3.1.4 Resolution Requirements

For DNS of turbulent reacting flows, the smallest scales must be resolved. For turbulent flames

there are two independent scales that must be resolved; the smallest Kolmogorov scales and

the flame scales. If the turbulence is sufficiently small KaL < 1 when η > ℓF and so if the

resolution is adequate to resolve the flame scales then it must be adequate for the turbulent

scales. Note ℓF which represents the flame thermal thickness for a freely-propagating flame

instead of the 1-dimensional unstretched flame thickness because ℓF accounts for any flame

thinning due to TD-instabilities.

Turbulence

PeleLM is capable of ILES, and in the case with PeleLM could be viewed as under-resolved

DNS. The performance of under-resolved DNS was considered by Aspden et al. [23]. Aspden

et al. demonstrated an ILES approach to simulate detailed turbulent behaviour. An effective

viscosity was established which allowed the numerical scheme to appropriately dissipate

turbulent kinetic energy below the grid-scale. To evaluate this method, Aspden et al.

performed three distinct simulations (of which many turbulent intensities were evaluated):

fully-resolved DNS at all turbulent scales, inviscid ILES where the viscosity was set to zero

and ILES with true viscosity set (i.e. under-resolved DNS). It was found that given an

underresolved viscosity (νu) at for example ∆x, the effecitive visocisty (νe) of a simulation at

that resolution and therfore the effective Kolmogorov length (ηe) can be derived. Figure 7 from

[23] shows the dimensionless comparison of the effective viscosity νe to the set viscosity in the

under-resolved DNS simulations νu.

Flame

The resolution of the chemistry of the flame and the flame structure is of paramount

importance to ensure high fidelity DNS simulations. To define to the appropriate resolution

requirements three approaches were taken:

• Evaluate the temperature profile and select species at varying resolutions in a laminar

effective 1-dimensional PeleLM simulation.
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• Look at the flame structure of lean H2 flames at varying resolutions.

• Look at published works that use PeleLM for lean H2 for the authors’ resolution

requirement.

A short convergence study was conducted to evaluate how well the species and fuel

consumption rate profiles are captured. The case evaluated was simulated using an effective

1-dimensional simulation with a small width and with a large aspect ratio. The domain

dimensions are ℓLx128ℓL and the flame conditions have a pressure of 1 atm, a temperature of

300K and an equivalence ratio of 0.4 and using the Burke et al. kinetic model [46].

Figure 3.2 shows the profile for fuel consumption rate and intermediate species HO2, where

NT = ℓL/dx and case NT = 128 is used for comparison as the target profile due to it being an

unquestionably fully resolved resolution. It can be seen that both profiles produce similar

profiles and values at all resolutions, despite NT = 2 being clearly under-resolved this still has

reasonable similarities with the target profile. However although all other cases show slight

deviation from the target profile, there is only small improvements with increasing resolution.

All resolutions NT = 8, 12 and 16 appear to adequately resolve the profiles. Figure 3.3 shows

the measured laminar flame speed and laminar thermal thickness with increasing resolution. It

can be seen that NT = 2 and 4 are under-resolved where NT = 4 has a significantly slower

flame speed and thicker thermal thickness. Once NT = 12, then the difference is small

(2− 3%) and even as low as NT = 8 has small errors (3− 4%) , refinement above NT = 12 is

arguably comfortably in the region of diminishing returns. Howarth and Aspden [80], using

PeleLM, simulated 2-dimensional freely-propagating lean H2 flames. As part of their

investigation they evaluated the effect resolution had on both the flame structure and local

flame statistics using the Burke et al. kinetic model [46]. Figure 3.4 shows the temperature

field of a 2-dimensional freely-propagating flame at varying resolutions studied in [80]. The

example flame has a very high level of TD-instability and provides a good example of what

can happen in extreme cases of lean hydrogen flames. The findings showed that, at coarse

resolution, the flame structure was changed, where true TD-unstable behaviours became absent

or reduced such as fully formed flame fingers and reduced chaotic lateral movement. As the

resolution increased to ℓF/dx = 9 the flame structure returned to its typical state. It was also

shown in the study by Howarth and Aspden that local flame statistics, provided the resolution
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(a) ω̇H2

(b) HO2

Figure 3.2: Fuel consumption rate and species HO2 profiles at different simulation resolutions.

was enough to produce flame fingers, was independent of resolution. In other published work,

using PeleLM for lean H2 flames used various resolution requirements of as low as ℓF/dx = 7

in [19] to as high as ℓF/dx = 20 for distributed flames [22].

From these observations a good conservative minimum resolution for the flame is ℓF/∆x = 12.

This ensures that the flame surface and chemistry is sufficiently well-resolved but also allows

room for additional thinning in highly turbulent flames. AMR will be used to resolve the flame

while reducing the total number of computational cells, provided the turbulence can be
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Figure 3.3: Measured laminar flame speed and laminar thermal thickness with increasing num-

ber of cells across the thermal thickness (NT).

Figure 3.4: Temperature field for a 2-dimensional freely-propagating flame at the same con-

ditions for different resolutions (ℓF/dx = 3, 6, 9, 12) by Howarth and Aspden [80]. Reprinted

from [80] under license CC BY 4.0.

adequately resolved as discussed above.

3.1.5 Supporting Codes - Cantera

Cantera is an open-source suite of tools used for solving problems related to chemical kinetics,

thermodynamics, and transport [72]. For this project Cantera was used to quickly and
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accurately calculate the 1-dimensional freely propagating flame properties; notably the laminar

flame speed and thickness sL, ℓL, the adiabatic temperature Tad and other flame properties (such

as ω2 [117]).

3.1.6 A Comment on Soret Effects

Soret effects have been shown to impact lean hydrogen flames, see [182, 152] for example.

However, Soret effects have been excluded throughout this thesis. Soret effects were recently

shown by Howarth et al. [81] not to disturb trends but can change exact values (usually

minimally). It is expected these effects will be reduced with increasing turbulent intensities. It

will likely be the case that the exact values of the simulations i.e. the flame speed, will differ

from what they would be if Soret effects were considered. However, the focus of this project

has been on trends, rather than exact values, thus the findings throughout this thesis should be

consistent with those if Soret effects were included.

3.2 Extracting Simulation Data

The following subsections focus on the methods used for extracting simulation data from

PeleLM simulations.

3.2.1 The Isosurface

The flame surface is a key parameter used in the analysis and modelling of the flame. The

flame in detailed chemistry is not infinitely thin, meaning there is a gradient of species, fuel

consumption rate and temperature through the flame. Therefore, a good choice of progress

variable and isovalue that best represents the flames surface is of importance. An ideal

isosurface would closely follow the peak fuel consumption rate which is commonly the sum of

the mass fractions of major combustion products [136, 66]. For TD-unstable flames the surface

defined by temperature is highly sensitive to the progress value c and has a tendency to

overestimate the flame surface, this was shown in detail by Howarth & Aspden [80] and can be

seen from Figure 3.5. It can be seen however, that using the fuel mass fraction as the progress

variable yields a surface similar to the desired peak fuel consumption rate. Therefore for this
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project the isosurface will be based on a progress variable of fuel mass fraction:

c = 1− Y [F]

Y [F]u
(3.22)

where Y [F] is the fuel mass fraction and Y [F]u is the unburnt fuel mass fraction. This project

will also use the isovalue of c = 0.9 proposed by Howarth & Aspden [80], which can be seen

in Figure 3.5, and closely follows the fuel consumption rate. Other works studying lean

hydrogen flames also use a similar approach ([34] for example). It should be noted that there is

no perfect answer for what progress variable is most appropriate; Day et al. [59] compared

multiple isosurfaces and did not find any variable is a perfect fit for a “true” isosurface.

Figure 3.5: Fuel consumption rate ω̇H2
(left) and isosurfaces based on temperature (centre) and

fuel mass fraction Y [H2] (right) for varying progress variable values c from Howarth & Aspden

[80]. Reprinted from [80] under license CC BY 4.0.

3.2.2 Flame statistics

From Equation (2.80), the fuel consumption based global speed sC is calculated as:

sC = − 1

ρuY [H2]uA

ˆ
V

ρω̇H2
dV (3.23)

where A = LxLy is the domain cross sectional area and V is the domain volume, suffix b and

u denotes the burnt and unburnt states respectively (note as the simulations are all lean then

Y [H2]u − Y [H2]b ≡ Y [H2]u).
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Throughout the project, flame surface data is required to gather an understanding of the flame

behaviour. This method follows the approach by Bell et al. [33] [30] and Day et al. [59] with

some modifications proposed by Howarth & Aspden [80]. A local coordinate system is

constructed based on the fuel progress variable field near the flame. Using the flame surface as

an origin, a fourth-order Runge-Kutta scheme is used to construct paths normal to the surface

following gradients of the fuel progress variable C from the upstream reactants (C = 1)

through the surface to the products (C = 0). The streamlines can then be used to construct N

number with a localised prism-shaped (triangular) volumes Ω with element area at the surface

A, referred to as stream-tubes (see Figure 7 in [59]). Within the stream-tubes a local

consumption based flame speed and local thermal thickness can be calculated as a

1-dimensional flame along the path:

sloc,i = − 1

ρuY [H2]uAi

ˆ
Ωi

ρω̇H2
dΩi, (3.24)

ℓloc,i =
Tb − Tu

maxΩi
|∇T |

, (3.25)

where i is the ith tube along the surface, Ωi is the volume of the ith tube and Ai is the area of

the surface element through which the ith tube passes. The mean local flame speed or

thickness (represented by P) can then be calculated by averaging the local values spatially

over the entire flame surface for all tubes i and temporally over a statistically stationary region

from the start of the region ts to the end of the region te with number of time points tN

Ploc =
1

tN

(∑te
t=ts

∑N
i=0 Ai,t

) te∑
t=ts

N∑
i=0

Pi,tAi,t. (3.26)

This method desensitises the choice of isovalue as neither speed nor thickness are measured at

the surface, which gives an appropriate estimation of the mean local statistics.

3.2.3 Calculating Zeldovich Number

To calculate ω2, the Zeldovich number β needs to be computed from Cantera’s 1-dimensional

free-flame. The Zeldovich number is defined as

β =
Ea (Tb − Tu)

RT 2
b

, (3.27)
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where Ea is the activation energy and R is the ideal gas constant. The activation energy

calculation for detailed chemistry is computed following from Law and Sung [101], who

suggest that

Ea = −2R
d log(ρusL)

dT−1
b

. (3.28)

It can be seen that varying the adiabatic flame temperature without changing the fundamental

conditions can be difficult. It is suggested in [101] that the nitrogen should be varied with

another inert gas (i.e. argon) which can change the burning flux (ρusL) and the adiabatic flame

temperature without modifying the underlying conditions. Therefore, a small amount of argon

was added to the premixed mixture and varied by a small amount over multiple simulations

(usually 5 to give a line of best fit between log(ρusL) and T−1
b ), which allowed for the

activation energy and Zelodvich number to be calculated.

3.3 Defining Flame Characteristics

Throughout this thesis, different reference values for speed, thickness and turbulent quantities

will be discussed, each with a distinct meaning. This section exists as a reference point for the

reader regarding what flame quantity is being referred too.

Mean Local Flame Properties

Throughout this thesis all flame speeds are consumption based. The local statistics with

subscript (loc) refers to the local value attained using the stream-tubes method discussed above

(i.e. Equation (3.24) and (3.25). The mean local value denoted by an overline (P) refers to the

local values averaged spatially over all tubes on the flame and over a statistically stationary

region, as shown in Equation (3.26).

Laminar Flame Properties

The laminar flame speed and thickness denoted by subscript L (ie sL and ℓL) represents the

unstretched 1-dimensional flame speed and thickness. This value is easily attained from a

Cantera free flame simulation. Note that if a simulation is flat and unstrained (effectively

1-dimensional) then the mean local flame speed and thickness is equal to the laminar flame

speed and thickness; for example

Ploc = Ploc = PL. (3.29)
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Freely-Propagating Flame Properties

The freely-propagating speed and thickness denoted by subscript F (i.e. sF and ℓF) represents

the mean local flame speed and thickness for a 3-dimensional freely-propagating flame

Ploc = PF, (3.30)

where for TD-unstable flames sF > sL and ℓF < ℓL.

Turbulent Flame Properties

The mean local flame speed and thickness for turbulent flames are denoted by subscript S (i.e.

sS and ℓS) and are the mean local flame speed and thickness for a 3-dimensional turbulent flame

Ploc = PS, (3.31)

where typically (for example, provided turbulence it not close to distributed) for a TD-unstable

turbulent flame sS > sF > sL and ℓS < ℓF < ℓL. The turbulent flame speed is measured as the

total fuel consumption per unit area from Equation (3.23) and is denoted by sC. The flame

surface wrinkling is defined as the ratio of the flame surface area AT to the cross-sectional area

of the domain A

ΨC =
AT

A
. (3.32)

Based on Damköhler 1940 [55, 135], the following must be true

sC = slocΨC. (3.33)
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TD-unstable freely-propagating lean premixed hydrogen flames are investigated over a wide

range of reactant conditions with varying temperature, pressure and equivalence ratio to

evaluate the thermodiffusive response for freely-propagating flames. Reactant conditions are

characterised using an instability parameter ω2 [118], which was recently shown in [80] in

2-dimensions to categorise freely-propagating well. Freely-propagating flame speeds and

thickness are found to correlate with using the same functional form found in 2-dimensions but

with larger model constant with different correlations either side of the most-unstable surface

in ω2-space, both are used to propose an empirical scaling model. Joint-probability density

functions are used to correlate local consumption-based flame speed with curvature,

strain-rate and stretch with single and independent Markstein numbers. A simple

curvature-based model coupled with the empirical flame speed model is found to yield

reasonable results. Flame surface structure is studied and principal curvature zones are used

to partition the flame into six classifications (leading point, leading edge, flat, saddle point,

trailing edge, trailing point) which are used for conditional analysis in different parts of the

flame surface. Fractional contributions show that the bulk of the fuel consumption occurs in

flat regions and leading edges, shifting from the former to the latter with increasing instability.

Furthermore, the flat flame regions experience speeds in excess of the reference value (sF)

despite the lack of focussing of fuel by preferential diffusion in these regions, contrary to the

conventional expectations of thermodiffusive instability. A thermal leading point interpretation

is proposed: Where as expected, strong positive curvature in the leading points/edges result in

diffusive focusing of fuel, increasing the reaction rates, resulting in super-adiabatic

temperatures; these high temperatures left behind the leading points/edges then support

higher-than-expected reaction rates in regions where the flame surface is relatively-flat.

The current chapter’s work is published under the title Thermodiffusively-unstable lean

premixed hydrogen flames: phenomenology, empirical modelling, and thermal leading points

published in the journal Combustion and Flame in July 2023. This work was produced in

collaboration with Dr. Thomas Howarth who was the joint first author.
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4.1 Introduction

As discussed in Section 2.4, lean hydrogen flames often burn hotter, faster and thinner than

their stable counterparts. It has been shown by Aspden et al. [18] that using the laminar flame

speed and thickness (sL and ℓL) is inadequate for appropriately categorising turbulent

properties of low Lewis number flames. It was suggested that using freely-propagating flame

speeds and thickness was required for appropriate turbulence (this will be shown in detail in

Section 5). Lean TD-unstable flames have complex responses to turbulence, with flame folding

enhancing the flame speeds locally in positively curved regions. This chapter aims to build a

strong fundamental understanding of TD-unstable flames in the absence of turbulence, which

will then inform the analysis and modelling of turbulent flames which will be studied in later

chapters.

Continuing from Section 2.4 early numerical works on TD-unstable premixed flames used

simple chemistry with turbulence as considered by [163]. Detailed chemistry with turbulent

flow in 2-dimensions was considered by Baum et al. [28], Chen and Im [52, 83] for example.

More recent works in 2-dimensions include the groups in Zurich [6, 7, 5, 70] and Aachen

[36, 34, 35] who considered growth rate and dispersion relations in the linear regime in

addition to pattern formation in the non-linear regime. The Darmstadt group [170] considered

kernel configurations and Kadowaki et al. [85] considered pattern formation, for example.

Recent work by Berger et al. [36] studied 2-dimensional freely-propagating flames with

complex chemistry in a large domain (800ℓL) for TD-unstable lean hydrogen flames. Strong

flame surface wrinkling, enhanced flame speeds and super-adiabatic temperatures are

observed. A particularly interesting observation was the domain size dependency of the flame

to the domain size, and the flame surface wrinkling seemed somewhat linked to the theoretical

wave length. It was shown that once the domain size is sufficiently large the flame surface

wrinkling becomes constant. Recent work by Howarth and Aspden [80] also performed

numerical studies on 2-dimensional freely-propagating flames with complex chemistry.

Howarth studied the effect domain size had on the formation of flame instabilities and the

effect domain size had on the formation of TD-unstable structures, specifically its link to

stretch factor (I0). [36, 80] also found a link between domain size and I0, namely once the
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domain size was large enough for TD-structures to form, the local flame statistics (such as

speed and thickness) were independent of domain size. However, flame surface wrinkling was

not evaluated.

Berger et al. [36] presented clear observations and formations of flame fingers, later [80]

observed that flame finger formation and intensity was closely related to the instability

parameter ω2. Aspden et al. [18] showed briefly the formation of TD-unstable structures in

3-dimensions with complex chemistry. It was shown that different structures form to that

observed in 2-dimensions, and more bulb-like structures form. More recent work by Wen et al.

[169] (published after this was work conducted and published) showed a similar behaviour to

Aspden et al. [18]. An especially relevant observation for conformation of this project is that

in 3-dimensions, local flame speed is independent of domain size (like [80] in 2-dimensions)

provided the domain size is large enough to support the instabilities.

Interestingly Joint probability density functions (JPDFs) of flame speed and curvature

presented in [80], show elevated flame speeds at zero curvature which would be unexpected

according to the conventional understanding of TD-instabilities. A similar phenomenon was

observed recently in 3-dimensions for turbulent flames by Berger et al. [34]. In this paper it

was theorised that the enhancement of flame speed at zero curvature is the result of strain rate,

[34] utilising a counterflow flame observed enhanced reaction rates despite the zero curvature.

Similar observations from turbulent low Lewis number flames have found similar correlations

of strain-rate to flame speed ([51] for example).

Building upon the observations of [18, 36, 80] and utilising the instability coefficient ω2 from

[118, 117], this chapter starts by simulating 3-dimensional freely-propagating flames over a

wide range of conditions (a total of 17 different reactant conditions). Firstly the bulk features

are studied using isosurfaces of fuel mass fraction (Section 4.3). Measurements of

freely-propagating flame speed and thickness are used to infer a 3-dimensional empirical

model for freely-propagating flame speed and thickness attainable from 1-dimensional

simulations. Comparisons are then made with 2-dimensional simulations from [80] (Section

4.4). JPDFs are then studied to evaluate how the flame speed responds to the flame stretch

(both from curvature, strain and stretch) for both single and multiple Markstein numbers
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(Section 4.4.2). A decomposition and classification of the flame surface is proposed using

principle curvature zones, including characterisation though fractional consumption and scalar

profiles conditioned on principal curvature zone. Lastly an explanation of thermal leading

points are made to explain the existence of zero curvature flame speed enhancement (Section

4.5).

4.2 Numerical Configuration and Simulation Conditions

Freely-propagating flame sheets have been simulated in a high aspect ratio domain with a

laterally-periodic inflow-outflow configuration. The domain size was configured as

28ℓF × 28ℓF × 112ℓF. It has since been shown that the domain size chosen does provide

sufficient space to allow for an instability to develop [35]. The domain size is unlikely to be

sufficiently large for accurately attaining a flame surface wrinkling and global flame speed

without domain dependence as shown by Burger et al. [36], but as shown by [22, 80], this

domain size is sufficient for local flame quantities. The flame was initialised with a

statistically-planar flame surface using a one-dimensional profile from Cantera at the desired

conditions. The base grid was 96× 96× 384 with two levels of AMR to give an effective

resolution of 384× 384× 1536 providing around 14 cells across the freely-propagating thermal

thickness. The flame statistics are measured over a statistically-stationary period. The flame

position is maintained using an inflow where the inlet velocity is variable depending on the

fuel mass fraction in the domain (details on the active-control algorithm can be found in [31]).

A broad range of reactant conditions have been simulated with a specific focus on lean,

TD-unstable conditions. The conditions span a wide range of pressure, temperature and the

subsequent ω2 values. The conditions studied are shown in Table 4.1 and are broken down into

four distinct sets:

• P300. Is a pressure trajectory (increasing pressure from 1atm to 40 atm) with fixed

temperature (300K) and equivalence ratio (0.4). As shown from Figure 4.1 increasing

the pressure, increases ω2 up until the most unstable surface (at an estimated 10atm) then

ω2 decreases.

• P700. Has the same approach as P300, but at a higher fixed temperature of 700K.
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• R. Specifically varies pressure and equivalence ratio to follow the most unstable surface

(as predicted by ω2) at both 300K and 700K.

Some specific cases have been named and will be referred to throughout the study:

• A. Is a sensible control case, which has low temperature (300K), pressure (1 atm) and

equivalence ratio (0.4).

• B. Intended to be representative of RICE conditions as suggested by Realis, it has high

pressure (40 atm), temperature (700K) and is lean (0.4).

• C. An engine relevant condition intended to be representative of a micro-mix combustor

as suggested by Reaction Engines, and is high pressure (20 atm), high temperature

(700K) and is very lean (0.2).

• I. An intermediate case between B and C to isolate the effect of equivalence ratio,

independent of pressure and temperature.

• D. The case with the highest ω2 so is estimated to be the most unstable of all the studied

cases.

• Z. Has an ω2 of zero, which could be an interesting case between the stable and unstable

region in ω2 space.

4.3 Flame Surfaces

Flame surfaces are considered first to paint a general picture of TD-unstable flame evolution.

Figure 4.2 shows example isosurfaces (coloured by the normalised local flame speed) at

incrementally increasing pressure from P0 = 3.5 to 40 atm at fixed equivalence ratio ϕ = 0.4

and two inlet temperatures T0 = 300 and 700K. Starting with T0 = 300K and P0 = 3.5 atm,

the flame is TD-unstable, with a large variation of flame speed across the surface. Flame

acceleration (sloc > sF > sL) is in the positively curved regions (denoted by the light blue /

white colour), with large flat regions, tending to the mean local flame speed (sF) and flame

deceleration in negatively curved regions forming (dark blue) extinction channels. It can be

seen that 3D structures do differ from 2D flame fingers, where the typical 2D flame fingers
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Table 4.1: Reactant conditions for all freely-propagating simulations, coloured by the regime;

black and red for the low and high pressure regimes, respectively, and magenta for cases near

the most-unstable surface. Freely-propagating values are measured values from the three-

dimensional simulations.

Set Case p T ϕ ω2 sL ℓL sF ℓF

(atm) (K) (cm/s) (µm) (cm/s) (µm)

P300

(A) 1

300 0.4

5.45 20.7 665 34.4 526
1.7 7.39 15.2 465 29.8 329
3.5 12.9 8.11 361 23.6 189
6 20.7 3.83 408 18.3 140

10 27.3 1.57 590 13.2 114
20 17.1 0.78 609 7.00 120
40 13.6 0.51 466 4.30 90.9

P700

1

700 0.4

-0.15 3.80 502 3.73 498
3.5 1.30 2.24 111 2.49 108
10 2.71 1.05 44.5 1.53 38.8

(I) 20 4.22 53.6 32.6 106 25.4
(B) 40 5.58 24.9 30.4 56.5 18.7
(C) 20 700 0.2 2.82 1.08 1120 3.33 484

R

(D) 1 300 0.25 48.2 0.140 49700 4.1 3200
3.5 300 0.32 36.8 0.551 4160 9.09 434
20 700 0.28 7.44 6.14 204 24.3 75.5

Z (Z) 1 300 0.565 0 75.2 390 85.3 382

Figure 4.1: Contours of instability parameter showing dependence on pressure and equivalence

ratio at 300K and 700K; markers denote conditions simulated in this chapter.
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P0 = 3.5atm P0 = 10atm P0 = 40atm
T
0
=

30
0K

T
0
=

70
0K

Figure 4.2: Isosurfaces of fuel mass fraction coloured by normalised local flame speed for

increasing pressure at fixed equivalence ratio ϕ = 0.4 and inlet temperature T0 = 300 and

700K. The direction of flame propagation is moving directly out of the page.

with the w-shape pair have been replaced with far less stable structures with multiple

neighbouring positively-curved structures. From Figure 4.2 for the T0 = 300K cases, it can be

seen that increasing pressure decreases the size of the flame structure, even though the domain

size has been normalised to account for flame thinning by normalising by ℓF instead of ℓL.

Additionally, it can be seen that the positively curved regions get smaller and more bulbous

with less of the structure being “flat” where the local flame acceleration is greater relative to

the mean local flame speed than at lower pressure. Interestingly this trend continues across to

the high pressure regime (P0 = 40 atm, T0 = 300K), where the flame structure looks more

unstable at a lower ω2 than the most unstable surface case (P0 = 10 atm, T0 = 300K). From

Figure 4.2 it can be clearly seen that temperature at the same equivalence ratio and pressure

has a stabilising effects, as shown by [118, 117, 80] for example. As with the T0 = 300K

cases, as pressure increases the extent of the instability also increases.

71



CHAPTER 4. FREELY-PROPAGATING LAMINAR FLAMES

Figure 4.3: Normalised freely-propagating characteristic flame speed and (inverse) thickness as

functions of instability parameter ω2 . Solid lines denote the 3D empirical model; dotted lines

show 2D model from [80] for comparison. Black denotes the low-pressure regime, red denotes

the high-pressure regime, and magenta denotes conditions close to the most-unstable-surface.

Each simulated case is denoted by the red and black crosses.

4.4 Characteristic Values

4.4.1 Mean Local Flame Speed and Thickness

As discussed previously (Section 3.2.2 ), the freely-propagating flame speed sF and thermal

thickness ℓF are defined as the temporal- and surface-average of the local values for both speed

sloc and thermal thickness ℓloc averaged a statistically stationary period. Figure 4.3 presents the

freely-propagating values of speed and thermal thickness normalised by the unstretched

laminar values as a function of the instability factor ω2. The solid curves denote the 3D model

proposed from this data shown in Equation (4.1) and (4.2). The dotted curves are that proposed

by Howarth and Aspden [80] for 2D.

It can be seen from Figure 4.3 that the response is similar to that observed in 2-dimensions

with TD-effects being stronger in 3-dimensions. This can be explained by having fuel focusing

in more directions than in 2-dimensions. At typical engine relevant conditions, the mean local

flame speed acceleration (sloc/sL) was seen to be in the range of 2 to 4. The most extreme

instabilities had a value of 29 as seen for case D. It also is observed that as the instability factor

ω2 increases, so does the extent of flame acceleration and thinning, consistent with the

observation from [80]. As with 2-dimensions, there are two observable regimes, the low and
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high pressure regimes, where the behaviour appears to change. It can be seen that for the cases

studied in this project, the high-pressure regime has notably weaker local flame acceleration

and thinning at the same comparable ω2 values in the low-pressure regime. Additionally, the

most unstable surface cases (coloured as magenta) appear to cross between both regimes with

the lowest ω2 case adhering to the low pressure regime model, and higher ω2 cases adhering to

the high pressure regime model from Equation 4.1 4.2,

sloc ≈ sM =

exp (0.08ω2) if low pressure regime,

1 + 0.47ω2 if high pressure regime,
(4.1)

ℓloc ≈ ℓM =

exp (−0.06ω2) if low pressure regime,

(1 + 0.26ω2)
−1 if high pressure regime.

(4.2)

Interestingly case Z, which has ω2 = 0 and is TD “neutral” has a slightly increased mean local

flame speed above the unstretched laminar value of sloc/sL = 1.13.

4.4.2 JPDFs of Local Flame Speed

Joint probability density functions (JPDFs) of local flame speed with different measures are

instructive for quantifying the local flame behaviour and potential modelling approaches, such

as a well-resolved G-Equation for example. It is also informative as to how the fundamental

flame behaviour responds to different reactant conditions and TD-behaviour. Traditionally the

JPDF would show the probability of the speed at the curvature as a fraction of flame surface

area. For the JPDFs in this project the first moment, with respect to flame speed, is used to

reduce the influence of the local extinction regions. The integrated JPDF gives the total fuel

consumption rate which shows the locations where the flame is burning, not just where the

flame surface is. Additionally, this reduces the importance of the exact value of progress

variable used.

Following the approach from [80]; four different measures were evaluated against the local

flame speed normalised by the freely-propagating flame speed (ie sloc = sF); curvature

sloc

sF

= MκκℓF, (4.3)
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strain, stretch with a single Markstein number

sloc

sF

= M
(
κℓF +

(
E − E

)
τF

)
, (4.4)

and stretch with independent Markstein numbers for an independent weighting of curvature

and strain components
sloc

sF

= M1κℓF −M2

(
E − E

)
τF, (4.5)

where τF is the freely-propagating flame time τF = ℓF/sF, E is the strain-rate, E is the mean

strain-rate, and κ is the curvature. As the strain-rate is evaluated on the surface, it is somewhat

sensitive to the progress variable. Howarth and Aspden [80] suggested that accounting for a

non-zero mean strain, the strain-rate can be seen as the strain rate fluctuation from the mean

(E − E) hence the inclusion of a mean strain-rate in Equation (4.4). This approach is used for

both single and independent Markstein numbers (as suggested in [53, 80]).

The results of all simulation cases (except the A/1.7 atm case so that the figure can fit on the

page) are shown in four figures; Figure 4.5 for curvature, Figure 4.6 for strain, Figure 4.7 for

stretch with a single Markstein number and Figure 4.8 for stretch with independent Markstein

numbers. The JPDFs for curvature and stretch show dashed and dotted magenta lines which

denote the freely-propagating and laminar flame speeds of the reactant conditions; a solid

white line for the line of best fit using orthogonal distance regression and the dashed white line

represents a proposed curvature-only model (sloc = sF (1−MκκℓF), where Mκ = −2.5). The

proposed model will be discussed in more detail below.

Starting with curvature only (Figure 4.5), for all ω2 > 1, i.e. theoretically TD-unstable [80],

there is a clear positive correlation with local flame speed and local flame curvature, which is

in agreement with the literature ([30] for example). For a fixed temperature and equivalence

ratio with an increasing pressure (see P300 trajectory) it can be seen that increasing the

pressure in-turn increases both the range of the flame curvature but also the peak local flame

speed, indicative of a more unstable flame. The solid white line represents a line of-best fit and

the dotted line is given by the model

sloc = sF (1−MκκℓF) with Mκ = −2.5. (4.6)
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For the clearly unstable cases, the model has good agreement with the line-of-best fit; which

indicates that, provided the flame is sufficiently TD-unstable, the curvature only Markstein

number is somewhat independent of reactant conditions. Interestingly (looking at the P300

trajectory), even when ω2 begins to reduce with pressure (crosses the ridge after 20 atm) the

trend of increasing curvature ranges continues which is somewhat supported in Figure 4.2.

This suggests that the flame behaviour is sensitive to the regime in ω2 space as-well as the

value of ω2. It also is suggestive of an underlying pressure effect to flame structure and

TD-response that is somewhat independent of ω2.

The local flame speed against strain-rate JPDF is presented in Figure 4.6 (the colour scale

applies to all following JPDFs.). It can be seen that for the TD-unstable cases there is a

positive correlation between the local flame speed and the strain-rate. As pressure increases

(see the P300 trajectory) the range of strain-rate increases. Additionally, as pressure increases

the gradient of the local flame speed to strain decreases. Interestingly as ω2 increases (which

for the P300 cases peaks at p = 20 atm) the peak local flame speed stops increasing, but the

range of strain-rate values continues to increase. As for curvature, for the TD-neutral case the

range of local flame speeds is minimal, cluster around sF = 1 (ie sloc ≈ sF ≈ sL) and there is

no clear relationship between strain and local flame speed.

The local flame speed correlation with stretch, both with single (Figure 4.7) and independent

(Figure 4.8) Markstein numbers, collapses well for all TD-unstable cases with a clear positive

correlation with local flame speed and stretch. As expected and observed in both the individual

curvature and strain JPDFs, as pressure increases the range and magnitude of local flame speed

and stretch values are increased. It can be seen that there is a slight improvement using

independent Markstein numbers, most notably for the cases of the most-unstable surface cases,

which is different to the 2-dimensional observations in [80], which yielded little improvement.

Case Z (ϕ = 0.565, T0 = 300K and p = 1 atm) which has an ω0 of unity, shows a negative

Markstein number, despite theoretically, being TD-neutral. It is theorised that the flame is not

TD-unstable, but the small Darrious Landau instability slightly perturbs the flame, which

in-turn results in a small amount of fuel focusing causing the small range of flame speed

variation. This has some interesting implications in turbulent flames so will be revisited in
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Chapter 5.

The predictive models presented by Equation 4.4 and 4.5 require expressions for the mean

strain-rate and for single or multiple Markstein numbers. The curvature only model from

Equation 4.6 requires a single Markstein number Mκ. Figure 4.4 presents the lines of best fit

for these quantities. It can be seen that there is significant scatter in the data for the single and

double Markstein numbers, far more than in 2D [80]; which infers a model is therefore not

satisfactory. The curvature only model does provide much less scatter, and therefore is

preferred over the stretch models.

4.5 Principal Curvatures and Thermal Leading Points

To evaluate the flame structure and the contribution of different regions to the flame speed, the

flame surface has been divided into principle curvature zones. The usage of principal

curvatures for evaluating hydrogen-air flames has been done by Shim et al. [154] and

Uranakara et al. [165].

4.5.1 Principal Curvatures

Principal curvature κ1 > κ2 can be calculated by the Gaussian curvature (κg) from Goldman

[71] and the mean curvature (κm)

κg = −

∣∣∣∣∣∣∣∣∣∣∣∣

Fxx Fxy Fxz Fx

Fxy Fyy Fyz Fxy

Fxz Fyz Fzz Fxz

Fx Fy Fz 0

∣∣∣∣∣∣∣∣∣∣∣∣
|∇F |4

(4.7)

given that it is known that

κm =
κ1 + κ2

2
, (4.8)

κg = κ1κ2, (4.9)

the principle curvature zones can be given as

κ1 = κm +
√
κ2
m − κg, (4.10)
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Figure 4.4: Single Markstein number (left), independent Markstein numbers (right) and mean

strain-rate (bottom) as a function of the instability parameter ω2, with the added model lines

from the 2D model from [80]. For the data presented, there is significant scatter, preventing a

modified empirical model. The curvature-based approach with Mκ = −2.5, appears to work

well and appears largely independent of ω2.

77



CHAPTER 4. FREELY-PROPAGATING LAMINAR FLAMES

(P300) trajectory (P700) trajectory (R & Z) other

Figure 4.5: JPDFs of normalised sloc and κ. The dashed white line represents a constant gradient

of 2.2, the solid white line represents the gradient of each individual case, the dashed red line

represents sloc/sF = 1 and the dotted fine red line represents sL/sF.
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(P300) trajectory (P700) trajectory (R & Z) other

Figure 4.6: JPDFs of normalised sloc and strain-rate.
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(P300) trajectory (P700) trajectory (R & Z) other

Figure 4.7: JPDFs of normalised sloc and stretch. The solid white line represents the gradient of

each individual case.
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(P300) trajectory (P700) trajectory (R & Z) other

Figure 4.8: JPDFs of normalised sloc and stretch with independent Markstein numbers. The

solid white line represents the gradient of each individual case.
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κ2 = κm −
√

κ2
m − κg, (4.11)

has been used to partition the flame surface into six classifications. These are flat flame (FF),

leading point (LP), leading edge (LE), saddle point (SP), trailing edge (TE) and trailing point

(TP). These are defined by principle curvature zones:

FF if
√
κ2
1 + κ2

2 >
1

2
ℓF, otherwise:

LP if κ2 >
κ1

2
,

LE if
∣∣∣∣κ2

κ1

∣∣∣∣ ≤ 1

2
,

SP if − 2κ1 < κ2 < −κ1

2
,

TE if
∣∣∣∣κ1

κ2

∣∣∣∣ ≤ 1

2
and

TP if κ1 >
κ2

2
.

(4.12)

A schematic of these zones is shown in Figure 4.9. Zones categorised as “points” can be

interpreted as being spherically curved, while “edges” as cylindrically curved, where “leading”

and “trailing” refer to the positive and negative mean curvature, respectively. The threshold

values used are somewhat arbitrary, and the values chosen could be modified. The purpose of

the values provided are not to predict the unique distribution of curvature zones, but to

investigate the trends, which are anticipated to be largely independent of the specific zone

values. The values chosen however were judged to be appropriate by inspection of the

isosurface in conjunction with JPDFs (shown below in Figure 4.11).

Figure 4.10 shows example isosurfaces coloured by the principle curvature zones at

incrementally increasing pressure from P0 = 3.5 to 40atm at fixed equivalence ratio ϕ = 0.4

and inlet temperature T0 = 300K. The change in the structure as a result of pressure is clear;

the flame structure transitions from a flame with large flat flame regions to leading edges and

trailing edges. The low pressure cases have long leading edges and extinction channels

separating large flat regions with relatively few leading points forming the w-shaped flame

structure as discussed above. The higher pressure cases have a structure dominated by more

extreme curvatures where the majority of the flame is governed by leading edges and

extinction channels with an increased number of leading points.
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Figure 4.9: Schematic of principal curvature zones classification. FF: flat flame; LP: leading

points; LE: leading edges; TE: trailing edges; TP: trailing points; SP: saddle points. Points are

spherically curved; edges are cylindrically curved.

P0 = 3.5atm P0 = 10atm P0 = 40atm

Figure 4.10: Isosurfaces coloured by principal curvature zone for p0 = 3.5, 10 and 40atm at

T0 = 300K and ϕ = 0.4

Figure 4.11 shows JPDFs of principal curvatures weighted by flame speed (top), and local

flame speed conditionally-averaged on principal curvatures (bottom) for increasing pressure

(left-to-right and top-to-bottom) for the P300 pressure trajectory.

Starting with the principal curvatures weighted by flame speed (top of Figure 4.11), for the low

pressure case (Case A), it can be seen that there is little range of principal curvatures; almost
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Figure 4.11: JPDF of principal curvatures weighted by flame speed (top), and local flame speed

conditionally-averaged on principal curvatures (bottom) for increasing pressure (left-to-right

and top-to-bottom).
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all burning occurs within the flat flame region. It can be see that as pressure increases, like

with the flame speed curvature JPDFs in Figure 4.5, the range of principle curvatures

increases. The majority change with the burning is that the burning transitions from near κ1

and κ2 = 0 to increasingly positive principle curvatures.

Looking at the local flame speed conditionally-averaged on principal curvatures (bottom of

Figure 4.11) as indicated by the flame speed curvature JPDFs (Figure 4.5) and the principal

curvatures weighted by flame speed (top of Figure 4.11,) there are more regions with stronger

positive curvature with increasing pressure. This is shown by more data points JPDFs (less

white space) with increasing pressure. Additionally, the stronger the positive principle

curvature the faster the normalised local flame speed. Note that the normalised local flame

speed is normalised by the freely-propagating flame speed thus has already accounted for the

increased mean flame speed due to TD-instabilities. As expected, the peak value of local flame

speed occurs at the highest value of κ1κ2. It does appear that for flame speed principle

curvatures κ1 and κ2 have a similar contribution the increased local flame speed. This suggests

that the increase in local flame speed above the freely-propagated flame speed is dominated by

fuel focusing, not the other zero-curvature flame speed enhancement discussed previously.

To perform a more detailed analysis of the affect flame instability has on flame structure;

fractional contributions to overall burning of each principle curvature zone has been

constructed. The fractional contributions were calculated by integrating the fuel consumption

conditioned by each zone relative to the total fuel consumption. The contributions where then

averaged temporally over the statistically stationary region. Figure 4.12 presents the fractional

contributions with increasing pressure for the P300 cases. As implied by the isosurfaces, it can

be seen that as pressure increases the fractional contribution transitions from flat flame to

leading edges and leading points. It can be seen that for the low pressure cases (Case A for

example), the bulk of the flame is consumed at the flat flame region. Combining this with the

curvature JPDFs (Figure 4.5), at zero curvature the flame burns hotter and faster than its

unstretched 1-dimensional flame. This observation is somewhat contradictory to the classical

description of TD-unstable flames [137, 97] because there is no fuel focusing in flat flame

regions. This observation begs the question as to the origins of this phenomena and will be the
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Figure 4.12: Fractional contribution to fuel consumption rate by principal curvature zone

against pressure at T0 = 300K and ϕ = 0.4.

subject of the next section (4.5.2).

4.5.2 Surface Normals and Thermal Leading Points

The local flame speed curvature JPDFs presented in Figure 4.5 clearly show a local flame

speed enhancement of above the laminar flame speed even at zero curvature. In turbulent

flames this has been attributed to both curvature and strain-rate [34] for example, however in

freely-propagating flames there should be zero strain from the fluid acting on the flame without

the flame generating that strain to begin with. Additionally, at zero curvature there should not

be any focusing of fuel into the region. Using a traditional description of a TD-unstable flame

the flame speed at zero curvature in a freely-propagating flame should be the laminar flame

speed sL. This section aims to propose and evidence an explanation for this phenomena which

is dubbed the thermal leading point concept. The argument that will be proposed is that leading

points and edges from the TD-instability have strong positive curvature which results in

preferential diffusion of heat and fuel into these positively curved regions (as described by the

literature [137] for example). These regions then burn faster and hotter than the laminar flame.

These super-adiabatic regions can be described as thermal leading points. The thermal leading

points leave a wake of super-adiabatic temperatures, that can then diffuse into regions of flat

flame, which typically trail the leading points / edges. Flat flame regions now experience hotter
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temperatures than would occur in a 1-dimensional flame, which results in increased burning

and thus and increased flame speed, even in the absence of any fuel focusing.

To support this claim, profiles along paths normal to the flame surface have been constructed.

The stream-tube approach described in Section 3.2.2 which was utilised for local flame speed

and local thermal thickness has been used to construct profiles along paths normal to the flame

surface. The paths have been conditionally-averaged according to the intersecting surface

principle curvature zone. This allows for profiles of temperature, equivalence ratio and fuel

consumption rate to be plotted as a function of arc length ζ along the paths, which are then

normalised by the local thermal thickness (ℓloc) of the paths corresponding to that principle

curvature zone. Figure 4.13 presents the normals at increasing pressure; P0 = 3.5, 10 and

40atm at a fixed T0 = 300K and ϕ = 0.4. An additional TD-stable case is presented with

reactant conditions; P0 = 1atm, T0 = 700K and ϕ = 0.4. All plots have an unstretched 1D

laminar flame profile for reference, indicated by the dashed black line. Firstly, by focusing on

the P0 = 3.5 case, as expected, leading points are the hottest, richest and most reactive of the

zones, followed by leading edges, flat flame then the saddle point, trailing edges and trailing

points. The leading points and edges behave as expected, with preferential diffusion increasing

the temperature and reaction rates above the 1-dimensional laminar profile. Interestingly, the

flat flame regions are different to the 1-dimensional laminar profile, which as explained above

should not occur at near zero curvature. A natural explanation as to why the flame is hotter and

more reactive, is that there must be an external source of heating diffusing into the flat flame

region. This is further supported when the pressure is increased. As previously shown,

increasing the pressure increases the strength of the leading points where there is stronger

curvature, resulting in even hotter regions, which in-turn should diffuse more heat into the flat

flame regions increasing the reaction rate of the flat flame region. This is exactly what is

observed in Figure 4.13. For reference, a TD-stable case is provided where there is an absence

of leading points and edges. This means there are no strong super-adiabatic leading points,

thus there is not the increased temperature at the flat flame region, thus the flat flame region

does not experience enhanced burning rates and closely resembles the 1-dimensional laminar

profile.
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Figure 4.13: Normalised temperature, equivalence ratio and fuel consumption rate against nor-

malised distance from the flame surface, all conditionally-averaged by principal curvature zone.

For incrementally increasing pressure; P0 = 3.5, 10 and 40atm at a fixed T0 = 300K and

ϕ = 0.4. The TD-stable case is P0 = 1atm, T0 = 700K and ϕ = 0.4. The dashed black line

denotes the one-dimensional unstretched laminar flame profile.
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4.6 Conclusions

This chapter studied TD-unstable, 3-dimensional, freely-propagating flames over a wide range

of reactant conditions to explore the effect of reactant conditions on the TD-response of lean

hydrogen flames. There has been a specific focus on how local flame speed and thickness

correlate with an instability factor ω2 proposed by [118, 117] which arises from classical

stability analysis and has been shown to work well in 2-dimensions by [80].

The TD-behaviour was found to be largely consistent with the findings from [80], most

notably that the TD-response scales well with decreasing ω2. It was found that the response

differed depending on which side of the most unstable (low and high pressure regime) the

reactant conditions were on. It was observed that 3D flames had a stronger TD-response when

compared to 2-dimensions, with faster flame speeds and thinner flame thermal thicknesses. It

was also found that the TD-flame structures were different in 3-dimensions than in

2-dimensions, consistent with the observations from [18]. The flame experienced more

bulbous shaped leading points and formed distinct channels of leading edges and extinction

regions. The flame structures with high positive curvature, which were more unstable and

often disturbed by neighbouring flame structures, were compared to the very stable flame

fingers observed in 2-dimensions with less extreme positive curvature.

Two models proposed in [80] were shown to work well in 3-dimensions with larger constants

to account for the additional diffusion direction. The models have been presented to predict the

mean local flame speed acceleration and mean local flame thinning based on ω2, and has good

predictive capabilities:

sloc ≈

exp (0.08ω2) if low pressure regime,

1 + 0.47ω2 if high pressure regime,

ℓloc ≈

exp (−0.06ω2) if low pressure regime,

(1 + 0.26ω2)
−1 if high pressure regime.

It will be shown in later chapters that these models are essential for appropriately categorising

flame turbulent conditions, as suggested in [18]. These models will also be shown to be a vital

component in accounting for TD-effects for turbulent flame speed models.
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Interestingly a small TD-effect was observed for the ω2 = 0 (Z) case, which has been

attributed to DL instability inducing curvature, provoking a TD-response. It will be shown in

later chapters that this effect is more prominent in turbulent flames.

To evaluate the relationship between local flame speed and local flame quantities, joint

probability density functions (JPDFs) of local consumption based flame speed and mean

curvature, strain-rate and stretch based of single and multiple Markstein numbers were

constructed. It was found that local flame speed has a positive correlation with local flame

curvature with a gradient (Markstein number) of −2.5, where the Markstein number was found

to be largely independent of reactant conditions. It was found that local flame speed also had a

positive correlation with strain-rate. Unlike curvature only, the strain-rate correlation was

dependent on reactant conditions, where it was found that in the low pressure regime, the

dependence on strain rate grows faster than linear, is linear at the most unstable surface, and is

slower than linear in the high pressure regime. Using a single Markstein number to correlate

local flame speed with stretch was found to collapse well (when accounting for mean

strain-rate). Following [80] independent Markstein numbers were considered for independent

turning of curvature and strain dependence. However unlike in 2D, independent Markstein

numbers yielded minimal improvement. It was found that both the single Markstein, and

independent Markstein numbers had no obvious scaling with reactant conditions due to large

scatter in the measured Markstein numbers. It was concluded that the most appropriate model

was the curvature only model with a constant Markstein number of −2.5 and is independent of

reactant conditions, provided the flame is TD-unstable.

Secondly, the structure of the flame surface has been evaluated, by deconstructing the flame

curvature into six principle curvature zones (flat flame, leading point, leading edge, saddle

point, trailing edge and trailing point). It was found that increasing pressure transitioned the

flame structure from a majority flat flame, to being dominated by leading points and edges. By

evaluating surface normals conditionally-averaged by principle curvature zone, it was found

that leading points experienced the highest temperatures, equivalence ratios and reaction rates,

followed by leading edges. This effect was attributed to the focusing of fuel into positively

curved regions (see [137, 97] for example). It was observed throughout, that flat flame regions
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experienced flame speeds above the 1-dimensional profiles which is surprising considering flat

flame regions should not experience preferential diffusion. This observation is consistent with

other works ([18] for example), who did not comment on the effect. It was then proposed that

this phenomena is the result of thermal leading points, where positively curved regions focus

fuel and heat which then can diffuse into flat flame regions, accelerating the regions above the

expected 1-dimensional flame speed.
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Chapter 5. Turbulent Flames Part 1: Fixed Length Scale

TD-unstable turbulent lean premixed hydrogen flames are investigated over a wide range of

reactant and turbulent conditions with varying temperature, pressure, equivalence ratio and

Karlovitz number to evaluate the thermodiffusive response to both reactant and turbulent

conditions. Continuing from Chapter 4, flames are characterised using the flame instability

parameter ω2 [118] and the turbulence characterised by the freely-propagating Karlovitz

number KaF at a fixed normalised integral length scale. The Karlovitz number has been varied

to induce different TD-responses. Turbulence was found to enhance the local flame speed and

flame thermal thickness thinning above the freely-propagating vales. It was found that the rate

of the increase in speed and thinning strongly correlated to
√
KaF, with a weak dependence on

ω2, provided the TD-response from reactant conditions in freely-propagating flames had been

accounted for. An empirical scaling model combining the effects of the TD-response to

reactant and turbulent conditions is then proposed. This chapter follows a similar approach to

the previous chapter where joint probability density functions are used to correlate local

consumption-based flame speed with curvature, strain-rate and stretch with single and

independent Markstein numbers. It was found that there was weak correlation for strain-rate

based models, even with single and multiple Markstein numbers, therefore a simple

curvature-based model was again proposed which was found to yield reasonable results.

Flame surface structure is again studied using principle curvature zones. It was found that

turbulence dominated the flame surface structure, even at low KaF. Finally, the thermal

leading point concept is then evaluated again in the context of turbulent flames.

As in Chapter 4, the current chapter’s work is published under the title

Thermodiffusively-unstable lean premixed hydrogen flames: phenomenology, empirical

modelling, and thermal leading points published in the journal Combustion and Flame in July

2023. This work was produced in collaboration with Dr. Thomas Howarth who was the joint

first author.
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5.1 Introduction

Following on from Chapter 4, the majority of combustion engines are turbulent, thus an

understanding of the interaction between turbulence and the TD-instability is required. Early

numerical work on turbulent lean hydrogen flames using the canonical turbulent

flame-in-a-box configuration were conducted by the Berkeley group [30, 59, 18, 21, 13, 22] for

example and further analysed by [149] and [8]. Other works on the effect of Lewis number on

fundamental turbulent flame behaviour include that from Chakraborty et al. [49, 50, 87] for

example. Recent works include that from Lu and Yang [111] and Lee et al.

[103, 104, 105, 106, 107, 102] for example, who have provided numerical support to the

leading point concept. There are also more realistic combustor configurations

[167, 32, 61, 34, 123] for example.

Day et al. [59] simulated a TD-unstable lean hydrogen flame at increasing levels of turbulence,

it was shown that turbulence enhanced the TD-response and local flame speeds were increased

with increasing turbulence. The positive correlation with local flame speed and curvature, as

observed in Chapter 4, was still clearly present. It was later shown by Aspden et al. [22] that

even at high turbulence (KaF = 108) TD-structures still existed, and local flame acceleration

was still present. However, at extreme levels of turbulence (KaF ≥ 974) these structures

disappeared. These levels of turbulence are unlikely to exist in real-world combustors, but is

an interesting observation as to how persistent TD-effects can be. In agreement with the

flame-in-a-box configurations from the Berkeley group, it was found that for the low Lewis

number, local flame speed was increased above the laminar flame speed, while the unity Lewis

number case did not. Recent work by Mohan et al. [123] also shows that Lewis number in

turbulent flames increases the local flame acceleration in a bunsen flame. Its is suggested that

local flame acceleration is well approximated by I0 = Le−1. This is shown to provide good

approximations for large variations in Lewis number.

It was shown in [18] that as a consequence of the TD-instability, characteristic values for flame

speed and thickness cannot be taken from simple 1-dimensional flames; it is more appropriate

to take freely-propagating values obtained from multidimensional numerical simulations to use

for nondimensionalisation purposes such as classifying the turbulent burning regime.
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Throughout the literature there is ample evidence that for low-to-moderate turbulence the

TD-response is enhanced by turbulence. However the studies conducted provide a limited

number of conditions, thus the potential for extracting appropriate models and trends that are

viable over a large range of conditions are unclear.

5.2 Numerical Configuration and Simulation Conditions

A broad range of reactant and turbulent conditions have been considered. Following [21],

flames are considered in the thin-reaction zone of the premixed regime diagram, with

freely-propagating Karlovitz numbers of 1, 4, 12 and 36 with a fixed integral length scale of

ℓI/ℓF = 1.6. Following [20], the freely propagating values determined in Chapter 4 have been

used to determine the appropriate turbulent parameters. As in Chapter 4 set P300 is a

trajectory of incrementally increasing pressure at fixed temperature Tin = 300K and

equivalence ratio ϕ = 0.4 at two Karlovitz numbers KaF = 4 and 36. Cases A, B, C, D and Z

from Chapter 4 are now sets of incrementally increasing Karlovitz numbers KaF = 1, 4, 12 and

32. Some additional cases along the most unstable surface R have been evaluated at a fixed

Karlovitz number of KaF = 4. An additional case I which is the intermediate between sets B

and C and has been added at a fixed Karlovitz number of KaF = 4. For full details of

simulation conditions see Table 5.1. As described in Chapter 3, and similar to Chapter 4, the

turbulent flame sheets have been simulated in a high aspect ratio domain with a

laterally-periodic slip wall-outflow configuration, where the the flame starts near the top of the

domain and burns towards the bottom where homogeneous isotropic turbulence is maintained

throughout the domain. The domain size is fixed at 16ℓF x 16ℓF x 64ℓF.

5.3 Effect of Pressure at a Fixed Karlovitz Number

This section focuses on the set P300/04, which is where the equivalence ratio, inlet

temperature and Karlovitz number are fixed at 4 and the pressure is increased.
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Table 5.1: Turbulent flame simulation conditions. For all cases, the domain size is Lx = Ly =

16ℓF = 10ℓI, with Lz = 4Lx.

Set Case p Tin ϕ ω2 sF ℓF KaF DaF

(atm) (K) (cm/s) (µm)

P300/04

(A/04) 1

300 0.4

5.45 34.4 526

4 0.55

1.7 7.39 29.8 329

3.5 12.9 23.6 189

6 20.7 18.3 140

10 27.3 13.2 114

20 17.1 7.00 120

40 13.6 4.30 90.9

P300/36

(A/36) 1

300 0.4

5.45 34.4 526

36 0.13
3.5 12.9 23.6 189

10 27.3 13.2 114

40 13.6 4.30 90.9

A

(A/01)

1 300 0.4 5.45 34.4 526

1 1.37

(A/04) 4 0.55

(A/12) 12 0.26

(A/36) 36 0.13

B

(B/01)

40 700 0.4 5.58 56.5 18.7

1 1.37

(B/04) 4 0.55

(B/12) 12 0.26

(B/36) 36 0.13

C

(C/01)

20 700 0.2 2.28 3.33 484

1 1.37

(C/04) 4 0.55

(C/12) 12 0.26

(C/36) 36 0.13

D

(D/01)

1 300 0.25 48.2 4.10 3200

1 1.37

(D/04) 4 0.55

(D/12) 12 0.26

(D/36) 36 0.13

Z

(Z/01)

1 300 0.565 0 85.3 382

1 1.37

(Z/04) 4 0.55

(Z/12) 12 0.26

(Z/36) 36 0.13

R/04

(D/04) 1 300 0.25 48.2 4.10 3200

4 0.553.5 300 0.32 36.8 9.09 434

20 700 0.28 7.44 24.3 75.5

I/04 20 700 0.4 4.22 106 25.4 4 0.55
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5.3.1 Flame Surfaces

Figure 5.1 presents two surfaces for each case (p = 3.5,10 and 40 atm at fixed Tin = 300K and

ϕ = 0.4) at a fixed KaF = 4; showing the isosurfaces of fuel mass fraction (c = 0.9) coloured

by the local flame speed normalised by the freely propagating flame speed and the principle

curvature zones discussed in Chapter 4. The principal curvature zone has been normalised

using the mean local surface average thermal thickness ℓS rather than the larger freely

propagating thermal thickness ℓF, and as a result classifies relatively more of the surface as flat

but leaves the other zones unchanged. Most notably from Figure 5.1, the surfaces look very

similar to each-other. This is in stark contrast to the freely propagating observations in Figure

4.2 even when normalised by sF and ℓF. This observation implies that even at a relatively low

turbulent intensity, turbulence dominates the small-scale flame surface structure and speed

provided the freely propagating flame characteristic values have been accounted for. The

similarities between the surfaces, regardless of reactant conditions, indicated that using the

freely propagating values are ideal for determining the appropriate turbulent characteristics

compared with traditional 1-dimensional laminar flame characteristics (i.e. sL and ℓL). Another

notable observation is that local flame speed appears to be greater than sF even when the flame

is flat and therefore is not a direct result of hydrogen diffusion. A visual comparison of flame

structure through principal curvature zones are shown in Figure 5.1. It can also be seen that

unlike in the freely propagating cases, the normalised peak local flame speed is faster than in

the freely propagating cases. This is the result of turbulence folding the flame and thus

generating stronger positive curvature than the TD-instability could generate naturally. This is

also implied by the curvature zones (Figure 5.1 bottom), where a larger region flame surface is

more dominated by leading ridge than observed for freely propagating.

To compare the difference between using the freely-propagating turbulent characteristics (as

suggested by Aspden et al. [18]) to the 1D unstretched values traditionally used, three reactant

conditions have been compared with pressures 0.35, 10 and 40 atm at fixed temperature

(300K) and equivalence ratio (0.4), with fixed KaF = 4 compared to fixed KaL = 4. It can be

seen clearly that, like in figure 5.2, the cases normalised by freely propagating values are

similar, implying that the turbulence interacting with the flame is similar for all cases. The

same cases normalised by 1-dimensional laminar values look very different, where the cases
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Figure 5.1: Isosurfaces of fuel mass fraction coloured by the normalised local flame speed (top)

and coloured by principle curvature zone (bottom) for increasing pressure (left to right); the

direction of flame propagation is out of the page toward the reader. Note how similar the flames

appear.

with the higher levels of ω2 (and thus expect a stronger freely propagating TD-response) do not

look very turbulent with freely-propagating TD-unstable structures appearing, with very high

local flame speeds. This presents a clear case that for local flame quantities the characteristic

values must be attained by using the freely propagating values. It should be noted however that

the effect of characteristic values has only been studied for local effects, although it is expected

that the same observations will be observed for global effects (i.e. flame surface area), it is out

the scope of this chapter and will be revisited in Chapter 6.

5.3.2 Principal Curvature Zones

The fractional contribution to fuel consumption for each principal curvature zone is presented

in Figure 5.3 with incrementally increasing pressure (from left to right). It can be seen that the
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Figure 5.2: Isosurfaces comparing cases normalised by (top) freely-propagating values and

(bottom) laminar 1D values; left-to-right, the reactant cases are A/04, B/04, C/04 and

P300[6 atm]/04, respectively. Clearly, the freely propagating normalisation gives similar-

looking flames with comparable normalised burning rates, whereas the 1-dimensional laminar

values gives flames that look categorically different and have burning rates that do not fall in

the same normalised range.

flat flame accounts for about 40− 50% of the fuel consumption, followed by leading edges,

then trailing edges, with leading points and saddle points consisting of a small contribution and

trailing points being very small for each case. Despite contribution between the cases being

very similar, there is a small trajectory of larger contributions of leading edges and less flat

flames as pressure increases. When compared to the freely-propagating flames (Figure 4.12)

where the fractional contributions were quite different with increasing pressure, the turbulent

cases are very similar. This suggests that despite a TD-response to turbulence, the local flame

surface structure is primarily determined by turbulence, not reactant conditions.

5.3.3 JPDFs and Local Flame Speed

Figure 5.4 are the JPDFs (as defined in the previous chapter) showing the normalised local

consumption speed (sloc) against normalised local curvature (κ) for the P300 KaF = 4 set

(where the pressure increases top-to-bottom (left)) and the other KaF = 4 cases (B, C, D,
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Figure 5.3: Fractional contribution to fuel consumption partitioned by principal curvature zone

for simulation set P300/04 which have the same reactant conditions as in Figure 4.12 but at

KaF = 4. Again, note how similar the cases are, unlike the corresponding freely-propagating

cases in Figure 4.12

R(3.5), R(20) and I) top-to-bottom respectively (right). The colour scale used for the JPDFs

applies to all following JPDFs. The plot has solid, dashed and dotted magenta lines to denote

the mean local flame speed, (sS), freely-propagating flame speed (sF) and laminar flame speed

(sL) for each case respectively. The solid white line represents the line of best fit (by

orthogonal distance regression) and the dashed white line represents a curvature only model

(sloc = sS (1−MκκℓS) to be discussed later). Figure 5.5 are the JPDFs showing the

normalised local consumption speed (sloc) against strain-rate, stretch with single and

independent Markstein numbers, left-to-right respectively for KaF = 4 set where the pressure

increases top-to-bottom. The strain-rate has been normalised by the appropriate

surface-averaged time-scale (τS) to bring the data into a comparable range. The solid white line

represents line of best fit (by orthogonal distance regression). Figure 5.6 is the same as 5.5 but

considered the other KaF = 4 cases (B, C, D, R(3.5), R(20) and I) top-to-bottom respectively.

Starting with figure 5.4 for the P300 set, at a fixed KaF = 4 the local flame speed response

looks very similar with increasing pressure, much more than in the freely-propagating cases.

Even when comparing with the highest ω2 case (case D, a ridge case in ω2 space) all the cases
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P300/04 other

Figure 5.4: JPDFs of local flame speed and curvature for the P300/04 (left) set (pressure increas-

ing top-to-bottom) and cases B, C, D, R(3.5), R(20), I/04 (right) top-to-bottom respectively.
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Figure 5.5: JPDFs of local flame speed and three quantities (strain-rate, and stretch with single

and independent Markstein numbers) from left-to-right respectively for the P300/04 set.
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Figure 5.6: JPDFs of local flame speed and three quantities (strain-rate, and stretch with single

and independent Markstein numbers) from left-to-right and cases B, C, D, R(3.5), R(20), I/04

top-to-bottom respectively.
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still look very similar. It can be seen that the gradient (represented by the solid white line of

best fit) varies slightly between cases and the proposed model (which will be discussed in

more detail later in the chapter) with a Markstein number Mκ = −2.2 does a good job at

predicting the local flame speed response, independently of reactant conditions. This is

surprising as it is suggesting that the flame speed response at a fixed curvature when turbulent

is somewhat independent of the expected level of TD-response (i.e. ω2 or pressure). It can be

noted that despite these similarities, there is some variation with increasing pressure, where

despite the gradient remaining similar the range of curvatures increases as does the scatter

around the line of best fit. The same is true when comparing two cases; set P300/04 case

p = 3.5 and case D/04, which both have the same pressure but different ω2 values. It can be

seen that, as with increasing pressure there is a larger range of curvatures and scatter around

the line of bet fit, indicating the effect may be driven by the instability (i.e. ω2) rather than a

pressure effect. It will be evaluated later how turbulent intensity effects these observations.

In the local flame speed response to strain-rate and stretch with single and independent

Markstein numbers shown in Figure 5.5 for the P300/04 cases and Figure 5.6 for the other

cases, it can be seen that at low pressure there is no obvious correlation with strain-rate and

flame speed (left). As pressure increases a correlation with strain-rate does occur at higher

pressures, where the gradient of local flame speed with strain-rate progressively decreases with

increased pressure. Evaluating the stretch with a single Markstein number yields improved

collapse, more so at higher pressure, provided the Markstein number is evaluated for each

individual case. Independent Markstein numbers yield an even better collapse, even at the

lower pressure, again provided the Markstein numbers are evaluated for each individual case.

5.4 Increasing Karlovitz Number

5.4.1 Flame Surfaces

Isosurfaces from simulation sets A, B, C and D at increasing turbulent intensity KaF = 1, 4, 12

and 36 are coloured by normalised local flame speed in Figure 5.7 and principle curvature zone

in Figure 5.8. Firstly, by looking at set A in Figure 5.7 (left-hand side), it can be seen that

increasing the turbulence (top to bottom) significantly changes both the flame structure and the
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local flame speed. At KaF = 1 the flame structure is more similar to the TD-unstable freely

propagating structures, with the characteristic bulb-like flame fingers with deep extinction

channels. As turbulence increases the structure transitions quickly from a turbulence

dominated flame structure (KaF = 4) to a leading ridge type structure, with strong leading

edges and high local flame speed with peak values about five times the freely-propagating

mean local flame speed. As turbulence continues to increase the flame structures reduce in size

resulting in more flame surface experiencing positive and negative curvature. It can also be

seen that the peak local flame speed continues to increase. As turbulence increases it can be

seen that the curvature at the ridges increases making a “sharper” more defined edge than the

lower turbulence’s more cylindrical ridges. It can also be seen as ω2 increases at high

turbulence, the flat flame regions also experience higher relative local flame speeds relative to

the lower ω2 cases, denoted by the overall lighter colouration of the flame surface.

Figure 5.9 shows the fractional contribution to the fuel consumption partitioned by principle

curvature zone for simulation sets A, B, C and D with incrementally increasing

KaF = 1, 4, 12, 36 (left-to-right); supporting the observations that turbulence transitions the

flame structure from having more burning occurring from flat flame at lower turbulence to

having a lower contribution of flat flame and more leading edge at high turbulence.

Interestingly, as the flames TD-instability increases (most apparent in cases C and D), the

flame does not transition from flat flame to leading edge where even at low turbulence levels

the flame has significantly less flat flame than cases A and B. Some possible explanations for

this phenomena are the TD-effects are strong even at low turbulence, therefore increasing the

turbulence or further folding the flame does not result in additional instability and a transition

of flame surface structure. It could also be the result of a “volume filling surface” which means

there is limited volume in the flame-in-a-box, restricting the extent to which a flame surface

can grow from a strong positively curved region, artificially limiting the flame surface. There

is a lack of domain sizes studied in this chapter to properly evaluate this theory, thus will be

explored in more detail in Chapter 6.
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Figure 5.7: Isosurfaces of fuel mass fraction coloured by local consumption based flame speed

for sets A, B, C and D (left-to-right) with increasing turbulent intensity from top-to-bottom

(KaF = 1, 4, 12, 36).
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Figure 5.8: Isosurfaces of fuel mass fraction coloured by principle curvature zone for sets

A, B, C and D (left-to-right) with increasing turbulent intensity from top-to-bottom (KaF =

1, 4, 12, 36). Note as with Figure 5.1, the principal curvature zone has been normalised using

the mean local surface average thermal thickness ℓS.
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Figure 5.9: Fractional contribution to fuel consumption partitioned by principal curvature zone

for simulation set A, B, C and D with incrementally increasing KaF = 1, 4, 12, 36 (left-to-right).

5.4.2 JPDFs

Figure 5.10 shows the JPDFs (as defined in the previous chapter) showing the normalised local

consumption speed against normalised local curvature for increasing KaF (left-to-right) for

cases from set P300 at pressures p = 1, 3.5, 10, 40 and sets B, C and D (top-to-bottom). As

with the previous JPDFs, the plot has solid, dashed and dotted magenta lines to denote the

mean local flame speed, freely-propagating flame speed and laminar flame speed for each case

respectively. The solid white line represents the line of best fit and the dashed white line

represents a curvature only model (sloc = sS (1−MκκℓS) where Mκ = 2.2). Figure 5.11 are

the JPDFs showing the normalised local consumption speed against strain-rate, Figure 5.12

against stretch with a single Markstein number and Figure 5.13 against stretch with

independent Markstein numbers. Again the solid white line represents line of best fit. Figure

5.14 shows the normalised local consumption speed against normalised local curvature for

increasing KaF (left-to-right) for the TD-neutral case Z where the lines are the same as in

Figure 5.10.

Starting with the curvature only JPDFs (Figure 5.10) at a fixed reactant conditions (i.e. case A

labelled P300 p = 1, B, C or D) it can be seen that as KaF increases the range of curvatures

and flame speeds increases, as does the scatter around the mean line. Interestingly it can be
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Figure 5.10: JPDFs of local flame speed and curvature for increasing KaF left-to-right for differ-

ent reaction conditions P300 (p = 1, 3.5, 10, 40) and B, C, D top-to-bottom. The solid, dashed

and dotted magenta lines to denote the mean local flame speed, freely-propagating flame speed

and laminar flame speed for each case respectively. The solid white line represents the line of

best fit and the dashed white line represents a curvature only model.
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Figure 5.11: JPDFs of local flame speed and strain-rate for increasing KaF left-to-right for

different reaction conditions P300 (p = 1, 3.5, 10, 40) and B, C, D top-to-bottom.
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Figure 5.12: JPDFs of local flame speed and stretch with a single Markstein number for in-

creasing KaF left-to-right for different reaction conditions P300 (p = 1, 3.5, 10, 40) and B, C, D

top-to-bottom. The white line denotes the line of best fit.
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Figure 5.13: JPDFs of local flame speed and stretch with independent Markstein number for

increasing KaF left-to-right for different reaction conditions P300 (p = 1, 3.5, 10, 40) and B, C,

D top-to-bottom. The white line denotes the line of best fit.
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KaF = 1 KaF = 4 KaF = 12

Figure 5.14: JPDFs of local flame speed and curvature for increasing KaF left-to-right for case

Z. The solid, dashed and dotted megenter lines to denote the mean local flame speed, freely-

propagating flame speed and laminar flame speed for each case respectively. The solid white

line represents the line of best fit and the dashed white lin represents a curvaure only model.

seen that the mean-line itself is quite similar with increasing turbulence (note; set A is not as

similar as other cases, for example B which has a similar ω2 but at high pressure and

temperature). It can also be seen that as turbulence increases, the region with the highest

burning contribution occurs at successively lower curvature values starting from slightly

positive to slightly negative. At a fixed KaF, unlike the observations from Figure 5.4, at higher

turbulence (i.e. KaF = 36) it can be seen that as the reactant conditions move from lower

pressure (lower ω2) to higher pressure (higher ω2) the JPDFs do not look similar. The range of

curvatures, flame speeds and scatter around the mean line becomes increasingly large with

increasing pressure, this trend appears to continue with increasing pressure (p = 10 to p = 40)

even with a decreasing ω2, which could be the result of a change of behaviour as the reactant

conditions transition from the low-pressure to high-pressure regime in ω2 space. In this study,

there are not enough conditions to properly evaluate this effect.

The strain-rate only JPDFs (Figure 5.11) show little correlation with flame-speed and

strain-rate. Where there is a large range of flame speeds that fall within a narrow range of

strain-rates this prevents an adequate collapse of the data. This issue persists for the single

Markstein number (Figure 5.12) with lower turbulence yielding better results; cases C and D

do yield a good collapse of the data even at high KaF. Independent Markstein numbers (Figure

5.13) present a much greater improvement even at higher KaF, with still some scatter at the

high KaF for the P300 cases.
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The TD-neutral case Z (Figure 5.14), despite being TD-stable, still shows a positive gradient in

local flame speed with increasing curvature and with an enhanced mean local flame speed.

Again this, denoted by the solid magenta line, increases with turbulence as does the local flame

speed scatter. Despite the natural TD-instability arising from classical stability analysis [118]

being neutral (i.e. ω2 = 0), the effective Lewis number is still less than unity, which in theory

can still result in preferential diffusion in positively curved regions. In the case for the

turbulent flame, the turbulence folds the flame which can then result in the focusing of heat and

fuel into the positively curved region, enhancing the reaction rates. This behaviour will be

discussed further in Chapter 6.

Despite the decent collapse of the independent Markstein number JPDFs, each case requires

re-calibration of the Markstein numbers. Figure 5.15 presents the calibrated Markstein

numbers for the curvature only (Mκ) and stretch with both single (M) and independent (Mi)

Markstein numbers. It can be seen that for the single and independent Markstein numbers

there is a large range of values. An empirical model that adequately captures the range of the

constants involved remain elusive.

5.5 Surface-Normals and Thermal Leading Points

The same approach used for surface-normal shown in Figure 4.13 are presented for the

turbulent cases. Figure 5.16 shows the surface-normal profiles for each zone from simulation

set A, KaF = 36. This specifically shows the normalised temperature, equivalence ratio and

fuel consumption rate plotted against normalised distance along the surface streamline,

following the progress variable conditionally-averaged according to the principle curvature

zone and against the corresponding trajectories in T-Y space. The freely-propagating values

are shown by the faint dotted line and are coloured by zone. It is clear that turbulence enhances

the TD-behaviour observed in the freely propagating cases, where for the turbulent case the

principal curvature zones have profiles that are hotter, richer and with higher reaction rates

than the freely-propagating cases, which are in-turn hotter, richer and with a higher reaction

rate than the 1-dimensional profiles. Following the same principle of the thermal leading point

as discussed previously ((Section 4.5.2), now the turbulence folds the flame to present even

stronger positively curved regions than what is possible from intrinsic instabilities. These
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Figure 5.15: Curvature-only, single and independent Markstein numbers as a function of insta-

bility parameter ω2 for all turbulent cases.
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Figure 5.16: Case A, set KaF = 36 of normalised temperature, equivalence ratio and fuel

consumption rate against normalised distance from the flame surface along the streamline fol-

lowing progress variable, along with profiles in temperature-fuel progress variable space. All

are conditionally-averaged by principal curvature zone. Where faint dotted lines are the corre-

sponding freely-propagating profiles with the same zonal colouration.

stronger positively curved regions allow for even more fuel and heat focusing, which then can

allow for even higher reaction rates in neighbouring regions, thus enhancing the flat flame

regions further than observed in the freely-propagating cases.

As mentioned previously, Berger et al. [34] has attributed the enhancement of the mean local

flame speed to both preferential diffusion from positive curvature and strain-rate, and

presented a compelling argument using effectively 1-dimensional strained flames, which

experienced an acceleration in the flame speed, similar to what has been observed in this work.
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Figure 5.17: Surface-mean local flame speed sS normalised by sF plotted as a function of KaF

showing a similar gradient to
√
KaF over the broad range of conditions.

5.6 Surface-mean Local Flame Properties

For each case, the local flame speed and thickness was surface and temporally-averaged using

the method discussed in Chapter 3.2.2 to give the mean local flame speed sS and the mean

local thermal thickness ℓS. Figure 5.17 shows the mean local flame speed plotted as a function

of KaF normalised by the corresponding set specific freely-propagating values.

From Figure 5.17 it can be seen that as KaF increases, the mean local flame speed also

increases. By normalising the mean local flame speed by the freely-propagating flame speed,

the leading order effects of the TD-instability can be accounted for, in principle, allowing for

just the TD-response to turbulence to be studied somewhat independently. It can be seen that

once the TD-instability has been accounted for the mean local flame speed scales well with
√
KaF.

Taking the
√
KaF dependence as the basis for an empirical model and including a small

dependence of ω2, the mean local flame acceleration due to turbulence can be accounted for

using the following model

sloc ≈ sK′ = sF

(
1 + 0.26exp (−0.038ω2)

√
KaF

)
, (5.1)
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Figure 5.18: Surface-mean local flame speed sS (left) and thermal thickness ℓS (right) nor-

malised by sL and ℓL respectively; plotted as a function of the proposed empirical model equa-

tion (5.1) and (5.2).

and

ℓloc ≈ ℓK′ = ℓF

(
1 + 0.22exp (−0.026ω2)

√
KaF

)−1

. (5.2)

Figure 5.18 presents the measured surface-mean local flame speed (left) and thermal thickness

(right) normalised by the laminar flame speed and thermal thickness plotted as a function of

the proposed empirical model shown in Equation (5.1) and (5.2). It can be seen that there is

remarkable agreement between the measured and the modelled flame speed and thickness,

given the large range of laminar values presented. Set D does appear to be an outlier, noting
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that this is an extreme case with very high values of ω2. Case Z is also an outlier, this is

somewhat expected as set Z is a TD-neutral case. Ideally an empirical model would have a

smooth transition from the TD-unstable to neutral to stable, which would be of most use in

industrial codes where conditions can range from rich-to-lean combustion. However there is a

lack of conditions within the scope and budget of this project to cover these additional cases.

The empirical model proposed above contains the measured freely-propagating surface-mean

local flame speed and thermal thickness (denoted by the subscript F i.e. sF and ℓF). Therefore,

for this model to be useful freely-propagating values must be attained. Attaining the

freely-propagating values is computationally expensive and not practical for industrial codes

such as Vectis. It would be more useful for industrial applications if the characteristic values

could be attained from simple 1-dimensional simulations, therefore a combined empirical

scaling model is proposed. The model combines both the empirical model accounting for the

TD-instability (Equations (4.1) and (4.2) from Chapter 4) with the proposed model for the

TD-response to turbulence (Equations (5.1) and (5.2). By attaining the modelled

freely-propagating flame speed sM and thermal thickness ℓM from Equations (4.1) and (4.2 and

modelling the freely-propagating Karlovitz number KaM as

KaM =

√
(u′)3ℓM

s3MℓI

, (5.3)

from Equations (5.1) and (5.2), the full compounded model (denoted by subscript K, ie sK and

ℓK) can then be written as

sK = sM

(
1 + 0.26exp (−0.038ω2)

√
KaM

)
, (5.4)

ℓK = ℓM

(
1 + 0.22exp (−0.026ω2)

√
KaM

)−1

. (5.5)

Similar to Figure 5.18, Figure 5.19 presents the measured surface-mean local flame speed

(left) and thermal thickness (right) normalised by the laminar flame speed and thermal

thickness plotted as a function of the proposed full compounded empirical model shown in

equation (5.4) and (5.5). It can be seen that there is still good agreement over a large range of

conditions, with a some scatter between the cases, showing that using the measured

freely-propagating values does yield better results. It will be shown later in Chapter 6 that
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Figure 5.19: Surface-mean local flame speed sS (left) and thermal thickness ℓS (right) nor-

malised by sL and ℓL respectively plotted as a function of the proposed full compounded empir-

ical model Equation (5.4) and (5.5).

using the proposed full compounded empirical model is an essential component in the

turbulent flame speed modelling of TD-unstable flames.

5.7 Conclusions

This chapter studied TD-unstable, three-dimensional, turbulent flames at a fixed length scale

over a wide range of reactant and turbulent conditions to explore the TD-response to

turbulence.
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It was found that at a fixed KaF = 4, the flames looked remarkably similar regardless of the

reactant conditions (Figure 5.1); a stark difference to freely-propagating flames in Chapter 4.

The JPDFs of local flame speed and curvature (Figure 5.4) and the fractional contributions of

the principal curvature zones (Figure 5.3) were also similar. The local flame speed and

strain-rate (Figure 5.5) however, did present some pressure-dependence similar to the

freely-propagating flames. Additionally, the JPDFs did present a large range of flame speeds

over a narrow band of strain-rate in the low-pressure regime.

The similarity of all the cases at the same KaF (Figure 5.2) reinforces the importance of using

the freely-propagating characteristic flame speed and thickness to classify the turbulent

burning regime for TD-unstable conditions as suggested in [18]. The corresponding KaL

values at a fixed KaF span a large range from KaL = 10 to KaL = 2500. To address this point,

four additional cases were considered where the characteristic values were given as the

traditional 1-dimensional flame properties (subscript L). It was clearly demonstrated that the

traditional 1-dimensional flame values do not characterise the turbulent flame well.

Consequently, it is advocated to use the freely-propagating values for normalisation purposes.

Turbulence exaggerates the TD-response. Increasing turbulence increases the TD-response

(Figure 5.7, see also [21, 22, 34]). Turbulence folds the flame surface, giving higher positive

curvatures which experience stronger preferential diffusion, therefore burning richer, hotter,

faster and thinner. Once accounting for the TD-instability for the freely-propagating flames,

turbulence has a much stronger effect on the flame than the reactant conditions where KaF has

the leading-order effect (note all simulations were conducted in the thin-reaction-zone). Note

the similarity for each KaF case presented in Figure 5.7 despite the large difference in reactant

conditions (and ω2).

The broad range of local flame speeds over a narrow band of strain-rate (Figure 5.11) for

turbulent flames in the low-pressure regime complicates a simple flame speed modelling

approach using strain-rate (such as a stretch-based approach). Some improvement is offered by

allowing independent Markstein numbers for curvature and strain-rate. Cases with high

pressure appear not to suffer from the same issue, and correlate quite well with a stretch-based

approach, albeit a non-linear relation.
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Similar to the freely-propagating flames, a reasonable approximation can be obtained from the

local flame speed response to curvature only given the model

sloc ≈ sS (1−MκκℓS) , (5.6)

where Mκ = −2.2. This is the same model as proposed in Chapter 4 but with a slightly

smaller Mκ. This model could be combined with the models in Equations (5.4) and (5.5) and

used for a well-resolved (i.e. no sub-surface wrinkling model) G-equation approach. Such an

approach could enable larger simulations for the study of large-scale effects for TD-unstable

flames.

Principle curvature zone classification (Figures 5.8 and 5.9) shows the change in flame surface

structure as a fraction of bulk fuel consumption, where turbulence transitions the flame from

flat flame regions to leading edges. This trend is most apparent at the lower pressure (lower ω2)

cases, whereas at higher pressure (near the most unstable surface in ω2 space) this trend is less

apparent.

As with Chapter 4, surface-normal profiles (Figure 5.16) further shows that turbulence

exaggerates the TD-effects, enhancing the temperature, equivalence ratio and reaction rates

above both the 1-dimensional profiles and the freely-propagating profiles.

Unlike TD-stable flames which present largely uniform propagation speed over the flame

surface, the local flame speed in the presented cases varies significantly. The mean-local flame

speed was found to increase with turbulence and scale well with
√
KaF (Figure 5.17), where

the magnitude of the mean local flame speed is moderated by ω2. Interestingly for cases where

the TD-instability is strong in the freely-propagating case, the mean local flame speed in the

turbulent case is not significantly higher than the freely-propagating flame speed. The

turbulence brings about a similar flame response to the TD-instability in the freely-propagating

flames, where increased turbulence leads to more highly-curved structures and a greater

proportion of leading edges and leading points.

From the mean local flame speed properties a model was proposed where, given the

freely-propagating flame speed and thickness, the flame acceleration due to turbulence can be
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modelled via

sloc ≈ sK′ = sF

(
1 + 0.26exp (−0.038ω2)

√
KaF

)
, (5.7)

and

ℓloc ≈ ℓK′ = ℓF

(
1 + 0.22exp (−0.026ω2)

√
KaF

)−1

. (5.8)

which has been shown to have good agreement with the measured flame speed data (Figure

5.18). It was also shown by replacing the measured freely-propagating flame speed and

thickness with the modelled values as proposed in Chapter 4. Good agreement with the

measured data is still found (Figure 5.19).

The TD-neutral case (Z) where ω2 = 0, there is still a small TD-response to turbulence. This

was shown in Figures 5.17 and 5.14, but the effective Lewis number is still less than one; thus

the turbulence folds the flame surface, potentially strongly, inducing a TD-response making

the flame locally hotter, faster and thinner. Further simulations will be required to understand

the behaviour around the stability transition region and how to incorporate that into any model.

This chapter was conducted at a fixed length scale. It is currently unclear how the TD-response

to turbulence changes with varying length scale. Additionally flame surface area, a key

parameter in turbulent flame speed modelling, has not yet been studied. These questions will

be studied in the next chapter.
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TD-unstable turbulent lean premixed hydrogen flames are investigated over a wide range of

reactant (pressure, temperature, and equivalence ratio) and turbulent conditions (Karlovitz

and Damköhler number). Following from Chapter 5, the effects of different turbulent

length-scales are investigated on local and global flame response. Turbulent-flame interactions

are confirmed to be independent of integral length scale (or Damköhler number) for a fixed

Karlovitz number. Furthermore, the model proposed from Chapters 4 and 5 is demonstrated to

be independent of integral length scale. This model thereby reduces turbulent flame speed

modelling for TD-unstable cases to predicting the flame surface area enhancement. The flame

surface area wrinkling is found to have good agreement with Damköhler’s small-scale limit.

There is scatter in the data, although this is comparable with similar experimental results. The

subsequent turbulent flame speed predictions appear more sensitive to the freely-propagating

flame properties than the flame surface area. It is demonstrated that domain size can have an

effect on flame surface area even if the integral length scale remains unchanged; the larger

volume into which flame surface area can develop results in a higher turbulent flame speed. To

investigate the influence of the fuel Lewis number LeF, an additional study is presented where

LeF (alone) is artificially modified to span a range from 0.35 to 2. The results demonstrate that

more flame surface area is generated for smaller LeF, but the difference for LeF ≤ 1 is much

smaller than that observed for LeF > 1. A volume-filing-surface concept is used to argue that

there is a limit to how much flame surface can develop in a given volume, and so there is only

so much more flame surface that can be induced by the TD-response whereas the TD-response

at high LeF is to reduce the flame surface area. The agreement of the present data with

Damköhler’s small scale limit (even for low-to-moderate Karlovitz numbers) suggests that a

distinction should be made between the small-scale limit and the distributed burning regime.

Furthermore, it is argued that the distinction between large- and small-scale limits should be

made based on Damköhler number. Consequently, it is argued that the flame-lets thin reaction

and distributed regimes should be distinguished by Karlovitz number (as usual), but the two

latter regimes both have separate large- and small-scale regimes. Finally, implications for the

turbulent premixed regime diagram are discussed, and a modified regime diagram is proposed.
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6.1 Introduction

The key quantity of interest is the consumption based turbulent flame speed. As discussed in

the Chapter 2, since Damköhler’s landmark paper [55], the effect of turbulent intensity u′ and

turbulent integral length scale ℓI on the turbulent flame speed sT has been a primary focus of

many numerical and experimental studies, see review papers by Lipatnikov and Chomiak

[109], Driscoll [62] or Burke et al. [45] for example.

The usual premise for turbulent flame speed models is to multiply some reference flame speed

sR (traditionally sL) by the turbulent flame surface area wrinkling factor ΨT and can be written

in the form

sT = sRΨT. (6.1)

Deviations of the local flame speed from the laminar value can be represented by a so-called

stretch factor thus Equation (6.6) can be written as

sT = I0sLΨT. (6.2)

Damköhler’s small- and large-scale limit (SSL and LLS) (as discussed in Section 2.5) can be

written as

ΨT ∼
√

u′ℓI

sRℓR

=
√

ReR, (6.3)

and

ΨT ∼ u′

sR

, (6.4)

respectively. The traditional laminar flame values have been replaced by characteristic

reference values (subscript R). Lipatnikov and Chomiak [109] associated the SSL with a thick

flame, distributed or well-stirred reactions, and suggest ℓI < ℓL as a sufficient condition.

Aspden et al. [15, 20] similarly assumed that distributed burning would be required for

turbulent diffusion to be appropriate, and so associated the SSL with high Karlovitz numbers.

However, agreement with SSL scaling laws have been observed in both hydrogen and methane

flames in the thin reaction zone [22].

It is common for turbulent flame surface area models to start from an expression of the form,

ΨT = 1 + CΥn
R , (6.5)
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which is referred to as the power-law model, for some power n and a factor C, which should

be expected to depend on a length scale in some way but is often assumed constant [135]. The

power-law model has seen wide adoption and study [90, 88, 9, 48] for example with the

suggestion of constants depending on the experimental or simulation conditions. Length scale

is seldom considered in detail, as it is challenging to study both numerically and

experimentally due to the range of scales. Importantly, it is a dimensional necessity that the

parameters space is two-dimensional (length and time); all relations can be written in terms of

the length scale ratio ΛR = ℓI/ℓR and the velocity ratio ΥR = u′/sR, or combinations thereof

(e.g. ReR = ΥRΛR, DaR = ΛR/ΥR, Ka2R = Υ3
L/ΛR). The question is, which combination of

parameters can best be used to distinguish burning regimes, and how are these affected by

TD-effects?

Most algebraic turbulent flame speed models fall into broad categories, and can be written in

the form

ΨT = 1 + CΥn
RDa

m
R , (6.6)

for some constants C, n and m. Small-scale limit models (n = 1;m = 1/2) include Ronny

[146] and Liu [110] for example. Large-scale limit (n = 1; m = 0) include Anand and Pope

[9] for example. More general power law models include Klimov [90] (n = 0.7; m = 0) and

Cant [48] (n = 3/2; m = 1/4). Some models are a blend of the two limits, e.g. both Zimont

[184] and Gülder [76] are effectively the geometric mean of the two limits (n = 1; m = 1/4).

Other models have more complex expressions, e.g. Gouldin [74], Mantel and Borghi [114],

and Abdel-Gayed and Bradley [3]. Naturally there are models that do not fit this simple

classification; for example, Kobayashi [91], Muppala [124] and Lu [112] who include

correction terms for pressure and/or Lewis number. See Tables 2.1 and 2.2 for more details and

papers [134, 135, 109, 45, 112] for example, for details and discussion of turbulent flame

models.

Two models of note transition between the small- and large-scale limits. Firstly, Peters [134]

used a G-equation approach valid for both large and small regimes, and resulted in an

127



CHAPTER 6. TURBULENT FLAMES PART 2: LENGTH SCALE EFFECTS

expression of the form

ΨT = 1− a4b
2
3

2b1

ℓI

ℓR

+

[(
a4b

2
3

2b1

ℓI

ℓR

)2

+ a4b
2
3

u′ℓI

sRℓR

]1/2
, (6.7)

where ai and bi are model constants. Secondly, a model derived from the KPP approach

[178, 153, 109], resulted in an expression that can be written as

ΨT = 1 + ΥR

(
1 + Da−2

R

)−1/4
. (6.8)

It was noted in [135], that normalising equation 6.7 by the turbulent velocity u′ results in a

function of Damköhler number alone, which also applies to Equation 6.8. By defining α = b1,

β = (4b21) / (a4b
2
3), and ξR = DaR/β Equation 6.7 can be written as

ΨT − 1

2αΥR

=
√

ξ2R + ξR − ξ, (6.9)

where the right-hand side is a function of DaR alone. Similarly, Equation 6.8 can be written as

ΨT − 1

ΥR

=
(
1 + Da−2

R

)−1/4
. (6.10)

To separate expressions for small and large values of Damköhler numbers, Equation 6.9 can be

written in two equivalent ways

ΨT − 1

2αΥR

=

ξ
1/2
R (1 + ξR)

1/2 − ξR,

ξR

(
1 + 1

ξR

)1/2
− ξR,

(6.11)

so they can be expanded (by Taylor series) in the small- and large-scale turbulence limits

respectively,

ΨT − 1

2αΥR

=

ξ
1/2
R

(
1 + ξR

2
+ ξ2R

8
+ ...

)
− ξR for ξR ≪ 1,

ξR

(
1 + 1

2ξR
+ 1

8ξ2R
+ ...

)
− ξR for ξR ≫ 1,

(6.12)

where the leading orders are

ΨT − 1

2αΥR

=

ξ
1/2
R for ξR ≪ 1,

1
2

for ξR ≫ 1.

(6.13)

Therefore, the approximations are

ΨT − 1

ΥR

=

γDa
1/2
R for DaR ≪ β,

α for DaR ≫ β,

(6.14)
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where γ = 2α/β1/2; or in terms of turbulent flame speed,

sT

sR

=

1 + γRe1/2R for DaR ≪ β,

1 + αΥR for DaR ≫ β.

(6.15)

The model expression can then be written as

sT = sR

(
1− 2αΥR

DaR

β
+

[(
1 +

β

DaR

)1/2

− 1

])
, (6.16)

and following Peters [135], a4 = 0.78, b1 = 2 and b3 = 1, which gives α = 2, β = 20.5 and

γ = 0.88. While this observation was also noted in [109], here normalising by velocity u′

means that no further conditions on velocity are required (although ReR > 1 is implicit).

Importantly these observations suggest that Damköhler number is the appropriate

dimensionless parameter to distinguish between small- and large-scale limits.

While Damköhler number DaF = ΛF/ΥF represents the ratio of turbulent time scale at the

integral length scale to the flame time scale, as discussed in Chapter 2 the Karlovitz number

KaF = Υ3
F/ΛF represents the ratio of the flame time scale to the turbulent time scale at the

flame scale. When defined this way the Karlovitz number is invariant in the inertial sub-range

of the turbulent cascade, therefore, for a fixed KaF, the turbulence-flame interaction at the

flame scale is independent from the larger turbulent scales, i.e. the Damköhler number. Similar

arguments have been made by [183, 109, 156, 174] and will be demonstrated with numerical

evidence later in this chapter.

This chapter starts by focusing on the effect of turbulent integral length scale on the local flame

response, primarily to evaluate the validity of the models proposed in Chapters 4 and 5 over a

range of integral length scales. It is then evaluated as to how the effect of fixing KaF compared

with turbulent intensity u′/sF effects the local flame response, followed by the flame surface

area’s response to increasing turbulent intensity and length scale. The effect of domain size is

then evaluated by comparing the flame surface area when the domain size is independently

increased without an increase in integral length scale. A normalised measure of flame surface

wrinkling is compared to Damköhler number for all of the turbulent simulations conducted

throughout this thesis and compared to Peters model and Damköhler’s small and large scale

limits. Next the effects of fuel Lewis number on the local and global flame statistics are
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evaluated where the Lewis number of the fuel is artificially changed and the flame response is

quantified. Finally, recommendations for a turbulent flame speed modelling approach for

TD-unstable flames is proposed and a modified premixed turbulent regime diagram is

presented.

6.2 Numerical Configuration and Simulation Conditions

A two-dimensional parameter space has been explored whereby normalised integral length

scale ΛF and turbulent intensity ΥF are varied in such a way as to explore the influence of

length scale (equivalently Damköhler number DaF) at a fixed Karlovitz number KaF. The

premise is to ensure that the turbulence at the flame scale is unchanged as length scale is

increased. Four reactant conditions have been considered, following on from Chapters 4 and 5;

simulations sets A, B, P300 p = 3.5 atm (now called set P3.5), P300 p = 10 atm (now called

set P10). See Table 6.1 for details. When considering detailed TD-response at the flame scale,

Table 6.1: Reactant and turbulence conditions. Freely-propagating values are measured values

from the three-dimensional simulations. For additional simulations, see Table 5.1.

Set
p T0

ϕ ω2

sF ℓF
ΛF ΥF KaF DaF

(atm) (K) (m/s) (µm)

A 1 300 0.4 5.54 0.34 526 1.6

1.17 1 1.37

2.95 4 0.54

6.13 12 0.26

B 40 700 0.4 5.58 0.56 18.7 2.4

1.33 1 1.79

3.37 4 0.71

7.02 12 0.34

P3.5 3.5 300 0.4 12.88 0.24 189 3.2

1.47 1 2.17

3.71 4 0.86

7.72 12 0.41

P10 10 300 0.4 27.27 0.13 114 4.8

1.69 1 2.85

4.25 4 1.13

8.84 12 0.54
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Figure 6.1: Turbulent burning regime diagram showing simulation conditions.

the focus has been on simulation set B (nominal conditions relevant for IC engines).

Simulation set A was considered over the same turbulent parameter space as set B, but the

focus was on flame speeds rather than detailed local turbulence-flame interaction. For

simulation sets A and B, three Karlovitz numbers have been considered KaF = 1, 4 and 12, and

four length scales ΛF = 1.6, 2.4, 3.2 and 4.8. Two further reactant conditions have been

considered, denoted by P3.5 and P10; these two sets were run at KaF = 4 and length scales

ΛF = 1.6, 2.4 and 3.2.

A property of the turbulent forcing strategy, is that the integral length scale ratio Ω is fixed,

thus Ω = L/ℓI where L is the domain width and Ω ≈ 10. Consequently the smallest integral

length scales also had the smallest domain size. The effect of this will also be evaluated in this

chapter. All flames are in the thin reaction zone of the premixed regime diagram (based on the

freely-propagating characteristic speed and thickness) and are shown in figure 6.1. For

turbulent flame speed modelling, the turbulent flame speed conditions used in chapter 5 will

also be included in the dataset.

6.3 Isosurfaces

Identically to previous sections and as detailed in Section 3.2.1, isosurfaces have been

constructed using a fuel based mass fraction which closely resembled the location of the local
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peak fuel-consumption-rate. Figure 6.2 presents the flame isosurfaces coloured by the

consumption based flame speed for the twelve cases from simulation set B. It can be seen that

as KaF increases, the flame becomes more wrinkled, with strong positively curved regions at

the leading points (spherically-curved) and edges (cylindrically-curved). For details of flame

structure see Section 4.5. As seen previously, these highly curved regions correlate with high

flame speed, which can be seen to be in excess of five times the freely-propagating flame speed

which in-turn is close to twice the unstretched laminar flame speed. As the domain and

integral length scales are increased, there is more flame surface area, but there does not appear

to be a discernible change in flame structure or local flame speed (from colour) at a fixed KaF.

This visually suggests that the flame structure and local flame speed is independent of domain /

integral length scale. Despite the flame structure being visually similar between the different

length scales, it would appear that global thickness of the flame (also referred to as a flame

brush thickness) is larger. This indicates that the larger length scales, albeit integral length or

domain size, do influence the flame structure at a global scale but not a smaller scale. Further

analysis of these observations are provided below.

6.4 Length Scale Effects on Local Flame Speed

This section aims to focus on the local effects of turbulent integral length scale on the flame.

6.4.1 Mean Local Flame Speeds

Figure 6.3 presents the mean local flame speed sS normalised by the freely-propagating flame

speed as a function of freely-propagating Karlovitz number KaF for sets A and B (top). The

mean local flame speed normalised by both the unstretched laminar flame speed and the

modelled mean local flame speed (based off the
√
KaF dependence shown in Equation (5.1)

from Chapter 5) by the turbulent integral length scale for all sets. The large values observed in

Figure 6.3b when normalised by sL demonstrate the acceleration due to thermodiffusive effects

compounded by turbulent flame interactions. Note that case P10 does not fit within the range

of the graph sS/sL ≈ 10), but each case presents little variation with integral length scale.

Importantly it can be seen that once TD-effects are accounted for by ω2 and KaF the

normalised mean local flame speeds collapse very close to unity, clearly demonstrating that the
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Figure 6.2: Flame surfaces for cases B coloured by local consumption-based flame speed at the

different KaF and ΛF. Naturally, the flame surface wrinkling increases with both KaF and ΛF.

The local flame speeds also increase with KaF, but appear independent from ΛF.
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Figure 6.3: Normalised mean local flame speed as a function of (a, top) Karlovitz number

KaF, and (b, bottom) normalised integral length scale ΛF; the TD-response is exaggerated by

turbulence, but appears to be independent from integral length scale.

mean local flame speed models proposed in the previous chapters are appropriate for variable

integral length scale within the range of conditions presented here.

6.4.2 Joint Probability Density Functions

To further demonstrate that the local flame statistics are independent of integral length scale,

JPDFs of local flame speed and flame surface curvature for set B over a range of Karlovitz

(left-to-right) and length scale ratio (top-to-bottom) for set B are shown in Figure 6.4 (the

colour scale applies to all following JPDFs.). The dotted reference line is the Markstein model
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from Chapter 5 (sloc = sK′(1−MκκℓF) for Mκ = −2.2). As with previous chapters the JPDFs

are temporally-averaged, and the first moment has been taken with respect to the local flame

speed. At a fixed KaF it can be seen that the JPDFs (notwithstanding the improved statistical

convergence with increased domain size due to the significantly higher number of data points)

are very similar. Identically to Figure 5.4, there is a strong correlation between local flame

speed and curvature (with a negative Markstein number) and the bulk of the burning occurring

at approximately zero curvature (i.e. flat flame) with a higher than sF flame speed. As KaF

increases, the range of curvatures increases with the bulk of the burning occurring at a higher

speed but still at zero curvature. This is all consistent with the observations in Section 5.4.2

and length scale does not change these observations, crucially confirming the argument that the

integral length scale has little effect on the local flame statistics for a fixed KaF.

6.4.3 Comparison of Velocity and Karlovitz Number

To further emphasise that the important parameter that determines the local turbulence-flame

interaction is KaF rather than ΥF, a further case was considered where u′ was matched to a

reference condition at a larger length scale. The reference cases were taken at ΛF = 1.6 and 4.8

from set B at KaF = 12, and an additional simulation was conducted with the same length

scale as the former and turbulent intensity of the latter; specifically ΛF = 1.6 and ΥF = 8.84

which corresponds to KaF = 20.8. While the two reference cases have almost identical local

flame speed, the resulting mean local flame speed in the additional test case is approximately

20% higher; see Figure 6.5 (left). Similarly to 6.4, the additional case JPDF of local flame

speed and curvature is shown in Figure 6.5 (right), with the same reference lines. When

compared with the reference cases, the JPDF from the additional case clearly shows higher

flame speeds (the JPDF is further from the reference line) despite the same u′ (i.e. ΥF), and

also achieves more extreme values of both positive curvature and high flame speed. Clearly the

flame is experiencing more turbulence at the flame scale. Therefore the length scale at which

turbulent intensity is measured is crucial to turbulence-flame interaction at the flame scale.

This means that for studying turbulence at the flame scale is imperative to define the KaF with

the appropriate definition and flame characteristic values.
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Figure 6.4: Joint probability density functions (JPDFs) of the normalised local consumption-

based flame speed and normalised curvature for increasing length scale ratio ΛF (top-to-bottom)

at increasing Karlovitz numbers KaF (left-to-right) from simulation set B. The dotted reference

line is the Markstein model from chapter 5 (sloc = sK′(1−MκκℓF) for Mκ = −2.2).
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Figure 6.5: The mean local flame speed normalised by the modelled freely propagating flame

speed for fixing u compared with fixing KaF (top). Note how the local flame speed in the test

case (circle) is 20% higher than the reference case at the same turbulent intensity (star). And

the JPDF of the area weighted first moment of the local flame speed against curvature for the

fixed u′ case ΛF = 1.6,KaF = 20 (bottom). The dotted reference line is the same as Figure 6.4.

6.5 Flame Surface Wrinkling

The previous section has demonstrated that variations across the surface of local statistics that

are observed in TD-unstable lean premixed flames are independent of integral length scale for

a fixed KaF. Therefore, predicting the turbulent flame speed can be reduced to the problem of

predicting the flame surface wrinkling, which is the focus of this section. The premise is to use

137



CHAPTER 6. TURBULENT FLAMES PART 2: LENGTH SCALE EFFECTS

Figure 6.6: Measured flame surface wrinkling ΨK′ as a function length scale ratio ΛF, compared

with the SSL model surface wrinkling given by equation (6.19). Vertical lines denote standard

deviation.

the model mean local flame speed sK′ to write the turbulent flame speed (discussed in Section

6.1) as

sT = sK′ΨT. (6.17)

There are two equivalent approaches that can be taken to measure the flame surface wrinkling,

one is by direct measurement of the isosurface area ΨC, and the other is to evaluate the ratio of

global consumption speed sC to the mean local flame speed sK′ . The latter is consistent with

the modelling approach and will be used to investigate how flame surface wrinkling is effected

by turbulence. The TD-effects will be denoted by:

ΨK′ =
sC

sK′
. (6.18)

Figure 6.6 shows the measured wrinkling factor ΨK′ as a function of ΛF for all simulation in

sets A, B, P3.5 and P10 (indicated by line style) and the three different Karlovitz numbers

(indicated by colour). Damköhler’s turbulent small scale limit (SSL) scaling laws are denoted

by dotted lines, i.e:

ΨT = 1 + γFKa
1/3
F Λ

2/3
F , (6.19)

where the same constant γF is used for all three Karlovitz numbers. There are clear trends, the

flame surface wrinkling increases with both KaF and ΛF. The data is also in reasonable
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Figure 6.7: Time history of wrinkling factor as a function of time for case A, ΛF = 4.8, KaF =

12. The red line shows the region of which averaged statistics were taken.

agreement with the SSL model, but there is some scatter in the data which is comparable with

experimental data (see Figure 2.24 in [135]). This could be a limitation of measuring global

quantities from DNS which has a limited domain size. Even though the domain sizes are

among some of the largest found in the literature, the cross-section extent is still limited to 48

freely-propagating flame thicknesses (in the large case). Although the turbulent flame speed

has burned through a domain length of approximately 80 to 160 thermal thicknesses in all

cases, the combination of both high flame speeds and large area enhancement means that the

resulting turbulent flame speed is so rapid that the entire domain can be consumed within 10

freely-propagating flame times in the fastest case. See Figure 6.7 for an example time history

showing the flame surface wrinkling over time for case A, ΛF = 4.8, KaF = 12. The beginning

of the temporal averaging window is chosen by eye once the statistically-steady period has

been reached. The simulations conducted have a large statistically stationary region; therefore

the bounds of the statistically stationary region can adequately be done by eye. If shorter

simulations are conducted (ie the simulations have smaller statistically stationary region) then

a more sophisticated method should be used. Other factors that may affect these statistics

could be that the reactant conditions (such as higher temperatures and pressures) are not

completely accounted for by ω2.
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As discussed previously, Peters [135] notes that normalising by velocity gives an equation that

is a function of Damköhler number alone. To examine this relation, Figure 6.8 presents the

flame surface wrinkling normalised as (ΨK′ − 1)/ΥR as a function of DaR where subscript R is

a reference value of L, F and K′. The models from Section 6.1 are provided for comparison

ΨK′ − 1

ΥR

=


γRDa

1/2
R , SSL,

αR, LSL,

2αR

(√
ξ2R + ξR − ξR

)
, Peters,

(6.20)

where ξR = DaR/βR; the constant γR = 1.32, 1.60 and 1.65 for R = L,F and K′ respectively

which has been established by the best fit to the data, with αR = 2 and βR = 4α2
R/γR. The value

of γL differs from the value of 0.88 quoted in [135]; whether this is a TD-effect or a

consequence of how quantities are evaluated is considered later. Visually, the L-normalisation

from Figure 6.8 presented is more compelling, but there is little difference in the relative error

between the L and F normalisation. This is possibly due to the limited range of Damköhler

numbers accessible to DNS, combined with the log scale. Nevertheless, the data are in

reasonable agreement with the SSL, and the outliers are cases close to the most unstable

surface in ω2 space. Note that if the data in Figure 6.6 was plotted using ΛL instead of ΛF, then

a different model line would be required for each reactant condition, which is not the case for

ΛF. The key difference between the different normalisations is the choice of flame timescale;

τR = ℓR/sR and there is no clear choice between L, F or K′. It may be the case that there is a

turbulent time scale τT = ℓT/sT (for some measure of turbulent flame speed and thickness) that

could be more appropriate; this is discussed further later.

6.6 Domain Size Effects

It has already been determined from Howarth and Aspden [80] and Wen et al. [169] for

freely-propagating flames and for turbulent flames in Section 6.4 that, provided the domain

size is sufficiently large for TD-unstable structures to form, the mean local flame speed is

independent of domain size. It has been observed in [36] and [169] that for TD-unstable

freely-propagating laminar flames, domain size can effect the global consumption based flame

speed. From the findings of [80] and [169] it was found this increase was driven by flame
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Figure 6.8: Normalised measured flame surface wrinkling ΨK′ against Damköhler numbers DaR

for L, F and K′ normalisations for all simulation cases (including those from Chapter 5), and

compared with the three models for flame surface wrinkling ΨT; SSL, LSL and Peters from

6.20.

surface wrinkling, not a change in mean local flame speed. It was speculated in Aspden et al.

[22] that in highly turbulent flames the domain size could affect the turbulent flame speed also.

As observed in the previous section, increasing the integral length scale increases flame

surface wrinkling, however from the turbulence forcing method used (section 3.1.3, [23])

integral length scale is fixed to the domain size (Lx = ΩℓI, where Ω = 10), thus increasing the
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integral length scale results in a proportionally larger domain size. Therefore, it is difficult to

attribute the increase in flame surface wrinkling to the integral length scale alone. This section

separates the domain size and integral length scale through an additional simulation case from

simulation set B where the turbulence was set fixed at KaF = 12, but the domain size was

doubled by the integral length scale which remained constant (i.e. Ω = 20, ΛF = 1.6). By

doubling the wave number in the momentum forcing term that maintains the turbulence, a

periodic reproduction of the turbulence was obtained, resulting in a domain size being doubled

without changing the integral length scale. Figure 6.9 shows an example 2-dimensional

cross-section slice of the magnitude of vorticity from the Ω = 20 case. Note the periodic

reproduction mentioned above. Combining the additional case with existing cases, the

following set (referred to as the Ω set) can be used to isolate domain size effects:

• Case 1, start with small domain size and integral length scale (Ω = 10,ΛF = 1.6).

• Case 2, double the domain size, keep the integral length scale the same by doubling the

forcing wave number (Ω = 20,ΛF = 1.6).

• Case 3, keeping the domain size the same, double the integral length scale, i.e. has the

same domain size as case 2 and double the integral length scale of case 1 and 2

(Ω = 10,ΛF = 3.2).

Figure 6.10 shows the measured flame surface wrinkling factor ΨK′ against length scale ratio

ΛF for the three cases, where the star represents Case 2. It can clearly be seen that by

increasing domain size, even at a fixed integral length scale (Case 1, star) the flame surface

wrinkling is increased. This would also mean the turbulent flame speed would increase as the

mean local flame speed would remain the same. The two cases with a length scale ratio of

ΛF = 1.6 have the same KaF and DaF number (note as it is the same reactant conditions and

flame scale turbulent intensity, the normalisation choice (L, F and K′) makes no difference

between Case 1, 2 and 3). Therefore, the turbulent models discussed above cannot distinguish

between Case 1 and 2, thus predict the flame surface wrinkling. A potential cause of this

behaviour could be explained using a volume-filling-surface argument; where the turbulence

folds the flame increasing the local flame speed, thus the flame burns quickly, especially at the

leading points and edges, increasing the flame surface wrinkling. However, in smaller domains
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Figure 6.9: Example cross-section slice of vorticity magnitude showing the periodic reproduc-

tion from the Ω = 20 case.

the available volume to the flame is reduced, thus the available volume to the flame is limited,

artificially limiting the flame surface area. This phenomena is likely to be more pronounced at

higher turbulent intensities. Despite this seemingly subtle observation, domain size

constrainment does pose a potential issue to attributing the bending effect in DNS, with small

domain sizes at high turbulence. It is still unclear if this phenomena is present in TD-neutral or

stable flames. It can be speculated that as the flame instability decreases the effect of domain

size will also diminish. The presented observations are only a single reactant case at a fixed

KaF and is by no means meant to be an exhaustive study. However, this does present a

potential limitation to DNS which is not often acknowledged in the literature.

6.7 Combined Model for Turbulent Flame Speed

Combining the mean local flame speed model with the SSL model for flame surface wrinkling,

the turbulent flame speed can be predicted as

sT = sP

(
1 + γLΥLDa

1/2
L

)
, (6.21)
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Figure 6.10: Measured flame surface wrinkling factor ΨK′ against length scale ratio ΛF, com-

paring the effect of domain size for simulations in set B at KaF = 12. Note how the wrinkling

is higher in the larger domain even with the same equivalence ratio (star versus circle).

where the quantity of interest here is the prefactor sP. The resulting predictions are compared

with the measured value sC in is Figure 6.11, where four prefactors are shown; specifically

sP = sL (red), sF (magenta), sK (blue, equation 5.4) and sK′ (black, equation 5.1). It is clear that

accounting for the TD-response though the prefactor (i.e. using sP = sF in preference to sL) is

the leading order effect, and the prediction is improved further still by accounting for the

increase in local flame speed with increasing Karlovitz number (i.e. using sK in preference to

sF). As found in Chapter 5 using a measured value for the freely-propagating flame speed sF

(from a precursor DNS simulation) provides slightly improved predictions over the model

value sM (Equation 4.1) and therefore sK′ provides a slight improvement over sK. The latter

still provides a satisfactory prediction and is a model that is far more appropriate for industrial

CFD codes such as Vectis. Again, these observations may be a consequence of the limited

range of turbulence conditions accessible to DNS, and at larger length scales different

behaviours may be observed.

6.8 Fuel Lewis Number Effects

The model constants in Section 6.5 differ from those in the literature (e.g. [135]), and it is

unclear if this difference is due to TD-effects in lean hydrogen or whether it is due to the way
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Figure 6.11: Modelled turbulent flame speed sT using the small scale limit Equation 6.21,

compared with the measured global consumption speed sC. The wrinkling component ΨT =

γLDa
1/2
L and the prefactor sP is compared for P = L, F and K′. Note the leading order effect is

accounting for the TD-response in the prefactor, with a slight improvement using K′ over K.

the contributing quantities have been evaluated (e.g. turbulent intensity, integral length scale

etc.). Furthermore, despite having studied a large range of ω2 conditions (5.58 to 27.27), the

range of fuel Lewis numbers remains somewhat narrow (0.36 to 0.428). To evaluate the effect

of Lewis number and establish whether the model constants are a hydrogen effect, a small

number of additional cases have been simulated (Table 6.2). The Lewis number of the fuel has

been artificially modified, while keeping the mechanism and all other aspects of the

simulations unchanged; this approach means that any differences can be attributed to the Lewis

number, rather than other fuel effects. Specifically, four values have been considered for the

Lewis number of molecular hydrogen, LeF = 0.35, 0.7, 1 and 2. The lowest value is

representative of the realistic cases considered in the previous section. The freely-propagating

flame speed and thermal thickness for all four Lewis numbers were obtained from precursor

freely-propagating simulations (as conducted in Chapter 4). A single normalised domain size

and integral length scale was considered (ΛF = 2.4), but the turbulent intensity was varied such

that KaF = 1, 4 and 12, as above.
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Table 6.2: Simulation conditions examining the effect of fuel Lewis numbers. Reactant condi-

tions are ϕ= 0.4, T =300 K, p=1 atm. Turbulence conditions are KaF = 1, 4, 12 and ΛF = 2.4.

LeF ω2

sL ℓL sF ℓF

(m/s) (µm) (m/s) (µm)

0.35 8.17 0.225 587 0.368 512

0.7 −3.34 0.335 466 0.349 486

1 −11.4 0.392 430 0.392 455

2 −34.9 0.488 386 0.487 410

6.8.1 Local Flame Speed

Figure 6.12 shows the normalised mean local flame speed as a function of Karlovitz number

for all four fuel Lewis numbers. The local flame speed in the low Lewis number case increases

with turbulent intensity, as in Section 6.4. There is also a slight increase for the LeF = 0.7 case,

despite being TD-stable (ω2). It is suspected to be the same behaviour as the ω2 = 0 case (case

Z) from Chapter 5 where the turbulence artificially folds the flame giving strong positive

curvatures allowing for preferential diffusion, and as a result of the thermal leading point

where the mean local flame speed is increased. Interestingly, this suggests that there is a Lewis

number dependence for predicting the mean local flame speed at higher KaF, which ω2 cannot

account for, when reactant conditions are TD-stable but experience preferential diffusion in

positive curvature (i.e ω2 ≥ 0 and Leeff < 1). Naturally, the unity Lewis number case does not

experience a significant change in the mean local flame speed with turbulence. Finally, it can

be seen that the high Lewis number flame sees a reduction in mean local flame speed with

turbulence, which is consistent with previous simulations of high Lewis number fuels e.g.

[163, 99, 98] for example.

This difference in flame speeds can be examined further by considering JPDFs of local flame

speed and flame surface curvature; Figure 6.13 shows the JPDFs for all the modified fuel

Lewis number cases. As fuel Lewis number increases from 0.35 to 2 the Markstein number

increases from negative to positive, and is accompanied by a general decrease in the local

flame speed. This is consistent with [77, 60, 150, 14]. Note that the Markstein number is

slightly negative for the LeF = 0.7 case, despite being TD-stable (ω2 < 0). Again, the
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Figure 6.12: Normalised mean local flame speed as a function or Karlovitz number for the

different fuel Lewis numbers. Whereas low fuel Lewis numbers result in an increase in mean

local flame speed, high fuel Lewis numbers decrease.

TD-response is induced by turbulence folding the flame.

6.8.2 Flame Surface Winkling

The key question to be addressed by this artificial Lewis number study is whether flame

surface wrinkling is affected by the Lewis number. Figure 6.14 shows the flame surface

wrinkling with increasing KaF for the four LeF cases (note that mean local flame speeds sS

have been used for normalisation as the Karlovitz-dependent models sK′ have not been

established for these cases). Consistent with the unmodified Lewis number cases, the flame

surface wrinkling increases with turbulent intensity; also note the similarity with Figure 6.3.

Importantly, it appears that flame surface does increase with decreasing Lewis number (at the

same corresponding KaF). However, the effect is relatively small for LeF ≲ 1, and much more

significant for the high Lewis number cases. This observation could further support the

volume-filling surface argument. As a result of all the available space being filled by the flame,

increasing the Lewis number cannot fill anymore volume. This argument would require

additional simulations, and significantly larger domain sizes to appropriately evaluate, which

was outside of the scope and budget of this project.
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Figure 6.13: Joint probability density functions (JPDFs) of the normalised local consumption-

based flame speed and normalised curvature for increasing fuel Lewis number LeF (top-to-

bottom) at increasing Karlovitz numbers KaF (left-to-right).
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Figure 6.14: Flame surface wrinkling as a function of Karlovitz number for different fuel Lewis

numbers. Low fuel Lewis numbers result in slightly enhanced flame surface area, but a signifi-

cant reduction is observed at fuel high Lewis numbers.

To assess the impact on the model constants for flame surface wrinkling, Figure 6.15 presents

the data in the same form as Figure 6.8. There is clearly a measurable difference between fuel

Lewis numbers at around unity and below, but it is small compared with the difference

observed in the high Lewis number case. In particular, since the difference between LeF cases

between 0.35 and 1 is small, then it suggests that differences between the model constants

proposed and the literature (e.g. [135]) have more to do with how the dimensionless quantities

are constructed than it being a low-Lewis number phenomenon, but that there is still an effect

from fuel Lewis number.

6.9 The Premixed Regime Diagram Revisited

Attempts to classify turbulent premixed burning regimes have a long and rich history, from

Ballal and Lefevre [24], Borghi [39] and Peters [133, 134], to more recent work by Skiba et al.

[156]. In light of the observations from this work and previous works [17, 12, 22], a

modification is proposed. A justification will be presented to characterise the regime diagram

by Karlovitz and Damköhler numbers, which are essential for classifying the different regime.

It is argued that the Karlovitz number is used to characterise the turbulent-flame interactions at

the flame scale, which therefore is used to distinguish between the flame-let, thin reaction
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Figure 6.15: Normalised measured flame surface wrinkling ΨS against Damköhler number DaL

for all simulations with artificial fuel Lewis number, and compared with the three models for

surface wrinkling ΨT (i.e. SSL, LSL and Peters) given by equation 6.20.

zones and distributed burning regimes. The Damköhler number is used to characterise the

turbulent-flame interactions at the integral length scale, which therefore is used to distinguish

between the large- and small-scale turbulence limits as identified by Damköhler [55].

6.9.1 Turbulent-Flame Interactions at the Flame Scale: The Karlovitz Number

In summary to the discussion in Chapter 2, Section 2.5.2, the Karlovitz number was defined by

applying Kolmogorov’s similarity hypothesis to turbulent premixed flames. It was argued

following [162, 22] the energy cascade is terminated by dilatation at the flame scale, thus

Karlovitz number is defined at the flame scale not the Kolmogorov lenght scale. As the energy

dissipation rate is constant through the inertial sub-range, and both the integral length and

flame scale (provided) exist inside the inertial sub-range, the following is true

ε =
u′3

ℓI

=
u′3

r

r
=

u′3
ℓF

ℓF

, (6.22)

where the latter represents the energy dissipation rate at the flame scale, which is inside the

inertial sub-range. By normalising the turbulent velocity at the flame scale u′
ℓL by the flame

speed gives
u′

ℓF

sF

=
u′

sF

(
ℓF

ℓI

)1/3

= Ka
2/3
F , (6.23)
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thus the Karlovitz number is defined as

KaF =

√
u′3

s3F

ℓF

ℓI

=

√
Υ3

F

ΛF

. (6.24)

Please see Section 2.5.2 for a more complete description. Additionally the presented

simulations (e.g. Figure 6.4) and the simulations presented in Chapter 5 support the argument

that Karlovitz number defined this way characterises the turbulent-flame interactions at the

flame scale well, independently from Damköhler number.

When defining Karlovitz this way it can be used to distinguish between the conventional

burning regimes in the usual way ([134, 135] for example). For small Karlovitz number

KaF < 1, the Kolmogorov length scale is larger than the flame scale, so there can only be

turbulent-flame interaction at the large-scale, called the flame-let regime. At KaF ≈ 1, the

smallest turbulent scales are similar to the flame scale. As KaF gets larger, turbulence can

begin to interact with the preheat zone, but not yet the reaction zone, called the thin reaction

zone (TRZ). As KaF gets larger still, at some point KaF exceeds a critical value where

turbulence becomes strong enough to penetrate the reaction zone, and mix the internal

structure of the flame on a shorter time scale than burning, called the distributed burning

regime (DRB). Note that this critical KaF value is higher than the often-quoted value of 100

[14, 22]. Figure 6.161 shows a conventional turbulent premixed regime diagram [134, 135]

with illustrative turbulent spectra. Three Karlovitz numbers are presented are denoted by the

three dotted black lines. Note how for each Karlovitz number the inertial sub-range coincide,

and the turbulent-flame interactions at the flame scale are independent of Damköhler number.

Different Reynolds numbers are denoted by different colours and demonstrate how each

Reynolds number can appear in any regime, thus is not a useful tool for regime classification.

6.9.2 Turbulent-Flame Interactions at the Integral Scale: The Damköhler Number

In Damköhler’s small-scale limit (SSL), it is argued that the diffusive transport is modified so

that turbulent diffusion can be used as a substitute for molecular diffusion. The SSL has been

previously associated with different turbulent conditions; Damköhler [55] suggested ℓµ << ℓL

where ℓµ is some mixing length, Peters [135] associated the SSL with the TRZ, Lipatnikov and

1Thanks to A. J. Aspden for making the figure.
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Figure 6.16: A conventional turbulent premixed regime diagram [134, 135], with illustrative

turbulent spectra. The dotted black lines show constant Karlovitz numbers, and the colours

denotes different Reynolds numbers.

Chomiak [109] and Aspden et al. [16, 20] considered the SSL to require high turbulent

intensity (the DBR).

From the conditions provided in this thesis (Chapters 5 and 6) the simulations are comfortably

in the TRZ, but are in the low turbulence end of the regime, and are not close to becoming

distributed. The data is also consistent with the SSL. This was also seen in [22] (see Figure 4c)

for both hydrogen and methane where the turbulent flame speed was found to grow at the rate

Ka
1/3
F (at a fixed ΛF) even when flames were not in the DBR. Consequently, it seems important

to make a distinction between the SSL and DBR, where a flame does not need to be

experiencing distributed burning to present scaling consistent with the SSL. The SSL appears

to correspond to the small Damköhler numbers and the DBR corresponds to the high Karlovitz

numbers. It could be speculated that the presented simulations’ consistency with the SSL

scaling laws is a dimensional necessity, which results from turbulence driving the flame

surface wrinkling. Additionally, as noted in [109] and observed from simulation data from [22]

and more recently [174], there is a transition from the TRZ to the DBR. Specifically, the

turbulent flame speed first increases with increasing KaF in the TRZ but appears to experience

some transition where the turbulent flame speed drops significantly. It was found in [22] that
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the turbulent flame speed then starts to increase again as KaF continues to increase. The

transition from the TRZ to the DBR appears more subtle than described in the literature, which

means determining the critical Karlovitz number for the DBR as discussed in [134, 135]

remains an open question.

From the data provided in this work, the length scales were not large enough to observe a

transition from SSL to LSL, however such a transition was observed in the DBR in [17], where

the distributed flames presented in [16] were extended to large Damköhler numbers at a fixed

Karlovitz number. Figure 6 in [17] presents the turbulent flame speed normalised by turbulent

intensity as a function of Damköhler number. It was observed to follow the scaling for the SSL

(sT/u
′ ∼ Da

1/2
T ) up to a limit of DaT ≈ 1, where the scaling followed the LSL (sT/u

′ ≈ 2).

Where DaT is turbulent Damköhler number which is defined as the ratio of the turbulent eddy

turnover time and the turbulent flame time scale (will be discussed below).

From the data presented in this work and the resulting distinction between the DBR and the

SSL, the transition from SSL to LSL observed in [17], the observation that normalising the

flame surface by the velocity results in a function of just Damköhler number and the

consistency with the limits of the turbulent flame speed models, it can be argued that there

exists a turbulent time scale τT such that a turbulent Damköhler number DaT can be used to

define the limit that separates the SSL from the LSL. Therefore, Damköhler numbers are a

necessary condition to define the limit between the SSL and LSL despite the suggestion in

[134] that the unity Damköhler number line has no significance for turbulent burning regimes.

Following these observations and suggestions, the TRZ and DBR have separate regions in the

both the SSL and LSL, which in turn are separated by the DaT ≈ 1 line.

The turbulent flame time scale τT is key to the argument, which may be different to the

1-dimensional unstreached laminar flame timescale, which can depend on Karlovitz number

and reactant conditions, but independent from integral length scale at a given Karlovitz

number. Dimensionally, combing the time scale and the energy dissipation rate ε gives the

velocity and length scales (see Equation (12) in [17])

sλ ∼
√
ετT, (6.25)
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λ ∼
√

ετ 3T . (6.26)

This length scale was identified by Zimont and Sabelnikov [185, 183]2, which was interpreted

as a mixing length by Peters [134] and named the Zimont scale. The Zimont approach was

discussed in detail in Appendix D in [109]. The length scale λ is interpreted here as the size of

the turbulent eddy with the same time scale as the turbulent flame time (note again that this is

not likley to be the same as the 1-dimensional unstreached laminar flame timescale), which

occurs at the intersection of the constant Karlovitz line with the line where the turbulent

Damköhler number equals unity.

The SSL an LSL can now be identified by comparing the turbulent eddy turnover time with the

turbulent flame time. For DaT < 1, the turbulent eddies between the integral length scale ℓI and

the flame thickness ℓF turnover faster than the turbulent flame time which results in an increase

in flame surface wrinkling following the SSL. If DaT > 1, the turbulent eddies between the

integral length scale and the length scale λ turnover slower than the turbulent flame time where

the turbulence foes not contribute to an increase in flame surface wrinkling, thus only follow

the LSL. It should be noted that the turbulent eddies between the sizes λ and ℓF are still able to

broaden the flame, which means that the SSL is embedded within the LSL. To explain this

consider the KaF ∼ 20 cases shown in Figure 6.16. The cyan and blue curved denote DaT ≤ 1

cases; these cases have the inertial subrange between the length λ and ℓF have increased the

flame surface wrinkling as much as possible, whereas the larger scales (from ℓI to λ) are too

slow to increase the wrinkling further. The large-scale regime is effectively a unity turbulent

Karlovitz number flame, where the turbulent Karlovitz number is given by

Ka2λ =

(
u′

sλ

)3
ℓI

λ
. (6.27)

At this scale the flame was referred to as a λ-flame in [17] where λ represents the limiting

length scale of the SSL at the given Karlovitz number.

2Thanks to A. N. Lipatnikov for explaining that this length scale was previously identified in the paper with

Sabelnikov.

154



CHAPTER 6. TURBULENT FLAMES PART 2: LENGTH SCALE EFFECTS

Figure 6.17: Turbulent burning regime diagram presented in terms of DaT and KaF. KaF char-

acterises the turbulent-flame interactions at the flame scale (thus separating the flamelet regime

from the thin reaction zone from the distributed burning regime). DaT classifies turbulent-flame

interactions at the integral scale (thus separating the large- and small-scale regimes).

6.9.3 A Modified Regime Diagram

Figure 6.17 presents a modified regime diagram, which collects all the findings and discussion

above. The regime diagram is given as a 2-dimensional parameter space where the regimes are

separated using Karlovitz and Damköhler number. This regime diagram is essentially a

roatatrion of the conventional regime diagrams from [39, 135] with the addition of the

DaT = 1 line. It could also be interpreted as a combination of the two predecessors; including

the distributed burnin regime at high Karlovitz numbers as seen in [134, 135] while retaining

the unity Damköhler line as seen in [39, 133]. Now the verticle lines represent variable

Karlovitz at a fixed Damköhler number seperating the thin reactions from the distributed and

the horizontal lines represent a fixed Karlovitz at a variable Damköhler number seperating the

small-scale and large-scale limits.

How to define DaT (i.e. the turbulent flame time scale τT is key and still to be determined. It

would be determined by measuring the flame brush thickness and turbulent flame speed and

thus demonstrating a similar invariance in the TRZ that was obereved in the DBR from [17];
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the resulting flame time scale can be matched with the inertial subrange of the turbulence

where λ can then be found. Such a study is extremely challenging to compute in DNS with

detailed chemistry, but may be possible by using a well-resolved g-equation approach, for

example, which is the focus of the next chapter.

6.10 Conclusions

Direct numerical simulations have been presented to explore the effect of reactant and

turbulent conditions on TD-unstable lean premixed hydrogen flames, with a particular focus on

the influence of the larger turbulent length scales. It is concluded that three parameters are

important to characterise turbulence-flame interactions in such flames: an instability parameter

ω2, which represents the strength of the TD-response; Karlovitz number, which represents

turbulence-flame interactions at the flame scale and a Damköhler number, which represents the

turbulent-flame interactions at the large scales. The mean local flame speed was measured over

a range of integral length scales and range of reactant conditions and turbulent intensities

(Figure 6.3). As expected, the TD-response was stronger with increasing Karlovitz number, but

crucially, the mean local flame speed was shown to be independent from integral length scale

at a fixed KaF and that the model from chapter 5 (Equations 5.1, 5.2, 5.4 and 5.5) provides

excellent predictions in terms of the instability parameter and Karlovitz number. It was further

shown that turbulence-flame interactions as represented by JPDFs of local flame speeds and

curvature (Figure 6.4) are similarly independent from integral length scale at a fixed KaF. An

additional simulation was conducted to emphasise that matching the turbulent intensity alone is

insufficient (Figure 6.5). The length scale at which this intensity is measured is important, and

the appropriate dimensionless parameter is the Karlovitz number; this was recently supported

by observations from Yao and Blanquart [174]. Importantly, since the mean local flame speed

can be well predicted by the existing models from Chapter 5, the key to constructing a

turbulent flame speed model is reduced to predicting the flame surface area enhancement.

Naturally, flame surface wrinkling was found to increase with both Karlovitz number and

integral length scale (figure 6.6) with good agreement with scaling laws predicted in

Damköhler’s small-scale limit [55, 134, 135], with some scatter in the data. Following Peters

[135], normalising the flame surface area by turbulent intensity results in a function that is a
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function of Damköhler number alone. Again, the data were in reasonable agreement (Figure

6.8), but with some scatter; note that experimental data has a similar scatter (for example, see

Figure 2.24 in Peters’ book [135]). Different normalisations were considered and while

normalising by the laminar flame properties was visually more compelling, there was little

difference in the relative error. It is possible that there is a turbulent timescale that would be

more appropriate, which is yet to be identified.

Comparisons of turbulent flame speed models (Figure 6.11) demonstrated good agreement

with the small-scale limit,

sT = sR

(
1 + γΥRDa

1/2
R

)
, (6.28)

where γ = 1.32 which is larger than the value (0.88) given in [135]. This difference in the

constant was attributed to the way the various other terms in the expression are evaluated, with

a strong notion that a domain size constrainment effect (volume-filling surface) is present, as

discussed further below. The mean local flame speed prefactor was observed to be a leading

order effect, and it is emphasised that it needs to be taken into account for TD-unstable flames.

Accounting for the local acceleration through sF in preference to sL has the largest effect and

accounting for additional acceleration from turbulence with sK′ provides further improvement.

Finally, sK′ shows a small improvement by removing the modelling error from sM by using sF

instead. It was suggested in [22] that the domain size could have an effect on flame surface

area, especially in small DNS-scale domains. To test this prediction, an additional simulation

was performed where the domain size was doubled, but the integral length scale kept the same

by ensuring the turbulence was a periodic reproduction (by modifying the maintaining source

term in the momentum equation). Taking the starting point to be the case with the smaller

domain (and integral length scale), it was found that the turbulent flame surface area could

indeed increase in a larger domain without changing the integral length scale (Figure 6.10).

The flame surface area increased again when the integral length scale was increased in the

same sized domain. This effect is usually neglected and is not predicted by any conventional

algebraic model for turbulent flame speed (i.e. there is no Ω term), and it is anticipated that it

will not only be relevant for DNS but for experimental studies of limited physical extent.

The periodicity of the flame-in-a-box configuration can constrain the development of the flame
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surface area, resulting in under-prediction of turbulent flame speed. This is anticipated to

become increasingly problematic with increasing turbulent intensity, and may be more

pronounced where the ratio of domain size to integral length scale is small. Consequently,

there is a possibility that observing the so-called “bending effect” could result from an

inadequately-sized domain. The present observations do not question the phenomenon, but

serve as a warning that care is required to ensure that it is not an artefact of a domain or burner

of insufficient size. Furthermore, there have been several observations of the turbulent flame

speed dropping with increasing turbulent intensity (e.g [22, 174]).

To establish whether the different value observed for the SSL constant γ is due to a TD-effect

or simply how the various quantities have been evaluated, a further study was performed

considering different fuel Lewis numbers. Only the diffusion coefficient of molecular

hydrogen was artificially modified; the same hydrogen mechanism was used and all other

species were left unchanged. Naturally, fuel Lewis number was found to have a leading order

effect on mean local flame speed (Figure 6.12), increasing for low Lewis number and

decreasing for high Lewis number with he effect becoming more pronounced with increasing

Karlovitz number. Similarly, a significant effect was observed in the JPDFs of flame speed and

curvature (Figure 6.13), transitioning from negative to positive Markstein numbers with

increasing fuel Lewis number. Furthermore, the flame speeds at zero curvature were observed

to decrease with increasing fuel Lewis number, consistent with previous simulations of high

Lewis number fuels (e.g. [77, 60, 150, 14]) which warrants further study.

The flame surface wrinkling was observed to be higher for the lower fuel Lewis number cases

(Figure 6.14); the differences are significantly smaller for LeF ≲ 1 compared with LeF > 1. A

potential explanation for the behaviour observed is a simple volume-filling-surface concept.

The TD-response for the low fuel Lewis number case is to exaggerate flame surface

deformation, and increase the wrinkling. However, there is a limit to how much flame surface

area can fit into a given volume. Therefore, for low fuel Lewis numbers there is only so-much

more flame surface that can be created, and so the differences are small when compared with

unity Lewis number. Turbulence can lead to a larger flame brush, and therefore a larger

volume, but the wrinkling in that volume is already close to the limit at unity Lewis number.
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Conversely, the TD-response of the high Lewis number flame is to flatten the flame, and so the

observed wrinkling is much lower, and only increases with much higher turbulence. Again,

this is consistent with [14] and a similar phenomena was reported in [16].

Lastly a modified regime diagram was proposed which separates the different burning regimes

using a 2-dimensional parameter space, the Karlovitz and Damköhler number. The Karlovitz

number is used to differentiate the thin-reaction-zone and the distributed reaction zone

independently from Damköhler. The Damköhler number is then used to differentiate between

the small-scale and large-scale limit, independently from Karlovitz number. The exact values

of where these limits occur is the focus of furture work and significant challenges (namely the

limitations of DNS with detailed chemistry) need to be considered.
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The direct numerical simulation of flames with complex chemistry is computationally

expensive and these costs limit the size of the flame that can be studied. As shown in Chapter

6, global flame statistics can be influenced by the integral length scale, which is constrained by

the relative domain size. To study flames at larger scales, larger simulations at a wide range of

turbulent and reactant conditions are required, yet currently is too computationally expensive

to be studied. The limiting factor for the computational cost is the equation set, resolution and

corresponding time step to resolve the flame scale and chemistry. This chapter focuses on

developing a DNS-style G Equation, influenced by Rastigejev and Matalon’s paper [141],

where the flame and subsequent chemistry can be modelled where the surface is fully

represented by a level-set (G-equation). Using the findings from Chapters 4, 5 and 6 an

appropriate model can be developed to replace the chemistry, significantly reducing the

computational cost. The methods implemented have a specific focus on TD-unstable flames,

which have yet to been successfully implemented into a DNS-style G-Equation which have

historically been used to study Darrius-Landau instabilities for near unity Lewis number

flames [141, 122].

This chapter introduces the level-set method and motivation in Section 7.1 then explains and

discusses the numerical implementation of the level-set in Section 7.2, where the fundamental

equations are introduced, discussed, important choices are highlighted and the algorithm is

presented. Next, in Section 7.3, the simulation test conditions are introduced and in Section 7.4

the effective 1-dimensional simulations are conducted in both the level-set and in PeleLM. The

results are compared over a small range of conditions. Next, 2-dimensional freely-propagating

simulations are conducted and compared between the level-set and PeleLM for the same range

of conditions in Section 7.5. Lastly computational costs between the level-set and PeleLM are

compared in Section 7.6 to highlight the significant cost-saving advantages of using the

method over PeleLM.

This section represents ongoing work and is not intended to be an exhaustive validation

procedure. This chapter is designed to present a proof of concept, highlighting the method and
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its potential applications.

7.1 Introduction

Level-sets typically use a single transport equation that can be used to track an interface, for

example two-phase flow such as that studied in [160] or a flame position studied in [141]. A

level-set is often a signed distance function, where the level-set field is divided into three

distinct sections; negative, positive and zero, where zero represents the interface between the

two states. Williams [173] introduced the concept of level-sets for combustion where the

premise behind the level-set method is to track the flame position, often called a G-equation.

The three distinct regions are constructed as the burnt region, the unburnt region and the

interface between the two, which can be associated with the isosurface (see Osher for a more

general introduction to level-set methods [129]). This approach is typically used to model

flames in (U)RANS and LES simulations as discussed by Peters [134, 135] for example and

has seen wide adoption in the combustion community, such as models used in Vectis and

OpenFoam. These approaches do not resolve the smallest turbulent scales, thus adopt a model

to account for sub-grid flame surface wrinkling, for example sT as studied in Chapter 6. The

approach being used in this chapter suggests that using a well-resolved G-equation where the

surface is fully represented by the level-set, the turbulent scales are resolved, and the

turbulent-surface interaction is tracked, no sub-grid modelling is required. The flame is then

resolved at the small turbulent scales where chemistry is modelled using a Markstein model

such as that proposed in Chapter 5. Rastigejev and Matalon [141] presented the capabilities of

this approach by using a DNS style G-equation for 2-dimensional unity Lewis number flames

experiencing Darrious-Landau instabilities. The approach used in [141] is not suitable for

flame with negative Markstein numbers which will be discussed later.

This chapter uses IAMR (version 23.12) as a base for solving the in-compressible

Navier-Stokes equations. The equation set and algorithms are then modified to add level-set

functionality and will be detailed below. This work also borrows from AMReX-Hyrdro

(version 23.12) which contains the hydrodynamic solver routines for low Mach number flows

used in IAMR and AMReX (version 23.12) and the framework used for massively parallel,

block-structured adaptive mesh refinement. These codes are all open-source and
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freely-available at:

https://amrex-fluids.github.io/IAMR/

https://amrex-fluids.github.io/amrex-hydro/docs_html/

https://amrex-codes.github.io/amrex/docs_html/

7.2 Numerical Implementation

This section introduces the theory and numerical implementation of the level-set methods.

7.2.1 The IAMR Equation Set

IAMR solves the variable-density in-compressible Navier-Stokes equations though the

following conservation equations (mass, momentum and velocity constraint):

∂ρ

∂t
+∇ · ρu = 0. (7.1)

∂ρu

∂t
+∇ · ρuu = −∇ · σ +F , (7.2)

∇ · u = 0. (7.3)

Firstly, introducing the level set by defining a scalar field G (will be referred to as the G-field),

where

G


< 0 if unburnt,

= 0 if flame surface,

> 0 if burnt.

(7.4)

By defining a position at the flame front (x0), the propagation of the flame front at position x0

can be defined as the sum of the flow velocity u and the burning velocity normal to the flame

surface at speed sloc
dx0

dt
= u+ nsloc, (7.5)

where the normal is given as

n = − ∇G

|∇G|
. (7.6)
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Note that the normal is negative so that the normal points towards the more negative regions.

Then by differentiating the G-field with respect to time, the rate of change of G can be given as

∂G

∂t
+∇G · dx0

dt
, (7.7)

which can be written as
∂G

∂t
+ u · ∇G = sloc|∇G|, (7.8)

where in three spacial dimensions

|∇G| =
√
(∇xG)2 + (∇yG)2 + (∇zG)2. (7.9)

By using the G-field as a replacement for a real flame, neither species transport or temperature

are required or calculated. In a real flame however, heat is released as a result of combustion,

which reduces the density of the products. This process now must be modelled; [141]

suggested that the density jump from combustion can be approximated with

ρ = ρu +
1

2
(ρb − ρu)

(
1 + tanh

(
G

h

))
, (7.10)

where ρu and ρb is the unburnt and burnt density and h is a thickness, where [122] suggests

2dx. It was found (validation is still ongoing) that for TD-unstable flames a more realistic

thickness with h ∼ ℓF controls the extent to which strongly curved regions can form, which is a

problem that was not likely to be encountered in the TD-stable flames from [141]. Equation

(7.10) will now replace Equation (7.1) which is no-longer required.

Resulting from the modelled thermodynamic expansion the velocity constraint is no longer

zero, and therefore must be modified, again using the recommendation from [141] where

∇ · u = ρusloc
∂

∂n

(
1

ρ

)
. (7.11)

It should be noted that this formulation does not include a component from diffusion, which is

often incorporated as part of a displacement speed, and so would not be an appropriate

approach for a non-reacting case.
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7.2.2 Modelling sloc and the Problem with TD-unstable Lean Hydrogen Flames

Previous chapters have proposed a curvature only model for freely-propagating and turbulent

TD-unstable lean hydrogen flames in the form

sloc = sloc
(
1−Mκℓloc

)
, (7.12)

where sloc and ℓloc is the mean local flame speed and thickness which can be modelled by

Equations (4.1) and (4.2) for freely-propagating flames and Equations (5.4) and (5.5) for

turbulent flames. κ is the curvature and M is the Markstein number. The resulting transport

equation of G (Equation (7.13)) becomes

∂G

∂t
+ u · ∇G = sloc

(
1−Mκℓloc

)
|∇G|, (7.13)

where curvature is defined as

κ = −∇2G− n · ∇ (n · ∇G)

|∇G|
. (7.14)

As shown in chapters 4, 5 and 6, TD-unstable lean hydrogen flames have a negative Markstein

number. This results in a focusing of G rather than a diffusion of G (like the methods

implemented in [141]). Therefore regular re-initialisation of the G-field will be required.

Achieving this efficiently can be challenging and potential numerical issues can result which

will be highlighted as they are encountered.

7.2.3 The Re-initialisation Equation

As discussed previously, a re-initialisation equation is required, [141] used a fast marching

method to avoid the computationally costly re-initialisation method. Thanks to the unstable

nature of the transport equation of G for TD-unstable flames, re-initialisation is unavoidable.

The approach used here will be at the first computational step, the signed distance function of

G will be constructed where the surface at G = 0 will be user defined. Then the value of G

will be proportional to the locations distance from the surface. To construct the initial G-field,

the value of G is simply set as the horizontal distance from the surface

G = y − y0, (7.15)
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where y0 is the y-position of the flame.

The next step is to re-distance the G-field to get a smooth signed function of the distance from

the flame surface. A simple construction of this is the equation

∂G

∂τ
− |∇G| =

1 if G > 0,

−1 if G < 0,

(7.16)

where τ is an artificial time, the time step exists to re-distance G and does not progress in real

time. Sussman et al. [160] defined the re-initialisation equation as

∂G

∂τ
+ S (|∇G| − 1) = 0, (7.17)

where S is a sign function which is used to keep the surface stationary during re-initialisation.

At the beginning of each re-initialisation step, the S-field is initialised as [159]

S = 2

(
A− 1

2

)
, (7.18)

where

A =


0 if G > −ε,

1
2

(
1 + G

ε
+ 1

π
sin
(
πG

ε

))
if |G| ≤ ε,

1 if G < ε,

(7.19)

where

ε = A dx, (7.20)

with A being within the region of 2 (an exact value of 2 has been used for the current

implementation). The S-field is evaluated at every artificial time step using the definition from

[132]

S =
G√

G2 + |∇G|2 + dx2
. (7.21)

Numerical Implementation of |∇G|

Re-initialising will be one of the most computationally expensive steps in the addition to the

IAMR algorithm, as |∇G| needs to be calculated for every real time step and artificial time

step. The quicker |∇G| reaches steady state the less artificial time steps are required, thus a

balance between accuracy and compute speed needs to be found.
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|∇G| is spatially discretised using a second order ENO finite difference scheme adopted for

two phase flow, as in [147, 121, 120] for example.

|∇G|i,j,k ≃


√

max
(
(A−)2 , (B+)2

)
+ max

(
(C−)2 , (D+)2

)
+ max

(
(E−)2 , (F+)2

)
if G ≥ 0,√

max
(
(A+)2 , (B−)2

)
+ max

(
(C+)2 , (D−)2

)
+ max

(
(E+)2 , (F−)2

)
if G < 0.

(7.22)

A±,B±, C±,D±, E± and F± are the one-sided ENO finite differences in the x, y and z

directions respectively. Where

A+ =
Gi+2,j,k −Gi+1,j,k

∆x
− ∆x

2
minmod(Di+1,j,k, Di+2,j,k), (7.23)

A− =
Gi+1,j,k −Gi,j,k

∆x
− ∆x

2
minmod(Di,j,k, Di+1,j,k), (7.24)

B+ =
Gi,j,k −Gi−1,j,k

∆x
− ∆x

2
minmod(Di,j,k, Di−1,j,k), (7.25)

B− =
Gi−1,j,k −Gi−2,j,k

∆x
− ∆x

2
minmod(Di−1,j,k, Di−2,j,k), (7.26)

which is repeated for all spatial dimensions. The one-sided finite differences can then be

approximated using a central difference approximation

Di,j,k =
Gi−1,j,k − 2Gi,j,k +Gi+1

∆x2
. (7.27)

Note that the minmod function gives the smallest absolute value when both Di,j,k and Di+1,j,k

have the same sign and zero when they have different signs. Again, this is repeated for the

other values.

The re-initialisation equation (equation (7.17)) is temporally discretised using a first order

forward time approach

Gτ
i,j,k = Gi,j,k − τSi,j,k (|∇Gi,j,k| − 1) , (7.28)

which is repeated until |∇Gi,j,k| = 1 is near the flame surface. This approach was used for its

simplicity, however it is unlikely to be optimal. For example, other approaches suggest using a

second order Runge-Kutta method ([120]).
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Table 7.1: Simulation conditions with a fixed reactant reactant conditions are ϕ= 0.4,

T =300 K, p=1 atm, with a modified fuel Lewis numbers.

LeF ω2

sL ℓL sF ℓF

(m/s) (µm) (m/s) (µm)

0.35 8.17 0.225 587 0.368 512

0.7 −3.34 0.335 466 0.349 486

1 −11.4 0.392 430 0.392 455

2 −34.9 0.488 386 0.487 410

7.2.4 Algorithm

7.3 Test Simulation Conditions

To verify the feasibility of the proposed method and to verify the implementation of the

algorithm into IAMR, test simulation cases have been conducted in both the new level-set

simulation code and PeleLM. A range of reactant conditions will be conducted in PeleLM and

compared directly with the results from the level-set. The test reactant conditions are the same

as the fixed fuel Lewis number study from Chapter 6 and are presented in table 7.1. The

pressure, temperature and equivalence ratio is fixed at 1 atm, 300K and 0.4 respectively, and

the fuel Lewis number (LeF) is artificially modified to 0.35, 0.7, 1 and 2. Simulations will be

conducted firstly as effective 1-dimensional flat flames, then 2-dimensional freely-propagating

flames with an initial perturbation to produce both TD-instabilities and DL-instabilities. The

resolution of PeleLM will be well resolved at 16 cells across the thermal thickness. The

level-set will modify the sloc model to represent the different cases.

7.4 Effective 1-dimensional Laminar Flames

Firstly, the results from an effective 1-dimensional flame simulated using PeleLM and the

level-set are compared. The domain is set up similarly to the turbulent flames, where there is a

wall at the bottom of the domain and an outlet at the top of the domain with periodic

boundaries on the sides of the domain. The domain is filled with premixed fuel and the flame

burns from near the top of the domain to the bottom. This configuration is simple and is used
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Figure 7.1: A slice of the domain, showing the density coloured by the colour bar (right) for the

case LeF = 0.35. Left (LM) shows the simulation conducted by PeleLM and the center (LS)

shows the simulation conducted by the level-set approach.

to compare the unstretched laminar flame speed (sL) and the thermodynamic expansion

between PeleLM and the level-set. For comparison, the domain size and resolution between

the control simulations from PeleLM are the same for the level-set approach. Although the

level-set method should be able to make good predictions at a lower resolution than PeleLM, at

this stage evaluation of the approach is the priority rather than efficiency.

Figure 7.2 shows a slice of the domain displaying the density. The left slice shows the density

as calculated by PeleLM, the center as calculated by the level-set and the right image displays

the colour bar. It can be seen that the range of densities is indistinguishable. This is to be

expected as the burnt and unburnt density are user provided parameters. The transition

between the unburnt and burnt density shows that Equation (7.10) does a good job at

smoothing the transition, and closely mimics the real flame. The effect of this specific function

is currently unclear in perturbed and turbulent flames.

Figure 7.2 (top) compares the laminar flame speeds as calculated by PeleLM to the level-set
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Figure 7.2: Top) A plot comparing the laminar flame speed (sL) between the simulations con-

ducted in PeleLM (red) to the level-set simulations (black) with for the different cases. Bottom)

A plot of the error between the laminar flame speed computed in PeleLM to the laminar flame

speed computed by the level-set.

for the different range of conditions. Figure 7.2 (bottom) presents the same data as an error

(ϵ = ((sL)LS − sL)/sL). It can be seen that the flame speeds are all similar with a small but

constant error between the PeleLM and level set. This error is satisfactory and results from a

large time step (or equivalently a large grid size). For multi-dimensional turbulent flames the

time-step will be much smaller, thus this error is expected to become less significant. It should

be noted that this issue is mitigated in level-set methods that use the fastmarching method,

however as explained previously, is not appropriate for negative Markstein number flames.
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Figure 7.3: Top) A plot comparing the exhaust velocity between the simulations conducted in

PeleLM (red) to the level-set simulations (black) for the different cases. (Bottom) A plot of

the error between the exhaust velocity computed in PeleLM to the laminar exhaust velocity

computed by the level-set.

Figure 7.3 (top) compares the exhaust velocity between the simulations conducted by PeleLM

and the level-set. It can be seen that the results are very similar, indicating that the divergence

of the velocity is being appropriately computed. Figure 7.3 (bottom) presents the results as an

error, again, further demonstrating the similarity between the results.
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7.5 2-Dimensional Freely Propagating Flames

Figure 7.4 presents 2-dimensional slices of the progress variable from the freely-propagating

simulations conducted using PeleLM (top) and the level-set (bottom). For the PeleLM cases

the fuel Lewis number is artificially modified to LeF = 0.35 (left) and LeF = 1 (right). The

corresponding level-set simulations have an adjusted Markstein model to represent the

expected flame behaviour from the corresponding fuel Lewis number. Note that the model

used was an informed judgement to demonstrate feasibility, rather than to be proposed.

Investigation into exact models for different cases is ongoing. Without turbulence, the fuel

Lewis number cases of 0.7, 1 and 2 are TD-stable and show only Darrious-Landau instabilities

are present, so only LeF = 0.35 and 1 are presented.

Starting with the TD-stable case, from PeleLM (top right) there is clearly a DL-instability

resulting in a single perturbation. It can be seen that this behaviour is nicely reproduced by the

level-set (bottom right), where there is also a DL-instability. The height of the perturbation is

slightly higher which is likely the result of both the time the slice was taken (these

perturbations are somewhat transient) and the exact Markstein number used (0.2). Figure 7.4

(right) demonstrates that the proposed method captures DL-instabilities well. Further

investigations and validations into the behavior of the DL-instability, such as dispersion

relations, will be the focus of future work.

For the TD-unstable case, from PeleLM (top left) there is a clear TD-instability with a typical

flame finger like those observed in [36]; note the finger is quite constrained by the domain size.

The level-set (bottom left) shows a similar flame structure, with a leading point with strong

positive curvature and followed by a large trailing region and trailing point. Visually

comparing PeleLM to the level-set, the global features are similar with leading and trailing

regions formed with a similar visual height of the instability. However, there are still some key

differences, namely the level-set does not produce the negatively curved regions separating in

the leading points, as you see with PeleLM. This is likely the result of hydrogen being depleted

in this region, which results in a drop in flame speed; there is no hydrogen in the level-set

therefore species depletion cannot be replaced. Secondly, in the flat flame regions with only

small positive curvatures, in PeleLM this region is smooth without any small perturbations, for
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Figure 7.4: 2-dimensional slices of progress variable (H2) from freely propagating simulations

conducted by PeleLM (top) and 2-dimensional slices of progress variable (function of G) for

the level-set (bottom). The fuel Lewis number is artificially modified to LeF = 0.35 (left) and

LeF = 1 (right). For the level-set the Markstein model is adjusted to represent the change in

fuel Lewis number. Note that without turbulence the fuel Lewis number cases of 0.7, 1 and 2

are TD-stable and show only Darrious-Landau instabilities are present so only LeF = 0.35 and

1 are presented.
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the level-set there are some small perturbations. It is currently unclear the origin of this

behaviour and is currently under investigation. Please note that the Markstein model used for

the level-set is only an approximation of the PeleLM flame, and will be improved upon in the

future. The presented comparison exists only to demonstrate feasibility of the methods ability

to simulate negative Markstein number flames rather than to get a precise reproduction of the

PeleLM flame.

7.6 Computational Cost

The primary reason for proposing the level-set is for reducing computational cost. To compare

the costs a benchmark simulation was made in PeleLM for a LeF = 1 flame experiencing

DL-instability for both 16 and 8 computational cells across the thermal thickness. The

simulations were conducted on a local workstation with 16 MPI tasks. The computational cost

was calculated as the ratio of the real world time to complete the simulation to the time

simulated. The same simulation was then repeated using the level-set method for different

resolutions (16, 8, 4, 2 and 1). All the level-set simulations were run for the same length of

simulated time and domain size to ensure a fair comparison.

Figure 7.5 compares the relative computational cost from the level-set simulation. Each

computational cost is normalised by the cost of the simulation from PeleLM. The dotted black

line represents the cost to compute in PeleLM for 16 computational cells across the thermal

thickness (such as those conducted in Chapter 4 and 5). The dotted grey line represents the

cost to compute for PeleLM for 8 computational cells. The red dotted lines represent the

computational cost for the same simulation using the level-set approach.

It can be seen that there is significant reduction in computational cost when using the level-set.

At the same resolution, level-set is about 16 times faster. However unlike PeleLM, the level-set

does not require the resolution to resolve the chemistry of the flame, just the surface, therefore

the resolution is likely to be able to be significantly reduced. How far the resolution can be

reduced is still under investigation, but preliminary results suggest 2 to 4 computational cells

across a flame thickness should be sufficient thus could be 800 to 3000 times faster. This

would allow for increased domain sizes of 30 to 60 times larger (assuming the domain height
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Figure 7.5: Relative computational cost to conduct a 2-dimensional freely propagating flame

using the level-set approach when compared to PeleLM.

is unchanged).

As explained, this chapter is focused only on potential capabilities, thus significant further

investigations into the methods used and the impact on the results, both for DT-stable and

unstable flames which are both freely-propagating and turbulent, is required. Also the

re-initialisation frequency and number of artificial steps have not been fully investigated and

are likely to provide additional cost savings when optimised. Also it is likely that turbulence

will be the limiting factor for the resolution of the level-set. It therefore may not be possible to

lower the resolution to 2 to 4 computational cells across a flame thickness, especially in high

turbulence.

7.7 Conclusions

The current chapter has proposed a DNS-style level-set approach which can be used for

TD-stable, neutral and unstable flames, where the flame surface and turbulence are well

resolved but the chemistry is modelled using a curvature based Markstein model. This

approach yields similar flame responses but at a fraction of computational cost, allowing for

larger simulations where large scale effects can be studied (a clear limitation in Chapters 4 5

and 6). The proposed method and algorithm is implemented into IAMR and a feasibility study
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has been conducted. Using a variety of conditions with increasing fuel Lewis numbers,

effective 1-dimensional and freely-propagating flames have been analysed.

Starting with the effective 1-dimensional simulations, it was found that both the flame speed

and the velocity acceleration due to the modelled density jump has been well captured by the

level-set, with exact values all very similar to a real DNS simulation using PeleLM. Next the

expected behaviour of freely propagating flames was observed; the stable flames and neutral

flames where Darrious-Landau instabilities were clearly visible and visually well represented.

However a more detailed analysis and validation procedure is underway.

Throughout this chapter, important decisions have been made that will have measurable

impacts of both computational complexity and cost, as well as simulation accuracy. This

chapter has presented the required equation set and demonstrated the feasibility and

capabilities of such an approach. However the numerical implementation requires review with

respect to the optimal configuration, namely the re-initialisation equation. Decisions such as

using a spatially second order and temporally first order scheme may not result in the optimal

result. Other works have used higher order schemes ([151] for example). Additionally, the

frequency of re-initialisation and number of artificial time steps are essential for optimal

performance. The values chosen in this chapter were liberal to ensure the correct functioning

of the algorithm at the expense of computational cost. The gradients calculated for density in

Equation (7.11) and curvature were first order accurate for simplicity, but it is likely that higher

order methods may yield better results (such as a the method used to calculated curvature in

[63]). The thickness of the density transition is also likely to influence the range of curvatures

that can be achieved by the flame. This is likely to become important for turbulent flames,

therefore more work on the correct value is required. The current recommendation of 2dx is

unlikely to be sufficient.

This chapter has demonstrated that using a DNS-style level-set approach has the potential to be

used for simulating TD-unstable hydrogen flames at significantly reduced computation cost

with a limited reduction in simulation accuracy. This chapter has formed the foundation of

ongoing and future work to further implement and optimise the algorithm to be used for

TD-unstable turbulent hydrogen flames at larger scales.
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Hydrogen combustion is a promising substitute for carbon emitting traditional fuels for

transport, heating and re-electrification [177]. This thesis makes a significant contribution to

our understanding of the underlying physics of hydrogen and necessary modification of the

models used to develop hydrogen combustors which will help to facilitate future global

adoption [161].

This project utilised direct numerical simulations with detailed chemistry focused on the

fundamental behaviour of lean thermodiffusively-unstable hydrogen flames with a specific

emphasis on the turbulent flame speed, and modelling of the turbulent flame speed, for device

scale internal combustion engines. The problem was divided into increasingly more

complicated flames, starting with laminar freely-propagating flames, then turbulent flames with

a fixed turbulent lenghtscale and finally turbulent flames at a varying turbulent lengthscale.

8.1 Freely-Propagating Flames

Following [80], as in 2-dimensions, it was found that an instability parameter ω2 has good

predictive capabilities for the expected TD-instability over a broad range of reactant conditions

for 3-dimensional freely-propagating flames. An empirical scaling model (equations (4.1) and

(4.2)) was proposed and shown to have good predictive capabilities to capture the

freely-propagating flame speed and thermal thickness of the presented conditions. The model

could be calculated cost-effectively from a 1-dimensional unstretched flame, eliminating the

need for expensive 3-dimensional freely-propagating DNS. This model was shown later to be a

key component to calculating both the mean local flame speed and thickness for turbulent

flames and the turbulent flame speed model.

A curvature-based model was proposed to explore the local flame response to the

TD-instability. It was found that a curvature-only model with a Markstein number of −2.5

captures the local flame speed response to curvature over a broad range of conditions, although

the range of curvatures and local flame speeds observed were somewhat pressure dependence.

It was found that using a stretch based model with both single and independent Markstein
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numbers, did yield improvement over the curvature-based model, however no correlation

between the Markstein numbers and reactant conditions were found.

The flame surface structure was also analysed and principle curvature zones were constructed

to divide the TD-unstable structure into six zones; leading point, leading edge, flat flame,

saddle point, trailing edge and trailing point. It was found that as the flame became more

TD-unstable the flame structure transitions from a flat flame to more leading edge and point.

It was found that at zero curvature, the local flame speed was still higher than the unstretched

laminar flame speed, which was unexpected when using the existing fuel and heat focusing

argument. A thermal leading point concept was proposed where the leading point and edges of

the flame have strong positive curvature thus experience preferential diffusion, resulting in

super adiabatic temperatures. The higher temperatures then diffuse into flat flame regions

enhancing the local flame speed without fuel focusing.

8.2 Turbulent Flames - Fixed Lengthscale

Turbulent flames were then studied, where a broad range of reactant and turbulent conditions

at a fixed relative integral length scale were presented. The turbulence was characterised by the

freely-propagating characteristic values which were shown to correctly characterise the flames

(Figure 5.2).

It was found that turbulence exaggerates the TD-response, which increases the mean local

flame speed above both unstretched laminar, and freely propagating speeds. It was shown that

the mean local flame speed and thermal thickness was well characterised by
√
KaF for all

TD-unstable turbulent and reactant conditions, provided the freely-propagating values have

been accounted for. A model for mean local flame speed and thermal thickness was proposed

(Equations (5.1) and (5.2)) which was shown to have good predictive capabilities over a wide

range of conditions. This model required measured freely-propagating flame speed and

thickness values, thus an additional model was presented (Equations (5.4) and (5.5)) which

combined the proposed model with the freely-propagating model previously proposed. The

combined model had good predictive capabilities over the broad range of conditions, but with
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more scatter than the model with the measured characteristics.

A curvature-based model was proposed to explore the TD-response to turbulence for local

flame speed. Similarly to the freely-propagating flames, the curvature-only model with a

Markstein number of −2.2 captures the range of reactant and turbulent conditions well,

provided the flame speed enhancement due to both reactant and turbulent conditions has been

accounted for. It was found that turbulence enhances the TD-instability, resulting in a larger

range of curvatures and flame speed, but the Markstein number remains largely unchanged.

This was not found to be the case for strain-rate, where at lower pressure little correlation was

found where there was a large range local flame speed, under a narrow band of strain-rate.

Stretch with single and independent Markstein numbers was found to yield an improvement

over curvature-only, however again no clear Markstein numbers captured the range of

conditions well.

The flame surface structure was analysed again using principle curvature zones. It was found

that turbulence transitioned the flame from a predominately flat flame to leading edges and

points for low pressure cases. It was found that more TD-unstable flames that already had a

high proportion of leading edges and points did not experience much of an increase in leading

edges and points. This suggests that there is a limit to how much leading edges and points, and

increasing turbulence, can yield more leading edges and points, possibly due to a domain size

constrainment effect, which is revisited later.

Lastly it was shown that the local flame speed at zero curvature, was higher than both the

unstretched laminar and freely-propagating flame speed. The thermal leading point concept

was revisited where it was proposed that turbulence generates stronger leading points with a

stronger curvature resulting in stronger preferential diffusion, and thus even higher

temperatures diffusing into flat flame regions.

8.3 Turbulent Flames - Length Scale Effects

The turbulent study was then extended to a range of turbulent integral length scales. It was

found that the mean local flame speed was unaffected by the integral length scale, concluding
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that the previously proposed model for mean local flame speed was appropriate and

independent of integral length scale effects. This reduces the turbulent flame speed model to a

flame surface area.

This found that the local flame speed response to curvature was also independent of integral

length scale, and dependent on the Karlovitz number. It was demonstrated that the local flame

response scales with Karlovitz number independent of length scale and that using the root

mean square of the velocity fluctuation is not appropriate for comparing the local effects in

TD-unstable lean hydrogen flames.

The effect of turbulence on the flame surface wrinkling was studied. It was found that the

flame surface area (presented as a wrinkling factor) increases with both turbulent intensity and

integral length scale which adhered well to Damköhler’s small scale limit. Peters model

appeared to have good predictive capabilities for wrinkling factor for flames with Lewis

numbers at and below 1. It was shown that it was important to account for the increase in mean

local flame speed due to the TD-response to reactant conditions and turbulence by adjusting

the prefactor in traditional turbulence flame speed models by using the model previously

presented (Equations (5.4) and (5.5)).

8.4 Well Resolved G-equation

A limitation of DNS with chemistry is the significant limit to the size of the domain, and

therefore limits to the range of Damköhler numbers that can be studied. To mitigate this, a

well-resolved surface-tracking approach has been implemented and, by applying the local

curvature based model proposed in Chapter 5, should be appropriate for laminar,

freely-propagating and turbulent TD-unstable flames. The resulting method reduces

computational expense by about three orders of magnitude. This could then be used to explore

larger domains and Damköhler numbers. Preliminary results have been presented and show

that the method is capable, although is the focus of ongoing work.
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8.5 Vectis

Throughout this work, Realis Simulation have implemented these suggested models into

Vectis, which has yielded promising results by comparing the presented models simulated at a

device scale and real world internal combustion engines. The work conducted was published

by Hernandez et al. [79].

8.6 Future Work and Concluding Remarks

The work undertaken throughout this thesis has revealed clear trends and behaviours of

TD-unstable flames. Models with good predictive capabilities have been proposed and

implemented into existing device scale simulation codes. Despite these findings, the project

has also generated many more questions that require future study.

Thermal leading points have been proposed as an explanation for the zero curvature local

flame speed enhancement, however the evidence supplied does not demonstrate causality. The

relationship between local flame speed and stretch is still unclear. Recent works in pre-print

from Im and Chaudhuri [82] continue to look for evidence.

ω2 has proven to be a good parameter for predicting the expected level of instability, however

other parameters appear to also have good predictive capabilities such as a Zeldovitch number

and Peclet number ratio (see [145] for example). Further investigation into comparing other

instability factors should be the focus of future work.

A clear limitation of DNS has been the small range of length scales which can be studied. As

shown in Chapter 6, the turbulent flame speed (more specifically the flame surface wrinkling)

is sensitive to the integral length scale. It is currently unclear at what scale the flame surface

wrinkling becomes independent of integral length scale, therefore larger simulations are

required. Planned future work will use the well-resolved G-equation approach to achieve these

scales.

Lastly all of the conditions studied have been conducted using a flame-in-a-box approach.

Future work could focus on real-world-combustor configurations, evaluate where the
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limitations of the flame-in-a-box lie and what statistics can successfully be translated to

real-world-combustors.
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