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Abstract

Quantum computing has become a field with high interest in both academia and

industry due to recent advances in the development of quantum computers. Whilst

these devices may provide speedups to solving certain problems in the future, there

are still several issues to address. This thesis explores the automated verification

of different aspects of quantum computers. Quantum computers are more complex

than classical computers and so the verification techniques that are commonly used

classically need to be adapted for the quantum domain. In this thesis, two techniques

are adapted to handle the verification of quantum computers.

Firstly, SilVer is presented as an automated tool for checking quantum pro-

grams written in the high-level programming language Silq. SilVer converts Silq

programs into a model that is based on quantum RAM (QRAM) devices, allowing

for representation of both quantum and classical operations. User-defined speci-

fication are used to encode the desired behaviour of a program. This model and

specification are automatically converted into proof obligations that are checked us-

ing a Satisfiability Modulo Theory (SMT) solver. Several case studies are provided

with their setup and verification run times.

Secondly, the usage of barrier certificates as a verification technique for quantum

computers is explored. Barrier certificates are a technique used in control theory to

check if a dynamical system enters an unsafe region or not. Quantum computers

are based on dynamical systems and so barrier certificates can be used to reason

about their safety. Barrier certificates are adapted to handle complex variables and

different quantum systems. Computational methods are provided for generating

barrier certificates given a quantum system and its specification. Case studies are

provided to explore the usage of barrier certificates for quantum computing.
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Chapter 1

Introduction

Much work has gone into the development and creation of quantum computers in the

last three decades. Their original conception was due to Benioff [19] and Manin [107,

108] in 1980, but brought to the forefront by Feynman [73] who discussed the use of

the behaviours of quantum physics to perform simulations of quantum systems faster

than on a classical computer. Interest in research into the development of quantum

computers did not pick up until algorithms created by Deutsch and Jozsa [62],

Grover [85], and Shor [139] further demonstrated the computational advantage that

such devices could provide. Since then, quantum computing has become a major

research field with interest from academia, industry, and government.

Similar to classical computers, quantum computers face numerous sources of

error. There are three major sources of error for a quantum computer: the proba-

bilistic nature of quantum algorithms, error in hardware and error in software. The

first source of error (the probabilistic nature of quantum algorithms) is due to the

nature of quantum physics, as most quantum algorithms only return a value with

high probability. Due to the randomness of measuring quantum states, an algo-

rithm that uses a quantum computer has a distribution of states that are measured,

and thus a probability of returning the correct result. Some algorithms, such as

the Bernstein-Vazirani algorithm [22], will always return the correct answer, i.e.,

have the correct state with a probability of 1. However, it is more common that

a quantum algorithm will return the correct result with a certain probability, e.g.,

in the case of Grover’s [85] and Shor’s algorithm [139]. This error is mitigated by

running a quantum algorithm multiple times to see which result is most likely, or

by changing the quantum state to increase the likelihood of the correct result being

returned.
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Chapter 1. Introduction

The second source of error (error in hardware) occurs when the physical system

and qubits themselves are interfered with [116]. This interference can occur through

a variety of different ways. One is through noise of having the quantum system be

open; as the quantum state evolves, it faces noise from outside the system and de-

coherence, which changes the quantum state. Another error is readout error, which

occurs during measurement, where a quantum state may be measured incorrectly,

i.e., the “measured” quantum state differs from the state that the user reads. The

current structure of quantum computers means two qubits need to be next to each

other to be entangled. Gate/qubit connectivity is the error that occurs between

two qubits, usually the noise that occurs when a two qubit operation is applied to

the qubits, and can affect how entangled two qubits are. Additionally, moving the

qubits next to each other can introduce errors into the system.

The final source of error (error in software) can occur at various stages [117,165].

Even before considering a quantum program, an error can be in the theory of an

algorithm. The errors can occur when the programmer codes a quantum program

using a quantum programming language. The program itself could be incorrect

or the language itself could contain bugs. These bugs could be an error in the

compilation process or in the syntax of the language (e.g., allowing measurement to

be controlled in some way). Additionally, errors can occur not only when compiling

a program into a quantum circuit, but also when compiling a quantum circuit into

another circuit that works on a specific quantum device. Further errors can occur

when considering the actual software that controls the quantum computer, since

quantum gates need to be applied precisely and quickly to avoid decoherence of

a quantum state. Thus, the mapping of logical qubits in the program to physical

qubits on the device needs to be checked carefully, as well as the signals that need

to be sent to the quantum chip.

It is important that these errors are prevented at all levels of the quantum stack.

Table 1.1 shows the quantum stack [77] with different sorts of behaviours that can

be checked for errors.

Techniques need to be developed to prevent or mitigate the errors that occur

in the quantum stack within both hardware and software. For example, error-

correcting codes can be used to prevent some errors within hardware [131]. Inves-

tigation of techniques to mitigate error in hardware have already taken place [116].

Formal methods provide a way to verify the behaviour of both hardware and software

components of quantum computers. It is only in the last 15 years that formal meth-
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Chapter 1. Introduction

Table 1.1: The quantum computing system stack, based on Figure 3 in [77], with
behaviour that can be verified depending on the stack level. The top half of the stack
is where software errors are most likely and the bottom half of the stack is where
hardware errors are most likely. Further note that hardware errors are architecture
dependent.

The Quantum Stack Behaviour to Verify
Quantum Algorithm Algorithm correct

Programming Language Program behaviour
Quantum Arithmetic/Gates Runtime Compiler Conversion correct

Quantum Instruction Set Quantum circuit verification

Quantum Execution Quantum Error Correction Mapping (Logical to Physical)
Quantum-Classical Interface Signals to chip

Quantum Chip Hamiltonians and controllers

ods have been applied to verify behaviours in quantum computing [14,38,94,158].

Formal methods includes two broad categories: deductive verification and model

checking. When applying formal methods, one of the major factors to consider is

whether to use an automated technique or a manual one. These provide different

advantages as an automated technique requires very little effort from the user but

understanding where errors occur can be difficult, a user may be given a program

trace but this does not necessarily show how to fix the error (especially with quantum

programs). On the other hand, manual techniques provide a better understanding

of the program or system but the user requires very technical knowledge and a lot

of effort to show a a behaviour is followed. Model checking includes automated

techniques but deductive verification contains a mixture of automated and manual

techniques.

There exists a variety of these verification techniques applied to the verification of

quantum computers and programs. Many of the tools currently available involve us-

ing manual techniques such as theorem provers [88,104,105,166]. Other approaches

have investigated using automated techniques such as Satisfiability Modulo Theory

(SMT) solvers [18, 39], automata based verification [41] and abstract interpreta-

tion [162].

1.1 Thesis Structure

This thesis looks at the usage of two automated techniques to verify behaviours of

different aspects of quantum computers. It is divided into four major parts, with

4



Chapter 1. Introduction

Part I
Introduction

Part II
SilVer: Silq
Verification

Part III
Barrier Certificates

Part IV
Conclusion and Supplementary Material

Figure 1.1: Thesis dependency graph

a schematic overview of the thesis structure given in Figure 1.1. Parts II and III

depend on Part I, and Part IV is dependent on all other parts (although it can be

read independently from other parts).

In all Chapters, the work presented in this thesis is based on various publications

and manuscripts written in collaboration with my supervisors (Paolo Zuliani and

Sadegh Soudjani). The writing contained within this thesis is my own writing with

comments from my supervisors, and the various tools were developed by myself.

Part I provides an introduction to the research field of formal verification of

quantum computers. Chapter 2 provides a basic introduction to quantum computing

and formal verification (Section 2.1) and a look at the most well known developed

tools used to verify quantum programs and circuits (Section 2.2). The contents of

Chapter 2 provide a background to quantum computing, formal verification, and

recent tools for verifying quantum computers and are based on a survey paper

published in the ACM Transactions on Quantum Computing under the title “Formal

Verification of Quantum Programs: Theory, Tools, and Challenges” [101]. Further

excerpts and a more detailed background are provided in Appendix A.

In Part II, the first automated technique is discussed, where SMT solvers are

used to verify programs written in Silq [25], a high-level quantum programming lan-

guage. The developed tool, SilVer, is one of the first to use a quantum programming

language and the software verification framework to allow fully automated verifica-

5



Chapter 1. Introduction

tion of programs. The contents of Chapter 3, which covers the details behind the

implementation of SilVer, are part of an accepted manuscript to the 2024 IEEE In-

ternational Conference on Quantum Software (QSW) titled “Automated Verification

of Silq Quantum Programs using SMT Solvers”.

In Part III, the second automated technique analysed is a technique known as

barrier certificates, which is applied to the gate and circuit level of the quantum

stack. The extension of barrier certificates into the complex domain is shown and

then the generation of barrier certificates is also extended. The contents of Chap-

ter 4, which looks at applying barrier certificates to quantum systems and using a

linear programming approach to generate barriers, is from work presented at the

International Conference on Quantitative Evaluation of SysTems (QEST) 2023 un-

der the title “Verification of Quantum Systems using Barrier Certificates” [102].

Chapter 5 contains an investigation into verifying quantum circuits and uses Her-

mitian Sum of Square (HSOS), a complex extension of Sum of Squares, to generate

valid barriers. The contents of Chapter 5 are from an unpublished manuscript ti-

tled “Verification of Quantum Circuits through Discrete-Time Barrier Certificates”,

which follows up on the previous work [102].

Finally, in Part IV, the results of the various Chapters are brought together.

Additionally, the bibliography and various appendices can be found in this part.
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1.2 List of Outputs

1.2.1 Thesis Related Outputs

Papers published

• Marco Lewis, Paolo Zuliani, and Sadegh Soudjani, Automated Verification of

Silq Quantum Programs using SMT Solvers. IEEE International Conference

on Quantum Software (QSW), Shenzhen, China, 2024, pages 125-134.

• [101] Marco Lewis, Sadegh Soudjani, and Paolo Zuliani. Formal verification

of quantum programs: Theory, tools, and challenges. ACM Transactions on

Quantum Computing, 5(1), December 2023

• [102] Marco Lewis, Paolo Zuliani, and Sadegh Soudjani. Verification of

quantum systems using barrier certificates. In Nils Jansen and Mirco Trib-

astone, editors, Quantitative Evaluation of Systems, pages 346–362, Cham,

2023. Springer Nature Switzerland.

Manuscripts under Submission

• Marco Lewis, Paolo Zuliani, and Sadegh Soudjani. Verification of Quan-

tum Circuits through Discrete-Time Barrier Certificates. Submitted to ACM

Transactions on Quantum Computing.

Software

• Discrete-time barrier certificates for quantum circuits (discussed in “Verifica-

tion of Quantum Circuits through Discrete-Time Barrier Certificates”)

GitHub: https://github.com/marco-lewis/discrete-quantum-bc

• SilVer Framework (discussed in “Automated Verification of Silq Quantum

Programs using SMT Solvers”)

GitHub: https://github.com/marco-lewis/silver

Zenodo: https://doi.org/10.5281/zenodo.8343751

• Continuous-time barrier certificates for quantum systems (discussed in “Veri-

fication of quantum systems using barrier certificates”)

GitHub: https://github.com/marco-lewis/quantum-barrier-certifica

tes
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Chapter 2

Background

In this chapter, the fields of quantum computing and formal verification are intro-

duced. Further related works are introduced on how formal verification has been

used in quantum computing in the last decade. This gives the reader an introduction

into the research topic and ideas covered in this thesis.

2.1 Quantum Computing and Formal Verification

This section introduces the standard notation used in quantum computing, and the

field of formal verification. Whilst there are many techniques for formal verification,

this section focuses on the two most popular ones: model checking and deductive

verification.

2.1.1 Quantum Computing Notation

Nielsen and Chuang’s volume [114] is the standard textbook for quantum computing

and a full introduction can be found therein. This section will briefly cover some

notation used throughout the thesis, however new notation is introduced where

appropriate.

Throughout, the Dirac/bra-ket notation is used to describe quantum states and

operations. Quantum states are written using kets, |.⟩. The states |0⟩ = [1, 0]⊺ and

|1⟩ = [0, 1]⊺ describe the computational basis states. In general, a quantum state

is described as |ϕ⟩ =
∑

j αj |ϕj⟩ where ϕj is typically a bitstring. The dual of a

quantum state is denoted by a bra, |ϕ⟩† = ⟨ϕ|.

9



Chapter 2. Background

Unitary operations, denoted by U , are operations from quantum states to quan-

tum states and their inverse is their adjoint, i.e., U−1 = U † = U
⊺
. The application

of U to |ϕ⟩ is represented by U |ϕ⟩. Some common unitary operations include, for

example, the Hadamard (H), Phase (Z), NOT (X), and Controlled-NOT (CNOT )

gates:

H =
1√
2

(
1 1

1 −1

)
, (2.1)

Z =

(
1 0

0 −1

)
, (2.2)

X =

(
0 1

1 0

)
, (2.3)

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 ; (2.4)

which behave as

H |j⟩ = 1√
2
(|0⟩+ (−1)j |1⟩),

Z |j⟩ = (−1)j |j⟩ ,

X |j⟩ = |¬j⟩ ,

CNOT |j, k⟩ = |j, j ⊕ k⟩ ,

where j, k ∈ {0, 1} and ⊕ is the XOR Boolean operation.

Unitary operations can be combined using either matrix multiplication (applying

operations one after another) or using the Kronecker product (for applying oper-

ations to multiple qubits). Operations from either product are still unitary and

can be applied to quantum states. There is a notion of completeness for quan-

tum operations known as universality [61]. Essentially, a set of unitary operations,

U = {U1, . . . , Uk}, is a universal set if for any unitary operation, U , can be rep-

resented by operations from U , using the matrix and Kronecker product, up to

arbitrary accuracy.

The other type of operation that can occur is quantum measurement, which

10



Chapter 2. Background

causes the quantum state to “collapse” into a basis quantum state. Measurement

is encapsulated by a collection of measurement operators {Mm}, where m denotes

the measurement outcome and
∑

mM
†
mMm = I. For a quantum state |ϕ⟩, the

probability of measuring m is given by P (m) = ⟨ϕ|M †
mMm |ϕ⟩ and the collapsed

state after measurement is Mm|ϕ⟩√
P (m)

.

One important concept in quantum computing, which is discussed in this section,

is the principle of no-cloning. The no-cloning theorem [156] states that there exists

no unitary operation that can copy a quantum state, i.e., there is no unitary U such

that for all quantum state |ϕ⟩, U |ϕ⟩ |0⟩ = |ϕ⟩ |ϕ⟩. If a quantum state is to be copied,

then the original quantum state must collapse in some way.

The density matrix formalism is also discussed and used instead to represent

quantum states. Hermitian operators, denoted by H, are operators that are self-

adjoint, so H = H†. Further, Hermitian operators have real eigenvalues. In the

density matrix setting, states are described by Hermitian matrices and often are

written as ρ =
∑

j αj |ϕj⟩⟨ϕj|. This representation is used in this chapter (and

related appendix) only, notably in Section 2.2.2 and Appendix A.2.2.

2.1.2 Model Checking and Verification

Verifying software with model checking involves modelling the software through a

formal representation. Then the desired behaviour is specified through an appropri-

ate logic. Once these two components are created, model checking algorithms can be

used to check whether the model follows the specified behaviour. Typically, models

are created using Kripke structures (a type of transition system) and behaviours

are specified using a temporal logic, such as Computation Tree Logic (CTL). More

details can be found in [47] and a brief study of Kripke structures and CTL is given

in Appendix A.1.2.

A reason for choosing model checking as a verification technique is that it ef-

ficiently searches over all possible states of a Kripke structure in a completely au-

tomated way. However, the main issue of model checking is the state explosion

problem [48]. Due to the design of the Kripke structure, an increase in the size of

the system can increase the number of states in the structure exponentially. This can

make it very difficult for the system to be verified quickly. Over the last few decades

a number of methods have been developed to address the state explosion problem.

For example, bounded model checking (BMC) [26] only considers finite computation

11
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trees, effectively meaning that the system is only checked up to a certain point in

its temporal evolution.

Another technique is CounterExample-Guided Abstraction Refinement (CEGAR)

[44, 46], which starts by creating an abstract model that over-approximates the be-

haviour of the original (concrete) model. The abstract system is then model checked

against a given universally path-quantified temporal logic property. If the property

is satisfied then the system follows the behaviour, since the abstract model encom-

passes all the possible behaviours of the concrete model. If instead a counterexample

to the property is returned, then this counterexample is compared in the concrete

model: if it is an actual counterexample, then the model checking fails since this

is a “real” bug of the concrete model. Otherwise, the counterexample is spurious

and the abstraction is refined so that the counterexample no longer fails inside the

abstraction. The newly-obtained abstraction is then model checked again – the pro-

cess is repeated until the property is either verified or a concrete counterexample is

found [44].

2.1.3 Deductive Verification

For a full review of deductive verification the reader is referred to, e.g., [86]. Unlike

model checking, which explores the possible states of software, deductive verification

formally verifies programs through logical inference. Further model checking can en-

sure certain properties about software automatically, whereas deductive verification

can be used to verify complex properties about programs in a way that is under-

standable by humans. For example, a subroutine can be shown to always return a

certain result no matter the input by using deductive verification. The Floyd-Hoare

logic [89] is studied below as an example.

A program is given some preconditions, the assumptions held at the start of a

program; and postconditions, which are goals or requirements to meet after the pro-

gram has run with the given preconditions. A program is valid if the postconditions

can be inferred from the given preconditions using inference rules. This is often writ-

ten in the form of a Hoare triple denoted by {P}S{Q}, where P is a precondition,

Q is a postcondition and S is a program statement. A Hoare triple is considered

valid if a sequence of inference rules can be used to derive it. The basic inference

rules are given in Equation (2.5).

The proof of a program or system can be created from the Hoare triple and the
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{P} skip {P}
(Skip)

{P [a/x]}x := a{P}
(Assign)

{P}S1{Q}, {Q}S2{R}
{P}S1;S2{R}

(Composition)

{b ∧ P}S1{Q}, {¬b ∧ P}S2{Q}
{P}if b then S1 else S2{Q}

(Conditional)

{P ∧ b}S{P}
{P}while b do S{¬b ∧ P}

(While)

P2 → P1, {P2}S{Q2}, Q2 → Q1

{P1}S{Q1}
(Consequence)

(2.5)

use of inference rules. These proofs are converted into proof obligations, which are

mathematical formulae that are checked using one of a variety of software tools. The

most common tools for software verification are theorem provers and Satisfiability

Modulo Theory (SMT) solvers. Theorem provers [153] allow programmers to write

the obligations that are to be met in a completely formal environment. Then lemmas

and theorems about these obligations can be derived from definitions created within

the tool. Normally, the process of proving an obligation is interactive and so the

programmer will write the proof with assistance from the tool. Theorem provers are

used in a number of the tools discussed in Section 2.2.

In comparison, SMT solvers [59] convert obligations into logical formulae over

a theory, such as, e.g., the natural numbers, rationals and bit vectors. Alongside

a statement the user wishes to assert, the solver can automatically check if the

formulae are valid. If not, the solver can provide a counterexample. In particular,

at least one tool, QBricks [39], has made use of SMT solvers for verifying quantum

programs; which is discussed in Section 2.2.4.

Deductive verification still suffers from scalability issues, albeit different from the

state explosion problem model checking faces [48]. The scalability problem faced

in deductive verification is that as the system to verify grows and becomes more

complex, it becomes harder to verify the increasingly complex behaviours (either

13
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manually or automatically). Unlike model checking, deductive verification requires

programmers to have a deeper understanding of why the obligations are correct. This

is both an advantage and a setback, since it can take a long time to prove complex

obligations that could be solved automatically using model checking. However, it is

possible to create human-readable proofs as to why a program is correct.

For examples of some of the most used theorem provers, the reader is referred

to [153]; an introduction to SMT solvers is given in [59] and a deeper study is given

in [16].

2.2 Related Works

Here various tools that can verify quantum programs and circuits are discussed,

highlighting their trade-offs, where they excel and their limitations. At the end

of this section, other quantum verification tools, whose focus is not on the formal

verification of programs, are briefly discussed.

2.2.1 SQIR (and QWIRE)

The languages QWIRE [120] and SQIR (Small Quantum Intermediate Represen-

tation) [88] are domain specific languages built in the Coq interactive theorem

prover [23]. QWIRE was one of the first quantum programming languages to be

released with verifiable programs, while SQIR is a more recent language that has

various improvements over QWIRE. These improvements include shorter code, bet-

ter handling of ill-typed programs and the separation of semantics for unitary and

non-unitary (e.g., measurement) operations.

SQIR uses the various functionalities of Coq to act as a proof assistant for writing

proofs about quantum programs. To verify a program, firstly the program is defined

using a dedicated type, with qubit indices being referred to by a numerical value

(e.g., X 3; refers to applying the X operation to the qubit in index 3). Programs can

be defined by one of two types: base ucom, which only contains unitary operations;

or com, which includes the unitary operations and measurement (no other non-

unitary operations are possible). Classical subroutines cannot be performed within

a SQIR program, but it is possible to generate circuits using classical parameters.

Theorems can then be conjectured about the program. Unitary SQIR uses state

vectors as part of the semantics, whereas full SQIR extends this to density matrices.
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Definition Program : base_ucom 2 := H 0; X 0; CNOT 0 1; X 0.

Local Open Scope R_scope.

Definition xor_state : Matrix (2^2) (1^2) : =

1/\sqrt{2} .* (|0,1> .+ |1, 0>).

Theorem Prog_Correct: uc_eval Program x (|0,0>) = xor_state.

Proof.

intros

unfold Program; simpl.

unfold xor_state; simpl.

autorewrite with eval_db; simpl; try lia.

solve_matrix.

Qed.

Figure 2.1: A simple program and proof written in SQIR, which transforms the
state |00⟩ into 1√

2
(|01⟩+ |10⟩).

The user proves the theorem with the assistance of the Coq framework. This format

separates programs from how they are specified or proved. No-cloning is satisfied

through the use of unitary gates and measurement being the only operations allowed

in the language.

An example program and proof can be seen in Figure 2.1. Whilst the example

given is quite trivial, it is possible to make generalisations about what can be proven.

The creators of SQIR have already proven some properties about Grover’s algorithm,

notably they proved that the algorithm measures a marked element with probability

sin2((2T +1) arcsin
(√

k/2n
)
) after T steps (where n is the number of qubits and k

is the number of marked elements).

Coq requires interaction from the user for theorem proving, but there is some

automation when reducing matrices as seen in the solve matrix function given in

Figure 2.1 (solve matrix is a tactic that attempts to simplify a matrix equality using

a variety of sub-tactics). Further, SQIR benefits from a number of gates already

implemented and verified within the language. With its capabilities, SQIR has been

able to prove properties about most textbook algorithms, including Grover’s, the

Quantum Phase Estimation and Shor’s algorithms.

SQIR is designed such that circuits use a predefined number of qubits. Should

ancillary qubits be required in the circuit, the user must define these at the start,
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Figure 2.2: Documentation of a simple program that implements a single CNOT gate
and checks that the state |10⟩ is transformed to |11⟩. The state |10⟩ is represented
by the predicate proj-10 = |10⟩⟨10| and a similar predicate represents |11⟩.

rather than introducing them when required. This design choice reflects quantum

hardware that cannot perform on-the-fly ancillary allocation but could be restrictive

should allocation be possible after beginning the computation.

Overall, SQIR is very useful for showing that quantum programs are correct.

SQIR is capable of showing the correctness of programs for an arbitrary number

of qubits and has verified several example algorithms already. However, being a

theorem prover based tool means that SQIR requires expertise in Coq, which devel-

opers of quantum programs do not necessarily have. This is where an automated

tool could be more beneficial. Additionally SQIR cannot initialise additional qubits

after the start of the program.

2.2.2 QHLProver

The Quantum Hoare Logic [158] is a quantum extension of Hoare logic formally

described in Appendix A.2.2. It has been implemented into the Isabelle/HOL proof

tool [104]. This implementation uses a slightly simpler version of the quantum-while

language (introduced in Appendix A.2.2), omitting the initialisation term q := 0.

A full documentation of the implementation is available in the Isabelle Archive

of Formal Proofs (AFP) [105]. This implementation is referred to as QHLProver.

By using Isabelle, verification is not fully automated, but some automation is used

to make manual proving easier when handling complex matrices, which are used

to define gates and oracles. An example can be seen in Figure 2.2, showing how a

program is validated within the Isabelle framework.

QHLProver is similar to SQIR in a few ways. The way programs are proved

is akin to that of Coq, where programs, states and density matrices are defined
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and then theorems can be conjectured about them. Similar to SQIR, programs in

QHLProver require a predefined number of qubits and so ancillary qubits need to

be defined at the start of computation.

Programs are written using a specific type (com), which encodes the terms of

quantum-while, and the predicates used within the pre- and post-conditions are

density matrices. These all need to be verified for a specific triple to be correct as

seen in Figure 2.2.

Unlike SQIR, which defines programs as quantum circuits, QHLProver uses an

extension of the quantum-while language to define programs. Whilst there is no

theory written for no-cloning within the documentation, no-cloning is adhered to due

to the simple grammar that only allows for unitary operations and measurement.

As mentioned previously, there is no classical functionality in the quantum-while

language and this is reflected within the Isabelle implementation. Classical parame-

ters are used to extend gates to operate on a subset of qubits. Constructing oracles

for different algorithms is done by writing functions defined in terms of natural num-

bers to Booleans, which are then used to create a complex matrix from the matrix

indexes.

QHLProver suffers from a lack of implemented logic gates with verified prop-

erties. Within QHLProver, a user is required to prove properties of a logic gate

to use it within the implemented QHL system (e.g., one needs to prove a gate is

unitary). Currently, the language implements the Pauli gates, Hadamard gates and

some gates used within Grover’s algorithm. Out of the common quantum gates,

only the Hadamard gate is verified. This makes it difficult to create new programs

as the user must verify properties of simple gates (such as CNOT).

Similarly to SQIR, QHLProver benefits from using a theorem prover to verify

arbitrary size programs but, unlike SQIR, is missing advanced examples. Although,

QHLProver has an already developed theory behind it, Quantum Hoare Logic [158],

that is being extended with additional features [71, 103]. Once again though, it

requires the developer to have expertise in using theorem provers to prove properties

about quantum programs, where an automated tool will be easier and quicker for

a developer to use. Additionally, while QHL reasons about the quantum-while

language, this is not a language used in practice or that features high-level features.

CoqQ A recent tool called CoqQ [166] builds on the work from QHLProver. It

shares a number of similarities, such as using QHL and the quantum-while language.

17



Chapter 2. Background

Figure 2.3: Documentation of a simple CNOT program written in IMD, similar to
that of QHLProver. The circuit performs a NOT-gate on the first qubit and then the
CNOT gate with the first qubit as control. The lemma circ-result uses the circuit
definition and how the state evolves through each transition to show the resulting
state. The full Isabelle theory file for this example is available in this repository:
https://github.com/marco-lewis/IMD_CNOT.

As in the name, CoqQ uses the Coq theorem prover instead of Isabelle/HOL.

CoqQ enhances the semantics of QHL by using improved inference rules and

allowing dynamic initialisation of qubits. This allows the framework to verify

non-textbook algorithms such as algorithms for solving the hidden subgroup prob-

lem [114] and the hidden linear function problem [33]; and the HHL algorithm (see

Appendix A.5.1).

2.2.3 Isabelle Marries Dirac (IMD)

Another work [30] provides another instance of verified quantum computing using

the Isabelle theorem prover. Unlike QHLProver’s use of the quantum-while language

and Hoare logic, Isabelle Marries Dirac (IMD) uses the standard matrix formalisa-

tion approach of quantum computing to prove properties about algorithms and

protocols. Because of this, IMD is closer to a verifiable mathematical library, rather

than a verifiable programming language. An example can be seen in Figure 2.3.

Firstly, matrices are defined to have a fixed size, whether through a variable n

or a value. Ancillaries are needed to be defined by the user and taken into account

when defining matrices. Fortunately, programs in IMD are defined using the dot and

Kronecker product of matrices. This makes it easier to add in ancillary definitions.

Since IMD is a mathematical library, classical functionality is possible so long

as proofs are developed in the Isabelle theorem prover. Oracles are constructed in

a similar way to QHLProver, where the matrix value at an index is determined by

a function with indexes as input. Various properties about measurement are imple-

mented within the library such as the probability of a given outcome. It is possible

18

https://github.com/marco-lewis/IMD_CNOT


Chapter 2. Background

to prove properties not just about standard algorithms (e.g., the Deutsch-Jozsa al-

gorithm) but also different quantum information theoretic results such as quantum

teleportation [21]. One result to mention in particular is that IMD explicitly proves

the no-cloning theorem within Isabelle. The other tools within this section do not

provide such a proof in the framework they use, but the definitions of states and

operations that the tools use allow for no-cloning to be followed. More results are

discussed in [30].

Further, Echenim and Mhalla [66] have used IMD and density matrices from

QHLProver to prove properties about projective measurements (measuring qubits

in a basis different from the computational basis {|0⟩ , |1⟩}). They continued to

develop more information theoretic results by proving the CHSH inequality [49].

As can be seen, the featured libraries have more proofs relating to mathematical

concepts of quantum computing that cannot be implemented in a programming

language. The documentation for IMD and the extension [66] are available in the

Archive of Formal Proofs [31, 65].

Once again, IMD uses a theorem prover, which gives the same benefits and

drawbacks as SQIR and QHLProver. Unlike other works, IMD takes a mathematical

focus on quantum computing, this being beneficial since quantum properties can

be investigated, e.g., the CHSH inequality. However, taking this mathematical

perspective of quantum computing makes it harder to integrate with actual programs

to be verified.

2.2.4 QBricks

QBricks [39] is a circuit-based verifiable quantum programming language built in

the Why3 framework [74]. The language is purposefully built so that the program

syntax is separated from the specification to be proved about the program. Pro-

grams are written using QBricks-DSL, which is a domain specific language, and the

specifications are written in QBricks-SPEC. Figure 2.4 gives the specification and

definition for the oracle used in the Deutsch-Jozsa algorithm.1

The verification process of programs uses the ideas of the weakest precondi-

tion, path sums and quantum Hoare logic to generate proof obligations, building

on previous works to suit the requirements of the language. Programs written in

QBricks-DSL are converted into a path sum representation, which can then be used

1At the time of writing, a tutorial article is being written by the team.

19



Chapter 2. Background

val function deutsch_oracle (f: bitvec -> int)(n:int): circuit

requires{1<=n}

requires{(not (constant_bin f n)) -> balanced_bin f n}

ensures{width result = n+1}

ensures{forall x: bitvec. forall y: matrix complex.

is_a_ket_l y 1 ->

path_sem result (kronecker (bv_to_ket x) y) =

kronecker (bv_to_ket x) (xor_qbits (ket 1 (f x)) y)

}

Figure 2.4: The definition of a Deutsch-Jozsa oracle within the QBricks lan-
guage [39]. The require statements note the preconditions of the oracle (there is
at least 1 qubit and if f is not constant then it is balanced). The first ensures state-
ment maintains the width of the oracle from input to output. The second ensures
statement gives the usual definition of a quantum oracle (O |x⟩ |y⟩ = |x⟩ |f(x)⊕ y⟩)
from necessary preconditions. This function can be used later to prove prop-
erties about the Deutsch-Jozsa algorithm. Full documentation is available at
https://github.com/qbricks/qbricks.github.io.

in the specification of their program in QBricks-SPEC to verify various properties.

Several Hybrid Quantum Hoare Logic (HQHL) rules are given and can be used to

generate the proof obligations from the specification and program written in path

sums. These obligations are then proved using automatic SMT solvers such as Alt-

Ergo [52] and Z3 [58]. QBricks still requires some interactivity from the user when

writing the specification, but as mentioned these are mostly proved automatically.

The language features a vast array of functionalities, including the capability of

introducing ancillary qubits in the middle of code, unlike SQIR and QHLProver.

The framework adheres to the no-cloning theorem as it only allows certain unitary

operations within its DSL.

QBricks still has some limitations though. Currently, there are no built-in capa-

bilities to measure qubits within QBricks-DSL. Further, QBricks is not designed to

interact with classical data, but classical parameters can be used in the generation

of circuits. Despite these limitations, so far QBricks has been able to verify prop-

erties for the Phase Estimation and Shor’s algorithms, which are the most complex

algorithms verified by languages so far.

Overall, QBricks avoids the manual drawbacks that theorem prover based ap-

proaches suffer from by making use of the Why3 framework to allow for usage of

SMT solvers for some automation. However, the tool is not fully automated and
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still requires some interaction from the user to prove properties. Additionally, whilst

QBricks-DSL is a good language for representing quantum circuits, the language is

specific to QBricks. It does not represent quantum programs and cannot be used

to simulate or run the quantum circuits it represents.

2.2.5 Further Related Works

This section introduces other notable works on using formal verification to verify

quantum programs.

Quantum Model Checking The Quantum Program/Protocol Model Checker

(QPMC) [70] is a tool developed to check a quantum extension of probabilistic

CTL, known as qCTL, against programs that are modelled by quantum Markov

chains. This allows programmers to use model checking techniques against quantum

programs. However, QPMC is limited in that one needs to write their program as

a Markov chain for it to be checked. This can be circumvented by a tool known

as Entangλe [9, 10], which allows quantum programmers to convert Quipper [83], a

functional quantum programming language, programs into Markov chains that can

then be checked against qCTL properties.

symQV Making use of SMT solvers, symQV [18] is a tool that automatically checks

the quantum state after going through a quantum circuit. Notably, symQV checks

the quantum state only and has no functionality with quantum circuits that in-

clude measurement. However, symQV gets some speedups over a default SMT solver

and default Bloch sphere representation by making use of dReal (a δ-satisfiability

SMT solver) [78] and using an over-approximation of the Bloch sphere to represent

quantum states [11, 28].

Feynman - Path Sums Using the path sum technique (details in Appendix A.2.4),

a Haskell library known as Feynman was produced to perform simulation, verifi-

cation and equivalence checking of quantum circuits [6, 7]. Equivalence checking

involves checking if two circuits (e.g., a circuit and its compilation to a specific

quantum computer) are functionally equivalent, even if they use different gates.

Equivalence Checking using Binary Decision Diagrams (BDDs) Another

form of equivalence checking has been developed through the use of BDDs and exten-
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sions. There are two notable tools that take this direction. The first approach [34,

154] makes use of an extension of binary decision diagrams called quantum multiple-

valued decision diagrams (QMDDs) [115]. The second approach SliQEC [40, 151]

uses a bit-slicing technique to represent complex numbers efficiently in standard

BDDs [147].

AutoQ Another quantum circuit verifier is AutoQ [41], which makes use of tree

automata and the complex number representation introduced in [147] to verify prop-

erties of quantum circuits such as Grover’s algorithm.

PyZX This tool is a module in the Python language that implements the ZX-

calculus [95], a graphical language for reasoning about quantum circuits. Still cur-

rently under development, PyZX is able to convert back and forth between circuits

and ZX graphs. This allows circuits to be simplified and optimised using the rules of

the ZX-calculus. PyZX is not designed for reasoning about programs, but is useful

for checking the equivalence of circuits.

CertiQ CertiQ is a verification framework developed for Qiskit [129] that verifies

if a compiled circuit is the same as the circuit that is programmed by the user [138].

Interestingly, it makes use of Z3 and other SMT solvers to perform this verification

automatically, requiring the user to only input a few lines of specification. While

this uses automatic verification, again it should be highlighted that this is used

for verifying circuit equivalence, similarly to PyZX, and not for reasoning about

programs.

QSharpCheck This tool extends Q# with a means of testing programs [90]. Users

can initialise qubits, notably their phase, and a number of different postconditions to

be met by the resulting qubits. With this, the user can then define parameters that

are used to run the tests. When run, test cases are randomly generated, executed

on the program and checked they meet the postconditions given. This makes it very

easy to quickly test a few properties of a program. However, this tool is designed for

testing purposes and not for formal verification of programs. Despite this, it may

find use for simpler programs that do not need to be verified extensively2. There have

2In early 2021, Microsoft added some testing and debugging functionality to Q#: https:

//docs.microsoft.com/en-us/azure/quantum/user-guide/testing-debugging?tabs=tabi

d-vs2019
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been further works looking into testing and debugging of quantum programs [123,

146,150].

Quantum Process Calculi Whilst the tools discussed focus on verifying pro-

grams and circuits, there are few tools available that verify properties of quantum

processes or communication protocols [57, 68, 79]. Normally, the properties verified

are related to bisimulation, showing that two processes or protocols are equivalent

through some relation [99, 160]. This equivalence is shown by using a calculus to

describe the specification, translating it to a transition system, and then comparing

it against the process (described through a transition system). A common calculus

for quantum processes is qCCS [68], a quantum extension of CCS [112]. The tool

from [127] looks at verifying various quantum communication protocols for ground

bisimulation using qCCS, but most studies focus on the theory rather than imple-

mentation of the bisimulation verification technique. Note that these works would

require programs to be translated into the suitable transition system to be useful.

2.2.6 Comparison to Thesis Contributions

With the introduction of all the different tools available for verifying quantum com-

puters, this Section discusses the comparison between them and the contributions

of the thesis.

Tools such as SQIR, QHLProver, and Isabelle Marries Dirac (IMD) face the same

benefits and issues that theorem provers face (understanding of proofs, person-hours

to prove properties, . . . ). Beyond that each tools faces different issues, some of which

have been discussed. For example, SQIR and QHLProver do not allow qubit allo-

cation during a program, and IMD proves mathematical properties about quantum

computing (rather than proving properties about software). QBricks whilst being

very adaptable by making use of different theorem provers and SMT solvers, is not

fully automated. Some of the theorems and lemmas require the user to prove that

they are correct. The main downside to all of these approaches is that a developer

for quantum software will not necessarily have the expertise to use theorem provers.

SilVer, discussed in Part II, takes a fully automated approach to verifying quan-

tum programs, which is more useful for developers. Previous automated tools focus

on verifying quantum circuits, whereas previous theorem prover-based approaches

can verify quantum programs at the consequence of having to manually prove them.
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Further, unlike many of the other tools mentioned, SilVer works on Silq [25], a

high-level quantum programming language.

The work developed in Part III on barrier certificates is unique compared to the

previous tools. All the tools discussed focus on the software levels of the quantum

stack, whereas the barrier certificate approach focuses on the hardware levels. Whilst

both the barrier certificate technique and many previous tools share a similarity

in verifying quantum circuits, the barrier certificate approach developed in this

thesis also investigates at a lower level and considers the verification of the quantum

systems that work under-the-hood of quantum gates. This approach is therefore

novel in that it verifies at the lowest level of the quantum stack, which has not been

considered before. Additionally, the methods developed in Chapter 5 can be easily

adapted to other types of quantum systems by extending the appropriate type of

barrier certificate.

Comparison on Intermediate Representations

In Part II (specifically Section 3.4), an intermediate representation is introduced to

represent Silq [25] programs. There are other intermediate representations available

that have been used for verification. The Small Quantum Intermediate Represen-

tation (SQIR) [88] is used both for program correctness and optimisation purposes.

Giallar [145], used to to verify the Qiskit compiler; and the quantum program model

for symQV [18], for verifying aspects of quantum algorithms, feature a symbolic rep-

resentation for quantum circuits. QBricks [39] includes its own domain specific

language, QBricks-DSL, that is used to represent programs, but this is a program-

ming language rather than a representation of programs.

The QRAM program model, the representation introduced in Section 3.4, acts as

a model for a QRAM style quantum computer [96], where a classical computer sends

instructions to a quantum chip to execute. Most other models, apart from QBricks,

focus purely on the representation of quantum circuits rather than instructions for

QRAM devices, which are more complex and allow for classical operations to occur.

In comparison to other representations, the controls that affect a system are

separated from the operations to be performed. This allows the representation to

represent not only have quantum controls, but classical controls as well; meaning

only uncontrolled unitary operations are considered in the quantum instructions.

Whilst QASM/OpenQASM [55] bears some similarities to the QRAM program

model introduced, it is not suitable for representing Silq programs. The reason for
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this is because Silq can have can have very arbitrary controlled operations through

its conditional statements that use quantum variables. For instance, one can write

if x >= 6 then y := X(y) in Silq to refer to a controlled operation on any state in

the quantum register x with a value greater than 6. This has two components: a

controlled operation on a register (x), and an operation controlled on multiple states

(|6⟩ , |7⟩ , . . . ). The QRAM program model can handle these features through the

list of CTRL instructions. In OpenQASM, controlled operations can only be done

at the qubit level. For a quantum register to act as a controller, a function needs

to be defined to handle this. Further, an operation being controlled on multiple

states would also need to be defined in a function where the explicit states that

meet the operation must be given. This low-level handling of controlled operations

makes OpenQASM unsuitable to model conditional statements and, therefore, Silq

programs.

The symbolic QRAM program model presented has no defined semantics as it is

meant to represent the operations that occur for a QRAM-based device. The benefit

of this approach is that one can translate a quantum programming language into a

general representation that can then be translated into different formats for different

purposes of verification. Whilst this modularity is achievable with other models, they

focus on quantum circuits rather than quantum programs. Additionally, building the

infrastructure to translate programs into an intermediate representation and then

into the appropriate verification format is also important. The QRAM program

model is implemented in SilVer and so one can either change the programming

language or the verification technique used, as long as the user implements the

necessary translations from language to representation or from representation to

verification technique.

2.3 Conclusion

With the basic concepts in both fields introduced and an exploration of related

works, the reader should now be familiar with the kinds of problems that are explored

in this thesis (i.e., specifying and verifying behaviour in quantum computers). The

following parts explore different automated approaches to solving this problem.

25



Part II

SilVer: Silq Verification

26



Chapter 3

SilVer: Automated Verification of

Silq Programs

Having looked at a basic introduction to quantum computing, formal verification,

and related works in Part I, the first automated technique is investigated here. In

this Part, a standard software verification framework using SMT solvers, described

in Section 2.1.3, is applied to the verification of a quantum programs, one of the

higher levels of the quantum stack.

3.1 Introduction

Writing quantum programs from algorithms is hard and ensuring their correctness

is even tougher. Several quantum programming languages have been released to

program current or future quantum computers. Some are libraries of classical lan-

guages, whereas others are new languages specifically designed for writing quantum

programs. Such languages include Cirq [43], Q# [143], Qiskit [129] and Quipper [83].

Silq [25] stands out as a higher-level programming language in comparison to oth-

ers, along with a typing system and semantics (some of the other languages listed

have typing or semantics developed later [83,140]). There has been some effort put

into formally specifying languages that have no specification currently. An example

of this is with Q# being formalised in [140]. Whilst some of these languages may

have testing functionality, most of them cannot be formally verified yet. This makes

implementations of quantum algorithms at risk of being incorrect. As quantum

computers and programming languages will become larger and more complex, there

27



Chapter 3. SilVer: Automated Verification of Silq Programs

will be a need for quantum programs to be verified.

Several approaches have been taken to formally verify quantum programs. Tools

such as SQIR [88], QHLProver [104] and CoqQ [166] make use of theorem provers to

reason about the programs they are verifying. Whilst theorem provers are powerful

tools, they require a user to spend many person-hours proving that their programs

are correct. Thus, it is important to consider automatic techniques that offload to

a computer the burden of proving a program correct to a computer.

One way of making the proving of programs automated is to use model checking

techniques. Tools such as QPMC [70] and Entangλe [10] allow users to convert

programs into models (specifically quantum Markov chains) that are then checked

against a specification written as a temporal logic formula. Another automated

approach is taken by QBricks [39], which makes use of the Why3 framework to prove

properties about programs or provide a counterexample to the property specified.

However, QBricks requires the user to learn a domain-specific language and to write

their program within the Why3 framework. Giallar [145] is another automated tool

that uses solvers of satisfiability modulo theories (SMT) to perform verification on

the Qiskit compiler (rather than programs).

In this Chapter, SilVer, an SMT-based verification tool for reasoning about

programs written in the Silq quantum programming language, is presented. Silq

programs are transformed from their syntax tree into a symbolic structure, which

models a quantum RAM (QRAM)-style processor [96] that allows for both quan-

tum and classical processes with a separated control channel. The intermediary

representation, which is referred to as the QRAM program model, is unique as it

separates on quantum and classical memories, allowing the instructions affecting

the memory to be specified precisely. Additionally, the model keeps track of con-

trols affecting the program, which encapsulate classical conditional statements and

quantum controlled operations. SilVer performs this conversion automatically and

further converts the generated model into proof obligations.

Additionally, a specification language, SilSpeq, is provided for reasoning about

programs written in Silq. SilSpeq allows users to make pre-conditions about a pro-

grams inputs before it is run and post-conditions for expected results. Importantly,

pre-conditions allow for the specification of oracles for oracle-based algorithms. A

unique feature of SilSpeq is that the user can specify properties of a measurement

of a quantum state that should be obeyed using measurement flags. This allows a

user to easily specify what properties of the measurement should be met, e.g., the
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outcome of measuring a qubit in the |0⟩ state should be at least 60%. It should be

noted that conditions written in SilSpeq are purely classical, the only interaction

with quantum pre-conditions is through flags and measured variables.

In this Chapter, SilVer and SilSpeq are presented, the QRAM program model

that is used to represent quantum programs, how the model is converted and verified

using an SMT solver, notably Z3 [58]. Further, case studies are provided on programs

written in Silq and verified using SilVer.

3.2 Preliminaries

An introduction to Silq is given in this section. The required notation for quantum

computing that is used (standard Dirac bra-ket notation) is provided in Section 2.1.1.

3.2.1 Silq

Silq [25] is a high-level, imperative quantum programming language that features

safe, automatic uncomputation of qubits. In contrast, Qiskit [129] and Cirq [43]

are instead modules of a classical programming language. Further, Silq features a

formally defined specification; although recent work has given Q# a formal specifi-

cation [140].

The Silq-Hybrid Fragment

In [25], the authors describe a fragment of Silq (Silq-Core) for the purposes of

showing its properties. Since Silq is a vast language, the programs to verified are

restricted to a fragment called Silq-Hybrid. The idea is to take a fragment of Silq

that is expressive enough to handle several textbook quantum algorithms while

capturing the core ideas required for verification of a program. The core algorithms

targetted are those that make use of an oracle, e.g., the Deutsch-Jozsa algorithm.

Definition 3.1. The expressions for Silq-Hybrid are defined as follows:

e ::= c | x |measure | if e then e1 else e2

| λ(x1, . . . , xn).e | x := e

| e′(e) | e′(e1, e2) | return xc

(3.1)

and are
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• constants and built-in functions (c);

• variables (x);

• assignment (x := e);

• quantum measurement (measure);

• conditional statements (if e . . . );

• lambda abstraction (λ(x1, . . . , xn).e), which describes a function;

• function calls (e′(e), e′(e1, e2)), which are restricted to up to two inputs as

Silq’s in-built functions only take up to two inputs;

• and return (return xc) is included with the restriction that only classical

variables can be returned.

Importantly, conditional statements can use either quantum or classical variables

within their conditions. This allows a quantum operation to either be added or

removed for a classical condition, or for a controlled quantum operation to take place

if a quantum condition is used, i.e., a conditional statement if z then y := X(y)

could be equivalent to any of the three circuits in Figure 3.1 based on the types of

z and y.

z

y

(a) Classical variable con-
trolling a classical variable.

z

y

(b) Classical variable con-
trolling a quantum vari-
able.

z

y

(c) Quantum variable con-
trolling a quantum vari-
able.

Figure 3.1: Different ways a conditional expression in Silq be interpreted.

Remark 3.1. The Silq language itself has several syntax differences to Silq-Hybrid or

Silq-Core. This is because the syntax of the Silq fragments are designed for develop-

ing theory, whereas the Silq language is designed for the programmer’s convenience.

For example, conditional statements in the Silq fragments

if e then f else g
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are written in a Silq program as

if e { f; } else { g; }.

Examples

Here examples of the Silq programming language syntax are provided to build up

to the programs used in this thesis.

def coin_flip(){

x := 0:B;

x := H(x);

y := measure(x);

return y;

}

Figure 3.2: A simple quantum coin-flip program

Firstly, a simple coin flip program is provided in Figure 3.2. The first line of

the program initialises a qubit as a quantum boolean (B with basis states |0⟩ , |1⟩)
starting in the state |0⟩. The second line applies the Hadamard operation to the

qubit putting it into superposition. The qubit is then measured and stored in a new

variable y, which is a classical boolean (!B).1 Finally, the value of y is returned.

def f(const x : uint[2]):qfree B{

return x >= 2;

}

Figure 3.3: An example oracle function.

Next we consider the oracle function given in Figure 3.3. The input of the func-

tion is a quantum variable (x) that represents an unsigned integer with 2 qubits

(uint[n] for n qubits with basis states |0⟩ , |1⟩ , . . . , |2n − 1⟩). The input is anno-

tated as being constant (const), which means that the variable will not change value

in the function. The function is also annotated as being qfree, which indicates that

no superpositions are introduced or destroyed, i.e., , no Hadamard (or similar) oper-

ations are performed. The oracle itself states that it returns whether the individual

computational states of x are greater than 2, i.e., , if the quantum state is
∑

j aj |j⟩,
then the function modifies the quantum state to be

∑
j aj |j⟩ |j ≥ 2⟩. This function

1An exclamation mark is used to denote classical types in Silq.
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is what can be commonly used to create an oracle and is useful for controlling on

multiple qubits (as we will see).

def control(x : uint[3], y:B){

if x >= 6 {

y : = H(y);

}

return x, y;

}

Figure 3.4: An example controlled function.

A controlled operation is introduced in Figure 3.4. The function takes a quantum

register, x, with 3 qubits; a single qubit, y; and returns them. The controlled

operation works by looking for basis states that have a value greater than 6, then

applies the Hadamard operation to y controlled on those basis states, entangling the

two variables together (if they aren’t already). As a quantum operation,

U |x⟩ |y⟩ =

|x⟩H |y⟩ if x >= 6

|x⟩ |y⟩ otherwise
,

is equivalent to control in Figure 3.4.

def fixed_dj(f: const uint[2]!->qfree B){

x := 0:uint[2];

x[0] := H(x[0]);

x[1] := H(x[1]);

if f(x){ phase(pi); }

x[0] := H(x[0]);

x[1] := H(x[1]);

x := measure(x);

return x;

}

Figure 3.5: Deutsch-Jozsa Silq Program

A 2-qubit version of the Deutsch-Jozsa algorithm [62] written in Silq is given

in Figure 3.5. The function has an input which is of the type described previously
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x = 2

x = x + 2

y = 3 - x

(a) A classical program

x0 = 2

x1 = x0 + 2

y0 = 3 - x1

(b) Proof obligations

(= x0 2)

(= x1 (+ x0 2))

(= y0 (- 3 x1))

(c) SMT-LIB2 format

Figure 3.6: Converting a program for verification using Single Static Assignment
(SSA).

(taking in a quantum register as a constant, const uint[2]!->, and returning

a boolean qfree B). Initialisation, quantum operations, measurement, and return

statements are present within the program as described before. An important feature

introduced is the conditional statement and the phase operation in the fourth line.

The phase operation, phase(r), multiplies the phase of the quantum state by eir,

but it is only observable through conditional statements. The conditional statement

narrows the quantum states that the operation should be applied on. Essentially,

the conditional statement in Figure 3.5 transforms the quantum state, as follows∑
j

|j⟩ →
(∑

j

|j⟩ |f(j)⟩ →
∑
j

(−1)f(j) |j⟩ |f(j)⟩
)
→

∑
j

(−1)f(j) |j⟩ ,

where the transformation in brackets are the individual steps taken by the condi-

tional and phase statements. A further discussion on the behaviour of conditionals

is discussed in Section 3.6.3.

3.2.2 Classical Program Verification using SMT Solvers

The standard technique for checking a program using SMT solvers is to convert

variables into symbols that keep track of when a variable is updated. This approach

is also referred to as Static Single Assignment (SSA) [5, 17, 56, 132]. The converted

program expressions are referred to as proof obligations, and an SMT solver is called

to find a model for the proof obligations. Figure 3.6 shows an example of a generic

classical program being converted into proof obligations (with the respective SMT-

LIBv2 format [15]).

3.3 SilVer Architecture

SilVer (Silq Verification) is a framework for verifying Silq programs by allowing

the programmer to specify behaviour using a simple specification language called
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Silq
Program

SilSpeq
Specifica-
tion File

Silq AST
Interpreter

SilSpeq
Interpreter

QRAM
Program
Model

Obligation
Generator

Program
Obli-
gations

Specification
Obli-
gations

SMT
Solverflags

Figure 3.7: SilVer Design

SilSpeq. The framework combines these together by converting programs and

SilSpeq desired behaviours into proof obligations to be proven in a SMT solver.

The design of SilVer is given in Figure 3.7. SilVer converts Silq programs into

an intermediate representation (discussed in Section 3.4), which can then be further

converted into proof obligations. These obligations are generated automatically and

may change depending on the behaviours given in SilSpeq. The behaviours that can

change the generated obligations that are are referred to as flags and are discussed

in Section 3.5.3. Otherwise, desired behaviours in SilSpeq can also be converted

into proof obligations very easily.

The benefit of the designed SilVer architecture is that the components of SilVer

are modular. One for instance can replace Silq with another quantum programming

language (such as Q#) and specify the behaviour using SilSpeq, which is then

verified using SMT solvers. Alternatively one can replace the form or method of

verification. As an example, one could instead translate Silq programs into a theorem

prover based tool (such as QBricks or SQIR), where the theorems and lemmas that

are to be proved by the user are automatically generated.

The implementation details and examples of SilVer verification are discussed

in Section 3.7.

3.4 The QRAM Program Model for Verification

As part of the conversion process, Silq programs are represented using an interme-

diate representation. To handle both classical and quantum operations, a model
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based on quantum RAM (QRAM) [96] is used to represent programs.

At a high level, the QRAM program model represents the classical and quantum

memory independently. The model receives an instruction that only affects the

respective memory, i.e., a quantum instruction only affects the quantum memory

and a classical instruction only affects the classical memory. The last element of

the model is a list of controls, which models classical or quantum conditions in if

statements, that restrict the instruction being run only if the control conditions are

met in the classical case (i.e., standard classical conditional statement behaviour),

or create a controlled version of the quantum operation being performed in the

quantum case.

Throughout, assume a set of variable names, X , and the size function, size(x),

which gives the number of bits/qubits needed to represent x is defined. The size

of variable x can be found based on the type of x ∈ X . Note that types are

removed when converted into the model, although future research can investigate

implementing types into the model.

3.4.1 Memory

For the program, variables are kept track through objects known as Registers, with

a collection of Registers known as a Memory.

Definition 3.2 (Register). A register is a tuple R = (s, ver) where s ∈ N is the

number of (qu)bits required and ver ∈ N is the version number.

Definition 3.3 (Memory). A memoryM is a mapping between variables and reg-

isters, where if x ∈ X is a variable and R is its associated register, thenM(x) = R.

The notation M′ = M[x → R] is used to denote M′(x′) = R if x′ = x and

M′(x′) =M(x′) otherwise. Some operations that can be performed on a memory

are defined in Figure 3.8.

A register or memory by itself simply contains information about variables, re-

gardless if the variables are quantum or classical. It is only by designating a memory

or register that the type of the data is known. For the intermediate representation,

two different memories are created, which are a classical memory and a quantum

memory, denotedMc andMq respectively. This allows a clear separation between

variables used to represent classical and quantum data.

The version of variables are tracked throughout the program since when convert-

ing into SMT format, obligations are made about a variable at certain time steps
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addM(x) =M[x→ (size(x), 0)]

iterM(x) =M[x→ (size(x), ver + 1)]

amendM(x) =

{
iterM(x) ifM(x) ̸= ()

addM(x) otherwise

delM(x) =M[x→ ()]

Figure 3.8: Some operations that can be performed on a memory M: add adds a
new variable toM; iter updates the version of a variable inM; amend updates a
variable if it is already in M, or adds it in if it isn’t; and del removes a variable
fromM.

as the program advances. The obligations made about a variable at the start of

a program may differ from those at the end of the program. Changes are tracked

at the register level, through ver, rather than the memory level as it is more effi-

cient to track variables and only update the values of the variable when they are

changed, leading to fewer proof obligations being generated. This gives a quantum

version of Static Single Assignment (SSA) [5, 17, 56, 132], where the quantum state

is represented as a complex vector at each point of the program where the quantum

state is modified through initialisation, evolution, or measurement. This is further

discussed with examples in Section 3.6.2.

Example 3.1. To give an example of memories and applying operations to them,

let
Mq(a) = (5, 2) Mq(b) = (8, 0)

Mc(u) = (3, 3)

where Mq is a quantum memory and Mc is a classical memory. It can be seen

that Mq has two registers: one contains a register of 5-qubits for variable a that

has a version number of 2, the other is a register of 8 qubits for variable b that has

a version number of 0; whereas Mc only has one register of 3 bits for variable u,

which has a version number of 3.

If delMq(a) is applied, thenMq is now

Mq(b) = (8, 0).
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If addMc(a) is applied, thenMc becomes

Mc(u) = (3, 3) Mc(a) = (5, 0).

3.4.2 Operations

Operations are unary or binary operators that occur between variables and/or con-

stants. Examples include negation (−a), addition (a+b), inequality checking (a ≤ b)

and square root (sqrt(a)).

Definition 3.4 (OP). An operation instruction, OP, is defined as

OP ::= UNARY(⋄, a) | BINARY(l, ⋆, r),

where ⋄ is some unary operation, ⋆ is a binary operation and a, l, r are arguments.

Arguments can be variables x ∈ X that have been defined previously or numbers.

The OP instructions can be interpreted as performing ⋄a for unary operations or

l ⋆ r for binary operations. For some operation, b, that is unary or binary, OP(b)

represents its appropriate symbolic instruction representation.

Operations are used to represent function application and standard built-in Silq

operations (+, ≤, sqrt, . . . ) applied to values or variables. However, they do not

consider how the result is used; they are given meaning through instructions and

controls.

Example 3.2. In Table 3.1 a few Silq expressions and their associated Operations

are provided.

Silq Expression Operation
sqrt(2) UNARY(√,2)

-x UNARY(−, x)
3 + 5 BINARY(3,+, 5)
2 * x BINARY(2, ∗, x)
a < b BINARY(a,<, b)

Table 3.1: Examples of Operations
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3.4.3 Instructions

Silq expressions are mostly modelled by instructions. Similar to how memory is

separated, instructions are separated into classical and quantum instructions because

it is convenient to distinguish when an instruction affects the quantum state from

when it affects classical variables.

Definition 3.5. The quantum instructions, QINST, are

• QINIT(x, n, c), initialisation of variable x with n qubits and initial state c

(e.g., QINIT(x, 3, 0) models x := 0:uint[3]);

• QOP(U, x), unitary evolution of a variable x using U (e.g., QOP(H, x) models

x := H(x));

• QMEAS(x), measure a quantum variable x (e.g., QMEAS(x) partly models

y := measure(x)).

Definition 3.6. The classical instructions, CINST, are

• CSET(x, s, c), setting a variable x (with s bits) to a value c (e.g., CSET(x, 3, 2)

models x := 2:!uint[3]);

• CSET(x, s,OP), setting a variable x (with s bits) as the result of some opera-

tion OP (e.g., CSET(x, 5,OP(3,+, y)) models x := 3 + y, where x,y:!uint[5]);

• CMEAS(x′), capture the result of a measurement in a variable x′ (e.g., CMEAS(y)

partly models y := measure(x));

• RETURN(x), returning a classical value x (i.e., return x).

Only one of the quantum or classical instructions can be performed at a time;

to accommodate this both instruction sets have access to a SKIP instruction that

does nothing. The only time a quantum and classical instruction can be performed

at the same time is when a measurement is performed on a quantum variable,

which converts the quantum variable into a classical one. Since the quantum and

classical memories are separated from one another and instructions can only be

performed on the respective memories (i.e., QINST on quantum and CINST on

classical), then one quantum instruction is required to remove the variable from

the quantum memory and a classical instruction is required to store the result into
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classical memory. Whilst it is possible to perform a measurement that results in a

quantum state by measuring on a different basis, this is not the case for Silq. Silq

performs measurement on the computational basis state only and any measured

variable is converted to an appropriate classical type.2

The design of the instructions is to mimic how operations are written, e.g., CSET

follows the structure of c := a∗b whereas QOP follows how one would apply quantum

operations, U |x⟩. Additionally, the size of a quantum variable cannot change (its

type can, but not its size), whereas classical values can easily change types and sizes

as the program progresses, hence why CSET requires the size of a variable whereas

QOP does not.

3.4.4 Controls

Conditional expressions are exempt from being represented as an Instruction. The

condition of a conditional expression (if e . . . ) is converted into a special operation

called a Control, which are a restricted set of OP instructions.

Definition 3.7 (CTRL). A control instruction, CTRL, is an OP instruction that

can use either classical or quantum variables in their argument and uses logical or

comparison operators for their operation (¬, ≤, ==, . . . ...).

For example, a conditional statement if x ≤ 2 then e will have a control in-

struction BINARY(x,≤, 2), where x is a previously defined variable.

A generated control operation is added to a vector of controls, Γ , which keeps

track of all conditionals that currently affect the program. This allows us to separate

the conditions that are affecting a program from the actual instructions that are

performed. This has the additional benefit of having both quantum and classical

controls inside. This novel approach of separating controls from instructions is used

to arbitrarily create controlled unitaries based on the controls used.

3.4.5 Processes and Programs

The previously defined instructions and memory representation are combined to give

a representation of a single expression.

2It is possible to change the basis using quantum operations pre-measurement and to generate an
appropriate state post-measurement, but the measurement itself would still be in the computational
basis.
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Definition 3.8 (QRAM Process). A QRAM process is a quintuple

p = (Q,Mq, C,Mc, Γ ),

where Q is a quantum instruction; C is a classical instruction;Mq,Mc are quantum

and classical memory respectively; and Γ = (c1, . . . , cn) is a list of CTRL instruc-

tions.

For simplicity, only one instruction occurs at a time, i.e., at least one of Q or C

is the SKIP instruction. The motivation behind this design is to separate out what

operations are affecting the classical and quantum memory. The only exception is

when performing measurement, which uses QMEAS and CMEAS for QINST and

CINST, respectively. This is to separate the quantum and classical components of

measurement.

Now that expressions can be represented through processes, programs are repre-

sented as a list of processes.

Definition 3.9 (QRAM Program Model). A QRAM program model is a sequen-

tially composed list of processes P = (p1, p2, . . . , pn) whose memories differ by up to

one memory operation, i.e., for all i ∈ {1, . . . , n−1},Mi+1
q =Mi

q orMi+1
q = f(Mi

q)

where f is one of the operations given in Figure 3.8 andMj
q is the quantum memory

for pj (similarly for classical memory M j
c ).

Remark 3.2. The symbol, ⊕ is used to denote the concatenation of tuples (such as

processes and controls) onto the end of a tuple. For example,

p1 ⊕ p2 = (p1, p2),

and

(p1, p2)⊕ (p′1, p
′
2, p

′
3) = (p1, p2, p

′
1, p

′
2, p

′
3).

This operation is used to build QRAM programs from individual operations. This

is mainly useful in Section 3.6.

Example 3.3. A 2-qubit version of the Deutsch-Jozsa algorithm, provided previ-
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ously in Figure 3.5, is represented by the following QRAM program model:

(
(QINIT(x, 2, |0⟩),Me[x→ (2, 0)], SKIP,Me, Γe),

(QOP(H ⊗H, x),Me[x→ (2, 1)], SKIP,Me, Γe),

(QOP(πI ⊗ I, x),Me[x→ (2, 2)], SKIP,Me, Γ1),

(QOP(H ⊗H, x),Me[x→ (2, 3)], SKIP,Me, Γe),

(QMEAS(x),Me,CMEAS(x),Me[x→ (2, 4)], Γe),

(SKIP,Me,RETURN(x),Me[x→ (2, 4)], Γe)
)

where Γe = (), Γ1 = (BINARY(UNARY(f, x),==, 1), andMe is an empty memory

(for all x′,Me(x
′) = ()).

3.5 SilSpeq: Specifying Behaviour of Silq pro-

grams

In this section, the language that is used for specifying behaviour for programs

written in Silq is introduced. SilSpeq is designed in a way such that it is easy for

the user to write specification that is easily translatable into SMT obligations.

3.5.1 Defining Variables

In SilSpeq, the user defines variables before they are used. Definitions require the

user to provide a variable name and a type. The types that variables can take

are limited to integers of fixed bit size and functions of these types. These are

respectively represented by the following syntax

⟨type⟩ ::= {0, 1}n | ⟨type⟩ → ⟨type⟩,

where n ∈ N. A definition is then usually written as

define ⟨name⟩ : ⟨type⟩.

When converted into SMT format, integers are represented as integers with obli-

gations on the values they can take. Functions are converted into functions on

integers, with restrictions on their inputs and outputs.
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3.5.2 Expressions

SilSpeq uses a combination of arithmetic and logical expressions. Its syntax is:

α ::=m ∈ Z | var | f(α1) | α1 ∗ α2 | α1 + α2 | αα2
1 | (α1)

l ::=ff | α1 = α2 | α1 < α2 | ¬l1 | l1&l2 | @var.l

where var is a defined variable, f is a defined function, ff denotes falsity (⊥),
& represents logical and (∧), and @ represents for all (∀). Other arithmetic and

logical expressions can be derived by combining the above (e.g. −, / for arithmetic

expressions and ≤, >,∨, =⇒ ,∃, . . . for logical expressions).
For convenience, the implementation includes several useful expressions as short-

hand for certain expressions. For example, a.b is used to denote the bitwise dot

product of two integers with the same number of bits. That is a.b =
∑n−1

i=0 aibi

where ai, bi are the bits of a, b respectively.3

In SilSpeq, these expressions are wrapped in an assert statement:

assert(l).

Expressions can easily be converted into SMT format by using the appropriate SMT

expression and referring to variables when needed. Shorthand expressions, such as

a.b, can also be converted using appropriate SMT expressions as well.

3.5.3 Flags

Many quantum verification frameworks perform measurement based on a conditional

statement structure; i.e., if a qubit is measured and the result is |1⟩, perform one

command, otherwise perform another. In SilVer, the properties of measurement to

verify are considered instead. For instance, some quantum programs may require

certainty in any result that might be measured, whereas others may simply require

the most likely result.

To achieve this, flags are included in the SilSpeq function definition that tell

us what property of measurement to verify in a given function. This changes the

measurement outcome that can occur. Additionally this allows us to either restrict

the cases considered. For instance, if only measurement to be done with certainty

is allowed, then the solver only needs to consider measurement values that satisfy

3This summation can also be written as
∑n−1

i=0 [(a/2
i)(b/2i) mod 2].
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measurement with certainty. On the other hand, the flexibility of flags mean that

the solver can consider all possible measurement values and take these into account

as well.

Flags allow the user to specify certain approaches that should be taken when

verifying Silq programs, changing the obligations that are generated from the inter-

mediate representation. For SilVer, flags mainly affect measurement. For numerous

quantum algorithms, there are certain properties about measurement that are veri-

fiable.

The types of flags available are described:

• The rand flag puts no obligations on measurement and so any measurement

result is possible so long as it has a non-zero probability.

• The cert flag specifies that for any run of the program, there must be a state

that has a measurement probability of 1, i.e., with certainty.

• The whp(x) (with high probability) flag states that for any run of the program,

measurement results that occur with probability greater than x are only con-

sidered. For ease, whp = whp(0.5) and note that cert = whp(1).

Flags interact with the obligations generated from measurement instructions

(QMEAS and CMEAS). How the obligations generated from measurement instruc-

tions are affected by flags is shown in Section 3.6.

3.5.4 Function Structure

A SilSpeq file is automatically generated by SilVer if one does not exist. This file

contains each function written within the Silq file, along with its input arguments

defined as a SilSpeq type and an additional return argument that encapsulates the

output of the function. This return argument is denoted by ⟨function name⟩ ret.
Additionally, within a SilSpeq file, each function contains pre- and post-condition

blocks.
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3.6 Conversion of Silq-Hybrid to Proof Obliga-

tions

Silq programs and SilSpeq specifications are converted each into an SMT encoding.

A Silq program is converted into the QRAM program model first, and then into the

SMT-LIBv2 format. Write prog to denote a Silq program’s SMT encoding. SilSpeq

specifications can be directly converted into an SMT encoding, as mentioned in Sec-

tion 3.5.2. Additionally, pre and post are used to represent a SilSpeq specification’s

pre- and post-conditions SMT encoding respectively.

When a program is checked against its specification, the logical statement

prog ∧ pre ∧ ¬post (3.2)

is checked by an SMT solver, which looks for an execution (a model from prog), with

pre-conditions given by pre, that does not satisfy the post-conditions, post, given by

the user. If conjunction (3.2) is satisfiable, then there is a possible program execution

that does not meet the user defined specification. However, if the conjunction is

unsatisfiable and prog ∧ pre is true for all states, then ¬post must be false and

therefore prog∧pre∧post must be true always. Checking if prog∧pre is true is fast
since checking prog entails looking for a working program trace and checking pre

just means ensuring there is no falsity generated in the pre-condition by having no

conflicting statements, e.g., a = 0 ∧ a = 1. Thus, checking the encodings together

is fast on a SMT solver.

The conversion of Silq programs into proof obligations is described, with partic-

ular focus on how conditional (if e then e1 else e2) and measurement (measure)

statements, as well as flags, affect generation of proof obligations.

Throughout, [i, j) is used to denote the set {i, i+ 1, . . . , j − 2, j − 1} for i < j.

3.6.1 Silq-Hybrid to QRAM Program Model

The conversion of Silq-Hybrid, with the addition of sequences of statements, to the

QRAM program model is given in Figure 3.9. The subscript c, q is used to denote

classical and quantum variables or conditions respectively, and denote M1
q,M1

c as

the quantum and classical memory of [[e1]]Mq ,Mc,Γ
respectively.
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[[e1; e2]]Mq ,Mc,Γ
:=[[e1]]Mq ,Mc,Γ

⊕ [[e2]]M1
q ,M1

c ,Γ

[[xq := c]]Mq ,Mc,Γ
:=(QINIT(xq, size(xq), c), addMq(xq), SKIP,Mc, Γ )

[[xq := U(xq)]]Mq ,Mc,Γ
:=(QOP(U, xq), iterMq(xq), SKIP,Mc, Γ )

[[xc := f(x1)]]Mq ,Mc,Γ
:=(SKIP,Mq,CSET(x, size(xc),UNARY(f, x1)),

amendMc(x), Γ )

[[xc := g(x1, x2)]]Mq ,Mc,Γ
:=(SKIP,Mq,CSET(x, size(xc),BINARY(x1, g, x2)),

amendMc(x), Γ )

[[xc := measure(xq)]]Mq ,Mc,Γ
:=(QMEAS(xq), delMq(xq),CMEAS(xc),

amendMc(xc), Γ )

[[if bc then e1 else e2]]Mq ,Mc,Γ
:=[[e1]]Mq ,Mc,Γ⊕OP(bc)

⊕ [[e2]]M1
q ,M1

c ,Γ⊕OP(¬bc)

[[if bq then e1 else e2]]Mq ,Mc,Γ
:=[[e1]]Mq ,Mc,Γ⊕OP(bq)

⊕ [[e2]]M1
q ,Mc,Γ⊕OP(¬bq)

[[return x]]Mq ,Mc,Γ
:=(SKIP,Mq,RETURN(x),Mc, Γ )

Figure 3.9: Conversion of Silq-Hybrid to QRAM program model.

3.6.2 Conversion of QRAMProgramModel into Proof Obli-

gations

Purely classical instructions, CINST, are converted in a similar way as described in

Section 3.2.2, where classical variables are represented by symbols at certain time

steps of the computation. The values of variables at later time steps are determined

by the values of the same variable at an earlier time step.

The quantum state throughout the computation is represented by a vector of

symbols whose (exponential) size is based on the sizes of the quantum variables

throughout the program. While there are possible reductions or other representa-

tions available, such as the one used by symQV [18], this is the simplest representation

that works without needing to make major changes to the specification. In a sim-

ilar way to the classical obligations, there is a vector at each time step within the

program. Later quantum symbols have values that are based on obligations from

older symbols (akin to SSA as discussed in Section 3.2.2). Whilst costly, this rep-

resentation is unavoidable as the full quantum state is needed for model checking.

For example, a quantum memory consisting of

Mq(p) = (p, size(p), Vp), Mq(r) = (r, size(r), Vr)
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is represented by the symbol

pPvVp|rRvVr,

where P ∈ [0, 2size(p)) and R ∈ [0, 2size(r)).

To provide a further example, the evolution of a quantum operation,

U =

(
u00 u01

u10 u11

)
,

applied to a single newly initialised qubit,Mq(p) = (p, 1, 0) is shown. This provides

two initial symbols p0v0 for the state |0⟩ and p1v0 for |1⟩ with new symbols after the

quantum operation being p0v1 and p1v1 for the respective states. The obligations

p0v1 == u00 ∗ p0v0 + u01 ∗ p1v1

p1v1 == u10 ∗ p0v0 + u11 ∗ p1v1

capture the evolution of a quantum state.

As the program progresses, the versions of the quantum variables are updated

each time they are operated upon. The symbol vector representing the states of the

quantum variables is referred to as the quantum state throughout.

Initialising a new quantum variable, QINIT, expands the quantum state and

quantum unitary operations, QOP, affect the quantum state using their matrix

representation (with the example demonstrated above can be expanded for more

quantum variables).4 Measurement statements are converted into proof obligations

that encapsulate the probabilities of measuring a variable in the quantum state

and puts additional constraints on those probabilities depending on the flag used.

Additionally the quantum state is modified depending on what value is measured.

Conditional statements affect the program depending on whether the variable

affected is classical or quantum. A classical conditional acts in a similar way to

how a classical program would be verified, whereas a quantum case requires the

generation of a quantum gate to be applied to the quantum state.

4In the implementation, an Instruction that allows parallel unitary operations to occur in a
single matrix is included, reducing the number of obligations generated.
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3.6.3 Conversion of Conditional and Measurement State-

ments

Throughout, write τ(p) as the proof obligations generated for process p.

Proof Obligations from Conditionals

There are two types of controls to consider, classical and quantum. Let Γc and Γq

respectively denote the classical and quantum controls of a list of controls, Γ .

Classical The classical controls, Γc, determine if a block of code should be ran at

all. Consider the following Silq code:

if b {

x = x + 2;

q := X(q);

}

where b is a boolean (0 or 1), x is a classical integer, and q is a variable referring to

a qubit. This is represented by the Program (p1, p2), where

p1 =(SKIP,Mq,CSET(x, size(x),BINARY(x,+, 2)),

Mc[x→ (size(x), 1)], (BINARY(b,==, 1))), and

p2 =(QOP(X, q),Mq[x→ (q, size(q), 1)], SKIP,

Mc[x→ (size(x), 1)], (BINARY(b,==, 1))).

If b is true, then the code in the if block is ran changing the value of x and the

quantum state. However, if b is false, then the code is not ran and the values remain

the same.

This means that when converting Programs to proof obligations, two types of

obligations are generated. The first type state that when b is true, then the new

variable symbols are updated in the way described by the operation. The second

type state that when b is false, then the new symbols are set to be the same as the

previous symbols. Note that for quantum variables, the next quantum state needs

to be set to be the same as the previous quantum state.

If Γc = (b1, . . . bn), then the individual boolean conditions are included in a logical

and,
∧
, statement. Therefore, proof obligations for classical conditionals work in a
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similar as to how one would do it classically

τ((QINST,Mq,CINST,Mc, Γ )) =

if
∧

bi∈Γc

bi : τ((QINST,Mq,CINST,Mc, Γq)

if¬(
∧

bi∈Γc

bi) : id((QINST,Mq,CINST,Mc, Γq)),

where id(p) sets any variables modified by process p to be the same as their previous

version.

Quantum Quantum controls, Γq, only affect the quantum state of a program and

should not affect classical variables. This behaviour is already captured in Silq,

therefore the change of classical variables does not need to be discussed. Addition-

ally, measurement cannot be controlled by a quantum variable either (this causes

a syntax error in Silq). Thus, only Programs with quantum controls that only use

QOP operations need to be considered. These are generated by Silq statements such

as
if r == 1{

s := H(s);

}

and only Processes of the form

(QOP(U, s), amendMq(s), SKIP,Mc, (OP(r), . . . )),

need to be considered. For the example given U = H and OP(r) = BINARY(r,==

, 1).

The quantum control acts as a control operator on a unitary gate for another

quantum variable. The unitary operation (within the conditional block) performed

on the quantum state is modified depending on the quantum variable that is being

controlled.

This modification to the unitary operation is computed in the following way. Let

U ′ be the unitary operation that modifies the quantum variable s. Write U for the

quantum operation that applies U ′ to s and the identity operation I on every other

quantum variable. Consider OP(b(r)) (in the list of controls Γq) which applies some

boolean operation b on a quantum variable r. Let S be the size of the quantum
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state. For v ∈ [0, 2S), let bv ∈ {0, 1} denote the result of applying b to the value of r

in the quantum state with value v. Create the matrix B = diag((bv)v∈[0,2S)). Then

the controlled unitary operation is

CU = Iq + (U − Iq).B (3.3)

where Iq is the identity operation on the quantum state.

If there are multiple quantum controls, Γq = (OP(b1(r1)), . . .OP(bn(rn))), then

one finds the vectors (biv) for each 1 ≤ i ≤ n and calculates (bv) = (
∧

i b
i
v). This new

vector bv is then used in B to calculate CU as given in Equation (3.3). Additionally,

even though the example of U provided only affects one quantum variable, U can be

replaced with a unitary operation that affects the entire quantum state apart from

any control variables.

The proof obligations generated are

τ((QOP(r),M′
q = iterMq(r), SKIP,Mc, Γq)) =

(M′
q)i ==

∑
j

CUij(Mq)j for i ∈ [0, 2S),

where (M) denotes the quantum state (vector of symbols) for memoryM.

Proof Obligations from Measurement

When generating the proof obligations for measurement, we have

τ((QMEAS(xq), delMq(xq),CMEAS(xc), amendMc(xc), Γ )) =

obsprob ∧ obsmeas ∧ obspost,

where obsprob, obsmeas and obspost are probability, measurement and post-state obli-

gations respectively. Within these obligations are restrictions on the measurement

probabilities of values that a quantum variable can take. Measurement probabilities

are represented by symbols as Pr q vw i where q is a quantum register/variable, w

is the current version and i is the measured state. Additionally the measured value

of a register q is represented by the symbol meas q.

Probability Obligations The obligations generated by obsprob are obligations on

the probability of measuring different values. They simply state that the probability
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of any measurement value of the quantum state is between 0 and 1, calculate the

values of the probabilities (based on the state measured) and that the sum of these

probabilities is 1. These are expressions from some of the formula in Section 2.1.1.

For example, measurement of a single qubit q generates the obligations

0 <= Pr_q_v0_0

Pr_q_v0_0 <= 1

0 <= Pr_q_v0_1

Pr_q_v0_1 <= 1

Pr_q_v0_0 + Pr_q_v0_1 = 1

Pr_q_v0_0 = |q_v0_0|^2

Pr_q_v0_1 = |q_v0_1|^2

where, again, Pr q vw i is the symbol representing the probability of measuring the

quantum register version w of the quantum register q results in the value i.

Measurement Obligations Obligations generated by obsmeas put restrictions on

how and what can be measured. These obligations are influenced by the flags from

SilSpeq (as described in Section 3.5.3): a rand flag puts no restrictions on mea-

surement, i.e., any value can be picked; a cert flag restricts the measured value such

that values must have a measurement probability equal to 1, i.e.,

meas_q = i => Pr_q_vw_i = 1;

and whp(a) flags say that a measured value, i, can only be picked if its measurement

probability is higher than the set value, i.e.,

meas_q = i => Pr_q_vw_i >= a.

Beyond flags, a requirement also needs to be met that the measured value’s proba-

bility must be non-zero, i.e.,

meas_q = i => not(Pr_q_vw_i = 0).

Post-state Obligations Post-state obligations determine the state after measure-

ment which is calculated for each possible measurement based on the standard nor-

malisation formula for the quantum state after measurement given in Section 2.1.1.
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For instance, consider a program with two registers, q and p, each with a qubit. If

q is measured, then obligations for the quantum state post-measurement are

meas_q == 0 => sqrt(Pr_q_v0_0) * p_v1_0 == q_v0_0|p_v0_0

meas_q == 0 => sqrt(Pr_q_v0_0) * p_v1_1 == q_v0_0|p_v0_1

meas_q == 1 => sqrt(Pr_q_v0_1) * p_v1_0 == q_v0_1|p_v0_0

meas_q == 1 => sqrt(Pr_q_v0_1) * p_v1_1 == q_v0_1|p_v0_1

where q_v0_i|p_v0_j is the amplitude of the quantum state |ij⟩ before measure-

ment; p_v1_j is the state after measurement (|j⟩); and sqrt(Pr_q_v0_i) is the

normalisation based on the probability of measuring q in state |i⟩.5

3.7 Implementation and Case Studies

In this section, details are given about the implementation of SilVer and bench-

marks on program instances are provided.

3.7.1 Implementation

SilVer is implemented in Python with over 2000 lines of code, 300 of which are used

for implementing SilSpeq. The Python interface for Z3 [58], z3py, is used to make

obligations. Users can provide Silq programs, restricted to the Silq-Hybrid format,

and SilSpeq specification. SilVer is available at https://github.com/marco-l

ewis/silver.

3.7.2 Case Studies

Here details are provided of three algorithms that are tested for verification. The

benchmarks are tested on specified qubit instances of the following programs: GHZ

state generation, the Deutsch-Jozsa algorithm, and the Bernstein-Vazirani algo-

rithm. The provided Silq programs are based on test files found in the Silq reposi-

tory.6

The programs given and tested use a specific number of qubits. This is because

SMT solvers cannot solve for arbitrary size programs (which theorem provers are

5The normalisation constant is multiplied with the post-state amplitude to avoid potential
errors from division by 0.

6https://github.com/eth-sri/silq/tree/master/test (accessed 22/03/2024)
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def ghz(){

x := 0:B;

y := 0:uint[2];

x := H(x);

if x{

y[0] := X(y[0]);

y[1] := X(y[1]);

}

y := measure(y);

x := measure(x);

return y;

}

(a) GHZ Silq Program

ghz[whp(0.5)]()->

(define ghz_ret:{0, 1}^2)

pre{}

post{

assert(ghz_ret = 0 | ghz_ret = 3)

}

(b) GHZ SilSpeq specification

Figure 3.10: Generation of GHZ states. The specification states that the only values
to be read with at least 50% probability should be the |0⟩ or the |3⟩ state (the all 1
state for 2 qubits).

capable of). Examples using 2 qubits are provided throughout this section. To

increase the program or specification for different qubit sizes, the number of gates

applied, some constants, and the size of data types needs to be changed, which can

easily be implemented easily.

GHZ State Generation The Greenberger–Horne–Zeilinger (GHZ) state [84] for

an n-qubit system is
1√
2
|0⟩⊗n +

1√
2
|1⟩⊗n ,

i.e., there is a 50/50 chance of measuring n 0’s or n 1’s. The state is prepared

using multiple controlled-NOT gates and a single qubit in superposition. The goal

is to check that the only quantum states returned with 50% probability |0⟩⊗n and

|1⟩⊗n. Note that while this does not describe the GHZ state fully, this is due

to restricting the specification to be classical in nature. For example, the state
1√
2
|0⟩⊗n + ( 1√

2
− ϵ) |1⟩⊗n + ϵ |0⟩⊗n−1 |1⟩, where 0 < ϵ ∈ R, would also follow this

specification.

Figure 3.10 contains the program and specification for setting up the 2-qubit

GHZ state (also the Bell state) in the y register using x as an additional qubit. The

program and specification can be extended to any qubit number. Note that the

whp() flag is used to specify that states with at least 50% probability matter and

that no preconditions are required.
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def fixed_dj(

f: const uint[2]!->qfree B

){

x := 0:uint[2];

x[0] := H(x[0]);

x[1] := H(x[1]);

if f(x){ phase(pi); }

x[0] := H(x[0]);

x[1] := H(x[1]);

x := measure(x);

return x;

}

(a) Deutsch-Jozsa Silq Program

fixed_dj[rand]

(define f:{0, 1}^2->{0, 1})->

(define fixed_dj_ret : {0, 1}^2)

pre{

define y : N

define x : {0,1}^2

define bal : {0,1}

assert(SUM[x](f) = y)

assert((bal = 0 & (y = 0 | y = 4))

| (bal = 1 & y = 2))

}

post{

assert(bal = 0 -> fixed_dj_ret = 0)

assert(bal = 1 -> ¬fixed_dj_ret = 0)

}

(b) Deutsch-Jozsa SilSpeq specification

Figure 3.11: Deutsch-Jozsa algorithm. Note that SUM[x](f) ≡
∑3

x=0 f(x) and the
second line in the post-conditions is commented. The specification for the pre-
condition says a function is constant (not balanced) if and only if

∑
x f(x) = 0 or 2n

(as f(x) = 0 or 1 for all x); and the function is balanced if and only if
∑

x f(x) =
1
2
2n

(since half the inputs return 1 and the other half return 0).

Deutsch-Jozsa Algorithm The Deutsch-Jozsa algorithm [62] was one of the first

oracle-based quantum algorithms to be developed. The algorithm can distinguish if

a function has one of the following two properties. A function f : X → {0, 1} is said
to be constant if all inputs return the same value (0 or 1). Further, f is balanced if

half the inputs of f return 0 and the other half return 1.

Given f : {0, 1}n → {0, 1} such that f is either constant or balanced, the

Deutsch-Jozsa algorithm will discover which property f has, using only a single

evaluation of f . The algorithm will return 0 if the function is constant, otherwise it

will return a non-zero value if the function is balanced.

The Silq program is restated and the SilSpeq specification for a two qubit version

of the Deutsch-Jozsa algorithm is given in Figure 3.11. A SilSpeq file is provided

for each of the postconditions provided in the specification, the function definition

and preconditions remains the same across the files.

Bernstein-Vazirani Algorithm The Bernstein-Vazirani algorithm [22] is similar

to the Deutsch-Jozsa algorithm. The problem the Bernstein-Vazirani algorithm

53



Chapter 3. SilVer: Automated Verification of Silq Programs

fixed_bernvaz[cert](define f:{0, 1}^2->{0, 1})->

(define fixed_bernvaz_ret : {0, 1}^2)

pre{

define s : {0,1}^2

define x : {0,1}^2

assert(@x. f(x) = (s.x) mod 2)

}

post{

assert(fixed_bernvaz_ret = s)

}

Figure 3.12: SilSpeq specification for the Bernstein-Vazirani algorithm for 2 qubits.
Note that @x.ϕ(x) denotes ∀x.ϕ(x) and s.x is the dot product as described in Sec-
tion 3.5.2.

solves is: given an oracle f : {0, 1}n → {0, 1} such that f(x) = x.s for some

s ∈ {0, 1}n, find s. The dot product x.s = x0s0 ⊕ . . . ⊕ xn−1sn−1 where ⊕ denotes

addition modulo 2. The quantum algorithm is the same as the Deutsch-Jozsa: using

n qubits in the state |0n⟩, put the qubits into superposition, call the oracle, undo the

superposition and finally perform a measurement. This process returns the string s

with certainty, using a single evaluation of f .

The 2-qubit Silq program for the Bernstein-Vazirani algorithm is the same pro-

gram used for the Deutsch-Jozsa algorithm, given in Figure 3.11a. Specification for

the behaviour of the Bernstein-Vazirani algorithm on two qubits is given in Fig-

ure 3.12.

3.7.3 Benchmarks

The benchmarks are tested on specified qubit instances of the following programs:

GHZ state generation, the Deutsch-Jozsa algorithm, and the Bernstein-Vazirani

algorithm. The experiments were performed on a laptop with an Intel(R) Core(TM)

i5-10310U CPU @ 1.70GHz x 8 cores processor and 16GB of RAM. The device uses

Ubuntu 20.04.3 LTS and the results are the average of 10 runs. The benchmarks for

the programs are given in Table 3.2.

For the benchmarks, SilVer is not compared against the theorem proving tools

mentioned [88, 104, 166], since these are manual approaches to verifying programs.

Discussion is provided on two other tools SilVer is not compared against.

SilVer is not compared with symQV [18] since the programs and type of spec-

ification checked between each tool is different. symQV works purely on quantum
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Table 3.2: Benchmarks of running SilVer on different programs: Qubits = number
of qubits used; Setup Time = CPU time for SilVer to translate a Silq program and
SilSpeq obligations into the SMT solver; Verification Time = CPU time for the
solver to check the obligations are unsatisfiable; Memory = RAM used by the SMT
solver. Times are average and standard deviation over 10 runs. The timeout is set
to 3 hours.

Benchmark Qubits Setup Time (s) Verification Time (s) Memory (MiB)

GHZ

2 0.14±0.02 0.003±5× 10−4 17
5 3.4±0.03 0.029±9× 10−4 18
7 53±1.8 0.4±0.02 95
8 210±3.9 1.7±0.07 350

Deutsch-
Jozsa

2 0.066±0.019 0.009±0.002 17
3 0.15±0.02 0.041±0.007 17
4 0.41±0.05 7.9±1 19
5 1.4±0.1 timeout 23

Bernstein-
Vazirani

2 0.06±0.01 0.01±0.001 17
3 0.14±0.01 0.07±0.01 17
4 0.46±0.06 0.5±0.03 18
5 3.8±2.2 3.7±0.36 19
6 13±1.3 41±7.1 39
7 30±0.46 1000±260 67

programs (no classical commands) and its specification is restricted to quantum

states, making it useful to very programs such as quantum teleportation [21] and

the diffusion operation of Grover’s algorithm [85] but unable to reason about pro-

grams with oracle behaviour. To compare these approaches, symQV would require the

specification of oracles or SilSpeq would need to be expanded to include quantum

specification.

Despite QBricks [39] predominately working on quantum circuits, the way it

specifies behaviour is very similar to SilVer and includes additional specification in

relation to quantum circuits (e.g., circuit width and depth). However, as QBricks is

based in the Why3 framework [74], it uses both manual and automatic approaches to

prove properties about circuits, which allows it to prove properties about arbitrary

size circuits. This makes it difficult to compare against SilVer, but taking a specific

qubit size program may provide QBricks a fully automatic benchmark to compare

against.
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3.7.4 Discussion

The speed at which SilVer verifies a program depends mainly on the complexity of

the program, where this complexity can depend on the number of oracle functions

to consider. In some cases verification setup takes a much longer time than actual

verification (e.g. GHZ) whereas verification is slower in other cases past a certain

point (e.g. Bernstein-Vazirani).

With regards to algorithms, checking the Bernstein-Vazirani algorithm becomes

faster than checking Deutsch-Jozsa once the number of qubits gets larger. This is

because the model checking approach needs to consider all possible functions used

for the oracle. Specifically, for n qubit instances of the problems, there are only

2n possible functions for Bernstein-Vazirani (since the secret string s ∈ {0, 1}n),
whereas the Deutsch-Jozsa algorithm has

(
2n

2n−1

)
+ 2 possible functions (due to the

nature of balanced functions). This is where manual theorem provers may be a

better tool for verification of certain quantum algorithms.

Note that there are some restrictions to SilVer. Notably, if running on a laptop

or a device with a small amount RAM, SilVer will be unlikely to verify anything

larger than 10 qubits. Additionally, the SMT-LIBv2 files for the obligations become

large very quickly; a 3-qubit instance of the Bernstein-Vazirani algorithm only re-

quires about 20kB of space whereas the 10-qubit version takes up over 250MB of

memory.

3.8 Conclusion

SilVer was presented as a tool for automatically verifying programs written in the

Silq programming language. The automatic translation of Silq programs into a

model that can be converted into an SMT suitable format was shown. SilSpeq was

also presented as a method for writing behaviours of programs using simple expres-

sions. SilSpeq introduces the concept of flags for ensuring certain properties from

measurement. The focus of design for SilVer is usability for developers, making

the verification of programs as simple as possible.

The modular design of SilVer is influenced by Vellvm [164] (verified LLVM),

which reasons about programs written within the LLVM intermediate representa-

tion. SilVer is capable of converting Silq into a QRAM Program Model and then

converting that into suitable verification formats. The quantum intermediate repre-
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sentation (QIR) is a representation for quantum programming languages based on

the LLVM intermediate representation under development by the QIR Alliance [128].

Work has been done to formalise QIR such for code safety already [106]. In the fu-

ture, adapting the Vellvm approach for the QIR could be valuable for verifying

quantum programs.

This concludes the investigation of the first automated technique in the the-

sis, which demonstrates how the standard software verification framework can be

adapted for quantum programs. Further discussion on the consequences of this

technique can be found in Part IV; whereas the next Part, III, looks at the sec-

ond automated technique, which looks at verifying behaviour at lower levels of the

quantum stack.
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Barrier Certificates
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Chapter 4

Verification of Quantum Systems

using Barrier Certificates

In this Part, the second automated technique, barrier certificates, for verifying be-

haviours in quantum systems is investigated. This technique is used for verifying

properties at a lower level of the quantum stack, either the gates on the quantum

chip or a quantum circuit to be executed. This chapter gives an introduction to

the theory that needs to be adapted to handle quantum systems and an initial

automated process to generate and verify safety properties for quantum gates.

4.1 Introduction

Quantum systems evolve according to the Schrödinger equation from some initial

state. However, the initial state may not be known completely in advance. One can

prepare a quantum system by making observations on the quantum objects, leaving

the quantum system in a basis state, but this omits the global phase which is not

necessarily known after measurement. The resultant phase may have an affect the

later evolution of a system. Further, the system could be disturbed through some

external influence before it begins evolving. This can slightly change the quantum

state from the basis state to a state in superposition or possibly an entangled state.

By taking into account these uncertain factors, a set of possible initial states,

from which the system evolves, can be constructed. These possible initial states can

be determined based on the setup of the system, e.g., the initial states could be

the most likely ones based on the noise the system faces before measurement (for
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example, an area where the initial state has a 90% chance of occurring). In practice,

a noise model can be used to determine the initial region. A noise model [80] creates

a model based on the unique sources of noise a quantum computer faces and the

models take into account how much the sources affect the system. These can be

used to approximate the initial setup of the quantum state for the evolution of the

system.

From the initial set, it can be investigated if the system evolves according to some

specified behaviour such as reaching or avoiding a particular set of states. As an

example, consider a single qubit system that evolves according to a Hamiltonian Ĥ

implementing the controlled-NOT operation. Through measurement and factoring

in for noise, assume the system starts close to |10⟩. The controlled-NOT operation

keeps the first qubit value the same and, as the system evolves via Ĥ, the property

that the quantum state does not evolve close to |00⟩ or |01⟩ needs to be verified.

The main purpose of this chapter is to study the application of a technique called

barrier certificates, used for verifying properties of classical dynamical systems, to

check properties of quantum systems similar to the one mentioned above. The

concept of barrier certificates has been developed and used in Control Theory to

study the safety of dynamical systems from a given set of initial states on real

domains [125]. This technique can ensure that given a set of initial states from

which the system can start and a set of unsafe states, the system will not enter the

unsafe set. This is achieved through separating the unsafe set from the initial set

by finding a barrier.

Barrier certificates can be defined for both deterministic and stochastic systems

in discrete and continuous time [4, 100]. The concept has also been used for veri-

fication and synthesis against complicated logical requirements beyond safety and

reachability [93]. The conditions under which a function is a barrier certificate can

be automatically and efficiently checked using SMT solvers [13]. Such functions can

also be found automatically using learning techniques even for non-trivial dynamical

systems [121].

Dynamical systems are naturally defined on real domains (Rn). To handle dy-

namical systems in complex domains (Cn), one would need to decompose the system

into its real and imaginary parts and use the techniques available for real systems.

This has two disadvantages, the first being that this doubles the number of variables

being used for the analysis. The second disadvantage is that the analysis may be

easier to perform directly with complex variables than their real components. As
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quantum systems use complex values, it is desirable to have a technique to perform

the reachability analysis using complex variables; since for an n-qubit systems, 2n+1

variables are required to represent the quantum system as a real dynamical system,

rather than 2n variables for a complex dynamical system.

In this Chapter, the problem of safety verification in quantum systems is explored

by extending barrier certificates from real to complex domains. The extension is

inspired by a technique developed by Fang and Sun [67], who studied the stability

of complex dynamical systems using Lyapunov functions (where the goal is to check

if a system eventually stops moving). Further, an algorithm to generate barrier

certificates for quantum systems is provided and used to generate barriers for several

examples.

4.2 Background

4.2.1 Notation

Throughout this part, the following notation is used:

• the imaginary unit, i =
√
−1 (i is not used as an iterator or variable);

• for a complex number z = a+ bi, its complex conjugate is z = a− bi;

• for a n×m matrix, z, write

– (z)jk as an element of z where 0 ≤ j ≤ n− 1, 0 ≤ k ≤ m− 1 (for vectors,

simply write (z)j),

– z as the conjugate of z ((z)jk = (z)jk),

– z⊺ as the transpose of z ((z⊺)jk = (z)kj),

– and z∗ = z⊺ as the conjugate transpose of z;

• In for the n× n identity operation.

4.2.2 Safety Analysis

The problem of safety for dynamical systems with real state variables, x ∈ Rn, is

introduced first. More details can be found in [125]. A continuous dynamical system

is described by

ẋ =
dx

dt
= f(x), f : Rn → Rn,
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where the evolution of the system is restricted to X ⊆ Rn and f is usually Lipschitz

continuous to ensure existence and uniqueness of the differential equation solution.

The set X0 ⊆ X is the set of initial states and the unsafe set Xu ⊆ X is the set of

values that the dynamics x(t) should avoid. These sets lead to the idea of safety for

real continuous dynamical systems:

Definition 4.1 (Safety). A system, ẋ = f(x), evolving over X ⊆ Rn is considered

safe if the system cannot reach the unsafe set, Xu ⊆ X, from the initial set, X0 ⊆ X.

That is for all t ∈ R+ and x(0) ∈ X0, then x(t) /∈ Xu.

The safety problem is to determine if a given system is safe or not. Numerous

techniques have been developed to solve this problem [75]. Barrier certificates are

discussed in Section 4.2.3. Here, two other common techniques are described.

Abstract Interpretation One way to perform reachability analysis of a system

is to give an abstraction [53,54] of the system’s evolution. An initial abstraction that

over-approximates the evolution of the system can be refined using approaches such

as CEGAR [44] (as discussed in Section 2.1.2, where counterexamples are used to

guide and refine the abstraction such that the abstraction captures the behaviour of

the system as accurately as possible. Using this method, an abstraction can be made

and shown that the system does not reach the unsafe region through the behaviour

of the abstraction. If a counterexample in the abstraction is found, the abstraction is

updated to reflect the behaviour if it is a spurious/false counterexample (i.e., it does

not enter the unsafe region in the actual system), or return that the system is unsafe

if it is a true counterexample (i.e., the counterexample does enter the unsafe region

in the actual system). This method has been investigated for quantum programs

in [162], where the authors can verify programs using up to 300 qubits.

Backward and Forward Reachability A second approach is to start from the

unsafe region and reverse the evolution of the system from there. A system is con-

sidered unsafe if the reversed evolution enters the initial region. This is backward

reachability. Conversely, forward reachability starts from the initial region and is

considered safe if the reachable region does not enter the unsafe region. Both back-

ward and forward reachability are discussed in [113,141,142].
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4.2.3 Barrier Certificates

Barrier certificates [125] are another technique used for safety analysis. This tech-

nique attempts to divide the reachable region from the unsafe region by putting

constraints on the initial and unsafe set, and on how the system evolves. The bene-

fit of barrier certificates over other techniques is that one does not need to compute

the system’s dynamics at all to guarantee safety, unlike in abstract interpretation

and backward (or forward) reachability.

A barrier certificate is a differentiable function, B : Rn → R, that determines

safety through the properties that B has. Generally, a barrier certificate needs to

meet the following conditions:

B(x0) ≤ 0,∀x0 ∈ X0 (4.1)

B(xu) > 0,∀xu ∈ Xu (4.2)

x(0) ∈ X0 =⇒ B(x(t)) ≤ 0,∀t ∈ R+. (4.3)

Essentially, these conditions split the evolution space into an over-approximation of

the reachable region and an unsafe region, encapsulated by Conditions (4.1) and (4.2)

respectively. These regions are separated by a “barrier”, which is the contour along

B(x) = 0. One may view barrier certificates as an abstraction of the dynamical

system. However, it would be more appropriate to view barrier certificates as a

kind of measurement or analysis on the system, i.e., the barrier certificate takes

“measurements” on the state space whereas an abstraction simplifies the dynamics

of a system.

Condition (4.3) prevents the system evolving into the unreachable region and

needs to be satisfied for the system to be safe. However, Condition (4.3) can be re-

placed with stronger conditions that are easier to check. For example, the definition

of one simple type of barrier certificate is given.

Definition 4.2 (Convex Barrier Certificate). For a system ẋ = f(x), X ⊆ Rn,

X0 ⊆ X and Xu ⊆ X, a function B : Rn → R that obeys the following conditions:

B(x) ≤ 0,∀x ∈ X0 (4.4)

B(x) > 0,∀x ∈ Xu (4.5)

dB

dx
f(x) ≤ 0, ∀x ∈ X, (4.6)
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Figure 4.1: Example adapted from Section V-A in [125]. The initial region is the
green circle centred at (1.5, 0) and the system evolves according to the dynamical
system given by differential equations ẋ = [(x)2,−(x)1 + 1

3
(x)1

3 − (x)2]. The unsafe
region is the red circle centred at (−1,−1) and is separated from the initial region by
a barrier, the dashed purple line defined by B(x) = 0 where B(x) = −13+ 7(x)1

2 +
16(x)2

2 − 6(x)1
2(x)2

2 − 7
6
(x)1

4 − 3(x)1(x)2
3 + 12(x)1(x)2 − 12

3
(x)1

3(x)2.

is a convex barrier certificate.

Note that in Condition (4.6): dB
dx

dx
dt

= dB
dt
. This condition can be viewed as a

constraint on the evolution of the barrier as the system evolves over time.

Now, if a system has a barrier certificate, then the system is safe. The safety

theorem for convex barrier certificates is shown.

Theorem 4.1. If a system, ẋ = f(x), has a convex barrier certificate, B : Rn → R,
then the system is safe [125].

Proofs of Theorem 4.1 are standard and can be found in, e.g., [125]. The intuition

behind the proof is that since the system starts in the negative region and the barrier

can never increase, then the barrier can never enter the positive region. Since the

unsafe set is within the positive region of the barrier, this set can therefore never

be reached. Thus, the system cannot evolve into the unsafe set and so the system

is safe. Figure 4.1 shows an example of a dynamical system with a barrier based on

the convex condition.
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Remark 4.1. The term “convex” is used for these barriers as the set of barrier

certificates satisfying the conditions in Definition 4.2 is convex. In other words, if

B1 and B2 are barrier certificates for a system, the function λB1 + (1− λ)B2 is also

a barrier certificate for any λ ∈ [0, 1]. See [125] or the proof of Proposition 4.3 in

Appendix B.1.2 for (similar) details.

There are a variety of different barrier certificates to choose from with different

benefits, e.g., the convex condition given is simple but may not work for complicated

or nonlinear systems. In comparison, the non-convex condition given in [125] changes

Condition (4.6) such that dB
dx
f(x) ≤ 0;∀x ∈ X,B(x) = 0 (instead of ∀x ∈ X). This

is a weaker condition allowing for more functions to be a suitable barrier certificate.

However, a different computational method is required because the set of such barrier

certificates is non-convex. Each barrier certificate requires a different proof that if

the system has a satisfying barrier certificate, then the system is safe. It should

be noted that Theorem 4.1 only has a one way implication, a system does not

necessarily have a barrier certificate even if it is safe. There are works that show the

converse and this necessity [130,155]. For example, in [155], the authors showed the

converse holds for systems defined on a compact manifold and using convex barrier

certificates, i.e., for a specific family of systems, if a system is safe, then it has an

associated barrier certificate.

4.3 Complex Continuous-Time Barrier Certificates

Now the use of barrier certificates is extended into a complex space (Cn). The

complex dynamical systems considered are of the form

ż =
dz

dt
= f(z), f : Cn → Cn,

which evolves in Z ⊆ Cn and f remains Lipschitz continuous. The initial and unsafe

sets are defined in the usual way except now Z0 ⊆ Z and Zu ⊆ Z, respectively. The
notion of safety for this system is similar to Definition 4.1.

Definition 4.3 (Safety). A complex system, ż = f(z), with Z ⊆ Cn, Z0 ⊆ Z and

Zu ⊆ Z, is considered safe if for any z(0) ∈ Z0, then ∀t ∈ R+, z(t) /∈ Zu.

Whilst it is easy to extend the safety problem and required definitions into the

complex plane, extending the notion of barrier certificates requires particular atten-
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tion. Conditions (4.1), (4.2) and (4.3) are changed respectively to

B(z0) ≤ 0,∀z0 ∈ Z0; (4.7)

B(zu) > 0,∀zu ∈ Zu; (4.8)

z(0) ∈ Z0 =⇒ B(z(t)) ≤ 0,∀t ∈ R+. (4.9)

Many barrier certificates use differential equations to achieve Condition (4.9), which

restricts the class of functions that can be used. This is because differentiable

complex functions must satisfy the Cauchy-Riemann equations.

A holomorphic function, g(z) : Cn → C, is considered to be a function whose

partial derivatives, ∂g(z)
∂(z)j

, are holomorphic on C, i.e., they satisfy the Cauchy-

Riemann equations (for several variables). That is for (z)j = (x)j + i(y)j and

g(z) = g(x, y) = u(x, y) + iv(x, y), then

∂u

∂(x)j
=

∂v

∂(y)j

∂u

∂(y)j
= − ∂v

∂(x)j
.

An adapted technique developed by Fang and Sun [67] is used to reason about

barrier certificates in the complex plane. First, a family of complex functions that

are key to technique are introduced.

Remark 4.2. Note that the Cauchy-Riemann equations are not necessary for the

dynamical system; since the differential equations for the dynamics describe a change

over time, which has a real variable rather than a complex variable.

Definition 4.4 (Conjugate-flattening function). A function, b : Cn × Cn → Cn, is

conjugate-flattening if ∀z ∈ Cn, b(z, z) ∈ R.

Definition 4.5 (Complex-valued barrier function). A function, B : Cn → R, is a

complex-valued barrier function if B(z) = b(z, z) where b : Cn × Cn → Cn is a

conjugate-flattening, holomorphic function.

Remark 4.3. These functions have a Hermitian-like form to them, in that if b(z, w) =

w⊺Hz, for some complex matrix H, then b(z, z) = z†Hz ∈ R, which is a property of

Hermitian matrices.

Suppose now that z(t) is a system that evolves over time. To use the complex-

valued barrier function, B(z(t)), for barrier certificates the differential of B with
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respect to t is required. Calculating this differential reveals that

dB(z(t))

dt
=

db(z(t), z(t))

dt
=

db(z, u)

dz

∣∣∣∣
u=z

dz

dt
+

db(z, u)

du

∣∣∣∣
u=z

dz

dt

=
db(z, u)

dz

∣∣∣∣
u=z

f(z) +
db(z, u)

du

∣∣∣∣
u=z

f(z),

(4.10)

where db(z,u)
dz

=
[
∂b(z,u)
∂(z)1

, ∂b(z,u)
∂(z)2

, . . . , ∂b(z,u)
∂(z)n

]
is the gradient of b(z, u) with respect to

z and the gradient is defined with respect to u in a similar way. Given Equa-

tion (4.10), barrier certificates that include a differential condition can be extended

into the complex domain quite naturally. For example, the convex barrier certificate

is extended to the complex domain.

Definition 4.6 (Complex-valued Convex Barrier Certificate). For a system ż =

f(z), Z ⊆ Cn, Z0 ⊆ Z and Zu ⊆ Z; a complex-valued barrier function B : Cn → R,
B(z) = b(z, z), that obeys the following conditions,

b(z, z) ≤ 0,∀z ∈ Z0 (4.11)

b(z, z) > 0,∀z ∈ Zu (4.12)

db(z, u)

dz

∣∣∣∣
u=z

f(z) +
db(z, u)

du

∣∣∣∣
u=z

f(z) ≤ 0,∀z ∈ Z, (4.13)

is a complex-valued convex barrier certificate.

With this definition, the safety of complex dynamical systems can be ensured:

Theorem 4.2. If a complex system, ż = f(z), has a complex-valued convex barrier

certificate, B : Cn → R, then the system is safe.

Proposition 4.3. The set of complex-valued barrier certificates satisfying the con-

ditions of Definition 4.2 is convex.

The proofs of these results are given in Appendix B.1.1 and B.1.2 respectively.

Whilst these definitions and proofs are simple extensions and adaptions of the ones

for real dynamical system, this is the first time that they have been applied to barrier

certificates associated with complex dynamical systems.
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4.4 Generating Satisfiable Barrier Certificates for

Quantum Systems

The computation of a complex-valued barrier function is described in this section.

Throughout, let ż = f(z), Z ⊆ Cn, Z0 ⊆ Z and Zu ⊆ Z be defined as before.

The general family of functions that will be used is introduced as “templates” for

complex barrier certificates.

Definition 4.7. A k-degree polynomial function is a complex function, b : Cn → C,
such that

b(z1, . . . , zn) =
∑

α∈An,k

aαz
α (4.14)

where An,k := {α = (α1, . . . , αn) ⊆ Nn :
∑n

j=1 αj ≤ k}, aα ∈ C, and zα =∏n
j=1 (z)j

αj .

The family of k-degree polynomials are polynomial functions where no indi-

vidual term of the polynomial can have a degree higher than k. Note that k-

degree polynomial functions are holomorphic. Further, some k-degree polynomials

are conjugate-flattening. For example, the 2-degree polynomial b(z1, u1) = z1u1 is

conjugate-flattening since zz = |z|2, whereas the 1-degree polynomial b(z1, u1) = z1

is not. Thus, a subset of this family of functions are suitable to be used for barrier

certificates as complex-valued barrier functions.

The partial derivative of the polynomials in Equation (4.14) is required for en-

suring the function meets Condition (4.13). The partial derivative of the function

is
∂b

∂(z)j
=
∑

α∈An,k

aα(α)j(z)j
−1zα. (4.15)

Denote the barrier certificates with coefficients as

B(a, z) := b(a, z, z) :=
∑

(α,β)∈A2n,k

α=(α1,...,αn)
β=(αn+1,...α2n)

aα,βz
αzβ,

where a = (aα,β) ∈ R|A2n,k| is a vector of real coefficients to be found and zβ =∏n
j=1 (z)j

αn+j
.
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The following (polynomial) inequalities find the coefficient vector:

find aT

subject to B(a, z) ≤ 0,∀z ∈ Z0

B(a, z) > 0,∀z ∈ Zu

dB(a, z)

dt
≤ 0,∀z ∈ Z

B(a, z) ∈ R

− 1 ≤ aα,β ≤ 1.

(4.16)

The coefficients, aα,β ∈ R, are restricted to the range [−1, 1] since any barrier

certificate B(a, z), can be normalised by dividing B by the coefficient of greatest

weight, m = max |aα,β|. The resulting function 1
m
B(a, z) is still a barrier certificate.

A barrier certificate generated from these polynomial inequalities can then freely be

scaled up by multiplying it by a constant.

4.4.1 An Algorithmic Solution

One approach of solving the inequalities in (4.16) is to convert the system to real

numbers and solve using sum of squares (SOS) optimisation [125]; another method

is to use SMT solvers to find a satisfiable set of coefficients; or it is possible to use

neural network based approaches to find possible barriers [1, 121]. Here, a special

case can be considered, where dB(a,z)
dt

= 0 rather than dB(a,z)
dt

≤ 0, which allows

the problem to be turned into a linear program. This restriction allows a subset of

barrier certificates that still ensures the safety of the system to be considered. This

is motivated by the fact that simple quantum systems of interest exhibit periodic

behaviour; that is for all t ∈ R+, z(t) = z(t+ T ) for some T . The barrier must also

exhibit periodic behaviour,1 and this can be achieved by setting dB(a,z)
dt

= 0. Whilst

there are other properties that ensure a function is periodic, these would involve

non-polynomial terms such as trigonometric functions. Further, linear programs

tend to be solved faster than SOS methods. This is because SOS programs are

solved through semidefinite programming techniques, which are extensions of linear

programs and therefore harder to solve.

To begin with, the differential constraint, dB(a,z)
dt

= 0, is transformed. To obey

1The barrier being periodic can be seen by interpreting the barrier as a function over time:
B(t) = B(z(t)) = B(z(t+ T )) = B(t+ T ),∀t ∈ R+
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the third condition for the complex-valued convex barrier certificate, terms in Equa-

tion (4.10) can be substituted with the partial derivatives from Equation (4.15).

Essentially, the equation is of the form

(Aa)⊤ζ = 0,

where ζ is a vector of all possible polynomial terms of (z)j, (z)j with degree less

than k,2 and A is a matrix of constant values. By setting Aa = 0⃗ the constraint

is satisfied. Therefore, each row of the resultant vector, (Aa)j = 0, is added as a

constraint to a linear program.

To transform the real constraint (B(a, z) ∈ R) note that if x ∈ C, then x ∈ R if

and only if x = x. Therefore, B(a, z)−B(a, z) = 0 and

B(a, z)−B(a, z) =
∑

(αj)∈A2n,k

α={α1,...,αn}
β={αn+1,...α2n}

aα,βz
αzβ −

∑
(αj)∈A2n,k

α′={α1,...,αn}
β′={αn+1,...α2n}

aα′,β′zβ
′
zα

′

=
∑

(αj)∈A2n,k

α={α1,...,αn}
β={αn+1,...α2n}

(aα,β − aβ,α)zαzβ.

The whole polynomial is equal to 0 if all coefficients are 0. Thus, taking the

coefficients and noting that aj are real gives the transformed constraints aα,β =

aβ,α for α = (αj)
n
j=1,β = (αj)

2n
j=n+1, (αj) ∈ A2n,k. These constraints to the coeffi-

cients are then also added to the linear program.

The final constraints we need to transform are the constraints on the initial and

unsafe set: B(a, z) ≤ 0 for z ∈ Z0 and B(a, z) > 0 for z ∈ Zu, respectively. Begin

by noting that B(a, z) = c+ b(a, z, z) where b(a, z, z) is a k-degree polynomial (with

coefficients a) and c ∈ R is a constant. When considering the differential and real

constraint steps, c is not involved in these equations since c does not appear in the

differential term and c is cancelled out in the real constraint (c− c = c− c = 0).

Considering the initial and unsafe constraints, it is required that

∀z0 ∈ Z0, c+ b(a, z0, z0) ≤ 0, and

∀zu ∈ Zu, c+ b(a, zu, zu) > 0.

2e.g., for k = 2 acceptable terms include (z)j
a
, (z)j(z)l, (z)j(z)l, (z)j

a
, (z)j(z)l for 0 ≤ a ≤ 2.
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Algorithm 1: Computing the barrier certificate using linear programming

1: Solve the linear program

find aT

subject to Aa = 0⃗

aα,β = aβ,α for α = {αj}nj=1,β = {αj}2nj=n+1,

and {αj}2nj=1 ∈ A2n,k

− 1 ≤ aj ≤ 1.

2: c← minz∈Z0 −b(a, z, z)
3: if c > maxz∈Zu −b(a, z, z) then return B(a, z) = c+ b(a, z, z)
4: else fail

Therefore, c is bounded by

max
z∈Zu

−b(a, z, z) < c ≤ min
z∈Z0

−b(a, z, z).

Finding c = minz∈Z0 −b(a, z, z) and then checking maxz∈Zu −b(a, z, z) < c will en-

sure the initial and unsafe constraints are met for the barrier. The final computation

is given in Algorithm 1.

Note that the algorithm can fail since the function b may divide the state space

in such a way that a section of Z0 may lie on the same contour as a section of

Zu. This means that either the function b is unsuitable or the system is inherently

unsafe.

4.5 Application to Quantum Systems

Quantum systems that evolve within Hilbert spaces, Hn = C2n for n ∈ N, are

considered. The computational basis states |j⟩ ∈ Hn, for 0 ≤ j < 2n, are used as

an orthonormal basis within the space, where (|j⟩)l = δjl.
3 General quantum states,

|ϕ⟩ ∈ Hn, can then be written in the form

|ϕ⟩ =
2n−1∑
j=0

(z)j |j⟩ ,

3δjl is the Kronecker delta, which is 1 if j = l and 0 otherwise.
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where (z)j ∈ C and
∑2n−1

j=0 |(z)j|
2 = 1.4 Quantum states reside within the unit circle

of C2n . For simplicity, quantum systems that evolve according to the Schrödinger

equation are considered:
d |ϕ⟩
dt

= −iĤ |ϕ⟩ ,

where Ĥ is a Hamiltonian, a complex matrix such that Ĥ = Ĥ† = Ĥ⊤; and |ϕ⟩ is
a quantum state.5 In the rest of this section, Algorithm 1 is used to find suitable

barrier certificates for operations that are commonly used in quantum computers.

Code Availability The code that implements Algorithm 1 and the following

examples is available at:

https://github.com/marco-lewis/quantum-barrier-certificates.

4.5.1 Hadamard Operation Example

The evolution of the Hadamard operation, H = 1√
2

(
1 1

1 −1

)
, is given by ĤH =(

1 1

1 −1

)
and |ϕ⟩ is one qubit, (z)0 |0⟩+ (z)1 |1⟩. So, z(t) =

(
(z)0(t)

(z)1(t)

)
and

ż = −iĤHz = −i

(
(z)0 + (z)1

(z)0 − (z)1

)
.

The system evolves over the surface of the unit sphere, Z = {z ∈ C2 : |(z)0|2 +
|(z)1|2 = 1}. The initial set is defined as Z0 = {z ∈ Z : |(z)0|2 ≥ 0.9} and the

unsafe set as Zu = {z ∈ Z : |(z)0|2 ≤ 0.1}. This can be thought of as starting in

a quantum state that is close to |0⟩, i.e., has a greater than 90% chance of being

measured, and avoiding entering a state where |0⟩ is unlikely, i.e., has less than 10%

chance of being measured. Note that the definitions of Z0 and Zu are restricted by

Z, therefore |(z)1|2 ≤ 0.1 and |(z)1|2 ≥ 0.9 for Z0 and Zu respectively. A barrier

function computed by Algorithm 1 is

B(z) =
11

5
− 3(z)0(z)0 − (z)0(z)1 − (z)0(z)1 − (z)1(z)1.

4In Dirac notation, (z)j = ⟨j|ϕ⟩ and (z)j = ⟨ϕ|j⟩.
5The Planck constant, ℏ, is set to 1 in the Schrödinger equation.
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(a) Isometric view of system (b) Top down view of system

Figure 4.2: System evolution on a Bloch sphere. The initial state of the system is√
0.9 |0⟩ + i

√
0.1 |1⟩ (the black dot) and evolves according to the black line (in an

anti-clockwise rotation with a period of t = π). The green surface around the north
pole (|0⟩) is the initial region, Z0, and the red surface around the south pole (|1⟩)
is the unsafe region, Zu. The blue surface is the plane of the barrier function when
B(z) = 0, with x < −z being the unsafe region.

By rearranging and using properties of the complex conjugate, we find that

B(z) = 2(
1

10
− |(z)0|2 +

1

2
− Re

{
(z)0(z)1

}
).

The derivation is given in Appendix B.1.3. The first term of the barrier ( 1
10
−|(z)0|2)

acts as a restriction on how close to |0⟩ as |ϕ⟩ evolves, whereas the second term

(1
2
− Re

{
(z)0(z)1

}
) is a restriction on the phase of the quantum state. Next, it is

checked if B is indeed a barrier certificate.

Proposition 4.4. The system evolving according to Equation (4.5.1), initial set (z)0

and unsafe set Zu is safe.

The proposition is proved in Appendix B.1.4. A visualisation on a Bloch sphere

representation of the example system and its associate barrier are given in Figure 4.2.
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4.5.2 Phase Operation Example

The evolution of the phase operation S =

(
1 0

0 i

)
is given by the Hamiltonian

ĤS =

(
1 0

0 −1

)
for a single qubit (z)0 |0⟩ + (z)1 |1⟩. Thus, the evolution of the

system for z(t) =

(
(z)0(t)

(z)1(t)

)
is

ż = −i

(
(z)0

−(z)1

)
. (4.17)

Again, Z represents the unit sphere as described previously. Two pairs of safe and

unsafe regions are given. The first pair, Z1 = (Z1
0 ,Z1

u), is given by

Z1
0 = {z ∈ Z : |(z)0|2 ≥ 0.9}, Z1

u = {z ∈ Z : |(z)0|2 < 0.9− err};

and the second pair, Z2 = (Z2
0 ,Z2

u), is given by

Z2
0 = {z ∈ Z : |(z)1|2 ≥ 0.9}, Z2

u = {z ∈ Z : |(z)1|2 < 0.9− err},

where, in both cases, err = 0.01 acts as an error term. The pair Z1 starts with a

system that is close to the |0⟩ state and ensures that the system remains close to

|0⟩. This is encoded by making the unsafe region be the states whose probability

of measuring |0⟩ below 0.9, hence err is used to provide a small buffer between

the initial and unsafe region. The pair Z2 has similar behaviour with |1⟩ as the

respective state.

The system for each pair of constraints is considered safe by the following barriers

computed by Algorithm 1:

B1(z) = 0.9− (z)0(z)0, B2(z) = 0.9− (z)1(z)1,

where B1 is the barrier for Z1 and B2 is the barrier for Z2.6 The system with

different pairs of regions can be seen on Bloch spheres in Figure 4.3. Again, both

functions B1 and B2 are valid barrier certificates.

6These barriers can similarly be written using the Dirac notation.
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(a) Evolution with initial and unsafe
states Z1. The barrier at B1(z) = 0 is a
flat plane that borders (z)0

2 = 0.9.

(b) Evolution with initial and unsafe
states Z2. Similarly, B2(z) = 0 is a flat
plane that borders (z)1

2 = 0.9.

Figure 4.3: State evolution of (4.17) demonstrated on a Bloch sphere.

Proposition 4.5. The system given by Equation 4.17 with the set of initial states

Z1
0 and the unsafe set Z1

u is safe.

Proposition 4.6. The system given by Equation 4.17 with the set of initial states

Z2
0 and the unsafe set Z2

u is safe.

The proofs are provided in Appendix B.1.5, they are similar to each other and to

the proof of Proposition 4.4. These barriers give bounds on how the system evolves,

i.e., the system must only change the phase of the system and not the amplitude.

This can be applied in general by combining barriers to show how a (disturbed)

system is restricted in its evolution.

4.5.3 Controlled-NOT Operation Example

The final example considered is the controlled-NOT (CNOT) operation acting on

two qubits: a control qubit, |ϕc⟩, and a target qubit, |ϕt⟩, with the full quantum

state being |ϕcϕt⟩. The CNOT operation performs the NOT operation on a target

qubit (|0⟩ → |1⟩ and |1⟩ → |0⟩) if the control qubit is set to |1⟩ and does nothing if

the control qubit is set to |0⟩. The CNOT operation and its associated Hamiltonian
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are given by

CNOT =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

, ĤCNOT =


0 0 0 0

0 0 0 0

0 0 1 −1
0 0 −1 1

 .

The system z(t) = (zj(t))j=0,...,3 evolves according to

ż = −i


0

0

(z)2 − (z)3

−(z)2 + (z)3

 .

This system evolves over Z = {z ∈ C4 :
∑3

j=0 |(z)j|2 = 1}. Using this as the system,

various initial and unsafe regions can be set up to reason about the behaviour of the

CNOT operation.

Control in |0⟩

Here, consider the following initial and unsafe regions

Z0 = {z ∈ C4 : |(z)0|2 ≥ 0.9},

Zu = {z ∈ C4 : |(z)0|2 ≤ 0.9− err},

where, again, err = 0.01. The initial set, Z0, encapsulates the quantum states that

start in the |00⟩ state with high probability and Zu captures the states that are

not in the initial region. Note that the unsafe system can also be specified with

|(z)1|2 + |(z)2|2 + |(z)3|2 ≥ 0.1 + err due to the properties of the unit sphere. These

regions capture the behaviour that the quantum state should not change much when

the control qubit is in the |0⟩ state.
Using Algorithm 1, the barrier B(z) = 0.9 − (z)0(z)0 can be generated to show

that the system is safe.

A similar example can be considered where the initial state |00⟩ is replaced with

|01⟩ instead (replace (z)0 with (z)1 in Z0 and Zu). The behaviour that the state of

the system should not change much is still desired; the function B(z) = 0.9−(z)1(z)1
is computed as a barrier to show this behaviour is met.
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Control in |1⟩

Now consider when the initial region has the control qubit near the state |1⟩. The

following regions are considered:

Z0 = {z ∈ C4 : |(z)2|2 ≥ 0.9},

Zu = {z ∈ C4 : |(z)0|2 + |(z)1|2 ≥ 0.1 + err},

with err = 0.01. This system starts close to the |10⟩ state and the evolution should

do nothing to the control qubit, i.e., the quantum state may change the amplitudes

of |10⟩ and |11⟩, but may not change the amplitudes of |00⟩ or |01⟩ much (with

err acting as a buffer again). Note that the specified behaviour does not captures

the NOT behaviour on the target qubit. Algorithm 1 considers this system safe by

outputting the barrier certificate B(z) = 0.9 − (z)2(z)2 − (z)3(z)3. This is also the

barrier if the system were to start near the |11⟩ state instead.

4.6 Conclusions

In this Chapter, the theory of barrier certificates was extended to handle complex

variables. It was then shown how one can automatically generate simple complex-

valued barrier certificates using polynomial functions and linear programming tech-

niques. Finally, the application of the developed techniques was studied to check

properties of time-independent quantum systems.

There are numerous directions for this research to take. In particular, one can

consider (quantum) systems that are time-dependent, have a control or noise com-

ponent, or are discrete-time, i.e., quantum circuits. The main difficulty is that

while it has been shown that barrier certificates can be extended to complex do-

main, the generation process provided in this Chapter is very specific to the system

given. The classical methods for handling real versions of the extended systems, such

as [4, 13, 93, 125, 144], need to be investigated for possible extensions to handle the

complex versions. Data-driven approaches for generating barrier certificates, e.g.,

[135], based on measurements of a quantum system can also be considered. A final

challenge to consider is how to verify large quantum systems. Techniques, such as

Trotterization, allow Hamiltonians to be simulated either by simpler Hamiltonians

of the same size or of lower dimension. How barrier certificates can ensure safety of

such systems is a route to explore.
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This Chapter has demonstrated the potential for barrier certificates to be used

for verifying properties of quantum gates. The next Chapter provides a further

investigation into the generation process for barrier certificates and looks at how

this technique can be used to verify quantum circuits.
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Chapter 5

Verification of Quantum Circuits

using Discrete Barrier Certificates

This Chapter further explores the usage of barrier certificates to verify properties

in quantum systems first developed in Chapter 4. The standard generation process

for barrier certificates is extended to handle different types of quantum systems,

with particular focus in this Chapter on looking at the quantum circuit level in the

quantum stack.

5.1 Introduction

In Chapter 4, the notions of barrier certificates for complex systems and a method

for producing a barrier certificate was produced. The linear programming technique

used is flawed in that it is specific to the system worked with. If a different type of

dynamical system were considered, then the same technique could not be used to

generate a barrier. Thus, while the definition of barrier certificate has been extended

to the complex domain, the method to generate barrier certificates was not extended.

In the literature of barrier certificates, a common technique known as Sum of

Squares (SOS) is used as a generation technique. Commonly, a set of barrier cer-

tificate constraints is converted into equivalent SOS equations. These equations

are then given to a SOS solver such as SOSTOOLS [118], which is a tool built on

semidefinite program solvers [119], in order to find a valid barrier certificate. The

main reason SOS is used as a generation technique is that the conversion of con-

straints to SOS equations can be applied to almost any barrier certificate scheme.
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Additionally, the availability and efficiency of SOS solvers make it easy to implement

the technique.

In this Chapter, it will be demonstrated how the technique of using SOS can be

generalised to the complex domain. The generalisation of barrier certificates into

the complex domain from the previous Chapter is used and the SOS technique is

adapted by making use of Hermitian Sum of Squares (HSOS), a complex extension

of SOS [126]. This technique is applied to a discrete-time dynamical system by

analysing how barrier certificates can be applied to quantum circuits.

5.2 Quantum Circuits as Dynamical Systems

Firstly, the dynamical system considered to represent quantum circuits is introduced.

Definition 5.1 (Discrete-time complex-space system). A discrete-time complex-

space system is a tuple S = (Z,Z0, F, f), where

• Z ⊆ Cn is the continuous (complex-valued) state space;

• Z0 ⊆ Z is the set of initial states;

• F is a finite set of functions that contain all the possible dynamics the system

can perform;

• and f : N≥0 → F is a function that assigns at each time step the dynamics of

the system.

At each time step, t, the state of the system is zt and the dynamics of the system is

defined by

zt+1 = f(t)(zt) = ft(zt).

Conversion of quantum circuits into the dynamical system given above is straight-

forward. For an n-qubit system, quantum states are restricted to points on the unit

circle of C2n , i.e., Z = {z ∈ C2n :
∑

j |(z)j|
2 = 1}. Assume that for any quantum

circuit, there is some initial state |ϕ⟩ =
∑2n

j=0(z)j |j⟩ or a set of initial points that

can be chosen from. Again, as discussed in Section 4.1, this may be from taking an

region in the state space where the initial states has a high chance of occurring. One

can include error in the initial state through noise that occurs in preparing the initial

state. Thus, Z0 can be specified by the user depending on how noisy preparing the
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H H

H H

H Z H

U0 U1 U0

Figure 5.1: Quantum circuit with 3 unitary operations consisting of grouped gates.

initial state is. Finally, say the quantum circuit is of the form U = Uk−1 . . . U1U0,

where U0, U1, . . . are unitary operations. Then F = {Ut}t=0,...,k−1, and f(t) = Ut for

t < k and f(t) = I2n otherwise.

There is flexibility in what level the unitary operations are chosen, since one

can let unitary operations be individual gates or they can be a combination of

several gates at different depths. For example, the quantum circuit in Figure 5.1 is

equivalent to the system S = (Z,Z0, F, f) where

Z = {z ∈ C8 :
∑
j

|(z)j|2 = 1};

Z0 = {z ∈ Z : |(z)0|2 ≥ 0.99, Im{(z)0} = 0};

F = {U0, U1}; and

ft(z) =


U0z for t = 0, 2,

U1z for t = 1,

z otherwise;

and the actual unitary transformation corresponding to U0 and U1 can be easily

deduced from Figure 5.1. In this example, Z0 corresponds to the set of initial

quantum states having |0⟩ be measured with at least 99% probability and no complex

phase. This corresponds with the errors that devices can face when preparing a

quantum state.

5.3 Complex Discrete-Time Barrier Certificates

Next, the notion of safety for the complex system is reintroduced.

Definition 5.2 (Safety). Let S = (Z,Z0, F, f) be a discrete-time complex-space
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system and Zu ⊆ Z denote the unsafe set. Then S is safe if for all z0 ∈ Z0, zt /∈ Zu

for any t ∈ N≥0.

To solve this problem of safety using barrier certificates the ideas behind bar-

rier certificates for hybrid systems [124] and k-inductive barrier certificates [8] are

combined, adapting them to our dynamical system as well as the complex domain.

Additionally, the certificate to handle different dynamics that occur during evolution

is adapted.

The barrier certificates for [124] are capable of handling systems with dynam-

ics that occur on both a continuous and discrete space. For our system S =

(Z,Z0, F, f), these spaces corresponds to our complex space, Z, and the time steps,

N≥0, respectively. The k-inductive barrier certificates introduced in [8] work on the

basis that the system is allowed to evolve slightly towards the unsafe region but after

k steps the system will be further away from the unsafe region than before taking

the k steps.

Theorem 5.1 (k-Inductive Hybrid Barrier Certificate). Let S = (Z,Z0, F, f) and

the unsafe set be Zu. Suppose there exists a barrier certificate: a collection of func-

tions {Bt(z)}t∈N≥0
, where Bt(z) ∈ R for all t ≥ 0, z ∈ Z; and constants k ≥ Z≥1,

ϵ, γ ∈ R≥0 and d > k(ϵ+ γ) that satisfy the following equations

B0(z) ≤ 0,∀z ∈ Z0; (5.1a)

Bt(z) ≥ d,∀z ∈ Zu,∀t ∈ N≥0; (5.1b)

Bt(ft(z))−Bt(z) ≤ ϵ,∀z ∈ Z, t ∈ N≥0; (5.1c)

Bt+1(z)−Bt(z) ≤ γ, ∀z ∈ Z, t ∈ N≥0; (5.1d)

Bt+k(ft+k−1(. . . ft+1(ft(z))))−Bt(z) ≤ 0, ∀z ∈ Z, t ∈ N≥0 (5.1e)

such that t = rk for r ∈ N≥0.

Then the safety of S with respect to Zu is guaranteed.

Proof. The theorem is proved by contradiction. Let the system have a k-inductive

hybrid barrier certificate, i.e., {Bt(z)}, k, ϵ, γ, d that satisfy the conditions given in

(5.1), and assume that the system is not safe.

Let (z0, . . . , zT ) be a trace, where zt+1 = ft(zt), that reaches an unsafe state,

zT ∈ Zu. Let T = t +m, where t,m ∈ N≥0, t = rk for some r ∈ N≥0 and m < k.

For the initial state and unsafe state, B0(z0) ≤ 0 and Bt+m(zt+m) ≥ d respectively.
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Using (5.1c) and (5.1d), then

Bt+m(zt+m) = Bt+m(ft+m−1(zt+m−1))

≤ Bt+m−1(ft+m−1(zt+m−1)) + γ

≤ Bt+m−1(zt+m−1) + ϵ+ γ

≤ . . .

≤ Bt(zt) +m(ϵ+ γ) ≤ Bt(zt) + k(ϵ+ γ).

Using (5.1e) and induction, Bt(zt) ≤ Bt−k(zt−k) ≤ · · · ≤ B0(z0). Therefore,

Bt+m(zt+m) ≤ B0(z0) + k(ϵ+ γ) < d.

This is a contradiction to (5.1b) and therefore zT /∈ Zu. Therefore, the system S is

safe.

Remark 5.1. Note that with certain values of k, ϵ and γ, the number of equations

to satisfy can be reduced. For example, if k = 1 and γ = 0, then Equation (5.1c) is

implied through Equations (5.1d) and (5.1e) for any value of ϵ.

One of the challenges with Theorem 5.1 is that the functions, Bt, have com-

plex variables but are required to return a real value. Therefore, the functions are

restricted to specific classes that can be easily defined and will be useful for find-

ing a barrier. To do this, the notion of conjugate-flattening is used as given in

Definition 4.4. In addition, a definition for polynomials is used.

Definition 5.3 (Conjugate-flattening Polynomial). A conjugate-flattening function,

P (z) = p(z, z) ∈ R, is a conjugate-flattening polynomial if p(z, u) is a polynomial

with complex variables and coefficients.

These definitions can be used in Theorem 5.1 for the collection of functions to

ensure that Bt(z) ∈ R for any t ≥ 0, z ∈ Z. Additionally, being able to differentiate

between conjugate-flattening functions and polynomials will be useful when in the

discussion of the generation of barrier certificates in Section 5.4.3.
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5.4 Computation of Barrier Certificates through

Hermitian Sum of Squares

There exist several approaches for computing a barrier certificate given the specifi-

cation and dynamics of a system. Most approaches are automatic and include the

usage of neural networks and SMT (Satisfiability Modulo Theory) solvers [1, 60] to

compute a barrier. However, the standard approach is to make use of sum of squares

(SOS) optimisation in order to find a suitable barrier [119]. Unlike other techniques,

SOS optimisation provides an efficient method whilst remaining theoretically sound.

In this Section, the SOS technique is adapted to complex variables.

5.4.1 Sum of Squares for Complex Numbers

A polynomial with real variables and coefficients, p(x), is referred to as a sum of

squares (SOS) if p(x) =
∑

k pk(x)
2, where pk are polynomials (of any degree) for

k ≥ 1. There are two reasons that SOS polynomials are useful for generating barrier

certificates:

i SOS polynomials are real and positive. This makes SOS polynomials useful for

ensuring generated functions obey theorems for safety (such as Theorem 5.1).

ii There is an equivalence between SOS polynomials and positive semidefinite

matrices: p(x) is a SOS iff there exists a positive semidefinite matrix Q such

that p(x) = v(x)⊺Qv(x) where v(x) is a vector of monomial terms. Such

matrices can be found using semidefinite programming [119].

Combining these two properties gives us an efficient and sound method for finding

real polynomial barriers.

A function with complex variables and coefficients, p, may produce complex

values, i.e., p : Cn → C. This means that p may not produce only positive, or even

real, values. Thus, a method is needed to ensure p(z) is real and positive for any

z ∈ Cn. This can be done by considering a variation of sum of squares.

Definition 5.4 (Hermitian Sum of Squares [126]). A complex function, p(z) : Cn →
C is a Hermitian sum of squares (HSOS) if p(z) =

∑
k pk(z)pk(z) where pk : Cn → C

are complex polynomials and k ≥ 1.
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Remark 5.2. Note that the main difference between HSOS and SOS is that the

conjugate (z) is used for HSOS. If a HSOS polynomial is restricted to have only

real variables and coefficients, then the standard SOS definition can be used since

pk(x)pk(x) = pk(x)
2.

The properties previously described for SOS polynomials hold for HSOS poly-

nomials with some slight modifications for the complex domain.

Proposition 5.2. Let p(z) be a HSOS. Then p(z) ∈ R for all z ∈ Cn and p(z) is

positive (p(z) ≥ 0).

Proof.

p(z) =
∑
k

pk(z)pk(z) =
∑
k

|pk(z)|2

It is clear that the right-hand side is a real value and is also positive.

Additionally, there is a notion of positive semidefinite matrices for complex vec-

tors as well.

Definition 5.5 (Positive semidefinite [91]). A complex n×nmatrixQ is (Hermitian)

positive semidefinite if z†Qz ≥ 0,∀z ∈ Cn.

With these definitions, an equivalence between HSOS polynomials and (Hermi-

tian) positive semidefinite matrices can be shown.

Proposition 5.3. Let p(z) : Cn → C be a conjugate-flattening polynomial of degree

2d. Then, p(z) is a HSOS iff there exists a (Hermitian) positive semidefinite matrix,

Q, such that p(z) = v(z)†Qv(z), where v(z) is a vector of all monomials of degree

less than d.

Proof. Firstly, assume that p(z) is a HSOS. Therefore, p(z) =
∑

k pk(z)pk(z) where

pk is a polynomial. Since p has degree 2d and deg(pk(z)) = deg(pk(z)), then each

pk is of degree up to d. Therefore, pk(z) = Bkv(z), where Bk is a (row) vector of

complex coefficients.

Let B be the matrix whose rows are Bk and elements are (B)kl.
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By expanding p(z), then

p(z) =
∑
k

Bkv(z)Bkv(z)

=
∑
k

∑
l,m

(Bkv(z))l(Bkv(z))m

=
∑
k

∑
l,m

(B)klv(z)l(B)km(v(z))m

=
∑
k

∑
l,m

(B†)mk(B)kl(v(z))l(v(z))m

=
∑
l,m

(
∑
k

(B†)mk(B)kl)(v(z))l(v(z))m

=
∑
l,m

(B†B)ml(v(z))l(v(z))m

= v(z)†(B†B)v(z).

Since B is a complex matrix, then Q = B†B is positive semi-definite.

Now, assume that p(z) = v(z)†Qv(z) with Q being positive semi-definite, then

there exists a complex matrix B such that Q = B†B. Simply by performing the

summation in reverse gives us that p(z) =
∑

k pk(z)pk(z) where pk(z) = Bkv(z).

Since properties of SOS polynomials are shared by HSOS polynomials, compu-

tation techniques can be used to find barrier certificates for real systems and they

can be adapted for complex systems.

5.4.2 Semi-algebraic Sets

In the usual method for computing barrier certificates, the sets used are assumed

to be semi-algebraic [29], i.e., they can be described using vectors of polynomials.

For example, if X ⊆ Rn is semi-algebraic, it can be written as

X = {x ∈ Rn : g(x) ≥ 0},

where g(x) is a vector of polynomials and the ordering is applied element-wise

(gj(x) ≥ 0 for all j).

This definition does not immediately hold for complex variables, since complex

values cannot be ordered. Thus, semi-algebraic sets for complex numbers must be

defined by a vector of conjugate-flattening polynomials, i.e., g(z) ∈ Rn for all
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z ∈ Cn. Then write that Z ⊆ Cn is (complex) semi-algebraic if

Z = {z ∈ Cn : g(z) ≥ 0};

where g is a vector of conjugate-flattening polynomials and, again, the ordering

is applied element-wise. From now on, assume that the sets Z,Z0, and Zu are

(complex) semi-algebraic and use the vectors gI , g0, and gu to describe their elements

respectively.

5.4.3 HSOS Equations for Barrier Certificate Constraints

Now the HSOS equations that need to be computed to get a function that satisfies

the constraints of a barrier certificate can be stated.

Lemma 5.4. Let S = (Z,Z0, F, f); gI , g0, gu be given vectors of conjugate-flattening

polynomials describing Z,Z0, and Zu, respectively. Suppose there exists a collection

of (conjugate-flattening) polynomials {Bt(z) = bt(z, z)}t∈N≥0
; positive numbers k ∈

N≥0, ϵ, γ ∈ R≥0, d > k(ϵ + γ); and vectors of Hermitian sum of squares λU;t(z),

λInit(z), λt(z), λt,t′(z) and λ̂t(z) such that the expressions:

−B0(z)− λInit(z)⊺g0(z); (5.2a)

Bt(z)− λU;t(z)
⊺gu(z)− d,∀t ∈ N≥0; (5.2b)

−Bt(ft(z)) +Bt(z)− λt(z)⊺gI(z) + ϵ,∀t ∈ N≥0; (5.2c)

−Bt+1(z) +Bt(z)− λt,t+1(z)
⊺gI(z) + γ, ∀t ∈ N≥0; (5.2d)

−Bt+k(ft+k−1(. . . ft+1(ft(z)))) +Bt(z)− λ̂t(z)⊺gI(z), (5.2e)

∀t ∈ N≥0 such that t = rk for r ∈ N≥0;

are Hermitian sum of squares. Then B satisfies Theorem 5.1 and the safety of S is

guaranteed.

Proof. It is shown that expression (5.2b) being HSOS implies that B satisfies con-

straint (5.1b) of Theorem 5.1. Firstly, note that since λU;t is a vector of HSOSs, then

λU;t(z) ≥ 0,∀z ∈ Z. Additionally, for zu ∈ Zu, we have that g(zu) ≥ 0. Therefore,

λU;t(zu)
⊺g(zu) ≥ 0 and further that Bt(zu) − d ≥ 0 as Equation (5.2b) is HSOS.

Thus, constraint (5.1b) is satisfied.

Similar reasoning can be applied to the other expressions in (5.2) and their
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Algorithm 2: Finding a barrier certificate using HSOS

Input: Constants: k, δ, ϵ, γ; discrete-time complex-space dynamical system:
S = (Z,Z0, F, f); vectors describing associated semi-algebraic sets:
gI , g0, gu

1 Set d > k(ϵ+ γ).
2 Setup symbolic function: Set B(z) = b(z, z) to be a parameterized

conjugate-flattening polynomial of degree up to δ.
3 Define symbolic lambda polynomials: parameterized conjugate-flattening

polynomials λInit(z), λU ;t(z), λt(z), λt,t′(z) and λ̂t(z) for each t, t
′.

4 Add to HSOS solver: Add the various λ polynomials and the equations in
(5.2) as HSOS constraints to the HSOS solver.

5 Run the HSOS solver.
6 if feasible then
7 return B(z) with coefficients set to the values from the HSOS solver
8 else
9 error: barrier does not exist for system with constants given

10 end

respective counterparts in (5.1). This results in the conditions in Theorem 5.1 being

satisfied and, therefore, safety is guaranteed.

In the same way HSOS is related to SOS, Lemma 5.4 is similar to theorems and

lemmas for real dynamical systems, with the major difference being the usage of

HSOS equations rather than SOS equations to allow us to use complex variables.

Remark 5.3. Note that the barrier generated is a conjugate-flattening polynomial,

but the definition of k-inductive hybrid barrier certificates given in Theorem 5.1 does

not require the barrier function to be a polynomial. Simply by restricting the barrier

to a conjugate-flattening polynomial allows us to easily adapt the SOS methods to

the complex domain while retaining safety of the system.

5.4.4 Algorithm for finding a Barrier Certificate

An algorithm is provided for finding a barrier certificate for a discrete-time complex-

space system S = (Z,Z0, F, f), given in Algorithm 2. In order to compute a barrier,

consider B(z) as a δ-degree conjugate-flattening polynomial. The coefficients of B

are parameterised as a vector of complex values β ∈ Cκ, where κ ≈
∑δ

j=0(2n)
j =

1−(2n)δ+1

1−2n
is the number of coefficients in a δ-degree polynomial with 2n variables

(2n comes from the fact that z and z terms need to be considered). Then B(z) is
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input with its parameterised coefficients β into the equations given in (5.2). These

equations are then given to an appropriate HSOS solver, which attempts to find

appropriate values for β.

Remark 5.4. For specific hyper-parameters a barrier may not be produced, hence

why the HSOS may return infeasible and there is an error in Algorithm 2 (line 9).

This can be due to several reasons, for example the barrier may have a degree that

is higher than δ or the values of ϵ and γ need to be changed. The system may simply

be unsafe. Alternatively, the required barrier for the system and unsafe region given

may need to be non-polynomial, in which case the HSOS technique cannot be used

to generate a barrier. The work in [3] shows that a (real) continuous system with

polynomial dynamics is safe but does not admit a polynomial Lyapunov function,

i.e., a barrier certificate.

5.5 Case Studies

In this Section, it is shown how the theory that has been developed can be used

in practice. Details are provided of the implementation of a toy HSOS solver and

demonstrate its usage for barrier certificates on some example quantum circuits.

Note that in the quantum circuit setting, Z = {z ∈ C2n :
∑2n−1

j=0 |(z)j|
2 = 1} as

discussed in Section 5.2.

5.5.1 Experimental Setup

For these experiments, the dynamical system ft(z); functions describing the semi-

algebraic sets: gI , g0, gu; parameters k, ϵ, γ from Lemma 5.4; and the degree of the

barrier function, represented by deg(B), are provided.

HSOS Solver

Standard SOS solvers, such as SOSTOOLS [118], use semidefinite programs to com-

pute the polynomials in the summation while the solver handles the conversion to

and from SOS equations. Unfortunately, there does not exist any HSOS solver or

even a complex semidefinite optimiser that makes use of the speedups shown in [81],

as current semidefinite solvers that allow for complex programs convert them to

equivalent real programs.
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With the equivalence shown between HSOS and positive semidefinite matrices in

Proposition 5.3, a simple HSOS solver has been developed in Python that converts

the HSOS equations into (complex) semidefinite programs. The SymPy [110] pack-

age is used to represent polynomials, and the semidefinite programs are solved using

PICOS [133], a Python interface to relevant semidefinite solvers, giving appropriate

coefficients for the HSOS equation.1

Verification

To ensure the correctness of the barrier certificate generated, SMT solvers are used

to formally check that the generated barrier certificate satisfies Equations (5.1).

For a collection of barriers, {Bt(z)}t that are generated, the equations in (5.1) are

encoded as proof obligations and a counter-example is searched for. Additionally,

the barrier is encoded to produce real values.

The equations are encoded by removing the existential quantifier (∀), replac-
ing set membership (∈) with satisfaction of the relevant semi-algebraic polynomial

vector (g), and negating the rest of the statement. For example, Equation (5.1a)

(B0(z) ≤ 0,∀z ∈ Z0) is encoded by the proof obligation B0(z) > 0∧g0(z) ≥ 0 (again

the ordering of g0(z) is applied element-wise).

The Z3 [58] Python package is made use of to setup the proof obligations, and

dReal [78] to verify them.2 If a proof obligation is unsatisfiable, then that means

the relevant equation is true. However, if a satisfiable or δ-satisfiable (in the case

of dReal) result is received, then a counter-example is found and so the relevant

equation is not satisfied (in the case of dReal, being a δ-sat solver, the equation may

not be satisfied). Each equation and barrier function is checked in a separate call to

the SMT solver as this makes it faster to check each equation and the reason why a

certain barrier fails can be found if a counter-example is received.

Device Details

The experiments were performed on a laptop with an Intel(R) Core(TM) i5-10310U

CPU @ 1.70GHz x 8 cores processor and 16GB of RAM using Ubuntu 20.04.3 LTS.

1The complex semidefinite programs are converted into real programs by PICOS.
2Functionality to verify using Z3 is included as well.
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Code Availability

The code for Algorithm 2, the conversion of HSOS to semidefinite programs and

verifying generated barrier certificates is available at:

https://github.com/marco-lewis/discrete-quantum-bc.

5.5.2 Phase (Z) Gate

A simple example is considered, the Z-gate introduced in Section 2.1.1. Consider a

simple circuit with one qubit, Z = {z ∈ C2 : |(z)0|2 + |(z)1|2 = 1}, that applies the
Z-gate repeatedly, with dynamics described by

∀t ∈ N≥0, ft(z) = Zz.

The initial and unsafe region are specified as

Z0 = {z ∈ Z : |(z)0|2 ≥ 0.9}, and

Zu = {z ∈ Z : |(z)0|2 ≤ 0.9− err},

where err = 0.1. These regions can be thought of quantum states with a certain

state being measured with a set probability. Here, Z0 is the region where |0⟩ is likely
to be measured with at least 90% probability (similarly Zu, |1⟩ and 20% respectively

due to properties of Z.). These sets capture the behaviour of a qubit not moving too

far from the initial region as it evolves provided (through the buffer space provided

by err).

By using Algorithm 2 with k = 1, ϵ = 0.01, γ = 0.01; the barrier (rounded to 3

d.p.)

B(z) = 4.453− 0.848(z)0
2 − 3.871(z)0(z)0 + 2.274(z)1(z)1 − 0.848(z)0

2

separates the two regions and ensures safety.

5.5.3 NOT (X) Gate

In this example, consider a X-gate that is being applied repeatedly to a set of n

qubits (as a reminder Z = {z ∈ C2n :
∑2n−1

j=0 |(z)j|
2 = 1}). The dynamical system

is described by

∀t ∈ N≥0, ft(z) = X⊗nz,
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X Z X Z

X Z X Z

X Z X Z

Figure 5.2: Quantum circuit for alternating between X and Z gates with 3 qubits.

with the initial and unsafe regions,

Z0 = {z ∈ Z :
1

2n
− err ≤ |(z)j|2 ≤

1

2n
+ err}, and

Zp
u = {z ∈ Z : |(z)p|2 ≥

1

2n
+ 2err},

(5.3)

where err = 1
10n+1 and p ∈ {0, . . . , 2n − 1}. The initial region represents the set

of quantum states that is close to the uniform superposition of quantum states,

|+⟩n = 1√
2n

∑2n−1
j=0 |j⟩. The unsafe region determines that the system should avoid

exiting the region for some target state, |p⟩. The err term provides an error for

starting in the initial region, as well as providing a small space the system may

evolve into before hitting the unsafe region.

The barrier certificate generated for a system with 2 qubits (n = 2) and |0⟩ as a
target state (p = 0) system with k = 2, ϵ = 0.01, γ = 0; is

B(z) =− 51.56 + 204.89(z)0(z)0 + 0.03(z)1(z)1 + 0.03(z)2(z)2 + 0.03(z)3(z)3

− 0.03(z)1(z)2 − 0.03(z)2(z)1 − 0.03(z)0(z)3 − 0.03(z)3(z)0,

with which safety is ensured.

5.5.4 Alternating X and Z Gates

Here a quantum circuit is considered that alternates between the two operations

used in previous examples. The dynamical system is described by

∀t ∈ N≥0, ft(z) =

X⊗nz, if t is even;

Z⊗nz, otherwise.

The associated quantum circuit, with n = 3, is given in Figure 5.2.

The behaviour is specified to be such that the initial region is near one of the
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. . .

H

O D O DH

H

Figure 5.3: The quantum circuit for a 3-qubit version of Grover’s algorithm. The
initial Hadamard gates applied to the state |000⟩ prepare the quantum state for the
repeated operations applied to it.

basis states and the system is set to behave in a way such that the basis state either

occurs with high probability or low probability. To be more specific, the safe regions

are when |(z)p|2 ≥ 0.9 and |(z)p|2 ≤ 0.1. The behaviour is specified by the regions

Zp
0 = {z ∈ Z : |(z)p|2 ≥ 0.9}, and

Zp
u = {z ∈ Z : 0.1 + err ≤ |(z)p|2 ≤ 0.9− err},

for p ∈ {0, 1, . . . , 2n − 1}, where err = 0.1 provides a buffer.

The generated barrier certificate (which has multiple functions) that ensure the

safety of a system using 2-qubits (n = 2) and |0⟩ as a target state (p = 0) with

k = 2, ϵ = 0.01, γ = 0.01, are

B0(z) =0.9117− 1.0307(z)0(z)0 − 0.0095(z)0(z)3 + 0.0219(z)1(z)1

+ 0.0011(z)1(z)2 + 0.0011(z)2(z)1 − 0.0004(z)2(z)2

− 0.0095(z)3(z)0 + 0.0066(z)3(z)3,

B1(z) =0.902− 1.0212(z)0(z)0 − 0.0136(z)0(z)3 + 0.0289(z)1(z)1

+ 0.0058(z)1(z)2 + 0.0058(z)2(z)1 + 0.0083(z)2(z)2

− 0.0136(z)3(z)0 + 0.0136(z)3(z)3,

where B0 is the function for the dynamics evolving according to X and B1 for Z

respectively.

5.5.5 Grover’s Algorithm

Now a property of Grover’s search algorithm [85] is verified. The database search

problem is: given a function h : {0, 1}n → {0, 1} such that h(m) = 1 for a unique
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m ∈ {0, 1}n and h(x) = 0 for x ̸= m, find m with as few calls to h as possible.3

Grover’s algorithm solves this by putting the quantum state into superposition (us-

ing Hadamard gates) and then alternating between an oracle, O |x⟩ = (−1)h(x) |x⟩,
and a diffusion step, D = H⊗n(2 |0n⟩⟨0n| − In)H⊗n. I.e., the initial quantum state

is |ϕ⟩ = 1√
2n

∑
x |x⟩ and the operation G = D.O is applied to the quantum state

r times, where r depends on the number of qubits. This moves the quantum state

into a state where |m⟩ is measured with high probability. The circuit for Grover’s

algorithm is given in Figure 5.3.

The evolution of the quantum state can be viewed geometrically [2, 114] as

Gr |ϕ⟩ = cos
(2r + 1

2
θ
)
|¬m⟩+ sin

(2r + 1

2
θ
)
|m⟩ ,

where 0 ≤ θ ≤ π/2 such that sin
(
θ
)
= 2

√
2n−1
2n

and |¬m⟩ = 1√
2n−1

∑
x ̸=m |x⟩. In

a setting with no noise and n > 1, it can be seen that only |m⟩ can be measured

with high probability no matter the value of r. Any unmarked element, x, will

have at most probability 1
2n−1

. However, if the initial state is slightly disturbed,

is this still the case? Previous work has shown that Grover’s algorithm with more

iterations can still return the marked state even when the initial state is not in equal

superposition [27] but it does not show if an unmarked state is restricted.

The dynamical system for Grover’s algorithm is given as

∀t ∈ N≥0, ft(z) =

Oz, if t is even;

Dz, otherwise.

The initial region, Z0, is set to be a region close to the superposition of states

with a slight disturbance to its amplitude. For an n-qubit system, the initial region

is

Z0 ={z ∈ Z :
1

2n
− err ≤ |(z)j|2 ≤

1

2n
+ err,

−
√
err ≤ Im{(z)j} ≤

√
err for 0 ≤ j ≤ 2n − 1},

with err = 1
10n+1 . This follows the definition of the initial region given in Equa-

tion (5.3) with an additional constraint on the imaginary value.

3There is a version of the problem that has several marked elements, but only a single marked
element is considered.

94



Chapter 5. Verification of Quantum Circuits using Discrete Barrier Certificates

The goal is to verify that no single unmarked state is ever likely, i.e., an unmarked

state will never be the most likely result. This specification, for some unmarked

element p, is given by the region

Zp
u = {z ∈ Z : |(z)p|2 ≥ 0.9}.

The value 0.9 is to represent the unmarked state being chosen with high probability

and for simplicity’s sake.

While, the quantum state for n = 2 could be specified, it was found that no

barrier could be produced with a degree less than 4 and trying several different

hyper-parameters. Running the algorithm with higher degrees simply takes too

long given the complexity of the initial state (see the discussion in the next section).

Remark 5.5. Additionally, the dynamical system was changed into a single equation

in an attempt to find a barrier. It was experimented defining the system starting

from the initial state evolving according to the dynamics ft(z) = D.Oz (even steps),

and also tried a system where the initial state starts after applying the oracle to

the initial state and the dynamics evolve according to ft(z) = O.Dz (odd steps).

However, no barrier could be found for either systems using the unsafe system as

described before.

5.5.6 Discussion

The experiments were extended to a higher number of qubits to see how the imple-

mentation would perform. Details of how the Z gate experiment is extended are

given in Appendix B.2. The runtimes for the experiments are shown in Table 5.1

using the following headers: Experiment refers to the relevant experiment discussed

in this section; # Qubits refers to the number of qubits used; Target State refers to

the state that is used for safety properties (where |p⟩ modifies Zp
0 and Zp

u); Gen-

eration Time refers to the amount of time spent generating the barrier certificate,

split between time performing setup and post-processing (S&P) and time in PICOS

(PICOS ); and Verification Time refers to the amount of time taken to verify the

barrier using SMT solvers.

While most experiments used a 2-degree barrier, the X and Z Gate experiment

used a 4-degree barrier for the targets |1⟩, |2⟩, and |3⟩. Raising the degree of

the barrier has a large affect on the setup for the barrier. Further, most of the

generation time was spent setting up the various polynomials rather than running
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Chapter 5. Verification of Quantum Circuits using Discrete Barrier Certificates

the semidefinite solver in PICOS. This time can be reduced by reducing the number

of terms in the polynomial for the barrier, meaning a change in the form of the barrier

could lead to faster runtimes but at the cost of not being able to generate barriers.

An alternative approach would be to cache or store the symbolic representations of

functions so that they can be easily reused.

Additionally, it was found that while the implementation could find barriers

for some examples, it could not for others (noted by those that were unsolved

or killed). The barriers that were not timed out during verification could also be

incorrect. This is likely due to only considering a low degree polynomial for the

barrier. However, using a higher degree polynomial would take much longer in

the setup phase. It could be the case that a non-polynomial barrier function or a

different barrier scheme needs to be used to ensure safety of some quantum systems,

however this should not be the case for these simple examples.

An alternative approach would be to consider a change in variables to reduce the

dimensionality of the variables. As seen in the results for Grover’s algorithm, chang-

ing the dynamics of the system to use only a single function in the dynamics vastly

reduced the time spent solving the semidefinite program, reducing the dimensional-

ity could reduce the time further. For instance, the dynamics of Grover’s algorithm

could be encoded using the geometric representation instead of the standard quan-

tum state representation. This would allow for a reduction in the dimension of the

system (from the 4 variables required to 2 variables), and could allow some prop-

erties of quantum circuits to be verified, although the properties would need to be

specified using this new basis. More generally, this approach could lend an exponen-

tial reduction in the number of variables, since the standard representation for an

n-qubit Grover’s algorithms as a dynamical system requires 2n variables, but using

the geometric representation requires only 2 variables. However, a question remains

if this reduction comes at the cost of complexity in the definition of the initial and

unsafe regions. As it currently stands though, while some systems can be proven

safe, barrier certificates are inefficient if naively applied to quantum circuits with a

high number of qubits.

Finally, while the experiments were run on a device with modest resources, it

failed to run an example using 3 qubits. Even though a device with more RAM

and a faster processor could compute a barrier for a 3-qubit system, the same issue

will arise when considering a 4, 5, or 6 qubit system. It is difficult to see barrier

certificates being used beyond a low number of qubits without the usage of a change
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Barrier Certificate
Constraints (∈ R)
B(x0) ≤ 0,∀x0 ∈ X0

B(xu) > d,∀xu ∈ Xu

. . .

Barrier Generation (SOS)
B(x)− λ0(x)g0(x)

B(x)− d− λu(x)gu(x)
. . .

Barrier Certificate
Constraints (∈ C)
B(z) = b(z, z)

B(z0) ≤ 0,∀z0 ∈ Z0

B(zu) > d,∀zu ∈ Zu

. . .

Barrier Generation (HSOS)
B(z)− λ0(z)g0(z)

B(z)− d− λu(z)gu(z)
. . .

Figure 5.4: Conversion of a real barrier certificate scheme using SOS equations
to generate a barrier into a complex scheme using HSOS equations. This is done
by replacing the real variables with complex variables, allowing conjugation as an
operation, setting the barrier function to be a conjugate-flattening polynomial and
requiring the SOS equations to be HSOS equations instead.

in variables. However, barrier certificates sacrifice scalability for flexibility as will

be discussed in the conclusion.

5.6 Conclusion

In this article, a different approach has been considered to the verification of quan-

tum circuits through the usage of barrier certificates by treating the quantum circuits

as dynamical systems. Firstly, it was shown how to extend the notion of barrier

certificates from the real domain into the complex domain. Then it was demon-

strated how the standard approach for generating barrier certificates, through sum

of squares, can be extended to the complex domain as well, through Hermitian sum

of squares. Finally, experiments were performed to show the usage of the developed

technique.

Our techniques for extending barrier certificates to the complex domain can be

applied to complex dynamical systems in general. Any barrier certificate that uses

SOS techniques to generate a barrier can be extended to the complex domain through

the use of conjugate-flattening functions and HSOS equations as demonstrated in

Figure 5.4. This extension can be done almost freely by including the complex
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conjugate as an operation.

The barrier certificate technique is very flexible, but comes at the cost of scala-

bility (as seen in Table 5.1). While the barrier certificate approach is expensive for

quantum circuits with a large number of qubits, the automation provided could be

useful for verifying certain behaviours of quantum systems considered in Chapter 4.

A quantum system can be modelled when there is noisy qubit initialisation and, in

the future, how to verify quantum systems with additional properties can be consid-

ered, such as noise or control during state evolution, using barrier certificates. For

example, a noise model [80] can be used to model the noise a quantum circuit faces

as part of the dynamical system and the barrier certificate techniques for handling

stochastic systems, [93] or [144], can be adapted to handle complex variables to ver-

ify properties on the noisy dynamical system. Further, other behavioural properties

can be investigated instead of safety, such as reachability where the system evolves

into a specified region rather than avoid it.

This concludes the investigation and analysis of the second automated technique

in this thesis. Further discussions on the results of this work are found in Part IV.
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Chapter 6

Conclusion and Future Outlook

This last Chapter provides the main findings of the thesis and an outlook into the

future of automated techniques for verifying aspects of quantum computers.

In this thesis, the usage of automated techniques has been explored to verify

different properties of the quantum stack. Two techniques have been investigated.

The first technique, SilVer, makes use of SMT solvers and the standard software

verification framework to automatically convert and verify programs for quantum

computers, where behaviours are defined through SilSpeq, the specification lan-

guage. The second technique extends barrier certificates to verify properties in the

Hamiltonian and quantum circuit model of quantum computing. The challenges

and problems of these techniques are discussed, as well as their future and how the

techniques can be used together.

6.1 Challenges and Immediate Problems

There are several immediate problems that can be investigated from the work done

with this thesis with more time and resources available.

With SilVer (and SilSpeq), one of the major problems faced was the handling

of subroutines, i.e., when one function calls another function. SilVer partly handles

subroutine calling when handling oracles, but this can be further expanded. The

major challenge with function calling is the knowledge of whether a function’s input

and outputs are classical or quantum in nature and how this affects verification of a

function calling a subroutine. This poses a challenge, from a theoretical perspective,

in how to specify a program such that the specification can be used to verify another

function, as well as from an implementation perspective in how to do such conversion
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automatically. With more time, an investigation into how subroutines are handled

in SilVer could be performed. Some work has already been done into looking at

specification of quantum programs with classical variables [71], but an investigation

into how to adapt these ideas for subroutines is needed.

On top of that, improving SilSpeq to handle quantum behaviours is an in-

vestigation that should happen first. Specifying quantum behaviour was a major

challenge in the development of SilVer. Whilst there are techniques out there using

density matrices for quantum specification, e.g., [103], for users it would be more

suitable to have a compact way to specify behaviours. Finding a way to write out

a specification for quantum behaviours in a compact way would improve the capa-

bilities of SilSpeq greatly. For example, one could then verify quantum gates that

are defined in Silq or verify the GHZ state more explicitly.

With the work on barrier certificates, a problem remains in providing the assur-

ance of safety for Grover’s algorithm. One method to address this problem is to first

investigate simple quantum circuits that entangle qubits together and progressively

increase the complexity of the entanglement. Some insights could be gained as to

why polynomial barrier functions are not suitable for ensuring safety in Grover’s

algorithm. Alternatively, a different barrier certificate scheme may be required or a

non-polynomial barrier function. With the relation between barrier certificates and

Hermitian Sum of Squares (HSOS) equations developed in this thesis, a new scheme

only requires new constraints on the barrier and a conversion into appropriate HSOS

equations.

6.2 Future Outlook

By making use of the software verification techniques, SilVer can be extended in

several different ways. One aspect where SilVer can easily be extended is its mod-

ularity. The design of SilVer allows any suitable quantum programming language

to be converted into the QRAM program model. This means that programs written

in languages such as Q# [143] and Qiskit [129] could be verified. Additionally, the

QRAM program model can be used as an interface to different forms of verification.

This can allow different methods to verify programs, which would have their own

trade-offs. For instance, different SMT solvers could be used or further automation

could be implemented through the idea of weakest precondition [63, 64] to reduce

the number of constraints to be verified in a solver.
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Not only can the automation steps be extended, but the ideas used in the specifi-

cation language, SilSpeq, can be further developed. Being able to use the specifica-

tion of one function in another function would be a large step forward for automation

techniques in quantum computers. To develop this, quantum and classical specifica-

tion would need to be separated or handled carefully, and a way of writing quantum

specification compactly would need to be developed. Using vectors would be quite

costly, but using Dirac bra-ket or density matrix notations in an algebraic form

could provide a compact method for specification.

With the theory developed of Hermitian Sum of Squares (HSOS) for barrier

certificates, various systems can be verified for different behaviours. This can include

systems that have noise and/or a control component. To truly take advantage of

the theory, a complex semidefinite program solver and a HSOS solver would need

to be developed. Additionally, some aspects of theory still need to be explored. For

example, whilst in theory a semidefinite matrix from a HSOS equation is smaller than

one from a transformed SOS equation (by converting complex variables to real ones),

it would be good to formally prove this as well as show a computational advantage.

An exploration into non-polynomial barrier certificates may provide further utility

for verifying behaviours in more complicated quantum systems. Some work and tools

have already been developed to investigate the usage of machine learning techniques

to create valid barrier certificates with non-polynomial terms [1, 121]. Exploring

different methods of representing quantum states may provide speedups for using

barrier certificates.

Another prospect is the combination of the automated framework introduced in

Part II and the technique of using barrier certificates in Part III. This would involve

providing a quantum circuit or system (rather than a Silq program) that safety

or reachability properties would be checked by using the HSOS barrier certificate

generation technique, which would replace the SMT solver. Additionally, rather

than requiring the user to provide the necessary encodings for the sets used by the

barrier certificate technique, the user could be provided with a specification language

to describe the sets in a concise manner and the type of property they wish to verify.

Figure 6.1 shows how the framework from SilVer could be adapted for the usage

of barrier certificates.

Whilst automated techniques clearly have a place in verifying quantum com-

puters, there is a need to keep up with the physical hardware, which is close to

approaching over 1000 qubits. If implemented naively, most automated techniques
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Quantum
System

or Circuit

System
Sets

Specifica-
tion File

Interpreter

Specification
Interpreter

Dynamical
Model

Equation
Generator

Dynamical
HSOS

Equations

Specification
HSOS

Equations

HSOS
Solvercertificate to use

Figure 6.1: SilVer framework adapted to verification of safety/reachability proper-
ties through barrier certificates.

will be unable to keep up with the number of qubits in quantum computers due to

the exponential representation of quantum states. Methods need to be developed to

allow for effective verification for large quantum systems. As shown, these methods

could be adapted from frameworks that already exist, like the software verification

framework for SilVer; or an extension of a known method, as seen by extending

real to complex variables for barrier certificates.
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appetizer. In Marcel Vińıcius Medeiros Oliveira and Jim Woodcock, editors,

Formal Methods: Foundations and Applications, pages 23–36, Berlin, Heidel-

berg, 2009. Springer Berlin Heidelberg.

[60] Leonardo De Moura and Nikolaj Bjørner. Satisfiability modulo theories: In-

troduction and applications. Commun. ACM, 54(9):69–77, September 2011.

doi:10.1145/1995376.1995394.

[61] D Deutsch, A Barenco, and A Ekert. Universality in quantum computation.

Proc., Math. Phys. Sci., 449(1937):669–677, June 1995.

[62] David Deutsch and Richard Jozsa. Rapid solution of problems by quantum

computation. Proceedings of the Royal Society of London. Series A: Mathe-

matical and Physical Sciences, 439(1907):553–558, 1992. doi:10.1098/rspa

.1992.0167.

112

https://doi.org/10.1145/3505636
https://doi.org/10.1145/512644.512651
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-8-number-1-2012/ijuc-8-1-p-73-98/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-8-number-1-2012/ijuc-8-1-p-73-98/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-8-number-1-2012/ijuc-8-1-p-73-98/
https://doi.org/10.1145/1995376.1995394
https://doi.org/10.1098/rspa.1992.0167
https://doi.org/10.1098/rspa.1992.0167


Bibliography

[63] Ellie D’Hondt and Prakash Panangaden. Quantum weakest preconditions.

Math. Struct. Comput. Sci., 16(3):429–451, 2006. doi:10.1017/S096012950

6005251.

[64] Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal deriva-

tion of programs. Commun. ACM, 18(8):453–457, August 1975. doi:

10.1145/360933.360975.

[65] Mnacho Echenim. Quantum projective measurements and the CHSH inequal-

ity. Archive of Formal Proofs, March 2021. https://isa-afp.org/entries

/Projective_Measurements.html, Formal proof development.

[66] Mnacho Echenim and Mehdi Mhalla. Quantum projective measurements and

the chsh inequality in Isabelle/HOL, 2021. arXiv:2103.08535.

[67] Tao Fang and Jitao Sun. Stability analysis of complex-valued nonlinear

differential system. Journal of Applied Mathematics, 2013:621957, 2013.

doi:10.1155/2013/621957.

[68] Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying. Proba-

bilistic bisimulations for quantum processes. Information and Computation,

205(11):1608–1639, 2007. doi:10.1016/j.ic.2007.08.001.

[69] Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Shenggang Ying. Model

checking omega-regular properties for quantum Markov chains. In Roland

Meyer and Uwe Nestmann, editors, 28th International Conference on Con-

currency Theory (CONCUR 2017), volume 85 of Leibniz International Pro-

ceedings in Informatics (LIPIcs), pages 35:1–35:16, Dagstuhl, Germany, 2017.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.C

ONCUR.2017.35.

[70] Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Lijun Zhang. QPMC: A

model checker for quantum programs and protocols. In Nikolaj Bjørner and

Frank de Boer, editors, FM 2015: Formal Methods, pages 265–272, Cham,

2015. Springer International Publishing. doi:10.1007/978-3-319-19249-9

_17.

113

https://doi.org/10.1017/S0960129506005251
https://doi.org/10.1017/S0960129506005251
https://doi.org/10.1145/360933.360975
https://doi.org/10.1145/360933.360975
https://isa-afp.org/entries/Projective_Measurements.html
https://isa-afp.org/entries/Projective_Measurements.html
https://arxiv.org/abs/2103.08535
https://doi.org/10.1155/2013/621957
https://doi.org/10.1016/j.ic.2007.08.001
https://doi.org/10.4230/LIPIcs.CONCUR.2017.35
https://doi.org/10.4230/LIPIcs.CONCUR.2017.35
https://doi.org/10.1007/978-3-319-19249-9_17
https://doi.org/10.1007/978-3-319-19249-9_17


Bibliography

[71] Yuan Feng and Mingsheng Ying. Quantum Hoare logic with classical variables.

ACM Transactions on Quantum Computing, 2(4), December 2021. doi:10.1

145/3456877.

[72] Yuan Feng, Nengkun Yu, and Mingsheng Ying. Model checking quantum

Markov chains. Journal of Computer and System Sciences, 79(7):1181 – 1198,

2013. doi:10.1016/j.jcss.2013.04.002.

[73] Richard P. Feynman. Simulating physics with computers. International Jour-

nal of Theoretical Physics, 21(6):467–488, June 1982. doi:10.1007/BF0265

0179.
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and Benôıt Valiron. Quipper: A scalable quantum programming language.

SIGPLAN Not., 48(6):333–342, June 2013. doi:10.1145/2499370.2462177.

[84] Daniel M. Greenberger, Michael A. Horne, and Anton Zeilinger. Going Beyond

Bell’s Theorem, pages 69–72. Springer Netherlands, Dordrecht, 1989. doi:

10.1007/978-94-017-0849-4_10.

[85] Lov K. Grover. A fast quantum mechanical algorithm for database search.

In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of

Computing, STOC ’96, page 212–219, New York, NY, USA, 1996. Association

for Computing Machinery. doi:10.1145/237814.237866.
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Appendix A

Background Appendix

The contents of this Appendix are excerpts from a survey paper published in the

ACM Transactions on Quantum Computing under the title “Formal Verification of

Quantum Programs: Theory, Tools, and Challenges” [101]. This work was done in

collaboration with my supervisors (Paolo Zuliani and Sadegh Soudjani).

A.1 Quantum Computing and Formal Verifica-

tion

A.1.1 Clifford Gates

The Clifford gates [82] are the following gate operations:

H = 1√
2

(
1 1

1 −1

)
, S =

(
1 0

0 i

)
, CX =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 . (A.1)

Circuits that can be generated from Clifford gates are referred to as being in the

Clifford group and can be simulated efficiently on a classical computer, as stated

by the Gottesman-Knill theorem [82]. It is unknown if all non-Clifford circuits (i.e.

circuits containing operations that cannot be broken down to Clifford operations)

can be simulated efficiently. If this were the case, then quantum computers could

be efficiently simulated on classical computers.
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The operation S can be generalised to Rk, where

Rk =

(
1 0

0 e
2πi

2k

)
, (A.2)

and it can easily be seen that if k ≥ 2, then (Rk)
2k−2

= S (with R2 = S). For k ≥ 3,

Rk is a non-Clifford operation. The circuits generated by using Clifford gates and

the Rk gate (for a fixed k) are referred to as the Clifford+Rk group. In particular,

denote T = R3 =

(
1 0

0 eπi/4

)
and then Clifford + R3 = Clifford + T . Algorithms

for simulating Clifford+T gates are discussed in [32]. The algorithms’ runtimes are

exponential based on the number of T gates.

A.1.2 Kripke Structures and CTL

Kripke structures model software or systems by describing transitions between states

in a similar way to finite state machines. But Kripke structures also model properties

that hold in each state. Formally:

Definition A.1. A Kripke structure is given by a 4-tuple M = (S, S0, R, L) where

• S is a finite set of states;

• S0 ⊆ S is the set of initial states;

• R ⊆ S×S is a total transition relation, where for all s ∈ S, there exists s′ ∈ S
such that (s, s′) ∈ R;

• L : S → 2AP is a labelling function that gives the set of propositions (p ∈ AP )
that hold within a given state.

A common type of logic used to specify behaviour is temporal logic, which can be

used to describe what propositions may hold about the system over time. Examples

of temporal logics include Linear Temporal Logic (LTL) [122], Computation Tree

Logic (CTL) [45] and the µ-calculus [98]. The definition of CTL is given and briefly

studied as it will be useful for understanding Appendix A.2.3.

Before giving formal semantics of CTL, paths on a Kripke structure are first

defined. Throughout, let M = (S, S0, R, L) be a Kripke structure.
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Definition A.2. A path is a tuple σ = (s0, s1, s2, . . . ) where si ∈ S and we have

that (si, si+1) ∈ R for all i.

Note that a path can have infinite or finite length as long as there are suitable

transitions.

Terms in CTL are given by state formulae, θ, and temporal operators, T , that

only exist bound with path quantifiers. These formulae are defined inductively by

θ ::= p | ¬θ | θ ∨ θ | ET | AT

T ::= Xθ | Fθ | Gθ | θUθ,

where p ∈ AP is an atomic proposition in the model. The terms X (“next”),

F (“eventually”), G (“always”) and U (“until”) denote basic temporal operators.

The terms A (for all paths) and E (there exists a path) are path quantifiers. The

semantics of the state and temporal operators described for a Kripke structure are

given in Equation (A.3), where σ = (s0, s1, . . . ) denotes a path.

[[p]]M = {s ∈ S : p ∈ L(s)}

[[¬θ]]M = S/[[θ]]M

[[θ1 ∨ θ2]]M = [[θ1]]M ∪ [[θ2]]M

[[EXθ]]M = {s ∈ S : ∃t ∈ S such that t ∈ [[θ]]M and (s, t) ∈ R}

[[EGθ]]M = {s ∈ S : ∃σ such that s = s0 and ∀k ∈ N, sk ∈ [[θ]]M}

[[EFθ]]M = {s ∈ S : ∃σ and ∃k ∈ N such that s = s0 and sk ∈ [[θ]]M}

[[Eθ1Uθ2]]M = {s ∈ S : ∃σ and ∃k ∈ N such that s = s0 and

si ∈ [[θ1]]M , sj ∈ [[θ2]]M for i < k, j ≥ k}

(A.3)

Note that we can get the semantic formulas for AT for all the temporal operators,

T , by replacing ∃σ for ∀σ (similarly replace ∃t ∈ S for ∀t ∈ S) in the set definitions

for the semantics.

Further, the operators F and G are obtained from U simply as Fθ = trueU θ

and Gθ = ¬F¬θ, where true is the atomic proposition true in all states.

It should be noted that CTL can be described with a subset of temporal and

logical expressions as it is possible to create formulae from different terms. For

example, the statements “there is no path such that eventually θ holds” and “for all

paths ¬θ always holds” are equivalent and specified in CTL by ¬EFθ = AG(¬θ).
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Example A.1. Figure A.1 gives a model and the relative computation tree is given

in Figure A.2 with an example CTL operation.

Figure A.1: An example of
a Kripke structure with S =
{s0, s1, s2}.

Figure A.2: A computation tree for the automata
given in Figure A.1 that shows the CTL operation
E(qUp). The proposition q holds in states s0 and
s1, but the proposition p holds in state s2.

The model checking problem is to find all valid states that satisfy a temporal logic

formula. Alternatively, one could just ask whether the formula is true in the initial

states. GivenM , a transition system using a set of states, S; and θ, a temporal logic

formula; then find all s ∈ S such that M and s model θ, the semantics of which is

denoted by M, s |= θ ⇐⇒ s ∈ [[θ]]M . Model checking has been explored in usage

for verifying quantum programs against extensions of temporal logics. This can be

seen in Appendix A.2.3 and Section 2.2.5.

A.2 Formal Quantum Verification Methods

This section aims to introduce the theoretical ideas that have been used in pursuit

of the verification of quantum programs. While this section covers some theories,

it is not a complete list. Further theories include quantum Markov chains [72]

and quantum automata [97], which are given a brief introduction in a previous

survey [159] with further references therein.
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A.2.1 Quantum Weakest Preconditions

In deterministic programming, the weakest precondition [64] gives a method of trans-

forming the problem of checking whether a program is valid in Hoare logic into a

problem of determining whether a precondition implies the said weakest precondi-

tion. More formally for deterministic programs, given a program S and a predicate

postcondition Q, then the weakest precondition wp(S)(Q) is the precondition to S

such that for all preconditions P with {P}S{Q}, then P =⇒ wp(S)(Q).

Whilst a probabilistic version of the Hoare logic has been developed and can be

used as a means to verify quantum programs [134], D’Hondt and Panangaden [63]

demonstrated one can develop a quantum Hoare-style logic using density matrices.

This then allows for the notion of a quantum weakest precondition. The difference

in definition is that now the program S is a quantum program, where S(ρ) is the

density matrix after applying program S to density matrix ρ; the precondition P

and postcondition Q are each a quantum predicate, which is a Hermitian operator

with positive eigenvalues upper bounded by 1; and a valid precondition P must

satisfy tr(Pρ) ≤ tr(Q S(ρ)) for all density matrices ρ. Write {P}S{Q} if P,Q and

S follow the final inequality. Thus, the quantum weakest precondition wp(S)(Q)

is defined such that for all valid preconditions P , tr(Pρ) ≤ tr(wp(S)(Q)ρ)) for all

density matrices ρ.

With this notion, it is possible to change the verification problem of quantum

programs to that of calculating quantum preconditions. In a sense, the quantum

weakest precondition gives the most “general” precondition for a postcondition,

meaning that as long as we have a “specific” precondition we can always reach the

same postcondition as the “general” precondition. The quantum weakest precondi-

tion is a concept that can see usage in different verification systems depending on

the language and design used. In Section A.2.2, we will see an example of its usage.

A.2.2 Quantum Hoare Logic

Ying [158] has been developing the Quantum Hoare Logic (QHL) over the last

decade, as an extension of the standard Floyd-Hoare logic. Introduced in his original

work, the classical while-language is extended to a quantum version and the Floyd-

Hoare logic is amended to verify the extension. The quantum-while language is:

S ::= skip | q := 0 | q̄ := Uq̄ | S1;S2 |measure M [q̄] : S̄ | while M [q̄] = 1 do S,
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where q is a qubit, q̄ is a quantum register and S̄ = {Sm}m∈M is an indexed set of

quantum programs, where M is the set of measurement results with associated mea-

surement operators {Mm}m∈M. The commands do the following operations: skip

does nothing; q := 0 initialises a qubit; q̄ := Uq̄ performs a unitary operation on a

number of qubits; S1;S2 is composition of statements; measure M [q̄] : S̄ measures

several qubits and performs a program from S̄ depending on the result of measure-

ment, i.e., if the measurement result is m, the program follows the commands given

by Sm ∈ S̄; and while M [q̄] = 1 do S performs S until a “false” measurement is

read.

The quantum-while language stands out because it does not define programs in

terms of describing quantum circuits. This allows for an imperative approach for

writing quantum programs, rather than the very low-level idea of constructing a

circuit. Another feature to highlight is the use of measurement within the language.

The measure command replaces the classical if statement and the while statement

requires measurement on a set of qubits during each iteration.

The Quantum Hoare Logic then extends the Hoare triple {P}S{Q}, where S is

a program written in the quantum-while language and P,Q are quantum predicates

(as defined in Section A.2.1). However, these predicates are additionally upper

bounded by the identity operator, I, and lower bounded by the zero operator, 0.

They are bounded in that for any predicate P (used in QHL), then for all density

matrices ρ we have tr(0ρ) ≤ tr(Pρ) ≤ tr(Iρ), thus 0 ≤ tr(Pρ) ≤ 1.

Inference rules can be used to create Hoare triples for quantum programs de-

pending on the statement. Beyond that, the notion of weakest precondition can be

used to generate valid Hoare triples. If a desired postcondition is wanted, then rules

can be used to find the weakest precondition for a program. The correctness of eval-

uating the Quantum Hoare Logic on a program and the condition that evaluation

terminates (notions of partial and total correctness respectively) are given in [158].

Work has continued on this logic over the last decade to further improve it and

create an implementation, as will be seen in Section 2.2.2. As an example of an

improvement to be made on the grammar, it is clear to see that there is no classical

functionality defined. This prevents some quantum algorithms, such as Shor’s algo-

rithm [139], being fully implemented within the quantum-while language. A recent

work [71] has extended the quantum-while language to include classical variables

and the logic has been reworked to show the extension is verifiable. Another version

of Quantum Hoare logic has been proposed in [94], which is not designed around
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the usage of weakest precondition. Further, this other version verifies Selinger’s

QPL [136], a quantum programming language based on flowcharts and featuring

classical bits as well as if statements.

Example A.2. An example of using Quantum Hoare logic and the quantum weakest

precondition to verify Deutsch’s algorithm (a one qubit version of the Deutsch-Jozsa

algorithm [62]) is given. Given f : {0, 1} → {0, 1}, recall that Deutsch’s algorithm
determines the value of f(0)⊕f(1) with a single evaluation of f . It should be noted

that this example does not make use of an ancillary qubit for the sake of simplicity.

Deutsch’s algorithm in the quantum-while language is given as

Deutsch = [q := 0; q := Hq; q := Ofq; q := Hq;measure M [q] : S̄D],

where S̄D = {S0 = skip, S1 = skip}, H is the single-qubit Hadamard gate and Of

is the quantum oracle defined by the matrix(
(−1)f(0) 0

0 (−1)f(1)

)
.

Further, the measurement operators M consist of measurements on the computa-

tional basis: {
M0 =

(
1 0

0 0

)
,M1 =

(
0 0

0 1

)}
.

The result of receiving either measurement outcome in the measurement state-

ment is to simply skip. Using the definition of the weakest precondition for Quan-

tum Hoare Logic, the goal is to find the weakest precondition of the postcondition

Post = (1−f(0)⊕f(1)) |0⟩ ⟨0|+(f(0)⊕f(1)) |1⟩ ⟨1|. This postcondition states that

q should be in the appropriate state depending on the value of f(0) ⊕ f(1). Here,

the weakest precondition of the measurement statement is calculated and the rest

of the calculation for the Deutsch program is given in Appendix A.3.1.

From Proposition 7.1 in [158],

wp.(measure M [q̄] : S̄).P :=
∑
m

M †
m(wp.(Sm).P )Mm,
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and therefore,

wp.(measure M [q] : S̄D).Post :=M †
0(wp.(S0).Post)M0 +M †

1(wp.(S1).Post)M1

=M †
0(wp.(skip).Post)M0 +M †

1(wp.(skip).Post)M1.

Further to this, the weakest precondition of skip is simply wp.(skip).P = P . Thus,

wp.(measure M [q] : S̄D).Post :=M †
0(Post)M0 +M †

1(Post)M1

= (1− f(0)⊕ f(1)) |0⟩ ⟨0|+ (f(0)⊕ f(1)) |1⟩ ⟨1|

= Post,

giving the Hoare triple {Post}measure M [q] : S̄D{Post}.
Following the rules for quantum weakest precondition of the Quantum Hoare

Logic, the resulting Hoare triple for the entire program is {I}Deutsch{Post}, where
I is the single qubit identity operator. This weakest precondition means thatDeutsch

can have any precondition and the program will always produce the correct result.

This is because quantum predicates are upper bounded by I and I is the most

general precondition we can have such that Post is the postcondition.

A.2.3 Quantum Computation Tree Logic

Various notions of extending Computation Tree Logic (CTL) to the quantum case

have been studied, and implemented into model checking algorithms. For example,

[72] investigated a quantum extension of probabilistic CTL (PCTL). Recently, in

[157] the authors created a different extension of CTL that uses the concept of

fidelity (which measures how much a density matrix state is changed after being

acted on by a super-operator).

Other temporal logics have been studied both as quantum extensions of the

original logic [109, 161] and how temporal logics can model behaviour in quantum

systems; examples of investigating linear temporal properties can be found in [24]

and more general ω-regular properties in [69]. In this section, the notion of quantum

computation tree logic given in [14] is presented.

The Quantum Computation Tree Logic (QCTL) is a temporal logic used to

reason about the behaviour of a quantum Kripke structure. Formally:

Definition A.3. A (finite) quantum Kripke structure over a set of qubits qB and

variables X is a tuple (S,R) where:
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• S ⊂ HqB×RX is a set of pairs (ϕ, ρ), where ϕ is a quantum state of the qubits

qB and ρ is an assignment of variables to reals;

• R ⊆ S× S is a relation such that for any (ϕ, ρ), there exists (ϕ′, ρ′) such that

((ϕ, ρ), (ϕ′, ρ′)) ∈ R.

Note that in comparison to the standard definition of Kripke structures, proposi-

tions are embedded as variables into the state rather than labels on specific states. In

the literature for model checking, structures vary between Kripke structures, Markov

chains, transition systems and variations on those structures (such as the quantum

Kripke structure described). These structures vary in definition but will follow the

structure of a state transition system that has some labels (propositions) associated

with the states of the structure. The main difference between such structures is the

transition relation between states and the temporal logic used for specifying desired

behaviour, which changes how these models are checked.

By combining the decidable fragment of the exogenous quantum propositional

logic (dEQPL) [38] with the classical CTL used in model checking, we get QCTL.

The grammar for dEQPL used in [14] is:

Classical Formulae

α ::= ⊥c | qb | α⇒c α,

Terms

t ::= x(∈ V ar) | m(∈ Z) | (t+ t) | (tt) | Re(|T⟩A) | Im(|T⟩A) |
∫
α,

Quantum Formulae

γ ::= t ≤ t | ⊥q | γ ⇒q γ.

The logic on classical formulae, α, and quantum formulae, γ, are distinguished by

using subscript c and q respectively. Further, other connectives can be abbreviated

(¬,∧,∨,⇔,⊤) using ⊥ and ⇒.1

Classical formulae describe the set of qubits to measure from using classical logic

statements and qubit symbols qb from qB. Terms describe numerical expressions

that can be made with additional variables, constants, and functions for getting

information about the quantum state. The term Re(|T⟩A) denotes the real part

of the amplitude of the quantum state from a subset of qubit symbols, A ⊆ qB

1Note that in [14] classical formulae do not use the subscript and different symbols are used for
quantum formulae: ¬q is ⊟, ∧q is ⊓, ∨q is ⊔, ⇔q is ≡.
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(similarly Im(|T⟩A) for the imaginary part). The term
∫
α denotes the probability

that α holds when measuring all qubits. Finally, quantum formulae allow us to

reason about terms by using logical expressions and comparison formulae. This

allows us to reason about the state of a quantum system at a specific time step.

In [14], it is shown that QCTL is sound and (weakly) complete. Further, an

algorithm was developed that checks if a QCTL formula is satisfiable by extending

an algorithm used for model checking CTL. The grammar for QCTL is:

θ ::= γ | (θ ⇒q θ) | EXθ | AFθ | E[θUθ],

where γ is a dEQPL quantum formula.

The semantics of the QCTL given above for the temporal operators are similar

to CTL formula except they act over paths on a quantum Kripke structure. Note

that QCTL uses a subset of the temporal logic operations from CTL and the other

temporal operations can be derived from this subset.

Unlike some of the other formal methods discussed in this section, this logic

would be used in a similar way to the model checking described in Section 2.1.2.

This would involve converting properties of a quantum program or circuit into the

QCTL language. By providing a specification for the program, the QCTL formula

can be checked for model satisfiability using the algorithm given in [14]. The other

QCTLs introduced at the start of this section [72,157] found use in model checking

quantum Markov chains.

Two examples of QCTL [14] formulae are given.

Example A.3. Denote □α as (
∫
α) = 1. This is a dEQPL formula that states a

classical formula α holds with probability 1 after measuring all qubits. The following

formula is used in [14] as the formula for verifying a single bit version of the BB84

protocol [20]:

B = (□(bA ⇔c bB))⇒q A[(¬q(□e))U((□e) ∧q ((□k)⇔q (
∫
m = 1)))].

The formula means “If Alice and Bob are in the same basis (□(bA ⇔c bB)), then

down all (quantum) paths the protocol has not ended (¬q(□e))) until it has ended

(□e) and the generated key bit is equal to the value of the qubit used ((□k) ⇔q

(
∫
m = 1))”.

Example A.4. As a second example, consider Deutsch’s algorithm. Denote b =
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f(0) ⊕ f(1) as a classical bit. Further, use m as a classical bit to say when the

algorithm has performed the measurement operation and let q denote the qubit

used for the algorithm. Usage of m is required to specify temporal behaviour for

Deutsch’s algorithm. We then have the following formula:

D = A[(¬q(□m))U((□m) ∧q ((□b)⇔q (
∫
q = 1)))]. (A.4)

The formula reads “for all (quantum) paths (A), the qubit is not measured (¬q(□m))

until it is measured (□m) and the measured qubit gives us the correct result with

certainty ((□b)⇔q (
∫
q = 1))”. A quantum Kripke structure in Appendix A.3.2 is

given that is based on Deutsch’s algorithm and satisfies the formula D. That is, a

pair (S,R) such that all states in the structure satisfy D is described.

A.2.4 Path Sums

Path sums are a representation of unitary operators in terms of a summation of

exponential polynomials with different quantum states. This representation was

used in [7] to show the equivalence of quantum programs. Equation (A.5) shows

a path sum represented as a unitary operator. Note that x = (x1, . . . , xn) is a

collection of Boolean variables or constants (the input signature), P is a (phase)

polynomial with inputs x and y, and f : Zn
2 ×Zm

2 → Zn
2 is a multi-variable Boolean

function (the output signature):

U : |x⟩ → 1√
2m

∑
y∈Zm

2

e2πiP (x,y) |f(x,y)⟩ . (A.5)

Path sums are used to represent the semantics of Clifford+Rk circuits2 for a

fixed k. Reduction rules can be applied to decrease the size of the circuit and so it

is easy to check the equivalence of quantum circuits. Experiments in [7] have shown

that Clifford+T circuits with a large number of qubits and gates can be efficiently

and automatically verified. This gives a useful representation to efficiently verify

quantum circuits. However, it will require support through a translation tool to be

used to verify circuits written in a high-level programming language, which could

include classical components. An extension of path sums has been used for verifying

a quantum programming language in the QBricks verification framework, which is

2See Appendix A.1.1 for information on Clifford circuits.
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Figure A.3: The Hadamard node (left), green spider (middle) and red spider (right)
with their matrix representation. The vertices can have more than one edge enter
and exit them, but for simplicity I consider the case when only one edge enters a
vertex. The spiders represent rotations on an axis, with the green spider rotating
around the Z-axis and the red spider rotating around the X-axis. Note that when
α = 0, the spiders are simply identity operators and when α = π the spiders
represent the pauli-Z and pauli-X gate respectively.

generally discussed in Section 2.2.4.

Example A.5. The path sum representation of the Pauli gates are listed below:

X : |x⟩ → |1− x⟩ ,

Y : |x⟩ → e2πi
(2x+1)

4 |1− x⟩ ,

Z : |x⟩ → e2πi
x
2 |x⟩ .

A.2.5 The ZX-Calculus

The ZX-calculus [50] can be utilised as an alternate form of verification. The ZX-

calculus is a graphical tool designed to convert quantum circuits into a graphical

model and back again (but not all graphs are quantum circuits). These graphical

models or networks model wires in the form of edges and some operations in the

form of vertices.

The ZX-calculus consists of three main vertices: the Hadamard node, green

spiders and red spiders (shown in Figure A.3). Using a set of rewrite rules, it is

possible to add or remove various vertices. This allows the creation of optimised

circuits and comparison between circuits.

While the ZX-calculus is a useful tool for low-level verification, it is an example

in highlighting the difference in what the other tools described are trying to achieve.

The ZX-calculus is useful for optimising circuits and showing the equivalence of cir-

cuits. It can be used to verify properties of simple circuits, such as the teleportation

protocol [50].
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Figure A.4: A number of different rewrite rules [12]. It is important to note that
the colours of spiders can be swapped (so green spiders replace red spiders and vice
versa). The summation of scalars is modulo 2π.

However, recently, the ZX-calculus has also been used to verify some properties

of oracle-based algorithms [36]. As research continues into the ZX-calculus, the

calculus may reach a point where it can be used to represent programs. The Scalable

ZX-calculus [37] can represent circuits with a parameterised number of qubits and

is used in [36] to represent quantum algorithms. The ZX-calculus has several other

applications3 and a much more in-depth introduction can be found in [148].

Example A.6. Here a few rewrite rules from [12] are given in Figure A.4. Whilst

many different rewrite rules can be used, these are a few key ones for this example.

Using these rules, it is now possible to show optimisations of different circuits.

For example, we can use the rewrite rules to show that applying two Hadamard

gates to a circuit is the same as doing nothing (performing the identity operation).

This derivation is given in Figure A.5.

A.3 Examples

A.3.1 Quantum Hoare Logic Example

As seen earlier, {Post}measure M [q] : S̄D{Post}. The calculation of wp.(q :=

Hq).Post is now given. For ease of notation, denote c = 1 − f(0) ⊕ f(1) and

b = f(0)⊕f(1) (so Post = (c |0⟩ ⟨0|+b |1⟩ ⟨1|). Using the weakest precondition rules

3Such as usage in circuit optimisation, surface codes and measurement-based quantum compu-
tation.
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Figure A.5: Derivation of two Hadamard gates being equivalent to the identity
operation using the rules of the ZX-calculus. The derivation uses instances of the
rewrite rules given in Figure A.4. Firstly, the Hadamard gates are decomposed and
then the red spiders are merged. Two of the spiders are swapped and then the green
spiders are merged. This combined green spider can be removed by the identity rule
and the final red spiders can be similarly merged and removed. An alternative way
of proving the Hadamard gate is self-inverse can be found in [12].

from Proposition 7.1 in [158],

wp.(q := Hq).Post = H†Post H

= H(c |0⟩ ⟨0|+ b |1⟩ ⟨1|)H

= c |+⟩ ⟨+|+ b |−⟩ ⟨−| ,

and so, the Hoare triple {c |+⟩ ⟨+| + b |−⟩ ⟨−|}q := Hq{Post} holds. Next we

find the weakest precondition of q := Ofq for {c |+⟩ ⟨+|+b |−⟩ ⟨−|}. Using the same
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rule,

wp.(q := Ofq).(c |+⟩ ⟨+|+ b |−⟩ ⟨−|) = O†
f (c |+⟩ ⟨+|+ b |−⟩ ⟨−|)Of

= Of (c |+⟩ ⟨+|+ b |−⟩ ⟨−|)Of

= ((−1)f(0) |0⟩ ⟨0|+ (−1)f(1) |1⟩ ⟨1|)

(c |+⟩ ⟨+|+ b |−⟩ ⟨−|)

((−1)f(0) |0⟩ ⟨0|+ (−1)f(1) |1⟩ ⟨1|)

= c((−1)f(0)+f(0) |0⟩ ⟨0|+ (−1)f(0)+f(1) |0⟩ ⟨1|

+ (−1)f(1)+f(0) |1⟩ ⟨0|+ (−1)f(1)+f(1) |1⟩ ⟨1|)

+ b((−1)f(0)+f(0) |0⟩ ⟨0| − (−1)f(0)+f(1) |0⟩ ⟨1|

− (−1)f(1)+f(0) |1⟩ ⟨0|+ (−1)f(1)+f(1) |1⟩ ⟨1|)

= (c+ b)(−1)2f(0) |0⟩⟨0|

+ (c− b)(−1)f(0)+f(1) |0⟩⟨1|

+ (c− b)(−1)f(1)+f(0) |1⟩⟨0|

+ (c+ b)(−1)2f(1) |1⟩⟨1|

= |0⟩ ⟨0|+ |0⟩ ⟨1|+ |1⟩ ⟨0|+ |1⟩ ⟨1| = |+⟩ ⟨+| .

The penultimate equality holds because c− b = 1− 2(f(x)⊕ f(y)) = (−1)f(x)+f(y).

Thus, the Hoare triple {|+⟩ ⟨+|}q := Ofq{c |+⟩ ⟨+|+ b |−⟩ ⟨−|} holds.
It is not hard to see that {|0⟩ ⟨0|}q := Hq{|+⟩ ⟨+|} with |0⟩ ⟨0| being the weakest

precondition of the given statement and postcondition.

Finally, the weakest precondition rule for initialisation can be used:

wp.(q := 0).P = |0⟩q ⟨0|P |0⟩q ⟨0|+ |1⟩q ⟨0|P |0⟩q ⟨1| .

For simplicity, we can drop the q notation from the equation, since we only have

a 1-qubit program. Thus, it is easy to see that

wp.(q := 0). |0⟩ ⟨0| = |0⟩ ⟨0|0⟩ ⟨0|0⟩ ⟨0|+ |1⟩ ⟨0|0⟩ ⟨0|0⟩ ⟨1|

= |0⟩ ⟨0|+ |1⟩ ⟨1| = I,

and therefore the Hoare triple {I}q := 0{|0⟩ ⟨0|} holds. By following the sequential

rule, it is easy to see that wp.(Deutsch).Post = I and the desired Hoare triple of

{I}Deutsch{Post} is achieved.
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A.3.2 QCTL Deutsch Example

Firstly, the quantum Kripke structure is setup. For simplicity, variables are not used

and the ρ terms from states are omitted. The set of qubits is denoted qB = {m, b, q}
and the initial state of qubits is denoted I = {|0, b, 0⟩ : b ∈ {0, 1}}. The operation

for Deutsch’s algorithm is introduced. Again, for simplicity, all the operations are

performed in a single unitary

UD = (X ⊗ I2 ⊗ I2)(I2 ⊗ I2 ⊗H)(I2 ⊗ I2 ⊗Of )(I2 ⊗ I2 ⊗H) = X ⊗ I2 ⊗HOfH.

Thus, the set of states is S = {UD
na |ψ⟩ : n ∈ N0, |ψ⟩ ∈ I, a ∈ {1,−1}} and, since

UD is self-inverse, S = {± |0, 0, 0⟩ ,± |0, 1, 0⟩ ,± |1, 0, 0⟩ ,± |1, 1, 1⟩}. The transition

relation is then given by R = {(|ψ⟩ , UD |ψ⟩) : |ψ⟩ ∈ S} and the quantum Kripke

structure is (S,R).

The specification given in Equation A.4 can be used but the temporal operators

are converted to ones used in [14]:

θ1 =¬q(□m),

θ2 =(□m) ∧q ((□b)⇔q (
∫
q = 1)),

D =A[θ1Uθ2]

=AFθ2 ∧q ¬qE(¬qθ2U¬q(θ1 ∨q θ2)).

The set of states from S that satisfy D can now be checked, which are written

as

Sat(S,R)(D) ⊆ S,

and can use the algorithm in Table 9 from [14] to determine the set. Firstly, note

that

Sat(S,R)(D) =FixedPoint[λX.{R−1X} ∪X,Sat(S,R)(θ2)]∧q

S \ FixedPoint[λY.{R−1Y ∩ Sat(S,R)(¬qθ2)}, Sat(S,R)(¬q(θ1 ∨q θ2))],

where FixedPoint[f, x0] performs the computation xi+1 = f(xi) until xi+1 = xi.

Denote the set of states that satisfy a dEQPL formula, γ, by [[γ]]dEQPL = {|ψ⟩ ∈ S :

s ⊩dEQPL γ}. The following evaluations of dEQPL formula give

[[□m]]dEQPL ={|ψ⟩ ∈ S :
∑
b,q

∥⟨1, b, q|ψ⟩∥2 = 1},
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[[□b]]dEQPL ={|ψ⟩ ∈ S :
∑
m,q

∥⟨m, 1, q|ψ⟩∥2 = 1},

[[
∫
q = 1]]dEQPL ={|ψ⟩ ∈ S :

∑
m,b

∥⟨m, b, 1|ψ⟩∥2 = 1},

[[(□b)⇔q (
∫
q = 1)]]dEQPL ={|ψ⟩ ∈ S :

∑
m

∥⟨m, c, c|ψ⟩∥2 = 1 for c ∈ {0, 1}}.

Next the set of states that satisfy the quantum formulas are found:

Sat(S,R)(θ1) =S \ [[□m]]dEQPL

=S \ {|ψ⟩ ∈ S :
∑
b,q

∥⟨1, b, q|ψ⟩∥2 = 1}

={± |0, 0, 0⟩ ,± |0, 1, 0⟩};

Sat(S,R)(θ2) =[[θ2]]dEQPL

={|ψ⟩ ∈ S : ∥⟨1, c, c|ψ⟩∥2 = 1 for c ∈ {0, 1}}

={± |1, 0, 0⟩ ,± |1, 1, 1⟩};

Sat(S,R)(¬qθ2) =S \ {± |1, 0, 0⟩ ,± |1, 1, 1⟩} = {± |0, 0, 0⟩ ,± |0, 1, 0⟩};

Sat(S,R)(¬q(θ1 ∨q θ2)) =S \ ([[θ1]]dEQPL ∪ [[θ2]]dEQPL)

=S \ ({± |0, 0, 0⟩ ,± |0, 1, 0⟩} ∪ {± |1, 0, 0⟩ ,± |1, 1, 1⟩}) = ∅.

The evaluations of the fixed point evaluations are

FixedPoint[λX.{R−1X} ∪X,Sat(S,R)(θ2)]

= {± |0, 0, 0⟩ ,± |0, 1, 0⟩ ,± |1, 0, 0⟩ ,± |1, 1, 1⟩} = S,

and

FixedPoint[λY.{R−1Y ∩ Sat(S,R)(¬qθ2)}, Sat(S,R)(¬q(θ1 ∨q θ2))]

= FixedPoint[λY.{R−1Y ∩ {± |0, 0, 0⟩ ,± |0, 1, 0⟩}}, ∅] = ∅.

Finally,

Sat(S,R)(D) =S ∩ (S \ ∅) = S ∩ S = S.

All states in (S,R) satisfy D and thus the algorithm correctly returns the value b.
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A.4 Design of Verification Frameworks and Quan-

tum Programming Languages

In this section, several trade-offs and properties that are desired from a programming

language for quantum verification are given. Whilst the trade-offs are similar to what

classical theorem provers need to consider, different requirements need to be met

for the language due to the nature of quantum computation. These criteria will

later be used to highlight the differences of the available verification frameworks for

quantum programming.

A.4.1 Trade-offs

Environment This concerns the environment in which the programmer creates

their programs.4 There are a few options available when considering this. Firstly,

the language could be embedded within an available theorem prover. This gives

the benefits of the host language, as well as access to libraries and community

support. Further, someone familiar with the environment would be able to pick

up the language fairly easily. However, embedding within a theorem prover does

mean that the quantum verifier also suffers from the limitations of the said theorem

prover. Numerous current tools take this approach, such as SQIR and QHLProver,

which are discussed in Section 2.2. In general, a quantum programming language

could be embedded in a classical language, such as how Quipper is embedded in

Haskell [83], and a modified verification framework can be used to verify programs.

An alternative is to create a new environment dedicated to the verification of

quantum programs from scratch. This gives more freedom in being able to meet the

specification the designer creates. On the downside, it may take longer to develop

than other methods. It will take longer to fully build a dedicated tool for the

verification of programs versus building off or extending a well-known tool. This

approach would be akin to building a tool such as an SMT solver (Z3, dReal, etc.)

or model checker (PRISM, nuSMV, etc.).

Another approach is to extend a quantum programming language with a veri-

fication framework. This would allow both programs to be verified and executed

on a simulator or quantum hardware. However, the choice of language needs to be

considered and the framework would need to be updated whenever the underlying

4Some of the environment trade-offs discussed are common in other domain specific languages.
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language gets updated. One example of this approach in the quantum setting is the

Entangλe framework [10]. Entangλe is capable of translating Quipper [83] programs

into quantum Markov chains [70], which can then be checked against temporal logic

formulae.

Interactive vs Automated Here, one needs to consider whether the user should

interact with the proofs they are constructing and how much should a tool automate

the process of generating the proof. One can design a fully interactive prover, a fully

automated prover or a mix between the two.

If the framework is designed to be interactive, then it may take more man-hours

to construct proofs. However, this brings the benefit of the user obtaining a better

understanding as to how a program is (or is not) valid. On the other hand, an

automated-focused framework could only require the push of a button to prove

programs, possibly leaving the user in the dark as to why the program is correct.

The size of systems requiring verification are a factor in which type of tool to

use. A large system might not be suitable for an interactive approach, requiring the

use of an automated approach. In [111], the authors highlight the use of model

checkers and SMT solvers for the verification of avionics systems. The case studies

provided contain systems with reachable state spaces of up to 1.5× 1037 states.

Executability and Separability Another property to consider is what should

be executable within the framework and how separable a program should be from

its specification. For example, should specification be written within the program

definition, in the same file as the program or within a separate file.

This will depend on the environment chosen for the framework and how mixed

the specification is with the programs created. If a program is to be run on quantum

hardware, the specification and verification of a program need to be separated from

its definition. This is because the verification of quantum programs occurs classi-

cally (at least for now) whereas programs would be executed on quantum hardware.

This puts the separation between the definition and execution of programs and

specification as a high priority.

Running programs on a simulator is quite different. The reason for running

a quantum program on a simulator is to check the outcomes of the program. In

verification frameworks that provide counterexamples, simulators can be used to run

and test the counterexample. This usage ensures that a counterexample is in fact
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correct and is particularly useful for abstraction-based approaches, where the result

from an abstraction may be different to the result from running the actual program

(akin to CEGAR for model checking described within Section 2.1.2). Simulators can

also be used for running small programs and the program is guaranteed to perform

as expected. This allows the designer to freely decide how separable program and

specification should be.

A.4.2 Limitations of Quantum Programs

Due to the difference in nature between quantum and classical computing, quan-

tum programming languages have different requirements to classical ones. In [92] a

discussion on a number of bugs to avoid when implementing a quantum program-

ming language is given. Here a few of the ideas presented in [92] are discussed as

are some other thoughts. The paper goes into more details on common bugs that

programmers may create due to human error, but this is omitted.

No-cloning One of the key properties to meet is that the no-cloning theorem [156]

is adhered to. The rules that quantum mechanics follows do not allow for the copying

of arbitrary quantum data. Therefore, any quantum programming language should

have inbuilt functionality to forbid (perfect) cloning. For example, if programs and

proofs are mixed within the language, then the no-cloning theorem can be proved

within the language. Alternatively, no-cloning can be achieved by making it built

into the language through the use of types or linear logic.

Limited Classical Functionality A useful approach of designing a quantum

computer is by having a classical computer being able to access a small quantum

processor, known as quantum random access memory (QRAM), in a similar way to

a graphics processing unit (GPU) [96]. The quantum part of the computer should

perform purely quantum operations, having very little classical functionality within

it. Because of this restriction, quantum programming languages need to be designed

so that there is very limited classical functionality within the language as to avoid

affecting the quantum system.

It should be noted though that there are some nice features that can come with

having classical functionality. For instance, oracles implement classical functions

into a quantum circuit and having classical functionality would allow for easy im-

plementation of oracles. Silq [25] implements this in an easy-to-do way. Striking the

144



Appendix A. Background Appendix

right balance of how much classical functionality to have is therefore very important

to consider.

Depending on the amount of classical functionality, there are two ways to verify

a program with quantum and classical components. One method is to combine a

quantum verifier with a classical verifier, each handling the verification of separate

parts of the program. The alternative would be for the verifier to have suitable logic

to handle classical and quantum functionality together.

Program Parameters Moving away from low-level quantum circuit description

languages and into the realm of quantum programs requires the use of parameters.

Using parameters allows quantum programmers to easily describe their program in a

very general manner and then provide specific values during runtime. For example,

Grover’s algorithm can use parameters to describe the size of the circuit and a

general oracle function that it can take as input. This provides complexity from a

verification perspective as the more parameterised a program is, the harder it is to

verify for correctness or other properties.

For some quantum programs, it can be useful to use the output of measurement

results to influence the control of a program. This concept is a form of dynamical

lifting, which allows classical data to be used to affect the control of a quantum

program. Classical data can be used as a parameter before or during runtime. Types

of control flow include determining the number of wires to use, running different

circuits after a qubit is measured (e.g., the teleportation protocol) or a notification

to redo the computation (e.g., repeat until success loops). Recent extensions of

Quipper have shown how dynamic lifting can be implemented in practice [51, 76].

Techniques such as dynamic lifting will require specific methods to be handled by

verifiers.

Ancillary Cleaning Ancillaries are qubits that are introduced into the system in

an initial state, used for a computation temporarily and then returned to their initial

state. This process of returning the ancillary to its initial state is known as cleaning

and is important for programmers or language designers to take into account. In

classical computation, ancillary bits can be easily removed automatically by the

processor through garbage collection, since classical bits can be discarded without

affecting the state of the program. However, if ancillary qubits are not cleaned,

there is the potential for measurement outcomes to be affected due to entanglement
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between the main qubits and the ancillary ones. It should be decided by the designers

whether programs should automatically uncompute ancillaries or if the programmer

should perform this task.

A key feature in the programming language Silq [25] is that ancillaries are au-

tomatically uncomputed. Whether this feature will be seen in future verifiable pro-

gramming languages is uncertain. From a verification perspective it would be advan-

tageous to verify properties of ancillary qubits. For example, one such property is

verifying that an ancillary qubit returns to its initial state so that it can be removed

from the computation.

Types for Quantum Variables Another issue that is faced by designers of quan-

tum programming languages is the design of types within their language. This in-

cludes problems such as whether measuring a quantum variable causes it to remain

the same type, and what properties of a quantum variable need to be embedded

into a type.

Another factor to consider when handling types is how to detect entanglement

between different variables. Twist [163] features a unique typing system that allows

the programmer to change the type of a variable depending on whether it is entangled

with other variables or not. This is known as purity checking and it is handled

through operations that are run before and during the running of a program. The

techniques developed in Twist can be of use for future languages, but advancements

need to be made to perform full purity checking before the program is run. Purity

checking can be considered a form of verification and is a problem that needs to be

explored with different tools.

Algorithm Milestones Designers of quantum languages often show the capabil-

ities of their language by implementing a quantum algorithm. One should think of

each algorithm as a milestone that should be reached. The lowest milestone to reach

is being able to implement the Deutsch-Jozsa algorithm [62] or the quantum telepor-

tation protocol [21] as these are fairly well-known algorithms. The next milestone

would be to write either Grover’s [85] or the Quantum Phase Estimation algorithm

(many of these algorithms mentioned can be found in [114]). This is because both

involve some form of iteration and are slightly more complex than the Deutsch-Jozsa

and teleportation algorithms. The hardest algorithms to implement would be some

of the 7 algorithms implemented in Quipper [83], which includes quantum walks on
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Binary Welded Trees [42] and the Ground State Estimation algorithm [152].

For verifiable quantum programming languages, it is also necessary to be able

to prove these programs run correctly. Many quantum programming languages

are already able to implement several of the common “textbook” algorithms and

a variety of algorithms in other fields, such as quantum chemistry [35]. So far,

verifiable languages have only been able to prove about “textbook” algorithms.

Whether they can prove facts about more advanced algorithms is yet to be seen.

A discussion of two non-textbook algorithms and their challenges to verification is

given in Appendix A.5.

A.5 Challenges in Verifying Complex Quantum

Algorithms

Whilst many standard quantum algorithms have been verified in a number of the

tools described above, specific techniques will be needed to verify complex algo-

rithms. Here the problems that arise for verifying the Harrow-Hassidim-Lloyd algo-

rithm [87] and the Binary Welded Tree quantum walk algorithm [42] are studied.

A.5.1 The Harrow-Hassidim-Lloyd Algorithm

The Harrow-Hassidim-Lloyd (HHL) [87] quantum algorithm solves linear systems of

equations. Specifically, given a sparse, Hermitian matrix A and unit vector b, find x

such that Ax = b.5 Using a matrix A as described above, the classical Conjugate-

Gradient method can be used to find x in time O(Nκs log (1/ϵ)), where N is the size

of A, κ is the condition number of A, s denotes how sparse A is and ϵ is the error

[137]. In the case of the HHL algorithm, the actual output is an approximation

of x using a measurement matrix M. This approximation can be found classically

in O(Nκpoly(1/ϵ)). The run time of HHL is O(log (N)κ2s2/ϵ3) and returns the

answer with high probability, providing an exponential speedup with respect to N .

The circuit for the HHL algorithm is given in Figure A.6 and some Silq code is

presented in Figure A.7.

Here, a brief explanation of how the HHL algorithm works is given. Let N =

2n and the N -length unit vector b be represented by the quantum state |b⟩ =

5Although it is possible to change a linear system problem that uses a non-Hermitian matrix
to one that uses a Hermitian matrix (details are within [87]).
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Figure A.6: The quantum circuit for the HHL algorithm.

// Init b

b_q := orB(b_q);

// QPE

eigen_qs := H_n[prec](eigen_qs);

b_q := qpe_ham_loop[n, prec](eigen_qs, t, hamU, b_q);

eigen_qs := reverse(qft[prec])(eigen_qs);

// Controlled rotation

anc := control_rot[n, prec](eigen_qs, approx_lambda, t/(2*pi), anc);

// Inverse QPE

eigen_qs := qft[prec](eigen_qs);

b_q := qpe_ham_loop[n, prec](eigen_qs, t, revhamU, b_q);

eigen_qs := H_n[prec](eigen_qs);

// Measure ancillary

repeat_loop = not(measure(anc));

Figure A.7: Main loop body for the HHL algorithm written in Silq. Full code
available at https://github.com/marco-lewis/silq-hhl.

∑N−1
i=0 bi |i⟩. This is loaded into a n-qubit register using an operator B. Hamiltonian

simulation is used to represent A in a quantum phase estimation call. The unitary

matrix U in quantum phase estimation is e−iAt for HHL and rotates |b⟩ =
∑

j βj |µj⟩
around the eigenvectors of A, which are µj and |µj⟩ being their quantum state

representation (similarly to |b⟩).
Performing the quantum phase estimation (QPE) call entangles the eigenvalue

representations of A in a new quantum register with their associated eigenvectors.

This gives a quantum state of the form
∑

j |λj⟩ |µj⟩. The eigenvalues are then em-

bedded into the phase of the quantum state using controlled rotations on an ancillary
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qubit (using an operatorR), leaving the quantum state as
∑

j |λj⟩ |µj⟩ (C |0⟩+ 1
λj
|1⟩).

The quantum phase estimation routine is undone and the ancillary qubit is then

measured. If it returns |0⟩, then the entire quantum state is dumped and the algo-

rithm is run again. If it returns |1⟩, then the register that previously contained |b⟩
now contains |x⟩ =

∑
j
βj

λj
|µj⟩, a representation of x. This can then be measured

after applying M, which changes the basis that |x⟩ is measured in.

As mentioned previously, only the CoqQ tool can verify an instance of HHL with

assumptions on the inputs to the algorithm. The HHL algorithm has a number of

features that will make formal verification of an implementation challenging. Some

of these features are not common in the standard algorithms and are discussed.

Repeat until Success One of the key aspects involved in this algorithm is the Re-

peat until Success loop that is dependent on the measurement of an ancillary qubit.

This feature is also an aspect of Shor’s algorithm [139], since there are possibilities

for a measured result to be invalidated through classical checks. QHLProver is the

only suitable verification framework that can handle Repeat-until-Success loops de-

pendent on measurement outcomes. This is achieved through the verification of the

while statement in the quantum-while language.

Subroutines As mentioned the HHL algorithm features the quantum phase esti-

mation algorithm. This would need to be verifiable first before much progress could

be made on the HHL algorithm. However, it is also important to consider what

properties of quantum phase estimation need to be proved for different algorithms.

For HHL, it will be important to show that b has a representation under the eigen-

vectors ofA. It will also be important to consider how the eigenvalue representations

affects the phase of the quantum state. Verification will be needed here to prevent

side effects within a program.

Hamiltonian Simulation Approximation Hamiltonian simulation is used to

give a unitary approximation of the evolution of a Hamiltonian system. This tech-

nique has been used with matrices of different types for different purposes (as is the

case in HHL). A verification tool will need to ensure that an implementation of an

approximation is actually a good approximation of the behaviour that is expected.

Techniques for verifying that implementations of a Hamiltonian are correct have not

yet been studied. None of the tools given have verified an example of Hamiltonian
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simulation. Tools embedded within theorem provers might be able to perform this

verification but this will require separate study.

A.5.2 Walking on Binary Welded Trees

The problem statement of the Binary Welded Tree (BWT) algorithm [42] is that

there are two trees, of the same depth, that are joined together by a weld at their

leaves. The task is to walk from one root node (the entrance node) to the root node

on the other tree (the exit node). When at a node, you only have local knowledge,

where you cannot ask where you are on the tree but you can identify edges you

have been down. For trees of depth n, one can walk to the weld and then walk

down edges randomly until the exit node is reached. This is referred to as a random

walk and has a worst case run time of O(2n), as one may visit almost every node

in the tree.6 The random quantum approach allows the walker to traverse down all

edges from a node by entering a superposition of staying at the current node and

traversing to a new node. This quantum approach achieves an exponential speed

up in comparison to the classical approach, running in O(poly(n)) and the quantum

system will collapse to the root of the other tree with high probability.

Each leaf node in the weld is connected to two leaves on the other tree. Further,

the weld is designed such that it is cyclic and every leaf is in the cycle. An example

of a binary welded tree is given in Figure A.8. To identify edges at a node, they are

coloured. Edges only need to have a unique colour to the other edges on attached

nodes. There is no constraint on the number of colours used, but it is possible to

colour a tree using only 4 colours (this can be seen in Figure A.8).

Again, the reader should refer to [42] for full details on how the algorithm works.

To explain briefly, a quantum register is used to represent the nodes and the register

is initialised to the start node. The algorithm features a number of colour oracles

that modify some ancillary register. A colour oracle returns a connected node if a

node has an edge of that colour or the error state if not. Further, an additional

qubit is used to flag the error state.

For a specific colour, the quantum register is put through the colour oracle. Then

a rotation occurs through a Hamiltonian simulation. The entangled node register

and ancillary register are rotated so that the connected node is slightly rotated into

the quantum state. Then the colour oracle is reversed. The algorithm loops through

6One can achieve a polynomial classical algorithm, but this uses global knowledge of the walkers
position on the graph.
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Figure A.8: Examples of a binary welded tree with 4 colours used to colour the
edges (solid is red, dashed is greed, dot-dashed is blue and double-line is yellow)

.

def Ham[n:!N](const G_or: !N x uint[n]->lifted uint[n], t:!R,

node_reg:uint[n], neighbour_anc:uint[n], err_anc:B)

{

for col in [0..numOfCols){

// Perform first V_c oracle

[neighbour_anc, err_anc] := V(G_or, col, node_reg,

neighbour_anc, err_anc);

// Simulation of T operation

[node_reg, neighbour_anc, err_anc] := sim_T(t, node_reg,

neighbour_anc, err_anc);

// Perform second V_c oracle

[neighbour_anc, err_anc] := V(G_or, col, node_reg,

neighbour_anc, err_anc);

}

return (node_reg, neighbour_anc, err_anc);

}

Figure A.9: A section of Silq code [25] for the BWT Algorithm. The colours are
looped over, V represents the colour oracle function and sim T represents the Hamil-
tonian simulation that takes places. The colour oracle is used twice to uncompute
the ancillaries (full code available at https://github.com/marco-lewis/silq-b
inary-welded-trees).
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(a) Initial state starting at
the root node of the left
tree

(b) Evolution with red or-
acle

(c) Evolution with green
oracle

(d) Evolution with blue oracle (e) Evolution with yellow oracle

Figure A.10: Example of the first iteration performing the main procedure through
each colour oracle. Inside each node is the probability of that node being measured.
A variable can be set to change the proportion of probability moved to a connected
node. In this example, half of the probability from a node is shared with its neigh-
bour. Changing the order the oracles are called in would change the evolution of
the system.

the colour oracles and repeats this loop a specified number of times. By selecting

an appropriate time, the algorithm will stop and return the label of the root of the

right tree with high probability. Figure A.10 shows a diagrammatic evolution of the

quantum state for the first iteration through the colour oracles.

Through the description of the algorithm, one can see that there are various

features that will be difficult to formally verify. Some of these features are discussed.

Loop Invariants Unlike the measurement based loops in the HHL algorithm, the

BWT algorithm features two classical loops: one for the colour oracles and one for

repeating the process. This leads to very deep circuits being created and so making

the verification process slow from simply unwinding the entire loop. To verify these

loops, either loop invariants need to be made or Bounded Model Checking could be

used to unwind the procedure for a number of iterations. QBricks already features
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an iter statement for repeating a quantum circuit a finite number of items. Such

a feature could be used to verify aspects of BWT, but this is expected to be a

challenging task.

Quantum Objects - Nodes vs Qubits Whereas most of the standard algo-

rithms use qubits to represent values, the BWT algorithm works on a “quantum”

graph. While physically this graph would be represented by qubits, it would be

helpful for verification to verify about the nodes and graph structure easily. Quan-

tumOne [149] is a recent endeavour into verifying about quantum objects rather

than qubits.

Oracle Implementation In standard algorithms (e.g., Deutsch-Jozsa), oracles

only refer to a single function with defined constraints. However the oracles for the

BWT algorithm are more complex, depending on a classical variable from a loop

and featuring an error flag. This provides difficulty in terms of defining the expected

behaviour for the oracle function.
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B.1 Proof for Continuous Barrier Certificates

B.1.1 Proof of Theorem 4.2

The proof is similar to the intuition given for Theorem 4.1.

Assume by contradiction that the system has a complex-valued convex barrier

certificate, but the system is not safe. Therefore, there is an initial state z(0) ∈ Z0

and time T ∈ R+ such that z(T ) ∈ Zu. By the definition of convex barrier certificate,

we have that B(z(0)) ≤ 0 and B(z(T )) > 0. Thus, the barrier must grow positively

at some point during the system evolution. However, we have that dB(z(t))
dt

≤ 0 for

all t ∈ R+ based on Equation (4.13). The system cannot grow positively and so we

have a contradiction. Therefore, the system must be safe.

B.1.2 Proof of Proposition 4.3

Let ż = f(z) be a system over Z with Z0 and Zu being the initial and unsafe sets

as before. Let B denote the set of (complex-valued convex) barrier certificates such

that for any B ∈ B the system f(z) is safe. Take B1, B2 ∈ B and consider the

function B(z) = λB1(z) + (1 − λ)B2(z), where λ ∈ [0, 1]. Since B1(z) ≤ 0 and

B2(z) ≤ 0 for all z ∈ Z0, then B(z) ≤ 0 as well. A similar argument holds for

B(z) > 0 for all z ∈ Zu. Finally, consider the differential equation dB
dt
. It is trivial

to see that
dB

dt
= λ

dB1

dt
+ (1− λ)dB2

dt
≤ 0,
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because differentiation is linear; and dB1

dt
, dB2

dt
≤ 0 for all z ∈ Z. Therefore, B

satisfies the properties of a barrier certificate for f(z) and so B ∈ B. Hence, B is

convex.

B.1.3 Derivation of Barrier for Hadamard System

By substituting zjzj = |zj|2 and noting that Re{z} = z + z for any z ∈ C, we have

that

B(z) =
11

5
− 3|(z)0|2 − Re

{
(z)0(z)1

}
− |(z)1|2.

Since |(z)1|2 = 1− |(z)0|2 (due to properties of quantum systems), we then have

B(z) =
6

5
− 2|(z)0|2 − Re

{
(z)0(z)1

}
,

and by simply rearranging we get

B(z) = 2(
1

10
− |(z)0|2 +

1

2
− Re

{
(z)0(z)1

}
).

B.1.4 Proof of Proposition 4.4

This is proved by showing that B meets the conditions of a convex barrier certificate

(given in Definition 4.6). Safety is then guaranteed from Theorem 4.2.

Firstly, consider z ∈ Z0. As |(z)0|2 ≥ 0.9, then B(z) ≤ 2(−4
5
− Re

{
(z)0(z)1

}
).

Further, it can be seen that

∣∣∣Re{(z)0(z)1}∣∣∣ = |Re{z0}Re{z1}+ Im{z0} Im{z1}| < 1×
√

1

10
+ 1×

√
1

10
=

√
2

5
.

Note that we are taking the maximal possible value of each component and therefore

this is larger than the maximal value of Re
{
(z)0(z)1

}
. Thus,

B(z) ≤ 2(−4

5
− Re

{
(z)0(z)1

}
) < 2(−4

5
+

√
2

5
) < 0.

A similar argument can be made for when z ∈ Zu and it can be shown that B(z) > 0.
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Finally, Equations (4.10) and (4.5.1) are used to get

dB

dt
= −i

(
− (2(z)0 + (z)1)((z)0 + (z)1)− (z)0((z)0 − (z)1)

+ (2(z)0 + (z)1)((z)0 + (z)1) + (z)0((z)0 − (z)1)
)

= −i
(
− 2(z)0(z)1 − (z)0(z)1 + (z)0(z)1 + 2(z)0(z)1 + (z)0(z)1 − (z)0(z)1

)
= 0,∀z ∈ Z.

Therefore, the system meets the conditions given in Equations (4.11), (4.12) and

(4.13); the system is safe.

B.1.5 Proof of Proposition 4.5 and 4.6

This subsection begins by proving Proposition 4.5.

Proof. Again, this is proved by showing that B1 meets the conditions of a convex

barrier certificate (given in Definition 4.6). Firstly, for any z ∈ Z2
0 , we have that

|(z)0|2 ≥ 0.9, and

B1(z) = 0.9− (z)0(z)0 ≤ 0.9− 0.9 = 0.

When z ∈ Zu, a similar argument can be made since |z0|2 < 0.89, and

B1(z) = 0.9− (z)0(z)0 > 0.9− 0.89 = 0.01 > 0.

Finally, using Equation (4.10) and (4.17), then

dB

dt
= −i

(
− (z)0((z)0) + 0(−(z)1)− (z)0(−(z)0) + 0((z)1)

)
= −i

(
− (z)0(z)0 + (z)0(z)0

)
= 0,∀z ∈ Z.

Therefore, the system is safe.

The proof of Proposition 4.6 is the same as the proof for Proposition 4.5 except

swapping (z)0 for (z)1 where appropriate.
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B.2 Phase Gate Example Extended

To extend the Z gate example to an n-qubit system, the dynamics are set as

ft(z) = Z⊗nz.

Then,

Zp
0 = {z ∈ Z : |(z)p|2 ≥ 0.9}, and

Zp
u = {z ∈ Z :

∑
j ̸=p

|(z)j|2 ≥ 0.2},

for p ∈ {0, . . . , 2n− 1} (where |p⟩ is the target state) for the initial and unsafe space

respectively.
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