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Abstract 

 

The transport sector is a major contributor to climate change, which is considered the most 

pressing environmental challenge of our time. Consequently, many cities around the globe 

are introducing sustainable transport legislation to meet the 2015 Paris Agreement of limiting 

global warming to 2°C and aiming for 1.5°C. To achieve this, policies are sought that can 

change mobility patterns to reduce emissions rapidly. This could involve a portfolio of 

measures where a combination of changes to the built environment, human behaviours and 

financial incentives or penalties are considered. 

The work presented in this thesis encompasses efforts to develop and validate a model that 

simulates a digital representation of the transport mobility, applying Agent-Based Modelling 

(AgBM) techniques. This model simulates the spatio-temporal interactions of synthetic 

individuals in the study area during their daily routines, using different transport modes. This 

validated model is then used as the baseline scenario to simulate different mobility policies 

and test their efficiency in reducing the number of private and polluting vehicles on the roads 

in favour of active modes (i.e., walking and cycling) and, therefore, reducing greenhouse gas 

emissions.  

The developed model is described and demonstrated for the Tyne and Wear region, showing 

its transport mobility during a regular day in 2019 (a pre-pandemic scenario with ‘normal’ 

mobility behaviours) and the potential estimated results that could be obtained when 

different mobility policies modifying the characteristics of the built environment and/or 

human behaviours are applied. The methodologies followed use open access datasets and 

open-source tools, when possible, being feasible to replicate the results and adapt them to 

any other region in the country. 

This thesis aims to help in the development and understanding of the urban transport 

mobility applying AgBMs, where spatio-temporal and human socio-demographic 

characteristics are considered through the simulation of active transport modes.  
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Chapter  1. Introduction 

 

The answers you get depend on the questions you ask. Thomas S. Kuhn 

 

“Climate change is the most pressing environmental challenge of our time” (DfT, 2020b). 

Leaders from different organisations, institutions and governments around the globe have 

cited this quote, but have rarely gone deeper into its definition and the present and potential 

future consequences. Fortunately, a vast research effort has been undertaken to better 

understand the challenges we are already facing. Unfortunately, in many cases, they have 

been either ignored or misinterpreted by politicians, decision makers and vested-interest 

groups to undermine the scientific consensus for their own benefit (van der Linden et al., 

2017). 

 

1.1. Climate change 

The United Nations (UN) define climate change as a long-term shift in temperatures and 

weather patterns, caused by changes in the sun’s activity or large volcanic eruptions (UN, 

2023). Earth’s climate has changed several times in history, with eight cycles of ice ages and 

warmer periods in the last 800,000 years, with the end of the last ice age about 11,700 years 

ago (NASA, 2023).  

However, not only those anomalous and very unlikely effects can produce climate changes. 

Human activities have also been highlighted by the UN as a main driver, primarily due to the 

burning of fossil fuels and the generation of greenhouse gas (GHG) emissions, acting as a 

coverage that alters Earth’s energy balance and its climate (The Royal Society, 2023). 

Scientists have analysed GHG variations in air trapped in ice extracted from Antarctica, 

resulting in CO2 concentration beginning to increase significantly in the 19th century after 

staying in a relatively constant range during the last 800,000 years, even throughout different 

ice age cycles (The Royal Society, 2023).  
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The Intergovernmental Panel on Climate Change (IPCC), the United Nations body for assessing 

the science related to climate change, published their first assessment report in 1990 (IPCC, 

1990), strengthening the scientific evidence and demonstrating that anthropogenic climate 

change was intensifying worldwide (Fanelli, 2014).  

 

1.1.1. Climate change consequences 

The sixth IPCC report in 2023 stated that human activities, principally through emissions of 

GHG, have unequivocally caused global warming. This has increased the global surface 

temperature about 1.1°C above the pre-industrial period (1850-1900) (IPCC, 2023; The Royal 

Society, 2023; UN, 2023), being greater over land (1.5°C) than over the ocean (0.88°C) (IPCC, 

2023). It has been proved with high confidence that global surface temperature has increased 

faster since 1970 than in any other 50-year period over at least the last 2,000 years (IPCC, 

2023). Figure 1 shows the global GHG emissions in billions of tones from the beginning of the 

Industrial revolution until the year 2020. 

 

Figure 1 World Greenhouse gas emissions over time (Ritchie et al., 2020). 

These effects have been producing substantial damages and increasingly irreversible losses in 

every region across the globe in terrestrial, freshwater, cryospheric, coastal and open ocean 
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ecosystems (IPCC, 2023). Direct effects of burning fossil fuels have affected human health and 

the ecosystem due to the air pollution generated (Orru et al., 2017). In 2020, the European 

Environment Agency published that in the European Union, 96% of the urban population was 

exposed to levels of fine particulate matter above the health-based guideline level set by the 

World Health Organization (European Environment Agency, 2022). Recently, researchers 

from Harvard University, in collaboration with the University of Birmingham, the University 

of Leicester and University College of London, estimated that exposure to particulate matter 

from fossil fuel emissions accounted for 8.7 million premature deaths annually (Vohra et al., 

2021), with an even larger number of hospitalisations and days of sick leave (Orru et al., 2017).  

Furthermore, an increase in frequency and intensity of extreme weather and climate events 

(Stott, 2016) has been also proved, as the National Academies of Science concludes in 2016 

(National Academies of Sciences, Engineering, 2016). An example is droughts, due to 

decreased precipitation and increased evaporative demand under warmer temperatures (Dai 

et al., 2018). More frequent and intense droughts lead to drier surfaces, warmer 

temperatures and lower relative humidity, developing a loop worsening the effects produced 

by climate change (Dai et al., 2018). Other side-effects from droughts are global food and 

water insecurities that will affect millions of people (IPCC, 2023), which could threaten global 

peace (Hanjra and Qureshi, 2010) due to changes in water supply and demand (Döll and 

Siebert, 2002) and food shortage (Arnell et al., 2004; Hanjra and Qureshi, 2010), with their 

complementary economic consequences. Other examples of climate events that can be 

increased in number and intensity are floods (Knox, 2000; Botzen and Van Den Bergh, 2008; 

Mirza, 2011; Wilby and Keenan, 2012) and forest fires (Gillett et al., 2004; Flannigan et al., 

2006, 2009; Abram et al., 2021). 

Unfortunately, citing the IPCC in their sixth report, global warming will continue to increase 

in the near term in nearly all considered scenarios and modelled pathways. Based on 

estimations from the IPCC, approximately 3.3 to 3.6 billion people are nowadays highly 

vulnerable to climate change (IPCC, 2023) and it is expected that this figure will increase, as it 

is projected that 68% of the world’s population will live in urban areas by 2050 (UN, 2018).  

The question to answer now is not if climate change will increase temperature and if its 

consequences will affect the planet and every living being on it. The question to address is to 
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what extent we can limit global warming and its consequences. Different urban strategies 

need to be followed to limit global warming and the future consequences.  

 

1.1.2. Worldwide GHG emissions 

Based on statistical data from 2016, the sectors that contribute the most to GHG emissions 

globally were: energy use in industry (24.2%), agriculture, forestry and land use (18.4%), 

energy use in buildings (17.5%), transport (16.2%), direct industrial processes (5.2%), and 

waste (3.2%) (Ritchie et al., 2020). These figures are not consistent between countries, with 

significant differences between high and low-income countries. High-income countries 

produce the most GHG emissions (both globally and per capita) from electricity, heat and 

transport (e.g., European Union, United States and the UK), while in low-income countries it 

is from agriculture and land use change and forestry (e.g., African and South American 

countries), although divergences occur between them depending on their main economic 

sectors.  

Considering countries only from the Organization for Economic Co-operation and 

Development (OECD), the average main GHG emissions in 2019 were generated by energy 

industries (28%), transport (23%), manufacturing industries (12%), agriculture (10%), 

industrial processes (7%) and waste (3%) (OECD, 2020). In the UK context, transport is the 

largest GHG emitter (27% in 2019), followed by residential energy use (20%) and energy use 

in industry (19%) (OECD, 2023).  

 

1.2. The need to reduce transport GHG emissions 

The UN consider cities as key contributors to climate change, estimating 75% of all global CO2 

emissions are produced due to urban activities (UN Environment Programme, 2023). As 

Wamsler et al. (2013) highlight, climate change poses a serious threat to sustainable urban 

development, placing many cities at risk. Robert Glasser, UN Special Representative of the 

Secretary-General for Disaster Risk Reduction, states that the impact of climate change and 

disasters is likely to be severe in urban centres where exposure is high due to population 

density and a heavy concentration of critical infrastructure (UNISDR, 2017; European 
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Environment Agency, 2023b; IPCC, 2023). Consequently, cities are considered key actors for 

leading climate change mitigation efforts (Hoornweg et al., 2011; Kennedy et al., 2014).  

Analysis and models developed by IPCC suggest that limiting warming to 2°C or lower by 2100 

involves rapid and deep and, in most cases, immediate GHG emissions reductions in all sectors 

(IPCC, 2023), besides other adaptive and resilient measures being implemented. One of those 

sectors that has to be decarbonised fast is transport, especially in developed countries (e.g., 

the UK, Spain, France, Denmark, Austria (Ritchie et al., 2020a)) as it is one of the largest 

contributor sectors.  

Therefore, many cities around the globe are introducing sustainable transport legislation that 

can change mobility patterns to reduce emissions rapidly. This could involve a portfolio of 

measures where a combination of changes to the built environment, human behaviours and 

financial incentives or penalties are considered. Examples of these strategies are electric cars 

(Gibbins et al., 2007; Teoh et al., 2018);  encouraging active modes for a healthier mobility 

(Wimbush et al., 1998; Nielsen and Haustein, 2019); improving cycling conditions (Buehler et 

al., 2017); providing economic rewards (Polydoropoulou et al., 2019; Máca et al., 2020); 

implementing Low Traffic Neighbourhoods (LTNs) (Aldred and Goodman, 2020; Goodman et 

al., 2021) or low emission zones (Panteliadis et al., 2014; Ku et al., 2020); and enabling 

alternative transport modes such as e-bikes (Philips et al., 2022) and e-scooters (Gössling, 

2020), among many others. 

 

1.3. Transport modelling and AgBMs 

Different transport models have been developed and used in the last few decades (mainly 

four-step models (FSM)) to test and estimate the efficiency of transport mobility policies 

before their implementation in the real world. Currently, novel approaches such as the use of 

Agent-Based Models (AgBMs), are being considered principally in transport research but also 

within pioneer governmental transport departments (e.g., Switzerland, Germany) and 

industries (e.g., Arup CML).  

AgBMs, unlike previous approaches, have some benefits that make them the appropriate 

models to test policies for a more sustainable transport sector. They allow the spatio-
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temporal simulation of the interactions between individuals and the environment (e.g., road 

and public network), considering characteristics of the built environment (e.g., road type and 

surface) but also of the individuals (e.g., age, sex, income). This approach provides a 

microscopic representation of the decisions made by individuals, and enables their 

behaviours and the implications of their explicit interactions (Wise et al., 2017) in the 

transportation system to be revealed (Kagho et al., 2020).  

 

1.4. Aim of the doctoral thesis 

The analysis of the climate crisis has given a broad but concise summary of the current and 

expected future consequences the world will face if measures to address the climate 

emergency are not established, based on reputable and reliable scientific sources. This 

implies the need to identify and apply measures to enable citizens to adapt their routines to 

more decarbonised daily lives. Within the transport sector, a more sustainable daily mobility 

is required, where the use of private and polluting vehicles is shifted to public and active 

modes.  

New methods and models to test urban mobility policies have been developed. This is the 

case of AgBMs, which allow consideration of more attributes and characteristics, as well as 

the interactions of the individuals in space and time. These models could provide an 

innovative approach and analyse the efficiency of the policies from several perspectives. 

Firstly, the characteristics of the built environment (e.g., road type and condition) can be 

considered to estimate how safe routes are when cycling or walking, which are key 

components in the route and transport mode decision, as defined by the ‘spatial cognition’ 

concept. Secondly, AgBMs allow the simulation, in space and time, of the interactions 

between agents and the built environment, which could help identifying more efficient policy 

implementations based on the different agents’ behaviours. Lastly, as disaggregated socio-

demographic attributes (e.g., sex, age, income) from each individual are known, different 

mobility patterns and behaviours within society could be considered. 

This doctoral thesis encompasses efforts to contribute to a more sustainable transport sector, 

applying AgBMs techniques. Therefore, the aim is: 



7 
 

To explore the potential of AgBMs to simulate urban mobility policy scenarios, in space and 

time, to enable a mode shift to active travel considering the built environment and socio-

demographic attributes.  

 

This is in line with Active Travel England (ATE), whose goal is to achieve 50% of trips in towns 

and cities to be walked, wheeled or cycled by 2030 (ATE, 2023a). This thesis aims as well to 

contribute to achieving this global goal, which has highlighted the significant role of research 

and innovation in transport decarbonisation. 

This is an important challenge, as several barriers need to be faced, such as safety 

improvements, the effects of climate, the willingness of policy implementations and the need 

for a change in human behaviours. Three of them are identified as critical: safety, policy 

implementation and human behavioural change, as they affect three different but 

fundamental components to achieve the goal: the built environment characteristics, the need 

to analyse the success or failure of active travel policies to convince stakeholders, and the 

human perspective. The remaining challenge (weather conditions), although fundamental 

too, could be considered as an extension, where different weather conditions could be 

analysed when safety improvements, policy implementations and changes in human 

behaviour are implemented. As such, the effects of weather were currently out of scope for 

this project but may be included in future research. 

Different cities have different challenges, data and solutions, but a general-purpose 

architecture and modelling framework could address these and hence there is inherent 

transferability. Consequently, the methodology developed in this thesis can be adapted and 

replicated to any other region in England, using open-access data and open-source tools, 

when possible, as part of the Responsive Research and Innovation component.  

The developed methodology is applied to the Tyne and Wear region, as it is the main urban 

area within the North East (NE) of England and due to the amount of accessible data that 

Newcastle University and other bodies linked to the University store in terms of mobility. The 

timeframe chosen was the year 2019 because it was the last year with ‘normal’ human 

mobility behaviours, as the following years since the COVID-19 pandemic do not represent a 

stable situation of human mobility. 
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This aim is summarised in figure 2, where the three main components (transport 

decarbonisation, human behaviour and the built environment) are connected to define the 

research gap identified for this doctoral thesis. 

 

 

Figure 2 Connection of the three main components of the thesis: transport decarbonisation, human behaviour and built 
environment. 

To the best of the author’s knowledge, this is the first time a transport AgBM (MATSim) model 

has been used to simulate tailored scenarios to reduce the use of polluting private vehicles in 

favour of active modes in the UK. 

 

1.5. Research gap 

Climate change and transport AgBM modelling is an incipient field in research. The literature 

reviewed in Chapter 2 identified the need to decarbonise the transport sector in favour of 

active modes and the use of transport AgBMs to test active mobility policies.  

The combination of these two components is scarce in research, as a consequence of 

computational resources and data limitations. However, new tools and datasets, as well as 

better computational systems are now available, which enable researchers to contribute and 

find alternative approaches to tackle the climate crisis by simulating the interactions of the 
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individuals in space and time, as well as considering their individual characteristics and their 

interactions with the environment.  

Therefore, the research gap identified in this doctoral thesis is the following: 

 

To develop a transport AgBM model to simulate urban mobility policy scenarios to increase 

the use of active modes, considering key built environment characteristics for those modes. 

 

The previously identified research gap was defined in more detail when it was observed that 

a low number of publications considered characteristics of the built environment when 

applying AgBMs for a modal shift to active modes. Characteristics such as the type of road 

and surface, the slope and the presence of dedicated cycle paths are the main characteristics 

considered by most researchers when simulating active mobility policies. Unfortunately, 

these characteristics could be insufficient, as characteristics such as road length, width, the 

existence of kerbs, crossing and junctions, among others, are also key components when 

analysing and simulating the use of active modes. Fortunately, Cyclestreet (2022a) has 

developed a methodology that classifies road for cycling based on all these attributes, which 

was incorporated into the design of the models used in this thesis to simulate more realistic 

scenarios from the cyclists’ perspective. 

 

1.6. Objectives 

The defined aim of the doctoral thesis was broken down into the following objectives: 

 To review the current status of transport mobility in England and the different urban 

mobility strategies to tackle the decarbonisation of the transport sector. 

 To review the different models used in transport research and the current use of 

AgBMs in simulating urban mobility scenarios. 

 To develop a very detailed synthetic travel demand that represents the individuals 

(i.e., synthetic population) living in the study area based on a set of socio-demographic 
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attributes with a detailed activity plan, using open access tools and datasets, when 

possible. 

 To develop a combined road and public transport network to allow the individuals 

from the synthetic population to move between activities, with a special interest in 

characteristics that support the use of active modes (e.g., bicycle access, road network 

characteristics, elevation and cycleability rating). 

 To calibrate and validate a transport AgBM model that simulates the normal transport 

mobility during a regular day in the study area. Simulations of cycling routes take into 

account some of the characteristics implemented in the previously developed 

network, for a more realistic and accurate understanding of cyclists’ behaviours. 

 To define, code and simulate a set of urban mobility policies to reduce the number of 

private and polluting vehicles on the roads in favour of active modes. 

 

1.7. Research questions 

The development of this doctoral thesis opens several research questions that need to be 

answered by the end of it (see section 5.3). These are the following: 

 How can open-access data and open-source tools support the development of spatio-

temporal scenarios to assess the effectiveness of policy portfolios to increase active 

travel uptake, taking into account socio-demographic attributes and built 

environment characteristics? 

 What synthetic population attributes are required to capture the behavioural 

responses of transport users to active travel policies, and how can these attributes be 

produced using open-source demographic tools? 

 Which characteristics of urban infrastructure are important in shaping travel choices, 

and particularly the use of active travel? 

 

1.8. Doctoral thesis innovations 

To conclude, this thesis proposes four novel innovations to simulate transport scenarios with 

a transport AgBM model in the UK context: 
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 A new, open-access and very detailed synthetic population methodology for any 

region in England (see section 3.3.3). This heterogeneous population will allow a wide 

variety of groups in society to be simulated, providing broader mobility patterns than 

less detailed alternatives. 

 Inclusion of a  new network attribute (quietness) ranking roads for cycling based on 

their built characteristics, using open access data from Cyclestreets (Cyclestreets, 

2022a) (see section 3.4.4). This parameter quantifies the road quality for cycling, 

helping to identify the feasibility of synthetic agents for cycling. 

 A MATSim bicycle contribution code update to consider characteristics of the built 

environment (i.e., quietness attribute) to simulate more realistic cycling routes. This 

contribution was developed in conjunction with Dr Ziemke (see section 3.6). This will 

help better account for infrastructure when making travel decisions when cycling. 

 A set of tailored “stick” and “carrot” scenarios to test urban mobility policies to 

influence transitions to active travel and reduce the use of private motor vehicles (see 

section 3.8). 

 

1.9 Thesis structure 

The thesis has been structured as follows: 

Chapter 2 presents a literature review. Firstly, UK measures to achieve a net-zero transport 

sector are analysed from governmental and scientific perspectives, highlighting the need to 

increase active travel in the short and medium term. Secondly, different methodologies for 

modelling transport mobility policies are reviewed, identifying the advantages of using AgBM 

to simulate transport scenarios considering characteristics of the population, space, time and 

the built environment.  

Chapter 3 describes in a high level of detail the developed methodology to generate all the 

required input datasets to calibrate and validate a MATSim model. Furthermore, the model 

is used to simulate different mobility policy scenarios in order to test their efficiency in 

increasing the use of active modes. 
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Chapter 4 groups all results obtained from each of the established objectives, from the 

development of a synthetic travel demand and network, to the model calibration and 

validation and the results obtained from each scenario simulated for a more sustainable 

transport future.  

Chapter 5 provides insight on the principal outcomes achieved in the doctoral thesis, as well 

as discussing the work presented, considering the assumptions and limitations previously 

acknowledged. Additionally, the research questions identified in chapter 1 are reviewed, 

providing a realistic and fair view of the level achieved with respect to the established goal of 

the thesis. Future work that researchers could consider are also identified and described. The 

implications of research for researchers, practitioners and policy makers are also discussed. 

Lastly, a conclusion of the doctoral thesis is provided. 
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Chapter  2. Literature Review 

 

You were not made to live as brutes, but to acquire virtue and knowledge. Dante Alighieri 

 

Chapter 1 introduced the current climate crisis, from a detailed description of its origin and 

current and future expected consequences to the main economic sectors contributing to it. 

Consequently, the research gap, main objectives and research questions were defined. 

This chapter reviews the literature from governmental and scientific perspectives to face the 

climate emergency, identifying a set of measures that would enable a net-zero transport 

future. Besides, several transport models are investigated, identifying their advantages and 

disadvantages in terms of modelling urban transport mobility and their applications to help 

face the challenge of the climate crisis.  

 

2.1. The UK transport sector  

 

Figure 3 Greenhouse gas emissions by sector in the UK (Ritchie et al., 2020). 
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The UK possesses one of the strongest records of emissions reduction in the OECD since the 

early 1990s, where energy industries had the largest source of emissions reductions, shifting 

from coal to gas and renewable energies (DfT, 2022e; OECD, 2023), achieving a global 48% 

emission decrease since then (Department for Business, 2023). Unfortunately, transport 

emissions became the largest contributor sector from 2016 (DfT, 2022e) (see figure 3), 

although it decreased by 5% between 1990 and 2019 (DfT, 2022e). Despite this decrease, the 

UK transport sector requires immediate measures to reduce GHG emissions to achieve the 

goals established in the Paris Agreement and the 2030 Agenda for Sustainable Development 

Goals.  

Department for Transport (DfT) statistics from 2019 (the last normal year prior to the 

pandemic that affected human mobility globally) show that 84% of passenger mileages were 

travelled in by cars, vans and taxis, and produced 91% of domestic transport’s total emissions. 

Most trips are relatively short, where 24% of them were under one mile, 43% under two miles 

and 68% under five miles (DfT, 2022c). In England, 88% of driven miles were on minor roads 

(B, C and U roads), while the remaining 12% were driven on major roads (trunk and principal) 

(DfT, 2020d). Eighty per cent of trips under one mile were on foot, although for longer 

distances, the car was the most frequent mode (DfT, 2022d). On average, 69% of British 

people use the car three or more times a week, increasing to 74% using it once or twice per 

week. Statistically, a citizen travels around 6,500 miles per year (relatively constant value 

since 2013), where 54 of them are travelled by cycling, in contrast with 3,198 miles as a driver 

and 1,812 as a car passenger, 158 miles using local buses and 625 by rail (DfT, 2023f). When 

commuting, 30 minutes on average are required and typically the trip is made by car (68%), 

with minor differences between regions except in London (27%) (DfT, 2019b).  

This global view shows a huge car dependency and its excessive use. As Song et al. (2017) 

describe, heavy car dependency leads to traffic congestion, pollution and physical inactivity, 

which impose high direct and indirect costs for society. Shah et al. (2021) state that the 

transportation sector has a significant economic, social and environmental impact on society 

and its improvement needs to consider all of them to be successful and efficient. Very 

committed regulations must be applied, as well as the implication for the citizens in their 

mobility behaviours to achieve the target.  
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2.2. Measures to reduce GHG transport emissions in the UK 

To face this situation, the UK set in 2019 by law that 100% of their emissions must be net zero 

by 2050 (UK Legistation GOV, 2019), being the first major economy to set legally binding 

carbon budgets and to legislate to end its contribution to climate change (DfT, 2020a). 

In 2020, the “Decarbonising Transport: Setting the Challenge” report was published, a 

document where all existing work and the strategies to be put in place by governments, 

businesses and society to deliver the significant emissions reduction needed across all modes 

of transport were put together (DfT, 2020b). Targets and strategic priorities such as 

accelerating the modal shift to public and active transport, decarbonising road vehicles and 

how goods are delivered are explained from the current position versus historical data, the 

current government aims and targets and future work. The document concludes by accepting 

that more plans and actions will be required if the established legal obligations are to be met, 

highlighting the vital role of research and innovation in decarbonisation. 

In 2021, the “Decarbonising Transport: a better, greener Britain” report (DfT, 2020a) was 

published. This document explains in more detail how strategies defined in the previous 

report will be achieved based on a series of actions and timings. From all of them, two are 

specifically related to car use mitigation, and consequently, with GHG car emissions 

reduction. These are decarbonising road transport and the modal shift to public and active 

transport.  

The first action is focused on removing polluting vehicles from roads. Firstly, the sale of new 

petrol and diesel vehicles will be phased out by 2030, and all new cars and vans will be fully 

zero emission at the tailpipe from 2035. Unfortunately, in 2023 this sale measure was delayed 

and drivers will still be able to buy polluting vehicles until 2035, with the possibility of buying 

and sell them second-hand after that year, too (MacLellan et al., 2023)). Secondly, the 

development of a reliable charging infrastructure network. It is expected to see the roll-out 

of 6,000 ultra-rapid charge points by 2035, including electric vehicle (EV) infrastructure on-

street and in public car parks. Thirdly, the implementation of charging schemes to disincentive 

the use of private motor vehicles in urban areas.  

The second action aims to enable citizens to use more sustainable modes. Firstly, a more 

cohesive, integrated and affordable public transport network, developing a National Bus 
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Strategy vision and a more efficient and electrified rail network, enabling a better integration 

between all public modes, walking and cycling would be developed. Secondly, there would be 

investment of £2 billion to increase the number of people walking and cycling in towns and 

cities, with an ambitious goal that half of all journeys will be cycled or walked by 2030 (ATE, 

2023a), supported by a world class cycling and walking network by 2040.  

 

2.3. Estimated co-benefits from the UK net-zero target 

The estimated benefits from these strategies go beyond tackling the climate crisis. From the 

shift to zero emission private vehicles, it is expected to increase up to £8 billion (gross value 

added (GVA)) from vehicle manufacture and up to 60,000 jobs in 2050. The CO2 emission 

reduction is expected to be between 620 and 850 MtCO2 between 2020 and 2050, which 

could generate economic savings of up to £8 billion from air quality improvements. 

Accordingly, there would be noise reductions, which has been classified as the second worst 

environmental risk factor in Europe (Sørensen et al., 2020), just after air pollution.  

From the public transport transformation perspective, savings of between 35 and 37MtCO2 

are expected from 2020 to 2050, which could generate economic savings of up to £160 million 

from air quality improvements. Zero emission buses could contribute up to £1 billion (GVA) 

in 2050 from zero emission vehicle manufacture and create up to 7,000 jobs. If buses become 

more popular and allow the shift from private vehicles, road congestion could be reduced as 

well.  

If cycling and walking objectives are achieved, improvements in air quality, health, economy, 

congestion and noise pollution are expected. Based on estimations given in the report, 

savings between 1 and 6 MtCO2 emissions from 2020 to 2050 are expected, which could 

generate savings from £20 to £100 million from air quality improvements. Health benefits are 

expected in wellbeing due to an increase in physical activity and a risk reduction of developing 

depression by 31%, which could drastically reduce the global £8.2 billion spent yearly by the 

National Health Service (NHS). Active travel could contribute between £1 and £4 billion (GVA) 

in 2050 and create between 40,000 and 100,000 jobs. Congestion will be reduced as walking 

and cycling require much less urban space than private vehicles. Noise and vehicle toxic 

tailpipe pollution would be reduced as well, transforming streets and communities into more 
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liveable environments. Lastly, by 2050, future active travel spending is projected to prevent 

around 50,000–130,000 premature deaths and reduce work absence by around 50–140 

million days.  

 

2.4. Scientific research on the net-zero challenge 

The previous paragraphs show the current panorama of the English transport sector, as well 

as the governmental chosen measures to put in place to achieve a sustainable transport 

environment, estimating extraordinary potential benefits not only for the current climate, but 

also for other sectors like the economy, health and wellbeing and the environment. 

Unfortunately, most strategies are nowadays just estimations based on ideal scenarios and/or 

assumptions (e.g., a full and reliable charging infrastructure network) that require more 

research and innovation (e.g., electric energy source, the use of hydrogen in road transport).  

Scientists and researchers have identified the advantages and disadvantages of each of the 

previously suggested strategies, grouped in two parts: the decarbonisation of vehicles on the 

road, and the shift to public and active modes. Their outcomes have been summarised in the 

following paragraphs. 

 

2.4.1. Decarbonisation of vehicles on the road 

The decarbonisation of road vehicles is mainly focused on replacing polluting fossil-fuelled 

vehicles with zero emission electric vehicles (EVs), which are around three-times as energy 

efficient as conventional internal combustion engine (ICE) vehicles (International Energy 

Agency, 2021). 

On the one hand, this approach could be beneficial for two of the main environmental issues: 

air pollution, as they are powered by electricity and do not produce any toxic tailpipe 

pollution; and noise, as these vehicles do not have the combustion engine and other noise 

components (e.g., exhaust system) (Pratico et al., 2020). Research studies show that EVs are 

a promising solution to reduce GHG emissions in the transportation sector (Sadek, 2012; 

Campello-Vicente et al., 2017; Ahmadi, 2019; Pardo-Ferreira et al., 2020; Agusdinata and Liu, 
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2023; Desreveaux et al., 2023) and help in tackling the climate change goals previously 

mentioned.  

On the other hand, this strategy has several drawbacks that can make it unsuitable for the 

short and medium term. The most controversial aspect surrounding EVs is focused on how 

the DfT estimated predictions (i.e., 91% of GHG emission reduction by 2050 (DfT, 2020a)) will 

be achieved, when substantial obstacles need to be solved beforehand. Some of them are the 

following: 

 The current vehicle costs (Pratico et al., 2020). 

 The current projections of EVs on the roads by 2050 and in the short and medium term 

(DfT, 2020a; SMMT, 2021). 

 The energy source requirements (Sadek, 2012; Vrabie, 2022; Desreveaux et al., 2023). 

 The significant ecological impact of battery production (Sadek, 2012; Peters et al., 

2017; Marmiroli et al., 2018). 

 The potential lack of critical materials (Habib et al., 2020). 

 An underdeveloped supporting vehicle charging infrastructure (Chen et al., 2020; 

Pratico et al., 2020). 

 Side effects of their lower noise levels in urban areas for other road users (Pardo-

Ferreira et al., 2020).  

To all these aspects, the UK Energy Research Centre (UKERC) add concerns about future 

technology performance, availability, costs, the uptake by consumers and businesses, and the 

increasing gap between lab and “real world” performance of energy use, carbon and air 

pollution emissions (Brand and Change, 2019). Although EVs sales have increased in recent 

years (16.6% market share of registrations in 2022 (Mer, 2023)) with the help of subsidies, tax 

reductions and incentives (Campello-Vicente et al., 2017), only 46% of cars could be zero 

emissions by 2035, according to the Society of Motor Manufacturers and Traders (SMMT) 

(SMMT, 2021). When considering the energy source required, Vrabie (2022) states the actual 

energy suppliers in Europe will not be enough to cover the full shift from ICEs to EVs, and that 

the actual energy market trends will not be able to support the demand for the next several 

decades, highlighting that no European national economy can afford the shift today. 
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In terms of ecology, battery production has a significant impact on the environment (Peters 

et al., 2017; Desreveaux et al., 2023), due to the growing demand for critical minerals required 

(Pratico et al., 2020; Agusdinata and Liu, 2023). In 2022, Benchmark Mineral Intelligence 

estimated a requirement for more than 300 new mines to meet the demand for EVs and 

energy storage batteries (Benchmak Mineral Intelligence, 2022). Additionally, Habib et al., 

(2020) warned about the potential supply risk of these critical minerals. Besides ecological 

impacts, the need for these critical minerals could cause conflicts over communities’ land, 

disruptions to livelihoods, access to water, air quality, and health in areas where these 

minerals could be extracted (Agusdinata and Liu, 2023), as well as social inequalities (Heffron, 

2020).  

About the vehicle charging infrastructure development, Chen et al. (2020) reviewed the state 

of the required infrastructure in the UK. In their research, it is highlighted that the deployment 

of EV charging infrastructures would require careful long-term planning and improvement in 

design, especially considering the relatively fragile infrastructure of electricity distribution not 

only in locations, but also in converter circuit topology, cost, consumer centric design, 

reinforcement of electricity distribution networks, and social and environmental factors. 

Pratico et al. (2020) add to the inconvenient list the lack of fast refuelling facilities that make 

EVs unsuitable for medium and long-distance travel.  

Another car-dependence side effect that can remain with EVs is the transport injustice and 

inequality for those without access to them. NTS statistics from 2019 show that 45% of the 

poorest households (lowest quantile) do not have access to cars or vans, while the percentage 

for the richest (highest quintile) is just 14% (DfT, 2023c).  

 

2.4.2. Modal shift to public and active transport strategy 

Public modes 

The use of public modes is often framed as a key component of building sustainable cities 

(Lyons and Harman, 2002; Miller et al., 2016; Friman et al., 2020). They can provide energy 

efficient transportation in an urban setting competing against private vehicles (Schiller and 

Kenworthy, 2017), minimise GHG emissions and other pollutants, reduce consumption of 
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land, reduce travel time and cost, improve social access, increase economic efficiency and 

contributions to economic activity (Miller et al., 2016).  

Nevertheless, some obstacles make the use of public transport not the ideal option for 

travelling. According to the UN, only half the world’s urban population had convenient access 

to public transportation in 2019, although this percentage is higher in developed areas of 

Europe (around 75%)(UN SDGs. Goal 11, 2023). These figures show that there are still areas 

not fully accessible, especially in deprived and rural zones (Lucas et al., 2008; OSCI, Better 

Transport and Local Trust, 2021).  

The fact of having complex and heterogeneous public transport systems also affects their 

accessibility. In the UK, the number of private companies providing public transport services 

is huge in comparison with Germany and the Netherlands, where the public transport sector 

is integrated within a national framework (Lyons and Harman, 2002). This privatisation has 

brought complexity to the services, fares and information provided, which adds further layers 

of inconvenience for users when planning their trips (Lyons and Harman, 2002). 

Concerning the GHG emissions, these modes can provide energy efficient transportation in 

an urban setting competing against private vehicles (Schiller and Kenworthy, 2017), 

minimising GHG emissions and other pollutants, although the objective of being full zero 

emissions is far from being achieved. Based on statistics from DfT, in 2020 only 2% of the bus 

fleet was zero-emission and 84% was diesel engine (excluding hybrids) (DfT, 2022f).  

The perception and attitudes towards global public transport modes are also fundamental to 

incentivise their use; these perceptions are not very positive and encouraging. Public modes 

are seen as modes only to be used by specific socio-demographic groups (e.g., school children, 

elderly people, low or middle-class people) (Shah et al., 2021). Other analyses highlight the 

perception of public modes as inferior to private modes, regarding protection, autonomy and 

prestige, as well as being perceived as problematic in terms of frequency and reliability 

(Hiscock et al., 2002; Browne et al., 2011; Shah et al., 2021).  

To worsen the attractiveness of public transport modes, it is important to cite the still on-

going side effects of the COVID-19 pandemic on the public transport sector. The pandemic 

impacted it dramatically due to the need for social distancing, the private car being the main 

winner among transport modes in urban areas (Vega-Gonzalo et al., 2023). 



21 
 

In terms of public transport use, it was observed that frequent public transport users were 

more likely to have substituted it in favour of private cars than occasional users. Vickerman 

(2021) analyses the impact of COVID-19 on UK public transport and states that a simple return 

to the status quo is unlikely as public transport adjusts to a new normal of more home working 

and fear of crowded spaces. As an example, figures from DfT (DfT, 2023a) show that the 

number of local bus passenger journeys in England in 2022 (2.8 billion) was still far lower than 

in 2020, where passenger journeys were 4.1 billion.  

 

Active modes 

Cycling and walking are considered the most sustainable forms of personal transport (Song et 

al., 2017; Brand, et al., 2021) and one of the most promising ways to reduce transport 

emissions, particularly in short trips (de Nazelle et al., 2010; Frank et al., 2010; Bearman and 

Singleton, 2014; Scheepers et al., 2014; Keall et al., 2018; Woodcock et al., 2018; Neves and 

Brand, 2019; Quarmby et al., 2019; Brand, Dons et al., 2021). The fact of not generating GHG 

emissions when walking and cycling (apart from breathing), makes these modes efficient 

alternatives to reach a net-zero transport sector in urban areas. 

Several scientific analyses have demonstrated their benefits in health as well, both physical 

and mental. In terms of physical improvement, individuals get the habit of exercising to lose 

weight, reduce obesity, and address a variety of diseases, such as coronary heart disease, 

obesity and type 2 diabetes (Bray, 2004; Hruby et al., 2016; Department of Health and Social 

Care, 2019). Just by reducing obesity, it could be possible to reduce the risk of certain types 

of cancer, high blood pressure and diabetes (PHE, 2017). 

From the mental health perspective, Avila-Palencia et al., (2018) developed a two-year 

longitudinal study in seven European countries where they evaluated the association 

between the use of different transport modes and their impact on mental health. Their results 

showed robust evidence that cycling is associated with positive mental health effects (e.g., 

perceived general health (Scheepers et al., 2015), perceived stress (Avila-Palencia et al., 2017) 

and mental wellbeing (Martin et al., 2014; Mytton et al., 2016)). However, results for walking 

are inconclusive between different studies that find improvements (Martin et al., 2014; St-

Louis et al., 2014; Smith, 2017) and others that do not see correlations between walking and 
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better mental health (Richards et al., 2015; Mytton et al., 2016). Positive results were also 

achieved for both cycling and walking by Singleton (2019). 

Despite the important improvements that could be achieved with the increase of people 

walking and/or cycling, some scenarios could be seen as harmful for them. The first one 

affects the quality of the inhaled air when sharing the road with cars (McNabola et al., 2008), 

as they would be exposed to harmful toxic pollutants, while the second is the potential 

increase of injuries or risk of being a victim of a traffic collision (Aldred et al., 2021). 

Fortunately, and citing PHE “the evidence is that the health benefits of walking and cycling 

outweigh any potential health risks and harms” (Laird et al., 2018). 

Unfortunately, there are true barriers that affect the uptake of active travel. The first concerns 

safety and security. National Travel Attitudes Survey (NTAS) Wave 8 results in 2023 show that 

63% of females let other people know their plans as a safety precaution when walking and 

cycling (DfT, 2023g). Along the same lines, the Cycling Embassy of Great Britain say that the 

main barrier for cycling is the perception that roads are too dangerous and uncomfortable, 

especially due to high volumes and high speeds of motor traffic (Cycling Embassy of Great 

Britain, 2023). In line with this, statistics from the NTS in 2019 show that two-thirds of adults 

feel that it is too dangerous to cycle on the roads, this value being higher for women than 

men (71% and 61%, respectively) (Solocombe, 2020). Additionally, Sustrans (2018) analysed 

the National Cycle Network quality and showed that 42% were very poor, 4% poor, 53% good 

and only 1% very good. 

The second barrier is about weather conditions. Saneinejad et al. (2012) explored the 

relationship between weather and commuting trips in Canada, and results showed that 

cycling and walking are sensitive to temperatures below 15°C and 5°C, respectively, while in 

terms of wind speed and precipitation, cyclists are affected twice as much as pedestrians. 

Another analysis developed by Zhao et al. (2019) shows that rainfall events also have 

significant impacts on walking and cycling even one hour before and two after the rainfall.  

The third barrier is around policy implementation. While projects to improve active travel are 

announced and approved, not all have been developed or fully implemented. One example is 

the two-thirds cut (£200m) to promised capital investment in safe walking, wheeling and 

cycling infrastructure. Entities such as Sustrans consider that this is the consequence of a 
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persistent underfunding by the Government (Sustrans, 2023). Shah et al. (2021) suggest why 

policymakers are not interested in the expansion of active travel modes. In their paper, they 

suggest that policymakers are afraid to get public acceptance and potential public opposition. 

Additionally, another reason highlighted by Aldred (2019) about the lack of investments in 

active travel in low-cycling countries such as the UK, is about another type of fear: the fear of 

building the required infrastructures and not making any benefit due to cultural barriers.  

The fourth barrier is the low willingness of citizens to switch and minimise their car 

dependency. Although statistics by Ipsos (2022) in 2022 show that almost half of the 

population (44%) would like to cycle more, a similar proportion (47%) consider they are not 

the kind of person to use bicycles. Additionally, seven out of ten support actions to increase 

active travel instead of private cars, but the same proportion considers that they need a car 

for their lifestyle, showing a strong attachment to car use and ownership. These figures show 

the differences between what people think would be good for the environment and society, 

and their personal conviction and/or need to make the move. 

 

2.4.3. Scientific research conclusions 

The previous paragraphs summarised the current perspectives about the suggested 

alternatives to achieve a net-zero transport sector in urban areas. Advantages and 

disadvantages were identified for each alternative, showing that there is not a unique solution 

and their combination will be more efficient than if they are applied individually, although the 

decision to prioritise some of them is key to achieve the final goal. Figure 4 summarises the 

benefits and potential disadvantages of the three main strategies defined by DfT (2020a), 

based on scientific research. 

Firstly, the strategy that aims to decarbonise vehicles on the roads is mainly focused on 

replacing polluting fossil-fuelled vehicles with more energy efficient zero emission vehicles, 

although the global coverage is not assured for the short and medium term due to critical 

concerns about their current cost, charging infrastructure, energy supply, and environmental 

and ecological impacts (Heidrich et al., 2022). Questions such as the required amount of en-

route charging facilities and chargers to be installed in each location; the potential lack of key 

components made with critical minerals; the efficiency and reliability of current electrical grid 
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capacity; and its future upgrade to manage the expected demand still needs to be analysed 

and developed by research and future innovation, respectively. In its favour, three other 

benefits could be achieved with this measure: cleaner air, better health and noise reduction 

in urban areas. 

 

Figure 4 Potential benefits and disadvantages: comparison between the defined strategies. 

 

Secondly, the modal shift to public and active transport strategy aims to enable people to use 

more sustainable transport modes instead of private and polluting vehicles. This strategy 

could be divided in two parts: public and active modes. Public modes have always been 

considered as a key component for a sustainable transport sector, providing a vital service 

connecting locations, reducing congestion, noise, GHG emissions and pollutants. 

Unfortunately, their performance in reducing the number of private cars on roads has not 

been successful, mainly due to the lack of a reliable access in rural and deprived areas and 
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the poor perceptions and attitudes of the citizens, probably increased by the lack of reliable 

information from a very segregated service and the current consequences of the Covid-19 

pandemic.  

Active modes are the cleanest mode of transport that citizens can use, especially for short 

distances. Consequently, this shift would help to minimise GHG emissions, to improve 

citizens’ health (both physical and mental), to improve the urban environment with more 

space for nature and urban activities, and a notable noise reduction, among others. The main 

challenges are safety and security when walking and cycling, the weather conditions, the 

implementation of policies and behavioural changes.  

Additional to the previous benefits, a potential reduction in transport injustice and inequality, 

due to the so-called vicious circle of increasing car dependency, could be achieved with both 

public and active modes. Sustrans (Taylor and Sloman, 2008) highlight the three main 

measures to apply to achieve transport justice for everyone and two of them are related to 

these modes of transport: 1) the implementation and definition of decent and accessible 

public transport routes; and 2) the definition of active travel programmes to incentivise the 

use of bicycle and walks. 

 

All in all, based on previous scientific research, active travel is the best among the set of 

options provided by DfT for the short and medium term. Active modes not only have direct 

benefits on air quality and GHG reduction, but also on health and wellbeing, noise and 

congestion reductions, as well as in the required infrastructure cost, which is much less 

expensive and complex than the ones required for EVs and public transport modes. The 

challenges need to be focused on the different infrastructure interventions required to enable 

citizens to use more active modes, as well as to understand how human behaviours could 

change to reduce the use of polluting private vehicles. The investment in active travel has 

been proved to be a great achievement. Examples of success can be found in Denmark, 

Germany and the Netherlands (Pucher and Buehler, 2008).  

DfT also consider that success will require working in partnership with the public, industry, 

business, and academia (DfT, 2020a) and this PhD research project aims to bring help and 

support in the achievement of this goal. This PhD thesis aims to identify different urban 
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mobility policies to enable the citizens to use active travel modes and reduce the use of 

private and polluting vehicles for a more resilient and less polluted urban environment.  

Given that active travel is such an attractive option, we need to find tools to help plan policies 

and assess their impact. This will be the focus of the next section. 

 

2.5. Transport modelling 

The shift to active travel modes is an important and critical challenge nowadays. Its success is 

critical to achieve net-zero emissions in transport. In England, this challenge has been 

assigned to ATE, the government’s executive agency sponsored by DfT, responsible for 

making walking, wheeling and cycling the preferred choice for everyone to get around. Their 

objective is to achieve 50% of trips in towns and cities to be walked, wheeled or cycled by 

2030 (ATE, 2023a), regardless of the sex, age, health condition or location of the citizens. 

Strategies such as the implementation of direct, continuous, physically segregated and safe 

routes for cycling; the definition of LTN; the increase of cycle parking; and a better 

connectivity between active and public transport modes, among others, are considered.  

These mobility policies need to be tested before they are implemented in the real world with 

models to understand and estimate (not predict) their success or failure. The following 

sections explain what transport models are, as well as describing the main types. 

Traditionally, transport modelling consists of the development of a model, which has been 

defined by Bandini et al. (2009) as “an abstract and simplified representation of a given reality, 

either already existing or just planned to study and explain observed phenomena or to foresee 

future phenomena”. Translated into the transport sector, it consists of the development of an 

abstract and simplified representation of the transport sector that defines its characteristics 

and structure to understand its current situation or test future developments. In 

transportation, these models are known as travel demand models. Three main models are 

described below: the four-step model, activity-based model and agent-based model. 
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2.5.1. The four-step model 

The most well-known and used travel demand model is the so-called four-step model (FSM). 

Originally from 1960s, FSM is the primary tool for forecasting, understanding and assessing 

future demand and performance of a transportation system, typically defined at a regional or 

sub-regional scale (McNally, 2007). The main purpose of the model is to be used as a tool for 

capacity analysis of road networks, analysis of the network development scenarios or analysis 

of the public transport system (Mladenovic and Trifunovic, 2014).  

As McNally (2007), Xintong (2021) and Mladenovic and Trifunovic (2014) explain, these 

models consist of four different stages: trip generation, trip distribution, mode choice and 

route choice. Briefly, the first one defines the magnitude of total daily travelled trips 

(attracted and generated) per zone in the model system at a specific level (e.g., personal, 

household) for various trip purposes or activities. The second stage consists of recombining 

trip ends from the previous stage into trips, generating a trip matrix between zones. The result 

states the magnitude of traffic flows between all Origin-Destination (OD) zones (Ziemke, 

2022). Rasouli and Timmermans (2014) describe this stage as an assumption of the laws of 

thermodynamics applied to social and physical systems, where human behavioural choices 

are not involved. The third effectively factors the OD table to produce specific trip tables for 

each of the different transport modes to be analysed. In the last stage, the flows of each 

transport mode-specific O-D table are loaded on the allowed transport modal network (e.g., 

roads for cars, rail tracks for trains), usually under the assumption of user equilibrium, where 

all paths utilised for a given O-D pair have equal impedances. The model output describes the 

demand for transport as a set of aggregated flows of traffic on the routes of the network and 

spatially resolved by zones (Scherr et al., 2020; Ziemke, 2022), which are used to analyse 

policies such as road expansions, introduction of tolls, etc. (Kagho et al., 2020). Due to these 

models being based on individual trips, they can also be called trip-based models (Ziemke, 

2022).  

Four-step model limitations 

Although these models have been used by transport modellers worldwide and several 

improvements have made them more efficient and accurate, Mladenovic and Trifunovic 

(2014) highlight several shortcomings, the most relevant ones being:  
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 The small number of different trip activities allowed (Johnston, 2004). 

 The assumed stability in time of zone’s characteristics and relationships. 

 The lack of consideration of land use density in trip generation. 

 Travel demand considered as independent of the provided transportation system 

(Vuchic, 2017). 

 Neglected levels of road congestion (Johnston, 2004). 

 The lack in consideration of new transport systems and facilities. 

 The assumption of independence of trips between members from the same 

household. 

 The assumption that average travel times remain constant in future and through the 

day. 

 The gravity concept used during the trip distribution stage tends to overestimate the 

near trips and underestimate the far ones. 

 The modal split stage is mainly focus on three motorised travel modes (car use as a 

driver, as a passenger and public transport as a passenger) and do not consider active 

modes (walking and cycling). 

 An oversimplification of the modal split due to empirical evidence or socio-economic 

data (Vuchic, 2017). 

 An assumed constant time value for all trip purposes. 

 The use of aggregated and static link performance values. 

 The estimation of road capacities. 

 The assumption that all trips start and end at the centroid of each zone. 

 The lack of off-peak models. 

 The lack of behavioural considerations. 

 The aggregated outcome representing the average behaviour of a group of travellers 

(which makes it impossible to estimate the behaviour of individual travellers).  

Besides them, McNally (2000) added a few more limitations based on McNally and Recker 

(1986), and the US Department of Transportation (1997) analyses:  

 The lack of spatial and temporal interrelationships between trips.  

 The lack of the linkages between trips and activities.  
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 The lack of considering household dynamics, choice complexity and habit formation.  

Pinjari and Bhat (2011) state that previously highlighted issues, especially the temporal, 

spatial and modal linkages between trips, could lead to illogical trip chain estimations. 

Based on the previous limitations, and due to fundamental changes in urban environments 

and human behaviours (McNally, 2000; Franco et al., 2020; Nguyen et al., 2021) that 

increased concerns regarding traffic congestion and air quality (Pinjari and Bhat, 2011), but 

also due to the inclusion of new transport modes, travel behaviour is gradually getting more 

difficult to estimate (Ferreira et al., 2007; Holmberg et al., 2016; DfT, 2019a; Franco et al., 

2020). Therefore, other alternatives have been developed and considered to better 

understand travel behaviours at a microscopic level (Kagho et al., 2020).  

 

2.5.2. Activity-based models 

Activity-based models (AcBMs), also known as activity-based travel demand models, analyse 

travel as daily or multi-day patterns of behaviour, related to and derived from differences in 

lifestyles and activity participation among the population (McNally, 2000). The motivation of 

this approach is that individuals’ travel decisions are activity-based (McNally, 2000). This 

means that travel decisions are made by a set of activities and its global context, which cannot 

be understood individually, where travel is viewed as a demand derived from the need to 

pursue activities (Bhat and Koppelman, 1999; Davidson et al., 2007; Pinjari and Bhat, 2011). 

This definition addresses the impossibility of trip-based models to show underlying behaviour 

and the impossibility of being responsive to evolving policies (McNally, 2000). These models 

evolve from statistical estimation of aggregated-level (in space, time and travellers (Kagho et 

al., 2020)) and long-term travel demand used in trip-based models (i.e., FSM), to understand 

disaggregated-level behavioural response and short-term demand policies, such as 

congestion pricing and ridesharing, transforming the trip-based perspective to a tour-based 

(Pinjari and Bhat, 2011).  

 

This new perspective allows the use of disaggregated personal-level information (both in time 

and space (Rasouli and Timmermans, 2014)). Data contains detailed travel information of 
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each individual (e.g., duration of trips, location, frequency, sequence) (Zhong et al., 2015), 

and the use of time as a continuous domain, where individuals choose how to use it among 

their activities and travel, instead of being a simple factor of cost (Pinjari and Bhat, 2011). To 

achieve this goal, AcBMs require the use of a synthetic travel demand as input data (Ziemke, 

2022), which can be defined as a simplified digital representation of the individuals living in 

the area of study. From each individual, some of their socio-demographic attributes (e.g., age, 

sex, income) and a daily activity plan (e.g., a sequence of activities where purpose of trip, 

starting time, geospatial departure and arrival locations and transport mode used) are known. 

Modelling, therefore moves from computations on zonal aggregates to decision making of 

individuals (Horni, 2005; Ziemke, 2022), as well as allowing the analysis of policy impacts in 

certain subgroups of the population (Kitamura, 1988; Ziemke, 2022), based on similar socio-

demographic characteristics, which could provide better forecasts of future travel patterns 

(Castiglione and Bradley, 2014; Ziemke, 2022). Vovsha and Bradley (2006) add as an 

improvement the possibility of incorporating explicit modelling of joint travel by members 

from the same household. Besides, Rasouli and Timmermans (2014) enumerate the four main 

improvements AcBM could achieve when compared against the former model:  

 A higher spatial and temporal resolution. 

 Human behavioural decisions inclusion. 

 An improvement in the integrity of the model system.  

 The interdependence of trips as a tour-trip. 

 

Activity-based model limitations 

However, as Zhong et al. (2015) describe in their comparison between the traditional FSMs 

and AcBMs, currently the former remains the most popular modelling approach, mainly 

because they are simpler and easier to implement. Even when AcBMs are more flexible, can 

provide richer information analysing travel demand and supply at specific times of the day 

and can represent better demographic and land use variables in policy analysis, FSMs are 

usually preferred.  
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2.5.3. Agent-based models 

Agent-based models (AgBMs) are a facet of wider Multi-Agent Systems (MAS) research 

(Malleson et al., 2022), defined as spatio-temporal computational simulations of individuals 

interacting with the environment and with other individuals during their daily activities, 

providing a microscopic representation of the individuals’ travel decisions, revealing their 

behaviours and the implications of their interaction in the transportation system (Kagho et 

al., 2020). Bonabeau (2002) defines them as a technique for the investigation of relationships 

between the behaviour of individual entities and their influence in shaping system dynamics 

(Manley and Cheng, 2018). Other researchers (Bonabeau, 2002; Heard et al., 2015; 

O’Donoghue, 2021; Ziemke, 2022), define AgBM as “a system modelled as a collection of 

autonomous decision-making entities called agents. Each agent individually assesses its 

situation and makes decisions based on a set of rules”. Bandini et al. (2009) add that the global 

system dynamics are not defined in terms of a global function, but rather the result of 

individuals' actions and interactions (between them and the environment). Abar et al. (2017) 

define the AgBM philosophy as a model of complex systems adopting a bottom-up approach, 

where the interactions in space and time between agents and the environment are 

considered first. These models are unique in the ability to combine heterogeneous and 

dynamically changing processes of complex systems from autonomous agents, intending to 

investigate the emergent and collective effects on the system (Moyo Oliveros and Nagel, 

2016; Huang et al., 2022). As Malleson et al. (2022) state, AgBMs are gaining popularity in 

urban environments as a valuable method for understanding the low-level interactions that 

ultimately drive cities, although their use and implementation by stakeholders is low. 

Agents are defined as the minimal and basic unit and can represent any type of autonomous 

entity (Huang et al., 2022) (person, vehicle, facility). In transport AgBMs, agents representing 

humans are characterised by their socio-demographic attributes (e.g., sex, age, income) and 

an activity plan, which defines their routines to be performed during the simulation (e.g., 

travel starting times, purpose of the trips, transport modes and activity locations), similarly 

to an AcBM. Agents representing vehicles are characterised by their use (public or private), 

speed limit, maximum occupancy and dimensions (width and length); agents representing 

facilities are characterised by their use, maximum capacity, opening times, etc. Based on their 

characteristics, agents are governed by a set of rules that define how they interact among 
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themselves and with the environment (Kagho et al., 2020). The combination of the individual 

characteristics and rules to follow by each agent allows the agents the possibility of possessing 

the following features (Bonabeau, 2002; Macal and North, 2005; Roorda et al., 2010; 

Heppenstall et al., 2016; Huang et al., 2022):  

 They are autonomous and they do not need any external intervention. 

 They can cooperate with the environment and/or other agents to achieve their goals.  

 They can learn from the gained experience and can adapt and respond to changes. 

Besides the agents, the environment is essential too, as it influences the behaviours of the 

agents in terms of perception and allowed actions (Bandini et. al, 2009). It is the scenario that 

allows the agents to move and interact in space and time with other agents, including 

information about the road transport network (e.g., number of lanes, length, maximum 

speed, capacity, transport modes allowed), the public transport services (e.g., routes, stops 

and schedules) (Kagho et al., 2020), and any other relevant information (e.g., road gradient). 

As a whole, this scenario represents a digital replica of a real location with simplified 

characteristics. 

Both the agents and the environment are combined in a computational software to simulate 

their interactions in space and time, based on their characteristics, rules, activity plans and 

environmental conditions. AgBMs enable a more realistic modelling of complex systems, 

since the dynamics and the interaction between the different agents and their environment 

can be explicitly expressed, as Franco et. al (2020) describe. Bastarianto et al. (2023) add the 

ability of the agents to learn, adapt, and hold different perceptions of an environment as 

important improvements compared against previous models. Furthermore, Manley et al. 

(2014) argue that AgBMs have the potential to move beyond traditional assumptions of traffic 

distribution equilibrium, building traffic patterns from individual behaviours upwards, 

considering their own characteristics, preferences and/or disabilities. 

The agents’ interactions between them and the environment provide a new perspective in 

transport modelling that could not be obtained from previous models. The interactions of the 

agents in space and time allow them to adapt and learn from what others do. Examples were 

highlighted by Bazzan and Klügl (2014), where they describe that agents’ interactions allow 

their adaptation and learning capacity to simulate realistic and optimised behaviours. The 
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decisions made by an individual agent are derived from their own characteristics (i.e., age, car 

access), but also from the behaviour of the whole group of agents. If a majority of agents use 

the car at the same time through the same roads and are stuck in congestion, some of them 

will learn from the experience and adapt their behaviours by choosing a more efficient 

transport mode (e.g., public transport modes, cycling), changing the route or adapting their 

trip starting time. Molin et al., (2008) add that these interactions could allow for knowing 

social interactions between agents from the same household, with similar characteristics 

and/or preferences. Agents could choose and adapt their trips, transport modes and activities 

based on their social relationships with others.  

Additionally, agents’ interactions with the environment allow for knowing how the built 

environment could affect their daily routines. Characteristics, such as the road type and slope, 

and the existence of lighting and cycle paths, could be considered when agents, based as well 

on their own socio-demographic characteristics, decide how, when and where to go. The 

decisions made by individuals based on the built environment characteristics are 

encapsulated within the ‘spatial cognition’ concept, which describes the effect of 

environmental factors on mobility (Manley and Cheng, 2018; Gr et al., 2019; Manley et al., 

2021), and therefore the transport mode choice.  

 

Agent-based model limitations 

Unfortunately, these models have limitations and face several challenges for implementation. 

Firstly, such models require the collection, processing, and cleaning of vast amounts of data 

to generate a heterogeneous synthetic population and transport network, where errors could 

be introduced due to the lack of required data, the use of incomplete datasets or potential 

requirements of data transformation (Kagho et al., 2020). Secondly, computational efficiency 

and cost have been also described as current limitations. They are mainly dependant on 

complex computer environments due to the amount of required agents to be simulated 

(Kagho et al., 2020; Huang et al., 2022), especially when different components (e.g., mode 

choice, route choice, scheduling, land use, ride-sharing scheme, destination choice) are 

combined (Bastarianto et al., 2023). Thirdly, there are limitations in agents’ behaviour, where 

Huang et al. (2022) consider that the human behaviours should also consider intelligent 
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perspectives like preferences and memory. In a similar approach, Manley et al. (2014) 

consider that more research is needed in the route choice, where models are based on traffic 

equilibrium and individual preferences are not fully considered, which could add behavioural 

homogeneity into the model. Model calibration and validation have also been considered as 

shortcomings (Kagho et al., 2020; Huang et al., 2022; Bastarianto et al., 2023). There is a lack 

of explicit calibration and validation stages. Huang et al. (2022) state that these processes 

should be included within the development of the model to demonstrate their validity and 

accuracy. Bastarianto et al. (2023) urge for unified calibration and validation methods. 

Transparency is another limitation, due to AgBMs being complex models and the 

understanding of the numerical details and the mechanical process of how agents interact in 

space and time is not trivial (Kagho et al., 2020). Reproducibility is also a critical limitation of 

AgBMs (Kagho et al., 2020), as the possibility of other researchers and/or policy makers 

replicating results is scant, mainly due to confidential data and tools used, although more 

open-access datasets, tools and repositories have been generated in the last few years 

(Bastarianto et al., 2023). Lastly, AgBMs lack standardisation (Kagho et al., 2020). 

Terminologies, concepts, documentation and expectations should be defined and be stable 

within the field. 

 

2.5.4. Comparison between the transport planning models for active modes 

The previous sections have summarised the three main models available to estimate the 

impact of transport mobility policies. They allow the identification of the potential success or 

failure before the policies are implemented in the real world. Figure 5 summarises the 

advantages and disadvantages of each transport model. 

Firstly, the FSMs or trip-based models allow the analysis of the transport demand as a set of 

aggregated traffic flows between the centroids of the defined zones. These models are still 

extremely popular and in use due to their simplicity and ease of implementation, although 

their simplicity makes them hold several assumptions and limitations. The most critical ones 

are the aggregated outcome (in space, time and individuals); the lack of spatial and temporal 

interrelationships between trips; and the modal split stage is mainly focused on motorised 

travel modes.  
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Figure 5 Comparison of advantages and disadvantages of the different transport models analysed. 

 

Secondly, AcBMs improve some of the limitations highlighted for the FSMs, through the 

analysis of travel demand from a disaggregate point of view considering the individual 

characteristics (e.g., age, income, sex) and their decisions, the interdependency of trips and 

the consideration of space and time between activities. These characteristics make AcBMs 

more flexible and can provide richer information of travel demands at different times of the 

day, as well as representing better demographic variables within the analysis of mobility 

policies. Unfortunately, these improvements make these models more difficult to implement, 

and consequently less broadly used by policy makers and transport planners.  

Lastly, AgBMs allow the simulation of the interactions, in space and time, of individuals 

(agents), based on their socio-demographic attributes and activity plans. AgBMs contain all 

the information from AcBMs and provide the possibility of virtually representing the 
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individuals’ travel decisions, their behaviours and their interactions in the transport network, 

which could not be obtained with any of the other models described before. Heppenstall et 

al., (2016) suggest that one of the most appealing aspects of AgBMs is their ability to 

represent human behaviour and, through simulation, understand how these behaviours play 

out over space and time. 

 

 

Consequently, the most appropriate models to analyse policies to enable citizens in the shift 

to active travel modes are AgBMs, as they allow consideration of individual characteristics of 

the agents, their interactions in a spatio-temporal environment and the possibility of 

simulating diversity of transport modes simultaneously. Overall, AgBMs provide the 

possibility of showing more realistic transport human dynamics than previous models. The 

approaches of statistical models and AgBMs are opposite to each other. While the first is a 

top-bottom approach (based on aggregated statistical results), the latter is a bottom-up, 

where heterogeneous mobility decisions made by the agents can be reproduced (Mehdizadeh 

et al., 2022) and analysed. As Mehdizadeh et al. (2022) estate, statistical models cannot reveal 

the dynamics about the decisions made by individuals when making choices (e.g., route or 

transport mode), while AgBMs consider them thanks to the interactions in space and time.  

The choice to use AgBMs is supported by other researchers. Franco et al. (2020) consider that 

AgBMs enable a more realistic modelling of complex systems, since the dynamics and the 

interaction between the different entities and their environment can be explicitly expressed. 

Kagho et al. (2020) highlight that the use of AgBMs to model transport behaviour is growing 

and the future looks bright for it in the midterm, although there are many challenges that 

need to be overcome. Batty (2001) also identifies AgBMs as a powerful alternative to consider 

active modes because individual actors (e.g., agents) are taken into account within the 

models, where the behaviours of each actor are considered as a function of others in the 

system. 
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2.6. Transport AgBMs 

Once AgBMs where identified as the best method to analyse the efficiency of urban mobility 

policies for active modes, the following sections explore in this methodology, as well as its 

applications and available tools.  

 

2.6.1. Transport AgBM publication research 

The AgBM environment is wide and diverse. In the last decades, several AgBMs have been 

used broadly by different researchers and industries in different fields of research (e.g., 

biology (An et al., 2017), epidemiology (Alvarez Castro and Ford, 2021), social and nature 

science (Gilbert and Terna, 2000), education (Kirk Harland and Heppenstall, 2012), computing 

(Tang et al., 2011), logistics (Clausen et al., 2019), urban planning (Chen, 2012), politics 

(Dacrema and Benati, 2020), finance (Samanidou et al., 2007; Abar et al., 2017). The use of 

AgBMs has been increased due to the improvement in the technology development, 

computational resources and data accessibility (Huang et al., 2022). In the field of 

transportation, AgBMs have also been used for a great variety of topics (Huang et al., 2022): 

traffic management frameworks (Adler et al., 2005; Ossowski et al., 2005; Wang, 2005; Chen, 

Cheng and Palen, 2009), congestion management (Logi and Ritchie, 2002), traffic policy 

(Iordanova, 2003), traffic signal control (Srinivasan et al., 2006; Chen and Cheng, 2010; Xu et 

al., 2019; Yu et al., 2021), transport logistics (Serrano-Hernandez et al., 2018) and travel 

behaviour (Xiong et al., 2018). 

 

Classification of transport AgBMs 

Transport AgBMs can be classified in four categories based on the level of detail (Passos et 

al., 2011; Lopez et al., 2018; Nguyen et al., 2021): macroscopic, microscopic, mesoscopic and 

nanoscopic.  

 Macroscopic models are used for the analysis of wide areas, where no detailed 

modelling is required, due to being based on high-level mathematical models.  

 Microscopic models consider a high-level of detail, as agents are simulated 

individually, being used for urban traffic analysis.  
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 Mesoscopic models are a combination of the previous models, as traffic entities are 

modelled at a higher level of detail than macroscopic models, although the agents’ 

interactions and behaviours are less detailed.  

 Lastly, nanoscopic models are even more detailed than microscopic, where smaller 

components of the agents (e.g., sensors from a vehicle) are considered, being 

especially relevant for autonomous driving scenarios.  

The macroscopic, microscopic and nanoscopic models have two fundamental components 

that need to be defined as input data (Nguyen et al., 2021): demand and supply. The first 

relates to the travel requirements for each agent, where information about the socio-

demographic attributes (e.g., age, sex, income), also known as synthetic population, and the 

activities performed by each agent (e.g., purpose of the trip, starting time, transport mode) 

are defined, although depending on the level of detail chosen, different data is required. The 

second is a digital representation of the road network used by the agents to move between 

activities. It is a graph of links and nodes that represent the intersections and roads, 

respectively (Nguyen et al., 2021).  

Currently, the use of mesoscopic AgBMs to simulate mixed interactions of micro-mobility 

modes (e.g., walking, bicycles, e-bikes, e-scooters) is in discussion, as spatial interactions that 

occur at the micro-level (e.g., traffic safety, intersections, road lane changes) between 

themselves and other vehicles (e.g., cars, buses) could be missed. Tzouras et al. (2023) 

highlight this aspect focusing on the simulation of e-scooters, where a dilemma between 

modelling their behaviours and interactions at a link level and predicting long-term travel 

behaviour using microscopic models is identified. The former could simplify the interactions, 

while the latter currently does not have the required capacities to model bicycle or pedestrian 

traffic or is not capable of simulating large-scale networks. Their conclusion considers the 

development of a hybrid model that could combine the analysis in network and link levels. 

 

Transport AgBMs literature review 

Bastarianto et al. (2023) reviewed the use of dedicated transport AgBMs in urban 

transportation from 2006 to 2022 and identified an exponential increase in the number of 

publications since 2015. The reasons given to explain the increase of AgBMs are two: the 
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significant improvement in computing performance and the use of fully open-source tools. 

The topics analysed in the papers have been evolving over time, being focused on congestion 

pricing initially, while emerging transport modes (e.g., ride sharing, demand responsive 

transport and EVs) appeared later and have become dominant today. The geographical 

distribution of papers was analysed as well, and it was observed that most of them are 

focused on transport scenarios of developed countries (Germany, USA, Switzerland and 

Singapore). Publications found were grouped in nine clusters:  

 General transport modelling (Fujii et al., 2017; Manser et al., 2020). 

 Travel behaviour (Shirzadi Babakan et al., 2015; Ali et al., 2016; Park et al., 2018; Zhu 

et al., 2018). 

 Emerging transport modes (Fagnant and Kockelman, 2014; Boesch et al., 2016; 

LaMondia et al., 2016; Inturri et al., 2021; Tzouras et al., 2023). 

 Transport policy (Zheng et al., 2012; Zheng et al., 2014; Kaddoura et al., 2020). 

 Urban logistics (Martins-Turner et al., 2020; Sakai et al., 2020). 

 Travel demand (Beckman et al., 1996; Ye et al., 2009; Farooq et al., 2013; Mallig et al., 

2013; Wu et al., 2019; Franco et al., 2020; Hörl and Balac, 2021b; Sallard et al., 2021; 

Prédhumeau and Manley, 2023). 

 Parking (Waraich and Axhausen, 2012; Bahrami and Roorda, 2022). 

 Public transport (Shen et al., 2018; Gallet et al., 2019; Narayan et al., 2019, 2020; 

Manser et al., 2020; Rahman et al., 2020; Kii et al., 2021; Barbet et al., 2022). 

 Shared autonomous taxi (Hörl, 2017; Lokhandwala and Cai, 2018; Kim et al., 2019; Liu 

et al., 2020).  

Mehdizadeh et al.(2022) did a review of 86 AgBMs in mobility transition between 2006 and 

2021, where ‘mobility transition’ refers to the shift from traditional mobility patterns to 

innovative and sustainable mobility options (Köhler et al., 2009; Fagnant and Kockelman, 

2015; Docherty et al., 2018; Mehdizadeh et al., 2022). In this review, half of the publications 

were focused on the distribution of EVs to investigate market share penetrations from 

different perspectives (Querini and Benetto, 2014; Kieckhäfer et al., 2017; Pagani et al., 2019; 

Rodemann et al., 2019; Klein et al., 2020; Ning et al., 2020; Huang et al., 2021; Lee and Brown, 

2021; Zhuge et al., 2021). The remaining half was focused on several topics: automated 

mobility on demand (Basu et al., 2018; Oh et al., 2020), modal shift to sustainable modes 
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(Faboya et al., 2020; Maggi and Vallino, 2021), shared mobility services (car-sharing, 

ridesharing, bike sharing, carpooling) (Fagnant and Kockelman, 2014; Inturri et al., 2019), and 

alternative fuel vehicles (hydrogen or natural gas) (Vliet et al., 2010; Sopha et al., 2017). 

 

Transport AgBMs and active modes 

Within these two publication reviews, it is possible to identify clusters where modal shift 

and/or the use of active travel modes are analysed (e.g., transport policy in Bastarianto et al. 

(2023) and modal shift to sustainable modes in Mehdizadeh et al. (2022)). This is the case in 

Zheng et al. (2012), where a dynamic cordon pricing scheme is simulated in Zurich 

(Switzerland). Results show that the applied congestion pricing reduced the travel times, 

congestion within the area was eased and the effects on leisure activities were stronger than 

when commuting, although references to the use of active modes are not specified. Zheng et 

al. (2014) analyse the impact of a time-dependent pricing scheme in Sioux Falls (USA), 

considering the level of congestion in time and the user’s adaptation to the toll cost, with the 

goal of incentivising the use of public transport modes, although active modes were not 

considered in this publication either. Results show effective congestion reductions in the area 

of study and a modal shift to public transport modes due to accessibility improvements and 

money rewards. Kaddoura, Leich and Nagel (2020) analyse different concepts for demand 

responsive transit in Greater Berlin (Germany), although the possibility of including scenarios 

for active modes was not considered. Results show that small zones of influence and very low 

prices could make pedestrians and cyclist move to Demand Response Transit (DRT), while this 

unwanted consequence was reduced when tariffs were more expensive, and larger DRT areas 

could shift car drivers to DRT. Maggi and Vallino (2021) research the potential impact of price-

based and preference-based policies on commuter’s mode choice in urban areas. This 

scenario considers the agent’s characteristics, mode preferences, commuting price and 

pollution emission estimation when choosing the mode used. Within the mode option, cycling 

was considered, and results show that agents prefer a shift from car to bicycle than to public 

modes when the use of cars is disincentivised, although the consideration of physical effort 

or slopes for cyclists was not cited. Park et al. (2018) simulated active modes in New York City 

(US) to support investment decisions and evaluate the impact of infrastructure changes on 

walking and cycling. Their results show that improving sidewalk and cycle path conditions 
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could positively increase the number of people using them, although limited characteristics 

of the built environment (e.g., sidewalk width, bike lane type) were considered, and road 

gradient was not included. 

Besides previous research publications, it is possible to find others analysing active travel 

modes and modal shifts for a sustainable transport system that were not included within the 

two previous reviews, mainly due to the models used being generic or self-developed 

transport AgBM tools, and that were published after these two reviews. Some examples are 

described below. 

Kaziyeva et al. (2021) developed an AgBM to simulate transport mobility in Salzburg (Austria) 

and focused on cycling traffic flows, as a response to the emerging phenomenon for individual 

mobility, using GAMA (Taillandier et al., 2018). The model simulates mobility patterns of a 

synthetic population of 186,000 agents in a one-minute time resolution, considering six 

transportation modes (bicycle, walk, car, car-passenger, public transport and other), while 

the model was only validated using bicycle counts. Later, Kaziyeva et al. (2023) improved the 

model to be focused on the two active modes, in response to the little attention that cycling 

and walking have had in transport simulations. This model allows simulation of different 

traffic conditions with altered travel behaviours and the built environment. Similarly, Leao et 

al. (2017), developed another AgBM using GAMA focused on understanding the patterns and 

behaviours of cyclists, in the city of Sydney (Australia), although only cycling modes where 

simulated and gradients of the roads were not considered. The model was validated against 

data obtained from a mobile phone app that collects information about cyclists in the area of 

study.  

Thompson et al. (2017) self-developed an AgBM tool to explore the potential effects in safety 

when introducing different levels of segregated cycle paths, where drivers are considered to 

have behavioural adaptations in response to cyclists’ exposure. The main conclusion obtained 

was that soft implementation of cycle paths (i.e., painted lanes) are not enough to keep 

cyclists safe when a behavioural adaptation is assumed among drivers. Thompson et al. (2019) 

simulated and analysed the effects of cycling density and collisions between cycling and 

motorists at road intersections, using a self-developed AgBM tool. They conclude that 

potential collisions could be reduced when the number of cyclists passing through the 

intersection is increased, making car drivers more aware of the presence of cyclists on the 
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road. Jafari (2022) provides a new AgBM tool (AToM), based on MATSim (Horni et al., 2016), 

to analyse cycling in the region of Greater Melbourne (Australia). Different built 

environmental interventions affecting diverse groups of society were tested (e.g., the 

implementation of cycle lanes and the impact of traffic signals on cycling), considering 

different subgroups of the population. The conclusions obtained for the former were that 

older cyclists and middle-aged female groups would increase the use of the bicycle if new 

cycle lanes were implemented, due to improvement in safety and security, although 

interactions between cyclists and car drivers were not considered as only bicycle trips were 

simulated. For the latter, it was concluded that traffic signals are the most important factor 

that affects cyclists’ speed. The model was validated against traffic speed sensors.  

Jafari and Both (2021) have also analysed the use of active transport modes within 

Melbourne. They developed a MATSim model to test different scenarios for sustainable 

modes. Within them, they analysed the current cycling infrastructures, the existence of gaps 

in the network and the potential health improvements when enabling people to use active 

modes. Schlenther et al. (2022) investigate scenarios to reduce the number of motorised 

vehicles on the road in Hamburg (Germany), using MATSim. They analysed the impact of 

implementing economic penalties to those agents using motor vehicles, the implementation 

of segregated cycle paths to incentivise the use of bicycles, the possibility of using ride-

sharing, the inclusion of shuttle payable services to and from public transport stops, the 

upgrade of public transport schedules, the implementation of parking limitations and speed 

limit and road capacity reductions in urban areas. Results achieved showed that the 

attractiveness improvement of public transport modes are not enough to achieve a great shift 

from the use of polluting vehicles to sustainable modes (around a 3%-point decrease), 

although more significant reductions are achieved with policies that penalise the use of 

private vehicles (8%-points). In terms of cycling, the implementation of safe infrastructures 

could increase the number of cyclists by 8%-points, although the model did not consider the 

characteristics of the built environment, so the choice of cycling is not affected by road 

characteristics (e.g., gradient and road type), which limit the accuracy of the results achieved. 

Lastly, Hitge and Joubert (2023), developed a model to estimate a potential cycling demand 

in Cape Town (South Africa). Their model showed that 32% of agents would benefit from 

cycling, although the percentage was reduced by 8% when socio-demographic characteristics 
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(e.g., age, gender, household income, household composition and dwelling type) were 

considered. Spatially, their results showed that almost half of those agents that could benefit 

from using bicycles were concentrated in a small area of the whole area of study, which could 

help policymakers in prioritising the implementation of new cycle paths.  

In terms of walking, Badland et al. (2013) self-developed an open-source simple AgBM tool 

focused on walking to test scenarios to improve walkability in neighbourhoods, where roads 

were used instead of sidewalks due to lack of access to the required dataset. Yang et al. (2011) 

developed a new AgBM tool to simulate the behaviour of people walking, considering 

attributes like age, sex, walking ability, and attitudes towards walking. The latter 

characteristic evolves over time as a function of previous experiences and attitudes toward 

walking of the other individuals within their social network, among others. Their model is 

applied to a non-real city, so validation of a specific region in the world is not possible. 

 

Reasons for the lack of AgBMs focused on active modes 

As can be observed, the number of publications concerning AgBMs that focus on active modes 

for a sustainable and less polluting transport sector is modest. Only ten publications focused 

on cycling (Shimizu et al., 2014; Leao et al., 2017; Thompson et al., 2017, 2019; Lu et al., 2018; 

Kaziyeva et al., 2021; Maggi and Vallino, 2021; Jafari, 2022; Schlenther et al., 2022; Hitge and 

Joubert, 2023), two on walking (Yang et al., 2011; Badland et al., 2013) and another three on 

both (Park et al., 2018; Jafari et al., 2021; Kaziyeva et al., 2023) were identified.  

Batty (2001) highlights that the main reason why walking is usually discarded from the 

analyses (although the concept could be extrapolated to all active modes) is due to transport 

models originally being focused on vehicle expansion, as a response to the increase in the 

private vehicle demand. Even nowadays, Batty’s perspective can still be considered valid. 

Additionally, although active modes are a fundamental component to achieve a net-zero 

transport future, most efforts seem to be focused on the electrification of vehicles. This 

converges with the number of publications combining AgBMs and EVs, as was observed by 

Bastarianto et al. (2023) and Mehdizadeh et al. (2022). Batty (2001) also highlights the lack of 

available granulated data to analyse pedestrian movements (and other active modes). 

Kaziyeva et al. (2023) also agree with the lack of validation data, while Jafari (2022) adds the 
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heterogeneous nature of active travel behaviours. The lack of available data should be 

reduced due to new datasets and ways to quantify and define active travel patterns (e.g., 

bicycle counts, walking counts, mobile phone data); while the heterogeneous nature of active 

travel behaviours is researched by fields of transport psychology and transport behaviours, 

among others. 

 

Transport AgBMs and active modes within the industry 

Fortunately, the analysis of active modes combined with AgBMs is gaining momentum within 

the industry. One example is the case of the City Modelling Lab (CML), an Arup department 

focused on the simulation of transport scenarios using AgBMs to achieve a net-zero transport 

future. Within their expertise, they develop scenarios where active modes are the core. Nick 

Bec, CML leader, explains in an interview that they break down modal silos and show all the 

benefits active travel can create for their clients (ZAG Daily, 2023). They consider active modes 

as a main component of their work and expect that active modes will have a more significant 

role in transport policy, infrastructure and investment. In line with this approach, they have 

developed scenarios where socio-demographic attributes as well as conditions of the built 

environment (e.g., slope and road conditions) are considered when choosing and using 

bicycles (e.g., maximum speed reached based on the socio-demographic attributes and the 

road conditions) (Kozlowska, 2023). They also agree that active travel is overlooked in 

decision making due to the difficulty of quantifying its impact and benefits when compared 

to other transport modes (Intercharge, 2023). 

 

2.6.2. Transport AgBM tools 

Since AgBMs have been used as transport models, several tools have been developed and 

used for a wide variety of transport modelling purposes. Nguyen et al. (2021) developed a 

very detailed list of more than 35 AgBM tools, with some of the most well-known being: 

MATSim (Horni et al., 2023), POLARIS (Auld et al., 2016), the integration of SUMO (Krajzewicz, 

2010) and JADE (Bellifemine et al., 2005), AgentPolis (Jakob et al., 2012), ITSUMO (Bazzan et 

al., 2010) and SimMobility (Adnan et al., 2016).  
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MATSim (Multi-Agent Transport Simulation) is an open-source mesoscopic tool written in 

Java, firstly developed by ETH Zurich in 2006 and now contributed to and developed by 

researchers worldwide. This tool simulates large-scale (Nguyen et al., 2021), mesoscopic 

(Franco et al., 2020), multi-modal (Bösch and Ciari, 2015; Poletti, 2017) traffic and congestion 

patterns considering individualised information of the agents (Horni et al., 2023), and 

vehicular traffic flow (Auld et al., 2016), in a queue-based paradigm (Bazzan et al., 2010), 

through a road and transport network supply. The agents interact in space and time and 

compete for transport resources (infrastructure and available modes), following a stochastic 

(Horni et al., 2016) co-evolutionary algorithm (Ziemke, 2022) that allows the agents to learn 

and improve their performance based on their interactions until an equilibrium is reached. 

POLARIS is an open-source large-scale mesoscopic model written in C++. It was published in 

2013 (Nguyen et al., 2021) and was the first to integrate the activity-based demand model 

estimation, network simulation and intelligent transportation system operation components 

within the simulation, although it is not a tool specifically designed for transport modelling, 

but general purposes (Auld et al., 2016). 

The SUMO (Simulation of Urban MObility) and JADE (Java Agent Development Framework) 

integration is a combination of two open-source tools. The first is a microscopic traffic 

simulation framework written in C++ that simulates the mobility of vehicles (Krajzewicz, 

2010), whilst the latter is a framework to develop AgBMs and allows the interaction of agents 

(individuals) in the environment with the vehicles (Bellifemine et al., 2005), considering traffic 

control systems (e.g., traffic lights). This combination, developed by Soares and Kokkinogenis 

(2014) allows JADE agents (drivers) to be linked to SUMO agents (vehicles) (Nguyen et al., 

2021). It simulates a population of drivers (with information of their activities as individual 

trips, flows or routes) within two road networks. The first is a nanoscopic network where 

drivers make decisions about their movements considering the traffic control system, while 

the second is a microscopic network where vehicles interact (Soares and Kokkinogenis, 2014). 

It was developed as a response to the current and future urban congestion due to the increase 

of population in urban areas, as well as to the complexity and uncertainty of the 

transportation system. 

AgentPolis, developed by the Artificial Intelligence Centre at Czech Technical University in 

Prague (Franco et al., 2020), is a tool written in Java that allows the modelling of multi-modal 
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transport systems, providing to each agent asynchronous and free interactions between the 

environment and other agents. This allows them to adjust their plans at any time based on 

their observations of the environment and/or communication with other agents (Jakob et al., 

2012). However, Čertický et al. (2014) critique the tool because most of the software 

architecture is hidden and does not allow for fine tuning of some variables (Inturri et al., 

2019). 

ITSUMO (Intelligent Transportation System for Urban Mobility) is an open-source microscopic 

traffic simulator written in C++ and Java (Nguyen et al., 2021). It allows the modelling of 

different traffic actors (e.g., drivers, intelligent transportation system and autonomous 

vehicles) as autonomous agents, considering the control of traffic lights and en-route re-

planning, applying a combination of AgBM and AI techniques, its focus and main goal being 

to simulate traffic control scenarios (Bazzan et al., 2010). This tool simulates traffic 

movements in a very simple approach, by applying cellular automata (CA) techniques in 

discrete steps (not continuous) (Bazzan et al., 2010). 

Lastly, SimMobility is an open-source microscopic tool written in C++ (Nguyen et al., 2021), 

where land-use, transportation and communication interactions are considered between 

different types of agents, its main focus being on intelligent transportation systems, 

transportation networks and vehicle emissions simulations. This tool allows the simulation of 

scenarios where the time steps are fractions of a second (e.g., changes of road lane, braking, 

mobile phone communications between agents), seconds to minutes or days (e.g., activity 

plans of the agents) and days to months or years (e.g., long-term choices such as house and 

job relocation) (Adnan et al., 2016). 

Between all of them, MATSim is the most popular and the most frequently used transport 

AgBM (Bastarianto et al., 2023) and possesses the largest user community (Nguyen et al., 

2021). Besides its popularity, MATSim has been identified as the tool that best suits the 

required conditions to simulate urban mobility policies to enable citizens to use active travel 

modes. Tzouras et al. (2023) conducted a qualitative assessment about the use of different 

transport AgBM tools based on the following ten criteria:  

 Is open-source and allows the development or integration of multiple extensions 

 Has been used to simulate shared mobility 
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 Has been used to perform large scale transport networks 

 Can describe spatiotemporal variation of demand 

 Can simulate bicycle traffic in cycle lanes 

 Can simulate pedestrians on sidewalks  

 Can simulate mixed traffic 

 Considers socio-demographic characteristics 

 Can integrate new choice models 

 Can simulate multimodal trips 

Within the compared tools, MATSim and SimMobility were the ones that achieved the best 

results (nine out of ten criteria in both cases). MATSim lacks a proper simulation of 

pedestrians on sidewalks, although it is possible to consider them as part of the simulation 

using a dedicated network. SimMobility lacks the simulation of bicycle traffic in cycle lanes, 

which implies that bicycles share the roads with other vehicles at all times.  

Comparison of the previous two tools, based on their previously explained characteristics, 

makes MATSim the preferred tool. Firstly, MATSim simulates a normal working day, while 

SimMobility simulates three different and combined time steps (i.e., from fractions of a 

second up to years), which could overcomplicate and oversize the goal of this project. 

Secondly, MATSim uses a mesoscopic road network with detailed information, while the 

SimMobility tools use very detailed nanoscopic networks that are not required for the 

purpose of this project either, as their main purpose is traffic management. Lastly, MATSim is 

a mature transport AgBM tool being in use for more than 15 years, and although it is not 

perfect nor fully validated, possesses the required capacities and qualities requested to 

simulate transport mobility scenarios.  

 

2.6.3. MATSim models 

MATSim has been used for different and diverse approaches. One of the main ones is to 

model transport scenarios of cities, regions, or countries. Examples are the transport 

simulation models developed for Singapore (Erath et al., 2012), Santiago de Chile (Kickhöfer 

et al., 2016), Berlin (Ziemke et al., 2019), Basel (Becker et al., 2018), London (Serras et al., 

2016), Switzerland (Horni and Balmer, 2016), Zurich (Rieser-Schüssler, 2016), Munich 
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(Kickhöfer, 2016), Barcelona (Picornell and Lenormand, 2016), Caracas (Walter et al., 2016), 

Dublin (Cudden, 2014), Germany (Illenberger, 2016), Hamburg (Klüpfel and Lämmel, 2016), 

New York city (Dobler, 2016) and Toronto (Weiss et al., 2016), among others. In these 

scenarios, the outcomes show the transport mobility in space and time of the simulated areas.  

These scenarios could be then used for a great variety of simulated purposes: firstly, to 

analyse current transport situations; secondly, to test the potential implementations of 

infrastructure interventions (e.g., new road network developments, tolls); thirdly, to test 

changes in human behaviours (e.g., transport modes use based on personal characteristics, 

new transport modes); and lastly, to test the consequences and impact of natural hazards 

(e.g., floods). From the first group, it is possible to find publications using MATSim to estimate 

public transport congestion in UK urban areas (Raimbault and Batty, 2021) and to optimise 

taxi services (Maciejewski and Nagel, 2013). Publications within the second group are related 

to replanning strategies for congested traffic (Tchervenkov et al., 2020), to testing efficient 

truck bans in urban areas (Joubert, 2019), the implementation of infrastructures for electro-

mobility (Rojano-Padrón et al., 2023) and the implementation of a cordon toll policy in urban 

areas at various times of the day (Bassolas et al., 2019). The third group analyses the human 

behaviours when using different transport modes based on their sociodemographic attributes 

(Müller et al., 2022), the adoption of shared micro-mobility modes (Diallo et al., 2023), the 

implementation of car-sharing schemes (Ciari et al., 2016), ride-sharing mobility services 

(Franco et al., 2020), car-pooling and car-sharing services (Ayed et al., 2015), shared 

autonomous vehicles (Müller et al., 2020) and autonomous taxi services (Hörl, 2016). The last 

group contains publications analysing the evacuation of cities due to a tsunami (Muhammad 

et al., 2017), the response of the agents affected by extreme weather conditions (Heyndrickx 

et al., 2015), the alternative road traffic routes due to natural disasters (Yaneza, 2016) and 

the impact of river floods (Saadi et al., 2016). 

There are MATSim scenarios focused on cycling, developed by Afshin et al., (2021); Jafari 

(2022); and Hitge and Joubert (2023), as previously cited. Apart from developing scenarios for 

active modes, there are also publications expanding the capacities of MATSim when 

simulating these modes. This is the case of the bicycle contribution developed by Ziemke et 

al. (2019), who developed an extension to model bicycle traffic more realistically, considering 

characteristics of the built environment (i.e., type of the road, the road surface type, the 
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existence of cycle paths and gradient). These characteristics are considered by cyclists when 

choosing their routes, providing more realistic results of bicycle traffic and cyclists’ 

behaviours. 

In addition to being a popular tool among academic researchers, MATSim is gaining 

momentum in the industry. Projects developed by Arup CML were described before, while 

Catapult Connected Places have been developing MATSim models for the analysis of Mobility 

as a Service (Catapult Connected Places, 2018), assessing sustainable transport solutions for 

rural mobility (Connected Places Catapult, 2020), and the introduction of new mobility 

services in urban areas (Franco et al., 2020; Catapult Connected Places, 2021). Government 

transport departments are also interested in the use of MATSim for their transport simulation 

and analysis. New Zealand, in partnership with Arup, is developing a MATSim model to 

simulate the behaviour of New Zealand’s transport system and test road pricing scenarios 

(Ministry of Transport, New Zealand, 2022). The Swiss Federal Railways (SBB) developed a 

MATSim model to simulate the entire population of the country and support real decisions in 

terms of service and infrastructure (Scherr et al., 2020). Germany is also developing MATSim 

models. The Institute of Transport Research (DLR in German) is building a MATSim model 

jointly with the Technical University of Berlin (TUB). Their goal is to develop a model for a 

successful transport sector and investigate innovative transport services for passengers and 

goods (German Center for Aviation and Space Flight (DLR), 2024). Additionally, Technical 

University of Dresden (TUD), Technical University of Berlin (TUB) and the city of Leipzig are 

building another model of the city to simulate autonomous vehicle scenarios (TU Dresden, 

2023). 

 

2.7. Limitations of current methods 

This literature review has shown the current climate crisis we face and the need to reduce 

GHG emissions, particularly from the transport sector. Consequently, a detailed description 

of the DfT strategies to tackle the transport decarbonisation challenge, as well as the different 

transport models available to test mobility policies were provided. The outcome was that 

active modes are the best option to decarbonise transport in the short and medium term, 
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while transport AgBMs are the best approach to simulate transport policy scenarios to enable 

the use of walking and cycling. 

Research publications on the topic are scarce. Several limitations that prevent a detailed 

representation of both the population and the built environment characteristics for active 

modes were identified. Therefore, the need for this thesis is based on the following limitations 

of current methods: 

 The need to generate a very detailed synthetic population: current methods have a 

very limited amount of socio-demographic attributes that define each synthetic 

individual (e.g., SPENSER, Eqasim) (see section 3.3). This thesis develops a new, very 

detailed and open-source synthetic population framework to generate synthetic 

population with 12 socio-demographic attributes (see section 3.3.4). Attributes 

related to individual characteristics (e.g., age, sex), familiar relationships (e.g., marital 

status, children dependency), spending power (e.g., economic activity, occupation, 

annual gross income) and mobility access (e.g., driving license, car access, bicycle 

access) are provided per synthetic individual. A more detailed synthetic population 

will allow the allocation of specific trip patterns and travel behaviours to population 

sub groups. The possibility of discrimination in terms of mobility against small 

communities is, therefore reduced.  

 The need to consider built-environmental characteristics to simulate cycling. In the 

vast majority of the publications reviewed, a lack of link between bicycle simulation 

and the characteristics of the built environment was identified. Only very few number 

of publications take into account a limited amount of attributes (e.g., the type of road 

and surface, the slope and cycle paths), which could be insufficient to simulate cycling 

realistically. This thesis proposes the use of an open-access attribute (i.e., quietness)  

developed by Cyclestreet (2022a) that ranks roads for cycling depending on a great 

variety of built environment characteristics (see section 3.4.4). Consequently, the 

MATSim bicycle contribution developed by Ziemke et al. (2017) was updated with his 

help to consider the quietness attribute by cyclists when choosing routes (see section 

3.6).  
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The combination of these two identified research gaps allows simulating more detailed 

mobility scenarios (see section 3.8). A more heterogeneous synthetic population and a 

cycling-focused network allow for the possibility of simulating more realistic behaviours, as 

more diverse mobility patterns are considered and cycling agents have a better understanding 

of the built environment when choosing their routes. 

 

Chapter 3 will explain in more detail the steps followed to develop a validated MATSim model, 

representing a regular working day in space and time of the study area (Tyne and Wear 

region). Additionally, several urban mobility policies are described with the objective of 

reducing the number of private and polluting vehicles on the roads. 
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Chapter  3. Methodology 

 

The limits of my language mean the limits of my world. Ludwig Wittgenstein 

 

Following the literature review from the previous chapter, Chapter 3 defines the methodology 

adopted by this study including the setup of a MATSim model and the later simulation of 

several urban mobility policy scenarios.  

 

3.1. High-level overview of methodology 

 

 

Figure 6 Developed methodology to define a MATSim model and apply urban mobility policies. 

 

MATSim (orange box) is the chosen transport AgBM tool to simulate the normal urban 

mobility of the study area first, and then the different urban mobility policies for a more 

sustainable and decarbonised transport sector. It follows a co-evolutionary framework (see 

section 3.2) that allows the agents to compete and interact between themselves and the built 

environment in space and time. This tool requires the development of two main components: 
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a synthetic travel demand or demand (blue box) (see section 3.3), and the network or supply 

(green box) (see section 3.4). Figure 6 summarises all the described steps. 

The synthetic travel demand is a simplified digital representation of the real population, with 

individual socio-demographic characteristics (see section 3.3.1) and an activity plan that 

represents the activities performed on a normal working weekday by each individual (see 

section 3.3.4). This is a key input to most agent-based simulations (Borysov et al., 2019), so 

its accuracy is crucial for a realistic representation of the population and their urban mobility 

interactions. The network consists of a digital geospatial representation of the road and 

transport networks in the study area, where characteristics of the roads are considered (see 

section 3.4). It is used by the synthetic individuals to move between activities by different 

transport modes. 

These two components, besides a config file (yellow box) (see section 3.5), are imported into 

the MATSim model (orange box), where an updated bicycle extension (purple box) (see 

section 3.6) is enabled to simulate cycling routes considering characteristics of the built 

environment. The initial baseline scenario is calibrated and validated (grey box) (see section 

3.7.1) until results reflect a business-as-usual case in the area of study (see section 3.7.2). 

After the baseline scenario is validated, different urban mobility policy scenarios are applied 

(red box) (see section 3.8). Their objectives are to modify the demand and/or supply inputs 

to estimate their effectiveness in reducing the number of polluting vehicles on the road, and, 

therefore, lower GHG emissions. 

Although the proposed methodology is the standard procedure, the process and data flow 

used in each stage have been generated following a self-developed framework. Each stage is 

defined in the following sections with a great level of detail, with special emphasis on the four 

novel contributions developed within this doctoral thesis (i.e., open access, open-source and 

transferrable synthetic population, the addition of a cycleability rating (or quietness) within 

the network, the update of the MATSim bicycle extension, and the simulation of tailored 

policy scenarios in the study area). 

In all cases, open-source datasets and tools were used, when possible, and all developed tools 

and datasets generated have been defined as open access, when data restrictions allowed it. 
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This will allow other researchers to replicate and reuse them in any other region within 

England, as they are accessible through several GitHub repositories. 

 

3.2. MATSim framework 

Several AgBM tools were analysed and compared in the literature review chapter (see section 

2.6.2), where MATSim was identified as the most convenient tool to simulate urban mobility 

policies focused on reducing the use of private motor vehicles and enabling the use of active 

modes.  

MATSim is an attractive and a convenient tool for transport simulations due to its framework 

composition. It consists of a co-evolutionary framework that allows the agents to compete in 

space and time for the transport resources (vehicles and infrastructures) to achieve their goal 

in an efficient manner. The framework consists of five stages (Horni et al., 2023),with stages 

2, 3 and 4 being part of an iterative loop, following the concept of the co-evolutionary 

algorithm (Ziemke, 2022). The stages are as follows: initial demand, execution, scoring, 

replanning and analysis (figure 7). 

 

 

Figure 7 MATSim framework. 
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3.2.1. Stage 1: Initial demand 

The first stage consists of the definition of the main input datasets: the synthetic travel 

demand and the network. The development of the first is typically created using external 

dedicated tools (see section 3.3.3), while the second can be generated using tools designed 

within MATSim, although in this thesis an alternative procedure was followed (see section 

3.4). 

 

3.2.2. Stage 2: Execution 

The iterative loop starts with the second stage, which simulates the interactions of all the 

agents (or a sample of them) in space and time based on their individual activity plans and 

the network characteristics. The default physical simulation of the agents is a queue model 

(Gawron, 1999; Ziemke, 2022; Horni et al., 2023), where every section of the network (link) 

allows the mobility of the agents based on its own characteristics and the number of agents 

using it at the same time. Each agent stays in a link for at least a minimum amount of time, 

depending on the length of the link, storage capacity, flow capacity and the transport mode 

used. The characteristics of length and allowed transport modes provide the minimum time 

required by the agent to stay in the link when free flow is possible (i.e., no congestion), based 

on the distance and the maximum speeds allowed for both the link and the vehicle type. To 

consider congestion, the flow capacity parameter restricts the rate of agents that can leave 

the link in a period of time (normally per hour), and the storage capacity parameter restricts 

the total number of vehicles that can be located at the same link and at the same time. 

Consequently, if a link is considered full based on its characteristics, a new agent cannot enter 

it until another agent leaves it, based on the queue system. 

 

3.2.3. Stage 3: Scoring 

The third stage computes the satisfaction (i.e., utility maximisation) of each agent’s plan when 

interacting in space and time with other agents and the environment. It is calculated using 

the Charypar-Nagel utility function and it is computed as (Charypar and Nagel, 2005; Nagel et 

al., 2016) (equation 1): 
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𝑆𝑝𝑙𝑎𝑛 = ∑ 𝑆𝑎𝑐𝑡,𝑞 +

𝑁−1

𝑞=0

∑ 𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞)

𝑁−1

𝑞=0

 

Equation 1 MATSim scoring function. 

Where 𝑆𝑎𝑐𝑡,𝑞 is the utility (satisfaction) that the agent obtains when performing activity q 

(normally positive), while 𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞) is the (dis)utility that the agent obtains when travelling 

between activities (normally negative). N is the total number of activities performed by the 

agent.  

The utility of an activity (𝑆𝑎𝑐𝑡,𝑞 ) is defined as (Charypar and Nagel, 2005; Horni et al., 2023) 

(equation 2): 

𝑆𝑎𝑐𝑡,𝑞 = 𝑆𝑑𝑢𝑟,𝑞 +  𝑆𝑤𝑎𝑖𝑡,𝑞 +  𝑆𝑙𝑎𝑡𝑒 𝑎𝑟,𝑞 +  𝑆𝑒𝑎𝑟𝑙𝑦 𝑑𝑝,𝑞 +  𝑆𝑠ℎ𝑜𝑟𝑡 𝑑𝑢𝑟,𝑞  

Equation 2 MATSim utility function. 

Where: 

 𝑆𝑑𝑢𝑟,𝑞 is the utility of performing activity q;  

 𝑆𝑤𝑎𝑖𝑡,𝑞denotes waiting times (i.e., when the activity location is not open and the agent 

has to wait until the facility can be used);  

 𝑆𝑙𝑎𝑡𝑒 𝑎𝑟,𝑞 is the applied penalty in case the agent arrives late to the activity; 

 𝑆𝑒𝑎𝑟𝑙𝑦 𝑑𝑝,𝑞 is the penalty applied when the agent leave the activity earlier than 

expected; and 

 𝑆𝑠ℎ𝑜𝑟𝑡 𝑑𝑢𝑟,𝑞 is the penalty for a ‘too short’ activity (normally set to zero). 

 

Travel (dis)utility for a leg q (𝑆𝑡𝑟𝑎𝑣,𝑚𝑜𝑑𝑒(𝑞)) is defined as (Horni et al., 2016) (equation 3):  

𝑆𝑡𝑟𝑎𝑣,𝑞 = 𝐶𝑚𝑜𝑑𝑒(𝑞) +  𝛽𝑡𝑟𝑣,𝑚𝑜𝑑𝑒(𝑞) ∗  𝑡𝑡𝑟𝑎𝑣,𝑞 +  𝛽𝑚 ∗  𝛥𝑚𝑞
+ (𝛽𝑑,𝑚𝑜𝑑𝑒(𝑞) +  𝛽𝑚 ∗  𝛾𝑑,𝑚𝑜𝑑𝑒(𝑞))

∗  𝑑𝑡𝑟𝑎𝑣,𝑞 +  𝛽𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 ∗  𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑞 

Equation 3 MATSim travel disutility function. 

Where: 

 𝐶𝑚𝑜𝑑𝑒(𝑞) is a transport mode-specific constant; 

  𝛽𝑡𝑟𝑣,𝑚𝑜𝑑𝑒(𝑞) is the marginal utility of time spent travelling by mode(q); 

 𝑡𝑡𝑟𝑎𝑣,𝑞 is the travel time between consecutive activities; 
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 𝛽𝑚 is the marginal utility of money; 

 𝛥𝑚𝑞
 is the change in monetary budget caused by fares; 

 𝛽𝑑,𝑚𝑜𝑑𝑒(𝑞) is the marginal utility of distance when travelling by mode(q); 

 𝛾𝑑,𝑚𝑜𝑑𝑒(𝑞) is the mode-specific monetary distance rate of mode(q); 

 𝑑𝑡𝑟𝑎𝑣,𝑞 is the distance travelled between consecutive activity locations; 

 𝛽𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 are public transport transfer penalties; and 

 𝑥𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟,𝑞 is a 0/1 variable indicating if a public transport transfer occurred between 

the previous and current leg. 

 

3.2.4. Stage 4: Replanning 

The fourth stage allows a percentage of the agents to modify their plans based on a strategic 

criteria (e.g., change transport mode (Grether et al., 2009), choose an alternative route, leave 

an activity earlier/later (Balmer et al., 2005), change activity location (Horni et al., 2012)), as 

defined by the modeller. Each agent has a memory containing a fixed amount of day plans 

(normally five), containing information of the daily activity chain and the obtained score value 

(Horni et al., 2012). Agents that are allowed to modify their plan generate a new plan in their 

memories, while the agents that are not allowed choose one from their memory (in case they 

have more than one), based on a probability distribution function (Nagel and Flötteröd, 2009), 

considering the previous obtained scoring values. When the maximum number of plans in 

their memories is reached and a new iteration is finished, the worst plan is removed, keeping 

only the best. This is how agents learn, based on their experiences with other agents in the 

environment. 

Once the replanning stage is finished, the loop of Stages 2, 3 and 4 is iterated as many times 

as the modeller defines (i.e., until the model reaches an equilibrium in the average scoring 

value of all agents and the mode shares keep relatively constant). Through each iteration, 

agents learn from their interactions in space and time and adapt their behaviours to achieve 

their goals, maximising their scoring value. It is a frequent practice to disable the strategy 

criteria within the replanning stage after a certain number of iterations (80% in this study) to 

allow them to choose between their best plans without any new modification. Since then, 
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agents are only allowed to choose between the plans stored in their memories, based on the 

probability distribution function defined by (Nagel and Flötteröd, 2009). 

 

3.2.5. Stage 5: Analysis 

The fifth stage is reached once the iterative loop is finished and outputs are generated. 

Different datasets containing the interactions of the agents in space and time are generated 

and different geospatial, socio-demographic and transportation analysis could be generated, 

depending on the purpose and the simulation goals with external tools (i.e., QGIS (QGIS 

Development Team, 2023), Simunto Via (Senozon AG, 2018)). 

 

3.3. Synthetic travel demand 

Two types of information form a synthetic travel demand: the representation of individuals 

in the study region with socio-demographic attributes (e.g., age, sex, income, driving license); 

and their daily activity plans that define their activities and trips (e.g., purpose of trip, 

departure time, transport mode used) (figure 8). The first is called synthetic population, while 

the second is the activity plan. 

 

 

Figure 8 Synthetic travel demand composition. Synthetic population with several socio-demographic attributes of the 
individuals and activity plan with information defining each trip. 
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3.3.1. Synthetic population 

The concept of a synthetic population refers to a simplified and realistic microscopic 

representation of individuals (Moeckel et al., 2003; Gearda et al., 2013;  Yaméogo et al., 

2020), with distinct characteristics and exhibiting distinct behaviours (Wu et al., 2022; Zhou 

et al., 2022) between them (Gearda et al., 2013). The goal of a synthetic population is to 

generate a population which is statistically close to the real one (Moeckel et al., 2003; 

Barthelemy and Cornelis, 2012), derived from available data (Yaméogo et al., 2020), such as 

census, mobile phone (Franco et al., 2020) or survey datasets, among others. Some of the 

benefits of generating a synthetic population are to estimate and/or project current and/or 

future populations to make informed decisions of current and/or future needs and demands 

(Lomax et al., 2022).  

Unfortunately, very detailed information on socio-demographic attributes for all individuals 

at a small geographical scale does not exist or is not accessible for the general public (Lomax 

et al., 2022; Wu et al., 2022) due to privacy reasons (Garrido et al., 2020). Only the 

characteristics of a sample and aggregated socio-demographic statistical variables of the 

actual population are known (Moeckel et al., 2003; Yaméogo et al., 2020). This renders it 

infeasible to generate a perfect population that represents each individual as in reality. 

Consequently, the development of synthetic populations follows different methods based on 

the available data (Felbermair et al., 2020), size of the population to synthesise and the final 

application purpose (Barthelemy and Cornelis, 2012) 

Population synthesis is an important stage in the modelling process because it generates the 

basis for any demand investigation (Garrido et al., 2020). The inhabitants of a specific region, 

their activities and behaviours, as well as their current and future needs and demands can be 

described with a great level of detail (Gearda et al., 2013; Lomax et al., 2022). The accuracy 

of synthetic populations is particularly important and depends on the quality and detail of the 

data used (Zhu and Ferreira, 2014). The extent to which a synthetic population can represent 

the ‘real’ population in the aggregated values and get as close as possible at individual level 

has a significant impact on the credibility of the simulation that relies on it (Garrido et al., 

2020; Zhou et al., 2022). 
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The field of synthetic population development has received increasing attention in recent 

years due to an increased focus on AgBMs in the transportation arena (Bowman and Ben-

Akiva, 2001; Moeckel et al., 2003; Zaid and Pat, 2005; Bradley et al., 2010; Wegener, 2014; 

Zhu and Ferreira, 2014; Blainey and Preston, 2019; Borysov et al., 2019; Briem et al., 2019; 

Balac and Horl, 2021). Furthermore, synthetic populations have also been used in a great and 

diverse variety of other research fields: demographic sector (Gearda et al., 2013; Wu et al., 

2018; Alonso-Betanzos et al., 2021); future construction plans (Clark and Lomax, 2018; 

Alonso-Betanzos et al., 2021); health (Xu et al., 2017; Krauland et al., 2020; Alvarez Castro 

and Ford, 2021; QUB Planning School, 2021; Spooner et al., 2021; Wu et al., 2022); energy 

(Zaid and Pat, 2005; Druckman and Jackson, 2008; Panos and Margelou, 2019); and water 

(Willis et al., 2013; Rees et al., 2020).  

Despite of the previous synthetic populations examples, the use of existing models is not 

always possible due to constraints in data availability (Zhu and Ferreira, 2014), knowledge of 

the programming language used, scalability (Tanton, 2013) and inconsistencies in the format 

and accessibility of datasets (Lomax et al., 2022). These drawbacks especially affect AgBMs, 

as the number of attributes required is greater than for other applications, as a higher 

heterogeneity is required between the agents to represent their behaviours in space and 

time. 

 

3.3.2. Synthetic populations tools for a UK context 

For the UK context, two existing models were analysed with the goal of identifying the best 

of them to generate a synthetic population to simulate transport mobility behaviours with 

AgBMs. Firstly, SPENSER (Lomax et al., 2022) is a model for the UK. Secondly, Eqasim (Balac 

and Horl, 2021), is a model applied for several regions around the world but not in the UK, 

focused on developing synthetic travel demands for transport scenarios using AgBMs. With 

them, we consider two different possibilities: a dedicated model for the UK, and the possibility 

of adapting a model to the UK, respectively. 

SPENSER (Synthetic Population Estimation and Scenario Projection Model) (Lomax et al., 

2022) is an open-source spatial and dynamic microsimulation model developed by the 

University of Leeds. It allows the development of synthetic populations and projections of 
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people and households at fine spatial scale, from OA level (Output Area) (i.e., geographical 

areas where the resident population is between 100 and 635 persons (ONS, 2023a)) upwards, 

across the whole of Great Britain (Lomax, 2023). This model consists of six stages that allow 

definition of future infrastructure planning scenarios, although the development and 

projection of a synthetic population comprises only the first three (Lomax et al., 2022):  

 Stage 1: Data downloading and cleaning from official UK institutions from the latest 

census (2011 when writing this thesis) and projection data. UKCensusAPI tool extracts 

data from the different sources depending on the study area (i.e., the ONS for England 

and Wales, the National Records for Scotland (NRS), Statistics Wales and the Northern 

Ireland Statistics and Research Agency (NISRA)) and converts it into a common format. 

UKPopulation tool extracts household estimate data (disaggregated by household 

type), and projection data to the desired year (2019 in this thesis), taking into account 

future constraints (e.g., new housing developments) at local authority (LA) level. 

 Stage 2: The development of the baseline synthetic individual population and 

household datasets. Household microsynthesis tool creates synthetic households from 

census data, considering occupied private households, communal residences, and 

unoccupied dwellings. The output is consistent with census aggregate values at 

different geographical levels (e.g., OA). Humanleague tool creates the synthetic 

individuals, following several microsimulation methods, at MSOA level (i.e., Middle 

layer Super Output Areas)  level  (ONS, 2023a). The output is adjusted at LA level. 

 Stage 3: Projection of the baseline synthetic population from previous stage to the 

desired year. The projection stage handles households and individuals separately, 

projecting households in time (yearly) following a survival probability and considering 

new housing developments based on LA level household constraints collected in stage 

1 (i.e., using UKPopulation tool). Individuals are grouped into households using the 

assignment tool. Consequently, every individual is associated with a household and 

vice versa. The order in which households and individuals are matched is the following: 

o Matching HRP attributes (e.g., age, sex and ethnicity group) between both 

household and individual, so their relationships are preserved. 

o Partners of HRPs already assigned to a household. 

o Multi-person households. 
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o Communal households. 

Once a household is complete, no more individuals can be assigned to it. If there are 

still individuals unassigned to a household, they are associated to those households 

that are not yet complete. 

The output is a set of files containing information of each household and individual per LA 

level. Households are defined by 12 attributes: ID, OA area, type of accommodation, building 

and tenure, number of occupants, rooms, and bedrooms, type of central heating, household 

HRP domestic situation, HRP socio-economic class, HRP ethnicity and number of cars. 

Individuals are defined by six attributes: ID, household ID, age, sex, ethnicity group and MSOA 

area level (geographical areas where the resident population is between 5,000 and 15,000 

persons).  

Examples of research using SPENSER are Spooner et al. (2021), modelling epidemic scenarios 

between humans, and Wu et al. (2022) for small area health and socio-economic outcomes 

in Great Britain. 

 

Eqasim (Balac and Horl, 2021) is an open-source model used to develop synthetic travel 

demands to be applied to transport AgBMs, such as MATSim (Horni et al., 2023). It proposes 

a general pipeline that can be applied to many regions using open-access datasets (based on 

availability access to required datasets).  

The pipeline to develop a synthetic population is based on a multi-level spatial zoning system 

(Hörl and Balac, 2021c), where the greatest area (i.e., city) is sub-divided in smaller zones (i.e., 

boroughs, census zones). It uses micro-sample census data of the population (individuals and 

households) from the area of study, besides other institutional sources to get income 

information. The pipeline starts cleaning and transforming the input data, then socio-

demographic and economic attributes and household locations are generated, based on 

direct sampling from the micro-sample census data (Hörl and Balac, 2021c). The income is 

assigned per household based on a uniform distribution, considering the centile of the 

respective sub-level from the area of study. 
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The output from the synthetic population development is a list of households and individuals 

with their socio-demographic and economic attributes (household size, income and number 

of cars for households; and age, sex, employed, ongoing education and socio-professional 

category for individuals).  

The tool has been used for scenarios in Paris (Hörl and Balac, 2021c, 2021a; Eqasim, 2023b), 

California (Hörl and Balac, 2021d) and Sao Paulo (Eqasim, 2023a). 

 

Both models are open-source and allow generation of synthetic populations using open 

datasets for the UK (SPENSER) or for several areas in the world (Eqasim). Unfortunately, none 

of them is the ideal tool for the development of very detailed synthetic populations, as the 

number of attributes provided for each individual is scarce in both cases. SPENSER provides 

information for three attributes (age, sex and ethnicity group), Eqasim five (age, sex, 

employed, ongoing education, socio-professional category). The advantage of using AgBMs in 

transport is that individuals interact in space and time, and the more heterogeneity of agents 

in the model, the richer and more accurate the results that can be achieved, avoiding the risk 

of having many similar and ‘standard’ agents with very similar attributes and behaviours, 

which would not represent the real population faithfully. 

Based on this comparison, the approach was the use of SPENSER with the development of the 

desired attributes applying a self-developed tool using census and statistical data of the area 

of study (see section 3.3.3). Consequently, the use of Eqasim was discounted as the entire UK 

census and statistical input datasets would need to be adapted to the tool and extra attributes 

would also need to be generated. 

The following section explains how a very detailed synthetic population for any region in the 

England can be generated, using SPENSER and the synthPopEng tool developed in this thesis. 

The output is a synthetic population with 12 different attributes for each individual in the 

study area. 
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3.3.3. Synthetic population methodology 

The methodology proposed to develop a very detailed synthetic population for any region in 

the UK consists of the combination of two main tools: SPENSER and synthPopEng (Alvarez 

Castro, 2022) (figure 9). The former creates the basic synthetic population, consisting of 

household and individual characteristics. The latter was developed as part of this PhD by the 

author to implement eight additional attributes based on the results obtained from the first. 

The inclusion of more socio-demographic and economic attributes is important to make the 

synthetic population more heterogeneous and diverse, closer to reality to replicate their 

behaviours more accurately. Lucas et al. (2016) model the travel behaviour of socially 

disadvantaged population segments in the UK and identify major differences in travel 

behaviour between individuals based on their household income, the presence of children 

and the possession of a driving licence, concluding that the inclusion of additional 

socioeconomic variables is useful for identifying significant differences in the trip patterns. 

 

 

Figure 9 Synthetic population. Attributes generated with SPENSER and synthPopEng. 

 

SPENSER (see section 3.3.23.3.2. Synthetic populations tools for a UK context for a detailed 

description) can be used directly through a Docker image (NISMOD, 2020), which allows using 

a Docker container in the command line and running the scripts, where the area of study (at 

LA level) and the year to project the base synthetic population are required. In this thesis, a 
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synthetic population of the NE of England was developed, consisting of eight LAs (Durham, 

Northumberland, Newcastle upon Tyne, Sunderland, Gateshead, South Tyneside, North 

Tyneside and Darlington) for the year 2019. 

The following steps were followed to generate the synthetic population: 

1. Download the image: Sudo docker pull spenser:1.5 

2. Run the image: Sudo docker run –it spenser:1.5 

3. Generate the baseline synthetic individual population and household for the specific 

local authorities (LAs) (e.g., EXXXXXXX1) and at OA scale level: Python 

scripts/run_microsynth.py EXXXXXXXX OA 

4. Project the households and individuals to the desired year using a specific config file 

for a specific LA: Python scripts/run_ssm.py -c config/configFile.json EXXXXXXXX 

5. Group individuals into households by matching common characteristics between 

them and the household reference person (HRP), for a specific LA: Python 

scripts/run_assignment.py –c config/ssm_default.json EXXXXXXXX 

The output for each LA consists of two files containing information about each household and 

individual, with the attributes highlighted in section 3.3.2. For more detailed information 

about how to use SPENSER, see Lomax et al (2022) (Lomax et al., 2022) and the Docker image 

(NISMOD, 2020). 

 

SynthPopEng is a set of Python Jupyter notebooks developed as part of these thesis that 

allows implementation of eight more socio-demographic attributes, incrementally assigned 

to the population, based on the relationships between the attributes (see Figures 10 - 20), 

SPENSER outputs, 2011 UK census, DfT and ONS datasets. Figure 10 shows the classification 

of these new attributes in three categories: family dependencies (green), spending power 

(blue) and mobility access (orange), besides the inter-dependencies among them.  

An open-access GitHub repository (Alvarez Castro, 2022) is available with all codes and 

detailed documentation explaining where to find the required dataset, data cleaning process, 

code dependencies, requirements and usage.  
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The methodology followed for each attribute, as well as the datasets used, are described 

below. 

 

Figure 10 Structure of the Python notebooks developed within the synthPopEng tool. 

 

Family dependencies 

Family dependencies are a critical component in human lives. Human behaviours are deeply 

linked to their family circumstances, such as being married or having children. Research 

studies have found that single individuals spend more time in leisure time (Lee and Bhargava, 

2004) and their physical activity is greater (Puciato and Rozpara, 2021) than their married 

counterparts. The presence of children in the family makes changes in the use of time, work 

situation and composition and size of social networks (Davy et al., 2007), encourages the use 

of the car (McCarthy et al., 2017) and affects more women’s travel patterns than men’s 

(McGuckin and Nakamoto, 2005; Ng and Acker, 2018). 
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Marital status 

 

Figure 11 Marital status attribute. Description of required inputs and expected output values. 

Marital status classifies individuals in two categories: married or single. To determine the 

value for each individual, characteristics such as the domestic situation of the HRP and the 

age of each individual sharing the household are considered. In the case that the domestic 

situation of the HRP is “married, same-sex civil partnership couple or cohabiting couple 

household”, the individual is older than 18 years and there is another adult with a similar age 

(+/-10 years), then both individuals are considered married. In case there is more than one 

option, the closest in age to the HRP is selected. In the remaining cases, the individual is 

considered as single. Figure 11 shows the attributes used to generate the attribute and the 

different values assigned. 

 

Children dependency 

 

Figure 12 Children dependency attribute. Description of required inputs and expected output values. 



69 
 

This attribute identifies individuals with dependent children at home (Boolean value). Based 

on ONS definitions, dependent children are those aged under 16 years living with at least one 

parent or aged 16 to 18 in years in full-time education, excluding all children who have a 

spouse, partner or child living in the household (ONS, 2019). In this methodology, individuals 

are assigned children dependencies if their marital status is married or the domestic situation 

of the HRP is ‘lone parent household’, the individual is older than 18 years and there is at least 

one child in the household (aged up to 16). In any other cases, the individual does not have 

any children dependencies. Figure 12 shows the attributes considered. 

 

Spending power 

Economic power is another factor that influences the behaviour of individuals, which is 

derived from their economic activity and occupation type. Close and Jundi (2020) conducted 

a survey in 2019 of adults living in the Tyne and Wear region (UK) to identify their willingness 

towards shared and emerging mobility services. Outcomes show that only specific groups in 

society are more attracted to those modes, principally younger residents aged under 40 and 

those with household incomes of over £60,000. Additionally, those with higher levels of 

education think more actively about environmental concerns and use more diverse transport 

modes than other groups in society, especially the youngest. In 2019, the UK Government 

released a report about inequalities in mobility and access in the transport system, showing 

that lower income households travel less overall in the UK, making nearly 20% fewer trips and 

travelling 40% less distances than the average household (Lucas et al., 2019). 

 

Economic activity 

Economic activity attribute classifies individuals in three categories (i.e., employed, 

unemployed and inactive), based on their age and sex attributes and external datasets from 

the 2011 UK Census (ONS, 2011c) and ONS (ONS, 2023c). The first contains detailed 

information of the three different economic activity categories, by sex, range of age and OA 

area in 2011, while the second contains regional annual statistical information of economic 
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activities by sex and range of age from 2019. Figure 13 shows the attributes used to define 

the economic activity for each synthetic individual. 

 

Figure 13 Economic activity attribute. Description of required inputs and expected output values. 

To transform the 2011 UK census data into a 2019 projected census data, two scale factors 

are required: one to project the changes of the total number of individuals per type of 

economic activity (employed/unemployed/inactive) from 2011 to 2019 (equation 4), and 

another to update population changes between 2011 and 2019 (equation 5). The first is 

calculated by comparing the total number of individuals per type of economic activity in 2019 

and those in 2011 using the ONS dataset (ONS, 2023c). This factor allows identification of the 

trend of individuals in each economic activity category in the area of study in the range of 

years. The second scale factor is calculated by comparing the total population per range of 

age, sex and OA area from the 2019 synthetic population created with SPENSER and the one 

from the 2011 UK census. This factor allows determination of whether the population has 

increased or decreased in the eight-year gap considering the previous three attributes. 

Scale factor economic activity x

=
ONS number of individuals per sex and range of age in economic activity x 2019

ONS number of individuals per sex and range of age in economic activity x 2011
 

Equation 4 Scale factor used to project economic activity values to 2019. 

Scale factor population per OA area

= (population in 2019 per OA area, range of age and sex)

/(population in 2011 per OA area, range of age and sex) 

Equation 5 Scale factor for the population per OA area. 
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The combination of both scales projects the number of individuals per type of economic 

activity from 2011 to 2019 per OA area, considering five range of ages ((16, 24), (25, 34), (35, 

49), (50, 64), (65, 120)) and two types of sex (male, female).  

Once the 2011 census data is projected to 2019, individuals from the 2019 synthetic 

population are categorised as one of the three economic activity options considering their 

location (household’s OA area), range of age and sex. Additionally, the inactive category was 

assigned an extra constraint to select those individuals whose household socio-economic 

class is student (NSSEC = 9), as this category is considered as inactive. Similarly, those 

individuals whose household socio-economic class is “Never worked and long-term 

unemployed” (NSSEC = 8) were assigned to the ‘Unemployed’ class.  

 

Occupation 

Occupation attribute was defined in two ways, depending on the economic activity of the 

individuals. In case individuals were classified as employed or unemployed, the occupation 

attribute classifies them in nine types. 

 

Figure 14 Occupation attribute for employed or unemployed agents. Description of required inputs and expected output 
values. 
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The classification is based on their sex, age and economic activity attributes, the first two 

being generated with SPENSER, the last with the syntheticPopEng methodology developed in 

this thesis, showing the incremental assignment procedure followed to build a more 

heterogeneous and detailed synthetic population. Additionally, external datasets from the 

2011 UK Census (ONS, 2011d) and 2019 ONS (ONS, 2022a) are used. The first identifies the 

number of individuals of each category per OA area and range of age in 2011, while the second 

contains regional annual statistical information of occupations per LA and sex. Figure 14 

summarises the inputs used and outputs obtained. 

Similar to the economic activity attribute, two scalar factors for each category were required: 

one to project the total amount of individuals for each category, and another to quantify the 

increase or decrease of the total population per OA area in the eight-year gap, which is the 

same for each occupation category. Both scale factors were obtained in the same manner as 

in the previous attribute (equations 4 and 5). 

Once the 2011 census data is projected to 2019, individuals from the 2019 synthetic 

population are categorised as one of the nine occupation options, based on their location 

(household’s OA area), range of age and sex. In this case, the percentage of individuals per 

sex are not projected per OA area, as this value is not known from the 2011 census. 

Consequently, the occupation type sex-proportion is based on global data from 2019 ONS 

only (ONS, 2022a). Additionally, the order in which the occupation categories were assigned 

per sex differ, as those occupation where more individuals of a specific sex are allocated in 

real life were prioritised, based on ONS data (ONS, 2022a).  

 

Five different categories (student, looking after family or home, sick, retired, and other) were 

assigned to those individuals classified as inactive in the previous economic activity attribute. 

This classification is based on the same already generated attributes (i.e., age, sex and 

economic activity), besides external datasets from the 2011 UK Census (ONS, 2011b) and 2019 

ONS data (ONS, 2023c) (figure 15). The first quantifies the number of inactive people in each 

inactive category in 2011 per OA area, while the second quantifies the annual percentage of 

inactive individuals per category and sex.  
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Figure 15 Occupation attribute for inactive agents. Description of required Inputs and expected output values. 

 

Similarly, two scale factors per inactive category to project the data to 2019 were required. 

These factors were calculated in the same manner as in the previous attributes (equations 4 

and 5). The way that individuals were categorised in each type of inactivity depends on the 

inactive category: 

Synthetic individuals are categorised as ‘students’ if they meet one or more of the following 

requirements in descending order:  

 The household where they are allocated belongs to education (QS420_CELL = 26).  

 Their HRP socio-economic class is student (NSSEC == 9). 

 The household is considered a multi-person household (LC4408_C_AHTHUK11 = 5) 

and their age is between 16 and 35 years. 

 The household is considered as a one-person household, married, cohabitating couple 

(LC4408_C_AHTHUK11 = 1, 2, OR 3) and their age is between 16 and 35 years.  

In the case that more individuals need to be categorised as students per OA area, individuals 

are chosen based on their age, assuming young individuals have more chances to be 

considered as students. 

Individuals are classified as ‘looking after family or home’ when they meet one or more of the 

following requirements, in descending order:  
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 Their marital status is married and have children dependencies. 

 Their marital status is married, do not have children dependencies and are considered 

the oldest in the OA area.  

It was assumed that families with children are more likely to keep one member at home 

(especially women based on (ONS, 2023c)) and that within older marriages the presence of 

one member at home is more likely than other family compositions. In the case that more 

individuals need to be included in this category per OA area, individuals are chosen based on 

their age, assuming older individuals have more chances to be considered in this category. 

‘Retired’ individuals were identified based on their age only: 

 First those between 60 and 64 years old. 

 Secondly those between 55 and 59. 

 Thirdly those between 50 and 54. 

 Finally, anyone below 50.  

Additionally, any inactive individual aged 65 or more was considered as retired, due to lack of 

information for individuals older than 64 years within the ONS dataset (ONS, 2023c). 

‘Sick’ individuals were classified based on their age as well, choosing first those aged between 

50 and 64 and secondly (if necessary) those below 50, assuming older people are more likely 

to be considered sick than younger generations. 

Category ‘other’ was assigned to those remaining individuals that were not categorised in any 

of the previous options. 

 

In each of the previous categories (occupations for employed, unemployed and inactive), 

obtained results were compared against 2019 ONS statistical data (ONS, 2023c). If the 

percentage differences between all individuals of a category were greater than 1%, the first 

scale factor was updated to increase or decrease the number of required individuals in each 

category. Lastly, all individuals aged below 16 were considered as ‘inactive children students’. 

 

 



75 
 

Annual gross income 

Annual gross income was defined in two ways, depending on the economic activity of the 

individuals. The annual gross income for those employed or unemployed individuals is based 

on their sex and age, occupation and external datasets from ONS (ONS, 2022d, 2022c, 2022b) 

(figure 16), following an incremental procedure as in the occupation attribute. The first ONS 

dataset contains statistical information of minimum and maximum annual gross income per 

occupation type and year at region scale, the second quantifies the gender pay gap per UK 

region and year, and the latter quantifies statistical values for the annual gross income per 

range of age in England. 

 

Figure 16 Annual gross income attribute for employed or unemployed agents. Description of required inputs and expected 
output values. 

 

For each occupation, an iterative process is followed until statistical values obtained 

(minimum, maximum, mean and median) are relatively similar to those from ONS (2022d), 

(i.e., the relative error threshold is below 0.1 in absolute value (equation 6)). 

𝐸𝑟𝑟𝑜𝑟 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 − 𝐶𝑎𝑙𝑐𝑢𝑎𝑙𝑡𝑒𝑑

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑
 

Equation 6 Error threshold used to estimate the accuracy of the minimum, maximum, mean and median value for each 
occupation type. 
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Firstly, the maximum and minimum annual gross income values for a specific occupation are 

estimated, based on ONS (2022d). Depending on the age of the individual, a minimum and 

maximum value are defined within the previous global minimum and maximum values based 

on statistical values from ONS (2022b), where the annual gross income per range of age is 

defined. Mean values from 2019 show that the range of age earning the lowest is between 

16 and 17, followed by 18-21, 22-29, 60+, 30-39, 40-49 and finally 50-59. These values are 

manually adjusted proportionally to the global minimum and maximum values that can be 

earned for the occupation. Values per range of age are not disaggregated per occupation type 

but are global values for the whole UK. It is assumed that the order in which the different age 

range is allocated are applicable for all the different occupation types. Once the minimum and 

maximum values are estimated for the specific occupation and range of age, a random value 

is chosen between the ranged values and the gender pay gap per occupation type is applied. 

If the individual is a female, the annual gross income assigned before is reduced by half of the 

gender pay cap value obtained from ONS (2022b). In the case that the individual is a male, 

the annual gross income assigned before is increased by half of the gender gap value. 

Once the annual gross income is assigned to all individuals from the same occupation type, 

statistical values (min, max, median and percentiles) are compared against those from ONS 

(2022d). If results are not close enough to those expected, then it is necessary to modify the 

estimated global minimum and maximum values, as well as those estimated for the range of 

ages. This procedure is iterated as many times as required until results obtained are 

significantly close to those from ONS (2022d) (i.e., the relative error threshold is below 0.1 in 

absolute value (equation 6)). 

At this stage, the annual gross income values obtained are statistically similar to those in 

reality, although the earnings based on range of ages could not be correct, since the values 

were heavily dependent on estimations. To achieve better results about the median income 

per range of ages, income values from agents earning less than expected were exchanged 

with those earning more than expected, assuming more heterogeneity of incomes between 

the individuals of different occupations in the same range of ages. This iterative process needs 

to be run as many times as required, until calculated median gross income value for the 

people in each range of age is within suitable limits to the data provided by the ONS (2022c). 
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It is important to highlight that ONS values refer to the whole UK and the synthetic population 

developed is for a specific region, so differences are expected. 

 

For those individuals categorised as inactive, the annual gross income attribute is assigned 

based on different attributes and statistical values, depending on the inactivity type (Figure 

17): 

 

Figure 17 Annual gross income for inactive agents. Description of required inputs and expected output values. 

 

 ‘Retired’ individuals were assigned the annual gross income value depending on their 

marital status, applying data from the UK Government (Department for Work and 

Pensions UK, 2020), where median annual gross incomes per year are defined per 

marital status. 

 ‘Sick’ individuals get the annual gross income values based on the PIP (Personal 

Independence Payment) (UK Government, 2023e) and Universal Credit (UK 

Government, 2023f). The first are some benefits individuals can get when suffering a 

long-term physical or mental health condition or disability, or difficulty doing certain 

everyday tasks or getting around. The second is a payment to help with living costs. 

The final value assigned depends on their age and children dependencies. 
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 Those individuals ‘looking after home or family’ are assigned an annual gross income 

based on the carers allowance (UK Government, 2023a) and Universal Credit (UK 

Government, 2023f) , considering their age and children dependencies as well. 

 Those classified as inactive ‘other’ were assigned their annual gross income based on 

Universal Credit only (UK Government, 2023f) and depending on their marital status, 

age and children dependencies. 

 Lastly, ‘students’ get their annual gross income based on their age and a random 

number of hours worked per week (from five to 20), being the payment per hour 

dependent on the age of the individual, where the minimum refers to the national 

minimum wage per age (UK Government, 2023d) and the maximum an estimated 

value. It was assumed that all students earn an income, regardless of whether it is 

obtained from work or any other alternative (e.g., family) 

 

Mobility access 

The access to different transport modes also defines and conditions human travel behaviours 

when carrying out their daily routines. The possibility of accessing a car brings the possibility 

of going anywhere whenever, while its lack conditions movements and possibilities if other 

transport modes are not an alternative. This could generate barriers to employment, 

education and healthcare, besides producing social isolation (Lucas et al., 2019). Socio-

demographic attributes also affect the use of cars, as highlighted by Tiikkaja and Liimatainen 

(2021), where it is stated that women have less access to the household car than men. Linked 

to the use of a car is the possession of a driving licence, which depends on socio-demographic 

attributes such as age and sex, among others (DfT, 2023b; NTS, 2023e). Møller and Jensen 

(2022) identify in Denmark that the existence of several cars in a high-income household, with 

no historic records of accidents, increases the likelihood of licencing at young ages. An 

alternative mode of transport is the use of bicycles. Based on NTS (2023 a), the ownership of 

a bicycle differs on age, with young individuals (aged 5 to 10) being more likely to have access 

to bicycles (83%) than any other individuals in different range of ages, although a peak 

between those aged 40 to 49 is observed (50%). 
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Driving license 

 

Figure 18 Driving license attribute. Description of required inputs and expected output values. 

 

Driving license attribute identifies driving license holders (Boolean attribute) based on their 

attributes and external datasets from NTS (DfT, 2023b; NTS, 2023e) (Figure 18). The first 

provides information of percentages of driving licence holders per range of age and sex in 

England and the second the percentages of driving licence holders per sex only in different 

regions of England. In this case, the NTS information does not provide any detailed spatial 

definition (e.g., OA or MSOA area), only percentage values related to England (DfT, 2023b) or 

a specific English region (NTS, 2023e). Consequently, only the range of ages, sex and the 

number of cars in household attributes were considered. 

When comparing both NTS datasets, it is possible to estimate the percentage of males and 

females by range of age that hold a driving licence per year in the area of study. In the 2019 

case, the percentage of males with a driving licence in the NE is 79%, while the total 

percentage of men in England with driving licence is 80%. Because these two values are very 

similar, it was assumed that the mean value of driving licences in England per range of ages 

could be applied to the NE males. In the case of females, the values were weighted for each 
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range of age (equation 7), as differences were more significant (63% in the NE and 71% in 

England). 

females(aged x, y)NE =
% females(aged x, y) in England

total % females England / total % females NE
 

Equation 7 Weighted value for each female group of age. 

 

At that stage, the percentage of individuals holding a driving license per range of age and sex 

in the NE region was estimated. 

When assigning the driving licenses to the agents, the number of cars in the household are 

also considered. As Tiikkaja and Liimatainen (2021) state, the existence of cars in a household 

does not mean that every adult in the household can use it. To identify those with a driving 

license, it was firstly assumed that at least one adult in a household with at least one-car holds 

a driving licence. This constraint avoids having households with vehicles and no one being 

able to use them. Secondly, it is also known that the possession of a driving licence does not 

imply the necessity of having a car. Therefore, it was assumed that individuals living in 

households with more than one car have a higher probability to hold a driving licence than 

those living in a household with one car, and even more than those without a car in the 

household. Initially, the probability values for each category were assigned randomly and 

were adjusted after a few iterations. The best results were obtained when these values were 

0.2, 0.3 and 0.5 for households without a car, with one car and with more than one, 

respectively. 

 

Car access 

The car access attribute identifies those individuals who can use a car from the household 

(Boolean value). The individuals are allowed to have access to a car if two conditions are 

satisfied: they hold a driving licence, and the household has at least one car. In any other 

cases, individuals are not allowed to have access to a car from the household. Figure 19 shows 

the attributes considered when assigning synthetic individuals the possibility of access to a 

car in the household. 
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Figure 19 Car access attribute. Description of required Inputs and expected output values. 

 

Bicycle access 

This attribute identifies those individuals who have access to a bicycle in the household 

(Boolean value), using statistical data from the NTS (NTS, 2023a), where information about 

bicycle ownership by age in England is provided. Due to the scarcity and lack of detail of 

information on bicycle ownership, the individuals with bicycle access were randomly selected 

based on their age only. No spatial characteristics were considered, as spatial data related to 

the number of people owning bicycles were not found. Figure 20 shows the attributes 

considered when assigning synthetic individuals to access bicycles. 

 

Figure 20 Bicycle access attribute. Description of required inputs and expected output values. 

 

3.3.4. Synthetic population outcome, reproducibility and limitations 

The outcome of all the steps followed in section 3.3.3 provides a very detailed synthetic 

population, which overcomes the limitations of the existing methods described in section 

3.3.2 to generate a heterogeneous synthetic population. This achievement allows the 

possibility of taking into account minority groups within society that would be ignored in the 
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case of a minor amount of attributes, showing a more realistic view of the world. Table 1 

summarises the attributes generated for each agent in the synthetic population. 

 

Individual 

Column Comment Values 

Individual ID Individual unique ID  Unique NTS Individual ID 

Household ID Household unique ID NTS Household ID 

Age Numerical age value 0-85 

Sex Gender - 2 categories 1 (males),2 (females) 

Marital status Marital status - 2 
categories 

Married, single 

Children dependency Children dependency Boolean 

Economic activity Type of economic activity - 
3 categories 

Employed, unemployed, inactive 

Occupation Type of occupation - 
grouped in 14 categories 

Managers, directors and senior 
officials 

Professional occupations 
 Associate professional and technical 

occupations 
 Administrative and secretarial 

occupations 
Skilled trades occupations 

Caring, leisure and other service 
occupations 

Sales and customer service 
occupations 

Process, plant and machine 
operatives 

Elementary occupations 
Student 
Retire 
Sick 

Looking after home /family 
Other 

Income Income value grouped in 
deciles 

Numeric value starting at 1 

Driving licence Driving licence holder - 2 
categories 

Boolean 

Car access Access to car in household- 
2 categories 

Boolean 

Bike access Access to bicycle in 
household- 2 categories 

Boolean 

Table 1 Description of the attributes generated for the synthetic population. A definition of the attribute name (first 
column), a short description of their meaning (second column) and expected values (third column) are provided. 
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Reproducibility and time requirements 

This self-developed methodology is easily transferable to any other region in England, simply 

by adjusting the parameter values related to the region of interest for each of the desired 

socio-demographic attributes. 

The computational time varies depending on the attribute calculated and the amount of 

synthetic individuals processed. In the case of the NE of England (circa 2.6 million synthetic 

individuals) the estimated times varied between one hour (e.g., marital status, children 

dependency, bicycle access, car access) and a day (e.g., economic activity, occupation, annual 

gross income, driving license). 

 

Limitations  

The proposed methodology described above is based on incremental attribute assignment. It 

initially starts with only consideration of attributes obtained from SPENSER (as in the case of 

marital status and children dependency), and gradually includes some of the attributes 

developed within the methodology, supported by statistical datasets from the UK census 

2011, ONS and NTS. Figures 11 –20 show the dependencies of each new attribute with the 

previous generated ones. This incremental procedure can result in uncertainties and 

propagate inaccuracies to attributes generated subsequently that could produce an 

unrealistic representation of the population from the study area. Consequently, the annual 

gross income attribute could be less accurate than the economic activity, as the first is 

calculated after generating the economic activity and occupations attributes, while the 

second is directly derived from SPENSER attributes and official datasets only. Figure 10 shows 

the order, and therefore their dependencies, in which attributes are generated. 

Additionally, the population projection from 2011 UK census data to 2019 (based on ONS 

statistics) follows a purely linear projection, based on statistical data without considering any 

changes in employment, new construction developments or transport infrastructures at 

specific locations in the study area. This limitation assumes that the proportion of individuals 

with certain characteristics increase or decrease proportionally in each area based on the 

relationship between 2019 and 2011 statistical values, as described in equations 4 and 5. 
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In order to minimise these uncertainties, several validation procedures were applied to the 

new attributes. Aggregated results considering several socio-demographic attributes at once 

(e.g., age and sex) but also their geospatial distribution at MSOA level were compared against 

statistical and spatial data from ONS and NTS, conditioned by the available resources (see 

section 4.1.1). This validation stage provides a measure of the level of confidence that can be 

achieved and quantify the accuracy and precision obtained. Sections 5.2.1 discusses the 

validated results. Despite the validation procedures followed, the results obtained cannot be 

considered as the ground truth. A more exhaustive validation method is required where more 

than two attributes are compared together (e.g., age, sex, income and marital status) to link 

the interconnections of the selected attributes and obtain a more realistic representation of 

society. This area of improvement has been highlighted as future work in section 5.4.1 to 

achieve more precise and accurate results. 

 

3.3.5. Activity plans 

Activity plans are the other main component required to generate a synthetic travel demand, 

complementing the synthetic population described above. They define the activities 

performed by each individual during a normal working day, containing information about 

their purpose of trips, starting-ending times, origin-destination locations and transport modes 

used, among others.  

This information is sensitive, and the level of granularity provided depends on the purpose 

and scope of the project. The acquisition of this data is not open to the public at a very 

detailed spatial resolution, due to privacy reasons, as this information could help identifying 

patterns of specific individuals. Currently, two main data sources store this information: travel 

diaries and mobile phone data. 

Travel diaries are household surveys that contain information of the trips generated by 

individuals in a specific area and time. This information, combined with their socio-

demographic attributes, allows the analysis of the daily mobility behaviours and patterns at 

the individual and aggregated level of detail. These surveys have some shortcomings, mainly 

due to trip omissions when individuals are surveyed (Wolf et al., 2003; Forrest and Pearson, 

2005). Additionally, the lack of accuracy provided by the citizens when estimating the trip 
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times, distances, locations and routes followed (Stopher and Greaves, 2007; Stopher et al., 

2007) can affect the analysis and understanding of human mobility. 

In the UK, the National Travel Survey (NTS) is the source of up-to-date and regular information 

about personal travel patterns by residents of England within Great Britain and monitoring 

trends in travel behaviour (Cornick et al., 2020). The annual surveys collect information on 

how, why, when and where people travel as well as factors affecting travel (DfT, 2023i), 

besides their socio-demographic attributes. In 2019, 6,162 households participated, including 

people in all age groups and children (DfT, 2020c). Within the NTS, different datasets can be 

accessed: NTS (DfT, 2022b), NTS special licence access (DfT, 2022a) and NTS secure access 

(DfT, 2023h). The three datasets contain the same information (i.e., socio-demographics and 

travel diaries) from 2002 to 2021, although their spatial resolutions and requirements to get 

access to the data differ between them. 

Due to the limitations in the collection of travel diaries highlighted before, the use of mobile 

phone data has been considered as an alternative. The most widely applied type of mobile 

phone data in travel behaviour research are cellular network-based data (Wang et al., 2018; 

Wu et al., 2019), although GPS, Wi-Fi and Bluetooth positioning systems could be used (Wang, 

et al., 2018). This data has been widely used for travel recognitions (Yang et al., 2016; Gong 

et al. 2018; Wang et al. 2018; Marra et al., 2019; Guo et al., 2022, 2023), which proof its 

usefulness for AcBMs (Cui et al. 2021; Hafezi et al., 2021; Guo et al., 2023) and AgBMs. 

The use of mobile phone data has some advantages when compared against traditional travel 

diaries. Firstly, the sample is not affected by unconscious bias introduced by the individuals 

in surveys, but recorded data show what individuals do (Franco et al., 2020). Secondly, other 

potential biases are reduced as a larger geographic area is covered (Wang et al., 2018; Wu et 

al., 2019), although it depends on the market penetration of the telecom company collecting 

the data (Wang et al., 2018). Franco et al. (2020) achieved a 30% penetration in their analysis, 

which is greater than the average percentage of individuals surveyed in travel diaries. This 

population sample increase helps in reducing the gaps when new dwellings and regenerated 

areas are not covered by traditional methods (Franco et al., 2020). Lastly, this data is rich in 

spatio-temporal information (Wang et al., 2018).  
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Despite their advantages, mobile phone data also have some disadvantages. The first is the 

lack of socio-demographic attributes of the individuals (Wang et al., 2018) due to privacy 

reasons (Chen et al., 2016; Guo et al., 2023), although some attributes could be provided (e.g., 

age and gender (Franco et al., 2020)). Secondly, this information can only be obtained directly 

from telecom companies based on specific licences and agreements to keep clients’ privacy 

secured (Wang et al., 2018). Thirdly, and linked to the previous, the data provided by telecom 

companies are spatially and temporally aggregated and anonymised (Chen et al., 2016; 

Franco et al., 2020). Fourthly, due to spatial aggregations, short trips can be underestimated 

since several trips can be done within the same aggregated area, being impossible to be 

identified (Franco et al., 2020). Fifthly, secondary activity types (e.g., shopping, medical 

appointment) are difficult to recognise (Guo et al., 2023), as well as the transport modes used 

(Franco et al., 2020), although both can be inferred based on assumptions and dedicated 

algorithms.  

 

3.3.6. Activity plans assignment 

The methodology explained in this section covers the identification of the most relevant 

activity plan data source from the options listed in the previous sections and an Exploratory 

Data Analysis (EDA) of the dataset chosen to identify only those activity plans to be used, 

based on spatial and temporal patterns (figure 21).  

 

Figure 21 Activity plan. Methodology followed to assign activity plans to the synthetic individuals. 

 

Once the data is identified, cleaned and processed, the method to assign daily activities to 

each agent in the 2019 synthetic population is explained, considering common socio-
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demographic attributes between both datasets and travel relationships between individuals 

living in the same household. Finally, it is explained how activity locations are assigned to each 

individual, depending on the trip purpose. 

The potential benefits of each available and identified data source for agents' activity plans 

were analysed to assess the potential benefits of each one, allowing the selection and use of 

the most appropriate sources for this project. The use of mobile phone data was discarded 

based on the following reasons:  

 Although an open license was obtained from a telecom company (O2 Telefónica) to 

use 2016 data from the area of study, the data was temporally (hourly) and spatially 

(MSOA area) aggregated as OD matrices, due to privacy reasons.  

 The anonymised data did not contain any socio-demographic attributes.  

 The activity types provided in the data were very scarce (e.g., home based work, home 

based other, none home base).  

 Only two transport modes were identified (i.e., road, rail).  

 The possibility of underestimating short trips due to spatial aggregation could lead to 

the absence of many of these trips in the data, which are fundamental in the project, 

as they are the main type of trips that can be walked and cycled.  

Consequently, NTS travel diaries are regarded as the best option, although biases in trip 

omissions and poor trip characteristic estimations could affect the quality of the data. The 

three national survey datasets cited before have the required data to develop a very detailed 

synthetic travel demand. They contain a wide variety of socio-demographic attributes (with 

nine attributes matching those developed for the 2019 synthetic population), as well as very 

detailed seven-day travel diary plans from each individual surveyed (23 activity purposes, 

starting and ending times in minutes, 28 travel modes). Additionally, travel diaries range from 

2002 to 2021, which will allow a larger sample size to be used, as the number of surveyed 

households per year is low, varying from 2,822 (year 2020) to 9,453 (year 2004). Within them, 

the NTS special licence dataset (DfT, 2022a) was chosen for the following reasons: 

 The spatial granularity is at LA level, enabling the use travel diaries from the whole of 

England with similar patterns to those in the area of study and discard outliers (e.g., 

London). This will allow for increasing the number of travel diaries that could be used, 
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instead of being constrained to those travel surveys within the study area. The other 

alternative datasets have spatial granularities at rural/urban (DfT, 2022b) or OA area 

scale (DfT, 2023h), which are non-detailed or very detailed for the purpose of this 

thesis, respectively. 

 The acquisition of the dataset requires a simple (although it is a long process over 

time) approval from the data owner. The other two alternatives require either 

minimum (DfT, 2022b) or very concise and specific (DfT, 2023h) approval processes.  

 

As previously highlighted, an extremely low number of households are surveyed per year, 

which implies that only a small representation of the population is considered. To increase 

the number of travel diaries and therefore, their heterogeneity, travel diaries from several 

years and areas of England need to be used, instead of only those from 2019 and the Tyne 

and Wear region. Consequently, the spatio-temporal framework was analysed via an EDA to 

identify individuals with similar activity plans in space and time to those in the area of study 

in 2019 and discard any outliers.  

Results show very similar mobility patterns in every region in England except London. Figures 

22 and 23 show similar trip purposes and transport modes respectively, between all regions 

except in London (red line), where quite different values are obtained (London is a region 

where the use of cars is lower than any other, while the use of public modes is the opposite). 

Within similar regions, differences are minimum. Some minor discrepancies can be observed 

in sport, holiday and other trip purposes (figure 22), and the use of other local buses (figure 

23), which indicate that people in those regions have similar mobility patterns.  

Travel mobility patterns were also analysed based on the evolution of the average number of 

trips by day of week (figure 24) and month (figure 25) between 2002 and 2019. Results show 

that from 2002 until 2011, less trips were made every year, decreasing linearly. Since 2011, 

the trends are stabilised, although differences between weekdays and weekends are 

observed, especially on Sundays, where around a 40% fewer trips are made when compared 

to weekdays (figure 24). In the case of months (figure 25), similar patterns from 2011/2015 

to 2015/2019 are shown, indicating that people tend to do fewer trips now than before. 

Differences can be observed between months as well, with February and August differing the 
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most when compared to the others, but following the similar trend, although fewer clear 

patterns can be identified.  

Besides the previous analysis, the trips in progress by time of day of week and trip purpose 

by trip start time from 2006 to 2019 (figures 26 and 27) were also compared. Results show 

that patterns are stable in time, with minimum differences for weekdays (between morning 

and afternoon peaks), although more variability can be observed during weekend days (figure 

16). In the case of the activity purposes (figure 27), very small differences can be observed in 

the 13-year analysis period, indicating that travel patterns are kept relatively constant in time 

during weekdays, experiencing the morning and afternoon peaks at the same time. 

 

 

Figure 22 Average number of trips by person, trip purpose and region 2018/2019. 
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Figure 23 Average number of trips (trip rates) per person by main mode, region in 2018/2019. 

 

Figure 24 Average number of trips by day of the week in England (2002-2019). 

 

Figure 25 Average number of trips (trip rates) by month, England. 
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Figure 26 Trips in progress by time of day and day of week in England between 2006 and 2019. 

 

Figure 27 Percentage of trip purpose by trip start time (Monday to Friday only), England 2007/2019. 

Consequently, the conclusion made regarding the spatial and temporal extension of travel 

diaries to use in the research project was clear. All regions except London were considered as 

similar in travel mobility patterns, as well as those travel diaries surveyed between 2011 and 

2019. Additionally, to make the simulations reflect a normal working day, only weekdays 

when children have educational activities were selected. This last constraint considers two 

premises: to avoid the effect of weekends and the effect of different activity patterns in 

children and their parents. Every weekend, bank holiday, summer, Easter and Christmas 

holidays were discarded. 
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Attribute Value 

Age 0-5 
6-10 

11-15 
16-19 
20-29 
30-39 
40-49 
50-59 
60-64 
65-75 
>75 

Sex 1 (male) 
2 (female) 

Marital status Married or couple 
Single 

Children dependency True 
False 

Economic activity Employed 
Unemployed 

Inactive student 
Inactive retired 

Inactive looking after home/family 
Inactive sick 

Inactive other 
Inactive child student 

Income Decile 20 
Decile 40 
Decile 60 
Decile 80 

Decile 100 

Driving license True 
False 

Car access True 
False 

Bicycle access True 
False 

Table 2 Common socio-demographic attributes and values between NTS and synthetic individuals generated in the synthetic 
population. 

In total 1,038,736 unique trips from 336,008 different days and 90,578 unique individuals 

were considered. Individuals were grouped in households based on common ‘household ID’ 

attribute, with the same 12 socio-demographic attributes and values as those individuals from 

the 2019 synthetic population developed in section 3.3.3 (see table 2). Trips were defined by 
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11 attributes, providing information about the purpose (14 categories), starting and ending 

time, main mode of transport (seven categories), journey sequence in the day, and distance. 

 

Once the activity plans were identified, it was necessary to develop a methodology to transfer 

them to the individuals generated in the 2019 synthetic population and obtain the complete 

synthetic travel demand required. 

This procedure considers the socio-demographic attributes of the agents from both datasets. 

The assumption made was that individuals with similar socio-demographic attributes behave 

and act in an analogous manner. Scientific examples in favour of this assumption were given 

in section 3.3.3, where the development of new attributes for the 2019 synthetic population 

(i.e., family dependencies, spending power and mobility access) were considered as crucial to 

differentiate travel behaviours between individuals with different characteristics. 

Additionally, it was observed that the NTS dataset includes the possibility of accompanying 

another member of the household to work, school, home or other activity (escort activities). 

This implies that the NTS dataset keeps those interactions between members of the same 

household (when provided by the surveyed individuals only), which are key factors to be 

considered when a realistic synthetic travel demand is generated. 

The methodology developed to match individuals from both datasets was applied with the 

Activity_plans_dev tool (Alvarez Castro, 2023), a set of open-source Python Jupyter 

notebooks developed by the author as part of this study. This tool allows the identification of 

individuals from the 2019 synthetic populations with both similar personal and family 

characteristics to those individuals from the NTS dataset. The similar personal characteristics 

and values considered are their nine common socio-demographic attributes, while the similar 

family characteristics depend on the family dependency attributes only (marital status and 

children dependency). 
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Figure 28 Workflow diagram showing the methodology followed to transfer NTS travel diaries to the synthetic individuals 
based on their socio-demographic attributes. 

 

The chosen methodology works as follows (figure 28). A single individual from the 2019 

synthetic population is selected randomly and their socio-demographic attributes are 

analysed. In a case where the individual has family dependencies, similar household members 

are selected from the NTS dataset.  

 If family dependencies refer to a married or couple individual, similar individuals with 

the same socio-demographic attributes are selected from NTS. Among them, their 

partners are compared against the 2019 synthetic population individuals’ partner 

considering only their range of age, economic activity, income, driving licence, car 

access and bike access attributes. If the selection has more than one option, the choice 

is made randomly. In cases where there is no match, a second selection for the partner 

is made considering only their age, economic activity, driving licence, car access and 

bike access attributes. If the selection in this second case has more than one option, 

the choice is made randomly.  

 In a case where the family dependencies refer to a married or couple individual with 

dependent children (i.e., below 16 years old), the same procedure described before is 
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followed. In this case, the number of children is not considered, only the existence of 

them in the household. 

 If family dependencies refer to a single individual with children dependencies, similar 

individuals with the same socio-demographic attributes from NTS are selected. 

Similarly to the previous case, only the existence of children in the household is 

considered. 

At this stage, members from both datasets with similar socio-demographic attributes and 

family dependencies are matched. The next step is to find a common day between them and 

transfer their daily trips from the NTS dataset to the 2019 synthetic population, individually. 

For children, the transferred daily trips are those belonging to the NTS children closest in age.  

 

In the case that previous matches were not successful, or the individuals do not have any 

family dependencies (e.g., single and no children dependency), they are considered as 

independent individuals from any other member of the household and will not keep any 

relationship with other members when doing their daily activities. For these individuals, the 

daily trips are transferred from NTS dataset considering only common socio-demographic 

attributes. Firstly, all nine common attributes between synthetic agents and NTS dataset were 

compared, matching 78.8% of the cases. Secondly, those that were not matched in the 

previous iteration were compared again but considering only seven attributes (sex, range of 

age, marital status, children dependency, car access, bike access, economic activity), matching 

68.2% of the remainder. Thirdly, only six attributes were considered (sex, range of age, marital 

status, children dependency, car access, economic activity), achieving a match of 86% of the 

remaining individuals. Fourthly, only four attributes (sex, range of age, marital status, children 

dependency), with a 47% match. Fifthly, three attributes (sex, range of age, children 

dependency), with a 25% match. Finally, the remaining 0.06% of synthetic individuals who 

were not matched because no similar individual was found in the NTS dataset, were assigned 

a random activity plan. Table 3 summarises the results obtained. 
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Matching 
with 

household 
interactions 

No household interactions 

9 
attributes 

7 
attributes 

6 
attributes  

4 
attributes 

3 
attributes 

Random 
match 

Total 
percentage 
matched 84.0 12.6 2.3 0.9 0.07 0.02 0.06 

Relative 
percentage 
matched 84.0 78.8 68.2 86.1 46.7 25.0 100.0 

Number of 
synthetic 
individuals 
matched  2222234 333336 61376 24603 1852 529 1587 

Table 3 Summary of the total and relative percentage of activity plans transferred to the individuals based on the followed 
methodology. 

Some updates were required to fix some inconsistences in the assigned activity plans, such as 

children driving cars (i.e., their transport mode was updated to car passenger) and incorrect 

trip times. Additionally, all activity plans were forced to start and end at households, which is 

a constraint required by MATSim to run the simulations.  

 

Figure 29 Example of an activity plan assigned to a synthetic individual following the previously developed methodology. 

At this phase, all individuals from the 2019 synthetic population were assigned an activity plan 

based on their socio-demographic attributes, with some of them also keeping interactions 

with other members of the same household during their activities. All activity plans 

transferred contain information of the starting and ending time, purpose (23), transport mode 

used (7) and distance travelled for each trip, as shown in figure 29. The only missing and 

required information is the location of each activity. Although the NTS dataset used provides 

information at LA level only, this information is not valid, as activity plans from other regions 

beyond the area of study with similar patterns were used to expand the sample size provided. 

Therefore, specific locations need to be assigned to each activity. 
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The spatial allocation of activities (figure 30) was assigned using a process developed as part 

of the MISTRAL project (Pregnolato et al., 2017) and activity_location_dev (Alvarez Castro, 

2023) tools. The first is a tool developed by Newcastle University to match real households 

with households from synthetic populations, based on common characteristics. The second 

is a set of open-access Python Jupyter notebooks as part of this research that assigns locations 

to the activities, depending on the activity type and distances between consecutive activities. 

 

Figure 30 Identified spatial location for the activities undertaken by the individuals (OSM basemap). 

 

The activity locations were assigned in the following order: 

 Household location for each one. 

 Workplace location for those with a work activity. 

 Educational location for those with an educational activity. 

 Rest of activities except escort (i.e., accompanying) activities. 

 Escort (i.e., accompanying) activities. 

These locations were assigned as described below: 
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Households 

The MISTRAL model identifies the spatial location of the households where individuals from 

the 2019 synthetic population were allocated. This tool classifies each residential dwelling in 

four categories (detached, semi-detached, terraced, and apartment), based on their spatial 

characteristics and the relationship between adjacent households, using the AddressBase 

dataset (Ordnance Survey, 2021). Once all real buildings are classified, they are matched with 

households from the 2019 synthetic population per LA and OA area. In a case where a 

synthetic household in a specific OA area is not assigned a real building based on its type, a 

different type is tried. In a case where a synthetic household cannot be assigned in its OA area 

due to all real buildings being occupied, it is matched with a similar building in an adjacent OA 

area. Household locations are assigned which are known as the starting point for each 

individual, as this location is considered fundamental for the definition of the remaining 

activities. More information about the MISTRAL tool can be obtained in (Pregnolato et al., 

2017). 

 

Workplaces 

Workplace locations were assigned to those agents with a work activity in their activity plans, 

using 2011 UK census origin-destination (OD) matrices by transport mode (the same seven 

options as those in the activity plans) and MSOA areas (ONS, 2011a). These matrices provide 

estimates of the usual number of residents in the area of study aged 16 and over in 

employment, travelling between MSOA areas. These values were linearly projected to 2019, 

calculating a ratio between the number of employed individuals in the 2019 synthetic 

population and the number of them in 2011, per MSOA area.  

These estimated flows of workers per MSOA area quantify the number of individuals 

travelling between areas, while the activity plans assigned to the synthetic individuals identify 

the distances travelled to work from the previous activity. To identify the MSOA zones to 

which a synthetic working individual has to be assigned, it is necessary to calculate the 

distances between MSOA zones. Distances were calculated between their centroids, 

considering the Open Street Map (OSM) road network (Geofabrik, 2023), instead of Euclidean 

distances. This approach provides a more realistic representation, as constraints such as 
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bridges and tunnels are considered when calculating distances between locations that are 

divided by natural elements (e.g., rivers and mountains), which is the case in some urban 

zones in the area of study. 

Then, synthetic working individuals were assigned a working MSOA zone based on the 

distance travelled and the transport mode used from the activity plan and the total number 

of individuals allowed to travel between MSOA zones from the OD matrices. In a case where 

any synthetic working individual is not assigned a working MSOA zone due to the maximum 

capacity of workers to all potential destination levels from their origin being reached, it is 

considered that the individual works outside the area of study and will not be assigned any 

activity plan. 

The knowledge of the MSOA zones where the synthetic individuals work is not enough when 

the synthetic activity demand dataset is used in AgBMs. It is required to identify a specific 

building within the area with a working purpose (e.g., offices, factories) for more realistic and 

detailed results. OSM buildings (Geofabrik, 2023) were identified as workplaces using OSMOX 

(Arup, 2023), a tool developed by Arup CML that classifies buildings in different categories 

based on their tags (e.g., commercial, industrial, office, government, hospital, school, 

university and amenity). Complementary to this tool, a method that considers only those 

workplaces with a floor area greater than 15 square meters was developed within the thesis. 

Those buildings were assigned a maximum capacity attribute, which estimates the maximum 

number of employees depending on the floor area, number of floors and the density of 

workers per workplace type. The first two components are obtained or derived directly from 

the OSM buildings, while the third is obtained from the UK Employment Density Guide (UK 

Homes and Community Agency, 2015), where the employment density per square meter 

depending on the workplace purpose is estimated. This maximum capacity attribute allows 

synthetic employees to be assigned to buildings in the same MSOA zone randomly until the 

maximum capacity of a building is reached. In that case, that building is not considered for 

the remaining synthetic agents, which are forced to be allocated to any other building with 

capacity. The result is an uneven and realistic workplaces distribution, according only to the 

buildings’ characteristics and spatial location. 
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Educational places 

Educational facilities are those attended by synthetic students with educational activities in 

their daily plans. Depending on their age, the students are allowed to attend specific types of 

education facilities. Consequently, a methodological distinction was made in the way these 

locations were assigned, due to data limitations. Two different groups were considered: those 

below 16 years and those equal or above. 

Educational facilities in the area of study for those individuals aged 15 or below were 

identified using an open-access dataset provided by the UK Government (UK Government, 

2023b), where information about their status (open, closed), capacity and location (projected 

coordinates) are shown. 

The procedure to identify the educational facility for each synthetic individual was similar to 

the one followed before for the synthetic workers: calculating the road network distances 

between centroid areas (in this case using OA areas, smaller areas that can provide more 

accurate results). Within them, the school with the highest capacity is chosen, as those 

facilities are prioritised, considering them more important than smaller ones, due to the fact 

only a proportion of the individuals will be simulated in the AgBM. Once an educational facility 

reaches the maximum capacity, it is considered full and not available for the remaining 

students to be assigned an educational facility. In the case a student is not assigned any 

educational facility because there is none or all possible facilities are complete in its assigned 

area, the distance is iteratively increased until at least one facility is available. This procedure 

was also applied in Spooner et al. (2021). 

The remaining students are assigned only to college or university facilities, when aged up to 

17 or above 17, respectively. The followed procedure is a combination of the previous two. 

Firstly, educational facilities related to colleges or universities are identified applying OSMOX 

(Arup, 2023). Secondly, a maximum capacity attribute is calculated based on the same 

attributes as those considered for workplaces. Thirdly, road network distances between OA 

centroids are used to identify those potential facilities reached from their households. 

Similarly, as it was assumed for the youngest synthetic students, those facilities with the 

highest capacity value were chosen first. The procedure finishes when all students are 

assigned a location for their educational activity. 
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Remaining activities other than escorting (i.e., accompanying someone else)  

The locations for the remaining activities were firstly identified applying OSMOX (Arup, 2023) 

to OSM buildings (Geofabrik, 2023) and adding the supermarket locations from Geolytix 

(Geolytix, 2023). The classification of buildings in the activity categories was similar to that 

previously explained for workplaces and educational facilities for students older than 15 

years. The result was a set of buildings classified in one or more activities, depending on their 

characteristics (e.g., a shopping centre can be classified as ‘shop’, ‘leisure’ and ‘eat’). 

The location assignment to the synthetic individuals, based on their activity plans, was carried 

out applying concepts derived from spatial interaction modelling (SIM) techniques. This 

technique enables one to evaluate the demand of flows and movements (e.g., people, goods) 

between two locations in space (O’Kelly, 2019; Travel Forecasting Resources, 2023), which 

has been an important concept in the social sciences, specifically in geography, economics 

and sociology (Wilson, 1971). SIMs are usually the first two steps in the FSMs described 

previously in the literature, as spatial generation and trip distributions are estimated (Travel 

Forecasting Resources, 2023; Rodrigue, 2024). The assumptions made in the model to 

estimate the interactions (T) between an origin (i) and a destination (j) are a function of the 

attributes of the origin (Vi), the attributes of the destination (Wj) and a fraction of distance 

between the origin and destination (Sij) (Rodrigue, 2024) (equation 8).  

𝑇𝑖𝑗 = 𝑓(𝑉𝑖, 𝑊𝑗, 𝑆𝑖𝑗)  

Equation 8 Definition of the Spatial Interaction Modelling technique (Rodrigue, 2024). 

This assumption can be defined as the demand from the origin (i.e., the characteristics of the 

origin), the attractiveness of the destination (i.e., how attractive each area is for a specific 

activity), the competitiveness of the destination (i.e., how good the destination area is when 

compared against others), and the cost of travelling or accessibility between origin and 

destinations (i.e., the distance) (Wilson, 1971; Newing, 2018) (equation 9).  

𝑇𝑖𝑗 = 𝐷𝑒𝑚𝑎𝑛𝑑𝑖 ∗  𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑗 ∗ 𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑖𝑛𝑒𝑠𝑠𝑗 ∗  
1

𝐴𝑐𝑐𝑒𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑗
 

Equation 9 Spatial Interaction Modelling technique applying the demand, attractiveness, competitiveness and accessibility 
factors (Newing, 2018). 
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Some of these concepts were used to estimate the likelihood of individuals’ movements 

between areas when doing their activities. The translation of previous concepts to the 

developed methodology is as follows: 

The whole area of study was divided into zones: OA zones when distance travelled between 

consecutive activities is below 10 kilometres; and MSOA zones in the remaining cases. These 

zones identify the origin (the area where the individual is located during their previous 

activity) and potential destinations that the synthetic individual can reach within the distance 

provided by the activity plan (accessibility factor) for their next activity. For each potential 

destination zone, their attractiveness (i.e., the number of total facilities in the zone dedicated 

to the activity the synthetic individual has to do (e.g., food shop)) and the competitiveness 

(i.e., the total number of facilities in the zone) are calculated. Additionally, an extra 

accessibility component is included which considers the distance between the potential 

destination zone and the zone where the household of the synthetic individual is located. This 

last component is added to avoid the synthetic individuals choosing areas far from where they 

live, incentivising activities to happen close to their households. Each potential destination 

zone is assigned a selector factor (Tij) that identifies its likelihood of being selected. One of 

them is selected randomly based on their probability values (equation 10). 

𝑇𝑖𝑗 = 𝐴𝑡𝑡𝑟𝑎𝑐𝑡𝑖𝑣𝑒𝑛𝑒𝑠𝑠𝑖 ∗  𝐶𝑜𝑚𝑝𝑒𝑡𝑖𝑡𝑖𝑣𝑖𝑛𝑒𝑠𝑠𝑗 ∗  
1

𝐴𝑐𝑐𝑒𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦𝑖𝑗
∗  

1

𝐴𝑐𝑐𝑒𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦ℎ𝑜𝑢𝑠𝑒ℎ𝑜𝑙𝑑𝑗
 

Equation 10 Spatial Interaction Modelling technique applied in the methodology. 

Once a destination zone is selected, it is necessary to identify a specific building within it 

dedicated to the activity that the synthetic individual is undertaking (e.g., food shop). In this 

case, the specific facility is chosen based only on the competitiveness factor, considering the 

floor area of the amenity and the total number of amenities within 100 meters. These 

components try to identify those amenities that could attract more individuals based on their 

size and the possibility of doing more activities in the surrounding area. When all potential 

destination buildings where the activity can be done (food shop in the example) are identified, 

one is chosen randomly based on a probability value that considers the size and number of 

other facilities in the surrounding area. Figure 31 shows the procedure visually. The origin 

(blue dot), the household location (pink) and the potential destinations (yellow) are 
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highlighted (left); the chosen MSOA zone is identified (middle); the facility (red dot) within 

the MSOA zone is assigned (right). 

 

Figure 31 Visual representation of the SMI technique to identify the location of the next activity (OSM basemap). 

This procedure is followed for each activity in the activity plan that is not for work, education 

and escort, similarly as it was done by Spooner et al. (2021). 

 

Escorting (i.e., accompanying someone else)  

Escort activities refer to those activities that a synthetic individual does accompanying 

someone else from the same household (e.g., to work, to school, for shopping). In these cases, 

these individuals were assigned the same location as those individuals doing the 

complementary activity (e.g., work, education, shop). In the case that a synthetic individual 

with an escort activity is not associated with any other member of the household doing a 

complementary activity (due to a lack of trip sharing at household level in the activity plan), 

the individual is assigned another activity (e.g., leisure) that will be done alone. 

 

Table 4 summarises the characteristics of each trip in the activity plan of each agent within 

the synthetic population. 

Trip 

Column Comment Values 

Trip ID ID given to the trip Unique ID 

Day ID ID given to all trips 
made by an individual 
on a given travel day 

Day ID 

Individual ID Individual unique ID  NTS Individual ID 

Household ID Household unique ID  NTS Household ID 

Journey Sequence Journey number on a 
given travel day 

Numeric value starting at 1 
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Number of Stages Number of stages - 
actual number 

Numeric value starting at 1 

Main Mode Main mode of travel - 
grouped in 7 categories 

walk 
bike 
car 

car_passenger 
bus 

metro 
train 

Trip Purp To Trip purpose - grouped 
in 14 categories 

work 
education 
food_shop 

shop 
medical 

eat 
other 

lesiure_act 
lesiure_sport 

home 
escort_home 
escort_work 

escort_education 
escort_other 

Trip Start Trip start time - minutes 
past midnight 

0-1439 

Trip End Trip end time - minutes 
past midnight 

0-1439 

Trip Dist Trip distance in miles Numeric value stating from 0 

Trip Total Time Total trip time - minutes 0-1439 
Table 4 Description of the attribute names (first column), description (second) and expected values (third) of the activity 

plans assigned to the synthetic individuals. 

  

Once the activity plans of each synthetic individual contain all required information (i.e., 

starting time, purpose of trip, origin location, destination location and transport mode), it is 

required to identify only those synthetic individuals that interact at least once during their 

activity plans with the main urban area of the study area: the Tyne and Wear region. A 

selection of those individuals undertaking at least one activity within this area or passing 

through it was made. The reason for only considering these synthetic individuals is mainly 

because the project is focused on simulating mobility policies in the main urban areas within 

the area of study. The reduction of synthetic individuals in the simulation will allow simulating 

faster scenarios and with a larger sample. 
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After those synthetic individuals are identified, it is required to convert the file into a format 

that MATSim can use. This procedure was done using PAM (Arup, 2020), another open-source 

Python library developed by Arup CML that allows reading of synthetic travel demands and 

transforming them into new formats, validating and visualising the activity plans. Figure 32 

shows the representation of the activity plan assigned to a synthetic individual, while figure 

33 shows its geospatial representation. 

 

Figure 32 Visual representation of an activity plan assigned to a synthetic individual, using PAM. 

 

Figure 33 Geospatial representation of the activity plan assigned to a synthetic individual (OSM basemap). 

 

The output generated is an xml file (figure 34) containing all socio-demographic attributes 

and activity plans, divided in activities and legs, for each synthetic individual, structured and 

defined based on MATSim requirements. 
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Figure 34 Example of the synthetic travel demand of a specific synthetic individual in XML format. 

 

After applying the previously described methodology, the synthetic travel demand is ready 

for further processing in detail in MATSim. 

The effort put in to developing the code to transfer travel diaries to synthetic individuals 

based on common socio-demographic attributes makes it easy to apply it to other regions, in 

England or any other area with similar socio-demographic attributes. The main requirement 

to use the code is to get access to the travel diaries.  

Computational times, as described before for the synthetic population, vary depending on 

the number of synthetic individuals to be processed. In the case for the NE region, the 

assignment of activity plans took around a day. Then the identification of the activity locations 

took around 10 hours per activity type. 

 

3.4. Network 

Once the synthetic travel demand input dataset was generated, the other main component 

required to run transport AgBM simulations is the network, which can be defined as a digital 

geospatial representation of the road and public transport network used by the agents. 

The goal of this input data is to provide the agents with a built environment that allows them 

to move between activities. Its geospatial representation, combined with transport mobility 

characteristics (e.g., allowed modes, maximum speed), the existence of public transport 
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facilities (e.g., stops, routes and schedules) and other important characteristics of the 

environment (e.g., gradient), defines and constrains the routes followed by the agents when 

trying to reach their destination, following their activity plans. 

The methodology to generate a network is diverse and depends on the purpose of the model, 

although a minimum geospatial representation of the roads is required. In this specific case, 

the project aims to explore policies to reduce the use of private motor vehicles and incentivise 

the use of active modes. Consequently, a methodology focused on this last group is 

fundamental to simulate realistic mobility policies.  

 

Figure 35 Four main components included in the network. 

 

The network developed in this thesis contains four main components (figure 35): the 

geospatial representation of the road with an extensive variety of transport mobility 

characteristics (blue); the public transport information (orange); the road gradient (green); 

and a road cycling rating value that classifies each road for cycling, depending on its built 

characteristics (yellow).  

 

3.4.1. Geospatial representation 

The first component consists of OSM data, obtained from Geofabrik (2023), a free 

downloading server that extracts daily updated OSM data (i.e., lines, multilinestrings, 

multipolygons, points) from any region in the world. A data cleaning process was required to 

keep only the road and public transport networks within the study area, which is achieved 

using the Osmium tool (Osmium, 2023), a multipurpose command line tool that enables OSM 

data manipulation. This tool was used to filter those relevant features (i.e., roads and public 

networks) and remove all unnecessary information (e.g., buildings, points of interest). This 

information is relevant to identify transport mobility characteristics of the network, 
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identifying the agents that will be able to use them, as well as the way they are used (e.g., 

speed), depending on the transport mode used. 

The procedure of developing the geospatial network dataset was done in two stages: firstly, 

creating a dataset containing all roads within the Tyne and Wear region (i.e., the main area of 

study in this thesis); secondly, creating a second dataset containing only the major roads from 

the NE region in England (the whole area considered when developing the synthetic travel 

demand). The reasons for applying this two-step procedure are mainly two. Firstly, although 

the synthetic travel demand generated in the previous chapter covers the whole NE region, 

the area of interest in this research is Tyne and Wear, the main urban conurbation within the 

region. To simulate realistic urban mobility policies within this urban zone, only the agents 

living within and in the surrounding areas interacting with the Tyne and Wear region were 

considered, while those agents not interacting at any time with the zone were not considered. 

Consequently, only main roads connecting Tyne and Wear with the surrounding towns and 

cities were required. Secondly, the reduction in road network complexity and quantity 

reduces computational time during the simulation stage. 

 

 

Figure 36 Geospatial representation of the OSM road network in the NE of England (left) and a detailed area of the city 
centres of Newcastle upon Tyne and Gateshead (right). 
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Both datasets were merged using Osmium (Osmium, 2023), obtaining a single OSM file 

covering the whole area of the NE. The result is a set of links (line segments) and nodes 

(starting and ending points of each link) of the whole study area. Figure 36 shows the 

geospatial representation of the network developed, showing the whole area (left) of the NE 

(green) and the Tyne and Wear region (red), and a detailed representation of the urban 

network at a higher scale (right). In total, 319,845 links defined the study area. 

 

3.4.2. Public transport 

The second component, the public transport information, describes the spatio-temporal 

characteristics (e.g., their routes, stops, calendar and schedules) of the different public modes 

in the NE (i.e., bus, rail, light rail and ferry). 

This information was collected from open-access sources in the General Transit Feed 

Specification (GTFS) format. Rail data was obtained from the Rail Delivery Group (2023), while 

for the other public modes data came from Traveline (2023). Both GTFS datasets were 

merged, clipped to the area of study and cleaned of errors, using UK2GTFS (University of 

Leeds, 2022), an R package to convert and work with public transport data. The result was a 

set of text files containing information about the stop locations, routes, trips, stop times, 

calendar, calendar dates and agencies, covering the whole NE. 

This combined public transport GTFS dataset was merged with the road network created 

before, using PUMA (Arup, 2022b). The result was a set of XML files that define the road and 

public transport network (network.xml), the public transport schedules (schedule.xml) and 

the public transport vehicles’ characteristics (vehicles.xml). Despite having a standard and 

open-access tool to accomplish this goal (e.g., PT2MATSIM (Poletti, 2017)), an alternative and 

not open-source tool was used (PUMA (Arup, 2022b)), as a result of an established 

collaboration with Arup CML. Mentoring support and the use of this tool was allowed in this 

thesis in exchange for feedback.  
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Figure 37 Detailed representation of the public transport routes in urban areas of Newcastle upon Tyne and Gateshead 
(OSM basemap). 

Additionally, the network was simplified by removing unnecessary intermediate nodes using 

open-source GeNET (Arup, 2022a; Kozlowska et al., 2023), another tool developed by Arup. 

The network file was used as the unique input data, obtaining a lighter file as output (59% 

size reduction), allowing faster simulations. Figure 37 shows a detailed representation of 

some public transport routes (bus (blue), rail (orange) and light rail (purple)) in areas of 

Newcastle upon Tyne and Gateshead.  

 

3.4.3. Road gradient 

Beyond road and public transport networks, additional information is required to understand, 

simulate and estimate human mobility patterns, especially when active modes are expected 

to play a fundamental role. One of them is the gradient, which provides information about 

the steepness along the links. This value is important for active modes, as physical activity is 

required when walking and cycling. The existence of steep zones could reduce the 

attractiveness of these modes and its consideration when simulating active travel routes must 
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be a critical factor, especially for cycling. The addition of the gradient allows conversion of a 

flat network into a 2.5D network. 

 

Figure 38 Geospatial representation of the generated DEM in a detailed area of the study area. Public transport networks 
(orange and purple lines) were added for context. 

Gradient values were derived from digital elevation models (DEMs), quantitative 

representations of the Earth’s surface that provide basic information about the terrain relief 

(Mukherjee et al., 2012; Guth, 2013). DEFRA (2023) allows downloading data of the UK up to 

1-metre resolution, while de Ferranti and Hormann (2023) of any region in the world up to 1 

second of arc. For the purpose of this thesis, both DEMs were used. A 2-meter resolution DEM 

from the former covering the Tyne and Wear region was generated, while the remaining area 

of study used the 1-second of arc resolution from the latter. The reason for using initially 

different spatial resolutions was to simplify and reduce the file size and time needed to 

generate a very detailed DEM covering the whole study area. It was assumed that the majority 

of the active trips will be made within the urban area and those agents travelling from the 

surrounding areas will use either cars or public modes. In order to have a single DEM covering 

the whole study area, the files’ resolutions were resampled to 10-metre and merged using 

QGIS (QGIS Development Team, 2023), making the final file manageable in terms of size and 
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computational time. Figure 38 shows a detailed representation of the created DEM 

categorised in different colours based on the elevation value (dark values for low elevations 

and light for high elevations). Additionally, the rail (orange) and light rail (purple) networks 

were included in the area shown to add geospatial context.  

The generated DEM was used to add the elevation (Z value) to each node and the gradient to 

each link in the network. GeNET (Arup, 2022a; Kozlowska et al., 2023) was applied as well for 

this purpose, where the network, the DEM, a specific projected coordinate system code 

(EPSG) and the null value used in the DEM were considered as input data, obtaining a single 

network file as output. 

Even though the quietness attribute calculated by CycleStreets includes an incline factor when 

rating links, it was decided to consider a more detailed external attribute using another DEM. 

Based on documentation from CycleStreets, the incline value was calculated using a 90-metre 

resolution DEM from NASA (Cyclestreets, 2022b). For the purpose of this thesis, the DEM 

resolution was considered insufficient as the steepness in urban areas could be 

underrepresented, as links below 90 metres would be treated as flat. Consequently, a more 

detailed DEM was used to resolve this issue. 

 

3.4.4. Cycleability rating or quietness 

Besides the knowledge of the gradient, it is important to identify roads’ quality for cycling. 

This is a critical factor to consider when trying to incentivise the use of the bicycle within the 

population, as it is related to real and perceived safety. A road with a good cycling quality 

(e.g., segregated cycle paths) could attract new cyclists, while the opposite (e.g., roads shared 

with vehicles at high speed) could disincentivise them. Research made by Morrison et al. 

(2019) indicates that segregated cycle paths reduce real and perceived risks for cyclists and 

contribute to greater cycling participation. Additionally, Wegman et al. (2012) highlight the 

fact that the modern traffic system is designed largely from a car-user perspective, leaving 

cyclists relegated to the background, with the consequent high vulnerability of cyclists when 

sharing roads with motor vehicles, which could affect the transport choice between the use 

of a bicycle or any other mode.  
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Figure 39 Geospatial classification of the cycleability rating or quietness of several roads in the city centres of Newcastle 
upon Tyne and Gateshead (OSM basemap). 

Figure 39 shows the roads in areas of Newcastle upon Tyne and Gateshead, classified based 

on their quietness value, ranking from 0% (red) to 100% (green). It can be observed that most 

areas have a low value (i.e., below 50%), with exceptions where segregated cycle paths are 

built (e.g., along the river Tyne, as part of the National Cycle Network). Unfortunately, similar 

information for walking was not found. 

Characteristics of the built environment (e.g., the existence of fully segregated cycle paths, 

the type of road, surface type, road quality and width) are key factors that could make the 

difference when choosing a cycling route, but also the use of an alternative transport mode 

in detriment of cycling. CycleStreets, a social enterprise keen on getting more people cycling, 

develops tools and datasets to improve and increase knowledge about cycling in the UK. One 

of their outcomes is a cycling road classifier, named cycleability rating or quietness 

(Cyclestreets, 2022a). A self-developed algorithm (Cyclestreets, 2022b) ranks roads as a 

percentage score depending on their built environment characteristics (e.g. road type, length, 



114 
 

width, quality, surface, the existence of segregated cycle paths, barriers, kerbs, crossings and 

junctions, inclines), using OSM data and other sources.  

 

Based on CycleStreets, the road type (e.g., major road, minor road) is the foundation attribute 

within the algorithm, while the remaining attributes increase or decrease the value when 

favouring or harming the use of the bicycle, respectively. Due to the proprietary nature of the 

original CycleStreets data, the full methodology for the development of this rating is not 

available. Examples of attributes that benefit cycling are the existence of at least 2-metre 

wide cycle paths, signed routes and paved surfaces (e.g., asphalt), whereas the existence of 

narrow cycle lanes (e.g., less than 1-metre), kerbs, inclines and traffic signals that delay the 

journey could penalise it. 

In order to identify which attribute values are associated with high cycleability rating scores, 

several OSM attributes were analysed by comparing the cycleability score for each OSM road 

type. In terms of road type (figure 40), it was reaffirmed that segregated cycle paths achieve 

the highest average value (87), followed by living streets (85), pedestrianised areas (74), 

tracks (52) and residential streets (44). The worst types are major roads (21) and trunk roads 

(5), as in these types of roads are primarily focused on motor vehicles, with (normally) limited 

space and consideration for cyclists. 

 

Figure 40 Quietness attribute values depending on the road type. 
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The analysis of cycle lane width could confirm that narrow cycle lanes penalise the cycleability 

rating, while those with at least 2.5 meters reach a high value, as shown in figure 41. 

 

Figure 41 Quietness attribute values depending on road lanes’ width. 

In the case of surface types (figure 42), regular and compacted (e.g., sett, compacted, 

concrete, asphalt and paved) obtain the highest values (60-51). Irregular and paved surfaces 

(e.g., bricks, gravel, wood, metal and cobblestone) can be classified in a second group (40-29). 

The last and worst group is formed by unpaved or natural surfaces (e.g., unpaved, ground, 

grass and earth).  

 

Figure 42 Quietness attribute values depending on surface type. 

 

Figure 43 Quietness attribute values depending on the number of lanes. 
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The number of lanes also affects the quietness attribute (figure 43). This value is inversely 

proportional to the number of lanes, as roads with just one lane obtains double value than 

those with two lanes, and four times than those with three lines. 

 

The analysis of allowed modes (figure 44) shows that the highest value is achieved in 

segregated cycle lanes (87); this is similar in the road type analysis. Secondly, an intermediate 

group where active modes (41) only and all modes (39) are allowed, while the worst case is 

where pedestrians are not allowed (27), indicating the limited space the bicycles have in these 

areas. 

 

Figure 44 Quietness attribute values depending on allowed transport modes in roads 

 

Lastly, the maximum allowed speed (figure 45) also affects the quietness attribute, as low 

speed roads (up to 20 km per hour) reach much higher values (44) than those where the 

maximum speed in higher (17). The built environment characteristics of the first group attract 

the use of bicycles, while the second restrict them. 

 

Figure 45 Quietness attribute values depending on the road maximum speed. 
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To sum up, these attributes allow quantification of how good roads are for cycling, providing 

a numeric value about how attractive they are for cyclists, based on their built environmental 

characteristics. Segregated cycle paths and slow roads (up to 20 km/h) with one lane per 

direction and at least 2.5m cycle line width are the type of roads with the highest quietness 

index, and therefore, the most cycling-friendly. This cycleability rating value is a very valuable 

factor to consider, as a more realistic simulation of the cycling individuals can be obtained. 

This information was transferred into the network generated previously, by matching links 

with the same OSM identifier. The estimated time to transfer the quietness  attribute to the 

network in the study area was around 10 hours, as individual matches between links from the 

OSM network generated in section 3.4.1 and the data collected from CycleStreets were 

required. 

 

The output datasets obtained after generating the network (i.e., network, schedules and 

vehicles) were validated at different stages. Firstly, PUMA (Arup, 2022b) provides warnings 

and errors when merging the OSM road network with the GFTS public transport datasets. 

Several corrections in terms of public transport travel directions and times, besides self-

developed artificial links to connect incorrect bus routes to the road network, among others, 

were highlighted as improvements for a fully connected public transport network. Secondly, 

the road network was validated visually using QGIS (QGIS Development Team, 2023), 

identifying wrong road directions, flow capacity or speed values, among others, as OSM 

volunteers digitised this information, and errors are expected. Thirdly, the network was 

improved during the simulation calibration stage, as the possibility of visual checking of the 

results obtained after each simulation using Simunto Via (Senozon AG, 2018) allowed the 

identification of wrong transport behaviours in different zones of the study area (e.g., 

unexpected car congestion, wrong vehicle direction, unrealistic speeds and wrong allowed 

transport modes to use the roads). Further details are explained in section 3.7.1, dedicated 

to the MATSim calibration. 
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3.5. MATSim configuration 

Module name Comment Source 

Global 
 
 
 
 

Module that defines the coordinate reference 
system, number of threads and random seed 

(Horni et al., 2016) 

Network Module that identifies the directory location for 
the network.xml file 

(Horni et al., 2016) 

Plans Module that identifies the directory location for 
the synthetic travel demand file 

(Horni et al., 2016) 

Vehicles Module that identifies the directory location for 
the vehicles.xml file 

(Horni et al., 2016) 

Transit Module that defines public transport modes, 
besides providing directory locations for 

schedules.xml file 

(Horni et al., 2016) 

Qsim Module that identifies the mobility simulation 
controller used, besides the number of iterations, 
output formats and the interval when outputs are 

generated 

(Gawron, 1998; 
Simon, 1999; Cetin 

et al., 2003; 
Dobler, 2010; 

Dobler and 
Axhausen, 2011; 

Horni et al., 2016) 

SwissRailRaptor A fast public transport router module (Horni et al., 2016; 
Swiss Federal 

Railway, 2020) 

SBBPt Module to simulate public transports as 
deterministic modes 

(Horni et al., 2016; 
Swiss Federal 

Railway, 2020) 

Bicycle Module that defines the characteristics cyclists 
consider when choosing the route 

(Horni et al. , 2016; 
Ziemke et al., 

2017) 

Planscalcroute Module that defines teleported modes (Horni et al., 2016) 

Counts Module that calculates the vehicle (e.g., cars, 
bikes) counts in specific links and compares those 

against real data provided by the user. 

(Horni, 2007; Horni 
et al., 2016) 

LinkStats Module that calculates statistics of vehicles by link 
in the network 

(Horni et al., 2016) 

PlanCalcScore Module that defines parameters used for scoring 
(activities and trips depending on transport mode) 

(Horni et al., 2016) 

Strategy Module that defines a set of weighted strategies (Horni et al., 2016) 

TimeAllocation 
Mutator 

Module that defines the strategy when agents are 
allowed to modify their activity times 

(Horni et al., 2016) 

SubtourMode 
Choice 

Module that defines the strategy when agents are 
allowed to change routes 

(Horni et al., 2016) 

Table 5 Modules used to calibrate the MATSim model. 
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Besides the development of the two main input datasets (i.e., synthetic travel demand and 

network), the definition of a config file is required to run the model and start the co-

evolutionary framework (see section 3.2).  

This is a structured XML file, used as the nexus between the input datasets and the simulation 

tool, also including other modules that define how the scenarios are simulated (e.g., the 

number of iterations, the simulator, the strategies that the agents can adopt through the co-

evolutionary algorithm, counts). There is a wide variety of modules that can be used in 

MATSim, with the majority already being within the tool, while others need to be 

incorporated (e.g., bicycle contributions). Table 5 identifies the modules applied in this thesis. 

 

3.6. MATSim bicycle contribution update 

As shown in table 5, the bicycle contribution was considered in the simulations. This is an 

extension developed by Ziemke et al. (2017), where a set of characteristics from the built 

environment (e.g., road type, surface quality, gradient and the existence of cycle paths) are 

considered by cyclists when choosing the route. This is a valuable tool to simulate realistic 

cyclists’ mobility patterns as bicycles were simulated as cars, teleported or even not included 

within the scenarios before its development. 

These characteristics are fundamental factors to consider when cycling, as physical effort 

required when riding, in opposition to other vehicle types (e.g., cars, public transports). 

Research has found that characteristics such as slopes (Menghini et al., 2010; Hood et al., 

2011; Li et al., 2012), pavement surface conditions and smoothness (Landis et al., 1997; Hölzel 

et al., 2012; Milakis and Athanasopoulos, 2014), and the existence of continuous cycle paths 

(Sener et al., 2009; Li et al., 2012) are important factors that influence the use of bicycles. 

Therefore, their consideration in transport simulations is essential to simulate realistic 

scenarios where cycling is a predominant objective to be achieved. 

Ziemke et al. (2017) identify two open-access input datasets to collect these characteristics. 

The existence of cycle paths, types of roads and surface quality attributes can be obtained 

from OSM tags, while gradients can be obtained from DEMs (e.g., European DEM (EU-DEM) 

(European Environment Agency, 2023a) at 25-metre resolution). For the purpose of this 
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research, different input datasets were considered, as better quality and quantity attributes 

were found for the study area, as described in section 3.4. Firstly, a very detailed attribute 

rating roads for cycling based on their built environment characteristics (quietness), was 

obtained from CycleStreets (Cyclestreets, 2022a). Secondly, a 10-metre resolution DEM was 

generated using data from DEFRA (DEFRA, 2023) and viewfinderpanorama (de Ferranti and 

Hormann, 2023). 

The use of a different attribute (i.e., quietness) instead of the original OSM tags required a 

code update. A new marginal utility of quietness (βquietness (a)) was included in the code, 

similar to those generated for the comfort and infrastructure attributes in the original code. 

The effectively used marginal utility of quietness for a link a is computed as follows (equation 

11): 

𝛽𝑞𝑢𝑖𝑒𝑡𝑛𝑒𝑠𝑠 (𝑎) =  𝛽max 𝑞𝑢𝑖𝑒𝑡𝑛𝑒𝑠𝑠 (𝑎) ∗ (1 − 𝑞𝑢𝑖𝑒𝑡𝑛𝑒𝑠𝑠(𝑎)) 

Equation 11 Marginal utility of quietness. 

 

Where 𝛽max 𝑞𝑢𝑖𝑒𝑡𝑛𝑒𝑠𝑠 (𝑎) is always 1.0 and 𝑞𝑢𝑖𝑒𝑡𝑛𝑒𝑠𝑠(𝑎) is the quietness value of each link 

divided by 100 (i.e., quietness values used in the equation range between 0 and 1).  

This code improvement was developed in collaboration with Dr Ziemke, the main developer 

of the extension, during a three-month secondment at TU-Dresden (Germany). The input 

datasets (quietness and gradient attributes) were prepared by the author in the format 

required by MATSim, while Dr Ziemke was focused on the code-development. The 

methodology followed to generate the code based on the input datasets was done jointly. 

This engagement with an international University allowed for the possibility of simulating a 

more realistic cycling behaviour in areas of England. 

 

An updated version of the MATSim tool was released (15.0-PR2396), which can be used by 

anyone having the quietness attribute or any other similar where a set of characteristics of 

the built environment for cycling are considered. 
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3.7. MATSim model 

Once the config file is populated with the relevant modules and directory locations of each 

required input dataset, MATSim scenarios can be simulated. After that, the very first results 

are obtained. Initially, the achieved results are not representative of any normal mobility in 

the study area, as the scenario needs to be calibrated and validated. 

 

Figure 46 Relationship between calibration and validation stages. 

 

Calibration and validation are fundamental stages when developing any model. Although 

these two concepts are sometimes not considered, confused or treated as equivalents (as 

described in the literature review (see section 2.6), they have different purposes, as shown in 

figure 46. The first consist of manipulating the set of parameters included in the config file 

that defines how the simulations are run. The goal is to adapt them until simulation results 

achieved are similar to the baseline scenario, (i.e., the normal mobility during a working 

weekday in the study area). The second consists of verifying if the achieved simulation results 

are representative of the baseline scenario, by comparing results against official datasets 

(e.g., NTS statistic and vehicle counts in different zones in the study area). Both stages are 

interconnected and perform an iterative loop that ends when the validation stage verifies 

that the simulation results are representative of the base-case scenario. 
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3.7.1. MATSim calibration 

The MATSim model was calibrated at different paces and stages followed a trial-and-error 

procedure as this is an iterative process where many modules and parameters interact and 

are conditioned between them. The model was initialised with the minimum required 

modules and with a ridiculously small population sample (i.e., 1%), to know if the input 

datasets were in the correct format and structure. Once this first step was accomplished, 

other modules were included gradually (e.g., modules to route public modes, bicycle 

extension, vehicle counts, link statistics). After all required modules were working correctly 

together, the population size was increased and results were analysed in more detail, 

comparing them against official mobility datasets. Based on the initial results, updates on the 

network (e.g., speed reduction in urban areas, flow capacity increases in short links), transport 

mode parameters (e.g., alternative-specific constants (ASC)) and strategies (i.e., reroute, 

change transport mode, modify activity times) were applied until transport mode distribution 

and average score value reached equilibrium. As can be observed in table 6, the model was 

calibrated with a 20% population sample, running 1,500 iterations using the Qsim controller, 

MATSim’s default mobility simulator module. Although there is currently a faster mobility 

simulator module (Hermes (Graur et al., 2021)), this was discarded due to incompatibilities 

with the updated bicycle extension used.  

Eight different transport modes were allowed to be used by the agents, although the use of 

cars as drivers was restricted to only those agents with access to a car in the household, based 

on their socio-demographic attributes (car_Access = True). This constraint prevents agents 

without access to a car from using them (especially children), providing a more realistic vision 

of drivers derived from the internally validated synthetic population, where attributes 

considering the number of cars in household and the possibility of holding a driving licence 

were generated. 

Public transport modes were simulated as deterministic modes (i.e., they are not part of the 

road traffic, being only constrained by their schedules, routes and stops), their maximum 

capacities were not considered, and economic cost was not applied when using them. These 

three assumptions made public transport more attractive than other modes (especially 

slower modes), as they cannot be stuck in congestion, there is not any limit in the number of 

passengers in each vehicle and agents do not have any economic cost when using them. 
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Parameter Value, constraint and assumptions 

Population sample   
20% of those agents interacting with the Tyne and Wear region 
within the NE of England 

Number of 
iterations 

  1500 

Controller   Qsim 

Transport modes   
car, car passenger, bike, walk, public transport (bus, rail, metro, 
ferry) 

Cars 

  
Only those agents with access to cars in their socio-demographic 
attributes (car_Access = True) were allowed to use the car in the 
simulation (considerCarAvailability (true)). 

  
Cars were allowed to overtake bicycles while the opposite was 
enabled (linkDynamics = PassingQ) 

Public transport 

  Simulated as deterministic (modules SBBPT and SwissRailRaptor). 

  
Maximum vehicle capacity was not considered 
(useCapacityConstraints = false),  

  Economic cost was not considered 
  Access and egress to public stops allowed on foot and by bicycle. 

Bicycle   
Updated bicycle extension enabled where road gradient and 
quietness attributes are considered when choosing a route. 
Marginal utility of gradient (-0.02) and quietness (-0.035) values. 

Walking   Simulated as teleported mode.  

Strategies 

  Reroute (0.1) 

  TimeAllocatorMutator (0.1) 

  SubtourModeChoice (0.1) 

  ChangeExpBeta (0.7) 

Strategy criteria    80% of all iterations 

Network 

  
Road speed in urban areas reduce to half, assuming the effects of 
traffic lights and intersections. 

  
Road capacity increased in short links (< 50m) to avoid unrealistic 
traffic congestion 

Transport ASC 

  car: -0.37 

  car passenger: -1.7 

  bike: -1.1 

  walk: 0.0 

  bus: -7.2 

  rail: -0.001 

  metro: -0.001 

  ferry: -0.001 
Table 6 MATSim calibration values. 

Although these three assumptions are not realistic, they were considered because public 

modes are not the main purpose of the analysis, besides knowing that in the study area, there 

is not important traffic congestion, and every public mode has always enough room for any 
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individual that wants to use them. In terms of the economic cost (i.e., ticket price), it was 

assumed to be covered by the ASC value applied to each mode. Beyond the above, the 

decision was also supported by the computational complexity and excessive time required in 

case they were simulated in greater detail (i.e., stochastically). Additionally, access and egress 

to the stations were only allowed on foot and by bicycle as the possibility of adding other 

modes (e.g., cars as driver or passenger) was not allowed within the code, as unexpected code 

crashes were experienced. Although the bug was raised with the MATSim community, no 

solution was obtained, and it was decided to leave this issue for future work. Despite the 

previous assumptions, the calibration ensures that the mode split for public transport reflects 

reality. 

Unlike the use of cars, the use of bicycles was not restricted to only those agents with access 

to a bicycle in the household, based on their socio-demographic attributes (i.e., bike_access 

= True), as this possibility is not currently available within MATSim. Consequently, it was 

assumed that anyone could use them, since the main barrier for owning a bicycle could be 

the need to buy one, which should not involve a large financial outlay and be within the reach 

of almost the entire population.  

The walking mode was teleported. Even though increasing the use of this mode is considered 

one of the key objectives when applying urban mobility policies to reduce the use of private 

cars, the resources and datasets available to simulate it with reasonable accuracy are limited. 

In contrast to the case of cycling, the existence of a dataset with road walkability ratings and 

a tool to simulate the spatial mobility considering at least the road gradient have not been 

developed and/or found during the development of this thesis. The alternative was to 

calculate the Euclidean distances between origin and destination locations, multiplying them 

by 1.3 to consider potential detours within the route, which is the common procedure in 

MATSim. This solution has the positive aspect that allows reducing simulation computational 

time, as simpler routes and faster calculations are made. Another drawback considered when 

agents walk is the assumption that all the agents have the same abilities to walk (as when 

cycling), which is an unrealistic view of the world. This is a limitation the developed model has 

due to the lack of an attribute that classifies synthetic individuals in terms of mobility 

conditions (e.g., very good, good, bad and very bad mobility).  
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Regarding the strategies (i.e., the different possibilities agents have to modify their plans and 

improve their daily score after each iteration), four different types were established:  

 10% of the agents were allowed to change the route of any of their trips.  

 10% could alter the departure time of activities.  

 10% allowed to change the transport mode.  

 The remaining percentage of agents chose an already simulated plan from their 

memory.  

These strategies were applied to the first 80% of the iterations, considering only the last one 

for the remaining 20%. These allow the agents to learn through the iterations, as they are 

exposed to different experiences, being able to keep in memory (up to a maximum of five) 

those that increase their score and delete those that achieve a low score value. The 

percentages used were obtained after several trial-and-error phases and based on 

experiences from other researchers consulted.  

Different ASC values were tested for each transport mode. These parameters were the most 

modified during the calibration stage in a trial-and-error process, as they define the 

attractiveness the synthetic agents have for each transport mode. The lowest value was 

assigned to the buses, as this mode was simulated as deterministic, being very attractive for 

the agents, due to the number of services and routes available, contrary to the other public 

transport modes. The second lowest value was assigned to car passengers, as it was the faster 

mode available to any agent in the simulation, contrary to car drivers, as only a small 

proportion of them were allowed to drive (i.e., based on the ‘car access’ socio-demographic 

attribute). Cycling ASC value was allocated between the previous values, while walking ASC 

value was set to 0, as it is the case in most MATSim models (e.g., Ziemke (2022)). 

 

As highlighted in section 3.4, the developed network required extra calibration stages to 

simulate realistic travel times and routes. Two interventions were the most important: the 

maximum speed in urban areas (i.e., those links which maximum speed was up to 50 km/h) 

was reduced to half in order to account for the effects of traffic lights and intersections; and 

the flow capacity value in short links (i.e., those below 50 metres) was duplicated to avoid 

unrealistic traffic congestion. These two interventions allowed achievement of more realistic 
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average trip times in the different transport modes simulated as stochastic (e.g., cars and 

bicycles), as well as the removal of very congested unexpected areas (e.g., roundabouts and 

very short links). 

 

The computer used to calibrate and validate the baseline scenario, as well as different 

scenarios, has the following characteristics: 

 Model: 11th Gen Intel(R) Core (TM) i9-11900KF @ 3.50GHz 

 System: x86_64 x86_64 GNU/Linux 

 Number of CPUs: 16 

MATSim version used: 15.0-PR2396 

Time required to simulate the baseline scenario (1500 iterations): 4 days and 6 hours. 

 

3.7.2. MATSim validation 

The validation stage is not an easy, standardised and structured process, as described in the 

literature review. There is not any specific methodology to follow, as it depends on the 

purpose and objectives of the model. This section describes the validation stages followed 

when aggregated values from the calibrated MATSim model were compared to external 

datasets from NTS, UK 2011 census, Traffic and Accident Data Unit (TADU) and stakeholders’ 

advice. Six different validations were made:  

 Modal split 

 Vehicles counts 

 Average trip distances and times by mode 

 Percentage of commuting trips per range of age 

 Bicycle routing 

 Percentage of active travel trips below five kilometres 
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Modal split 

Modal split is considered as the point of reference in calibration (Ziemke, 2022), accounting 

for the percentages of all trips made by different transport modes. Despite the existence of 

several official datasets containing information for different spatial distributions (e.g., 

national, regional), no specific dataset focused on the study area was found (i.e., individuals 

living in the NE of England and only interacting with the Tyne and Wear region), where all 

types of trip purposes were considered.  

Therefore, national and regional statistics, and expert advice were considered to estimate the 

modal split. The 2011 UK census provides information about the method of travel to work per 

region (ONS, 2011e), while the NTS provides information about the methods of travel to work 

by region of residence (DfT, 2023d) and workplace (DfT, 2023e) from 2002 for each year. 

Additionally, the UK Government provides information about the modes of travel to school 

of individuals aged between 5 and 16 years in England between 2015 and 2019 (UK 

Government, 2023c). A combined analysis of these datasets allowed estimation of modal 

splits for working and educational trip purposes respectively, but the remaining trip purposes 

were unknown. To cover this gap of information, advice was requested from stakeholders 

involved in transport mobility, public transport analysis and consulting. Several discussions 

were established with Nexus, Transport North East, Arup CML and Newcastle University 

researchers.  

Based on the dataset and knowledge collected, an iterative process to estimate the modal 

split for all trip purposes was established. This process was validated from several 

perspectives. Firstly, split modes of commuting trips and trips to school were compared 

against previous highlighted official statistics. Differences found between simulated results 

and the official statistics were used to adapt the ASC value of each transport mode, with the 

commuting trip values being more relevant, as they belong to the Tyne and Wear region 

during 2019, while the others are national values in a five-year range. Secondly, vehicles en-

route were considered. Differences between the percentages of simulated cars per hour and 

those obtained at national scale from NTS (NTS, 2023c) allowed identification of the 

estimated proportion of cars to be expected, varying the cars’ ASC values consequently to 

reach a more accurate percentage of trips (for all kinds of purpose) made by car. 
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Vehicle counts 

The spatio-temporal distribution of vehicles in the study area is also an important factor to 

consider when validating a transport AgBM model, as both space and time are key 

components in transport mobility. The percentage of vehicles en-route per hour was 

compared against NTS values for England during 2019 (NTS, 2023c), while vehicle counts in 

different zones of the study area were compared with official counts (Gateshead Council, 

2023), per hour and aggregated per day. 

 

Average trip distances and time by transport mode 

Two other fundamental components in transport mobility are associated with average trip 

distances and times by transport mode, as this information provides insight about the general 

mobility in the study area. Obtained average values by transport mode were compared with 

observed average distances (NTS, 2023d) and times (NTS, 2023b), at regional and national 

scales, respectively. Additionally, verifications of individual trips made by car and bicycle were 

compared with routes calculated by Google Maps (Google, 2024). 

 

Percentage of commuting trips per range of distance 

Beyond the validation of global average trip distances by mode, commuting trips were 

individually analysed to identify whether the workplace trips are geospatially distributed, 

based on their distances, in the study area. The percentage of simulated commuting trips per 

range of distance was compared with national statistics (ONS, 2023b). 

 

Bicycle routing and counts 

The use of bicycles is an important component in this thesis and its understanding is 

fundamental to simulate realistic scenarios to increase the number of cyclists on the roads.  

The routes followed by cyclists were considered validated when routes followed avoided 

steep roads and used existing cycle paths, when possible. Parameters from the updated 

bicycle extension (i.e., gradient and quietness) were calibrated to achieve this goal. Several 
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routes were analysed by cyclists from the study area with different backgrounds and 

experiences to determine if the behaviours simulated were realistic.  

 

Active travel trips 

The validation of the number of active travel trips is another milestone in this thesis, as the 

aim is to test different urban mobility policies to increase the use of active modes, starting 

from a realistic baseline.  

The percentage of simulated short trips was compared with the ATE baseline, which has 

identified that 41% of short trips (i.e., below five miles) in urban areas were walked or cycled 

in 2018 to 2019 (ATE, 2023b). 

 

3.8. Urban mobility scenarios 

Once the MATSim model was validated, the baseline scenario for the study area was defined 

and ready to be used to test the effectiveness of several urban mobility policies. All previous 

efforts made were required to develop a realistic and representative geospatial and temporal 

transport model of the Tyne and Wear region. This section focuses on the definition and 

development of a set of diverse urban mobility policy scenarios aiming to shift journeys to 

active travel to reduce GHG emissions.  

Kuss and Nicholas (2022) identified seven effective interventions to reduce the use of cars in 

urban areas and support climate goals, after screening almost 800 per-reviewed studies and 

case studies from 2010. These categories are charging and pricing (Börjesson and 

Kristoffersson, 2015; Beria, 2016; Metz, 2018; Dale et al., 2019), time dependent access 

limitations (DeRobertis et al., 2016), parking and traffic control (European Commission, 2024), 

mobility services for commuters (Nassisi et al., 2013; European Commission, 2019), integrated 

car-sharing plans (Fred Dotter, 2015; Glotz-Richter, 2016), travel planning (Cairns et al., 2010; 

Civitas, 2013; Bamberg and Rees, 2017), and gamification process to promote sustainable 

mobility (Giarandoni et al., 2018). Within them, it was observed that the most studied 

categories were charging and pricing, and travel planning, although all interventions analysed 

consider multiple measures (e.g., cycle paths, awareness campaigns, funding for public 
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transport, car-sharing schemes), the most effective being those including congestion charge, 

parking and traffic control, and limited traffic zone measures. Despite these measures and 

results, the understanding process of the applied policies is still under investigation (Kuss and 

Nicholas, 2022) and further research is needed. 

 

The objective in this section is to define and develop urban mobility policy scenarios to 

estimate their efficiency in reducing the number of private and polluting vehicles on the roads 

by favouring the use of active travel modes or penalising the use of the former. 

 

3.8.1. Definition of scenarios 

Based on the literature and the expected actions to be developed by ATE to reach a 50% 

target of short trips in urban areas using active modes by 2030, five individual and a set of 

combined policy scenarios were defined, where ‘stick’ and ‘carrot’ or ‘pull’ and ‘push’ 

measures are applied. Some of the measures are focused on the first, others on the second, 

while another group in both.  

 

Scenario 1: Fully segregated cycle paths 

The implementation of fully segregated and safe cycle paths are two of the most common 

responses by individuals in England when asked about things that would encourage them to 

cycle more, even if their implementation reduced the road space for cars (DfT, 2021b). The 

scientific evidence supports the concept that cyclists prefer continuous cycling infrastructure 

(Sener et al., 2009; Li et al., 2012; Ziemke et al., 2017). 

In this context, the development of a fully segregated cycle network in Seville (Spain) was 

analysed by Marqués et al. (2015). The results showed that a connected, continuous, bi-

directional and comfortable network achieved a 3.9%-point increase, doubling the number of 

cyclists in four years. Despite of the effectiveness of the measure, seasonality considerations 

need to be addressed, as different values were obtained depending on the climate conditions 
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(i.e., warm months showed low values, while previous and posterior months showed strong 

peaks).  

 

Figure 47 Example of the road network quality for cycling, based on data from CycleStreets (OSM basemap). 

In the Tyne and Wear region context, the existing cycle path network is patchy and poorly 

maintained with many different types (e.g., segregated lanes, shared paths, shared roads), 

besides the non-existence of explicit cycle routes between different zones, resembling 

disconnected islands. These characteristics make cycling difficult, unpleasant and insecure for 

cyclists, it not being attractive as a result. Figure 47 shows the cycleability rating or quietness 

of the roads in the city centres of Newcastle and Gateshead (above 0.8 only), where the 

uneven characteristics of the network is observed. 

In this thesis, a proposal is made for an extreme and currently unrealistic scenario where 

every road in the study area has a fully segregated and safe cycle path. This scenario provides 

a secure infrastructure connecting all the activities through direct routes, being available to 

everyone, creating comfortable riding conditions. The goal is to estimate the increase of 
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cyclists when a coherent, connected, direct, continuous, comfortable and safe network is 

available for cycling.  

To enable the agents to use fully segregated and safe cycle paths in the urban region, a new 

network was developed. The original road network was duplicated and allowed to be used by 

cyclists only, updating the quietness attribute to the maximum value (i.e., 1.0). Consequently, 

the flow capacity attribute of the original roads used by cars was reduced proportionally to 

the number of lanes, to allocate the new segregated cycle paths within the existing road 

space. Each lane was assumed to be 3.65 metres wide (DfT et al., 2009), while the new cycle 

path is one metre. Both networks were merged, and the result was a combined network file 

containing a fully connected, segregated and safe cycle path network allocated within a 

reduced flow capacity road network.  

 

Scenario 2: Low Traffic Neighbourhoods (LTNs) 

Low Traffic Neighbourhoods (LTNs) are schemes that remove through motor traffic from 

residential streets (except for residents) using ‘modal filter’ measures such as planters or 

lockable bollards (Goodman et al., 2021) to disincentivise the use of those vehicles and enable 

the use of more sustainable modes. Although this policy is facing great controversy in several 

regions in the UK (Dudley et al., 2022), LTNs are now being trialled at pace in some cities 

(Laverty et al., 2021). 

Surveys developed by DfT in 2021 (DfT, 2021a), based on interventions in Birmingham, 

Bournemouth, Ipswich and Salford achieved the following results:  

 Only a third agreed that they had noticed fewer cars driving through their 

neighbourhood. 

 A third considers the LTN encourages people to switch trips from car to other modes 

of transport. 

 Three in ten agreed the LTN helps create a sense of community in the local 

neighbourhood, while half disagreed with it. 

 A third of respondents who had used a cycle to get around their local area reported 

cycling more as a result of the LTN intervention, a quarter of those who walked said 
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they travelled more on foot since the LTN intervention, and a similar proportion of 

runners reported running more as a result of their local LTN.  

 

Figure 48 Definition of LTNs based on the allowed roads for cars (OSM basemap). 

 

In this thesis, a LTN scenario was generated where the areas were defined based on the type 

of roads. It required the creation of a new network, where car users were only allowed to use 

main roads (i.e., OSM links classified as trunk, motorway, primary, secondary, tertiary), while 

the remaining roads were restricted to them and the quietness value updated to the 

maximum value (i.e., 1.0), assuming perfect conditions for cycling due to the lack of cars. In 

case the destination of an agent using a car is within a LTN, the agent is allowed to use the 

car up to the closest link that surrounds the area, while the remainder of the trip is walked 

(i.e., teleported in this case). Figure 48 shows the generated network, highlighting in red the 

only roads allowed for cars. 
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Scenario 3: Active travel rewards 

Beyond modifications in the network to incentivise cycling (Scenario 1) or penalise the use of 

cars (Scenarios 1 and 2), there is the possibility of incentivising those agents using active 

modes economically. Reward-based instruments have the potential to encourage individuals’ 

shift towards multimodal mobility options, thus contributing to a more sustainable and 

resilient transport environment (Tsirimpa et al., 2019).  

Currently, there are some mobile phone apps that allow collecting points when walking 

and/or cycling to redeem discounts, gift cards, free items and raise money for charities. 

Examples are Sweatcoin (Sweatcoin, 2023), WinWalk (winwalk, 2023) and WeWard 

(WeWard, 2023) for walking, and BetterPoints (BetterPoints, 2024) and Charity Miles (Charity, 

2023) for walking and cycling.  

Additionally, there are some countries rewarding individuals when commuting by bicycle. One 

example is the Netherlands, which is currently providing a mileage allowance of up to 0.19 

euros per kilometre when commuting to work (Government of The Netherlands, 2023). 

Others are Belgium, rewarding 0.27 euros per kilometres up to a daily cap of 40 kilometres 

from the 1st of May 2023 (The Brussels Times, 2023) and France, which provided 0.25 euros 

per kilometre cycled in a trial for 10,000 employees in 2015 (Macmichael, 2014; Ng, 2015). 

Results from the French trial showed a marginal impact as only 419 people agreed to ride to 

work by the end of the trial (CityLabTransportation and Jaffe, 2015), while outcomes from 

other countries were not found. Máca et al. (2020) developed an experiment to increase 

regular commuter cycling in cities providing financial and non-financial (i.e., gamification) 

motivational features randomly between the participants. Results suggest that these features 

can motivate individuals, being more effective when financial rewards are given, although 

when combined, results could be even better. 

Based on previous approaches, a similar scenario was developed for the area of study, 

extended to both active modes. In this scenario, all trips made by bicycle or on foot were 

rewarded with £0.15 per kilometre, as a measure to incentivise them for any type of trip. For 

this scenario, only economic parameters were required to be updated within the config file. 

Firstly, the marginal utility of money was updated to 1 (standard MATSim value (Horni et al., 

2023)), as previously the value was set to 0 due to economic factors not being considered 
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(only time factors were taken into account when agents were simulated in the baseline). 

Secondly, the parameter that converts distance into money (monetary Distance Rate) (unit of 

money / metre)) was modified. As this parameter does not allow the use of positive values, it 

was required to penalise the other transport modes instead of rewarding the active modes. 

Therefore, the parameters for all modes except bike and walk were set to -0.00015 (i.e., £-

0.15 per kilometre). In this case, beyond a time constraint, the score value achieved is 

dependent of the possibility of earning money when walking or cycling. 

 

Scenario 4: Pay-when you drive 

Opposite to economic rewards, there is the possibility of applying economic penalties to 

influence a behavioural change in mobility. This is the case of tolls and charging zones, among 

other options, where economic charges are applied to car users to disincentivise their use and 

reduce GHG emissions in urban areas, as road pricing is considered an effective strategy for 

reducing traffic congestion on transportation networks (Bastarianto et al., 2023). 

An example is the Ultra-Low Emission Zone (ULEZ) in London, deployed in 2019. This measure 

operates all the time and requires car users to pay a £12.50 daily charge to drive within the 

zone (TfL, 2024b), currently covering all London boroughs and the City of London (TfL, 2024a). 

Ma et al. (2021) analysed the impact of the policy in terms of air quality in 2019. They 

concluded that only small improvements were achieved in a longer-term downward trend, 

although its combination with other measures (e.g., Low Emission Bus Zones, bus retrofit, Taxi 

Delicensing Scheme, zero emission capable requirement on new taxis, and Euro vehicle 

emissions standards (Greater London Authority, 2019; Ma et al., 2021)) has led to more 

observable improvements. Because of the reduction in the number of cars on the roads, an 

increase of bicycle use was observed. Ding et al. (2023) analysed the impact of ULEZ in the 

use of public bicycle sharing and identified a significant increase in demand up to 27.9%, 

principally for short (less than 15 minute) and intermediate (between 15 and 30 minutes) 

trips, between May and October 2019. 

Based on the results achieved in London, a similar scenario was defined for the area of study. 

The complete NE region was considered as a ULEZ, where agents using the car, either as a 

driver or passenger, were required to pay a £2.5 daily charge. This extreme scenario considers 
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areas beyond urban zones. Although a more detailed geographic definition could be specified, 

it was decided to consider the whole extension to simplify the methodology and procedures 

followed to simulate this case scenario. Additionally, the economic daily charge was assigned 

as a symbolic value, without any other consideration. These limitations imply that further 

investigation is required to identify realistic areas and economic values to the study area, 

based on research of transport plans developed by the Government or LAs.  

The scenario was designed analogous to the previous one, where only economic parameters 

were modified in the config file. The marginal utility of money parameter was set to 1 and the 

daily monetary constant (i.e., fixed cost of mode per day (unit of money/day)) for car users 

(both drivers and passengers) was updated to 2.5. Although a monetary distance rate value 

(i.e., £0.15 penalty per kilometre driven) was also simulated as an alternative scenario, it was 

discarded as short trip distances would not be affected in the same way as longer ones, the 

former being the most likely to be walked or cycled. 

 

Scenario 5: Cycle hubs next to metro stations 

Additional to the implementation of network improvements and restrictions, economic 

rewards and penalties, alternative policies could imply the possibility of combining active with 

public modes.  

EuroVelo, the European network of long-distance cycle routes that cross and connect the 

whole continent, consider that the combination of cycling and public transport journeys is the 

ideal solution for sustainable mobility, being a genuine alternative to private and polluting 

vehicles (European Cyclists’ Federation, 2024). 

Scientific research has also been analysing this combination of transport modes, where 

station accessibility, distance to the station and bicycle facilities at stations (Heinen and 

Bohte, 2014) are fundamental factors to consider, as the combination of these modes could 

be seen as an extend cycling’s speed and spatial reach (Kager et al., 2016). However, this 

connection is not highly promoted. Although transit agencies have installed bicycle racks, 

implemented bicycles-on-trains policies to facilitate bicycle-transit integration (Flamm and 
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Rivasplata, 2014), citizens are not fully engaged, with exceptions such as the Netherlands 

(Kager et al., 2016).  

In 2018, Nexus, the transport agency for the Tyne and Wear region, conducted a survey asking 

citizens about their opinions, experiences and attitudes towards the use of public transport 

modes. Within them, they were asked about cycle storage areas, the existence of cycle paths 

near the stations, the possibility of taking bicycles on public transport vehicles and the 

information provided related to cycling routes to the stations. Results showed a very poor 

consideration from the public, as more than half (53%) consider cycle storage facilities as fairly 

poor or very poor (only one in five (19%) consider them as fairly good or very good). Similar 

proportions were obtained when considering the existence of cycle paths, while the ability to 

take the bicycle on public vehicles was even worse rated (three in four (76%) consider it fairly 

poor or very poor, while only one in 20 (5%) fairly good or very good). Lastly, access to 

information related to cycle routes to reach stops was considered as fairly poor or very poor 

by more than half (55%), being categorised as fairly good or very good by only one in five 

(17%). As a conclusion, results highlight the lack of infrastructures, facilities and information 

that people have in order to combine the use of bicycle and public modes in the region. 

 

Based on the previous outcomes, a scenario where agents in the Tyne and Wear region are 

allowed to use the bicycle to access and egress metro (i.e., light rail) stations, assuming the 

existence of safe and secure cycle hubs near the stations, was developed (figure 49). The goal 

is to identify how many agents would combine the use of the bicycle and metro when secure 

and safe facilities to park or hire the bikes are facilitated. Previously, the validated model 

allowed the access and egress to railway stations on foot and by bicycle, as these stops usually 

allow both modes (the option to include cars was not possible due to issues with the program, 

as explained in section 3.5). The methodology followed to achieve this goal consists of 

updating the schedule file generated after merging the OSM network and the GTFS datasets 

(see section 3.4.2). The metro stations were identified, and two new attributes were added: 

bikeAccesible = true; and accessLinkId_bike = link_id. The first allows bicycles to be connected 

to the metro station, while the second identifies the network link from where the metro 

station is connected to the network. This procedure was followed for the 60 metro stations 

in the study area. 
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Figure 49 Definition of the metro network in the Tyne and Wear region. 

 

Scenario 6: Combinations of previous individual scenarios 

After individual policies were defined and set up, several combinations of them were 

considered to test if their integration performs better than when applied individually. 

Combined policies for an ambitious network upgrade in favour of active modes (scenario 6.1), 

the addition of economic rewards when using active modes (scenario 6.2) or penalties when 

using the car (scenario 6.3) and a global combination of policies (scenario 6.4) were 

developed. The following sections describe each of these cases. These are just some of the 
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combinations and more possibilities in different proportions should be analysed in future 

research. 

 

Scenario 6.1: Cycle paths – LTN – cycle hubs 

This scenario combines the implementation of fully segregated cycle paths with the 

consequent space reduction for cars (scenario 1), the restriction of cars in residential areas 

defined by LTNs (scenario 2) and the possibility of using the bicycle to access and egress metro 

stations (scenario 5). As a result, it is a scenario that could benefit active travel (especially 

cyclists) and harm car users. 

From the cycling perspective, agents have the possibility of using fully segregated and safe 

cycle paths to any destination following direct routes, with special relevance to metro 

stations, as all of them can be reached safely. Car users are affected mainly by the 

combination of the first two policies, where less road space and road restrictions apply to 

them. Public transport users and walkers are not harmed or benefited directly, but indirect 

consequences of the implemented policies may affect them positively or negatively. 

 

The methodology followed to run this scenario was the combination of networks from 

scenarios 1 and 2 and the use of the schedule file generated in scenario 5.  

 

Scenario 6.2: Cycle paths – LTN – cycle hubs – economic reward 

This scenario was built from the previous scenario, adding economic rewards to those agents 

using active modes, as described in scenario 3. This scenario tries to boost the use of active 

modes, as all possible simulated measures that can benefit them are combined. 

The methodology developed upgraded the one generated in the previous scenario, where the 

economic parameters described in scenario 3 were added. 
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Scenario 6.3: Cycle paths – LTN – cycle hubs – economic penalty 

Scenario 6.3 extends scenario 6.1 by adding a £2.5 daily penalty to car users. This is the most 

restrictive policy combination for car users up to now, as three of the combined policies 

penalise their use (scenarios 1, 2 and 4), although two of them also benefit the use of the 

bicycle (scenarios 1 and 2). This scenario tries to reduce car usage when spatial (scenarios 1 

and 2) and economic (scenario 4) restrictions are combined with fully segregated cycle paths 

(scenario 1). 

The methodology in this case is similar to the one developed for scenario 6.3, although 

parameters described in scenario 4 were updated, instead of those described in scenario 3. 

 

Scenario 6.4: Full combination 

Scenario 6.4 is the combination of all individual policies at once, being the most complete but 

also extreme scenario which tries to identify the potential maximum transport mobility effect. 

This scenario was developed using the network generated for all previous combined 

scenarios, then the schedule file from scenario 5 and the economic parameters from 

scenarios 3 and 4.  

 

3.8.2. Analysis of scenarios 

Results obtained from each scenario show the potential achievements that could be obtained 

from the different urban mobility policies simulated to reduce the number of private and 

polluting vehicles on the roads in favour of active modes. Aggregated and geospatial results 

were compared in the following eleven diverse groups against the baseline scenario (see 

section 4.4) to test their estimated efficiency: 

 Transport modal share (section 4.4.1). 

 Sankey diagrams identifying the changes in transport mode shares between baseline 

and the simulated scenarios (section 4.4.2). 

 CO2 emissions reductions (section 4.4.3). 

 The geospatial distribution of cars and bicycles (section 4.4.4). 
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 Walking and cycling statistics (section 4.4.5). 

 The percentage of trips made by active modes and a comparison with the ATE target 

for 2030 (section 4.4.6). 

 Socio-demographic analysis (section 4.4.7). 

 Health benefits analysis (section 4.4.8). 

 Built environmental characteristics analysis (section 4.4.9). 

 Economic analysis (section 4.4.10). 

 The use of cycle hubs allocated next to metro stations (section 4.4.11). 

 

It is worth adding that all scenarios described above can be easily transferred to any other 

study region. The developed code should be updated by simply pointing to the correct 

network file of the desired study area. 

 

Chapter 4 will show the results obtained when the methodology explained in this chapter is 

applied to the Tyne and Wear region. Results of the main MATSim input datasets (i.e., 

synthetic travel demand and network), as well as the calibration and validation stages are 

shown. The chapter concludes with the results obtained from each simulated scenario, 

providing them from different approaches (e.g., transport, geospatial, temporal and 

statistical). 
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Chapter  4. Results 

 

Men of learning suspect it little and ignore it mostly. Wise men have interpreted dreams, and 

the gods have laughed. Howard Phillips Lovecraft 

 

The previous chapter explained the stages followed to develop a transport MATSim model 

and to simulate different scenarios to increase the use of active modes. This chapter shows 

the results obtained after applying the previously described methodology to the area of study 

(i.e., Tyne and Wear) during a normal working day in 2019. 

 

This chapter has been structured as follows. Firstly, the results obtained from the synthetic 

travel demand are presented (section 4.1). Secondly, the network developed to allow agents 

to move between their daily activities is shown (section 4.2). Thirdly, the stages followed to 

calibrate and validate the MATSim baseline scenario and results obtained are described 

(section 4.3). Lastly, the results obtained from the different scenarios simulated are compared 

with the baseline, identifying differences in modal share, CO2 emissions, geospatial 

distribution, active mode use, achievement of the ATE goal, socio-demographic distribution, 

health benefits, use of roads depending on the built environment characteristics, economic 

analysis and cycle hubs usage  (section 4.4). 

  

4.1. Synthetic demand 

The results obtained in the development of the synthetic travel demand for the study area 

have been divided in two: synthetic population and activity plan. Both results were compared 

and validated against internal and external datasets, when possible. Section 4.1.1 describes 

the results achieved when developing the synthetic population of the entire NE of England, 

while section 4.1.2 describes the results obtained when the activity plans were assigned to 

each individual in the synthetic population. 
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4.1.1. Synthetic population 

The application of the methodology explained in section 3.3.1 allowed the development of a 

very detailed synthetic population, consisting of 12 attributes for each individual (see section 

3.3.4). In total, 2,645,517 individuals were generated. Attributes obtained from SPENSER 

were assumed to be correct, while the eight attributes generated with the synthPopEng tool 

developed in this work were validated against statistical datasets, as shown below. 

 

Marital status 

The marital status attribute classifies individuals in two categories (married or single) based 

on age and sex attributes and the internal relationships that individuals from the same 

household can have between them, assuming that those attributes were correctly calculated 

by SPENSER. In total, 45.64% of individuals were classified as married (aged 16 or over), while 

the remaining 54.36% were considered as single. Official statistics from ONS for England in 

2019 (ONS, 2020) identify that 50.4% of adults are ‘married’. Figure 50 shows this comparison, 

where blue bars represent results obtained from the synthetic population, while orange bars 

represent values from the ONS statistics. 

 

Figure 50 Comparison of the percentage of marital status between results from the synthetic population (blue) and ONS 
data (orange).  

Results obtained are very similar to national statistics, where a 4.76% difference was achieved 

between the two possible values. Although the achieved result can be considered realistic, a 

closer outcome could be obtained by modifying or altering the assumptions made when 

considering married or single individuals in the developed tool, where the age, sex, marital 

status of the HRP and an up to ten-year difference gap between individuals in the same 

0

20

40

60

Married Single

Marital status results

Synthetic population ONS 2019 for England in 2019



145 
 

household were considered. Despite this, the results achieved can be considered as 

satisfactory for the purpose of this thesis. Further investigation would be required to reduce 

the difference gap, considering other attributes (e.g., ethnicity group) or external statistic 

datasets from ONS. 

 

Children dependency 

 

Figure 51 Comparison of the percentage of households with children dependencies between results achieved in the 
synthetic population (blue) and ONS data (orange). 

 

Similarly, this attribute is entirely derived from SPENSER outcomes, where family 

relationships between individuals from the same household based on their sociodemographic 

attributes were considered. Figure 51 shows that 35.9% of households have children 

dependencies in the area of study (blue bar), while ONS statistics (ONS, 2019) shown a 40.8% 

(orange bar). 

This difference is in line with results achieved in the marital status attribute, as both attributes 

are significantly related. Similarly, the use of more attributes, external datasets and/or a 

different set of assumptions would achieve results that are more accurate. It is expected that 

in a future investigation, the improvement of one of these attributes would improve the 

other. 

 

Economic activity 

Economic activity attribute classifies individuals in three categories (employed, unemployed, 

inactive), based on their OA area household location, age and sex. The assignment of 

0

25

50

Synthetic population ONS 2019 for the North East of England in
2019

Households with children dependencies



146 
 

economic activity to individuals was conducted with a process that iterates until the 

difference between modelled and observed values is less than a 1%-point. This is achieved in 

all cases, except for unemployed males over 65 years old, as it was the last category to be 

assigned and as such, is the remainder after all other individuals have been assigned. Figure 

52 summarises the results achieved when compared with ONS statistics (ONS, 2023c), per 

range of age and sex. 

 

Figure 52 Comparison of economic activity results with observed data. 

The proposed methodology assumes a linear projection in the percentage of individuals in 

each economic activity category per OA Area, as the 2011 UK census data is projected evenly 

in all OA areas based on regional ONS data. External circumstances such as the establishment 

of new factories, offices and any other work developments in specific areas are not 

considered.  

 

Occupation 

The occupation attribute classifies individuals in nine categories when employed or 

unemployed, considering their OA area household location, age, sex and economic activity 

attributes. Figure 53 shows the results obtained, where aggregated results are compared with 

official UK regional statistical of the area of study (ONS, 2022a). 
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Figure 53 Comparison between the occupation types for employed and unemployed synthetic individuals and observed values. 

Differences achieved in aggregated results per occupation type were always below 3.5%-

points when compared against ONS statistical data (ONS, 2022a), while when grouped by 

occupation and sex, differences were up to 18.7%-points in the worst case (i.e., category 4). 

In the remaining cases, gender differences were below 5.5%. As the percentage of 

occupations per range of age are not known from official statistics, this validation was not 

possible. Lastly, external circumstances, such as those highlighted for the previous attribute, 

were not considered either. 

In the case of inactive individuals, five different occupation categories were considered based 

on age, sex, economic activity and household attributes. Figure 54 shows the aggregated 

results when compared with official regional statistics (ONS, 2023c). In all cases, the 

aggregated values were below 1%-point difference, although when grouped by sex, the 

differences were up to 5%-points. 

ONS NE 2019  Results Differences ONS NE 2019 Results Differences

Total 8.45 10.93 2.48

Males 61.97 62.39 0.42

Females 38.03 37.61 -0.42

Total 20.66 17.88 -2.78

Males 43.74 43.26 -0.49

Females 56.26 56.74 0.49

Total 12.59 12.47 -0.12

Males 51.57 56.04 4.47

Females 48.43 43.96 -4.47

Total 11.24 8.61 -2.63

Males 22.18 40.86 18.69

Females 77.82 59.14 -18.69

Total 8.29 11.78 3.49

Males 92.85 94.56 1.71

Females 7.15 5.44 -1.71

Total 11.55 10.97 -0.57

Males 14.65 13.51 -1.14

Females 85.35 86.49 1.14

Total 9.53 7.45 -2.08

Males 31.60 28.43 -3.17

Females 68.40 71.57 3.17

Total 5.82 7.94 2.12

Males 95.89 90.40 -5.49

Females 4.11 9.60 5.49

Total 11.87 11.97 0.10

Males 48.66 46.06 -2.61

Females 51.34 53.94 2.61

9 Elementary occupations 

(SOC2010)
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SexGlobal
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Figure 54 Comparison between the occupation types for inactive synthetic individuals and observed values. 

The occupation attribute for inactive individuals was assigned considering a greater number 

of attributes than previous cases (i.e., sex, range of age, OA area, household characteristics 

and marital status). Additionally, the proposed methodology assumes a linear projection in 

the percentage of individuals in each occupation type per OA area, as it was similarly defined 

for the economic activity attribute. Therefore, a higher complexity and difficulty to match 

values from official statistics is acknowledged. 

 

Annual gross income 

The annual gross income quantifies the amount of money earned based on age, sex and 

occupation attributes. Although unemployed individuals do not receive any income when 

unemployed, they are assumed to have a similar economic wealth as if they were working, 

due to the likelihood of getting another job with a similar income. 

Results shown in table 7 are grouped by deciles and compared against regional statistics of 

the study area (ONS, 2022d), with differences per decile being below £1,000 in all cases. A 

relative error threshold was calculated for each decile considering the obtained value and the 

ONS statistical value. In all cases, the error was below 0.1 in absolute value. 

 

ONS NE 2019  Results Differences ONS NE 2019 Results Differences

Total 25.13 25.1 0.03

Males 29.37 34.16 -4.79

Females 22.17 18.76 3.41

Total 13.7 13.8 -0.1

Males 15.2 17.94 -2.74

Females 12.7 10.88 1.82

Total 21.34 21.35 -0.01

Males 7.8 10.25 -2.45

Females 30.82 29.22 1.6

Total 30.4 30.38 0.02

Males 36.5 34.34 2.16

Females 26 27.57 -1.57

Total 9.47 9.32 0.15

Males 11.12 3.32 7.8

Females 8.31 3.45 4.86

Global Sex

Other

Sick

Looking after 
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Percentile Results ONS NE 2019 Difference 
error = (observed-

calculated)/observed 

p10 8790 7993 -797 -0.100 

p20 13080 12607 -473 -0.038 

p30 16560 16679 119 0.007 

p40 20080 19560 -520 -0.027 

p50 23060 22602 -458 -0.020 

p60 26260 26126 -134 -0.005 

p70 30430 30605 175 0.006 

p80 36330 36523 193 0.005 

p90 45620 45580 -40 -0.001 

mean 25650 26339 689 0.026 
Table 7 Comparison results between the annual gross incomes obtained in the synthetic population and observed data. 

 

When results were grouped by range of age and compared against national statistics (figure 

55), lower mean incomes per range of age (blue bars) were found in the NE than the whole 

UK (orange bars), but there was consistency in the differences. Discrepancies up to £2,000 

were identified, which could be reasonable as results obtained from the synthetic population 

were compared with UK median income values per range of age (ONS, 2022b), however, 

incomes in the NE of England are generally lower than the UK average (ONS, 2022c). 

 

 

Figure 55 Annual gross income comparison between results achieved in the synthetic population (blue) and ONS data 
(orange) at UK scale, grouped by range of age. 

 

0

5000

10000

15000

20000

25000

30000

35000

2019 mean annual gross income

ONS UK 2019 Results



150 
 

The methodology proposed for employed and unemployed individuals heavily depends on 

estimated values (although based on ONS data) that need to be iterated until results achieved 

are similar to ONS statistics (see section 3.3.3).  

In the case of inactive individuals, the annual gross income values were assigned based on 

their socio-demographic characteristics and UK statistical values that quantify their annual 

gross income depending on the potential benefits that they are eligible to receive. Due to lack 

of more granulated UK official data, it was not possible to validate the accuracy and precision 

of these values.  

 

Driving license 

Driving licence is a Boolean attribute that identifies those driving licence holders based on 

their age and sex attributes. Figure 56 shows the comparison between the obtained results 

(light blue and red bars) and regional statistics (dark blue and red bars) (NTS, 2023e). 

 

Figure 56 Driving license comparison per range of age and sex between results obtained from the synthetic population and 
NTS datasets. 

Results were remarkably similar to those provided by NTS (2023e), with differences always 

below 1%-point when grouped by sex and range of age, and below 1.5%-points when grouped 

only by sex. The developed methodology assumes that at least one person per household 

with at least one car holds a driving licence, while the remaining driving licences are assigned 

based on the individuals’ characteristics (i.e., age and sex) and probability values dependent 

on the number of cars in the household. The assignment of these probability values is an 

iterative process that requires a trial-and-error strategy, until results are similar to those 

provided by the ONS. 
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Unfortunately, it was not possible to consider any spatial resolution, as official datasets were 

obtained only at region level.  

 

Car access 

Car access is also a Boolean attribute derived from two other attributes: the number of cars 

in the household (attribute assigned to the household where the individual lives) and the 

possession of a driving licence. In total, 68.5% of the households in the NE have access to a 

car, while national statistics for 2019 estimate 76.0% (figure 57). Official statistical data of the 

study area was not found. 

 

Figure 57 Comparison of household car availability in 2019 between results achieved in the synthetic population (blue) and 
statistics for England (orange). 

Similarly, as in the case of the marital status and children dependency attributes, the result 

obtained in the synthetic population is lower than official statistics, although the validation is 

made comparing different scales as a consequence of lack of information at a regional level. 

 

Bicycle access 

Bicycle access is also a Boolean attribute that identifies those individuals with access to a 

bicycle in the household, based on their age only. The definition of this attribute was overly 

simplistic since the available data was only structured per range of age, so those NTS 

statistical values were assigned proportionally to the individuals based on their age, which 

implies the impossibility of validating them against any other data. Future work could include 

the validation of this attribute based on several socio-demographic attributes, once official 

information is released. 
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Spatial validation 

Besides previous internal validations, results were also spatially grouped to check their 

distribution in space, at OA level. This is an important concept, as the spatial distribution 

needs to be considered when analysing the accuracy of the results. Three attributes were 

spatially represented to verify the outcomes: children dependency, car access and students 

at college or university. 

Figure 58 shows the percentage of adults with children dependencies in the Tyne and Wear 

region (right) and more detail of Newcastle city centre (left). Light colours represent very low 

percentage values, while darker colours identify OA areas with higher percentage of adults 

with children dependencies. It can be observed that they are mainly allocated on the outskirts 

of the city centres, where more family dwellings are found. 

 

Figure 58 Geospatial representation of the percentage of adults with children dependencies per OA area in the Tyne and 
Wear region (right) and a detailed perspective of Newcastle city centre (left). 

 

Figure 59 shows the percentage of adults with car access in the Tyne and Wear region (right) 

and highlights the city centre of Newcastle (left). Light yellow colours represent very low 

percentage values, while dark blue identifies OA areas with a higher percentage of adults with 

access to a car in the households. Similarly, as in previous figure 58, individuals with car access 
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are found on the outskirts as people in the city centres usually have more transport options 

(e.g., bus, metro), with less need for a car (Transport for the North, 2022). 

 

 

Figure 59 Geospatial representation of the percentage of adults with car access per OA area in the Tyne and Wear region 
(right) and a detailed perspective of Newcastle city centre (left). 

 

 

Figure 60 Geospatial representation of the percentage of students at college or university per OA area in the Tyne and Wear 
region (right) and a detailed perspective of Newcastle city centre (left). 
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Figure 60 shows the percentage of students at university or college in the Tyne and Wear 

region (right) and more detail of the city centre of Newcastle (left). Light red colours represent 

very low percentage values, while dark red identifies OA areas with a higher percentage of 

students in the area. Students are mainly found where student accommodations are 

allocated, especially in the surrounding areas of the main universities in Newcastle upon Tyne 

and Sunderland. Results achieved are a consequence of the methodology developed in the 

code, as students were forced to live in households with specific characteristics that resemble 

those where the student population lives (i.e., student accommodations, multi-person 

households). 

 

4.1.2. Activity plan 

This section shows the internal validation results when aggregated activity plans assigned to 

the synthetic individuals in the study area were compared to those obtained from the original 

travel diaries in the same area and time. Due to the small number of individuals surveyed in 

the NE during 2019 (839), results were also compared against all surveyed individuals in 

England except London in 2019 (13,797 surveyed individuals), as similar patterns were 

identified within other areas, as shown previously in section 3.3.5. 

The percentage of trips by transport mode quantifies the distribution of trips in the different 

transport modes available. Figure 61 shows the results achieved in this thesis (blue bars), 

compared with those surveyed individuals in 2019 (orange bars) and in the NE in 2019 (grey 

bars). Seven different transport modes were considered (bicycle, bus, car driver, car 

passenger, metro, train and walk). Major discrepancies were found in the number of 

individuals using cars, having fewer car drivers in the synthetic population than in the 

surveyed individuals (8% difference with NE and 6% with the UK) and more car passengers 

(3% in both cases). Furthermore, more synthetic individuals use the bus and walk more than 

in 2019 (2.4 and 1.6% respectively) and in the NE in 2019 (1.6 and 2.9%). Despite these results, 

the accuracy obtained is not relevant, as the synthetic individuals will be allowed to change 

the transport mode at the simulation stage, until results achieved show a realistic proportion 

of transport modes uses in the study area. 
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Figure 61 Comparison of the percentage of trips by transport mode between results achieved in the synthetic population 
(blue), NTS 2019 results (orange) and NTS results for the NE of England only, in the 2019. 

 

Figure 62 shows the percentage of trips in distance by ranges. Similar to previous figures, 

results achieved with the synthetic travel demand are shown in blue, while values from the 

2019 NTS surveys are in orange, and those individuals surveyed in the NE of England in 2019, 

in grey.  

 

Figure 62 Comparison of the percentage of trips by distance (in miles) between results achieved in the synthetic population 
(blue), NTS 2019 results (orange) and NTS results for the NE of England only, in 2019. 

 

Eight different ranges of distances were compared: from trips below 1 mile up to trips of more 

than 200 miles. Results from the synthetic travel demand contains more short trips than 

expected (especially up to five miles). Despite this, the amount of obtained short trips could 

be beneficial as they are commonly forgotten when doing travel diaries, as mentioned in 

section 3.3.5. This increased number of short trips could be a consequence of the 

methodology when identifying the building locations and applying the developed spatial 
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interaction modelling (SIM) technique, as the distance to the household is also considered to 

make the activities in an area relatively close to the household. This parameter could be 

modified to adjust its importance when choosing the activity location in future work, as well 

as the possibility of using alternatives models, such as SILO (Ziemke et al., 2016), which 

simulates household and workplace location choices based on transport costs.  

 

Figure 63 Comparison of the percentage of trips by duration between results achieved in the synthetic population (blue), 
NTS 2019 results (orange) and NTS results for the NE of England only, in 2019. 

Figure 63 shows the percentage of trips by duration, in minutes. Results obtained (blue bars) 

are compared with those obtained in 2019 (orange) and in the NE in 2019 (grey). Nine time 

ranges were analysed: from very short trips up to five minutes, to long trips of more than two 

hours. As can be observed, trip durations are within 3% in all ranges, having the highest 

discrepancies in the 15-30 min range, being below three minutes. 

 

Figure 64 Comparison of the percentage of trips by purpose between results achieved in the synthetic population (blue), NTS 
2019 results (orange) and NTS results for the NE of England only, in 2019. 
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Figure 64 shows the percentage of trips by purpose. In this case, 12 different trip purposes 

were compared between the results achieved (blue bars), the NTS statistics in 2019 (orange 

bars), and only those NTS statistics in the NE in 2019 (grey bars).  

More work (6.8% and 7.8%) and education (13.1 and 14.7%) trips were obtained than those 

expected in 2019 and in the NE in 2019, respectively, while the percentage of the other 

activities were below the expected values (mainly ‘leisure’ and ‘other’ activities), except 

escort education, escort work and shopping. The reasons for these discrepancies could be 

various, although the lack of workers and children submitting the NTS travel diaries could be 

the most feasible. Based on results achieved, 77.6% of those synthetic employed individuals 

were assigned an activity plan containing a workplace and it was assumed that the remaining 

22.4% work outside the area of study. These values are similar to those derived from the 2011 

census (ONS, 2011c), where the percentage of people living and working in the NE was 80.1%.  

 

Finally, figure 65 shows the percentage of commuting trips by sex and range of age. Results 

achieved (blue bars) are compared with the NTS statistics in 2019 (orange bars) and those 

NTS statistics in the NE in 2019 (grey bars).  

 

Figure 65 Comparison of the percentage of commuting trips by gender and range of age between results achieved in the 

synthetic population (blue), NTS 2019 results (orange) and NTS results for the NE of England only, in 2019. 

 

An even distribution of trips is observed in all groups when compared against NTS values, 

although gaps for individuals between 60 and 69 years were observed. Major discrepancies 
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can be observed in females between 40 and 49 years, which found around 5% less females in 

the synthetic travel demand than in the NE in 2019, although when compared against 2019, 

the difference is only about 1%. This can be caused by the very low number of surveyed 

individuals in the NE, which could explain the lack of data for females and males between 60 

and 69 years. Therefore, it was impossible to compare them with NTS datasets. 

 

4.2. Network 

 

Figure 66 Network composition. A combination of geospatial road representation, public transport data, DEM and 
cycleability rating values. 

The developed network consists of the geospatial representation of the OSM road and public 

transport network in the study area, where characteristics such as the type of feature (e.g., 

residential, motorway, railway), flow capacity, maximum speed and allowed modes (e.g., 

pedestrian, car, bicycle, rail) were defined. Additionally, three more components were added. 

Firstly, information about the public transport services (e.g., routes, stops, schedules and 

vehicle types) was obtained from GTFS datasets. Secondly, elevation values (i.e., coordinate 

Z) for nodes and gradients for the links, were obtained from a very detailed 10-metre 

resolution generated DEM. The third was the cycleability ratings or quietness values, which 

define the roads’ quality for cycling, based on the built environment characteristics. Figure 66 

summarises the four different datasets combined in the developed network. 
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As a result, three files were generated: the network (network.xml) defining the road and 

public transport network with information of gradients and cycleability ratings, the schedules 

of each public transport route (schedule.xml), and the vehicles’ characteristics (vehicles.xml). 

 

4.3. MATSim validation 

The MATSim model was validated with official datasets from NTS and vehicle counts from 

TADU (Gateshead Council, 2023), besides other complementary datasets (e.g., expert advice, 

Google maps). Six validations steps were considered, covering the mode splits (section 4.3.1), 

vehicles en-route (section 4.3.2), average trip distances and times by transport mode (section 

4.3.3), the percentage of commuting trips per range of distance (section 4.3.4), bicycle routing 

(section 4.3.5), the percentage of trips below five kilometres using active modes (section 

4.3.6). Concepts of transport modes usage, geospatial distribution and average trip statistics 

were analysed to check if the generated MATSim model is representative of a regular working 

day in the Tyne and Wear region. 

 

4.3.1. Modal split 

 

Figure 67 Comparison of the percentage of trips by transport mode between results achieved in the synthetic population 
(blue) and estimated results based on official datasets and expert advice (orange). 

Modal split represents the percentage of trips made by the different transport modes. Figure 

67 shows the simulated modal split results (blue bars) when compared against those values 

(orange) obtained through the combination of official NTS (DfT, 2023e) and census (ONS, 
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2011e) statistics. This also included expert advice from several transport stakeholders (e.g., 

Nexus, Transport North East, Newcastle University), as described in the previous chapter.  

Differences achieved were always below 2% when compared against the estimated modal 

split. Results show that the most common mode is the car (as driver) (40.1%), followed by 

walking (25.5%), public transport (20.5% split in 18.1% for bus, 2.2% light rail, 0.2% rail and 

almost 0% for the ferry), car as a passenger (12.1%) and cycling (1.8%). These values coincide 

with the analysis performed in section 2.1, where it was shown that England exhibits a strong 

car dependency and a weak bicycle culture. 

Figure 68 compares the simulated main mode of travel to work (blue), with the NTS main 

mode of travel to work when working (orange) (DfT, 2023e) and living (green) (DfT, 2023d) in 

the Tyne and Wear region.  

 

Figure 68 Comparison of the percentage of commuting trips by transport modes between results achieved in the validated 
MATSim mode (blue) and observed results of individuals working (orange) and living (green) in the Tyne and Wear region. 

 

Results obtained show differences below 3% and 3.5% when compared against commuting 

trips of individuals living and working in Tyne and Wear, respectively. Greater values were 

found when walking (2.5% and 3.4% respectively) and using the bus (1.2% and 1.9%, 

respectively), and lower results in the use of the metro (-1.0% and -0.5%). The percentage of 

car trips was between the two observed values, while the use of the bicycle and rail were not 

possible to be compared, as no-data was obtained from the statistics. Similarly, as in figure 

67, the use of cars when commuting is the predominant mode of transport (70%), followed 

by the use of buses (13.6%), walking (12.5%), metro (2.8%), cycling (1.0%) and rail (0.3%) The 



161 
 

same conclusion of a strong car dependency culture when commuting as in figure 67 could 

be applied into this case. 

Figure 69 compares the percentage of simulated trips by different modes when travelling to 

school (blue bars) with statistical values of modes of travel to school of individuals aged 

between 5 and 16 years in England between 2015 and 2019 (orange) (UK Government, 

2023c).  

 

Figure 69 Comparison of the percentage of trips to school by transport modes between results achieved in the validated 
MATSim mode (blue) and observed results in England (orange). 

 

Obtained differences were below 10% in all cases, with the value for the use of buses being 

the greatest. Despite this difference, results were considered as realistic because simulated 

results were compared with national statistics, due to the lack of information for the NE or 

the Tyne and Wear regions, and knowing that the use of buses in the NE is greater than the 

average in England, as indicated in figure 23. Conversely, lower percentage values were 

obtained when using the car (as passenger) (3.8%-points) and walking (6%-points), while the 

differences in the use of bicycles and rail were below 1%. In this case, most trips are made 

walking (38.1%), followed by car (31.2%) and bus (25.1%), accounting for 95% of trips. 

 

4.3.2. Vehicle counts 

Figure 70 shows the percentages of cars en-route per hour. Simulated results (blue bars) are 

compared with NTS values (orange) for the whole of England during 2019 (NTS, 2023c).  
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Figure 70 Comparison of the percentage of vehicles en-route per hour, between results obtained in the MATSim validated 
model (blue) and observed values from NTS (orange). 

 

The simulated temporal distribution of vehicles en-route is similar to the national values, with 

discrepancies below 7.5%. The greatest differences are found during the morning peak (i.e., 

between 7 and 8am), where more simulated vehicles were found in movement than expected 

(7.42%), although lower percentage values were obtained during the late morning and early 

afternoon (around 2% below expected, on average). Finally, the evening peak (i.e., 5pm) is 

higher than expected (2%), while early morning, late evening and night values are below 1% 

difference. These discrepancies are a consequence of the following configuration parameters, 

assumptions and the data used to check the simulated results: 

 Trips made by freight and other vehicles transiting the study area but starting or 

ending outside of it were not considered, having the highest impact during the late 

morning and early afternoon, as this period of time is when most agents are doing 

some of their activities (e.g., work, education, shop).  

 Each activity is defined by a set of attributes, where the starting time and typical 

duration values are defined, among others. Although these values can be left as 

‘undefined’, it was found that the most realistic results were obtained when the 

starting time, for work purpose, was set to 8am and the typical duration was 

dependent on each agent’s work activity. Consequently, the morning peak was 

reached around 8am, as it is in the observed data, but greater than expected.  

 The official data used to compare the model results is at national scale, as data 

containing only information of the study area was not found.  
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The combination of these factors achieved higher percentage values during the morning peak 

and lower during the middle of the day. Additionally, it was observed that the school run (i.e., 

between 3 and 4pm) was not captured, having a discrepancy around 4% below the expected 

value. A derived consequence of a lower percentage of children going by car as passengers to 

education trips could have produced this difference, as was discussed earlier. 

 

Figure 71 compares vehicle counts (i.e., cars) from different roads in the study area. Simulated 

results (y-axis) are compared against official vehicle counts from TADU (Gateshead Council, 

2023) (x-axis).  

 

 

Figure 71 Comparison of the daily traffic volumes at different areas of the study area, between results achieved in the 

MATSim validated model (y-axis) and observed TADU data (x-axis). 

The result shows that most of the zones reach similar daily traffic volumes, with the outliers 

potentially being caused by one of two effects, either motorways with less simulated cars 

than those in reality, or main urban roads with more simulated cars than those in reality. The 

former is explained with the same arguments as described for figure 70 (i.e., freight and trips 

starting and/or ending in other regions but passing through Tyne and Wear were not 

considered in the simulation). The latter is considered because agents try to minimise their 



164 
 

trip duration, preferring direct routes rather than longer alternative routes. The first could be 

amended by including those missing trips, while the second by generating a more precise and 

detailed network, where the flow capacity and other attributes (e.g. speed) of those links are 

updated until results show a more realistic vehicle mobility in time. 

 

Figure 72 shows the vehicle count comparison between simulated results (blue) and TADU 

counts (red), distinguishing motorways (a, b) and urban areas (c, d). 

 

Figure 72 Comparison of the vehicle counts in motorways (a, b) and in urban areas (c, d) between results achieved in the 
validated MATSim model (blue) and observed values from TADU (red). 

Results show remarkably similar outcomes in urban areas (c, d), while some differences were 

found on motorways (a, b) due to the same reasons highlighted before (i.e., lack of freight 

and other trips starting/ending outside the study area).  

Whilst the lack of data of freight and other trips passing through the study area could be 

considered a limitation of the model, it is also beneficial as the purpose of the validated model 

is to test policies to reduce the use of cars in favour of active modes. In this case, the main 
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trips to adapt would come from short trip distances, principally from urban areas, where the 

global traffic flow in space and time is analogous to the normal mobility in a regular day. 

 

4.3.3. Average trip distance and time by transport mode 

The knowledge of the mean distances is also important to know if the achieved results are 

representative of the mobility in the study area. Figure 73 compares the average simulated 

trip distance by transport mode (blue bars) with official NTS datasets of the NE of England 

(NTS, 2023d) (orange).  

 

Figure 73 Comparison of the average trip distance by transport mode between results obtained from the validated MATSim 
model (blue) and observed NTS values (orange). 

Differences vary depending on the transport mode used, although a similar pattern can be 

observed. Average car distances are unbalanced, as drivers use the car for three kilometres 

less than expected, while passengers use it for two more. Differences found in the average 

distances by car, both as a driver and passenger can be due to the activity plans assigned to 

the agents, as they were collected from surveys covering the whole England except London. 

In contrast, the average distances for active modes are very similar to observed values, with 

differences below half a kilometre in both cases, making the cycling and walking routes 

choices realistic, even when walking trips were teleported. In terms of public modes, 

differences obtained depend on the mode. Simulated average rail distance has great 

discrepancies with observed values because long rail trips connecting the NE with other UK 

regions are considered in the latter (e.g., trip from Newcastle to London), but not in the 
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model. In the case of light rail, official statistics are combined with ferries and air trips (NTS, 

2023d), making it impossible to compare them, although sensitivity checks based on the 

network length suggests that the obtained average distance is realistic. In the case of bus 

distances, the average is three kilometres shorter than expected, which could be related to 

its high attractiveness for the agents, as buses are the fastest mode not affected by traffic 

congestion. The implementation of an economic fare (e.g., £2 ticket) could make this mode 

less attractive and force the agents to find an alternative mode, especially in short distances, 

which could increase the average trip distance. 

Figure 74 compares the average simulated trip duration by transport mode (blue bars) against 

official NTS datasets for England (NTS, 2023b) (orange). 

 

Figure 74 Comparison of the average trip time by transport mode between results obtained from the validated MATSim 
model (blue) and observed NTS values (orange). 

Average trip times are dependant values of the average trip distances and speed by each 

mode. In this case, results were compared against national statistics, as values of the study 

area were not found. Similarly, as it was found with the average trip distances by mode, 

discrepancies were obtained, even for active modes. In all cases, all average trip times were 

shorter than the expected values at national scale. 

Due to the discrepancies found in both the average trip distances and times when compared 

with official NTS statistics (at regional scale for the distances and national scale for times), an 

alternative comparison was followed. Instead of comparing aggregated simulated results, 

individual trips randomly chosen were compared against routes calculated with Google Maps 

(Google, 2024), where the same origin, destination and departure time were used. The 

comparisons show convergent results for both routes followed and time spent.  
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Figure 75 shows some examples, where a trip made by car (left) and another by bicycle (right) 

are compared. In both cases, Google Maps suggests similar routes as well as similar travel 

times to those obtained from the model. These verifications, although analysing a small set 

of random trips, show realistic results that can be found in current mobility, probably being 

more realistic in the study area than previous statistical datasets used at different geographic 

scales. 

 

Figure 75 Comparison of chosen routes by car (left) and bike (right) between results obtained from the validated MATSim 
model (OSM basemap) and Google Maps results. 

 

4.3.4. Percentage of commuting trips per range of distance 

 

Figure 76 Comparison of the percentage of commuting trips per range of distance, between results obtained from the 
validated MATSim model (blue) and observed national values (orange). 
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Figure 76 compares the percentage of commuting trips by range of age. The blue line 

represents the results obtained from the simulation, while the orange shows the values for 

the NE region (ONS, 2023b), obtained from the 2011 UK census. 

Results show that both have a similar pattern, although discrepancies between them can be 

observed. Simulated results have fewer short commuting trips than the official data, while for 

longer distances the results are the opposite, except for the longest trips (60 kilometres and 

more), where more official trips were found. These differences can be justified by considering 

that the compared results do not represent the same geospatial extent. While the 2011 UK 

census data considers all commuting trips of individuals living in the NE of England (i.e., trips 

within the NE and to other regions), simulated results only take into account those starting, 

ending or passing through the Tyne and Wear region. Short commuting trips in other areas 

within the NE of England are not considered (e.g., commuting trip from Darlington to 

Durham), neither long trips between different regions (e.g., London to Edinburgh). 

Consequently, a lower percentage of short trips, a higher percentage for longer trips and 

lower again for the longest were expected. 

 

4.3.5. Bicycle analysis 

Analysis of cycling routes was also performed to identify if cyclists were behaving as expected 

based on the parameters used in the updated MATSim bicycle extension (i.e., gradient and 

quietness attributes). Figure 77 shows the results of a cyclist’s route when the updated bicycle 

contribution is disabled (top) and enabled (bottom). Cycle paths are represented as green 

lines, while the followed route is in black. Additionally, a route profile generated by Google 

Maps (Google, 2024) is attached to each route (top right), showing elevation variations in 

each case.  

Differences between both routes are clear, as in the top image travel time is only considered 

and the shortest route is chosen, while characteristics of the built environment (i.e., 

quietness) and the elevation (i.e., gradient) are considered besides the travel time in the 

bottom. The latter clearly shows the use of cycle paths (green lines), as a direct consequence 

of the quietness attribute introduced to follow good quality cycle roads, and a smoother route 

profile in contrast to the former. 
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Figure 77 Comparison of the cycle route chosen by a synthetic individual when the updated bicycle contribution is disabled 

(top) and enabled (bottom) (OSM basemap). 

 

The differences in the followed routes are especially evident in two areas: before and when 

crossing the river. In the first case, the cyclist chooses the route links based on how good they 

are for cycling (i.e., based on the quietness index), passing through several dedicated cycle 

paths. In the second case, the agent chooses flat areas in order to cross the river using a high 

bridge avoiding descending to the river and ascending again on the other side. In aggregated 
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terms, the consideration of the gradient requires ascent and descent of 28 and 27 metres, 

while when the shortest path is followed, the aggregated slope values are higher (37 and 32, 

respectively). 

 

Extrapolating this analysis for the whole cycling population, differences flows are also 

observed when the updated bicycle contribution is enable and disabled.  Figures 78-80 show 

the cycleability rating or quietness value of roads (left) and the differences between the 

number of cyclists using the roads when the updated bicycle extension is enabled and 

disabled (right). Low values of quietness are represented in red and high in green. Similarly, a 

reduction of cyclists are represented in red and an increase in green, while the lines’ width is 

proportional to the absolute difference in the number of cyclists using each road when the 

bicycle extension is enabled and disabled. 

Figure 78 shows Chillingham Road and surrounding areas (Newcastle upon Tyne). The 

quietness value in this primary road (0.2) is lower than in the vicinity tertiary and residential 

streets (left figure). Consequently, the number of cyclists using this main road is lower when 

the bicycle extension is enabled than when disabled (right). This has an impact in the 

surrounding streets, as more cyclists use alternative routes (e.g., Heaton Rd) where higher 

quietness values are found (0.4), indicating a better cycling experience based on their built 

environmental characteristics. Similar results are observed in figure 79, where cyclists 

travelling from west of Newcastle avoid using St. James Boulevards, in favour of roads with 

higher quietness values like Elswick Rd. The former is a primary road with two lanes per 

direction and maximum speed of 30mph, while the latter is a secondary road with one lane 

per direction and maximum speed of 20 mph. Lastly, figure 80 shows how agents avoid 

sharing the road with other vehicles (i.e., A187) when they have the option of using dedicated 

cycle paths (e.g., Hadrian Wall Path).  
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Figure 78 Comparison between the cycleability rating or quietness (left) and the differences between the number of cycling 
agents when the updated bicycle extension is enabled and disabled (example 1). 

 

 

Figure 79 Comparison between the cycleability rating or quietness (left) and the differences between the number of cycling 
agents when the updated bicycle extension is enabled and disabled (example 2). 
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Figure 80 Comparison between the cycleability rating or quietness (left) and the differences between the number of cycling 
agents when the updated bicycle extension is enabled and disabled (example 3). 

These examples show the effects on route choice followed by agents to avoid areas with poor 

cycling quality, based on the built environmental characteristics described in section 3.4.4. 

The combination of quietness and gradient allows simulation of more realistic cycling 

behaviours as not only the time variable is taken into account but also some fundamental 

components of the environment that affect cyclists when travelling between two points, such 

as the characteristics of the roads (i.e., quietness) and the ground elevation. 

 

Despite the success in simulating realistic cycling routes, the validation of bicycle counts in 

different zones of the study area was not accomplished, primarily because of the very low 

number of cyclists on the roads. As was described before in figure 68, less than 2% of all trips 

are made by bicycle, which makes it quite difficult to identify the main roads used by cyclists, 

especially considering that socio-demographic attributes are not taken into account when 

agents cycle. Currently, this is a limitation that could be solved by introducing sub-populations 

within the model with different attitudes and behaviours when trying different transport 

modes based on their characteristics (e.g., age, sex, income, health). Although information 

about attitudes towards the use of different transport modes based on socio-demographic 

characteristics in the Tyne and Wear region was obtained (Close et al., 2020), it was not 

included to avoid an overcomplicated model. Future work could include this information to 

achieve a more realistic representation of the urban mobility based on socio-demographic 

attributes. 
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4.3.6. Active travel trips 

Figure 81 shows the percentage of trips below five kilometres made by active modes within 

the Tyne and Wear region. Simulated results obtained 43.39% of active trips (blue bar), being 

compared with the national baseline scenario in 2019 calculated by ATE (41%) (orange bar) 

(ATE, 2023a). 

 

Figure 81 Comparison of the percentage of short trips in urban areas made by active modes, between results achieved in 
the validated MATSim model (blue) and the ATE baseline (orange). 

The difference obtained is below 3%, which makes the developed model an accurate, precise 

and realistic starting point to test policies to help and support ATE to achieve their goal. 

This accuracy achieved can be seen as a common starting point between the established goals 

in this thesis and ATE’s, as both aim to increase the use of active travel modes. Consequently, 

this validated model could be used to test some of the actions ATE would like to implement 

to achieve their goal by 2030. Within the actions included in their strategy (DfT, 2000). The 

following three potential policies to be tested were identified: direct, continuous, physically 

segregated and safe routes for cycling; the definition of low-traffic neighbourhoods (LTN); and 

better connectivity between active and public transport modes. 

 

4.4. Scenarios 

The defined scenarios in section 3.8.1 were simulated with the validated MATSim model. A 

definition reminder of each of the scenarios is provided: 

 Scenario 1: Fully segregated cycle paths. 

 Scenario 2: Low traffic neighbourhoods (LTNs). 
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 Scenario 3: Active travel reward. 

 Scenario 4: Pay when you drive. 

 Scenario 5: Cycle hubs next to metro stations. 

 Scenario 6.1: Cycle paths – LTN – cycle hubs. 

 Scenario 6.2: Cycle paths – LTN – cycle hubs – economic reward. 

 Scenario 6.3: Cycle paths – LTN – cycle hubs – economic penalty. 

 Scenario 6.4: Full combination. 

 

Results obtained from each scenario were compared against the validated baseline to 

estimate their efficiency in achieving the shift from private cars to active modes. Aggregated 

results were compared in the following 11 different groups:  

 transport modal share (section 4.4.1). 

 Sankey diagrams identifying the changes in transport share modes (section 4.4.2). 

 CO2 emissions (section 4.4.3). 

 Geospatial distribution of cars and bicycles (section 4.4.4). 

 Walking and cycling statistics (section 4.4.5). 

 Active modes trips (section 4.4.6). 

 Socio-demographic analysis (section 4.4.7). 

 Health benefits (section 4.4.8). 

 Built environmental road analysis (section 4.4.9). 

 Economic analysis (section 4.4.10). 

 Cycle hubs use (section 4.4.11). 

 

4.4.1. Transport modal share 

The simulated policies had impact in the use of the different transport modes. Figure 82 

compares the percentage of trips made by the different available modes per scenario and the 

baseline, grouped by transport mode. Figure 83 complements the previous figure showing 

the differences obtained per scenario when compared directly with the baseline scenario (in 

percentage-points), while figure 84 shows the ratio of transport modal splits when compared 

with the baseline (in percentages). 
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Figure 82 Comparison of the transport modal split between the baseline results and each scenario simulated, by transport 
mode. 

 

Figure 83 Differences of transport modal split when results achieved in each scenario are subtracted from the baseline 
scenario. 

 

Figure 84 Comparison of the transport modal split ratio of each scenario simulated when compared with the baseline 
scenario. 
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Based on the obtained results, scenario 1 has a limited impact in a global human behavioural 

change, as only a 2.0%-point change reduction in car use is achieved, increasing cycling (1.3%-

point) and public transport modes (1.1%-points), with a small reduction of walking trips (0.3%-

points) (figures 82, 83). Nevertheless, when results are analysed relatively per transport mode 

(figure 84), substantial changes can be observed, especially in cycling and public transit 

modes, where 73% and 5% increases were obtained, respectively, while the use of cars was 

the most impacted mode, with a 4% reduction. These results show the potential to achieve a 

shift in transport mobility when improvements for cycling are combined with spatial penalties 

to private motor vehicles, as the number of cyclists on the roads was almost duplicated. 

The results obtained from scenario 2 achieved a greater car use reduction (3.2%-points) than 

in the previous scenarios (figures 82, 83), although opposite results were obtained for cycling, 

where a negative 0.7%-point change was obtained. The first outcome was expected, as car 

users have fewer available roads to be used in urban areas with the potential for increasing 

congestion, while the second was a consequence of the set up defined in the calibration stage. 

The reason for the decrease in cycling, even after updating the cycling quality attribute (e.g., 

quietness) in residential roads, was the fact that cyclists continued using the same main roads 

as cars (i.e., direct routes) and the consequence of car congestion on those roads. As it was 

explained in section 3.7.1, the method used to overtake vehicles was ‘PassingQ’, which allows 

only fast vehicles to overtake slower ones. In this scenario, car users created more congestion 

zones than in the baseline scenario, impeding cyclists (slower vehicles) to filter through the 

traffic (as happens in reality), making the use of bicycles slower and, therefore, less attractive. 

The main winners in this scenario were the public modes (14% increase) (figures 82, 83 and 

84) as they were simulated as deterministic modes (e.g., not affected by any congestion). 

These modes were the best alternative to the use of cars, being faster than any other 

alternative and consequently, the most attractive modes for the agents. 

Scenario 3 achieves an important shift to active modes (10%-points), mainly due to cycling 

(7%-points), while the use of cars and public modes are decreased by 7%-points and 3%-

points, respectively (figures 82 and 83). In relative terms, cycling is increased more than 3.5 

times when compared against the baseline scenario, with the use of cars and public transport 

the most affected modes (13% reduction in both cases), while walking is increased by the 

same percentage (13%) (figure 84). Even though both active modes were economically 
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rewarded by the same amount, cycling seems to be preferred mainly as it is faster than 

walking.  

Results obtained in scenario 4 show the greatest car use reduction for now, obtaining 14%-

point decrease, being mainly absorbed by the public modes (10%-point increase) and lowered 

by active modes (2%-point increase for each) (figures 82 and 83). In relative terms (figure 84), 

the use of public modes is increased by almost 50%, while the use of bicycles is duplicated 

and walking increased 8%, with the use of the car being the most affected mode (27% 

reduction). The main reason for the massive move to public modes is similar to the argument 

given in scenario 2, since public modes were simulated as deterministic, with no maximum 

capacity or cost. Besides this impressive increase of public modes, the duplicated number of 

cyclists shows the potential of the bicycle in urban areas, even when policies penalising the 

use of cars economically are implemented, showing the importance of considering both 

carrots and sticks. 

The results obtained in scenario 5 were very similar to those obtained in the baseline scenario. 

This outcome was expected, as minimum changes were implemented in this scenario. Figures 

82 and 83 show insignificant differences in terms of transport share modes (i.e., differences 

below 0.5%-points) being the consequence of the stochasticity of the model. 

The combination of policies in scenario 6.1 (Cycle paths – LTN – cycle hubs) allowed the 

increase in the use of active modes by 5.3%-points (3.9% and 1.4%-points for the bicycle and 

walking, respectively), which is almost five-times the use of active modes than when results 

from individual policies (scenarios 1, 2 and 5) are grouped (1.1%) (figures 82 and 83). These 

values suggest the potential impact in the use of active modes when more than one policy is 

combined, as a higher percentage of active mode users are obtained. However, in terms of 

car use reduction, the sum of individual policies reaches a higher percentage-point change 

(5.4%-points) than when combined in a single policy (4.1%-points), suggesting that some of 

the agents using cars could have been affected by more than one of the combined policies 

(figures 82 and 83). Additionally, public modes were affected negatively by this combination, 

as the percentage of public modes users was reduced in 1.2%-points when compared with 

the baseline, while the sum of the individual policies achieved a 4.3%-points increase (figures 

82 and 83). These results suggest that the provision of combined advantages for cycling could 

be more attractive than the public modes. In relative terms (figure 84), cycling was the most 
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benefited mode, duplicating the number of trips, while walking was only increased by 5%. 

Opposite results were obtained by car and public transport users, as 8% and 6% reductions 

were obtained, respectively.  

Results from scenario 6.2 (Cycle paths – LTN – cycle hubs - economic reward) show very 

significant increase in the active modes and reductions in the use of cars and public modes 

(figures 82 and 83). Active travel reached 22%-point increase when compared with the 

baseline, achieved thanks to 17%-point increase in cycling, multiplying by 10 the number of 

trips made (figure 84), reaching 49% of total trips made by those modes, almost the ATE goal. 

In contrast, the use of cars and public modes were reduced 13%-points and 8%-points, 

respectively (figures 82 and 83), which are 35% and 41% lower than in the baseline scenario 

(figure 84). When the percentage of cyclists is compared with the combination of the 

individual scenarios (1, 2, 3 and 5), a significant difference can be observed between them. 

This scenario reached 17% increase, while the combination of the other four scenarios 

achieved 6.8%. When analysing the increase of walking, 0.8% higher value was obtained in 

this scenario than in the combination of the individuals. These values show that the 

combination of policies in favour of active modes in a single scenario achieves non-linear 

results and increase its scope in shifting agents towards these modes. When the previous 

analysis is applied to public modes, it can be observed that these modes were the most 

affected, as an 8%-point reduction instead of a 1%-point increase was achieved (figures 82 

and 83). Similar to the explanation given in the previous scenario, the combination of spatial 

incentives, now boosted by economic rewards, increased the attractiveness of using active 

modes. 

Results from scenario 6.3 (Cycle paths – LTN – cycle hubs – economic penalty) show a drastic 

reduction in the use of cars (18%-points change), absorbed by cycling (8%-points), public 

transport (6%-points) and walking (4%-points) (figures 82 and 83). Cycling has been multiplied 

by almost five times (figure 84), being the mode with the greatest growth. Public modes were 

the second winners, increased by 30%, while walking only in by 14% (figure 84). When 

grouping the results from scenarios 1, 2, 4 and 5 together, the total change in car use almost 

reaches 20%, which is almost 2% higher than results achieved in this scenario. This indicates 

that some of the agents could have been affected by more than one policy, similar to the 

outcome from the previous scenario. Active modes doubled the percentage of trips (12%-
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points increase) than when results from individual policies are added together (5.4%-points 

increase), cycling being the most benefited (8%-points change), as a 5%-points increase more 

was reached than when individual policies were summed. These results are in line with those 

obtained in the previous scenarios 6.1 and 6.2 in terms of active modes, showing a similar 

trend when policies are applied together. Public modes, as in the previous combined 

scenarios, were the most affected modes when compared against individual policies, as a 

6.2%-point increase was obtained instead of a 14.23%-point when results from individual 

scenarios were added together. 

Lastly, results from scenario 6.4 (full combination) show the best achievements in reducing 

the use of cars and increasing the use of active modes. The use of cars was reduced in 28%-

points, while active modes were increased in 33%-points, split in 26% for cycling and the 

remaining 7% for walking (figures 82 and 83). When analysing the data in relative terms, one 

in two car users decided to use an alternative mode, cycling was multiplied by 15 times, 

walking only by 25% and public modes reduced the number of users by 25% (figure 84). This 

combination of spatial and economic cycling benefits (scenarios 1, 2, 3 and 5) with car usage 

penalties in spatial and economic terms (scenarios 1, 2 and 4) achieves a similar percentage 

reduction in car use than when results from individual scenarios are grouped (28%-point 

reduction in scenario 6.4 and 26%-points when individual scenarios are aggregated). Similar 

results are achieved for walking (7% and 6%, respectively), although the main winner in this 

combination is cycling, as it reaches 17%-points more than when results from individual 

scenarios are aggregated (26% against 9%). Derived from previous values, public transport 

modes are the most affected when all policies are combined, as a 16%-point decrease is 

reached (5%-point change reduction in scenario 6.4, while there is an 11%-point change 

increase when results from individual scenarios are grouped). These results show that the 

simulated policies are effective in their aims, but producing side effects in the public modes, 

in the same way as scenarios 6.1 and 6.2. 

 

4.4.2. Sankey diagrams 

Sankey diagrams show the transition of transport mode users from the baseline scenario to 

the urban mobility policy simulated. All scenarios (figures 85 to 92) were compared except 
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scenario 5, as minimum differences were found. Values on the left represent the percentage 

of trips made by different transport modes in the baseline, while values on the right show the 

results achieved in each scenario simulated. Four different transport modes are considered: 

car (blue), public transport modes (orange), bicycle (green) and walking (red).  

 

 

Figure 85 Sankey diagram for scenario 1 (fully segregated cycle paths). 

Car users in scenario 1 are the most affected with the implementation of fully segregated 

cycle paths due to the road space reductions to allocate the cycle paths. Consequently, a 

proportion of them need to find an alternative transport mode to reach their destinations on 

time. Figure 85 shows that almost half of the car users who chose another mode used public 

transport (47%-points), while 39%-points preferred the use of the bicycle and the remaining 

14%-points decided to walk. In terms of cycling, most of the new cyclists are coming from cars 

(63%-points), followed by public transit modes (25%-points) and walkers (12%-points). New 

cycling users are mainly attracted from car users, which is in line with the applied policy, as 

the first benefit from safe, direct and comfortable routes, while the second are spatially 

penalised.  
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Figure 86 Sankey diagram for scenario 2 (Low Traffic Neighbourhoods). 

The Sankey diagram in figure 86 shows the transfer of transport mode users between the 

baseline and scenario 2 (i.e., LTNs). Almost six in ten car users that decided to use an 

alternative mode chose public modes (57%-points), followed by walking (40%-points), and an 

insignificant 2%-points preferred cycling. In terms of cycling, most of former users preferred 

to use public transports as the best alternatives (56%-points in both), followed by walking 

(29%-points) and car (15%-points). Overall, the use of public modes attracted the majority of 

the new users, being almost double the number than walking (the second most attractive). 

 

 

Figure 87 Sankey diagram for scenario 3 (economic active travel reward).  

Results obtained in the Sankey diagram from scenario 3 (i.e., active travel economic reward) 

(figure 87) show that one in two car users that decided to use an alternative mode decided to 
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cycle (51%), followed by walking (26%) and public modes (23%). When results are analysed 

from the cycling perspective, the new cyclists are principally coming from former car users 

(56%), public modes (40%) and walking (4%). In the case of new walkers, the agents used to 

use public transport (54%), followed by the car (45%) and the bicycle (1%). This policy shows 

the impact of the economic rewards in increasing the attractiveness of active modes in 

detriment of public transit, as more agents decided to use any type of active modes in greater 

proportions, although cycling was preferred to walking (1.5 more agents decided to use the 

first).  

 

 

Figure 88 Sankey diagram for scenario 4 (Pay when-you-drive). 

The Sankey diagram from scenario 4 (i.e., economic penalty when using cars) (figure 88) 

confirms that public modes were the most benefited, the number of new users being more 

than three and four times than those achieved by walking and cycling, respectively. 64% of 

the car users who decided to use an alternative mode chose public modes, another 20% chose 

to walk and the remaining 14% to cycle. The new cyclists come mostly from previous car users 

(95%), the remaining 5% being split between public transport users (3%) and walkers (2%). 

The new walkers were mainly car users (85%), followed by public transport users (13%) and 

cyclists (2%). These outcomes show that this policy could be very convenient to reduce the 

number of private motor vehicles in favour of more sustainable transport modes.  
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Figure 89 Sankey diagram for scenario 6.1 (cycle paths + LTN + cycle hubs). 

When the transition of transport users between the baseline and scenario 6.1 (i.e., Cycle 

paths – LTN – cycle hubs) (figure 89) are analysed, a great diversity of movements between 

the modes can be observed, which are a consequence of the simulated policies, the individual 

behaviours of the agents and their interactions in space and time. Car users that decided to 

use an alternative mode (8% of the total in the baseline) decided to use the other alternative 

modes in a very proportional way (36, 32 and 32% for public modes, walking and cycling, 

respectively). Similar results can be observed from former public modes users (6% of the 

total), where 38% of them decided to use bicycles, 30% cars and 32% to walk. Conversely, 

there are modes that increased the number of final users, such as the bicycle and walking. 

The new bicycle users are mainly obtained from previous car and public mode users (45% in 

both cases). Most of the new walkers used to use cars (54%), followed by public modes (45%). 

Considering only those trips made with a different transport mode than in the baseline, the 

bicycle was the mode that attracted the highest percentage of users (32%), followed by public 

modes (28%), walking (27%) and car (13%). The mode that lost the highest percentage of 

users was the car (45%), followed by public modes (37%), walking (16%) and the bicycle (2%). 

These values show positive balances for cycling (30%) and walking (11%), while negative for 

public modes (9%) and cars (32%). Overall, these figures show different flows of transport 

mode movements, but two main winners and losers can be identified directly. The results 

achieved agree with the simulated policies, as they mainly benefit bicycles and penalise car 

users, with small increases for walking and reductions for public modes. 
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Figure 90 Sankey diagram for scenario 6.2 (cycle paths + LTN + cycle hubs + active travel economic reward). 

The Sankey diagram in figure 90 shows the transition of agents from the baseline scenario to 

the results achieved in scenario 6.2 (i.e., Cycle paths – LTN – cycle hubs – economic reward). 

Results show a variety of transitions between modes, although two groups can be observed: 

bicycle and walking as winners and car and public modes as losers. Bicycles were by far the 

mode that attracted the most of the new users (64%), followed by walking (24%), public 

modes (9%) and car (3%). The inverse is true when considering the percentage of total users 

that decided to use an alternative mode. 52% of those agents that decided to change 

transport mode were using cars, 40% public modes, 7% walk and around 1% the bicycle. 

Combining previous values, bicycle and walking achieve positives balances (63% and 17%, 

respectively), while car and public modes got negative balances (49% and 31%, respectively).  

Overall, the use of the bicycle is increased by all the other modes, especially from former car 

and public mode users, which is a similar pattern, although in a lower proportion, to the one 

observed for walking. When compared with results from scenario 6.1, a stronger transition to 

active modes is observed, which shows the potential strength of economic rewards to make 

behavioural changes. 
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Figure 91 Sankey diagram for scenario 6.3 (cycle paths + LTN + cycle hubs + pay-when-you drive). 

The transition of agents between transport modes in scenario 6.3 (i.e., Cycle paths – LTN – 

cycle hubs – economic penalty) (figure 91) shows main flows from the use of cars to the other 

three modes. In general, public transit attracted four in 10 agents that decided to use an 

alternative mode (41%), the bicycle attracted three in ten (34%), walking two in 10 (23%) and 

the car only one in 50 (2%). In terms of the total percentage of users lost, the car mode was 

the most affected with almost three in four, followed in the distance by public mode users 

(17%), walkers (8%) and cyclists (1%). Combining previous values, the main winner is the use 

of the bicycle, with a positive balance of 32%, followed by public modes (25%) and walking 

(15%). This outcome is different to the one obtained in scenario 4 (pay-when-you drive), 

where public modes were the main winners. This shows that when economic penalties for car 

users are combined with benefits for active modes (especially cycling), more agents prefer to 

walk or cycle than use public modes.  

Overall, the use of the bicycle is the most increased mode, principally due to a minimum loss 

of users and a gain from former car and public mode users. Public modes are the second most 

benefited, although losing an important proportion of their users (mainly moving to active 

modes). Walking is principally benefited from former car users, with minimum loss of users 

(mainly to public modes). Lastly, the use of the car is the most affected, as 18% of users 

decided to use an alternative mode, attracting minimum new users from the other modes 

(probably due to the stochasticity of the model). 



186 
 

 

Figure 92 Sankey diagram for scenario 6.4 (fully combination). 

The Sankey diagram in figure 92 shows the transition of agents between the results from the 

baseline and scenario 6.4 (full combination). As in previous cases, it is possible to identify 

winners and losers. Cycling and walking are found in the first group, with the use of cars and 

public modes in the second. Globally, the use of the bicycle attracted two in three of the 

agents that chose an alternative mode (65%), followed by walking ((21%) and public modes 

(14%). The mode that lost the greatest number of users was the car, with almost seven in ten 

of the total agents that decided to use an alternative option, with public modes in second 

position (26%). The combination of the gained and lost users shows the use of the bicycle as 

the solid winner, with a positive balance of 65%. The other mode that reached a positive 

balance was walking (16%), while the modes with negative balances were cars and public 

modes (68% and 13%, respectively). These results are very similar to those obtained in 

scenario 6.2, where all individual policies in favour of active modes were combined, although 

achieving less attractiveness to cars as a consequence of the daily toll included in this 

scenario.  

 

Analysing the results by mode, former car users that decided to use an alternative mode chose 

the bicycle two in three of the times (65%), while the small amount of new car users came 

mainly from public modes (82%). Seven out of ten former public transport users that decided 

to use an alternative mode chose the bicycle (69%), followed by walking (29%), while new 

users came principally from former car users (85%). Former walkers that decided to use an 

alternative option chose the use of the bicycle or public modes in similar proportions (55% 
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and 43%, respectively). New walkers were mainly car users (62%). Cycling was the mode that 

attracted the greatest number of new users, principally from cars (68%), and public modes 

(28%). The effect of providing fully segregated, safe and direct cycle paths with an economic 

reward seems to be a great boost to increase the number of cyclists (as in scenario 6.2), even 

when combined with economic penalties for car users.  

 

4.4.3. CO2 emissions 

Another factor to analyse is the estimated CO2 emissions reduction per scenario. DfT provide 

information about the average CO2 emissions of newly registered cars in Great Britain (DfT, 

2024). The latest value provided in 2015 shows that, on average, each vehicle emits 121.3 

grams per kilometre. The European Environment Agency (2024) provide a very similar value 

for the same year (119.5), although their data reaches up to 2022. In their analysis, an 

emission decrease is observed from 2000 until 2017, where emissions went from 172.1 to 

121.3 grams per kilometre (similar values for DfT). However, a small increase is observed in 

2018 and 2019, reaching 122.3 gr/km in 2019, although reduced in 2022 (108.1). These values 

can be used to quantify the tonnes of CO2 emitted by cars daily.  

In this analysis, the emissions per scenario are calculated based on the total number of 

kilometres driven and the following assumptions: 

 All vehicles are considered new and emit the average value of CO2 emissions per 

kilometre provided by the  European Environment Agency for the year 2019 (i.e., 

122.3 gr/km) 

 All vehicles emit the same amount of CO2 independently of the vehicle type (e.g., car, 

van, truck) 

 All vehicles emit the same amount of CO2 in time: no variances depending on the 

vehicle speed are considered. 

Figures 93 and 94 show the results obtained for each scenario, in absolute and percentage 

values respectively. Baseline scenario emits 416 tonnes daily, which is the equivalent to the 

amount of CO2 absorbed by 4,326,577 trees in a day (25 tonnes a year absorbed per tree 

(Ecotree, 2024; Encon, 2024)). 
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Figure 93 Daily tonnes of CO2 emissions per scenario simulated 

 

Figure 94 Percentage of CO2 emissions reductions per scenario 

Relative to the individual scenarios simulated (scenarios 1-5), a reduction is observed in all 

cases, the lowest being achieved in scenarios 2 and 5, with 0.5 and 0.2 tonnes respectively as 

a consequence of the implementation of LTN’s and the possibility of using the bicycle and 

metro during the same trip, respectively. In the case of the inclusion of cycle paths (scenario 

1), there is a reduction of 9.5 tonnes (2.3%), while the highest reductions are achieved in 

scenarios 3 and 4, where the economic rewards to active modes and penalties to car users 

reach a reduction of 60 and 70 tonnes (14.2 and 17.3%) respectively.  

Similar trends are observed in combined scenarios (scenarios 6.1-6.4), where those with 

economic policies (rewards and/or penalties) achieve the highest reductions, the penalties to 

car users being more effective (21.0% reduction) than rewards to active mode users (17.8%). 
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In the case of scenario 6.4, a combined result between those obtained in scenarios 6.2 and 

6.3 is achieved, with a 38.3% reduction, which is equivalent to 159.4 tonnes less CO2 emitted. 

When comparing results between individual and combined scenarios, a higher reduction can 

also be observed when policies are combined than when results from the individual policies 

are added together. Scenario 6.2 achieves a further 2.5 tonne reduction than the sum of the 

individual policies, while scenario 6.3 reaches a 3.4 tonne further reduction. These figures 

show the extra value that combined policies can achieve rather than the implementation of 

individual policies, as highlighted in previous sections.  

 

4.4.4. Geospatial distribution of cars and bicycles 

It is also interesting to analyse the effects of the urban mobility policies geospatially. Vehicles 

en-route were counted on each road and compared against the baseline scenario to estimate 

the areas where the number of vehicles could be reduced or increased. Two different analyses 

were performed: firstly, number of cars per road segment (figures 95-102); secondly, the 

number of bicycles (figures 103-110). 

 

Cars 

For each scenario, a map showing the number of cars counted per road (left side of the figure) 

was generated. The brighter the blue, the greater the number of cars counted, as is also 

shown based on the width of the road. Additionally, the right-hand side map shows the 

differences when the number of cars per road are compared against the baseline scenario. 

Green lines represent a reduction in the number of cars, while red represents an increase, the 

width of the line being proportional to the reduction or increase of cars passing through them. 

Scenario 5 was not analysed due to the fact the results were almost the same as the baseline 

scenario. 
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Figure 95 Car counts in scenario 1 (left) and differences when compared with the baseline (right). 

The geospatial analysis of cars in scenario 1 (figure 95) shows that motorways and main roads 

were the most affected ones. In addition, some roads, principally some secondary roads in 

the city centres of the five LAs increased the number of cars, as well as some connections 

between motorways. Further investigations are required to have a clear understanding of 

these outcomes, as simple causes cannot be attributed.  

 

 

Figure 96 Car counts in scenario 2 (left) and differences when compared with the baseline (right). 
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The geospatial analysis in scenario 2 shows similar patterns as in scenario 1 (figure 96 left). 

However, when compared against the baseline (right), it can be observed that the highways 

and motorways see an increase in the number of cars (e.g., A1, A194, A119). This is also the 

case on main urban roads (e.g., Westgate, Salters and Osborne Road in Newcastle; Gateshead 

highway and Durham Road in Gateshead), while a reduction in residential roads in city centres 

is also observed. The results obtained suggest that car users preferred to use fast and wide 

roads (e.g., motorways and highways) instead of using very centric urban roads (e.g., the Tyne 

Bridge between Newcastle and Gateshead) to reduce as much as possible the potential 

congested areas surrounding residential areas.  

 

 

Figure 97 Car counts in scenario 3 (left) and differences when compared with the baseline (right). 

The geospatial distribution in scenario 3 (figure 97 left) shows a visual reduction in all types 

of roads when compared against the baseline, being more prominent in motorways and 

highways. When results obtained are subtracted from the baseline (right), the majority of 

main roads have fewer vehicles, although some of them have more (e.g., A695, A692, A195, 

A1018, A184). Most urban roads achieved a reduction, although some roads experienced an 

increase as well (e.g., Barrack Road in Newcastle; Durham Road in Gateshead). Although a 

further and detailed investigation is required to identify the reasons for the increase of 

vehicles in specific areas, they could be a consequence of the behaviours of other agents. One 
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hypothesis is that these new car users have a better alternative using the car than using the 

transport mode used in the baseline scenario, as a consequence of the decisions made by 

other agents. When some agents made the shift from cars to other transport modes (mainly 

cycling and walking), it allowed these new car users to travel faster, as less congested zones 

were generated. This is an important effect that shows the importance of AgBMs in transport, 

as it is possible to visualise this effect in congestion: when car journeys are reduced for some, 

it just opens more road space for others. Therefore, for a car use reduction, a road space 

reduction is needed. 

 

 

Figure 98 Car counts in scenario 4 (left) and differences when compared with the baseline (right). 

The geospatial distribution of cars in scenario 4 (figure 98 left) shows a lower number of 

vehicles on the roads when compared against the baseline scenario, especially in motorways, 

as in the city centres these differences are less visual. When differences between this scenario 

and the baseline are shown (right) a general reduction of cars can be observed in every single 

road in the study area, which indicates a homogeneous impact of the policy.  
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Figure 99 Car counts in scenario 6.1 (left) and differences when compared with the baseline (right). 

The geospatial analysis in scenario 6.1 (figure 99 left) shows a reduction in the number of 

vehicles, as narrower lanes are observed when compared with previous scenarios. When the 

values are subtracted from the baseline scenario (right), patterns similar to results from 

scenario 2 can be observed, with an increase of cars (red roads), principally on urban roads, 

as the main motorways and highways in the area saw a reduction in the number of vehicles 

(e.g., A1, A1058, A194). In contrast, urban roads with a reduction in cars in scenario 2, reduced 

the vehicles passing through them even more (e.g., city centres of Newcastle, Gateshead and 

Sunderland). Primary, secondary and tertiary roads, although showing a similar pattern to 

scenario 2, achieved a greater car reduction. 

 

The geospatial distribution in scenario 6.2 (figure 100 left) shows a similar pattern as in the 

previous scenarios, although with narrower lines, indicating a greater car use reduction. 

When results are subtracted from the baseline scenario (right), a combination of the results 

obtained in scenarios 1, 2 and 3 is observed (like in scenario 6.1), although with more notable 

car reductions, especially in motorways and highways (e.g., A1, A1058, A19). In urban areas, 

some roads with more cars than in the baseline are found (e.g., Westgate Road in Newcastle, 

Durham Road in Gateshead, B1522 and Tunstall Road in Sunderland), with similar patterns as 

in scenarios 1, 2, 3 and 6.1. The investigation of the reasons could be considered a specific 
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task to be developed in future analysis.  

 

Figure 100 Car counts in scenario 6.2 (left) and differences when compared with the baseline (right). 

 

 

 

Figure 101 Car counts in scenario 6.3 (left) and differences when compared with the baseline (right). 

The geospatial distribution in scenario 6.3 (figure 101 left) shows the same patterns as in the 

previous scenarios, but with lower levels of cars. When results are subtracted from the 
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baseline (right), main reductions can be observed in the entire region, without distinctions 

between motorways and urban zones. The reduction in the use of cars seems to be relatively 

homogeneous in the whole study area, with isolated areas where the number of cars 

increased (e.g., Suniside in Gateshead, East Herrington in Sunderland, A182), which are similar 

to those found in scenario 2. 

 

 

Figure 102 Car counts in scenario 6.4 (left) and differences when compared with the baseline (right). 

The geospatial distribution in scenario 6.4 (figure 102) shows a lower car-centric mobility 

because of the 28% car use decrease, with narrower blue lines in the entire region, especially 

in highways and motorways (left). When results obtained were subtracted from the baseline 

(right), previous facts are shown visually. The main motorways (e.g., A1, A19) saw a drastically 

reduced number of cars, as well as on the main roads in the city centre of Newcastle (e.g., 

A167, A1058) and Gateshead (e.g., A184). Main urban roads (e.g., primary, secondary and 

tertiary) also reduced the amount of cars in every LA, although some roads increased the 

number of them in specific zones, which coincides with results from scenario 6.2 in many 

cases (e.g., Durham Road and A692 in Gateshead; B286, A182 and B1522 in Sunderland), but 

in a lower proportion. Further investigation is required to identify the causes that make these 

zones increase the number of vehicles.  
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Bicycles 

Similar to the case of cars, the number of cyclists per road were analysed. The maps on the 

left show the number of bicycles counted per road. The brighter the green, the greater 

number of cyclists counted; it is also shown based on the width of the road. The maps on the 

right show the differences when the number of bicycles per scenario are compared against 

the baseline scenario. Green lines represent an increase in the number of cyclists counted, 

while red represent a reduction, the width of the line being proportional to the increase or 

reduction of cyclists passing through them. Similarly, scenario 5 was not analysed due to the 

results being almost the same as the baseline scenario. For visualisation purposes, only roads 

with differences above or below 100 bicycles when compared with the baseline are shown on 

the maps on the right. 

 

 

Figure 103 Bicycle counts in scenario 1 (left) and differences when compared with the baseline (right). 

Scenario 1 shows a heterogeneous use of the bicycle (figure 103), but with clusters within the 

main urban areas of the five LAs (left). Differences with the baseline scenario (right) show 

increases in four of the LAs. In Newcastle, three main cycle path networks are identified: the 

first connecting the city centre with residential areas (e.g., Elswick Road), the second in the 

East (Newburn) and the third in the North (e.g., a West-East corridor through Kenton Lane, 

Red Hall Drive, Benfield Road). In these cases, the networks connect residential areas with 
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shopping, medical and education areas. In Gateshead, there are two main corridors. The first 

connects residential areas in the SW with the bridges that connect to Newcastle upon Tyne. 

The second connects residential areas with the Team Valley trading state. In North Shields, 

there is a main cycle North-South corridor (through Preston North Road) connecting 

residential areas with education, medical and shopping areas. In Sunderland, two main routes 

are also identified. The first is found in the SW, connecting residential areas with education 

and shopping areas. The second connects residential areas in the North of the river Wear and 

South with the city centre of Sunderland and the Sunderland Royal Hospital. In all cases, the 

routes chosen are direct, minimising the distances cycled. In South Shields, the results are 

diffuse, and no specific routes were identified.  

 

Figure 104 Bicycle counts in scenario 2 (left) and differences when compared with the baseline (right). 

Results from scenario 2 show that all roads have a reduction of cyclists. Figure 104 shows in 

red only those roads with a reduction of more than 100 cyclists. These are the cases of the 

cycle paths connecting Wide Open and Moorfields in the North of Newcastle; roads in 

Gateshead connecting to the Team Valley Trading Estate; residential areas between West 

Boldon and Town End Farm in South Tyneside; and bridges connecting areas from both sides 

of the river in Sunderland. 
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Figure 105 Bicycle counts in scenario 3 (left) and differences when compared with the baseline (right). 

Results from scenario 3 (figure 105 left) show a huge boost in almost every urban area, 

especially in the areas of Newcastle, Gateshead and Sunderland, and the bridges connecting 

the first two. When compared with the baseline (right), the largest increases can be found in 

similar areas highlighted in scenario 1. Besides them, the route connecting Jarrow and West 

Harton, in South Tyneside can also be highlighted. Due to the limited number of options when 

crossing the rivers, most bridges are highly transited by cyclists (especially those with cycle 

paths). The most important bridges connect Newcastle and Gateshead, the Tyne pedestrian 

and cycle tunnel between North and South Tyneside; and the three bridges in Sunderland. As 

expected, cyclists now use the main roads used by cars, as these roads allow for reaching 

destinations in a more direct and faster way than the existing cycle paths.  

 

In a similar way as it was shown in the car results, the use of bicycles in scenario 4 obtains an 

intermediate increase of cyclists when compared with results from scenarios 1 and 3 (figure 

106). The most cycled zones are the urban areas and the connections among them (left). 

When the results are subtracted from the baseline scenario (right), increases in the number 

of cyclists can be observed. This is especially visible following the main urban roads from the 

five LAs, with similar patterns as highlighted in scenarios 1 and 3. Additionally, the bridges 

connecting areas at both sides of the two main rivers saw an increase in the number of 
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cyclists, similar to scenario 3 but in a lower proportion.  

 

Figure 106 Bicycle counts in scenario 4 (left) and differences when compared with the baseline (right). 

 

 

Figure 107 Bicycle counts in scenario 6.1 (left) and differences when compared with the baseline (right). 

The analysis in scenario 6.1 shows an increase of cycling with a very similar pattern to results 

obtained in scenario 4 (figure 107 left). Similar areas as those highlighted in scenarios 1, 3 and 

4 can also be identified (e.g., the West-East corridor through Kenton Lane, Red Hall Drive, 

Benfield Road in Newcastle; the North-South corridor through Preston North Road in North 
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Tyneside; the routes connecting the Team Valley Trading Estate with residential areas in 

Gateshead; the South-West route in Sunderland; and every bridge crossing the rivers in urban 

areas) (right). 

 

 

Figure 108 Bicycle counts in scenario 6.2 (left) and differences when compared with the baseline (right). 

Results in scenario 6.2 show an impressive boost in the use of cycle paths, especially in urban 

areas of Newcastle, Gateshead and Sunderland (figure 108 left). When results are subtracted 

from the baseline scenario (right), a relatively homogeneous increase in almost every urban 

area of the study area can be observed, as well as in the zones connecting the urban areas of 

the LAs, highlighting the Newcastle-North Tyneside connection through the A1058, the Hylton 

Lane and A1018 between Sunderland and South Tyneside. The largest increases of cyclists 

using the fully segregated cycle paths are allocated in Newcastle, with two routes standing 

out: the N-S route from Gosforth (Newcastle) to the northern residential areas of Gateshead; 

and the E-W route connecting the area of Heaton with the city centre of Newcastle. Besides 

them, areas with bridges crossing the rivers (e.g., Sunderland) are very transited, too. The 

highlighted routes in the previous scenarios also increased the number of users, indicating 

their importance in the area.  
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Figure 109 Bicycle counts in scenario 6.3 (left) and differences when compared with the baseline (right). 

The distribution of bicycles in scenario 6.3 is very similar to results from scenario 3, as a similar 

percentage of cycled trips were obtained in both cases (figure 109 left), it being possible to 

identify the same corridors as in scenarios 1, 3, 4, 6.1 and 6.2. When results are subtracted 

from the baseline (right), very similar results as in scenario 3 are obtained, although with a 

general higher increase of cyclists, being principally observed in the corridors highlighted 

before in each of the LAs. Besides them, a new route stands out. This is the A1058 connecting 

Newcastle with North Tyneside, being the main cycling route (shortest and relatively smooth 

and flat) between both LAs. 

 

The analysis of bicycles in scenario 6.4 shows a huge increase (figure 110 left), principally in 

urban areas of Newcastle, Gateshead and Sunderland, but also in most roads connecting all 

LAs. When subtracting results from the baseline (right), the outcome is very similar to the 

results from scenario 6.2, although with a greater volume of cyclists in all roads. This similarity 

with scenario 6.2 is coherent with the policies simulated in both scenarios, as all possible 

benefits for cycling were included in both cases. The greater number of cyclists in this scenario 

is due to the greater percentage of car users that decided to use the bicycle because of the 

daily toll policy included, showing the importance of both carrot and stick policies combined.  
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Figure 110 Bicycle counts in scenario 6.4 (left) and differences when compared with the baseline (right). 

 

4.4.5. Walking and cycling statistics 

This section identifies the differences in walking (yellow bars) and cycling (purple bars) 

average trip distance in kilometres (figure 111), trip time in minutes (figure 112) and speed in 

kilometres per hour (figure 113) when scenarios are compared against the baseline. The goal 

is to identify how policies influence the use of active modes in terms of distance, time and 

consequently, the speed. Finally, figure 114 quantifies the total kilometres walked and cycled 

per scenario, while table 8 identifies the percentage of increase or decrease of walking and 

cycling per scenario against results obtained in the base case scenario. 

 

Figure 111 Differences in average trip distances when walking or cycling per scenario against the baseline scenario. 
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Figure 112 Differences in average trip time when walking or cycling per scenario against the baseline scenario. 

 

Figure 113 Differences in average speed when walking or cycling per scenario against the baseline scenario. 
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Figure 114 Total kilometres walked, cycled in each scenario simulated. 
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 Ratio total km 
walked 

Ratio total km cycled 

Scenario 1 -4% 82% 

Scenario 2 2% -32% 

Scenario 3 23% 628% 

Scenario 4 13% 177% 

Scenario 5 0% -5% 

Scenario 6.1 0% 252% 

Scenario 6.2 21% 1663% 

Scenario 6.3 15% 599% 

Scenario 6.4 32% 2738% 
Table 8 Ratio of total kilometres walked and cycled per scenario simulated when compared with the baseline scenario. 

 

Non-significant differences were observed in scenario 1 in terms of average trip distances 

(figure 111) and times (figure 112) for active modes when compared with the baseline. Results 

show a 0.02 kilometres and 0.2 minutes decrease for walking and 0.17 kilometres and 0.1 

minutes increase for cycling, although a higher average speed was achieved when cycling 

(figure 113), thanks to the fully segregated cycle paths that do not interact with cars. These 

results suggest that cycling was increased by agents travelling longer distances, the increase 

of the average speed being a crucial factor in attracting more cyclists, with an 82%-points 

increase in the number of kilometres cycled (figure 114 and table 8). 

Results from scenario 2 show slightly shorter average walking time (figure 111) and distance 

(figure 112) than in the baseline. In contrast, longer average trip distance (0.4 kilometres) and 

duration (2.7 minutes) were obtained for cycling, as short cycled distances in the baseline 

scenario were mainly walked or shifted to public modes, as shown in figure 84. In terms of 

average speed values, figure 113 shows an interesting result related to cycling, as this value 

was reduced by more than 0.8 km per hour when compared to the baseline, due to the 

impossibility of overtaking cars when these are in congested areas. Consequently, as shown 

in figure 114 and table 8, more kilometres were walked (2%) and less cycled (32%). 

Average cycling trip distances and times in scenario 3 are also altered when compared with 

the baseline, where main trip distance and time are increased by almost 2 kilometres and 9 

minutes, respectively (figures 111 and 112). These values indicate that more agents were 

attracted to cycle when economic rewards are provided, even travelling for longer distances 

than in the baseline scenario. However, the increase of cyclists on the roads made the average 
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speed slower than in the baseline (0.13km/h) (figure 113). This could be a consequence of the 

amount of cyclists and other vehicles using the same roads at the same time (as in scenario 

2). In the case of walking, a slightly longer average trip distance was obtained (figure 111), 

needing an extra minute to make an average trip (figure 112). Due to the increase of trips 

made by active modes, almost 400,000 kilometres were made (61% cycled and 39% walked), 

which is 2.5 times the base case scenario (figure 113). When this value is split by active mode, 

increases of 23% and 628% for walking and cycling can be observed, respectively. These 

results show the efficiency of this policy in increasing the number of trips made by active 

modes.  

Results from scenario 4 show increased values for both modes, being greater for cycling (0.8 

kilometres and 3.4 minutes more than in the validated scenario) than for walking (0.04 

kilometres and 0.4 minutes) (figures 111 and 112). These values indicate that new cyclists are 

travelling longer distances than in the validated scenario, probably due to less congested 

routes by cars, allowing them to travel at a higher speed (figure 113), while new walkers are 

mainly walking the same distances. The number of kilometres walked and cycled were 

increased as well, mainly cycling (almost three times), while walking increases only a 13% 

(figure 114 and table 8). These results show the potential benefits that can be achieved for 

active modes with the solely application of policies that penalise the use of cars. Even though 

the vast majority of car users preferred public modes, an important proportion of people 

switched to active modes. 

In scenario 5, minimum differences in the average trip distance, time, speed and the total 

amount of kilometres walked or cycled were observed (figures 111 to 114). However, several 

differences were found. Firstly, a decrease in the ratio of total number kilometres cycled was 

identified, with a reduction of a 5%. Secondly, a 5% decrease in the use of bicycles as the main 

mode used during the trips was observed, while public transport modes increased by 1% 

(figure 81). These results could be the consequence of allowing the agents to combine the 

use of the bicycle and the metro, besides acknowledging part of this behaviour to the 

stochasticity of the model. A small proportion of agents previously using the bicycle as the 

main mode during the trips decided to combine the use of the bicycle with the metro, the 

latter becoming the main mode.  

In the case of results obtained from scenario 6.1, a small reduction in the average trip distance 
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when walking is observed (figure 111), with more although shorter trips (5%). The average 

cycled distance is increased (10%), indicating that more and longer trips are made. 

Accordingly, average trip duration (figure 112) for walking is slightly lower (5%) and higher 

when cycling (23%). Average cycling values show the improvements achieved in this scenario 

when compared against scenario 2, as similar average trip distances are made in both (3.5 

kilometres), but average trip duration is around 2 minutes shorter, indicating the impact of 

fully segregated and direct cycle paths on main roads. Differences in average speeds are 

mainly found in cycling, where a very similar value to scenario 1 is obtained (0.74 km/h faster 

than the baseline), while walking obtains an insignificant reduction (0.08km/h) (figure 113). 

This combined policy also increases the number of kilometres using active modes (figure 114), 

having similar kilometres walked to those of the validated scenario, although a 2.5-fold 

increase in kilometres cycled is achieved. These values show the potential policy success in 

terms of cycling, the main beneficiary of the implementation of fully segregated cycle paths, 

LTNs and cycle hubs, with shorter and slower walking trips, on average. 

The combined application of policies in scenario 6.2 made the average cycled trip distance 

increase by 2.1 kilometres (0.01 kilometres for walkers) (figure 111), spending on average 

eight more minutes per trip (walkers only 0.3 more) (figure 112). Previous values for cycling 

can be explained with a speed increase of 0.7 km/h, very similar to the value obtained in 

scenarios 1 and 6.1, where fully segregated cycle paths were deployed, enabling cyclists to 

use more direct routes without any potential car congestion. The effect of combining fully 

segregated cycle paths with economic rewards for cycling can be observed when comparing 

results against scenario 3, where only economic rewards were given. In the former, the 

average trip distance and duration were 5.3 kilometres and 23 minutes while, in the latter, 

the values were 5.1 km and 23.6 minutes. The former allows making longer and faster trips, 

as it can be observed in figures 111-113. In terms of kilometres walked and cycled, this 

scenario achieves the highest values so far, multiplying by more than 4.5 times the kilometres 

using active modes (figure 114), mainly achieved when cycling, as the number of km cycled 

were multiplied by 16.  

The average cycled trip distance in scenario 6.3 was increased in 0.8 kilometres (figure 111), 

requiring 2.7 more minutes (figure 112) when compared against the baseline (same average 

trip distance and duration for walking as in the validated scenario). These results are similar 
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to those obtained in the previous scenario 6.2. The effect of combining fully segregated cycle 

paths and LTNs with economic variations (penalties in this case) achieves longer average 

cycling trip distances in shorter average times than when the economic policy is applied alone 

(scenario 4). Similar to previous scenarios, the provision of fully segregated and safe cycle 

paths increased the average speed (figure 113) in a similar proportion as in scenarios 1, 6.1 

and 6.2. In terms of kilometres cycled, the value is increased six times, while walking is only 

increased by 15% (figure 114 and table 8).  

Lastly, scenario 6.4 achieves the longest average cycling distance (5.7 km), which is 80% longer 

than in the baseline (figure 111), requiring 25.3 minutes, a 73% increase (figure 112). These 

results indicate that more and longer distances are made by bicycle thanks to the 

attractiveness gained after the implementation of policies in its favour. Despite this 

attractiveness, the average cycling speed was not as high as in the previous scenarios where 

fully segregated cycle paths were implemented. The main reason could be related to the 

number of cyclists using the same road at the same time and the flow capacity value used 

(1000), which could result in agents travelling at a slower speed than in free flow conditions. 

A further investigation of the flow capacity value and the potential use of a more realistic 

value would help in identifying more accurate results. In terms of walking, the average trip 

distance and time were increased by 6% (figure 111) and 7% (figure 112), respectively. These 

results show that new walkers walked longer distances instead of using other modes 

(principally the car or public modes, as described before). When comparing the number of 

kilometres walked from this scenario with the sum of the individual scenarios (figure 114 and 

table 8), a very similar value can be observed for walking (34% increase when individual 

scenarios are grouped, while 32% in this scenario). In the case of cycling, the sum of the 

individual scenarios increases the number of kilometres cycled by nine times, while the value 

obtained in scenario 6.4 is almost 28 times, showing again that the bicycle was the mode that 

benefited the most from another perspective. 

 

4.4.6. Active Travel England goal 

As discussed previously in the thesis, ATE has defined a goal to achieve 50% of trips below 5 

kilometres to be walked or cycled in urban areas by 2030. Their baseline identified in 2019 
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was 41% (ATE, 2023a). This section identifies if the scenarios simulated could achieve the goal 

established by ATE, from general, trip purpose and geospatial perspectives.  

Figure 115 shows the percentage of short trips (e.g., below 5 kilometres) that are made either 

walking or cycling, per scenario. Blue bars represent the percentages achieved per scenario, 

while the horizontal dotted red line marks the threshold marked by ATE for the year 2030. 

 

Figure 115 Percentage of short trips made in urban areas in each scenario simulated (blue bars), with the 50% ATE goal (red 
dotted line). 

Tables 14, 15 and 16 quantify the percentage of trips made by active modes per scenario, 

depending on the purpose of the trip (e.g., education, work, shop, medical, leisure sport and 

leisure in general). Table 9 estimates only those percentages of trips walked (purple), table 

10 only those trips cycled (green), table 11 the combination of both (blue). In the three cases, 

values highlighted in white represent those that achieve the goal defined by ATE. 

WALKING Education Work Shop Medical Leisure sport Leisure act 

Base case scenario 46.24 27.92 33.92 28.55 31.04 40.46 

Scenario 1 44.89 27.21 33.6 28.02 30.77 40.14 

Scenario 2 46.4 27.74 36.81 29.43 34.36 43.21 

Scenario 3 49.46 30.18 37.57 31.49 35.2 43.64 

Scenario 4 46.13 30.89 38.77 31.82 35.33 43.13 

Scenario 5 45.97 28.4 33.8 28.59 30.8 40.43 

Scenario 6.1 47.08 27.69 37.16 29.47 34.45 43.43 

Scenario 6.2 48.32 28.33 40.7 32.19 39.17 46.28 

Scenario 6.3 46.55 30.41 41.25 33.66 38.59 46.06 

Scenario 6.4 48.68 29.71 44.08 35.9 41.92 48.57 

Table 9 Percentage of trips walked depending on the purpose of the trip, by scenario simulated. 
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CYCLING Education Work Shop Medical Leisure sport Leisure act 

Base case scenario 3.42 2.06 2.03 3.48 3.35 2.45 

Scenario 1 6.08 4.44 3.23 5.81 4.57 3.41 

Scenario 2 2.03 1.3 1.19 2.43 1.73 1.37 

Scenario 3 12.88 11.72 8.65 12.34 8.64 6.97 

Scenario 4 6.56 6.22 5.62 7.81 5.97 3.93 

Scenario 5 3.14 1.97 1.93 3.36 3.05 2.36 

Scenario 6.1 11.02 8.98 6.39 10.13 7.93 5.92 

Scenario 6.2 27.2 28.3 15.93 23.56 18.33 14.61 

Scenario 6.3 15.16 18.09 11.83 16.68 12.56 8.38 

Scenario 6.4 28.95 42.78 25.81 33.25 25.23 19.41 

Table 10 Percentage of trips cycled depending on the purpose of the trip, by scenario simulated. 

 

ACTIVE MODES Education Work Shop Medical Leisure sport Leisure act 

Base case scenario 49.66 29.98 35.95 32.03 34.39 42.91 

Scenario 1 50.97 31.65 36.83 33.83 35.34 43.55 

Scenario 2 48.43 29.04 38 31.86 36.09 44.58 

Scenario 3 62.34 41.9 46.22 43.83 43.84 50.61 

Scenario 4 52.69 37.11 44.39 39.63 41.3 47.06 

Scenario 5 49.11 30.37 35.73 31.95 33.85 42.79 

Scenario 6.1 58.1 36.67 43.55 39.6 42.38 49.35 

Scenario 6.2 75.52 56.63 56.63 55.75 57.5 60.89 

Scenario 6.3 61.71 48.5 53.08 50.34 51.15 54.44 

Scenario 6.4 77.63 72.49 69.89 69.15 67.15 67.98 
Table 11 Percentage of trips walked or cycled depending on the purpose of the trip, by scenario simulated. 

 

In addition to the above analysis, the geospatial component of active travel modes was 

analysed per MSOA zone in the Tyne and Wear region, per scenario simulated. Figure 116 

shows the percentage of short trips walked (first column), cycled (second column) and the 

combination of both (third column) for each of the scenarios simulated. In all cases, the darker 

the colour, the greater the percentage of short trips made by the specified mode. 

Additionally, when a MSOA zone reaches the ATE target, the border of the level is highlighted 

in red.  
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Figure 116 Percentage of short trips made on foot (left), cycling (middle) and the combination of active modes (right) per 
scenario simulated. 

 

Results from scenario 1 show an increase of almost 1%-point, reaching 44.4%-points of short 

trips cycled or walked in urban areas (figure 115). When this goal is analysed depending on 

the active mode and the trip purpose, walking percentages were reduced when compared 

against the base case scenario (table 9). This was likely in great part in favour of cycling (table 

10), where values were increased in all trip purposes analysed, especially when commuting 

and travelling to school, where values were duplicated and almost duplicated, respectively. 

When results of both modes are combined (table 11), the ATE goal is achieved when travelling 

to school (51%), while the other trip purposes increased their percentages, although still being 

far from the objective. The geospatial analysis of the ATE goal when results are grouped by 

MSOA area (figure 116) shows minimum differences when compared with the baseline, 

although a general increase in the use of cycling is observed, especially in residential areas in 

the outskirts of the main urban areas. 

 

Scenario 2 does not achieve the ATE 2030 goal either, achieving a very similar result as in 

scenario 1 (44.34%) (figure 115). While in the previous scenario cycling was the most 

benefited active mode, opposite results were obtained in this one. Walking (table 9) was 

increased for all trip purposes, except when commuting to work, where a slight reduction 

(0.18%-points) was obtained, that could be due to the stochasticity of the model or a direct 

transfer to public modes. The highest increases were found when trip purposes were related 

to shopping, leisure sport and leisure, with around a 3% increase in each of them. In terms of 

cycling (table 10), all trip purposes suffered a reduction in the use of the bicycle, trips to 
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leisure sport (1.62%) education (1.39%), leisure in general (1.08%) and medical (1.05%) being 

those with the greatest reductions. When both modes are grouped (table 11 and compared 

with the baseline, reductions can be observed when travelling to school (1.23%-points), 

commuting to work (0.94%-points) and attending medical appointments (0.17%-points), 

while there are increases in shopping (2.05%-points), leisure sport (1.7%-points) and leisure 

in general (1.67%-points). Further investigations would be required to identify potential 

reasons for these values. In terms of the geospatial distribution of active trips, figure 116 

shows very similar patterns for walking (left) and a general reduction of cycling trips in all 

MSOA zones (middle). The combination of both modes (right) has a very similar distribution 

to the baseline and scenario 1. 

 

Scenario 3 is the first that overcomes the goal, as 51.73% of short trips in urban areas were 

made using active modes (figure 115). When analysing the results depending on the trip 

purpose, none reaches the goal when walking, although higher values were obtained for all 

purposes with an average increase of the 3% (table 9). Cycling did not reach the goal in any 

of the trip purposes either, although significant increases were obtained, especially when 

travelling to school, commuting to work and attending medical appointments (around 9% in 

each case) (table 10). When values are combined (table 11), trips to school and leisure 

activities overcome the goal, the first being 12%-points higher than the goal. The other trip 

purposes increased their percentage values, staying close to the target (all above 40%). When 

active travel trips are analysed from a geospatial perspective at MSOA zone (figure 116), 

higher values are obtained in the three cases (i.e., walking (left), cycling (middle) and both 

(right)). Greater percentage values were achieved in the outskirts of the main urban areas of 

Newcastle, Gateshead and Sunderland. Cycling is mainly increased in the North of Newcastle, 

South of Gateshead and some areas between South Tyneside and Sunderland. When both 

modes are combined (figure 116 right), six MSOA areas that reach the ATE 2030 goal are 

highlighted. All of them are mainly residential areas, where business parks or industrial 

estates, education buildings and shopping areas can be found. Further investigations about 

their morphology, transport modes, routes in the area and other transport characteristics 

would be beneficial to identify the reasons why these areas achieve these percentage values.  
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Policies simulated in scenario 4 achieve the second-best result when policies are applied 

individually, even when it is strictly focused on reducing the number of cars on the road, 

reaching 49.04% of short trips walked or cycled (figure 115). When the trips are grouped by 

active mode and trip purpose, all trip purposes increase the use of active modes, except for 

travelling to school where the percentage of walking pupils is slightly lower (0.11%). Shopping, 

leisure sport activities and medical appointments are the most increased (above 3%-points) 

when walking (table 9), while commuting to work, attending medical appointments and 

travelling to school (3%-points increase) are the most increased when cycling (table 10). When 

the results combine both active modes (table 11), the trips to school reach the ATE goal, 

especially thanks to the high increase in the use of the bicycle. Commuting to work, shopping 

and attending medical appointments are the trips that increased the most in percentage 

terms (above 7%-points). Analysing the number of trips made using active modes per MSOA 

area (figure 116), similar patterns as in the previous scenarios can be observed, where a 

general and homogeneous increase is achieved in most of the zones. In this scenario, none of 

the MSOA zones reached the ATE goal.  

 

In the case of scenario 5, very similar results to the baseline were obtained: global value 

(figure 115), grouped by active mode and trip purpose (tables 9, 10, 11) and the geospatial 

distribution of them per MSOA area (figure 116).  

 

This first combined scenario (scenario 6.1) also reaches the ATE 2030 goal (50.7%), although 

with 1% lower than scenario 3 (figure 115). Analysing this goal by active mode and trip 

purpose, it is observed that trips to school when walking reach the highest value (47.08%), 

although the ones that increased the most are shopping and leisure activities (table 9). When 

cycling, the highest value is achieved travelling to school (11.02%-points), being also the one 

that increases the most (7.6%-points), followed closely by commuting to work (6.9%-points) 

and medical appointments (6.7%-points) (table 10). Combining both active modes, the ATE 

goal is reached travelling to school (58.1%), with leisure activities being close to the goal (table 

11). The geospatial analysis (figure 116) shows similar patterns as in the previous scenarios, 

with one MSOA zone reaching the goal, a residential area of Gateshead. Although this MSOA 



215 
 

zone is in an isolated area with the majority of the facilities, further investigation is required 

to analyse its characteristics and identify the potential causes of its success. 

 

Results obtained in scenario 6.2 reach the 62.74% (figure 115), being 12%-points higher than 

results from previous scenarios. Similar to scenario 6.1., the greatest percentage of short trips 

made by active modes was achieved when walking to school (48.32%), followed by leisure 

activities (46.28%) (table 9). When cycling, a great increase was observed in all trip purposes, 

especially when commuting to work (28.3%), which was the trip purpose with the lowest 

percentage obtained in the baseline scenario (2.06%) (table 10). A similar percentage value 

was obtained when travelling to school (27.2%), followed by medical appointments (23.56%). 

When both modes are combined, all trip purposes reach the goal, standing out travelling to 

school, with three in four trips made with active modes (table 11). In all cases, results achieved 

were higher than in the previous scenario, which shows the potential effect of the economic 

reward in shifting the use of cars to active modes. The geospatial analysis shows a great 

increase in cycling, especially in two northern MSOA zones in Sunderland (figure 116 middle), 

and a majority of MSOA zones reaching the 50% of short trips using active modes, principally 

located in Newcastle, North Tyneside, the northern parts of South Tyneside and Gateshead, 

and the urban zones of Sunderland (right). Similar to previous scenarios, further investigations 

are required to identify potential reasons for these achieved results. 

 

The ATE goal is also achieved in scenario 6.3, with a 57.87% of short trips in urban areas 

walked or cycled (figure 115). From those trips, walking trips to school and leisure activities 

reached the highest percentage values (46.55 and 46.06%, respectively) (table 9), while the 

highest values achieved when cycling were when commuting to work and medical 

appointments (18.09 and 16.68%, respectively) (table 10). The percentage of agents 

commuting by bicycle is fewer than in the previous scenario (10%-points), but greater when 

compared with trips to school (18% and 15%, respectively). Contrary to scenario 4, where the 

same economic penalty was applied, in this scenario the agents had the possibility of using 

fully segregated and safe cycle paths using direct routes, which increased its attractiveness to 

the detriment of public modes (which were the main winners in scenario 4). When both active 
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modes are combined (table 11), all trip purposes except commuting to work (48.5%) reached 

the ATE goal. The geospatial distributions of the percentages of short trips made on foot 

and/or cycling per MSOA area (figure 116) show slightly higher percentage values when 

walking (left), but lower when cycling (middle) than in the previous scenario, although 

patterns remain similar to those obtained from other scenarios. Similar to previous scenarios, 

where more than one policy was combined, some MSOA areas where the ATE goal is achieved 

using active modes (right) are identified. Although dispersed in the study area, most of them 

are allocated in residential areas with the access to the main daily facilities within them (e.g., 

educational facilities, shopping areas, leisure). Further investigation is needed to identify the 

characteristics that made those areas reach the goal. 

 

As can be expected, scenario 6.4 also surpassed the ATE goal, as previous combined scenarios 

and scenario 3 did. In this case, the highest percentage was achieved (70.96%) (figure 115), 

which is the normal case as all possible individual benefits and penalties were applied to the 

use of bicycles and cars, respectively. Walking trips to school again achieved the highest 

percentage value (48.68%), although the trip purposes that increased the most were shopping 

(44.08%), leisure sport (41.92%) and other leisure activities (48.57%), with increases of 10%, 

11% and 8%, respectively (table 9). In terms of cycling, the trip purpose that reached the 

highest value and increased the most was commuting to work (42.78% of trips and a 40.72% 

increase) (table 10). This increase in cycling when commuting was not shown in any of the 

previous scenarios, being the previous highest value obtained in scenario 6.2 (28.3%), where 

all policies in favour of cycling were combined. The extra 14.5% achieved could be the 

consequence of a proportion of former car users finding an alternative mode to avoid the 

economic toll, besides their possibility of reaching their destination using fully segregated and 

safe cycle paths, following direct routes. The rest of trip purposes also increased very 

significantly, being in all cases around 20%. When results of both active modes are combined 

(table 11), all trip purposes reached the ATE goal. The highest value was obtained in trips to 

school (77.63%), followed by commuting to work (72.49%) thanks to the boost of cycling, as 

commuting trips using active modes were in the lowest positions in most of the cases in the 

previous scenarios. Values achieved for the other four trip purposes were quite close to the 

70%. The geospatial analysis of short trips made by active modes per MSOA zone (figure 116) 
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shows the highest values for walking (left), cycling (middle) and their combination (left), 

although keeping a similar pattern as in the previous scenarios. All MSOA zones except three 

reached the goal, located in the South-West of Sunderland.  

 

4.4.7. Socio-demographic analysis for cycling 

The impact of the simulated policies on different groups in society were also analysed. This is 

one of the advantages of using AgBMs instead of other alternative modes, as discussed in 

sections 3.5.1 and 3.5.2.  

In this thesis, the different mobility behaviours of the agents were only considered when the 

activity plans were assigned to them, based on their socio-demographic attributes as 

explained in section 3.3.6. Unfortunately, health conditions and mobility behaviours that 

define the attitudes towards the use of different transport modes were not implemented 

during the simulation stage due to time and data constraints. The inclusion of these 

behaviours would have made the model more realistic and robust, but at the cost of more 

complex and difficult calibration and validation stages. This is an acknowledged limitation that 

could be improved in future work.  

However, and always keeping in mind the above limitation, the simulated policy scenarios 

were analysed in terms of their impact on different population groups. The following sub-

sections analyse the impact of policies in favour of cycling depending on the range of age, sex 

and economic activity. 

 

Range of age 

The use of the bicycle is predominant among the youngest agents (i.e., those up to 16 years 

old), this being a trend observable in all scenarios simulated (figure 117). In the baseline and 

the scenarios where individual policies are simulated, except in scenario 3, two outcomes can 

be identified. Firstly, the percentage of the youngest group (orange bars) duplicates the 

percentage value in respect to the other groups. Secondly, the use of bicycles decreases as 

agents get older, except when they are over 65 years old, this group being the second that 

uses the bicycle the most.  
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Figure 117 Percentage of agents cycling per range of age. 

These results could be consequence of the parameters used during the simulation and the 

intrinsic characteristics of their trips. The first refers to the ASC values applied to each mode 

(see section 3.7.1) and the impossibility of the youngest group using cars. The second is 

related to the average trip distances travelled by each group, as those groups using the bicycle 

the most travel shorter average distances than those using them less. While agents aged 

between 5 to 16 and above 65 travel on average 4.0 and 4.6 kilometres per trip respectively, 

the average distance for the other groups range from 7.2 (group aged 17-24) to 9.9 (group 

aged 25-44). In contrast, when simulating economic rewards (scenario 3), young adults (17 to 

24 years) become the second group in detriment of the oldest group, followed by adults 

between 25 and 44. This outcome can indicate that economic rewards could be more 

attractive to these age ranges, as they travel longer distances and can get a higher economic 

benefit that those travelling shorter distances.  

The combinations of policies achieve different results depending on the included policies. A 

similar pattern as in scenario 3 can be observed when only combined built environmental 

policies are applied (scenario 6.1), as well as when these policies are combined with economic 

penalties to car users (scenario 6.3). However the combination of built environment with 

economic policies rewarding active modes (scenarios 6.2) achieves results inversely 

proportional to the group ages, relegating the oldest group to the last position (i.e., the 

younger the agent, the higher the percentage of them using the bicycle). Lastly, when all 

policies are combined together (scenario 6.4), smaller differences are observed between the 

age groups, indicating that this combination of policies affects the different groups more 

evenly, especially adults between 17 and 65 years old.  
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Sex 

When analysing the use of bicycles per sex and scenario (figure 118), females (red bars) use 

them more than males (blue) in all the cases except in scenario 6.4. The ratio of females and 

males using bicycles per scenario is around 1.1 (i.e., 1.1 females use the bicycle per male), 

except in scenario 6.4, where the ratio is reversed (0.9). Although differences between the 

latter and the others exists, results suggest that simulated policies do not have effects on sex, 

which is not in line with research publications. Aldred et al. (2016) analysed the diversity of 

cycling individuals in England and Wales using census data and identified that more men than 

women cycle, besides highlighting the existence of specific factors limiting the increase of 

females cycling, even when cycling rates are increased in a specific area. 

 

Figure 118 Percentage of agents using the bicycle per sex type 

 

Economic activity 

 

Figure 119 Percentage of agents cycling per range of age and scenario. 

In terms of economic activity (figure 119), those agents in the baseline that are sick (green 

bars), unemployed (blue), retired (yellow) or looking after home/family (grey) are the groups 
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that use the bicycle the most (above 2%). These results do not reflect the reality, as they could 

be considered less likely to use the bicycle than other groups with a greater potential (e.g., 

employed, students). This behaviour is entirely a consequence of the type of trips they do, 

which were assigned to them based on their socio-demographic attributes. One of the effects 

could be related to average trip distances, as described before in the analysis of the age. In 

the case of sick, unemployed, retired and looking after home/family groups, their value is 

between 3.4 and 3.6 kilometres, while the mean for employed and students are 10.7 and 4.3 

km, respectively. Shorter distances are more likely to be cycled. These results show the clear 

need to consider subpopulations with different attitudes towards the use of different 

transport modes when simulating travel behaviours, otherwise unrealistic behaviours can 

emerge, as shown above in the use of bicycles between males and females. 

 

Despite the previous, several effects of the simulated policies to the different groups can be 

observed in figure 119, although taking into account that their effects are entirely based on 

just the activity plans assigned to them. When an economic policy in favour of active modes 

is applied (scenario 3), employed agents (red bars) are among the most impacted groups, as 

well as students (purple), unemployed (grey) and sick (green). When this policy is combined 

with built environmental improvements for cycling (scenario 6.2), the most benefited groups 

are employed (almost 25% of them use the bicycle) and students (22%), with greater 

differences than in the previous case to other groups. Finally, when all policies are combined 

(scenario 6.4), almost four in 10 employed agents use the bicycle, while the rest of groups are 

above the 25%. In contrast, when an economic penalty is applied to car users (scenario 4), no 

differences are shown when compared to scenario 1, where segregated cycle paths are 

provided. While built environmental and penalty policies have a discrete impact in the 

economic groups, economic rewards have some more effects, especially in groups travelling 

long distances (e.g., employed and students). 

 

4.4.8. Health benefits 

In addition to decarbonising the transport sector, the increase in the use of active modes also 

brings health benefits to society, as described in section 2.4.2. The different levels of walking 
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and cycling per scenario can be used to estimate the health impact and its corresponding 

benefits for society. 

Tools such as the Health Economic Assessment Tool (HEAT) estimate the value of reduced 

mortality risk based on the amount of walking and cycling, depending on the average number 

of kilometres, trips and/or minutes using different active modes (WHO, 2024). The outcomes 

combine the benefits from physical activity with the mortality effects of exposure to air 

pollution and traffic accidents while walking or cycling (WHO, 2024).  

Figure 120 shows the differences in premature deaths prevented per year, per active mode 

(blue bars refer to walking, orange to cycling and grey to their combination) and per scenario 

when compared with the baseline, using HEAT. The average kilometres walked and cycled per 

agent simulated were provided as input data, while all default parameters were kept except 

the value of statistical life, which was updated based on research related to England by Tainio 

et al. (2016).  

 

Figure 120 Differences in premature deaths prevented per year and scenario. 

As results show, premature deaths are reduced in all scenarios except in those where cycling 

is affected by the simulated policies (i.e., scenarios 2 and 5), where results are almost the 

same as in the baseline (0.03 premature deaths increased in both cases). In the rest, cycling 

achieves better results than walking, except in scenario 4, where similar results are obtained 

by both modes. 
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Comparing scenarios where policies are simulated individually (scenarios 1-5), the best results 

are obtained when economic rewards are provided (scenario 3), reducing 4.4 premature 

deaths per year, mainly by cycling. Similar results are obtained when policies are combined, 

scenarios 6.2 and 6.4 being the main winners, preventing up to 8.9 and 15.1 premature deaths 

per year, respectively. 

 

4.4.9. Analysis of the built environment characteristics for cycling 

Built environment features were also analysed to identify the most used roads by cyclists. This 

analysis could be useful to identify potential zones in the study area to implement new 

segregated cycle paths, given the increased demand. Figures 121-126 show the number of 

cyclists per scenario depending on the road type, number of lanes and maximum speed.  

 

Road type 

 

Figure 121 Percentage of cyclists per road type and scenario. 

Figure 121 shows the percentage of cyclists using different road types per scenario (footpath 

in blue; cycle path in red; residential street in green; minor road in purple; and major road in 

orange). In all the cases, the use of minor roads (i.e., B and C roads in the UK) and residential 

streets is the trend, the first being used around 30% of the times in all scenarios, with a peak 

in scenario 2 above 35%, while the second range between 17% and 29%. In contrast, the 

number of cyclists using footpaths, cycle paths and major roads (i.e., A roads) are the minority 
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in all the cases, ranging between 2.5-7.5%, 3.5-6.3% and 10-14.8%, respectively. In the case 

of cycle paths, it is worth noticing that in the study area there is a limited amount of them, 

accounting for less than the 2% of the total roads. Due to visualisation purposes, only five 

road types were analysed. Consequently, the total percentages do not reach 100%. 

 

 

Figure 122 Ratio of cyclists per road type and scenario when compared to the baseline. 

Figure 122 compares the ratio of cyclists using the different road types with the baseline (red 

dotted line). The use of footpaths is multiplied by 1.5 when segregated cycle paths are 

provided (i.e., scenarios 1, 6.1, 6.2, 6.3 and 6.4 with the maximum quietness index), while in 

the rest of cases their use is slightly reduced. In contrast, the use of cycle paths is only 

increased in those scenarios where additional cycle paths are not provided (i.e., scenarios 2, 

3 and 4). This outcome is indicative of the expected behaviour of cyclists, who tend to use the 

existing cycle paths on their routes, as defined in the enabled MATSim bicycle extension (see 

section 3.6), taking into account the quietness value of each road (see section 3.4.4). The use 

of residential streets is reduced in all the cases, while the use of minor roads is kept constant 

in all of them except in scenario 2, where the percentage of cyclists using them is increased, 

being the most used road type (as shown previously in figure 121). Lastly, the use of major 

roads increases in all the cases, being more prominent in scenarios where the use of the 

bicycle is promoted (i.e., scenarios 1, 2, 3, 6.1, 6.2 and 6.4) rather than in those when policies 

are applied to penalise the use of cars (i.e., scenarios 4 and 6.3). 
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 Number of lanes 

Figure 123 shows the percentage of cyclists using different roads depending on the number 

of lanes per direction and per scenario (one lane in orange; two in blue; three in red; and four 

in green). As it can be observed, there is no doubt that cyclists prefer roads with a single lane. 

In all the cases, the percentage of cyclists using them is above 80%, the use of other roads 

being residual. Due to the lack of information of the number of lanes from all roads in the 

study area, the sum of all percentages per scenario are below 100%. Despite this issue, the 

use of roads with a single lane per direction is overwhelming. 

 

Figure 123 Percentage of cyclists per number of lanes in roads. 

 

 

Figure 124 Ratio of cyclists per number of lanes in roads and scenario, when compared to the baseline. 
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When analysing the ratio of cyclists per number of lanes between scenarios and the baseline 

(red dotted line) in figure 124, it can be observed that the proportion of cyclists using roads 

with a single lane is kept constant in all the cases and similar to values from the baseline. 

Unlike the previous result, differences are observed on two- and three-road lanes. In both 

cases, the proportion of agents using them is increased when cycle paths are provided, 

multiplying the users by up to 20 and 300 in roads with two and three lanes, respectively. This 

outcome could suggest that some agents could have benefited from the inclusion of cycle 

routes in roads with more than one lane, allowing them to connect areas divided by roads 

with three lanes, such as motorways. 

 

Road maximum speed 

In terms of road maximum speed, figure 125 shows the different percentages of cyclists using 

them per scenario (purple up to 5 kilometres per hour (km/h); orange between 5 and 20; blue 

between 20 and 30; red between 30 and 80; and green above 80 km/h). Roads between 5 to 

30 km/h are the most used in all scenarios (principally those between 20 and 30 km/h), while 

those below 5 and above 30 km/h are the least uses. The first group belongs to residential 

and minor roads. The second group comprises areas shared with pedestrians (below 5 km/h) 

and major roads or highways (above 30 km/h). These results agree with those shown in figure 

121, where the road type was analysed. 

 

Figure 125 Percentage of cyclists per road maximum speed and scenario. 
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When analysing the ratio of cyclists between scenarios and the baseline (figure 126), several 

differences are also observed. The use of roads up to 5 km/h is incremented by more than 1.5 

times when cycle paths are implemented (i.e., scenarios 1, 6.1, 6.2, 6.3 and 6.4), in a similar 

proportion as shown in figure 122 when the road type for footpaths was analysed. For those 

roads between 5 and 20 km/h, reductions are observed in all the cases, being up to 30% in 

the worst case (i.e., scenario 6.4). Similar results as in the baseline are observed in roads 

where speed is between 20 and 30 km/h. However, those scenarios where cycle paths are 

implemented have a reduction up to 9% (scenario 6.4), while those without them are 

increased up to 7% (scenario 2).  

Results obtained in roads where speed is between 30 and 80 are similar to those obtained in 

roads above 80 km/h, although in a higher proportion for the latter. These results are in line 

with the outcomes obtained in the previous road lane analysis, where the use of roads with 

more than one lane is increased, especially in those scenarios where new segregated 

infrastructures for cycling are provided. This outcome could also support the case made in 

the previous road lane analysis, where some agents could have been potentially affected by 

the lack of cycle routes in roads with more than one lane, which are normally fast routes. 

 

 

Figure 126 Ratio of cyclists per road maximum speed and scenario. 
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4.4.10. Economic results 

Another factor to take into account relates to the economic consequences of the applied 

scenarios. In some of them, economic rewards and/or penalties are applied to modify the 

behaviours of the agents, influencing negatively or positively the economic resources of the 

LAs. The first type requires LAs to pay each individual using active modes, while the second 

consists of benefits paid by those using private cars. Additionally, the achieved health benefits 

(see section 4.4.8) also generate an economic impact, as those avoiding premature deaths 

continue contributing to society. Table 12 quantifies the daily economic impact of each 

scenario simulated considering the previous three factors. Economic reward and penalty 

values were derived from the simulated results (i.e., number of kilometres walked or cycled 

multiplied by the reward (£0.15), and number of unique agents using private cars multiplied 

by the toll (£2.5), respectively). Economic health benefits were derived from the HEAT tool 

(WHO, 2024), using the average kilometres walked and cycled per agent, as described in 

section 4.4.8. 

 
Daily economic 

reward 
required (£) 

Daily economic 
penalty 

collected (£) 

Daily health 
impact 

achieved (£) 

Total 
daily economic 

impact (£) 

Scenario 1 
  

656 656 

Scenario 2 
  

-139 -139 

Scenario 3 59,599 
 

19,917 -39,682 

Scenario 4 
 

191,473 7,556 199,029 

Scenario 5 
  

-121 -121 

Scenario 6.1 
  

5,253 5,253 

Scenario 6.2 111,196 
 

40,778 -70,418 

Scenario 6.3 
 

173,142 16,889 190,031 

Scenario 6.4 167,482 120,920 66,639 20,077 
Table 12 Total economic reward and penalty values per scenario simulated depending on the applied policies 

 

Scenarios applying economic penalties achieve a positive balance (i.e., scenarios 4, 6.3 and 

6.4), besides scenarios 1 and 6.1, where economic policies are not simulated. The 

implementation of economic rewards always has negative balances, except when combined 

with economic penalties, balancing the total amount and making it positive. Negative values 

in the economic health column indicate that fewer people use active modes than in the 

baseline, as shown in table 12. 
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Furthermore, the number of car and active mode users on the roads has its effects in the 

balance between the amount of budget required to pay the rewards and the amount 

collected when applying tolls. When the economic policies are simulated individually 

(scenarios 3 and 4), a higher economic value is obtained from the penalty (scenario 4) than 

from the reward (scenario 3). Having fewer cars on the roads and more active users as in 

scenario 6.4 (where both policies are simulated together) made the potential positive profit 

become negative. This scenario is only attractive when other positive economic factors, such 

as the economic health impact is taken into account. 

It is worth noting that the economic budgets required to implement each scenario (e.g., the 

construction of fully segregated cycle paths, the strategies to avoid cars in residential roads, 

mobile applications to quantify the kilometres walked and cycled, the implantation of tolls for 

car users, or cycle hubs next to metro stations) are out of the scope of this thesis. Future work 

could investigate them and identify realistic zones in the study area to be prioritised. 

 

4.4.11. Cycling hubs results 

Several scenarios consider the possibility of combining the use of the bicycle and metro when 

travelling. This is the case of scenarios 5, 6.1, 6.2, 6.3 and 6.4, where the possibility of 

accessing and egressing metro station with a bicycle is simulated, assuming the agents can 

leave the bicycle in a secure and safe place (e.g., cycle hub). For these scenarios, the total 

number of cycle hub users and the percentage ratio per scenario, the most used cycle hubs 

and their geospatial locations showing the use made by the agents were analysed. 

Table 13 shows the number of agents that used the cycle hubs per scenario, besides the 

percentage increase ratio when compared against the baseline (scenario 5). 

  
Cycle Hub 

Users % Ratio 

Scenario 5 352 1 (baseline) 

Scenario 6.1 1960 557 

Scenario 6.2 1512 430 

Scenario 6.3 4312 1225 

Scenario 6.4 2644 751 
Table 13 Number of cycle hub users and the ratio when results from each scenario are compared with the baseline. 
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Table 14 shows the 10 metro stations most accessed and/or egressed by bicycle per scenario 
simulated.  

SCENARIO 5  SCENARIO 6.1  SCENARIO 6.2 

Station Users  Station Users  Station Users 

Monument 21   Monument 139   Monument 114 

Central Station 16   Haymarket 94   Haymarket 81 
Haymarket 13   Central Station 81   Central Station 73 
Chichester 12   North Shields 67   Gateshead 54 
Gateshead 12   Gateshead 60   South Shields 50 

Jesmond 12   Felling 56   Jesmond 47 

South Shields 12   South Shields 56   Monkseaton 47 
Monkseaton 11   Jesmond 54   North Shields 37 
North Shields 11   South Gosforth 54   Brockley Whins 36 

Brockley Whins 10   Jarrow 53   East Boldon 36 
 

SCENARIO 6.3 
 SCENARIO 6.4 

Station Users  Station Users 

Monument 265   Monument 187 

North Shields 160   Central Station 116 
Central Station 151   South Shields 101 

East Boldon 145   Haymarket 100 
Gateshead 128   Gateshead 99 

Felling 115   East Boldon 80 

Haymarket 115   West Monkseaton 79 
South Shields 115   North Shields 77 

Hebburn 105   Monkseaton 71 

Jarrow 105   Tyne Dock 70 
Table 14 Top ten metro stations most used by cyclists per scenario simulated. 

 

Lastly, the results were projected on a map. Figure 127 shows the location of the metro 

stations and their potential number of users per scenario simulated. Circle size represents the 

number of users, while colours identify the simulated scenario that could achieve those 

results (scenario 5 in black, scenario 6.1 in red, scenario 6.2 in green, scenario 6.3 in yellow 

and scenario 6.4 in blue). 
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Figure 127 Cycle hub usage per scenario simulated. 

Results obtained in scenario 5 show that 352 agents decided to use the bicycle and the metro 

in the same journey (table 13). The most used metro stations (table 14) are allocated in 

Newcastle (e.g., Monument (21), Central Station (16), Haymarket (13), Jesmond (12)), North 

Tyneside (North Shields (11), Monkseaton (11)), South Tyneside (Chichester (12), South 

Shields (12), Brockley Whins (10)) and Gateshead (Gateshead (12)) (figure 127). No metro 

stations in Sunderland were found in the top ten used by cyclists. A further analysis of the 

reasons why these stations were the most used by cyclists could be developed in future 

research, to identify average trip distances and trip purposes, among others. Due to a limited 

timeframe, this analysis was discarded to be done during the thesis, although it is encouraged 

for a future research project. Results obtained show the potential use of these two 

sustainable transport modes in the same trip, as an alternative to private cars. Following 

simulated scenarios analysis there is the possibility of combining this scenario with some of 

the previous ones, to identify if more individuals could be attracted to this combination of 

modes when fully segregated cycle paths, LTNs, active travel rewards and/or economic 

penalties when using private cars are implemented together. 
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In contrast to scenario 5, the agents have full access to the metro stations with fully 

segregated and safe cycle paths in scenario 6.1, which is a great boost to increase the number 

of individuals combining these two modes. Based on results achieved, 1,960 agents did this, 

which represents a 5.5 times increase compared to scenario 5 (table 13). The ten most used 

cycle hubs were allocated in Newcastle (Monument (139), Haymarket (94), Central station 

(81), Jesmond (54), South Gosforth (54)), South Tyneside (South Shields (56), Jarrow (53)), 

North Tyneside (North Shields (67)) and Gateshead (Gateshead (60), Felling (56)), eight of 

them being the same as in scenario 5 (table 14). No metro stations from Sunderland were 

found in the 10 most used, similar to scenario 5. In terms of geospatial distribution (figure 

127), most of the cycle hubs users were found in the city centre of Newcastle, followed by a 

relatively homogeneous distribution in the stations allocated in the rest of Newcastle (except 

the northern link connecting with the airport), Gateshead and North Tyneside. Lower values 

of use were observed in South Tyneside (with the exceptions of South Shields, Jarrow and 

Hebburn stations) and Sunderland. East Boldon station, located between South Tyneside and 

Sunderland also received a substantial amount of users because an industrial estate is found 

there. 

The effects of the cycle hubs in scenario 6.2 were also notable, as the number of agents that 

combined the use of bicycles and metro was 1,512, which is 4.3 times higher than the baseline 

(scenario 5) (table 13). However, this achieved value is 23% lower than in the previous 

scenario, where a total of 1,960 users were counted. This reduction can be explained in line 

with previous results analysed: the use of the bicycle supported by an economic reward is 

more attractive than public transport modes. The 10 most used cycle hubs (table 14) were 

located in Newcastle (Monument (114), Haymarket (81), Central Station (73), Jesmond (47)), 

North Tyneside (North Shields (37), Monkseaton (47)), South Tyneside (South Shields (50), 

Brockley Whins (36) and East Boldon (36)) and Gateshead (Gateshead (54)). No metro stations 

in Sunderland were found in the top 10 most used, as in the previously analysed scenarios. 

Analysing the results geospatially (figure 127), a similar pattern can be observed as in scenario 

6.1 with lower values in general, although higher values are obtained in Sunderland (e.g., 

Seaburn and Sunderland), South Tyneside (e.g., Brockley Whins) and Newcastle (Chillingham 

Road, Longbenton, Four Lane Ends and Airport). Further investigation to identify the reasons 

why some areas reduced the number of users more than others is recommended. 
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The use of cycle hubs in scenario 6.3 is the highest when compared to any other scenario 

simulated, as a total of 4,312 agents used them, which is more than 12 times the baseline 

(scenario 5) (table 13). The main reasons for this increase are that more former car users have 

the need to find an alternative transport mode (18%) than in the previous scenarios and the 

lack of any economic reward for the use of active modes, making the use of the metro more 

attractive. The 10 cycle hubs most used by the agents are located in Newcastle (Monument 

(265), Central station (151), Haymarket (115)), North Tyneside (North Shields (160)), South 

Tyneside (East Boldon (145), South Shields (115), Hebburn (105), Jarrow (105)) and Gateshead 

(Gateshead (128), Felling (115)) (table 14). None was found in Sunderland, as in the previous 

scenarios. Although similar results were obtained when compared with previous scenarios 

(i.e., the same six stations were the most used ones in all scenarios (Monument, Central 

Station, Haymarket, North Shields, South Shields, Gateshead)), a great increment of cycle hub 

users in South Tyneside was experienced, as three stations were found within the 10 most 

used (instead of two). The amount of users in North Shields station (North Tyneside) and East 

Boldon (South Tyneside) is also remarkable, being the second and fourth most used, in 

contrast with their results in the previous scenarios. The first is located near a shopping area, 

where the second has an industrial estate in the surrounding area. The geospatial 

representation (figure 127) shows a similar pattern as in scenario 6.2, where most users are 

found in Newcastle (except the branch of the network that connects with the airport), 

followed by Gateshead, North Tyneside (especially in the northerly stations) and South 

Tyneside (principally East Boldon and those stations close to the river). A general increase is 

also observed in Sunderland, especially in the city centre, although the level of use is still far 

from other stations in the network. 

The use of the new implemented cycle hubs next to metro stations was also remarkable in 

scenario 6.4, achieving the second highest value (2,644), which is a seven-time increase when 

compared against the baseline (table 13). When comparing results with other scenarios, it 

can be observed that the outcomes are between those from scenarios 6.2 and 6.3, where 

economic rewards for active modes and economic penalties for cars were simulated, 

respectively, besides the implementation of fully segregated cycle paths, LTNs and cycle hubs 

in both. Scenario 6.4 is a combination of the previous two scenarios, as all individual measures 

from both scenarios were simulated together, achieving intermediate results, something 
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reasonable and expected. More agents were attracted by the combination of cycling and 

metro than in scenario 6.2 because more agents were forced to find an alternative mode due 

to the economic penalty implemented for car users. However, fewer agents were attracted 

than in scenario 6.3 because of the economic reward given when walking or cycling, making 

these modes more attractive than public modes.  

The 10 most used cycle hubs by the agents in scenario 6.4 were very similar to those in the 

previous scenarios (table 14). The main differences are found in West Monkseaton and Tyne 

Dock, two stations that were not found in the top 10 in any of the previous scenarios. Both 

are in residential areas with schools, shopping areas and medical centres in the vicinity. The 

geospatial distribution of the cycle hubs usage (figure 127) shows a similar pattern as in the 

previous cases, where most users are located in the city centre of Newcastle, the NE and main 

urban area of North Tyneside, North of Gateshead, main urban areas of South Tyneside and 

the station of East Boldon. In the area of Sunderland, results obtained are more similar to 

those from scenario 6.3, with a similar number of users in the stations allocated in the city 

centre. 

 

The following chapter provides insight on the principal outcomes achieved in this doctoral 

thesis, as well as discussing the work presented from the perspective of all stages identified 

in the methodology, considering the assumptions and limitations acknowledged. The 

research questions identified in chapter 1 are reviewed, providing a realistic and fair view of 

the level achieved with respect to the established goal of the thesis. Besides, future work that 

researchers could consider is identified. Additionally, the implications of research for 

researchers, practitioners and policy makers are discussed. Lastly, a conclusion of the doctoral 

thesis is provided. 
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Chapter  5. Discussion and Conclusion 

 

I would give everything I know for half of what I ignore. René Descartes 

 

This doctoral thesis has brought some insight to a particular challenging and timely topic: the 

decarbonisation of the transport sector in favour of active modes, applying AgBM techniques. 

The use of AgBMs is a novel approach within the transport sector. They improve the less-

detailed but faster models that have been commonly used in recent decades (e.g., the FSM), 

providing an understanding of urban transport mobility considering spatio-temporal and 

socio-demographic characteristics. 

  

Beyond the research done using this incipient methodology in transport modelling, this PhD 

research project has proposed four novel innovations to simulate transport scenarios within 

the UK context: 

 A new, open-access and very detailed synthetic population methodology that can be 

applied to any region in England (see section 3.3.3). 

 The use of a new network attribute (quietness) ranking road links for cycling based on 

their built characteristics (see section 3.4.4). 

 A bicycle contribution update considering the quietness attribute when cyclists choose 

their routes (see section 3.4.4). 

 A tailored set of scenarios to test urban mobility policies in Tyne and Wear to enable 

the agents to use active travel modes (walking and cycling) instead of private motor 

vehicles (see section 3.8). 

 

The identified research gap was precise, as well as the methodology proposed based on a set 

of concrete objectives required to achieve the goal. Results obtained provide some interesting 

outcomes about the potential efficiency of different policies in favour of more sustainable 

transport, as well as the role of AgBMs in exploring them. 
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This last chapter concludes the thesis with a global review of the whole document. A summary 

of the principal outcomes achieved, a discussion regarding the work presented, a review of 

the research questions defined in chapter 1, a set of future work identified and a description 

of the implications of the developed work for research and policymakers are provided. 

 

5.1. Principal outcomes 

The principal outcomes of the thesis with respect to the original objectives were as follows: 

 

To review the climate change context, the main greenhouse gas sector emitters, the current 

status of the transport mobility in England and the different urban mobility strategies to 

tackle the decarbonisation of the transport sector. 

Chapter 1 introduces the reader to the climate change context and the role of the transport 

sector in the UK. Firstly, the climate change concept and its expected worldwide 

consequences were defined based on official reports and scientific research, pointing out the 

severity of the situation and the urgency to act. Secondly, comparisons between the GHG 

emissions by economic sectors were made, with a special interest in the UK context, where 

the transport sector was identified as the largest GHG emitter and, therefore, one of the most 

pressing sectors that need to be decarbonised.  

Chapter 2 presented the current transport mobility of English society, highlighting a car-

centric dependency in contrast to the minimum use of more sustainable transport modes 

(e.g., bicycle). According to the previously identified car-dependency, several transport 

strategies for a greener and more sustainable sector were analysed and structured in three 

main blocks: the decarbonisation of road transport and the modal shift to public and active 

modes. The first focuses on shifting polluting fossil-fuelled vehicles to zero emission vehicles; 

the second tries to provide more comfortable and reliable public services; while the third 

enables the use of active transport modes. Among the three options, scientific analysis 

suggests the most complete and efficient strategy for the short and medium term is active 

travel, the others being fundamental for the medium and long-term. Even more, the use of 



237 
 

active modes also provides physical and mental health benefits, besides a reduction in 

transport noise and frees up urban space for better societal interactions. 

 

To review the different models used in transport research and the current use of AgBMs in 

simulating urban mobility scenarios. 

Chapter 2 also reviewed the different transport models to analyse mobility policies. Three 

models were identified as candidates: FSMs, AcBMs and AgBMs. The first is the easiest but 

the simplest, without any consideration of socio-demographic attributes and geospatial 

locations and characteristics. The second is more complex and heterogeneous, as non-

aggregated data with information of individuals in space and time are considered. The third 

has similar characteristics to the second, but also allows the interactions of the agents in 

space and time, besides the possibility of taking into account characteristics of the built 

environment (e.g., road type, gradient). The characteristics of the last model, although 

making it more complex and difficult to implement, made it the most appropriate to analyse 

policies focusing on active modes.  

The use of transport AgBMs in research has been mainly related to emerging transport 

modes, especially for EVs, the number of publications where active modes are the core of the 

investigation being low. This is principally due to the heterogeneous nature of active travel 

behaviours and the lack of granulated data to analyse them (e.g., road characteristics and 

counts). The small number of publications simulating active modes are mainly related to 

safety, human behavioural and policy interventions to reduce the number of people using 

private polluting vehicles and increase active travellers, although considering none or 

minimum characteristics of the built environment. The literature review finalises comparing 

different AgBM tools to identify the most appropriate to simulate active modes. Within them, 

MATSim stood out as an open-source, fully dedicated and well-known transport modelling 

tool. Individuals are simulated within a microscopic road network during a complete day. 

Different transport modes are allowed, with the possibility of simulating bicycles considering 

the characteristics of the roads. 
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To develop a very detailed synthetic travel demand that represents the individuals living in 

the area of study based on a set of socio-demographic attributes with a detailed activity 

plan, using open access tools and datasets, when possible. 

Chapter 3 described the development of a very detailed synthetic travel demand 

methodology, which can be transferred to any other region in England. Firstly, a fully open-

source synthetic population methodology was developed, combining the use of SPENSER 

(Lomax, 2023) and synthPopEng (Alvarez Castro, 2022), being the first contribution developed 

in this thesis. The outcome was a set of 12 socio-demographic attributes defining each 

individual (table 1), where individual characteristics (e.g., age, sex), geospatial location (e.g., 

household location at OA area), family dependencies (e.g., marital status, children 

dependency), spending power (e.g., economic activity, occupation, annual gross income) and 

mobility access characteristics (e.g., driving license, car access and bicycle access) were 

defined. Secondly, the synthetic population was combined with activity plans using NTS 

datasets to add mobility information to each agent, based on common socio-demographic 

attributes. Additionally, shared trips among members from the same household were kept, 

when possible, for a more realistic mobility representation.  

Chapter 4 showed the results obtained when the previous methodology was applied to the 

NE of England. The result was a synthetic travel demand that defines the daily urban mobility 

of each individual in the study area.  

 

To develop a combined road and public transport network to allow the individuals from the 

synthetic population to move between activities, with a special interest in characteristics 

that support the use of active modes (e.g., road network characteristics, elevation and 

cycleability rating). 

Furthermore, chapter 3 presented the followed methodology to develop the network used 

by the individuals to move between activities. It consisted of the combination of roads and 

public transport networks, containing all the information required for the use of private cars 

(e.g., maximum speed, flow capacity, allowed modes) and transit modes (e.g., stops, 

schedules, routes).  
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Additionally, elevation information was added to the network using a DEM. Altitude values 

were assigned to nodes and gradient to the links, providing a third dimension to the network, 

a fundamental component when simulating active modes. The second innovation developed 

in the thesis was the inclusion of the quietness attribute generated by Cyclestreets (2022a), 

which ranks the quality of roads for cycling based on their built environmental characteristics. 

To the best of the author’s knowledge, this is the first time this attribute has been used in 

transport AgBMs. This is an important upgrade, as the knowledge of this characteristic is 

considered by the cycling agents when choosing their routes, during the simulation stage.  

Chapter 4 showed the results achieved when the methodology was applied to the NE of 

England. This is valuable information to understand the different link hierarchies in the study 

area, and its potential uses by the different allowed modes when choosing a transport route.  

 

To calibrate and validate a transport AgBM model that simulates the normal transport 

mobility during a regular day in the study area, where the simulation of cycling routes 

consider some of the characteristics implemented into the developed network, for a more 

realistic and accurate understanding of cyclists’ behaviours. 

Chapter 3 described the steps followed to calibrate and validate the transport model of the 

Tyne and Wear region, using the previously generated synthetic travel plans and network 

datasets.  

The calibration consisted of identifying the different modules and parameters required to 

simulate a realistic baseline with active modes. Moreover, the bicycle extension was updated 

to consider the quietness attribute included previously within the network, being the third 

innovation developed in the thesis. This addition allowed the agents to choose their routes 

based on the quietness and the gradient attributes instead of the other original parameters 

(i.e., type of road and comfort). This is an improvement, as the new attribute contains more 

relevant information for cycling than the original parameters, besides its greater geographical 

extension knowledge with minimum gaps. This updated bicycle extension was developed with 

the help and support of Dr Ziemke, the main developer of the original bicycle extension. To 

the best of the author’s knowledge, this is the first time the bicycle extension has been 



240 
 

updated to consider the quietness attribute. A new MATSim version including this update was 

released (i.e., version 15.0-PR2396) to be used by any other researcher. 

The validation phase aimed to verify that results achieved represent normal urban mobility 

when aggregated values and geospatial representations were compared with official 

statistical data. Although a global and homogeneous validation method has not been 

developed yet, the model results were compared with data from different approaches for a 

more reliable and realistic outcome: transport (e.g., modal split modes), geospatial (e.g., 

vehicle counts at various locations) and average trip values (e.g., trip times and distances by 

mode). The outcome was a model that represents, in space and time, regular mobility of the 

different transport modes allowed in Tyne and Wear. Chapter 4 showed the results of the 

validated MATSim model of the Tyne Wear region. 

 

To define, code and simulate a set of urban mobility policies to reduce the number of 

private and polluting vehicles on the roads in favour of active modes.  

Chapter 3 defined a set of urban mobility policies to enable the use of active modes instead 

of private and polluting cars. The first consisted of implementing fully segregated and safe 

cycle paths on every road of the study area, reducing the flow capacity of cars to 

accommodate the space for cyclists. The second defined LTNs, restricting the use of 

residential roads to car users. The third applied economic rewards to those individuals using 

active modes. The fourth was opposite to the previous, as economic penalties were applied 

to those agents using private motor vehicles, as a toll to disincentivise their use and 

encourage more sustainable modes. The fifth combined the use of the bicycle and the metro, 

allowing the agents to leave the bicycle in a secure and safe place (i.e., cycle hub). Besides 

them, four different combinations of the previous policies were defined. The main goal was 

to test if their joint implementations achieve better results than when applied individually, as 

well as their spatial impact in the study area. 

Chapter 4 presented the results achieved when the scenarios were applied to the Tyne and 

Wear region. Diverse levels of efficiency in reducing the number of cars on the roads were 

achieved, depending on the policy or policies simulated.  
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5.2. Discussion of work presented 

The body of work in this thesis has been focused on three pillars. Firstly, the development of 

the two main components required for the use of a MATSim model (i.e., synthetic travel 

demand and network). Secondly, the model calibration and validation. Thirdly, the simulation 

of different mobility scenarios to test their efficiency in reducing the number of polluting 

vehicles for a more sustainable transport sector.  

This section reviews a number of decisions that were taken to ensure practical application of 

the methodology proposed in the available time. Discussion of the results achieved, 

considering the implication of the assumptions and limitations acknowledged is provided. 

 

5.2.1. Synthetic travel demand 

The work presented in this thesis showed the limitations of the existing methods to develop 

a synthetic population in the UK context. On the one hand, a tool was identified for the UK 

with a very limited quantity of socio-demographic attributes (i.e., SPENSER). On the other 

hand, a more detailed tool used for different regions in the world, but never in the UK (i.e., 

Eqasim). The choice was to use the first and include eight extra socio-demographic attributes, 

which would provide more detailed results than the latter option considered.  

This decision allows simulation of an overly complex and heterogeneous digital 

representation of the individuals, as a wider variety of characteristics to define a more diverse 

and integrated society is taken into account. Therefore, the possibility of considering minority 

groups within society was increased, showing a more realistic view of the world. This is a 

crucial factor to consider, as some groups in society could have been ignored (e.g., a single 

person with children dependencies, unemployed and without access to a car).  

The provision of attributes focused on family dependencies, spending power and mobility 

access, makes this developed methodology an unbelievably valuable outcome of this thesis. 

It was intended to consider as many human realities as possible to minimise the possibility of 

under-representing sub-groups in society, within the framework of a responsible research 

and innovation process.  
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Despite the increased number of attributes, the methodology has two main limitations. 

Firstly, the attributes are incrementally developed, based on relationships between them 

(e.g., income depends on economic activity and occupation), as described in section 3.3.3. 

This means that the accuracy and precision of each new attribute depends on the accuracy 

and precision achieved in those generated previously. Inaccuracies could be propagated 

through the process, producing unrealistic representations in the study area (figure 10 shows 

the interdependencies among the attributes). Future work to improve the validation process 

and minimise the potential inaccuracies are described in Section 5.4.1. Secondly, the 

methodology is a purely linear projection of population based on statistical data, without 

including changes in employment, new construction developments or transport 

infrastructures, to name just a few. A more complex methodology could be developed or used 

(e.g., SILO (Moeckel, 2016)) to take into account future projected construction developments 

that can affect the locations of the synthetic individuals. 

The results achieved when the methodology was applied to the NE of England show a very 

realistic representation of the population. The differences against observed national or 

regional statistics were relatively low in all cases where data was available (i.e., marital status 

(<5%), children dependency (< 5%), economic activity (<2%), occupation (< 3.5%), annual 

gross income (< £1000 per decile), driving license (< 1%)). The impact of these differences in 

the scenarios simulated was expected to be relatively small, with the potential for 

underestimating subpopulations of agents that are married or have children dependencies, 

among others, as these attributes obtained the highest discrepancies (below 5%). 

The results achieved show the potential to develop very detailed synthetic populations that 

could be applied to a great diversity of fields (e.g., transport, land use, social science) in any 

region of England, as open access and open-source tools were used through the entire 

process. 

The synthetic population was complemented with activity plans. Although there is a 

possibility of missing short trips when using travel diaries (due to forgetfulness on the part of 

the interviewees), its use was preferable to data derived from mobile phones. This last option 

lacks socio-demographic information (due to privacy reasons) and information is provided as 

aggregated values per geographic areas (MSOA zones).  
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In the methodology proposed, it was assumed that individuals with similar socio-demographic 

attributes have similar mobility behaviours, which has been shown to be credible and realistic 

in research. Every synthetic individual was assigned a set of activities based on their socio-

demographic attributes and, in some cases, the interactions with other members from the 

same household. The results showed that more short trips (principally below 5 miles) than 

those observed in travel diaries were obtained. Instead of considering this as an error, it was 

accepted as a potential (and unexpected) correction of the potential forgotten short trips that 

individuals did not include in their travel survey. Differences in average trip time by mode 

were within three minutes. More differences were found in the percentage of trip purposes, 

where more commuting and education trips were obtained (around 10 and 15%, 

respectively). Although several and combined reasons can be the cause of these differences, 

it was considered a possibility that the proportion of employed and student individuals who 

submit the surveys was lower than the proportions included in the synthetic population as 

the main one.  

  

5.2.2. Network 

The outcome achieved with the development of the network was a very detailed road and 

public transport graph, composed of nodes and lines defining the road, train, metro and ferry 

networks used by different transport modes. Despite open-source tools being a hallmark 

within the thesis, it was decided to use an alternative dedicated tool developed by Arup (i.e., 

PUMA) to merge both networks (road and public transport). Permission was given for the tool 

to be used in the thesis and a mentoring connection was established in exchange for testing 

the tool and providing feedback. This collaboration allowed the engagement between 

academia and industry, where the knowledge and experience of the latter allowed the 

development of a scientific research project for the former.  

Additionally, the inclusion of the quietness attribute allows the agents to choose realistic 

routes when cycling, where the possibility of selecting safe routes would be more likely than 

dangerous routes (e.g., shared with other vehicles). To complement a realistic network 

representation, elevation and gradient values were added to the nodes and links, 
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respectively. These factors are then used within the simulation stage, where the cycling 

agents choose their routes based on the quality of the roads. 

Despite following different validation stages to improve the quality of the open access data, 

errors are still expected because of the potential lack of familiarity of the OSM volunteers that 

digitised the area. The impact of these potential errors could cause unrealistic mobility 

patterns in specific zones of the study area. However, it was expected that the consequences 

would be minimal, since the probability of finding them was greater in non-urban areas than 

in the principal areas of the study area. 

 

5.2.3. MATSim model 

The MATSim model calibration stage defined the modules and parameters used in the 

simulation, where specific characteristics were assigned to each available transport mode, 

and therefore, several assumptions and limitations were agreed: 

 Car use restrictions were applied to allow only those individuals with car access to 

drive for a more realistic simulation result. 

 Public transport modes were simulated as deterministic, without any maximum 

capacity and cost to reduce the computational complexity and time. These 

assumptions could cause a higher attractiveness for these modes, although their 

attractiveness was compensated with the ASC values applied to each mode. 

 Walking was teleported as a consequence of the lack of two main components: a 

detailed network information and a MATSim extension to simulate it in an analogous 

manner to cycling. This could alter the attractiveness of walking, as simpler routes 

were used (i.e., Euclidean distances between origin and destination multiplied by a 

factor to take into account potential detours), although the ASC values used for the 

rest of the modes should help in balancing the attractiveness of walking. 

 Unfortunately, it was not possible to restrict the use of bicycles to specific individuals 

based on their socio-demographic attributes (i.e., bicycle access), as was done for car 

drivers. Consequently, it was assumed that all agents have access to bicycles, since the 

main barrier for owning a bicycle could be the need to buy one, which should not 

involve a large financial outlay and be within the reach of almost the entire population. 
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The validation stage showed a complex procedure, where engagement with stakeholders 

from academia, industry and policy makers was required. The validation of the transport 

mode shares was not a simple task, as official sources where the percentages of transport 

modes for all trip purposes in the NE of England that interact with the Tyne and Wear region 

were not found. Alternatively, the use of statistical data of specific trip purposes (e.g., 

commuting and travel to school), the knowledge of the number of vehicles counts per hour 

at different zones in Tyne and Wear and expert advice, allowed identification of the global 

transport split modes of the study area. The possibility of interacting with experts in transport 

mobility was a valuable contribution for the project, as this engagement allowed 

identification of the followed method to validate the transport mode shares in the study area. 

Some discrepancies were found when average trip times and distances by transport mode 

were compared with NTS statistics. The average simulated trips were shorter in distances and 

times in general, even after updating the road network (e.g., reducing maximum speed in 

urban areas) to consider the effects of intersections and traffic lights, also applied in Ziemke 

(2022). Due to the discrepancies found, probably due to the geographical extensions of the 

official sources (i.e., the average trip distances were compared with NTS data of the whole 

NE, while the average trip times with NTS data of the whole of England), individual simulated 

trips were compared with Google routes. The results were remarkably similar in both, the 

chosen routes and the estimated times required. This comparison method, although it was 

applied to a small but random number of trips, helped validate the results achieved and verify 

that the agents were following a normal behaviour, in space and time.  

An important validation stage was the verification of the cycling routes when the updated 

bicycle extension was enabled. Results showed that the agents choose flatter routes and the 

use of existing cycle paths, when possible. The main consequences of this implementation 

were the simulation of longer trips and more realistic behaviours, which were verified by real 

cyclists from the study area. These results showed the success achieved in the use of the 

quietness attribute and the updated bicycle extension. Although more research and analysis 

are required to simulate more realistic cycling routes (e.g., the consideration of preferences, 

differences between cyclists in terms of their socio-demographic attributes, speeds and 
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experiences), this is a contribution that can simulate standard cycling behaviours considering 

an important set of built environment characteristics. 

Another important validation component was the percentage of short trips in urban areas 

using active modes. This is a crucial component, as it is fundamental to reach a similar baseline 

as the one identified by ATE. The difference found between both baselines was below 3%-

points (43.39% simulated results and 41% ATE estimation). This similarity strengthens the 

usability of the validated MATSim model, as not only were transport mode shares, average 

trip distance and times and vehicle counts in space and time realistic, but even the use of 

active modes reflected the normal mobility of the individuals in the study area. The challenge 

of shifting car users to active modes has this powerful tool to simulate mobility policies and 

achieve the shift on a realistic basis. 

 

5.2.4. Scenarios 

Different and extreme mobility policies were simulated to estimate their efficiency in 

reducing the number of cars on the roads, besides other co-benefits thanks to the use of 

active modes, such as CO2 emission reductions and health benefits. Although these scenarios 

could rarely be fully implemented in the real word, they can provide a detailed overview of 

their potential.  

 

Transport mode shares 

A reduction of cars on the roads was achieved in all scenarios, although with various levels of 

impact depending on the scenario simulated. The ones with the highest effect were those 

where an economic penalty was included (i.e., scenarios 4, 6.3 and 6.4). The other two 

combined scenarios where economic penalties were not applied (i.e., 6.1 and 6.2) reached 

lower percentage-points reductions than in the single scenario including it (i.e., scenario 4). 

These results could indicate a stronger impact of the toll by itself than when car space 

reduction and road restrictions are applied (i.e., scenarios 1 and 2). Another notable fact was 

the lack of extra benefits when policies were combined to reduce the number of cars on the 
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roads in the same scenario, since reductions in percentage-points were similar to those 

obtained when the results of the individual policies were combined. 

 

  
Car 

Public 
transport 

Walk Bicycle 

Scenario 1 
Fully segregated cycle paths 

-2.1% 1.1% -0.3% 1.3% 

Scenario 2 
Low Traffic Neighbourhoods 

-3.2% 3.0% 1.0% -0.7% 

Scenario 3 
Active travel reward 

-6.9% -2.7% 3.3% 6.3% 

Scenario 4 
Pay-when-you drive 

-14.2% 9.9% 2.1% 2.2% 

Scenario 5 
Cycle hubs 

-0.1% 0.2% 0.0% -0.1% 

Scenario 6.1 
Cycle paths + LTN + cycle hubs 

-4.1% -1.2% 1.4% 3.9% 

Scenario 6.2 
Cycle paths + LTN + cycle hubs 
+ active travel reward 

-13.2% -8.5% 4.7% 17.0% 

Scenario 6.3 
Cycle paths + LTN + cycle hubs 
+ pay-when-you drive 

-18.0% 6.2% 3.7% 8.1% 

Scenario 6.4 
Fully combination 

-27.5% -5.1% 6.5% 26.1% 

Table 15 Summary of the percentage-point differences achieved in each simulated scenario when compared with the 
baseline scenario, by transport modes. 

 

Similar to previous results but considering active modes, the highest increases in percentage-

points were obtained when economic policies were applied. The best results are observed 

when economic rewards are implemented (i.e., scenarios 3, 6.2 and 6.4). The combination of 

policies to increase the use of active modes achieved extra benefits than when the results of 

the individual policies were added together. Higher percentage-points increases were 

obtained, unlike the case of car reductions explained in the previous paragraph. This effect 

was almost five (scenario 6.1), three (scenario 6.4) and two times (scenarios 6.2 and 6.3) 

higher in the combined scenarios than when results from the individual policies were added 

together, suggesting that the effects of implementing multiple policies in favour of active 

modes could influence a greater shift to these modes. This is a particularly important 
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outcome, showing an extra potential impact of the combined policies in favour of walking and 

cycling. 

Within the active modes, the use of the bicycle was the most benefited, although walking 

reached higher percentage-point increases in two single scenarios where cycling was 

penalised (i.e., as a consequence of not being able to overtake cars in congested areas 

(scenario 2), and when cycling was combined with the use of metro in the same trip (scenario 

5)). In the remaining scenarios, the bicycle was the clear winner, especially in combined 

policies, where the percentage-points increased by two or even by two significant figures, 

while walking reached 25%-point increase in the best case. The fundamental reasons for the 

differences between the modes are two: firstly, most policies are focused on cycling; 

secondly, cycling is faster than walking, making the former more attractive than the latter. 

Despite public transport modes not being the focus of this doctoral thesis, interesting 

outcomes from the scenarios were found, as they were benefited or penalised depending on 

the policy or policies simulated. In policies simulated individually (i.e., scenarios 1 to 5), the 

use of public transport was penalised only when economic rewards to active modes users 

were applied (i.e., scenario 3). In the remaining cases, the use of public modes increased, 

especially when economic penalties were applied to car users (i.e., scenario 4). In combined 

scenarios, the use of public modes is reduced in all of them, except the one that penalised 

economically car users without economic rewards to active modes (i.e., scenario 6.3). These 

results show the dispute between the active and public modes, as both compete for the 

former car users that decided to use an alternative mode, as well as between their usual users 

(as shown in the Sankey diagrams in section 4.4.2). The shift of public transport users towards 

active modes could be an issue for policy makers as these types of modes are intended to 

complement each other rather than compete. If fewer people use public modes, fewer 

investments could be approved, with the potential to increase prices. This would particularly 

affect those people who are unable to use active modes (i.e. people with mobility issues) or 

do not have the possibility of using any other mode (e.g., vulnerable people without access 

to a car). Further investigation is required to identify potential policies in benefit of both 

modes. 
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Table 15 summarises on a coloured-scale (i.e., reductions in red, increases in green) the 

percentage-point differences achieved in each simulated scenario when compared with the 

baseline scenario, by transport modes. 

 

CO2 emission reduction 

Estimates of CO2 emission reductions per scenario were also analysed to understand the 

potential impact of the simulated policies on the environment. 

Baseline results showed that 416 tonnes of CO2 are emitted daily, equivalent to 4,326,577 

trees required to absorb them daily. Although all scenarios achieved emission reductions, the 

most successful were those including economic policies, either rewarding the use of active 

modes (scenarios 3, 6.2 and 6.4) or penalising car users (scenarios 4, 6.3 and 6.4), reaching 

reductions up to 17 and 38%, when applied individually and combined, respectively. Those 

scenarios only simulating policies varying the built environment characteristics (e.g., 

scenarios 1, 2, 5 and 6.1) achieved very limited improvements, reducing emissions up to 2.3% 

in the best case. 

Furthermore, combined polices reached better outcomes than when results from individual 

policies are added together. This implies a stronger effect for the environment when policies 

are applied at once, multiplying their effect by a factor greater than one.  

 

Geospatial representation 

All scenarios reduced the number of cars on the roads, although they were geographically 

uneven. Single scenarios reduced the number of private vehicles on motorways, highways 

and main urban road, except in the implementation of LTNs. Within them, the number of cars 

in the first two types was greater except in the city centres of main urban areas, as car users 

avoided the use of slow urban areas (due to congestion) in favour of faster motorways. 

Combined scenarios reduced even more the number of cars in all areas.  

Furthermore, the general reduction of cars on the roads had consequences in the behaviour 

of some other agents previously using other modes in specific areas. New users occupied the 
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free space left by former car users, as a response to less congested roads. The new users used 

this freed space into their benefit, as a better alternative in the use of cars was identified. This 

behaviour was observed in minor areas in some of the scenarios simulated (e.g., scenarios 1, 

2, 3, 6.1., 6.2, 6.3 and 6.4), as shown in figures 95-110. This is an important effect that shows 

the importance of AgBMs in transport, as it is possible to visualise mobility geographically: 

when car journeys are reduced for some, it just opens more road space for others. 

In the case of cycling, the same specific cycling routes were identified in the majority of the 

scenarios (e.g., the W-E corridor in the north of Newcastle, the N-S corridor in North Tyneside, 

the routes in Gateshead connecting with the Team Valley trading estate), the amount of 

cyclists being proportional to the increase of bicycle users in each scenario. These areas could 

be analysed in detail to understand the mobility patterns that make them that attractive. 

Additionally, these spatial patterns could be useful in cycle network planning. Future 

infrastructure investments in favour of cycling could be prioritised in these zones, as it could 

be argued that they are an indication of latent demand, where people might shift to cycling if 

enabled.  

 

Statistical analysis 

Statistical analysis of active modes showed relatively constant values in average trip time, 

distance and speed when walking, while values differ for cycling depending on the scenario. 

Cycling was used for longer distances and time when segregated cycle paths, economic 

rewards for active mode or economic penalties for car users were applied individually or in 

combination. 

The average cycling speed is very dependent of the existence of fully segregated cycle paths 

(figure 113), being almost 1km/h faster than in those scenarios where this policy was not 

implemented. This is an important outcome achieved, which shows the need to provide fully 

segregated cycle paths that connect origins and destinations with direct routes, since not only 

longer routes are taken, but higher speeds can also be reached, therefore increasing the 

attractiveness of cycling. The logical consequences of the increase in bicycle use are a 

healthier lifestyle, a less congested transport system, and, as described above, a more 

sustainable and less polluted and noisy environment.  
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Achievement of the ATE 2030 goal 

The implementation of several policies together and the single effect of economic rewards 

for active modes exceeded the ATE goal of reaching 50% of short trips walked or cycled. In 

terms of trip purposes, travelling to school on foot always achieved the highest percentage 

value, although its increase was limited within the scenarios (up to 2.5%-points in the best 

case). In contrast, the percentages of trips made by bicycle were increased for all kinds of 

purposes, especially when all policies were combined (i.e., scenario 6.4). This was a 

consequence of the provision of fully segregated and safe cycle paths, the economic reward 

and the need to avoid a car toll (in the case of former car users).  

The results achieved in all scenarios were shared with the ATE team, where discussions in the 

development of more detailed and specific scenarios were considered for their purposes. This 

engagement allowed the understanding of the strategies and methodologies that ATE set for 

their goals in 2050.  

 

Socio-demographic analysis 

The impact of policies on the agents based on their socio-demographic attributes is another 

advantage that AgBMs offer compared to other alternative models. 

The obtained results, apart from the interactions of the agents in space and time, are 

predominately based on the intrinsic characteristics of their activity plans (e.g., locations, trip 

distances and duration). An example is the impact of economic rewards (e.g., scenario 3) to 

agents travelling long distances, based on their age range. This type of policy makes young 

adults increase the use of bicycles the most, as this group travels longer distances on average 

and can get a higher economic benefit than those travelling shorter distances in urban areas. 

Unfortunately, different attitudes towards the use of different transport modes and health 

conditions among the agents were not considered, due to time and data constraints. This is a 

huge simplification of the agents’ normal behaviour, as a homogeneous behaviour is assumed 

during the simulation stage (e.g., when choosing their transport modes and routes). 

Consequently, results obtained do not reflect real actions. Examples of these unrealistic 

results are observed in the analysis of the use of bicycle per sex and economic activity. In the 
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first, it was observed that women use the bicycle more than men, both in the baseline and 

the scenarios. This behaviour is opposite to that observed in real life as described by Aldred 

et al., (2016), where men use the bicycle the most and are less affected by factors that can 

limit their use. In terms of economic activity, it was observed that agents initially considered 

less favourable to cycling (e.g., retired, sick) were among the groups that used this mode the 

most. This is an effect in which agents only take into account the characteristics of the trips, 

since those who use the bicycle the most are those who travel short distances. A further 

model development is required if socio-demographic analysis is needed to identify the impact 

of the policies to the agents based on their characteristics. This is a future work that 

researchers can contribute to make the model more realistic and robust, as indicated in 

section 5.4.4. 

 

Health benefits 

Mobility policies in favour of active modes can also influence health conditions, as people 

increase their physical activity when walking and cycling, and emit less CO2 to the 

environment for a cleaner environment, as described in section 2.4.2. 

Results obtained showed that several premature deaths can be avoided in each scenario, 

depending on the type of mobility policies applied. The highest reductions were observed, as 

was expected, in scenarios where more people use active modes (i.e., scenarios 3, 6.2 and 

6.4). The common factor between them is the economic reward per kilometre walked or 

cycled. Prevented annual deaths range between 4.4 (scenario 3) and 15.1 (scenario 6.4). This 

reflects the powerful effect that economics can have in modifying people’s mobility 

behaviours. 

These health benefits go beyond preventing premature deaths, as they also impact the 

economy. These prevented premature deaths require fewer medical services and can 

continue to contribute economically to society. Therefore, this co-benefit is twofold: 

improves human health and helps the economy.  
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 Built environmental analysis 

The use of AgBMs also allows the analysis of the transport network used by the agents, being 

a valuable source of information that cannot be collected with traditional models (i.e., FSMs). 

In this case, an analysis was applied to identify the roads most used by cyclists per scenario. 

The outcome showed that minor roads (B and C roads), residential streets, roads with a single 

lane per direction and between 5 and 20 km per hour were the most used in all case scenarios, 

independently of the policies simulated, although with variations depending on them. 

The biggest changes were observed in the use of footpaths and three-lane roads, where their 

use increased by 2.5 and 300 times respectively, but only when fully segregated cycle paths 

were implemented. These two cases show the use of new types of roads previously not 

allowed for cyclists. The first related to areas only used by pedestrians in urban areas, while 

the second to roads such as motorways that divide areas where bicycle use is permitted and 

prevent connections between them. 

These outcomes could help identify and prioritise future cycle path implementations in the 

study area. Priority routes could be defined to provide the agents with safe ways to travel, 

removing barriers that could affect potential new cycling users. 

 

Economic results 

Mobility policies that attempt to influence a behavioural change in society towards the use of 

more sustainable modes also have an economic impact. Some of them require financial 

compensation to individuals to encourage the use of active modes (e.g., scenarios 3, 6.2 and 

6.3), while others demand sanctions to discourage the use of polluting cars (e.g., scenarios 4, 

6.3 and 6.4). Additionally, all policies have a health impact in the population, and therefore, 

in the economy, as described in section 4.4.10. 

Results obtained show that policies applying economic rewards to active mode users require 

a substantial economic investment. This outcome makes this type of policy difficult to 

implement in the real world, due to the limited budgets that the majority of cities could use 

to cover these expenses, with exceptions such as cities in the Netherlands, Belgium and 

France, as described in section 3.8.1. Those policies that impose penalties on car users could 
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raise significant revenue that could be reinvested in policies that support a sustainable 

transport future (e.g., fully segregated cycle paths, public transport services improvements), 

strengthening commitment to a decarbonised and more resilient transport sector. 

When these types of policies are combined in the same scenario, different results are 

obtained than when applied individually. While tolls for car users collect higher economic 

benefits (scenario 4) than the amount required when providing economic rewards to active 

users (scenario 3), the opposite occurs when both policies are combined (scenario 6.4). This 

is a consequence of having fewer cars on the roads (i.e., fewer benefits collected) and more 

people using active modes (i.e., more investment required to pay them per kilometre 

walked/cycled). This is an important concern, as potential clashes and side effects between 

different policies combined need to be taken into account. When adding the potential 

economic benefits derived from the health benefits, a positive balance is achieved in this type 

of scenario. 

It is also worth saying that, although the values used to reward active users and penalise car 

users are not based on any research or proposal by any official entity, they can show a global 

picture of the economic consequences they can produce. Further research is required into 

using more realistic values, as well as defining either with more specific constraints (e.g., trip 

purpose, maximum distance). 

 

Cycle hubs results 

Lastly, the use of cycle hubs to allow the use of the bicycle and metro during the same trip 

achieved different results depending on the simulated policies. The number of users was 

multiplied by 5 when the cycle hubs were reachable via fully segregated paths (scenario 6.1), 

by 4 when economic rewards for active modes and fully segregated cycle paths were allowed 

(scenario 6.2), by 12 when economic penalties were applied to car users and cycle paths were 

allowed (scenario 6.3), and by 7 when all single policies were combined (scenario 6.4). These 

results show the previous acknowledged dispute between active and public modes, as a lower 

number of cycle hub users were counted when economic rewards to active mode users were 

applied than when economic penalties were applied to car users. In terms of the most used 

cycle hubs, six of them were always within the 10 most used, being principally located in 
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urban, shopping, residential or working areas of Newcastle, North Tyneside, South Tyneside 

and Gateshead. 

 

5.2.5. Feasibility of implementing simulated scenarios in the real world 

Despite the decarbonisation, health, economic and environmental benefits that previous 

mobility policies can provide, some objections are found when trying to implement them in 

the real world. The following paragraphs analyse three of them to understand some of the 

main difficulties faced. 

The first difficulty relates to the population acceptance, as not every individual is interested 

in modifying their mobility behaviours in favour of a decarbonised and resilient mobility. 

Groups in society have been found against sharing the roads or giving part of them to cyclists, 

the implementation of LTNs or road tolls, to name just a few. According to research, about a 

third of drivers consider that cyclists should not be on the road but only on cycle paths (Bilton, 

2022; GB Road Safety, 2022). Furthermore, Prati et al. (2017) argue that cyclists have been 

relegated to a secondary place, facing discriminatory treatments and disproportionate safety 

outcomes. Related to LTNs, the freedom to use the car, the potential benefits for privileged 

people, the blockage of roads, an undemocratic situation, the potential impact to emergency 

services, the increase of pollution in other roads and the potential impact to local businesses 

are the main objections provided by those against them (The Guardian, 2022). Lastly, 

opposition to road tolls is mainly related to attitudes against climate change and the 

environment, which are closely related to right-wing populism, based on a Norwegian survey 

and analysis performed by Aasen and Sælen (2022). 

In addition to the public acceptance, attitudes towards the shift to more sustainable transport 

modes play an important role as well. As discussed previously in section 2.4.2, a great majority 

of the population (circa 70%) is concern about the need to use less polluting transport modes, 

but a similar proportion considers indispensable the use of cars (Ipsos, 2022). This reasoning 

shows the differences between what people think would be good for the environment and 

society, and their personal convictions (and/or needs) to make the shift. 
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The third is about the economic costs, which vary depending on the interventions. In the case 

of segregated cycle paths,  investments range from £0.24m to £1.45m per kilometre, based 

on typical costs of cycling interventions (Taylor and Hiblin, 2017). Although the 

implementation of a cycle lane in every road is an extreme case (as in some of the previous 

scenarios), the results obtained in this thesis could be used to prioritise areas and benefit a 

potential latent demand that could make the shift first. Then, more areas could be benefited 

gradually, based on the demand and satisfaction achieved. LTNs requires cheaper 

interventions, where roads could be blocked with simple elements (e.g., planters) that could 

be moved in the case of emergencies. In the case of systems to quantify the kilometres 

walked/cycled per individual and road tolls, a substantial investment would be required 

(economic, infrastructure and technological). Detailed research would be needed to take into 

account the specific characteristics of the population and the environment in each study area. 

Lastly, cycle facilities to park bicycles in a secure place are also defined economically by Taylor 

and Hiblin (2017), estimating a cost between £0.12m and £0.20m per facility. The Greater 

Manchester area is an example where these facilities have been implemented at 15 busy 

destinations, providing 1,206 parking spaces with secure card access and CCTV.  

All in all, a balance between benefits and objections is required when considering the 

implementation of mobility policies to achieve a decarbonised transport sector. However, an 

important consensus should be reached to acknowledge the importance of facing the climate 

emergency and the need to modify the normal mobility behaviours of the population. 

Awareness campaigns will be required to show the public the benefits in decarbonisation and 

co-benefits in health, economic and environmental terms that can be achieved. Additionally, 

the combination of policies could help reduce the costs if revenues (e.g., road tolls) are 

combined with incentives for active users (e.g., cycle paths), as shown previously in section 

4.4.10, where the economic benefits derived from health improvements play a fundamental 

role. 

The outcomes obtained in this thesis could be an excellent starting point to define specific 

and delimited strategies in the study area. 
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5.3. Reviewing research questions 

This doctoral thesis has contributed to achieving a more decarbonised transport sector, 

applying cutting-edge tools, datasets and methods with a clear trend towards the use of open-

source tools and open access datasets for reliable and robust research. Based on the 

knowledge and experience gained during the development of this thesis, the research 

questions defined in chapter 1 can now be answered with a greater appreciation and 

understanding of both the global context and the required procedures to achieve them. 

 

How can open-access data and open-source tools support the development of spatio-

temporal scenarios to assess the effectiveness of policy portfolios to increase active travel 

uptake, taking into account socio-demographic attributes and built environment 

characteristics? 

The use and development of open-access data and open-source tools to simulate active travel 

mobility policies is an emerging and growing activity, not only in academia but also in industry 

(e.g., Arup CML, Connected Places Catapult). They contribute to helping democratise and 

expand the use of models, since more researchers and practitioners have the opportunity to 

access, use and replicate them in other regions.  

Open-access data and open-source tools play a key role in the development of spatio-

temporal scenarios to assess the effectiveness of policies to increase active travel uptake. 

They are particularly important when socio-demographic attributes and built environment 

characteristics need to be taken into account, as the majority of these types of data do not 

exist, have access restrictions or are proprietary and, therefore, not accessible.  

Socio-demographic attributes and built environment characteristics are fundamental 

components for estimating the effectiveness of policies in favour of active modes, since these 

modes require physical effort and control from the individual on a continuous basis, unlike 

public and private modes. Therefore, greater detail is required to define them as they 

condition the attraction and satisfaction of the individuals when using active modes, as well 

as the followed routes.  
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Fortunately, open-source AgBM tools have been developed to combine both factors at the 

individual level. Tools such as MATSim and SimMobility, among others, allow the spatio-

temporal interactions of agents, behaving differently depending on the characteristics of the 

transport network, used modes and their own socio-demographic characteristics. Access to 

these tools allows researchers, practitioners and the public the ability to define and test 

numerous scenarios considering active modes, making the process more transparent and 

accessible, although a high level of understanding is required to use them. Additionally, new 

open datasets and tools have been created to improve the simulation results. Some examples 

are the development of detailed and heterogeneous synthetic populations and transport 

networks with a focus on active modes (e.g., the methodologies presented in this thesis); the 

definition of indexes to rank built environment characteristics for cycling (e.g., Cyclestreets 

(2022a)); and the possibility of simulating cycling as an independent and fully defined mode 

taking into account characteristics of the environment (e.g., Ziemke et.al., (2017)).  

Unfortunately, all required inputs to simulate and test scenarios to increase active travel are 

not open access. This is the case for travel diaries, as this information is considered sensitive 

and explicit permits are required. Additionally, more efforts from the open-source community 

are required to define walking in a greater level of detail, as this mode is usually discarded 

from simulations due to lack of data or interest in considering it as part of the dynamic flow, 

as described by Batty (2001). 

 

This thesis aligns with the premise of using and developing open-access data and open-source 

tools, where possible, to contribute to reproducible, open and transparent research. A strong 

commitment in the definition of socio-demographic attributes and built environment 

characteristics was taken, as shown in the four novel innovations generated. These 

improvements enabled the possibility of simulating more realistic scenarios in favour of active 

modes, predominantly for cycling based on the available resources used and developed. 
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What synthetic population attributes are required to capture the behavioural responses of 

transport users to active travel policies, and how can these attributes be produced using 

open-source demographic tools? 

As  Garrido et al (2020) state, synthetic populations are the basis to define travel demand. 

They describe with a great level of detail the inhabitants of the study area. This level of detail 

depends on the number of attributes considered and their heterogeneity, as they are directly 

related to the number of subpopulations that can be identified within a society. 

Consequently, the greater the number and diversity of attributes considered, the more 

inclusive and equitable representation of society and its mobility patterns. 

As described in section 3.3.3, research has found that different mobility behaviours can be 

identified depending on the characteristics of the individuals (e.g., age, sex, ethnic), the 

relationships with other household members (e.g., marital status, children in the dwelling),  

economic level (e.g., economic activity, occupation and income) and mobility options (e.g., 

driving license, car access, bicycle access, public transport pass). Besides them, attributes 

considering health conditions would help to better describe the normal mobility of the 

synthetic agents. Therefore, a certain diversity among them provides a descriptive vision of 

society with different mobility behaviours and needs.  

In this thesis, a novel and heterogeneous open-source synthetic population methodology 

combining open-source tools  (SPENSER (Lomax et al., 2022) and synthPopEng (Alvarez 

Castro, 2022)) was generated. This methodology uses open-access data from the 2011 UK 

census, ONS and NTS, which enables researchers to apply it in any region of England. This 

allows for more transparent, replicable and reliable research, as described in previous 

research question. A detailed description of the tools and datasets considered can be found 

in section 3.3.3. The outcome is a synthetic population with 12 socio-demographic attributes, 

where individual characteristics, family dependencies, spending power and mobility access 

attributes are taken into account. Unfortunately, due to lack of time, attributes about health 

conditions were not included. This limitation has been identified as future work to improve 

the quality and diversity of the outcome. Section 3.3.4 describes the generated attributes in 

detail. 
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When these socio-demographic attributes are considered to estimate the acceptance of 

active travel policies with AgBMs, different behaviours are observed among the agents, as 

shown in section 4.4.7. Unfortunately, lack of time prevented the possibility of considering 

different attitudes and levels of attraction towards active modes from different sub-groups in 

society. Consequently, the results obtained cannot be considered reliable, as they are mainly 

conditioned by the activity plans assigned to the agents.  Although these activity plans were 

assigned based on socio-demographic attributes (see section 3.3.6), more conditions affect 

agents’ decisions, such as their awareness of climate change and interest in more sustainable 

transport, to name just a few. This implementation has been highlighted as future work to 

achieve more realistic and reliable outcomes, as described in section 5.4. 

 

Which characteristics of urban infrastructure are important in shaping travel choices, and 

particularly the use of active travel? 

Road infrastructures and their condition are fundamental for a normal and comfortable 

mobility for all kind of transport modes. 

Particularly, active travel requires a set of conditions to make it attractive and usable, as it   

requires some physical effort by the individuals when moving between locations. The mobility 

has to be safe, direct and comfortable. As highlighted in section 3.6, research has found that 

slopes (Menghini et al., 2010; Hood et al., 2011; Li et al., 2012), pavement surface conditions 

and smoothness (Landis et al., 1997; Hölzel et al., 2012; Milakis and Athanasopoulos, 2014) 

are fundamental factors that influence the use of bicycles. 

This thesis analysed the characteristics of the roads for cycling, based on the quietness 

attribute developed by Cyclestreets (2022a). Road and surface type, number of lanes per 

direction, allowed modes, maximum speed and cycle paths’ width were considered. The 

outcome shows that those residential and minor roads with cycle paths of at least 2.5 metres, 

regular and compacted surfaces (e.g., sett, compacted, concrete, asphalt and paved), with 

one lane per direction and up to 20 km per hour are the ones that obtain the highest values 

in ranking, and therefore, the most attractive for cycling. 
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This outcome was confirmed when we allowed the agents to try different routes when cycling 

during the simulation stage. The validates scenario (i.e., baseline) showed that agents prefer 

to use residential and minor roads, with a single lane per direction, as well as direct routes to 

minimise the time spent but taking into account road gradients, as demonstrated in section 

4.3.5. These results are aligned with the updated MATSim bicycle contribution, where both 

the quietness and gradient attributes are considered when choosing the route. 

Additionally, some of the scenarios simulated in this thesis show the importance of providing 

safe cycling infrastructures (i.e., scenarios 1, 6.1, 6.2, 6.3 and 6.4). As a result, more agents 

decided to cycle. In all cases, more direct routes and faster travelling speeds were identified, 

indicating that cycle paths are a fundamental component to increase the use of active modes. 

Unfortunately, a similar analysis for walking was not developed mainly due to the lack of 

datasets and tools. This drawback has been highlighted in the thesis, as well as identified as 

future work for a more cohesive and complete research of the human mobility. 

 

5.4. Future work 

At the end of the writing up of this doctoral thesis, it is believed that the aim has been 

accomplished at a very high level. However, new and exciting challenges have been identified 

to improve and expand the outcomes obtained in this 3.5-year doctoral thesis, which surely 

will lead to more thrilling approaches. The following sections collect all the derived and new 

questions identified during the development of the thesis that could make both the 

methodology and results more accurate, precise and robust.  

 

5.4.1. Synthetic travel demand 

The development of a very detailed synthetic travel demand consists of the use of a vast 

amount and diverse datasets that are rarely in the same format, structure or spatio-temporal 

scale. This implies that the results cannot be fully validated and, therefore, the achieved 

precision and accuracy are not totally guaranteed.  
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This is the case when developing a synthetic population, as open access regional and national 

datasets from various sources and timeframes were used to develop eight new socio-

demographic attributes. Although the results were internally validated (when data was 

available) using aggregated values of a small number of combined attributes (e.g., age and 

sex in most of the cases), the accuracy of the results cannot be guaranteed. More aggregated 

socio-demographic attributes should be considered when validating the results obtained 

(e.g., validate the economic activity considering aggregated values based on age, sex, income 

and marital status), as well as using external datasets from diverse official sources. The 

application of a more robust and constrained validation method will improve the precision 

and accuracy of the results achieved. Further investigations in available datasets, tools and 

other resources are required to accomplish this highlighted challenge.  

Besides the improvement of the obtained results, there is also the possibility of developing 

new attributes for individuals, such as health status, and increase their heterogeneity. To 

simulate more realistic mobility behaviours, extending the synthetic population with an 

attribute that can categorise the level of mobility of the agents (e.g., very bad, bad, good, very 

good) is encouraged. While good mobility for all the individuals was assumed in this thesis 

(which is not an accurate representation of the population), knowledge about the health 

could provide insights in terms of potential users of active modes and discard their use for 

those with mobility difficulties or disability. This could help simulate a more representative 

mobility of society, as well as limit the distances walked. 

Within the activity plans, it was assumed that individuals with similar socio-demographic 

attributes behave and have similar mobility patterns. This assumption was used to transfer 

activity plans from the NTS travel surveys from the whole England except London between 

2011 and 2019 to the synthetic population’ agents. Although this argument is held by 

scientific research as indicated in the section 3.3.3, the development of massive and detailed 

travel diaries only within the area of study (i.e., Tyne and Wear or the NE region) would reduce 

the inclusion of outliers and patterns that do not belong to the area of study and occur in 

some other areas. The possibility of obtaining or developing travel diary surveys covering the 

whole study area only would be encouraged, although this task could be time consuming and 

underrepresent specific groups of society (Franco et al., 2020), or the use of additional data 

sources (e.g., mobile phone data) combined with socio-demographic information.  
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5.4.2. Network 

During the development of the network, challenges and future work that could increase the 

precision and accuracy of the urban environment were also identified. 

Firstly, it would be beneficial to include characteristics for walking (e.g., width, surface type, 

conditions), similar to the quietness attribute for cycling. A similar attribute ranking the 

pavements would be useful to simulate, instead of teleport, walkers during the simulation 

stage. Unfortunately, the acquisition of this information and its inclusion in the network 

would not be enough, as a MATSim extension to simulate walking would be required, similar 

to the one generated for cycling.  

Although the quietness attribute developed by Cyclestreets is a very valuable information for 

cycling purposes, an authoritative dataset for cycle network quality in the UK would be 

required to consider more attributes and more precise values that condition the use of the 

bicycle. It would be ideal if Ordnance Survey could survey this information (e.g., surface 

quality, segregated cycle paths, width of the road) and make it available for research purpose. 

For both active modes, it would also be interesting to consider traffic accidents when routes 

are chosen. This information is open access and can be added to the network. The main issue 

is about how the data is used during the simulation stage. A new or updated MATSim 

extension for cycling and/or walking would be required to allow the agents to avoid roads 

where the number of accidents is high. 

Beyond the inclusion of more information into the network, there is also the need to improve 

the network validation stage. Despite checking the results from several and complementary 

perspectives (e.g., analytic checks of public transport routes with PUMA (Arup, 2022b), and 

visual network checks identifying anomalies when visualising the results in space and time 

using Simunto Via (Senozon AG, 2018)), it is believed that errors in the network are still 

included. While open access OSM data is extremely useful and valuable, there is a high 

probability of it containing errors due to the potential lack of knowledge of the volunteer who 

digitised the roads and their characteristics, as a result of not being familiar with the area. A 

further investigation would be required to spot unrealistic network structures as well as 

incorrect attribute assignments. Development of a tool to minimise this potential issues as 

much as possible would be encouraged. 
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5.4.3. MATSim model 

Beyond the validated model, there is room for more improvements to make it more realistic 

and accurate, reducing the limitations and assumptions made, but also including new features 

that could bring new insights about the daily transport mobility.  

A set of parameters could be updated for a more realistic mobility representation. Firstly, 

buses could be simulated as stochastic modes, which would allow their interactions with 

other vehicles on the road and be part of potential congestion. This would generate a more 

realistic representation of their movements and reduce the artificial attractiveness for the 

agents assumed in the model. Secondly, public transport modes could consider their 

maximum capacities to simulate a realistic number of passengers per vehicle, which could 

also reduce their artificial attractiveness in case agents are forced to wait for the next 

available vehicle. Thirdly, the inclusion of a payment when using public transit modes, 

incorporating a new economic variable at the calibration and validation stages could be 

considered. Fourthly, walking trips could be simulated within the model instead of being 

teleported, although more information about the built environment characteristics and a 

dedicated walking extension would be necessary to consider this option, as highlighted 

earlier.  

Attitudes towards the use of different transport modes were not considered, either different 

environmental concern or behaviours. These limitations assume that all the agents behave 

similarly, as their performances are conditioned only by the time spent, spatio-temporal 

interactions and, sometimes, by the economic impact of the implemented policy. The only 

differences between the agents in terms of their mobility are their activity plans, which were 

assigned based on their socio-demographic attributes. To increase the agents’ heterogeneity 

and personal behaviours, different sub-populations with different mobility approaches could 

be considered within the model (e.g., different levels of concern about the climate change 

and the willingness to use more sustainable modes based on their characteristics). Franco et 

al. (2020) developed a survey in 2019, where 1,500 residents in Tyne and Wear were asked 

about their current travel behaviours, attitudes towards the use of different transport modes 

and socio-demographic attributes. This information could help in identifying diverse groups 

within the population with different interests and concerns in terms of transport mobility and 

apply them to the model. Although this implementation could improve the model precision 
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and accuracy, it would be at the cost of a higher complexity, as more parameters would need 

to be calibrated. 

Despite knowing the total percentage of cyclists in the area (below 2%), it was difficult to 

match their geospatial routes with real journeys, especially due to the low percentage of them 

and the lack of knowledge about where the majority of real cyclists live. The possibility of 

identifying distinct groups in society with different propensities in the use of bicycles (based 

on their characteristics and/or statistical datasets per MSOA or OA area) and applying them 

to the model could improve this approach and achieve more realistic results. This task would 

require the acquisition of official datasets of real cyclists with their socio-demographic 

attributes and a trial and error calibration procedure. Similarly, as in the previous paragraph, 

this more realistic outcome would be obtained at the cost of a more complex model.  

Further investigations could involve the possibility of allowing the use of more and diverse 

transport options such as micro-mobility modes (e.g., e-bikes and e-scooters). These modes 

could alter the behaviour of the agents, as their use might increase the willingness of the 

agents to use sustainable modes, make longer distances and minimise the negative effect of 

road gradients. 

Different strategies could be also enabled, such as the possibility of allowing the agents to 

change the activity location, which could provide a land use analysis. The fact that agents 

cannot alter locations of activities in response to policies is a limitation, as individuals 

travelling long distances are very unlikely to use active modes. The possibility of enabling 

them to choose their destinations could modify their behaviour and, therefore, achieve a 

higher level of use of the active modes. 

Another possibility could be the addition of more modules, such as the emission contribution 

(Hülsmann et al., 2011; Horni et al., 2016) for exhaust emission calculation, to estimate 

polluting particles produced by the vehicles. This implementation could help estimate the 

level of pollution generated in each scenario using a more detailed methodology than the one 

used in this thesis.  
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5.4.4. Scenarios simulated 

Beyond the scenarios simulated, the following challenges and future work were identified. 

There is the need to identify the geospatial morphologies and any other urban characteristics 

of those routes, areas or regions where the highest reductions or increases in the use of the 

different transport modes were estimated in each of the simulated scenarios. Results 

achieved in this thesis have estimated the efficiency of the simulated policies in reducing the 

number of private and polluting vehicles in favour of active modes and their geospatial 

locations. Future work could focus on the identification of common geospatial characteristics 

between those areas benefited or penalised by the implementation of the policies, with the 

possibility of extrapolating the results to other regions with similar characteristics. Moreover, 

there is the need to use more accurate or more realistic economic penalty and reward values 

for the study area in those scenarios where the economic factor is applied. Although the 

applied values are similar to those found in regions where a similar policy was applied (e.g., 

economic rewards in the Netherland, and the ULEZ in London), the values were just 

representative of potential policies to be applied. The results achieved cannot be considered 

as correct, but the obtained trends show the potential effects in the individuals, and 

therefore, on the transport mobility.  

The developed baseline scenario, despite the improvements suggested, could be used to 

simulate more scenarios in a range of different contexts. Firstly, more detailed (both in space 

and time) scenarios could be defined. The goal of the simulated scenarios in this thesis was 

to have a first approach of the potential efficiencies that could be reached, while future 

scenarios could be built from results achieved in this. One example is the simulation of fully 

segregated cycle paths (scenario 1) applied to designated areas. ATE is working on the 

development of specific cycle paths in Tyne and Wear, so the simulation of this scenario could 

help them to estimate the expected impact on the number of users, routes and kilometres 

cycled. Besides, different economic measures, with more realistic values, could be applied to 

specific groups in society, trip purposes, zones and/or periods of time in the study area. More 

examples could include the implantation of specific active travel rewards when travelling for 

specific purposes (e.g., commuting, travel to school), the application of different economic 

penalties depending on the time of the day when using cars, as well as the application of 

access restrictions to car users in the vicinities of school areas to promote active modes. 
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In a similar way as described before, new scenarios where agents have different attitudes and 

behavioural responses towards the use of transport modes could be considered. This 

approach could be useful to take into account different transport modes’ attractiveness 

within the different subgroups in the population, which could lead to simulation of tailored 

policy scenarios and checking how they would affect the diverse groups.  

Lastly, the model could be used to address resilience and adaptation to extreme weather 

conditions as a consequence of the climate emergency. Different climate extreme events 

(e.g., floods, the failure of infrastructures) could be simulated in specific areas and time. The 

goal would be to estimate the agents’ mobility changes derived from the extreme event, 

identifying the most affected zones, the potential expected delays and the identification of 

isolated areas that could not be reached. 

 

5.5. Implications of research 

This section identifies the implication that the research conducted in this thesis could have 

for fellow academic researchers, practitioners and policymakers. 

 

5.5.1. Implications for researchers 

The research undertaken in this doctoral thesis provides new tools and methodologies to 

generate the two main input datasets for MATSim model, applicable to any region in England, 

thanks to the use of open-source tools and open access datasets. In cases where it was 

impossible to use them, alternatives were provided. 

The development of a very detailed and heterogeneous synthetic population has been 

explained with a high level of detail. This methodology can be applied not only to transport 

mobility scenarios in England, but for any other purpose where the knowledge and 

understanding of the different socio-demographic attributes of the individuals in a specific 

region are required (e.g., demography, epidemiology and politics). The developed 

methodology to assign activity plans to the agents is also open access and accessible by any 

researcher. Although the NTS dataset used is restricted and requires approval from the data-
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owner, any researcher could obtain it when proving the need for the data for a research 

purpose. 

Additionally, the MATSim bicycle extension developed by Ziemke et al. (2017) was updated 

to consider the quietness attribute generated by Cyclestreets (2022a). This update allows the 

possibility of considering more built environment characteristics than the original version and 

simulates realistic cycle routes. The extension has been released in MATSim version 15.0-

PR2396 and could be used by any researcher worldwide. 

Lastly, section 5.4 identified and described some of the future work that the academic 

community could pursue for a more accurate and precise science. Several ideas to improve 

and/or expand the knowledge in each of the methodology steps followed in this thesis were 

mentioned.  

 

5.5.2. Implications for practitioners 

Former transport models, such as FSMs, are not enough to represent the variety of new 

transport modes (e.g., micro-mobility, car sharing, EVs), and the different human mobility 

behaviours and attitudes to decarbonise the transport sector. The use of AgBMs could help 

in tackling these issues as more detailed, disaggregated, multi-modal and spatio-temporal 

models could be generated to test the efficiency of different policies, taking into account 

different human transport behaviours and attitudes. 

Although some companies (e.g., Arup, Catapult Connected Places) develop and apply these 

models, the current trend in transport modelling is to use models developed decades ago, 

due to the expert knowledge, complex datasets and computational resources required to 

make the change. Practitioners must be prepared to open their work to new and different 

tools, such as AgBMs, to consider more complex and current mobility patterns that are far 

from those modelled in past decades. Interactions between the individuals and the 

environment are now particularly important components in transport mobility, as well as the 

possibility of interrogating disaggregated results in space and time, both being key 

components to estimate the satisfaction of different mobility policies considering different 

groups of society. 
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Although AgBMs are not a panacea and many challenges need to be overcome, they provide 

a new perspective in transport modelling aligned with the need to decarbonise the transport 

sector. It is expected that more companies, institutions and government departments will 

take a step forward to apply and develop transport AgBMs for a sustainable and decarbonised 

transport future. 

 

5.5.3. Implications for policy makers 

Currently, the implementation of transport policies in favour of sustainable modes, such as 

walking and cycling, is controversial in the UK and many other countries, as shown in sections 

2.4.2 and 5.2.5.  

Policy makers are under pressure to apply policies to reduce the GHG emissions, but also 

afraid of applying them and upsetting citizens (Shah et al., 2021; Huseyin, 2023). One case is 

the implementation of LTNs, a very controversial policy for car drivers, as some consider it an 

attack and limitation to their freedom in the use of cars, without seeing the bigger picture of 

the current climate crisis and the need to reduce GHG emissions.  

Another drawback faced by policymakers is the fear of not obtaining any benefit after the 

implementation of policies in favour of sustainable modes (Aldred, 2019). Cultural barriers 

(e.g., weather conditions, a car-centric society) could make the applied measures 

unsuccessful, although positive results can be found in areas with minimum cycling culture 

(e.g., Seville (Marqués et al., 2015)). 

As shown in this thesis, the use of AgBMs could enable policymakers to make more informed 

decisions, from transport to geospatial and statistical approaches. More robust decisions 

could be taken, informing the citizens about the potential benefits to be achieved (e.g., 

emissions reduction, health benefits, economic impacts) at the individual and local level, as 

well as the possibility of identifying potential areas where the policies could be accepted at a 

higher level by the population, reducing the possibility of failure. These more detailed and 

comprehensive analyses could be seen as a potential improvement in decision-making. 

It is expected that governmental transport departments at national, regional or local levels 

will take into consideration the use of these tools, in line with Switzerland (Scherr et al., 2020) 
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and Germany (German Center for Aviation and Space Flight (DLR), 2024), among other 

countries. 

  

5.6. Conclusion 

The work presented in this thesis aimed to contribute to a more sustainable transport future 

as a response to the climate crisis. 

The MATSim model built for the Tyne and Wear region is crucial to understanding current 

(2019) urban mobility in space and time, as well as the potential efficiencies of the simulated 

policies to achieve the project goal. This model, in contrast to former transport models, 

provides insights into the spatio-temporal interactions of very detailed synthetic individuals 

among themselves and with the built environment, fundamental components for active 

modes. Therefore, a more complex and detailed analysis is achieved from the transport and 

geospatial points of view.  

The methodology proposed is open-source and uses open access datasets, when available, 

for robust and reliable research that could be replicable by any other researcher. In the event 

that open-source tools or open access datasets were not applied, alternatives were provided 

to achieve a similar outcome. Besides the methodology developed, four novel contributions 

were generated: a very detailed synthetic population methodology fully applicable to any 

region in England, the addition of the cycleability rating (i.e., quietness) to networks, the 

updated MATSim bicycle extension to consider the previous attribute, and tailored scenarios 

to reduce GHG emissions in the Tyne and Wear region. 

This research forms the first steps towards the definition of more precise and accurate policy 

scenarios to be applied to the Tyne and Wear region or any other area in England, although 

international scenarios could be developed when updating the tools to those geographical 

contexts. It is expected that the methodologies and results achieved in this thesis could bring 

knowledge and support to fellow researchers in the use of transport AgBMs to simulate 

mobility scenarios to decarbonise the transport sector. 

The challenge of a decarbonised transport sector is huge, where diverse perspectives, 

knowledge and methodologies are required to identify the best solutions and achieve a more 
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sustainable environment and healthier life. I hope that my contribution with this doctoral 

thesis can help achieve this goal.  
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List of acronyms 

 

AcBM: activity-based modelling 

AgBM: agent-based modelling 

AI: artificial intelligence 

ASC: alternative specific constant 

ATE: Active Travel England 

CA: cellular automata 

CDT: Centre for doctoral training 

CML: City Modelling Lab 

DEM: digital elevation model 

DfT: Department for Transport 

DRT: demand response transit 

EDA: exploratory data analysis 

EPSRC: Engineering and Physical Sciences Research Council 

EU: European Union 

EV: electric vehicle 

FSM: four-step model 

GHG: greenhouse gas 

GTFS: general transit feed specification 

GVA: gross value added 

HRP: household reference person 

ICE: internal combustion engine 
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IPCC: Intergovernmental Panel on Climate Change 

IT: information technology 

ITSUMO: Intelligent Transportation System for Urban MObility 

JADE: Java Agent DEvelopment framework 

LTN: low traffic neighbourhood 

MaaS: Mobility as a Service 

MATSim: Multi-Agent Transport Simulation 

MSOA: middle super output area 

NAO: National Audit Office 

NE: North East 

NHS: National Health Service 

NTAS: National Travel Attitudes Survey 

NTS: National Travel Surveys 

OA: output area 

OD: origin destination 

OECD: Organization for Economic Cooperation and Development 

ONS: Office for National Statistics 

OS Ordnance Survey 

OSM: Open Street Map 

PHE: Public Health England 

PIP: personal independence payment 

QGIS: Quantum GIS 

SBB: Swiss federal railway 
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SIM: Spatial interaction modelling 

SUMO: Simulation of Urban MObility 

SPENSER: Synthetic Population Estimation and Scenario Projection Model 

TADU: Traffic and Accident Data Unit 

UK: United Kingdom 

UKERC: UK Energy Research Centre 

UKRI: UK Research and Innovation 

UN: United Nations 

XML: Extensible Markup Language 
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