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Abstract

Flooding, exacerbated by anthropogenic climate change, is a pervasive natural phe-
nomenon with profound and widespread implications that necessitates effective flood risk
management. Within contemporary flood risk management practice, hydrodynamic mod-
elling comprises a key tool, providing a means for producing crucial quantitative evidence
upon which informed decisions can be based. The analysis of flood risk, hazards and
exposure is predicated by the accurate determination of the hydrodynamic flow charac-
teristics however, there is great potential for complex interactions which necessitates a
more holistic approach. There is therefore a desire for the next generation of flood mod-
els to not only accurately simulate the flow dynamics but also possess the capability to
effectively account for the myriad of associated events.

This thesis therefore presents novel contributions towards the advancement of contempo-
rary hydrodynamic modelling practice via the development of new numerical solutions.
Specifically, it addresses limitations in accurately capturing transient flow interactions
with partial barriers to flow; within urban environments, obstacles to flow can significantly
influence the local flow characteristics and the accurate modelling of the flow interactions
is therefore required. This is achieved via the development of two novel Riemann solvers,
which enable the flexible and general treatment of partial barriers to flow. The predictive
capacity of the solvers is validated via laboratory experiments, demonstrating their capa-
bility to resolve numerical fluxes across a range of flow and barrier configurations. The
first solver is simple and easy to implement, with a focus on compatibility with existing
numerical schemes to enhance the likelihood of implementation and immediate impact.
The second solver addresses the limitations of the first, sacrificing simplicity in favour of
greater accuracy and complexity.

Furthermore, to account for the desired flexible future requirements of hydrodynamic
models, the potential for flood flows to transport scalar quantities is also considered.
Flood events have the potential to pollute water bodies and degrade water quality, par-
ticularly when the capacity of the sewage system is exceeded. In such events, hazardous
substances may be transported within the urban catchment, compounding the associated
risk. As a consequence, the advection and diffusion of a well mixed scalar quantity is also
considered within the context of partial barriers to flow. The unique validation procedure
based upon hydro-optical theory, enables the nonintrusive determination of the fieldwise
concentration via the observation of the scattering and absorption of incident light by
an injected fluorescent tracer mass. The collected data enables validation of the predic-
tive capacity of the model to model the advection diffusion process through a partial
barrier to flow whilst also providing a valuable insight into a otherwise seldom explored
phenomena.

It is hoped that the presented advances will contribute positively towards the development
of the next generation of flood models and the implementation of effective flood risk
management practice.
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Chapter 1

Introduction

1.1 A Brief Overview of Flood Models

Flooding is recognised as one of the most prevalent and devastating natural phenomena,
accounting for almost half of all recorded weather-related disasters from 1995-2015, with
estimates of the affected population reaching a staggering 2.3 billion people [373]. The
economic impact of flooding is vast, reported as $40 billion per annum [148], but the true
human cost is much harder to measure, with profound social, cultural and environmental
ramifications proving difficult to accurately quantify. Anthropogenic climate change is
expected to result in an increased frequency of flood disasters with greater impacts; more
flood disasters occurred between 2010− 2013 than in the entirety of the 1980’s and losses
from global flood events nearly doubled in the 2000’s compared with the 1990’s [243]. As
such, flooding is a key theme throughout the United Nations Sustainable Development
Goals [448].

Within Europe, there has been a recent shift from traditional flood protection approaches,
focussed on hard engineering solutions aimed at preventing flooding, to a more holistic
flood risk management approach, focussed on minimising impacts [157]. In order to effec-
tively manage the risk of flooding, it is first necessary to predict and quantify flood flows
and flood models are therefore a vital component of contemporary flood risk management
practice, providing the crucial evidence upon which informed decisions can be based. Of
particular interest is the modelling of urban areas, since it is expected that 68% of the
world’s population will reside in cities by 2050 [449], with the modelling of urbanised
areas presenting unique challenges [111].

The propagation of flood flows through urban areas is particularly complex due to the
density and variety of topographic features. Buildings, bridges, roads, drain inlets and
blue-green infrastructure are but a few features common to urban areas which may sig-
nificantly influence flood flow dynamics. The complicated flow interactions which occur
within urban areas are therefore omnipresent and require special attention to ensure phys-
ically relevant modelling predictions.

Flood models can be broadly categorised into physically-based models, which simulate the
fundamental physical processes, and data-driven models, which use patterns and relation-
ships derived from data. Despite booming research interest in data-driven methods and
the promise of high levels of computational efficiency, data-scarcity, particularly where
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model training relies heavily on physically-based hydrodynamic simulations [189], pri-
marily restricts the application of data-driven approaches. As a result, modern practices
typically utilise physically-based models, benefiting from greater reliability, generalisabil-
ity and transparency.

For single phase flood flows, ignoring secondary processes such as erosion and deposition of
sediment, the fundamental physical processes are inscribed within the Navier-Stokes equa-
tions. The Navier-Stokes equations are three-dimensional non-linear partial differential
equations describing the motion of viscous fluids. However, due to the computational com-
plexity of solving the Navier-Stokes equations, it is often necessary to impose additional
simplifying assumptions. In order to circumvent computational complexities induced by
turbulence, the Navier-Stokes equations are averaged in time to obtain the Reynolds-
Averaged Navier-Stokes (RANS) equations. The RANS equations describe the properties
of the mean flow and the effects of turbulent fluctuations about the mean flow are handled
by a suitable turbulence model. Within the field of computational fluid dynamics (CFD),
RANS models are commonly used for applications such as aerodynamics, combustion
and heat transfer. For applications requiring more advanced turbulence models, direct
numerical simulation (DNS) numerically solves the Navier-Stokes equations without any
turbulence model, requiring the resolution of the entire range of spatio-temporal scales of
turbulence to be resolved. Large eddy simulation (LES) provides a compromise between
RANS and DNS by averaging only the smallest length scales. However, RANS, DNS and
LES all remain too computationally demanding for applications on large spatial domains
that are relevant to flood risk management.

Consequently, modern hydrodynamic flood models typically utilise the shallow water
equations (SWEs), which describe the motion of an incompressible, inviscid and shallow
fluid, derived from the Navier-Stokes equations under the key assumption of the existence
of a small aspect ratio, in which the depth of the flow is negligible with respect to the
horizontal scale of motion. Accordingly, the shallow water equations essentially reduce
the three-dimensional incompressible system described by the Navier-Stokes equations,
into a two-dimensional system that resembles the Euler equations for compressible flow
[472]. This simplifies matters considerably, albeit imposing some important limitations
[472, 455, 103, 124]:

• The pressure distribution is approximated as hydrostatic.

• The velocity field is independent of the vertical direction and hence horizontal ve-
locities are assumed uniform across the fluid depth, vertical velocities are neglected
and vertical accelerations are equal to zero.

• The bottom slope is assumed to be sufficiently small, such that the small-angle
approximation is valid (sin θ ≈ θ, cos θ ≈ 1, tan θ ≈ θ).

• The bottom stress is specified in a parameterised form, which typically requires
uniform or steady flow assumptions to resolve.

• The effects of density stratification, induced by temperature or salinity gradients, is
neglected.

• The effects of turbulence are not accounted for in the classical formulation.

The assumption of a small aspect ratio is not unduly limiting as many naturally occurring
geophysical flows, including flood flows, are typified by shallow water dynamics.
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Historically, further simplifications have been introduced to derive the simple-inertia for-
mulation [44], the diffusive-wave formulation [107] and the kinematic-wave formulation
[316] however, such formulations are inferior to the shallow water equations and inade-
quate for locally accurate hydrodynamic modelling of urban areas [92, 254]. Many mod-
ifications that increase the complexity of the shallow water equations have also been
proposed within academic literature, to satisfy the requirements of specific applications
for which the classical shallow water assumptions are too restrictive (see for example
[182, 159, 136, 77]). However, the classical shallow water system remains as the predom-
inant basis for state-of-the-art urban hydrodynamic modelling applications owing to its
balanced computational complexity relative to its capacity to adequately capture typical
geophysical fluid dynamics.

Despite the relative simplicity of the SWEs, closed-form solutions remain intractable, ex-
cept for specific simplified cases of limited real-world applicability, due to the highly non-
linear character of the equations. Consequently, flood models employ numerical schemes
which provide numerical approximations of the exact solution to the system of partial
differential equations. For hyperbolic systems of conservation laws, including the SWE,
finite volume methods (FVMs) are currently ubiquitous within state-of-the-art high res-
olution urban hydrodynamic models due to the inherent conservation properties of the
method, the ability to approximate discontinuous solutions, the compactness of the nu-
merical stencil, the flexibility to use either structured or unstructured grids and the sim-
plicity of implementation [69]. The fundamental reliance of the FVM on the integral form
of the conservation laws and consequently the ability to capture discontinuous solutions
is a key feature of modern high resolution shock-capturing schemes, since unsteady ur-
ban flood flows are characterised by shock waves and transitions between subcritical and
supercritical flow regimes.

The FVM discretises the spatial domain into disjoint control volumes, referred to as cells,
within which the conserved variables are typically represented in a piecewise constant
manner. For Godunov-type schemes, the approximate solution of a Riemann problem,
via an approximate Riemann solver, at each cell interface is required to compute the
numerical fluxes and update the conserved variables within the cell at each timestep. A
vast library of literature is dedicated to the numerical solution of the Riemann problem,
which has widespread applications in the numerical modelling of physical phenomena,
and there are many established approximate Riemann solvers such as the Roe solver
[381], Harten-Lax-van Leer (HLL) solver [212], Harten-Lax-van Leer-Contact (HLLC)
solver [435] and Osher-Solomon solver [151, 346] to name but a few.

A key concept for FVMs applied to systems of hyperbolic conservation laws is that of
the weak solution. The differential form of the conservation law is invalid in the classical
sense for solutions containing shocks and as consequence, the integral or weak form of the
equations, which are valid for discontinuous regions of flow, are used. A weak solution
is therefore a solution which satisfies the integral form of the conservation laws. How-
ever, weak solutions are not necessarily unique and it is necessary to impose additional
conditions to ensure that the scheme converges to a unique and physically correct weak
solution. The additional conditions are referred to as entropy conditions. Crucially, the
Lax-Wendroff theorem [259] proves that for a conservative FVM based on the integral
conservation law, if the numerical approximation converges to a solution as the grid is
refined and the timestep is shortened, then the solution will correspond to a weak solution
of the conservation law. Provided the non-linear stability of a scheme can be guaranteed,
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such that the scheme does in fact converge to a solution, and that the supplied entropy
conditions are satisfied and physically congruent, it can therefore be expected that the
numerical scheme will provide an approximation which is physically relevant.

Significant advances in hydrodynamic modelling have been achieved and, in conjunction
with advances in high-performance computing (HPC) techniques [92], shallow water mod-
els are now able to handle millions of cells, enabling the modelling of flood flows for spatial
domains as large as Greater London, at a spatial resolution of 1m [231]. The accuracy of
hydrodynamic models utilising the two-dimensional SWEs has been established through
experimental and analytical validation (see for example [179, 144, 45]). However, due
to data-scarcity, validation using field data has primarily been restricted to the valida-
tion of flood inundation extents [111]. Experimental validation procedures are typically
best suited for ascertaining the suitability and limitations of the governing equations with
respect to a specific physical phenomena, whereas field data can be used to evaluate
model uncertainty, overall model performance and limitations with regards to real world
applications [92].

Within the commerical sectors of the United Kingdom and the United States of America,
there exist several industry standard flood models such as ISIS TUFLOW, Flood Modeller
Pro, InfoWorks ICM, HEC-RAS, MIKE FLOOD, SWMM and FLO-2D. Despite state-
of-the-art research focussing on the development of finite volume schemes to solve the
classical shallow water equations, of the referenced models only ISIS TUFLOW, InfoWorks
ICM and MIKE FLOOD incorporate such features. Hence, finite difference schemes and
simplified models maintain relevance within contemporary industry practice. This is
further supported by the recent commercial success of LISFLOOD-FP, which includes
several simplified numerical schemes.

It is not uncommon for there to be a gap between academia and industry [388] and for
the specific case of flood modelling there are a number of contributing factors including
but not limited to:

• The closed-source nature of most commercial software packages coupled with the
significant investment required to develop, validate and establish new models.

• The desire for user-friendly graphical user interfaces and the training costs associated
with adopting new software.

• Institutional inertia driven by accumulated skill, familiarity and trust in current
practices.

It is also important to note the differing aims and incentives which drive industry and
academia [8].

Although the adoption of modern numerical methods within the commercial sector has
proven slow, the implementation of HPC techniques such as graphics processing unit
parallelisation has been more widespread [445, 169, 233, 338]. This is perhaps a con-
sequence of the scarcity of model validation: in lieu of validation data, the limitations
of finite difference or schemes utilising simplified equations with respect to finite volume
schemes solving the classical shallow water equations are not readily apparent. Whereas
the same model running faster is readily apparent with obvious and direct consequences
on profitability. Hence, it is imperative for those responsible for furthering the field of
urban hydrodynamic modelling to better demonstrate and communicate the limitations of
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existing methods to encourage the adoption of modern methods where appropriate.

1.2 Aim and Objectives

It is within the outlined context of contemporary hydrodynamic modelling practice and
high resolution, Godunov-type, shock-capturing finite-volume schemes for the solution of
the two-dimensional shallow water equations, that this project seeks to study and advance
the modelling of partial barriers to flow. Hydraulic structures such as bridges, gates and
weirs, alongside a myriad of urban features such as building façades, street furniture and
parked vehicles, act as partial barriers to flow, however, a unified approach to modelling
such features does not exist, with industry standard models using coarse approximations,
empirically based methods or even omitting such features entirely [234, 54, 444, 81, 109,
308, 309]. There is a clear requirement for progress in this regard and therefore the
overarching aim of the project can be summarised as:

Aim: To contribute to advances in contemporary hydrodynamic modelling via the de-
velopment of improved methods for modelling linear features such as bridges, gates and
weirs within two-dimensional flood models.

This is to be achieved via the following objectives:

Objective 1: To develop and experimentally validate a novel approximate Riemann
solver (Solver 1) capable of resolving numerical fluxes across a linear fixed immiscible
partial barrier to flow, with a focus upon ease of implementation and compatibility with
existing flood models to promote uptake in practice.

Objective 2: To develop and experimentally validate an improved approximate Rie-
mann solver (Solver 2) capable of resolving numerical fluxes across a linear fixed immis-
cible partial barrier to flow, with a focus upon maximising accuracy.

Objective 3: To develop and experimentally validate the capability to model the trans-
port of well-mixed dissolved scalar quantities through linear fixed immiscible partial
barriers to flow for Solver 2.

1.3 Thesis Outline and Research Contributions

Chapter 2 is dedicated to a systematic and comprehensive review of the relevant literature.
Firstly, the importance of modelling obstacles within hydrodynamic models is outlined,
providing important context and motivation for the proposed research. Next, existing
methods for modelling obstacles are explored and the requirement for improved meth-
ods for modelling linear features which act as partial barriers to flow is demonstrated.
The potential avenues for improvement upon the published methods for the numerical
treatment of such features, based on their respective limitations, is thoroughly discussed.
This is then followed by a demonstration of the importance of the capability to model
the transport of water-soluble pollutants, especially within an urban context. A general
review of advances in modelling of the advection and diffusion of well-mixed dissolved
solutes is subsequently provided, since the combination of solute transport and shallow
water interactions with partial barriers to flow is seldom explored within academic lit-
erature relating to hydrodynamic flood modelling. A review of validation practices for
hydrodynamic modelling, with a particular focus upon methodologies for experimental
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validation of the advection and diffusion of a dissolved solute is also provided. The chap-
ter is finally concluded with a cross-referencing of the identified research gaps with the
aim and objectives of the project.

Chapter 3 addresses Objective 1, outlining the development and experimental validation
of a simple approximate Riemann solver designed for modelling partial barriers to flow.
The presented numerical method represents structures as existing at the interface between
neighbouring cells and uses a combination of internal boundary conditions and a different
form of the conservation laws in the adjacent cells to resolve numerical fluxes across the
interface. Through the use of the two-layer shallow water equations, a vertical discretisa-
tion of the numerical flux is obtained to enable modelling of the barrier at the interface. A
key aspect is the use of simple assumptions to enable the restoration of depth dependence
for the horizontal velocity component normal to the barrier. Validation is provided via
experiments conducted within a state-of-the-art research flume, demonstrating the suit-
ability of the solver for modelling a range of flow conditions and barrier configurations.
The presented solver provides a simple and easily implemented method for resolving nu-
merical fluxes across any obstacle geometry of negligible width with respect to the scale
of the computational cells.

Chapter 4 addresses Objective 2, outlining the subsequent development and experimental
validation of a more sophisticated Riemann solver designed to address the primary accu-
racy limitations of Solver 1. Solver 2 also represents structures as existing at the interface
between neighbouring cells and uses a combination of internal boundary conditions and a
different form of the conservation laws in the adjacent cells to model obstacles that may
act as a partial barrier to flow. Whereas Solver 1 essentially modifies the numerical flux
across the interface at which the structure is modelled in accordance with the modified
conservation laws, Solver 2 introduces a permanent vertical discretisation of the neigh-
bouring cells. As such, the vertical variation in the velocity profile is more accurately
captured, resulting in a more accurate prediction of the flow variables. The permanent
vertical discretisation of the neighbouring cells is facilitated through the use of a spe-
cial form of the multi-layer shallow water equations. Due to the significant numerical
challenges posed by conditional hyperbolicity, the presence of non-conservative product
terms and the need for the layers to retain alignment with the barrier modelled at the
interface, novel numerical approaches are explored. The accuracy of the improved solver
is demonstrated via comparisons between the two solvers and the previously established
experimental validation dataset.

Chapter 5 details the addition of the capability to model the transport of well-mixed dis-
solved solutes through partial barriers to flow for Solver 2, addressing Objective 3. This is
achieved via the coupling of the shallow water system with the advection-diffusion equa-
tions. An extensive and complex experimental validation procedure is detailed involving
the conduction of planar concentration analyses (PCAs), in which the scattering and
absorption of incident light by an injected dissolved fluorescent tracer mass enables the
nonintrusive determination of the fieldwise concentration for the duration of the experi-
ment. Within the relevant literature, the experimental validation of numerical advection-
diffusion models is exceedingly rare due to the challenging nature of the required exper-
iments, with the collected validation data providing a unique experimental insight into
the relevant physical phenomena. Next, analytical validation of a simple two-dimensional
scheme is provided to demonstrate the validity of the wider scheme and the necessity for
special numerical treatment of numerical diffusion for first-order upwind schemes. Fi-
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nally, preliminary results are compared with the validation data collected from the PCA,
demonstrating encouraging results, signalling the requirement for further work.

Chapter 6 concludes the thesis with a brief summary of the main results, which are cross-
referenced against the corresponding relevant objectives, followed by a discussion of future
research and recommendations.

1.4 Publications

Chapters 3− 5 are written in the format of academic publications. The current status of
the publications is as follows:

Chapter 3 has been published as: James Mckenna, Vassilis Glenis, Chris Kilsby, A
new Riemann Solver for Modelling Bridges in Flood Flows - Development and Exper-
imental Validation, Applied Mathematics and Computation, Volume 447, 2023, 127870,
10.1016/j.amc.2023.127870.

Chapter 4 is available as a preprint and has been accepted for publication in Computer
Methods in Applied Mechanics and Engineering: James Mckenna, Vassilis Glenis, Chris
Kilsby, A Local Multi-Layer Approach to Modelling Interactions between Shallow Water
Flows and Obstructions, arXiv:2304.10262 [physics.flu-dyn], 10.48550/arXiv.2304.10262.

Chapter 5 is to be submitted for publication, pending successful publication of Chapter
4 and the completion of significant further work to address current limitations.
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Chapter 2

Literature Review

2.1 Urban Hydrodynamic Flood Modelling and Flow

Obstacles

2.1.1 The Effect of Obstacles on Flood Flows

Urban areas are littered with obstacles to flow at a range of scales, which can significantly
influence the local flow characteristics. Obstacles which induce a constriction of the
flow produce a backwater effect, where the backwater depth is defined as the maximum
increase in upstream depth produced by the flow contraction with respect to the normal
water surface profile in absence of a flow contraction. The backwater effect, also referred
to as afflux, is of importance to flood modelling and flood risk management since the
increase in upstream water depth may be sufficient to induce flooding. For hydraulic
engineers, the estimation of afflux is an important tool to ensure minimisation of flood
risk in the design of hydraulic structures. In fact, many design codes require bridges
to have a low chord elevation which exceeds the maximum water level by a minimum
freeboard for a specified design flood [241, 34, 442, 158, 220].

The localised nature of the effect of obstructions has been demonstrated by Cook and
Merwade [105], who compared one-dimensional steady-state simulations for two rivers
with and without bridges and culverts. They noted that omitting bridges and culverts
did not have a relevant impact on the overall inundation extent. However, this does
not diminish the importance of modelling such features, as inundation extent is but a
single metric by which flood risk can be determined and by omitting such features, the
localised flood risk may be significantly misrepresented. This is supported by Ali [16],
who identified that the inclusion of hydraulic structures within a hydrodynamic model
has an effect on the flood hazard categorisation. Further evidence for the importance of
the hydrodynamic modelling of hydraulic structures for the purpose of analysing flood
risk is provided by:

• McEnroe [300], who provides guidance for the use of two-dimensional hydrodynamic
modelling in the assessment of the downstream impacts of the replacement of a
culvert or bridge with a larger hydraulic structure.

• Trueheart et al. [443], who used two-dimensional hydrodynamic modelling to anal-
yse the interdependence of hydraulic structures along a river corridor under tran-
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sient flood conditions. Their conclusions identified the value of transient modelling
in particular, as synthetic flood simulations may be biased towards capturing the
farthest-reaching impacts at the expense of substantial localised impacts.

• Mateo-Lázaro et al. [298], who present a methodology for the evaluation of the po-
tential impact of proposed hydraulic structures through the use of two-dimensional
hydrodynamic modelling.

• Wang et al. [479], who demonstrated the potential for backwater induced flooding
produced by bridge piers via a case study on the Jialing river in China.

• Hailemariam et al. [208], who analysed the influence of minor hydraulic structures
using a combination of one- and two-dimensional flood models, concluding that the
effect of the structures on peak flood inundation was limited however, significant
differences were observed during the drainage phase of the flood.

• Pappenberger et al. [354], who employed the Generalized Likelihood Uncertainty
Estimation (GLUE) to perform a comprehensive analysis of the sensitivity of flood
mapping to uncertainties surrounding boundary conditions and the representation of
bridges within the model. The findings underscore the localised influence of bridge
implementation, emphasising that the magnitude of the upstream and downstream
impact was dependent on the choice of method for modelling bridges.

• Costabile et al. [109], who analysed backwater effects for a fluvial case study, with
and without the inclusion of bridges within the model. Their conclusions highlighted
the importance of two-dimensional modelling, despite the supposed suitability of the
case study for one-dimensional modelling, due to the significant two-dimensional
nature of the resulting flows.

• Brandimarte and Woldeyes [75], who argue for a transition from traditional de-
terministic approaches for the hydraulic modelling of backwater effects, to better
account for modelling uncertainties. A practical approach to doing so is illustrated
via the exploration of a fluvial case study.

There is also an emerging acknowledgement of the requirement to account for the in-
teractions between floating debris and fixed obstacles to flow. Macchione et al. [285],
reconstructed hydraulic data from the historic flooding of Crotone in 1996, for which
the obstruction and subsequent clearing of bridges proved significant in determining the
characteristics of the flood event. Mart́ın-Vide et al. [296], similarly reconstructed a 2019
flash flood that occurred in Catalonia which involved the blockage of multiple bridges.
In this case, not only did the blockage of the bridges worsen the inundation extent but
the sudden release of a woody jam at a narrow bridge resulted in a catastrophic surge
of approximately 1090m3s−1, directly resulting in two deaths. Fernández-Nóvoa et al.
[160], also identified the debris blockage of a bridge bottleneck as playing a key role in the
intensification of a historic flood which occurred in Portugal. Furthermore, eyewitness
reports identified that the build-up of debris under bridges exacerbated flood flows for an
urban flood event which occurred in Carlisle in 2005 [337, 104].

This evidence further underscores the requirement for transient flood modelling, in order
to accurately ascertain flood risk, as well as demonstrating the need to not only model
obstacles to flow but also the interactions with debris and the effect of varying degrees of
clogging or blockage. This requirement has been identified within academic literature by
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authors such as Mazzorana et al. [299], who propose a combined stochastic-deterministic
approach to modelling flood hazards via the coupling of deterministic hydrodynamic mod-
elling with a stochastic or quasi-deterministic modelling of processes such as clogging by
large wood and Gschnitzer et al. [188] who propose structural modifications to bridges
to reduce the likelihood of large wood entrapment, with corresponding recommendations
for the inclusion of clogging scenarios in hydrodynamic models.

There is therefore a clear requirement for the use of hydrodynamic modelling in the assess-
ment of flood risk relating to hydraulic structures which obstruct flow. This encompasses
the design of new infrastructure, the modification of existing infrastructure as well as its
removal. In accordance with the shift towards a more holistic flood risk management
approach, the concept of river restoration and rewilding of ecosystems has grown in pop-
ularity since Gore’s seminal text on The Restoration of Rivers and Streams: Theories
and Experiences [185]. This has been reinforced by policy implementation such as the
European Union’s Water Framework Directive [431], which marked a clear shift towards
a more ecological perspective to river restoration [344] and more recently the United Na-
tions declaration of 2021 − 2030 as the decade for the restoration of ecosystems [447].
Such projects, of which there are many [100, 413, 65, 421, 484, 467, 336, 407], may be
facilitated by the use of hydrodynamic modelling to assess the impact of the removal
of man-made fluvial interventions. Similarly, there is a demand for improved modelling
techniques to assess the effectiveness of novel small-scale interventions which mimic or
complement natural processes such as leaky barriers [263, 262].

Hydraulic structures, namely bridges, have been the primary focus so far, however, houses,
buildings and streets, which are perhaps the most predominant obstacles to flow associated
with urbanisations, have yet to be discussed. Early investigations into the interactions
between buildings and flood flows in relation to hydrodynamic modelling were instigated
via the European Union Investigation of Extreme Flood Processes and Uncertainty (EU
IMPACT) project including the Dam-break Flow Experiment: The Isolated Building Test
Case [414, 416], which experimentally investigated a single impervious block subjected to
a dam-break flow and theModel City Flooding Experiment [15], which used a reduced scale
(1 : 100) concrete model of the Toce river valley, fitted with a number of concrete blocks
to represent buildings. Within the same time period Ishigaki et al. [236], experimentally
investigated the propagation of flood flows through urban streets via a 1 : 100 scale
model of Kyoto, which uniquely also included a subsurface network. Soares-Frazão and
Zech followed up on the Dam-break Flow Experiment: The Isolated Building Test Case
with the Dam-break Flow through an Idealised City experiment [415], which repeated the
previous experiment for a 5× 5 layout of impervious blocks.

In isolation, the blocks representing buildings, were demonstrated to significantly influence
the flow with the extreme nature of the incident dam-break flows amplifying their effect
during the initial phases of the experiment. Observations of the flow demonstrated the
presence of a strong initial reflection of the incident flood wave, followed by a separation of
the flow and the formation of a series of intersecting shock waves producing re-circulation
and wake zones [170]. When multiple blocks are arranged in configurations that are more
representative of urban districts, the complexity of the resulting flow intensifies with
the model streets conveying flows which are characterised by a complex interaction of
wave reflections, re-circulation zones, wake zones and hydraulic jumps [430, 415]. The
routing of the flow by the streets within the idealised city block was clearly demonstrated
through comparisons between the results for the flow aligned city block and rotated city
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block scenarios. Of particular interest, due to the great deal of complexity inherent to
the resultant flows, is the effect of crossroad and junction configurations for a variety of
flow regimes. These have been experimentally, theoretically and numerically explored by
numerous authors; see for example [200, 201, 225, 428, 481, 205, 369, 226, 258, 367, 370,
51, 235, 71, 380, 62, 482, 375, 245, 227] for three branch flows and [335, 313, 312, 379, 314,
168] for four branch flows. In straight streets, flows are typically much simpler, presenting
one-dimensional flow characteristics with mean velocities parallel to the building façades
[315].

Urban structures have remained the subject of intensive experimental investigations over
the last two decades, with Mignot et al. [310], providing a comprehensive review of 45
laboratory experiments relating to: flow through a single street intersection, subsurface-
surface flow exchanges, obstacle arrays and quasi-realistic urban districts. More recently,
Mignot and collaborators have spearheaded investigations into the effect of small-scale
topography and flow exchanges through openings in building façades. Bazin et al. [46] first
investigated flows representative of typical floods in dense urban areas through a model
of a three branch junction. Using a shallow water model, equipped with a constant eddy
viscosity to account for turbulent stresses, the Authors were able to investigate the impact
of obstacles and sidewalks typically found in urban areas. Their study demonstrated that
obstacles located in the downstream branch of a junction can significantly impact the
velocity distribution downstream of the junction, concluding that detailed topography
and street furniture should be modelled for situations in which local velocities are of
importance.

This research was followed by Mignot et al. [315] who aimed at investigating the error
induced by neglecting street furniture such as bus stops, trees and parked cars. Through
an investigation of 14 different flows and a range of permutations of 9 obstacles arranged
in the crossroad, it was determined that the induced errors were as large as 15% for high
Froude numbers. The introduction of the obstacles resulted in complex flow structures
such as wakes, re-circulation zones and secondary flows with some obstacles producing
notable backwater effects. In Paquier et al. [355], this research was applied to a study
of the 1988 flood event at Nı̂mes, with sewer network flow exchanges and the impact
of small-scale obstacles identified as sources of uncertainty requiring sensitivity analyses.
This is especially the case where flow transitions occur within a crossroad as it can result
in errors as large as 20%. In Bazin et al. [45] strategies for representing the effect of
urban obstacles are proposed and comparisons with laboratory data indicated that two-
dimensional models, utilising a constant eddy viscosity, are suitable for capturing such
flows, provided depths are neither too shallow nor supercritical.

In Liu et al. [278], a physical model was used to perform a detailed analysis of the
interactions between flood flows and houses. Of particular interest were comparisons
between the flows observed for houses with a locked or unlocked door, which demonstrated
the importance of considering buildings as porous, as opposed to perfectly impervious
obstacles. Mignot et al. [308] produced further experiments investigating the intrusion
of flood flows into buildings. A total of 26 building opening configurations were tested
producing 220 flow cases. Investigations showed that, although flow patterns were quite
similar to flow over a lateral rectangular weir, empirical equations had mixed success
in describing the flow, producing errors in the range of ±100% in some instances. The
authors concluded with recommendations that the largest objects, such as bus stops and
parked cars, be somehow represented within numerical models due to their influence on
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intruding flows, which resulted in 50 − 80% differences in intrusion discharge for high
Froude numbers.

Further investigations of the impact of considering urban blocks as porous were performed
by Mejia-Morales et al. [304], who determined that flow properties may vary by as much as
12−70% in the streets surrounding a porous building block compared with an impervious
building block. More recently, Dewals et al. [138] have investigated the suitability of
the two-dimensional shallow water equations for modelling flow intrusion into buildings
during urban floods. Their work concluded that, despite strong three-dimensional flow
characteristics, the two-dimensional shallow water equations provide a sufficient simplified
description of the flow interactions.

It is therefore clear that the modelling of urban obstacles is a critical aspect of urban
hydrodynamic modelling. However, recent research has called into question traditional
modelling practices, which treat buildings as impervious and omit small-scale urban ob-
stacles such as parked vehicles and street furniture. As a result, there is a demand
for novel numerical techniques capable of capturing the complex flow dynamics. The
successful validation of hydrodynamic models which treat buildings as impervious [501,
230], suggests that flow interactions with structures are predominantly representative of
interactions with impervious blocks and that small-scale obstacles primarily produce lo-
calised effects. However, although models have been successfully validated against flood
inundation extent, model agreement is far from 100% and as a result there is still much
progress to be made, with the modelling of flow intrusions and urban furniture providing
experimentally backed avenues for future progress. Furthermore, although macro-scale in-
undation extent is relatively unaffected, the accurate modelling of the effect on the local
flow properties is of clear importance for high resolution applications concerning property
scale vulnerability and hazard analysis.

Overall, although the scale of a bridge compared to a parked vehicle or a sluice gate
compared to a opening in a building façade or a weir compared to a damaged window
are clearly very different, there are clear commonalities in the induced localised flow
characteristics and a subsequent demand for the capability to model the effect of obstacles
to flow at a range of scales within hydrodynamic models.

2.1.2 The Impact of Flood Flows on Obstacles

The effect of obstacles to flow on flood flows and the consequent estimation of flood risk
has been extensively covered, however, it is equally, if not more, important to consider
the impact of flood flows on the obstacles themselves. This is of course intrinsically linked
to the accurate prediction of the associated flow interactions, since knowledge of the flow
variables is prerequisite to the derivation of the relevant impacts.

For buildings, exposure is typically estimated via stochastic extrapolations of damages
based upon the flow properties in the immediate vicinity of the building [61, 232, 501]. It
is therefore crucial that the flow interactions with the structure are accurately captured
in order to perform effective exposure analyses. This also highlights the importance of
more detailed representations of urban obstacles; as noted by Mignot et al. [304] the large
differences in the observed internal and external flow depths for porous building blocks
calls into question the typical assumptions used in exposure analyses to estimate flood
damages. For people, flood hazard categorisation defined by human body stability criteria
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is highly dependent on the accurate determination of the local flow characteristics [277,
240, 5, 486].

Understanding the impact of flooding on hydraulic structures, particularly bridges, has
a range of important applications. First and foremost is the hazard of flood induced
collapse, which is the subject of intensive research [279, 246, 187, 187, 21, 20, 319, 244,
280, 350, 392] due to the devastating consequences. Indirect flood impacts are much
harder to analyse but can cause cascading failures due to the interdependent nature of
critical infrastructure such as transport networks [24], of which road and rail bridges are
integral components. The collapse of critical urban infrastructure, or less severely a simple
loss of function, can also be related to the stability of urban obstacles via compound risk
analyses and multi-hazard assessments [318]. Consider for example, previous discussions
pertaining to wood debris and the stability of urban obstacles such as parked vehicles
[297], which can contribute to compound risks and inter-dependent hazards. In this
regard, there is a clear feedback loop between the effects of obstacles on flow and the
impact of the flow on the obstacles themselves.

Via integrations with modern technologies such as Building Information Modelling (BIM)
[252, 410], there are opportunities to enhance the maintenance and management of struc-
tures exposed to flooding risk. Through the development of cutting-edge digital visual-
isation tools such as digital twins, this can be achieved at a city-scale, with integrated
hydrodynamic modelling providing the basis for enhanced visualisation and analysis of
urban flooding impacts [41]. Novel visualisation techniques, such as the work of Costabile
et al. [113], of this kind are already emerging within academic literature due to the ac-
knowledgement of the limitations of traditional risk communication via flood maps [382,
173, 307, 342, 422, 217]. There are also opportunities to couple agent based modelling and
hydrodynamic modelling to develop more robust disaster response planning [128]. Within
all these important and much needed applications is the requirement to accurately model
flow interactions with obstacles within the hydrodynamic modelling component.

At the network level, Pregnolato et al. [362] recently proposed an interdisciplinary frame-
work for the integrated analysis of bridges. Within the proposed framework, hydrody-
namic modelling plays a crucial role by providing initial flood intensity measures used to
inform subsequent analyses. The primary novelty of the framework is the combination of
hydrodynamic flood modelling, computational fluid dynamics (CFD) analysis and finite
element structural analysis with a network analysis of bridges subject to flooding. Such
analyses are crucial for the development of climate resilient infrastructure [2]. However,
advances in the availability of high quality information on hydraulic structure assets is
required, with Pregnolato [361] calling for the development of a national bridge inventory
for the UK.

In light of the presented evidence it is unequivocally clear that the modelling of obstacles
within urban environments is a crucial capability for modern flood models. Due to the
interdependencies between the effects of the obstacles on the flow and the derived impacts
upon the obstacles themselves, the accurate modelling of the complex flow interactions is
of paramount importance. Having established the importance of modelling such features,
it is important to explore the state-of-the-art methods for the numerical treatment of ob-
stacles in order to establish avenues for the advancement of contemporary hydrodynamic
modelling practice.
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2.2 Modelling Obstacles to Flow

2.2.1 Complexity Limitations and Modelling Requirements

Urban hydrodynamic modelling is notorious for requiring intensive computational process-
ing, especially for high resolution applications at city-scale and beyond. The development
and deployment of appropriate flood modelling software must therefore be cognisant of
the required scale, resolution, duration and computational complexity of the simulation
in relation to the available processing capabilities for the desired application. Maximal
capabilities of modern software in this regard have been boosted by advances in HPC,
with modern software architectures taking advantage of the parallelisation capabilities
of central processing units (CPUs) and graphics processing units (GPUs) via parallel
computing platforms like Nvidia’s CUDA [92]. This is complemented by the increased
availability of vast computational resources through cloud computing platforms such as
Microsoft Azure, Amazon Web Services and Google Cloud Platform, which provide cost-
effective alternatives to the ownership of high-end computational resources for sporadic
or high priority applications [180]. In accordance with the famous aphorism of George
Box [73, 72] that ‘all models are wrong, but some models are useful ’, it is important to
consider the appropriate role of one-, two- and three-dimensional modelling within the
established paradigm of contemporary flood modelling practice.

In this regard it is clear that three-dimensional CFD analysis is the most appropriate tool
for ensuring a comprehensive analysis of the complex interactions between flood flows
and obstacles. This is exemplified by the presence of three-dimensional flow features for
junctions [368, 315, 339, 1, 282] and flows intruding into buildings [138, 278, 304], for
which one- or two-dimensional models can only hope to capture adequate simplifications
of the resultant flow dynamics [45, 138, 282]. For the modelling of flow interactions with
bridges, Munoz and Constantinescu [327] argue, on the basis of comparisons between two-
dimensional hydrostatic and three-dimensional non-hydrostatic modelling outputs, that
the accurate prediction of the flow hydrodynamics, effects on bed shear stresses and sedi-
ment entrainment is only possible for three-dimensional non-hydrostatic codes. Therefore,
as proposed in the framework of Pregnolato et al. [362], it is evident that the primary
role of three-dimensional CFD analysis, is to enable the detailed analysis of individual
or small groups of structures. This is primarily due to the inherent computational com-
plexity of three-dimensional codes, which restricts analyses to smaller scale applications.
This is slowly changing due to the aforementioned advances in computing power and the
development of particle-based approaches [292] however, three-dimensional flood models
incorporating realistic topographies are currently exceedingly rare [429].

For conventional two-dimensional shallow water based hydrodynamic models, the afore-
mentioned advances in HPC have enabled the most sophisticated and efficient numerical
models to handle domains containing cells of the order 106− 107 for realistic applications
[309, 450, 231]. It is well established within academic literature, that the spatial resolu-
tion for urban applications should be reflective of the characteristic length scale of the
urban structures to adequately capture urban flow paths and localised flow phenomena
[231, 294, 166, 489, 401, 295, 174, 153, 450, 480, 191]. As such, the current primary role
of two-dimensional shallow water models is to provide analyses of localised flood haz-
ards and exposure for spatial domains of city or catchment scale. This can be upscaled
to national or continental scale analyses, provided adequate topographic information is
available [191].
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For applications which are only concerned with modelling inundation extent, due to the
established localised nature of the effect induced by obstacles to flow, a high degree of
spatial accuracy is of lesser importance. In fact, Savage et al. [400] argue that for flood
inundation extent predictions, model performance degrades at resolutions coarser than
50m and that it is more important to account for uncertainty through probabilistic anal-
yses, than it is to refine the spatial resolution. In this regard, simplified formulations
such as the simple-inertia formulation [44], the diffusive-wave formulation [107] and the
kinematic-wave formulation [316] may be beneficial, provided the simplifying assump-
tions are sufficiently satisfied. From this perspective, one may argue that due to the
unavoidable aleatory and epistemic uncertainties, two-dimensional shallow water analy-
ses of localised flood hazards are currently inappropriate, as the computational demands
obviate statistical approaches, which require repeated simulations. Opinion on this mat-
ter will be related to whether one ascribes to the Keynesian philosophy that ‘it is better
to be roughly right than precisely wrong ’. However, it is evident that two-dimensional
shallow water models are the best deterministic tool currently available for investigating
spatio-temporally varying property level exposure and flooding hazards and that anthro-
pogenic climate change demands immediate action. Furthermore, it can be argued that
the degree to which simplified models, suitable for probabilistic modelling, are ‘roughly
right ’ is simply inadequate for the detailed hazard and exposure analysis. This is sup-
ported by Costabile et al. [111] who concluded, following comprehensive analysis of three
two-dimensional models of varying complexity, that ‘fully-dynamic modeling should be the
unavoidable reference tool when the goal of urban flood mapping activity is not limited to
the evaluation of the flood-prone areas extent but also involves the local estimation of flood
hazard/vulnerability ’.

One-dimensional overland flow modelling has remained popular despite the emergence of
two-dimensional shallow water schemes, due to the reduced computational burden and
lower data requirements [110], especially within industry practice where there is vast in-
stitutional knowledge and experience. In comparison with two-dimensional approaches,
the primary limitation for one-dimensional approaches is the inability to capture trans-
verse variations in the flow regime. This is particularly problematic for applications
such as modelling compound channels [108] and steep mountain rivers [360]. Although
it is possible for one-dimensional models to produce flood inundation extents which are
comparable with two-dimensional models, there is a much higher skill involved and two-
dimensional modelling may be required as a reference [112, 110]. Due to the inherent
challenges of capturing overbank flows, 1D-2D schemes have been developed in which
overland flows are modelled by a two-dimensional scheme which is coupled with a one-
dimensional scheme describing a supposedly one-dimensional component of the domain,
such as a river. However, even for scenarios in which prevailing wisdom would suggest
one-dimensional approaches are suitable, there may be significant challenges due to the
emergence of two-dimensional flow characteristics [109] or skew features such as bridges
[112]. This is a stark contrast to two-dimensional schemes, where these features are almost
seamlessly integrated. Therefore, the role of one-dimensional overland flow modelling is
somewhat restricted to scenarios in which the application is relatively simple, there is
an extreme data scarcity, computational efficiency is of paramount importance or where
modellers have developed sufficient skill. For subsurface sewer drainage networks, one-
dimensional models remain the state-of-the-art for dual drainage models [143, 198, 309,
383].
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One must be careful not to fall foul of the fallacy that the most complex model is always the
most appropriate, however, it is clear that there are minimum complexity requirements
corresponding to the ability to capture key behaviours. Three-dimensional models are
able to capture detailed three-dimensional processes which may be important for detailed
analyses of individual structures such as buildings or bridges. Two-dimensional models are
unable to capture three-dimensional processes but are able to dynamically model shallow
water flows with adequate accuracy, enabling detailed property level exposure and hazard
analyses for realistic urban topographies. Although fully dynamic two-dimensional models
are able to accurately model inundation extents, reduced complexity two-dimensional
models, where the assumptions are sufficiently satisfied, or one-dimensional models offer
advantages in terms of computational efficiency which enables probabilistic approaches or
even real-time forecasting.

Considering the project aim is to:

Aim: To contribute to advances in contemporary hydrodynamic modelling via the de-
velopment of improved methods for modelling linear features such as bridges, gates and
weirs within two-dimensional flood models.

and the role of two-dimensional flood models has been identified as providing analyses of
flood inundation extent, local flood hazards and local flood vulnerability, it is important
to assess existing methods for the numerical treatment of obstacles to flow within this
context. Specifically, a fit for purpose numerical treatment of obstacles to flow should
not only capture steady-state flow properties but also the transient variations in the local
flow characteristics.

2.2.2 Mesh Methods

The simplest and most straightforward methods for implementing obstacles to flow within
numerical schemes include the object within the properties of the mesh used to discretise
the spatial domain. As a consequence they are referred to here as mesh methods, since
they act at the scale of the mesh. As part of the aforementioned EU IMPACT project,
work package three called upon the research community to submit ‘blind ’ and ‘aware’
numerical modelling runs for the two experimental benchmarks (the isolated building test
case and the idealised city test case) [325]. Since the two test cases idealise structures as
solid blocks, the focus was therefore on suitable methods for modelling the propagation
of flood waves and their interaction with impervious obstacles. It is also important to
note that negligible overtopping of the impervious obstacle occurred during the experi-
ments. Furthermore, the assumptions for the shallow water equations are invalidated in
the immediate vicinity of the obstacle however, the inability to capture detailed three-
dimensional features such as saddle vortices is neither expected or required; the shallow
water equations are expected to provide an adequate simplified approximation of the
resulting flows.

Eight different modellers from six institutions submitted the results of their test runs for
comparison, utilising the following techniques to represent the building:

• Local friction based representation.

• Finite bottom elevation.

• Solid walls.
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Based on the comparisons of the submitted results with the validation data, it was con-
cluded that representing the edges of the building with a solid wall boundary condition
was the most faithful representation but that all three methods provided comparable accu-
racy [171, 12]. Despite the fact that the EU IMPACT project concluded two decades ago,
there haven’t been huge advances in the development of novel techniques for modelling
fixed impervious obstacles to flow other than the further development of the sub-grid
porosity method, initially proposed by Braschi and Gallatti [76], which is complementary
to the local friction based representation. However, a number of subsequent comparative
studies have been performed to further ascertain the advantages and disadvantages of
each method [405, 424, 404, 412, 79, 230]. As such, discussion of the presented techniques
maintains relevance.

Due to a lack of consistency in the nomenclature for the presented methods the most com-
mon alternative names for the respective methods are presented below for clarity:

• Local friction based representation: building resistance method, high roughness
method.

• Finite bottom elevation: stubby building method, island method, building block
method, raised elements.

• Vertical walls: mesh discretisation method, building hole method, mesh-hole method,
Cartesian cut cell method, blocked out, hollow buildings.

Local Friction Based Representation

A local friction based representation parameterises the effect of an obstacle on the flow
by increasing, locally, the resistance to flow. As highlighted by Vreugdenhil [472], the
definition of bottom stress for the two-dimensional shallow water equations is problematic
in comparison to the three-dimensional Navier-Stokes equations, since the specification of
the bottom stress requires information on the three-dimensional flow structure. Since this
is obviously unavailable for the two-dimensional form, the bottom stress is specified in a
parameterised form and it is typically resolved in accordance with Manning’s equation,
where Manning’s n is an empirically derived constant which incorporates the combined
effect of all sources of resistance within the channel.

As noted by Yu and Lane [489], the resistance to flow is therefore accounted for as a sink
in the momentum equations, which does not account for potential blockage effects. The
effect of potential blockage effects are important to consider as they reduce the conveyance
capacity, inducing contractions and expansions of the flow. This is demonstrated within
a three-dimensional context by Lane et al. [256], who show that parameterisation of to-
pographic resistance to flow via the upscaling of roughness heights does not adequately
model mass blockage effects. Syme [424] acknowledges that an energy loss coefficient is
more physically representative of the expected energy losses induced by contraction and
expansion. Although this is also an imperfect solution, as the selection of an appropriate
energy loss coefficient is just as fraught as the definition of an appropriate roughness coeffi-
cient. Furthermore, classical head loss models that are direct functions of the flow velocity
do not admit self-similar solutions for piecewise constant initial boundary value problems
and therefore cannot adequately capture the sub-grid losses [196]. As a consequence, local
friction based models of topographic obstructions are an unphysical representation of the
effect of an obstacle to flow since the entirety of the interaction is captured through a
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parameterised resistance to flow.

Despite not providing an explicit physical description of the flow interactions, friction
based representations have been shown to accurately capture the effect of urban obstacles
on inundation extents in practice. Alcrudo and Mulet [14] reported overall predictions
within 25% of observations for the idealised city test case, with Soares-Frazão et al. [170]
reporting predictions within 15% of observations for the depth specifically. The predic-
tions based on a local friction representation were seen to be comparative in accuracy to
the other, more explicit, methods for modelling obstacles. Schubert and Sanders [404]
demonstrated that a local friction representation of buildings enabled an accurate predic-
tion of the flood extent, with localised velocities proving more difficult to predict. Baretta
et al. [55], were able to satisfactorily reproduce a real flood event which occurred in Italy
using a local friction representation for buildings, despite a lack of detailed information
on the geometry of the buildings. Tang and Gallien [426], used USGS National Land
Cover Classifications to assign roughness without calibration in the successful validation
of inundation extent for an urban coastal flooding event. Similarly, Gallegos et al. [175]
used a simple land cover classification to assign a Manning’s n to each cell in the success-
ful validation of inundation extent and streamflow predictions for an urban dam-break
flood.

The primary value of a local friction based representation is the simplicity of the method:
it is easy to implement, it is relatively computationally efficient and it is compatible with
almost all solution methods and mesh geometries. In fact, the method is likely optimal and
necessary for data scarce regions where detailed building geometry is unattainable [404,
55], as explicit representations are unfeasible in the absence of the required data. However,
in such cases, only inundation extents can be reliably discerned. Although calibration of
the roughness parameters is recommended, it is likely that this practice will be limited
by time constraints and data availability. The Development of Rescue Actions Based on
Dam-Break Flood Analysis (RESCDAM) project [286] provides a reference for a rigorous
calibration process in which a scale model was constructed and the derived Manning’s
coefficients were scaled using the Froude model law to eliminate inconsistencies resulting
from scaling effects. However, this is clearly impracticable in most cases.

As demonstrated by Teng and Gallien [426] and Gallegos et al. [175], the use of land
cover classifications to assign spatially distributed roughness coefficients which are ap-
proximately representative can be effective in the absence of any calibration. However, as
highlighted by Yu and Lane [489], the upscaling of n to account for topographic resistance
to flow based on land cover classification assumes that:

1. Roughness relationships derived from flume experiments can be applied to a two-
dimensional mapping of n based solely on land cover classification.

2. The classes are suitably homogeneous such that the primary control on n is the type
of land cover and there is no need to calibrate roughness to account for the specific
height, density or turbulence characteristics of the obstacle(s).

3. The value of n is determined by the topography and not the spatial discretisation.

As such, a sensitivity analysis or a probabilistic approach would be recommended to
account for the significant uncertainty. Although, if the mesh is sufficiently coarse, then
the sensitivity to n is expected to be significantly reduced [489]. Schubert and Sanders
[404] also report a reduced sensitivity to n for a fine resolution model, which they speculate
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is due to well defined preferential flow paths. Perhaps future advances in algorithms for
automatic parameter calibration [177] may provide a convenient solution to this issue in
the near future.

The primary challenge in implementing the method in practice can therefore be sum-
marised as the selection of an appropriate roughness since there isn’t an apparent physical
basis upon which an a priori determination can be obtained. This is further complicated
by the, usually parabolic, dependence of friction formulae upon the depth-averaged flow
velocity which potentially results in inconsistent behaviour across a range of flows. The
effect of increasing values of the friction coefficient are presented in Alcrudo [14] via
comparisons between the numerical results and the gauge point measurements for the
idealised city test case. Since the buildings were idealised by impervious blocks in this
case, n ≥ 0.25 was found to be consistent with observations for the tested flow rate. Val-
ues of n > 0.5 proved quasi-indistinguishable with significant oscillations in the numerical
predictions of the depth induced by the physically unrealistic values of n. Similar tests
were performed by Syme [424], who numerically investigated the effect of an increasing
Manning’s n on the flow characteristics in the vicinity of a single obstacle. At a value
of n = 0.05 there was very little difference in the flow properties outside and inside the
footprint of the obstacle. For values of n ≥ 1, there was an almost total blockage of the
flow within the footprint of the obstacle.

The ability to manipulate the value of the friction coefficient to enable a range of be-
haviours from negligible resistance, to complete obstruction, is potentially valuable, since
it provides the necessary flexibility required to handle any potential obstacle. This is
demonstrated by Neal et al. [337], who successfully calibrated n for a channel containing
a debris blocked bridge. However, it is worth mentioning once again that in such cases
only the macro-scale properties of the flow can be considered relevant and a local assess-
ment of the flow characteristics is essentially meaningless. When considering buildings in
particular, there is often much debate as to the extent to which flow intrudes into buildings
and the subsequent storage effect that is induced [230, 424, 412, 79]. As demonstrated via
aforementioned experimental work, localised intrusion of flows into buildings may play an
important role in determining the local flow characteristics within urban areas. However,
the mechanisms that enable the ingress of water within a building are poorly understood
and highly uncertain, considering for example, ingress enabled by the destruction of win-
dows or doors. The extent to which local friction based representations can accurately
capture this behaviour in a detailed manner is unlikely, as the unphysical foundations of
the method result in a significant averaging of the resultant flow characteristics. This is
supported by the investigations of Schubert and Sanders [404] who acknowledged that the
method was unable to capture building scale variability in the velocity field. However, the
efficiency of the method, particularly on coarse grids, potentially facilitates probabilistic
studies of the effect of flow intrusions into buildings on the overall inundation extent.

Numerically, the presence of very large friction coefficients can induce some instability
however, common semi-implicit [49, 80, 95, 134, 274, 454] treatments or implicit treat-
ments [14, 12, 488] of the bed friction source term should be sufficient to ensure stability.
Explicit treatments [451] may experience numerical oscillations for high roughness coeffi-
cients and the presence of stiff resistance terms may result in an inefficient restriction of
the timestep. It may also be necessary to implement a limiter to ensure that as the water
depth approaches zero, which may be common in areas of very high friction, unphysical
changes to the flow direction and negative flow depths are prevented. However, mod-
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ern numerical schemes which are equipped to handle the numerical challenges of wet-dry
interfaces will already be sufficient to handle these features [80].

Of note, and seldom discussed in the literature regarding the local friction representation,
is the benefit of a well-balanced discretisation of the bed friction source term in regions
where the friction source term is dominant. A suitable well-balanced discretisation of
the bed friction term is presented by Cea and Vázquez-Cendón [94]. As discussed by
the Authors, the requirement for a well-balanced treatment of the bed slope is widely
acknowledged, since inadequate numerical discretisation of the bathymetry with respect to
the discretisation of the convective flux results in an inability to preserve equilibrium states
for variable bottom topographies. However, the requirement for a well-balanced treatment
of the bed friction is rarely discussed, as it is only in the somewhat rare case in which the
bed friction and the bed slope are leading terms in the momentum conservation equations,
as opposed to the inertial and hydrostatic pressure forces, that the discretisation of the
bed friction has a significant implication on the numerical result. In such cases, the
proposed upwind discretisation of the friction source term provides superior accuracy and
stability in comparison with a classical centred semi-implicit discretisation.

Overall the local friction based representation of obstacles to flow can be summarised as
an effective but flawed method. It is most effective when implemented on coarser meshes
for applications concerned only with the flood inundation extent. The implementation
is incredibly simple and the method is computationally efficient although, these advan-
tages are somewhat offset by the steep calibration requirements, especially without the
use of semi-automatic or automatic processes for assigning roughness coefficients. Fur-
thermore, local friction based representations are insufficient for resolving the detailed
topological structure of the flow and are therefore unsuitable for high resolution hazard
and vulnerability analyses.

Sub-grid Porosity

A class of shallow water equations referred to as the porous shallow water equations
(PSWEs) have been derived and developed for modelling obstructed flows. The PSWEs
use the concept of porosity to enable shallow water models to account for the sub-grid
mass blockage effect induced by urban topography, directly addressing one of the pri-
mary limitations of the friction based approach. The concept was first presented within
the context of urban hydrodynamic modelling in the seminal works of Braschi and Gal-
latti [76] and Defina [131, 130], with Hervouet et al. [218] presenting the first realistic
application.

Porosity may be defined in volumetric terms as the fraction of a control volume occupied
by voids, or alternatively, by considering a slice or plane through a porous media, with
the fraction of the plane occupied by voids representing the areal porosity [47]. When
the porosity concept is applied to an urban environment, the urban area is modelled as
a porous media, within which the potential flow paths, defined by the space between
urban obstacles, represent voids through which flood flows are conveyed and stored. As
identified by Sanders et al. [396], the distinction between volumetric and areal porosity
is promising since areal porosity is inherently anisotropic, which is an important feature
considering the inhomogeneity of preferential flow paths within urban topographies.

Within the relevant literature the established PSWE formalisms are as follows:
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• Single Porosity (SP) model.

• Integral Porosity (IP) model.

• Dual Integral Porosity (DIP) model.

• Binary Single Porosity (BSP) model.

The SP model was first proposed by Guinot and Soares-Frazão [197], utilising a differential
form of the PSWEs and considering only the volumetric porosity. The IP model was
independently and concurrently proposed by Sanders et al. [396], utilising an integral
formulation and considering both volumetric and areal porosity. The DIP model, proposed
by Guinot et al. [196], built upon the IP model by dividing the flow variables into domain
variables and boundary variables and by developing improved momentum dissipation and
drag models. Most recently, Varra et al. [459] proposed the BSP model which is derived
from the SP model by constraining the porosity to the value of one in a void and zero
inside an obstacle. A number of variations and alternative formulations have also been
developed such as the depth-dependent IP model derived by Özgen et al. [353], a SP
model derived by Velickovic [465], the multiple porosity model derived by Guinot [194]
and a differential form of the IP model derived by Guinot and Delenne [195]. PSWEs
have therefore been the subject of much research over the last two decades, with promising
developments aplenty.

A key feature of the presented models is the choice between the differential and integral
form of the equations and the corresponding assumption of the existence of a representa-
tive elementary volume (REV). An REV is essentially a volume within a porous medium
where the properties governing flow can be assumed to be sufficiently uniform, enabling
the application of continuum mechanics principles and the derivation of differential equa-
tions to describe flow behaviour at a macroscopic level [47]. A consequence of assuming
the existence of an REV, which may not be guaranteed or even identifiable in a realistic
urban area, is that it mandates an isotropic porosity and requires differentiability of the
porosity and the flow variables.

Guinot [194] demonstrated via numerical experiments that an REV, which is approxi-
mately one or two orders of magnitude larger than the distance between buildings, can be
defined for urban environments with periodic geometry. However, as pointed out by Varra
et al. [459], urban environments are typically fractal, not of periodic geometry, so it is still
unclear whether an REV can be defined for realistic urban configurations. Furthermore,
real urban environments are filled with an assortment of small scale obstacles such as bus
stops and parked cars, which are typically not considered when attempting to define an
REV.

In the pursuit of anisotropic porosity whilst maintaining validity for transient flows,
Sanders et al. [396] therefore chose to formulate the IP model using an integral for-
mulation. Furthermore, Sanders et al. [396] identified that the differential SP model
can be obtained from the integral IP model by assuming the existence of an REV, thus
demonstrating that the SP model implicitly assumes the existence of a REV, explaining
the isotropy of the model.

In Varra et al. [459], it is shown that the BSP model corresponds to a SWE model with
an obstacle directly incorporated into the governing equations. The direct introduction
of the obstacles within the BSP model is achieved via an internal free-slip (vertical wall)
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boundary condition, which results in the generation of non-conservative products account-
ing for the interaction between the fluid and the solid boundaries. Since the formulation
of the BSP model refrains from averaging any processes or variables, the assumption of a
REV is crucially not required. Furthermore, it is shown that the integral formulation of
the IP model corresponds to the integration in space of the SWE with free-slip boundary
conditions and the integration in space of the BSP model. Hence, the IP model, BSP
model and shallow water model equipped with free-slip wall boundary conditions are con-
sistent and, most importantly, a differential form of the PSWEs is derived independent
of the assumption of an REV. This demonstrates that in fact, all integral formulations
of the equations cast as finite volume numerical schemes are equivalent to BSP finite
volume schemes and as a result, the SP Riemann problem is the fundamental component
upon which all porosity schemes should be built. The work of Varra et al. [459] therefore
provided a crucial advance in the formalism of PSWE numerical schemes, providing an
important theoretical basis to explain the unexpected performance of differential forms,
despite prior consensus verdict that only integral formulations of the PSWEs were mean-
ingful due to REV assumptions.

The initial SP model proposed by Guinot and Soares-Frazão [197] was simplistic and fully
isotropic, accounting only for the storage effect of buildings without fully accounting for
their effect on the flow paths. As a consequence, two momentum sinks are necessary to
overcome the limitations of the model: a classical skin-friction term relating to the bed
shear and a head loss term designed to replicate the effect of multiple wave reflections
and changes in the flow regime through the porous media [197, 387]. Testing of the SP
model was presented by Soares-Frazão et al. [387], which demonstrated the capacity
of the model to reproduce the mean flow characteristics of the model city test case at
a comparable level of accuracy to that of a refined classical shallow water model. The
SP model therefore provides a significant computational advantage over refined classical
shallow water models since a much coarser mesh can be utilised, however, this does come
at the cost of a loss of local accuracy. In comparison to friction based approaches, the
method provides similar accuracy without the need for calibration since the parameters
can be explicitly derived from the geometrical properties of the urban area. However, it is
important to note that the explicit calculation of the parameters was not presented and
instead, a spatially uniform and isotropic porosity was assigned, which corresponded well
to the idealised test case due to the artificial homogeneity of the urban layout.

Through analysis of the eigenstructure of the SP model, Lhomme [270] determined that
the wave propagation speeds of the SP model are identical to the wave propagation
speeds of the shallow water model. The SP model also inherits the favourable hyper-
bolicity and rotational invariance properties of the SWEs and the SP Riemann problem
can conveniently be solved using standard approximate Riemann solvers for the SWEs
[95]. Lhomme further identified the requirement for a division between the domain based
porosity, to account for storage effects, and a boundary based connectivity porosity, to
account for the conveyance effect, to improve the SP model but found no way to derive
the connective porosity from the urban geometry.

With the introduction of the IP model, Sanders et al. [396] achieved this and overcame
the primary limitations of the SP model by taking advantage of the anisotropy of areal
porosity, defined at the boundary of a cell, to introduce a local description of the connec-
tivity at each cell interface. This was importantly accompanied by deterministic methods
for calculating the areal and volumetric porosity based on the underlying urban topog-
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raphy. Specifically, the calculation of the porosity parameters is achieved by sampling
the terrain data within the cell and along the interface to determine the ratio of samples
which strike an obstacle. For realistic applications, this may require additional detailed
surveying since smaller gaps between structures may not be correctly detected using aerial
scanning techniques such as LIDAR [176]. Directionality is also introduced to the drag
model via a frontal area term. However, this is somewhat problematic to calculate, as the
frontal area is dependent on the flow direction which is not known a priori in realistic sce-
narios. Consequently, realistic applications may require an iterative solution procedure or
alternatively, the drag can be calibrated using a refined shallow water model [196].

Unfortunately, the mechanisms through which the anisotropy is introduced result in high
mesh sensitivity and mesh dependence [194, 193, 404]. Guinot [193] provides guidance on
suitable meshing strategies however, this realistically precludes the use of Cartesian struc-
tured grids and is of questionable practicability even for unstructured meshes when con-
sidering complex urban configurations. Nonetheless, the IP model validated well against
the model city test case [405], where comparisons between the SP model and IP model
illustrated negligible differences in predictive skill. However, it should be noted that the
homogeneity of the artificial urban geometry fails to provide an adequately anisotropic and
inhomogeneous environment suitable for showcasing the comparative advantages of the
IP model. Schubert and Sanders [404] further demonstrated the computational efficiency
and accuracy of the IP model when compared with local friction based approaches, finite
bottom elevations and vertical wall implementations for a realistic urban flood event. The
Authors also presented a convenient, simplified method for calculating the frontal area,
which performed comparably with the flow based definition.

Through derivation of a differential form of the IP model, Guinot and Delenne [195]
performed an analysis of the eigenvalues for the system. The eigenvalues were found to be
equal to the SWE eigenvalues multiplied by the ratio of the porosities, which is intuitively
more consistent with reality than the wave propagation speeds for the SP model. However,
the system permits supposedly unphysical behaviour as it does not preclude the existence
of a conveyance porosity greater than the storage porosity, resulting in a wave propagation
which is faster than the SWEs, despite the presence of obstacles. The inaccuracy of
the wave propagation speeds for the IP model was confirmed via numerical experiments,
which demonstrated that the IP models underestimates the wave propagation speed [353].
Özgen [353] also questioned the validity of the assumption of a smooth free surface when
modelling very shallow flow. Ultimately, the model lacks the capacity to account for
sub-grid topographic variations which are wholly contained within the cell, due to the
interfacial definition of the areal porosity. This was identified by Guinot [193], who
identified the requirement for an approach that better reflects the connectivity properties
of the cell as a whole, as opposed to the presented approach which only defines connectivity
at the interfaces. Özgen [353] also addressed the implicit assumption that the obstacles are
not fully submerged by introducing a depth-dependent anisotropic porosity formulation
of the IP model.

Through the derivation of the DIP model, Guinot et al. [196] provided further advance-
ments with the promise of greater anisotropy and the preservation of self-similar solutions
via a more congruent momentum dissipation mechanism. As identified by Guinot and
Soares-Frazão [197] a major challenge for sub-grid porosity approaches is introducing an
appropriate mechanism to capture the sub-grid momentum dissipation effects that occur.
The necessity of additional momentum dissipation mechanisms was clarified via numerical
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experiments conducted by Guinot [194], involving frictionless shallow water propagation
through an idealised urban street network with piecewise constant initial data. The ex-
periments demonstrated that a lack of adequate momentum dissipation results in severe
errors, especially for positive waves which raise water levels.

As explained by Valiani and Caleffi [453], the classical shallow water equations include
only two dissipation mechanisms:

1. Friction: the mean velocity multiplied by the bed shear is proportional to the me-
chanical power dissipated per unit width, per unit weight of the liquid.

2. Hydraulic jumps: analogous to the inviscid shock for compressible fluids, resulting
in a dissipation of specific energy.

Although real open channel flows also experience localised dissipation due to geometric
discontinuities in the bed or the channel, as is the case under consideration here, this is not
included in the classical formulation and must be added to the momentum and/or energy
balance if the localised head losses are significant. This was achieved for the SP model via
the introduction of a Borda-type formula [43] which expressed head losses over the cell as
proportional to the square of the depth-averaged velocity. For the numerical experiments
presented by Guinot [194], it is therefore clear that without the inclusion of friction or
additional momentum dissipation and in the absence of capturing the effects of sub-grid
hydraulic jumps, the model has no mechanisms for adequate momentum dissipation and
the large errors are to be expected.

However, it is not sufficient to just implement any dissipation mechanism; Guinot et al.
[196] also identified that the implementation of classical head loss models is incompatible
with the production of self-similar solutions for piecewise constant initial boundary value
problems and is therefore insufficient for modelling the localised dissipation produced by
sub-grid bores. Furthermore, the calibration of building drag models also cannot correctly
account for the localised dissipation produced by sub-grid bores. This raises an important
point that, although calibration may improve results, it is not a substitute for adequate
process representation. Consequently, the improved momentum dissipation mechanism
implemented by Guinot et al. [196], acts upon the momentum fluxes, rather than acting
as a momentum sink, with directionality being accounted for via the second-order tensor
form. The drag model is also improved by introducing a depth-dependence and the
capacity to capture anisotropic effects via a tensor-based description. The new form of
the drag model also significantly simplifies the calculation of the frontal area, presenting
an improvement over the previous implementation.

The numerical tests conducted for a positive wave, negative wave and dam-break flow
entering an idealised frictionless urban street network demonstrate the advantages of the
improved DIP model compared to the IP model in reference to a refined classical shallow
water model [196]. For the positive wave test case, in which momentum dissipation is a
key feature, the DIP model with a calibrated momentum dissipation approximated the
refined shallow water model solution whereas, the IP model underestimated the propaga-
tion speed, which cannot be corrected via calibration of the building drag as this would
only slow the wave further. For the negative wave test, which is not characterised by lo-
calised momentum losses due to sub-grid bores, the DIP model was found to inaccurately
replicate the spreading of the wave produced by the shallow water model, despite captur-
ing the average propagation speed. Since the negative wave scenario is not characterised
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by transient momentum dissipation, calibration of the momentum dissipation tensor is
ineffectual. In contrast, the IP model was found to significantly underestimate the wave
propagation speed, which once more cannot be accounted for by calibration. For the
dam-break flow case, comparisons were also presented with the SP model and the results
demonstrated that the IP and SP models both performed poorly in comparison with the
DIP model, which captured all aspects of the refined shallow water model solution except
the steepness of the wave front.

The comparative suitability of the models when applied to a field-scale realistic application
was also demonstrated via numerical investigations of a levee-break induced flood of a
small neighbourhood in West Sacramento [196]. The tests involved comparisons of coarse
grid implementations of the IP and DIP models, both using the improved momentum
dissipation model, with respect to a fine grid implementation of a classical shallow water
model, utilising the vertical wall method, for a steady-state and transient analysis. For the
steady-state case, the DIP model was shown to exhibit slight improvements over the IP
model however, both models predominantly failed to accurately capture the preferential
flow paths, exhibiting a directional bias in the diagonal direction. For the transient
case, the DIP model presented a greater prediction of the overall flood inundation extent
and average flow characteristics than the SP and IP models with respect to the refined
shallow water model. However, the unusual optimal values of the calibrated momentum
dissipation coefficients, which were highly anisotropic despite the relative isotropy of the
neighbourhood geometry, hinted at underlying model deficiencies.

The suspected deficiency of the DIP model is confirmed by the rigorous analysis of the
SP Riemann problem performed by Cozzolino and collaborators. Of particular interest is
the solution of the SP Riemann problem at a porosity discontinuity [123, 459, 460, 457],
which may physically occur at the boundaries between urban zones of different density.
The solution of the SP Riemann problem at a porosity discontinuity coincides with the
solution of the shallow water Riemann problem where there is a discontinuity in the width
[118, 452, 461], which in turn is analogous to the solution of the shallow water Riemann
problem with a bottom step [348, 13, 121, 211, 453].

Specifically, where the porosity is discontinuous, the non-conservative products, which
represent the force per unit width exerted on the flow by the sub-grid obstacles, prevent
the definition of weak solutions in accordance with classical theory based upon the notion
of distributions [268]. More precisely, a non-conservative product represents the product
of a Heaviside step and a Dirac delta, which is not well-defined due to ambiguity in
absence of further information [343]. The analytical theory of Dal Maso et al. [127]
enables the definition of weak solutions by means of a family of paths connecting the left
and right states. Whereby the choice of path represents supplementary information, based
upon physically congruent considerations, necessary to overcome the non-uniqueness of
the solution and define a suitable generalised Rankine-Hugoniot condition.

As discussed by Cozzolino et al. [123], Guinot and Soares-Frazão assumed that the poros-
ity discontinuity is equivalent to a channel discontinuity where the flow exerts a hydro-
static thrust on the solid walls and this porosity discontinuity definition has been adopted
by successive Authors who implemented differential PSWE models [167, 194, 466, 164].
Cozzolino et al. [123] demonstrate that this definition is unphysical, as it permits an in-
crease in energy through the jump at a porosity discontinuity. Furthermore, Varra et al.
[459] demonstrate that the lack of capacity for existing Riemann solvers to capture moving
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shocks results in a systematic underestimation of the dissipated energy, explaining why
other porous shallow water models required empirical transient momentum-dissipation
coefficients. The rigorous analysis of the SP and BSP models also demonstrates that
alternative differential formulations are physically inconsistent as they violate the prin-
ciple of Galilean invariance by failing to adequately account for the influence of porosity
variations on the wave propagation. Further exploration of the SP Riemann problem is
presented by the works of Varra et al. [460, 457], whereby the disambiguation of multi-
plicity of solutions for the PSWE is accomplished and an approximate Riemann solver,
based upon a modification of the generalised hydrostatic reconstruction method proposed
by Castro et al. [88], is presented.

Overall, the DIP model, which provides improved performance compared with the IP
model, has been shown to provide a good prediction of inundation extents and a satisfac-
tory approximation of the flow field produced by a refined shallow water model, whilst
utilising a much coarser grid resolution. Overall however, the approach is unsuitable for
applications concerned with flood hazard or vulnerability analysis due to the lacking local
accuracy. The efficiency of the model is therefore the most attractive feature, potentially
facilitating applications or approaches which require multiple model runs. However, this
is balanced by the requirement to first run a refined shallow water model in order to
calibrate the empirical momentum dissipation coefficients. Furthermore, the mesh de-
pendence and mesh sensitivity which plagues the integral forms of the equations and the
somewhat unrealistic meshing requirements are serious barriers to implementation for re-
alistic field-scale applications. The presented field-scale application was relatively small,
including only a single relatively homogeneous neighbourhood, and it remains to be seen
whether a similar accuracy can be achieved for city-scale applications, especially due to
the identified issues relating to the overall inability of the model to capture the anisotropy
of the flow.

The development of a suitable scheme based on the differential SP model is therefore
attractive, especially in light of the advances provided by Cozzolino et al. [123] and Varra
et al. [460, 457] on the solution of the SP Riemann problem. Not only does the SP model
not require the assumption of the existence of a REV but the ability to capture moving
shocks within the SP Riemann problem precludes the necessity to calibrate empirical
momentum dissipation coefficients. However, as of yet, a field-scale application has not
been presented. Such an application would be required to confirm that the advances in
the solution of the SP Riemann problem suffice to solve the inability of the DIP model
to capture the anisotropy of the flow. The differential SP model implemented in the
PARFLOOD 2D model, as presented by Ferrari et al. [164, 165, 163, 162], provides an
insight into the potential accuracy of the SP model. Despite a number of numerical flaws
in the scheme:

• The conservation laws are written in a non-conservative form to enable convenient
well-balancing of the scheme for at rest states. However, the non-conservative form
of the equations means that the scheme is only valid for weak shocks [438], with the
scheme converging to incorrect solutions in the presence of strong shocks [224];

• As proven by Cozzolino et al. [123], the definition of the porosity discontinuity
utilised by the scheme is unphysical and the model violates the principle of Galilean
invariance by failing to adequately account for the influence of porosity variations
on the wave propagation. The scheme also does not adequately account for the
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presence of non-unique solutions for specific initial conditions;

• The use of a path conservative scheme [356] for the treatment of the non-conservative
products means that the scheme is expected to produce errors which are proportional
to the strength of the porosity discontinuity [3]. Specifically, path conservative
scheme generate a convergence error source term which is a locally bounded error,
provided that the total variation remains uniformly bounded [90];

the application of the scheme for the model city test case demonstrated a level of accu-
racy comparable to a refined shallow water model. Hence, it should be expected that
a correction of these numerical flaws can only suffice to improve the presented results.
However, an application to a field-scale urban environment is still required to determine
the extent to which porosity models can be used for flood hazard and vulnerability anal-
yses. Ultimately, such schemes can only be expected to produce an approximation of a
refined shallow water model and it remains to be seen whether the approximation is of
high enough quality to enable flood hazard and vulnerability analyses.

It is also important to note that the solution of the SP Riemann poses a significant
numerical challenge due to the presence of non-conservative product terms and the related
numerical flaws identified for the numerical scheme implemented by Ferrari et al. [163,
162] are not easily resolved. As has been mentioned, the analytical theory developed
by Dal Maso et al. [127] may be used to define weak solution by means of a suitable
family of paths. Via the framework of path-conservative methods introduced by Parés
[356] numerical schemes for the solution of non-conservative systems can be designed, as
utilised by Ferrari et al. [163, 162]. However, as displayed by Abgrall and Karni [3], even
if the the correct path definition is known, such schemes will not in general converge to the
assumed path and different path-conservative schemes based on the same path definition
may converge to different solutions. Ultimately, viscous terms that arise due to truncation
errors dominate the computation regardless of the choice of path and whilst the same can
be seen to occur for conservative schemes, convergence to the physically relevant weak
solution is not predicated upon convergence to a specific path [3].

This is further complicated for shallow water systems as there is no obvious path definition
based upon the underlying physics, as demonstrated by the referenced developments on
the correct choice of path for the analogous porous shallow water system. Furthermore,
Castro et al. [90], determined that such schemes generate a convergence error source
term which is a locally bounded error, provided that the total variation remains uni-
formly bounded. This means that the error measure may not be negligible along shock
trajectories in practice, which is supported by the computations performed by Abgrall
and Karni [3], who demonstrate relative errors which are proportional to the strength of
a discontinuity. In the absence of further advances in the design of numerical schemes
which guarantee convergence to the physically relevant weak solution for non-conservative
hyperbolic systems, some authors have sought writings of the conservation laws which
eliminate [418, 70, 59] or minimise [253] such terms in physically justifiable ways. In
this case, that is not possible and therefore the design of suitable numerical schemes will
remain problematic until further advances are realised.

Whilst the models efficiency on coarser grids can certainly be leveraged to facilitate more
computationally efficient simulations there is also potential, in absence of REV assump-
tions, to apply a SP scheme at a refined resolution in an attempt to capture an approxi-
mation of the influence of decimetric topographic variations. In such cases, the accuracy
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of the topographic data would likely be a limiting factor but it presents an interesting
and promising opportunity that warrants further exploration. Considering the compelling
experimental evidence provided by Mignot and collaborators on the importance of small-
scale urban topographies and the potential for intruding flows in determining localised
flow characteristics, there would have to be significant advances in the collection and avail-
ability of the required data to model such effects using a SP model. For example, current
information sources and deterministic methods for estimating porosity are incompatible
with the assumption that buildings themselves are porous.

Finite Bottom Elevations

The finite bottom elevation method for modelling obstructions to flow, locally elevates
the bed topography to model the effect of an obstacle to flow. It is therefore an explicit
representation of an impervious obstacle of fixed and finite height, however, the spatial
accuracy of the representation is highly dependent on the mesh resolution and the order
of spatial accuracy provided by the numerical scheme. Since the method locally elevates
nodes within the mesh, a slope is generated between the elevated node and it’s neigh-
bours, with the angle of the slope dependent upon the mesh spacing and the difference
in elevation. As shown by Haider [206], this can cause problems when the obstacle is
intended to have vertical sides and the mesh is insufficiently refined with regards to the
spacing between obstacles.

Issues of this nature were overcome by Schubert et al. [405] through the use of a piecewise
linear terrain model and a sophisticated unstructured mesh with localised refinement.
It is therefore important to highlight that the use of finite bottom elevations is highly
unsuitable for representing obstacles to flow on coarse meshes; the use of finite bottom
elevations will provide a crude representation of obstacles, which can result in the blockage
of preferential flow paths [337, 405, 206, 207]. This corresponds with the established
wisdom that high resolution modelling of urban areas requires a mesh resolution that is
reflective of the characteristic length scale of the urban structures [231, 294, 166, 489, 401,
295, 174, 153, 450, 480, 191]. Although, this may be further clarified to state that the
mesh resolution should be reflective of the characteristic length scale of the gaps between
urban structures if possible [404]. However, this is a much more stringent and potentially
unrealistic target.

Hence, although the method is relatively easy to implement and it is compatible with
any type of computational mesh, it benefits greatly from local mesh refinement around
obstacles. Unstructured meshes are attractive in this regard as they offer greater flexibility
when generating a mesh which conforms to complex urban topographies. However, care
should be taken when selecting between unstructured and structured mesh generation.
For example, formal mathematical proofs on the order of convergence of discretisation
errors for unstructured meshes are yet to be obtained [69]. Typically, when methods are
formally referred to as being first order or second order accurate in regard to the order of
spatial accuracy, this indicates that the scheme exhibits a first or second order truncation
error on uniform Cartesian grids. It is not yet known whether the same order of spatial
accuracy is achieved for unstructured grids and there is reason to doubt that it is the case
as Bouche et al. [69] have shown that, in general, the truncation error for unstructured
grids does not tend to zero as the mesh is refined. Other studies have demonstrated
that the convergence of truncation errors can only be achieved on meshes with a certain
degree of geometric regularity and that this does not necessarily imply a degradation of
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discretisation-error convergence, nor does it contradict the Lax theorem [142]. As such,
this topic remains the subject of debate and research.

Importantly, this does not mean that unstructured meshes cannot be used for high res-
olution hydrodynamic modelling, as shown by Schubert et al. [405] and Schubert and
Sanders [404], however, modellers should be aware of the respective advantages and lim-
itations of potential mesh geometries. Overall it it challenging to quantify the quality
of a mesh regardless of the mesh geometry or geometric regularity [417], however, it can
certainly be said that irregular unstructured mesh generation is much more complex than
regular structured mesh generation, with a greater potential for deficient features that
unfavourably effect convergence rates and accuracy with the risk of numerical divergence
[490].

Concerning the steep slopes that may be generated, strictly speaking, the shallow water
approximation, in which the fluid depth is evaluated along the vertical direction as an ap-
proximation of the bottom normal, is only valid for small slope angles of smaller than ≈ 6◦

or 1 : 10 [103]. For scenarios where the slope exceeds this limitation, vertical acceleration
can no longer be considered negligible and the pressure deviates from a hydrostatic profile.
A class of shallow water equations referred to as the steep-slope shallow water equations
(SSSWE) [290] have been derived, whereby a change in coordinate system removes the
small angle limitation. Maranzoni and Tomirotti [291] numerically explored the difference
in results for a dam-break problem against a steep slope, which is representative of the
idealised behaviour of an incident wave upon a structure modelled using a finite bottom
elevation, albeit at a much finer mesh resolution. The results show that the SSSWE model
provides an improvement upon the classical SWE model but that both models are unable
to capture detailed behaviour such as the emergence of a backwash bore or plunging bore.
It is therefore sensible to take the pragmatic approach of Alcrudo [12] and accept that
the SWEs can only provide a simplification of the interactions, especially since the steep
slopes are often an unintended artefact of the spatial discretisation and not a property of
the actual obstacle being modelled.

Ignoring the theoretical challenges, the steep slopes may also result in numerical chal-
lenges. Firstly, steep slopes may induce strong source term forcing which can be prob-
lematic for schemes utilising an explicit time integration. Secondly, provided the obstacle
is not overtopped, the method introduces a wet-dry front which may be a source of in-
stability for less sophisticated schemes as previously discussed (see Section 2.2.2). Issues
relating to steep gradients can be overcome by using robust numerical techniques such
as a fully implicit time integration [12], special local numerical treatment or by reducing
the elevation of the obstacle. A specific local treatment that checks for steep slopes and
a depth of flow smaller than the obstacle and sets the source terms and mass flux to zero
with the momentum flux equal only to the hydrostatic pressure contribution, as proposed
by Alcrudo [12], is equivalent to a solid wall implementation in which the normal veloc-
ity component is set to zero. This appears to be a suboptimal solution since it is more
straightforward to implement the equivalent solid wall boundary condition, which will
also ensure a perfectly vertical representation of the obstacle façade, without the need for
any unnecessary conditional logic. The only advantage of the proposed local treatment
would be the capacity to model the overtopping of the obstacle, which is not possible
for a straightforward reflective boundary condition implementation. The stubby building
method is the term given to the option of reducing the elevation for taller obstacles (pri-
marily buildings), whereby the maximum elevation increase is restricted to 30cm [230,
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179], eliminating any potential instabilities. The choice to restrict elevations to a max-
imum increase of 30cm is intended to represent the threshold height at which water is
able to intrude into a building. This is clearly a vast oversimplification and as shown by
Iliadis et al. [230] the method performs poorly in practice due to unrealistic flow paths
through building footprints.

For more realistic implementations that use elevations appropriate to the obstacle being
modelled, on sufficiently refined grids, the method is shown to perform well, provided
the obstacle being modelling can assumed to be impervious. As for a local friction based
representation, Alcrudo and Mulet [14] report predictions to be within 25% of observations
for the idealised city test case. Soares-Frazão showed that the method predominantly
overestimated depths however, depth prediction remained within 15% of observations at
a maximum, with most predictions within 10% of observations. Schubert et al. [405] also
demonstrated the potential accuracy of the method, which was shown to perform well for
refined meshes and poorly for coarse meshes. However, the study lacked validation data so
conclusions are based on comparisons with other methods and convergence rates. Schubert
and Sanders [404] also demonstrated the accuracy of the method for realistic field-scale
applications on high resolution meshes with local refinement, reproducing inundation
extents and stream flow measurements to within 10%.

The method can theoretically support the modelling of the overtopping of obstacles, pro-
viding valuable flexibility in terms of the potential obstacles and flow conditions that can
be modelled. However, the accuracy of the method for overtopped obstacles is relatively
unexplored since it is primarily used to model buildings, which when modelled realistically,
are rarely overtopped. The comparison study performed by Iliadis et al. [230] involved
the overtopping of building footprints modelled using a stubby building approach which
validated poorly, even where significant flow intrusion was recorded. However, the poor
performance of the method in this case can be attributed to the poor representation of the
physical behaviour and little can be ascertained as to the skill of the method in accurately
modelling the overtopping of obstacles. Haider et al. [207] suggest that the modelling
of a row of cars, via a local elevation raise of 1.25m produced results that were more
representative of the expected behaviour however, no detailed comparison with valida-
tion data is provided and it is unclear if the cars were overtopped. From a theoretical
standpoint, it is clear that the finite bottom elevation approach can only provide an ap-
proximation of flows over sharp geometric discontinuities such as bottom steps or weirs,
even within the constraints of a shallow water approximation, due to the assumption of a
continuously variable bottom topography. For the accurate modelling of sharp geometric
discontinuities special numerical treatment is required [453, 348, 211, 121, 58, 13]. When
considering flows which overtop obstacles it is also important to consider whether the
assumption that the obstacle remains stable is valid. Models such as HEC-RAS and Tu-
flow have added the capability to remove obstacles to flow to simulate their destruction
and this is possible to replicate using a finite bottom elevation representation by resetting
the elevation. Although logical conditions can be imposed to determine when structural
collapse may occur based on approximate forces derived from the local flow, the highly
uncertain nature of the process based on the available information suggests either de-
tailed local three-dimensional CFD analysis or probabilistic two-dimensional approaches
are required.

Overall, the finite bottom elevation approach to modelled obstruction to flow can be de-
scribed as a satisfactory method for modelling fixed, impervious obstacles on sufficiently
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refined meshes. The potential to model the overtopping of obstacles provides some flex-
ibility but the accuracy and limitations of the method in such scenarios is relatively
unexplored. Due to the requirement for a sufficiently refined mesh, the method requires
efficient numerical schemes and adequate processing capabilities, with features such as
local mesh refinement, unstructured mesh generation and local time stepping proving
useful. Ideally, meshes should be able to accurately discern the gaps between obstacles to
ensure that preferential flow paths are adequately captured.

Vertical Walls

The vertical wall method models obstructions to flow via the introduction of reflective
boundary conditions along the edges which delineate the perimeter of the obstacle. In
contrast with the finite bottom elevation method, modelling obstacles with vertical walls
produces a perfectly vertical boundary. An efficient implementation removes the cells
contained within the footprint of the obstacle from the computational domain [179, 230,
404, 405]. The effectiveness of the method is enhanced when the removed cells are retained
as a buildings layer, enabling processes such as roof drainage, flow intrusion and blue-green
infrastructure to be modelled where required [179]. Furthermore, the removal of the cells
from the obstacle footprint prevents the generation of unnecessary wet-dry fronts.

A solid reflective boundary condition can be implemented as [438, 437, 268]:

hnext = hnint
unext = −unint

}
(2.1)

whereby h is the depth of flow, u is the velocity component normal to the interface, the
superscript n refers to the time level, the subscript int refers to the properties of the
internal cell and the subscript ext refers to the properties of the external ghost cell. This
reflective boundary condition ensures that the fluid does not penetrate the boundary,
producing a normal velocity and mass flux equal to zero at the interface. The symmetry
of the variables across the interface results in a stationary contact discontinuity at the
interface, meaning any jump in the tangential velocity across the interface will propagate
with zero normal velocity. This corresponds to a free-slip boundary condition, in which
the fluid is able to freely move in the transverse direction, unimpeded by the wall.

In reality, when a viscous fluid flows over a solid surface, a no-slip condition is induced,
in which friction reduces the transverse velocity at the wall to zero and energy is lost
through viscous dissipation [377]. However, since the shallow water equations are inviscid,
it is not possible to impose a no-slip condition. As the SWEs are inviscid hyperbolic
equations, they model the vanishing viscosity limit (ϵ → 0) and therefore the thickness
of the boundary layer which emerges at the wall can also be assumed to be of vanishing
width for large Reynolds numbers [268]. However, even where this assumption is valid,
large-scale turbulence may still be induced, for example, at the corners of obstacles if flow
separation occurs. As prior explained, shallow water models are not expected to capture
this behaviour, nor is it realistic to expect that meshes could be sufficiently refined to
capture the boundary layer if a suitable turbulence model was implemented [405] but it
does point to some of the limitations of the method.

A more rigid implementation of a reflective boundary, which corresponds to the local
numerical treatment suggested by Alcrudo (see Section 2.2.2), involves setting the value
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of the velocity equal to zero in both cells:{
hnext = hnint
unext = 0 , unint = 0

(2.2)

This is generally over-restrictive in comparison with (2.1), although it is mostly consistent;
the resulting free-slip condition has a mass flux and normal velocity identically equal to
zero. However, by artificially setting the normal velocity to zero, the resultant Riemann
problem at the interface is decoupled from the conserved variables for the internal cell. As
a consequence, the momentum flux through the interface, which represents a momentum
sink for the shallow water system, is always equal to the hydrostatic pressure exerted by
the neighbouring shallow water column. For (2.1), provided the normal velocity within
the neighbouring cell is non-zero, the momentum flux is larger and equal to a hydrostatic
pressure component plus a convective component. As a consequence, an incident surge
of water will typically reach a greater depth, with a higher momentum upon crashing
against the boundary for (2.2) compared with (2.1).

It is also worth pointing out that despite producing similar outcomes, since both methods
act as impervious barriers to flow, there are clear differences in the numerics for the finite
bottom elevation method and the vertical wall method. As such, Alcrudo [12] claims
that the vertical wall method of modelling fixed impervious obstacles to flow is the most
theoretically robust since it is most consistent with the shallow water assumptions with
greater topological accuracy for sheer-sided obstacles.

Although the solid wall method refers to the implementation of reflective boundary con-
ditions, the method is potentially flexible since each interface corresponds to an initial
value boundary problem across which an internal boundary condition can be applied. For
example it is also possible to implement a moving solid reflective boundary [438, 437,
268]: {

hnext = hnint
unext = −unint + 2uwall

(2.3)

where the additional variable uwall denotes the velocity at which the fixed boundary is
moving. For, a more rigorous treatment of moving boundaries including the interaction of
waves with a lateral piston or the evolution of the contact line between a floating object
and the water readers are referred to the work of Iguchi and Lannes [229], who present
a general framework for the solution of one-dimensional initial value boundary problems.
That said, moving boundaries are rare within urban hydrodynamic contexts. Internal
boundary conditions are to be explored in detail within Section 2.2.3 and consequently
the focus here will be on solid wall implementations.

As for the finite bottom elevation method, this method of modelling obstructions requires
a sufficiently refined mesh that is at least reflective of the characteristic length of the
structures and ideally sufficiently refined to resolve the gaps between structures. This
is necessary to ensure preferential flow paths are adequately captured. Schubert et al.
[405] demonstrated that the use of local mesh refinement can maintain a consistent rep-
resentation of obstacle shapes with mesh coarsening however, Schubert and Sanders [404]
noted that coarsening of the mesh substantially altered localised velocities. Due to the
removal of cells from the computational domain, the efficiency of the method is com-
paratively superior. Schubert et al. [405] reported a 30% increase in runtime efficiency
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compared to the finite bottom elevation method for a 1m mesh. A comparative 28%
decrease in total runtime was also reported by Iliadis et al. [230], who point out that
runtime savings compared to methods which erroneously enable intruding flows are likely
to be even greater. This is because preventing flows from intruding into structures results
in a concentration of the flow and although this may result in a greater restriction upon
the timestep during peak flows, peak flows will dissipate faster providing overall savings.
Of course such savings are only justified where it is correct to assume that the structures
are impervious.

In practice the vertical wall method has been widely implemented and validated. Costabile
and collaborators [109, 112] have demonstrated the suitability of the vertical wall method
for modelling bridge piers. The successful validation of CityCAT against the idealised
city test case [179], a real flood which occurred in Newcastle upon-Tyne [230] and for a
real flood which occurred in London [231] demonstrates the suitability of the method for
modelling structures within urban environments. This is further verified by the work of
Schubert and Sanders [404] and Schubert et al. [405] among others.

Overall the vertical wall method for modelling obstructions to flow provides accuracy
that is comparable with the finite bottom elevation for fine mesh resolutions at a lesser
computational cost. As for the finite bottom elevation method it is unsuitable for use on
coarse meshes and similar considerations must be made on the suitability of the preferred
mesh geometry and regularity. Considering only the implementation of reflective bound-
ary conditions, the method is relatively inflexible and unable to capture overtopping flows
or flows under obstacles such as gates. However, for fixed impervious objects, ignoring
the inability to resolve turbulence, which is a limitation of the model and not the method,
the method provides the optimal theoretical consistency and accuracy when considering
the limitations of the shallow water model.

2.2.3 Internal Boundary Conditions

As has been briefly mentioned, and explored to a small extent already via the solution of
the SP Riemann problem at a porosity discontinuity, obstacles to flow may be modelled
via the solution of a one-dimensional initial value boundary problem. Since this corre-
sponds to the solution of a modified one-dimensional Riemann problem at an interface,
the resultant numerical fluxes are also inherently one-dimensional. As a consequence,
internal boundary conditions neglect the streamwise width of the obstacle, assuming that
the feature lies within the infinitesimal width of the cell interface, and therefore cannot
account for transverse effects or a reduction in storage capacity. However, the method
offers advantages in that it enables the approximation of sub-grid effects, particularly
for linear features which are of negligible width with respect to the geometry of a cell.
Considering for example a fence or a wall, the resolution required to explicitly model a
linear obstacle using the outlined mesh methods is extreme, whereas representation as
an internal boundary condition at a cell interface is a much more natural and efficient
representation.

A large number of internal boundary conditions have been presented within the literature
for the modelling of a range of obstacles including:

• Lateral contractions and expansions.

• Sluice gates.
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• Weirs.

• Bridges.

• Check dams.

A key feature of internal boundary conditions is the flexibility to explicitly model flow
around, under, over and through a partial barrier to flow. For the outlined mesh methods,
explicit modelling is restricted to flow around, and in some cases over, obstacles, although
the validity of the methods for overtopping flows is questionable. Internal boundary con-
ditions therefore provide a unique opportunity to model flow under and/or over obstacles.
Furthermore, internal boundary conditions may be complemented by local implementa-
tions of modified conservation laws to locally overcome limitations of the shallow water
equations. The implementation of modified conservation laws across the entirety of the
computational domain is primarily restricted by computational efficiency requirements
however, local implementation offers an efficient method for supplying additional com-
plexity only where it is most required.

Lateral Flow Contractions and Expansions

The first internal boundary condition to be analysed is that of lateral contractions and
expansions of the flow. As explored previously, geometric transitions in the channel
geometry induce a backwater effect and can also result in the dissipation of momentum
via bores and hydraulic jumps. For a sufficiently refined mesh, it has been shown that the
effects of lateral contractions and expansions of flow produced by impervious obstacles can
be accurately captured using vertical walls to model the obstacles, as shown by Costabile
and collaborators [109, 112] when modelling the effect of bridge piers for example.

Unlike the sub-grid porosity method, the implementation of an internal boundary con-
dition to model such features does not account for the reduction in storage capacity
produced by the presence of obstacles, accounting only for the reduction in conveyance
capacity across the interface. Hence, where features that induce a contraction and/or
expansion of the flow can be considered of negligible width with respect to the geometry
of the mesh, the difference in storage volume can also be considered to be negligible and
implementation as a internal boundary condition is permissible. In such cases, the use
of internal boundary conditions may present an opportunity for greater computational
efficiency via a reduction in mesh resolution; Varra et al. [458] demonstrated a 40% re-
duction in normalised CPU time when modelling a bridge pier with an internal boundary
condition.

The simplest method of implementing the outlined internal boundary condition is to
modify the flux in accordance with an empirically derived flow relation. This method is
presented in Zhao et al. [498], whereby the mass flux is calculated as equal to the unit
discharge provided by an appropriate empirical discharge formula and the momentum flux
is consequently reformulated in terms of the calculated unit discharge. This guarantees
that the mass and momentum flux is consistent with the selected empirical discharge
formula however, it also invariably requires an assumption of steady-state, gradually varied
flow conditions corresponding to an instantaneous equilibrium between the upstream and
downstream flow and it is therefore invalid for rapid transients. As briefly outlined by
Pepe et al. [359] this method of implementing internal boundary conditions may also
result in numerical instabilities for less robust schemes; when using static formulas, it is
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implicitly assumed that the outer left and right states are sufficiently close to the inner
states within the structure of the Riemann problem, where this is not the case, with
sharp gradients to be expected for rapid transients, a lack of numerical convergence may
occur.

Finite volume schemes for the solution of hyperbolic systems of conservation laws, such
as the SWEs, overcome the smoothness assumptions associated with gradually varied
flow required for the differential form of the equations by leveraging the integral (weak)
form of the equations, seeking convergence to physically relevant weak solutions [269,
268, 438, 437, 124]. Therefore, it is possible to capture the effect of rapid transients
through the solution of the Riemann problem whereby shocks, governed by Rankine-
Hugoniot conditions, connect gradually varied regions of flow. As a consequence, the
study of geometric discontinuities as a special class of standing discontinuities within
the Riemann problem, which connect the upstream and downstream flow conditions,
has gained popularity due to the capability to capture transient flows through channel
discontinuities [118].

As explained by Valiani and Caleffi [452], when considering a geometric discontinuity at a
cell interface, the effect can be modelled via the augmentation of the classical conservative
form of the equations with a new variable representing the nature of the geometric dis-
continuity. In the case of a discontinuity in the channel width, the introduced variable is
the channel width and represents the difference between the total discharge and the unit
discharge. The newly introduced geometric variable experiences a stationary discontinu-
ity (at the interface), producing the aforementioned stationary contact wave within the
structure of the Riemann problem. The presence of stationary wave enriches the structure
of the Riemann problem, introducing inner states, connected to the outer left and right
states via elementary waves (shocks and rarefactions). Via the classical and additional
generalised Riemann invariants, the conservation properties for the problem are defined,
which for the case of a lateral change in width is the conservation of total discharge and
specific energy.

As such there are parallel advancements in the development of the Riemann problem in
which a width variation occurs. In the first case, and most applicable to the use of internal
boundary conditions within two-dimensional shallow water equations, is the modelling of
a localised contractions and expansions as shown in Figure 2.1 (b) and (c). In the second
case, is a width variation in a channel as shown in Figure 2.1 (a). This corresponds
directly to the modelling of variable channel widths in one-dimensional models using the
Saint-Venant equations or to the modelling of porosity discontinuities when using PSWE
models.

Considering first the case of localised obstructions, Cozzolino et al. [118] investigated the
dam-break problem (null initial velocity). The presented method consists of connecting
the left and right states through a standing discontinuity, situated at x = 0 corresponding
to the geometric discontinuity, via the elementary waves permitted by the shallow water
equations. Due to the presence of non-conservative product terms a suitable regulari-
sation is required according to the theory of Dal Maso et al. [127] to define a suitable
generalised Rankine-Hugoniot condition. The presented solution therefore accounts for
composite wave configurations across a non-monotonic width variation, with proofs pro-
vided for the existence and uniqueness of the corresponding solutions. When compared
with the solutions provided by a refined two-dimensional shallow water model for four
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(a)

(b)

(c)

Figure 2.1: (a) illustrates a plan view of a width variation. (b) illustrates a plan view
of a localised constriction of the flow by obstacles which impinge on the interface. (c)
illustrates the expansion and contraction of the flow due to an obstacle contained within
the interface.

dam-break configurations corresponding to the four potential wave configurations, the
provided solutions demonstrated a high level of agreement away from the position of the
initial discontinuity at x = 0, with satisfactory agreement in close proximity to x = 0.
Comparisons with experimental results provided by Townson and Al-Salihi [441], show
good agreement overall with the potential for further improvement: a hydraulic jump
which emerges downstream of the discontinuity is incorrectly modelled as being of in-
finitesimal length whereas the physical solution results in a hydraulic jump of finite length.
This can theoretically be captured via the definition of a generalised Rankine-Hugoniot
condition that is consistent with experimental observations however, this is not explored
within the publication.

Pepe et al. [359] extended the method to account for non-zero initial velocities enabling
the application of the method to more realistic scenarios. Due to the potential for ge-
ometric transitions to induce head loss, a brief exploration of the case of non-negligible
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head losses is also provided. This involves a more accurate definition of the standing wave
which must be inferred from laboratory experiments. Comparisons with the results for
refined two-dimensional shallow water simulations demonstrate that the proposed method
is accurate, although as expected, the one-dimensional Riemann problem is unable to cap-
ture transverse variations in the flow that are produced by the two-dimensional scheme.
The solution procedure, which is derived from a graphical construction of the exact solu-
tion of the Riemann problem, can be easily implemented as an iterative solver. Even if
the iterative solver is somewhat inefficient compared to a standard approximate Riemann
solver, the localised implementation of internal boundary conditions and the potential for
a reduced mesh resolution can contribute to an overall increase in computational efficiency
[458].

However, when applied in a two-dimensional context to model a bridge pier some of the
limitations of the method can be observed. A numerical test case presented by Varra et
al. [458] involves a frictionless horizontal rectangular channel which is 1465m in length
and 43.48m in width. A bridge pier of length 35m and width 10m is located in the
channel centre, 765m downstream. The bridge pier results in a local 33% reduction of
the cross-section. A refined shallow water model is produced by using the vertical wall
approach to model the bridge pier using a triangular mesh with cell interfaces ranging
from 5m in width at the channel ends to 2m in width at the bridge pier. The internal
boundary condition is implemented as a straight line through the centre of the bridge pier
with a reduced mesh resolution where interfaces are of uniform width equal to 5m. Both
meshes are shown in Figure 2.2 for clarity.

Figure 2.2: Representation of the bridge pier using the vertical wall methodology, with
removal of the internal cells and representation of the bridge pier using the exact solution
of the Riemann problem with a non-monotonic local width discontinuity as per Pepe et
al. [359]. Diagrams adapted from Varra et al. [458].

Comparisons between the two methods of representing the bridge pier demonstrate that
the internal boundary condition approach is able to adequately capture the macro-scale
behaviour of the flow, with local accuracy increasing further from the pier. However, the
one-dimensional nature of the method results in a smoothing of the transverse variations
in the flow which are clearly present for the refined model, which exhibits a bow shock
upstream of the bridge pier and a complex system of transverse waves reflecting on the
lateral channel walls downstream of the pier [458].

The presented use case is clearly designed to demonstrate the effectiveness of the method

37



Chapter 2. Literature Review

in enabling a computationally efficient representation of the main flow characteristics,
boasting normalised CPU time savings of 0.73 when compared to the higher resolution
mesh. Considering the fact that the approximate area of the bridge pier is ≈ 350m2, which
is roughly equivalent to the area of 30 cells, there is a significant underestimation of the
reduction in storage produced by the pier. Furthermore, the pier cannot be assumed
to be of negligible width with respect to the geometry of the mesh elements and it is
therefore surprising that the method was as effective as it was. However, the results are
clearly inferior to the refined shallow water model and as such, where a refined mesh
can be used, the vertical wall representation is clearly superior for high resolution flood
hazard and vulnerability applications. Where the method can present superior accuracy
compared to the vertical wall method for flood hazard and vulnerability applications, is
for the modelling of highly linear features which are genuinely of negligible width with
respect to the flow and cannot be easily resolved using a refined mesh, such as walls or
fences. Or alternatively, the presented internal boundary condition may be used along
the edges of buildings to capture the effects of intruding flows or the presence of small
gaps between buildings which are otherwise unfeasible to include within the mesh.

Considering next the case of channels with variable width, as shown in Figure 2.1 (a),
resembling the classical the Stoker dam-break problem [420] or the flow through a poros-
ity discontinuity for the PSWEs. The relevant Riemann problem was first studied by
Ostapenko [349, 347] and in his first work on the topic [349], he considered a dam-break
flow through a contraction in the channel width for a rectangular frictionless channel.
Taking inspiration from similar problems encountered in gas dynamics, a solution was
found under the assumption of the conservation of total head and discharge through the
width discontinuity. In his second publication on the topic, Ostapenko [347], expanded
the scope to consider more general monotonic variations in the width (contraction and
expansion), determining that the assumption of head and discharge invariance across the
discontinuity does not permit the existence of a solution for certain initial conditions.
Kovyrkina and Ostapenko [250] then addressed this by considering cases with non-zero
head loss. This was achieved via the introduction of a parameter, σ ∈ (0, 1] where σ = 1
represents a conservation of total energy, which enables specification of the proportion of
energy lost across the geometric discontinuity. The Authors demonstrated that the value
of the energy loss parameter may be suitably determined based on two-dimensional nu-
merical experiments, whereby a relationship between the parameter and the ratio of the
upstream and downstream channel widths can be derived. Further experiments performed
by Degtyarev et al. [133] demonstrated that the provided solutions compare well with the
results of physical experiments. However, Cozzolino et al. [123] later demonstrated that
the standing wave definition used by Ostapenko [347] was defective.

As discussed in Section 2.2.2, Cozzolino et al. [123, 120] examined the same problem
within the context of the SP Riemann problem. A solution to the problem was achieved
via the inclusion of a stationary wave corresponding to the porosity discontinuity, which is
identical to a width discontinuity, with proofs of existence and uniqueness of the solutions
also provided. Cozzolino et al. [120] then considered the potential multiplicity of solutions
for the SP Riemann problem including a dry state. It is shown that a solution always exists
but that for specific initial conditions, corresponding to an impinging supercritical flow,
disambiguation of the non-unique solutions based on physical principles is required. The
Authors consider the numerical phenomena to be connected to the physical hydraulic
hysteresis phenomena [470], providing a potential avenue for the identification of the
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physically relevant solutions.

In comparison with the previous standing wave definitions proposed by Ostapenko [347,
349, 250], the regularisation proposed by Cozzolino et al. [123] guarantees consistency
between standing waves with energy invariance and standing waves with energy loss.
Whereas, Kovyrkina and Ostapenko [250] added a physically unspecified parameter to
account for cases in which head loss is non-zero, essentially resorting to numerical exper-
iments to overcome the bifurcation of solutions, the standing wave definition provided by
Cozzolino et al. [123] specifies the energy loss mechanism, as opposed to parameterising
it, meaning there is no need for disambiguation criteria.

Valiani and Caleffi [452] further contributed to the solution of the dam-break problem in a
rectangular channel with different upstream and downstream widths, producing the same
solutions as presented by Cozzolino et al. [123]. The work of Valiani and Caleffi [452]
differentiates itself via the presented approach to the problem, in which the role of the
width is extracted via the generation of a third equation describing its time invariance.
This enables a simplification of the analytical treatment, and the derivation of analyti-
cal limit curves for classifying the solution regions in the (rb, rh) plane, where rb is the
downstream to upstream width ratio and rh is the downstream to upstream depth ratio.
Despite the differences in approach of Cozzolino et al. [123] and Valiani and Caleffi [452]
the derived solutions are in agreement. In fact, the standing wave definition proposed
by Cozzolino et al., is automatically recovered from the generalised Riemann invariants
derived by Valiani and Caleffi.

The numerical scheme presented by Valiani and Caleffi [452] utilises a generalised path-
conservative [356] Osher-type Riemann solver, specifically the second-order Dumbser-
Osher-Toro solver [146] presented by Leibinger et al. [266], due to the presence of non-
conservative product terms. Despite the potential for errors across strong discontinuities
[3], the numerical results present a strong agreement with the derived exact solutions.
The Authors argue, as in Cozzolino et al. [123] for the use of a non-linear path, inspired
by the structure of the generalised Riemann invariants, as the classic linear path performs
poorly across large amplitude contact waves where significant errors related to a lack of
conservation of energy at the width discontinuity emerge.

Again, it is worth noting that whilst the choice of path should absolutely be chosen
based upon physically relevant considerations, the correct choice of path, assuming one
is identifiable, does not guarantee convergence to the correct solution across strong dis-
continuities when using a path-conservative scheme [3]. Despite this, the differing path
conservative methods presented by Cozzolino et al., which uses a modified generalised hy-
drostatic reconstruction method [88], and Valiani and Caleffi [452], which is based upon
the the second-order Dumbser-Osher-Toro solver [146] presented by Leibinger et al. [266],
provide accurate results. Unfortunately, the design of suitable numerical schemes for non-
conservative systems is an open and challenging area of research and despite the flaws
associated with path-conservative schemes, there are currently no suitable alternatives.
Whilst some schemes may seek to overcome the numerical challenges related to the pres-
ence of non-conservative products by eliminating [418, 70, 59] or minimising [253] them,
that is not possible in this case.

In Varra et al. [461], the results of Cozzolino et al. [123] and Valiani and Caleffi [452] are
generalised. The multiplicity of the solutions is discussed with reference to the theory and
experimental observations of hydraulic hysteresis, with the identification of the physically
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relevant solution remaining somewhat ambiguous; in the case of hydraulic hysteresis, the
flow can be changed by altering the boundary conditions or by disturbing the flow which
is incompatible with the numerical representation due to the limitations of the Riemann
problem. It is speculated that using a higher dimensional scheme can elucidate the relevant
solution however, the implemented scheme is found to tend towards an alternate solution.
Furthermore, the study reveals an inadequacy of the numerical scheme, based upon the
generalised hydrostatic reconstruction method proposed by Castro et al [88], in capturing
a hydraulic jump at a channel expansion.

The study of the Riemann problem across a geometric discontinuity representing a width
or porosity jump is concluded in the works of Varra et al. [460, 457]. In Varra et
al. [460, 457] a two-dimensional shallow water scheme is used to identify the physically
relevant solution, as previously proposed, and a modification of the numerical scheme is
also presented to ensure convergence to the identified solution. The identified solution,
which consists of a backwards moving shock, is consistent with the solution identified for
similar problems.

Unlike for the case of localised obstructions, the case of a width discontinuity is of lesser
relevance to two-dimensional models based upon the SWEs. For the PSWEs, as discussed
in Section 2.2.2, it is integral to the development of more sophisticated and accurate
sub-grid porosity models. The presented solutions are relevant to one-dimensional Saint-
Venant schemes or coupled 1D-2D schemes, although such schemes are typically inferior
to fully dynamic two-dimensional models due to the ambiguity in the coupling methods
between the one-dimensional and two-dimensional domains [108]. More generally how-
ever, the techniques used to overcome the numerical challenges associated with modelling
obstacles to flow as geometric discontinuities within the Riemann problem are important
to consider in the design of schemes for other types of obstacles.

Modelling Gates

The modelling of gate-type structures, that is obstacles which permit the passage of
flow underneath their form, is unique in comparison with the capabilities of the methods
considered thus far. Whilst local friction representations may be calibrated to model
the overall effect of a gate type structure, the unphysical nature of the method renders
it incapable of enabling analysis of localised flow characteristics. Furthermore, it should
generally be considered, as previously outlined, that calibration is insufficient to overcome
an inadequacy in process representation.

The finite bottom elevation and vertical wall representations of obstacles are clearly insuf-
ficient to model the passage of flow underneath obstacles since in both cases obstacles are
considered to be impervious and of infinite or finite height. Whilst a refined mesh using a
vertical wall representation can offer a potentially more precise representation for obsta-
cles that entirely block flow through their footprint, this approach falls short when dealing
with obstacles acting as gates, meaning an internal boundary condition representation is
uniquely placed to model such features.

Classical porosity methods are also unable to capture gate-type structures since porosity
is estimated from aerial imagery, assigning a binary value corresponding to an impervious
obstacle or lack thereof. Depth-dependent porosity models have the potential to introduce
a unique internal boundary condition by modifying the conveyance porosity at an interface
in accordance with the gate opening. However, the division between the storage porosity
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and conveyance porosity only occurs for integral formulations, which suffer from mesh
sensitivity and mesh dependency issues and the definition of an accurate depth-dependent
porosity would also require a modification of current deterministic porosity assignment
algorithms. Furthermore, this would also be unsuitable for high resolution modelling of
gates, since it would be approximated as an equivalent lateral contraction.

Therefore, a dedicated internal boundary condition for the purpose of modelling the pas-
sage of flow beneath linear fixed barriers to flow provides a unique opportunity to intro-
duce the capability to model gate-type structures within two-dimensional shallow water
models. Once more, the assumption of negligible width of the obstacle with respect to
the geometry of the mesh must apply to minimise errors related to the lack of capacity
to account for the reduction in storage capacity induced by the structure. However, the
linear nature of gate-like features aligns well with these assumptions.

(a) free orifice flow (b) free non-orifice flow

(c) submerged orifice flow (d) submerged non-orifice flow

Figure 2.3: Depiction of the four potential flow regimes at a gate structure in accordance
with classical hydraulic theory. Flow is directed from left to right.

As for localised contractions and expansions, a weak coupling of the conservation laws can
be achieved via the method of Zhao et al. [498], whereby the mass and momentum fluxes
are adjusted in accordance with the unit discharge calculated via appropriate empirical
discharge formula. Morales-Hernández et al. [322] proposed an internal boundary condi-
tion based on this principle, using logical conditions to alter the empirical discharge rela-
tion based upon the relationship between the neighbouring left and right flow depths and
the gate opening. Specifically, four potential flow configurations were considered:

1. When the upstream and downstream free-surface elevations do not exceed the ele-
vation of the gate lip, non-orifice flow conditions are assumed and the gate interface
is treated as a transmissive boundary.

2. When the gate is closed, the gate interface is treated as a free-slip reflective bound-
ary.

3. When the upstream free-surface elevation exceeds the elevation of the gate lip,
and the downstream free-surface elevation is exceeded by the elevation of the lip,
the discharge across the gate interface is assumed to occur under free orifice flow
conditions.

4. When both the upstream and downstream free-surface elevations exceed the eleva-

41



Chapter 2. Literature Review

tion of the gate lip, the discharge across the gate interface is assumed to occur under
submerged orifice flow conditions.

Hence, this method simplifies the determination of the flow regime (Figure 2.3) by ne-
glecting the role of the vena contracta in determining the transition between free and
submerged orifice flow [276, 203, 366, 215]. Moreover, capturing the transition between
orifice and non-orifice regimes is also non-trivial as shown by Alminagorta and Merkley
[17], who compared the use of an empirical equation, the traditional submerged non-orifice
equation the specific-energy equation for open-channel flow to define the limit between
the regimes. Within the transition region, defined by a lower limit corresponding to the
the point at which the upstream free-surface reaches the gate lip and an upper limit corre-
sponding to the completion of a hydraulic seal, empirical equations are typically of lower
accuracy [17].

Comparisons with derived exact solutions, involving the time dependent opening and
closing of two gates, demonstrate the effectiveness of the internal boundary condition.
However, upon closer examination of the scenario for which the exact solutions are derived,

Figure 2.4: Annotation (red) of the elevation plots for the comparisons between the exact
solution (solid line) and numerical solution (circles) provided in Morales-Hernández et al.
[322].

it becomes apparent that the scenario does not adequately test the suitability of the
proposed internal boundary condition for unsteady flow conditions. Referring to the
annotated diagram provided in Figure 2.4:

(a) Shows the initial conditions at t = 0s. A bed discontinuity occurs at x = 20000,
with closed gates G1 and G2 situated at x = 20000 and x = 28000, respectively.

(b) Shows the solution at t = 100s where the first gate, G1, is instantaneously raised.
This action initiates a dam-break problem, generating a leftward-moving rarefaction,
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R1,L, and a rightward-moving shock, S1,R, separated by a stationary contact wave
at x = 20000 above the bed discontinuity.

(c) Shows the solution at t = 1600s following reflection of the rightward-moving shock,
now labelled as S2,L, against the fully closed second gate G2.

(d) Shows the solution at 3100s, 500s following the initial opening of G2. The opening
of G2 is controlled such that the discharge is maintained at a constant rate of
1.5m2s−1. The opening of the gate produces another dam-break problem with a
leftward-moving rarefaction, R3,L, and a rightward-moving shock, S3,R.

(e) Shows the solution at 3300s, 200s after panel (d), following instantaneous closure of
G2, which initiates another dam-break problem with a leftward-moving shock, S4,L,
and a rightward-moving rarefaction, R4,R.

As such, the following properties are verified: (i) The internal boundary condition cor-
rectly functions as a transmissive boundary when fully open (ii) The internal boundary
condition correctly functions as a reflective boundary when closed (iii) Under locally
steady submerged flow conditions, the internal boundary condition accurately replicates
the derived exact solution.

(i) and (ii) are to be expected, since transmissive and reflective boundary conditions
are established boundary conditions which aren’t unique to the modelling of gates. For
case (iii), the artificially controlled raising of the gate to maintain an exact flow rate of
1.5m2s−1, for which one must presume some circular logic has been implemented via the
use of the same submerged discharge formulae to calculate the required opening of the
gate, ensures that steady flow conditions are maintained in the proximity of the partially
raised gate, as evidenced in panels (d) and (e) via the horizontal dashed lines. Typically
the empirical discharge relations used in such methods assume steady or gradually varied
flow and therefore optimal conditions have been established in the test, which are often not
present during the propagation of rapid transients. Whilst it is understandable that the
scenario has been designed in such a way to facilitate obtaining exact solutions by means
of preserving the self similarity of the solutions, important requirements for unsteady
applications such as the transition between flow regimes, an impinging hydraulic bore
and rapid variations in the discharge remain untested.

The presented field-scale study of a historical flooding event in the Ebro River Basin
demonstrates the capability of the internal boundary condition in contributing towards the
replication of the historical flooding extents. However, the role of the gate in determining
the flood extents is shown to be limited due to the extreme nature of the studied storm
and therefore the overall suitability of the internal boundary condition remains somewhat
inconclusive. Furthermore, comparisons with flood inundation extents reveal little in
regards to the appropriateness of the internal boundary condition for modelling rapid
transients, where the effects may be concentrated locally in space and time.

Further validation of the internal boundary condition is provided by Lacasta et al. [255]
involving proportional-integral-derivative (PID) control of a series of gates along an irriga-
tion channel located in Pina de Ebro, Zaragoza, replicating the measured flow conditions
over a period of 120 hours. The presented results demonstrate that the model was able
to accurately capture the water depth at each of the gates, when using a PID algorithm
which adjusts the gate opening in accordance with the measured upstream water level.
This is a valuable development for practical applications involving irrigation channels
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where there is either upstream water depth measurements available or known gate oper-
ation criteria that can be integrated into a PID algorithm. However, when considering
more generally obstacles which act as a partial barrier to flow in a gate like manner, PID
control is not applicable; the PID algorithm can be considered in this case as an ad-hoc
calibration method for the discharge through the internal gate boundary conditions. PID
algorithms may also experience a short lag period as the algorithm attempts to converge
to the new setpoint, which may be problematic for highly transient flows.

Jaafar and Merkley [237] present a more detailed method that couples the shallow water
equations with equations for free and submerged orifice and non-orifice flow regimes via
characteristic equations. In contrast with the method presented by Morales-Hernández
et al. [322], empirical equations are used for non-orifice flow regimes, as opposed to
the use of the unaltered shallow water fluxes, and a more sophisticated determination
of the flow regime is utilised. This does introduce some uncertainty, with the potential
for calibration, via the introduction of a parameter, C0 ∈ [0.8, 0.99], which controls the
threshold between orifice and non-orifice flow, as determined by Alminagorta and Merkley
[17]. Although, compared with the method of Morales-Hernández et al. [322], this is
equivalent to the determination of the energy loss coefficients introduced into their chosen
form of the discharge formulae. The presented test cases demonstrate that the method
is able to accurately capture the transition between the four potential flow regimes. The
main drawback of the method is the potentially high computational cost of the solution
method, requiring the iterative solution of a higher order non-linear polynomial, for which
existence of a solution is not guaranteed [122, 119, 150].

Cozzolino et al. [122], contributed to the derivation of internal boundary conditions
for the modelling of gate-type structures by analysing the solution of the dam-break
Riemann problem for a partially lifted gate. The presented solution procedure utilises gate
equations based upon the classical Energy-Momentum (EM) formulation [216], assuming
a constant contraction coefficient that does not depend on the relative opening of the gate
and is based only on the initial state of a transient. Whilst the Authors’ acknowledge,
with reference to experimental and theoretical studies, that for steady state conditions the
relative opening of the gate does in fact influence the value of the contraction coefficient for
both real and ideal fluids, if it is considered to only depend on the relative opening then
the self-similar nature of exact Riemann solutions implies a time invariant contraction
coefficient for the derived analytical solutions.

The use of the classical EM gate equations is also somewhat problematic as the equations
are unable to adequately capture the transition between free and submerged flow condi-
tions, whereby partial submergence is attained. This manifests itself within the chosen
gate equations as a sharp drop in the predicted discharge at the limit between free and
submerged flow conditions. As a consequence, it is not possible to derive an analytical
solution for some initial conditions. In spite of this finding, numerical schemes produce
seemingly sensible results within the sub-domain for which no solution exists, undermining
confidence in previous approaches to the problem.

Considering the special case of an initial dry bed, Cozzolino et al. [122] demonstrate the
existence of multiple solutions. To overcome this, a disambiguation criteria based upon
the principle of maximising discharge is selected. Although there is some uncertainty in
this assumption, it is supported by referenced experimental studies and has been applied
successfully in a similar scenario to characterise the geometry of a submerged jet. The
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analytical solutions are presented as an aid to assist the development and verification of
future numerical schemes however, it should be noted that there are ambiguities relat-
ing to the underlying assumptions that must be considered although, they are handled
transparently and in great detail by the Authors.

Results produced by a first-order finite volume numerical scheme based upon the third-
order Spectral Volume scheme of Cozzolino et al. [116], which primarily differs from that of
Morales-Hernández et al. [322] via the use of more sophisticated criteria to determine the
flow regime, demonstrate convergence to the derived analytical solutions. Interestingly,
the coarse mesh results highlight the implicit assumption that by applying the steady
state empirical discharge relations in the presented manner, an instantaneous equilibrium
is assumed between the upstream and downstream flow variables. In reality there is a
short lag time before hydraulic conditions are equilibrated by the numerical scheme, in
which the adaption time is dependent on the speed at which information travels which
is of course proportional to the dimensions of the mesh. This result shows that so called
’equilibrium approaches ’ may lose accuracy as a consequence of insufficient mesh resolution
in the presence of rapid transients.

Following the work of Cozzolino et al. [122], a study conducted by Lazzarin et al. [260]
aimed to verify the physically relevant solution for dam-break flows across a partially
raised gate and to study the stability of free orifices flow at large gate openings. The
conclusions of the study were twofold; (i) the correction disambiguation criteria is the
minimisation, not maximisation, of discharge across the gate (ii) for large gate openings
the dependence of contraction and discharge coefficients on the relative gate opening has
a significant influence on the stability of orifice flow.

Consequently, these findings were addressed by Cozzolino et al. [119], via the derivation of
improved analytical solutions and a corresponding new approximate Riemann solver. The
improved approach replaces the classical EM gate equations for determining submerged
flow, due to the presence of the aforementioned discharge gap, with an improved expression
provided by Bijankhan et al. [64]. Furthermore, an improved method for calculating
a variable contraction coefficient, that accounts for the continuous dependence of the
contraction coefficient on the flow variables, is introduced, based on an experimental
formulation provided by Defina and Susin [132].

The identified issues relating to the assumption of instantaneous equilibrium are overcome
through a relaxation of the gate equations, referred to as the ’non-equilibrium approach’
by the Authors. The novel form of the equations seeks to reduce the error produced by
equilibrium formulations by relaxing the requirement for discharge invariance through the
gate. Moreover, an improved disambiguation criteria is introduced based on the contin-
uous dependence of the solution on the initial conditions, which contradicts the criteria
determined by Lazzarin et al. [260] within a very small region, corresponding to a gate
opening to initial depth ratio of between 0.491 and 0.495. However, the incongruency can
be physically justified by considering the role of friction within the laboratory experiments,
which is neglected in the derivation of the analytical solutions.

The results produced by a simple numerical scheme demonstrate the superiority of the
non-equilibrium approach in replicating the derived analytical solutions and the dam-
break experiments performed by Lazzarin et al. [260]. Overall, the work of Cozzolino et
al. [119] represents a significant advance in terms of the development of a suitable internal
boundary condition for the modelling of gate type structures within hydrodynamic models.
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Other than the validation of the interactions resulting from an approaching supercritical
bore it is hard to identify where the method is lacking and it appears that only incremental
improvements may be achieved via improved discharge relations. The largest conceivable
improvement would be to somehow remove any reliance on empirical discharge formulae
however, such an approach is challenging to envisage. The relative simplicity and ease
of implementation, especially when compared to methods which necessitate the use of
non-conservative numerical schemes, is a clear advantage.

Modelling Weirs

When considering the modelling of weir-type structures or more generally just the over-
topping of obstacles to flow, the topic has already been discussed briefly within Section
2.2.2, in relation to the suitability of the finite bottom elevation method. Unlike an in-
ternal boundary condition, modelling an obstacle with the finite bottom elevation will
account for the storage reduction induced by the obstacle, which will be of importance
if the size of the obstacle is sufficient. However, without special treatment, the assump-
tion of a continuously varying bed slope will result in representation errors for objects
with sharp façades. Furthermore, the SWE are not strictly valid across steep slopes so
the validity of overtopping flows in the presence of slope gradients that exceed ≈ 6◦ or
1 : 10, is questionable. Whilst the use of the SSWE is a possible solution, it appears an
unnecessary solution when the slopes are likely an unwanted aspect which degrades the
quality of the representation.

a

h

Figure 2.5: Conceptualisation of a non-submerged broad crested weir as a bed disconti-
nuity. h is the depth of the approaching flow and a is the height of the weir, above which
critical flow conditions are attained at the crest.

An alternative solution, as proposed by Cozzolino et al. [115, 117], is to interpret the
solution of a the Riemann problem across a bed step as equivalent to a broad-crested
weir, as shown in Figure 2.5. The solution procedure leans on existing theory for the
treatment of shallow water equations with bottom steps, which is analogous to a channel
width discontinuities, belonging to the more general class of Riemann problems containing
geometric discontinuities. For the case of a broad-crested weir, it is assumed that energy
conservation is enforced across the bed discontinuity and that critical depth conditions
are attained atop the weir crest. Due to the presence of non-conservative product terms,
corresponding to the geometric discontinuity, the theory of Dal Maso et al. [127] must be
used to select an appropriate family of paths such that weak solutions can be obtained
via the definition of a generalised Rankine-Hugoniot condition.

Cozzolino et al. [115] defined two families of paths and demonstrates that the multiplicity
of solutions is independent of the choice of multiple paths due to resonance effects pro-
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duced by the superposition of characteristics from different characteristic fields. Following
implementation of a simple numerical scheme, the capability of the proposed solution pro-
cedure is demonstrated via comparisons with exact solutions for simple but challenging
scenarios, where the right boundary condition is defined as a broad crested weir with a
right dry state. However, the lack of experimental validation fails to verify that the path
definitions result in convergence to the physically congruent weak solution.

This was later addressed in a following publication by Cozzolino et al. [117]. A third path
definition is introduced and criteria for the disambiguation of solutions are presented on
the basis of a physical interpretation of the problem and the results of relevant laboratory
experiments. A more comprehensive analysis of the proposed solution is presented via
comparisons with derived analytical solutions and the results of laboratory experiments,
with a naive implementation of the weir boundary condition, which is only rigorously
valid for steady subcritical approaching flow, providing a benchmark reference.

The results demonstrate the general suitability of the boundary condition for modelling
transient flow interactions across a broad crested weir and the capacity to produce phys-
ically relevant unique solutions for all potential initial conditions consistent with the pre-
sented disambiguation criteria. Comparisons with the naive approach demonstrate that
the methods converge to the same solution when the assumptions for the naive approach
are satisfied however, the proposed approach demonstrates a greater level of accuracy on
coarser grids due to a superior capability to capture transient variations. This corrobo-
rates with the observations of Cozzolino et al. [119] for internal gate boundary conditions,
where the naive approach is referred to as an equilibrium approach and the time required
for such a scheme to drive the neighbouring states to equilibrium is dictated by the speed
at which information travels through the computational grid, which is proportional to
the mesh spacing. For the case of approaching supercritical flow that remains super-
critical over the weir crest only the proposed solution is able to correctly capture the
behaviour.

An alternative approach, which forgoes the use of a non-conservative scheme based upon
the solution of a Riemann problem containing a geometric discontinuity in favour of
coupling the weir equations with the SWEs via nodal conditions [67] is provided by Guerra
et al. [190]. Although the proposed scheme has the benefit of being conservative, the
method is only valid for subcritical approach flows, diminishing the flexibility of the
method in comparison with that of Cozzolino et al. [115, 117]. As a consequence the
potential multiplicity of solutions is not considered. Furthermore, only validation by
expert falsification is presented, with no comparisons to other schemes, analytical solutions
or experiment results given. In the regions for which the approach is valid, the method
of Guerra et al. [190] appears consistent with that of Cozzolino et al. [115, 117].

The solution procedure presented by Cozzolino et al. [115, 117] therefore presents a satis-
factory method for the treatment of non-submerged broad-crested weirs. As demonstrated
by the accurate reproduction of the analytical solutions and experimental results, the
proposed boundary condition is suitable for modelling a one-dimensional domain which
is bounded by a non-submerged broad-crested weir. However, the general applicability of
the method for the modelling of obstacles which may be overtopped and/or act as weirs,
is perhaps questionable as the assumption of a dry state atop the bed step is better suited
to an external boundary condition. At a minimum, the method would require modifi-
cation to ensure the existence and uniqueness of solutions for submerged conditions for
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more general deployment of the method within two-dimensional models as an internal
boundary condition. The fact that the modelling of the obstacle as a bed step accounts
for the reduction of storage capacity is potentially positive, providing greater accuracy
for obstacles of non-negligible width however, it is detrimental for the modelling of highly
linear features.

The non-conservative nature of the scheme, as for all schemes concerned with the numeri-
cal solution of Riemann problems involving geometric discontinuities presents a numerical
challenge. The nodal coupling approach used by Guerra et al. [190] therefore warrants
further exploration to see if a suitable conservative alternative can be derived, provided
a solution to overcome the ill-posed initial conditions can be found. A relaxation of the
weir equations, as per Cozzolino et al. [119] for internal gate boundary conditions, would
likely be required to overcome the issues related to equilibrium approaches.This would
also require experimental and analytical validation of the method which is currently lack-
ing.

Modelling Combined Weir and Gate Flow

While the ability to model gate and weir flows separately and individually is crucial,
there are instances where it becomes necessary to simulate the combined flow induced by
simultaneous gate and weir flows. An exemplary scenario is an overtopped bridge deck,
where the passage of flow is permitted both beneath its low chord and above its deck.
However, such scenarios are also ubiquitous at smaller scales in urban environments when
considering the localised impacts of intruding flows and street furniture. Furthermore, in
the design of weirs as a mechanism for flow control or measurement, gate or orifice openings
are often introduced to improve hydraulic performance and remove sediment [389, 393,
391]. Since the presented methods for modelling gate and weir flows individually are not
suitable for combined gate and weir flows, a dedicated method is required.

Whereas the hydraulic theory regarding the discharge relations across gates and weirs is
well developed, with well established empirical discharge relations available in classical
literature, the corresponding theory for combined gate and weir flow is comparatively less
developed. As explained by Salehi and Azimi [389], combined gate and weir discharge
cannot be determined by a simple superposition of weir and gate discharges due to in-
teractions between the flows and as a consequence, the derivation of suitable discharge
relations is the subject of recent research [389, 393, 464, 391, 172, 390].

There is therefore potential for development of a nodal coupling approach, as implemented
by Cozzolino et al. [119] for partially lifted gates, however, no such method has been
developed as of yet and it should be expected that further experimentation will be required
to disambiguate the likely non-unique solutions for certain initial conditions, particularly
incipient dry states. Within the wider field, physically based approaches, such as the work
of Salehi et al. [391], have been successful in replicating combined weir and gate flows
within CFD packages.

One of the few established methods for modelling combined weir and gate flow is the inter-
nal boundary condition proposed by Dazzi et al. [129]. The proposed internal boundary
condition uses the method of Zhao et al. [498], with a similar implementation to that of
Morales-Hernández et al. [322], adapted to consider gate and weir flow. The main differ-
ence in comparison with the method of Morales-Hernández et al. [322], other than the
inclusion of weir equations, is the use of gate formulae to tentatively determine the depth
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at the vena contracta and the corresponding conjugate depth to determine the transition
between submerged and free flow conditions, similar to the approach of Cozzolino et al.
[122].

The combined weir and gate flow is modelled simplistically as a superposition of gate
flow and weir flow, neglecting the interaction between the flows, which contradicts ex-
perimental observations and theory [389, 393, 464]. Furthermore, the method sacrifices
accuracy in favour of efficiency, utilising a non-conservative form of the equations to en-
sure well-balancing and treating the upstream and downstream of the internal boundary
conditions in a quasi-one-dimensional manner. The latter, corresponds to an assumption
that the neighbouring flow is perfectly perpendicular to the interface and may result in
unphysical directionality, especially for skew features. The method therefore represents
a simple equilibrium method which is easily implemented and computationally efficient
but unsuitable for rapid transients and limited to applications in which local accuracy is
of lesser importance.

The only established alternative method capable of handling simultaneous gate and weir
flow is the method presented by Ratia et al. [371]. The proposed method is presented
as an alternative to modelling bridges with a refined mesh and vertical wall boundaries,
implementing a computationally efficient modified Borda-Carnot equation to account for
the losses induced by contraction and expansion of flow through a hydraulic structure,
enabling the modelling of all potential flow regimes. Whilst this method is effective in
capturing the macro-scale effects induced by the presence of the structure, it is unable
to sufficiently capture near-field flow effects including potential downstream supercritical
flows.

It can be speculated that a combination of a refined mesh, vertical walls and the novel
head loss term may be used to produce greater accuracy than a simple refined mesh with
vertical wall representation however, the use of the head loss term can require impractical
calibration to produce effective results [96]. Following a review of the introduction of
Borda-like head loss terms within porosity models in Section 2.2.2, this is an unsurprising
result. Furthermore, the recent work of Goudiaby and Kreiss [186] on the existence of
solutions for the coupling of shallow water and Borda-Carnot equations with Riemann
data has demonstrated a lack of existence of solutions for certain initial conditions. Hence,
it should be considered that a method based on static equations such as the Borda-Carnot
equations are likely inadequate for unsteady applications.

Therefore, in contrast to the prior discussed features, there is significant progress to be
made in the modelling of partial barriers to flow which permit combined gate and weir
flow, with no existing method providing a suitable solution. Moreover, the development of
an internal boundary condition which can adequately model gate flow, weir flow and com-
bined gate and weir flow presents a unique opportunity to develop a flexible and general
solver for linear features which act as partial barriers to flow within urban hydrodynamic
models.

However, when considering the development of a flexible and general solver for partial
barriers to flow, it is worth considering the potential for pressurisation resulting from the
vertical confinement of flow induced by a structure. The classical SWEs assume a hydro-
static pressure distribution and therefore modification of the conservation laws is required
to relax this constraint and account for the effects of vertical confinement. As demon-
strated by Munoz and Constantinescu [327], adequately accounting for non-hydrostatic
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effects is required for analyses of bridges subjected to extreme flood flows. Although
two-dimensional shallow water models are to be considered inadequate for detailed anal-
yses of individual structures, the effect of pressurisation on the local flow characteristics
is important to consider when the streamwise width of a structure cannot be negligible
with respect to the mesh geometry. Consider for example, large bridge structures or
underground river reaches within urban areas.

One of the simplest methods to account for the vertical confinement of flow is the use of
the Preissmann slot concept [363] as proposed by Cunge and Wegner [125]. This has been
incorporated within a shallow water model for the purpose of modelling structures by
Maranzoni and Mignosa [289]. However, the Preissmann slot concept suffers from some
severe limitations that reduce its effectiveness and practicality as discussed by Vasconcelos
et al. [462] and Malekpour and Karney [287]:

1. The introduction of the hypothetical slot may introduce an additional fictitious
storage capacity, which may also adversely impact the prediction of advancing waves.

2. When pressurisation occurs, the width of the slot should be selected to reproduce
a physically representative wave celerity for transient pressure waves. However,
accurate sizing of the slot width may result in an impractical reduction of the time
step for acoustic wavespeeds on the order of hundreds of meters per second.

3. When there are mixed flow regimes or regime transitions and the wave celerity
is very large, diffusive numerical schemes introduce excessive numerical diffusion
within free-surface portions of the flow.

4. Post shock oscillations may occur behind bores which induce pressurisation.

Moreover, the proposed method is unable to handle overtopping of the structure, suitable
only for free-surface or pressurised flow which passes underneath a structure.

Cea et al. [96] propose an alternative method that also addresses the vertical confinement
of flow induced by structures with fewer practical and theoretical challenges. This method
modifies the shallow water equations in accordance with an adapted two-component pres-
sure approach [463]. In this case, the roof inducing the vertical confinement of the flow is
considered to be elastic, with the elasticity controlled by a stiffness constant which also
determines the pressurised wave celerity, just as the slot width does for Preissmann slot
based methods. As for Preissmann slot based methods, in practice, a compromise must
be found between numerical stability and accuracy for cases involving heavily pressurised
conditions [93]. The main benefit of the two-component pressure approach in comparison
with the Preissmann slot concept is therefore the fact that only the stiffness constant
requires calibration for the two-component pressure approach whereas, the calibration of
two slots must be performed for Preissmann based approaches. When the two-component
pressure approach of Cea et al. [96] was applied to the modelling of bridge structures the
method was found to be comparable to that of Ratia et al. [371], in that it was unable
to accurately capture nearfield flows patterns, with the benefit of not requiring excessive
and impractical calibration. However, the method is unfortunately incompatible with the
modelling of the overtopping of structures.

The congested shallow water model derived by Godlewski et al. [182] enables the in-
troduction of a static or dynamic roof which constrains the water surface. However,
implementing the congestion constraint across the entirety of the computational domain
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is unnecessary and likely unfeasible from a computational efficiency perspective due to
the complicated numerical requirements of the proposed relaxation scheme. Furthermore,
a localised implementation restricted only to the cells which contain a structure is un-
likely to be feasible due to compatibility issues with standard solution methods applied
to classical shallow water models; for the congested shallow water model, classical Go-
dunov solvers are too dissipative and impose too much restriction on the timestep [137,
192]. As for the other non-hydrostatic models that have been considered, the method is
incompatible with the modelling of overtopped structures.

It is possible to incorporate the effects of vertical confinement within an initial value
boundary problem as demonstrated by Iguchi and Lannes [229], who considered the prob-
lem of a floating body. However, coupling strategies typically require the assumption
of smooth flow to enable a transmission condition to be defined at the coupling surface
which is not suitable for hydrodynamic modelling applications concerned with unsteady
and transient flows [182]. A further example of such an approach is provided by the
work of Bosi et al. [68], who presented a depth-integrated boussinesq model for mod-
elling non-linear wave-body interaction, suited for modelling floating bodies in marine
applications.

Therefore, whilst the satisfactory numerical treatment of pressurised flows is highly de-
sirable to adequately account for the effect of vertical confinement of flow by structures,
it is not possible, or likely required due to the localised nature of the effects, for struc-
tures modelled as internal boundary conditions. Although methods exist for the suitable
treatment of non-hydrostatic pressures for structures that aren’t of negligible streamwise
width, the challenge of representing overtopping flows remains open. The modelling of
disjoint layers of flow within mono-layer or multi-layer shallow water models is challeng-
ing and perhaps best left to detailed three-dimensional analyses of individual structures
provided suitable two-dimensional approximations can be derived.

2.2.4 Summary

Following a review of the available numerical methods for modelling obstacles to flow
within two-dimensional hydrodynamic models it is clear that there is a gap in modelling
capabilities for combined gate and weir flow. For solid obstacles which are considered to be
completely impervious, the vertical wall method with a sufficiently refined mesh presents
an optimal method of representation. The main challenge is in designing a suitably
conformal mesh and managing the computational burden produced by the required mesh
refinement. Where obstacles are sufficiently small such that adequate mesh refinement
is unfeasible, the internal boundary condition proposed by Pepe et al. [359] provides a
suitable solution for capturing sub-grid contractions and expansions of flow. However, the
non-conservative nature of the method poses some numerical challenges.

The use of an optimised differential porosity model presents an intriguing alternative
to classical shallow water based models. However, it remains to be seen whether such
models are simply a computationally efficient method for determining macroscale flow
characteristics or whether they can be implemented on a sufficiently refined mesh to pro-
vide results which are accurate enough to enable local flood hazard and vulnerability
analyses. There are however, some limitations with the method in terms of accurately
modelling features such as weirs and gates, particularly for differential forms. Further-
more, the non-conservative nature of the resulting schemes presents numerical challenges,
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especially since strong porosity discontinuities should be expected within realistic urban
environments.

For obstacles of significant streamwise width with respect to the mesh that permit the
passage of flow through their footprint but are not overtopped, local implementation of a
suitable non-hydrostatic model may be considered to account for pressurisation. However,
issues relating to the numerical treatment of highly pressurised flows requires further
attention. For linear features which act as gates, the internal boundary condition proposed
by Cozzolino et al. [119] is capable of modelling transient flow variations, distinguishing
the physically relevant and unique solutions.

Obstacles which act as weirs are perhaps more challenging. The method of Guerra et al.
[190] is simple and easy to implement but it is only well-posed for subcritical approaching
flows when the weir is unsubmerged. There is also a lack of validation which must be
overcome. The method of Cozzolino et al. [115, 117] is well-posed and extensively vali-
dated for transient flows however, the non-conservative nature of the scheme is a potential
barrier to implementation.

In contrast to the method of Guerra et al., the method of Cozzolino et al. acts at the
scale of the mesh, treating the obstacle as a bed step, atop which there is an assumed
dry state. This may be a benefit for representing obstacles which are not of negligible
streamwise width however, under such circumstances the underlying assumptions are
somewhat questionable. Indeed, the assumption of a dry state atop the bed step suggests
that the method is more suited to implementation at external domain boundaries, where
it can easily be ensured that an external ghost cell maintains a dry state despite flow over
the weir.

It is therefore unclear as to how the method could be adapted for use as an internal
boundary condition and the mesh scale nature of the method may prove problematic for
linear features. Without a special numerical treatment, as soon as there is flow across
the bed step, the assumption that the state atop the crest is dry and that critical flow
conditions are attained will be violated. Since the more general problem of shallow water
flow across a bed step has been extensively researched [348, 13, 121, 211, 453], it could
be possible to use this as a method for representing mesh scale obstacles which may be
overtopped. However, the validity of such an approach has yet to be explored in practice.
Therefore, further work is required to:

1. Determine what obstacles to flow can be approximated as behaving like weirs when
overtopped and whether modelling urban obstacles of non-negligible width as bed
steps, or even finite bottom elevations, is viable.

2. To extend, if possible, the validity of the method of Guerra et al. [190] to all potential
flow regimes, including the adequate disambiguation of non-unique solutions.

3. To investigate modification of the method of Cozzolino et al. [115, 117] to enable
implementation as an internal boundary condition, where obstacles may be approx-
imated as acting like unsubmerged broad-crested weirs.

When considering the modelling of partial barriers to flow which may permit the simul-
taneous passage of flow under and over their form, there is a lack of suitable options
for high resolution modelling in the presence of transient flows. The proposed research
objectives:
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Objective 1: To develop and experimentally validate a novel approximate Riemann
solver (Solver 1) capable of resolving numerical fluxes across a linear fixed immiscible
partial barrier to flow, with a focus upon ease of implementation and compatibility with
existing flood models to promote uptake in practice.

Objective 2: To develop and experimentally validate an improved approximate Rie-
mann solver (Solver 2) capable of resolving numerical fluxes across a linear fixed immis-
cible partial barrier to flow, with a focus upon maximising accuracy.

therefore address this gap within the research directly. As detailed in Section 2.1.1, the
accurate modelling of obstacles to flow is crucial for accurately predicting the local flow
characteristics and subsequently in Section 2.1.2 it was shown that in order to accurately
characterise local flood hazards and vulnerabilities, it is necessary to accurately predict
the local flow characteristics. There is therefore a mutual feedback mechanism between
the accurate representation of obstacles to flow and the characterisation of the associated
flood risk and hazards. The lacking capacity to model partial barriers to flow which enable
simultaneous gate and weir flow is therefore a restriction upon the ability to accurately
analyse localised flood risk and flood hazards and the outlined objectives seek to address
this directly.

The experimental validation of the solvers is intended to ensure the physical relevance of
the solutions and provide a mechanism for understanding the limitations of the method.
Furthermore, the publishing of the associated validation datasets will aid the development
and validation of other relevant solvers. The contrast between the two proposed solvers in
terms of complexity and accuracy is designed to provide flexibility. It is hard to forecast
the computational cost and accuracy of the proposed solvers and therefore by aiming to
provide flexibility in terms of accuracy and computational complexity it is intended that
the likelihood of uptake and implementation is maximised. It is certainly possible that
both solvers will prove viable solutions depending on the desired application.

2.3 Urban Hydrodynamic Flood and Water Quality

Modelling

When reviewing recent advances in the experimental data and validation supporting the
development of hydrodynamic modelling, Mignot et al. [310] emphasised that the forth-
coming generation of urban flood models should be multifaceted; urban flood models
should not only accurately simulate the hydrodynamic characteristics of the flow, they
should also possess the capability to effectively account for the myriad of ‘associated
events ’. Among the various associated events, it is crucial to consider the capability to
account for hazards related to the contamination of water by pollutants or pathogens.
This capability is important from a practical perspective and an intuitive addition from a
mathematical perspective. Furthermore, the capacity to model advection, diffusion, and,
if necessary, reaction of passive scalar quantities is not limited to hazards alone. Such ca-
pabilities also find relevance in fertigation applications [83] and the environmental study
of fluvial ecosystems [474].

The addition of advection-diffusion(-reaction) equations to the two-dimensional SWEs is
relatively straightforward under the classical assumptions that the quantity is well-mixed
in the vertical direction and that the quantity is passively advected with the fluid, negli-
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gibly influencing the dynamics of the flow for sufficiently small concentrations [438]. It is
straightforward to add as many unique species equations as desired, albeit at an increas-
ing computational cost. When considering the eigenstructure of the coupled system, the
advection-diffusion equations are entirely analogous to the tangential component of the
velocity and hence coupling with the two-dimensional shallow water equations is numer-
ically simple, although some additional computational burden is introduced especially
when considering the source terms relating to the diffusion and reaction of the quan-
tity. Since, it is assumed that the quantity transported by the flow does not effect the
flow dynamics it is also possible to implement a decoupled treatment of the transport
problem.

2.3.1 Flood Hazards and Water Quality

Since the turn of the millennium, there has been a growing emphasis on water quality
policy implementation. This is highlighted by initiatives such as the European Union Wa-
ter Framework Directive [431], United States Clean Water Act [106], Australian National
Water Quality Management Strategy [33] which is supported by frameworks such as the
European Water Initiative [156] and the United Nations Sustainable Development Goals
[448]. With regards to water quality, sources of pollution are typically divided into point
and non-point sources.

A point source refers to the collection and discharge of pollutants from a single, identi-
fiable source. Examples of point sources include sites such as sewage treatment plants,
factories and oil refineries or accidental emissions and spillages from incidents such as
road traffic accidents, spillages and the exceedance of sewerage capacity. Discharges from
these sources include heavy metals, pathogens, nutrients, oxygen-depleting substances
and toxic chemicals [238].

A non-point source is diffuse in its origins and cannot be easily attributes to a single
source. Typically, non-point sources of pollutants are mobilised by rainfall runoff, which
is exacerbated by the increase in impervious surfaces brought about by urbanisation [288,
181]. Pollutant concentrations are typically higher following dry periods and during the
start of a rainfall event due to a phenomena referred to as the ‘first flush’ [60]. The first
flush phenomena occurs when high concentrations of pollutants accumulate on impervious
surfaces during dry periods and are subsequently rapidly dispersed by a rainfall event.
Examples of non-point sources include excess fertilisers, herbicides and insecticides, oil,
grease, sediment, salt, bacteria and nutrients [238]. This form of pollution has become
a predominant contributor to the degradation of water quality, leading to the concept of
priority pollutants of storm waters [469]. However, there is great complexity involved in
modelling, controlling and monitoring of diffuse pollution sources due to inherent uncer-
tainties that are involved.

In some cases an additional category is introduced, referred to as internal pollution.
Internal pollution refers to the pollution emitted by water bodies due to the degradation of
floating matter such as litter, aquatic plants and algae and via the release of contaminants
from sediment [214]. Sewage discharges into water bodies are a major contributor to
internal pollution sources, as they may lead to the formation of a thick black and odorous
sediment layer which release pollutants and degrades the water quality [214, 473, 99, 409].
Other contributors to internal pollution include agricultural and aquacultural backwaters
and industrial wastewaters [214].
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The hazards associated with contaminated water are numerous and varied:

Human Health: Human exposure and ingestion of waterborne pollutants can severely
impact health, potentially disrupting endocrine formation [139], increasing cancer risk
[326], and causing microbiological illnesses and infectious diseases [9]. In particular,
the spread of epidemics has been shown to be correlated with flooding events [372, 293].
Since a significant number of human diseases are linked directly to unsafe drinking water
and inadequate sanitation, the pollution of drinking water source areas is particularly
hazardous [397].

Environmental Degradation: Pollution of water bodies can lead to severe eutroph-
ication and the death of aquatic ecosystems [214]. Furthermore, this may result in the
occurrence of odorous black water agglomerates which emit odorous gasses [473]. More
generally, the pollution of water bodies results in a reduction of biological diversity and
a loss of ecological integrity for freshwater ecosystems [26]. There are also feedback
mechanisms effecting related economic activities and human health, with Bickford et
al. [63] identifying non-carcinogenic risks due to the ingestion of fish in contaminated
waterbodies.

Economic Losses: Decontamination of polluted water bodies and the treatment of
water for the purposes of drinking is costly and time consuming [223]. Furthermore,
flooding induced damages may be exacerbated by flood water which is contaminated by
hazardous pollutants [384]. The contamination and subsequent closure of swimming and
bathing areas also induces economic losses [9].

Preventative action and swift emergency response, where prevention fails or is absent, is
therefore required to manage the associated risks and minimise harm.

2.3.2 Field-Scale Applications

As evidenced, water quality has been the focus of global policymakers. For practitioners
concerned with water quality, hydrodynamic models, capable of modelling water quality,
are an important tool. The following sections are therefore dedicated to exploring the
existing role of hydrodynamic models within academic literature relating to the transport
of scalar quantities.

Source Identification

Disastrous point source emissions are fortunately rare. However, they are also hard to pre-
dict, with the potential for widespread hazards. An extreme example is the Fukushima
nuclear accident which occurred in March 2011, resulting in the widespread dispersion
of radionuclides [446]. Smaller scale point source emissions are of increasing frequency
in developed urban areas due to ageing drainage and sewage infrastructure which is in-
creasingly unable to cope with demand. This demand is only expected to worsen due to
increasing urbanisation and anthropogenic climate change [28]. In the United Kingdom
it is estimated that two-thirds of urban flooding is a result of the exceedance of urban
drainage system capacity [406] and Thames Water were fined £6million for releasing raw
sewage into surface waters due to a lack of sewerage capacity [152].

Under the acceptance that prevention is not always possible, there has been much research
interest in methods for source identification. Following detection of pollution, a reliable
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and accurate estimation of the time, source location and source intensity of a point source
following an accidental or intentional discharge is an important process. Once the source
is identified optimal remediation strategies can be executed and the responsible parties
may be fined and/or charged for remediation costs via powers granted by environmental
policy.

The required unknown information regarding the point source may be retrieved via solu-
tion of an inverse transport model. The inverse transport model considers the backwards
in time evolution from the measurement(s) to the unknown source. However, the inverse
transport problem is ill-posed as per the well-posedness criteria of Hadamard [204]; whilst
the existence criteria is satisfied, the problem is under-determined, due to the limited data
availability, and the problem is also unstable, since small errors in the measured data may
produce large errors in the solution, or more precisely, there is a lack of continuous de-
pendence of the outputs on the the input data [42]. Further complexity is introduced
by inherent epistemic and aleatory uncertainties in the model and data. This is then
amplified further if multiple point sources coexist.

Solution procedures can be categorised into three groups: (i) simulation-optimisation
methods [281, 475, 267, 495, 36, 35] (ii) probabilistic and geostatistical methods [478,
477, 476, 487, 497, 494, 126, 202, 213, 496] (iii) mathematical models [351, 317, 272,
284, 22, 210, 209], which are compared in Table 2.1. A thorough review of contemporary
inverse modelling of contaminant transport for pollution source identification in surface
and groundwaters can be found in Moghaddam et al. [42]. In each case a direct model,
that is the forward in time physically based modelling of the pollutant transport as would
be solved in a hydrodynamic model, is used in combination with an inverse model, as
shown in Figure 2.6.

Method Advantages Disadvantages
Simulation-optimisation Simple Non-unique

solution & high
computational
cost

Probabilistic and geostatistical Requires fewer
simulations,
accounts for
uncertainty

Limited number
of identifiable
pollutant
sources

Mathematical Computationally
efficient, unique
results

Complex

Table 2.1: Simple comparison of inverse methods for solving the inverse transport problem
[42, 18].

Surface water source identification is a nascent field compared to groundwater studies,
which originated approximately four decades ago [18, 478]. Surface water approaches
have tended to use simplified forward models, limiting their effectiveness. Amiri et al.
[18] therefore proposed a general framework for integrating established hydrodynamic
modelling software with pollutant transport capabilities into inverse modelling contexts.
Recent advancements, such as the novel remote sensing based inversion technique pro-
posed by Luo et al. [283] demonstrate that the growing integration of more sophisticated
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forward models is already manifesting in positive research developments and applications.
However, despite the outlined potential for point source emission during urban flooding
events, applications involving point source identification following urban flooding involv-
ing sewerage exceedance are not apparent. There is therefore scope for future research
with regards to urban applications as the fields of source identification and hydrodynamic
modelling continue to mature.

Direct Model

Γ(ϕ)

Inverse Model

Γ−1(ϕ)

Input

ϕ(x, t)

Source Location

Source Release
Functions

Output

C(x, t)

Spatio-temporal
distribution of
concentration

Figure 2.6: The relationship between a direct and inverse model of pollutant transport
for point source identification, adapted from Moghaddam et al. [42]. ϕ(x, t) denotes
the source term which includes all of the pollution sources. C(x, t) denotes the spatio-
temporal distribution of the pollution concentration in the solution domain.

Real-time Forecasting

The real-time forecasting and subsequent prediction of pollution events is critical for ensur-
ing sufficient lead time to implement protective measures and, where necessary, proactive
remediation strategies [394]. Sämann et al. [395, 394] proposed a Lagrangian trans-
port model coupled with a dual-drainage model to develop a computationally efficient
method for real-time forecasting of potential point source pollution emissions originating
from surcharged sewers. Optimisation of computational efficiency is necessary for real-
time forecasting applications to ensure a timely forecast process. Consequently, the au-
thors investigated potential simplifications of the hydrodynamic component of the model.
However, the research concluded that no meaningful simplification of the hydrodynamic
processes could be recommended [395]. This is primarily because accurately predicting
the transport dynamics demands high spatio-temporal resolution of the flow patterns,
especially for abrupt changes.

Similarly, Kim et al. [247] developed a forecasting system to prevent contamination of
drinking water resources following chemical accidents. The proposed model coupled the
Storm Water Management Model (SWMM) [306], for modelling the subsurface domain,
with a three-dimensional environmental fluid dynamics model [10], for modelling the sur-
face domain. The capability of the model is assessed through the analysis of hypothetical
scenarios, and although the results appear sensible, it is concluded that the model is in-
sufficiently efficient for timely responses to accidents. Consequently, the authors propose
the use of data-driven surrogate models, as presented in other relevant fields, to enable
timely forecasts.
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The work of Jin et al. [239] demonstrates the potential of data-driven models for real-time
early warning systems. The Authors implemented a genetic algorithm to select optimal
initial parameters for a neural network, and a back propagation network is used for fine-
tuning the connection architectures within the neural network. The use of an artificial
neural network is desirable since a sliding window prediction pattern can be implemented
to overcome a lack of long-term time series data records. The model therefore analyses
the inherent variations in the time series data for water quality parameters collected by
automatic sensors placed within a river. Through a field-scale application investigating
a railway bridge monitoring site of the Ashi river in the Songhua River Basin located
in China, the Authors demonstrate the capability of the model to identify water quality
anomalies.

This archetype of a model is ideal when paired with the point source identification methods
presented in Section 2.3.2. While the real-time early warning system presented by Jin
et al. [239] can successfully identify anomalous water quality readings observed within
a receiving water body, that information alone is insufficient to enable effective action.
The use of sophisticated hydrodynamic models within a source identification model may
present issues in terms of the time required to set up and run the model in a timely manner.
However, with the aforementioned advances in high-power computing, parallelization, and
the availability of cloud computing platforms [323], it is suggested that where the identified
pollution justifies the required resources, timely simulations can be performed.

The use of data-driven models for the flow routing component is highly desirable albeit
unfeasible under current circumstances. Ultimately, data-driven methods require high-
quality data to make predictions and flood modelling has a severe dearth of available
data, which is a significant barrier to the validation of physically based models, never-
mind the training of data-driven models. The consequent reliance on physically based
hydrodynamic simulations for model training [189] is clearly a challenge in this regard,
especially due to the rate at which urban environments change and develop.

Pollution Accidents and Multi-Hazard Modelling

Explorations of potential point source emissions resulting from an accident, or alterna-
tively flood-induced pollution, may be facilitated by hydrodynamic water quality models.
Through such studies effective preventative measures may be identified. The quantifi-
cation and implementation of point source discharges, especially those originating from
hypothetical accidents, is relatively simple in comparison to the quantification and im-
plementation of non-point sources. However, non-point sources of pollution may be the
predominant contributors of pollution [469] and therefore necessary to include despite the
associated challenges. Overall, the mechanisms through which flood induced discharges
occur, the subsequent impacts and the identification of diffuse sources of pollution are
challenges which require further attention.

An illustrative investigative study into potential accidental point source discharge is pro-
vided by Zavattero et al. [492], who utilised two-dimensional hydrodynamic models to
explore the potential consequences of an accidental pollution spill in the River Var. The
study investigates scenarios such as pollution resulting from a truck accident on one of
the four intersecting road bridges or via an industrial discharge. While the presented re-
sults demonstrate the capability of hydrodynamic models in simulating both conservative
and non-conservative pollutants transported through the river, comparisons between the
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tested models (Mike 21, Mike 21 FM, and Telemac2D) reveals a lack of consistency in
the respective results. Unfortunately, due to a lack of validation data it is not possible to
discern the accuracy of the models. The different results produced by the different mod-
els for the same scenario demonstrates the sensitivity of the advection diffusion process
to the numerical treatment, highlighting the importance of sophisticated and validated
numerical schemes to ensure physically relevant predictions. Similar studies examining
potential impact of point source discharges on drinking water sources in China have been
conducted by Sang et al. [397], Ding et al. [141], and Zhai et al. [493]. However, as with
the work of Zavattero et al. [492], much work remains to be done in terms of accounting
for sources of uncertainty and validating model results.

The degree of uncertainty involved in modelling flood-induced pollution events is un-
derscored by Stuyt et al. [423]. The Authors thoroughly investigated the potential for
flood-induced pollution via a model study of a wide dike breach impacting a study area
in the western Netherlands. Stuyt et al. [423] aimed to investigate the potential for flood
induced failure of objects resulting in the discharge of hazardous chemicals following a de-
tailed and exhaustive data collection process. However, the Authors discovered that even
when attempting to introduce simplified failure criteria based on local depth and velocity,
expert judgment had to be exercised due to a lack of supporting evidence. Merz et al.
[305] go so far as to question whether it is feasible to predict the release and transport
of pollutants in such scenarios. It is certainly the case that even if suitable parameteri-
sations of release conditions can be obtained through experimental studies, a high degree
of uncertainty will persist.

The data collection requirements for diffuse sources are also immense and likely imprac-
tical in most scenarios for most practitioners. Nevertheless, it is revealed that seemingly
less relevant objects, such as cars, when grouped, release substantial and damaging quan-
tities of toxic materials into floodwaters, whereas more obvious dangers, such as chemical
plants, were only problematic under extreme flood flows. This suggests that for the multi-
hazard modelling of environmental damage induced by flooding, diffuse sources should be
accounted for. To assist this, inventories of relevant substances which are made accessi-
ble to those involved in environmental modelling endeavours would be of great benefit.
Furthermore, a lack of validation remains a limiting factor, as once again, this study was
unable to verify either the numerical results or the failure assumptions.

A similarly detailed study was performed by Mark et al. [293], who analysed the link
between urban flooding and health risks. Reiner et al. [372] identified a correlation be-
tween El Niño flooding and cholera epidemics in Dhaka, Bangladesh, which Mark et al.
[293] investigated further. Specifically, the Authors employed a hydrodynamic water qual-
ity model to examine the transport of V. cholerae originating from drainage exceedance
induced by flooding. Although uncertainties were accounted for via Monte Carlo simu-
lation, this case study once more highlights the lack of process understanding prevalent
within the field of environmental flood modelling: in this case, the absence of supporting
evidence to derive dose-response relations hindered the Authors ability to directly link
the transport process to health hazards. Ahmed et al. [9] also identify challenges in de-
termining the concentration of pathogens within flood flows, which Mark et al. [293] were
able to overcome by taking aseptic samples. Such studies are referred to as quantitative
microbial risk assessments (QMRA) and the use of hydrodynamic water quality models is
currently limited. Addison-Atkinson et al. [6] identified the absence of a methodological
framework to enable the application of hydrodynamic modelling for conducting QMRAs
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as limiting effectiveness and progress. Brouwer et al. [78] also identify opportunities for
the integration of hydrodynamic modelling to reduce uncertainty in exposure estimations
resulting in more precise risk quantification.

There is therefore scope for the increasing integration and application of hydrodynamic
water models in the determination of risks and evaluation of hazards associated with
flood induced pollution events. Whilst there are clearly limitations that need addressing
with regards to data, validation and the physical understanding of associated physical
processes, it is important to remember that in all applications the accurate prediction
of the hydrodynamic properties of the flow is a fundamental prerequisite. Therefore
such applications are also supported by numerical advancements for the solution of the
governing equations.

Ecological Modelling

Understanding and modelling of the transport processes is also crucial to the management
of the ecology, especially in receiving water bodies. Consider for example the work of Shen
et al., [408] on fish habitats for dammed rivers. High dams often cause total dissolved gas
supersaturation downstream, negatively impacting fish populations by increasing the in-
cidence of gas bubble disease and mortality. However, downstream areas experience lower
total dissolved gas saturation due to gradual gas exchange and long retention times, creat-
ing a temporary refuge for fish during dam discharge. Via study of the total dissolved gas
at the confluence of the Zumuzu River and its tributary, the Mozigou River, the Authors
utilised a two-dimensional hydrodynamic model to identify engineering measures for the
expansion of the suitable shelter area. Following introduction of the proposed engineering
measures, the low total dissolved gas saturation zone was observed to be increased by a
factor of 30, significantly improving fish habitat quality along the river.

Wang et al. [474] studied the effect of hydrodynamic characteristics on the benthic diatom
biomass within natural streams. Benthic algae play a pivotal role in nutrient cycling, serv-
ing as primary producers and food sources for various aquatic organisms. These algae not
only regulate chemicals such as heavy metals but also provide habitat and stability within
riverine environments. Furthermore, their sensitivity to pollutants and abiotic factors ren-
ders them valuable bioindicators of aquatic ecosystem health. Although in this case, the
Authors only studied the effect of shear stress and the hydrodynamic characteristics on
benthic diatom biomass, the introduction of advection diffusion equations would have
enabled the further study of the relationship to nutrient and pollutant transport. This
is also relevant to the topic of river restoration, with the removal of hydraulic structures
altering flow characteristics and subsequent transport processes which are important to
consider from an ecological perspective.

Pyo et al. [365] demonstrated that the use of hyperspectral imagery to define initial con-
ditions can support the prediction of algal blooms. Harmful algal blooms can cause major
damage to aquatic ecosystems by degrading water quality and therefore predicting the
spatio-temporal characteristics of a bloom can facilitate proactive mitigation strategies.
Pyo et al. [365] used the three-dimensional environmental fluid dynamics code developed
by the South Korean National Institute of Environment Research, known as EFDC-NIER,
to study the Chlorophyll-a concentrations in the Nakdong River, South Korea.

The use of three-dimensional codes for fluvial studies is common, as evidenced by the
review of ecological hydrodynamic models by Anagnostou et al. [19]. The use of three-
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dimensional models for fluvial applications makes sense as the computational domain is
commonly larger and less complex than for urban applications. Furthermore, the use of a
three-dimensional code provides a more explicit and accurate representation of complex
three-dimensional flow features such as secondary currents and turbulent mixing pro-
cesses and enables a more accurate representation of obstacles to flow such as the weirs
modelled by Pyo et al. along the Nakdong River. However, the higher computational ef-
ficiency of two-dimensional models may provide a means to produce real-time forecasting
or probabilistic explorations of the potential for algal blooms.

When considering eutrophication processes in particular, Anagnostou et al. [19] identified
that most models do not adequately account for secondary processes. For example metal
reactions, zooplankton dynamics, denitrification, sediment diagenesis, organic matter re-
cycling. This highlights the complexity involved and the requirement for further develop-
ment of models to account for complex interactions when performing detailed analyses.
Particularly within the development of hydrodynamic models, the reaction component
of the advection-diffusion-reaction equations is seldom considered but may be critical for
certain applications.

2.3.3 State-of-the-Art Models, Validation and Numerical Chal-
lenges

It is clear from the wide-ranging applications presented in Section 2.3.2 that there is a
requirement for hydrodynamic water quality models capable of modelling the advection
and diffusion of scalar quantities. The current state-of-the-art hydrodynamic models with
water quality capabilities are dual drainage models with efficient GPU implementations
[161, 97, 184, 242, 147, 398]. However, it is evident that there is still much progress to be
made.

In most cases the reaction process, which is an important consideration for non-conservative
tracers, is very rarely considered when presenting numerical schemes or hydrodynamic
water quality models. Within the outlined applications, the use of advection-diffusion-
reaction equations is clearly beneficial where non-conservative pollutants are under consid-
eration and much more emphasis needs to be placed upon understanding and implement-
ing reaction processes. The most progressive model in this regard is the Water Quality
Analysis Simulation Program model (WASP) [485] which is capable of handling up to 10
depth-averaged transportation equations with 20 inbuilt conversion processes.

There is also much progress to be made with regards to the validation of hydrodynamic
water quality models. When analysing publications which present numerical develop-
ments for the modelling of transport process the vast majority present only numerical
tests [440, 333, 334, 101, 84] or limited analytical validation [456, 439, 340, 331, 330, 273,
271, 257, 249, 199, 135, 94, 83, 53, 52, 48, 40, 30] with very few presenting experimental
or field validation [178, 332, 321, 85]. In general most of the analytical validation is per-
formed via comparisons with analytical solutions for simple advection diffusion scenarios.
The work of Morales-Hernández et al. [321] is unique in that the numerical results are
validated against an observed time varying concentration field obtained via laser induced
fluorescence. However, even in this exemplary case, the overall modelling scenario is rel-
atively simple and much more work is to be done to have confidence in the application
of hydrodynamic water quality models within complex urban environments. The current
state of validation for advection diffusion processes is unsurprising considering that the
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validation of hydrodynamic flood models, which is comparatively simpler to achieve, is
generally limited to flood inundation extents and/or localised depths; amongst the 10
best documented urban flood events only seven contain data suitable for validating flow,
which is restricted to watermark data [285].

Whilst field-scale validation data is often considered the most valuable form of validation
data for field-scale models [228], the expense, uncertainty and practical challenges involved
with field-scale observations of transport processes, especially within urban areas, suggests
that the pursuit of field-scale validation data for advection-diffusion-reaction processes is
currently unrealistic. Physical models, such as the scale model of the Severn estuary
presented by Osei-Twumasi et al. [345], present a more convenient alternative however,
there are challenges involved with the production of erroneous predictions due to the
difficulty scaling the dispersion and diffusion processes. The work of Osei-Twumasi et
al. [345] encountered such issues however, the obtained results still agreed well with
field studies and other studies reported in literature relating to tidal dynamics and water
quality in the estuary. As of yet, no such physical model has been produced and studied
for water quality considerations in urban environments.

Mignot et al. [310] reviewed experimental modelling of urban flooding and identified that
there is a lack of experimental data associated with the transport of pollutants in urban
environments. As such the Authors recommend that ‘future experimental research aims at
getting more quantitative insights into these associated processes closely intertwined with
flow behaviour during urban flooding ’. A recent example of this is the work of Rubinato
et al. [385] on the flow exchanges, energy losses and pollutant transport in a surcharging
manhole. For the solute transport component of the study conducted by Rubinato et al.
[385] Cyclops-7F™ fluorometers were used to measure the concentration of a fluorescent
tracer dye passing through the manhole. Whilst this represents progress, there is still
much work to be done.

The cost-effective PCA technique presented by Arques et al. [23] therefore provides a
comprehensive and accessible tool for detailed analysis of advection diffusion processes.
The proposed method is built upon the PCA technique initially devised by Rummel et
al. [386], which leverages established hydro-optical theory [25, 82, 248] to enable the
nonintrusive determination of the observed concentration field. Although the method is
potentially challenging to implement, as the analysis of the optical response of the tracer
and the are non-trivial, the accessibility is important in facilitating experimental studies
of advection diffusion processes. The method is however restricted only to advection
diffusion processes and not advection-diffusion-reaction processes as the tracer must be
conservative.

2.3.4 Numerical Diffusion and Boundedness

A numerical scheme used to approximate a system of partial differential equations, such
as the SWEs, does not provide an exact solution. The local truncation error can therefore
be determined by assessing how well the approximate solution provided by the numerical
scheme, agrees with the exact solution of the differential equation. Since the numerical
scheme provides an inexact approximation of the desired system of partial differential
equations, it is possible to define a differential equation that the numerical scheme more
accurately approximates, which is referred to as the modified equation for the numerical
scheme. The classical study of the modified equation, as presented in standard text-
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books [268, 437], enables prediction of the qualitative behaviour of a numerical scheme.
Through this study it can be seen that qualitative behaviour of first order schemes is
diffusive, resulting in a smearing of the solution over time. This type of behaviour is
particularly problematic for advection-diffusion schemes, especially for long duration sim-
ulations.

The capability for numerical schemes to preserve the peak concentration and the shape
of an initial concentration is therefore a desirable property which is tested analytically
via long duration numerical tests involving pure advection. Due to the diffusive nature of
first order upwind schemes, such schemes are typically unsuitable in this regard, produc-
ing increasingly smeared concentration profiles with a corresponding reduction in peak
concentrations over the duration of the simulation [199, 331, 321, 330].

The qualitative behaviour of second order schemes is dispersive, which results in a train of
oscillations following a discontinuity in contrast with the diffusive behaviour of first order
schemes. However, extension of a scheme to second order spatial accuracy to remedy issues
relating to excessive numerical diffusion is not necessarily straightforward; for second order
schemes utilising flux or slope limiters, the choice of limiter has a strong influence on the
quality of the results [53, 83].

Furthermore, Murillo et al. [331] demonstrated that there are fundamental numerical
challenges for second order upwind schemes applied to advection diffusion problems which
cannot be overcome. Precisely, Murillo et al. [331] proved that it is not possible to obtain
second order spatial accuracy for both the conserved variables and the solute concentration
for upwind schemes. This is due to the fact that the concentration of a transported
quantity is a primitive variable, derived from the flow depth and the mass of the quantity,
which are conserved variables. As a consequence, the concentration is independent of the
eigenstructure of the system and therefore the monotonicity properties of the numerical
scheme apply only to the mass of the quantity and not the concentration.

This means that it is also non-trivial to ensure bounded values of concentration. When a
conserved cell variable is updated, a conservative numerical scheme ensures that the up-
dated value of the conserved variable is bounded by the neighbouring minimum and max-
imum values. Due to the outlined issues regarding solute concentrations, this condition
must be explicitly enforced. A solution to this problem is introduced via a conservative
redistribution of the updating contributions in [333], with further discussion and imple-
mentation being explored in [330, 331, 332, 83] for conservative upwind schemes utilising
Roe approximate Riemann solvers [381]. In this regard, the treatment of wet/dry fronts
also requires special numerical consideration [332, 40, 48].

The minimisation of numerical diffusion and oscillations can also be achieved via the
implementation of higher order accuracy schemes. This is demonstrated by Cai et al. [84],
who implemented a fourth order central weighted essentially non-oscillatory reconstruction
with an adaptive semi-discrete central upwind scheme. The proposed scheme can achieve
an arbitrary order of spatial accuracy in the absence of source terms. However, the second
order discretisation of the source terms presented by the Authors proves to be of high-
resolution and non-oscillatory. It should be noted however, that Cai et al. only consider
the case of pure advection with no diffusion.

It is also possible to eliminate errors relating to both numerical diffusion and oscillations
by implementing a non-diffusive decoupled method for the advection diffusion process.
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However, caution is advised when considering decoupled implementations for conservative
upwind schemes. Historically, decoupled treatment of the advection of the transport
process has presented a popular solution since it enables the implementation of simple and
computationally efficient schemes, under the assumption that the transported quantity
has negligible influence on the flow dynamics for sufficiently low concentrations. However,
Burguete et al. [83] showed that a decoupled discretisation of the solute transport results
in significant numerical challenges that require special corrections [334]. This supported
by the results presented by Bai and Jin [40], which exhibit the same numerical issues
outlined by Burguete et al.

Suitable non-diffusive decoupled methods include the use of a hybrid finite-volume-particle
method approach as presented by Chertock et al. [101] and Touma and Saleh [440]. In the
proposed scheme, the solution of the shallow water system is achieved via a central-upwind
scheme and the subsequent advection of the solute is achieved using a particle method.
As demonstrated by Sämann et al. [395, 394], Lagrangian transport models provide a
suitable alternative to traditional Eulerian approaches due to their non-diffusive nature.
In the particular case of a central-upwind scheme, without the decoupled treatment of the
transport problem, the scheme is unable to sufficiently resolve the contact wave across
which the concentration of a quantity is discontinuous. However, non-dissipative filters
are required to remove numerical oscillations which increases the computational cost of
the scheme. It should also be noted that both of the referenced methods do not consider
the diffusion of a scalar quantity, presenting only the pure advection problem.

When considering the detrimental effects of numerical diffusion it is also important to
consider the potential for geometrically irregular meshes to exacerbate local numerical
diffusion. For finite volume methods solving advection-diffusion problems, it is common
to present a flexible implementation on irregular unstructured grids [30, 53, 249, 271,
456, 321, 199, 94] in order to provide greater meshing flexibility for complex geometries.
For explicit schemes, satisfaction of the Courant-Friedrichs-Lewy (CFL) condition [114]
is necessary but not sufficient to ensure stability. Within a computational domain the
satisfaction of the CFL condition is ensured at each time level by considering the max-
imum propagation speeds present within the domain. The local truncation error and
consequently the modified equation are also functions of the Courant number and there-
fore the local Courant number has an influence on the local behaviour of the numerical
scheme. Therefore, where meshes exhibit a high degree of geometric irregularity, when the
smaller cells dominate the time step, slower moving or stagnant flow in larger cells may
experience excessive numerical diffusion due to a low local Courant number [301], which
is proportional to the wave propagation speed and time step and inversely proportional
to the cell size. Adaptive mesh refinement [56], as implemented by Benkhaldoun [53],
and local time-stepping [427, 251] are solutions to this problem where flexible meshing is
desired however, efficient implementation is complex. Adaptive mesh refinement and local
time-stepping can also provide significant improvements in computational efficiency.

2.3.5 Problem Specific Numerical Treatments

Most Authors, when presenting numerical schemes for the solution of advection diffusion
equations, operate under the assumption of dominant advection, justifying the treatment
of the advection diffusion equations as hyperbolic. However, the advection-diffusion(-
reaction) equations are in fact parabolic in nature. Considering the applications presented
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in Section 2.3.2, the assumption of pure advection is almost ubiquitously appropriate
however, there may be niché cases in which the flexibility to consider diffusion domi-
nant processes is desired. A suitable numerical treatment of the problem to enable the
rigorous application of numerical methods for hyperbolic conservation laws is therefore
proposed by Montecinos and Toro [320]. The Authors address the parabolic character
of the equations by using Cattaneo’s relaxation approach [91] to reformulate the system
into a hyperbolic system with stiff sources. In Vanzo et al. [456], this technique can be
seen to produce a scheme with a favourable stability range, producing robust second order
accurate approximations.

If hydrodynamic models are to be applied to applications involving rainfall runoff, which
are relevant to water quality studies in urban areas due to the aforementioned first flush
phenomena, Cea and Vázquez-Cendón [94] demonstrated that a well-balanced discretisa-
tion of the friction source terms is required. The requirement for a well-balanced treatment
of the bed slope is widely acknowledged and the satisfaction of the C-property is required
for any proposed numerical scheme. However, for cases where the bed friction and the
bed slope are the leading terms in the momentum conservation equations, as opposed to
the internal and hydrostatic pressure forces in typical scenarios, the discretisation of the
bed friction has a significant influence on the numerical approximation. In such cases,
the proposed upwind discretisation of the friction source term provides superior accuracy
and stability in comparison with a classical centred semi-implicit discretisation.

When considering applications involving meandering channels, Caleffi and Valiani [85]
demonstrated the importance of adequately capturing the effects of spiral motion. Spiral
motion, which may also be referred to as secondary currents, is a three-dimensional effect
induced by the imbalance of centripetal and pressure forces. The effect causes a divergence
between the fluid parcels near the free surface, which are driven towards the outer bank,
and fluid parcels near the bed, which are driven towards the inner bank. The net effect
of this phenomena is a redistribution of the longitudinal velocity and solutes [145, 98]
which is important to capture in order to produce physically relevant approximations for
channels with high curvature. The scheme proposed by Caleffi and Valiani [85], based
upon the mathematical model of Begnudelli et al. [50], includes an exhaustive treatment of
the bottom shear, momentum dispersion, scalar dispersion and turbulent diffusion terms
which is atypical of common advection diffusion models.

2.3.6 Diffusion Source Terms

As identified by Mignot et al. [311], there is a lack of scientific consensus within published
works regarding the formulation of the depth-averaged advection-diffusion equations and
the determination of the corresponding coefficients of the dispersion-diffusion tensor. The
lack of consistency in this regard can also be seen in the number of schemes discussed in
this Section 2.3.3 which neglect the diffusion process entirely. Schemes which also consider
the reaction process are seldom found.

For an advection diffusion equation, the diffusion process is implemented via source terms
related to the components of a dispersion-diffusion tensor for the depth-averaged mixture.
Although the diffusion process is three-dimensional in the nearfield, the depth-averaged
nature of the shallow water equations and two-dimensionality of contemporary models
requires simplification of the three-dimensional description.
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Ignoring the issues associated with the improper formulation of the advection-diffusion
equations, the determination of the diffusivity tensor presents a significant practical chal-
lenge. As shown by Mignot et al. [311], the diffusivity tensor accounts for a variety of
processes and it is therefore imperative that appropriate values are assigned. Within his
seminal paper Elder [149] empirically estimated the values of the diffusivity tensor for
fully developed boundary layer flows in straight channels. However, the evaluation of
the tensor is highly dependent on the application since the diffusivity tensor is used to
parameterise the effects of molecular diffusion, turbulent diffusion and diffusion induced
by secondary currents which are dependent on the specificities of the application.

Although there is a wealth of publications dedicated to the estimation of the longitudinal
dispersion coefficients [7, 27, 37, 39, 38, 341] there is a lack of a coherent approach. As
proposed by Mignot et al. [311], the implementation of a consistent and transparent
process in which the evaluation of the components of the diffusivity tensor are justified
and validated would certainly be of great assistance in future applications.

Once the components of the diffusivity tensor are determined it is also important to
consider the suitable discretisation of the source terms. Implicit treatment of the dif-
fusion source terms results in no further restriction of the timestep with respect to the
hydrodynamic component albeit requiring a potentially expensive iterative solution. The
alternative is to use an explicit treatment which is computationally simpler but imposes a
greater restriction on the timestep. Techniques which expand the region of stability, such
as [329], are therefore also valuable tools. Similarly, the sub step explicit resolution of
the diffusion terms introduced by Morales-Hernández [321] prevents reduction of the time
step for the hydrodynamic component, enabling a more efficient computation for explicit
treatments.

2.3.7 Summary

The presented literature demonstrates the requirement for hydrodynamic modelling for
applications concerning water quality. In particular, hazards induced by point source
emissions of pollution present a significant threat to human health and the environment.
The predictive study of potential pollution discharges or the retroactive study of accidental
or intentional discharges provides a basis for identifying optimal preventative measures
and remediation strategies.

Via the introduction of advection-diffusion equations, under the assumption of dominant
advection, well-mixed quantities are assumed to be passively advected by the flow field
resolved by a hydrodynamic model. The accurate determination of the flow characteris-
tics is therefore a prerequisite for the modelling of transport processes. If the accurate
representation of obstacles to flow is required for the accurate determination of the lo-
cal flow characteristics, as has been evidenced in Section 2.1.1, it therefore follows that
this is a minimum requirement for the modelling of the advection and diffusion of scalar
quantities. Hence, objective 3 seeks to enhance the accuracy of models in the presence of
partial barriers to flow:

Objective 3: To add and experimentally validate the capability to model the transport
of well-mixed dissolved solutes through linear fixed immiscible partial barriers to flow
for Solver 2.

The validation of the solver via means of laboratory experiments aids not only in the
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verification of the predictive capacity of the solver but also in addressing, in a small way,
the lacking data and process understanding which is required to support the development
of urban flood and water quality models. The choice to only implement this capability for
Solver 2 is related to the absolute requirement to accurately resolve the flow as a prereq-
uisite for the modelling of the transport process. The required solution procedure must
also address or be compatible with the identified numerical challenges and corresponding
solutions in Section 2.3.3.
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Chapter 3

A New Riemann Solver for
Modelling Partial Barriers in Flood
Flows - Development and
Experimental Validation

Flows in rivers can be strongly affected by obstacles to flow or artificial structures
such as bridges, weirs and dams. This is especially true during floods, where signif-
icant backwater effects or diversion of flow out of bank can result. However, within
contemporary industry practice, linear features such as bridges are often modelled
using coarse approximations, empirically based methods or are omitted entirely.
Presented within this paper is a novel Riemann solver which is capable of modelling
the influence of such features within hydrodynamic flood models using finite volume
schemes to solve the shallow water equations. The solution procedure represents
structures at the interface between neighbouring cells and uses a combination of
internal boundary conditions and a different form of the conservation laws in the
adjacent cells to resolve numerical fluxes across the interface. Since the procedure
only applies to the cells adjacent to the interface at which a structure is being mod-
elled, the method is therefore potentially compatible with existing hydrodynamic
models. Comparisons with validation data collected from a state of the art research
flume demonstrate that the solver is suitable for modelling a range of flow conditions
and structure configurations such as bridges and gates.

This chapter has been published as: James Mckenna, Vassilis Glenis, Chris
Kilsby, A new Riemann Solver for Modelling Bridges in Flood Flows - Develop-
ment and Experimental Validation, Applied Mathematics and Computation,
Volume 447, 2023, 127870, 10.1016/j.amc.2023.127870.
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3.1 Introduction

Hydrodynamic models are a vital component of contemporary flood risk management
practice, providing evidence to inform future investment and risk assessment. It follows
that the accurate modelling of hydrodynamic phenomena is fundamental to effective flood
risk management since the quantification and analysis of risk is dependent on modelling
results. Channel structures, such as bridges, weirs and gates can act as partial barriers to
flow, significantly influencing the local flow characteristics [479, 105, 109]. Yet, despite the
established importance of accurately capturing hydrodynamic phenomena, methods for
modelling linear features which act as partial barriers in two-dimensional computational
domains are relatively under-developed. Methods for modelling such interactions within
three-dimensional simulations exist [261], however, the complex meshing requirements
and the inherent computational expense prohibits their use on spatial domains relevant
to flood risk management. Moreover, within contemporary industry practice such features
are often modelled using coarse approximations, empirically based methods or by omitting
such features entirely [234, 54, 444, 81]. There is no unified approach to modelling linear
features within horizontal two-dimensional hydrodynamic models, with available methods
including:

• Modelling as finite bottom elevations.
• Local friction-based representation.
• Modelling as ‘holes’ within the mesh.
• Modelling via internal boundary conditions.
• Modelling as source terms within the numerical scheme.
• Modification of the conservation laws.

However, each method has its respective limitations. A study conducted by Alcrudo [11]
demonstrated significant challenges related to modelling obstructions with local friction-
based representations. This was primarily due to the impracticality of selecting an appro-
priate Manning's roughness coefficient. The use of finite bottom elevations was also found
to be problematic due to numerical instabilities for some numerical schemes. Both meth-
ods are coarse, unphysical approximations, making them unsuitable for high resolution
modelling of hydrodynamic interactions with hydraulic structures. Modelling features as
‘holes ’within the mesh, commonly referred to as the mesh discretisation method, is also
unsuitable for generalised treatment of linear features since the method is incompatible
with partial barriers to flow. This is due to the fact that once a feature is modelled as
a hole within the mesh, the feature is no longer part of the computational domain, dis-
rupting the exchange of conserved variables (depth and momentum for the shallow water
equations) across the feature.

More sophisticated approaches include the work of Maranzoni et al. [289], who locally
modified the conservation laws by introducing a fictitious vertical slot to the ceiling of the
cells representing a linear feature. This enables the transition between free surface and
pressurised flow to be captured via the Preissmann slot concept [363]. However, this also
means that the method suffers from the well documented limitations of the Preissmann
slot concept as discussed by Vasconcelos, Wright and Roe [462] and Malekpour and Karney
[287], which the authors also acknowledge in their work. Furthermore, the method requires
further work in order to be suitable for generalised treatment of linear features, as it can
only currently simulate pressurisation without overtopping.
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Morales-Hernàndez et al. [322], Ratia et al. [371] and Dazzi et al. [129] have all pro-
posed implementations of internal boundary conditions to model hydraulic structures.
The proposed methods calculate the unit discharge across hydraulic structures by select-
ing appropriate rating curves or discharge formulae dependent on the inundation depth
calculated from the adjacent cells or at the interface. Morales-Hernàndez et al. [322]
and Dazzi et al. [129] both present similar methods with the PARFLOOD model pre-
sented by Dazzi et al. promising the most general applicability. However, the reliance
on stage-discharge relationships under certain circumstances, sensitivity to the selection
of uncertain discharge coefficients and the potential to induce directionality for skew fea-
tures are conceivable flaws. Furthermore, as shown by Hou and Le Floch [224], use of
non-conservative schemes can result in convergence to incorrect solutions.

The head loss source term introduced by Ratia et al. [371] accounts for the losses induced
by contraction and expansion of flow through a hydraulic structure. Whilst this method
is effective in capturing the macroscale effects induced by the presence of the structure,
it is unable to sufficiently capture near-field flow effects including potential downstream
supercritical flows. It is therefore clear that more progress is required towards the devel-
opment of a solver capable of accurately resolving fluxes across general partial barriers to
flow, within two-dimensional finite volume schemes, for the purpose of flood modelling.
Consequently, the purpose of this paper is to build upon some of these methods, pre-
senting a novel method capable of generalised treatment of partial barriers to flow. The
method is intended to be compatible with existing flood models utilising Finite Volume
(FV) schemes to solve the shallow water equations.

3.2 Mathematical Model

The proposed method utilises internal boundary conditions in addition to using a different
form of the conservation laws in the adjacent cells. As a result, hydraulic structures
are idealised as existing at the interface and modelled as a partially reflective boundary
between the adjacent cells. Consequently the interfaces within the computational domain
can be divided into structure interfaces, employing the novel solution procedure to resolve
numerical fluxes, and non-structure interfaces, employing a standard solution procedure
to resolve numerical fluxes.

For the non-structure interfaces and the corresponding adjacent cells, a one-dimensional
(1D) FV scheme is used to solve the 1D Shallow Water Equations (1D-SWE) given
as:

Ut + F(U)x = S(U) (3.1)

Where U is the vector of conserved variables, F(U) is the vector of fluxes and S(U) is
a vector of sources comprising of S0, the bed slope source term and Sf , the bed friction
source term. These terms are given as follows:

U =

[
h

hu

]
, F =

[
hu

hu2 + 1
2
gh2

]
, S0 =

[
0

−gh ∂z
∂x

]
, Sf =

[
0

−τf

]
(3.2)

Whereby h denotes the depth of flow, z is the elevation of the bed, u denotes the velocity
component in the x direction, g is the acceleration due to gravity and τf is the shear stress
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due to friction in accordance with Manning’s equation:

τf = Cfu|u| =
gn2

3
√
h
u|u|

where Cf is the Manning’s bed friction coefficient and n is Manning’s roughness coefficient.
For the structure interfaces and corresponding adjacent cells, a 1D FV scheme is used to
solve the two layer 1D-SWE as derived by Spinewine et al. [418]:

Ut + F(U)x = S(U) (3.3)

U =


h2
h2u2
h1
h1u1

 (3.4)

F =
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h2u2

(h2u2)2
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2
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2
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q1
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 (3.5)

S =


0

R12

ρ2

0

−χR12

ρ2
+R1 − τf

 =
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0

−gh2 ∂z1∂x

0
χgh2

∂z1
∂x
− g(χh2 + h1)

∂z0
∂x
− τf

 (3.6)

Where the subscript 2 refers to the upper layer and subscript 1 refers to the lower layer of
a two layer shallow water model. R12 is the reaction force exerted by the lower layer onto
the upper layer, R1 is the reaction of the bed onto the bottom layer and ρk is the density
of the fluid in layer k. Both sets of equations are discretised using the same first order
accurate, explicit FV scheme whereby the conserved variables are updated in accordance
with equation (3.7).

Un+1
i = Un

i −
∆t

∆x

[
Fi+ 1

2
− Fi− 1

2

]
+∆tS (Un

i ) (3.7)

Where the subscript i represents the ith cell, the superscript n represents the nth time level
and ∆x and ∆t represent the cell size and time step respectively. Although a 1D scheme
is implemented in this case, implementation as a 2D scheme requires no fundamental
changes to the method.

3.2.1 Numerical Flux Computation

Harten-Lax-van Leer (HLL) approximate Riemann solvers [212] are used to resolve inter-
cell numerical fluxes for the entire computational domain, however, other approximate
Riemann solvers may be used to resolve numerical fluxes across non-structure interfaces.
A novel solution procedure is proposed for resolving numerical fluxes across structure
interfaces using a newly developed HLL approximate Riemann solver.

The fundamental concept behind the proposed method is the assumption that the motion
of the fluid can be treated as primarily horizontal in nature, which is a necessary condi-
tion required for application of the shallow water equations. Consequently, the structure
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cells can be divided into horizontal layers corresponding to the structure idealised at the
interface. By dividing the layers in such a way, component fluxes can be resolved for each
layer. Through summation of the component fluxes at an interface, it is then possible
to determine a flux for the left and right sides of the structure interface. The partially
reflective nature of the boundary is captured by implementing appropriate boundary con-
ditions for the individual layers as well as discretising the cell average properties of the
respective left and right states (see Figure 3.1). Based on the boundary condition applied
to the layer at the interface the layers are designated as either ‘open’, corresponding to a
transmissive boundary condition at the interface, or ‘closed ’, corresponding to a reflective
boundary condition at the interface. Structure interfaces require a left and right flux, as
opposed to a single flux for non-structure interfaces, due to the fact that the left and right
states for closed layers are considered to be discontinuous. Fluxes for submerged layers
are calculated using (3.8).

F
(S)
k =

[
hkuk

(hkuk)
2

hk
+ 1

2
gh2k + χghuhk

]
=

[
qk
σk

]
(3.8)

Where the subscript k represents the kth layer and hu represents the sum of the layer
depths above the submerged layer. Since the layers are the same density the χ = ρ1

ρ2
term

is always equal to one. Fluxes for free-surface layers (the upper most layer of a structure
cell) are calculated using (3.9).

F
(FS)
k =

[
hkuk

(hkuk)
2

hk
+ 1

2
gh2k

]
=

[
qk
σk

]
(3.9)

h NSIa NSI SI

Open Open

Closed Closed

Open Open

NSI bNSI

Structure CellsNon-Structure Cells Non-Structure Cells

Figure 3.1: A simple computational domain [a, b] illustrating the designation of structure
and non-structure cells as well as open and closed layers for the structure cells. Non-
structure interfaces are denoted using the abbreviation NSI and structure interfaces are
denoted using the abbreviation SI. The split layer properties of the structure cells are
only required for computing intercell fluxes across structure interfaces; a non-structure
interface that is adjacent to a structure cells treats the structure cell as a non-structure
cell utilising the cell-average properties.

3.2.2 Solution Procedure

At each timestep the adjacent cells are divided into horizontal layers corresponding to the
base and cover of the idealised structure at the interface, as demonstrated in Figure 3.2.
This corresponds with the prior outlined assumption that the direction of flow is primarily
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parallel to the bed. Whilst there is undoubtedly a vertical exchange in momentum between
the horizontal layers at such an interface, it is impractical to model such effects within a
one-dimensional or two-dimensional scheme.

h Case I

x

z1

Case II

x

z1

z2

Case III

x

z1

z2

Figure 3.2: Definition of layers for cells adjacent to a structure interface. z1 and z2
represent the elevation of the base and cover of the structure.

The next step is to assign velocity to the layers. This is achieved by using the following
assumptions:

• hu =
∑n

1 hnun where h is the cell average depth, u is the cell average velocity and
hn and un are the depth and velocity of the nth layer.

• The fluid velocity is exactly equal to zero at the interface/structure for a closed
layer.

• The fluid velocity in closed layers is much smaller than the fluid velocity in open
layers, provided the flow isn’t stationary.

The first assumption equates to the conservation of momentum for the cell following layer
velocity assignment, which is a necessary requirement. The second and third assumptions
are used to justify assignment of zero velocity to the closed layers. In reality, this results
in an underestimation of the fluid velocity for closed layers, which is expected to be small
but non-zero, and a subsequent overestimation of the fluid velocity for the open layers.
However, this only impacts the computation of the numerical fluxes for the open layers
since solution of the Riemann problem for closed layers is dependent on the assumed zero
velocity at the interface, which is valid provided the structure is motionless. Further-
more, a more sophisticated discretisation of the layer velocities would likely improve the
method, however, this simplified approach has been found to be satisfactory in capturing
the approximate vertical velocity profile. Using these assumptions, the velocity for each
layer can be determined as shown in Figure 3.3. Another simplistic velocity assignment
approach that can be considered is to assume that the velocity in each of the layers is
equal to the cell average velocity. However, this approach was found to produce a signif-
icantly underestimated momentum flux as a result of underestimating the flow velocity,
especially for the base layer.

Once the layers and their respective properties are defined the next step is to calculate
fluxes layer by layer. As shown by Spinewine et al. [418], due to the lack of coupling
between the layers in (3.5), the flow variables in the upper layer are constant across the
waves of the bottom layer for the solution of the homogeneous conservation law. This
principle can be used to apply the two-layer equations to an n-layer system by taking the
lower layer to be the layer in question and the upper layer to be the combined layers of
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Case II

h1,L u1,L

h2,L u2,L

h1,Ru1,R

Case III

h1,L u1,L

h2,L u2,L

h3,L u3,L

h1,Ru1,R

h2,Ru2,R

hLuL = h1,Lu1,L + h2,Lu2,L

u2,L = 0

u1,L = hLuL

h1,L

hLuL = h1,Lu1,L + h2,Lu2,L + h3,Lu3,L

u2,L = 0 and uLopen = u1,L = u3,L
uLopen = hLuL

h1,L+h3,L

Figure 3.3: Velocity assignment with example calculations shown below. hL = the depth
of the non-split left cell, uL = the cell average velocity, hn,L = the depth of the nth split
layer, un,L = the velocity of the nth split layer.

flow above.

For the closed layers, since the left and right states are separated by a reflective boundary,
two fluxes, as opposed to a single flux for the open layers, are to be calculated correspond-
ing to the solution of two Riemann problems involving the left/right layer state and a
reflective boundary condition. Once the component fluxes have been calculated for each
layer a flux for the left side of the interface can be calculated by summing the left side
fluxes for the closed layers with the fluxes for the open layers and a flux for the right side
of the interface can be calculated by summing the right side fluxes for the closed layers
with the fluxes for the open layers. Updating of the conserved variables is conducted on a
cell average basis using these fluxes, meaning that redefinition of the layers and redistri-
bution of the layer properties must be conducted at each timestep based on the updated
cell average properties.

The outlined procedure, which is summarised in the pseudocode contained within Algo-
rithm 1, can be demonstrated by considering the scenarios presented in Cases I-III. Case
I is a trivial case, requiring no special treatment in comparison to the non-structure cells
since there is only one open layer containing depth of flow for both left and right states.
Case II is more complex, requiring the resolution of two fluxes via the solution of two
Riemann problems: a flux for the base layer and a flux for the left side of the structure.
As illustrated in Figure 3.4, the solutions to the Riemann problems constructed at the
left and right side of the interface for a closed layer always produce a depth flux of zero
and a momentum flux equal to the pressure force exerted by the layer of water on the
wall (assuming a hydrostatic pressure distribution), which is equal to 1/2gh22,L for Case
II.

Case III introduces further complexity, requiring the resolution of four fluxes via the
solution of four Riemann problems: a flux for the base layer, a flux for the left side
of the structure interface, a flux for the right side of the structure interface and a flux
for the uppermost layer. The Riemann problem constructed for the uppermost layer
includes a dry right bed as there is no depth of flow in this layer for the right state. As
a consequence, the wave pattern and corresponding wavespeeds displayed in Figure 3.5
are utilised. An alternative approach is to model these types of layers as free outfalls,
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Algorithm 1 Structure cell flux computation algorithm. Subscript k refers to the kth
layer under consideration. Subscript u refers to the depth of water above the kth layer.

for each open layer do
calculate wavespeeds if wet cells then

SL = uopen,L − ak,Lqk,L , SR = uopen,R + ak,Rqk,R (1)

ak =
√

(hk + hu)g

qk =


√

1
2

[
(h∗+hk)h∗

h2
k

]
if h∗ > hk

1 if h∗ ≤ hk

h∗ =
1

2
(hk,L + hk,R) +

1

4

(uk,R − uk,L)(hk,L + hk,R)

(ak,L + ak,R)

else if left dry cell then

SL = uopen,R − 2ak,R , SR = uopen,R + ak,R (2)

else
right dry cell;

SL = uopen,L − ak,L , SR = uopen,L + 2ak,L (3)

calculate layer flux

Fk =

[
hkuk

(hkuk)
2

hk
+ 1

2
gh2k + χghuhk

]
(4)

Flayer =


Fk,L if SL > 0

Fhll =
SRFk,L−SLFk,R+SRSL(UR−UL)

SR−SL
if SL ≤ 0 ≤ SR

Fk,R if SR < 0

(5)

end for
for each closed layer do

for the left side do
introduce fictitious ghost cell for right state (equal depth and equal and opposite
velocity) calculate wavespeeds using (1) calculate layer flux using (4)&(5)

end for
for the right side do

introduce fictitious ghost cell for left state (equal depth and equal and opposite
velocity) calculate wavespeeds using (1) calculate layer flux using (4)&(5)

end for

end for
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t
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SL SR

h2,L

u2,L = 0

h2,R = h2,L

u2,R = −u2,L = 0

h∗ u∗
F

(FS)
2,k =

[
h2,ku2,k

(h2,ku2,k)
2

h2,k
+ 1

2
gh22,k

]

Figure 3.4: Structure of the general solution of the Riemann problem for the closed
layer in the left cell for Case II. The right state is a fictitious ghost cell used to impose
a reflective boundary condition at the left face on the structure interface. A reflective
boundary condition is imposed via the introduction of a state with equal depth and equal
and opposite velocity.

imposing a critical depth condition in the left or right state which contains no depth
of flow. Figure 3.6 illustrates the process used to update the conserved variables for

SL = uL − aL S∗L = uL + 2aL

Wet bed Dry bed

Figure 3.5: Wave pattern for the one-dimensional case with a right dry bed. ak =
√
ghk.

the structure cells following summation of the component fluxes. F(−), the flux for the
left side of the interface, is determined by summing the component fluxes for the open
layers with the component fluxes for the closed layers on the left side of the interface.
Likewise, F(+), the flux for the right side of the interface, is determined by summing
the component fluxes for the open layers with the component fluxes for the closed layers
on the right side of the interface. In the case that F(−) ̸= F(+), which occurs when
the left and right states are not in equilibrium, there is a loss of momentum from the
shallow water system at each timestep equal to ∆t/∆x(F(+) − F(−)), which is equal to
the resultant hydrostatic pressure force exerted on the structure multiplied by the ratio
of the timestep to the cell size. The resultant hydrostatic pressure force is valuable for
applications concerned with determining the structural failure of hydraulic structures due
to fluid-structure interactions.
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Figure 3.6: Updating of the left and right structure cells following summation of the
component fluxes at the structure interface.

3.3 Model Validation

Figure 3.7: Control panel for the S100 Research Flume, including a schematic of the flume.
Two pumps are used to draw water from the sump, supplying a constant flow rate to the
upstream (right) end of the flume. The flow rate is measured using an electromagnetic
flow meter.

In order to validate the method outlined in the previous section, numerical results are
compared to steady state measurements taken from experiments conducted in Newcastle
University’s Armfield S100 Research Flume. As shown in Figure 3.7, the S100 Research
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Flume is a 12.5m long, 1m wide, 0.8m deep flume capable of producing flow rates up to
400ls−1. At 5m downstream, grooves in the walls of the flume enable barriers to be slotted
into the cross-section enabling their effect to be studied. A series of tests were conducted
in the flume using a range of flows and barrier geometries. In order to simplify the
numerical scheme the flume was set to zero tilt for all tests. The basic test conditions are
outlined in Table 3.1. The full validation dataset is available as supplementary material
for potential future use by other researchers.

Validation Test Cases
Test Case q (ls−1) z1 (mm) z2 (mm) Description
Test 1 130 116 316 Flow under barrier.
Test 2 130 122 322 Flow under barrier.
Test 3 35 32 232 Flow under barrier.
Test 4 130 32 232 Overtopped barrier.
Test 5 24 32 232 Flow under barrier.
Test 6 20 32 232 Flow under barrier.
Test 7 275 116 316 Overtopped barrier.
Test 8 175 116 316 Overtopped barrier.
Test 9 177 105 405 Overtopped barrier.
Test 10 150 105 405 Flow under barrier.
Test 11 225 24 324 Overtopped barrier.
Test 12 19 24 324 Flow under barrier.

Table 3.1: Validation test conditions. q is the flow rate, z1 is the elevation of the base of
the barrier above the flume bed and z2 is the elevation of the cover of the barrier.

3.3.1 Numerical Setup

All numerical tests were conducted on a 12.5m 1D spatial domain, discretised into a
structured grid comprised of 0.01m cells (∆x = 0.01m). In order to ensure satisfaction of
the Courant-Friedrichs-Lewy condition a Courant number of C = (0.95∆x)/(Sn

max) was
used to determine a stable timestep, where Sn

max is the maximum absolute wave speed at
time level n. Since the bed slope is set to 0% this has the intended effect of simplifying
the source terms, only requiring the friction source term to be resolved, facilitating clearer
analysis of the novel solution procedure. For real cases involving variable bed topography,
a well-balanced treatment of the bed slope source term can be achieved via the hydrostatic
reconstruction method [31] or via upwinding of the source terms [57]. The friction source
term is resolved using a splitting method presented by Liang and Marche [274]:

qn+1 = qn −∆tSn
c = qn −∆t

(
τf

1 + ∆t
∂τf
∂q

)n

= qn −∆t

(
Cfu|u|

1 +
2∆tCf |q|

h2

)n

The following simple limiter is also implemented to ensure stability in regions where the
water depth approaches zero:

Sn
c =

qn

∆t
if |∆tSn

c | > |qn| (3.10)

A Manning’s n of 0.012 is assumed for all test cases.
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Upstream Boundary Condition

a

x 1
2

U−1 U0
... ...

b

xN+ 1
2

UN UN+1

Figure 3.8: Computational domain [a, b], with exterior ghost cells for specifying boundary
conditions.

An upstream inflow boundary condition is implemented to ensure a constant flow rate
is maintained through the upstream boundary, replicating the pump system used by the
S100 flume. This is achieved using exterior ghost cells as shown in Figure 3.8; consider the
left boundary U−1 = UL (ghost cell) and U0 = UR. Using the Riemann invariant:

uL − 2aL = uR − 2aR

and substituting:

Qin = hLuL

uL =
Qin

hL

ak =
√
ghk

gives:

Qin

hL
− 2
√
ghL = uR − 2

√
ghR

Which can be rearranged to give the following function:

Qin

hL
− 2
√
ghL − uR + 2

√
ghR = 0

Qin

hL
+ 2
√
g(
√
hR −

√
hL)− uR = 0

Let:

f(hL, hR, uR) =
Qin

hL
+ 2
√
g(
√
hR −

√
hL)− uR

d

dhL
f(hL, hR, uR) = −

Qin

h2L
−
√
g

√
hL

A suitable numerical method such as the Newton-Raphson method can then be used to
determine hL, using an initial guess of h0 = hR:

xn+1 = xn −
f(xn)

f ′(xn)
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Finally uL may be determined using:

uL =
Qin

hL

providing the initial conditions for use in the Riemann solver at the upstream boundary.
Use of the Riemann invariants, as described above, requires that the wave connecting
the states at the boundary is a rarefaction wave. This is due to the fact that Riemann
invariants are only perfectly invariant across simple waves (the two connected states lie
on the same integral curve). The two states connected by a shock wave do not lie on
the same integral curve and instead are connected by a Hugoniot locus. Therefore should
a shock wave occur at the boundary, which may physically occur when the velocity in
the first cell is opposite in direction to the inflow, the outlined method is no longer valid
and other conditions must be imposed. However, for the outlined test cases this does not
occur so the method is suitable.

Downstream Boundary Condition

At the downstream end of the S100 flume is a sloped free-outfall as shown in Figure
3.6. In order to approximate the behaviour of the flow at this boundary a critical depth
boundary condition is imposed. This is achieved by using the following initial conditions
at the downstream boundary (Figure 3.9):

Un
N =

[
hnN
hnNu

n
N

]
, Un

N+1 =

hN+1 =

(
(hn

Nun
N)

2

g

) 1
3

hnN+1u
n
N+1 = hnNu

n
N

 (3.11)

x

t

0

SL SR

hL
uL

hR =
(

(hLuL)
2

g

) 1
3

uR = hLuL

hR

h∗ u∗

Figure 3.9: Structure of the general solution of the Riemann problem for the downstream
boundary with a critical depth condition.

3.3.2 Results

The test cases can be categorised into two primary flow conditions:

1. Flow moving underneath a barrier, which is analogous to flow moving under a gate.

2. Flow which completely inundates the barrier, analogous to an overtopped bridge
structure.

Through comparison between the numerical predictions and experimental data for a se-
lection of these test cases, the suitability of the solver for these flow conditions can be
determined.
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Flow Under a Gate

Figures 3.10 and 4.16 demonstrate that the solver adequately captures the behaviour
induced by flow moving underneath a gate-type structure for a range of flows and barrier
geometries. It can be seen that for Test Case 10, shown in Figure 3.10a, that the solver
contributed to the accurate prediction of flow depths upstream and downstream of the
barrier, with a slight overestimation of the velocity and subsequent slight underestimation
of the depth downstream of the barrier. Figure 3.10b shows that the percentage error in
the depth predictions rises from 0.6% at the left boundary to 23.5% at the right boundary.
This corresponds to a small absolute error ranging between 2mm-29mm. Considering the
shallow depth of flow downstream of the barrier and the uncertainty in the experimental
measurements this is an acceptable result. The discharge is accurately simulated across
the domain except for within the cell which immediately precedes the structure. This
occurs as a result of the aforementioned ∆t/∆x(F(+)−F(−)) term. As noted by Dazzi et
al. [129], this is a common feature for schemes attempting to model partial barriers to
flow such as Ratia et al. [371], Maranzoni and Mignosa [289] and Zhao et al. [498].

For Test Case 2, shown in Figure 3.11, there is a larger, albeit still acceptable, under-
estimation of the depth upstream of the barrier. Downstream of the barrier, the depth
prediction is more accurate, only minimally deviating from the measured data. Figure
3.11b shows that the percentage error in the depth predictions for Test Case 2 are com-
parable with those for Test Case 10, ranging between 4 − 28%, albeit with greater but
not unreasonable absolute errors upstream of the barrier. As for Case 2, there is also
an underestimation of the flow rate in the cell immediately preceding the barrier, with
the discharge being precisely simulated elsewhere within the domain. For both of the
presented test cases, it is likely that the errors are as a consequence of a difference in the
approximated and real vertical velocity profile at the barrier.
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Figure 3.10: Comparison between numerical and experimental results for test case 10.
Details of the numerical setup can be found in Section 3.3.1.
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Figure 3.11: Comparison between numerical and experimental results for test case 2.
Details of the numerical setup can be found in Section 3.3.1.
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Inundated Bridge Structure

Figures 3.12 and 3.13 demonstrate that the solver is capable of adequately capturing the
flow behaviour induced by an overtopped barrier. Figure 3.12a demonstrates that the
solver contributed to the accurate prediction of the depth throughout the domain. Figure
3.12b supports this, with errors between the simulated and measured depths ranging
between 0.1 − 21%. Similarly, depth predictions for Test Case 8 as shown in Figure
3.13a can be seen to be similarly accurate for a different barrier configuration at the
same flow rate. For both of the presented test cases there is a small overestimation
of the velocity downstream of the barrier which contributes to an underestimation of
the downstream flow depth. As the barrier becomes more significantly overtopped, the
predictions downstream of the barrier become less accurate however, the general behaviour
is still within an acceptable range in comparison with the experimental data. Once more,
this is likely a consequence of the simplistic velocity assignment as well as an increase
in vertical motion immediately after the barrier; scenarios where the vertical velocity
becomes significant violate the underlying assumptions for the conservation law and the
scheme becomes unsuitable. Furthermore, it is important to only consider modelling cases
for which the flow behaviour does not substantially violate the underlying assumptions
for the conservation law and solution procedure. These primary assumptions include: a
hydrostatic pressure distribution, that the pressure is atmospheric at the fluid surface and
that the velocity in the vertical direction is negligible. However, for flood risk management
applications at a catchment scale or greater, the inability to capture local behaviour in
the vicinity of a structure, such as the water pouring over the top of the barrier as shown
in Figure 3.13a, is relatively inconsequential since the depth and velocity, which is of
primary concern, is otherwise accurate.
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Figure 3.12: Comparison between numerical and experimental results for test case 9.
Details of the numerical setup can be found in Section 3.3.1.
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Figure 3.13: Comparison between numerical and experimental results for test case 8.
Details of the numerical setup can be found in Section 3.3.1.
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Mesh Convergence Analysis

0 4.8 5 5.07 10 12.5
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Min 0.177 0.177 0.177 0.177 0.177 0.177
Max 0.177 0.177 0.177 0.177 0.177 0.177

Depth (m) 0.4321 0.4299 0.4147 0.0641 0.0667 0.0681
Velocity (m/s) 0.4096 0.4117 0.3390 2.7602 2.6532 2.5990

Discharge (m2/s) 0.1770 0.1770 0.1406 0.1770 0.1770 0.1770
Depth (m) 0.4321 0.4299 0.4147 0.0641 0.0667 0.0681
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Velocity (m/s) 0.4096 0.4117 0.3390 2.7597 2.6531 2.5994

Discharge (m2/s) 0.1770 0.1770 0.1406 0.1770 0.1770 0.1770
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Discharge (m2/s) 0.1770 0.1770 0.1406 0.1770 0.1770 0.1770
Depth (m) 0.4321 0.4300 0.4147 0.0642 0.0668 0.0681

Velocity (m/s) 0.4095 0.4121 0.3390 2.7588 2.6508 2.5989
Discharge (m2/s) 0.1770 0.1772 0.1406 0.1770 0.1770 0.1770
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Table 3.2: Comparison between the experimental data and simulated data for Test Case
9, for a range mesh resolutions.

The data in Table 3.2 demonstrates negligible differences in the results for the tested mesh
resolutions which range between 1− 10cm (∆x = 1− 10cm).

3.4 Conclusion

A novel Riemann solver capable of modelling the influence of structures on flood flows
within 1D or 2D hydrodynamic flood models has been presented. The validation pro-
cess demonstrates that the solver is able to adequately capture the flow behaviour for a
range of partial barriers to flow at a range of flow rates. Accuracy of the predictions is
mostly dependent on how well the velocity assignment process captures the vertical ve-
locity profile at the barrier. As a result, further work to derive a more sophisticated and
representative approach to determining the layer velocities for structure cells is proposed.
However, in its current state the proposed solver still presents a unique physically based
and robust approach to modelling hydraulic structures using a conservative form of the
conservation laws. Furthermore, since the solution procedure only applies locally in the
region surrounding an interface at which a structure is being modelled, implementation
is feasible for both established and developing hydrodynamic models using finite volume
schemes to solve the shallow water equations. The biggest barrier to implementation is
the availability and resolution of the required data for structures and suitable meshing
algorithms. The latter of which is also to be the subject of future work.
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Addition of the capability to model a variety of in-channel hydraulic structures such as
gates and bridges has the potential to significantly improve the accuracy and flexibility
of inundation predictions and therefore contemporary hydrodynamic modelling practice.
Further potential applications include but are not limited to:

• Infrastructure resilience modelling: particularly applications concerning the struc-
tural health monitoring of bridge structures.

• Flood risk management schemes involving the introduction or removal of control
structures such as leaky barriers.

However, when using the solver, as for all solvers and numerical schemes, care must
be taken to ensure that the underlying assumptions are not violated in order to ensure
sufficient modelling accuracy is achieved. As a consequence, the solver can be considered
appropriate for modelling the referenced hydraulic structures at a spatial scale whereby
approximating the structure as a blockage existing at a cell interface is appropriate. In
such cases, the additional energy losses, which are not included within the scheme, should
be insignificant in contrast to the influence of the blockage of the flow by the structure,
which has been demonstrated to be captured by the scheme. For flood risk management
applications, whereby the upstream backwater depths are most relevant for assessing
flood risk, the validation of the model suggests that the proposed method is suitable
and superior to available alternatives. Considering the compatibility of the proposed
solver with existing numerical schemes implemented within contemporary hydrodynamic
models, the method presents a viable and relatively easy to implement solution. For
detailed analyses of individual structures three-dimensional computational fluid dynamics
(CFD) analyses are recommended.

In terms of further solver development, adding the capability to model vertical exchanges
of momentum and non-hydrostatic pressure distributions would help to overcome some
of the solvers current deficiencies. Although, addition of this further capability would
also likely reduce the compatibility of the solver with existing numerical schemes.The
inclusion of additional energy losses is also desirable however, explicit inclusion of energy
losses as source terms would require altering the system of equations, once again reducing
compatibility of the solver with existing numerical schemes.
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Chapter 4

A Local Multi-Layer Approach to
Modelling Interactions between
Shallow Water Flows and
Obstructions

The capability to accurately predict flood flows via numerical simulations is a key
component of contemporary flood risk management practice. However, modern
flood models lack the capacity to accurately model flow interactions with linear
features, or hydraulic structures like bridges and gates, which act as partial barri-
ers to flow. Presented within this paper is a new Riemann solver which represents
a novel approach to modelling fluid-structure interactions within two-dimensional
hydrodynamic models. The solution procedure models obstacles as existing at the
interface between neighbouring cells and uses a combination of internal boundary
conditions, different forms of the conservation laws and vertical discretisation of the
neighbouring cells to resolve numerical fluxes across a partially obstructed inter-
face. The predictive capacity of the solver has been validated through comparisons
with experimental data collected from experiments conducted in a state-of-the-art
hydraulic flume. Since the solution procedure is local, only applying to the cells
within the immediate vicinity of a structure, the method is designed to be compat-
ible with existing two-dimensional hydrodynamic models which use a finite volume
scheme to solve the shallow water equations.

This chapter is available as a preprint and has been accepted for publication in
Computer Methods in Applied Mechanics and Engineering: James Mckenna,
Vassilis Glenis, Chris Kilsby, A Local Multi-Layer Approach to Modelling In-
teractions between Shallow Water Flows and Obstructions, arXiv:2304.10262
[physics.flu-dyn], 10.48550/arXiv.2304.10262.
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4.1 Introduction

The ominous threat of anthropogenic climate change is driving the requirement for more
effective flood risk management in order to better manage what is already a challeng-
ing and costly hazard; models estimate that forecasted average annual flood losses for
the United States will increase from US$32 billion to more than US$40 billion by 2050
[483], with similar predictions of increasing flood risk being made on a global scale [222].
Hydrodynamic models play a vital role in contemporary flood risk management by pro-
viding evidence, via numerical predictions, upon which the quantification of flood risk
and consequential future investment is based. It is therefore vital for effective flood risk
management that hydrodynamic models produce accurate predictions.

Within catchments, channel structures, such as bridges, weirs and gates, can act as obsta-
cles to flow, significantly influencing the local flow characteristics [109]. However, within
contemporary hydrodynamic modelling practice, methods for modelling such features are
relatively under-utilised, with industry standard models using coarse approximations,
empirically based methods or even omitting such features entirely [54, 444, 81]. This is
despite the fact that within academic literature there have been a number of contributions
towards bridging this gap in modelling capacity.

A common approach to modelling partial barriers to flow is to represent hydraulic struc-
tures as existing at the interface between neighbouring cells, neglecting the width of the
structure in the streamwise direction. An internal boundary condition can then be imple-
mented to account for the effect of the structure. A variety of internal boundary conditions
have been proposed within academic literature:

• Pepe et al. [359] modelled the effect of channel constrictions and obstructions as a
stationary weak solution of the Saint Venant equations without friction.

• Cozzolino et al. [119] developed an approximate Riemann solver, based upon derived
exact solutions for the dam-break problem across a partially lifted gate, to model
flow under gates using a novel non-equilibrium gate formulation.

• Zhao et al. [498] proposed modification of the numerical flux across hydraulic struc-
tures in accordance with empirical discharge relations.

• Morales-Hernández et al. [322] proposed the use of gate equations to modify the
conserved variables in the neighbouring cells in order to capture flow under gates.

• Jaafar and Merkley [237] considered the use of the method of characteristics to solve
interior gate boundary conditions coupled with an approximate Riemann solver.

• Guerra et al. [190] derived coupling conditions based upon weir equations to solve
a Riemann problem constructed across a weir.

• Ratia et al. [371] implemented a source term based upon a modified Borda-Carnot
formulation to account for the head loss induced by flow through a unsubmerged,
partially submerged or fully submerged bridge structure.

• Maranzoni and Mignosa [289] locally modified the conservation laws, using the
Preissmann slot concept to capture the transition between free surface and pres-
surised flow through bridges.
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• Dazzi et al. [129] extended the concept introduced by Morales-Hernández et al. to
model low flow, partially pressurised, fully pressurised and overtopped flow condi-
tions for hydraulic structures.

• Iguchi and Lannes [229] presented a general approach to solving one-dimensional
initial boundary value problems for the purpose of modelling wave-structure inter-
actions.

Unified approaches that don’t neglect the streamwise width of the structure include the
two-component pressure approach proposed by Cea et al. [96] and the congested shallow
water model derived by Godlewski et al. [182].

In terms of modelling flow under barriers, the approach of Cozzolino et al. [119] is the
most sophisticated, making significant advances on previous works, producing numerical
results which are in agreement with the derived exact solutions and experimental valida-
tion. However, the application of the method is specifically desgined for flow under gates
and therefore cannot be used as a general solver for partial barriers to flow without signifi-
cant further advancements. Improvements in the empirical and physical understanding of
combined flow over a weir and under a gate [393, 389, 464], in combination with advances
in methods for solving initial boundary value problems for hyperbolic systems [229], may
present avenues for extension of this method to include simultaneous weir flows, however,
a solution of this type is currently unrealised. The work of Guerra et al. [190] intro-
duces a method for coupling the weir equations; however, only validation through expert
falsification is provided, and the method is restricted to modelling flow over a weir for
subcritical initial data.

The works of Dazzi et al. [129] and Ratia et al. [371] are able to handle more general
flow configurations however, these methods have their own respective drawbacks: the
discharge formulae utilised by Dazzi et al. [129] are unsuitable for unsteady flows and
both methods may require impractical calibration of uncertain parameters. Furthermore,
the head loss source term proposed by Ratia et al. [371] may be unable to sufficiently
capture nearfield flow effects including potential downstream supercritical flows.

Considering methods that address the vertical confinement of flow induced by structures,
the two-component pressure approach proposed by Cea et al. [96] provides an alternative
which requires less calibration. However, the method is also unable to accurately capture
nearfield flows patterns with the additional disadvantage of being unable to handle over-
topping. Similarly, the approach proposed by Maranzoni and Mignosa [289] is unable to
handle overtopping and suffers from the well-established limitations of the Preissmann slot
concept [287, 462]. The congested shallow water model derived by Godlewski et al. [182]
is also restricted in its application due to the method’s inability to model overtopping.
Additionally, the requirement to implement the congestion constraint across the whole
domain is an impractical feature for large-scale flood modelling. Restricting the imple-
mentation of the congested shallow water model to the cells which contain a structure
with a ceiling could provide a potential compromise, however, a localised implementation
may be challenging due to compatibility issues with standard solution methods applied
to the classical shallow water equations; for the congested shallow water model, classical
Godunov solvers are too dissipative and impose too much restriction on the timestep [137,
192].

It is therefore clear that, despite significant advancements within academic research, that

91



Chapter 4. A Local Multi-Layer Approach to Modelling Interactions between Shallow
Water Flows and Obstructions

there is much progress still to be made in the search for a generalised treatment of partial
barriers to flow which can accomodate all potential flow configurations (flow under, flow
over and simultaneous flow under and over an obstacle), taking into account energy losses
and the potential vertical confinement of the flow, whilst also producing satisfactory
macroscale and nearfield flow predictions. Within the context of the outlined existing
solutions, the aim of this paper is to present a new method for modelling partial barriers
to flow which ignores the streamwise width of the structure, effects of vertical confinement
and head loss but captures the nearfield and macroscale behaviour of the flow for all
flow configurations. As such, the method presents an alternative to that of Dazzi et
al. [129] and Ratia et al. [371], aiming to reduce the need for calibration, improve
nearfield flow prediction accuracy and eliminate the use of empirical discharge relations
which are invalid for unsteady flows. Ignoring the streamwise width of the structure,
some energy losses and the effect of vertical confinement is justified by considering the
modelling of structures at a scale for which the effect induced by the blockage of the flow
by the structure dominates. It is considered that this is an appropriate assumption for
the intended purpose of hydrodynamic flood modelling on spatial domains of relevance to
flood risk management.

Within Mckenna et al. [303], the authors of this paper presented a new Riemann solver
capable of resolving numerical fluxes across a partially obstructed interface. The proposed
solution procedure represents structures as existing at the interface between neighbouring
cells and uses a combination of internal boundary conditions and a different form of the
conservation laws in the adjacent cells, to resolve numerical fluxes across the partially
obstructed interface. Experimental validation, via experiments conducted in a state-
of-the-art research flume, demonstrated the accuracy of the solver for a range of flow
conditions and barrier configurations. Despite the successful validation of the solver,
there is opportunity for enhancement of the method via more accurate discretisation
of the horizontal velocity in the vertical plane. As such, this paper aims to use the
basic conceptual idea underpinning the Riemann solver developed in [303], which is the
decomposition of the Riemann problem in the vertical plane, to develop a new, more
sophisticated and accurate method for representing structures within two-dimensional
hydrodynamic models.

Whereas the method presented in [303] primarily accounts for the presence of an obstacle
via a modification of the numerical flux, whereby the velocity profile is approximated
based upon assumptions, the improved method introduces a vertical discretisation of the
cells neighbouring an interface at which a structure is modelled in order to explicitly
capture a more representative velocity profile. Since the structure cells require vertically
discretised numerical fluxes, this necessitates the introduction of intermediate cells which
act as a link between the neighbouring monolayer and multi-layer formulations. As for the
development of the previous solver, considering the relative under-utilisation of methods
for modelling obstructions within industry standard flood models, ease of implementation
and compatibility of the method with existing flood models utilising two dimensional finite
volume schemes to solve the shallow water equations was a key consideration through-
out.
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4.2 Mathematical Model

The proposed solution method divides the computational domain into structure cells, in-
termediate cells and normal cells with corresponding normal interfaces (NI), intermediate
interfaces (II) and structure interfaces (SI) as shown in Figure 4.1. At a structure in-

h a NI II SI II NI b

z = H 3
2

z = H 5
2

Structure Cells

xi xi+1

Intermediate
Cell

xi−1

Normal
Cell

xi−2

Intermediate
Cell

xi+2

Normal
Cell

xi+3

Figure 4.1: A simple computational domain [a, b] illustrating the designation of structure,
intermediate and normal cells with their corresponding interfaces. H3/2 andH5/2 represent
the elevation of the projected base and cover of the idealised structure represented at the
structure interface (see the horizontal dashed lines for illustration).

terface, the adjacent structure cells are vertically discretised into sub-cells with a limit
flow depth corresponding to the dimensions of the idealised structure represented at the
interface as shown in Figure 4.2. For example, the sub-cells Ui,1 and Ui+1,1 in Figure 4.2
have a limit flow depth of H3/2 −H1/2 which is equivalent to H3/2 − zb, which represents
the difference in elevation between the base of the structure and the bed. For each in-
termediate or structure cell, the bed elevation is denoted as H1/2 = zb and the elevation
of the base and cover of the structure are denoted as H3/2 and H5/2 respectively. The
alignment of the sub-cells with the structure is necessary to enable the implementation
of vertically variable boundary conditions at the structure interface, under the shallow
water assumption that the flow direction is primarily horizontal. Intermediate cells act
as a link between the mono-layer scheme utilised by the normal cells and the multi-layer
scheme used by the structure cells.

For normal interfaces and the corresponding adjacent normal or intermediate cells, a one-
dimensional (1D) FV scheme is used to solve the 1D Shallow Water Equations (1D-SWE)
given as:

∂tU+ ∂xF(U) = S(U) (4.1)

Where U is the vector of conserved variables, F(U) is the vector of fluxes and S(U) is
a vector of sources comprising of S0, the bed slope source term and Sf , the bed friction
source term. These terms are given as follows:

U =

[
h

hu

]
, F =

[
hu

hu2 + 1
2
gh2

]
, S0 =

[
0

−gh∂xz

]
, Sf =

[
0

−τf

]
(4.2)

Whereby h denotes the depth of flow, u denotes the velocity component in the x direction,
g is the acceleration due to gravity, z is the elevation of the bed and τf is the shear stress
due to bed friction in accordance with Manning’s equation:

τf = Cfu|u| =
gn2

3
√
h
u|u| (4.3)
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Figure 4.2: Division of structure cells into N = 3 sub-cells corresponding to the base
(H3/2) and cover (H5/2) of the idealised structure modelled at the structure interface.
The limit flow depth in the Ui,k sub-cell, for 1 ≤ k ≤ N−1, is equal to Hi,k+1/2−Hi,k−1/2.
The uppermost layer, Ui,N has no restriction applied to the flow depth. The upper and
lower interfaces of layer k are denoted as zk±1/2.

Where n is Manning’s roughness coefficient.

For the structure and intermediate interfaces and corresponding adjacent structure and
intermediate cells, a 1D FV scheme is used to solve a multi-layer 1D shallow water system
based upon [418]:

∂tUk + ∂xFk(Uk) = Sk(Uk) (4.4)

Where Uk is the vector of conserved variables for the layer k, F(Uk) is the vector of fluxes
for layer k and Sk(Uk) is a vector of sources for layer k comprising of Sk,0, the topographic
source terms for layer k and Sk,f , the friction source terms for layer k. These terms are
given as follows:

Uk =

[
hk
hkuk

]
(4.5)

Fk =

[
hkuk

hku
2
k +

1
2
gh2k + ghk(+)

hk

]
=

[
qk
σk

]
(4.6)

Sk,0 =

[
0

−Rk+ 1
2
+Rk− 1

2

]
=

[
0

ghk(+)
∂xzk+1/2 − g(hk(+)

+ hk)∂xzk−1/2

]
(4.7)

Sk,f =

[
0

τk+ 1
2
− τk− 1

2

]
=[

0

(1− δnk)
(

2ν(uk+1−uk)

hk+1+hk
− 1

2
(u′

k+ 1
2

)2
)
−
(
(1− δ1k)

(
2ν(uk−uk−1)

hk+hk−1
− 1

2
(u′

k− 1
2

)2
)
− δ1k gn2uk|uk|

3√H

)]
(4.8)

Where k refers to the index of the layer under consideration, labelled in ascending order
from layer 1 at the bed, to layer N at the free surface. k+1/2 and k−1/2 refer respectively
to the upper and lower interface of the flow in layer k. The subscript k(+) refers to the
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properties of the flow above layer k where hk(+)
is defined as:

hk(+)
=

N∑
j=k+1

hj (4.9)

Rk+1/2 and Rk−1/2 refer to the reaction forces exerted at the interfaces between the layers,
with Rk+1/2 denoting the reaction force of layer k onto the fluid above and Rk−1/2 denoting
the reaction force exerted on layer k by the fluid or bed beneath it. τk+1/2 and τk−1/2

represent the interlayer viscous friction effect induced at the upper and lower interfaces of
layer k. The interlayer friction terms are derived for a multi-layer cell by applying a finite
difference approximation, across the depth of the fluid layer k, to the Reynolds averaged
stress component under the Boussinesq approximation [221]:∫ z

k+1
2

z
k− 1

2

∂

∂z

[
2ν
∂u

∂z
−KE

]
dz =

(
2ν
∂u

∂z
−KE

) ∣∣∣
z
k+1

2

−
(
2ν
∂u

∂z
−KE

) ∣∣∣
z
k− 1

2

≈ 2ν(uk+1 − uk)
hk+1 + hk

− 1

2

(
qk+1 + qk
hk+1 + hk

− U
)2

− 2ν(uk − uk−1)

hk + hk−1

+
1

2

(
qk + qk−1

hk + hk−1

− U
)2

= τk+ 1
2
− τk− 1

2
(4.10)

Where ν = νl+νt, is the total effective viscosity equal to the laminar viscosity νl, which is a
physical property of the fluid and νt, which is the depth-averaged turbulent viscosity. The
depth-averaged turbulent viscosity is evaluated, based on the assumption of a logarithmic
velocity profile whereby bed-generated turbulence dominates over free layer turbulence as
proposed in [500]:

νt =
κ

6
U∗H (4.11)

where κ is the von Kármán constant equal to 0.4, H is the total depth of flow and U∗ is
the depth-averaged shear velocity, which is given as:

U∗ =

√
gU2

C2
z

≡
√
gn2U2

H1/3
(4.12)

where U is the depth-averaged velocity for the whole cell. KE is the turbulent kinetic
energy given as:

KE =
1

2
u′u′ (4.13)

where u′ is the variation of the velocity about the mean value. For the case where k = 1,
considering the layer which flows over the bed, τk−1/2 = τb which is instead derived from
Manning’s equation (4.3), where H is the total depth of flow for the whole structure cell.
The particular form of the viscous effect on the base of the fluid layer, τk−1/2, is accounted
for by the Kronecker delta in (4.8), which is defined as:

δαk =

{
1 if k = α

0 if k ̸= α
(4.14)

The Kronecker delta also ensures that the τk+1/2 term is zero at the free surface for layer
N . The source terms for structure cells are also illustrated in Figure 4.3. Effects relating
to stresses as a result of volumetric deformation are not considered necessary to include
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Figure 4.3: Annotation of the source terms for example structure cells and their compo-
nent sub-cells on uneven bed topography. R represents a reaction force induced as a result
of the uneven bed topography, τ represents a friction force acting at a layer interface, z
denotes the elevation above the bed and h denotes the water depth in the sub-cell. Ui is
the vector of conserved variables for the ith whole cell, which is equal to the sum of the
conserved variables for the component sub cells Ui,k.

due to their minor influence [468].

The domain is divided into cells (Vi)i∈Z and the discretised first-order finite volume scheme
is given by:

Un+1
i = Un

i −
∆t

∆x

[
Fi+ 1

2
− Fi− 1

2

]
+∆tS (Un

i ) (4.15)

Where the subscript i represents the ith cell, the superscript n represents the nth time
level and ∆x and ∆t represent the cell size and time step respectively. Fi−1/2 and Fi+1/2

represent the numerical fluxes at the i ± 1/2 interfaces respectively. For the structure
cells, it is the constituent sub-cells which are updated using the following modification of
(4.15):

Un+1
i,k = Un

i,k −
∆t

∆x

[
Fi+ 1

2
,k − Fi− 1

2
,k

]
+∆tS

(
Un

i,k

)
(4.16)

Where Un
i,k represents the conserved variables for the kth sub-cell in the ith structure cell

at time level n. Fi−1/2,k and Fi+1/2,k represent the numerical fluxes at the kth layer of
the i ± 1/2 interfaces respectively. Although a 1D scheme is implemented in this case,
implementation as a 2D scheme requires no fundamental changes to the method.

4.2.1 Derivation of the Decoupled Multi-layer Shallow Water
System

The following derivation is based upon the two-layer system derived in Spinewine et al.
[418] and is included here for completeness: consider a one-dimensional depth-averaged
shallow water model divided into N horizontal layers of uniform density, operating under
the classical assumption of immiscible fluid layers, as shown in Figure 4.4.
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∂p
∂z
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Figure 4.4: Details for a one-dimensional multi-layer shallow water system. Ellipses denote
the presence of additional layers which aren’t illustrated.

The continuity equation governing each layer can be expressed as follows:

∂thk + ∂xqk = 0 , 1 ≤ k ≤ N (4.17)

where hk is the depth of layer k, qk = hkuk is the unit discharge of layer k and uk is the
depth-averaged velocity of the flow in layer k.

Commencing with the highest layer, the momentum equation for layer N can be expressed
as:

∂tρqN + ∂x
(
ρhNu

2
N + PN

)
= RN− 1

2
(4.18)

where PN is the hydrostatic pressure force exerted onto layer N and RN−1/2 is the inter-
layer reaction force exerted on layer N by layer N − 1. Notably, the interlayer reaction
force RN−1/2 is implemented as a topographic source term; for each layer k, the apparent
topography is defined as the sum of the cumulative thickness of layers beneath it plus
the bed elevation. This approach differs from classical multi-layer shallow water systems,
where this term represents a non-conservative pressure coupling term incorporated within
the x-derivative of the flux. The presented form of the equations is based upon the as-
sumption that the apparent topography is invariant in time, which is not strictly true
except under special circumstances, such as when using a time-splitting method [70], or
when redefining the layer properties to ensure alignment with a structure as described in
Section 4.2.3. The layer redefinition process ensures that interlayer interfaces can only
exist at the fixed elevations corresponding to Hk±1/2, whereas the free surface, for which
the reaction force is equal to zero, is unrestricted. Hence, this assumption is valid for the
proposed numerical scheme. The hydrostatic pressure force and interlayer reaction force
are consequently given as:  PN =

1

2
ρgh2N

RN− 1
2
= −ρghN∂xzN−1/2

(4.19)
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Substituting (4.19) into (4.18) and dividing by ρ produces the following momentum equa-
tion for the top layer:

∂tqN + ∂x

(
hNu

2
N +

1

2
gh2N

)
= −ghN∂xzN−1/2 (4.20)

where zN−1/2 is equal to the fixed elevation HN−1/2, corresponding to the elevation of the
top of the structure modelled at the interface.

Considering next the lowest layer, layer 1, the momentum equation can be expressed
as:

∂tρq1 + ∂x
(
ρh1u

2
1 + P1

)
= R 1

2
−R 3

2
(4.21)

where P1 is the hydrostatic pressure force exerted onto layer 1, R1/2 is the reaction force
at the fixed bed and R3/2 is the reaction force exerted by layer 1 onto layer 2. The
hydrostatic pressure force and interlayer reaction forces are given as:

P1 =

(
1

2
h1 + h1(+)

)
ρgh1

R 1
2
= −ρg

(
h1 + h1(+)

)
∂xz1/2

R 3
2
= −ρgh1(+)

∂xz3/2

(4.22)

where h1(+)
is calculated using (4.9). Substituting (4.22) into (4.21) and dividing by ρ

produces:

∂tq1 + ∂x

(
h1u

2
1 +

1

2
gh21 + gh1h1(+)

)
= gh1(+)

∂xz3/2 − g
(
h1 + h1(+)

)
∂xz1/2 (4.23)

Following the same principles and assumptions, a general multi-layer formulation of the
continuity and momentum equations can be derived:

∂thk + ∂xqk = 0 (4.24)

∂tqk + ∂x

(
hku

2
k +

1

2
gh2k + ghkhk(+)

)
= ghk(+)

∂xzk+1/2 − g
(
hk + hk(+)

)
∂xzk−1/2 (4.25)

When friction terms are added and the system is written in vector conservation form,
equations (4.24) and (4.25) correspond to equations (4.4)-(4.8). The eigenstructure of
the system can be elucidated by casting the equations in the following non-conservation
form:

∂tU+A(U)∂xU = S(U) (4.26)

where the Jacobian matrix A is defined as:

A(U) =
∂F(U)

∂U
=


∂f1
∂w1

· · · ∂f1
∂wN

...
. . .

...
∂fN
∂w1

· · · ∂fN
∂wN

 (4.27)

with fn denoting the nth component of the flux vector and wn denoting the nth component
of the vector of conserved variables. For the three layer system that is predominantly used
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throughout, the vector of conserved variables and the vector of fluxes can be written in
terms of the conserved variables as:

U =


w1

w2

w3

w4

w5

w6

 =


h1
h1u1
h2
h2u2
h3
h3u3

 , F(U) =


f1
f2
f3
f4
f5
f6

 =



w2
w2

2

w1
+ 1

2
gw2

1 + gw1(w3 + w5)

w4
w2

4

w3
+ 1

2
gw2

3 + gw3w5

w6
w2

6

w5
+ 1

2
gw2

5


(4.28)

and the Jacobian is evaluated as:

A =


0 1 0 0 0 0

c21 − u21 2u1 gh1 0 gh1 0
0 0 0 1 0 0
0 0 c22 − u22 2u2 gh2 0
0 0 0 0 0 1
0 0 0 0 c23 − u23 2u3

 (4.29)

where the wave celerities for layer k, denoted as ck are defined as:
c1 =

√
g(h1 + h2 + h3)

c2 =
√
g(h2 + h3)

c3 =
√
gh3

(4.30)

The eigenvalues of A are therefore real and distinct:
S−
1 = u1 − c1 , S+

1 = u1 + c1

S−
2 = u2 − c2 , S+

2 = u2 + c2

S−
3 = u3 − c3 , S+

3 = u3 + c3

(4.31)

Whilst the simplifying assumptions result in an accessible eigenstructure with real and dis-
tinct eigenvalues (for h > 0) the underlying system remains ill-posed since the equations
are unable to sufficiently model turbulent mixing. As noted by Sarno et al. [399], al-
though numerical diffusion may produce results which do not appear oscillatory, artificial
oscillations may still be present for schemes which use only the real eigenvalues or bounds
of the moduli of the complex eigenvalues. As outlined within the review of the literature
regarding multi-layer shallow water systems, the numerical solution of such systems re-
mains an open problem. Despite the outlined issues, the validation process demonstrates
that the presented model produces a strong approximation of the behaviour at a barrier.
The eigenvalues computed for a two-layer system are in agreement with the eigenvalues
for the relaxed model derived by Abgrall and Karni [4], which also utilises a decoupled
formulation.
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Classical Multi-Layer Shallow Water Equations

If the apparent topographies zk−1/2 and zk+1/2 are not fixed then the reaction forces cannot
be written in terms of the constant values zk±1/2 = Hk±1/2:

Rk−1/2 = −ρg(hk + hk(+)
)∂xzk−1/2 = −ρg(hk + hk(+)

)∂x

(
k−1∑
j=1

hj + z 1
2

)
(4.32)

Rk+1/2 = −ρghk(+)
∂xzk+1/2 = −ρghk(+)

∂x

(
k∑

j=1

hj + z 1
2

)
(4.33)

and the classical multi-layer shallow water equations are recovered:

∂thk + ∂xhkuk = 0 (4.34)

∂thkuk + ∂x

(
hku

2
k +

1

2
gh2k

)
= −ghk∂x

(
k−1∑
j=1

hj +
N∑

j=k+1

hj + z 1
2

)
(4.35)

The classical multi-layer shallow water equations present two well known numerical chal-
lenges:

1. The equations are of mixed hyperbolic-elliptic type, with a local loss of hyperbolicity
occurring due to the turbulent momentum exchanges which occur in the presence of
Kelvin-Helmholtz instabilities, formed as a result of large relative velocities between
superposed fluid layers [399, 419, 352].

2. The non-conservative product term generated by the pressure coupling between the
layers is not well-defined for discontinuous solutions due to the difficulty establishing
a suitable Rankine-Hugoniot condition [264, 265].

Despite the fact that the local loss of hyperbolicity indicates the invalidity of the model in
the presence of Kelvin-Helmholtz instabilities, there is a desire to produce simplified ap-
proximations of these complex flows, since three-dimensional modelling is impractical for
flood modelling applications. As a consequence, several approaches have been suggested
to address the presented numerical challenges.

Audusse et al. [32] formulated a conditionally hyperbolic multi-layer system, providing a
semi-discretisation of the horizontal velocity for a single continuity equation. As such, the
assumption of layered immiscible fluids is removed, enabling mixing between the layers
since a physical partitioning of the flow isn’t enforced. An alternative multi-layer system
with mass exchanges is presented by Fernández-Nieto et al. [159], which introduces a
piecewise linear approximation of the vertical velocity within each fluid layer, enabling
the definition of jump conditions across the interfaces. Comparisons with the numeri-
cal solution of the full Navier-Stokes equations demonstrate that this results in a more
accurate determination of the vertical velocity component. Unfortunately, although this
numerical approach has a number of desirable properties, it is unsuitable for the proposed
application since vertical discretisation of both the momentum and continuity equations
is required to model the effect of the structure using the outlined method. However,
implementation of this method to describe the flow within a layer could provide a suit-
able method to improve the resolution of the approximated vertical velocity profile. This
would correspond to a system of decoupled multi-layer systems, as opposed to the simpler
decoupled system of monolayer systems that has been derived.
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Castro Dı́az et al. [140], present alternative methods to address the loss of hyperbolicity
for a two-layer system, which can be extended to multi-layer systems. The authors first
derive refined approximations for the eigenvalues of the system, based upon special cases
(h1 = h2 and u1 = u2) for which exact eigenvalues can be obtained, producing sharper
estimations of the non-hyperbolic sub-domains. Classical first order approximations of the
eigenvalues can be found in Schijf and Schöfled [403]. Two friction treatments and a local
change to a hyperbolic model are then presented as supplementary methods for handling
local losses in hyperbolicity. However, within the context of the presented method for
modelling structures, both of these methods are unsuitable.

The local friction treatment, based upon either the classical or improved approximation
of the eigenvalues, is designed to shift the model from the non-hyperbolic region to its
boundary within the hyperbolic region. This mimics the suspected repulsive behaviour of
the elliptical region as commented on by [70], in which it is believed that the turbulent
mixing of the layers causes the solution to rapidly evacuate the non-hyperbolic region to
its boundary. However, since the proposed model is designed for applications involving
uniform densities with large relative velocities between the layers, implementing a method
which evacuates the solution from the non-hyperbolic region defeats the purpose of the
model: the aim of the proposed scheme is to produce sensible simplified approximations of
the complex flow that occurs within the non-hyperbolic regions of flow where they occur,
not to avoid them. Furthermore, as identified by Castro Dı́az et al. [140], the local friction
treatment may produce non-physical behaviour under specific circumstances.

Locally changing the system, under the assumption of small variations in the free surface
elevation, such that real and distinct eigenvalues can be obtained, is similar in nature to
the simplifications imposed within the method presented within this paper. However, the
aforementioned assumptions are more suited for oceanic applications where free surface
variations are typically negligible with respect to the depth of flow, as opposed to potential
transient shallow water flow interactions with barriers, where significant variations in the
free surface may occur.

A further alternative solution proposed by Castro et al. [87], which was improved upon
by Chertock et al. [102], introduces an intermediate layer which aims to broaden the
hyperbolic sub-domain of the model by replicating the mixing layer that is produced by
interfacial instabilities. However, this adaptation of the model is also unsuitable, since
ensuring alignment of the interfaces with the structure following the introduction of an
intermediate mixing layer poses a significant challenge. Furthermore, the expansion of
the hyperbolic sub-domain of the model is likely not sufficient to ensure hyperbolicity of
the model for the proposed application.

The relaxation approach presented by Abgrall and Karni [4], provides an alternative
method to enable decoupling of the system in order to produce a more accessible eigen-
structure. As for the proposed model, the underlying model is ill-posed but the scheme
is shown to produce accurate numerical results for the showcased numerical tests. In this
case, the formulation based upon the work of Spinewine et al. [418] is preferred due to the
simplicity of the required numerical scheme which provides greater compatibility with the
typical numerical schemes utilised by contemporary hydrodynamic models and a greater
ease of implementation.

With regards to the non-conservative product term, produced by the pressure coupling
between the layers, there are fewer available solutions. Non-conservative products present
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a significant numerical challenge since the definition of weak solutions in accordance with
classical theory is based upon the notion of distributions and non-conservative products
are generally ambiguous in this regard [268]. The analytical theory developed by Dal Maso
et al. [127], therefore presented a major breakthrough as it enabled the definition of weak
solutions by means of a family of paths connecting the left and right states. A potential
solution can therefore be produced by combining the theory of Dal Maso et al. [127], with
the framework of path-conservative methods introduced by Parés [356] as shown in [89].
However, as displayed by Abgrall and Karni [3], even if the the correct path definition is
known, such schemes will not in general converge to the assumed path. This is further
complicated for shallow water systems as there is no clear path definition based upon
the underlying physics. Furthermore, Castro et al. [90], determined that such schemes
generate a convergence error source term which is a locally bounded error, provided
that the total variation remains uniformly bounded. This means that the error measure
may not be negligible in practice which is supported by the computations performed
by Abgrall and Karni, who demonstrate that the relative errors are proportional to the
strength of the shock. In the absence of further advances in the design of numerical
schemes which guarantee convergence to the physically relevant weak solution for non-
conservative hyperbolic systems, writings which seek to eliminate [418, 70, 59] or minimise
[253] such terms, in physically justifiable ways, present a promising, albeit potentially
limited, alternative.

Layer Coupling

As shown in [418, 3], evaluation of the flux Jacobian for the decoupled system (4.29)
results in an eigensystem with real and distinct eigenvalues (4.31). However, this form of
the equations does not account for the pressure coupling between the fluid layers within
the wave structure of the problem. Furthermore, study of the Riemann invariants [418],
demonstrates that the flow variables in an upper layer are constant across the waves
present in a lower layer. As such, the system is closer to a system of superposed monolayer
shallow water equations than the classical multi-layer system, which incorporates the
coupling terms within the wave structure.

Under these assumptions, the coupling between the layers for the presented system is
only weakly enforced via the source terms, with the fluid layers otherwise acting inde-
pendently. There are strong physical arguments for incorporating the pressure coupling
terms within the wave-structure of the problem, since the physical behaviour of real sys-
tems of layered immiscible fluids are strongly coupled by these terms. It is shown by
Audusse [29] for example, that the decoupling of the propagation of the waves within the
layers of a multi-layer system results in an underestimation of the external eigenvalues in
comparison with the monolayer and coupled multi-layer systems. However, despite the
simplifying assumptions, the decoupled formulation produces strong approximations of
the corresponding monolayer solution, even within ill-posed regions of the solution [418,
3]. Since the partition of the flow in the structure and intermediate cells is arbitrary and
not a consequence of layered immiscible fluids, the vertical discretisation of the flow into
layers can be viewed simply as a tool to implement vertically variable internal boundary
conditions and approximate a vertical velocity profile within a one- or two-dimensional
monolayer context. In this regard, the internal mixing of the fluid layers is neglected,
just as it is for the neighbouring monolayer formulations. As the chosen formulation and
accompanying simplifying assumptions enable this in a way which is consistent with the
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monolayer formulation, the choice of formulation is considered to be justified for this
specific application. The approximation of the fluid in the presence of the structure as
superposed independent layers of flow, is of course not perfectly representative of the true
physical behaviour, however substantial simplifications are required due to the restrictive
nature of the depth-averaged shallow water assumptions that hydrodynamic flood models
are beholden to.

4.2.2 Numerical Flux Computation

The process for resolving fluxes is dependent on the type of interface (NI, II or SI). For
structure and intermediate interfaces Harten-Lax-van Leer (HLL) approximate Riemann
solvers [212] are used to resolve the intercell numerical fluxes. For normal interfaces, other
suitable approximate Riemann solvers may be used, however, HLL approximate Riemann
solvers are recommended for consistency.

Normal Interfaces

(a)

NI

Fi− 5
2

xi−3 xi−2

x

(b)

t

0

S− S+

hi−3

ui−3

hi−2

ui−2

h∗ u∗

Figure 4.5: (a) Example normal interface with adjacent normal cells and (b) the general
structure of the general solution of the Riemann problem for a normal interface. S− is
the left wave speed and S+ is the right wave speed, as defined in Algorithm 2. h∗ and
u∗ denote the conserved variables in the star region. Fi−5/2 denotes the numerical flux at
the interface.

A robust algorithm presented by Glenis et al. [179] is used to calculate wave speeds for
the Riemann problem, which is outlined in Algorithm 2. Following calculation of the
wave speeds, a standard HLL approximate Riemann solver (4.36) is used to determine
numerical fluxes across the normal interface.

Fi+ 1
2
=


Fi if S− > 0

Fhll = S+Fi−S−Fi+1+S+S−(Ui+1−Ui)
S+−S− if S− ≤ 0 ≤ S+

Fi+1 if S+ < 0

(4.36)

Structure Interfaces

At a structure interface the flow layers can be divided into open and closed as shown
in Figure 4.6. Open layers are considered as having a transmissive boundary at the
structure interface, with the portion of the structure interface shared by the adjacent
sub-cells having no influence on the exchange of conserved variables. Closed layers are
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Algorithm 2 Calculation of wave speeds [179]. An initial approximation (h0) of the
depth in the star region (h∗) using a two-rarefaction approximate state Riemann solver is
used to determine whether a two-rarefaction or two-shock approximation is optimal. For

the derived multi-layer system, the wave celerity is defined as ci,k =
√
g(hi,k + hi,k(+)

),

where ci,k is the celerity for cell i layer k, hi,k is the thickness of cell i, layer k and hi,k(+)

is the depth of water in cell i above layer k.

g ← 9.81ms−2

if hi ∧ hi+1 > 0 then
▷ Initial two-rarefaction approximation

ci ←
√
ghi , ci+1 ←

√
ghi+1

h0 ←
1

g

(
1

2
(ci + ci+1) +

1

4
(ui − ui+1)

)2

if h0 ≤ min(hi, hi+1) then
▷ Use two-rarefaction approximate state Riemann solver

h∗ ← h0

else if h0 > min(hi, hi+1) then
▷ Use two-shock approximate state Riemann solver

pi ←

√
g(h0 + hi)

2h0hi
, pi+1 ←

√
g(h0 + hi+1)

2h0hi+1

h∗ ←
pihi + pi+1hi+1 + ui − ui+1

pi + pi+1

end if

αi ←


√

0.5(h∗ + hi)h∗
hi

if h∗ > hi

1 if h∗ ≤ hi

, αi+1 ←


√

0.5(h∗ + hi+1)h∗
hi+1

if h∗ > hi+1

1 if h∗ ≤ hi+1

S− ← ui − αici , S+ ← ui+1 + αi+1ci+1

else if hi = 0 ∧ hi+1 > 0 then
▷ Left dry bed

S− ← ui+1 − 2ci+1 , S+ ← ui+1 + ci+1

else if hi+1 = 0 ∧ hi > 0 then
▷ Right dry bed

S− ← ui − ci , S+ ← ui + 2ci

end if
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Figure 4.6: Designation of open and closed layers at a structure interface.

considered as having a reflective boundary at the structure interface due to the presence
of the structure. For each open layer, a single Riemann problem must be constructed
and solved whereas, at each closed layer two Riemann problems must be constructed and
solved, as shown in Figure 4.7. Solution of two Riemann problems for a closed layer is
necessary to implement the reflective boundary condition at the structure interface, which
reflects the flow in both the left and right sub-cells. The reflective boundary condition is
imposed, assuming a structure interface exists at xi+1/2, by defining:{

h
(L)
k = hi,k

u
(L)
k = −ui,k

,

{
h
(R)
k = hi+1,k

u
(R)
k = −ui+1,k

(4.37)

as shown in Figure 4.7b. h
(L)
k , u

(L)
k denotes to the depth and velocity of the ghost cell

implemented for the reflective boundary condition at the left face of the structure for
layer k and h

(R)
k , u

(R)
k denotes the same properties for the right face of the structure for

layer k.

This process is based on the assumption that the vertical velocity of the flow is negligible,
which is a fundamental assumption for the derivation of the shallow water equations, and
therefore the direction of the flow can be considered to be primarily parallel to the bed.
The numerical flux for each layer is determined by applying (4.4) to each layer, where the
numerical flux for a layer is given by equation (4.6), which can then be used to determine
the flux at the interface using a standard HLL approximate Riemann solver (4.36). The
method for determining the fluxes at a structure interface is summarised in Algorithm
3.

It is important to note that, when using standard procedures such as source term up-
winding [57] to ensure well-balancing of the numerical scheme in the presence of uneven
bottom topography, the following wave speed estimates [418] should be applied to all
layers: {

S− = min(S−
1 , S

−
2 , ..., S

−
N , 0)

S+ = max(S+
1 , S

+
2 , ..., S

+
N , 0)

(4.38)

where S−
k and S+

k are the left and right wave speeds for layers 1 ≤ k ≤ N calculated

105



Chapter 4. A Local Multi-Layer Approach to Modelling Interactions between Shallow
Water Flows and Obstructions

Ui,1 Ui+1,1

hi,1
ui,1

hi+1,2

ui+1,1

Fi+ 1
2 ,1

Ui,2 Ui+1,2

hi,2
ui,2

hi+1,2

ui+1,2

Fi+ 1
2 ,2L

Fi+ 1
2 ,2R

Ui,3 Ui+1,3

hi,3
ui,3

hi+1,3

ui+1,3

Fi+ 1
2 ,3

(a) Division of the structure cells into sub-cells
and their respective properties. The subscripts
L and R are used to differentiate between the
left and right face of the structure interface.
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(b) The general structure of the general solution
of the Riemann problems for an example struc-
ture interface shown in (a). The introduction
of fictitious ghost cells for the purpose of imple-
menting reflective boundary conditions are de-
noted by grey shading.

Figure 4.7: Method for resolving fluxes for the sub-cells adjacent to a structure interface.

as shown in Algorithm 2 and S− and S+ are the wavespeed estimates used for all layers
1 ≤ k ≤ N . This is equivalent to taking the left and right wave speeds in each layer of
the cell as equal to the most extreme left and right wave speed present within any single
layer of the cell. Although this makes the well-balancing process more convenient, it does
come at the cost of overestimating the wave speed in some layers and consequently the
addition of extra numerical diffusion within the numerical scheme.
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Algorithm 3 Calculation of fluxes for an example structure interface as shown in Figure
4.7. k is the index of the layer under consideration, N is the total number of layers at the
structure interface.
g ← 9.81ms−2

k ← 1 ▷ For the open layers
while k ≤ N do

calculate S−
k , S+

k using Algorithm (1) ▷ Calculate wave speeds
▷ Calculate layer flux

Fi,k ←

[
hi,kui,k

q2i,k
hi,k

+ 1
2
gh2i,k + ghi,k(+)

hi,k

]
, Fi+1,k ←

[
hi+1,kui+1,k

q2i+1,k

hi+1,k
+ 1

2
gh2i+1,k + ghi+1,k(+)

hi+1,k

]

Fi+ 1
2
,k ←


Fi,k if S−

k > 0

Fhll =
S+Fi,k−S−

k Fi+1,k+S+
k S−

k (Ui+1,k−Ui,k)

S+
k −S−

k

if S−
k ≤ 0 ≤ S+

k

Fi+1,k if S+
k < 0

(6)

k ← k + 2 ▷ Advance to next open layer

end while
k ← 2 ▷ For the closed layer
hi+1,ghost ← hi,k ▷ Right ghost cell fluid depth
ui+1,ghost ← −ui,k ▷ Right ghost cell fluid velocity
calculate S−

kL
, S+

kL
using Algorithm (1) ▷ Calculate wave speeds

calculate Fi+ 1
2
,kL

using (6) ▷ Flux for the left side of the structure

hi,ghost ← hi+1,k ▷ Left ghost cell fluid depth
ui,ghost ← −ui+1,k ▷ Left ghost fluid velocity
calculate S−

kR
, S+

kR
using Algorithm (1) ▷ Calculate wave speeds

calculate Fi+ 1
2
,kR

using (6) ▷ Flux for the right side of the structure
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Intermediate Interfaces

In order to resolve fluxes with the adjacent sub-cells it is necessary to temporarily define
layer properties for the intermediate cell as shown in Figure 4.8 (see also Figure 4.1 for
wider context). The properties for the temporary layers in the intermediate interfaces

h
NI II SI

h1

h2

h3

z 1
2
= H 1

2

z 3
2
= H 3

2

z 5
2
= H 5

2

z 7
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Ui−1 Ui

Ui,1

Ui,2

Ui,3

hi−1,1

ui−1,1

hi−1,2

ui−1,2

hi−1,3

ui−1,3

Figure 4.8: Temporary division of an intermediate cell into layers in order to resolve
fluxes at a intermediate interface. ui−1,1 = ui−1,2 = ui−1,3 = ui−1 where ui−1 represents
the average velocity for the whole intermediate cell.

are defined by assuming that the velocity in each layer is equal to the average velocity of
the whole intermediate cell and that the depth in each layer is restricted to the limit flow
depth of the adjacent sub-cell, accounting for any differences in bed elevation. As such
Hk±1/2 for the intermediate cell, is taken as equal to Hk±1/2 for the adjacent structure cell
and the temporary layer depths are given as:

hni,k = min

[
max

(
Hn

i −
k−1∑
j=1

hni,j, 0

)
,max

(
Hi±1,k+ 1

2
−max(Hi±1,k− 1

2
, zi, 1

2
), 0
)]

(4.39)

∀k ∈ {k ∈ Z : 1 ≤ k ≤ N − 1}

hni,N = Hn
i −

N−1∑
j=1

hni,j

where hni,k is the depth for the kth temporary layer, Hn
i is the total depth contained

within the ith intermediate cell at time level n. Hi±1,k± 1
2
is the elevation of the base or

cover of the adjacent sub-cell which corresponds to the structure modelled at the interface
(Hi+1,k± 1

2
if the structure cell is to the right of the intermediate cell and Hi−1,k± 1

2
if the

structure cell is to the left) and zi, 1
2
is the bed elevation for the intermediate cell. The

momentum is then simply defined as:

qni,k = hni,ku
n
i

where qni,k is the momentum for layer k, cell i at time n and uni is the depth averaged
velocity for the ith intermediate cell at time level n. This ensures that the total depth
and momentum of the cell is conserved, that the upper and lower interfaces of the layers
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are aligned with the relevant structure (except for at the free-surface and bed in some
cases) and importantly that the total numerical flux for the temporarily defined layers is
equal to the numerical flux for the whole intermediate cell. The fluxes for each layer can
then be resolved using the process outlined for the open layers in Algorithm 3. Since the
sum of the temporary layer fluxes are equal to that of the classical mono-layer shallow
water equations, the layer fluxes Fk(Uk) can be seen as a vertical decomposition of the
mono-layer flux F(U), providing a compatible link between the neighbouring mono-layer
and multi-layer systems. This can be viewed as a different implementation of the same
concept presented by Bonaventura et al. [66], who present a more general framework for
linking shallow water systems with a variable number of layers.

4.2.3 Conservative Updating of Conserved Variables

Once numerical fluxes have been resolved across all interfaces within the computational
domain, the final procedure for each timestep is to update the conserved variables con-
tained within each cell and sub-cell.

Normal Cells

NI NI

Fi− 1
2

xi−1 xi

Fi+ 1
2

xi+1

Figure 4.9: Illustration of the numerical fluxes at the normal interfaces bordering a normal
cell.

The state variables for a normal cell are given as:

Un
i =

[
hni
hni u

n
i

]
(4.40)

which are updated using equation (4.15), as is standard for a one-dimensional Godunov
type scheme. For cases involving variable bed topography, a well-balanced treatment of
the topographic source terms can be achieved via the hydrostatic reconstruction method
[31] or via upwinding of the source terms [57]. Suitable explicit or implicit treatment
of the remaining source terms are both viable depending on the desired stability and
admissible constraint of the stable timestep.

Intermediate Cells

The state variables for an intermediate cell are given as:

Un
i =

[
hni
hni u

n
i

]
(4.41)

and the same procedure for updating a normal cell is applied to an intermediate cell
however, due to the fact that fluxes at a intermediate interface are calculated on a sub-
cell basis (Figure 4.10), they must first be summated. For this case illustrated in Figure
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Figure 4.10: Illustration of the numerical fluxes used to update a intermediate cell.

4.10 this is equal to:

Fi− 1
2
=

3∑
k=1

Fi− 1
2
,k (4.42)

This sum is equal to the mono-layer shallow water flux provided that the layer velocities
are equal to the depth averaged velocity for the whole cell. Where the layer velocities are
variable, the flux is a first order approximation of the mono-layer shallow water flux plus
a correction due to the more sophisticated vertical velocity profile.

Structure Cells

NI II SI II NI

z 3
2
= H 3

2

z 5
2
= H 5

2

xi xi+1

Structure Cells

xi−1

Intermediate
Cell

xi+2

Intermediate
Cell

Fi− 1
2
,1

Fi− 1
2
,2

Fi− 1
2
,3

Fi+ 1
2
,1

Fi+ 1
2
,2L

Fi+ 1
2
,2R

Fi+ 1
2
,3

Fi+ 3
2
,1

Fi+ 3
2
,2

Fi+ 3
2
,3

Figure 4.11: Illustration of the numerical fluxes used for updating the sub-cells of which
a structure cells is comprised.

The state variables for the sub-cells contained within a structure cells are:

Un
i,k =

[
hni,k

hni,ku
n
i,k

]
(4.43)

In order to update a structure cell, a two step process is applied. In the first step, the
constituent sub-cells are updated individually using the respective left and right fluxes as
per:

Un∗
i,k = Un

i,k −
∆t

∆x

[
Fi+ 1

2
,k − Fi− 1

2
,k

]
+∆tS

(
Un

i,k

)
(4.44)
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Where Un
i,k represents the vector of conserved variables for the kth sub-cell contained

within the ith cell at time level n and Un∗
i,k represents an intermediate state. Fi−1/2,k and

Fi+1/2,k represent the left and right fluxes for the kth layer of the ith cell. The intermediate
state is necessary, since the updating of the conserved variables via (4.44) may cause the
depth of flow within a sub-cell to exceed the limit flow depth (Hk+1/2−Hk−1/2). The second
step of the solution process is therefore to exchange mass and momentum between the
sub-cells to ensure that the limit flow depth is respected and consequently ensure, where
there is sufficient depth of flow, that the layer interfaces are aligned with the obstruction
modelled at the interface. Crucially, this layer redefinition procedure conserves the total
depth and momentum of the structure cell. The updated layer depths hn+1

k are given
as:

hn+1
k = min

(
max

(
H −

k−1∑
j=1

hn+1
j , 0

)
, Hk+ 1

2
−Hk− 1

2

)
∀k ∈ {k ∈ Z : 1 ≤ k ≤ N − 1}

(4.45)

hn+1
N = H −

N−1∑
j=1

hn+1
j

where H =
∑N

j=1 h
n∗
j is the total depth of flow contained within the structure cell at the

intermediate state Un∗
i,k and Hk±1/2 is the static elevation of the base/cover of the kth

sub-cell, which corresponds to the elevation of the base/cover of the obstruction modelled
at the interface. The updated momentum for the sub-cells contained within the structure
cell is given as:

qn+1
k = hn+1

k un+1
k =

N∑
j=1

[
min

(
max

[
k∑

j=1

hn+1
j −max

(
j−1∑
m=1

hn∗m , Hk− 1
2

)
, 0

]
,max

(
j∑

m=1

hn∗m −Hk− 1
2
, 0

)
, hn∗j

)
un∗j

]
∀k ∈ {k ∈ Z : 1 ≤ k ≤ N − 1}

qn+1
N = Q−

N−1∑
j=1

qn+1
j (4.46)

where Q =
∑N

j=1 q
n∗
j is the total depth of momentum contained within the structure

cell at the intermediate state Un∗
i,k. Formula (4.45) states that the depth of flow in layer

k is equal to the total depth of flow (H), minus the depth of flow already assigned to
lower layers (

∑k−1
j=1 h

n+1
j ), which cannot be smaller than zero due to the requirement for

depth positivity, or larger than the capacity of the sub-cell (Hk+ 1
2
− Hk− 1

2
). Formula

(4.46) states that the corresponding momentum of the flow in the redefined layer k, is
equal to the sum over all layers contained within the structure cell, of the contribution
of the intermediate layer depth hn∗k to the redefined layer depth hn+1

k , multiplied by the
corresponding intermediate depth-averaged velocity un∗j . The layer redefinition process is
also illustrated in Figure 4.12. As mentioned previously, this is similar to the process used
by Bonaventura et al. [66], when linking shallow water models with a variable number
of layers. As noted by Bonaventura et al., the local loss of accuracy which occurs when
approximating the vertical velocity profile in this way has limited impact on the overall
accuracy of the method as demonstrated by the numerical results.
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Figure 4.12: Illustration of the layer redefinition process after updating the conserved
variables Un

i,k to the intermediate state Un∗
i,k. The redefinition process is required to re-

align the layer interfaces, z3/2 and z5/2, with the base/cover of the structure, H3/2 and
H5/2. The sum of the conserved variables at the intermediate state, Un∗

i , is equal to
the sum of the conserved variables at the new time level, Un+1

i , and hence the layer
redefinition process conserves the total depth and momentum of the structure cell.

As for the normal cells, a well-balanced treatment of the topographic source terms may be
achieved via the hydrostatic reconstruction method or via upwinding of the source terms.
As mentioned previously, special treatment of the wave speed estimation may be required
to ensure the well-balancing of the scheme if upwinding the source terms. The remaining
source terms may be treated using suitable explicit or implicit methods depending on the
desired stability and constraint of the timestep.

At the sub-cell interfaces containing a structure there are two numerical fluxes as illus-
trated in Figure 4.11, as a consequence of the two reflective boundaries implemented at
each side of the structure. Since not all of the external forces are accounted for, these
fluxes may be unequal, with the difference in the sum of the fluxes at the left face of
the structure interface (F(−)) and the right face of the structure interface (F(+)) equal to
(∆t/∆x(F(+) − F(−))) at each timestep. When the fluid velocity is equal to zero in the
closed layers adjacent to the structure F(+) − F(−) is equal to the resultant hydrostatic
pressure force exerted on the structure.

4.3 Model Validation

Previously published validation data [303], collected from experiments conducted in New-
castle University’s Armfield S100 Research Flume, is used to validate the accuracy of the
proposed Riemann solver. The S100 Research Flume is a 12.5m long, 1m wide, 0.8m deep
flume capable of producing flow rates up to 400ls−1. The user can select a desired flow
rate which is then produced by the two pumps which draw water from the sump. The
flow rate is maintained and corrected via a proportional-integral-derivative control loop,
which uses a electromagnetic flow meter (Euromag Model MUT2200EL) to ensure that
flow rate within the inflow pipe matches the desired flow rate. According to Euromag
technical sheet [155], each sensor is calibrated on a hydraulic test rig equipped with an
ISO17025 traceable weighing system, which ensures that the accuracy of the sensor is
equal to 0.2%± 2mms−1 with a repeatability of approximately 0.1%. A summary of the
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maximum permissible error limits for the instrument, provided by the manufacturer, is
presented in Table 4.1.

Maximum Permissible Error limits for Euromag Model MUT2200EL DN 350 PN 10
Flow Rate: Q (m3h−1) 12.8 < Q < 20.48 20.48 < Q < 280 Q > 280

Instrument Error ± 4.99% ± 2.00% ± 0.49− 2.00%

Table 4.1: Maximum permissible error limits for the electromagnetic flow meter for a
range of flow rates within the inflow pipe (adapted from [155] p.4).

The validation experiments consisted of running the flume at a range of flow rates, with
a range of different barrier geometries placed within the flume cross-section, at a dis-
tance of 5m downstream. The flume tilt was set to 0% for all validation experiments in
order to eliminate any potential numerical errors introduced as a result of topographic
source terms. Once steady state flow conditions were achieved for each experiment, depth
measurements were obtained using vernier point gauges. The full validation dataset is
available as supplementary material from the referenced publication [303].

4.3.1 Numerical Setup

All numerical simulations were conducted on a 12.5m 1D spatial domain, discretised into
a structured grid comprised of 0.1m cells (∆x = 0.1m). In order to ensure satisfaction of
the Courant-Friedrichs-Lewy condition, a Courant number of C = (0.95∆x)/(Sn

max) was
used to determine a stable timestep, where Sn

max is the maximum absolute wave speed at
time level n. Since the bed slope is set to 0% this has the intended effect of simplifying
the source terms, only requiring the friction source term to be resolved, facilitating clearer
analysis of the accuracy of the Riemann solver. The friction source terms are resolved
using the splitting method proposed by Liang and Marche [275]:

qn+1
i = qn∗i −∆tSn

i,c = qn∗i −∆t

(
τi,f

1 + ∆t
∂τi,f
∂qi

)n

= qn∗i −∆t

 Ciui|ui|
1 +

2∆tCi,f |qi|
h2
i

n

(4.47)

Where qn∗i = hn∗i u
n∗
i is the discharge following solution of the homogeneous advection

problem. The following adaptation is used to resolve the friction source terms for the
structure cells:

qn+1
i = qn∗i +∆t


(
τn
i,k+ 1

2

− τn
i,k− 1

2

)
1−∆t

((
∂τi,k+1/2

∂qi,k

)n
−
(

∂τi,k−1/2

∂qi,k

)n)
 (4.48)

The following simple limiter is also used to ensure stability in regions where the water
depth approaches zero:

Sn
i,c =

qni
∆t

if |∆tSn
i,c| > |qni | (4.49)

A Manning’s n equal to 0.012 and a kinematic viscosity of 1.0034×10−6m2s−1 is assumed
for all numerical simulations.

The upstream and downstream boundary conditions are both implemented using exterior
ghost cells. In order to replicate the constant inflow produced by the S100 flume, an
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inflow boundary condition is defined at the upstream end utilising relationships derived
from the Riemann invariants across a rarefaction wave. At the downstream boundary a
critical depth boundary condition is imposed. Full details for the implementation of the
boundary conditions are presented in [303].

4.4 Results

The following validation test cases, as shown in Table 4.2 [303], can be categorised into
three primary flow configurations:

• Flow under a barrier.

• Flow under a barrier, producing a downstream stationary hydraulic jump.

• Flow over and under a barrier.

Selected Validation Test Cases
Test Case q (ls−1) z1 (mm) z2 (mm) Description
Test 1 130 116 316 Flow under barrier.
Test 2 130 122 322 Flow under barrier.
Test 5 24 32 232 Flow under barrier with hydraulic jump.
Test 6 20 32 232 Flow under barrier with hydraulic jump.
Test 8 175 116 316 Overtopped barrier.
Test 9 177 105 405 Overtopped barrier.

Table 4.2: Selected validation test conditions from Mckenna et al. [303]. q is the flow rate,
z1 is the elevation of the base of the barrier above the flume bed and z2 is the elevation
of the top of the barrier.

Through comparisons between the experimental and numerical data for the six presented
validation test cases, the suitability and accuracy of the proposed solver is demonstrated.
Comparisons are also provided with the solution method presented in Mckenna et al. [303],
referred to hereafter as Solver 1. The solution method presented within this publication is
referred to as Solver 2. To provide a fair comparison between the solvers, Solver 1 has been
updated to utilise the same wavespeed estimation algorithm presented by [179].

4.4.1 Flow Under a Barrier

For test case one and test case two, involving flow under a barrier producing downstream
supercritical flow, Solver 2 can be seen to produce accurate predictions, capturing the
interaction of the flow with the obstruction, particularly in the immediate vacinity of the
obstruction (Figure 4.15 and Figure 4.16). This is supported by the calculation of the
contraction coefficient Cc, defined as the ratio of the depth at the vena contracta to the
gate opening, for test case one:

CExp
c =

0.0725

0.116
= 0.625± 0.043 , CNum

c =
0.0680

0.116
= 0.586 (4.50)

where the superscripts Exp and Num refer to the experimental and numerical data re-
spectively. For test case two, an accurate estimate of the contraction coefficient is also
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obtained, although there is a greater discrepancy since the model does not capture the in-
crease in flow velocity which occurs within the 1m region downstream of the barrier:

CExp
c =

0.067

0.122
= 0.549± 0.014 , CNum

c =
0.0742

0.122
= 0.608 (4.51)

The depths immediately upstream, h1, and downstream, h2, of the barrier are however,
accurately predicted:

hExp2

hExp1

=
0.0735

0.2395
= 0.307± 0.008 ,

hNum
2

hNum
1

=
0.0742

0.2374
= 0.313 (4.52)

For both test cases it can be seen that the numerical results approximate the validation
data most accurately at the barrier, with accuracy degrading towards the boundaries of
the domain. For all test cases the downstream boundary condition has a strong influence
on the downstream profile and particularly for test case two, the implementation of the
boundary condition is complicated by the difficulty obtaining accurate measurements of
shallow depths in the presence of significant variations prior to the outfall.

The slight decrease in the headwater depth, which occurs just upstream of the barrier,
is not captured by the model since the shallow water equations are unable to adequately
capture the energy dissipation that occurs at the barrier. Despite this, the errors in the
estimation of the backwater effect are small for both cases, with upstream percentage
errors falling within the range of 0.9− 7.0%.

The comparison between the results for Solver 1 and Solver 2 demonstrate significant
improvements for Solver 2 across both of the test cases. For Solver 1, an approximate
vertical velocity profile is captured by assuming that the flow velocity behind the barrier
is exactly equal to zero, which is only strictly true exactly at the interface between the
barrier and the fluid, and consequently the velocity of the flow within the open layers is
approximated as the total momentum of the cell divided by the sum of the open layer
depths. Since the cell is updated on a monolayer basis by summating the component
fluxes, significant averaging occurs degrading the approximation of the velocity profile.
Figures 4.13 and 4.14 show the respective vertical profiles for the horizontal velocity for
the two cells either side of the structure interface for test case one and test case two
respectively.

The figures demonstrate similarities between the respective velocity profiles; both solvers
produce a larger velocity in the lower layer, underneath the barrier, with a lower velocity
in the layer adjacent to the barrier. The primary difference between the two Solvers can
be seen for the left structure cell whereby the more complex discretisation of the structure
cells for Solver 2 enables the scheme to produce a non-zero velocity immediately behind
the barrier. Although, no experimental data is available for the velocity profile, it is ex-
pected that the non-zero velocity produced by Solver 2 is more physically representative
than the zero velocity produced by Solver 1 and this is supported by the greater accuracy
of the upstream results.
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Figure 4.13: Comparison between the velocity profiles for test case one for Solver 1 (a)
and Solver 2 (b) for the two cells either side of the structure interface.
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Figure 4.14: Comparison between the velocity profiles for test case two for Solver 1 (a)
and Solver 2 (b) for the two cells either side of the structure interface.
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Figure 4.15: Comparison between numerical and experimental results for test case 1.
Details of the numerical setup can be found in Section 4.3.1. Details of the experimental
setup can be found in Mckenna et al. [303]

.

118



Chapter 4. A Local Multi-Layer Approach to Modelling Interactions between Shallow
Water Flows and Obstructions

0.00

0.05

0.10

0.15

0.20

0.25

0.30
de

pt
h 

(m
)

Structure
Solver 1
Solver 2
Validation Data

0 2 4 6 8 10 12
distance (m)

0.0

0.5

1.0

1.5

2.0

ve
lo

cit
y 

(m
s

1 )

(a)

0.00m 2.50m 4.50m 5.00m 5.07m 6.00m 8.00m 10.00m 12.50m

0.2245 0.2245 0.2220 0.2395 0.0735 0.0675 0.0715 0.0795 0.1095

0.5795 0.5795 0.5860 0.5432 1.7701 1.9274 1.8196 1.6365 1.1881

0.1301 0.1301 0.1301 0.1301 0.1301 0.1301 0.1301 0.1301 0.1301

0.2391 0.2383 0.2376 0.2374 0.0742 0.0785 0.0882 0.1003 0.1235

0.5441 0.5459 0.5475 0.5328 1.7522 1.6572 1.4745 1.2969 1.0523

0.1301 0.1301 0.1301 0.1265 0.1301 0.1301 0.1301 0.1301 0.1299

Absolute Error 0.0146 0.0138 0.0156 -0.0021 0.0007 0.0110 0.0167 0.0208 0.0140

Percentage Error 6.5% 6.1% 7.0% 0.9% 1.0% 16.3% 23.4% 26.2% 12.8%

Absolute Error -0.0354 -0.0336 -0.0386 -0.0104 -0.0179 -0.2702 -0.3451 -0.3395 -0.1358

Percentage Error 6.1% 5.8% 6.6% 1.9% 1.0% 14.0% 19.0% 20.7% 11.4%

Absolute Error 0.0000 0.0000 0.0000 -0.0036 0.0000 0.0000 0.0000 0.0000 -0.0002

Percentage Error 0.0% 0.0% 0.0% 2.8% 0.0% 0.0% 0.0% 0.0% 0.1%

Distance

 Average Depth (m)
Validation 

Data
Average Velocity (m/s)

Average Discharge (m2/s)

Depth (m)
Numerical 

Data
Velocity (m/s)

Discharge (m2/s)

Depth (m)

ErrorVelocity (m/s)

Discharge 

(m2/s)

(b)

Figure 4.16: Comparison between numerical and experimental results for test case 2.
Details of the numerical setup can be found in Section 4.3.1. Details of the experimental
setup can be found in Mckenna et al. [303]
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4.4.2 Stationary Hydraulic Jump

Test case five and test case six showcase the capacity of the solver to accurately resolve
scenarios involving stationary hydraulic jumps. The two presented test cases use the
same barrier configuration with different flow rates, resulting in the formation of different
stationary hydraulic jumps for each scenario. As for test case one and two, Solver 2
accurately predicts the contraction coefficient for test case five:

CExp
c =

0.018

0.032
= 0.563± 0.043 , CNum

c =
0.0177

0.032
= 0.553 (4.53)

and for test case six:

CExp
c =

0.0185

0.032
= 0.578± 0.059 , CNum

c =
0.0185

0.032
= 0.578 (4.54)

For test case five there is an overestimation of the upstream depth and for test case
six there is a slight underestimation of the upstream depth. It should be considered
that since these test cases involve small inflows of 20.3 − 20.5ls−1 and 23.9 − 24.2ls−1

respectively, that the uncertainty in the inflow rate is larger than for the other presented
test cases for which the flow rates exceeds 130ls−1. As outlined in the Euromag Sensors
Instruction Manual [154], the inflow pipe must operate at full bore with minimal aeration,
since the conversion between the measured potential to the estimated flow rate is based
upon the assumed electrical conductivity of a volume of water, not an air-water mixture.
The presence of air bubbles within the flow produces oscillating measurements, which
were observed for all test cases (the average range in the measured inflow rate across
the validation data set is equal to 0.32ls−1), whereas the presence of air pockets, which
may form due to insufficient pressures and fluid velocities, produces systematic errors in
the flow measurement. The maximum permissible errors provided by the manufacturer,
summarised in Table 4.1, suggest that the error bound for flow rates of ≈ 20ls−1 is ±2%,
however, in the absence of in-situ verification the provided error bounds should be taken
as guidelines only. Nonetheless, it can be demonstrated that adjusting the inflow rate
within the range of the provided error estimates (±2%) produces an accurate prediction
of the upstream depth, with indistinguishable differences downstream of the barrier, for
both test cases (see A.1 and A.2).

In both cases, Solver 2 correctly predicts the formation of a stationary hydraulic jump
downstream of the barrier. The robust wave estimation algorithm (Algorithm 2) was
determined to be crucial for accurately capturing and maintaining the stationary hydraulic
jumps for the relevant numerical simulations. For test case six, the location of the foot of
the jump is accurately predicted however, for test case five, the prediction of the hydraulic
jump is premature, occurring at approximately x = 0.5m upstream of the actual location.
For test case five the downstream depth of the jump is accurately predicted whereas
for test case five the downstream depth of the jump is underestimated. However, in
general, the errors resulting from the inexact capturing of the hydraulic jump should not
necessarily be attributed to Solver 2; as shown by Zhou and Stansby [500], for a given
flow rate, the location at which a jump forms is dependent on small changes in the bed
roughness, the position of the hydraulic jump is also sensitive to the implementation of
the downstream boundary condition as shown in Figure 4.20 and the mesh resolution is
clearly insufficient to sharply capture the slope of the jump in any case. Furthermore,
in both cases the numerical results predict jumps with a zero length roller, characterised
by a sharp discontinuity in the depth of flow at the toe of the jump, which is a feature
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of the classical shallow water equations; since there is no internal energy transcribed
within the classical shallow water equations, energy loss through a shock discontinuity is
instead captured via Rankine-Hugoniot relations arising from the conservation of mass
and momentum [432]. This is insufficient to capture the complex behaviour which occurs
within the transition region of turbulent hydraulic jumps with a Froude number of greater
than 1.5. Methods to overcome the shortcomings of the classical shallow water equations,
such as the work of Richard and Gavrilyuk [376], are not appropriate nor necessary
for the desired application of flood risk modelling. Since the purpose of the presented
solution procedure is to capture the interaction of the flow with the barrier, the accurate
reproduction of the flow characteristics immediately upstream and downstream of the
barrier, as has been demonstrated, is of utmost importance when considering the models
utility.

Once more, Solver 2 provides a significant improvement over Solver 1 in the accurate
prediction of the upstream flow characteristics as a consequence of the more sophisticated
solution procedure. Figure 4.17 and 4.18 show the respective vertical velocity profiles.
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Figure 4.17: Comparison between the velocity profiles for test case five for Solver 1 (a)
and Solver 2 (b) for the two cells either side of the structure interface.
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Figure 4.18: Comparison between the velocity profiles for test case six for Solver 1 (a)
and Solver 2 (b) for the two cells either side of the structure interface.
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Figure 4.19: Comparison between numerical and experimental results for test case 5.
Details of the numerical setup can be found in Section 4.3.1. Details of the experimental
setup can be found in Mckenna et al. [303].
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Figure 4.20: Comparison between numerical and experimental results for test case 6.
Solver 2 BC-1 illustrates the results for the standard critical depth boundary condition
which is implemented for all test cases. Solver 2 BC-2 provides a comparison of the results
for a fixed depth boundary condition (h = 0.051m) to demonstrate the significance of the
downstream boundary condition on the downstream flow. Table 4.20b presents data
relating to Solver 1 BC-1. Details of the numerical setup can be found in Section 4.3.1.
Details of the experimental setup can be found in Mckenna et al. [303].
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4.4.3 Flow Over and Under a Barrier

Test case eight and nine involve combined flow over a weir and under a gate, with sig-
nificant vertical flows occurring as a result of the flow over the barrier, which presents a
significant challenge for depth-averaged shallow water models since the vertical compo-
nent of the velocity is neglected. Furthermore, energy losses induced by the conversion of
potential energy to kinetic energy during weir flow are also not incorporated within the
model. Nonetheless, the overall results remain accurate and the general behaviour is well
captured: Solver 2 accurately captures the behaviour of the flow for test eight (Figure
4.23) and test case nine (Figure 4.24).

For test case eight, the validation data demonstrates significant vertical flows immediately
downstream of the barrier which obviously cannot be captured by a depth-averaged one-
or two-dimensional shallow water model. Despite this, the errors in the predicted depths
and velocity upstream are small, ranging from 0.2 − 1.6%, with errors downstream at
x = 5.20m and x = 6.00m between 9.0%− 11.0%. For test case nine, the horizontal scale
of the vertical flow is much smaller and as a result the immediate downstream profile is
more accurately predicted. However, upstream accuracy is comparatively worse than for
test case eight, although errors remain acceptably small (6.4 − 8.5%). As for all of the
presented test cases, the downstream boundary condition is a source of error however,
the accuracy of the presented methodology can still be ascertained from the data in close
proximity to the barrier.

It is possible to incorporate energy losses associated with weir flow within the model by
introducing an internal boundary condition above the barrier based upon a weir equa-
tion, an outline of a simple implementation of this method is provided in A.3 and the
corresponding results are provided in A.4 and A.5. However, for test case eight and nine
the results are quasi-indistinguishable from the results presented in Figure 4.23 and 4.24
suggesting that neglecting energy losses is not the primary cause of the errors for the
presented test cases. As such, the errors in the results are likely primarily caused by the
quality of the approximation of the velocity profile.

Through comparison of the results for Solver 1 and Solver 2 it can be seen that, for both
cases, Solver 1 underestimates the upstream depth and overestimates the velocity relative
to Solver 1, producing a larger velocity and shallower corresponding depth downstream
of the barrier. This can be explained through analysis of the velocity profiles presented
in Figure 4.21 and 4.22: the velocity assignment assumptions for Solver 1 result in a
larger and equal velocity in both open layers, relative to Solver 1, which results in a
larger numerical flux and consequently upstream depths are comparatively lower and
downstream velocities are comparatively higher. Overall it is hard to distinguish, purely
based on the presented test cases, which of the two solvers is most accurate for modelling
combined weir and gate flows. However, Solver 2 has the advantage in that the quality of
the approximation of the velocity profile can be improved by introducing further vertical
discretisation within each structure cell as well as the possibility of introducing more
structure cells around a structure interface to extend the region in which the velocity
profile is approximated. However, the results demonstrate that despite the complexity
of the flow, both Solver 1 and Solver 2 produce adequate numerical results for combined
weir and gate flow.
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Figure 4.21: Comparison between the velocity profiles for test case eight for Solver 1 (a)
and Solver 2 (b) for the two cells either side of the structure interface.
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Figure 4.22: Comparison between the velocity profiles for test case nine for Solver 1 (a)
and Solver 2 (b) for the two cells either side of the structure interface.
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Figure 4.23: Comparison between numerical and experimental results for test case 8.
Details of the numerical setup can be found in Section 4.3.1. Details of the experimental
setup can be found in Mckenna et al. [303].
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Figure 4.24: Comparison between numerical and experimental results for test case 9.
Details of the numerical setup can be found in Section 4.3.1. Details of the experimental
setup can be found in Mckenna et al. [303].
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4.4.4 Mesh Convergence Analysis
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Table 4.3: The error in the L2-norm, computed using a 0.005m mesh as a reference
solution in absence of an analytical solution.

In the absence of an available analytical solution, the convergence of the scheme, shown in
Figure 4.3, is assessed by computing the error in the L2-norm with respect to a reference
solution produced using a refined mesh resolution (∆x = 0.005m).
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4.5 Conclusion

A new Riemann solver, capable of resolving numerical fluxes across a partially obstructed
interface, has been presented. Via the validation process, it has been demonstrated that
the solver is able to adequately capture fluid-structure interactions for a range of bar-
rier configurations and flow rates. Furthermore, via the comparison process, it has been
demonstrated that the solver represents a significant improvement on the previously pub-
lished solver [303].

It is clear that the new solution procedure addresses the identified weakness of the previous
solver by more accurately capturing the vertical variation in the horizontal velocity profile
at a structure interface. This results in the more accurate determination of the flow
characteristics, particularly the upstream flow characteristics. However, this does come
at the cost of increased computational demands and implementation complexity although,
due to the local nature of the solution procedure and the proportionally small number of
structure cells within a computational domain, the increase in computational expense in
unlikely to be prohibitive. As for the previous solver, the biggest barrier to implementation
is the scarcity of the required data for structures and the availability of suitable meshing
algorithms, which remains the subject of further work. The solver presented in [303]
maintains utility as a viable, albeit comparatively less accurate, alternative with a greater
ease of implementation.

The capability of the solver to resolve numerical fluxes across a partially obstructed
interface has significant implications for modelling a variety of structures within two-
dimensional hydrodynamic models. This has important applications in terms of improving
flood inundation modelling capabilities as well as enabling the modelling of infrastructure
resilience modelling and the structural health monitoring of hydraulic structures. More-
over, the greater accuracy of the solver combined with the vertical discretisation of the
structure cells presents new opportunities such as the possibility of modelling the trans-
port of solutes in conjunction with flows around obstacles.

As for all models, the underlying assumptions must be considered in order to ascertain
the limitations of the model and as such the solver should be considered appropriate for
modelling structures at a spatial scale whereby approximating the structure as a partial
obstruction existing at a cell interface is appropriate. Although, the proposed model
does not capture all of the energy losses which occur as a result of the fluid-structure
interaction, such effects are insignificant at this spatial scale in comparison with the effect
induced by the blockage of the flow by the structure, which is well captured as shown by
the validation results. For detailed analyses of individual structures 3D CFD analyses are
recommended.

Avenues for further development of the solver include increased vertical discretisation of
structure cells, to enhance the quality of the approximation of the velocity profile (Figure
4.25) and the use of more structure cells per structure interface, to horizontally extend
the region in which the vertical velocity profile is captured (Figure 4.26). Increased ver-
tical discretisation of the structure cells is relatively straightforward albeit at potentially
significant computational cost on a per structure cell basis. The use of more structure
cells, to extend horizontally the region in which the approximate vertical velocity pro-
file is captured, can potentially result in complex meshing requirements for 2D models.
This is primarily as a result of the fact that a single cell may be close enough to two or
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Figure 4.25: A simple computational domain [a, b] illustrating the implementation of
additional structure cells.

more structure interfaces and as a consequence, would require vertical discretisation into
sub-cells aligned with all relevant structure interfaces. This is especially problematic if
increased vertical discretisation of the structure cells is also introduced, as the number of
layers per structure cell could become unrealistic. An alternative approach would be to
describe the flow within a sub-cell using a multi-layer system with mass exchanges [32,
159] as this would enable a higher quality approximation of the velocity profile within a
sub-cell without introducing additional unnecessary continuity equations.

xi

∆z
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H 3
2
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2

Figure 4.26: An example of further vertical discretisation of a Structure cell.

Another option for potential further development of the solver would be to develop a
more sophisticated treatment of the relatively simplistic layer redefinition process. Flows
which are inherently vertical in nature, such as water spilling over the top of a structure,
also present a major challenge however, this is difficult to address without compromising
the compatibility of the solver with the numerical schemes utilised by contemporary flood
models due to the fundamental nature of the shallow water equations.

132



Chapter 5

A Local Multi-Layer Approach to
Modelling Depth-Integrated Solute
Transport through Obstructions

Modelling the mixing and transport of solutes is important for a variety of environ-
mental engineering applications. Within typical domains, features such as bridges,
gates and weirs act as partial barriers to flow and the advection and diffusion of
a scalar quantity in the presence of such features has been seldom explored within
academic literature. In order to address this gap in modelling capability, the ad-
vection and diffusion of a well-mixed dissolved solute within the context of shallow
water interactions with partial barriers to flow is explored using the local multi-
layer approach to modelling shallow water interactions with obstructions presented
by Mckenna et al. in [arXiv preprint arXiv:2304.10262, physics.flu-dyn, (2023)]. A
simple first order upwind scheme utilising a Harten-Lax-van Leer Contact solver to
resolve numerical fluxes is implemented for the coupled modelling of a shallow water
system with the advection-diffusion equations. The numerical results are validated
via planar concentration analyses, in which the scattering and absorption of inci-
dent light by an injected dissolved fluorescent tracer mass enables the nonintrusive
determination of the fieldwise concentration for the duration of the experiment.

This chapter is to be submitted for publication, pending successful publication
of Chapter 4 and the completion of significant further work.
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5.1 Introduction

Accurately modelling the mixing and transport of solutes is crucial for various environ-
mental engineering applications, including studies assessing the environmental impact of
soluble pollutants on surface water quality and the transportation of nutrients for fertiga-
tion. For vertically well-mixed solutes, depth-averaged approximations may be applied,
with the computational demands of hydrodynamic flood modelling at scales pertinent to
flood risk management necessitating such an approach.

Within academic literature finite difference ([136, 273]), finite element ([183]), finite vol-
ume ([439, 321]) and Lattice Boltzmann methods [358, 499, 357] for modelling advection-
diffusion equations have been presented. State-of-the-art urban hydrodynamic modelling
and more generally the approximation of hyperbolic conservation laws, is dominated by
finite volume models due to the inherent conservation properties, flexibility of implemen-
tation on structured and unstructured grids, strong stability properties and simplicity of
implementation and as such, finite volume models are the primary focus of this publica-
tion. For finite volume methods solving systems including advection-diffusion equations
specifically, it is common to present a flexible implementation on irregular unstructured
grids ([30, 53, 249, 271, 456, 321, 199, 94]) in order to provide greater meshing flexi-
bility for complex geometries. Although the versatility of using either regular structured
meshes or irregular unstructured meshes is clearly desirable, practitioners should be aware
that although irregular unstructured meshes provide an advantageous degree of flexibility
when meshing complex geometries, this does not necessarily guarantee higher accuracy;
as explained by Bouche et al. [69], when methods are formally referred to as first or-
der or second order with regards to the order of spatial accuracy, this indicates that the
scheme exhibits a first or second order truncation error on uniform Cartesian grids, it is
not known whether the same order of spatial accuracy is achieved for unstructured grids.
Furthermore, Bouche et al. [69] demonstrate that, in general, the truncation error for
unstructured grids does not tend to zero as the mesh size is refined.

Within the literature relating to finite volume solutions for systems containing advection-
diffusion equations a number of key numerical challenges can be identified. The first
of which is the case of pure advection, for which numerical schemes should minimise
artificial diffusion and oscillations in order to conserve solute concentration profiles for
long duration simulations. Since it is well established that first-order upwind schemes
are diffusive, such schemes are typically unsuitable in this regard, producing increasingly
smeared concentration profiles with a corresponding reduction in peak concentrations over
the duration of the simulation [199, 331, 321, 330]. Extension of the scheme to second
order spatial accuracy to remedy this, is however, not straightforward, with the choice of
flux limiter having a strong influence on the quality of the results [53, 83]. Furthermore,
Murillo et al. [331] demonstrated that it is not possible to simultaneously obtain second
order spatial accuracy for both the conserved variables and the solute concentration; a
choice must be made as to which requires a higher order of spatial accuracy. This is as
a consequence of the fact that the solute concentration, which is a primitive variable, is
independent of the eigenstructure of the system and therefore the monotonicity properties
of the numerical scheme apply only to the solute mass not the concentration. As a
consequence, it is also non-trivial to ensure bounded values of concentration. This means
that it is necessary to enforce, when updating cell properties, that the updated value of
the concentration is bounded by the neighbouring minimum and maximum concentration
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values. A solution to this problem is introduced via a conservative redistribution of
the updating contributions in [333], with further discussion and implementation being
explored in [330, 331, 332, 83] for conservative upwind schemes utilising Roe approximate
Riemann solvers [381]. In this regard, the treatment of wet/dry fronts also requires special
numerical consideration [332, 40, 48].

The minimisation of numerical diffusion and oscillations can also be achieved via the
implementation of higher order accuracy schemes as shown by Cai et al. [84], who im-
plemented a fourth order central weighted essentially non-oscillatory reconstruction with
an adaptive semi-discrete central upwind scheme. This scheme can achieve an arbitrary
order of spatial accuracy in the absence of source terms however, the second order dis-
cretisation of the source terms presented within the paper proves to be of high-resolution
and non-oscillatory. It should be noted however, that Cai et al. only consider the case of
pure advection with no diffusion.

An alternative method for minimising artificial diffusion and oscillations is the decoupled
modelling of the solute transport using a non-diffusive numerical method. Chertock et
al. [101] and Touma and Saleh [440] both utilise a hybrid finite-volume-particle method
approach in which the solution of the shallow water system is achieved via a central-
upwind scheme and the subsequent advection of the solute is achieved using a particle
method. This is beneficial since central upwind schemes are unable to sufficiently resolve
the contact waves across which the pollutant concentration is discontinuous and the par-
ticle method is non-dissipative with filters being used to remove oscillations. It should
however be noted that both of the referenced methods consider only the pure advection of
a scalar quantity. For conservative upwind schemes, it has been shown by Burguete et al.
[83], that decoupled discretisation of the solute transport results in significant numerical
challenges that require special corrections [334]. This is further supported by Bai and
Jin [40], who demonstrate the same numerical issues for decoupled schemes. Historically,
decoupled treatment of the advection of a solute has presented a popular solution since
it enables the implementation of simple and computationally efficient schemes, with de-
coupling justified, in ignorance of the numerical difficulties, by the negligible influence of
the solute on the flow dynamics for low concentrations. Adaptive mesh refinement, as
implemented by Benkhaldoun [53], also presents a potential solution to reduce numerical
diffusion, albeit at the cost of greater implementation complexity.

For first order upwind schemes with sufficient physical diffusion, Murillo and Garćıa-
Navarro [330] proposed an innovative solution involving the modification of the physical
diffusion to ensure that the total diffusion, equal to the sum of the numerical and physical
diffusion, is as close of an estimate of the physical diffusion as possible. This technique has
been demonstrated to produce quasi-second-order spatial accuracy for first order upwind
schemes [321], with promising results also being demonstrated for second order schemes.
This technique is particularly pertinent for upwind schemes considering the aforemen-
tioned discovery of Murillo et al. [331], that you cannot simultaneously enforce second
order spatial accuracy for both the conserved variables and the solute concentration.

The computational efficiency of the scheme is also an important consideration since the
addition of the capacity to model solute advection and diffusion increases the computa-
tional burden, with many applications also demanding long simulation durations. As a
consequence, the stability of the scheme and the resulting restriction on the timestep is
an important consideration. The choice of treatment of the source terms relating to the
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diffusion of the solute is therefore a key consideration, with implicit treatment resulting
in no further restriction of the timestep albeit requiring a potentially expensive iterative
solution. The alternative is to use an explicit treatment which is computationally simpler
but imposes a greater restriction on the timestep. Techniques which expand the region of
stability, such as [329], are also valuable tools. Similarly, the sub step explicit resolution
of the diffusion terms introduced by Morales-Hernández [321] prevents reduction of the
time step for the shallow water system, enabling a more efficient computation for explicit
treatment of the source terms in a decoupled scheme.

In the majority of cases, the advection-diffusion equations are considered to be hyperbolic
under the assumption of dominant advection however, the advection-diffusion(-reaction)
equations are in fact parabolic in nature. Montecinos and Toro [320] address this by using
Cattaneo’s relaxation approach [91] to reformulate the system into a hyperbolic system
with stiff sources. In Vanzo et al. [456], this technique can be seen to produce a scheme
with a favourable stability range, producing robust second order accurate approximations.
The assumption of dominant advection is suitable for most common applications in which
the shallow water assumptions also hold, such as pollutant spills in rivers or fertigation ap-
plications, however, the more rigorous treatment of the equations provides a more robust
and versatile solution. It should be noted however, that due to the potential for applica-
tion specific complexities, the general application of a advection-diffusion model to specific
scenarios may encounter challenges. For example, when considering applications involving
meandering channels, spiral motion induced by an imbalance of centripetal and pressure
forces becomes an important consideration as shown in Caleffi and Valiani [85]. Another
example of a problem specific modification is provided by Cea and Vázquez-Cendón [94],
who demonstrate that for applications involving rainfall runoff, a well-balanced discretisa-
tion of the friction source terms, in addition to the topographic source terms, is required.
This demonstrates the challenges involved in developing a general model for simulating
advection-diffusion.

The aim of this paper is to complement the outlined advances with the derivation of
a method to handle the interaction between shallow water flows, dissolved solutes and
partial obstructions to flow, which has seldom been explored within academic literature.
As such, presented within this article is a newly developed numerical method, which
builds upon the work presented by Mckenna et al. [302], which details a method for
modelling partial barriers to flow within one- or two-dimensional hydrodynamic models.
In [302] a local implementation of a multi-layer shallow water model is used to capture
fluid-structure interactions. Within this publication, further development of the model, in
order to add the capability to model the advection and diffusion of a well-mixed dissolved
solute, is outlined and experimentally validated. This capability is particularly relevant to
urban and riverine environments which usually contain a number of the aforementioned
barriers such as bridges, weirs and gates. The flexibility of the method also enables the
modelling of complex barrier geometries including natural flood risk management solutions
such as leaky barriers.

The proposed numerical method utilises the same local multi-layer approach to modelling
interactions between shallow water flows and obstructions as presented in [302], with mod-
ifications to the conservation laws implemented to augment species equations describing
the advection and diffusion of passive scalars. As a consequence, Harten-Lax-van Leer
Contact (HLLC) [435], as opposed to Harten-Lax-van Leer (HLL) [212], approximate
Riemann solvers are utilised within the structure cells in order to resolve the numerical
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fluxes for the depth-averaged solute mass across the restored contact discontinuity wave.
The predictive capacity of the model is validated via experiments conducted in a state-of-
the-art hydraulic flume. These validation experiments consisted of planar concentration
analyses (PCA), based upon the methodologies presented by [23, 386], whereby the scat-
tering and absorption of incident light by an injected dissolved fluorescent tracer mass
enables the nonintrusive determination of the fieldwise concentration for the duration of
the experiment.

5.2 Mathematical Model

As described in [302] the computational domain is divided into normal cells, intermediate
cells and structure cells, with corresponding normal interfaces (NI), intermediate interfaces
(II) and structure interfaces (SI) as shown in Figure 5.1.
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Figure 5.1: A simple computational domain [a, b] with variable bed topography illustrat-
ing the designation of structure, intermediate and normal cells with their corresponding
interfaces. H3/2 and H5/2 represent the elevation of the base and cover of the idealised
structure represented at the structure interface.

The mathematical model for the normal and intermediate cells is derived by augmenting
the two-dimensional shallow water equations with an additional species equation describ-
ing the transport of a passive scalar:

∂tU+ ∂xF(U) + ∂yG(U) = S(U) (5.1)

Where U is the vector of conserved variables, F(U) and G(U) are the vector of fluxes in
the x and y directions and S(U) is a vector of sources comprising of S0, the bed slope
source term, Sf , the bed friction source term and SD, the dispersion-diffusion source term.
These terms are given as follows:

U =


h
hu
hv
hψ

 , F =


hu

hu2 + 1
2
gh2

huv
huψ

 , G =


hv
huv

hv2 + 1
2
gh2

hvψ

 (5.2)

S0 =


0

−gh∂xz
−gh∂yz

0

 , Sf =


0
τf,x
τf,y
0

 , (5.3)
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SD =


0
0
0

∂x (hDxx∂xψ + hDxy∂yψ) + ∂y (hDyx∂xψ + hDyy∂yψ) + ψs

 (5.4)

The conserved variables are h which denotes the depth of flow, u which denotes the
velocity component in the x direction, v which denotes the velocity component in the y
direction and ψ which represents the depth-averaged concentration of a solute. Within
the topographic source term, S0, g is the acceleration due to gravity and z is the elevation
of the bed measured from a fixed reference elevation. Within the bed friction source term,
Sf , τf,x and τf,y represent the x and y components of the shear stress at the bed, defined
in accordance with Manning’s equation:

τf,x =
−ghqx
|q|

(
n2 |q|2

h
10
3

)
= −Cfu |u|

τf,y =
−ghqy
|q|

(
n2 |q|2

h
10
3

)
= −Cfv |u|

(5.5)

Where n is Manning’s roughness coefficient, |q| is the modulus of the discharge vector
q = (qx, qy)

T , where qx = hu and qy = hv are the respective x and y components, |u|
is the modulus of the velocity vector u = (u, v)T and Cf is the Manning’s bed friction
coefficient:

|q| =
√
q2x + q2y =

√
(hu)2 + (hv)2 , |u| =

√
u2 + v2 , Cf =

gn2

h
1
3

Within the dispersion-diffusion source term, SD, Dxx, Dxy, Dyx and Dyy are the turbulent
mixing components of the tensor-rotated dispersion-diffusion tensor of depth averaged
mixing [364]: 

Dxx =

√
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√
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Cz

√
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(5.6)

where Cz is the Chezy coefficient defined, based upon the Manning equation, as:

Cz =
h

1
6

n
(5.7)

ϵl is a dimensionless constant representing the longitudinal dispersion and ϵt is a dimen-
sionless constant representing the turbulent diffusion. Elder [149] empirically estimated
the values of these dimensionless constants as ϵl = 5.93 and ϵt = 0.15 for fully developed
boundary layer flows in straight channels. As these dimensionless constants are influenced
by the turbulence intensity of the flow, an application specific estimation is required in
most cases. Within academic literature, there is a wealth of publications dedicated to
the estimation of the longitudinal dispersion coefficients [7, 27, 37, 39, 38, 341]. The final
term, ψs, represents a source or sink that contributes or removes solute such as naturally
occurring pollutant decay or growth. Although the method is presented for a single pol-
lutant species, it is trivial to extend the method to model a family of pollutant species
via the addition of further transport equations.
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5.2.1 Local Multi-Layer Model

In order to capture fluid structure interactions a modification of the local multi-layer
model presented in [302] is employed within the structure cells:

∂tUk + ∂xFk(Uk) + ∂yGk(Uk) = Sk(Uk) (5.8)

Where Uk is the vector of conserved variables for layer k, F(Uk) and G(Uk) are the
vector of fluxes for layer k in the x and y directions and Sk(Uk) is a vector of sources
for layer k, comprising of Sk,0, the topographic source terms for layer k, Sk,f , the friction
source terms for layer k and Sk,D, the dispersion-diffusion source term for layer k. These
vectors of conserved variables and fluxes are are given as follows:

Uk =
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
(5.9)

and the components of the vector of sources are given as:

Sk,0 =
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(5.11)

Sk,D =


0
0
0

∂x (hkDk,xx∂xψ + hkDk,xy∂yψk) + ∂y (hkDk,yx∂xψ + hkDk,yy∂yψk) + ψk,s


(5.12)

Where k refers to the index of the layer under consideration, labelled in ascending order
from layer 1 at the bed, to layer N at the free surface. k+1/2 and k−1/2 refer respectively
to the upper and lower interface of the flow in layer k. The subscript k(+) refers to the
properties of the flow above layer k where hk(+)

is defined as:

hk(+)
=

N∑
j=k+1

hj (5.13)
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The topographic sources are equal to Rk+1/2 − Rk−1/2 which refer to the reaction forces
exerted at the interfaces between the layers or bed, with Rk+1/2 denoting the reaction
force of layer k onto the fluid above and Rk−1/2 denoting the reaction force exerted on
layer k by the fluid or bed beneath it. τk+1/2 and τk−1/2 represent the interlayer turbulent
friction effect induced at the upper and lower interfaces of layer k. The interlayer friction
terms are derived for a multi-layer cell by applying a finite difference approximation,
across the depth of the fluid layer k, to the Reynolds averaged stress component under
the Boussinesq approximation [221]:∫ z
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Where ν = νl+νt, is the total effective viscosity equal to the laminar viscosity νl, which is a
physical property of the fluid and νt, which is the depth-averaged turbulent viscosity. The
depth-averaged turbulent viscosity is evaluated, based on the assumption of a logarithmic
velocity profile whereby bed-generated turbulence dominates over free layer turbulence as
proposed in [500]:

νt =
κ

6
U∗H (5.16)

where κ is the von Kármán constant equal to 0.4, H is the total depth of flow and U∗ is
the depth-averaged shear velocity, which is given by the following equation:

U∗ =

√
g(U2 + V 2)

Cz
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√
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H
1
6

(5.17)

where U and V and H represent the depth-averaged velocity in the x direction, depth-
averaged velocity in the y direction and total depth for the whole multi-layer cell. KE is
the turbulent kinetic energy given as:

KE =
1

2
(u′u′ + v′v′) (5.18)

where u′ and v′ denotes the variation of the velocity component about the mean value.
KE,k±1/2 in equations (5.14)-(5.15) therefore represents an approximation of the turbulent
kinetic interface at the layer interfaces, approximated as:
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For the case where k = 1, considering the layer which flows over the bed, τk−1/2 = τb
which is instead derived from Manning’s equation (5.5), where H is the total depth of
flow for the whole structure cell. The particular form of the viscous effect on the base of
the fluid layer, τk−1/2, is accounted for by the Kronecker delta in (5.11), which is defined
as:

δαk =

{
1 if k = α

0 if k ̸= α
(5.21)

The Kronecker delta also ensures that τN+1/2 = 0, which corresponds to zero friction at the
free surface. The depth-averaged mixing coefficients are also evaluated on a layer-by-layer
basis: 
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5.3 Experimental Validation: Planar Concentration

Analysis

As prior mentioned, the nonintrusive determination of the fieldwise concentration for the
duration of the experiment is achieved via a planar concentration analysis (PCA), adapt-
ing the method of Arques et al. [23] and the hydro-optical theory presented by Rummel
[386] and von Carmer [86]. Detailed references for more general hydro-optical theory are
provided by Kondratyev and Filatov [248], Bukata et al. [82] and Arst [25].

5.3.1 Experimental Setup

The PCA was conducted in the S100 Research flume housed within the Novak Laboratory
at Newcastle University. A detailed description of the flume, including error estimates for
the electromagnetic flow meter are provided in Mckenna et al. [302]. Initial experiments
were conducted to determine optimal barrier and flow rate configurations and the chosen
configuration is presented in Figure 5.2. Two Sony SNC-VB770 cameras were mounted
above the flume in order to capture the required footage, with each camera observing an
area of the flume equal to approximately 1.20m x 1.00m. Raw footage was captured at a
maximum frame rate of 30Hz, producing frames of 3840 x 2160 pixels, shot in intelligent
screen capture (low noise) mode. Unlike cameras which operate using charge-coupled
devices (CCDs), which introduce spurious noise during the digitisation process [386], the
modern 35mm full frame Exmor complementary metal-oxide-semiconductor (CMOS) sen-
sor utilised by the Sony SNC-VB770 drastically reduces the signal-to-noise ratio. This
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Figure 5.2: Sketch of the experimental setup for the planar concentration analysis. The
flow rate is equal to 33ls−1 and the base of the barrier is at an elevation of 39.5mm above
the flume bed. Black circles denote the average measured depths.

essentially eliminates the requirement to perform noise reduction post-processing tech-
niques, such as time-averaging the outputs, increasing the temporal and spatial resolution
of the final outputs. Since the primary focus is on the interaction of the flow and the
dissolved solute with the barrier, placed 5m downstream from the inlet, the two measure-
ment areas were centered around the barrier, with Camera 1 observing the upstream end
and Camera 2 observing the downstream end, as shown in Figure 5.2.

As for the experiments detailed in Section 3.3 and Section 4.3, depth measurements were
obtained using a vernier depth gauge. At each measurement point a maximum depth
was observed via raising the depth gauge to the maximum elevation above the flume bed
such that the tip of the gauge experiences temporary submergence. Conversely, minimum
depth measurements were obtained by lowering the depth gauge to the minimum elevation
above the flume bed such that the tip of the gauge is permanently submerged. Due
to a lack of appropriate equipment for the measurement of the fluid velocity, the fluid
velocity is derived from the flow rate, as measured by the electromagnetic flow meter,
and the corresponding depth measurement. Hence, depth measurements were obtained
with an absolute uncertainty of ±1mm, with the difference between the maximum and
minimum depth measurements being determined by the unsteadiness of the flow at the
measurement point. A minimum and maximum velocity is therefore obtained considering
the uncertainty in the respective measurements of the flow rate and the depth, from which
the velocity is derived.

Rhodamine water tracing (WT) dye, was selected as the conservative tracer, procured in
the form of a 20% solution in water. As a result, an array of six 50W LED arrays were
used to illuminate the flume with green light (555−585nm), since this specific wavelength
range aligns with the peak of the emission spectrum for Rhodamine WT [374, 378, 411].
Although efforts were made to ensure a uniform illumination of the flume, perfectly ho-
mogeneous illumination is essentially impossible in practice [86], especially since the use
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of a light diffuser was deemed too impractical within the constraints of the laboratory. To
account for the inhomogeneities in the incident irradiance, a calibration process was per-
formed in order to derive the spatial dependency of the photometric response for known,
well mixed, concentrations, such that a transfer algorithm may be defined to enable con-
version between the observed intensity of the upwelling irradiance and the concentration
of the tracer. A camera calibration process was also conducted in order to eliminate
lens distortion. A detailed description of the calibration process is provided in Section
5.3.1. It should be noted that since Rhodamine WT was obtained in 20% aqueous form,
concentrations hereafter refer to the concentration of the 20% aqueous solution, not pure
Rhodamine WT.

For each experiment, injections of diluted Rhodamine WT solution were manually per-
formed, using a micropipette, to simulate the instantaneous release of a pollutant slug.
Injections were performed approximately 4.5m upstream of the measurement area to en-
sure that the dye had sufficient time to vertically well-mix and satisfy the depth-averaged
assumptions of the numerical model and the calibration process.

Calibration

In order to perform the camera calibration process, machine vision algorithms provided by
Open Computer Vision (OpenCV) [74] were used to identify the corners of a chessboard
pattern placed at the corresponding water surface height for each camera frame. Since
the distance between the chessboard corners is uniform and known, this enables the
definition of a new camera matrix. The new camera matrix is obtained via OpenCV’s
undistort method, whereby the new camera matrix represents a geometric transformation,
with bilinear interpolation used to estimate pixel values at non-integer coordinates, that
can be applied to all subsequent frames to remove the effect of lens distortion. Through
alignment of the northern chessboard edge with the wall of the flume and the respective
western (for Camera 1) and eastern (for Camera 2) edges with the barrier slot, a coordinate
system can be defined for each of the cameras. Following detection of the corners and
application of the new camera matrix, horizontal lines of best fit are then drawn through
the undistorted corner coordinates in both cardinal directions, as shown in Figure 5.3,
which can then be used to rotate the image such that it is aligned with the direction of
flow.

The mean error in the transformation process is estimated using the re-projection error,
which is calculated by comparing the image points obtained by the corner detection
algorithm and the points obtained using the known three-dimensional objects points:

ϵ =
1

nproj

n∑
j=1

||pproj − pimg||2 (5.23)

ϵavg =
1

n

n∑
k=1

ϵk (5.24)

ϵavg was calculated as 0.036 pixels for Camera 1 and 0.027 pixels for Camera 2. The
accuracy of the transformation process can be further verified using the average coefficient
of determination, R2, for the vertical (R2

y) and horizontal (R2
x) lines drawn through the
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(a) Camera 1 (b) Camera 2

Figure 5.3: Undistorted and rotated camera frames for Camera 1 (Figure 5.3a) and Cam-
era 2 (Figure 5.3b) following the identification of the corners of the chessboard pattern
and definition of a new camera matrix. Units for the axes are pixels. A white background
was utilised to assist the machine vision algorithm in accurately determining the corner
locations.

undistorted corner coordinates:

Camera 1 :

{
R2

x = 0.999999

R2
y = 0.999992

, Camera 2 :

{
R2

x = 0.999979

R2
y = 0.999998

(5.25)

In order to account for the spatial inhomogeneity of the incident irradiance, a second
calibration process is required in order to define a transfer algorithm, enabling conversion
between the observed green light intensity of each pixel(s) and the corresponding solute
concentration. The first step in this process is to hydraulically isolate the areas observed
by each camera. Under the established experimental illumination conditions, which must
be maintained thereafter, the spatial calibration process is then performed by first filling
the respective hydraulically isolated calibration zones with water, to the average depth
of the flow in that region (see Figure 5.2). Through the sequential recording of the cal-
ibration zones and subsequent addition of Rhodamine WT, which must be well mixed
to ensure homogeneity, a relationship between the known discrete concentration values
and the measured green light intensity can be obtained, referred to as the photometric
response. Since the photometric response is dependent on the depth of flow, it was there-
fore necessary to select a flow rate and barrier configuration that produced near constant
depths within the observed regions of the flow (Figure 5.2). The spatial variation in the
median observed green light intensity for each of the nine calibration concentrations for
both cameras is provided in A.6.1-A.7.10. This data is used to define a calibration ma-
trix, Gcal(ci, x, y), which enables conversion between from the measured monochromatic
luminance, G(x, y), into a depth-averaged solute concentration, c(x, y).

An initial cropping of the observed domain for each camera is performed to eliminate areas
contaminated by shadows introduced by the hydraulic isolation of the calibration zones,
as shown in Figure 5.4. Since the hydraulic isolation of the individual calibration zones
requires sealing the central barrier, the calibration of the immediate upstream and down-
stream zones is also compromised since the experimental illumination conditions, once
the barrier is raised, do not correspond to the illumination conditions for the calibration
process.

The ideal calibration process would be to sequentially mix the entire volume of the sump
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(a) Camera 1 (b) Camera 2

Figure 5.4: Figure 5.4a and Figure 5.4b illustrate the cropped area, via the superimposed
white lines, for the planar concentration analysis. The area of the cropped frame for
Camera 1 is 0.95m × 0.76m = 0.722m2. The area of the cropped frame for Camera 2 is
0.9m× 0.76m = 0.684m2.

to the desired calibration concentrations, performing the calibration recordings under the
pre-defined flume configuration. This would result in the highest consistency of illumina-
tion conditions with the additional benefit of removing incongruencies resulting from the
differing hydro-optical behaviour of a stationary fluid and the variations in the depth. In-
congruencies in the hydro-optical behaviour of a stationary fluid are demonstrated within
Figure 5.4 and A.6.1-A.7.10, where the presence of strong surface reflections emerge as
the concentration increases. For a fluid in motion, the small variations in the free surface
of the flow disturbs and distorts these surface reflections resulting in a reduced validity of
the calibrated photometric response for higher concentrations. Similar effects are induced
by the rippling motion of the free surface immediately upstream of the barrier and the
random turbulent fluctuations in the flow immediately downstream of the barrier. Fur-
ther errors may be introduced during the mixing process, as the oil based sealant, used to
ensure water-tight hydraulic isolation, may be disturbed and contribute to thin-film in-
terference of the incident light [324]. However, performing the calibration in this manner
is essentially impossible in practice since the variable velocity of the flow within the flume
would result in non-uniform concentrations which cannot be accurately determined. A
more feasible dynamic calibration involves removing the barrier and operating the flume
at a constant flow rate which produces a depth of flow corresponding to the average up-
stream depth, then repeating the process for the average downstream depth. However,
this would still necessitate cropping the area immediately surrounding where the barrier
is placed and wouldn’t capture the intricate flow characteristics that occur in the presence
of the barrier during the experiment. There are also significant practical challenges to
consider:

1. Accurate estimation of the volume of fluid contained within the sump and con-
sequently the calibration concentrations is complicated by the presence of leaks.
Although accurate measurement of the initial fluid volume could be achieved via
filling of the sump through a water meter.

2. The required volume of Rhodamine WT is potentially cost-inefficient with the pro-
cess required to ensure homogeneous mixing being time-inefficient.

3. Following the calibration process, the sump must be emptied and replaced meaning
that the experiment cannot be conducted within a single working day and as a result,
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the exact maintenance of illumination conditions is more challenging. Furthermore,
when subjected to experimental illumination conditions for long durations, the pho-
tolysis of Rhodamine WT introduces errors in the estimation of the concentration
[425].

As such, calibration via hydraulic isolation provides a satisfactory balance of accuracy
and practical feasibility.

The transfer algorithm is initialised by spatially averaging the pixels, via grouping into
cells, and applying a hydro-optical model to the photometric response for each cell, as
shown in Figure 5.5. The the mathematical form of the curve fitted to the calibration

(a) Camera 1 (b) Camera 2

Figure 5.5: Sample photometric responses for Camera 1 (Figure 5.5a) and Camera 2
(Figure 5.5b). Multiple monochromatic luminance intensities are recorded for each cal-
ibration concentration and the 10% most extreme values are filtered. As shown by the
tight grouping of the measurements for each calibration concentration, the variance in the
measurements is small.

data is derived from optical principals, based upon the hydro-optical model presented by
Rummel et al. [386]:

G = f(c) = A+ Ce−Dc + Ec (5.26)

where, G denotes the monochromatic luminance intensity, which is a function of the
depth averaged concentration c. A + C represents the green light intensity for which
the concentration of Rhodamine WT is zero and A corresponds to the saturation of
Rhodamine WT which results in no further scattering of incident light. e−Dc reflects the
attenuation of incident light assuming homogeneous concentration along the optical path.
D describes the scattering of incident light and Ec embeds the reflection at the water
surface, with E being the reflectivity of the water. The error compensation term, B,
introduced by Rummel et al. [386] is dropped in this case since it yields a value of zero
provided the distribution of calibration points is optimal. For a less optimal distribution
of calibration points, a curve of the form G = A + (Bc + C)e−Dc + Ec should be used.
The process used to determine the parameters of the the hydro-optical model fitted to
the calibrated photometric response for each cell is outlined in Algorithm 4. Analysis of
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the value of E, denoting the reflectivity of the water, for each cell, as shown in Figure
5.6, demonstrates that the deeper upstream depth of water produces a positive value of
E, whereas, the shallower downstream depths produce a negative value of E. Within the
plots, the surface reflections of ceiling features and the cameras and their mounts can be
discerned.

(a) Camera 1 (b) Camera 2

Figure 5.6: The spatial variation in the calibrated value of E for each cell, which denotes
the reflectivity of the water. The upstream calibration produces optimised values of E ≥ 0
whereas, the downstream calibration produces optimised values of E ≤ 0.

As a consequence of the positivity of E for the upstream calibration, the upstream cali-
bration curves are non-monotonic, resulting in an ill-posed transfer algorithm. To ensure
that the transfer algorithm is well-posed the maximum observed concentration must be
restricted to the monotonic subdomain [0, cmin

ip ], where cmin
ip is the smallest upstream cell

concentration value corresponding to the inflection point:

cip =
log(DC)− log(E)

D
(5.27)

For this analysis the maximum permissible concentration value was determined to be equal
to 10.01mg/L. Due to this restriction, it is imperative to ensure strong agreement between
the measured green light intensity for 0mg/L of Rhodamine WT and the y-intercept of
each curve. Algorithm 4 achieves this by using a penalisation technique to ensure that the
y-intercept of the curve lies within the range of the filtered measured intensities. After
initial optimisation of the curve parameters to fit the data, a comparison between the
y-intercept of the curve, equal to A + C, and the filtered green light intensities for a
concentration of 0mg/L is performed. If the y-intercept does not lie within the range of
the corresponding filtered green light intensities then an attempt is made to refine the
curve parameters. A residual function is defined as follows:

ϵ(G, c, x, y) = G(x, y)− (A0 + C0e
−D0c(x,y) + E0c(x, y))− p (5.28)

whereG is an observed green light intensity for a concentration of 0mg/L, A0+C0e
−D0c(x,y)+

E0c(x, y) is the initial optimisation of the hydro-optical model and p is a penalisation de-
fined as p = k(A0 + C0 −G0) where A0 + C0 is the y-intercept of the initial curve, G0 is
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the median of the filtered green light intensities for a concentration of 0mg/L and k is a
constant used to scale the weighting of the penalisation on the calculation of the residual
error. A value of k = 100 was empirically determined to produce satisfactory results for
this specific PCA configuration. A new optimisation is then performed in order to fit the
residual function to the photometric response data before finally applying a least squares
regression to further refine the parameters.

In order to reduce the impact of strong surface reflections, which tend to produce greater
residual errors in the fitting process, a spatial smoothing is introduced using a second pass
of Algorithm 4 which is performed for cells with residuals errors above a threshold value.
In this second attempt at fitting a hydro-optical model to the photometric response, the
photometric response data from the eight surrounding cells is used. This process reduces
the spatial resolution of the response data for the selected cells in order to provide a larger
sample of measurements, which are ideally unaffected by the same surface reflections,
in an attempt to smooth sharp discontinuities in the optical response produced by the
surface reflections of the cameras, camera mounts and ceiling beams. Although this does
reduce the spatial accuracy of the photometric response of the selected cells, the cells
are of sufficient resolution such that the difference in optical path to the neighbouring
cells is minimal. The time-averaging process used by Arques et al. [23] to filter direct
reflections was found to be ineffective in this case, potentially as a result of insufficient
motion of the water surface during the calibration process. As noted by Arques et al.,
direct surface reflections are a major source of error when performing a PCA and require
careful management.

The results of the application of Algorithm 4 are shown in Figure 5.7, whereby red denotes
cells for which the spatial smoothing was applied. The spatial smoothing process is applied
to the cells with residuals in the 85th percentile and above and it can be seen that for
Camera 1, the spatial distribution of these cells corresponds to the location of the surface
reflections. For Camera 2, which exhibits a negative reflectivity, the surface reflections
have a minor effect. Nonetheless, the smoothing process is still applied in order to improve
the quality of the curve fitting process for the cells with the largest residuals.

Via experimentation it was determined that a cell size of approximately 50 pixels, equating
to an area of approximately 5mm2 provided the greatest accuracy. If the cell size is too
large then the spatially varied photometric response for the pixels contained within the
cell may not be well captured by the spatially averaged output and the resolution of the
final outputs may also be inadequate. If the cell size is reduced too much, it can result in
an inadequate number of pixels within each cell in order to perform an effective spatial
averaging and filtering of the data to remove spurious measurements. Further refinement
also reduces the effectiveness of the smoothing process, since the scale of the cells may
be too small relative to the scale of the reflections, resulting in a suboptimal spatial
averaging process when only utilising the data from the neighbouring cells. A viable
alternative approach would be to search for viable nearest neighbouring cells, restricting
the search to within a permissible maximum distance, rather than just the immediate
neighbours. (A.8) illustrates the cell-wise residual errors for cell sizes of 10mm, 5mm and
2mm.

Completion of the transfer algorithm is achieved via the calculation of a time-averaged
background concentration for each cell, measured immediately prior to the injection of
the Rhodamine WT for each experiment. As shown in Figure 5.8b, the background con-
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(a) Camera 1 (b) Camera 2

Figure 5.7: Colour map detailing the application of Algorithm 4 to optimise the param-
eters of a hydro-optical model in accordance with the calibrated photometric response
for each cell. White cells correspond to the cells in which the initial optimisation of the
parameters resulted in a suitable fit. Blue cells denote cells which required penalisation
to ensure satisfactory agreement of the y-intercept. Red cells denote the cells for which
spatial smoothing was applied.

centration is subtracted from the derived raw concentration value. This is a necessary
process since the flume operates in a closed circuit configuration, in which the pumps
draw from the same sump that the flume outflows into. Since the duration of each ex-
periment (≈ 10− 15s) is significantly shorter than the recirculation time the subtraction
of the background concentration avoids the requirement to drain the sump following each
experiment. Furthermore, the considerable volume of water contained within the sump
(≈ 95m3) compared to the total volume of Rhodamine WT used during each experi-
ment (on the order of mL), ensures that background concentrations remain negligible.
The calculated background concentration levels for the two experiments are presented in
A.9.

The synchronisation of the cameras, to the nearest frame, is achieved via the flash of torch
within the mutually observed area directly above the barrier. This process is demonstrated
within Figure 5.9.
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Algorithm 4 Definition of the transfer algorithm and application of the hydro-optical
model to the measured photometric response. A penalisation process is used to ensure
agreement between the measured y-intercept for the photometric response and the opti-
mised hydro-optical model. In the event that the hydro-optical model does not sufficiently
fit the measured data, a piecewise linear interpolation is used. The optimisation functions
from the SciPy library [471] are used to optimise the model parameters.
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(a) Concentration Map (b) Photometric Response

Figure 5.8: Figure 5.8a shows a concentration map derived from the transfer algorithm.
For the cell highlighted using the black lines superimposed on Figure 5.8a, Figure 5.8b
demonstrates how the concentration value is derived from the photometric response by
the transfer algorithm. The measured average green light intensity is converted into a
raw concentration value using the hydro-optical model (line of best fit). The background
concentration, recorded before the injection is performed, is then subtracted from the raw
concentration value, to determine the concentration value.
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(a) Camera 1 (b) Camera 2

Figure 5.9: Synchronisation of the cameras via the flashing of a torch light. The left frames
correspond to Camera 1 and the right frames correspond to Camera 2. The frames are
presented in chronological order from top to bottom, with the bottom left and right frames
showing the first frame in which the torch flash is visible for both cameras.

5.3.2 Analysis

As proposed by Arques et al. [23], a temporal averaging process is applied throughout the
analysis to filter spurious measurements such as camera noise and direct surface reflections.
Via experimentation, it was determined that averaging over 3 consecutive frames (0.1s)
resulted in the optimal results. In this regard, the noise reduction technology provided by
the Exmor CMOS sensors provides an advantage in terms of the maximum temporal res-
olution of the final outputs, since longer duration time-averaging of the results is required
for cameras utilising sensors with a higher signal to noise ratio. Similarly, a higher frame
rate would have been beneficial. In total sixteen experiments were conducted, with each
pair of experiments consisting of the injection of a decreasing concentration of Rhodamine
WT. Since observed upstream concentrations are required to be bounded by the maxi-
mum permissible concentration of 10.01mg/L, to ensure a well posed transfer algorithm,
the two experiments in which a 10± 1mL slug injection of 1500± 80.5mg/L Rhodamine
WT solution, referred to hereafter as Experiment 1 and Experiment 2, are selected as
the most suitable validation data sets. Lower concentrations result in a higher measure-
ment sensitivity since the gradient of the photometric response is larger however, as the
concentration values become smaller the proportion of the measurements comprising of
noise increases. The selected experiments provide the greatest compromise between these
competing considerations within the provided maximum concentration constraints.

Final Outputs

Figures 5.10-5.15, present snapshots of the concentration maps derived from the PCA
analysis for Experiment 1 and Experiment 2 at times 2.5s, 4s and 5s.
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Figure 5.10: PCA output for Experiment 1 at t = 2.5s. The colour map corresponds to
the spatial distribution of the Rhodamine WT solution concentration (mg/L), as per the
colour bar on the right hand side. Small erroneous measurements can be observed for
Camera 2 due to the emergence of turbulent disturbances downstream of the barrier.

Figure 5.11: PCA output for Experiment 1 at t = 4s. The colour map corresponds to
the spatial distribution of the Rhodamine WT solution concentration (mg/L), as per the
colour bar on the right hand side. Small erroneous measurements can be observed for
Camera 2 due to the emergence of turbulent disturbances downstream of the barrier.
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Figure 5.12: PCA output for Experiment 1 at t = 5s. The colour map corresponds to
the spatial distribution of the Rhodamine WT solution concentration (mg/L), as per the
colour bar on the right hand side.

Figure 5.13: PCA output for Experiment 2 at t = 2.5s. The colour map corresponds to
the spatial distribution of the Rhodamine WT solution concentration (mg/L), as per the
colour bar on the right hand side. Small erroneous measurements can be observed for
Camera 2 due to the emergence of turbulent disturbances downstream of the barrier.
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Figure 5.14: PCA output for Experiment 2 at t = 4s. The colour map corresponds to
the spatial distribution of the Rhodamine WT solution concentration (mg/L), as per the
colour bar on the right hand side. Small erroneous measurements can be observed for
Camera 2 due to the emergence of turbulent disturbances downstream of the barrier.

Figure 5.15: PCA output for Experiment 2 at t = 5s. The colour map corresponds to
the spatial distribution of the Rhodamine WT solution concentration (mg/L), as per the
colour bar on the right hand side.
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Mass Analysis

By aggregating the derived concentration values for all cells over the duration of the
experiment, the total mass of detected Rhodamine WT solution can be estimated and used
to verify the accuracy of the PCA. However, since the camera frames are discontinuous,
it is challenging to validate the mass-conservation of the PCA. As seen in Figure 5.16,
for the period of time between ≈ 2− 4s, in which the entirety of the tracer is contained
within the frame of Camera 1, the peak observed mass is relatively stable and corresponds
to a mass value which is approximately equal to the injected mass. The top left and right
plots within Figure 5.16 show the raw data which includes spurious measurements of
concentration prior to the solute mass entering the frame and following the exit of the
solute mass from the frame. The lower plots in Figure 5.16 show the data following
subtracting of the average background noise and application of a Savitzky-Golay filtering
[402] to smooth the data further. The peak solute mass, 15.23mg for Experiment 1 and
14.99mg for Experiment 2, is consistent with the injected mass (15± 0.81mg) as well as
demonstrating a high level of consistency across the two experiments.

(a) Experiment 1 (b) Experiment 2

Figure 5.16: Solute mass analysis for the two conducted PCA. The adjusted solute mass is
following removal of the background noise and application of Savitzky-Golay filtering [402]
to smooth the data. Framewise (0.1s) solute mass per camera is estimated by multiplying
the cell concentration by the interpolated cell volume.

5.4 Numerical Results

Preliminary results for the modelling of a flow interactions with a lifted gate including
the transport of a solute mass are presented for a simple first order upwind scheme.
An analytical test case is provided in order to validate the numerical treatment of the
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advection and diffusion of a solute for simple flow conditions within a two-dimensional
domain. A one-dimensional analysis of the data obtained from the PCAs for Experiment
1 and Experiment 2 is then used to perform an initial validation of the numerical model.
Since the duration of the experiment is short (≈ 10s), the configuration is identical in the
plane aligned with the flow direction, the transverse velocity is negligible and consequently
transverse diffusion effects are also negligible, application of a one-dimensional model is
considered to be justified for an initial validation. A rigorous validation of the numerical
model and suitable treatment of the highlighted numerical challenges outlined within the
review of the literature, such as ensuring the boundedness of the solute concentration, are
to be the focus of future publications.

5.4.1 Numerical Scheme

The domain is divided into cells (Vi,j)i,j∈Z, which are perfect quadrilaterals of area ∆x×
∆y, and the discretised first order finite volume scheme is given as:

U∗
ij = Un

ij +
∆t

∆x

[
Fi− 1

2
,j − Fi+ 1

2
,j

]
+

∆t

∆y

[
Gi,j− 1

2
−Gi,j+ 1

2

]
(5.29)

Where the subscript i, j represents the index of the cell, the superscripts n, n + 1/2
and ∗ represent the nth, n + 1/2th and intermediate time levels. U∗

ij is therefore the
solution to the homogeneous advection problem at an intermediate time level. ∆x and
∆y represent the dimensions of the cell in the x and y directions and ∆t is the time step
used to advance the scheme, determined in accordance with the Courant-Friedrichs-Lewy
condition as:

∆t = CCFL ×min
i,j

(
∆x

|Sn,x
i,j |

,
∆y

|Sn,y
i,j |

)
(5.30)

where Sn,x
i,j and Sn,y

i,j are the maximum wavespeed present at time level n in the x and y
directions respectively and 0 ≤ CCFL ≤ 0.5 is taken as equal to 0.45. Fi−1/2,j and Fi+1/2,j

represent the numerical fluxes resolved across the i± 1/2, j interfaces in the x-direction.
Gi,j−1/2 and Gi,j+1/2 represent the numerical fluxes resolved across the i, j±1/2 interfaces
in the y-direction. The numerical fluxes are resolved using a HLLC solver as follows:

Fhllc
i+ 1

2
,j =


FL if 0 ≤ S−

x

F∗L if S−
x ≤ 0 ≤ S∗

x

F∗R if S∗
x ≤ 0 ≤ S+

x

FR if 0 ≥ S+
x

, Ghllc
i,j+ 1

2
=


GL if 0 ≤ S−

y

G∗L if S−
y ≤ 0 ≤ S∗

y

G∗R if S∗
y ≤ 0 ≤ S+

y

GR if 0 ≥ S+
y

(5.31)

with the intermediate fluxes F∗L, G∗L and F∗R, G∗L determined via application of the
Rankine-Hugoniot conditions across each of the waves of speed S−, S+ and S+:

S−: F∗L = FL + S−
x (U∗L −UL) , G∗L = GL + S−

y (U∗L −UL) (5.32)

S∗: F∗R = F∗L + S∗
x(U∗R −U∗L) , G∗L + S∗

y(U∗R −U∗L) (5.33)

S+: F∗R = FR + S+
x (U∗R −UR) , G∗R = GR + S+

y (U∗R −UR) (5.34)

Wavespeeds are calculated as shown in Algorithm 5. An efficient implementation of the
HLLC solver can be achieved via use of a HLL solver to determine the mass fluxes, F1,
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G1, and the momentum fluxes in the respective principle directions, F2, G3, as:

Fi+ 1
2
,j =


Fi,j if S−

x > 0

Fhll =
S+Fi,j−S−Fi+1,j+S+

x S−
x (Ui+1,j−Ui,j)

S+
x −S−

x
if S−

x ≤ 0 ≤ S+
x

Fi+1,j if S+
x < 0

(5.35)

Gi,j+ 1
2
=


Gi,j if S−

y > 0

Ghll =
S+Fi,j−S−Fi,j+1+S+

y S−
y (Ui,j+1−Ui,j)

S+
y −S−

y
if S−

y ≤ 0 ≤ S+
y

Gi,j+1 if S+
y < 0

(5.36)

with the tangential momentum flux, F3 and G2, as:

Fi+ 1
2
,j =

{
vi,jF1 if S+

x > 0

vi+1,jF1 if S+
x < 0

, Gi,j+ 1
2
=

{
ui,jG1 if S+

y > 0

ui,j+1G1 if S+
y < 0

(5.37)

and solute mass flux, F4 and G4, subsequently calculated given as:

Fi+ 1
2
,j =

{
ψi,jF1 if S+

x > 0

ψi+1,jF1 if S+
x < 0

, Gi,j+ 1
2
=

{
ψi,jG1 if S+

y > 0

ψi,j+1G1 if S+
y < 0

(5.38)

The friction source terms are resolved using the splitting method proposed by Liang and
Marche [275]:

qn+1
i,j,d = qn∗i,j,d −∆tSn

i,j,d = qn∗i,j,d −∆t

 τf,d

1 + ∆t
∂τf,d
∂qi,j,d

n

(5.39)

Where d = x, y denotes the direction and qn∗i,j,x = hn∗i,ju
n∗
i,j , q

n∗
i,j,y = hn∗i,jv

n∗
i,j is the discharge at

the intermediate time level following solution of the homogeneous advection problem in
the x- and y-direction respectively. The following simple limiter is used to ensure stability
in regions where the water depth approaches zero:

Sn
i,j,d =

qni,j,d
∆t

if |∆tSn
i,j,d| > |qni,j,d| (5.40)

The dispersion-diffusion source terms are solved using a second-order central difference
scheme:

(ψh)n+1
i,j = (ψh)∗i,j+

1

∆x

[
(hDxx)

∗
i+ 1

2
,j

(
(ψ)∗i+1,j − (ψ)∗i,j

∆x

)
− (hDxx)

∗
i− 1

2
,j

(
(ψ)∗i,j − (ψ)∗i−1,j

∆x

)]
+

1

2∆x

[
(hDxy)

∗
i+1,j

(
(ψ)∗i+1,j+1 − (ψ)∗i+1,j−1

2∆y

)
− (hDxy)

∗
i−1,j

(
(ψ)∗i−1,j+1 − (ψ)∗i−1,j−1

2∆y

)]
+

1

2∆y

[
(hDyx)

∗
i,j+1

(
(ψ)∗i+1,j+1 − (ψ)∗i−1,j+1

2∆x

)
−(hDyx)

∗
i,j−1

(
(ψ)∗i+1,j−1 − (ψ)∗i−1,j−1

2∆x

)]
+

1

∆y

[
(hDyy)

∗
i,j+ 1

2

(
(ψ)∗i,j+1 − (ψ)∗i,j

∆y

)
− (hDyy)

∗
i,j− 1

2

(
(ψ)∗i,j − (ψ)∗i,j−1

∆y
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158



Chapter 5. A Local Multi-Layer Approach to Modelling Depth-Integrated Solute
Transport through Obstructions

Algorithm 5 Calculation of wave speeds as proposed by Glenis et al. [179]. An initial
approximation (h0) of the depth in the star region (h∗) using a two-rarefaction approxi-
mate state Riemann solver is used to determine whether a two-rarefaction or two-shock
approximation is optimal. hL = hi,j, uL = ui,j and hR = hi+1,j, uR = ui+1,j for Sn,x

i,j .
hL = hi,j, uL = vi,j and hR = hi,j+1, uR = vi,j+1 for Sn,y

i,j .
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To overcome the limitations induced by the diffusive properties of a first order scheme,
anti-diffusion measures proposed by Murillo and Garćıa-Navarro [330] are implemented.
The anti-diffusion measures seek to reduce the physical diffusion, modelled by the diffusion
source terms, by an amount equal to the numerical diffusion, produced by the truncation
error which arises as a consequence of the first order discretisation, such that the total
diffusion is consistent with the intended physical diffusion. Consider the following one-
dimensional linear advection equation:

∂tq + a∂xq = 0 (5.41)

which describes the advection of a quantity q at a constant velocity a. Applying a first
order upwind scheme results in:

qn+1
i = qni −

a∆t

∆x

(
qni − qni−1

)
(5.42)

where qni represents the approximate solution at time level n for cell i. By rearranging the
upwind scheme (5.42) as a direct discretisation of the partial differential equation (5.41),
replacing the approximate solution with the exact solution, q(x, t), and expanding the
terms about q(x, t) using Taylor series (assuming a smooth solution), the local truncation
error can be determined as:

Lk(x, t) =
1

2
a∆t

(
a− ∆x

∆t

)
qxx(x, t) +O(∆t2) (5.43)

Lk(x, t) = O(∆t) as ∆t→ 0 (5.44)

for a fixed mesh ratio ∆t/∆x = constant. A modified equation can therefore be defined
as:

qt + aqx =
1

2
a∆x (1− v) qxx (5.45)

which represents an advection-diffusion equation. The presence of the diffusion term of the
form Dqxx, where D is the diffusion coefficient, dictates the qualitative behaviour of the
solution: the solution propagates at the correct speed, a, but diffuses at a rate proportional
to D at each timestep, resulting in a smeared solution. The diffusion coefficient is given by
1
2
a∆x(1− v), where v = a∆t/∆x is the Courant number. Using Dnum = 1

2
a∆x(1− v) as

an estimate of the numerical diffusion introduced by the numerical scheme, the modified
physical diffusion D can be defined as:

Ddd = max (Ddd −Dnum,d, 0) (5.46)

where d represents the x or y direction and the advection velocity a is taken equal to
the either u, for the x-direction or v, for the y-direction. Despite requiring smoothness
assumptions when applying the Taylor series expansions, the modified equation remains
a good model of the qualitative behaviour of the true solution in the presence of discon-
tinuities since the diffusive terms result in a smearing of discontinuities, as occurs for the
numerical solution, ensuring satisfaction of the smoothness assumptions [268]. Overall,
the implemented anti-diffusion measures result in a numerical treatment of the diffusion
process which is more consistent with the intended diffusion, however, the effectiveness of
the measures is dependent on the relative magnitude of Ddd and Dnum,d. Therefore, the
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implementation of a higher order numerical scheme presents a more rigorous solution and
is recommended where feasible.

In order to simplify the numerical solution the bed slope is set to 0% and therefore
solution of the topographic source terms is not required. For cases involving variable bed
topography, a well-balanced treatment of the topographic source terms can be achieved
via the hydrostatic reconstruction method [31] or via upwinding of the source terms
[57].

For the multi-layer components of the scheme the same numerical scheme for the mono-
layer system is applied on a layer by layer basis as detailed in Mckenna et al. [302].

5.4.2 Analytical Test Case

The analytical solution, for advection and diffusion phenomena occurring in a frictionless
infinite two-dimensional domain with uniform one-dimensional flow in the direction of the
x-axis (v = 0 and Dxy = Dyx = 0) is given as [273]:

ψ(x, y, t) =
ψ0

4πt
√
DxxDyy

exp

(
−(x− x0 − ut)2

4Dxxt
− (y − y0)2

4Dyyt

)
where ψ0 is the initial concentration of the solute instantaneously added to the water at
position (x0, y0). t is the time in seconds measured from the time of injection, t0 = 0. u
is the velocity in the x-direction and Dxx, Dyy are the turbulent mixing coefficients in the
x and y directions respectively.

Figure 5.17: The longitudinal concentration profile, at 30s (dotted), 60s (dashed), 90s
(dash-dot) and 120s (solid), for the analytical solution (green), first order numerical so-
lution (red), first order numerical solution with diffusion correction (black) along the line
y = 80.5m. The green dash-dot curve represents the analytical peak concentration at
time t = x.

A test domain of 160× 160 cells, ∆x = ∆y = 1m, is used to simulate the advection and
diffusion of an initial solute mass injection of M = 100, at (x0, y0) = (5.5m, 80.5m) for

161



Chapter 5. A Local Multi-Layer Approach to Modelling Depth-Integrated Solute
Transport through Obstructions

a duration of 120s. Longitudinal and lateral dispersion coefficients are set to constant
values of ϵl = 5.93 and ϵt = 0.15 respectively. The depth is set to a uniform value of 1m
and the horizontal velocity is set to a uniform value of u = 1m/s, with a corresponding
tangential velocity v = 0m/s, replicating the required flow conditions. Figure 5.17 shows
a comparison between the analytical concentration profiles and the respective computed
numerical results for the presented first order scheme, with and without the diffusion
correction, along the line y = 80.5m. As expected for the unmodified first order scheme,
excessive numerical diffusion increasingly smears the concentration profile as the simu-
lation duration increases. The use of the diffusion correction proposed by Murillo and
Garćıa-Navarro [330] results in approximations which are much more consistent with the
analytical results.

5.4.3 One-dimensional Validation

Following the analytical validation of the two-dimensional scheme for a simple flow con-
figuration, a one-dimensional simplification of the presented numerical scheme, including
the use of the first order diffusion correction, is used to validate the transport of a solute
in the presence of a partial obstruction to flow. Figure 5.18 illustrates the accuracy of the
model in capturing the flow characteristics for the experimental configuration. The area
observed by Camera 1 spans from x = 3.97m to x = 4.93m, the area observed by Camera
2 spans from x = 5.15m to x = 6.05m.

Figure 5.18: Experimental validation of the numerical results for the depth and velocity.

The numerical simulations are performed on a 8.54m one-dimensional spatial domain,
which spans from the left boundary at a distance of 3.97m from the flume inlet to the
flume outlet at 12.5m, discretised into a structured grid comprised of 0.01m cells (∆x =
0.01m). The bed slope is set to 0%, simplifying the source terms, requiring only the
resolution of the friction and diffusion source terms. A constant Manning’s n equal to
0.012 and a kinematic viscosity of 1.0034×10−6m2s−1 is assumed. The discharge is equal
to 29.8ls−1.
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Do to the small errors in the numerical approximation of the depth and velocity, when
analysing the transport of the solute compensations must be made to ensure a fair com-
parison. The underestimation of the velocity and overestimation of the will contribute to
an underestimation of the concentration with a corresponding phase error in the propa-
gation speed. Errors in the estimation of the discharge may also be present due to the
relatively small inflow rate [302].

Boundary Conditions

The injection of the Rhodamine WT solution is captured using the PCA data. The inflow
of Rhodamine WT solution arriving within the area observed by Camera 1 for each frame
(≈ 0.1s) is captured by analysing the solute mass contained within the first five columns of
cells at the left boundary, where 5 cells = 0.025m ≈ vavg ×∆t, with vavg = 0.26ms−1 and
∆t = 0.1s. Since the cell size is discrete (5mm), this represents a slight underestimation
of the average distance travelled by the solute within a single frame. As a consequence,
the shape of the curve is obtained by repeating this process for each of the first five
columns, whereby the analysed cells comprise of the start cell column plus the proceeding
four cell columns. The average shape of the obtained curves is then determined, to filter
any potential errors introduced by a defective column of cells. The curve is then linearly
scaled such that the maximum value is consistent with the respective values determined
from the mass analysis (Figure 5.16). The derived graphs, which plot the cumulative
solute mass entering the domain over time for each of the two experiments are shown in
Figure 5.19.

(a) Experiment 1 (b) Experiment 2

Figure 5.19: The derived graphs of cumulative mass of Rhodamine WT solution which has
entered the frame of Camera 1 over time for Experiment 1 (Figure 5.19a) and Experiment 2
(Figure 5.19b). The curves are scaled such that the total mass of Rhodamine WT solution
is consistent with the peak measured mass of Rhodamine WT solution and the known
injected mass of Rhodamine WT solution.

The upstream solute injection is then modelled via manipulation of the boundary flux
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F3 = F1ψk. Using the Riemann invariant:

uL − 2aL = uR − 2aR

and substituting:

Qin = hLuL

uL =
Qin

hL

ak =
√
ghk

Gives:

Qin

hL
− 2
√
ghL = uR − 2

√
ghR

Which can be rearrange to give the following function:

Qin

hL
− 2
√
ghL − uR + 2

√
ghR = 0

Qin

hL
+ 2
√
g(
√
hR −

√
hL)− uR = 0

let:

f(hL, hR, uR) =
Qin

hL
+ 2
√
g(
√
hR −

√
hL)− uR

d

dhL
f(hL, hR, uR) = −

Qin

h2L
−
√
g

√
hL

This can then be solved to find hL using the Newton-Raphson method with an initial
guess of h0 = hR:

xn+1 = xn −
f(xn)

f ′(xn)

Using a suitable tolerance (10−6) and a maximum number of iterations (1000). Finally
uL may be determined using:

uL =
Qin

hL

For h > 0, u > 0, which is satisfied providing water is entering the domain, u∗ > 0 and
hence:

F3 = hLuLψL = F1ψL

where ψL is the concentration in the ghost cell. Using the Figure 5.19, the required
ghost cell concentration, ψL, can be determined. Using a first order accurate upwind
scheme:

Un+1
i = Un

i −
∆t

∆x

[
Fi+ 1

2
− Fi− 1

2

]
− ∆t

∆x

[
Gi+ 1

2
−Gi− 1

2

]
+∆tS

(
U

(s)
i

)
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Assuming the solute mass injection occurs in the x-direction, across the left boundary of
the domain:

∆Uin =
∆t

∆x

[
Fi− 1

2

]
(5.47)

(ψh)inj =
∆t

∆x
F3

i− 1
2
=

∆t

∆x
(hLuLψL) (5.48)

Where ∆Uin represents the conserved variable entering the domain via the left flux and
(ψh)inj is specifically the injected solute mass entering the domain. Therefore the required
ghost cell concentration, ψL, can be determined by rearranging:

(ψh)inj∆x

∆thLuL
= ψL

Where (ψh)inj can be determined by finding the difference between the total solute mass
which has entered previously entered the domain at t = tn and the cumulative solute
mass which is projected to have entered the domain at time t = tn+1, interpolated from
the data contained within Figure 5.19. Since the PCA measurements used to determine
the inflow rate are contained within the frame of Camera 1, this must be accounted for
within the numerical model by either further truncating the domain or via shifting the
data in Figure 5.19 by 0.1s.

At the downstream end a critical depth boundary condition is implemented as detailed
in [303].

Mass Analysis and Comparison

Figure 5.22 and Figure 5.23 show the total mass of Rhodamine WT solution observed
during the PCA for each of the cameras, for Experiment 1 and Experiment 2 respectively.
In both cases the numerical model replicates the initial movement of the slug injection
into the observation area for Camera 1, as shown by the alignment of the rising limb of
the plots for Camera 1 for both experiments. This demonstrates that the proposed inflow
boundary condition reasonably replicates the experiment observations.

(a) Experiment 1 (b) Experiment 2

Figure 5.20: Zoomed focus on the results for Camera 1 between 2s − 6s for Experiment
1 as shown in Figure 5.20a taken from Figure 5.22 and for Experiment 2 as shown in in
Figure 5.20b taken from Figure 5.23.
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As shown in Figure 5.20, the gradient of the rising limb decreases in relation to the
observations at approximately 2s for both experiments. This suggests that the decreasing
of the gradient of the mass inflow rate towards the peak in Figure 5.19 artificially reduces
the mass inflow rate in the numerical simulation. As a consequence the tail of the plume
for the numerical experiments should be expected to be smeared in comparison with the
observations. However, the overall effect is relatively small since it only impacts the final
3mg of Rhodamine WT solution entering the domain.

For both experiments, the correct intended peak mass is attained and maintained demon-
strating the expected conservation properties of the scheme. Whilst the rate of inflow
isn’t perfectly replicated, the intended total mass inflow is achieved. However, due to
incongruencies in the hydrodynamic variables as shown in Figure 5.18, the numerical so-
lute takes longer to reach the right edge of the observation area for Camera 1 in both
experiments. This is demonstrated by the maintenance of the peak solute mass for an
additional 1s for both Experiment 1 Experiment 2. The consistency in the lag time
across both experiments supports the fact that it is the underlying inaccuracy of the
hydrodynamic variables which is contributing to this error and not the treatment of the
diffusion process. The falling limb of the mass data can be seen to be roughly parallel in
both cases suggesting that the shape of the solute slug is relatively consistently modelled
despite differences in transit time.

(a) Experiment 1 (b) Experiment 2

Figure 5.21: Zoomed focus on the results for Camera 1 between 3.5s− 9s for Experiment
1 as shown in Figure 5.21a taken from Figure 5.22 and for Experiment 2 as shown in in
Figure 5.21b taken from Figure 5.23.

For Camera 2, as shown in Figure 5.21, the lag time between the numerical results and
experiment observations is increased however, the numerical results approximate the ob-
servations well neglecting the phase shift. The main difference that can be observed is
that the numerical results do not capture the trailing decrease in the observed mass for
Experiment 1 however, it is likely that this observation is a product of uncertainty in the
observations which are increasingly hard to distinguish from the background noise as the
total value diminishes.

For both experiments the peak solute mass observed for Camera 2 is slightly overestimated
which can be attributed to the slower velocity; the underestimation of the downstream
velocity means it takes longer for the solute to exit the camera frame and therefore there
is a greater potential for a larger total mass of solute to be observed within a single time
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frame. Similarly the longer duration for which the solute is observed within the frame of
Camera 2 can be attributed to the same issue.

The difference in lag time observed upstream of the barrier is approximately consistent
with the lag time observed downstream of the barrier in terms of the time at which the
slug is first detected within Camera 2. In the downstream region the uncertainty in the
PCA results is higher, since the depth is approximated as constant, and the error in the
prediction of the hydrodynamics is also larger as seen in Figure 5.18.

Overall the behaviour of the advection diffusion process through the barrier is observed
to be generally captured by the numerical model. This can be seen via the apparent self-
similarity of the numerical and experimental results for both of the presented experiments,
despite the obvious scaling and phase errors. However, due to the uncertainty in the
validation data and the underlying errors in the hydrodynamic predictions of the model,
rigorous validation of the quality of the numerical approximations is unfeasible at this
stage.

Figure 5.22: A comparison between the numerical and experimental total mass of Rho-
damine WT for the individual and combined camera observation areas for Experiment 1.
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Figure 5.23: A comparison between the numerical and experimental total mass of Rho-
damine WT for the individual and combined camera observation areas for Experiment 2.
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5.5 Conclusion

The presented work investigates the augmented capacity of the local multi-layer approach
to modelling shallow water interactions with obstacles to flow, presented in [302], to model
the transport of a depth-integrated solute through an obstruction. The presented vali-
dation experiment conducted via a series of PCAs provides a valuable insight into the
advection diffusion process across a partial barrier to flow. Partial barriers to flow such as
gates, bridges and weirs are prevalent throughout relevant urban domains and the accu-
rate modelling of their impact upon the dynamic flow processes as well as the transport
process is important to capture. The modelling of the transport process has a variety of
potential applications including but not limited to: point source pollution identification
[18, 42], ecological modelling [474, 408], quantitative microbial risk assessment [293, 6,
78], eutrophication prediction [365, 19], flood-induced pollution events [423], accidental
pollution spills [492] and protecting drinking water source areas [397, 141, 493, 306]. The
advances presented herein therefore contribute to the accuracy of models where flows in-
teract with partial barriers to flow, enhancing the potential effectiveness in the outlined
applications.

The conducted PCA experiments enabled the nonintrusive determination of the fieldwise
concentration for a series of experiments involving a slug injection of a fluorescent tracer
being transported through a gate structure. New techniques have been implemented to
overcome challenges related to the experiment configuration and suboptimal lighting con-
ditions when analysing the photometric response of the fluorescent tracer. Analysis of the
mass conservation for the upstream observation area corresponds to the known injected
solution mass, inspiring confidence in the validity of the experimental data. However,
due to the discontinuous nature of the observation areas, mass conservation for the down-
stream observation area is challenging to verify, resulting in uncertainty in the downstream
validation data.

Following implementation of the outlined solver within a simple first order upwind scheme,
the numerical results have been validated against the results from PCA experiments.
The comparison between the numerical results and the experimental observations demon-
strates that the proposed solution procedure is capable of capturing the transport process
across a gate type structure. However, errors in the prediction of the hydrodynamic
properties of the flow, which is prerequisite to the modelling of the advection diffusion
process, limit the potential for rigorous validation. However, the presentation of numeri-
cal results validated by experiments is rare for applications related to transport processes
for shallow water models and the experimental data is therefore valuable in and of itself
for the validation of similar solvers and for understanding the underlying physical pro-
cesses involved and the consequent suitability of two-dimensional shallow water models
for capturing such phenomena. In particular, Mignot et al. [310] identified a lack of
experimental data related to the processes associated with hydrodynamic modelling such
as pollutant transport in urban environments and this experimental data, in a small way,
works towards bridging the identified gap.

Therefore, further work to improve the experimental and numerical results is proposed.
It is clear that the PCA experiments would benefit greatly from an expansion of the ob-
servation areas the use of a light diffuser. The expansion of the observation areas, which
should ideally be designed to be a single continuous series of observation areas spanning
the length of the flume, will enable verification of the mass conservation across the en-
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tire domain. The use of a light diffuser will enable the optimisation of the illuminance
conditions and minimisation of the problematic surface reflections which diminish the
capability to analyse the photometric response of the tracer. Through the identification
of flow and barrier configurations that reduce turbulent disturbances in the free surface,
the use lower tracer concentrations, for which the photometric response is more sensitive,
may be permitted enabling a higher accuracy analysis.

For the numerical results, the inaccuracies in the hydrodynamic predictions are to be
addressed via the implementation of the proposed solver within a higher order numerical
scheme. It it therefore proposed that the updated scheme be based upon the combi-
nation of arbitrary high order derivative (ADER) schemes using a weighted essentially
non-oscillatory (WENO) reconstruction technique [219, 433, 436, 434]. Such schemes are
anti-diffusive and non-oscillatory, offering the potential for a high order of spatial ac-
curacy which does not degrade to first order accuracy in the presence of discontinuities
[437]. This therefore addresses identified issues related to the choice of limiter, which may
strongly influencing the quality of the numerical results [53, 83]. Furthermore, high order
reconstruction in the primitive variables [491], as opposed to the conserved variables, ad-
dresses issues related to shock capturing fidelity [328] and ensures a high order of spatial
accuracy for the concentration.
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Conclusion

6.1 Conclusions

6.1.1 Summary

The overarching aim of the thesis has been successfully achieved through the development
and validation of two new Riemann solvers:

Aim: To contribute to advances in contemporary hydrodynamic modelling via the de-
velopment of improved methods for modelling linear features such as bridges, gates and
weirs within two-dimensional flood models.

The innovative Riemann solvers enable the accurate modelling of partial barriers to flow
within one- or two-dimensional hydrodynamic models. As identified within the presented
literature review, precise modelling of flow interactions with obstacles is crucial for flood
hazard and vulnerability assessment. Therefore, the presented Riemann solvers represent
advances over existing methods for modelling obstacles which act as partial barriers to
flow, offering distinct advantages over the limited available alternatives.

Both of the presented solvers are capable of representing any obstacle to flow which may
be idealised as existing at the interface between neighbouring cells. The capability of the
solvers to resolve numerical fluxes for a range of barrier and flow configurations has been
verified via a validation process involving comparisons between the numerical predictions
and the observed flow characteristics for experiments conducted within a state-of-the-art
research flume. Both of the presented solvers are physically based and do not require im-
practical calibration to obtain physically meaningful results. Furthermore, neither of the
solvers rely on empirical discharge relations which are only valid under certain flow con-
ditions and limit the effectiveness of existing solutions. The proposed solution procedures
therefore also preclude the requirement for additional logical conditions to determine the
flow regime as implemented in other similar internal boundary conditions. For example,
alternative methods for modelling gates will tentatively determine the depth at the vena
contracta and the corresponding conjugate depth to determine the transition between
submerged and free flow conditions.

The first solver, referred to as Solver 1, represents a simple and easily implemented method
which is highly compatible with existing numerical schemes. The proposed solution pro-
cedure represents structures as existing at the interface between neighbouring cells and
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under the shallow water assumption of primarily horizontal flow, the two-layer shallow
water equations are leveraged to enable a vertical discretisation of the numerical flux in
accordance with the structure modelled at the interface. As the method lacks the ca-
pacity to capture the vertical variation of the horizontal component of the velocity, it is
necessary to approximate the velocity profile based upon physical considerations. Despite
the simplicity of the method, the validation process demonstrates the suitability of the
method in determining the corresponding upstream and downstream depth profiles. The
determination of the local velocity is less accurate but still satisfactory. The errors in the
approximated flow variables are attributed to the relatively simplistic assumptions used
to approximate the velocity profile at the barrier.

Solver 2, addresses the limitations of Solver 1 by providing a permanent vertical dis-
cretisation of the neighbouring cells facilitating the more accurate determination of the
velocity profile via the numerical scheme, which locally implements a decoupled formu-
lation of the multi-layer shallow water equations. As a result of the permanent vertical
discretisation of the neighbouring cells it is necessary to implement intermediate cells ei-
ther side of the cells neighbouring the structure to couple the mono-layer and multi-layer
domains. A layer redefinition process is also required to maintain alignment between
the structure modelled at the interface and the layer interfaces. The multi-layer shallow
water equations present a significant numerical challenge due to the potential for a local
loss of hyperbolicity and the presence of non-conservative product terms. The proposed
formulation therefore utilises mathematical manipulations and simplifying assumptions
to minimise the effect of the non-conservative product terms, avoiding the need to imple-
ment flawed path-conservative schemes, whilst maximising the stability of the scheme in
spite of the potential for a local loss of hyperbolicity. Although, it should be noted that
these mechanisms also have the potential to reduce the accuracy of the scheme.

However, via comparisons with Solver 1 and the validation data, it is demonstrated that
Solver 2 represents a significant improvement upon Solver 1. The more sophisticated
treatment of the flow at the barrier results in a more accurate determination of the flow
characteristics, which is particularly visible upstream of the barrier. This does come at the
cost of increased computational demand and implementation complexity in comparison
with Solver 1, however, due to the local nature of the solution procedure the increase in
computational expense in unlikely to be prohibitive.

Due to the greater accuracy exhibited by Solver 2, the potential to add the capacity to also
model the advection and diffusion of a scalar quantity was explored. Via the conducted
planar concentration analyses, the experimental study of the advection diffusion process
for a slug injection passing through a partial barrier to flow was investigated, for what
appears to be the first time within academic literature. Due to the suboptimal experi-
mental conditions, novel techniques were implemented within the analyses of the observed
photometric response and the mass balance, where verifiable, appears conservative with
respect to the known injection mass. Although, further work is required to improve the
experimental validation procedure and to upgrade the order of accuracy of the numer-
ical scheme to enable a more rigorous validation process. Despite the simplicity of the
implemented scheme and the errors and uncertainties in the hydrodynamic predictions
and experimental observations, the presented validation procedure demonstrates that the
solver is capable of capturing the overall behaviour of the interaction. As a lack of data,
validation and process understanding have been identified by leading experts as major
obstacles to progress, the presented combination of numerical and experimental results
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represents positive progress in this regard.

6.1.2 Key Research Outcomes

Objective 1: To develop and experimentally validate a novel approximate Riemann
solver (Solver 1) capable of resolving numerical fluxes across a linear fixed immiscible
partial barrier to flow, with a focus upon ease of implementation and compatibility with
existing flood models to promote uptake in practice.

• The developed solver is capable of resolving numerical fluxes across a range of linear
fixed immiscible partial barriers to flow as demonstrated by the validation process.

• The proposed solver is simple and easy to implement, requiring no calibration and
acting only on the numerical flux. The flux calculation process is highly compatible
with existing established approximate Riemann solvers and common finite volume
numerical schemes.

• The avoidance of using empirical discharge relations ensures that the solver does not
suffer from a loss of rigorous validity under unsteady and transient flow conditions.

Objective 2: To develop and experimentally validate an improved approximate Rie-
mann solver (Solver 2) capable of resolving numerical fluxes across a linear fixed immis-
cible partial barrier to flow, with a focus upon maximising accuracy.

• The developed solver is capable of resolving numerical fluxes across a range of linear
fixed immiscible partial barriers to flow as demonstrated by the validation process.

• The solver provides increased accuracy with respect to the previous solver, due to
the more sophisticated treatment of the flow in the neighbouring cells.

• The natural extension of the method via increased vertical discretisation or an
expansion in the horizontal direction promises further possibilities to improve the
accuracy of the method.

• The simplifying assumptions and mathematical manipulations ensure stability in
spite of the potential for a local loss of hyperbolicity and avoid the requirement to
implement path-conservative methods for the treatment of non-conservative product
terms.

• The avoidance of using empirical discharge relations ensures that the solver does not
suffer from a loss of rigorous validity under unsteady and transient flow conditions.

Objective 3: To develop and experimentally validate the capability to model the trans-
port of well-mixed dissolved scalar quantities through linear fixed immiscible partial
barriers to flow for Solver 2.

• The successful execution of the planar concentration analysis provides an experi-
mental insight into advection diffusion phenomena that is currently lacking.

• The use of new techniques helped to overcome suboptimal experimental illumination
conditions for the calibration and analysis of the photometric response for the planar
concentration analysis.

• The produced validation dataset provides an opportunity for the future further
development of the proposed solver and the development and validation of similar
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solvers by other researchers within the academic community.

• Despite uncertainties in the experimental data and discrepancies in the prediction of
the hydrodynamic variables, the comparisons between the numerical predictions and
the experimental observations demonstrate the capability of the solver to capture
the behaviour of the transport process through obstacles.

6.1.3 Future Work

There are opportunities to further validate the capacity of the solvers for a variety of useful
and thus far, unexplored applications. First and foremost, is the opportunity to validate
the transient capabilities of the solvers for gate flow and weir flow individually, using the
analytical solutions provided by Cozzolino et al. [117, 119]. Depending on the results there
may be further opportunities to enhance the solvers. Likewise, a thorough comparison
between the presented solvers and comparable published solvers across an exhaustive set
of validation test cases would be valuable for both developers and practitioners.

It may also be worth investigating and comparing the results obtained by implementing
a path-conservative scheme and numerically computing the exact external eigenvalues
for Solver 2, to determine if the results are improved. From a practical perspective it
would be useful to know whether the results are improved by an exact computation of
the external eigenvalues, even if it is potentially computationally expensive and also the
extent to which the solvers differ with a path conservative treatment.

An ideal scenario would be to implement the solvers within a mature state-of-the-art
numerical code, such as Newcastle University’s CityCAT, for field-scale application and
field-scale validation of the solvers. However, this may require significant further work
relating to the automatic identification and meshing of linear partial barriers to flow
such that the method is practical for use in realistic scenarios. Furthermore, topographic
source terms, which have been neglected throughout, would be necessary to include for
any realistic field-scale application. As briefly discussed, a well-balanced treatment of the
topographic source terms may be facilitated via the hydrostatic reconstruction method
[31] or via upwinding of the source terms [57]. For solver 1, this is a straightforward
process since the numerical solution procedure is compatible with both methods. For
solver 2 the process is less straightforward when upwinding the source terms to achieve
a well-balanced treatment of the topographic sources, as excess numerical diffusion may
be introduced since it is necessary to set the wavespeed in each layer to the maximum
wavespeed present within a single layer. The hydrostatic reconstruction method is there-
fore a more straightforward solution.

Provided a suitable meshing algorithm can be developed and a well-balanced treatment
of topographic source terms is implemented, then a thorough comparison between the
presented solvers and alternative methods, particularly those commonly used within con-
temporary industry practice, would be extremely valuable in order to promote commercial
uptake.

It would also be interesting to explore, on a smaller scale, the detailed modelling of an
urban intersection considering intruding flows and micro-scale topography, as explored by
Dewals et al. [138] and Mignot et al. [315]. The flexible nature of the presented solvers
potentiates the possibility of a general treatment of all barriers to flow and the proposed
scenario is a perfect sandbox for maximally testing this capacity. This is likely to be of
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commercial interest to insurance and/or reinsurance companies as existing methods of
estimating exposure are relatively simplistic and may result in a significant underestima-
tion or overestimation of the expected damages induced by a flood event. By modelling
explicitly, the intrusion of flows into buildings it would be possible to more accurately
ascertain the expected damages. However, this is an ambitious target since the mecha-
nisms enabling intrusion of flood flows into properties are highly uncertain and current
surveying practices provide inadequate data resolution (providing information only on the
building footprint). Furthermore, for solver 2, there may be significant challenges related
to the computational burden and practical implementation of the solution procedure if a
large percentage of the domain includes partial barriers to flow.

Regarding the conducted planar concentration analyses, further work to reduce surface re-
flections, enabling the use of lower concentrations which confer higher sensitivity would be
valuable. As would further exploration of methods to enable expansion of the observation
areas to facilitate the analysis of the mass conservation across the domain. Furthermore,
it would be useful to explore other scenarios such as weir flow and combined gate and
weir flow to truly ascertain the limitations of the proposed solver.

With regards to the development of the solver there is clearly much progress still to be
made. Whilst the initial results demonstrate promise, the development of a sophisti-
cated method which is capable of minimising numerical diffusion, ensuring boundedness
of concentration values and a high order of spatial accuracy for primitive and conserved
variables is challenging and requires careful investigation. The proposal to explore the
application of high order central weighted essentially non-oscillatory reconstruction, with
particular focus on the reconstruction of the primitive variables appears promising in this
regard.
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[159] E. D. Fernández-Nieto, E. H. Koné, and T. Chacón Rebollo. “A Multilayer Method
for the Hydrostatic Navier-Stokes Equations: A Particular Weak Solution”. In:
Journal of Scientific Computing 60.2 (2013), pp. 408–437. issn: 0885-7474 1573-
7691. doi: 10.1007/s10915-013-9802-0.
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[178] P. Garćıa-Navarro, E. Playán, and N. Zapata. “Solute Transport Modeling in Over-
land Flow Applied to Fertigation”. In: Journal of Irrigation and Drainage Engi-
neering 126.1 (2000), pp. 33–40. doi: 10.1061/(ASCE)0733-9437(2000)126:
1(33).

[179] V. Glenis, V. Kutija, and C.G. Kilsby. “A fully hydrodynamic urban flood mod-
elling system representing buildings, green space and interventions”. In: Envi-
ronmental Modelling & Software 109 (2018), pp. 272–292. issn: 1364-8152. doi:
10.1016/j.envsoft.2018.07.018.

[180] V. Glenis et al. “Flood modelling for cities using Cloud computing”. In: Journal
of Cloud Computing: Advances, Systems and Applications 2.1 (2013), p. 7. issn:
2192-113X. doi: 10.1186/2192-113X-2-7.

[181] K. Glińska-Lewczuk et al. “The impact of urban areas on the water quality gradi-
ent along a lowland river”. In: Environmental Monitoring and Assessment 188.11
(2016), p. 624. doi: 10.1007/s10661-016-5638-z.

[182] E Godlewski et al. “Congested shallow water model: roof modeling in free sur-
face flow”. In: ESAIM: M2AN 52.5 (2018), pp. 1679–1707. doi: 10.1051/m2an/
2018032.
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Appendix A

Appendices

A.1 Test Case Five Adjusted Inflow

Comparison between the numerical results for Solver 2, for q = qavg and q = 1.02qavg
shown in Figure A.1a. Where q is the inflow rate and qavg is the average measured inflow
rate over the duration of the experiment. Comparison between results for the adjusted
inflow and the experimental data is provided in Table A.1b.
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Figure A.1: Comparison between numerical and experimental results for test case five
following adjustment of the inflow rate within the ±2% error margin.
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A.2 Test Case Six Adjusted Inflow

Comparison between the numerical results for Solver 2, for q = qavg and q = 0.98qavg
shown in Figure A.2a. Where q is the inflow rate and qavg is the average measured inflow
rate over the duration of the experiment. Comparison between results for the adjusted
inflow and the experimental data is provided in Table A.2b.
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Figure A.2: Comparison between numerical and experimental results for test case six
following adjustment of the inflow rate within the ±2% error margin.
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A.3 Simple Weir Internal Boundary Condition

Consider the scenario outlined in Figure A.3 whereby there is a wet left state in the third
layer for the left cell and a corresponding dry state in the third layer for the right cell.
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Figure A.3: An example of combined gate and weir flow across a structure interface for
which a coupling condition can be implemented.

A simple approximation of the flow rate q generated by the height, hi,3, of water flowing
over the top of the gate is provided by [190]:

q = C
√
g(hi, 3)

3
2 (A.1)

where C is an empirical constant which accounts the energy losses, taken as equal to
0.6 in this case. A simple weir coupling condition can be introduced, by implementing
a fictitious right state, h(+), u(+), connected to the left state, hi,3, ui,3, by the following
Riemann invariant:

uL − 2aL = uR − 2aR (A.2)

where ak =
√
g(hk + hk(+)

). If the discharge across the interface, q, is governed by (A.1)

then h(+)u(+) = C
√
g(hi, 3)

3
2 which may be substituted into (A.2):

ui,3 − 2
√
g(hi,3 + hi,3(+)

) =
C
√
g(hi, 3)

3
2

h(+)
− 2
√
gh(+) (A.3)

This equation can be rearranged to give:

C
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3
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g
(√
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√
(hi,3 + hi,3(+)

)
)
= 0 (A.4)

Let:
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= −
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−
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√
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(A.6)
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A suitable numerical method such as the Newton-Raphson method can then be used to
determine h(+), using an initial guess of h0 = hL. Once h(+) has been determined, u(+)

may be evaluated as:

u(+) =
C
√
g(hi, 3)

3
2

h(+)
(A.7)

This coupling condition ensures that the flow across the interface for the third layer is
governed by the weir equation (A.1) in the case that the corresponding right state is
dry. For two wet states or two dry states, the standard solution procedure should be
followed. A coupling condition for a left dry state and corresponding wet right state
can be derived following the same arguments. The use of Riemann invariants to connect
the neighbouring states assumes the existence of simple waves, which is the case for the
outlined implementation [438]. For a more rigorous exploration of weir coupling for the
shallow water equations refer to [190].
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A.4 Test Case: Internal Weir Boundary Condition

Comparison between the numerical results for Solver 2 following the implementation of
weir coupling as derived in A.3 is shown in Figure A.4a. Comparison between results for
Solver 2 with weir coupling and the experimental data is provided in Table A.4b.

0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

de
pt

h 
(m

)

Structure
Solver 2
Solver 2 Weir Coupled
Validation Data

0 2 4 6 8 10 12
distance (m)

0.0

0.5

1.0

1.5

2.0

ve
lo

cit
y 

(m
s

1 )

(a)

0.00m 4.80m 4.90m 5.00m 5.20m 6.00m 8.00m 10.00m 12.50m

0.3665 0.3685 0.3700 0.3665 0.0940 0.0800 0.0850 0.0885 0.0945

0.4782 0.4756 0.4736 0.4782 1.8644 2.1906 2.0618 1.9802 1.8545

0.1753 0.1753 0.1753 0.1753 0.1753 0.1753 0.1753 0.1753 0.1753

0.3722 0.3721 0.3695 0.3663 0.0836 0.0868 0.0950 0.1039 0.1165

0.4708 0.4742 0.4779 0.4790 2.0969 2.0197 1.8441 1.6865 1.5039

0.1752 0.1765 0.1766 0.1755 0.1753 0.1753 0.1752 0.1753 0.1753

Absolute Error 0.0057 0.0036 -0.0005 -0.0002 -0.0104 0.0068 0.0100 0.0154 0.0220

Percentage Error 1.6% 1.0% 0.1% 0.1% 11.1% 8.5% 11.8% 17.4% 23.3%

Absolute Error -0.0074 -0.0014 0.0043 0.0008 0.2326 -0.1709 -0.2176 -0.2938 -0.3506

Percentage Error 1.5% 0.3% 0.9% 0.2% 12.5% 7.8% 10.6% 14.8% 18.9%

Absolute Error 0.0000 0.0012 0.0013 0.0002 0.0000 0.0000 0.0000 0.0000 0.0000

Percentage Error 0.0% 0.7% 0.8% 0.1% 0.0% 0.0% 0.0% 0.0% 0.0%

Distance

 Average Depth (m)
Validation 

Data
Average Velocity (m/s)

Average Discharge (m2/s)

Depth (m)
Numerical 

Data
Velocity (m/s)

Discharge (m2/s)

Depth (m)

ErrorVelocity (m/s)

Discharge 

(m2/s)

(b)

Figure A.4: Comparison between numerical and experimental results for test case six
following the introduction of weir coupling.
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A.5 Test Case Nine: Internal Weir Boundary Con-

dition

Comparison between the numerical results for Solver 2 following the implementation of
weir coupling as derived in A.3 is shown in Figure A.5a. Comparison between results for
Solver 2 with weir coupling and the experimental data is provided in Table A.5b.

0.0

0.1

0.2

0.3

0.4

de
pt

h 
(m

)

Structure
Solver 2
Solver 2 Weir Coupled
Validation Data

0 2 4 6 8 10 12
distance (m)

0.0

0.5

1.0

1.5

2.0

2.5

ve
lo

cit
y 

(m
s

1 )

(a)

0.00m 4.80m 5.00m 5.07m 10.00m 12.50m

0.4285 0.4305 0.4285 0.0800 0.0800 0.0870

0.4130 0.4110 0.4130 2.2119 2.2119 2.0339

0.1770 0.1770 0.1770 0.1770 0.1770 0.1770

0.4737 0.4740 0.4660 0.0728 0.0924 0.1030

0.3736 0.3765 0.3775 2.4303 1.9157 1.7184

0.1769 0.1785 0.1759 0.1770 0.1770 0.1770

Absolute Error 0.0452 0.0435 0.0375 -0.0072 0.0124 0.0160

Percentage Error 10.5% 10.1% 8.8% 9.0% 15.5% 18.4%

Absolute Error -0.0394 -0.0345 -0.0354 0.2184 -0.2962 -0.3155

Percentage Error 9.5% 8.4% 8.6% 9.9% 13.4% 15.5%

Absolute Error 0.0000 0.0015 -0.0010 0.0000 0.0000 0.0000

Percentage Error 0.0% 0.9% 0.6% 0.0% 0.0% 0.0%

Distance

 Average Depth (m)
Validation 

Data
Average Velocity (m/s)

Average Discharge (m2/s)

Depth (m)
Numerical 

Data
Velocity (m/s)

Discharge (m2/s)

Depth (m)

ErrorVelocity (m/s)

Discharge 

(m
2
/s)

(b)

Figure A.5: Comparison between numerical and experimental results for test case six
following the introduction of weir coupling.
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A.6 Camera 1 Calibration

The following figures show the median measured green light intensity of each cell contained
within the frame of Camera 1, for each of the calibration concentrations in Table A.1.
In each case, 7s of footage, equal to 210 frames, was analysed. For each frame, within
each calibration recording, the mean green light intensity of the pixels contained within
each cell is obtained by extracting the G value from the RGB pixel data. Due to the
requirement to well mix the Rhodamine WT, small variations in the free surface are
present since the recordings were performed before the motion of the fluid had entirely
ceased. This is beneficial since it mimics the behaviour of the fluid during the experiment,
enabling the filtering of the surface reflections via time-averaging.

Calibration
Number

0 1 2 3 4 5 6 7 8 9

Concentration
(mg/L)

0.00 2.89 5.78 8.68 11.57 14.46 17.35 20.24 23.14 26.02

Table A.1: Calibration concentrations for the upstream calibration of Camera 1.
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A.6.1 Camera 1: Calibration 0
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Figure A.6: Recorded median green light intensity for a 0.00mg/L concentration of Rho-
damine WT - 20% aqueous solution.
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A.6.2 Camera 1: Calibration 1
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Figure A.7: Recorded median green light intensity for a 2.89mg/L concentration of Rho-
damine WT - 20% aqueous solution.
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A.6.3 Camera 1: Calibration 2
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Figure A.8: Recorded median green light intensity for a 5.78mg/L concentration of Rho-
damine WT - 20% aqueous solution.
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A.6.4 Camera 1: Calibration 3
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Figure A.9: Recorded median green light intensity for a 8.68mg/L concentration of Rho-
damine WT - 20% aqueous solution.
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A.6.5 Camera 1: Calibration 4
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Figure A.10: Recorded median green light intensity for a 11.57mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.6.6 Camera 1: Calibration 5
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Figure A.11: Recorded median green light intensity for a 14.46mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.6.7 Camera 1: Calibration 6
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Figure A.12: Recorded median green light intensity for a 17.35mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.6.8 Camera 1: Calibration 7
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Figure A.13: Recorded median green light intensity for a 20.24mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.6.9 Camera 1: Calibration 8
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Figure A.14: Recorded median green light intensity for a 23.14mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.6.10 Camera 1: Calibration 9
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Figure A.15: Recorded median green light intensity for a 26.02mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7 Camera 2 Calibration

The following figures show the median measured green light intensity of each cell contained
within the frame of Camera 2, for each of the calibration concentrations in Table A.2. In
each case, 7s of footage, equal to 210 frames, was analysed. For each frame, within each
calibration recording, the mean green light intensity of the pixels contained within each cell
is obtained by extracting the G value from the RGB pixel data. Due to the requirement
to well mix the Rhodamine WT, small variations in the free surface are present since
the recordings were initiated before the motion of the fluid had entirely ceased. This is
beneficial since it mimics the behaviour of the fluid during the experiment, enabling the
filtering of the surface reflections via time-averaging.

Calibration
Number

0 1 2 3 4 5 6 7 8 9

Concentration
(mg/L)

0.00 3.50 6.99 10.49 13.99 17.48 20.98 24.47 27.97 31.46

Table A.2: Calibration concentrations for the downstream calibration of Camera 2.
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A.7.1 Camera 2: Calibration 0
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Figure A.16: Recorded median green light intensity for a 0.00mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.2 Camera 2: Calibration 1

0 200 400 600 800 1000 1200

0

200

400

600

800

1000

Calibration Median G Intensity - C1

170

180

190

200

210

220

230

240

Figure A.17: Recorded median green light intensity for a 3.50mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.3 Camera 2: Calibration 2
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Figure A.18: Recorded median green light intensity for a 6.99mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.4 Camera 2: Calibration 3
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Figure A.19: Recorded median green light intensity for a 10.49mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.5 Camera 2: Calibration 4
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Figure A.20: Recorded median green light intensity for a 13.99mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.6 Camera 2: Calibration 5
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Figure A.21: Recorded median green light intensity for a 17.48mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.7 Camera 2: Calibration 6
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Figure A.22: Recorded median green light intensity for a 20.98mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.8 Camera 2: Calibration 7
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Figure A.23: Recorded median green light intensity for a 24.47mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.9 Camera 2: Calibration 8
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Figure A.24: Recorded median green light intensity for a 27.97mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.7.10 Camera 2: Calibration 9
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Figure A.25: Recorded median green light intensity for a 31.46mg/L concentration of
Rhodamine WT - 20% aqueous solution.
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A.8 Cell Refinement

(a) Camera 1 (10mm Cells) (b) Camera 2 (10mm Cells)

Figure A.26: Spatial distribution of the residual errors for 10mm cells.

(a) Camera 1 (5mm Cells) (b) Camera 2 (5mm Cells)

Figure A.27: Spatial distribution of the residual errors for 5mm cells.
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(a) Camera 1 (2mm Cells) (b) Camera 2 (2mm Cells)

Figure A.28: Spatial distribution of the residual errors for 2mm cells.
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A.9 Background Concentration Analysis

The determination of the background concentration for each of the camera frames is
performed via analysis of 7s of footage, equal to 210 frames, obtained just prior to the
injection of a Rhodamine WT slug for each experiment. The background concentration
is determined by calculating the median green light intensity observed for each pixel over
the duration of the recording. Conversion of the median green light intensity into a
concentration value is performed using the transfer algorithm.
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A.9.1 Experiment 1
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(a) Camera 1
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(b) Camera 2

Figure A.29: Background concentration for Experiment 1.
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A.9.2 Experiment 2
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(a) Camera 1
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(b) Camera 2

Figure A.30: Background concentration for Experiment 2.
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