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Abstract 

Technology usage and diversity in factories is nothing new but reaching a point of exponential 

growth given the continuous commercialisation of better I4.0 technology. These technologies 

include a growing array of I4.0 ICT, production, and cyber technologies, often deployed by 

factories in bundles to ensure competitive advantage. Using the theory of dynamic capability 

second-order integration capabilities were studied as antecedents to the breadth of these I4.0 

technologies, examined as a first-order capability. The study examined design-manufacturing 

integration, manufacturing-strategy integration, and systems integration as second-order 

integration capabilities. Also, the study examined the link between the breadth of I4.0 

technologies and the level of automation, production cost, emission rate, and schedule 

attainment of the factory as indicators of competitive advantage. 

A systematic literature review on the implementation of I4.0 was conducted followed by a 

pilot study of five semi-structured interviews with industry experts to shape the conceptual 

model. A survey of senior managers from 320 UK factories was carried out using web-based 

distribution and data collection to test the model. 

The results indicated second-order integration capability of design manufacturing integration 

and systems integration to act as antecedents to factory manager’s first-order capability of 

adopting and using the breadth of I4.0 technologies at the factory. Manufacturing-strategy 

integration was not fount to impact the breadth of I4.0 technologies. This study further found 

the breadth of I4.0 technologies to have a positively and significantly impact the level of 

automation, emission rate, and schedule attainment of the factory. The breadth of I4.0 

technologies was not found to impact production cost. This study contributed to empirically 

measuring nine diverse I4.0 technologies used at the factory and added to the dynamic 

capability literature on the dynamic between second and first order capabilities and the 

benefits for competitive advantage at the factory unit-of-analysis. 
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Chapter 1. Introduction 

1.1 Research Background 

The use of technology to improve manufacturing is nothing new. In fact, the first industrial 

revolution, which commenced in the late 18th century, was characterised by the 

mechanisation of manual processes using steam engines and water wheels (Crafts, 2011; 

Mokyr, 2018). The second industrial revolution, spanning the late 19th to early 20th centuries, 

introduced electricity and assembly lines. It led to mass production and further enhanced 

manufacturing efficiency (Jevons, 1931). The third industrial revolution, which emerged post-

World War II, was marked by the onset of digital technology and automation. Computers, 

electronics, and the internet revolutionized communication and manufacturing processes, 

transforming the way industries operated (Rifkin, 2011). The term "Industry 4.0" (I4.0) 

originated in Germany and was officially introduced in 2011 at the Hannover Messe trade fair, 

a testament to Germany's central role in the development of this transformative concept 

(Schwab, 2017). 

Now, in the ongoing fourth industrial revolution (4IR) we are witnessing continued digitisation 

and the emergence of Industry 4.0. This represents a profound shift for factory operations as 

it fuses digital technologies, the internet, and physical systems (Lasi et al, 2014; Schwab, 2017; 

Lee, J. and Lee, K. 2021). Key technologies of Industry 4.0 include the Internet of Things (IoT), 

artificial intelligence (AI), big data analytics, digital twin, and cyber-physical systems (Frank, 

Dalenogare, and Ayala, 2019; Zheng et al, 2021). At its core, Industry 4.0 is about the 

interconnectedness of devices and systems. It enables the exchange of data for intelligent 

decision-making and automation, underpinned by concepts like the smart factory. This 

interconnectedness represents a departure from previous industrial revolutions by 

emphasising the seamless integration of digital technologies with physical systems and the 

human element (Kagermann et al, 2014). 

In further contrast to past technology use in manufacturing, I4.0 represents over a dozen 

unique sets of advanced production technology. In turn, each technology is further 

categorised into subgroups optimised for different types of factories and various production 

strategies. In this light, new measurement methods have emerged to quantify the level of 

openness to and usage of I4.0 technology (Frank, Dalenogare, and Ayala, 2019; Zheng et al, 
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2021; Büchi, Cugno and Castagnoli, 2020; Cugno, Castagnoli and Büchi, 2021; Bettiol et al, 

2023). For instance, the source of I4.0 has been measured to find out if these technologies 

have been purchased or internally procured. Equally it is possible to measure the depth of I4.0 

and reveal if a specific I4.0 technology is used in other departments of the same business and 

if other competitors also use this technology. Alternatively, due to the surging number of 

diverse I4.0 technology platforms it is possible to measure the breadth or number of 

technologies a specific unit or even sub-unit, such as a factory, use for operations. For a smart 

factory this represents the capability of factory manager to orchestrate and manage sets of 

complementary I4.0 technology (Büchi, Cugno and Castagnoli, 2020; Cugno, Castagnoli and 

Büchi, 2021; Cugno et al, 2022). Of course, the more complex and customised the product the 

higher the breadth of I4.0 technology needs to be to produce such increasingly complex 

products in the smart factory (Devaraj, Hollingworth and Schroeder, 2004; Vickery et al, 2016, 

Kim, 2022; Turco and Maggioni, 2022). 

It is crucial to recognise that digital transformation, including I4.0 projects, can fail as 

possessing technological capacity does not necessarily imply its operational use (Danneels, 

2016). The most notable practical limitations include workforce resistance, lack of digital skills, 

and inadequate change management (Westerman, Bonnet, and McAfee, 2014; Bughin et al, 

2018; Cazeri et al, 2022). Therefore, understanding the capability to broaden the number of 

I4.0 technology platforms and addressing these challenges is vital for a factory management 

seeking to harness the full potential of digital transformation while not jeopardising their 

competitive edge in rapidly evolving markets. This is why companies such as Siemens have 

been able to achieve significant energy savings in production to lower the cost of 

manufacturing while simultaneously making it more sustainable (Siemens AG, 2022). In other 

cases, companies such as Nike failed to implement I4.0 at their supply chain as inefficiencies 

multiplied and other companies such as Tesco only partially realised success as the positive 

effects of growing efficiency were in part counteracted by fluctuating customer satisfaction 

(Folarin and Hassan, 2015; Medhi, 2016. p.83). 

This shows the significance of clearly understanding the risks and tensions that arise during 

the digital transformation trek to fully realise and protect I4.0 value. A lack of understanding, 

misconceptions about the readiness factors, hidden tensions, and unrealistic or unclear 

performance goals can lead to 85% of I4.0 and digital transformation efforts ultimately failing 

(Bucy et al, 2016; Facchini, Digiesi and Pinto, 2022). The importance of I4.0 lies in its potential 
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to enhance operational efficiency, innovativeness, and competitiveness (Felsberger et al, 

2022; Khan, Ahmad and Majava, 2023). In effect, what sets successful I4.0 initiatives apart is 

not merely the adoption and use of I4.0 technology but the orchestration and adoption of a 

set or group of complementary I4.0 technologies for competitive advantage (Cugno, 

Castagnoli and Büchi, 2021; Bettiol et al, 2023). Such competitive advantage is best realised 

by ensuring that I4.0 results in customer satisfaction, innovation, and performance gains, such 

as lowering factory environmental emission rates and improving factory scheduling. 

1.1.2 Academic Research on I4.0  

Industry 4.0 (I4.0) represents a significant paradigm shift in the world of manufacturing. 

Accordingly, academic studies surged over the past decade on I4.0. The growing literature on 

I4.0 overlaps with other similar bodies of literature, some progressing in parallel. In addition 

to the aforementioned I4.0 technologies, the concept of Industry 4.0 encompasses the study 

of resources, capabilities, routines, and outcome at various levels. At the holistic level, drivers 

and barriers in industry and firms have been explored (Saniuk, S. Saniuk, A. 2018; Ghobakhloo 

and Ching, 2019). On a finer level of analysis, the I4.0 literature explores the various 

technologies and the multitude of capabilities and resources needed as well as the outcome 

effects on factories, such as operational and sustainability performance (Črešnar et al, 2020). 

Still at a more granular level, other studies have explored the data requirements, human 

resources, and supply chain digitisation implications and benefits of using I4.0 technology 

(Calabrese, Levialdi Ghiron and Tiburzi, 2021). 

The concept of I4.0 is advancing in parallel with similar neighbouring literature on advanced 

manufacturing technology (AMT), computer-integrated manufacturing (CIM), e-business, 

digitisation, digitalisation, smart factories, and digital transformation, but it also distinguishes 

itself from these concepts in important ways, as elaborated below. 

AMT encompasses a wide range of technologies, from CNC machining to robotics. While I4.0 

leverages some of these technologies, it goes beyond them by integrating them with the 

Internet of Things (IoT), big data analytics, and cyber-physical systems (CPS). I4.0 is about 

creating intelligent, interconnected systems that can optimise processes and make real-time 

decisions. Studies indicate that I4.0 extends the capabilities of traditional AMT by connecting 

machines and processes in a way that enables data-driven decision-making (McDermott and 

Stock, 1999; Chung and Swink, 2009). 
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CIM has been instrumental in automating manufacturing processes, but I4.0 builds on CIM's 

foundation by incorporating real-time data exchange, AI, and the Industrial Internet of Things 

(IIoT). It enables adaptive and reconfigurable manufacturing, where production processes are 

adjusted based on real-time data, leading to increased flexibility and efficiency. Studies 

indicate that I4.0 is an evolution of CIM, integrating the physical and digital worlds to create 

smart factories (Ivanov et al, 2021; Pereira, Szejka and Canciglieri 2022). 

Smart factories and smart manufacturing are an integral part of I4.0, but they are not 

synonymous. A smart factory leverages technology to improve manufacturing processes and 

efficiency. I4.0 goes further by integrating smart factories into a broader network, connecting 

them with suppliers, customers, and other stakeholders for end-to-end integration and 

optimisation. Studies distinguish between smart factories and I4.0, emphasising the role of 

I4.0 in creating a network of intelligent, connected smart factories (Saniuk, S. Saniuk, A. 2018; 

Wang et al, 2021). 

While I4.0 leverages automation and data analytics to optimize processes, Human-Centric 

Manufacturing emphasises collaboration between human workers and machines, with 

technology enhancing human skills (Björklund et al, 2019). This idea of human-led-digitisation 

is expanded by the I4.0 literature (Sivathanu and Pillai, 2018; Da Silva et al, 2022; Nankervis 

and Cameron, 2023). In this vein, I4.0 focuses on automation and technology while 

considering the symbiotic relationship between humans and technology. Integrating aspects 

of both approaches may be beneficial for companies seeking to balance efficiency with human 

empowerment and creativity in the modern manufacturing landscape. 

E-business primarily focuses on digital interactions between businesses and customers. In 

contrast, I4.0 expands the scope beyond just e-commerce. It integrates e-business principles 

into the manufacturing process itself by enabling seamless communication between 

machines, products, and systems, leading to more efficient production and supply chain 

operations. Recent research highlights the integration of e-business into I4.0, emphasising its 

role in creating new business models and enhancing customer experiences (Sanders, 2007; 

Benitez et al, 2018). 

While both digitisation and I4.0 involve the conversion of analogue information into digital 

formats, digitization is a fundamental step toward I4.0 implementation. I4.0 takes digitisation 

a step further by using digital data to drive automation, decision-making, and connectivity 
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across the entire manufacturing ecosystem. Recent literature highlights the pivotal role of 

digitisation as the foundation of I4.0, emphasizing the importance of data in achieving smart 

manufacturing (Lorenz et al, 2020; Björkdahl 2020). 

Digitalisation is an extension of digitisation beyond business. It uses analogue to digital 

conversion of broader infrastructure to transform business operations which may not 

necessarily be manufacturing related. I4.0 represents a higher level of digitalisation, where 

data-driven insights and automation are embedded into every aspect of the manufacturing 

ecosystem. It moves from merely using digital tools within silos to become a digital enterprise. 

Research on this topic explains the transition from digitalisation to I4.0, highlighting how 

companies are moving beyond technology adoption to drive a digital production economy 

(Chen, Despeisse and Johansson, 2020). 

Digital transformation refers to the comprehensive change in business processes and models 

through the integration of digital technologies. I4.0 is a subset of digital transformation, 

specifically targeting the smart factory. It embodies the digitisation and digitalisation 

principles within the manufacturing domain. Recent studies illustrate how I4.0 is driving digital 

transformation in manufacturing, leading to enhanced competitiveness and sustainability 

(Kagermann et al, 2020; Ceipek et al, 2021; Mao, Liu and Gong, 2023). 

1.1.3 Limitations of I4.0 Research 

A review of the I4.0 implementation literature reveals several theoretical and practical 

limitations hindering research and adoption. For instance, terminology and definitions are 

sometimes used confusingly if other concepts (e.g., digitalisation) are combined with I4.0 in 

research (Liao et al, 2017; Smith et al, 2021). Recent research has highlighted the struggle for 

scholars to keep up with the continuous evolution of technology and expanding terminology 

such as I5.0 (Renda et al, 2021; Calabrese, Levialdi Ghiron and Tiburzi, 2021; Miller, 2022; 

Maddikunta et al, 2022; Ivanov, 2023). Also, the rapid pace of technological advancements in 

I4.0 remains a pressing issue, especially for smaller, less resourceful factories (Horváth and 

Szabó, 2019; Stentoft et al, 2021). 

Despite the field's growth in defining the requirements at the industry, firm, and to a lesser 

degree, sub-unit levels, the human element, data aspects, and supply chain implications suffer 

from shortage of empirical research to verify I4.0 claims (Raj et al, 2020). Recent studies 

underscore the need for more management-centric empirical investigations at the sub-unit 
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levels to bridge the gap between theory and practice by using theory to explore hidden 

tensions and complexities at the sub-unit level (Nayernia, Bahemia and Papagiannidis, 2022; 

Gupta et al, 2023). The above is in addition to inherent limitations, such as the persisting issue 

of limited cross-disciplinary collaboration in I4.0, despite its inherently cross-disciplinary 

nature (Chen, 2020; Ivanov et al, 2021). 

I4.0 studies focusing on evidence-based empirical findings still rely on single-case studies, 

small sample sizes and a general firm level unit-of-analysis. In most cases, a theoretical 

foundation for the study is completely missing or hardly ever referred to in interpreting I4.0 

effects (Nayernia, Bahemia and Papagiannidis, 2022). This can lead to overlooking the hidden 

requirements for, or missed opportunities of, I4.0 at the factory. Also, this can result in 

misrepresentation of the antecedents and outcomes for hands-on sub-units, where I4.0 is 

typically used. For instance, the capabilities, routines, and priorities of firm-level managers 

may not match with those of sub-unit- decision makers, such as factory and operation 

managers. Therefore, generalisation about the causal relations of I4.0 initiatives at the firm 

level do not translate to the same results at the sub-unit level, such as the factory (Miller, 

1978; Gattiker and Goodhue, 2005). Also, in practice critical decisions such as resource 

allocation often rest with top firm-level stakeholders instead of sub-unit managers such as 

operations managers, factory managers, and supply chain managers, who are most 

knowledgeable about operational issues. This is the case even if I4.0 technology is being 

implemented at the factory. Therefore, a lack of empirical studies on I4.0 at the factory-level 

has led to many misrepresentations and confusion about I4.0 requirements and outcomes. In 

this vein, studies calls for a broader set of case studies to address this limitation. 

More recent studies directly emphasise this weak point in the literature and call for increasing 

investigation of the paradoxes, contradictions, and tensions inherent in managing the current 

breadth of I4.0 and even for growing the breadth of I4.0, in time exposing the dark sides and 

hidden pitfalls (Raj et al, 2020; Dieste, Sauer and Orzes, 2022; Moschko, Blazevic and Piller, 

2023; Dieste et al, 2023). Thus far, I4.0 studies at the factory level exploring the above tensions 

and the needed trade-offs that factory managers need to consider are very rarely found in the 

literature. Examples include the study of synergies and trade-offs between I4.0 and lean 

manufacturing at the factory (Sartal, Llach and León-Mateos, 2022). 

Other classic management mechanisms such as integration, whether internal or external, are 

not well studied and completely ignore the factory level. Although integration is emphasised 
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by empirical firm-level studies, the outcome rarely represents the struggles and difficulties of 

operational integration complexities present on the factory floor. This has resulted in not well 

understood and even less studied mechanisms and capabilities for integrating factory 

operations with other important business aspects (Swink and Nair, 2007), for instance, with 

the strategy of the business, other functions such as R&D, design, marketing, and sales (Swink 

and Song, 2007). The lack of a coherent stance towards the digital transformation at the 

factory results in impulsive and uncoordinated responses to challenges, which other 

connected departments at the factory perhaps would not fully comprehend. 

Equally as limiting is the lack of understanding of deliverable I4.0 outcomes at the level of the 

factory. Thus far, the literature has explored the innovation and other advantages firms 

benefit from. Also, the literature has focused on organisational performance (Duman and 

Akdemir, 2021), product innovation performance (Sarbu, 2022; Fragapane et al, 2023) and 

supply chain performance (Reyes, Mula and Díaz-Madroñero, 2023) but not operational 

performance at the factory. Unsurprisingly, the outcome of adopting technology such as CNC 

at the factory improves the level of process automation (Ritzman and Safizadeh, 1999). 

However, the use of multiple I4.0 technologies is not related empirically to the level of 

automation at the factory. It is also relatively unknown what the adoption of groups of I4.0 

technology means for production costs and schedule stability. In the same vein, the effect of 

using multiple I4.0 platforms is not known in relation to the effect on schedule stability and 

schedule attainment of the factory, nor does the literature elaborate on the factory 

sustainability measures such as emissions rates and green technology at the factory (Klassen 

and Waybark, 1999; Zhu and Sarkis, 2004). 

From the practical perspective, implementing I4.0 in competitive markets with often limited 

resources is not straight forward. In the UK, the 2023 manufacturing sector accounted for 

9.3% of the gross value added and 8.1% of the employment force (ONS, 2024). However, after 

the recent Covid-19 pandemic the manufacturing sector has been stagnant, and in some cases 

declining. It is evident that such difficult market conditions hinder the adoption of expensive 

production technology. Moreover, being able to adopt I4.0 is not factory specific and other 

factories can also use the same combination of technology and in some cases implement them 

in a more cost effective and successful manner. This is also because factory managers focus 

more on ordinary capabilities that primarily consider maintaining current capability to stay in 

the market as opposed to higher-order capabilities and practices related to transformative, 
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routine changing routines, which could broaden the value of I4.0 technology. In this context, 

the combination of first and second order capability of the factory can create difficult to 

imitate value and sustain competitiveness. However, such combinations of capabilities often 

lack prioritisation with factory managers often prioritising more pressing issues related to the 

daily operation of the factory. 

In general, still vaguely understood theoretical and practical causes and consequences of I4.0 

and the fact that an increasing number of technology platforms need to be orchestrated for 

I4.0, compared to AMT and CIM, complicates matters quickly if the capability to support the 

breadth of I4.0 technology is missing. It soon becomes evident that implementation could be 

highly complex, risky, and prone to failure if factory managers avoid an integrated approach. 

Questions therefore emerge regarding the importance of factory integration capability to 

improve the effectiveness of managing the breadth of I4.0 technology. Other pressing 

questions remain regarding the actual factory performance given the different breadth of I4.0 

for various factory sizes and for factories with different production strategies. 

1.2 Research Objectives 

The research uses dynamic capability (DC) theory, and the objective is twofold: to clarify the 

relevance of integration capability as an antecedent to using sets of I4.0 technology in factory 

production; and to find the effect on factory performance.  It is apparent that implementation 

is contingent on a multitude of factors, such as factory size, age, and production strategy as 

well as other difficult to measure factors contributing to the rate success of I4.0 

implementation. To explore the strategic significance of I4.0 this study measures capabilities, 

routines, and resources and tests the interaction among them for bolstering the competitive 

advantage. Two main research questions are addressed in this research: 

 

1. Can transformational integration capability of factory managers benefit the capability 

to implement the breadth of I4.0 technologies at the factory? 

 

2. Does the capability to implement the breadth of I4.0 technologies at the factory lead 

to improved performance and competitive advantage of the factory?  
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Based on the DC theory, the first objective is to find the relevance of higher-order integration 

(dynamic) capability on the (ordinary) capability to implement the breath of I4.0 technologies. 

The aim is to better understand how such higher order integration capabilities impact the 

important yet imitable capability to implement the breadth of I4.0 technologies. The second 

objective is to determine the impact of the breadth of I4.0 technologies on factory operational 

performance, such as the level of automation, production cost, environmental sustainability, 

and schedule attainment. For this, the aim is to find how first order capability, supported by 

second order capability provides competitive advantage gains.  

 In addressing the first research question, we explore how tangible and intangible resources 

are fundamental in the pursuit of I4.0 excellence. Recent literature emphasises the pivotal 

role of scalable resource bundles in the digital transformation journey (Giustiziero et al, 2023). 

Routines, encompassing established procedures and practices, play an integral role in 

facilitating the seamless adoption and integration of I4.0 technologies (Danneels, 2016). 

Recent studies have highlighted the point that well-structured routines are essential in 

ensuring that these technologies are effectively adopted and leveraged, resulting in improved 

factory performance and breadth of I4.0 (Ghosh et al, 2022; Felsberger et al, 2022; Csiki, 

Demeter and Losonci, 2023). Studies highlight the need to view capabilities, routines, and 

resources as enablers of not just technological adaptation, but also as vehicles for cultivating 

an agile, forward-looking culture that can swiftly learn, and adapt to the ever-evolving I4.0 

landscape as competition also starts to use the same I4.0 technologies (Gupta et al, 2023). 

Capabilities, particularly higher-order capabilities, such as integration capabilities, have 

emerged as indispensable tools for knowledge transfer. These capabilities empower factory 

managers to not only broaden the number or breadth of I4.0 technologies used in the factory 

but also to reconfigure and optimise their current production assets (Giustiziero et al, 2023). 

Integration capabilities are recognised as critical drivers, enabling smart factories to efficiently 

harness an array of I4.0 technologies (Benitez, Ayala and Frank, 2020; Morgan et al, 2021; 

Tortorella et al, 2021; Ghobakhloo et al, 2023). 

Internal integration, which involves aligning various functions within a factory, is essential for 

enhancing the comprehensive implementation of I4.0 technologies (Tabim, Ayala, and Frank, 

2021). The integration of employees and data into the digital domain is another crucial aspect, 

as it fosters dynamic capabilities, organisational learning, and cross-functional cooperation, all 

of which are vital for realising the benefits of I4.0 transformation (Karimi and Walter, 2015; 
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Hanelt et al, 2021; Galanti et al, 2023). In this context, the cross-functional integration of 

production with design and strategy functions is expected to improve the factory managers' 

ability to manage a range of I4.0 technology platforms in tandem. On the other hand, external 

integration, particularly along the supply chain, allows for greater collaboration and 

connectivity with partners, enabling a more holistic systems integration and efficient I4.0 

implementation (Peng et al, 2013; Jayaram and Xu, 2013; Cheng, Farooq and Jajja, 2021). 

These two forms of integration, when well-executed, work in tandem to orchestrate a higher 

number or breadth of I4.0 technologies, providing factories with a competitive advantage and 

a pathway to improve the level of automation. The finer objectives of this study also explore 

the effect of factory management capability to implement the breadth of I4.0 technologies on 

the cost of production, constituting a major decision factor for any technology investment. 

Similarly, the study aims to investigate the effect of factory management capability to 

implement the breadth of I4.0 technologies on the environmental sustainability of the factory 

and the rate of emissions specifically. 

In addressing the second research question, we explore how the usage of multiple I4.0 

technologies in tandem impacts factory performance. This brings up critical objectives to 

explore, such as the factory's level of automation, production costs, emission rates, and 

schedule attainment in cases of a high breadth of I4.0 in particular types of factories or sectors. 

The aim for the second objective is to reveal the importance of factory managers' capability 

to deploy and use broad I4.0 technology platforms, enabled by integration capabilities, to gain 

competitive advantage. As previously noted, factory managers' capability to deploy and use 

broad I4.0 technology platforms can be imitated over time by the competition and has to be 

coupled with higher-order capability, such as design-manufacturing integration, 

manufacturing-strategy integration, and systems integration capabilities, to protect I4.0 value. 

1.3 Methodology Overview 

This research employs a mixed-method approach that combines deductive and inductive 

methods. Initially, the deductive approach is used to navigate the evolving I4.0 literature, 

followed by the inductive approach for theory testing (Forza, 2002). The primary focus is on 

the UK's manufacturing factory managers involved in I4.0 technology adoption. The initial 

systematic literature review (SLR) explores the “industry 4.0 implementation” literature, using 

full-text mining to cluster the main topics of discussion based on frequency and case 
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occurrence. This provides an unbiased categorisation of the main themes emergent in the 

literature. The SLR ultimately reviews eleven streams of research across five levels. 

Quantitative exploration of each research stream further identifies the gaps and limitations of 

the literature. The second phase of the research employs a cross-sectional survey of 320 UK 

factories. The unit of analysis is at the factory level and senior managers such as factory 

managers, directors, supervisors, and operations managers, serve as the key informants and 

primary respondents due to their comprehensive industry knowledge and knowledge about 

their own factory compared to the competition (Gattiker and Goodhue, 2005; Rosenzweig and 

Easton, 2010). 

Data collection involves two stages: a pilot study using semi-structured interviews to refine 

the variables and a main survey using a web-based questionnaire in a clear and concise format 

(Forza, 2002; Reja et al, 2003). The research uses random sampling to ensure representation 

of the population. Eligibility criteria and filters within the online data collection platform help 

select appropriate participants (Forza, 2002; Lefever, Dal and Matthíasdóttir, 2007). This 

research employed web-based surveys as the data collection method, as this offered several 

advantages, including lower costs, higher response rates, and the ability to reach a large 

sample of participants. The use of Prolific as a distribution platform facilitated the efficient 

management of responses, ensuring valid and complete data collection (Dillman, Smyth and 

Christian, 2009). This research method is rigorous and well-suited to providing insights into 

the relationship between factory capabilities, the breadth of I4.0, and factory performance. 

In the confirmatory data analysis stage, multiple tests are conducted, encompassing reliability 

and validity checks, multiple regression, and structural equation modelling (SEM). Construct 

validity is assessed using confirmatory factor analysis (CFA) in AMOS (Hair et al, 2019). 

Modification indices are considered when justified theoretically, and convergent validity is 

evaluated using average variance extracted (AVE) (Hair et al, 2019). Multiple regression 

analysis is applied to determine the impact of multiple independent variables on a dependent 

variable. Assumptions related to multicollinearity, linearity, normality, outliers, and 

homoscedasticity are examined to minimize type 1 and type 2 errors (Ganzach, 1998; 

Tabachnick and Fidell, 2007; Garson, 2012; Hair et al, 2019). For hypothesis testing, AMOS 

SEM is employed, combining regression and factor analysis to address complex relationships 

(Hoyle, 2012). 
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1.4 Findings 

The results of this study shed light on two previously understudied streams of research related 

to the antecedents and outcome of using broad I4.0 technologies. At a finer level, this study 

contributes to the I4.0 literature. This study measures factory manager capabilities and factory 

performance outcomes not previously linked to the breadth of I4.0. The findings deal with an 

important limitation in the literature by showing the importance of combining different types 

of capabilities at the factory to not only gain I4.0 value but to also protect it and ensure 

competitive advantage. 

The results show the relationship between higher-order capabilities related to learning and 

transformation and the strengthening effect on more easily imitable lower-order capability. 

In this case three higher-order integration related capabilities are found to improve the 

capability of factory managers to deploy broader types of I4.0 technology to enhance factory 

competitiveness (Büchi, Cugno and Castagnoli, 2020; Teece, 2023). The results concur with 

and add to similar dynamic capability research highlighting the transformative potential of I4.0 

in manufacturing (Li et al, 2022a; Felsberger et al, 2022; Lu, Zhao and Liu, 2022; Sulistyo and 

Ayuni, 2023; Rehman and Jajja, 2023; Yavuz et al, 2023; Arcidiacono et al, 2023). 

On the first research question, this study identified design-manufacturing integration, 

manufacturing-strategy integration, and systems integration as second-order or higher-order 

dynamic capabilities. These capabilities enable top factory managers to create new learning 

routines and transform existing resource bundles (Danneels, 2016; Teece, 2023). Specifically, 

the results indicate that factory managers who are strong in design-manufacturing capability 

are more capable of managing the breadth of I4.0 technologies. In this context, strong design-

manufacturing capability empowers factory managers with the knowledge to integrate I4.0 

design technology with I4.0 ICT and production technology (Swink and Nair, 2007). 

The results further indicate that factory managers who are strong in systems integration 

capability excel at the capability to manage the breadth of I4.0 technologies. In this sense, the 

results of the SEM testing show that factory managers who are strong in systems integration 

capability better understand the need to integrate the multitude of internal and external 

systems to ensure the flow of data and reflect downstream customer demands in real-time 

(Schroeder and Flynn 2001). Interestingly, the results of the SEM testing reveal there is 

insufficient evidence to indicate manufacturing-strategy integration results in the capability 
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to manage the breadth of I4.0 technologies. The results speak to the ongoing debate on 

whether business strategy drives manufacturing strategy or vice versa (Pozzi, Rossi and Secchi, 

2023). In this case, it is apparent that factory managers who are well versed in the capability 

to integrate manufacturing operations with business strategy are not necessarily more 

capable of managing the breadth of I4.0 technologies at the factory. 

On the second research question, the study shows the competitive advantage gains of a 

dynamic capability approach to I4.0 at the factory level. The results indicate increasing factory 

performance across multiple indicators as a result of first-order capability of factory 

management capability to implement the breadth of I4.0 factory technologies. First, we show 

that the breadth of I4.0 technology is positively linked to the level of automation and 

specifically processes automation at several stages on the factory floor. Empirical 

measurement of the level of process automation at the factory level fills an important and 

pressing gap as automation is often regarded as a given outcome and not often measured in 

cases where a set of orchestrated I4.0 technology is deployed. Second, the results indicate 

that the capability to implement the breadth of I4.0 technology lowers the rate of toxic factory 

emissions and improves the environmental sustainability of the factory. This provides critical 

evidence to support the case for using broad and diverse sets of I4.0 technology, some 

specifically used for energy saving (Hasan and Trianni, 2023). Such environmental 

sustainability gains as a result of a more resourceful combination of factory technology has 

long been considered to drive competitive advantage (Shrivastava, 1995; Lohmer, Kossmann 

and Lasch, 2022). Third, a similar positive and significant relation, although to a lesser extent, 

is found between first order-capability to implement the breadth of I4.0 technology and 

schedule attainment of the factory. These findings show that factories are better able to keep 

up with customer orders if the capability to implement the breadth of I4.0 is more strongly 

developed and exercised by factory management. 

Based on the dynamic capability theory this study contributes to the ongoing discussion on 

the link between capabilities, resources, and competitive advantage in factories. Addressing 

the second questions contributes to the debate on trade-offs between various factory 

performance goals by showing that automation and the control of emissions improve more 

rapidly, while the impact on production costs may take longer to materialise and, in some 

cases, show growing production costs as a result of inefficient deployment or a lack of 

integration of some technologies within the breadth of I4.0 technologies used in the factory. 
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This observation resonates with prior studies regarding similar production technology use 

(Schweikl and Obermaier, 2020). Additionally, we highlight the point that broader use of I4.0 

technology, while beneficial, does not represent the whole picture of technology adoption 

success (Iansiti and Lakhani, 2020). 

1.5 Thesis Structure 

This thesis is structured into seven chapters. Chapter two delves into the existing literature 

related to the origin of I4.0, the breadth of the adopted I4.0 technology, and the resource-

based dynamic capability view, which serves as the foundational theory for this study. This 

systematic literature review identifies gaps in the I4.0 implementation literature and 

establishes the research questions and objectives for the study based on the limitations. 

Chapter three outlines the core theory and the mechanisms of DC. This chapter build the 

hypotheses examined in the thesis and expands on their development. Chapter four focuses 

on the methodology, including the research strategy and the creation of the research 

instruments. Chapter five presents the data analysis and highlights the key findings of the 

study. Chapter six discusses the overall research outcomes in the context of existing studies, 

discussing the findings of the wider literature and the survey results. Finally, in chapter seven, 

concluding remarks are offered, along with a summary of the theoretical contributions, 

managerial implications, limitations of the study, and suggestions for future research avenues. 
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Chapter 2. Literature Review 

2.1 Chapter Introduction 

The following chapter sheds light on the state of the I4.0 implementation literature. Initially 

the chapter offers a map and analysis of the literature and how the systematic literature 

review process was conducted in four steps. To better understand literature trends, the 

limitations of past reviews were clarified. 97 research articles were subject to careful 

qualitative analysis, selected based on the systematic literature review process. The chapter 

includes results for keyword and thematic clustering based on full-text mining of each included 

case (article). Eleven research streams were identified across five levels relevant to I4.0 

implementation, namely, industry and firm, smart factory, data, human resources, and the 

supply chain level. The chapter concludes with the gaps in the I4.0 implementation literature, 

and proposed avenues for future research.  

2.2 Literature Mapping and Analysis 

The literature review on I4.0 is conducted in five steps, as shown in figure 1. The first stage 

examines prior review studies trying to define I4.0 within a multitude of academic disciplines, 

researching specifically the implementation in manufacturing. This initial step enriched the 

planning and preparation stage for systematically selecting studies for the review stage. 

Beyond clarifying the working definition, this stage examines the topic of I4.0 implementation 

from a holistic perspective. The second stage systematically screened, rated, and selected the 

studies for the review step.  

This is to avoid studies extending beyond the core literature on the implementation of 

Industry 4.0 from the organisational perspective. This stage is guided by best practice for 

reviewing such a rich and diverse body of literature (Tranfield, Denyer and Smart 2003; Denyer 

and Tranfield, 2009). In order to overcome subjectivity in categorisation of studies and the 

main themes discussed, in the third step a full-text mining was conducted on the corpus of 

the selected studies to cluster the main topics discussed (Davlembayeva, Papagiannidis and 

Alamanos, 2020). 
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Figure 1 Literature Review Process 

 

 

This method reduced the subjective, deliberate, and therefore biased grouping of topics 

studied, instead grouping similar topics into clusters based on frequency and number of cases. 

Because thus far only the literature on I4.0 and not manufacturing is reviewed, the fourth step 

screened, rated, and selected studies at the factory or organisation level related 

manufacturing openness and integration as well as manufacturing performance. The final fifth 

step qualitatively reviews the 97 selected studies. Accordingly, I4.0 literature findings are 

discussed from section 2.4.1 to section 2.4.5, while the manufacturing core literature findings 

are elaborated in sections 2.4.6 and 2.4.7 respectively. 

2.2.1 Step 1: Review Preparation 

A preliminary examination of the literature was conducted to facilitate the identification and 

clarification of the research gaps within the literature from multiple angles. This supported 

the formulation of the research objectives and the aim of the literature review. This stage 

included the study of extant literature reviews on Industry 4.0 and advanced technology 

implementation within manufacturing. The reviews were selected in Scopus, searching for 

journal reviews in English using either the keywords ‘Industry 4.0’, ‘digital transformation’ or 
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‘Smart Factory’ in the title, abstract or keywords. Excluding highly technical papers not related 

to manufacturing or industry (e.g., medical, biochemistry or physics) returned 1290 review 

studies as of November 2022, with 303 systematic literature reviews related to manufacturing 

technology (See Appendix A). An initial review of extant studies on implementing I4.0 and the 

manufacturing literature identified several limitations related to the lack of a management-

centric view on implementing I4.0. Equally critical, empirical studies exemplifying and 

validating I4.0 implementation cases are largely missing from the literature. This is critical in 

identifying the causes (enablers) and potential outcome of I4.0, necessitating further research 

(as examined in section 2.5). 

2.2.2 Step 2: Industry 4.0 Literature study selection and assessment  

To capture the full spectrum of data contained in the pool of papers on I4.0, all the articles 

with the keywords ‘Industry 4.0’ and ‘Implementation’ featured in the title, keywords or 

abstract of the paper were selected from the Scopus database, as of February 2021. The 

Scopus database is user-friendly, includes a wide range of journals (approximately 20% more 

coverage compared to the Wen of Science database) and is more consistent than other 

databases like Google Scholar (Falagas et al, 2008). Articles available in full-text and in English 

were included in the initial search criteria. No limits were set on the publication year. Subject 

areas were filtered to exclude highly technical domains (e.g., mathematics, chemical 

engineering, medicine) while including subject areas relating to or within the management 

research domain, which reduced the number of articles to 506. The articles were then 

subjected to an independent screening by two additional reviewers, who reviewed the meta 

information (title, abstract, keywords). At this final screening stage all papers were rated from 

zero to two, based on the relevance to the review’s research objectives. 

After rating the 506 articles, 52 papers were given an average rating of 2, representing studies 

with a direct link to implementation. As for the remaining cases, 45 papers were rated 

between 1.5 and 2, showing a high link to implementation. And lastly, the 375 papers rated 

below 1.5 were removed since they showed indirect or only a partial relation to 

implementation. In total, 97 articles rated above 1.5 were included in the systematic literature 

review. Appendix B provides descriptive statistics of the selected papers. To summarise, the 

pool of 97 selected articles were mostly published in the period from 2018 to 2021 and 

originated from diverse academic sources. The studies predominantly represented the 
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management domains (e.g., decision science, social science, finance, and accounting). 

Therefore, as I4.0 is studied by interdisciplinary researchers, multidisciplinary management 

studies often overlapped with other neighbouring fields of research. For instance, some 

management studies expanded into the engineering and computer science subject areas, 

while others touched on the energy and environmental aspects of I4.0. Most studies (79%) 

were empirical, including thirty-nine surveys and questionnaires and twenty-two case studies. 

The remainder of the papers (21%) were conceptual. The selected studies were mostly (60%) 

conducted at or relevant to the firm-level unit of analysis. In comparison, fewer studies 

focused on important subunits such the plant or factory level of analysis. 

2.2.3 Step 3: Industry 4.0 literature text and data mining 

This step extracted data from the full text of the selected 97 studies on I4.0 implementation. 

Due to the fast-evolving and to some degree vague nature of the I4.0 literature, the entire text 

of the manuscripts was subjected to text mining as opposed to only the abstract (Westergaard 

et al, 2018). The text and data mining (TDM) operation comprised three successive phases. 

Initially the studies were pre-processed followed by the actual text mining operation and 

ultimately the clustering of main themes and keywords discussed by the selected studies.  

The pre-processing step aimed to clean the data within the articles to isolate the core 

paragraphs discussing I4.0 for each case. This cleaning stage included the removal of figures 

and images as well as the data contained within brackets “()” and braces “{}”as this presented 

irrelevant or duplicate information. To simplify the data extracted, during the pre-processing 

stage words highly similar in meaning (e.g., firm and company) were replaced by one term. 

Also, plural and singular versions of the same terms as well as acronyms were standardised 

and replaced with single word terms to avoid duplicate results during the analysis. Lastly, 

redundant, and duplicate textual data not relevant to the core findings of the research was 

removed, for instance, journal details, article keywords, author details and other segments 

scattered across the references and appendices.  

After the pre-processing stage the cleaned manuscripts representing the corpus were 

transferred into the text mining software. In this case Wordstat (QDA miner add-on 

software) for quantitative full text analysis was used. To clarify the most predominant themes 

and topics discussed within the corpus, the keyword frequency analysis (limited to 100 results) 

and phrase frequency results were analysed to quantify the most discussed phrases and words 
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used. To support this stage the top keywords were examined in the ‘keyword-in-context’ 

function of QDA miner for every term. This exposed the list of manuscript segments from 

which the term had originally been extracted. This allowed for verification and validation of 

the exact semantic meaning of the phrases or keywords, particularly when terms were often 

generalised. In addition, the term frequency-inverse document frequency (TF*IDF) of the top 

keywords was reviewed to distinguish the terms frequently discussed but only by a few cases. 

Extraction of the keywords and mapping of the interconnectedness among them revealed the 

relation of similar terms that had the same meaning or are used within the same context, 

characterising the content of the corpus (Ananiadou et al, 2009). The quantitative text and 

data mining revealed the clusters of management issues most predominantly discussed within 

the I4.0 implementation literature (discussed in section 2.3.2). 

2.2.4 Step 4: Qualitative analysis and synthesis 

The qualitative review of individual cases was divided into two sequential steps. Initially the 

abstracts of the papers were again reviewed to clarify the diverse spectrum of studies and the 

main topics discussed. This was followed by a systematic and critical review to determine the 

aim of the study, clarify the methodology, and assess the findings of the paper by carefully 

reading through the body of the text. Synthesis remains a complex process of the review as it 

is necessary to describe the set of the research identified, assess the reliability of the research 

outcomes, combining similar findings into groups (Ananiadou et al, 2009). Multi document 

summarisation (MDS) aims to extract and condense the most salient information collected 

during the text mining and review stage (Okazaki Matsuo and Ishizuka, 2005). A summary of 

the most predominant is presented in section 2.4. For this research, particular attention has 

been paid to following a coherent article structure, choosing the right balance between 

breadth and depth, and focusing on concepts (concept-centric) by thematically structuring the 

review section, as opposed to a chronological or alphabetical structure of the extant 

publications (Fisch and Block, 2018). 

2.3 Past Reviews and Text-mining Results 

2.3.1 Past Reviews 

Initial reviews tried to understand the general requirements and issues of I4.0 (Liao et al, 2017) 

and the smart factory (Strozzi et al, 2017). They clarified keywords and terminology for the 
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concepts, while not delving into granular and context specific causes and consequences of 

I4.0. Initial reviews instead examined such transformation as a multi-level paradigm.  

Review studies clarified priorities for I4.0 and further emphasised the importance of academic 

research into the diverse and often hidden enabling preconditions and wide-ranging emerging 

application fields. Other reviews also clarified the definition (Culot et al, 2020) and the 

multitude of requirements for I4.0, such as making sense of the various maturity and readiness 

models (Hajoary, 2020) and increasingly studied sustainability and environmental aspects of 

I4.0 (Kamble, Gunasekaran, and Gawankar, 2018). Similar reviews have tried to understand 

universal and general I4.0 issues such as interoperability (Lu, 2017) and the evolution of digital 

strategies in manufacturing in the past half century (Dohale et al, 2022). The above reviews 

tend to clarify definitions, involvement, and expectations, instead of objective analysis of 

specific theoretical and practical needs and implications. 

As I4.0 became more understood, reviews focused on specialised applications, revealing 

trends in specific sectors. For example, specific implementation scenarios such as I4.0 in the 

construction industry clarify the paradoxes inherent in large-scale technology adoption 

(Dallasega, Rauch, and Linder, 2018). Other diverse sectors are also reviewed, such as ship 

building (Ramirez-Pena et al, 2020), the automotive sector (Wankhede and Vinodh, 2022), the 

wood industry (Molinaro and Orzes, 2022), the food industry (Sharma, Tyagi and Bhardwaj, 

2020; Kayikci et al, 2022; Stefanini and Vignali, 2023), the agriculture industry (Vernier et al, 

2021), and the textile industry (Nouinou et al, 2023). Such findings are not necessarily 

applicable to other manufacturing sectors, and reviews comparing similarities and differences 

between I4.0 sectors are lacking. These reviews limit the understanding of strategy and 

management needed for a successful I4.0 journey, such as trade-offs during implementation. 

As I4.0 strongly depends on the technologies adopted in the organisation, these technologies 

are reviewed. For instance, recent reviews have explored deep learning in production systems 

(Panzer, Bender and Gronau, 2021; Serey et al, 2023) and artificial intelligence for 

manufacturing processes (Toorajipour et al, 2021; Eren, Demir and Mistikoglu, 2023; Singh et 

al, 2023). Other reviews have focused on blockchains (Queiroz, Telles, and Bonilla, 2020), 

Digital twins (Semeraro et al, 2021; Atalay et al, 2022; Touckia, 2023; Mu et al, 2023) and other 

supplementary technology such as cybersecurity (Corallo et al, 2022; Kampourakis, Gkioulos 

and Katsikas, 2023) and cyber manufacturing (Andronie et al, 2021). 
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Other technology-centric reviews try to understand the process of I4.0 technology 

implementation (Stornelli, Ozcan, and Simms 2021), particularly for technologies with a wide 

range of applications (Zheng et al, 2021). For example, Dolgui, Sgarbossa, and Simonetto 

(2022) reviewed the process of adopting I4.0 in assembly systems. Similarly, Silvestri et al, 

(2020) examined maintenance transformation, and Zonta et al, (2020) reviewed the predictive 

maintenance capabilities of I4.0. Such technology-centric reviews also analysed the impact of 

specific I4.0 technology on the business, for instance, the impact of IoT on changes in 

corporate business model (Palmaccio, Dicuonzo, and Belyaeva, 2021) and digital servitisation 

(Paschou et al, 2020). While the above reviews clarify technological progress, a strategic 

approach to technology adoption is missing. 

In contrast to the past reviews above, other reviews have emphasized the need to study I4.0 

from the management perspective (Schneider, 2018; Piccarozzi, Aquilani and Gatti, 2018). 

Such focused reviews partially examine the organisational and management aspects of I4.0 

technology. For instance, Wagire, Rathore and Jain, (2020) reviewed the dynamics of I4.0 and 

the impact on the business model. Most notably, Schneider (2018) reviewed the management 

literature from 2010 to 2016, acknowledging the role of the manager and the importance of 

change and leadership capability for I4.0 transformation. Similar qualitative reviews on I4.0 

management focused on capturing developments at the single firm level (Piccarozzi, Aquilani 

and Gatti, 2018) or included only small and medium businesses (Moeuf et al, 2017; 

Ghobakhloo et al, 2022). Lastly, studies reviewed critical success factors (Sony and Naik, 2019) 

and maturity models for I4.0 (Jesus and Lima, 2020; Dikhanbayeva et al, 2020). However, the 

above reviews in the realm of management mostly examine general I4.0 requirements for 

planning, while other organisational implications and business needs such as I4.0 

implementation are overlooked. 

In response, some reviews have focused more comprehensively on the organisational 

management aspect at a more granular level. For instance, past studies have reviewed the 

scope of the I4.0 implementation literature from the organisational perspective at multiple 

levels (Nayernia, Bahemia, and Papagiannidis, 2022). Similar reviews highlight strategy and 

organisational change for digital transformation (Hanelt et al, 2021). Likewise, reviews have 

tried to understand organisational tensions during implementation (Dieste, Sauer, and Orzes, 

2022) and understand I4.0 as an organisational strategy for recovery from the Covid-19 

pandemic (Ardolino et al, 2022; Ardolino, Bacchetti, and Ivanov, 2022). Similarly, Matt et al, 
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(2022) reviewed industrial digitalization and clarified organisational path dependency tensions 

and business ethics, while Cugno, Castagnoli and Büchi, (2021) reviewed such tensions 

between organisations in international business. 

In addition to the above, reviews investigated I4.0 from the socio-technical research 

perspective (Erro-Garces, 2019; Simões et al, 2022) and the human element, for instance, the 

implications of human-robot collaboration in manufacturing (Davies, Coole and Smith, 2017).  

Other reviews included the impact on the larger society, most notably environmental 

sustainability. For instance, Piccarozzi et al, (2022) reviewed sustainability pillars and I4.0, 

reinforcing the notion of human resource integration with I4.0 technology as a source of 

sustainability. Other studies on I4.0 and sustainability reviewed the roadmap (Ching et al, 

2021) and framework for emission reduction (Kamble, Gunasekaran, and Gawankar, 2018). In 

addition, sustainability along the supply chain has been reviewed (Birkel and Müller, 2021) to 

consider the dynamics of production networks. 

In contrast to the growing literature above, the number of operation-centric reviews on I4.0 

that reveal granular and often important details applicable to sub-unit levels at the 

organisation has been reviewed less. In this context, reviews have analysed lean thinking 

(Bittencourt, Alves, and Leão, 2021), lean Six Sigma 4.0 (Antony et al, 2022), and combining 

lean and agile practices in manufacturing (Ding, Ferras Hernandez, and Agell Jane, 2023). Also, 

past I4.0 studies reviewed the performance of supply chains (Rad et al, 2022) and the risks 

associated with supply chains (Pandey, Singh, and Gunasekaran, 2021). In this growing field, 

Núñez-Merino et al, (2020) underscore the impact of technology implementation on lean 

supply chains (Rossini, Powell, and Kundu, 2022) and agile supply chain management (Reyes, 

Mula, and Díaz-Madroñero, 2023). Other reviews used natural language processing to analyse 

the impact of I4.0 on multitier supply chains (Zhou, Awasthi, and Stal-Le Cardinal, 2021). 

Granular aspects such as the operational level related more to the factory or plant subunit has 

been even less explored by past reviews. Most notably, Xu, Xu and Li (2018) examined both 

the technical and operational perspectives on implementation, focusing on the smart factory 

environment. In addition, reviews investigated smart production planning and control and 

operations management in the context of I4.0 (Ivanov et al, 2021; Bueno, Godinho Filho and 

Frank, 2020). Similarly, Lohmer and Lasch (2021) reviewed production planning and 

scheduling for production networks and organisations with multiple factories implementing 

I4.0 technology. These reviews more closely examine the smart factory concept from the 
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operational management perspective. Reviewing the past decade of I4.0 literature indicated 

major research limitations regarding production aspects and considering in parallel the 

product, marketing, data, the supply chain, and the workforce (Meindl et al, 2021). 

2.3.2 Text mining and Clustering Results 

This section examines the results of the text and data mining of the full text of the selected 

articles on I4.0 implementation according to the third step of the review process (section 

2.2.3). The keyword frequency of the top 50 results is shown in table 1, including the number 

of cases (articles) in which the keyword occurs and the TF*IDF representing the uniqueness or 

rarity of the keywords. The higher the TF*IDF the more a specific keyword is referred to but 

in a smaller batch of cases. 

 

Table 1 Keyword in the corpus sorted by frequency. 

Keyword 
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 Keyword 
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TF
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INDUSTRYF (I4.0) 4096 94 55.9  ORDER 515 78 48.8 

COMPANY 3299 93 60.3  RELATIONSHIP 513 69 75.9 

PRODUCT 1175 89 43.9  KNOWLEDGE 489 76 51.8 

MODEL 1020 86 53.3  COMPETENCY 487 42 177 

PERFORMANCE 954 74 112.1  SUPPLYCHAIN 475 60 99.1 

ORGANISATION 914 85 52.4  APPLICATION 471 77 47.2 

SME 780 34 355.1  ADOPT 438 73 54.1 

CUSTOMER 756 83 51.2  DIGITALISATION 420 56 100.2 

DESIGN 744 79 66.3  BARRIER 414 45 138.1 

CHALLENGE 742 84 46.4  CAPABILITY 411 62 79.9 

SERVICE 725 81 56.8  EFFECT 409 59 88.3 

RESOURCE 687 82 50.1  ROLE 404 73 49.9 

FACTOR 625 81 48.9  CONTEXT 403 66 67.4 

EMPLOYEE 620 69 91.7  SOLUTION 395 72 51.1 

DIGITAL 586 80 49  SECTOR 389 66 65.1 

INTEGRATION 558 77 56  LEAN 386 28 208.3 

INNOVATION 553 69 81.8  TOOL 383 73 47.3 

CASE 552 73 68.1  MATURITY 380 30 193.7 

IMPACT 548 80 45.9  ACTIVITY 361 68 55.7 
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SUSTAINABILITY 546 57 126.1  MANUFACTURER 348 47 109.5 

PRACTICE 539 77 54.1  COUNTRY 339 66 56.7 

PROJECT 536 53 140.7  INFLUENCE 339 61 68.3 

IOT 529 43 186.9  IMPROVEMENT 337 69 49.8 

NETWORK 523 74 61.5  CHAIN 336 68 51.8 

ORGANISATIONAL 520 71 70.5  EXPERT 335 51 93.5 

 

The results of the text mining revealed five streams of research and the keywords used in the 

clustering. More importantly, the quantitative results show a high coherence or relatedness 

of the keywords and the research streams. The five streams of research on I4.0 include the 

study of (a) Drivers and barriers to implementation, (b) smart factory implementation 

practices such as ‘LEAN’ (TF*IDF of 208.3), as well as other technology and system-based 

resources, such as ‘IOT’ (TF*IDF of 186.9), showing the widespread use of these keywords 

throughout the selected studies. 

2.4 Industry 4.0 Implementation Literature 

Based on the text mining analysis results, eleven distinct streams of research related to the 

implementation of I4.0 have been identified and are further explained below. The eleven 

streams of research within the literature on “industry 4.0 implementation” is represented 

across five broad levels, namely industry and firm, smart factory, data, human resource, and 

supply chain. Table 2 lists the streams of research and presents relevant descriptive and 

analytic information, such as the coherence, frequency, and number of cases (throughout the 

corpus) of keywords, clustered into eleven streams within five main levels. 

 

Table 2 Clustering of I4.0 Literature Streams 
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  INDUSTRY  

DRIVERS & 
BARRIER 

Examining the relevance 
of implementing I4.0 

within the larger regional 
& industry context 

DRIVER; RELEVANT; BARRIER; 
GLOBALISATION; PERCEIVE 

0.374 1814 94 
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ORGANISATIONAL 
ENABLERS OF I4.0 

Investigating the effect of 
organisational I4.0 

enablers  

NEGATIVE; EFFECT; POSITIVE; 
ACCEPTANCE; POSITIVE EFFECT; 

EFFECT MANUFACTURING 
COMPANY; CHALLENGES REGARD 

0.362 413 59 

ORGANISATIONAL 
READINESS & 

MATURITY 

Using models & tools to 
assess the organisational 
readiness for practising 
I4.0 based on level of 

maturity 

MATURITY; ASSESSMENT; MODEL; 
READINESS; FOCAL; MATURITY 

MODEL; MATURITY ASSESSMENT; 
INDUSTRYF MATURITY; MATURITY 

LEVEL; DIGITAL MATURITY 

0.335 883 85 

SM
A

R
T 

FA
C

TO
R

Y
 

I4.0 TECHNOLOGIES 
& FACTORY 
ENABLERS 

Identifying & grouping 
I4.0 enabling 

technologies & describing 
the determinants for 

adoption at the factory 

IDT; SMARTMANUFACTURING; 
DETERMINANT; KNOWLEDGE 
COMPETENCY; ADOPT SMIDT 

0.356 632 38 

EFFECT ON 
FACTORY 

PERFORMANCE 

Studying the indicators & 
effect of I4.0 on the 

operational and financial 
performance 

PERFORMANCE; OPERATIONAL; 
FINANCIAL; IMPROVEMENT; LEAN; 

LEANPRODUCTION; BUSINESS 
PERFORMANCE; LEAN PRACTICES; 

PERFORMANCE INDICATORS 

0.360 992 84 

EFFECT ON 
FACTORY 

SUSTAINABILITY 

Describing the indicators 
& effect of I4.0 on 

factory, environmental 
and social sustainability 

GUIDELINE; ERP; STEPS ACTIVITIES; 
SUSTAINABILITY ASPECTS; 

ENVIRONMENTAL SUSTAINABILITY; 
IMPLEMENTATION GUIDELINES 

0.373 529 52 

D
A

TA
  

BIG DATA 
ANALYTICS 

Examining data 
ecosystem for collection, 

transfer, storage & 
analytics using IoT/BDA 

BIGDATA; ANALYTICS; IOT; BDA; 
BIGDATA ANALYTICS; IOT 

ECOSYSTEM; BDA SCM 
0.351 266 42 

CLOUD 
Researching data mobility 

& decentralised 
accessibility 

CLOUD; HYBRID; PRIVATE; PUBLIC; 
LAYER; IAAS LAYER; SUPPLYCHAIN 

NETWORKS 
0.342 514 66 

H
U
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 R

ES
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U
R

C
E 

 

JOB PROFILES  

& COMPETENCY 

Investigating new job 
profiles, new skills & 

competency 
requirements for 

employees and the future 
workforce 

JOB; COMPETENCY; PROFILE; SKILL; 
EMPLOYEE; KEY COMPETENCY; 
COMPETENCY MISMATCH; JOB 

PROFILE; COMPETENCY 
DEVELOPMENT; COMPETENCY 

MODEL; COMPETENCY 
REQUIREMENTS 

0.365 724 72 

SU
P

P
LY

 C
H

A
IN

 

HORIZONTAL 
INTEGRATION 

Examining the links of 
I4.0 and supply chain 

partners & stakeholders 

PRODUCT; CUSTOMER; SUPPLY; 
CUSTOMER USERS; EPR; PRODUCT 

DESIGN; PRODUCT LIFE CYCLE; 
PRODUCT DEVELOPMENT 

0.333 603 57 

RECYCLING & RE-
MANUFACTURING 

Describing I4.0 enabled 
recycling and reuse of 

products and the relation 
of I4.0 to the circular 

economy 

EEE; WEEE; REMANUFACTURE; 
RECYCLING;  

0.348 180 9 
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2.4.1 Level 1: INDUSTRY AND FIRM 

 

Stream 1: Industry and Drivers and Barriers 

In the transformation towards Industry 4.0 (I4.0) adoption, the driving forces exhibit a complex 

interplay set by the diverse landscape of government policies and regulations across regions 

and countries (Singhal, 2020). Extensive research efforts have been dedicated to elucidating 

the nuanced dynamics of I4.0 adoption, recognising its relative significance within the broader 

industrial sector of regional and country-specific dimensions (Pessot et al, 2021). 

This multifaceted exploration of I4.0 adoption unfolds into two distinct streams, meticulously 

examining both the socioeconomic drivers and barriers at the national and industry level. The 

literature has to some extent clarified the intricate web of internal drivers and barriers within 

individual organisations. Conceptual studies have consistently affirmed the overwhelming 

benefits of I4.0, although they also acknowledge the risks, often shrouded in unpredictability 

within the realm of management (Mohamed, 2018; Sanghavi, Parikh and Raj, 2019). 

Consequently, addressing these contemporary challenges, particularly in the context of Lean 

practices, while navigating the intricate terrain of I4.0 complexities according to regulations, 

emerges as a formidable hurdle for many small and large enterprises alike (Sanders, 

Elangeswaran and Wulfsberg, 2016). 

At the macro-level of countries, the body of research comprises abstract studies delving into 

the socioeconomic benefits and common enablers of I4.0. A focal point revolves around the 

pivotal role played by regional governments in supporting organisations' I4.0 endeavours. This 

is often through avenues like financial backing (Grenčikova, Kordoš and Sokol, 2019), 

favourable interest rates (Kohnova, Papula and Salajova, 2019), and industry-specific subsidies 

(Lin et al, 2018). The discourse also in part extends to encompassing the multifaceted impact 

of I4.0 on the social, cultural, and economic facets of countries. Studies meticulously examine 

the influence of "Lean" practices on I4.0 implementation within countries characterized by 

divergent socioeconomic contexts (Hotrawaisaya et al, 2019; Tortorella et al, 2019). Studies 

also probe the readiness levels of nations (Ślusarczyk, 2018; Grenčikova, Kordoš and Sokol, 

2019; Saengchai and Jermsittiparsert, 2019). These investigations firmly establish the common 

enablers and risks encountered by both industrialised and developing nations. 
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Furthermore, a significant spotlight is cast on the financial management and strategies 

required to finance prospective I4.0 initiatives, a formidable challenge faced by investors and 

entrepreneurs, particularly in developing nations (Alekseev et al, 2018). Additionally, several 

studies offer comprehensive overviews of communication and resource-sharing practices 

across multiple firms via Cyber Industry Networks (CIN), highlighting challenges such as low 

employee skill levels and an overall "lack of climate for investment in new technologies" as 

substantial barriers to I4.0 (Saniuk, S. Saniuk, A. 2018). 

Conversely, survey-based research within this domain delivers a more granular analysis by 

comparing firms of various sizes and sectors across developed and developing economies. 

Notably, practices like Lean Automation (LA) emerge as precursors to I4.0 implementation in 

both the Brazilian and Italian manufacturing sectors (Tortorella and Fettermann, 2017; 

Tortorella et al, 2019). In this context, LA is widely perceived as the result of integrating Lean 

Production (LP) practices, such as waste reduction, enhanced productivity, and improved 

quality aligned with customer requirements, with I4.0 technology. Empirical evidence 

reinforces the positive impact of practising LP and I4.0 on operational performance, although 

it is more prominently observed in developed nations, where a robust behavioural and process 

foundation complements technological innovations (Tortorella et al, 2019). 

As the research delves deeper, survey studies among Small and Medium-sized Enterprises 

(SMEs) unveil distinct drivers and barriers that smaller firms within developing nations have 

experienced. For example, questionnaires administered to Nigerian and Malaysian SMEs 

underscore the role of information access and cost reduction through advanced technology 

adoption as enablers of I4.0 implementation. However, this surge in technology adoption also 

contributes to reluctance and a lack of incentive for adoption, a significant but seldom deeply 

explored challenge within the literature (Salimon et al, 2019). Similar surveys conducted 

among SMEs in Iran, Malaysia, and Thailand confirm that I4.0 implementation remains a 

daunting task for smaller enterprises, despite the reduced cost of Information and Digital 

Technologies (IDT), such as Artificial Intelligence (AI), and increased accessibility of existing 

off-the-shelf technologies (Ghobakhloo and Ching, 2019). This challenge primarily stems from 

a lack of comprehension regarding IDT requirements, affordance, and constraints (Ślusarczyk, 

Haseeb and Hussain, 2019; Haseeb et al, 2019). However, the SME sector holds the promise 

of significant performance enhancements due to high leverage, agile responsiveness, and 

competitiveness (Rauch, Dallasega and Unterhofer, 2019). 
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In stark contrast, larger enterprises exhibit a greater probability of successfully implementing 

I4.0, primarily due to reliance on diverse and often replenishable resource pools. For instance, 

within the Chinese manufacturing sector, larger firms boast a 9.8% higher likelihood of 

adopting I4.0 technology (Lin, Wu and Song, 2019). Other surveys encompassing East and 

Central Europe identify similar enablers, such as technology knowledge and the ability of these 

technologies to strengthen production, products, and services (Tortorella and Fettermann, 

2017; Tortorella et al, 2019). These findings emphasize the significance of resource availability 

and knowledge in the I4.0 adoption journey. 

The challenges faced by larger companies extend beyond mere perception or willingness to 

implement advanced production technology. Specifically, lean management, knowledge 

networks, and resource management emerge as key facilitators for large firms venturing into 

implementing I4.0 (Zangiacomi et al, 2020). Despite these valuable insights, the literature still 

lacks a comprehensive examination of production networks, especially those comprising 

interconnected sites across diverse geographical locations. In this context, empirical studies 

investigating interconnected factories embarking on I4.0 implementation reveal a high 

willingness yet a lingering reluctance to adopt costly technology in the absence of a concrete 

understanding of the benefits (Ingaldi and Ulewicz, 2020; Pessot et al, 2021; Vrchota et al, 

2021). Furthermore, research by Barbieri et al, (2018) sheds light on the concept of "reshoring" 

- the repatriation of production lines - as a catalyst for technological innovation and 

traceability in contrast to offshoring. However, the literature scarcely delves into the risks and 

challenges associated with large-scale "repatriation of production", particularly within the 

context of multinational firms and Original Equipment Manufacturers (OEMs) with dispersed 

geographical facilities. 

 

Stream 2: Organisational Enablers of I4.0 

Within the second stream of research, which delves into the organisational enablers of 

Industry 4.0 (I4.0) implementation, a comprehensive review of various industry and firm 

challenges associated with this transformative process was conducted. These studies shed 

light on several crucial aspects that shape the landscape of I4.0 adoption within organisations. 

One notable facet pertains to the impact of I4.0 on organisational structures. Research 

underscores the role of I4.0 in flattening traditional organisational hierarchies (Jerman, Pejić 
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Bach and Aleksić, 2020), thereby extending the span of control and necessitating a demand 

for leadership and digital change expertise (Johansson et al, 2019). This evolving landscape 

may also lead organisations to consider the spin-off of specific business units to enhance agility 

across various departments (Veile et al, 2019). However, an intriguing avenue for future 

research arises regarding whether new I4.0 teams, departments, or business units are formed 

or made redundant because of these structural and cultural changes. 

Effective communication and information access emerge as pivotal organisational enablers. 

Beyond conventional corporate communication methods, such as internal social media 

(Hauer, Harte and Kacemi, 2018), the level of information accessibility plays a critical role in 

fostering alignment (Salimon et al, 2019). High-level information sharing not only enables the 

dissemination of performance improvement data (Robert, Giuliani and Gurau, 2022) but also 

expedites the sharing of "soft resources" like documents and software (Wagire, Rathore and 

Jain, 2020). It is essential to note that while resource sharing is crucial, it must be regulated 

effectively to mitigate cybersecurity risks (Raj et al, 2020). 

The organisational culture of a firm is another cornerstone of successful I4.0 implementation. 

Cultivating a culture of innovation (Barata, Rupino Cunha and Coyle, 2020) not only nurtures 

an internal environment conducive to I4.0 adoption (Wagire, Rathore and Jain, 2020; Bag, 

Gupta and Kumar, 2021) but also equips organisations to surmount regional social-cultural 

barriers (Kumar, Vrat and Shankar, 2021). Attributes like openness and a willingness to 

embrace change are instrumental in fostering information sharing (Pfeiffer, Lee and Held, 

2019) and influencing the knowledge development process (Kohnová, Papula and Salajová, 

2019). Studies further highlight the point that the successful introduction of new I4.0 

communication technologies hinges on the initial reconfiguration of both organisational 

culture and structures (Ślusarczyk, Haseeb and Hussain, 2019; Cimini et al, 2020). 

Absorptive capacity and open innovation have gained prominence to overcome the rigidity of 

organisational structures and culture, as well as to address the scarcity of Information and 

Communication Technology (ICT) resources. For instance, Yu and Schweisfurth (2020) 

emphasize the role of absorptive capacity in enhancing an organisation's capability to sense, 

evaluate, and learn from external sources of information during ICT implementation. 

Furthermore, open innovation practices foster resource acquisition by involving end-users and 

customers at the manufacturing stage (Gerlitz, 2015; Prause, 2015; Pfeiffer, Lee and Held, 

2019), with relevance to Small and Medium-sized Enterprises (SMEs) (Prause, 2015). However, 
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an intriguing research gap exists regarding the balance of openness (Himang et al, 2020) and 

the degree of indigenous Research and Development (R&D) as the implementation journey 

unfolds. 

In a similar vein, the effective implementation of sharing technologies (Chiarini, Belvedere and 

Grando, 2020) facilitates active resource sharing and paves the way for the exploration of new 

services and revenue streams (Calabrese, Levialdi Ghiron and Tiburzi, 2021). This resource 

sharing often acts as a precursor to the exploitation of value propositions through parallel 

innovation in both technology and management. The reconfiguration of tangible and 

intangible resources under varying business conditions stands out as a critical aspect of I4.0, 

especially within the underexplored realm of Socio Technical Systems (Sony and Naik, 2019; 

Pollak et al, 2020). It is worth noting that only one study was found to explore the concept of 

dynamic capabilities as a strategy for navigating resource reconfiguration scenarios (Bag, 

Gupta and Kumar, 2021). 

 

Stream 3: Organisational Readiness and Maturity 

Within the third stream of research, which delves into the organisational readiness and 

maturity required for successful Industry 4.0 (I4.0) implementation, a comprehensive review 

was conducted. This stream emphasizes the need for firms not only to identify organisational 

and industry enablers but also to thoroughly assess their readiness and maturity levels when 

embarking on the I4.0 journey. The literature distinguishes between readiness assessments 

and maturity models, offering valuable tools for managers and practitioners navigating this 

transformative process. 

Assessing a firm's preparedness to implement I4.0 is considered a crucial step in the 

digitalization process, and empirical studies in this area are relatively scarce. For instance, 

Črešnar et al, (2020) conducted a survey that empirically highlighted the significance of 

traditional management tools like balanced scorecards and customer segmentation as pivotal 

readiness factors. Other studies explored readiness through the lens of systems thinking 

(Simetinger and Zhang, 2020) or explored the legal aspects of preparedness (Wagire, Rathore 

and Jain, 2020; Kumar, Vrat and Shankar, 2021). While readiness assessments are recognized 

as valuable, they are still an underexplored area within the literature. 
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In contrast, I4.0 maturity models (MM) have garnered more attention due to their practical 

applicability. These models serve as guidelines and tools for managers, aiding in the 

development of frameworks and roadmaps for organisational change (Liebrecht et al, 2021). 

Studies comparing I4.0 maturity models have identified logical dependencies that have to be 

addressed, often referred to as "breaking points", to advance to higher levels of I4.0 maturity 

(Simetinger and Zhang, 2020). Notably, recent research has expanded the scope of maturity 

indicators beyond smart factories and I4.0 technologies, encompassing organisational factors, 

people, culture, and strategic measures (Bibby and Dehe, 2018; Wagire, Rathore and Jain, 

2020; Vuksanović Herceg et al, 2020). However, the measurement of implementation levels 

based on management indicators, such as decision-making, resource allocation, strategy, and 

policy formulation, has been relatively less explored (Himang et al, 2020). 

At the strategic level, additional drivers and barriers come to the fore. Business Model 

Innovation (BMI) has emerged as a pivotal driver for I4.0 implementation, serving as a catalyst 

for stakeholder consensus, bolstering manufacturing sustainability, and functioning as a tool 

to materialize new value propositions and revenue streams (Birkel et al, 2019; Müller 2019; 

Tarifa-Fernández, Sánchez-Pérez and Cruz-Rambaud, 2019). 

The maturation process of manufacturers adopting I4.0 significantly influences how I4.0 is 

measured and how the business model evolves. For instance, the degree of implementation 

and the actual delivery methods are intricately interconnected (Butt, 2020). This realization 

has spurred the need for standardized implementation protocols, alignment, and governance 

to effectively determine key performance indicators (KPIs), key risk indicators (KRIs), and 

process performance indicators (PPIs). These indicators encompass dimensions like cost, time, 

quality, employee factors, and flexibility (Liebrecht et al, 2021), with a focus on single business 

units (Pessot et al, 2021). Implementation, however, extends beyond process management, 

encompassing areas like production planning and control, logistics, supply chain management, 

cybersecurity, and customer support (Narula et al, 2020). 

To navigate this intricate landscape, the implementation of pilot projects has emerged as a 

valuable strategy, serving as a reversible test environment that minimizes disruptions to 

regular operations (Butt, 2020). These pilot initiatives have been linked to increased levels of 

research and development (R&D) (Lin, Wu and Song, 2019), enabling the identification of 

project-specific budget and resource requirements (Prause, 2015; Veile et al, 2019). 

Moreover, early-stage technology implementation benefits from guided "exploration 
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projects" and pilot programs, which involve limited investments to facilitate integration and 

leverage challenges to drive innovation and scalability (Ghobakhloo, 2020b). 

 

2.4.2 Level 2: SMART FACTORY 

 

Stream 4: Industry 4.0 Technologies 

Enabling technologies play a pivotal role in driving the successful implementation of Industry 

4.0 (I4.0). In this section, we offer a brief overview, albeit not the primary focus of this review, 

of the technological foundations of I4.0 at the smart factory level. We categorize these 

technologies into two main groups: Information and Digital Technologies (IDT) and 

Manufacturing Technologies. 

Within the first group, there is an array of implementation techniques for IDTs. Notably, the 

Internet of Things (IoT) and Big Data Analysis (BDA) bolster an organisation's data capabilities 

by enhancing communication protocols for heterogeneous devices (Rajput and Singh, 2018) 

and improving predictive analytics for customer needs in technology and manufacturing 

sectors (Oncioiu et al, 2019). Artificial Intelligence (AI), neural networks, and machine learning 

are closely associated with I4.0 implementation and have proven to be invaluable tools for 

enhancing factory planning and logistics (Rakyta et al, 2016; Ellefsen et al, 2019). For instance, 

neural-pseudo networks have been demonstrated to enhance production planning, 

augmenting existing IT systems, while machine learning contributes to predictive maintenance 

and optimal production conditions (Ellefsen et al, 2019; Rauch, Dallasega and Unterhofer, 

2019; Konur et al, 2021). High-performance computing is another critical element that 

complements data-intensive technologies (Ghobakhloo and Ching, 2019; Calabrese, Levialdi 

Ghiron and Tiburzi, 2021) and enhances simulation capabilities (Urban, Łukaszewicz and 

Krawczyk-Dembicka, 2020), facilitating activities such as virtual testing (Narula et al, 2020) and 

discrete event simulation (Ghafoorpoor Yazdi, Azizi and Hashemipour, 2019). Virtual and 

augmented reality (AR/VR) technologies further enrich the manufacturing landscape, offering 

services for both users and clients (Pech and Vrchota, 2020; Ramírez-Durán et al, 2021). 

However, the increasing mobility and decentralization of technologies has also led to 

heightened cybersecurity risks. Measures to mitigate these risks include data protection 
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strategies (Stentoft and Rajkumar, 2020), read-only access to production control data (Konur 

et al, 2021), and the utilization of Blockchain technology (Bibby and Dehe, 2018; Wagire, 

Rathore and Jain, 2020). Cybersecurity is acknowledged as a prerequisite for implementing 

other I4.0 IDT technologies (Yu and Schweisfurth, 2020; Calabrese, Levialdi Ghiron and Tiburzi, 

2021). Additionally, existing technologies like the Manufacturing Execution System and 

enterprise resource planning serve as reliable foundations for the integration of more 

advanced technologies (Bibby and Dehe, 2018; Sader Husti and Daroczi, 2019; Ghobakhloo 

and Ching, 2019). Cloud computing capabilities further enhance big data analytics, facilitating 

real-time connectivity and traceability across supply chains (Bibby and Dehe, 2018) and 

promoting cloud manufacturing (Calabrese, Levialdi Ghiron and Tiburzi, 2021), while also 

contributing to cybersecurity through the development of cloud policies (Pessot et al, 2021). 

The growing maturity, accessibility, and affordability of present manufacturing technologies 

also pave the way for I4.0 implementation. Advanced sensors, for instance, are widely utilized 

for data collection (Magalhaes et al, 2020; Pech and Vrchota, 2020) but continue to undergo 

efficiency improvements (Sanghavi, Parikh and Raj, 2019). Autonomous robots are deployed 

in product development and production (Stentoft and Rajkumar, 2020; Yu and Schweisfurth, 

2020), often necessitating factory layout adjustments (Chiarini, Belvedere and Grando, 2020). 

Controllers such as PLC, DCS, and SCADA monitor production and provide critical alerts (Rakyta 

et al, 2016; Ghobakhloo and Ching, 2019), enabling necessary corrective actions (Konur et al, 

2021). Automated guided vehicles contribute to shop-floor transportation automation and 

expedite material handling (Rakyta et al, 2016; Sanghavi, Parikh and Raj, 2019). In contrast to 

subtractive manufacturing, additive manufacturing, including 3D printing, has gained 

prominence in reducing inventory (Turner et al, 2019), facilitating rapid prototyping (Wagire, 

Rathore and Jain, 2020; Pech and Vrchota, 2020), and enabling customization (Devi et al, 

2020). Lastly, computer-aided design (CAD) tools and computer numerical control (CNC) 

machines serve as foundational technologies, streamlining technological documentation flow 

during production (Urban, Łukaszewicz and Krawczyk-Dembicka, 2020) and aiding in 

visualizing products and the production process (Ramirez-Duran et al, 2021). 

While our review provides descriptive insights into the broad range of technologies integral 

to I4.0 implementation, there remains a lack of understanding regarding the decision-making 

processes surrounding technology acquisition from suppliers or in-house development, 

particularly in terms of protecting intellectual property and mitigating knowledge 
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misappropriation risks. Furthermore, the literature is less extensive when it comes to 

elaborating on strategies for value protection during I4.0 implementation, an essential 

consideration from an organisational perspective (Teece, 2018). 

Lean practices, including Lean Six Sigma (Sony, 2020), have been extensively discussed as 

effective strategies for implementing the smart factory (Sjödin et al, 2018) and Lean and Agile 

production methodologies have emerged as key facilitators in the adoption of Industry 4.0 

(I4.0) principles (Chiarini, Belvedere and Grando, 2020). Remarkably, these approaches have 

proven to be valuable across a range of socio-economic conditions and firm sizes, highlighting 

their adaptability and universal applicability (Tortorella and Fettermann 2017; Tortorella et al, 

2019). Even within developed nations, the integration of Lean practices has been recognized 

as a robust foundation that complements technological advancements and fosters continuous 

improvements (Tortorella et al, 2019). 

Lean and Agile strategies are particularly crucial for larger firms (Zangiacomi et al, 2020), 

where they streamline implementation processes and strike a balance between organisational 

efficiency and effectiveness. Similarly, these strategies prove invaluable for Small and 

Medium-sized Enterprises (SMEs) by simplifying their journey towards I4.0 adoption (Cimini 

et al, 2020). In this context, I4.0 implementation owes its success not only to Lean practices 

applied within organisations but also to their extension into customer and supplier 

relationships (Hotrawaisaya et al, 2019). Furthermore, Lean Manufacturing (LM) and Lean 

Production (LP) principles play a pivotal role in optimizing processes and promoting the 

utilization of I4.0 technologies (Sanders, Elangeswaran and Wulfsberg, 2016; Rosin et al, 2019; 

Ghobakhloo and Fathi 2019).  

These elements, such as Just-In-Time systems, Jidoka, and Heijunka, enhance process 

efficiency while facilitating the integration of I4.0 innovations (Rosin et al, 2019; Ghobakhloo 

and Fathi, 2019). Additionally, Lean Manufacturing contributes to the readiness level required 

for successful I4.0 implementation (Črešnar et al, 2020). Lean Production emphasizes the 

technological facets of lean practices, including Human-Computer Interaction (HCI), 

production optimization, and reconfigurability (Jiwangkura et al, 2020). The Lean culture has 

been instrumental in guiding the organisational restructuring necessitated by the adoption of 

new technologies (Cimini et al, 2020). Lean and Agile thinking fundamentally shapes the 

continuous improvement of factory operations, transcending departmental boundaries and 



35 
 

aiming to enhance productivity and customer satisfaction (Sader, Husti and Daroczi, 2019; 

Saabye et al, 2020; Raj et al, 2020; Črešnar et al, 2020). 

In addition to Lean practices, standardization (e.g., device, process, communication) and the 

appropriateness of infrastructure have emerged as critical enablers for smart factories (Rajput 

and Singh, 2018; Birkel et al, 2019; Pfeiffer, Lee and Held, 2019). Standardization not only 

enhances competitiveness but also bolsters cybersecurity and fosters interoperability, 

ultimately facilitating vertical integration (Müller et al, 2018; Singh and Bhanot, 2019; 

Sanghavi, Parikh and Raj, 2019; Konur et al, 2021). 

The integration of I4.0 technologies within smart factories heavily relies on technology 

competency and seamless integration, especially for SMEs that leverage I4.0 technologies 

within their core competencies (Yu and Schweisfurth 2020). Proficiency in Information and 

Digital Technologies (IDT) knowledge expedites the adoption of digital technologies, thereby 

accelerating smart manufacturing information and I4.0 implementation (Ghobakhloo and 

Ching 2019). Retrofitting, while complex, is a valuable approach for reducing implementation 

costs (Birkel et al, 2019). Competency studies that define firms' ability to reconfigure factory 

resources through Dynamic Capability have been conducted, shedding light on the role of 

expertise in successful implementation (Bag, Gupta and Kumar, 2021). However, research on 

the transformation of legacy systems within traditional factory settings remains limited, 

warranting further exploration (Ramírez-Durán et al, 2021; Konur et al, 2021). 

Finally, a subset of studies has explored the harmonization of smart factories with their 

logistical components. The integration of I4.0 technologies has been identified as a means of 

bridging the gap between logistics enterprises' performance and shared knowledge and 

communication, benefiting both inbound and outbound logistics (Ślusarczyk, Haseeb and 

Hussain, 2019; Vuksanović Herceg et al, 2020). Additionally, investigations into Artificial 

Intelligence (AI) for logistics, automated guided vehicles, and autonomous mobile robots have 

contributed to enhancing the efficiency of logistical operations within the smart factory 

(Ellefsen et al, 2019; Rakyta et al, 2016; Chiarini, Belvedere and Grando, 2020). 

 

Stream 5: Effect of Industry 4.0 on Factory Performance 
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Our comprehensive analysis has revealed numerous productivity-related benefits stemming 

from I4.0 implementation. Notably, the adoption of paperless manufacturing and order 

visualization has been associated with a commendable reduction in production costs 

(Liebrecht et al, 2021). Furthermore, the incorporation of e-value chains is geared towards the 

reduction of lead times, subsequently leading to the minimization of inventory costs (Bibby 

and Dehe, 2018). Real-time analysis enhancements have the potential to elevate production 

performance by a notable 10% (Saabye, Kristensen and Wæhrens, 2020). In a similar vein, the 

utilization of cloud-operated hybrid supply chain models has demonstrated the capacity to 

achieve substantial savings of up to 30% through streamlined and lean ordering and supply 

delivery processes (Sundarakani et al, 2019). 

Programmable manufacturing advisors have emerged as invaluable tools for providing 

managers with insights into issues related to bottlenecks, settling time, and lead time (Alavian 

et al, 2020; Ramírez-Durán et al, 2021). Semi-autonomous systems, employing monitoring, 

virtualization, and visualization of factory operations, effectively address throughput losses, 

which often result in overtime (Alavian et al, 2020). Additionally, the integration of rapid 

prototyping methodologies has been instrumental in enhancing production agility (Rauch, 

Dallasega and Unterhofer, 2019) and stimulating workers' creativity by expanding design 

possibilities (Črešnar et al, 2020). 

Furthermore, the integration of Industry 4.0 principles with customer and supplier processes 

has proven to be a catalyst for improved information sharing and the dissemination of best 

practices (Wagire, Rathore and Jain, 2020; Himang et al, 2020). The active involvement of 

stakeholders has been closely linked to performance improvements across various 

dimensions, including lead and delivery times, product quality, and logistics costs (Chiarini, 

Belvedere and Grando, 2020) Leveraging sensors, cloud technologies, and Big Data Analysis 

(BDA) has paved the way for enhanced product quality and consistency by mitigating the 

inherent risks associated with manual decision-making (Konur et al, 2021). In this context, the 

virtualization of a single production line has not only optimized its performance but also 

served as a blueprint for optimizing other lines and future facilities (Nguyen and Luu 2020). 

Similarly, the implementation of highly interconnected, albeit energy inefficient IoT 

ecosystems has yielded significant improvements in manufacturing performance (Ślusarczyk, 

Haseeb and Hussain, 2019; Singh and Bhanot 2020). 
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Moreover, empirical time studies conducted over specific time intervals have identified 

Overall Equipment Efficiency (OEE) as a pivotal benchmark for evaluating manufacturing 

productivity (Ghafoorpoor Yazdi, Azizi and Hashemipour, 2018; Ghafoorpoor Yazdi, Azizi and 

Hashemipour, 2019). For instance, linking the availability, performance, and OEE of individual 

resources, within a system has resulted in a remarkable 10% increase in OEE attributed to I4.0 

implementation (Pessot et al, 2021). Additionally, the implementation of preventive 

maintenance, based on data analysis and serving as an internal service provision prior to 

equipment failure, has gained increasing prominence (Alavian et al, 2020; Singhal 2020; Konur 

et al, 2021). This strategic approach effectively curtails machine downtime due to failure, 

expands the pool of active machines, and augments capacity utilization (Rakyta et al, 2016). 

 

Stream 6: Effect of Industry 4.0 on Factory Sustainability 

Beyond the notable gains in production performance, the implementation of Industry 4.0 

(I4.0) has demonstrated a remarkable potential for fostering sustainability improvements. 

Notably, experimental studies have highlighted the pivotal role of sustainable enterprise 

resource planning (ERP) as a versatile tool for orchestrating the various stages of 

implementation (initiation, planning, execution, monitoring/control, closure) across multiple 

organisational levels (Chofreh et al, 2020). In this regard, sustainable ERP has exhibited the 

capacity to yield substantial reductions in energy consumption and carbon emissions, with 

potential reductions of up to 40%. 

Furthermore, the implementation of I4.0 has been associated with a diverse range of 

sustainability benefits. Notably, it has been linked to reduced land and water usage 

(Ghafoorpoor Yazdi, Azizi and Hashemipour, 2018; Ghafoorpoor Yazdi, Azizi and Hashemipour, 

2019), decreased energy consumption (Urban, Łukaszewicz and Krawczyk-Dembicka, 2020; 

Konur et al, 2021), an increased potential for harnessing renewable energy sources (Vrchota 

et al, 2020; Pessot et al, 2021), and mitigated air emissions (Rajput and Singh 2019a; Narula 

et al, 2020). However, it is worth noting that in the pursuit of I4.0 implementation, many firms 

have placed a higher priority on flexibility and automation over sustainability initiatives 

(Pessot et al, 2021). Although references were made to emissions releases and the carbon 

footprint of factories, these assertions lacked empirical substantiation (Gerlitz 2015; Birkel et 

al, 2019; Rajput and Singh 2021). 



38 
 

In contrast, a single study has investigated the reduction of waste leakage and loss, targeting 

the optimization of technical equipment and machinery operation alongside the enhancement 

of thermal energy utilization, thereby contributing to both cost reduction and improved 

sustainability (Vrchota et al, 2021). 

 

2.4.3 Level 3: DATA 

 

Stream 7: Big Data Analytics 

In the realm of Big Data Analytics (BDA), the focus is squarely on data management capabilities 

and requirements, encompassing data collected at various stages, albeit in diverse formats 

and of varying quality. The adoption of Industry 4.0 (I4.0) thrives on data spanning the entire 

lifecycle. For instance, the management of data flow, including acquisition, transfer, storage, 

and analysis, gives rise to novel activities such as data-driven customer services (Ramírez-

Durán et al, 2021), internal services like predictive maintenance (Narula et al, 2020), and 

automated processes like machine-to-machine communication (Müller, 2019; Sanghavi, 

Parikh and Raj, 2019). 

Regarding data collection, embedded devices can "interact with the surrounding environment 

and store and share data about their status and usage throughout their entire lifecycle" 

(Arcidiacono et al, 2019). However, this necessitates appropriate information bridging 

technologies such as IoT data infrastructure (Tarifa-Fernández, Sánchez-Pérez and Cruz-

Rambaud, 2019; Rajput and Singh, 2018) to reduce the influx of irrelevant information (Sjödin 

et al, 2018), enhance data consistency (Jiwangkura et al, 2020), and, in certain cases, maintain 

a post-usage repository of data with product information (Rajput and Singh, 2018). 

Few organisations maintain dedicated data management departments, and most data 

remains unanalysed, it is examined sporadically by employees, or processed by embedded 

software functions (Pessot et al, 2021). Interestingly, data flow within digital communication 

networks was relatively high, standing at 67% to 74% in upstream and downstream value 

chains, with a similar level of digitization across firms (Pessot et al, 2021). Similarly, intra-firm 

communication has been enhanced through the establishment of web communities and 

internal social media platforms (Veile et al, 2019). Likewise, the increased availability of mobile 
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technology, agent-based systems, and the improved capabilities of internal wireless networks 

contribute to decentralized data collection within production lines (Barata, Rupino Cunha and 

Coyle, 2020). In this context, the Industrial Internet of Things (IIoT) has enriched human-

machine and machine-to-machine (M2M) communication (Wilkesmann, M. and Wilkesmann, 

U, 2018), facilitated by advanced sensors and fast, though not real-time, 5G networks, among 

other technologies (Ellefsen et al, 2019; Ghobakhloo and Fathi, 2019). 

The Internet of Things (IoT) and Big Data Analytics (BDA) serve as prerequisites for large-scale 

data processing and interpretation, enabling more advanced computational and analytical 

capabilities, including unstructured data gathering, data formatting, pattern recognition, and 

predictive analytics (Rajput and Singh, 2018). IoT ecosystems support the service-oriented 

architecture (SOA), through which vendors and I4.0 providers can offer data-centric logistics 

and maintenance services via the Internet of Services (IoS) (Wang, X. and Wang, L. 2019; 

Ślusarczyk and Haque, 2019). Other studies underscore the necessity of addressing 

cybersecurity and investment concerns, but largely associate BDA with optimizing inventory 

and asset productivity, as well as achieving faster response times and greater integration 

across the supply chain (Oncioiu et al, 2019). 

Real-time capability, in the context of data management, is integral to implementation, 

although it remains understudied empirically. Notably, Wagire, Rathore and Jain, (2020) 

correlate the absence of real-time data capability with low maturity and weak technology 

integration. Nonetheless, real-time technologies, which can be implemented by third-party 

partners (Pessot et al, 2021), have been deemed insufficient. Fully harnessing real-time 

capability necessitates "second-order problem-solving abilities" and a supportive learning 

environment (Saabye, Kristensen and Wæhrens, 2020). 

Closed-loop supply chains have the potential to introduce and extend the concept of the 

digital twin (DT) beyond merely replicating the smart factory itself, enabling the creation of a 

shared network of manufacturing resources (Rajput and Singh, 2018). DTs are increasingly 

crucial for visualizing (through BDA and simulation) and controlling operations across multiple 

complex stages. DTs are defined as "software representations of assets and processes that 

contribute to the prediction and optimization of manufacturing performance" (Ghobakhloo, 

2019). Additionally, both experimental (Wang, X. and Wang, L. 2019) and case studies (Gu et 

al, 2019) of electrical and electronics equipment (EEE) emphasize the significance of a 

universal DT and the integration of lifecycle data from cradle to grave. Nevertheless, universal 
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DT propositions remain insufficiently explored in other high-tech sectors, and no DT solution 

has been identified for low-tech sectors and SMEs. This is partly due to the sensitive nature of 

production stages, which remain concealed and isolated due to information asymmetry and 

undefined data sharing boundaries intended to protect intellectual property (IP) (Wang, X. 

and Wang, L. 2019). 

 

Stream 8: Cloud 

In the domain of Cloud computing (CC), there is an alternative to rigid internal infrastructure 

for data management, and recent research papers have started to explore its significance 

within the context of Industry 4.0 (I4.0). Cloud technology has gained widespread recognition 

as a viable solution offering "on-demand network access to a shared pool of configurable 

resources" (Bibby and Dehe, 2018; Sanghavi, Parikh and Raj, 2019; Butt, 2020; Konur et al, 

2021). In this context, cloud networks facilitate real-time decision-making for internal services 

(Bag, Gupta and Kumar, 2021; Konur et al, 2021) and introduce new customer services 

(Ramírez-Durán et al, 2021), particularly within the realm of Cyber Industrial Networks 

(Saniuk, S. and Saniuk, A, 2018).  

Specifically, cloud computing serves as an effective tool for enabling the implementation of 

the Industrial Internet of Things by integrating soft resources (Urban, Łukaszewicz and 

Krawczyk-Dembicka, 2020; Wagire, Rathore and Jain, 2020; Calabrese, Levialdi Ghiron and 

Tiburzi, 2021). It can also help reduce data clutter, subsequently enhancing simulation 

capabilities (Simetinger and Zhang, 2020) and improving enterprise resource planning 

(Ghobakhloo and Fathi, 2019). However, the adoption of cloud storage varies significantly, 

with studies showing only 8% of SMEs choosing to store data in the cloud (Ingaldim and 

Ulewicz, 2020). Other studies indicated this to be higher at 20% and 54% of in stark contrast 

to the 92% adoption rate among large firms (Yu and Schweisfurth, 2020). This disparity is 

attributed to a lack of expertise and trust (Pech and Vrchota, 2020) and the existence of 

underexplored security concerns (Bibby and Dehe, 2018; Singh and Bhanot, 2019; Birkel et al, 

2019). 

Within hybrid cloud networks, cloud brokers serve as intermediaries connecting various 

departments and functions (Veile et al, 2019; Jiwangkura et al, 2020) for both private internal 

users and external customers (the public) (Wagire, Rathore and Jain, 2020). For instance, cloud 
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technology facilitates the servitisation of platforms, aligning software and processes with 

customers, although it is not primarily used as a tool for performance measurement (Chiarini, 

Belvedere and Grando, 2020). Hybrid cloud platforms, characterized by software sharing 

across users (referred to as "multitenancy") and service offerings (e.g., Infrastructure as a 

Service or IaaS), have been found to enhance monitoring and support the servitisation of 

complex supply chain networks (Sundarakani et al, 2019). Lastly, the cloud enables Just-In-

Time processes (Rosin et al, 2019) and digital twins throughout the product lifecycle (Wang, 

X. and Wang, L, 2019). 

 

2.4.4 Level 4: Human Resources 

 

Stream 9: Job Profiles and Competencies 

The human element within the implementation of Industry 4.0 (I4.0) is increasingly gaining 

attention. The integration of I4.0 is expected to have far-reaching effects on workers and 

various facets of the work environment (Basir et al, 2019; Grenčikova, Kordoš and Sokol, 

2019). This transformation is driven by the growing demand for specific competencies in the 

context of I4.0 implementation (Barata, Rupino Cunha and Coyle, 2020; Marnewick A. and 

Marnewick C, 2019; Sony and Naik, 2019). Notably, I4.0 technologies are fostering the 

emergence of innovative job profiles characterized by increased autonomy, blending technical 

and non-technical competencies (Cimini et al, 2020). 

The adoption of I4.0 technologies is also reshaping work models, with remote or telework 

altering traditional working time structures (Müller et al, 2018). Moreover, increased 

monitoring and automation are altering working conditions and patterns (Sanghavi, Parikh 

and Raj, 2019; Robert, Giuliani and Gurau, 2022), subsequently influencing workplace design 

(Veile et al, 2019). However, it is important to note that automation is often associated with 

concerns about job losses and employee resistance to change, which remains a significant 

implementation challenge (Zangiacomi et al, 2020; Raj et al, 2020). Resistance can hinder the 

acquisition of new competencies (Ingaldi and Ulewicz, 2020) and impede the acceptance of 

new technologies like virtual reality (VR), potentially reducing the decision-making and 

problem-solving competencies of shop-floor workers (Chiarini, Belvedere and Grando, 2020). 
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In contrast, collaborative robots (Cobots) enjoy wider acceptance, although their use can lead 

to increased labour-intensive work downstream due to higher throughput (Newman et al, 

2021). Resistance is less pronounced among middle managers, who often attribute workforce 

challenges to a lack of training and management competencies (Vuksanović Herceg et al, 

2020). Furthermore, guiding both experienced and new workforces through I4.0 

implementation necessitates alignment with a comprehensive human resource strategy (Veile 

et al, 2019). For example, collaborative training programs for the workforce are associated 

with enhancing "flexibility to adapt to new roles and work environments" (Kazancoglu and 

Ozkan-Ozen, 2018), which, in turn, benefits the evolution of the entire smart factory 

workforce (Sjödin et al, 2018). 

Additional studies have explored the changing role of workers from a competency 

perspective. For instance, promoting team fluidity across production levels (Pfeiffer, Lee and 

Held, 2019) has been linked to encouraging early employee involvement (Arcidiacono et al, 

2019) across diverse industry sectors (Škrinjarić and Domadenik, 2019; Robert, Giuliani and 

Gurau, 2022). The formation of specialized "teams of performers" for high-tech projects 

(Matyushenko et al, 2019) necessitates specific project management competencies. 

Particularly, adopting a "servant-leadership" style over outdated "command and control" 

strategies has been shown to simplify implementation (Marnewick A. and Marnewick C, 2019; 

Sony and Naik, 2019; Vuksanović Herceg et al, 2020; Vrchota et al, 2021). In this context, 

generic competencies transferable to various roles and departments (Škrinjarić and 

Domadenik, 2019) have proven beneficial. More specifically, soft skills like digital proficiency 

(e.g., software usage, analytics, etc.) have been widely associated with successful 

implementation (Raj et al, 2020; Kumar, Vrat and Shankar, 2021). The rising demand for 

technical skills related to mechatronics, smart system maintenance, process analysis, and 

bionics not only enhances factory productivity (Jerman, Pejić Bach and Aleksić, 2020) but also 

the ability to handle traditional analogue production systems (Ingaldi and Ulewicz, 2020). In 

the early stages of implementation, technical competencies are prioritized over personal or 

methodological competencies, such as problem-solving and risk management (Cimini et al, 

2020). 

Additionally, companies are compelled to incentivize and retain their skilled workforce, 

including programmers (Birkel et al, 2019), by considering internal talent before external 

recruitment (Zangiacomi et al, 2020). The literature extensively discusses internal and external 
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workforce training as an integral part of I4.0 delivery (Devi et al, 2020; Bag, Gupta and Kumar, 

2021). Training should encompass more than just ICT competencies, extending to 

interdisciplinary knowledge gained through e-learning, scenario-based training, traditional 

on-the-job instruction, and workshops (Veile et al, 2019; Škrinjarić and Domadenik, 2019). 

Learning for I4.0 implementation requires a blend of technical training (Arcidiacono et al, 

2019) and soft skills. Competencies related to analytics, teamwork, and self-management 

(Jerman, Pejić Bach and Aleksić, 2020; Pessot et al, 2021) enhance procedural understanding, 

abstraction abilities, and fault and error recovery skills (Kazancoglu and Ozkan-Ozen, 2018). 

Finally, a few studies have focused on worker safety. For example, Human-Machine-

Interaction (HMI) necessitates comprehensive considerations of workplace safety beyond 

legal regulations (Veile et al, 2019). Likewise, addressing human well-being in job design can 

mitigate occupational health and physical safety concerns (e.g., fatigue, musculoskeletal 

disorders), psychological health issues (e.g., fairness, stress, motivation), and other secondary 

effects on human workers. These factors require attention from system designers and I4.0 

implementation teams (Neumann et al, 2021). 

 

2.4.5 Level 5: Supply Chain Level 

 

Stream 10: Horizontal Integration 

The adoption of Industry 4.0 (I4.0) has been linked to numerous outcomes within the supply 

chain domain. For instance, several studies have explored modelling tools for enhancing 

supply chain integration, such as the supply chain operations reference model (Gu et al, 2019). 

It has also been observed that the implementation of I4.0 can significantly enhance supply 

chain agility, as evidenced by studies conducted by Oncioiu et al, (2019) and Chiarini, 

Belvedere and Grando, (2020). Additionally, there is evidence to suggest that it has a 

somewhat positive impact on supply chain resilience, as demonstrated by Saengchai and 

Jermsittiparsert (2019). 

One notable consequence of supply chain integration facilitated by I4.0 is the potential 

relocation of facilities closer to customers, aimed at shortening the supply chain and mitigating 

environmental impact (Rajput and Singh, 2018; Wang, X. and Wang, L. 2019). Furthermore, 
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research has delved into the various phases of the customer lifecycle, particularly the 

discovery and shopping phases, as well as the use and service phase, within the context of 

small and medium-sized enterprises (SMEs) utilizing client applications integrated with 

manufacturing processes (Ramírez-Durán et al, 2021). Such integration has the potential to 

enhance the rate and accuracy of continuous and agile customer feedback regarding product 

quality (Ghobakhloo and Fathi, 2019), thus helping with the better definition of customer 

requirements (Barata, Rupino Cunha and Coyle, 2020). 

Moreover, the level of integration among factories, suppliers, and customers has the potential 

to create intricate digital and interdependent industrial networks (Saniuk, S. and Saniuk, A, 

2018; Veile et al, 2019; Sundarakani et al, 2019). Nonetheless, it is worth noting that SMEs, in 

particular, exhibit hesitancy in sharing data within supply chains due to concerns over 

potential loss of bargaining power and data security issues (Arcidiacono et al, 2019; Birkel et 

al, 2019). 

 

Stream 11: Recycling and Remanufacturing  

The utilization of I4.0 technologies to enable the reuse and recycling of resources has been 

examined within the sustainability framework and the ongoing efforts to advance I4.0 

capabilities. For example, some companies have incorporated recycling as part of their after-

sales services (Pessot et al, 2021). Furthermore, it has been established that I4.0 enablers play 

a positive role in moderating the implementation of sustainable manufacturing capabilities 

(Bag, Gupta and Kumar, 2021). This can be attributed to factors such as product modularity, 

which reduces disassembly costs (Gu et al, 2019), and the use of digital twins to store data 

about remanufactured products (Wang, X. and Wang, L. 2019), thereby simplifying the 

refurbishment and disposal processes associated with remanufacturing. 

A broader perspective on the efficient utilization and recirculation of I4.0 material resources 

is encapsulated in the concept of the Circular Economy (CE). In this context, the 

implementation of I4.0 is seen as a means of ensuring that "resources will remain in the closed 

loop; thus, the life of the resources will increase" (Bag, Gupta and Kumar, 2021). This extended 

lifecycle enhances the value of materials, products, and components (Rajput and Singh, 2021), 

especially for facilities located near customers (Turner et al, 2019). 
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2.5 Industry 4.0 Limitation and future research avenues 

A review of the literature on Industry 4.0 (I4.0) implementation has revealed key research 

gaps, presenting opportunities for future investigation (Snyder, 2019). As shown in table 3, 

the text-mining and clustering, in addition to the qualitative review of the eleven streams of 

research across the five levels, found critical areas left unexplored, while other research 

streams are increasingly being studied yet warrant additional research. 

Four major gaps emerged from the analysis of existing studies. First, it is evident from the 

literature that most studies explore narrow streams of I4.0 research at a more general firm-

level, with limited theoretical and practical implications for I4.0 decision makers. Second, the 

outcome of implementing I4.0 is still unclear, leaving many firm/factory managers reluctant 

to engage in I4.0 projects. Third, the requirements other than the I4.0 technology are 

examined at a very general level, with many important antecedents and enablers remaining 

hidden. Lastly, the literature on I4.0 implementation is atheoretical, hindering evidence-based 

research. 

 

Table 3 I4.0 implementation literature landscape. 
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Industry Drivers and Barrier 1 14 2   15 1 0 0 0 

Organisational Enablers of I4.0 5 11 11   15 3 0 1 1 

Organisational Readiness and Maturity 2 6 7   12 2 1 0 0 

SMART 
FACTORY 

I4.0 Technology and Factory Enablers 8 22 18   41 13 4 5 6 

Factory Performance 8 14 12   28 8 2 4 4 

Factory Sustainability 2 4 2   7 1 0 2 3 

DATA 
BDA 2 7 7   12 5 2 2 2 

Cloud 4 5 7   13 3 1 1 1 

HR Job Profiles and Competency 4 17 8   29 6 2 1 6 

SUPPLY 
CHAIN 

Horizontal Integration 1 4 5   7 2 4 0 0 

Recycling and Re-Manufacturing 0 1 2   2 1 0 1 2 
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2.5.1 Gap 1: Limited Focus on Granular Subunits 

The review of the eleven research streams across five levels indicated the importance of a 

contingent approach towards digital transformation and successful realisation of the intended 

goals of implementing I4.0 (Das and Jayaram, 2003; Hendricks and Singhal, 2021). Lack of 

contingent approaches to investigating I4.0 implementation also resulted in vague and 

ambiguous strategies for business model innovation (Foss and Saebi, 2017; Kiel, Arnold and 

Voigt, 2017; Snihur, Amit and Zott, 2021). 

Existing research predominantly concentrates on the firm-level, overlooking the nuances, 

tensions, and paradoxes at more granular organisational sub-unit levels. In fact, the wider 

literature indicates that market differences particularly affect operational strategy and the 

factory and not necessarily the entire firm (Berry et al, 1991). This calls for different strategies 

to be studied to clarify the mechanisms and interdependencies among units of the same 

business (i.e, factory) and among functions of manufacturing units (Swink, Narasimhan and 

Kim, 2005; Schoenherr and Swink, 2012). In this context, centralisation of decision making is 

still vaguely understood. As expected, the number of such studies at the supply chain level is 

greater but neither vertical nor horizontal integration related studies were found to explore 

the factory unit-of-analysis.  The literature is lacking a clear understanding of how I4.0 is 

affected by varying degrees of top management support (Arcidiacono et al, 2019), top 

management readiness (Cinite et al, 2009) and management commitment to maximise IT 

impact (Quaadgras et al, 2014). 

2.5.2 Gap 2: Unclear Consequences and Outcome of Adoption 

The literature neglects the above, and more specifically fails to comprehensively explore 

internal dynamics crucial for I4.0 success (Jacobs, Yu and Chavez, 2016; Gillani et al, 2020; 

Chen and Wang, 2022). The current literature in large part fails to address how factors like 

cross-functional integration (Swink, Narasimhan and Kim, 2005), internal communication, and 

alignment impact I4.0 implementation. Empirical evidence is increasing, yet the technology in 

focus is on specific use cases of isolated technology. These examples, though rich in 

information, only partly represent the diverse and broad set or bundle of I4.0 technologies 

and the causes and effects of deploying such technology in practice at a factory or throughout 
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the firm (Frank, Dalenogare and Ayala, 2019; Büchi, Cugno and Castagnoli, 2020; Cugno et al, 

2022). The review also found scant evidence about the trade-off needed for I4.0 adoption. No 

studies differentiate between I4.0 projects in the form of cross-functional integration within 

the boundaries of the factory, which improves efficiency, and external integration, which 

improves responsiveness (Williams et al, 2013; Shukor et al, 2020). 

In this vein, the integration of various I4.0 technologies within functions and their effects on 

the workforce needs further investigation. The review only found rare cases, such as Oncioiu 

et al, (2019), relating cybersecurity and BDA to improved external integration, while 

integration with machine learning (ML) is associated with internal integration, production 

planning and optimisation (Ellefsen et al, 2019; Rauch, Dallasega and Unterhofer, 2019) 

(section 2.4.3). Similarly, studies rarely found I4.0 technology for cross-functional integration. 

For instance, the integration of BDA and IIoT was found to enable cross functional alignment 

(Sader Husti and Daroczi, 2019). Group and individual level studies also require empirical 

backing to support the existing studies (i.e, Grenčikova, Kordoš and Sokol, 2019; Sanghavi, 

Parikh and Raj, 2019; Robert, Giuliani and Gurau, 2022). The wider literature calls for stronger 

research on organisational culture (Song, Kim and Kolb, 2009; Naor, Linderman and Schroeder, 

2010) and other social factors, such as employee loyalty and satisfaction (Yee, Guo and Yeung, 

2015), as major determining factors, setting the level of support for I4.0 implementation 

efforts. 

The review found growing yet still maturing literature on I4.0 performance. For example, at 

the smart factory level the review found almost no studies at the factory unit of analysis. 

Nonetheless, many key performance outcome of I4.0 investigating competitive advantage is 

still unexplored (Ghobakhloo and Fathi, 2019). Such studies could shed light on how I4.0 

technology use at the factory impacts the factory’s performance, which could impact the 

competitiveness of that factory. Instead, the current empirical literature on I4.0 mostly studies 

performance measures relevant to manufacturing firms (Pfeiffer, Lee and Held, 2019).  

Interestingly, time-based performance, such as production schedule attainment (Bozarth et 

al, 2009), is regularly measured in the wider literature on factory performance but is largely 

ignored in the I4.0 literature. There is also a notable lack of studies measuring sub-unit (e.g., 

factory) performance based on cultural factors such as I4.0 impact on learning from failure 

(Spicer and Sadler-Smith 2006; Carmeli, 2007). Future studies could examine other 

performance indicators relevant to the factory unit of analysis, currently missing in the 
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literature, most notably, conformance quality (Devaraj, Hollingworth and Schroeder, 2004), 

capacity utilisation (Baumers et al, 2016), delivery quality (Ahmad and Schroeder, 2009), 

customisation responsiveness (Das and Narasimhan, 2001), and rate of environmental 

emissions (Zhu and Sarkis, 2004) 

2.5.3 Gap 3: Vague Enablers and Preconditions 

The I4.0 literature primarily explores organisational enablers and performance outcomes, 

sidelining other crucial aspects such as data integration, socio-technical considerations, and 

general capabilities at such levels as the factory, where I4.0 technology is mostly deployed 

(Meredith, 1987; Banker et al, 2006; Bardhan, Whitaker and Mithas, 2006). For instance, at 

the smart factory level the review rarely found key enablers such as lean production to be 

studied (Tortorella and Fettermann, 2017; Sjodin et al, 2018; Tortorella et al, 2019), in contrast 

to key technologies and enablers such as cyber security, evermore critical for factories with 

automated operations, which are only discussed at the firm level (Yu and Schweisfurth, 2020; 

Calabrese, Levialdi Ghiron and Tiburzi, 2021). 

These uncharted territories, especially in supply chain research and product lifecycle 

management, require empirical scrutiny (Kim, Lee and Lee, 2017). Understanding the 

contractual aspects between I4.0 users and providers during implementation and long-term 

relational governance is essential but is unnoticed (Zheng et al, 2021). For instance, studies 

have rarely explored contractual definability and enforceability (Zhang, Jin and Yang 2020) 

between I4.0 users and providers (Müller, 2019). The lack of empirical evidence on the 

importance of trust (Wang, Yeung and Zhang, 2011) and crisis preparedness (Carmeli and 

Schaubroeck, 2008) among I4.0 innovation partners adds further limits to understanding on 

this matter. 

In the same vein, future research could more comprehensively address the role of 

information, knowledge, and data flow. For instance, investigating absorptive capacity at 

various levels such as the factory level can clarify the flow of knowledge in the smart factory 

(Patel, Terjesen and Li, 2012). For instance, at the data level the review found most of the 

studies discussing big data analytics and cloud usage in the context of the organisation (Narula 

et al, 2020). Consequently, many important enablers related to the flow of knowledge and 

data within and among factories is not well understood. Open innovation is a notable I4.0 

enabler identified by the wider literature, found to be critical in gaining knowledge for 
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implementation, yet scarcely referred to in the literature except by Pfeiffer, Lee and Held, 

(2019) and Himang et al, (2020). In addition, external breadth and depth was not 

comprehensively investigated as a key enabler to implementation of I4.0 production 

technology (Lorenz et al, 2020). In the same vein, the level of technology scouting and 

horizontal and vertical technology collaboration (Wang, Chang and Shen, 2015) is expected to 

strongly define the level of technology use but is rarely found to be studied at a more granular 

level with limited practical implications. Addressing such limitations could clarify to what 

extent external knowledge influences manufacturing adoption policy and procedures at 

various stages of the I4.0 transformation journey. 

The review found long-term relational governance during the adoption of new technology and 

the transformation period is understudied. Prior implemented change practices in preparation 

for I4.0 adoption are barely covered in the literature (Sakakibara et al, 1997; McKone, 

Schroeder and Cua, 2001). The review found lean management (Ghobakhloo and Fathi, 2019) 

and agility (Bibby and Dehe, 2018) increasingly studied at the firm level. Many other factors, 

such as agility and leanness internally and within the supply chain, remain vastly 

underexplored at other levels and lack empirical support (Oliveira-Dias et al, 2022). The 

literature is lacking evidence on the appropriate level of cooperation between raw material 

suppliers of the firm (Mishra et al, 2016), and strategic suppliers of I4.0 manufacturing 

technology (Veile et al, 2020). Conversely, the impact of customer relations and value 

cocreation is another major area which remains relatively unexplored (Royo-Vela and 

Velasquez Serrano, 2021), for instance, green supply chain management practices of the buyer 

and supplier (Zhu and Sarkis 2004; Lee, 2008). 

Most importantly, integration capability is deemed critical when technological change is 

introduced in the firm (Afuah, 2001; Amankwah-Amoah, 2017). Nonetheless, the literature 

remains silent on the need for these capabilities, with few exceptions (e.g., Gu et al, 2019; 

Ellefsen et al, 2019; Pessot et al, 2021). The wider literature suggests that integration is key 

for I4.0 adoption. For instance, integration with marketing (Swink and Song, 2007; Feng, 

Huang and Avgerinos, 2018), sales (O’Leary-Kelly and Flores, 2002), Human Resources (Santos, 

2000), and supply chains (Cagliano, Caniato and Spina, 2006). The systematic literature review 

also revealed several other understudied internal capabilities that could be explored as 

enablers to I4.0 implementation. For instance, the level of R&D expenditure is expected to 
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impact the rate of innovation and the implementation rate and pace of advanced technology 

(Lin et al, 2018; Veile et al, 2019; Zangiacomi et al, 2020). 

2.5.4 Gap 4: Lack of Theoretical Foundations 

Inclusion of an appropriate theoretical foundation can advance the cycle of theory building 

and theory testing in this growing domain (Rousseau, 2006; Eisenhardt and Graebner, 2007; 

Suddaby, 2010; Yaniv, 2011; Fiss, 2020). Theory has long been a critical part of valid and 

generalisable empirical evidence in management studies (Eisenhardt, 1989; Whetten, 1989). 

Yet the current literature falls short of using theory consistently, causing partial or ineffectual 

research designs and limiting the relevance of findings. This limits the understanding of many 

important causal effects of using I4.0 technologies and concepts. 

The I4.0 literature often lacks theoretical grounding as it is a relatively new concept. 

Incorporating established management theories, such as dynamic capabilities (Teece, 2018; 

Felsberger et al, 2022) and sociotechnical theory (Cimini et al, 2020; Neumann et al, 2021) as 

the foundation of research can enhance the understanding of I4.0 implementation and its 

impact on various organisational facets. More importantly, this gap also exacerbates the 

limited empirical focus on critical sub-units, such as the factory, focusing on the deployment 

of I4.0 technology. Also, the diffusion of innovation theory warrants further exploration to 

clarify the adoption of complex systems, which may include multiple I4.0 technologies used in 

harmony at a factory or for a supply chain (Himang et al, 2020; Call and Herber, 2022). In the 

same way, grounded theory can be employed to assess priorities across departments and the 

functions of organisations operating multiple connected factories, which may require varying 

degrees of I4.0 implementation (Robert, Giuliani and Gurau, 2020; Chang and Huang, 2022). 

2.6 Research Objectives and Questions 

Considering the above limitations, the purpose of this research is to clarify key antecedents 

and outcomes of I4.0 use at the factory. This sheds light on important yet difficult to measure 

set integration capabilities (as antecedents) for using a variety of I4.0 technologies used in 

factory settings. The aim is to test the importance of integration capabilities of factory 

managers as key enablers to combine and utilise complementary I4.0 assets that are 

advantageous for factory performance. The study also identifies key operational outcomes for 

a factory using such diverse sets of I4.0 technologies. For the second part the aim is to reveal 
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if less or more broad use of such advanced production technology benefits the output of the 

factory. Two main research questions are addressed in this research: 

 

1. Can transformational integration capability of factory managers benefit the capability 

to implement the breadth of I4.0 technologies at the factory? 

 

2. Does the capability to implement the breadth of I4.0 technologies at the factory lead 

to improved performance and competitive advantage of the factory?  

 

2.7 Chapter Conclusion 

This chapter has explored the I4.0 implementation literature in a systematic manner. Full text 

mining and clustering of major keywords and phrases provided quantitative support for 

categorising the literature into eleven research streams across five levels. Qualitative review 

of each stream brought to light the focus of the literature and shortcomings that need 

addressing in future research. Lastly, the main gaps have been explored in more detail and, 

based on the above, the research objectives and questions have been framed. 
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Chapter 3. Theoretical Background and Hypothesis Development 

3.1 Chapter Introduction 

The following chapter elaborates on the theoretical background, based on dynamic capability 

theory (Teece, Pisano and Shuen, 1997; Teece, 2023). The theoretical model is introduced, 

and the underlying concepts are explained. Based on the theoretical background and the 

theory of dynamic capability, seven hypotheses are proposed as part of the model. Lastly, 

each hypothesis is supported with prior relevant evidence in order to test the link and 

dependency between higher order and lower order capabilities at the factory and to 

determine competitive advantage outcomes, in this case measured as factory performance. 

3.2 Theoretical Background 

The theory of dynamic capability (DC) serves as the foundation for this research. For testing 

the extend and scope of implemented I4.0 technology at the level of the factory, DC theory 

uniquely clarifies the complex interplay between endogenous and exogenous resources, 

capabilities, and routines (Collis, 1994; Collis, Moonen and Vingerhoets, 1997). This is 

particularly useful for technology implementation, often implemented as a long-term, market-

oriented endeavour following planning, design, and installation (Lindberg, 1990). DC as a lens 

for clarifying technology implementation is further supported as the theory considers rapidly 

changing market environments (Teece, Pisano and Shuen, 1997; Teece, 2007) and exogenous 

resources (Lewis et al, 2010), both critical in translating adopted I4.0 technology to 

competitive advantage.  

DC claims that organisational capability is developed from organisational routines and habits 

over time (Wilden, Devinney and Dowling, 2013), clarifying the interplay between 

heterogeneous distributed resources and often difficult to measure capabilities (Peteraf, 

1993; Peteraf and Barney, 2003). For managers, a broader understanding of current 

capabilities and transformational (or higher order) capabilities is needed to create new 

capability, strengthening organisational governance activities and decision-making in dynamic 

markets (Teece, 2014). Also, from the strategic management perspective, DC characterises 

innovation as the long-term performance generator, emphasising that both current firms and 

new/existing competitors can invest in new resources, such as advanced production 

technology (Teece, 2023). Consequently, stronger DC is not aimed at blocking competitors 
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from adopting more advanced production technology. The aim of DC is to create “new markets 

and enhancing competition in both newer and traditional markets” according to Teece (2022). 

More importantly, a lack of DC leads to a “digital transformation gap”, which can delay the 

growth of digital platforms or in extreme cases lead to failed attempts at digital transformation 

(Pundziene et al, 2023). 

Digital transformation projects often unfold over a period of time as “departments typically 

experience different degrees and types of interdependence, and they interact with varying 

intensities and via different coordination mechanisms” (Adler, 1995, p.148). Factories adopting 

advanced production technology benefit from stronger interdepartmental integration 

capability, to help control and govern interdependencies and coordination mechanisms more 

efficiently (Twigg, 2002). In effect, DC enhances the ability of factory managers to direct 

resources and strike a balance between improvement (i.e., efficiency) and innovation 

priorities (Furlan and Vinelli, 2018). 

Dynamic capabilities are divided into (a) first-order dynamic capability to reconfigure 

resources, routines, and practices. Such resources are widely available or over time become 

available to the competition in the market in competitive markets (e.g., I4.0 technology and 

implementation routines). Such commonly accepted traits in a sector are easily imitated by 

competition or in some cases even standardised within the industry (Teece, Pisano and Shuen, 

1997). To fully extract and protect I4.0 value, factory managers can draw on their (b) second-

order dynamic capability based on transformational routine changing routines. These routines 

are not for daily operation of the factory but, as discussed below, explain the learning activities 

to change existing routines as manufacturing processes become ever more advanced (Ettlie 

and Pavlou, 2006; Bag, Gupta and Kumar, 2021). 

Dynamic capability is strengthened through three sequential steps (Teece, Pisano and Shuen, 

1997; Teece, 2014; Teece, 2023). First, sensing or “identification, development, co-

development, and assessment of technological opportunities in relationship to customer 

needs”. Second, “seizing” or capture of value, by means of mobilising resources identified in 

the sensing stage. Adopting and using represent easily imitable first-order capabilities. 

Conversely, higher order (or second order) capabilities act as mechanisms for continued 

renewal or “transforming” of first-order capability to maintain competitiveness in changing 

markets. Second-order dynamic capability enables new learning routines and practices (Zollo 

and Winter, 2002). Higher-order DC focuses on change-oriented capabilities (Zahra and 
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George, 2002) by recombining existing resources, creating new resources and shedding 

unnecessary or depleted resources (Teece, Pisano and Shuen, 1997). Second-order capability 

can be more difficult to master as such capabilities are based on path dependent decisions 

rooted in the factory or organisation’s structure and culture (Kyläheiko, Sandström and 

Virkkunen, 2002; Teece, 2014; Collis and Anand, 2018; Ghosh et al, 2022). 

 

Figure 2 Thesis conceptual model (Source: Danneels, 2012; Danneels, 2016) 

 

 

Digitisation efforts sometimes do not fully consider internal and external resources and 

practices beyond technology assets (Tabrizi et al, 2019; Björkdahl, 2020). Dynamic capability 

supports such new manufacturing capabilities by maximising the fit between available 

resources with the resources available in the market (Schilke, 2014; Liu et al, 2020). As in figure 

2, protecting the value of imitable first-order capability is best achieved through the 

combination of first and factory specific second order DC to create unique and difficult to 

imitate value by creating routines over time (Griffith and Harvey, 2001; Danneels, 2012; 

Danneels, 2016; Salvato and Vassolo, 2018). According to Leonardi (2011), routines and 

technology are often imbricated and interwoven, particularly in production technology 

acceptance and usage. Overemphasising higher order capabilities related to learning and the 

transformation of factory assets could lessen the effectiveness of lower-order capabilities of 

factory managers. On the other hand, overemphasising lower-order capabilities could make 

the factory prone to imitation and loss of competitiveness. This requires a trade-off between 

factory efficiency and innovation priorities (Sobrero and Roberts, 2001; Collis and Anand, 

2018).  
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To resolve this issue, the DC theory suggests balancing and timely deploying lower and higher-

order dynamic capability as they are intrinsically linked (Easterby-Smith and Prieto, 2008). 

Organisations with strong ordinary capability that represents accepted industry production 

routines, such as setting up production machinery with weak higher capability (i.e., learning 

routines for the same production machinery), may not be able to compete in markets. Digital 

dynamic capability is defined as “the ability of a firm, to systematically identify and develop 

core capabilities for digital transformation” (Ghosh et al, 2022). Such dynamic capability at the 

factory strengthens the integration of diverse technology used in production, supported by 

external and internal resources (Teece, 2020). Developing and strengthening these 

capabilities at the factory benefits production planning and control (Hasegan, Nudurupati and 

Childe, 2018) and the balance between improvement and innovation priorities of multi-

factory firms (Furlan and Vinelli, 2018). 

First-order DC investigating the factory sub-unit acts as adopting and using capability in digital 

transformation for key I4.0 production and ICT technology, such as adopting and using the 

industrial internet of things (Ghosh et al, 2022). In the same vein, for smaller manufacturers 

such digital transformation is also linked to sensing, seizing and transforming resources for 

competitive advantage (Khurana, Dutta and Ghura, 2022). However, even the more complex 

management and transformation of resources for larger firms is considered by DC. Therefore, 

the management and orchestration of technology and its use for factories of any size, age, 

and production strategy is considered as a first-order dynamic capability in this case 

(Cetindamar, Phaal and Probert, 2009). 

This research argues that merely adopting and using such technological capability at the 

factory may not provide long-term sustained competitive advantage as competitors may also 

be able to implement comparable I4.0 technology at a lower cost (Winter, 2003). This will 

jeopardise any I4.0 investment by a firm or factory as it may not provide the expected results 

and may even aid the competition in mimicking such capability. The study investigates how to 

integrate and coordinate technology adoption efforts with internal actors as well as external 

actors to outline a digital transformation path towards smart factory transformation 

(Cagliano, Caniato and Spina, 2006; Ettlie and Pavlou, 2006; Zhao et al, 2022).  

In multi-unit firms, technology implementation can be facilitated by drawing on information 

and resources from other functions such as internal functions or different partner factories. 

This can create unique and hard to imitate value from Industry 4.0 implementation at the 
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factory-level, which other factories could not easily duplicate. In this context, higher-order 

capability, such as internal integration, lessens internal rivalry among organisational functions 

during digital transformation (Seran and Bez, 2021), facilitating data sharing. Similarly, 

collaborating with external actors is associated with increased operational (Wang, Chang and 

Shen, 2015) and innovation performance (Cheng and Huizingh, 2014). Drawing in knowledge 

from such external sources and broader collaboration leads to a higher degree of digitisation 

knowledge and access to technology (Lorenz et al, 2020; El Maalouf and Bahemia, 2023). This 

can boost the competitive advantage of factories operating in dynamic and constantly 

changing markets. DC at the factory acts as a competitive priority as it protects the value of 

investing in costly, risky, and time consuming I4.0 resources. 

3.3 Research Model 

The model is based on dynamic capability theory. Figure 3 shows the variables and hypotheses 

of the research model. The model is divided into two stages of testing second order dynamic 

capability (H1 to H3) as antecedents to first order-capability to orchestrate and operate 

bundles of I4.0 technology or the breadth of I4.0 technologies. 

 

Figure 3 Research model 

 

The second part of the model investigates potential competitive advantage gains and if factory 

management capability to implement the breadth of I4.0 technologies is positively related to 

several factory performance outcomes representative of factory competitive advantage, 
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specifically, the factory level of automation, production cost, environmental sustainability in 

the form of factory emission rates, and schedule attainment of the factory (H4 to H7). 

Integration capability is key to using technology at the factory as it was found to be “the ability 

to easily expand an operation to incorporate a wider range of products or process 

technologies” according to early studies (Swink and Hegarty, 1998). Recent case studies 

emphasise how I4.0 implementation without prior internal alignment and integration often 

fail to realise the expected performance outcome (Alcacer et al, 2022; Fedosovsky et al, 2022).  

In this case, integration at the factory level was measured by quantifying the level of design-

manufacturing integration, manufacturing-strategy integration, and systems integration. 

Integration capability for using I4.0 technology at the factory shows the characteristics of 

higher-order dynamic capabilities found essential for digital platforms, such as “sensing the 

internal environment, value-capturing through connectedness, orchestrating silos, and 

transforming organisational boundaries” (Pundziene et al, 2022). Alignment and integration 

alleviate the technology adoption tensions related to “variations in a firm’s organisational 

setup”, such as structural changes across various functions and departments (Matt, Hess and 

Benlian, 2015). Such higher-order integration capability is also expected to lessen technology 

adoption tensions at the factory and improve the capability of factory managers to better 

orchestrate I4.0 technologies previously used in silos.  This important relationship is also 

expected to be important to alleviate factory technology adoption issues based on the setup 

of the factory.  

Higher-order capabilities, such as Integration capability, were found by the review to be highly 

important but rarely studied at the factory unit-of-analysis (see chapter 2.5). Most notably, 

the value of integration capability for I4.0 implementation was shown in the fourth stream 

“I4.0 Technology and Factory Enablers” and the eleventh stream “Horizontal integration” of 

the systematic literature review in the previous chapter. Three integration capabilities are 

proposed as particularly important as antecedents of the factory capability to implement the 

breadth of I4.0 technologies: design manufacturing integration (Swink and Nair, 2007), 

manufacturing strategy integration (Narasimhan, Swink and Kim, 2006), and systems 

integration (Barua et al, 2004). 

At the factory level, such higher-order capabilities relate to the transformation of existing 

resources greatly differing from firm-level dynamic capabilities. This model specifically is 

related to practices and routines of factory managers related to working with other functions 
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and systems. Therefore, higher-order capabilities related to integrating the various internal 

systems and departments as well as systems of external suppliers and customers that are 

partnering with the focal factory are focused on. Theoretically this is justified by DC for 

technology deployment is supported by internal and external resources (Teece, 2020). DC 

studies show this is also true for internal and external resources at the factory sub-unit (Banker 

et al, 2006; Peng et al, 2013). Also, within the organisation in which the factory operates we 

measure if integration of manufacturing strategy with business strategy develops the 

capability to implement the breadth of I4.0 technologies at the factory. Lastly, as production 

is strongly associated with the product manufactured at the factory, the design-manufacturing 

integration is measured. These higher-order capabilities, instead of focusing on firm practices 

(i.e., sales and marketing), specifically examine the higher-order dynamic capabilities relevant 

to top factory managers using broad types of I4.0 technology.  

For the second part of the model, the impact of the breadth of I4.0 is linked to five factory 

operational performance measures to determine the competitive advantage outcome of I4.0 

implementation. These factory performances measure the level of automation, production 

cost, environmental sustainability, and schedule attainment. Regarding performance, the 

literature review found I4.0 was linked to improved labour productivity (Agostini and Filippini, 

2019), production flexibility (Büchi, Cugno and Castagnoli, 2020) and product customisation 

and quality (Dalenogare et al, 2018). Yet many important factory operational performance 

measures related to competitive advantage remain unexplored (Xiaosong Peng, Schroeder 

and Shah, 2011). These include the level of automation (Ritzman and Safizadeh, 1999), 

production cost, which is more internally dependent (Ragatz et al, 2002), production schedule 

attainment (Bozarth et al, 2009), and lastly environmental sustainability performance as a 

result of adopting and using the breadth of I4.0 technology. 

As different types and sizes of factories perform differently (Devaraj, Hollingworth and 

Schroeder, 2004), in this research factory size and production strategy control the breadth of 

I4.0 technologies. Factory size impacts the level of technology in factories (Marsh and 

Mannari, 1981). In fact, both process implementation (Netland et al, 2015; Lorenz et al, 2020) 

and technology implementation (Lorenz et al, 2020) are dependent on the size of the 

organisation. Second, we control for production strategy. The order penetration point 

(Olhager and Selldin, 2004; Lorenz et al, 2020) defines factory production strategy as make-

to-stock (MTS), make-to-order (MTO), assemble-to-order (ATO) or engineer-to-order (ETO). 

https://www.sciencedirect.com/science/article/pii/S092552730300029X?casa_token=u_QGMmwsOcsAAAAA:5CIr4akrMNjjTsyB4gT7wRXAQYplk4VUlf5tupuKdAP8cZ8gL0wqGepniWZcKZfXM_g7YglOzg#!
https://www.sciencedirect.com/science/article/pii/S092552730300029X?casa_token=u_QGMmwsOcsAAAAA:5CIr4akrMNjjTsyB4gT7wRXAQYplk4VUlf5tupuKdAP8cZ8gL0wqGepniWZcKZfXM_g7YglOzg#!
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Different production strategies in turn best utilise certain manufacturing technologies and 

present unique challenges and opportunities. Ultimately, production strategy defines 

production planning and control (Shao and Dong, 2012; Adrodegari et al, 2015) and digital 

technology implementation at the factory (Aslan, Stevenson and Hendry, 2015; Lorenz et al, 

2020). 

3.4 Conceptual Development 

Below, the main components of dynamic capability are explained. This is followed by a 

discussion of the causal relationship between the three antecedents and the breadth of I4.0 

and the relationship between the breadth of I4.0 and factory performance outcomes. 

3.4.1 Theoretical definition 

First-order dynamic capabilities reconfigure the organisational resource base and are 

distinguished as “capabilities that allow the firm’s fundamental capabilities and resources to 

change” (Teece, Pisano and Shuen, 1997; Eisenhardt and Martin, 2000; Zollo and Winter, 

2002; Schilke, 2014). Ordinary and first order (efficiency oriented) capabilities are referred to 

as lower capabilities, while second order (continuous and renewal-oriented) capabilities refer 

to higher-order capabilities (Collis and Anand, 2018). First-order dynamic capabilities rely on 

experience and knowledge in “enabling the reconfiguration of resources and routines” 

(Easterby-Smith and Prieto, 2008), in response to organisational and environmental changes 

(Zahra, Sapienza and Davidsson, 2006). First order capability is characterised as the capacity 

to carry out new product development (Peteraf and Tsoukas, 2017; Winter, 2003), agility (Shin 

et al, 2015) and product-process innovation (Anning-Dorson, 2018), absorptive capacity and a 

collective mind (Ettlie and Pavlou, 2006). Also, dynamic capability is measured as the level of 

technological sophistication for resource access and development (Stadler, Helfat and Verona, 

2013; Danneels, 2016).  Investment in first-order dynamic capabilities may not be worthwhile, 

however, if more flexible competitors can replicate or build similar capabilities at a lower cost 

(Winter, 2003). 

Second-order dynamic capabilities are defined as “learning to learn” (Schilke, 2014), or simply 

“learning” capabilities (Easterby-Smith and Prieto, 2008). For manufacturing factories, 

second-order dynamic capabilities are bundles of interconnected “routine changing routines” 

to reconfigure the vast web of resources (Schroeder, Bates and Junttila, 2002). In this sense, 
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higher-order capability is responsible for “creating” or “adding” aspects of dynamic 

capabilities (Danneels, 2002; Danneels, 2008; Danneels, 2012). Schilke (2014) describes 

second-order capabilities as antecedents of first order dynamic capability. Yet in some cases, 

such as Schilke (2014) and Wang and Ahmed (2007), first order capabilities can be antecedents 

of second-order capabilities. For instance, regarding the joint effect on performance, first and 

second-order dynamic capability can be substituted for each other (Schilke, 2014). Meta 

routines, originally proposed by Adler (Adler, 1995, Adler, Goldoftas and Levine, 1999), can be 

improvement or innovation oriented (Furlan and Vinelli, 2018) or meta routines building on 

absorptive capacity (Mariano and Al-Arrayed, 2018). Such a level of ambidexterity can be 

achieved through meta routines, such as cross functional product development (O’Reilly and 

Tushman, 2004; Peng, Heim and Mallick, 2014; Peng et al, 2022). 

Second-order dynamic capabilities can also refer to behavioural patterns of top-decision 

makers, who most often direct second-order change (Peteraf and Tsoukas, 2017). In the case 

of product development, for instance, second-order dynamic capability refers to “the capacity 

for changing the way product development occurs and/or its aims, noticing new productive 

opportunities” (Peteraf and Tsoukas, 2017, p.177). Other capabilities are also considered as 

second order. For instance, customer involvement capability is considered a second-order 

dynamic capability (Schilke, 2014; Anning-Dorson, 2018). Limitations of first and second-order 

dynamic capabilities remain, such as the vague understanding of the trade-off between 

different types of DC and the ability to execute lower-level capabilities (Collis and Anand, 

2018). 

3.4.2 Definition of integration capability 

Integration and alignment between strategies, domain, functions, and infrastructure are 

widely studied at the organisation level. The findings complement the fragmented and loose 

studies of the integration capability of factories. Studies identify integration across three 

levels: internal integration (infrastructure based), external integration (strategy based), and 

cross-domain integration, spanning across strategies and infrastructures (Gerow et al, 2014). 

Internal integration is exemplified as the alignment between the organisation and IT processes 

and infrastructures, defined as “the link between organisational infrastructure and processes 

and I/S infrastructure and processes” (Henderson and Venkatraman 1999, p. 476). External 

integration reflects the strategic or intellectual alignment of organisation and IT strategies 
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(Reich, and Benbasat, 1996; Reich and Benbasat, 2000; Chan and Reich 2007). Such 

information-driven external integration is defined as “the degree to which the mission, 

objectives, and plans contained in the business strategy are shared and supported by the IS 

strategy” (Chan, Sabherwal and Thatcher, 2006; Gerow et al, 2014). Lastly, cross-domain 

integration (cross-domain alignment) is defined as “the degree of fit and integration among 

business strategy, IT strategy, business infrastructure, and IT infrastructure” (Chan and Reich 

2007, p. 300). 

Internal compared to external integration can, in some cases, be more correlated to achieving 

the desired goals (Zhao et al, 2011; Vargas, Cardenas and Matarranz, 2000) due to a higher 

level of control over the integration process. It is also relatively more studied at the factory 

level. For instance, to implement ERP at the factory, interdependence between manufacturing 

and the marketing function is deemed necessary (Gattiker, 2007). However, the impact of such 

external communication on the outcome of technology adoption is in large part based on 

inter-organisational collaboration and therefore indirectly dependent on internal 

collaboration (Sanders, 2007; Horn, Scheffler and Schiele, 2014). In this context, lateral 

relations and vertical information systems augment the factory's internal integration 

capability to extend the external integration boundaries (Williams et al, 2013; Swink and 

Schoenherr 2014). 

To differentiate between them, cross-functional integration within the boundaries of the 

factory reduces process inefficiencies, while external integration improves responsiveness 

within the value chain (Williams et al, 2013; Shukor et al, 2020). Both internal and external 

integration practices are linked to organisational improvements in quality and flexibility 

(Droge, Jayaram and Vickery, 2004; Koufteros, Vonderembse and Jayaram, 2005; Jayaram and 

Xu, 2013). Integration and alignment among functions and departments is considered to be 

an important tool for improving organisational performance (Pagell, 2004; Swink, Narasimhan 

and Kim, 2006). Also, integration is linked to the volume of operations and the work structure 

of the subunits in a factory (Blau, 1972; Ettlie and Reza, 1992; Johansson and Olhager, 2004). 

Integration benefits advanced technology yet requires constant evaluation of implementation 

practices and routines to realise the full benefits and improve competitiveness in the market 

(Riis, 1992). In essence, it is assumed that such inter-functional and inter-system integration 

capabilities of factory managers can build routines that equally support management of the 

breadth of I4.0 technology at the factory. This is in line with the results of previous studies on 
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internal integration, finding integration to moderate the use of advanced manufacturing 

technology (Moyano-Fuentes, Sacristán-Díaz and Garrido-Vega, 2016). In some cases, cross-

departmental integration is vital for implementing radical technology (Afuah, 2001). Even 

within single departments of a factory, such as production machines from various lines, 

integration improves task coordination and waste minimisation (Lenz, Wuest and 

Westkamper, 2018). 

3.4.3 Definition of breadth of factory I4.0 

The breadth of I4.0 at the factory measures the number of different types of I4.0 technology 

adopted and used for factory operation. It is increasingly critical to measure the breadth of 

I4.0 due to the ever-growing commercialisation of different types of I4.0 ICT and production 

technology. The breadth of I4.0 at the factory can also be compared to similar concepts. For 

instance, “technological breadth” or technological diversification, which is greater than 

product diversification (Breschi, Lissoni and Malerba, 2003). However, whereas technological 

breadth measures the “diversity of the technological knowledge of a buyer's supplier network” 

(Gao, Xie and Zhou, 2015; Palit, Hora and Ghosh, 2022), the breadth of I4.0 measures the 

diversity of production technology used in daily operations (Büchi, Cugno and Castagnoli, 

2020; Bettiol et al, 2023). 

The capability of top factory managers to control the breadth of I4.0 is also desired to achieve 

greater complementarity among the technology resources of the factory. This can greatly 

benefit complementary technologies, such as robotics, simulation technology, and I4.0 ICT 

technology, such as IoT and big data analytics. Similar technology centric functions (besides 

manufacturing), such as R&D, benefit from diversified technology platforms as this partially 

dampens the negative effects of rapid changes in the market (Helfat, 1997; Parmigiani and 

Mitchell, 2009; Miozzo, DiVito and Desyllas, 2016). Such complementarity between assets and 

the capability to manage technology sets is also critical for the success of high-technology 

mergers and acquisitions (Makri, Hitt and Lane, 2010). 

Prior empirical research often investigated I4.0 technologies in a focused but also isolated 

manner (e.g., Benzidia, Makaoui and Bentahar, 2021; Benzidia, Makaoui and Subramanian, 

2021) and did not necessarily consider the synergies and complexities characteristic of 

managing and orchestrating several I4.0 assets in harmony (Büchi, Cugno and Castagnoli, 

2020; Cugno, Castagnoli and Büchi, 2021). Given that having the technological capacity does 
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not imply its operational use (Danneels, 2016), key I4.0 technologies act as “platforms for 

organisational capabilities of companies” (Zangiacomi et al, 2020). Such transformational 

technologies require changes to organisational practices and structure (Leonardi and Bailey, 

2008), similar to the way in which IT adoption progressed over time (Gregory et al, 2018). In 

this sense, the “complementarity effect” based on how, for instance, ERP and e-business 

technology resources are implemented to more broadly contribute to business value than the 

effect of ERP or e-business technology alone (Hsu, 2013). Information technology is a critical 

platform. The smart factory is based on layered complementary platforms to enable more 

advanced capabilities, such as cyber physical systems (Benitez, Ghezzi and Frank, 2023). 

3.4.4 Definition of factory performance and competitive advantage 

In the strategic management literature competitive advantage is mostly reflected by financial 

and business performance, while the production and operations management literature to 

some degree examines operational performance at the factory (Csiki, Demeter and Losonci, 

2023). Studies on the effect of the breadth of I4.0 on performance have only so far considered 

the firm and product level. At the firm level, competitive advantage is mostly examined as 

flexibility, quality, delivery and cost while other measures of competitive advantage related to 

production such as schedule attainment and production cost are missing from the literature. 

The breadth of I4.0, for instance, is linked to improved production flexibility, speed of 

prototyping, output capacity, setup cost, machine downtime, product quality, customer 

satisfaction (Büchi, Cugno and Castagnoli, 2020). Equally, greater breadth of I4.0 improves 

human resource productivity (Cugno, Castagnoli and Büchi, 2021), recovery from the recent 

Covid-19 pandemic (Cugno et al, 2022), and advances green manufacturing (Chang, Zhang and 

Liu, 2022). Other studies found no significant relationship between the breadth of I4.0 and 

business to business firm performance, while noting the positive and significant moderating 

effect of the breadth of I4.0 on the relationship between the servitisation strategy and 

business to business performance (Bortoluzzi et al, 2022). 

At the factory-level, the manufacturing strategy (Miller and Roth, 1994; Brown, Squire and 

Blackmon, 2007) directly impacts manufacturing performance based on available resources 

(Schroeder, Bates and Junttila, 2002). In the context of the smart factory, these resources can 

be both the technology implemented (Klassen and Whybark, 1999) as well as the change 

practices implemented (Sakakibara et al, 1997; McKone, Schroeder and Cua, 2001). There are 
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several performance measures defining the state of production and value created by the 

factory, revealing the short-term success and lasting manufacturing capabilities (Ferdows and 

Meyer, 1990; Leachman, Pegels and Shin, 2005). 

The above studies reinforce the importance of the breadth of I4.0 for competitive advantage. 

The literature on DC provides a more complete view of how important I4.0 technology 

adoption is in leading to competitive advantage. For instance, IoT and CPS, as well as other 

critical I4.0 technology, enable competitive advantage for manufacturing SMEs (Masood and 

Sonntag, 2020; Estensoro et al, 2022). The literature on DC also exemplifies manufacturers 

combining different types of capabilities to gain competitive advantage through I4.0 (Ding, 

Ferras Hernandez and Agell Jane, 2023). In this context, the combinatorial effect of these 

capabilities' competitive advantage gains are not easily countered by competitors. 

3.4.5 Interaction among capabilities 

The above lower-order (breadth of I4.0) and higher-order (Integration) capabilities act as a 

knowledge-transfer tool to strengthen the capability to restructure, reorganise and reposition 

the production assets used for manufacturing to gain competitive advantage. In this case, 

integration routines and practices represent a higher order capability, improving the lower-

order capability of adopting and using a range of different I4.0 production technologies. Digital 

firms with such highly scalable resource bundles experience “significant opportunity costs of 

integration” compared to outsourcing, which also drives “hyper specialisation” and “hyper 

scaling” as an indirect outcome (Giustiziero et al, 2023). 

The capability to implement the breadth of I4.0 technologies is considered a powerful tool for 

expanding and reconfiguring existing resources, yet often in combination with other 

transformation oriented second order capabilities (Danneels, 2008; Danneels, 2016). This sets 

the competitive advantage gains of DC approach to I4.0 apart from other static or reactionary 

competitive strategies. This is because the continuous cycle of sensing, seizing, and changing 

routines and practices accordingly is not only to maximise competitive gains but also to 

provide sustained competitive advantage in emerging markets (Felsberger et al, 2022; Ed-

Dafali et al, 2023). Similarly, the breadth of I4.0 can be considered as a factory asset 

management capability and the three second-order integration capabilities as tools for asset 

complementarity in the pursuit of competitive advantage (Helfat and Campo-Rembado, 

2016). The latter has been identified as “capabilities that an enterprise must possess in order 



65 
 

to obtain the economic benefits of an innovation, technology, or strategy” (Christmann, 2000). 

The integration capability of factory managers supports the use of available I4.0 technology 

platforms in the market, such as “Networked Manufacturing Operations platforms; Vertical 

Integration platforms; End-to-End Engineering platforms; Horizontal Integration platforms” 

(Benitez, Ghezzi and Frank, 2023). Ultimately, as the I4.0 technology is imitable, the factory 

specific integration capability among the technology resources creates competitive advantage 

(Hsu, 2013). 

3.5 Hypothesis Development 

3.5.1 Design Manufacturing Integration (DMI) and Breadth of I4.0 

DMI is defined as the level of alignment and integration between the design function and 

production function of the manufacturer, focusing on the link between product and 

production process (Swink and Nair, 2007; Thome and Sousa, 2016). Recent studies have 

found valuable evidence linking DMI to several different types of I4.0 technologies. This 

strongly suggest a positive link between DMI capability and the capability to implement the 

breadth of I4.0 technologies at the factory.  

Studies have found DMI to depend in large part on incorporating and harmonising department 

specific resources to overcome barriers between the two functions (Vandevelde and Van 

Dierdonck, 2003).  In light of this, studies associate DMI capabilities with increasing use of 

advanced manufacturing technology. It is argued that strong DMI within firms indicates a 

similar effect at the sub-unit (factory) level, leading factories to better manage their breadth 

of I4.0 technology. For instance, the integration of existing design technology and more 

advanced manufacturing technology across the two functions benefits from the development 

of DMI capability. Several technologies have been exemplified in the literature supporting this 

claim. For instance, computer aided design (CAD) and computer aided manufacturing (CAM) 

substitute for the sequential design process by harmonising and coordinating efforts between 

functions (Ettlie and Reifeis, 1987). Similarly, factory robotics and flexible manufacturing 

system (FMS) are linked to hierarchical integration and vertical coordination systems as 

centralised control remains necessary (Ettlie and Reza 1992).  

It is expected that cross-departmental technology integration beyond CAD/CAM integration 

is required to more broadly implement the available I4.0 resources (Droge, Jayaram and 

https://www.tandfonline.com/doi/full/10.1080/09511921003682630?needAccess=true
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Vickery, 2004; Guo and Zhang, 2010; Kumar, Madan and Gupta, 2013). In this context, the use 

of IoT for increasing collaboration among divisions and departments beyond production is 

recommended (Fukuzawa et al, 2022). Similarly, industrial IoT (IIoT) is used for the integration 

of data from design tools and production machines (Thramboulidis and Christoulakis, 2016; 

Sousa, Mendonca and Machado, 2022). Furthermore, the use of cloud-based storage and 

computing increases if integration of the design and manufacturing is strengthened (Park, 

Woo and Choi, 2020; Shahin et al, 2020). Similarly, additive manufacturing could be more 

effectively implemented if DMI capability is adequate (Ranjan, Samanth and Anand, 2017). 

DMI broadens the use of artificial intelligence to augment design and additive manufacturing 

for allocating tasks efficiently (Elhoone et al, 2020).  

Other I4.0 examples found that the integration of virtual reality (VR) technologies was 

primarily used in design and additive manufacturing to benefit product innovation as design 

ideas can be more easily and rapidly prototyped and manufactured (Zawadzki and Zywicki, 

2016). In this context, an integrated simulation environment can harmonise the different 

standards across the design and production departments (Ugarte et al, 2022). Integration is 

ideally controlled, with the intensity ranging from simple coordination to segmented 

coordination for the first production batches and virtual coordination using advanced 3D 

modelling and simulation (Abecassis-Moedas and Moatti, 2022). In the context of I4.0, such 

integration occurs between physical elements, virtual models, and the services of the smart 

factory (Fatorachian and Kazemi, 2018; Cheng et al, 2018). Specifically, DMI improves 

tolerance control and process monitoring capability (Yu and Shen, 2009).  Such technological 

integration also benefits the security of the smart factory (Tuptuk and Hailes, 2018) as more 

data from a wider range of functions and systems is made available to I4.0 users.  

Thome and Sousa (2016) characterise DMI as a mechanism to maintain cross-functional 

coordination and ultimately production flexibility during technology implementation. In fact, 

manufacturers strong in DMI implementing volatile production technology (i.e., easily imitable 

by the competition) obtain greater competitive advantage. In other words, the more complex 

and customised the product the higher the breadth of I4.0 needs to be to produce such 

increasingly complex products in the smart factory (Devaraj, Hollingworth and Schroeder, 

2004; Vickery et al, 2016, Kim, 2022; Turco and Maggioni, 2022). If integration capability is not 

adequate for highly complex products and production systems this will induce cognitive and 

relational complexity amid the firm's functions (Wang and Tunzelmann, 2000). Functional 
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managers working with I4.0 technology also benefit from DMI due to the increasing 

comprehension of manufacturability at the design stage, which is deemed critical for complex 

production to improve design quality (Swink and Calantone, 2004). Such integration between 

design and manufacturing is strongly linked to design for manufacturability (Chang and Tang, 

2001).  

In light of the above, it is expected that DMI is necessary for factories using complex 

production setups, comprising multiple I4.0 technologies. Such integration between the 

design and the manufacturing function improves product-process innovation, enhancing 

manufacturing productivity and capacity (Ettlie and Reza, 1992; Ettlie, 1995). More 

importantly, DMI determines the use of new manufacturing systems and is significant in the 

configuration and planning of production (Bozarth, and McDermott, 1998). It is therefore 

logical to assume that complex sets of factory I4.0 technologies require DMI capability to 

support effective and efficient operation. A tighter fit between design and manufacturing is 

also desired for cost reduction (Delbressine and Wolf 1990; Ettlie, 1995). Equally, a 

technological fit between design and production is found to reduce lead times (Liker, Collins 

and Hull, 1999; Droge, Jayaram and Vickery, 2004; Jayaram and Xu, 2013). Consequently, 

inadequate integration may result in diminishing functional specialisation (Rusinko, 1999). 

Specifically, a lack of DMI could lead to weak design specialisation (Swink and Song, 2007) and 

ultimately raise issues and disruptions during I4.0 adoption (Abecassis-Moedas and Moatti, 

2022). Other studies also find that a lack of integration negatively impacts volume flexibility, 

lead times and the quality of the product (Turkulainen and Ketokivi, 2012). There are reasons 

to believe that low production quality, flexibility, and yield due to a lack of fit between design 

and manufacturing technology is expected to diminish the ability to control the breadth of 

factory I4.0 technology. 

The wider literature found that competitive advantage and technology implementation also 

depend on cultural and structural collaboration between design and manufacturing. For 

instance, stakeholder integration is deemed critical between the design and manufacturing 

departments to improve the production planning strategy (Flatscher and Reil, 2016). Also, 

technology is more easily planned for and deployed if cross-functional conflict is mitigated by 

transparent information exchange, such as using IoT to connect stakeholders (Chen et al, 

2021). 
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Swink and Nair (2007) measure DMI at the factory-level and argue that DMI is a 

“complementary asset” to advanced manufacturing technology such as ERP, MRP, CAD, CAM, 

and robotics. Yet the connection of DMI to the breadth of I4.0 technology in unknown. Such 

higher order capability informs factory managers of the performance of new technology and 

partially compensates for the increasing availability of sometimes volatile I4.0 technology to 

factories competing in the same sector. Other factory level studies reinforce the use of data 

integration tools, such as order management systems (OMS), in enabling data collaboration 

among product development teams and product development and manufacturing processes 

(Banker et al, 2006). Particularly for SMEs, the internal alignment and integration of 

departments is deemed critical in technology implementation despite them having a simpler 

organisational structure compared to larger firms (Santos et al, 2020; Mason, Ayre and Burns, 

2022). 

In summary, comprehensive integration between the design function and the manufacturing 

faction, less so for routines such as job rotation (Thome and Sousa, 2016), can impact the 

breadth of factory I4.0 technology deployment and use. These integrative capabilities boost 

competitive advantage and the technology orchestration of various departments (Koufteros, 

Vonderembse and Doll, 2001; Swink and Nair, 2007) by drawing on technological, structural, 

and cultural alignment among the various elements of the two functions. It is therefore 

hypothesised that: 

H1: The design-manufacturing integration capability of factory managers is positively related 

to adopting and using the breadth of I4.0 technologies at the factory. 

3.5.2 Manufacturing Strategy Integration (MSI) and Breadth of I4.0 

Strategy integration at the factory is defined as “the extent to which a manufacturing plant 

makes use of interactions with other intra-organizational [strategy] units to make its program 

objectives and practices consistent with its internal and external requirements” (Swink, 

Narasimhan and Kim, 2005). Cross-departmental coordination aligns business strategy with 

manufacturing strategy (Schroeder, Anderson and Cleveland, 1986). In the traditional 

literature, MSI has been linked to benefits such as improving environmental performance 

(MacCormack, Newmann III and Rosenfield, 1994; Rocky Newmann and Hanna, 1996), cost 

efficiency and process flexibility (Swink, Narasimhan and Kim, 2005), and to improving factory 

leanness and agility (Narasimhan, Swink and Kim, 2006). The literature suggests that MSI 
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supports the breadth of I4.0 technology. For instance, studies link manufacturing-strategy 

integration (MSI) to technology management in dynamic markets (Arana-Solares, Ortega-

Jiménez and Alfalla-Luque, 2019). Manufacturing-strategy integration (MSI), like the 

characteristics of DMI, enhance and enable greater levels of communication through digital 

channels, improving vertical integration (Swink, Narasimhan and Kim, 2005). Recent studies 

paint a more comprehensive picture of MSI being positively related to the breadth of I4.0 

technologies used in factories. 

Such integration of information technology is used to gain competitive advantage (McKeown 

and Philip, 2003).  For instance, integration between enterprise resource planning (ERP), often 

used in corporate strategy, and manufacturing execution systems (MES) that run production, 

supports the firm's operations (Tonelli et al, 2016). Such MSI leads to greater cross-functional 

understanding of commercialising technology (Zahra and Nielsen, 2002). Early studies of MSI 

also found that such integration assists firms in balancing between product differentiation and 

delivery performance (Swamidas, El-Tahan and Arockiasamy, 1986). In this context, an 

integrated manufacturing strategy improves product quality, delivery, flexibility, and cost 

(Joshi, Kathuria and Porth, 2003; Amoako-Gyampah and Acquaah, 2008). 

Logically, if internal strategy is disconnected from production, installation is delayed or in 

some cases could fail due to unforeseen circumstances during adoption. For instance, if work 

organisation plans are shorter than technology implementation plans and there is a lack of 

integration then installation may become more burdensome (Lindberg, Voss and Blackmon, 

1988). Small and medium sized factories receive additional benefits from such cross-functional 

integration as increased ambidexterity empowers managers to exploit limited resources more 

efficiently (Sahi, Gupta and Cheng, 2020). MSI is expected to support the factory's capability 

to implement a wider range of production technologies as uncertainties related to technology 

planning and implementation are reduced (Lindberg, 1992). In this context, it is expected that 

the breadth of I4.0 technology at the factory is more efficiently managed and orchestrated if 

supported by adequate levels of MSI. 

Complementary to the above, recent studies more strongly suggest that technology alone may 

not deliver the desired performance in aligning manufacturing and strategy (Domínguez 

Machuca et al, 2011). In fact, the factory of the future is enabled by a combination of 

manufacturing strategy, rate of innovation, and technology adoption (Pessot et al, 2021). MSI 

requires cultural and data integration between production and strategy departments. Such 
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centralisation of corporate planning and manufacturing delivers significant business value 

(Telukdarie et al, 2018). This value is explained by factory case studies claiming that 

competitive priorities vary for different business functions (Macchi, Savino and Roda, 2020). 

In this context, studies have found top management support to be critical in integrating 

business and manufacturing strategy, regarded as advantageous in setting standards and in 

synergising documentation (Zeng, Shi and Lou, 2007).   

The cultural and data elements of MSI, if noted by management, can be leveraged to amplify 

the communication of the manufacturing strategy to the factory, empowering personnel in 

decision-making (Machuca et al, 2011). It should be noted, however, that such communication 

channels are not one way, as the strategy function also greatly benefits from production data 

infrastructure to outline competitive strategy. In this context, factory personnel can access 

and share information more easily (Schoenherr and Swink, 2012), improving the monitoring, 

control, and scheduling of tasks at the factory (Murugaiyan and Ramasamy, 2021). This 

solidifies support for a higher-order integration capability, such as MSI, as a key antecedent to 

using more advanced manufacturing technology. 

The hypothesis suggests that a lack of MSI hinders the adoption and use of the breadth of I4.0 

technology. More importantly, not all business functions are equally involved in the digital 

transformation process (Zheng et al, 2021). This may lead to a different breadth of I4.0 

technology used within different functions at the factory due to a lack of MSI and disconnected 

strategies. Understanding the digital maturity of individual functions and departments, 

particularly strategy and manufacturing, enables process innovation (Chirumalla, 2021). 

Specifically, the integration of informational systems (vital for corporate planning and 

manufacturing production management) is found to expand I4.0 use (Alcacer et al, 2022). It is 

therefore hypothesised that: 

H2: The manufacturing-strategy integration capability of factory managers is positively related 

to adopting and using the breadth of I4.0 technologies at the factory. 

3.5.3 Systems Integration (SI) and Breadth of I4.0 

Systems integration is defined as the unification of information systems and databases to 

enhance the process of, and support for, the flow of administrative and management decision-

making (MacLaghant 1998; Markus, Petrie and Axline, 2000; Mendoza et al, 2006). In practice, 

the uneven adoption of technology across the business leads to various information systems 

https://www.emerald.com/insight/search?q=Pachayappan%20Murugaiyan
https://www.emerald.com/insight/search?q=Panneerselvam%20Ramasamy
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being used in isolation. Such segregation, in parallel with disconnected systems across the 

supply chain, hinders technology deployment and the creation of digital value (Dong, Xu and 

Zhu, 2009; Zangiacomi et al, 2020). In light of this, systems are often integrated, particularly if 

new technology is adopted, to smooth the flow of information and improve information 

transparency for administrative support, as well as for harmonised factory/business 

management decision making (Mendoza et al, 2006). 

Previous studies have shown some evidence on this matter. For instance, the "cross-domain 

alignment" of data moderates the link between business and IT strategy and reinforces 

business infrastructure and IT infrastructure (Gerow, Thatcher and Grover, 2015). Grouped 

into four progressive levels of point-to-point integration, structural integration, process 

integration, and external integration, continuous systems integration reflects the evolution 

from basic information exchange to managing information flow between applications, to 

ultimately achieve external integration with supply chain partners (Schmidt, 2009). Such a 

proactive IT stance involving selective standardisation and integration to maintain flexibility in 

adopting new technology is preferred (Agarwal and Sambamurthy 2002; Ross and Weill 2005; 

Lu and Ramamurthy, 2011). Also, systems integration enables inter-firm and intra-firm 

partnerships by promoting digital infrastructure for merging and integrating information from 

various functions (Bharadwaj, 2000). It is increasingly evident that at the factory the capability 

to integrate internal departmental systems and external systems leads to the development of 

the capability to implement the breadth of industry 4.0 at the factory, as discussed below. 

Internal systems integration capability has been shown to enable technology use at the firm 

level. It is important to note that integrated business systems only meet about 70% of the 

needs of a business. This is because the majority of industry 4.0 information technology used 

for data warehouses, enterprise resource planning (ERP) systems, intranets, and extranets 

requires different integration processes and a unique approach based on a multitude of 

standards and frameworks (Markus, Petrie and Axline, 2000). In this sense, systems 

integration capability acts as a transformational mechanism (attributed to higher-order 

capability) to harmonise business-units with isolated or partial integration (Goodhue, Wybo 

and Kirsch, 1992).  

Previous studies specifically characterise alignment, synergy, assimilation, and partnership 

with other internal functions as a systems integration strategy beneficial to technology 

deployment (Reich and Benbasat, 1996; Chan et al, 1997; Armstrong and Sambamurthy 1999; 
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Bharadwaj, 2000; Ross, 2002). In this context, data consistency is critical for both enterprise-

application integration and business-process integration. This is achieved through a 

standardised and consistent use of definitions and exchange of information, thus promoting 

the integration of systems over time (Karimi, Somers and Bhattacherjee, 2009). This is further 

reinforced by similar studies characterising internal “IS-business partnership” capability as a 

process of integration and alignment between the IS function and other functions of the firm. 

Other studies promote integration of the entire firm (van der Zee and De Jong, 1999; Wade 

and Hulland, 2004; Chan and Reich, 2007, p. 300; Porra, Hirschheim and Parks, 2014). At the 

factory level this relationship is assumed also to hold true due to the need to align and 

integrate the multitude of factory sub-systems with the wider business systems. 

Within the external context, systems integration is known to provide “explicit coordination” 

between buyers and suppliers yet requires investment to maintain systems compatibility as 

systems evolve (Dedrick, Xu and Zhu, 2009). Systems integration, in contrast to e-

procurement, aims to reduce the number of suppliers and focuses on richer information 

sharing and tighter collaboration between the buyer and supplier (Dedrick, Xu and Zhu, 2009). 

Substituting expansion of the factory's supplier base with stronger systems integration greatly 

benefits the adoption of advanced production technology and the breadth of I4.0 as tight and 

long-term collaboration between a I4.0 provider and I4.0 user is often paramount in the 

success of the production technology (Frank, Dalenogare and Ayala, 2019; Benitez, Ayala and 

Frank, 2020; Han and Trimi, 2022; Veile,  Schmidt and Voigt, 2022; Benitez et al, 2022). In this 

sense, supplier integration enhances the factory's efficiency and innovation capability while 

customer integration often only enhances efficiency capability (Peng et al, 2013). 

Further evidence points to the potential positive link between SI and the capability to adopt 

and use I4.0 technology at the factory alongside traditional legacy production machinery. The 

capability to align existing information assets, such as IT resources, with newly deployed IT 

investments is critical in technology adoption (Schweikl and Obermaier, 2020). This is 

suspected to be true for legacy systems integrated with I4.0 technology and integration 

among other advanced production assets. Other studies reinforce this link and argue for a 

standardised, scalable architecture for systems integration across the business. For instance, 

enterprise application integration (EAI) enables systems integration with existing applications 

(Mendoza et al, 2006). Similarly, resource planning systems (RPS) support enterprise-wide 

data integration across multiple functions (Davenport, 1998; Scott and Vessey, 2000). RPS can 
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integrate ERP systems with advanced planning and scheduling (APS) systems, and material 

requirements planning (MRP II) systems. This could potentially help managers gain access to, 

and make sense of, factory data on suppliers, customers, production planning, shop floor 

control, stock control, and data from the order processing stage of manufacturing. The 

availability of such data is expected to develop the factory manager capability to orchestrate 

and use multiple synergetic I4.0 technologies at the factory. 

Systems integration capability has been found to merge knowledge and make use of inside-

out and outside-in resources, improving the use of technology standards (Feeny and Willcocks, 

1998; Ross, 2002). Factory managers can leverage such systems to manage product 

specifications, and match production processes across multiple factories (Schroeder and Flynn 

2001).  Given the above, it is proposed that systems integration is beneficial for adopting and 

using the breadth of I4.0 technology at the level of the factory. This is evident from the 

internal, external and technology elements of systems integration and the benefits for I4.0 

technologies such as IT and ERP adoption in the past. It is therefore hypothesised that: 

H3: The systems integration capability of factory managers is positively related to adopting 

and using the breadth of I4.0 technologies at the factory. 

3.5.4 Breadth of I4.0 and Level of Automation 

Technology is often deployed to increase the level of process automation. The following 

hypothesis proposes the factory manager's capability to implement the breadth of factory I4.0 

technology to increase the level of automation at the factory. Studies support this view by 

showing that industry and strategy determine the required level of automation at the factory 

(Rosenthal, 1984). 

In the traditional literature, studies compare the level of automation in product-focused 

factories with process-focused factories, showing the latter to focus more on discrete 

manufacturing processes and utilise more flexible processes and machinery with a higher 

labour overhead (Ritzman and Safizadeh, 1999). In contrast, product-focused factories focus 

on continuous manufacturing processes with a higher capital intensity and fixed automation, 

resulting in lower labour overheads yet increased training needs for factory workers. This is 

further reinforced by previous research on this matter identifying factory automation as one 

of the major overheads in manufacturing that needs to be carefully planned and executed 

(Blau et al, 1976; Marsh and Mannari 1981). Other studies suggest that more advanced and 
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interconnected manufacturing technology can mitigate the high costs inherent in automation 

(Michael and Millen, 1985; Dean et al, 1990; Ittner and Macduffie, 1995; Dotoli et al, 2017). 

This is because automated machinery is becoming more capable of collecting, storing and 

transmitting data to other functions (Ittner and Macduffie, 1995). 

More recent studies have provided further evidence in support of adopting and using a broad 

set of I4.0 technologies to improve automation. The advent of I4.0 is set to significantly 

improve intelligent automation as machines can become more autonomous and self-

sustaining, while maintaining human decision-makers in the loop (Jayasekara et al, 2022; 

Hughes et al, 2022). For instance, resource allocation and scheduling can be further 

automated, given access to reliable production data and virtualisation of factory processes 

(Zhang et al, 2021). Automated production control can significantly boost production given a 

constant stream of reliable production data with minimal packet losses and delay (Dotoli et 

al, 2017). Others reiterate the need for data extraction as essential for automation solutions 

(Szalavetz, 2019).  Such a level of automation can be achieved through implementation of both 

I4.0 manufacturing and information and communication technology (Oesterreich and 

Teuteberg, 2016; Frank, Dalenogare and Ayala, 2019; Vlachos et al, 2021). 

Other studies suggested that technology is not a precondition for automation. For instance, 

digital automation can be implemented with and without the application of sensors 

(Tortorella, Giglio, and van Dun 2019; Rossini et al, 2022). Some evidence even indicates that 

highly automated manufacturing and assembly lines are rarely used in practice in favour of 

mechanically assisted manufacturing and manual assembly respectively (Spena et al, 2016). In 

this vein, studies suggest that factories with highly automated production and assembly 

experience lower flexibility (Koste, Malhotra and Sharma, 2004; Yu and Schweisfurth, 2020). 

The level of automation needed in practice has been debated within the literature, with 

proponents viewing automation as analogous to establishing and running assembly lines and 

opponents raising de-skilling issues within the workforce (McMurtrey et al, 2002). In some 

cases, the level of advanced manufacturing technology (AMT) is measured in terms of the 

intensity of automation (Chen et al, 2018). 

A lack of flexibility and other negative implications of automation are mitigated by using 

capabilities (e.g., lean, learning) to enable manufacturing technology (Tortorella et al, 2021; 

Rossini et al, 2022, Tortorella et al, 2023). The literature on this topic suggests the complexity 

of automation, due to the many variabilities in practice, can be mitigated by developing such 

https://www.tandfonline.com/doi/full/10.1080/00207543.2021.1992031?casa_token=TQkCvJXkcTQAAAAA%3AqQyS0PEiWGR-0QPgwffriomwdXPhcvuRVPpGVfnpnIivok_zes93gNPH0CS7cSHoYtL1opO2vxdX
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complementary “reasoning capability” to facilitate automation decision-making in 

manufacturing (Goh et al, 2020). It would be logical to assume that automation can improve 

by strengthening other higher order capability, such as integration, to diminish the negative 

effects of using standalone I4.0 technology. Inadequate automation is associated with errors 

and reduction in operational and product quality (Salovaara, Lyytinen and Penttinen, 2019). 

To overcome the shortcomings of both humans and machines in production, the 

implementation of I4.0 aims for a human-centric approach to automation (Theorin et al, 2017; 

Bibby and Dehe, 2018; Lin, Wu and Song, 2019; Stentoft et al, 2021). Large companies in 

particular can leverage their rich resource base to automate operations without major 

disruptions to the workforce (Gupta and Whitehouse, 2001). This is because larger companies 

have access to a higher breadth of production technologies or “a set of technologies that allow 

[the factory] to perform machine operations and operations within systems, without 

significant human intervention” (Papulová, Gažová and Šufliarský, 2022). For instance, such 

human centric industrial automation can detect faults 70% faster using a 3D digital model, 

digital shadow and digital twin technologies to inform automation engineers vis-à-vis the state 

and quality of production (Schamp, Aghezzaf and Cottyn, 2023). 

In summary, the literature provides strong evidence on increasing levels of automation if 

bundles of technology are seized by factory managers. The evidence further shows that 

bundles of technology enabled by other fundamental capability can automate tasks to a higher 

degree (Martell et al, 2023). It is argued that this to some degree reduces the avoidance of 

automation at the factory level. It is therefore hypothesised that: 

H4: The capability to implement the breadth of factory I4.0 technology is positively related to 

the level of factory automation. 

3.5.5 Breadth of I4.0 and Production Cost 

The initial investment of isolated I4.0 remains high, yet there is mounting evidence supporting 

improving cost performance for bundles of technology. In some cases, greater breadth of I4.0 

technology is related to lower set-up costs (Büchi, Cugno and Castagnoli, 2020). In general, 

overall equipment effectiveness has a direct effect on minimising production losses and 

production costs (Gupta and Vardhan, 2016). Production costs can also be reduced by having 

in place a coherent manufacturing strategy (Ward and Duray, 2000). Most notably, advanced 

and disruptive manufacturing technology is found to lower factory production costs as costly 



76 
 

labour-intensive processes are increasingly automated (Boyer and Lewis, 2002; Choi, Kumar, 

Yue and Chan, 2021; Bai, Li and Xiao, 2022; Tripathi et al, 2023). 

Other studies support the notion of reduced production costs as a major benefit of I4.0 and 

reconfigurable manufacturing systems (Haddou Benderbal and Benyoucef, 2019; Ralston and 

Blackhurst, 2020; Milisavljevic-Syed, Li and Xia, 2023). Empirical evidence reinforces this by 

providing cost benefit mathematical models and a cost optimisation approach for firms 

adopting I4.0 (Alami and ElMaraghy, 2021; Khettabi, Benyoucef and Boutiche, 2022). Other 

practices, such as lean manufacturing and agility in digitisation environments, have resulted 

in lower production costs (Buer et al, 2021; Ding, Ferras Hernandez and Agell Jane, 2023). 

Conversely, some studies show no significantly positive link between digital maturity and 

production costs due to a lack of cost focus and delayed performance realisation (Lorenz et al, 

2020). 

In practice, the production cost is dependent in large part on internal integration across 

functions (Jayaram and Xu, 2013; Williams et al, 2013) and external integration (Wong, Wong 

and Boon-itt, 2020). In addition to internal integration, customer, and supplier (external) 

integration influences production costs positively (Wong, Wong and Boon-itt, 2020). Studies 

reinforce this yet argue that the use of network technologies alone is not significantly related 

to cost reduction (Blome, Schoenherr and Kaesser, 2013; Paolucci, Pessot and Ricci, 2021). 

The use of I4.0 technology in the supply network is particularly significant if products are highly 

personalised and customised (Katoozian and Zanjani, 2022). 

The capability to implement the breadth of I4.0 technologies is expected to be facilitated by 

internal integration, which empower cross functional teams to coordinate product design and 

process selection, instrumental in reducing production costs (Gupta and Vardhan, 2016). 

Several studies have noted the production cost benefits of isolated I4.0 technology, which 

supports the hypothesis that the capability to implement the breadth of I4.0 reduces factory 

production costs. For instance, access to real-time data, big data analytics capability and the 

crowdsourcing of data is known to reduce production costs for digitisation (Blohm, Leimeister 

and Krcmar, 2013; Shivajee, Singh and Rastogi, 2019). Some studies even suggest that a lack 

of information technology, such as cloud services, cause high costs (Azadi, Moghaddas, Cheng 

and Saen, 2021). Likewise, manufacturing analysis systems, automated inspection systems, 

and robotic assembly and disassembly reduce production costs (Prieto et al, 2002; Shukor and 

Axinte, 2008; Daneshmand et al, 2023). 3D printing is associated with lower costs as parts can 
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be made only when needed (Baumers et al, 2016; Li, Kucukkoc and Zhang, 2017; Zhang et al, 

2020). On the other hand, some studies associate additive manufacturing to higher production 

costs compared to, for instance, injection moulding (Costabile et al, 2017; Pozzi, Rossi and 

Secchi, 2023, Top et al, 2023). 

Industry 4.0 technology is linked to reduced energy consumption, which accounts for major 

production expenses in certain process driven industries (Liu and De Giovanni, 2019; Rajput 

and Singh, 2021). In this context, energy technology supports the reduction of production 

costs (Chai et al, 2021). Alternative cleaner sources of energy have also been proposed to 

reduce production costs for digital data centres within the context of I4.0 (Liang et al, 2022). 

Other studies, on the other hand, find that green technology improves labour productivity but 

not production costs (Song et al, 2022).  

In sum, the above studies reinforce the claim that industry 4.0 technology and, more 

specifically, bundles of technology, if adopted properly improve production costs. Although 

some studies suggest otherwise, most evidence supports this claim due to increased 

automation and access to data depending on the breadth of I4.0. Therefore, it is hypothesised 

that: 

H5: The capability to implement the breadth of factory I4.0 technology is positively related to 

the factory production costs. 

4.5.6 Breadth of I4.0 and Environmental Sustainability 

There is an extensive literature on clean manufacturing technology, mostly at the 

organisational level, with increasing studies specifically investigating the impact of I4.0 on 

factory environmental performance. Firm-level studies have found that advanced 

manufacturing technologies such as AR, CPS, BDA, AM, IoT, cloud, and autonomous vehicles 

(AV) reduce the frequency of environmental accidents while preventing and controlling 

pollution (Yakovleva, Sarkis and Sloan, 2012; Yavuz et al, 2023). Therefore, it is argued that 

using a broader set of advanced manufacturing technologies at the factory-level also results 

in a higher factory environmental performance. This is supported by three primary factors 

leading to the breadth of I4.0 technology improving environmental performance. These are 

regulation, consumer/supplier expectations, and internal safety needs, leading to factories' 

improved environmental performance through adopting and using a breadth of I4.0 

technology. Increasing empirical evidence points towards many I4.0 technologies such as IoT, 
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artificial intelligence and simulation reducing carbon emissions (Ghobakhloo, 2020a). Other 

I4.0 technologies have also been linked to reduced factory greenhouse gas emissions (Khan, 

Tabish and Zhang, 2023). 

Environmental standards, regulations, and expectations from the public increasingly require 

factories to reduce their environmental footprint (Kassinis and Vafeas, 2006; Liu and De 

Giovanni, 2019). Pressure from external stakeholders to adopt practices and clean technology 

to improve environmental performance is rising (Kassinis and Vafeas, 2006). In this sense, 

adhering to environmental standards is linked to competitive advantage enabled by 

technology implementation (Dechant and Altman, 1994; Theyel, Merenda and 

Venkatachalam, 2001). The literature finds a proactive approach beneficial as managers need 

to predict sustainability regulation changes and customers’ expectations about using clean 

production methods. Studies show that EP is best accomplished by preparing “products, 

processes, and infrastructure for these [technology adoption] changes without sacrificing 

competitive advantage” (Handfield et al, 1997). Additionally, most environmental regulations, 

such as ISO 14000, do not guarantee effective self-regulation. Broadening the I4.0 technology 

base resolves the issue of a factory circumventing toxic emission prevention (i.e., 

implementing energy technology) as the cost of pollution prevention is often more than 

paying the penalty for not complying with the emission standards and government mandates 

(Christmann and Taylor, 2001). I4.0 technology in conjunction with pressure from government 

regulations is expected to promote research and the implementation of environmental 

technologies to reduce emissions in the short and long term (Khan et al, 2022). 

In summary, broadening the use of I4.0 technology has been widely shown to benefit 

environmental performance. Increasing empirical evidence about I4.0 technology used at the 

factory level to improve environmental performance supports this argument. More 

importantly, it has been shown that isolated I4.0 use (E.g., 3D printing), though reducing 

energy and waste, may increase environmental accidents and reduce the overall 

environmental performance if not used with other robotic, AGV, sensor, recycling, and 

protective technologies to minimise and spread the negative effects of some I4.0 technology. 

Broadening the use of I4.0 information technology can lead to the detection and analysis of 

resource consumption across production and supply chain processes to trace their carbon 

footprint (Gabriel and Pessl, 2016; Sarkis and Zhu, 2018; Bai et al, 2020; Sarkis, Kouhizadeh 

and Zhu, 2021). Moreover, unsatisfactory environmental performance is linked to changes in 
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organisational structure, often leveraging technology, to improve sustainability collaboration 

among managers across different functions (Russo and Fouts, 1997; Russo and Harrison, 2005; 

Longoni and Cagliano, 2015). Given the rich empirical evidence on I4.0 technology minimising 

emissions, waste and energy consumption, environmental hazards, and accidents, it is 

hypothesised that: 

H6: The capability to implement the breadth of a factory's I4.0 technology is positively related 

to the factory's environmental sustainability. 

3.5.7 Breadth of I4.0 and Schedule Attainment 

There is increasing empirical evidence linking I4.0 technology to enhanced schedule 

attainment (SA) capabilities. The capability to implement the breadth of I4.0 is expected to 

benefit SA more directly due to increasing use of information technology within and across 

the organisation and the use of processing and automation technology (Azzone, Masella and 

Bertele, 1991). There are several streams of research supporting this hypothesis, revealing 

scheduling benefits from the adoption and use of a broad set of I4.0 technologies through the 

control of supply and demand variability as well as internal variability. Evidence of technology 

use, such as computer aided design (CAD), at the project level also reveals several negative 

effects on SA. For instance, SA is weakened if the I4.0 technologies implemented are 

incompatible with existing systems or if training is inadequate (Eisenhardt and Tabrizi, 1995). 

This could also be the case at the factory level, though prior evidence is overwhelmingly in 

support of factory managers' capability to implement the breadth of I4.0 technologies to 

improve SA at the factory. The capability of factory managers to implement the breadth of 

I4.0 is expected to mitigate expected and unexpected scheduling issues, as explored below. 

The literature supports the notion that the less uncertainty there is with regards to future 

customer requirements, raw material and component availability, and internal processing 

times, the easier it is for a factory to adhere to the schedule (Mapes, Szwejczewski and New, 

2000). Such uncertainty and complexity is caused by several diverse factors. Predictably, the 

number of products and product parts and the number of suppliers/customers impacts SA 

(Rossetti et al, 2023). Consequently, factories implementing ICT reduce internal complexity as 

well as supply chain complexity (downstream and upstream) to attain improved production 

scheduling (Bozarth et al, 2009). This could raise low SA, usually considered below 75%, to 

greater than 90%, which is considered high SA. 
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In addition to the predictable variations above, advanced production technology has been 

found to mitigate unexpected scheduling problems. Global disruptions such the recent Covid-

19 pandemic caused unexpected supply issues, reducing raw material and production 

machinery availability and negatively impacted SA (Müller, Hoberg and Fransoo, 2022). In this 

context, information management is strongly linked to schedule attainment. At the factory, 

electronic data interchange (EDI) and E-information integration enable the prediction and 

mitigation of scheduling issues due to market unpredictability (e.g., seasonal demand), the 

complexity of the product (e.g., due to customisation), unexpected machine breakdowns, and 

the implementation of new technology (Ahmad and Schroeder, 2001; Molinaro, Danese, 

Romano and Swink, 2022). Similarly, enterprise resource planning (ERP) has also been found 

to enhance the on-time delivery performance and the ability to reduce lead times to meet 

schedules (McAffee, 2002; Cotteleer and Bendoly, 2006). 

It is expected that broader use of I4.0 beyond manufacturing technology improves the 

capability to stabilise the master schedule, reduce variation in the process and enable better 

communication with suppliers to manage SA. For instance, factories can decide to receive and 

deliver supplies in small batches to circumvent scheduling issues with large batches. This also 

enables factory managers to avoid batching multiple customer orders into fewer production 

orders and prevent surplus capacity (Meixell, 2005). The breadth of I4.0 is also expected to 

improve the planning and decision-making process for SA as factory managers often make 

scheduling decisions monthly while revising and assessing goals annually (Gargeya, 2005). A 

lack of or limited breadth of information technology could lead to scheduling irregularity as 

the computation of SA is sometimes inconsistent across departments. Therefore, studies 

found coordination among the internal functions by means of vertical information systems to 

be beneficial in avoiding discrepancies in planning and calculating the schedule (Germain and 

Lyer, 2006). Expectedly, lower capacity due to a lack of machinery (e.g., breakdowns) causes 

scheduling issue for many factories. If the schedule is behind, the manufacturing execution 

system (MES) can address random variations by informing managers about relocating workers 

to low-capacity cells (Shoaib-ul-Hasan et al, 2018). Cloud-based ERP can enable greater 

maintenance management and visualise scheduling (Ghobakhloo and Fathi, 2019; Bonsa and 

Ivantury, 2022). 

In summary, the capability of factory managers to implement the breadth of I4.0 technology 

can mitigate expected and unexpected factory scheduling issues. For instance, RFID can 
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provide real-time information, yet (at a higher breadth of I4.0) IoT can address SA with 

optimisation algorithms while CPS’s enable decentralised decision-making based on 

immediate and common scheduling data. Greater control over the breadth of I4.0 technology 

can cause a reduction in the workload on existing systems (e.g., MES) by relying on the 

combined effect or affordance of other technology, such as ERP used in combination with CPPS 

to decentralise scheduling based on ISA-95 and similar standards (Rossit, Thome and Frutos, 

2019a; Rossit, Thome and Frutos, 2019b). Such a high level of production integration enables 

machine learning and the adjustment of sub schedules, such as material scheduling, to benefit 

from data based on consumption rates (Shurrab and Jonsson, 2022).  

Such data could potentially advise factory managers to divert resources to slow moving 

bottleneck sections, which can occur in phased-out and phased-in zones. Given the evidence 

on many of the underlying I4.0 technologies improving schedule attainment, it is assumed that 

the capability to implement the breadth of I4.0 technology enhances schedule attainment. It 

is therefore hypothesised that: 

H7: The capability to implement the breadth of a factory's I4.0 technology is positively related 

to the factory's schedule attainment. 

3.6 Chapter Conclusion 

This chapter has introduced the main theoretical lens through which I4.0 is best viewed at the 

factory level. The chapter started by explaining the importance of dynamic capability and the 

orders of capability, which results in difficult to imitate competitive advantage. Secondly, the 

research model was explained as based on the core theory. This was followed by a definition 

of each part of the model and the interaction among the constructs in the model. Lastly, the 

hypotheses were worded based on the findings of studies in the same vein.  
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Chapter 4. Research Methodology 

 

4.1 Introduction  

The methodology chapter initially explains the background to the research philosophy of the 

thesis. The subsequent sections explain the research design, variable selection and 

operationalisation, pilot testing, questionnaire administration, and data collection for the 

empirical survey. This includes variable and measure validity and reliability as well as 

questionnaire design. Lastly, the chapter sets out the general characteristics of the sample and 

discusses statistical analysis of the data, elaborating on the methods used to minimise 

sampling and non-sampling error. 

4.2 Research Philosophy 

The research philosophy is defined as the set of assumptions, principles and beliefs the 

researcher shared in creating knowledge through the research process (Saunders, Lewis and 

Thornhill, 2009). The research method used (qualitative, quantitative, mixed) involves unique 

philosophical assumptions on the nature of reality and the perspective of the researcher 

(Creswell, 2014; Creswell and Plano Clark, 2017, p.23). When defining the philosophical 

research approach, it is important to understand what reality and being is (ontology), how 

knowledge is gained (epistemology), the research process (methodology), the values and 

ethics followed (axiology), and how the research findings are reported and presented 

(rhetoric) according to Creswell, J.W. and Creswell, J.D (2005) and Burrell and Morgan (2017). 

Management researchers need to be aware of contradictory quantitative and qualitative 

paradigms while being aware of shifts in paradigms (Guba and Lincoln, 1994; Clarke and Clegg, 

2000). For interdisciplinary fields that involve multidisciplinary researchers, such as I4.0, this 

is critical due to the fast growing and diverse literature. To test theory in management studies 

the researcher needs to overcome several practical and philosophical obstacles, identified as 

the “complexity and contingency of social phenomena, imprecisely specified theories, the 

openness of social systems, and the unavoidability of untested assumptions” (Miller and Tsang, 

2011). Other similar studies further reinforce the essential nature of an appropriate 

philosophy for organisational and social research (Van de Ven, 2007, p.41; Bhaskar, 2010).  

Generally, there are two main paradigms emphasised in empirical social studies, which this 

https://onlinelibrary.wiley.com/doi/full/10.1002/smj.868?casa_token=ta0lzYExTpYAAAAA%3AAvQhYrdZPhxnE-xOL8dJMdIpd5meOydgiYuRlEmLbP56Z3hUlTYVf9D-q1rRWmKd1MxZrkIDwZCTiQs#bib160
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thesis also followed: postpositivism and interpretivism. As shown in figure 4, the research 

design is shaped by the philosophical worldview of the researcher intertwined with the 

research methods and strategies of inquiry. 

 

Figure 4 Intersection of philosophy, strategies of inquiry, and specific methods, source: Creswell 
and Clark, (2017). 

 

The above is defined by Creswell and Clark, (2017, p.24) as the researcher’s pursuit of 

understanding the “philosophical worldview assumptions that they bring to the study, the 

strategy of inquiry that is related to this worldview, and the specific methods or procedures of 

research that translate the approach into practice”. According to other authors, this 

philosophical worldview is defined as “a basic set of beliefs that guide action” (Lincoln and 

Guba, 1990, p. 17). These ‘beliefs’ stem from the researcher's own cultural background but 

are also formed by the research topic, advice and guidance received, and the setting in which 

the research is conducted (Guba and Lincoln, 1994; Lincoln and Guba, 2000). 

Positivism is a philosophical framework that emphasises the use of scientific methods and 

empirical observation to gain knowledge. Positivist researchers can be defined as those who 

are seeking to establish universal laws and causal relationships in natural and social research 

domains, predicting outcomes based on observable regularities through objectivity and 

impartially verifying empirical evidence. Positivism is a relatively old philosophical framework, 
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with research dating back to the mid eighteenth century, emphasising the stages of human 

intellectual development and the importance of social progress (Comte, 1853). Although 

criticism of positivism and scientific verification has been raised throughout the years in favour 

of falsifiability and conjecture (Popper, 1959), the bulk of the literature reinforces positivism. 

Most notably, Hempel (1965) emphasised how the positivist perspective reinforces the logical 

and empirical aspects of scientific explanation in social science. There are other limitations 

that make positivism an unsuitable research strategy for this study. 

Logical neopositivism, or logical positivism, argue that the verification criterion for 

determining the meaningfulness of statements is based on empirical verification, observation, 

and logical analysis, rendering metaphysical claims meaningless (Brown, Stacey and 

Nandhakumar, 2008; Pierre, 2016). This view is more suited to basing I4.0 claims on available 

evidence as opposed to hype. As such, logical positivism adapts an inductive reasoning 

approach, which involves drawing conclusions based on observations and evidence. This 

philosophical view also places partial emphasis on theory, which supports theory building and 

theory testing in this field. Although logical positivism emphasises the analysis and elucidation 

of the logical structure of scientific statements and theories, the postpositivism view examined 

below places greater emphasis on subjectivity, theory, and the reflexivity needed to make 

sense of more complex I4.0 concepts and for clarifying the confusing and sometimes 

contradictory I4.0 terminology and semantics of the core concepts, which sometimes overlap 

with neighbouring literature. 

Postpositivism acknowledges that scientific observations and empirical evidence verification 

are influenced by subjective factors, such as the researcher’s perspectives, personal values, 

and biases (Panhwar, Ansari and Shah, 2017). This acknowledges that maintaining an objective 

view is unrealistic and that knowledge is, to some degree, socially created. Therefore, 

postpositivism, which this research is based on, encourages researchers to reflect upon their 

own assumptions and biases to determine the potential impact on the research process more 

transparently and purposefully. In I4.0 and social science in general, this mindset filters out 

hyped, overpromised, and frankly unrealistic expectations of what I4.0 projects at the factory 

involve. In contrast to positivism, which traditionally emphasises quantitative methods, 

researchers with a postpositivist view recognise the value of using multiple research methods 

to gain a comprehensive knowledge base on a complex phenomenon. As theory is significantly 

emphasised in postpositivism, often both qualitative and quantitative research methods are 
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used to contribute to theory development. For instance, qualitative methods generate rich 

patterns, clarify terminology, and descriptions, and explore the particularities of social 

phenomena, while quantitative methods provide statistical analysis and test hypotheses 

during the inductive research process (Creswell, 2009; Creswell and Clark, 2017, p28; Morgan 

and Lacy, 2018; Timans, Wouters and Heilbron, 2019). 

This strategy is adopted for this research to complement and balance the qualitative review 

of the literature and the opinions of the researcher about I4.0 with quantitative understanding 

and support for the complex causal relationships. Other philosophical frameworks, such as 

critical realism and pragmatism, were not aligned with the research goals of this study as 

external factors were not referred to and the underlying mechanisms and structures that 

generate the empirical phenomena were not the focus of the knowledge inquiry. Although 

not suitable at this level of investigating I4.0, critical realism could be more aligned with 

understanding underlying the social structures and mechanisms, economic, and 

organisational factors that influence the adoption and outcomes of smart factory technology. 

Conversely, this study was based on a postpositivism framework to emphasise causality 

among variables, theory testing and hypothesis verification and a reductionist approach, 

breaking down I4.0 implementation causes and consequences at the factory. 

Interpretivism, as a philosophical framework in social research emphasises the importance of 

understanding social phenomena from the perspective of the individuals involved (Crotty, 

1998). It acknowledges that social reality is constructed through human practices and 

interactions, and that meaning is contingent upon social constructions such as culture, 

language, consciousness, shared meanings, and instruments (Myers, 2019). In interpretivism, 

the researcher recognises the role of subjective interpretation and the influence of human 

interests in acquiring knowledge by studying social phenomena (Guba and Lincoln, 1994). This 

perspective contrasts with the objectivist view that social entities exist independently of social 

actors, and highlights the need to consider the context, values, and interpretations of 

individuals within a social context (Saunders, Lewis and Thornhill, 2009). Interpretivism 

encompasses various approaches such as social constructionism, phenomenology, and 

hermeneutics, which aim to uncover the subjective meanings and interpretations that 

underlie social phenomena (Collins, 2010). By adopting an interpretive philosophical 

framework, researchers can gain a deeper understanding of the social world and capture the 

complexities of human behaviour and social interactions (Crotty, 1998). Interpretivism focuses 
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on understanding the subjective meanings and interpretations attached to social phenomena 

as opposed to underlying social structures and mechanisms. Incorporating an interpretivist 

perspective can help capture the individual experiences, perceptions, and attitudes of top-

managers regarding broader use of Industry 4.0 technology, the higher-order capabilities 

needed, and performance outcomes. Qualitative methods, such as open-ended survey 

questions or interviews, can be used to gather rich insights into the factors affecting 

technology adoption. 

4.2.1 Research Strategy 

Given the positivist and interpretivist philosophical approach to this research, the research 

approach and strategy was planned accordingly. Both deductive and inductive approaches are 

used in management research. In general, the inductive (interpretivist) approach is used to 

explore new insights, identify emerging themes, and gain a deeper understanding of the 

phenomenon under investigation, to provide rich descriptions of participants' experiences. On 

the other hand, the deductive (postpositivist) approach is used to test hypotheses based on 

existing theories and prior knowledge. A survey questionnaire can be designed with 

structured, closed-ended questions to collect quantitative data from a large sample of 

participants. Subsequently, the collected questionnaire data is analysed using statistical 

techniques to test the hypotheses and draw conclusions.  

Management researchers are required to make conscious decisions on the philosophical 

approach and the research strategy they choose (Johnson and Clark, 2006). This mixed 

methods approach can lead to a comprehensive and holistic understanding of the research 

topic and enhance the validity and reliability of the study's findings (Onwuegbuzie and Leech, 

2005; Fetters, Curry and Creswell, 2013; Fetters and Molina-Azorin, 2017). This mixed method 

research design is in line with empirical studies within novel research domains. For this study 

the approach was to initially explore, through a deductive approach, the still growing and 

crystalising literature on I4.0 and the sometimes-contradictory claims across the literature, 

followed by theory testing based on an inductive approach. The primary quantitative section 

of the research, as described, followed a web-based cross-sectional survey design. There are 

several advantages to survey research (Hair et al, 2010). Cross-sectional surveys allow 

researchers to collect data (e.g., opinions and behaviours) from a large sample of participants 

within a relatively short period at relatively low cost. Also, using appropriate sampling 
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techniques and ensuring a representative sample, the researcher can make inferences about 

the broader population, enhancing the external validity of the findings. Cross-sectional survey 

design is well-suited for hypothesis testing in management research (Forza, 2002). 

Given the postpositivist perspective, a cross-sectional survey design allowed the researcher to 

collect data from a sample of participants at a specific point in time (as opposed to longitudinal 

design). This approach can provide greater insights into the current state of Industry 4.0 

implementation (the actual breadth), the antecedents to Industry 4.0 technology adoption, 

and outcomes at the factory level. Similarly, using a cross-sectional survey design within an 

interpretivist framework enabled the researcher to explore the perspectives, beliefs, and 

experiences of targeted individuals within the factory setting. Such a survey design provided 

both objective data and subjective interpretations on I4.0 (Modaresi, Asadi and Shadman, 

2019; Liao et al, 2019; Braun et al, 2021). 

4.2.2 Unit of Analysis and Respondents 

The unit of analysis for this study is the plant or factory level. Selecting the correct unit of 

analysis is widely prioritised in empirical research (Behling, 1978; Rousseau, 1985; Klein, 

Dansereau and Hall, 1994; Dansereau, Yammarino and Kohles, 1999). Due to the contingent 

approach to digital transformation in general, investigating I4.0 constructs at different levels 

and for different uses requires different methodological approaches. For instance, at the firm-

level, a company may have multiple factories, each requiring a unique digital transformation 

approach. Particularly in relation to I4.0 the literature primarily focuses on the study of I4.0 at 

the organisation and firm unit-of-analysis (Nayernia, Bahemia and Papagiannidis, 2022). 

Analysing I4.0 with a broader, more encompassing, unit-of-analysis provides a holistic and 

wide-ranging view of the phenomenon yet fails to draw inferences on the finer more granular 

constructs and their implications, which are not easily generalisable or applicable to important 

sub-units. In this sense, “plant-level results may be obscured or confounded at a higher level 

of analysis, such as the business unit (BU) or firm” (Rosenzweig and Easton, 2010).  

The main objective of the thesis is to relate factory capability to factory use of I4.0 technology, 

measured as the breadth of I4.0, and performance. Consequently, in operationalising variables 

related to manufacturing what is required is to select the unit-of-analysis that is most 

appropriate to the theory being tested and the literature limitations for the theory tested 

(Rosenzweig and Easton, 2010). For instance, given that the theory of dynamic capability is 

https://journals.aom.org/reader/content/17cb9a80f87/10.5465/amr.1999.1893936/format/epub/EPUB/xhtml/index.xhtml?hmac=1680264927-Y8gIv05YD%2BhtBWrpDb4nFK3y2RzIV4MAEk%2F1atYpdX4%3D#B8
https://journals.aom.org/reader/content/17cb9a80f87/10.5465/amr.1999.1893936/format/epub/EPUB/xhtml/index.xhtml?hmac=1680264927-Y8gIv05YD%2BhtBWrpDb4nFK3y2RzIV4MAEk%2F1atYpdX4%3D#B63
https://journals.aom.org/reader/content/17cb9a80f87/10.5465/amr.1999.1893936/format/epub/EPUB/xhtml/index.xhtml?hmac=1680264927-Y8gIv05YD%2BhtBWrpDb4nFK3y2RzIV4MAEk%2F1atYpdX4%3D#B40
https://journals.aom.org/reader/content/17cb9a80f87/10.5465/amr.1999.1893936/format/epub/EPUB/xhtml/index.xhtml?hmac=1680264927-Y8gIv05YD%2BhtBWrpDb4nFK3y2RzIV4MAEk%2F1atYpdX4%3D#B40
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widely used for empirical research, studying routines, I4.0 use, and performance at the 

organisational level cannot be used by the researcher for inference at the factory level 

(Pentland and Feldman, 2005). Similarly, other too granular sub-units of analysis, such as 

project, group, asset, and individual units-of analysis, deviate from the aim of the study as 

they capture dynamic capability from different perspectives and only partially reveal factory 

implications. Consequently, studying dynamic capability and I4.0 at the factory level facilitates 

the granular analysis of dynamic capability compared to the overstudied organisational level, 

while addressing the aim of the study. 

One senior factory manager was targeted as the primary respondent for each manufacturing 

factory participating in the sample. Considering the diverse nature of factories and the 

multitude of senior management roles, only top executive roles have been targeted, such as 

factory managers, directors, supervisors, and operations managers. Senior managers involved 

in the operations of the factory would be most knowledgeable and informed about the level 

of ordinary and higher-order capability, performance, and the breadth of I4.0 technology 

currently deployed at the factory. Top management would also be more competent about the 

average industry values for the performance measures, reducing response bias and error. 

Previous empirical studies have also obtained key informant insight at the factory from senior 

management (Gattiker and Goodhue, 2005; Swink, Narasimhan and Kim 2005). Similarly, 

within the domain of strategy at other levels, such as the SBU, key informants have been used 

to represent their unit (Zott and Amit, 2007; Wang and Zhang 2008). 

4.3 Data Collection 

This survey followed the steps recommended by Forza (2002) as listed in Appendix C. Data 

was collected at two consecutive stages for this research. The initial stage collected data on 

the appropriateness of the model and the applicability of the variables via a set of interviews 

in the format of a pilot study. The second stage collected the main survey data from UK 

participants through a web-distributed questionnaire. 

4.3.1 Pilot Study 

The pilot testing stage included semi-structured interviews with both academics and high-

ranking managers from a mix of multinationals considered as major I4.0 technology users and 

providers. Prior to the design of the survey model the researcher systematically reviewed the 
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literature on previously published dynamic capabilities as potential antecedents to I4.0 as well 

as potential outcomes of I4.0. The comprehensive list of constructs was subsequently filtered 

based on fit with the main theory (higher-order capability selected), reliability values, unit at 

which the construct was measured (factory-level selected), and quality of the publication 

journal (High-ranking ABS-4* Journals selected). However, despite the filtering, dozens of 

potential constructs remained, including a mix of integration and collaboration capabilities, 

cultural and structural capabilities, HR related and social/relationship capabilities, and 

sustainability capabilities. The aim of the pilot study was to guide the researcher in distilling 

the remaining constructs into a compact and testable research model for theory testing (Hazzi 

and Maldaon, 2015; Malmqvist et al, 2019). 

The five semi-structured interviews were all based on I4.0 technology, implementation 

methods and outcomes. The interviews were conducted with senior managers with previous 

experience in I4.0 projects and lasted 30-50 min (Zoom call). Prior to the interview the model 

and the questions were sent to each participant. The videocall interviews were recorded with 

permission and updated the researcher on the operational implications and antecedents 

relevant to the industry as opposed to merely designing the research model based on 

literature limitations. The interviewees were provided with the primary research model and 

definitions of the variables. They were asked about the relative importance of major I4.0 

enablers/outcomes in the industry. An example of the interview questions can be seen in 

Appendix D. 

Several constructs were eliminated and refined, such as for measuring the level of I4.0 at the 

factory only the breadth is measured. This is because piloting participants clarified the 

difficulty of measuring the I4.0 depth and other aspects, as in practice the use of advanced 

technology at other departments/factories is not necessarily known to the manager. Similarly, 

constructs relating to the sociocultural capabilities of the factory were deemed important for 

I4.0 yet not prioritised by industry decision makers for the breadth of I4.0 technologies. For 

instance, “level of hierarchy”, “Top-management support”, “Employee satisfaction”, and 

“employee loyalty” were removed from the model (Yee, Guo and Yeung, 2015; Hardcopf, Liu 

and Shah, 2021). Equally, in most interviews “internal environmental management” and 

“external environmental management” (Zhu and Sarkis, 2004) were deemed important but 

not considered an independent variable or a practical antecedent to I4.0 technology. Another 

important example is Lean and agile capability, not considered by the experts to be a 
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necessary antecedent to every I4.0 implementation case but rather a lower-order capability, 

which the researcher can add as a control variable. More importantly, leanness and agility 

were identified in one interview as ordinary capability and not higher-order capability as they 

are easily imitable.  On the other hand, constructs that did measure antecedents to I4.0 but 

were deemed by interviewees to overlap with other more complete, practical and relevant 

constructs were also removed. For instance, in measuring cooperation with others, “customer 

relationship” and “supplier relationship” (Royo-Vela and Velasquez Serrano, 2021; Schmidt et 

al, 2023), “customer satisfaction” (Bozarth et al, 2009) as well as constructs relating to inbound 

open innovation (Sisodiya et al, 2013), “inter-organisational collaboration”, and 

“interdependence with other plants” were replaced by “systems integration” due to the latter 

construct measuring the relationship between the focal factory and all value chain partners 

not just technology providers (impacting the breadth of I4.0 technologies) or the provider of 

resources for daily factory operations to make products.  

Other integration related factors were also highly recommended by the interviews, resulting 

in the researcher keeping “design-manufacturing integration” and “manufacturing strategy 

integration”, as practitioners deem these capabilities critical for controlling costs and guiding 

business strategy during I4.0 implementation. Based on the responses from the pilot study 

the model was simplified and made specific for a better fit with theory and ease of empirical 

testing. A list of potential antecedents to I4.0B before the pilot testing and after the piloting is 

shown in table 4. Lastly, a list of the pilot study participants, their role, affiliation, and quoted 

response examples to the interview questions is shown in Appendix E. 

 

Table 4 Pilot testing Results 

Variables Before the piloting Variables After the Piloting (Model) 

Independent 

Variable 

Openness and Experimentation Design-Manufacturing Integration 

Design-Manufacturing Integration Manufacturing-Strategy Integration 

Modular Design Competence Systems Integration 

Manufacturing-Strategy Integration  

Interdependence with other Plants  

Technology Interdependence  

Inter-organisational Collaboration  

Contractual Definability  
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Contractual Enforceability  

Trust  

Agility  

Lean Production  

Centralisation  

Workforce Development  

Systems Integration  

Data Usage  

Business Dependence on IT  

Internal environmental management  

External GSCM practices  

Focal 

Variables 

The Breadth of I4.0 The Breadth of I4.0 

The Depth of I4.0  

The Source of I4.0  

Dependent 

Variables 

Automation Automation 

Flexibility Cost 

Cost Schedule Attainment 

Schedule Attainment Environmental Sustainability 

Customer Satisfaction  

Environmental Sustainability  

Preventive Maintenance   

 

4.3.2 Questionnaire Design and Format 

The design and distribution of the questionnaire is an important step following the previous 

steps. The questionnaire (See Appendix F) used a 7-point Likert scale to measure factory 

capability and performance, ranging from strongly disagree=1, disagree=2, somewhat 

disagree=3, neither agree nor disagree=4, somewhat agree=5, agree=6, strongly agree=7. For 

the breadth of I4.0, a binary measure was used as in previous studies (Büchi, Cugno and 

Castagnoli, 2020; Cugno, Castagnoli and Büchi, 2021; Cugno et al, 2022). 

The format of the questionnaire and the way it is presented greatly impacts on the accurate 

presentation of the questions and collection of reliable data (Shemesh and Lazarowitz, 1988; 

Ergu and Kou, 2012). This also greatly impacts the response rate (Dillman, Smyth and Christian, 

2009). Several considerations were taken into account by the researcher to guide the 

participants through the survey efficiently. The aim was to minimise distractions and clutter, 

present the questions in an easily readable font type and size and in a logical order. This will 
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avoid miscommunication and misinterpretation of the questions and therefore minimise 

respondents' error rate. Several factors impacted the questionnaire format. 

 

1. The questions were rearranged into a logical order. Only one question was presented 

at a time, with similar questions grouped into sections. The level of industry 4.0 

(breadth of I4.0) was asked first as it is a binary measure and different from the 

remaining 7-point Likert questions. This also enabled the participant to respond 

without fatigue or confusion from previous questions. This was followed by question 

segments in relation to factory capability, factory performance, and personal 

information respectively. Lastly, the researcher included an end of survey page to ask 

for feedback and provide the participants with a completion code to verify submission 

and receive funds. 

 

2. The questionnaire started with a welcome page, including a summary of the research 

and the purpose of the study. This initial page also allowed participants to enter their 

unique Prolific ID to verify the eligibility of the participants, allowing the researcher to 

keep track of the payment process more easily. The literature also supports having a 

welcome page regarding web-based social science research, which researchers often 

use to communicate clearly and efficiently with the participants (Fischhoff and 

Scheufele, 2014; Wong-Parodi, and Strauss, 2014). 

 

3. All other questions (e.g., text, number input) were worded as concise and to the point 

close-ended questions (multiple-choice, Likert scale, yes/no) as opposed to open 

ended questions, which are more open to interpretation. In general, there was a mix 

of open ended (i.e., Product, industry) and close ended questions (Reja et al, 2003). In 

addition, the font type, size, spacings and consistency among similar sections was 

standardised. This enabled participants to use their usual laptop and personal 

computer as well as tablets and smart phones to respond. 

 

4. Misleading and confusing questions, inadequate wording, personal questions were 

avoided (e.g., Gender and Religion). According to Forza (2002), the format sets the 

language of the questionnaire to be in line and consistent with the respondent’s level 
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of understanding. The author states: “If a question is not understood or interpreted 

differently by respondents, the researcher will get unreliable responses to the question, 

and these responses will be biased”. In the same context, “double barrelled” 

ambiguous and partial questions, as well as emotionally phrased or loaded questions, 

were eliminated in order to prevent biased responses. The length of each question is 

also important in avoiding time waste and maintaining the respondent’s attention. In 

general, questions exceeding 20-25 words were avoided (Converse and Presser, 1986; 

Lietz, 2010; Peytchev, and Peytcheva, 2017). 

 

5. Appropriate response scales were used to match the (close-ended) questions with 

relevant response options (Dawes, 2008; Joshi et al, 2015). Specifically, for certain 

questions (factory capability, performance) a 7-point Likert scale was used, while for 

lists (i.e., the breadth of I4.0) a binary scale was used. This ensured that the correct 

type of scale measure (Nominal, Ordinal, Scale) was used to capture the data for each 

question type. 

 

6. Pilot-testing of the questionnaire clarified sticking points for participants. Before the 

questionnaire was administered to the sample of the population, the questionnaire 

was distributed to 36 UK respondents to check the response rate and receive feedback 

on the clarity of the instructions and response options. During this stage the contact-

administration protocol and measure quality were tested (Forza, 2002; Dillman, Smyth 

and Christian, 2009; Dillmann, 2011). It is important to note that this questionnaire 

pre-testing stage was conducted in addition to and after the main survey design pilot-

testing, which aimed to operationalise the variables and define the model. This stage, 

however, enabled the researcher to conduct preliminary reliability testing and check 

the Cronbach’s alpha (α) of each measure in the model. This feedback was used to fine 

tune the clarity of the instructions and questions. 

 

This survey was distributed online and hence the data was collected via a web-questionnaire 

accessible only with an invitation link. There are several benefits to online questionnaires 

compared to phone, mail, and in person collection of data (Forza, 2002; Boyer et al, 2002; 

Dillman, Smyth and Christian, 2009). For instance, the cost and time needed for administering 
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web-surveys is lower as only an internet connection and a phone or PC is needed (Pitkow and 

Recker, 1995). This method ensured a high response rate, accuracy of information, and it 

covers a large sample of the population as the data recording and storing is automatic, 

reducing data collection error. In contrast, mail distribution can often be blocked by 

companies' email filtering techniques, resulting in undelivered mail. Similarly, phone calls can 

be unanswered, go to voicemail or often be blocked by secretaries and assistants.  Online 

questionnaires were also found to be more reliable in terms of completeness, particularly for 

sensitive and personal information (Forza, 2002). 

For this research “Qualtrics” was used to format and write the questionnaire, generate a (URL) 

link to the survey, collect data, store the data, and for preliminary visualisation of the data. 

Qualtrics is a web service enabling the above through a well-designed and practical user 

interface. The researcher also used “Prolific” to distribute the survey link to the target sample. 

Qualtrics was linked with Prolific to initially filter and subsequently guide the participants 

through the questionnaire. This required participants to input a valid code to proceed from 

Prolific to the Qualtrics survey link and start the questionnaire. Similarly, participants were 

given a completion code at the end of the questionnaire and redirected back to Prolific to 

redeem funds. This enabled the researcher to view the data collection in real-time, checking 

that all Prolific ID’s and completion codes were valid. Qualtrics also enabled the researcher to 

save the data in formats suitable for statistical analysis with SPSS, AMOS, Excel, and other 

formats. Section 4.8.1 further elaborates on the administration and distribution of the survey 

questionnaire. 

The services provided by Prolific are widely used by government organisations (e.g., the 

European Commission), private firms such as Google, and academia (e.g.., Oxford University). 

There are an increasing number of social studies using Prolific.co (e.g., Dryhurst et al, 2020; 

Williamson, 2020; Anvari et al, 2022; Calabrese and Albarracín, 2023). There are several 

benefits to linking Qualtrics with Prolific. Most importantly, responses can be checked in real-

time as they are completed, and invalid responses such as non-responses and mostly 

uncompleted returns were disregarded to minimise resource waste. The secondary benefit is 

the possibility of financially reimbursing the participants that fully completed the 

questionnaire, minimising the possibility of missing data. This is important as top managers 

are targeted who expect to be financially rewarded for their time, unlike junior management 

(Jobber, Saunders and Mitchell, 2004). The participants were reimbursed £10/Hour with most 
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responses taking 15-20 min. Moreover, this allowed for the control of participants, ensuring 

participants' IP is recorded and that they can only take the test one time. This method of 

distribution is also beneficial compared to sending the (URL) link by email to potential 

participants because Prolific uses a large population database and automatically 

contacts/reminds the potential participants. In contrast, mailing requires the researcher to 

acquire contact details of top managers (adding costs), which still would not have guaranteed 

access to the managers or even a complete and returned questionnaire (Goldby, Stank and 

Vickery, 2001; Fleming and Bowden, 2009). This would have reduced the response rate. 

Consequently, using Prolific enabled more precise collection of higher quality data by 

simplifying the distribution process. 

4.4 Sampling Procedure 

A sample is defined as a segment of potential respondents representing a much larger 

population. This is used by the researcher to make inferences and generalise the finings within 

the context of the larger population (Walters, 2021). The population refers to the entire group 

of potential respondents (people, firms, factories). Therefore, a correct sampling procedure 

and frame selection is very important for the researcher to statistically as well as theoretically 

relate the findings to the population. Two sampling methods are commonly used: non-random 

(judgemental) and random (representative) sampling, according to Cochran (2007). For this 

survey, random sampling was selected for the sample (in Prolific) to collect normally 

distributed data representative of the population.   

To reduce the sampling error a sample with high capability to represent the population was 

carefully selected in Prolific. Based on Forza (2002), inadequate sample selection “excludes 

the possibility of generalising the results beyond the original sample” as it limits the use of 

more appropriate statistical techniques. Operations management research, though less 

frequently considering sample design, relies on a small sample size, with emphasis on sample 

credibility (Rungtusanatham et al, 2001). In this case, minimising sampling bias required the 

researcher to ensure samples were taken from multiple regions in the country as opposed to 

samples from limited geographical locations (cities in one county or region), which represent 

the population less. The sample procedure for this survey followed the steps of defining the 

population, clarifying the sample frame, sample size, defining the unit-of-analysis and the 

main respondents.  
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4.4.1 Population 

To reiterate, the main objective of the survey is to measure factory performance and 

capabilities (lower-order and higher-order) and determine if the internal and external higher-

order capabilities act as antecedents to the lower-order capability and performance. 

Therefore, the population is selected based on limitations in the literature and theory. Prolific 

includes a growing database of more than a hundred thousand potential participants in both 

the UK and the USA. For this survey the population of interest is the UK’s manufacturing 

factory managers involved in I4.0 technology use. 

4.4.2 Sampling Frame 

The researcher selected the sampling frame based on the employment status, experience, 

industry, and employment sector. This ensured that the sample strongly represented the 

population of the UK’s factory senior management. Several filters were applied to explicitly 

identify the sample. First, only full-time UK employees that are working in senior and executive 

management roles were selected. Second, the industry and employment sector was set to 

manufacturing, excluding other industries using I4.0. Third, using a short screening 

questionnaire, only participants with work experience at a manufacturing factory currently 

using I4.0 technology were admitted. 

4.4.3 Sample Size 

The size of the sample is a critical consideration for the researcher as collection of large data 

sets is costly, time consuming and requires unique considerations when conducting the 

statistical analysis. On the other hand, the sample needs to have an adequate number of cases 

(responses) to be meaningful and considered for statistical procedures, such as measurement 

quality assessment and theory testing (Forza, 2002). Sample size is determined based on the 

significance level (α), which is the probability of making a type I error, and the statistical power 

(1-β), with Beta representing type II error. The latter occurs if the null hypothesis is not 

rejected when the alternative hypothesis is true. Table 5 illustrates the required sample size 

based on the effect or association strength, termed the “size of the researched relationship” 

(Forza, 2002). If a small effect is researched a much higher sample size is needed to obtain a 

higher statistical power, in contrast to researching a large effect. In OM research the effect 

size is fixed as the researcher cannot change the effect size of a phenomenon, in this case 

adopting and using the breadth of I4.0 technologies. Similarly, the significance level is usually 
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fixed at 0.05 and 0.01. Therefore, the researcher only uses sample size to control statistical 

power (Verma and Goodale, 1995). 

 

Table 5 Sample size determination based on Forza (2002) 

 Stat. power = 0.6 Stat. power = 0.8 

 α = 0.05 α = 0.01 α = 0.05 α = 0.01 

Large effect (e.g., strong association) 12 18 17 24 

Medium effect (e.g., medium association) 30 45 44 62 

Small effect (e.g., small association) 179 274 271 385 

 

Other studies have classified sample sizes for statistical analysis, such as structural equation 

modelling (SEM) into small (which includes 100 or less responses), medium having between 

100 to 200 responses, and large sample sizes having over 200 responses (Kline, 2011. p309; 

Kline, 2017). This research uses a sample size of 320 factory managers. More importantly, the 

sample size is suitable for SEM, as average sample sizes greater than 200 are required for 

adequate SEM analysis (Shah and Goldstein, 2006). However, the sample size is not too great 

to burden the researcher with additional considerations while delivering a high statistical 

power (1-β ≥ 0.8) to minimise type I and type II errors. 

4.4.4 Response Rate 

The response rate is an important measure of the quality of the survey. It is a statistical 

measure of the number of full responses in terms of percentage (Fan and Yan, 2010). A low 

response rate can introduce errors in the estimates, even if the bias is modest (Forza 2002; 

Forza, 2016). This is because we do not know the bias level for non-responses. In social 

sciences the design elements of the questionnaire (e.g., length) and the online administration 

method impact the response rate (Forza, 2002; Kaplowitz et al, 2012). As described in the 

previous sections, the web-survey response rate was improved by specifying the population 

sample, having a comprehensive survey design including web distribution, and the use of 

incentives (Deutskens et al, 2004; Heerwegh et al, 2005; Smith et al, 2019). For instance, 

minimising open ended questions and providing adequate information increased the response 

rate of extant OM studies by more than 200% (as in the case of Sower, Motwani and Savoie, 

1997; Ward et al, 1998). The literature broadly supports this and provides several other 
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methods and techniques to improve the response rate for OM surveys (Flynn et al, 1990; 

Frohlich, 2002; Forza, 2016). 

Previous OM surveys that targeted factory managers recorded a response rate of 37% to 56% 

(Ahire, Golhar and Waller, 1996; Flynn et al, 1994). Other social science research domains may 

require alternative methods, such as mailed surveys and phone calls, to achieve an adequately 

high response rate (Shannon and Bradshaw, 2002). However, for this study the initial stages 

of emailing and informing participants, survey distribution, and sending regular reminders 

were all automated by the web-based distribution platform. The response rate is a percentage 

function of the number of usable responses divided by the total sample minus any partial 

responses (Bell, Bryman and Harley, 2022). As of the fourth quarter of 2021, the total sample 

included 956 potential participants that were full-time employed in the UK manufacturing 

industry (n=458), and the UK manufacturing sectors (n=506). A total of 327 questionnaires 

were returned, with 7 questionnaires having missing data, which were deleted. Consequently, 

the remaining 320 full questionnaire responses resulted in a response rate of 34 percent. For 

theory testing OM studies, it is preferred to have the response rate above 50% (Flynn et al, 

1990; Pinsonneault and Kraemer, 1993). Yet in this context, the value is within the acceptable 

limit as the survey was conducted during the covid-19 pandemic. The UK lockdown and 

disruptions lowered the average number of respondents willing to participate in questionnaire 

studies according to the UK Office for National Statistics (ONS, 2021). Other studies also 

reinforced this finding and identified “survey fatigue” as a major cause of reduced response 

rates during the pandemic (Rashid and Yadav, 2020; De Koning et al, 2021; Krieger et al, 2023). 

4.4.5 General Sample Characteristics 

The questionnaire was returned by 320 participants, each representing a manufacturing 

factory in the UK. Table 6 offers a summary of the characteristics of the sample. The sample is 

representative of small (55.3%), medium (17%) and large (27.8%) factories based on the 

number of employees. The majority of the factories are established in the market and are 

mostly older than two decades. 
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Table 6 Sample Characteristics 

Characteristics 

(Variable) 

Category % 

Factory Size 

(Employee number) 

1-100 37.2 

101-200 18.1 

201-300 11.9 

301-400 5.0 

401-500 7.5 

501 or More 20.3 

  

Factory Age (Years) Up to 5 5.0 

6-10 11.6 

11-15 13.1 

16-20 15.0 

21 or More 55.3 

  

Production Sector Industrial Equipment / Heavy Machinery 26.3 

Food and Beverage 11.6 

Automotive 10.0 

Consumer Electronics and Electrical Equipment 6.3 

Chemical / Petroleum and Plastic 5.3 

Construction and Building 4.4 

Aerospace 4.1 

Pharmaceutical and Medical Equipment 4.1 

Metal 4.1 

Wood / Paper / Packaging and Printing 3.8 

Fabric / Clothing 2.8 

Other Manufacturing 17.8 

  

Participant Role Factory Manager / Supervisor / Leader 47.5 

Operations Manager / Supervisor 24.4 

Technical Manager 10.6 
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Quality and Safety Manager 4.7 

Other Top Management 12.8 

  

Sample Size 320 

 

The sample is also highly representative of the diverse spectrum of industries involved in the 

UK manufacturing sector. The highest response was received from factories producing 

industrial equipment and heavy machinery for industrial purposes (26.3%). Other strategic 

sectors such as the food industry (11.6%) and the automotive sector (10%) were also fairly 

represented in the sample. The participants mostly (71.9%) fit with the target sample, 

including factory and operation managers or supervisors. Only a small percentage (15.3%) 

included participants from technical and quality management and other top management 

employees (12.8%), identified as other top management at the factory, such as factory 

owners, chief executive officers (CEO) and other executive roles that are classified as top-

management roles but may have varying terminology across different production sectors. A 

full list of the standard industrial code (SIC code) for the full sample is shown in Appendix G. 

4.5 Variables and Measures 

Measuring the reliability of the constructs is critical for any research. In social science, such 

constructs can be measured and quantified as variables by assigning numerical values to the 

observations (Walsh and Lynch, 2018). In management research, studies have investigated 

suitable and applicable construct selection criteria across several management domains, for 

instance, variable selection and measurement for studies on supply chain management 

(Tangpong, 2011), information systems (Sethi and King, 1991), and strategic management 

(Boyd, Gove and Hitt, 2005). In general, studies emphasise the careful selection of variables 

through exact specification and definition of the constructs measured, ensuring content 

adequacy, and fit between constructs and the core theory of the research (Schriesheim et al, 

1993; Petter, Rai and Straub, 2012; Nielsen, 2014). In practice, operationalising the variables 

requires variables to be measured on a scale and multiple questions (items) which need to be 

worded to best represent the theory, construct, and level of analysis of the study. 

In management research, Likert scales are widely used for measuring variables for survey 

research, yet the appropriateness of using Likert scales is debated within the literature due to 
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ambiguity related to the ranking order and distance between the scale options (Anjaria, 2022; 

Heo et al, 2022). Seven-point Likert scales were preferred to record the respondents' neutral 

perspective or mid-point (Chyung, 2017) and to give respondents enough freedom to express 

if they somewhat, mostly, or strongly agree or disagree with the items (questions/statements) 

that make up a variable. Conversely, while a 10-point Likert scale would have collected more 

detailed data the many response options would have complicated and obstructed reliable 

data collection and analysis (Dawes, 2008; Russo et al, 2021). In the context of technology 

implementation, seven-point Likert scales have been widely used for measuring capability 

(e.g., Letmathe and Rößler, 2022) and performance (e.g., Awan et al, 2021). 

For this study all the variables are multi-item scales, carefully screened and selected from the 

existing literature, measured on a Likert scale of one to seven. The use of existing measures is 

encouraged for theory testing as more reliable and valid constructs can be selected by the 

researcher (Wouters and Sportel, 2005; Hair, Page and Brunsveld, 2019; Walsh and Lynch, 

2018), while multi-item scales increase the reliability and validity of the construct (DeVellis, 

2003). For a few variables, the level of analysis had to be changed since the construct had not 

been previously studied at the factory-level. As such, items were carefully reworded to fit the 

factory level. Also, some items have been changed from a five-point to a seven-point Likert 

scale to fit with the rest of the variables in the model and simplify the data analysis stage. It 

should be noted, however, that for the structural equation modelling, data from Likert scale 

measures are handled as an ordinal as opposed to a linear scale (Schumacker and Lomax, 

2012; Awang, Afthanorhan and Mamat, 2016). Appendix H illustrates the measurement items 

of the model related to internal and external capability, the breadth of Industry 4.0, and 

factory performance. 

4.5.1 Design-Manufacturing Integration (DMI) 

Design-manufacturing integration represents a core capability of any manufacturing 

organisation to coordinate and to some degree amalgamate the routines and practices of the 

design and manufacturing departments, normally operating in isolation (Swink and Calantone, 

2004; Swink and Nair, 2007). Subunits such as individual factories with strong DMI can improve 

production agility (Zawadzki and Zywicki, 2016) and the quality of the manufactured product 

(Swink and Calantone, 2004; Turkulainen and Ketokivi, 2012). DMI was operationalised as an 
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independent variable impacting (antecedent to) the breadth of I4.0 and was adopted from 

Swink and Nair (2007). 

4.5.2 Manufacturing-Strategy Integration (MSI) 

Manufacturing-strategy integration represents the level of coordination and alignment 

between the strategy and manufacturing departments (Narasimhan, Swink and Kim, 2006). 

Such alignment is critical for communicating the core strategy for maintaining competitive 

advantage and business value (Machuca et al, 2011; Telukdarie et al, 2018). MSI also enables 

monitoring, scheduling, and control of tasks within the factory (Murugaiyan and Ramasamy, 

2021). Manufacturing-strategy integration was operationalised as an independent variable 

impacting (antecedent to) the breadth of I4.0 by adopting the items from (Narasimhan, Swink 

and Kim, 2006). 

4.5.3 Systems Integration (SI) 

Systems integration is defined by Barua et al, (2004) as the extent to which a firm, or in this 

case a factory, integrated various IT systems to provide visibility of customer and supplier data. 

This enables online information sharing and transaction across the value chain. This 

independent variable was operationalised by changing the firm to the factory level. 

4.5.4 Breadth of Industry 4.0 (I4.0B) 

The breadth of industry 4.0 technologies measured the number of advanced industry 4.0 

technologies deployed simultaneously. It refers to a first-order capability or ability of the 

factory to manage and orchestrate a diverse yet interconnected set of manufacturing 

technologies (Büchi, Cugno and Castagnoli, 2020; Cugno, Castagnoli and Büchi, 2021; Cugno 

et al, 2022; Bettiol et al, 2023). The breadth of I4.0 technologies was operationalised as the 

focal variable (dependent on the four higher-order capabilities and antecedent to 

performance) and measured ten technologies on a binary scale of either implemented or not 

implemented, adopted from Büchi, Cugno and Castagnoli (2020). 

4.5.5 Automation Performance (AP) 

The level of automation performance is defined by the collection and access to production 

data (Ittner and Macduffie, 1995), empowering managers' decision-making capability 

(Jayasekara et al, 2022; Hughes et al, 2022). Automation performance was operationalised as 

https://www.emerald.com/insight/search?q=Pachayappan%20Murugaiyan
https://www.emerald.com/insight/search?q=Panneerselvam%20Ramasamy


103 
 

a dependent variable and measured the level of automation for tool changing, job set up and 

preparation, the processing of a job or product, monitoring the production process, inspection 

process for less frequent checks, and material movement within the factory (Ritzman and 

Safizadeh, 1999). 

4.5.6 Production Cost Performance (CP) 

In manufacturing, cost control is attributed to the strategy and technology deployed (Boyer 

and Lewis, 2002; Achillas et al, 2017; Ward and Duray, 2000). Production cost was 

operationalised as a dependent variable and adapted from the factory-level study by Wong, 

Boon-itt and Wong (2011). 

4.5.7 Environmental Performance (EP) 

Adequate environmental performance is also required to ensure the reduction of emissions 

and adherence to guidelines and regulations (Kassinis and Nikos Vafeas, 2006; Liu and De 

Giovanni, 2019). Environmental performance was operationalised as a dependent variable 

adapted from Zhu and Sarkis (2004), changing the Likert scale from 5-points to 7-points, as 

with the remaining variables. 

4.5.8 Schedule Performance (SP) 

Adherence to the predetermined schedule is a competitive priority (Safizadeh et al, 1996; 

Netland and Aspelund, 2013), especially for factories increasing the operational complexity 

due to implementation of new technology (Rosenzweig, 2009) and increasingly complex 

supply chains due to the recent pandemic, for instance (Ge et al, 2022; Müller, Hoberg 

and Fransoo, 2022). This dependent variable was adapted from Bozarth et al, (2009) and only 

the scale was changed from a 5-point Likert to a 7-point Likert scale to maintain scaling 

consistency. 

6.5.9 Controls 

Factory size and production strategy defined the use of I4.0 and were controlled for testing 

the hypotheses. Studies commonly consider the organisation's size to be a defining and 

controlling factor for implementing technology and new processes (Netland et al, 2015; Lorenz 

et al, 2020). More importantly, industry 4.0 technology breadth is controlled by size based on 
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the number of employees (Büchi, Cugno and Castagnoli, 2020; Cua et al, 2001; Fullerton and 

McWatters, 2001; Shah and Ward, 2003; Mellat Parast and Oke, 2022). 

The production strategy also needs to be controlled in the model. Four different production 

strategies are classified by the literature, namely make-to-stock (MTS), make-to-order (MTO), 

assemble to order (ATO), engineer-to-order (ETO) (Olhager and Selldin, 2004; Lorenz et al, 

2020). Each strategy includes certain benefits and drawbacks. A hybrid production strategy is 

also used (e.g., MTO/ETO), as in the case of Barbosa and Azevedo, (2018), yet for this research 

the production strategy was measured as a categorical variable. 

4.6 Validity and Reliability 

The quality and legitimacy of the research findings relies on the appropriateness and quality 

of the research measures. In social sciences, particular attention is given to the design of the 

survey research to best represent the theory being tested. This includes careful consideration 

of the data collection process, comprising instrumentation and variable selection, validity 

checks of the selected constructs, and analysis of the data. Consequently, both the reliability 

of the constructs and the validity of the research define the quality and generalisability of the 

findings. As recommended by Forza (2002) and Rungtusanatham and Choi (2000), this is 

organised as a three-steps iterative process of initially checking face validity, followed by 

reliability assessment and construct validity assessment. The section below describes the 

research method used to minimise reliability and validity issues and improve the soundness 

and generalisability of the results. Chapter 5 elaborates on the statistics and values of 

reliability and validity for the variables in the model. 

4.6.1 Validity 

One of the major criteria for theory testing is the use of instruments and measures that have 

adequate internal and external validity. According to Forza (2002), the goodness of a measure 

can be determined by validity and reliability, defining validity as “whether we are measuring 

the right concept, while reliability is concerned with stability and consistency in measurement”. 

Validity in survey research refers to the alignment of a set of instruments with the true 

concept, checking if items indeed represent and identify the concept intended to be measured 

within the broader framework of theory testing (Moore, Harrison and Hair, 2021). Checking 

the validity of potential concepts during the literature review stage improves the quality of 
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the research and minimises the risk of erroneous data collection through selection of valid 

measures (Tharenou et al, 2007). Several types of validity can be checked to assess and ensure 

the quality of the measure and ensure the measure actually captures what was meant to be 

measured by the theory-based concept (Forza, 2002; Slater and Atuahene-Gima, 2004). For 

this study, validity was checked by assessing the face validity, content validity, construct 

validity (convergent and discriminant validity), predictive validity, and external validity. As 

examined in the next chapter, unidimensionality, construct validity and predictive validity are 

checked statistically by conducting confirmatory factor analysis (CFA) to determine 

convergent validity and analysing the average variance extracted (AVE) and using structural 

equation modelling (SEM) respectively (Forza, 2002; Slater and Atuahene-Gima, 2004; Becker, 

Rai and Rigdon, 2013). 

Face validity, as the name implies, is a rather subjective evaluation of whether the operational 

definition of the construct was diluted and misshaped the measure, or if the measure clearly 

relates to what was meant to be measured (Hair, 2015). Forza (2002) argues that face validity 

is adequate if “the measure ‘on its face’ seems like a good translation of the theoretical 

concept”. As face validity is dependent on the researcher’s judgment (Rungtusanatham et al, 

1998), adequacy of face validity was ensured by systematically reviewing the literature on 

extant measures of a particular concept. Furthermore, this was ensured by carefully selecting 

the measures and ensuring that all the measures have been previously checked for validity 

and tested by research in high-ranking management journals, such as “Journal of Operations 

Management”, “Production and Operations Management”, “MIS Quarterly”, “Technological 

Forecasting and Social Change”, and “International Journal of Operations & Production 

Management”. Consequently, the researcher compared seemingly similar measures 

representing the same concept, yet with different operational definitions and wording. 

Measures operationalised at different units-of-analysis and based on alternative theories, as 

well as vaguely worded measures from low-ranking journals, were avoided in favour of using 

measures uniquely testing the dynamic capability theory. This enabled the researcher to 

simplify the selection of the extant measures with the highest face validity (i.e., the measure 

that represented the concepts of the theory best). 

Content validity is a test to ensure that all of the items that make up a measure truly represent 

the concept (Churchill and Iacobucci, 2009). A variable with high content validity considers 

multiple aspects and dimensions of a concept, with the set of items directly representing the 
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main concept. Rungtusanatham (1998) defined content validity as “the degree to which the 

measure spans the domain of the construct’s theoretical definition’’. It should be noted, 

however, that despite meeting the reliability criteria (see section 4.7.2) a measure can fail to 

meet the content validity criteria if it is multidimensional (i.e., items measure dispersed topics 

that deviate from the concept) (Anderson and Gerbing, 1988; Sekaran and Bougie, 2016). 

Furthermore, the concept of content validity is debated in the literature, particularly in social 

indicators research (Sireci, 1998; Forza, 2002; Bobko, Roth and Buster, 2007). In operations 

management research, studies often rely on the traditional content validity approach of 

focusing on the “broader levels of the content domain and its relation to the test design” while 

fewer studies examine content validity as “the degree to which the content of a test 

appropriately represents its intended domain in terms of various criteria such as depth, 

breadth, or cognitive complexity” (Sireci and Faulkner-Bond, 2014). Like face validity, the 

content validity has been maximised by thoroughly reviewing the literature and using high-

ranking journals as the source of already tested and valid measures. 

Construct validity is the most important measure of validity for theory testing (Bagozzi et al, 

1991; Rungtusanatham and Choi, 2000). Forza (2002) defines a measure having construct 

validity if “the set of items constituting a measure faithfully represents the set of aspects of the 

theoretical construct measured”. Consequently, the focus is on assessing the alignment of the 

measurement questions with the main theory which is being tested (Hair et al, 2010; Hair et 

al, 2013; Hair et al, 2019). Construct validity is often assessed by checking the convergent and 

discriminant validity, the former checking the convergence between items of a construct and 

the latter checking separation between constructs. Convergent validity is achieved when items 

of the same concept are highly correlated. This is statistically checked through CFA to check 

for construct unidimensionality. Discriminant validity is achieved when two different 

constructs are statistically uncorrelated. This is statistically measured by comparing the square 

root of the average variance extracted (AVE) for latent constructs with the correlation 

between that construct and other constructs. A lack of discriminant and convergent validity 

represents inadequacy of the construct, or this could be an indication that the theory is 

unsuitable (Forza, 2002). 

Predictive validity and concurrent validity are criterion related. Respectively, these are 

achieved when the measure has the ability “to differentiate among individuals as to a future 

criterion” and when “the scale discriminates individuals who are known to be different” (Forza, 
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2002). However, as both are criterion-related validity, only predictive validity is tested for this 

research (Forza, 2002). Two methods are widely used to establish the predictive validity. 

Nomological validity refers to how well the predictions of a construct are confirmed and if 

they positively correlate with similar constructs (Wang and Netemeyer, 2004). Alternatively, 

the internal validity can be an indication of predictive validity. Internal validity errors occur 

when the causal conclusion is “less plausible than rival ones” according to Forza (2002), 

leading to erroneous conclusions. Structural equation modelling (SEM) is used to determine 

the predictive validity, as examined in the next chapter. 

Lastly, external validity refers to how well the results obtained from the research can be 

generalised across time and different settings (Tabachnick and Fidell, 2007; Drost, 2011) as 

well as findings among different individuals, groups, and occupations (Brutus et al, 2013). 

Improving external validity can broaden the audience for the findings of the research across 

similar research domains (Forza, 2002). Formal use of theory and using a standardised sample 

survey is also found to improve external validity (Scandura and Williams, 2000). Despite high 

levels of internal validity, maximising external validity can often lead to unclear and rather 

ambiguous causal relationships between the constructs, which can water down the findings 

in favour of generalisability (Aguinis and Bradley, 2014). This research focused on balancing 

both internal and external validity by ensuring the use of a sample survey and grounding the 

research model on an established and widely accepted theoretical lens from the literature. 

This allowed the researcher to measure and analyse the causal relationships in fine-grained 

detail and allow the results to be generalised. 

4.6.2 Reliability 

Another important method to assess the quality of the measure is reliability. As explained in 

the previous section, a comprehensive review of the literature enabled the selection of valid 

and highly reliable measures from the literature. Reliability measures internal consistency and 

is defined as indicating the predictability, dependability, consistency, stability, and accuracy 

of the set of items that make up a measure (Kerlinger, 1986). This refers to the ability of the 

measure to yield the same results for repeated tests under the same conditions (Carmines and 

Zeller, 1979; Forza, 2002). There are several established methods measuring reliability, 

including the test-retest, alternative-form, split-halves method, and internal consistency 

method (Forza, 2002). Although some measures were assessed using composite reliability (CR) 
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values (which exceed average Cronbach alpha values), this research used Cronbach alpha (α) 

values using the internal consistency method to assess reliability as it is analogous with CR and 

more widely accepted by scholars (Govindarajan and Kopalle, 2006; Field, 2009; Peterson and 

Kim, 2013; Cho and Kim, 2015). 

For this research the use of other methods was limited for several reasons. For instance, the 

test-retest method calculates the reliability for the same measure and respondent collected 

at different periods in time (Brown et al, 2004). In essence, this is not very practical to assess 

the ability of the measure to maintain stability over time as for this cross-sectional survey the 

respondents are top factory managers and hence not likely to re-participate or remember 

their previous responses (Forza, 2002; Vaus, 2013). This may cause unexpected and often 

inflated correlation between the reliability of the items of a measure, masking genuine 

increase or decrease in reliability with erroneous data, which can inflate reliability values. The 

alternative-form method also administers the measure at two different points in time (e.g., 

separated by two weeks) to the same respondent. The alternative-form method assesses the 

“equivalence of different forms for measuring the same construct” (Forza, 2002). The split-

halves method divides the items of a measure into two and measures and statistically 

correlates the responses for measuring the same construct. 

In contrast to the above, the internal consistency method is more applicable for this research 

as it measures several aspects of reliability. Cronbach coefficient alpha, proposed by 

Cronbach, 1951), is a common test used for internal consistency to assesses the equivalence, 

homogeneity, inter-correlation of items comprising a measure. According to DeVellis (2005), 

CR (α) “determine[s] inter-rater agreement when the ratings entail noncategorical data”, 

which makes this method suitable for multi-item measures on a Likert scale. CR is widely used 

in operations management research and is calculated using average inter-item correlation and 

the number of items. Consequently, to maximise the reliability and (α) value, three strategies 

have been used. First, in order to minimise unreliability, the wording of the items and the 

question of the measure were carefully considered. Vague wording and incoherent use of 

technical terms reduces the reliability, as do incomplete or partial responses. Second, all of 

the measures use multiple items to improve reliability. According to scholars, at least three 

items should measure the theoretical construct using as few items as possible to avoid 

overlapping and confusing questions (Cronbach and Meehl, 1955; Peter, 1979; Vaus, 2002). 

Lastly, as mentioned before, the CR and the CR value of the items were carefully checked in 

https://www.sciencedirect.com/science/article/pii/S0272696398000515#BIB18
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the literature review process to select reliable measures. However, after the data collection, 

reliability (α) is measured and reported. Acceptable alpha values should be equal to or above 

0.7 (although 0.6 is sometimes accepted), with values above 0.8 indicating good reliability 

(Nunnally, 1978; Forza, 2002, Taber, 2018). 

A lack of validity or reliability could lead to several types of errors and “disentangle the 

distorting influences of errors on theoretical relationships that are being tested” (Bagozzi and 

Phillips, 1991). According to Forza (2002), a lack of reliability has the propensity to introduce 

random error, while low validity causes systematic error and bias. As discussed above, both 

reliability and validity were carefully considered before and after data collection to minimise 

measurement inconsistency and uncertainty, while improving the generalisability of the 

research findings (Wikman, 2006). 

4.7 Data Analysis 

Data analysis for management surveys is often divided into two stages. Initially, the data is 

cleaned, and preliminary data analysis is conducted using SPSS and AMOS (both version 28) 

to acquire knowledge about the data characteristics (e.g., frequency distributions, 

correlations, central tendencies) and to conduct measurement quality assessment. This is 

followed by the second stage of the data analysis, conducting significance tests and checking 

the hypotheses (Forza, 2002). During the theory testing stage, the researcher was not merely 

considering the specific statistical test needed but also the interpretation of the statistical 

results to avoid statistical and internal validity errors. 

4.7.1 Exploratory Data Analysis 

During the first stage the data was cleaned, and personal information was separated from the 

main response data to maintain confidentiality and anonymity. Exploratory factor analysis 

(EFA) was used to explore the dimensionality of the constructs, assess the quality of the 

measurements, and examine the interrelationships among the items. In contrast to 

confirmatory factor analysis or CFA (conducted in stage two), in EFA factors are not assigned 

based on the underlying theory, rather the factors are derived from the data statistics (Hair et 

al, 2019). Principal component analysis (PCA) was used as the factor extraction method as the 

researcher was interested in checking the factor structure and maximum variance, as opposed 

to the common variance shared by the variables, which uses the Principal Axis Factoring (PAF) 
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method. Subsequently, the factors were rotated to simplify the structure of the results and 

facilitate interpretation. In management studies, orthogonal rotation methods such as 

Varimax or Quartimax are commonly used. Varimax maximises the variance of factor loadings 

within each factor, while Quartimax maximises the sum of squared loadings (Treiblmaier and 

Filzmoser, 2010; Howard, 2023). In interpreting the results, the researcher examined three 

values. Specifically, the factor loadings indicated the relationship between each item and each 

factor, communalities represented the amount of variance explained by the factors, and 

eigenvalues represented the amount of variance explained by each factor (Hair, Page and 

Brunsveld, 2019; Hair et al, 2019). At this stage the researcher checked if the items load 

strongly (>0.8) onto a specific factor. Based on the theoretical and conceptual foundations and 

the size and significance of the loadings the researcher decided on retaining or removing 

items. 

4.7.2 Confirmatory Data Analysis 

For the second stage, four main tests were conducted, including the initial reliability and 

validity checks as well as multiple regression and structural equation modelling (SEM). 

Construct validity (see section 4.8.1) was checked in AMOS using CFA. Initially, the model was 

drawn up, and maximum likelihood was selected as the estimation method. The data was 

interpreted based on fit indices such as the Comparative Fit Index (CFI), Tucker-Lewis Index 

(TLI), Root Mean Square Error of Approximation (RMSEA), and Standardized Root Mean 

Square Residual (SRMR). Consequently, the researcher examined the standardized factor 

loadings to assess the strength and significance of the relationships between the latent 

constructs and the observed indicators. In addition, modification indices were considered to 

make any necessary modifications driven by theoretical justification. Similarly, convergent 

validity was checked by analysing the average variance extracted (AVE) values. An AVE value 

of 0.50 or higher indicates that at least 50% of the variance in the construct is accounted for 

by its indicators, which is considered acceptable for convergent validity (Hair et al, 2019; 

Cheung et al, 2023). Nonetheless, depending on the research field and the theoretical 

significance of the construct, lower values can be accepted. For instance, If AVE is less than 

0.5, but reliability is good, the convergent validity of the construct could be adequate (Fornell 

and Larcker, 1981). The result of the CFA was interpreted based on common cut off values. 

CFI and TLI values above 0.90 are often considered acceptable, while values above 0.95 

indicate a very good fit. RMSEA and SRMR values below 0.08 are considered acceptable, while 
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values below 0.05 indicate a good fit. In addition to validity, the reliability (α) of the measures 

was also checked using SPSS (see section 4.8.2). All values were above the cut off threshold of 

0.7, with some measures reaching a Cronbach alpha value of above 0.9, indicating very high 

reliability. 

Multiple regression is a dependence approach to determine the value of one dependent 

variable based on multiple independent variables (Hair et al, 2019). To minimise the risk of 

type 1 and type 2 errors, the researcher checked certain assumptions on multicollinearity, 

linearity, normality, outliers, and homoscedasticity (Ganzach, 1998; Tabachnick and Fidell, 

2007; Garson, 2012; Hair et al, 2019). Particularly for multicollinearity, occurring due to high 

correlation, the tolerance is required to be above 0.10, and the variance inflation factor (VIF) 

coefficient needs to be below the value of 10 for the constructs (Goodhue, Lewis and 

Thompson, 2017; Kalnins, 2018). For the research model tested in this study it was impractical 

to conduct only one regression as the model has multiple dependent variables. Consequently, 

the relation of the four antecedents to the breadth of I4.0 was tested using multiple 

regression. This was followed by multivariate multiple regression, testing the second part of 

the model with the breadth of I4.0 as the independent variable and the four performance 

outcomes as the dependent variables. Therefore, the breadth of I4.0 was designated as a 

dependent variable in the first regression and as an independent variable in the second 

regression.  

Multiple regression determines the change in the dependent variable due to the independent 

variables, enabling the researcher to understand the specific contribution of each 

independent variable. On the other hand, multivariate multiple regression analysis examined 

the combined effect of the independent variable on all dependent variables simultaneously. 

However, in interpreting the results, the researcher considered the relationships between the 

independent variable and each dependent variable separately. For both regression analyses 

the researcher checked the regression coefficients, p-values, R-squared values, and other 

relevant statistics to reveal the relationship between the variables. For the multiple 

regression, according to Hair et al (2019), the regression coefficient (weights), or more 

commonly the standardised coefficients (β), is used as a statistical measure of the change in 

the dependent variable for a one-unit change in the corresponding independent variable, 

while holding all other independent variables constant. Positive coefficients indicate a positive 

relationship, while negative coefficients indicate a negative relationship, and the magnitude 
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of the coefficients reflects the strength of the relationship. Lastly, regression analysis enabled 

the researcher to check for unexpected signs or significance, which could be an indication of 

endogeneity in OM research (Ketokivi and McIntosh, 2017; Hill et al, 2021). It is important to 

consider endogeneity in social research as it could lead to significant data misinterpretations 

due to high correlation with the error term or due to omitted variables, a measurement error, 

simultaneity, or reverse causality. 

To test the research hypotheses AMOS SEM was used, which combines regression and factor 

analysis. SEM is a powerful statistical technique suitable for complex relationships among the 

variables (Hoyle, 2012; Hair, Ringle and Sarstedt, 2011; Hair, Gabriel and Patel, 2014). CB-SEM 

enabled the researcher to test the full theoretical model and conduct other tests such as 

confirmatory factory analysis (CFA). AMOS provided a user-friendly graphical interface that 

facilitated model specification and modification with easily modifiable path diagrams. The 

covariance-based SEM uses Maximum Likelihood (ML) as the estimation method, but other 

methods such as PLS-SEM are also suitable, though they may provide different values (Hair et 

al, 2021; Sarstedt et al, 2023).  

Several reasons motivated the researcher to use maximum likelihood (ML) covariance based 

(CB) structural equation modelling (SEM). CB-SEM assumes that the observed variables follow 

a multivariate normal distribution, and it was preferred over PLS-SEM and other estimation 

methods due to the large sample size of this study. This is because the CB-SEM can handle 

violations of normality and other assumptions. Also, the ML-CB estimation method is more 

suitable for confirmatory studies based on large sample sizes that test theory using a factor-

based model as opposed to exploratory analysis (Dash and Paul, 2021). ML is efficient for 

achieving the lowest possible variance among unbiased estimators in large samples. This 

estimation method provides consistent and unbiased parameter estimates, which converge 

to the true population parameters. ML-CB-SEM provides more rigorous and well-established 

model fit assessment measures, such as the chi-square statistic and fit indices such as CFI, TLI, 

RMSEA for better specification, estimation, and evaluation. These fit indices are not as 

extensively developed in GLS-SEM. The CB estimation method can also more effectively 

manage multicollinearity among the predictor variables by incorporating them into latent 

constructs, reducing the impact of collinearity on the estimates. These benefits allow the 

researcher to comprehensively evaluate how well the proposed model fits the observed data. 

In contrast, PLS-SEM traditionally relies more on prediction-oriented measures such as R-
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squared rather than fit indices. This method is widely used for similar empirical studies on 

industry 4.0 (Zott and Amit, 2007; Chauhan, Singh and Luthra, 2021; de Sousa Jabbour et al, 

2022). 

For the SEM, several cut off values are considered in order to accept or reject the hypotheses 

and determine the fit of the model with the data. The chi-square (X2) statistic tests the 

divergence between the observed and expected covariance matrices. A non-significant chi-

square (p > 0.05) value suggests a good fit, yet this is not considered as an ultimate measure 

of fit, as achieving a significant chi-square test result is common in large samples (Sharpe, 

2015; Kline, 2015). Chi-square is reported in research relative to the degree of freedom (df). 

Ratio values (X2/df) less than or equal to 2.00 are indicative of a very good fit between the 

model and the data (Byrne, 2016). The Comparative Fit Index (CFI) compares the fit of the 

hypothesised model with that of a baseline model (null model). A CFI with a value closer to 1 

indicates a better fit, with cut off values of 0.90 as a minimum and values of indicative 0.95 as 

higher fit (Mia, Majri and Rahman, 2019). Similarly, the Tucker-Lewis Index (TLI) compares the 

fit of the hypothesised model with that of the null model, and again values closer to 1 indicate 

a better fit (Hair et al, 2019). Lastly, the Root Mean Square Error of Approximation (RMSEA) 

estimates the divergence between the hypothesised model and the population covariance 

structure. In this case, values closer to 0 indicate a better fit with RMSEA values of 0.08 or 

lower, indicating acceptable fit, and values of 0.05 or lower indicate a good fit (Chen et al, 

2008; Xia and Yang, 2019). 

4.7.3 Common Method Variance 

Common method variance (CMV) causes significant issues for the interpretation of the results. 

In management studies, CMV can cause inflated correlation and biased regression coefficients, 

which could mislead the researcher (Malhotra, Kim and Patil, 2006; Chang, Van Witteloostuijn 

and Eden, 2020; Bozionelos and Simmering, 2022). The main causes of CMV include 

methodological features of the survey, such as the wording of items and response scale 

format, which drives the covariance among the variables, as opposed to the underlying 

constructs, leading to inflated relationships among them. The aim was to mitigate this 

deviation in variance by carefully considering the wording of the questions, response scales, 

and other design issues identified during the questionnaire pilot study (see section 4.4) and 



114 
 

put into practice during the questionnaire design (see section 4.9) (Podsakoff, MacKenzie and 

Podsakoff, 2012). 

CMV was statistically checked during the preliminary data analysis using two methods, 

examining the loadings during EFA (see section 4.11.1) and Harman’s single-factor test 

(Podsakoff et al, 2003). The latter test checked the eigenvalues and factor loadings of the first 

factor extracted. If the first factor explains a substantial portion of the variance and many 

variables load heavily on it, it may indicate potential CMV. Table 8 shows the result of the 

Harman’s single-factor test, indicating a percentage variance of 20.59, which is below the 50% 

acceptance threshold (Podsakoff, MacKenzie and Podsakoff, 2012). Therefore, CMV was not 

considered an issue in this study. 

 

Table 7 Harman's One-Factor test 

Factor Initial Eigenvalues 
 

Extraction Sums of Squared Loadings 

 
Total 

% of 
Variance 

Cumulative 
% Total % of Variance Cumulative % 

1 12.063 21.933 21.933 
11.32
4 20.590 

20.59
0 

 
 

4.8 Research Ethics 

Ethical considerations throughout the processes of primary data collection, data analysis, 

storage and data reporting constitutes an important aspect of survey studies in social science 

and management research (Sekaran and Bougie, 2016, p.159; Bell and Bryman, 2022, p.123). 

This required the researcher to take several measures to ensure adherence to ethical 

standards. Initially, the researcher submitted an ethical approval form, which was approved 

by the ethics committee of Newcastle University. Adhering to academic ethical standards 

during the research process aimed at improving the quality of the research data obtained, 

protect the rights of participants, and maintain the integrity of the research process (Broom, 

2006; Crow et al, 2006). 

Transparency was prioritised from the onset of data collection. Participants were precisely 

informed on the purpose of the study, who it is for and who may participate, what the data 

will be used for and who will use it, as well as the duration of the questionnaire. The welcome 
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page provided the above information and a consent form, which allowed participants to 

choose if they would like to take part in the study by entering their PID. This enabled the 

researcher to obtain informed consent from each participant. Participants who needed more 

time to complete the questionnaire were compensated accordingly for the extra time, even if 

the questionnaire was completed in more than twice the expected time. This is because 

participants may not have completed the questionnaire under similar conditions and were 

therefore compensated fairly and equally. In addition, sensitive questions, which could have 

caused resistance by participants, such as exact factory performance and questions on gender, 

were deleted during the questionnaire design phase to avoid any unethical questions and the 

risk of alienating participants (Singer, 2018, p.79; Saunders, Lewis and Thornhill, 2019, p.178). 

More importantly, ethical screening of the questions ensured questions were not 

manipulated, inflated, or misrepresented, maintaining data accuracy and transparency. 

Confidentiality and anonymity was also a critical consideration during transfer, data analysis 

and data storage (Cho and LaRose, 1999; Oberski and Kreuter, 2020). Confidentiality was 

maintained by ensuring that personal information such as location and PID’s would not be 

released and kept separate from the survey response data. This was also supported by 

avoiding the unencrypted data transfer of personal information and examination of the data 

in aggregate. Therefore, only data at the group level was examined in the summary statistics. 

Similarly, anonymity refers to keeping the identity of the participants unknown. This ensured 

that participants' responses cannot be tracked back to the identity of the participants. In 

general, the data was anonymised after collection to avoid bias and adhere to anonymity 

guidelines, while the survey response data was kept confidential (Bryman and Bell, 2011). 

4.9 Chapter Conclusion 

This chapter discussed the methodology used to respond to the two research questions 

mentioned in the introduction. Initially, the chapter explained the research philosophy and 

the research strategy. This was followed by examining the data collection method and 

sampling procedure. The operationalisation of the variables and measures was explained 

based on the research model. The final sections explained the methods used to assess the 

validity and reliability of the measures and elaborated the data analysis process. Finally, the 

research ethics and implications for transparency and confidentiality was explained. 
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Chapter 5. Research Results 

 

5.1 Introduction 

The following chapter discusses the results of the data analysis stage of the study. Initially the 

chapter will discuss the screening process of the data, which includes identifying any outliers, 

checking homoscedasticity and multicollinearity. This is followed by confirmatory factor 

analysis and the multiple regression results. Lastly, the descriptive statistics and correlation 

results are shown, followed by the hypothesis testing results. 

 

5.2 Data Screening 

Screening the data is important to meet the criterion for accurate statistical analysis and 

correct interpretation of the results. This is because certain assumptions, such as the 

possibility of outliers, missing data, normality, homoscedasticity, linearity, and 

multicollinearity, need to be checked. This is the case for multivariate regression (Tabachnick 

and Fidell, 2007; Yoon and Millsap, 2007), both exploratory and confirmatory factory analysis 

(Osborne and Costello, 2009; Brown, 2015), as well as for structural equation modelling (Kline, 

2015). This study used IBM SPSS version 28 to initially check for any reverse coded items. In 

this case one item was reverse-coded and no univariate outliners or missing data were 

observed. The screening of the data indicated that the constructs are linearly connected, and 

their variances are homogenously distributed. Lastly, the tolerance and variance inflation 

factor values were checked to confirm a lack of multicollinearity, as shown below. 

5.2.1 Missing Data 

Missing data can be a major cause of analysis manipulation and distortion of the results. 

Although cases with less than 10% missing data can be included in the study (Hair et al, 2010), 

half a dozen cases were missing more than 50% of the data and were deleted based on 

recommendations (Tabachnick and Fidell, 2007; Little and Rubin, 2019). However, due to the 

rigorous questionnaire design and distribution method, including addon web-tools (see 

chapter 4), participants were urged and indeed required to respond to each question before 

proceeding. This resulted in no missing responses or data from the completed questionnaires. 
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To confirm the lack of missing data, two tests were conducted. First, a frequency check was 

conducted in SPSS to check every variable. The results indicated no missing values for each of 

the variables across the 320 cases. In addition, a missing value analysis using expectation 

maximization (EM) algorithm to estimate missing data points, which is the preferred method 

for cases that experience little or no interdependency between the input variables 

(Nelwamondo, Mohamed and Marwala, 2007). The results again indicate no missing data for 

any of the cases, as illustrated in Appendix I. 

5.2.2 Univariate and Multivariate Outliers 

Collected data can sometimes include responses that have extreme values on the variables 

(Schumacker and Lomax, 2004). These cases are classified as outliers and in extreme cases 

they can lead to distortions in the analysis, potentially inflating the mean, standard deviation, 

and correlation values (Tabachnick and Fidell, 2007). There are many reasons for the presence 

of outliers in the dataset, from errors in data collection, instrument error to partial survey 

instructions and inadequate design. Outliers are cases that differ from most responses and 

therefore need to be examined with care, explained or removed (Schumacker and Lomax, 

2004; Field, 2009; Hair et al, 2010). The presence of such outliers should ideally be checked at 

both the univariate level, probing for extreme values on a single variable, and the multivariate 

level, to check for extreme values that impact two or more variables (Hair et al, 2010; Hair et 

al, 2014). 

Based on the literature recommendations two methods were used to identify and check any 

univariate outlier, the IQR method and the more sensitive z-score method (Field, 2009; Field, 

2013; Templ, Gussenbauer and Filzmoser, 2020). Initially, the interquartile range (IQR) was 

checked to make sure the range between the first quartile (Q1) and the third quartile (Q3) of 

the data that falls below Q1 - 1.5 * IQR or above Q3 + 1.5 * IQR is considered as a potential 

outlier. There were 471 potential extreme cases, yet all on the low the low side (see appendix 

I). The IQR method, however, is far less sensitive compared to the z-score method and 

therefore less strict in terms of classifying cases as having outliers (Templ, Gussenbauer and 

Filzmoser, 2020). Checking the more sensitive z-scores, which was calculated by dividing both 

skewness and kurtosis by their corresponding standard error, allowed for a more sensitive 

identification of outliers. Accordingly, the z-scores, also known as standardized values, need 

to be between ±3.29, with any cases exceeding these values in the positive or negative 
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indicating outliers (Field, 2013). In total, six cases that showed a z-score of more than ±3.29, 

as well as several z-scores between ±2.0, which represented possible univariate outliers, were 

individually checked (See appendix J). These cases were kept, however, as explained below. 

To check for multivariate outliers the Mahalanobis distance (D2) is measure ford each case. 

The D2 is a statistical measure of the distance between a point and a distribution in 

multivariate space while considering the correlations between variables in the dataset 

(Ghorbani, 2019). Distances that represent potential outlier cases are also relatively higher 

compared to other cases. Specifically, the p1 and p2 values illustrate cases with multivariate 

outliers, which have to be carefully examined. Several sensitivities are used in the literature 

to define the p1 and p2 values, which refer to the power parameters that can be used to adjust 

the sensitivity of the distance calculation.  AMOS uses the Manhattan distance (p1 = 1 and p2 

= 1), which is less sensitive to outliers, in contrast to the squared Euclidean distance (p1 = 2), 

yet adequate in this case. The default value of p2 = 1 indicates that the Mahalanobis distance 

is not statistically transformed to calculate the p1 and p2 values for the 320 cases. 

The test results for multivariate outliers shown in Appendix J illustrate the Mahalanobis 

distances and p values for top cases with potential outliers. In the results table, the p1 values 

indicate the probability of D2 exceeding the observed value, while the p2 values show the 

probability of the top largest with D2 exceeding the observed value. Consequently, while small 

numbers of p1 are expected, values of p2 less than 0.001 are indicative of outliers (Hair et al, 

2014). These cases were carefully and individually checked and found not to misrepresent the 

phenomenon being measured for several reasons. First, though extreme in value, the extreme 

responses were related to schedule attainment and strategy. Considering that data collection 

occurred during the Covid-19 pandemic, different scheduling performance and strategic 

priorities are expected across the range and type of factories in the sample. Also, the extreme 

cases, after individual review, were deemed acceptable in relation to the remaining cases in 

the dataset as the data is not too deviant from the remaining cases. Checking the role, 

experience, and other characteristics of the respondent further validated the quality of the 

data for these cases. Ultimately, deleting the most extreme cases did not significantly change 

the fit, with values dropping from (CFI=0.87, GFI=0.765, RMSEA=0.068) to (CFI=0.842, 

GFI=0.765, RMSEA=0.069), while no change in regression results was observed. As none of the 

cases indicated unusual responses they were kept in the dataset and not deleted, which also 
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avoids selection bias and preserves the integrity of the data (Tabachnick, Fidell and Ullmann 

2013; Hair et al, 2014). 

5.2.3 Univariate and Multivariate Normality 

An important assumption for data analysis is normality of the data. Non normal data that is 

too skewed or kurtotic violates the parametric assumption of statistical tests such as 

regression and structural equation modelling (Hair et al, 2014; Zhou and Shao, 2014). 

Univariate normality is checked using the Shapiro-Wilk and Kolmogorov-Smirnov tests 

(Drezner, Turel and Zerom, 2010; Razali and Wah, 2011). If the p-value is greater than the 

chosen significance level (0.05), the null hypothesis is not rejected. This suggests that there is 

not enough evidence to claim that the data significantly deviates from a normal distribution. 

On the other hand, if the p-value is less than or equal to the significance level, we reject the 

null hypothesis. This implies that the data significantly deviates from a normal distribution, 

indicating non-normality. As shown in table 9, p-values are less than 0.05, indicating non-

normality. 

 

Table 8 Univariate Normality tests (Kolmogorov-Smirnova and Shapiro-Wilk) 

Tests of Normality 

 Kolmogorov-Smirnova Shapiro-Wilk 

 Statistic df Sig. Statistic df Sig. 

I4.0B .105 320 <.001 .962 320 <.001 

DMI .076 320 <.001 .977 320 <.001 

MSI .111 320 <.001 .956 320 <.001 

SI .124 320 <.001 .948 320 <.001 

AP .068 320 .001 .980 320 <.001 

CP .095 320 <.001 .973 320 <.001 

SP .125 320 <.001 .936 320 <.001 

EP .104 320 <.001 .935 320 <.001 

Factory Size .227 320 <.001 .801 320 <.001 

Production Strategy .352 320 <.001 .708 320 <.001 

a. Lilliefors Significance Correction 
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To check for multivariate normality, several methods were used. First, Mardia’s Test was 

conducted, then the Q-Q plots were examined, followed by checking the skewness and 

kurtosis values. 

Mardia’s Test calculates the z-skewness and z- kurtosis for each variable. Acceptable results 

for Mardia's Test depend on the significance level (0.05) chosen by the researcher and the 

sample size (n=320). Generally, if the p-values associated with the test statistics are greater 

than the chosen alpha level, it is concluded that there is no significant evidence to suggest 

that the data deviate from multivariate normality (Mardia, 2004). 

Results in table 10 found the p-values for skewness and kurtosis not to be significant (i.e., p-

value<0.05), indicating that the data is significantly deviant from multivariate normality 

(Mardia, 1974; Byrne, 2010). Mardia’s skewness value of zero indicates a multivariate normal 

distribution, while higher values indicate a more severe deviation from normality. In this case 

a value of 7.33 indicated moderate skewness. The expected Mardia’s kurtosis value for a 

multivariate normal distribution of eight variables is equal to p*(p + 2) or 8*(8+2) =80 (Doornik 

and Hansen, 2008; Cain, Zhang and Yuan, 2016). The 91.8 value for kurtosis slightly exceeds 

the 80-cut-off value in this case, indicating a lack of multivariate normality. This is not 

problematic for this study, however, as p values above the threshold of α = 0.05 are considered 

to be unproblematic even if the data is non-normally distributed (Lumley et al, 2002; Knief and 

Forstmeier, 2021). Moreover, ordinal data that measures responses on a Likert scale is 

expected to show some signs of non-normality as responses vary while categorical data does 

not require the assumption of normality. 

 

Table 9 Mardia's multivariate normality test 

Mardia's multivariate skewness and kurtosis (N of Variables) 

                  B z p-value 

Skewness 7.333052 391.096113 0 

Kurtosis 91.803386 8.346255 0 

Kurtosis values were checked to ensure that the items are not kurtotic, which can lead to 

inaccurate SEM results (due to deviating variances) given the maximum likelihood estimation 
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method often used in AMOS (Yuan, Bentler and Zhang, 2005; Kline, 2011; Byrne; 2013). As 

shown in table 11, no variable is kurtotic, as values are far below the acceptable threshold of 

7. In fact, some sources argue that kurtosis values between -2 and +2 are indicative of normally 

distributed data (George and Mallery, 2010). Skewness values are acceptable if they range 

between -1 and +1, which for large sample sizes is often considered acceptable. Some studies 

adopt a less strict skewness cut-off value of 3 (Finney and DiStefano, 2006), while others such 

as Hair et al, (2014) argue that both kurtosis and skewness values should be between -2.58 

and +2.58. The tests suggest symmetrically distributed data, with no item strongly skewed to 

left or right. A stricter method to check for skewness is to check if the absolute value of the 

skewness is less than three times the value of the standard error, identifying four variables 

with skewed data, though within limits, due to varying factory capabilities and performance. 

This is also due to the large sample size, as larger sample sizes are more likely to produce 

significant (non-normal) results. 

 

Table 10 Descriptive Statistics 

Descriptive Statistics 
 

Minimum Maximum Mean Std. 
Deviation 

Skewness Kurtosis 

Statistic Statistic Statistic Statistic Statistic Std. 
Error 

Statistic Std. 
Error 

I4.0B 0.00 10.00 4.8344 2.78724 0.112 0.136 -0.853 0.272 

DMI 1.00 7.00 4.9083 0.94176 -0.567 0.136 1.117 0.272 

MSI 1.00 7.00 5.2953 0.99460 -0.869 0.136 1.322 0.272 

SI 1.00 7.00 4.8219 1.27248 -0.816 0.136 0.351 0.272 

AP 1.00 6.67 3.5156 1.31198 -0.132 0.136 -0.706 0.272 

CP 1.00 7.00 4.4891 1.31481 -0.416 0.136 -0.414 0.272 

SP 1.00 7.00 5.0594 1.41241 -0.797 0.136 0.101 0.272 

EP 1.00 7.00 4.9599 1.38234 -0.889 0.136 0.500 0.272 

Factory Size 1 6 2.88 1.961 0.577 0.136 -1.264 0.272 

Production 
Strategy 

1 4 1.67 0.949 1.267 0.136 0.459 0.272 

Valid N (listwise) 320 

 

The data shows signs of univariate normality based on acceptable skewness and kurtosis 

values. However, multivariate normality is an issue, as shown in Appendix K. Shapiro-Wilk and 

Kolmogorov-Smirnov tests, Mardia’s test and close analysis of the Q-Q plots revealed 
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multivariate non-normal distribution of the data. This was the case even after deleting the top 

10 to 30 most problematic (outlier prone) cases and repeating the tests, with negligible 

changes to normality test results. As explained above, this could be due to the large sample 

size, yet can be corrected statistically by using bootstrapping for SEM and regression. 

Bootstrapping creates subsamples from the original dataset set and uses resampling 

techniques that can greatly benefit non-normal data as it does not assume any specific 

distribution for the underlying data (Finney and DiStefano, 2006; Byrne, 2013). Other more 

stable SEM methods such as partial least square (PLS) also correct for lack of normality 

(Goodhue, Lewis and Thompson, 2012). 

5.2.4 Linearity and Homoscedasticity 

Linearity and homoscedasticity are important assumptions for regression analysis to ensure 

adequate result validity and reliability. Linearity assumes that there is a linear relationship 

between the predictor (independent) variables and the dependent variable, which could 

explain proportional changes in the outcome variable directly due to change in the predictor 

variables (Hair et al, 2014). The Q-Q Plot (Quantile-Quantile Plot) was checked to ensure cases 

are close to the central line, indicative of normality. Appendix L shows the Q-Q plots for the 

variables, which compares the quantiles of the observed data with the quantiles of the 

expected distribution. For this study, all the cases are recorded near the central diagonal line, 

indicating normally distributed data. 

Linearity assumption is met if the plots follow a linear line (Kline, 2011), which is the case for 

this study (See Appendix M). Homoscedasticity or constant variance assumes that the 

differences between the observed and predicted values is consistent across all the predictor 

variables. This assumption ensures that the model’s predictions are unbiased and reliable. 

Unequal variance of residuals (heteroscedasticity) can influence the accuracy of hypothesis 

testing during SEM (Kline, 2011; Byrne; 2013). Therefore, to check for homoscedasticity the 

scatter plot is checked by plotting the residuals against the predictor variables. In this case the 

assumption is met as the points in the plot are scattered randomly around the zero line and 

do not form a clear pattern. 
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5.2.5 Multicollinearity 

The issue of multicollinearity occurs if two or more of the independent variables are strongly 

correlated (Shrestha, 2020; Vörösmarty and Dobos, 2020). Multicollinearity can lead to 

inflated standard errors (reducing the precision of estimates), reduced model stability and 

ultimately misleading interpretation of the importance of the predictions. Two values are 

often checked to assess the multicollinearity: tolerance levels and the variance inflation factor 

(VIF). Tolerance values below 0.90 and VIF values below 10 are considered as acceptable 

(Tabachnick and Fidell, 2007; Hair et al, 2010). None of the variables suffer from 

multicollinearity as both the tolerance and VIF values are within the acceptable range, as 

shown in Table 12. 

 

Table 11 Multicollinearity test (Tolerance and VIF) 

 Construct Tolerance VIF 

1 DMI 0.740 1.352 

2 MSI 0.595 1.681 

3 SI 0.646 1.548 

4 AP 0.667 1.500 

5 CP 0.939 1.065 

6 SP 0.778 1.285 

7 EP 0.688 1.453 

8 Factory Size 0.810 1.235 

9 Production Strategy 0.954 1.049 

 

The collinearity of the constructs was further analysed by checking the Condition Index and 

Eigenvalues. The Condition Index is a measure of multicollinearity among a set of predictor 

variables, with a large condition index indicating high multicollinearity. Similarly, the 

Eigenvalue indicates the amount of multicollinearity present in the data, with small 

Eigenvalues indicating high multicollinearity. Minimal collinearity is observed if CI < 30 and 

Eigenvalue > 0.01; collinearity is moderate if 30 < CI < 100 and 0.01 > Eigenvalue > 0.0001. 

High collinearity is observed if CI > 100 and Eigenvalue < 0.0001 (Alin, 2010; Hair et al, 2014; 

Aguirre-Ureta and Rönkkö, 2017; Kaur and Singh, 2019). Table 13 presents the collinearity 

diagnostics, showing that all Eigenvalues and Condition Index values indicate minimal 

collinearity. 
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Table 12 Collinearity diagnostics 
 

Model 

1 2 3 4 5 6 7 8 9 10 

Eigenvalue 9.181 0.285 0.227 0.081 0.070 0.048 0.042 0.034 0.017 0.015 

Condition Index 1.000 5.680 6.366 10.654 11.423 13.843 14.723 16.404 23.321 24.627 

            

V
ar

ia
n

ce
 P

ro
p

o
rt

io
n

s 

(Constant) 0.00 0.00 0.00 0.01 0.00 0.01 0.05 0.01 0.05 0.88 

DMI 0.00 0.00 0.00 0.00 0.00 0.02 0.19 0.03 0.60 0.15 

MSI 0.00 0.00 0.00 0.00 0.01 0.00 0.04 0.00 0.65 0.30 

SI 0.00 0.00 0.00 0.00 0.05 0.00 0.02 0.89 0.02 0.01 

Factory 
Size 

0.00 0.70 0.09 0.19 0.00 0.00 0.00 0.01 0.01 0.00 

Production 
Strategy 

0.00 0.03 0.89 0.00 0.00 0.00 0.03 0.02 0.00 0.01 

AP 0.00 0.00 0.01 0.68 0.10 0.18 0.00 0.00 0.00 0.03 

CP 0.00 0.01 0.00 0.13 0.69 0.00 0.05 0.02 0.01 0.09 

SP 0.00 0.01 0.00 0.05 0.09 0.62 0.07 0.12 0.04 0.00 

EP 0.00 0.00 0.00 0.02 0.02 0.30 0.46 0.20 0.01 0.00 

a. Dependent Variable: I4.0B 

 

5.3 Confirmatory factor Analysis 

Confirmatory Factor Analysis is a statistical technique often used for analysing survey data, 

specifically for analysing the underlying structure of a set of observed variables (items) and to 

confirm the existence of the latent constructs (factors) that these items measure (Brown, 

2015). It is an important step in the process of validating the model by checking if the variables 

are indeed indicators of the underlying latent constructs. Also, CFA identifies the number of 

latent factors that best explain the observed relationships among the variables, enabling item 

reduction if needed to attain better model fit (Hair et al, 2014; Hair et al, 2019). Due to the 

focus on factors in CFA it represents a measurement model in structural equation modelling. 

Ultimately, SEM uses a combination of such measurement models and structural models to 

test and validate the theoretical relationships between variables (Byrne, 2016). 

5.3.1 CFA Results 

The evaluation of the overall measurement model using various goodness-of-fit indices 

determines the fit of the model. The fit indices assess the extent to which the model can 

reproduce the observed data. A model with a good fit indicates a high level of consistency 

between the theoretical model and the empirical data, and it therefore does not require 
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significant modifications (Kenny, 2015). If the model fit was inadequate, accurate and valid 

interpretation of the causal paths in the structural model would not be possible (Byrne, 2016; 

Hair et al, 2019; Kline, 2015). To this end, model re-specification can identify a better-fitting 

model that both statistically fits the data well and maintains practical and substantive 

theoretical implications (Marsh et al, 2004; Raykov and Marcoulides, 2018). During model re-

specification it is important to balance the statistical adequacy of the model with theoretical 

coherence. 

5.3.2 Goodness of Fit Results (Original Model) 

In line with the recommendations of Hair et al, (2010), the current study reports multiple fit 

indices to assess the model fit of the Confirmatory Factor Analysis (CFA) model. The fit indices 

include Chi-square (X2), Comparative Fit Index (CFI), Incremental Fit Index (IFI), Tucker-Lewis 

Index (TLI), and Root Mean Square Error of Approximation (RMSEA). By employing this 

approach, the researcher used both absolute and incremental fit indices. This aimed to 

provide a comprehensive evaluation of the model's goodness of fit, considering different 

aspects of model performance. 

Specifically, CFI, IFI, and TLI values above 0.95 and RMSEA values below 0.08 are often 

considered indicative of good fit (Hu and Bentler, 1999; Brown, 2015). However, CFI, IFI, and 

TLI values above 0.090 and RMSEA values below 0.06 are acceptable (Hair et al, 2010). For the 

original model, the fit indices are: X2(1006) = 2032.209, P<.000, X2/df=2.0, IFI=0.869, TLI=.858, 

CFI=0.868, RMSEA=0.057. The results indicate acceptable RMSEA and X2/df values, yet the 

values of the incremental fit indices (CFI, IFI, TLI) are below acceptable levels, requiring re-

specification of the model. 

5.3.3 Model Re-specification 

There are several methods recommended in the literature to improve fit results. Some studies 

argue for the use of alternative or nested models (Schumacker and Lomax, 2012) and the use 

of an alternative estimation strategy, such as generalised least square (GLS-SEM), which does 

not assume multivariate normality (Henseler, Ringle and Sarstedt, 2015; Xing, Yuan and 

Bentler, 2019). Alternatively, model re-specification can be conducted to improve fit. 

Compared to the two previous methods, model re-specification may be preferred If 

theoretical justification for the modifications exists. For SEM in strategic management 
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research, it is argued that “alternative models should have been proposed a priori rather than 

making a posteriori changes” (Shook, Ketchen and Hult, 2004). 

Model re-specification involves iteratively modifying the model based on theoretical and 

empirical grounds. This is accomplished by adjusting factor loadings, error covariances, or 

freeing constraints on factor variances and covariances to improve the fit with the observed 

data (Bollen, 1989). In this case, first the loadings were checked, with observed variables 

deleted based on their contribution to the model's fit and theoretical relevance (Brown, 2015). 

This was followed by assessment of the residual matrix and modification indices. 

The aim is to find a model that not only achieves acceptable fit indices but also aligns with the 

underlying DC theory and provides meaningful insights into the relationships between the 

latent constructs and observed variables (Marsh et al, 2004; Shah and Goldstein, 2006; Raykov 

and Marcoulides, 2018; Mia, Majri and Rahman, 2019). This was a careful process, with the 

researcher aware of “the trade-offs inherent in transforming data” (Shook, Ketchen and Hult, 

2004). In this case the researcher followed the guidelines of Hair et al, (2010) to re-specify the 

model as follows: 

 

Step one: factor loadings assessment 

Examining the loadings can reveal the relationships between the observed indicators and 

underlying latent constructs. Factor loadings indicate the strength and direction of the 

relationship between each observed variable and the latent factor it is intended to measure 

(Byrne, 2001; Hair et al, 2010; Byrne, 2013). According to Hair et al (2010), the cut-off value of 

0.5 was used to determine the strength of the standardised loadings. Respectively, three items 

scored a loading below 0.5 (DMI-6, CP-4, I4.0B-5, and I4.0B-6), as shown in table 14, which are 

potential candidates for deletion. Unlike the first two items and I4.0B-6, the fourth item (I4.0B-

5) had a loading of 4.61, which is close to the 0.5 threshold. Therefore I4.0B-5 was not deleted 

despite the low loading due to three reasons. First, the breadth of I4.0 is a new construct in 

the literature and despite the high reliability values (see section 5.4.2) it is possible that for 

lesser-known technologies (in this case, cyber security and cloud computing) it indicates lower 

loadings and AVE values than expected. Second, it is important to maintain the total breadth 

of I4.0 technologies, if possible, in the final model to adhere to the underlying theory to be 

able to contrast the higher-order capabilities against a more complete set of I4.0 technologies. 
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Third, lowering the number of items for I4.0B will reduce the construct reliability. Lastly, as 

shown in the next step, deleting only DMI-6, CP-4, and I4.0B-6 was enough to notably improve 

the model fit. 

 

Table 13 Standardised factor loadings 

Construct Label Factor Loading 

Design Manufacturing Integration DMI-1 0.653 

Design Manufacturing Integration DMI-2 0.726 

Design Manufacturing Integration DMI-3 0.686 

Design Manufacturing Integration DMI-4 0.577 

Design Manufacturing Integration DMI-5 0.511 

Design Manufacturing Integration DMI-6 0.370* 

Manufacturing Strategy Integration MSI-1 0.740 

Manufacturing Strategy Integration MSI-2 0.610 

Manufacturing Strategy Integration MSI-3 0.540 

Manufacturing Strategy Integration MSI-4 0.691 

Manufacturing Strategy Integration MSI-5 0.794 

Manufacturing Strategy Integration MSI-6 0.854 

Systems Integration SI-1 0.671 

Systems Integration SI-2 0.782 

Systems Integration SI-3 0.860 

Systems Integration SI-4 0.786 

Systems Integration SI-5 0.696 

Automation Performance AP-1 0.663 

Automation Performance AP-2 0.753 

Automation Performance AP-3 0.773 

Automation Performance AP-4 0.785 

Automation Performance AP-5 0.734 

Automation Performance AP-6 0.688 

Cost Performance CP-1 0.834 

Cost Performance CP-2 0.92 
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Cost Performance CP-3 0.818 

Cost Performance CP-4 0.414* 

Schedule Performance SP-1 0.921 

Schedule Performance SP-2 0.934 

Schedule Performance SP-3 0.618 

Schedule Performance SP-4 0.67 

Environmental Performance EP-1 0.78 

Environmental Performance EP-2 0.875 

Environmental Performance EP-3 0.9 

Environmental Performance EP-4 0.837 

Environmental Performance EP-5 0.796 

Environmental Performance EP-6 0.861 

Breadth of I4.0 I4.0B-1 0.555 

Breadth of I4.0 I4.0B-2 0.516 

Breadth of I4.0 I4.0B-3 0.649 

Breadth of I4.0 I4.0B-4 0.597 

Breadth of I4.0 I4.0B-5 0.461 

Breadth of I4.0 I4.0B-6 0.341* 

Breadth of I4.0 I4.0B-7 0.535 

Breadth of I4.0 I4.0B-8 0.514 

Breadth of I4.0 I4.0B-9 0.577 

Breadth of I4.0 I4.0B-10 0.635 

 

Step two: residual matrix assessment 

Standardised residuals reflect the discrepancies between the observed covariance matrix and 

the model-implied covariance matrix. Acceptable values for standardized residual covariances 

are typically small, indicating that the model provides a good fit to the data (Schumacker and 

Lomax, 2012; Byrne, 2013). Researchers can utilize modification indices based on these 

residuals to identify areas where model improvement may be needed (Kline, 2015; Byrne, 

2016). Assessing the standardised covariance matrix in AMOS revealed only a few residual 

values higher than the 2.58 cut-off value but all were related to DMI-6 and CP-4, cases 

experiencing low factor loadings. 
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Step three: Modification indices assessment 

Deleting three items with low factor loadings (DMI-6, CP-4) improved the model yet it did not 

meet the acceptance levels for the fit indices. Modification indices were checked to reveal 

paths that could potentially be freed to improve the model fit (Hair et al, 2014). Nonetheless, 

modification indices should be perceived judiciously and not be blindly followed without 

careful consideration and assessment of the factor loading and standardised residuals. Making 

modifications (freeing paths) solely based on high modification indices can lead to overfitting 

or model misspecification (Bollen, 1989; Schumacker and Lomax, 2004; Kline, 2015. p.285). 

 

Table 14 Modification indices 

Error term (item) M.I. Par 
Change 

e42 <-->* e43 133.091 1.321 
e34 <-->* e35 79.589 0.718 
e34 <--> e37 26.875 -0.424 
e32 <-->* e33 26.819 0.217 
e29 <-->* e30 21.568 0.19 
e31 <-->* e32 21.408 0.231 
e11 <--> e12 20.755 0.216 
e62 <--> e63 18.631 0.089 
e37 <--> e38 17.283 0.34 
e29 <--> e33 17.108 -0.166 

a* Error terms correlated. 

 

While precise thresholds may vary within the broader academic discourse, modification 

indices around 4.0 or above generally suggest a significant potential for enhancing fit by 

allowing the estimation of the associated path. Table 15 shows the three paths freed between 

the error terms for neighbouring items of performance constructs due to minor measurement 

item overlap. The five highest error term modification indices were correlated in AMOS, as 

shown in table 15. Most notably, freeing the first path between e42 and e43 in (M.I. = 133.091) 

improved the model fit by a notable margin.  Despite the option to free the path of one error 

term to two separate other error terms, the path between e34 and e37 was not freed due to 

a negative par change value, which indicated negative impact on model fit if freed. Similarly, 
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the remaining error terms with modification indices above 4 were not correlated due to a lack 

of theoretical and empirical justification. 

5.3.4 Goodness of Fit Results (Respecified Model) 

Based on the three-step model re-specification process explained above, three items were 

deleted (DMI-6, CP-4, I4.0B-6) and the paths between the error terms of three items were 

freed. The goodness of fit figures for the re-specified model are: X2 (871) =1396.53, P<.000, 

X2/df =1.603, IFI=0.930, TLI=0.923, CFI=0.929, RMSEA=0.043. As shown in Table 16, the model 

fit is significantly improved with acceptable fit indices but also aligns with the underlying DC 

theory and provides meaningful insights into the relationships between the latent constructs 

and observed variables in SEM (Shah and Goldstein, 2006; Raykov and Marcoulides, 2018; Mia, 

Majri and Rahman, 2019). The new model also indicated improved reliability and validity for 

the two constructs that had an item removed (DMI and CP), with I4.0B-6 showing a negligible 

0.001 change in reliability due to the removed item. 

 

Table 15 Original model and re-specified model comparison 

Fit indices Original model Re-specified model 

X2 (df) 2032.209 (1006) 1396.531 (871) 

X2 / df 2.0 1.603 

IFI 0.869 0.930 

TLI 0.858 0.923 

CFI 0.868 0.929 

RMSEA 0.057 0.043 

 

5.4 Validity and Reliability 

As explained in chapter 4.8, reliability and validity are important measures of construct 

quality. Accordingly, construct, convergent, and discriminant validity, as well as reliability for 

the re-specified model, are shown and explained in the sub-sections below. 
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5.4.1 Construct Validity 

Construct validity is important in management research. It is critical to check if a measurement 

instrument effectively captured the underlying latent construct it aimed to measure (Hair et 

al, 2014; Hair et al, 2022). Convergent validity was first checked during the CFA and 

discriminant validity was checked by comparing the square root of the average variance 

extracted (AVE) for each variable with the correlations between that variable and all other 

latent variables (Meade and Lautenschlager, 2004; Sarstedt, Ringle and Hair, 2021). As 

explained in the previous chapter, this ensures that the observed indicators reflect the 

theoretical concept being studied. 

Convergent validity examines the extent to which multiple indicators of the same construct 

converge and share common variance (Rigdon et al, 2021). Convergent validity was assessed 

using Confirmatory Factor Analysis (CFA) and checking the standardised regression weights. 

Factor loadings represent the strength and direction of the relationship between each 

indicator and the latent construct. Generally, Items associated with a construct with factor 

loadings above 0.7 indicate stronger convergent validity, while values above 0.5 indicate good 

validity (Hair et al, 2014; Hair et al, 2022). Table 17 shows the factor loading of the re-specified 

model, with all loadings at satisfactory levels and only one case (I4.0B-5) showing moderate 

yet still acceptable loading (0.441). Two reasons contributed to keeping this item. First, the 

measure related to cloud computing and as an important factory specific I4.0 ICT technology, 

the item contributed significantly to measuring a more complete breadth of I4.0 technologies. 

Second, Hair et al, (1998, p.112) indicate that a factor loading of 0.45 needs a sample size of 

150 to be significant, or 350 for a factor loading of 0.30. Therefore, a factor loading of 0.441 is 

acceptable for the sample size of this study, which is 320. Other studies also suggest that a 

factor loading of 0.45 is fair (Comrey and Lee, 1992; Tabachnick and Fidell, 2007), while some 

even use 0.4 as the cut-off value for exclusion (Stevens, 1992). 

 

Table 16 Standardised factor loadings (Re-specified model) 

Construct Label Factor Loading 

Design Manufacturing Integration DMI-1 0.681 

Design Manufacturing Integration DMI-2 0.739 

Design Manufacturing Integration DMI-3 0.668 
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Design Manufacturing Integration DMI-4 0.501 

Design Manufacturing Integration DMI-5 0.476 

Manufacturing Strategy Integration MSI-1 0.742 

Manufacturing Strategy Integration MSI-2 0.611 

Manufacturing Strategy Integration MSI-3 0.541 

Manufacturing Strategy Integration MSI-4 0.690 

Manufacturing Strategy Integration MSI-5 0.793 

Manufacturing Strategy Integration MSI-6 0.854 

Systems Integration SI-1 0.670 

Systems Integration SI-2 0.782 

Systems Integration SI-3 0.860 

Systems Integration SI-4 0.786 

Systems Integration SI-5 0.696 

Automation Performance AP-1 0.580 

Automation Performance AP-2 0.690 

Automation Performance AP-3 0.772 

Automation Performance AP-4 0.823 

Automation Performance AP-5 0.755 

Automation Performance AP-6 0.696 

Cost Performance CP-1 0.826 

Cost Performance CP-2 0.933 

Cost Performance CP-3 0.811 

Schedule Performance SP-1 0.925 

Schedule Performance SP-2 0.939 

Schedule Performance SP-3 0.582 

Schedule Performance SP-4 0.639 

Environmental Performance EP-1 0.787 

Environmental Performance EP-2 0.889 

Environmental Performance EP-3 0.912 

Environmental Performance EP-4 0.824 

Environmental Performance EP-5 0.763 

Environmental Performance EP-6 0.838 
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Breadth of I4.0 I4.0B-1 0.562 

Breadth of I4.0 I4.0B-2 0.527 

Breadth of I4.0 I4.0B-3 0.642 

Breadth of I4.0 I4.0B-4 0.584 

Breadth of I4.0 I4.0B-5 0.441 

Breadth of I4.0 I4.0B-7 0.538 

Breadth of I4.0 I4.0B-8 0.524 

Breadth of I4.0 I4.0B-9 0.581 

Breadth of I4.0 I4.0B-10 0.638 

 

Convergent validity is also evaluated by examining composite reliability, and average variance 

extracted (AVE). Composite reliability is a measure of the internal consistency of the indicators 

measuring a construct. It assesses the extent to which the indicators consistently measure the 

underlying construct. A composite reliability value above 0.7 is generally considered 

acceptable (Hair et al, 2022). Average Variance Extracted (AVE) quantifies the amount of 

variance captured by the indicators in relation to measurement error. AVE values greater than 

0.5 indicate good convergent validity, revealing that the indicators collectively account for 

more variance in the construct than measurement error (Hair et al, 2022). As shown in Table 

18, all measures indicate a CR value above the threshold, with most measures scoring above 

0.86, while AVE is low for DMI and I4.0B, indicating weak convergent validity for these two 

measures yet strong reliability. 

 

Table 17 Reliability and validity (CR, AVE) 
 

CR AVE MSV DMI MSI SI CP EP AP SP I4.0B 

DMI 0.772 0.409 0.272 0.639 
       

MSI 0.859 0.508 0.281 0.522 0.713 
      

SI 0.873 0.580 0.281 0.345 0.530 0.762 
     

CP 0.893 0.737 0.088 0.007 0.113 0.126 0.858 
    

EP 0.933 0.701 0.238 0.318 0.466 0.488 0.176 0.837 
   

AP 0.867 0.523 0.354 0.348 0.444 0.367 0.137 0.431 0.723 
  

SP 0.863 0.621 0.234 0.316 0.464 0.484 0.296 0.354 0.346 0.788 
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I4.0B 0.805 0.317 0.354 0.436 0.356 0.356 0.100 0.423 0.595 0.197 0.563 

Bold figures represent the square root of average variance extracted from the observed variables. 

Off-diagonal: correlations between constructs 

 

Discriminant validity checks whether the construct being measured is distinct from other 

related constructs (Roemer, Schuberth and Henseler, 2021; Hair et al, 2022). This was checked 

by comparing the AVE of each construct with the squared correlations between that construct 

and other constructs in the model. When the AVE of a construct is greater than its correlations 

with other constructs, discriminant validity is established. This is accepted for all measures 

except for I4.0B due to low AVE. In addition, maximum shared variance (MSV) measures the 

highest proportion of variance shared between any two constructs in the model. Acceptable 

values for MSV need to be below the AVE (Average Variance Extracted) of each construct to 

conclude discriminant validity. The rationale is that if the maximum shared variance is smaller 

than the average variance extracted for each construct, this indicates that the constructs are 

more distinct from each other than they are related. All measures are accepted except for 

I4.0B, yet this does not indicate a lack of validity. This is because an AVE value below 0.5 is 

accepted if composite reliability (CR) is greater than 0.6, indicating acceptable convergent 

validity of the construct (Fornell and David, 1981; Gefen, Rigdon and Straub, 2011; Lam, 2012; 

Henseler, Ringle and Sarstedt, 2015; Rönkkö and Cho, 2022). Therefore, despite the low AVE 

value for the breadth of I4.0 construct, the model indicated strong reliability (CR) and 

convergent validity and good discriminant validity. 

5.4.2 Construct Reliability 

To support the convergent validity and reliability (CR) test results of the previous section, the 

Cronbach Alpha of the measures is calculated and presented in this section for the original 

and re-specified model. The Cronbach Alpha value is assessed based on the internal 

consistency or reliability of a set of items (Tavakol and Dennick, 2011; Hair et al, 2020). A 

Cronbach Alpha value below 0.6 is deemed poor, a value greater than 0.7 is considered good 

and values greater than 0.9, though acceptable in certain circumstances, may suggest 

redundancy or duplication among the items (Hulin, Netemeyer and Cudeck, 2001; Sürücü and 

Maslakci, 2020). The Cronbach Alpha values of the original and re-specified model is shown in 

Table 19, showing all reliability values to be above 0.7, indicating strong to excellent reliability 
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for all measures. Specifically, for DMI and CP the reliability of the measure improved notably 

after removing the final item for each measure.  

 

Table 18 Cronbach Alpha for original and re-specified model 

Construct Original model 

Cronbach’s Alpha 

Re-specified model 

Cronbach’s Alpha 

DMI 0.739 0.762 

MSI 0.852 0.852 

SI 0.873 0.873 

AP 0.874 0.874 

CP 0.831 0.891 

EP 0.935 0.935 

SP 0.877 0.877 

I4.0B 0.804 0.803 

 

5.5 Hypothesis Testing 

This section presents the regression results used to check the hypotheses. The first part of the 

model examined the positive relation of the factory manager's integration capability on the 

factory’s breadth of I4.0 technologies. This relation was tested using multiple regression. The 

second part of the model examined the positive relation of the breadth of I4.0 technologies 

on factory performance measures, representing competitive advantage. This was checked 

using multivariate multiple regression (Dattalo, 2013). The hypotheses are tested in this 

section and summarised in addition to the SEM results in the next section. 

Combining the results of the regression analysis and SEM provides a more comprehensive 

understanding of the relationships, particularly for comparing complex models with a focal 

variable (Bollen and Pearl, 2013 p.301-328; Byrne, 2016; Kline, 2016). The regression results 

are also used to assess the robustness of the SEM results as the former analyses the two parts 

of the model separately and in more detail (MacCallum and Austin, 2000). 
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5.5.1. Effect of integration capability on Breadth of I4.0 

The result of the multiple hierarchical regression is shown in Table 12 with the breadth of I4.0 

as the dependent variable. The regression tests the first three hypotheses of the study, 

namely: (H1) higher levels of design-manufacturing integration are positively related to the 

breadth of I4.0; (H2) higher levels of manufacturing strategy integration are positively related 

to the breadth of I4.0; and (H3) higher levels of systems integration are positively related to 

the breadth of I4.0. This relationship was controlled by factory size and production strategy. 

 

Table 19 Dependent variable: Breadth of I4.0 

 Model 1 Model 2 

Control Variables   
Factory Size 0.335*** 0.282*** 
Production Strategy 0.127* 0.121* 

Independent Variables   
Design Manufacturing Integration  0.269*** 

Manufacturing Strategy Integration  0.065 
Systems Integration  0.157*** 

   
R2 0.148 0.290 
Adjusted R2 0.138 0.279 
R2 Change 0.143 0.147 

***, **, * indicate a significance level of .001, .01, and .05, respectively  

N = 320. Standardised coefficients Beta (β) are reported. 

 

As shown in Table 20, factory size was an important and significant control factor for the 

breadth of I4.0, with the following values for the first model (β = 0.335; t-value=6.358; p < 

0.001). This strong relationship was also true even after adding the independent variables to 

the model (β = 0.282; t-value=5.719; p < 0.001). Production strategy, though to a far lesser 

degree, was associated with the breadth of industry 4.0, with values of β = 0.127; t-

value=2.415; p < 0.016 for the first model and β = 0.121; t-value=2.489; p < 0.013 for the 

second model after adding the independent variables. 

The first hypothesis was supported (β = 0.269; t-value=5.018; p < 0.001), showing design 

manufacturing integration to have a strong and positive relationship with the breadth of I4.0. 

This supports prior data on design manufacturing integration as a higher-order capability and 

antecedent to manufacturing technology implementation (Swink and Nair, 2007; Swink, 
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Narasimhan and Wang, 2007). The second hypothesis was not supported (β = 0.065; t-

value=1.104; p < 0.271), indicating not enough evidence to reject the null hypothesis. In other 

words, manufacturing strategy integration is not related to the breadth of I4.0 with low betta 

values and a p-value far greater than 0.05, showing strong non-significance. Consequently, 

manufacturing strategy integration is not found to improve the breadth of I4.0 technologies 

at the factory, which may indicate that this higher-order capability is more relevant to 

efficiency improvements such as leanness and agility rather than technology implementation 

(Narasimhan, Swink and Kim, 2006). The third hypothesis was supported (β = 0.157; t-

value=2.899; p < 0.004), indicating that systems integration has a positive and significant 

relation with the breadth of I4.0, as further explained in Chapter 6. 

5.5.2 Effect of Breadth of I4.0 on factory performance 

The results of the multivariate multiple regression (MMR) shown in Table 21 tested the second 

part of the model. In this section, H4 to H7 were checked to assess if they were supported or 

rejected.  

 

Table 20 Multivariate tests 

 

Value F 
Hypothesis 

df 
Error df Sig. 

Partial Eta 
Squared 

Noncent. 
Parameter 

Observe
d 

Powerd 

In
te

rc
e

p
t 

Pillai's 
Trace 

0.824 357.335b 4.000 305.000 0.000 0.824 1429.339 1.000 

Wilks' 
Lambda 

0.176 357.335b 4.000 305.000 0.000 0.824 1429.339 1.000 

Hotelling's 
Trace 

4.686 357.335b 4.000 305.000 0.000 0.824 1429.339 1.000 

Roy's 
Largest 
Root 

4.686 357.335b 4.000 305.000 0.000 0.824 1429.339 1.000 

Fa
ct

o
ry

 S
iz

e
 

Pillai's 
Trace 

0.057 4.627b 4.000 305.000 0.001 0.057 18.509 0.946 

Wilks' 
Lambda 

0.943 4.627b 4.000 305.000 0.001 0.057 18.509 0.946 

Hotelling's 
Trace 

0.061 4.627b 4.000 305.000 0.001 0.057 18.509 0.946 

Roy's 
Largest 
Root 

0.061 4.627b 4.000 305.000 0.001 0.057 18.509 0.946 

P
ro

d
u

ct
io

n
 

St
ra

te
gy

 

Pillai's 
Trace 

0.002 .170b 4.000 305.000 0.954 0.002 0.679 0.086 

Wilks' 
Lambda 

0.998 .170b 4.000 305.000 0.954 0.002 0.679 0.086 

Hotelling's 
Trace 

0.002 .170b 4.000 305.000 0.954 0.002 0.679 0.086 
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Roy's 
Largest 
Root 

0.002 .170b 4.000 305.000 0.954 0.002 0.679 0.086 
I4

.0
-b

re
ad

th
 

Pillai's 
Trace 

0.349 3.269 36.000 1232.00
0 

0.000 0.087 117.679 1.000 

Wilks' 
Lambda 

0.671 3.569 36.000 1144.71
4 

0.000 0.095 119.965 1.000 

Hotelling's 
Trace 

0.461 3.884 36.000 1214.00
0 

0.000 0.103 139.809 1.000 

Roy's 
Largest 
Root 

0.392 13.401c 9.000 308.000 0.000 0.281 120.609 1.000 

a. Design: Intercept + Factory Size + Production Strategy + I4.0Breadth_Res 

b. Exact statistic 
c. The statistic is an upper bound on F that yields a lower bound on the significance level. 

d. Computed using alpha = .05 

 

The test results indicated Wilk’s lambda, Lawley–Hotelling trace, Pillai’s trace, and Roy’s 

largest root to be statistically significant for both the intercept and breadth of I4.0 

technologies (p < .001) (Dattalo, 2013). It is therefore concluded that there are differences 

among the dependent variables as a function of the breadth of I4.0. Similar to the hierarchical 

regression in the last section, factory size is significant, while production strategy is not 

significantly related to the breadth of I4.0 technologies of the factory. 

In MMR the sum of squares stands for Sum of Squares, representing the variability in the 

dependent variable that is explained by the predictor variable (breadth of I4.0). Similarly, the 

F-value is a ratio of the mean squares and tests the null hypothesis that the predictor variable 

does not have a significant effect on the dependent variable. Mean Square is the SS divided 

by the corresponding degrees of freedom. It provides a measure of the average amount of 

variability explained by the predictors. Lastly, the R2 values are presented for each dependent 

variable. It is important to note, however, that the R2 values for each dependent variable may 

not indicate the unique variance explained for that DV by the independent variable (breadth 

of I4.0) as a proportion of total variance explained for all DVs (Dattalo, 2013). Table 22 shows 

the R2 value, SS, and F-value for each dependent variable. 

 

Table 21 Test between-Subject Effects 

Dependable 

Variable 

Type III Sum of 

Squares 

df Mean 

Square 

F Sig. Partial Eta 

Squared 

AP 201.531a 11 18.321 16.236 0.000 0.367 
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CP 19.138b 11 1.740 0.802 0.638 0.028 

EP 107.837d 11 9.803 6.018 0.000 0.177 

SP 22.677c 11 2.062 1.035 0.415 0.036 

a. R Squared = .367 (Adjusted R Squared = .344) 
b. R Squared = .028 (Adjusted R Squared = -.007) 
c. R Squared = .036 (Adjusted R Squared = .001) 
d. R Squared = .177 (Adjusted R Squared = .148) 
e. Computed using alpha = .05 

 

The results indicated support for (H4), showing the breadth of I4.0 to have a positive and 

significant impact on factory automation performance (SS=201.53, R2=3.67, Adj R2=0.322, 

F=16.23, p<0.000). The results for production cost performance indicated non significance and 

acceptance of the null hypothesis for H5 (SS=19.138, R2=0.28, Adj R2=0.007, F=0.802, 

p<0.638). The sixth hypothesis (H6) was supported, showing a positive and significant relation 

between Breadth of I4.0 and factory environmental performance, SS=107.83, R2=1.77, Adj 

R2=0.148, F=6.018, p<0.000. Lastly, H7 was rejected due to low significance, indicating a lack 

of support for rejecting the null hypothesis (SS=22.67, R2=0.036, Adj R2=0.001, F=1.035, 

p<0.415). 

5.5.3 Structural Regression Model (SEM) and Summary of the Hypotheses  

As the previous two sections analysed the model in two parts, structural equation modelling 

was conducted to test the hypotheses of the complete model, as shown in figure 5. Unlike the 

CFA, which analysed the measurement model, the SEM analyses the structural model. Similar 

fit indices were used to assess model fit, including chi-square, normed chi-square, CFI, P value, 

IFI, TLI, CFI, and RMSEA with similar cut-off values to CFA (Hu and Bentler, 1999; Niemand and 

Mai, 2018; Rappaport, Amstadter and Neale, 2020). The results of the SEM and the 

hypothesised relationships are summarised in Table 15. The model fit for the SEM achieved 

lower values in comparison to the measurement model during the CFA procedure. This is 

because of higher complexity among the measures of the structural model compared to the 

measurement model (Marsh, Hau and Wen, 2004). The fit for the structural model was X2 

(651) =1293.2, X2/df =1.986, IFI=0.908, TLI=0.899, CFI=0.907, RMSEA=0.056. Although the IFI 

value was 0.001 point below acceptable values the remaining fit indices indicated good model 

fit. 
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Figure 5 Research structural model and hypotheses (Standardised values) 

 

The reported SEM result in Table 23 was analysed based on the estimated path coefficient β 

value, critical ratio (C.R. is equivalent to t-value), and p-value. A t-value greater than or equal 

to 1.96 and a p value of ≤ .05 indicate significance of the path coefficient between predicator 

variables and outcome variables (Byrne, 2013; Schumacker and Lomax, 2016). 

 

Table 22 SEM results (unstandardised values) 

Hypotheses Estimates (C.R.)  R2 S.E. Supported 

H1: DMI → Breadth of I4.0 1.199*** (4.056) 0.275 0.296 Yes 

H2: MSI → Breadth of I4.0 0.06       (0.347) 0.175 - 

H3: SI → Breadth of I4.0 0.349**   (2.660) 0.131 Yes 

H4: Breadth of I4.0 → AP 0.206*** (8.273) 0.324 0.025 Yes 

H5: Breadth of I4.0 → CP 0.053     (1.758) 0.010 0.030 - 

H6: Breadth of I4.0 → EP 0.188*** (6.881) 0.151 0.027 Yes 

H7: Breadth of I4.0 → SP 0.099*** (3.318) 0.036 0.030 Yes 

Factory Size 0.381*** (5.956)  0.064  

Production Strategy 0.335* (2.539)  0.132  

X2 (651) =1293.2, X2/df =1.986, IFI=0.908, TLI=0.899, CFI=0.907, RMSEA=0.056 

*p < .05. **p < .01. ***p < .001. 

The results of the structural equation modelling revealed that five out of seven hypotheses 

were supported. Regarding the antecedents to the breadth of I4.0, H1 and H3 were supported, 
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showing a strong and significant contribution of design manufacturing integration and systems 

integration capability in relation to the breadth of I4.0 technologies. Conversely, H3 was not 

supported due to low statistical significance and therefore it can be concluded that there is 

not enough evidence to reject the null hypothesis in this case. Similar to the multiple 

regression results, industry 4.0 indicated a positive and significant relation with both 

automation performance and environmental performance, supporting H4 and H6 

respectively. However, the breadth of I4.0 was not found to be positively and significantly 

related to cost performance, therefore rejecting H5. Unlike the regression results, the breadth 

of I4.0 was found to be positively and significantly related to schedule performance, 

supporting H7. There is further justification of why the hypotheses were supported, and more 

crucially why H2 and H5 were rejected, in the next chapter. 

5.6 Bootstrapping Procedure Results 

Bootstrapping is a resampling technique that can be used to estimate the sampling 

distribution of a statistic, such as regression coefficients, factor loadings, or indirect effects. 

Bootstrapping can be useful when dealing with non-normal data or when the assumptions of 

traditional methods like Maximum Likelihood Estimation (MLE) are not met (Awang, 

Afthanorhan and Asri, 2015). Initially, the Bollen-Stine bootstrap p-value was tested for the 

null hypothesis that the sample data fits the population covariance matrix. A p-value above 

0.05 suggests that the data fit the population covariance matrix well, implying that the 

assumption of multivariate normality is supported by the data. In this case the p-value (0.000) 

was below 0.05, suggesting that bootstrapping is not significant (Arbuckle, 2006). It should be 

noted, however, that the Bollen-Stine value is sensitive to large sample sizes (Gerbing and 

Anderson, 1992; Iacobucci, 2010; Kline, 2016). While a low Bollen-Stine p-value indicates that 

the data fit the population covariance matrix well, the data might still deviate from 

multivariate normality in ways not captured by this test. Bootstrapping was used for the 

regression in SPSS and for the SEM in AMOS, with 2,000 samples using the ML estimation 

method, and with 95% bias-corrected confidence intervals. Table 24 shows the standard error 

for the maximum likelihood model without and with bootstrapping. Table 25 shows the results 

of the unstandardised bias-corrected intervals. For the model the confidence intervals for the 

main paths do not include zero, therefore the null hypothesis cannot be rejected. 
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Table 23 Comparison of bootstrap and ML standard errors –unstandardized estimates 

Hypotheses S.E. ML 

Estimates 
S.E. Bootstrap Estimates 

H1: DMI → Breadth of I4.0 0.296 0.298 

H2: MSI → Breadth of I4.0 0.175 0.178 

H3: SI → Breadth of I4.0 0.131 0.129 

H4: Breadth of I4.0 → AP 0.025 0.026 

H5: Breadth of I4.0 → CP 0.030 0.029 

H6: Breadth of I4.0 → EP 0.027 0.026 

H7: Breadth of I4.0 → SP 0.030 0.028 

 

Table 24 Bias-corrected confidence intervals –unstandardized estimates 

Hypotheses Estimate Lower Upper P 

H1: DMI → Breadth of I4.0 1.199 0.684 1.847 0.001 

H2: MSI → Breadth of I4.0 0.06 -0.288 0.401 0.74 

H3: SI → Breadth of I4.0 0.349 0.085 0.589 0.01 

H4: Breadth of I4.0 → AP 0.206 0.155 0.257 0.001 

H5: Breadth of I4.0 → CP 0.053 0 0.111 0.048 

H6: Breadth of I4.0 → EP 0.188 0.14 0.242 0.001 

H7: Breadth of I4.0 → SP 0.099 0.042 0.153 0.002 

 

5.7 Chapter Conclusion 

This chapter has provided a comprehensive view of the statistical results of the data analysis 

stage. The chapter started by explaining the process of cleaning and organising the data to 

prepare it for analysis. Confirmatory factor analysis (CFA) was done to show the goodness of 

fit for the measurement model and the process of improving the fit. Also, the validity and 

reliability of the measures was shown to be within acceptable levels. Lastly, the hypothesis 

testing results were shown for the multiple regression, multivariate multiple regression, and 

the structural equation model, which combined all parts of the structural model. Model fit 

was shown to be acceptable for the structural model. Five out of seven hypotheses were 

accepted based on the statistical significance.   
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Chapter 6: Discussion 

6.1 Introduction 

This chapter discusses the results of the research in line with the two research questions. At 

the factory sub-unit level, the use of the dynamic capability (DC) lens enabled the researcher 

to exemplify the significance and positive effect of important integration capabilities of factory 

managers to adopt and use sets of up to nine unique I4.0 technologies. Characterising the 

capacities of factory managers through the DC lens suggests that integration capabilities at 

the factory fit the attributes of second-order DC related to learning and the transformation of 

routines (routine changing routines). The study finds that the capability to implement bundles 

of complementary I4.0 technologies is related to adopting and using the breadth of factory 

I4.0 technology. These lower-order capabilities are found necessary but are easily copied by 

the competition. Two major gaps related to often difficult to measure factory capabilities and 

resources for competitive advantage are filled by this research, focusing on two research 

questions: 

 

1. Can transformational integration capability of factory managers benefit the capability 

to implement the breadth of I4.0 technologies at the factory? 

 

2. Does the capability to implement the breadth of I4.0 technologies at the factory lead 

to improved performance and competitive advantage of the factory?  

 

This research adds to a promising but still narrow stream of management studies on dynamic 

capability and technology use at the factory level (Banker et al, 2006; Furlan and Vinelli, 2018; 

Hasegan, Nudurupati and Childe, 2018). This study is the first empirical research to relate 

second-order integration capability to the first-order capability of adopting and using the 

breadth of I4.0 technologies at the factory. It is also the first study of its kind to show factory 

managers' ability to adopt and use the breadth of I4.0 technologies to benefit competitive 

advantage across multiple factory performance indicators. In this vein, this study adds 

valuable empirical evidence at the level of the factory to research showing that first and 

second-order dynamic capability led to sustainable competitive advantage (Xiaosong Peng, 

Schroeder and Shah, 2011; Vanpoucke, Vereecke and Wetzels, 2014). Studies on second-order 
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capabilities as antecedents to first-order capability for competitive advantage thus far mostly 

focused on firm and supply chain capabilities (Danneels, 2008; Aslam et al, 2020; Mikalef, 

Pateli and van de Wetering, 2021). 

Table 25 illustrates the literature on the enablers to the breadth of I4.0 technologies. As shown 

in the literature review (see chapter 2), most studies focus on an isolated set of I4.0 

technologies at the firm level. In contrast, at the factory level, only Cagliano et al. (2019) 

discussed the enablers to more than four I4.0 technologies. In response, this study measures 

a comprehensive list of ten I4.0 technologies and determines the importance of integration 

capabilities, which are seldom studied, as enablers to the breadth of I4.0 technologies.  

Similarly, the outcome of the breadth of I4.0 technologies are mostly studied at the supply 

chain and the firm levels (see table 26). However, at the factory level, only Battaglia et al. 

(2023) was found to study the impact of a wide range of I4.0 technologies on factory 

performance. Consequently, this study responds to this limitation and links the capability to 

implement the breadth of I4.0 technologies to measures of factory performance, which have 

been previously overlooked or taken for granted by scholars, such as the level of automation, 

production cost, environmental sustainability, and schedule attainment. 

 

Table 25 Literature on the enabler to the breadth of I4.0 technologies 
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Powell et 

al, (2024) 

 ✓ ✓                

Arcidiacon

o et al, 

(2022) 

 ✓ ✓ ✓               

Moyano-

Fuentes, 

Sacristán-

Díaz and 

Garrido-

Vega, 

(2016) 

✓    ✓           ✓   

Saghiri and 

Mirzabeiki 

(2021) 

 ✓  ✓ ✓ ✓    ✓  ✓     ✓  

Lorenz et 

al, (2020) 

  ✓ ✓  ✓ ✓ ✓ ✓  ✓ ✓ ✓ ✓     

F
a ct o
r y 

Van Dun 

and 

      ✓      ✓      
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Kumar, 

(2023) 

Banker et 

al, (2006) 

    ✓           ✓ ✓  

Narasimha

n, Swink 

and Kim, 

(2006) 

✓          ✓  ✓   ✓   

Demeter, 

Szász and 

Boer, 

(2017) 

          ✓  ✓  ✓    

Cagliano et 

al, (2019) 

 ✓ ✓ ✓ ✓   ✓   ✓ ✓ ✓   ✓  ✓ 

 

 

Table 26 Literature on the outcome of the breadth of I4.0 technologies 
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Liebrec

ht et al 

(2021) 

  ✓          ✓  Streamlining supply 

chain, cost 

reduction 

Yaroson 

et al, 

2024 

  ✓       ✓   ✓  Sustainable business 

performance, supply 

chain wellbeing 

Faruque

e, 

Paulraj, 

Irawan, 

(2021) 

✓  ✓    ✓        Supply chain 

resilience 

Yang et 

al (2021) 
✓ ✓ ✓ ✓   ✓        Supplier digitisation 

leads to 

opportunism 

Sengupt

a, 

Dreyer 

and 

Jonsson 

(2024) 

 ✓  ✓ ✓  ✓  ✓      Supply chain 

planning for 

resilience 

Paolucci

, Pessot 

and 

Ricci 

(2021) 

     ✓  ✓     ✓ ✓ Suppliers cost 

performance 

F
ir

m
 Chavez 

et al 

(2024) 

 ✓        ✓ ✓    lean production 
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Bettiol 

et al 

(2023) 

 ✓ ✓ ✓  ✓   ✓  ✓    Depth of I4.0, 

creating knowledge 

to innovate 

processes and 

products 

Lorenz 

et al 

(2020) 

  ✓ ✓ ✓ ✓ ✓  ✓ ✓ ✓    Greater volume 

flexibility and lower 

production cost 

Büchi, 

Cugno 

and 

Castagn

oli 

(2020) 

✓ ✓ ✓ ✓  ✓   ✓  ✓ ✓   Greater flexibility, 

speed, increased 

production capacity, 

decreased errors and 

costs, and an 

improved product 

quality and ability to 

meet customer 

needs 

Cugno, 

Castagn

oli and 

Büchi 

(2021) 

✓ ✓ ✓ ✓  ✓   ✓  ✓ ✓   Greater perception 

of economic, 

knowledge, cultural, 

and system barriers 

and greater 

incentives 

Cugno 

et al 

(2022) 

✓ ✓ ✓ ✓  ✓ ✓  ✓ ✓ ✓ ✓   Greater recovery 

from the Covid-19 

pandemic 

Asokan 

et al 

(2022) 

 ✓  ✓ ✓ ✓ ✓ ✓  ✓     Greater 

employment 

practices, health and 

safety, and business 

practices, quality of 

life and social 

welfare, social 

governance, and 

economic welfare 

and growth 

Dieste 

et al 

(2023) 

 ✓ ✓ ✓ ✓  ✓  ✓ ✓ ✓   ✓ Higher resource and 

energy 

consumption, higher 

material and 

production waste, 

and cost  

F
ac

to
ry

 

Van 

Dun 

and 

Kumar, 

2023 

       ✓   ✓    Increased 

acceptance and ease 

of use of I4.0 

Alavian 

et al 

(2020) 

  ✓       ✓   ✓  Higher throughput 

and number of parts 

produced, lower 
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machine blockages 

and starvations 

Kumbh

ar, Ng 

and 

Bandaru 

(2023) 

✓    ✓   ✓    ✓   10% throughput 

improvement 

Konur 

et al 

(2021) 

 ✓ ✓     ✓     ✓  Improved efficiency 

and consistency, 

reduced operational 

cost 

Tortorel

la Giglio 

and Van 

Dun 

(2019) 

 ✓ ✓ ✓    ✓ ✓      Operational 

performance gains 

Spaltini, 

Terzi 

and 

Taisch 

(2024) 

 ✓  ✓ ✓ ✓    ✓ ✓   ✓ Reduced non-

recurring and 

recurring cost by 

15% and 20% 

respectively 

Battaglia 

et al, 

(2023) 

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ ✓ Reduced time and 

cost, higher quality, 

productivity, new 

customer offerings, 

working conditions, 

and environmental 

performance 

 

In this study, this important yet rarely measured relation between the different types of 

capabilities is measured at the level of the factory, where the breadth of I4.0 technologies is 

mostly deployed in practice. This reveals interesting finer details and implications related to 

the management and reconfiguration of resources as well as the capabilities and practices 

that over time make up the routines of factory managers engaged in the digital transformation 

of the factory as markets change.  

The results reinforce the notion that competitive priorities such as automation, schedule 

attainment, and environment performance shape the production technology adoption 

capabilities of factory managers. More importantly, we provide empirical evidence on such 

lower-order capabilities of adopting and using the breadth of I4.0 technologies to benefit from 

higher-order capabilities designed to transform and continuously update these practices, 

mechanisms, and routines, in response to changes in the market (Arcidiacono et al, 2023; Ali 

and Johl, 2023; Ed-Dafali et al, 2023). 
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6.2 Research Question 1: Can the transformational integration capability of factory 

managers benefit the capability to implement the breadth of I4.0 technology at the 

factory? 

 

The first research question sheds light on factory integration capability as antecedent to the 

capability of adopting and using the breadth of factory I4.0 technologies. It is clear that higher-

order integration capability of factory managers is related to the transformation of factory 

resources, such as the I4.0 technologies used. The results contribute to clarifying the effect of 

second-order capability as antecedents to first-order capability as a competitive strategy 

(Danneels, 2012; Danneels, 2016; Teece, 2022). Specifically, this study adds to the literature 

on design-manufacturing integration (DMI), manufacturing-strategy integration (MSI), and 

systems integration (SI) capability. We show that these types of transformational capabilities 

lead to the capability to implement the breadth of factory I4.0 technologies. These I4.0 

technologies include factory robotics, augmented reality, IoT, BDA, cloud computing, additive 

manufacturing, simulation technology, integration technology, and energy technologies. In 

this vein, we show that factories use four to five such I4.0 technologies on average if 

transformational integration capability is adequate. 

It is apparent that integration capability viewed at the level of the factory involves the routines 

and practices of top factory managers, such as operations managers and factory supervisors. 

Unsurprisingly, manufacturing practices have been integrated with a variety of other business 

functions to gain a multitude of benefits, such as with marketing and sales (O’Leary-Kelly and 

Flores, 2002; Son et al, 2014), human resources (Santos, 2000), and procurement and supply 

chain management (Cagliano, Caniato and Spina, 2006; Chiarini, Belvedete, Grando, 2020). 

Yet these integration capabilities seldom relate to the priorities of the factory floor and the 

needs of factory managers during the I4.0 digital transformation. 

By examining the breadth of I4.0 technologies through a dynamic capability lens at the factory 

we have shown that important higher-order integration capabilities, instead of relating to firm 

responsibilities (i.e., sales and marketing), closely relate to the operational priorities of the 

factory, such as production strategy and business strategy alignment, production friendly 

product design, and the coordination of upstream and downstream systems used throughout 
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the value chain. What sets this research apart from the previous integration research is the 

characterisation and classification of design-manufacturing integration (DMI), manufacturing-

strategy integration (MSI), and systems integration (SI) as higher-order or second-order 

dynamic capability. We show that these integration capabilities need to be selectively 

deployed as not all integration mechanisms and routines lead to greater use and protection 

of the factory’s breadth of I4.0 technology. These capabilities are found to closely relate to 

transformational practices, routines, and mechanisms targeted towards the reconfiguration 

of existing resources, such as critical yet easily imitable factory production technology. 

It is clear from the results that the capability of factory managers to adopt and use such I4.0 

technology clusters and orchestration of these technologies for factory production connects 

the various functions and stages of manufacturing (Scott and Vessey, 2000; Frank, Dalenogare 

and Ayala, 2019). As is evident from chapter five, the sample of 320 UK factories implemented 

four to five distinct I4.0 technologies on average from a total of ten measured I4.0 

technologies. Nonetheless, thus far the literature has not identified the antecedents and 

outcome of the breadth of I4.0 technologies (set of technologies) at the factory, while only a 

few studies were found to have investigated the breadth of I4.0 technologies for 

manufacturing firms (Büchi, Cugno and Castagnoli, 2020; Cugno, Castagnoli and Büchi, 2021; 

Bortoluzzi et al, 2022). This study specifically provides empirical results for the breadth of I4.0 

technologies in response to this major limitation of the I4.0 literature.  

As an example, one of the key advantages of I4.0 implementation is the ability to integrate 

Enterprise Resource Planning (ERP) systems with other critical factory components such as 

Advanced Planning and Scheduling (APS) systems, Material Requirements Planning systems 

(MRP II) and supply chain management systems (Davenport, 1998; Al-Mashari et al, 2003; Y.F. 

Chan and S.K. Chan, 2004). This capability of aligning technologies of two different functions 

is confirmed in this study as strengthening the managers' awareness of the tensions that may 

arise in the digital transformation. Therefore, factory managers with real-time access to a 

wealth of factory data, including customer information, product details, logistics and supply 

chain insights, can more comprehensively orchestrate sets of complementary I4.0 technology 

(Scott and Vessey, 2000; Tabim, Ayala and Frank, 2021). In this sense, the results of this study 

also indicate that data integration is a crucial component of developing the capability to 

manage the factory’s breadth of I4.0 technologies, as it enables managers to leverage the 

data-driven decision-making needed for technology deployment and the optimisation of 
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production in response to constant changes in the market (Mendoza, María Pérez, and Anna 

Grimán, 2006; Friederichet al, 2022).  

The study specifically shows that design-manufacturing integration and systems integration 

improve the capability to unify disparate data sources and systems, found essential for 

achieving a cohesive and holistic view of factory operations (Markus, Petrie and Axline, 2000; 

Barua et al, 2004; Heim and Peng, 2010; Maiga, Nilsson and Ax, 2015). By integrating data 

from various parts of the product value chain, it is clear that factory managers can more 

efficiently streamline their processes, improve information flow, and enhance administrative 

and management decision-making as well as boost profitability (Markus, Petrie and Axline, 

2000; Maiga, 2017). 

Given the above, this study provides a valuable contribution to the I4.0 literature by measuring 

horizontal and vertical data integration technology, as well as the ability to manage eight other 

diverse sets of I4.0 technologies, including robotics, augmented reality, IoT, BDA, cloud 

computing, additive manufacturing, simulation technology, and energy technology. The 

investigated first-order capability of adopting and using the breadth of I4.0 is found to 

streamline production technology planning and shop floor control of these technologies to 

improve efficiency (Heim and Peng, 2010). This is because those factories are better 

positioned to unlock and ultimately shield the additional value gained from using the breadth 

of I4.0 technologies, as opposed to factories deploying only data resources across the 

production line or in silos across the factory (Gattiker and Goodhue, 2005; Banker et al, 2006). 

In effect, this study shows that factories incorporate new production systems more easily and 

adhere to technology standards more consistently if the factory managers' capability to 

control the breadth of I4.0 is adequate. Such managers can better deal with the growing 

commercialisation of more diverse I4.0 technologies, which need to be well understood and 

optimised in the factory environment to be used to their full potential (Willcocks, Feeny and 

Olson, 2006; Chiarini, Belvedere and Grando, 2020). This study shows that the first-order 

capability of adopting and using the breadth of I4.0 is best protected from imitation if it is 

driven by the factory specific higher-order integration capability. 

We have shown that dynamic capability is a critical component for smart factory readiness. 

The development of comprehensive roadmaps enables factory managers to systematically 

advance the use of technology (Chatterjee et al, 2002; Larkin, 2017; Črešnar et al, 2020; 

Liebrecht et al, 2021). These findings are invaluable for proactive I4.0 planning, ensuring that 



151 
 

factory resources are allocated effectively to best gain competitive advantage by improving 

schedule attainment performance (SP), environmental sustainability performance (EP), and a 

level of automation performance (AP) at the factory (Xiaosong Peng, Schroeder and Shah, 

2011). The results show that integration does not only benefit the utilisation of sets of I4.0 

technologies but also the development of other lower-order dynamic capabilities and the 

enhancement of new learning routines and practices, which can be used as a learning tool for 

future technology adoption (Karimi and Walter, 2015; Schuchmann and Seufert, 2015). 

Although hypothesis 2 was not supported, the study finds the collective positive impact of 

DMI, MSI, and SI of factory managers on the breadth of I4.0 technologies to be similar to the 

concept of integration intelligence. The latter represents the extent to which tactical 

information technologies are harmonised into a unified system, such as an Enterprise 

Resource Planning (ERP) system (Heim and Peng, 2010). Such Integration intelligence of 

factory managers encompasses a gamut of practices, encompassing product design, 

procurement, shop floor operations, and logistics (Ross and Weill, 2005). The benefits of DMI, 

MSI, and SI for factory managers on the breadth of I4.0 technologies have been shown to 

reduce complexity, introduce discretionary work practices (routine changing routines), and 

shifts in technology focus to foster greater flexibility and the customisation of production 

equipment of the factory (Ross and Weill, 2005; Heim and Peng, 2010; Bharadwaj et al, 2013; 

Gerow, Thatcher, and Grover, 2015; Pech and Vrchota, 2022). 

The results of this study extend the ongoing discussion on the role of higher-order capabilities, 

such as design-manufacturing integration (DMI) and systems integration (SI), as key 

antecedents of first-order capability to adopt and use the breadth of I4.0 factory technology. 

In this vein, the subsections below highlight the finer details and the contribution of such 

integration capability related to DMI (section 6.2.1), MSI (section 6.2.2), and SI (section 6.2.3). 

These subsections discuss in more detail the often-hidden implications and paradoxes of using 

integration mechanisms, at the level of the factory, to develop the capability to adopt and use 

the breadth of I4.0 technologies. 

6.2.1 The link between design-manufacturing integration & breadth of I4.0 technologies 

The findings of this study underscore a significant and positive relationship between the 

Design-Manufacturing Integration (DMI) capability of factory managers and the capability to 

adopt and use the breadth of I4.0 technologies (β= .31, p< .001). This positive and significant 
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association aligns with the existing literature, which increasingly emphasises the pivotal role 

of integrating the design and manufacturing functions (Yang et al, 2018; Xu, Xu and Li, 2018). 

The previous section of this chapter explained the important contribution of this study in 

relation to DMI, characterised as a second-order capability at the factory level and found DMI 

to be an antecedent to the breadth of I4.0 technologies at the factory. This subsection adds 

to how DMI in particular is positively related to the breadth of I4.0 technologies and how the 

acceptance of the first hypothesis is theoretically justified. 

The theoretical justification for design-manufacturing integration capability positively relating 

to the breadth of I4.0 technologies is grounded in the realignment of existing design and 

manufacturing assets for competitive advantage. We have shown that in markets experiencing 

constant product innovation, factory managers strong in DMI capability can better respond to 

these market changes as they have more control over the two functions of design and 

manufacturing. The integration of design and manufacturing functions is demonstrated to 

enable the seamless exchange of data and information throughout the product lifecycle, a key 

tenet for staying competitive while adopting I4.0 technologies (Apiliogullari, 2022; Pozzi, Rossi 

and Secchi, 2023).  

This integration capability is found to foster real-time collaboration, automation, and 

improved decision-making, thereby facilitating the factory managers' capability to adopt and 

use the breadth of I4.0 technologies (Rivard, Raymond and Verreault, 2017; Doe et al, 2020). 

In this study, the use of IoT for increasing collaboration among divisions and departments 

beyond production is noteworthy (Fukuzawa et al, 2022). It is argued that IoT technology 

benefits uniquely from DMI capability. Bridging I4.0 ICT and production technologies across 

departments, in this case design and production, requires adequate understanding of the 

digital maturity of technology and the available resources within each department 

(Chirumalla, 2021). 

At a finer level of detail, the study shows that factory managers who can align product design 

teams with manufacturing teams and find new ways to coordinate issues are best suited to 

adopt and use the breadth of I4.0 technologies. By breaking down traditional silos and 

enabling a holistic view of the production process, DMI is found to create an environment 

conducive to the broader implementation of hardware and software (Hunde and 

Woldeyohannes, 2022; Teece, 2022). One salient aspect that resonates with these findings is 

the literature's recognition of higher-order capabilities like DMI providing the foundational 
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infrastructure and knowledge base required to fully leverage and implement ordinary 

capabilities like adopting I4.0 technologies. In essence, the DMI capability of factory managers 

is found to serve as a set of practices and routines aimed at informing design teams about the 

intricacies of actually manufacturing the designed products in practice. 

Mechanisms include using design-for-manufacture/assembly (DFMA) methods and involving 

manufacturing in NPD projects and for product signoffs to avoid tensions between the two 

teams during the digital transformation. More complex products have been found to benefit 

more from such DMI practices in developing the capability to adopt and use the breadth of 

I4.0 technologies. In this vein, such a relationship suggests that managers of OEM’s and high-

tech manufacturing sectors with more complex products view DMI as a prerequisite using 

complex sets of I4.0 technologies. This is justified by the fact that integration capability is often 

needed for more complex manufacturing processes (Thome and Sousa, 2016). In this context, 

we find that DMI capability serves as the linchpin that aligns these advanced I4.0 technologies 

and systems with existing processes and functions (Chiarini, Belvedere and Grando, 2020). 

In the context of adopting and using a diverse breadth of I4.0 technologies, the process 

complexities and differences in technology requirements is mitigated by DMI capability. 

Similar to the findings of Thome and Sousa (2016), this study finds that certain DMI 

mechanisms, such as job rotation between the design and manufacturing engineering team, 

do not necessarily support the breadth of I4.0 technologies at the factory. This is because job 

rotation is harder to turn into a routine, which may only result in temporary efficiency gains 

and does not prove advantageous to factory managers' capability to adopt and use the 

breadth of I4.0 technologies. Nonetheless, this study finds that most DMI practices bridge 

data, design, and production resources across departments and finds that DMI is instrumental 

in facilitating the orchestration of disparate I4.0 technologies at the factory (Heim and Peng, 

2010; Choi and Kang, 2018; Kamble et al, 2020). 

Ultimately, the findings of this study reaffirm the relationship between the cross-functional 

higher-order capabilities of DMI and the implementation of ordinary capabilities like adopting 

and using I4.0 technologies at the factory. Several finer contributions are shown in this study. 

These findings add to I4.0 studies linking the product and production, specifically showing that 

in the context of DC “the product is not just processed (acted upon) by the production resources 

but also controls (interacts with) the production resources” (Stark et al, 2023). Also, it is evident 

from the results that factory managers with adequate DMI capability can strengthen their 
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capability to orchestrate bundles of I4.0 ICT and production technologies best understood by 

teams of design and production departments. Therefore, by fostering DMI capability, factory 

managers not only leverage the implementation knowledge of various cross-departmental 

teams but also strengthen their foundations for the digital transformation and position 

themselves for sustained competitiveness. 

6.2.2 The link between manufacturing-strategy integration & breadth of I4.0 

technologies 

The initial hypothesis posited that Manufacturing Strategy Integration (MSI) would be 

positively associated with the breadth of I4.0 technologies at the factory. However, after a 

comprehensive analysis of the survey data, it became evident that there is a weak yet 

nonsignificant link between MSI and the capability to adopt and use the breadth of I4.0 

technologies (β= .03, p> .05). Contrary to prior research on MSI, this study found that factory 

managers' capability to integrate business strategy with manufacturing strategy does not 

impact on the capability to adopt and use the breadth of I4.0 technologies. Interestingly, this 

does not mean that MSI is not valuable as a I4.0 strategy. For instance, MSI could benefit I4.0 

depth and source as opposed to the often-specialised breadth (i.e., combination) of 

production technologies that top management at the strategy level may not fully comprehend 

the need for. 

This lack of a significant relationship can be explained from the DC perspective. In this context, 

implementing production technologies is shown as part of seizing competitive advantage 

opportunities by improving the factory manager’s ability to identify and understand emerging 

opportunities and threats. In the case of I4.0, factories need to seize the potential benefits of 

these technologies, such as increased efficiency, reduced costs, and improved quality. 

However, the perceived benefits of I4.0 can vary widely depending on contingencies, like the 

level of existing technology infrastructure, workforce capabilities, and market demands (Braun 

et al, 2020). If a factory does not perceive significant benefits from I4.0 or faces obstacles in 

integrating these technologies, managers may prioritise other investments over I4.0. 

Moreover, investment in I4.0 technologies requires significant financial resources, 

technological expertise, and organisational changes (Zhang et al, 2021). If a factory lacks the 

necessary resources or the capability to implement I4.0 effectively, it may choose not to invest 
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in these technologies despite strategic integration efforts that may be undertaken for other 

purposes. 

One key perspective that emerges from this study is that even factories with a well-integrated 

manufacturing strategy might not have the necessary resources to invest in expensive I4.0 

technology, especially with compatibility and other factors in mind (Cagliano et al, 2016). The 

results indicate that while cross-departmental communication and alignment are known to 

streamline processes such as just-in-time implementation (Xu and Chen, 2018), this does not 

necessarily translate into a direct relationship with the adoption and usage of different I4.0 

technologies. In this sense, the agility, lean practices, and flexibility cultivated by MSI do not 

automatically lead to factory managers' capability to adopt and use the breadth of I4.0 

technologies. These finer details of this study show that the capabilities needed to adopt sets 

of advanced production technology extend beyond the realm of traditional manufacturing 

strategy integration capabilities.  

This lack of significance can be explained by competitive strategy as opposed to corporate 

strategy playing a pivotal role in shaping manufacturing strategy (Ward and Duray, 2000). This 

implies that the adoption and use of the breadth of I4.0 technologies is predominantly driven 

by the competitive priorities of the factory and not vice versa. In other words, the strategic 

manufacturing goals and objectives may be communicated to the factory floor but decisions 

are not driven or in many cases aligned with corporate strategy. In essence, MSI alone may 

not be the primary driver of adopting and using the breadth of factory I4.0 technologies. 

Instead, it is probably influenced by a broader strategic context that aligns factory capability, 

technology investments, and competitive priorities and country/region-specific contingencies 

(Wamba et al, 2017; Singhal, 2020; Pessot et al, 2021). Also, managers may experience risk-

averse behaviour when it comes to adopting new technology if they are not in full control of 

the digital transformation. One explanation for this is the uncertainty associated with radical 

innovation, including potential technological disruptions and the need for retraining the 

workforce and resistance to change, which can deter decision-makers from developing the 

capability to adopt and use a broader set of advanced production technologies despite strong 

MSI (Teece, 1986; Bourlakis et al, 2013; Sweeney et al, 2016; Neely et al, 2019). 

While MSI was demonstrated to be non-significant in relation to the capability to adopt and 

use the breadth of I4.0 technologies, other technologies benefit more greatly from this higher-

order capability. Specifically, “cross-boundary digital technologies” such as IoT and cloud best 
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align disconnected functions, such as manufacturing and strategy (Bharadwaj et al, 2013; Li, 

Wang and Hou, 2017; Pech and Vrchota, 2022). This is because the capability of “pooling 

knowledge and competence” across the strategy and production functions, as opposed to 

corporate management dictating decisions, enables comparison to industry standards and it 

can provide factory managers with a greater flexibility and responsiveness to modify 

production systems in response to market changes (Di Maria, De Marchi and Galeazzo, 2022; 

Teece, 2022). 

Another explanation for the nonsignificant link between MSI and the capability to adopt and 

use the breadth of I4.0 technologies is that factories may not aim to implement I4.0 or avoid 

implementing too many I4.0 if strategic priorities are focused predominantly on maintaining 

current capability and performance. Technological path dependence suggests that previous 

technological choices and investments can significantly influence future decisions (Arthur, 

1989; Greve and Seidel, 2015; Sydow, Schreyögg and Koch, 2020; Grodal, Krabbe and Chang-

Zunino, 2023). This suggests that at the factory the capability to adopt and use the breadth of 

I4.0 technologies is developed gradually and over time to allow a broader set of technologies 

to be adopted and used. On the other hand, factories that have already invested heavily in 

specific technologies or may depend on legacy machinery may find it challenging to switch to 

entirely new and more advanced production technologies due to the sunk costs associated 

with their existing infrastructure. This is because factories develop capabilities, practices and 

routines around their existing technologies (Levinthal and March, 1993; Zollo and Winter, 

2002). This explains the nonsignificant link between MSI and the capability to adopt and use 

the breadth of I4.0 technologies, as even if the MSI capability of factory managers is strong, 

the factory may not be able to use some I4.0 technology. This potentially limits the breadth of 

I4.0 technologies for the factory below what is needed to stay competitive in dynamic 

markets. 

The findings of this study reveal that MSI is not significantly related to the capability to adopt 

and use the breadth of I4.0 technologies, rejecting the second hypothesis. This unexpected 

outcome underscores the complexity of technology adoption and the multifaceted nature of 

the relationship between strategy and advanced technology deployment. While MSI certainly 

plays a role in shaping manufacturing practices, it is found not to be the sole determinant of 

the breadth of I4.0 technologies. As factories continue to navigate the evolving landscape of 

I4.0, a comprehensive understanding of these multifaceted dynamics and specifically strategy 
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related second-order capabilities will be crucial in shaping successful technology adoption 

(Rodríguez-Espíndola et al, 2022; Marcinkevicius and Vilkas, 2023). 

6.2.3 The link between systems integration & breadth of I4.0 technologies 

The result of this study shows a positive and significant link between systems integration (SI) 

and the capability to adopt and use the breadth of I4.0 technologies at the factory (β= .17, p< 

.01), confirming the third hypothesis. This study contributes to systems integration literature 

by recognising this higher-order capability as a principal driver of digital transformation to 

augment communication and knowledge dissemination across diverse subunits. For instance, 

across the departments of a factory and the upstream and downstream systems of value chain 

partners that the factory is dependent on for operation (Ross and Weill, 2005; Alaranta and 

Karlheinz, 2012; Gerow, Thatcher and Grover, 2015). Such management of knowledge from 

diverse sources is demonstrated to benefit the performance of implementing the breadth of 

I4.0 technologies (Fugate, Stank and Mentzer, 2009). 

Dynamic capability theory provides an explanation for the practical link between SI capability 

and the capability to adopt and use the breadth of I4.0 technologies. In this context, the 

factory’s ability to adapt and thrive in rapidly changing environments is contingent upon its 

capacity to integrate, reconfigure, and exploit its resources effectively (Teece, 2007; Teece, 

2022). Systems integration capability is found to improve the managers' capability to 

understand the use of I4.0 resources across specific industries and focus on the seamless 

interconnection of different technologies and data sources within the factory needed to 

operate the breadth of I4.0 technologies (Chen et al, 2021).  

The results indicate that as factories integrate disparate systems of suppliers/vendors and 

customers, they enhance their ability to collect, process, and leverage data from various 

sources, enabling them to respond more effectively to market changes and customer 

demands that require them to use several I4.0 technologies in production. This, in turn, 

positions factories to exploit emerging technologies and innovation opportunities by 

combining the factory specific second-order capability of integrating the data from these 

various sources to adopt and use the breadth of I4.0 technologies. The results reinforce past 

studies reiterating stronger external integration to enhance collaboration between I4.0 

technology providers and users (Frank, Dalenogare, and Ayala, 2019). To this end, the 

literature explains smart factory systems can be further integrated even beyond the factory 
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walls by using data from active and passive smart products to draw in data and informational 

resources from the customer. We find that the SI capability and practices fit the core tenets 

of higher-order dynamic capability and a major enabler for factories to continually adapt, 

reconfigure, and exploit available technological resources. Specifically, this study 

demonstrates how the ability to continuously monitor the order status at various factories 

enables factory managers to quickly adapt to changes in the downstream processes or 

systems (Bhatt, 2000; Hasselbring, 2000; Barua et al, 2004). 

The results of this study add to the findings of past studies providing factory-level support for 

the positive link between systems integration technology such as IT adoption. The results of 

this study add to previous factory level studies showing the benefits of combining I4.0 data 

technologies (such as Banker et al, 2006) by demonstrating that SI leads to the integration of 

a spectrum of other critical I4.0 technologies, such as horizontal and vertical integration 

software, IoT, could, simulation and BDA. Unsurprisingly, we find that factory management 

with a strong capability to integrate such systems is able to better optimise these production 

assets and more easily implement the breadth of I4.0 technologies at the factory. 

Sandberg, Holmström and Lyytinen (2020) argue; “deepening digitization of components and 

functions drives complexity by connecting the platform to multiple social and technical settings 

and producing new interactions and information exchanges”. According to the authors, this 

complexity is mitigated by digitisation, enabling analog platforms to be increasingly embedded 

with digital capacity. The results of this study add to the above findings. In effect, we have 

shown that routine changing routines regarding the internal, upstream, and downstream 

integration of data and information lessen these complexities for production technology use. 

 

6.3 Research Question 2: Does the capability to implement the breadth of I4.0 

technology at the factory lead to improved performance and the competitive advantage 

of the factory?  

 

This study contributes to the performance and competitive advantage literature on I4.0 at the 

level of the factory. In this sense, the study finds that the first-order capability of implementing 

the breadth of I4.0 technologies at the factory is positively related to factory performance, 

such as schedule attainment performance (SP), environmental sustainability performance 
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(EP), and the level of automation performance (AP). This demonstrates competitive advantage 

gains by using a combination of first-order capability, which in isolation does not provide 

competitive advantage, and second-order integration capability.  

Specifically, this study adds empirical evidence on operational performance and competitive 

advantage gains of implementing the breadth of I4.0 technologies. In this study we have 

examined I4.0 technologies, such as factory robotics, augmented reality, IoT, BDA, cloud 

computing, additive manufacturing, simulation technology, integration technology, and 

energy technologies. Perhaps expectedly, the results did not find that the capability to adopt 

and use the breadth of these factory I4.0 technologies improve factory production cost 

performance (CP), showing wider implications for competitive strategy (Cannon and St John, 

2004; Belderbos and Sleuwaegen, 2005; Swink, Narasimhan and Wang, 2007). 

In addressing the second research question, this study finds that operational performance 

benefits from the breadth of I4.0 technology. The results add to and expand on previous 

research findings on organisational performance outcomes of using I4.0 technologies 

(Dalenogare, Benitez, Ayala and Frank, 2018; Büchi, Cugno and Castagnoli, 2020; Fatorachian 

and Kazemi, 2021). The findings of this study contribute to the above performance studies by 

empirically showing that dynamic capability at the level of the factory is positively related to 

factory operational performance. These findings reinforce previous DC research identifying 

capabilities akin to the breadth of I4.0 technologies, such as “orchestration of digital 

resources” and “creation of novel digital resources”, driving the use of these resources (Piccoli, 

Rodriguez and Grover, 2022). More specifically, the results add to ongoing discussion 

characterising dynamic capabilities as a tool for digital technology use and competitive 

advantage (as in the case of: Li et al, 2022b; Felsberger et al, 2022; Lu, Zhao and Liu, 2022; 

Sulistyo and Ayuni, 2023; Rehman and Jajja, 2023).  

Interestingly, the results of this study found that the factory managers' capability to adopt and 

use the breadth of I4.0 technologies has a mixed yet somewhat expected impact on factory 

operational performance. Specifically, the breadth of I4.0 is positively and significantly related 

to the level of automation, environmental factory emissions, and schedule attainment. 

Perhaps unsurprisingly, financial measures of operational performance such as production 

costs are not supported by the breadth of I4.0 technologies, rejecting hypothesis 5. This can 

be explained by similar studies showing a delayed or lagging manifestation of improved 

performance. For instance, performance gains have been shown to lag in the case of growing 
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IT investments (Schweikl and Obermaier, 2020). In this context, we show the difficulties of 

maintaining and controlling the cost of production for factories focusing on too many complex 

I4.0 technologies. 

Sustained competitive advantage was previously only studied at the level of the factory, 

showing that supply chain integrative capabilities improve operational performance based on 

the anticipation of new technology and collectivism (Beheregarai Finger, Flynn and Laureanos 

Paiva, 2014; Arellano Rebolledo and Tao, 2019; Durach and Wiengarten, 2020). In this study 

we specifically show that the combination of the first-order capability of using and adopting 

the breadth of I4.0 technologies supported by second-order capability for both internal and 

external integration provide competitive advantage, which can be continuously improved and 

sustained in a turbulent market. This contributes factory level evidence on adopting and using 

diverse sets of production and ICT I4.0 technologies for operational performance. Thus far 

studies only focused on other capabilities, such as lean practices (Onofrei et al, 2019; Buer et 

al, 2021), sustainability practices (Ahmadi-Gh and Bello-Pintado, 2022) and workers' well-

being practices (Bellingan et al, 2023). 

Another contribution that stands out from this study is that factory managers and smart 

factory decision-makers need to prioritise the expected outcome of initiating I4.0 projects and 

using a breadth I4.0 technologies. We show that a breadth of I4.0 technologies improves 

operational performance and that factory managers often need to make trade-offs (Deflorin 

and Scherrer-Rathje, 2013). In this sense, we have shown that factory performance improves 

given an appropriate level of capabilities, yet it is always representative of what is measured 

at the factory sub-unit level. For instance, lower emissions could be due to carbon credit 

purchasing and transforming some waste into less regulated waste forms, which could be 

misleading for regulators and consumers. The results demonstrate that the benefits of I4.0 

are numerous and the purpose of implementing broad sets of I4.0 technologies should be 

considered carefully beforehand, based on the specific short-term and long-term priorities of 

the factory (Duman and Akdemir, 2021; Angelopoulos et al, 2023). Factories will also find it 

difficult to focus on broadening technological investment and operational change 

simultaneously. 

The sections below show the finer contributions of this study regarding the impact of the 

capability to adopt and use the breadth of I4.0 technologies on factory performances. We 

demonstrate, with the exception of production costs (section 6.3.2), the sustained 
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competitive advantage gained from the level of automation performance (section 6.3.1), 

factory environmental sustainability (section 6.3.3), and schedule attainment (section 6.3.4). 

The findings ultimately inform competition strategy based on available mechanisms and 

capabilities often witnessed, yet still infrequently measured, in technology-focused 

organisations such as factory-subunits in competitive markets (Petit and Teece, 2021; Teece, 

2023). 

6.3.1 The link between the breadth of I4.0 and level of automation 

The empirical analysis of this study has yielded compelling evidence in support of the fourth 

hypothesis (H4), which posited a positive relationship between the breadth of I4.0 

technologies and the level of factory automation (β= .57, p< .001). This positive relationship 

shows the benefit of being able to adopt and use a breadth of I4.0 technologies as opposed to 

isolated adoption. Such findings demonstrate that bundles of technology, when enabled by 

fundamental capabilities, contribute significantly to the successful automation of tasks 

(Martell et al, 2023). In this vein, the capability of factory managers to adopt and use the 

breadth of I4.0 technologies encompasses both manufacturing and information and 

communication technology, shown to be a catalyst for heightened automation (Oesterreich 

and Teuteberg, 2016; Frank, Dalenogare and Ayala, 2019). Such a finding also aligns with and 

adds to the broader literature on the transformative impact of I4.0 technologies on 

manufacturing processes and the subsequent enhancements in automation (Thoben et al, 

2017; Lu, Xu and Wang, 2020; Morgan et al, 2021). 

The results provide empirical evidence on the relation between I4.0 and the actual level of 

automation regarding the various dominant processes of a factory, such as tool change, job 

setup, product processing, monitoring, inspection, and the movement of material throughout 

the factory floor. This fills a major gap of providing factory level data on automation, as 

opposed to previous research, which has only underscored the pivotal role of digitalisation, 

including broad I4.0 technology adoption in driving automation for manufacturing 

(Dalenogare et al, 2018; Obermayer, Csizmadia and Hargitai, 2022; Spring, Faulconbridge and 

Sarwar, 2022; van Dyck et al, 2023).  

Perhaps expectedly we find that the adoption of a breadth of I4.0 technologies for factory 

operations has ushered in a paradigm shift, enabling machines and systems to become more 

autonomous and self-sustaining (Jayasekara et al, 2022). These advancements of using the 
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breadth of I4.0 technologies provide a constant stream of reliable production data and 

minimal packet losses, and they underscore the transformative power of I4.0 in automation 

improvement. This ensures high accuracy and precision, while minimising automation error in 

the growing automation of inspection and monitoring processes (Syed et al, 2020; 

Munirathinam, 2020; Leng et al, 2021; Zheng et al, 2021; Psarommatis and Kiritsis, 2022). 

This study contributes to the I4.0 automation literature by showing that factories that have 

adopted several I4.0 technologies particularly enhance automation, as shown by the higher 

adjusted R2 (0.344) and F value (16.236) compared to the other performances (see table 22). 

These results demonstrate how adequate adaptation and usage of the breadth of I4.0 

technologies plays a more important role in automation, which was once a complementary 

aspect to manufacturing. Process automation is shown by this study to be intrinsic to the fabric 

of contemporary manufacturing processes (Mangat, Mangler and Rinderle-Ma, 2021; Hughes 

et al, 2022). 

The findings corroborate recent research that highlights the potential of I4.0 in facilitating 

resource allocation for production control (Dotoli et al, 2017; Zhang et al, 2021). In this study 

we have expanded this view and measured factory resources, such as various types of factory 

manager capabilities and the multitude of factory I4.0 technologies they have access to. 

Moreover, the importance of data extraction, which is fundamental to automation solutions, 

has been reaffirmed in this study (Szalavetz, 2019; Xu et al, 2020). This, however, raises issues 

related to data security and privacy, which is found to limit the extent of automation in certain 

industries, which could jeopardise their competitive advantage (Rejeb et al, 2020). 

Interestingly, the finer results indicate that widespread adoption of I4.0 technologies and the 

simultaneous deployment of such advanced manufacturing technologies within the factory 

does not necessarily result in a higher level of automation at the factory (Lee et al, 2019). This 

can be explained by the traditional perspective of operations management, often portraying 

automation as potentially reducing flexibility (Yu and Schweisfurth, 2020). In practice, this 

could diminish the appetite of factory managers to further automate tasks and processes. In 

this regard, the wider literature indicates that the negative implications of automation can be 

mitigated using capabilities such as lean production and ensuring an appropriate technology 

mix (Tortorella et al, 2021; Rossini et al, 2022).  
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By developing higher-order capabilities, such as integration and alignment practices, 

automation becomes a means to enhance decision-making and better use the full breadth of 

I4.0 technologies available in that sector (Salovaara et al, 2019; Goh et al, 2020). Such dynamic 

capabilities of integrating multiple I4.0 technologies can mitigate operational bottlenecks as 

well as difficulties in managing and maintaining these complex automation systems (Schuh et 

al, 2017). 

In summary, this study's findings underscore the substantial impact of the factory managers' 

capability to adopt and use the breadth of I4.0 technologies on the level of factory 

automation. Ultimately, the findings complement the lack of empirical evidence on this matter 

and expand on the benefits of I4.0 ICT and production technology for expanding and 

optimising process and service automation, ultimately boosting competitive advantage 

(Romero-Silva and Hernández-López, 2020; Wirtz, Kunz and Paluch, 2021). 

6.3.2 The link between the breadth of I4.0 and production cost 

Hypothesis (H5) initially posited a positive relationship between the factory manager 

capability to adopt and use the breadth of I4.0 technologies and lower factory production 

costs. However, the analysis of the data revealed unexpected results, indicating insufficient 

evidence to reject the null hypothesis. Therefore, there is inconclusive data to suggest that 

the breadth of I4.0 technologies reduces production costs (β= .10, p> .05). In fact, the results 

suggest that in some scenarios, higher breadth of I4.0 technology deployed at the factory may 

in fact be associated with increased production costs. These findings challenge prevailing 

assumptions that I4.0 technology necessarily reduces the cost of manufacturing, and they 

underscore the complexity of the relationship between I4.0 technologies and the economics 

of the digital transformation. 

There are several theoretical explanations for the nonsignificant relationship of the breadth 

of I4.0 technologies to production costs. For instance, it is evident that smaller factories and 

SME’s who have to meet supply chain commitments despite shortages of resources, such as 

skilled personnel, can incur significant production costs (Mhlongo, 2023). In this sense, when 

the skill level of the workforce is poor and resources are scarce, operational efficiency suffers 

and the factory will only be partially cost effective. This condition is found to worsen if the 

supplier (i.e., resource providers or I4.0 technology vendors) is in competition with the factory 

using and, in some cases, depending on those I4.0 technologies to keep the cost of production 
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competitive (Lim and Tan, 2010). Conversely, the larger, more resourceful factories, referred 

to as lighthouses in some industry and policy reports (Gregolinska et al, 2022; WEF, 2023), can 

more easily absorb a skilled workforce and other resources away from medium and small 

factories growing and diversifying their I4.0 technology base (Ricci, Battaglia and Neirotti, 

2021).  

One crucial factor contributing to this unexpected outcome is the substantial initial 

investment required for a comprehensive adoption of multiple I4.0 technologies and the 

depletion of resources. Studies have highlighted the potential cost benefits of I4.0 

technologies in the context of digitisation (Shukor and Axinte, 2008; Ralston and Blackhurst, 

2020), automated inspection systems (Prieto et al, 2002), and 3D printing (Baumers et al, 

2016). These results conflict with the findings of this study, showing that bundles of I4.0 

technologies incur unexpected overheads and inventory costs. This indicates that the cost-

effectiveness of these technologies can vary widely depending on how these technologies are 

adopted and used by management (Costabile et al, 2017). For instance, it has been shown that 

the adoption of additive manufacturing, despite its touted advantages, does not always result 

in lower production costs compared to traditional methods like injection moulding (Pozzi, 

Rossi and Secchi, 2023). 

Another explanation for this nonsignificant link between the factory managers' capability to 

adopt and use the breadth of I4.0 technologies and production costs is complexity. Arguably, 

the adoption of bundles of I4.0 technologies is found to add complexity into production 

processes (Biswas et al, 2020). In this study we specifically show that interconnected systems, 

machinery, and data streams require additional resource planning, including specialised 

personnel, maintenance, and infrastructure, to manage and support these technologies 

effectively in a way that controls overhead costs and is able to make products that can 

compete with the competition on cost. 

The findings hint production costs to sometimes increase as resources are not always readily 

available or are not properly used by management to address these demands. For instance, 

the wider deployment of I4.0 technologies increases the need for maintenance and support 

services, which can add to the cost of the product (Biswas et al, 2020). In addition, Kowalski 

et al. (2020) found that the complexity of managing and maintaining a wide array of 

interconnected I4.0 devices and systems can result in increased operational expenses, 

particularly in terms of ensuring cybersecurity and IT infrastructure upkeep. These results 
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further support the notion that the maintenance of the breadth of I4.0 technologies requires 

regular software updates, and the troubleshooting of compatibility issues among different 

systems and components (Singhal and Singhal, 2002; Senna et al, 2022; Dieste et al, 2023).  

The results point to the interesting yet often forgotten detail that while I4.0 technologies have 

the potential to optimise energy use at the factory, their impact on energy-related production 

costs varies (Rajput and Singh, 2021; Chai et al, 2021; Favi et al, 2022). In some cases, the 

pursuit of cleaner energy sources, an important facet of I4.0 adoption, may not necessarily 

translate into direct cost savings as the price of renewable sources of energy may be even 

higher (Song et al, 2022). 

In this context, the results of this study further shed light on the often unpredictable and 

volatile energy costs as a component of the nonsignificant relation between the breadth of 

I4.0 and factory production costs. The findings demonstrate that energy consumption issues 

are inherent to operating multiple I4.0 technologies in tandem. The results fall in line and 

concur with research on the energy consumption of many I4.0 technologies leading to 

significant production expenses in certain industries (Liu and De Giovanni, 2019; Chiarini, 

Belvedere and Grando, 2020; Dieste et al, 2023). The findings of this study offer valuable 

contributions to the above literature by providing empirical evidence on the breadth of I4.0 

technologies at the factory, illustrating the need for a constant stream of supplementary 

resources (energy, upkeep, integration efforts etc.) to operate these diversified technology 

bundles cost-effectively. As expected, this is found to be less the case if energy technologies 

are included in the breadth of I4.0 technologies at the factory, pointing to careful selection of 

these I4.0 technology bundles. Moreover, we find that I4.0 ICT technologies related to 

external integration with customers and suppliers do not always result in direct cost reduction, 

particularly if systems integration capability is underdeveloped (Fabbe-Costes and Jahre, 

2008; Wong, Boon-Itt and Wong, 2011; Blome, Schoenherr and Kaesser, 2013; Lorenz et al, 

2020). 

The findings contribute to the ongoing discourse on the economic impact of I4.0 by shedding 

light on the intricate dynamics that influence the production costs performance (CP) of the 

smart factory. Our research results challenge the conventional wisdom that the breadth of 

I4.0 technologies fundamentally lead to lower factory production costs. Instead, the findings 

of this study reinforce the notion that “I4.0 shifts competition from lower cost to higher 

capabilities” (Dieste et al, 2023).  Ultimately, while this hypothesis was not supported by our 
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data, it underscores the need for better understanding of the multifaceted relationship 

between the many I4.0 technologies. In this study we have considered bundles of up to nine 

I4.0 technologies for factories with different sizes and production strategies. It is evident that 

the cost implications of I4.0 technology is contingent on a host of variables.  

6.3.3 The link between the breadth of I4.0 and environmental sustainability 

The analysis of the results provides strong evidence in support of the sixth hypothesis (H6). 

The results show a strong and significant correlation between the breadth of I4.0 technologies 

at the factory and enhanced environmental sustainability, while controlling for factory size 

and production strategy (β= .39, p< .001). These findings underscore the profound importance 

of environmental sustainability gains and specifically lowering the rate of factory emissions to 

benefit from the factory managers' capability to adopt and use the breadth of I4.0 

technologies. Although the literature is rich in showing this relationship, scholars less often 

shift their attention to the factory sub-unit (Javaid et al, 2022; Waters et al, 2022). In this study 

we specifically show that the breadth of I4.0 technologies, such as bundles of I4.0 ICT and 

production technology at the level of the factory, reduces the emission of greenhouse gases, 

wastewater, and solid waste while minimising environmental accidents and the use of toxic 

materials in production. Specifically, we contribute empirical evidence to the literature 

proposing that operational performance shares an intrinsic connection with environmental 

performance (Pagell and Gobeli, 2009; Li, Dai and Cui, 2020; Alsawafi, Lemke and Yang, 2021). 

Dynamic capability theory provides a strong explanation for this relationship. The DC of factory 

managers can configure their resources to align with sustainability objectives and changing 

environmental regulations and customer demands (Helfat, 2007; Bag, Gupta and Kumar, 

2021). It is clear that a broader implementation of I4.0 technologies provides factories with a 

richer set of resources, including advanced sensors, data analytics tools, and automation 

systems (Müller et al, 2018; Frank, Dalenogare and Ayala, 2019). These resources can be 

configured to monitor and optimise energy consumption, waste management, and other 

environmental factors, contributing to higher EP of factories investing in bundles of I4.0 

resources. 

It is evident from the above contribution to the literature and the finer aspects of the results 

that the breadth of I4.0 technologies enables real-time data collection and analysis for typical 

factory routines such as procurement (Porter and Heppelmann, 2014; AlNuaimi et al, 2021). 
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Dynamic capabilities are greatly influenced by a factory’s capacity to process and utilise (adopt 

and use) such information efficiently (Teece, 2018). The factory managers' capability to adopt 

and use the breadth of I4.0 technologies enables managers to gather and analyse 

environmental data, allowing for proactive decision-making to reduce emissions and improve 

overall environmental performance and therefore competitive advantage. The dynamic 

capabilities of factory managers also encompass the ability to learn from experience and adapt 

routines and processes for greater sustainability (Zollo and Winter, 2002; Palasciano et al, 

2016). This is found to foster a culture of continuous improvement through data-driven 

insights that can provide sustained competitive advantage at the level of the factory (Avella, 

Fernández and Vázquez, 1999; Finger, Beheregarai Finger, Flynn and Laureanos Paiva, 2014; 

Javaid et al, 2021; Khan, Idrees and Haider, 2023). Such learning orientation, enhanced by 

factory managers' routine changing capabilities, enables them to refine the factory’s 

environmental management practices over time, leading to lower waste and use of toxic 

materials. 

One of the foremost points of significance for the breadth of I4.0 technologies at the factory 

impacting environmental sustainability is the wider expectation for factories using many I4.0 

technologies to embrace green manufacturing. It is clear from the results that other than 

fulfilling regulatory and stakeholder expectations, smart factory managers are increasingly 

expected to exhibit a robust commitment to environmental responsibility (Lin, Tan, and Geng, 

2013; Alkaraan et al, 2023). This expectation is driven by a convergence of several factors, 

including market demand for eco-friendly production systems, products, and services. In this 

study, we have shown that the integration of customer and supplier systems, as well as cross-

functional alignment, benefits the effect of the breadth of I4.0 technologies on SP. This 

indicates that customers actively seek out sustainable offerings, while suppliers are inclined 

to be associated with factories that share their commitment to environmentally sound 

practices.  

Such an alignment of stakeholder interests, albeit at times divergent, has become 

instrumental in shaping the competitive landscape. We underline the significance of factory 

managers' capability to adopt and use the breadth of I4.0 technologies to benefit green 

manufacturing. It is clear from the results that the profound environmental implications of 

I4.0 adoption extend far beyond the boundaries of individual factories, permeating the entire 

downstream and upstream ecosystem. In this sense, we reinforce the idea that digital 

https://www.scopus.com/authid/detail.uri?origin=resultslist&authorId=25123139600&zone=
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technologies wield substantial influence over supplier selection and the coordination of 

activities with supply partners (Caiado et al 2021; Belhadiet al, 2022; Sharma et al, 2023). The 

results of this study also show that cross-functional capabilities empower the synergistic 

coordination of internal green supply chain management practices with external 

environmental initiatives, ushering in significant environmental benefits (Zhu, Sarkis, and Lai, 

2007; Kouhizadeh and Sarkis, 2018; Singh and El-Kassar, 2019).  

The factory managers' capability to adopt and use the breadth of I4.0 technologies is found to 

facilitate finer control over pollution by transmuting volatile pollutants into secure mediums 

if needed, thereby diminishing environmental impact (e.g., converting airborne contaminants 

into solid waste). We point to various I4.0 technologies, including information technologies, 

lessening the rate of environmental accidents at the factory. These results expand on previous 

findings that show that information resources, such as ICT bundles of resources, bolster the 

inspection rates of industrial pipelines, resulting in a substantial reduction in pollution and 

accidents (Kumar, Vrat and Shankar, 2021). Other technologies, such as ERP, show similar 

benefits for data-based targeted pollution prevention (Gupta et al, 2020). Yet what stands out 

from this study is at the level of the implementation of the breadth of I4.0 technologies 

optimises the processes, curbing fuel consumption such as transportation while preventing 

waste and emissions the factory (Liu and De Giovanni, 2019). In the breadth of I4.0 

technologies measured in this study we do not consider other interesting resources, such as 

blockchain technology, which the wider literature indicates adds another layer of control by 

tracking and integrating internal manufacturing processes, thereby curbing greenhouse gas 

emissions, energy consumption, and wastewater (Umar et al, 2023). In a similar vein, digital 

twins (DT) can be used to measure the sustainability status and analyse emission and waste 

data in real-time, enabling proactive decision-making but these were not included in the 

breadth of the measured I4.0 technologies (Contini et al, 2023). 

Another important contribution of this study is that we show some resources part of the 

breadth of I4.0 technologies to reduce waste. For instance, additive manufacturing, can be 

used to repair the factories’ machinery and potentially factory equipment and tools, 

prolonging the life of industrial equipment, reducing waste, lowering energy consumption, 

and avoiding unnecessary transportation of equipment that is fixable inhouse (Rodrigues et 

al, 2019; Colorado, Velasquez and Monteiro 2020; Kravchenko, Pigosso and McAloone, 2020). 

Similarly, other I4.0 technology, such as digitally programmable machines and mechanical 
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arms, are shown to optimise cutting and machining processes, minimising raw material waste 

and energy consumption, while mitigating the need for human involvement in hazardous 

environments rich in volatile organic compounds inherent in high volume 3D printing job-

shops of the factory (Chan et al, 2020; Väisänen et al, 2022; Margherita and Braccini, 2023; 

Dieste et al, 2023). 

6.3.4 The link between the breadth of I4.0 and schedule attainment 

The seventh hypothesis proposed that the capability of the factory manager to adopt and use 

the breadth of I4.0 technologies is positively related to the factory’s schedule attainment (β= 

.19, p< .001). These results contribute valuable insights to the literature on factory level 

implications for enhanced scheduling performance (SP). We show that factories suffering from 

schedule instability benefit from the adoption and use of diverse bundles of I4.0 technology 

resources. Such resource flexibility allows managers to adjust production processes in 

response to changing demands (Helfat, 2007).  

This positive and significant link between the breadth of I4.0 technologies and SP is explained   

by DC, which posits that factories capable of resource reconfiguration are able to respond 

more effectively to production disruptions and shifts in customer orders, thus minimizing 

scheduling delays (Teece, 2009; Teece, 2014). In this vein, we have shown that I4.0 technology 

enables real-time data collection and analysis, enhancing the factory's information-based 

decision-making capabilities (Porter and Heppelmann, 2014; Teece, 2018). Factory managers 

can make more informed and responsive decisions in scheduling and even future production 

planning if they develop these capabilities in support of implementing the breadth of I4.0 

technologies available to the factory. 

In this sense we show that the managers' capability to adopt and use the breadth of I4.0 

technologies promotes a culture of continuous learning and improvement through data-

driven insights (Schneider and Sting, 2020). This aligns with the core tenets of dynamic 

capabilities, which involve the ability to learn from experience and adapt routines and 

processes accordingly to avoid past scheduling mistakes, such as predictable seasonal demand 

changes (Zollo and Winter, 2002). The finer details of the study further reveal that SP is 

sometimes not impacted by technology. This is because, despite continuous use of I4.0 

resources, unforeseen events such as a blockage of world trade chokepoints and other events 

such as pandemics and political trade wars can choke access to resources (Ortt, Stolwijk and 
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Punter, 2020; Madhavan et al, 2022; Müller, Hoberg, and Fransoo, 2022). Such disruptions can 

completely shift the competitive advantage in the markets. 

One major contribution of this study lies in demonstrating the reduction of uncertainty and 

complexity, enabling improved scheduling, due to the capability to adopt and use the breadth 

of I4.0 technologies. This includes fluctuating customer requirements, variable raw material 

availability, and unpredictable internal processing times (Mapes, Szwejczewski, and New, 

2000). We have shown that the complexity associated with scheduling is compounded by the 

number of production assets, which in turn depends on the number of products, the number 

of parts for each product, and the breadth of suppliers and customers (Rossetti et al, 2023). 

Specifically, we show that using a mix of complementary I4.0 technologies, such as electronic 

data interchange (EDI) and enterprise resource planning (ERP) systems, enables 

manufacturers to predict and mitigate scheduling issues resulting from market 

unpredictability, product complexity, machine breakdowns, and technological changes 

(Ahmad and Schroeder, 2001; Molinaro, Danese, Romano, and Swink, 2022). These 

technologies enhance visibility into the internal factory dynamics as well as the supply chain, 

enabling swift responses to disruptions and ensuring that production stays on track. 

It is apparent from the finer details of the results that certain I4.0 technologies play a more 

pivotal role in enhancing SP. Radio-Frequency Identification (RFID) and the Internet of Things 

(IoT) facilitate real-time information exchange, optimisation algorithms, and decentralised 

decision-making (Li et al, 2023). This allows for agile responses to unexpected events, such as 

machine breakdowns or shifts in demand, mitigating disruptions and maintaining the 

production schedule. Machine learning, enabled by I4.0 technology, contributes to data-

driven adjustments in sub-schedules, optimizing resource allocation (Shurrab and Jonsson, 

2022). Somewhat unexpectedly, we found the promise of real-time data and predictive SP in 

I4.0 is significant. It can sometimes lead to over-reliance on automated systems, neglecting 

the need for human intervention and decision-making, which can further disrupt schedules 

(Liu et al, 2019). 

Another valuable contribution of this study is that we demonstrate that planning and decision-

making processes are fundamental to SP, and the breadth of I4.0 technologies significantly 

enhances these aspects. We clarify how manufacturing operations involve intricate planning 

and many I4.0 technologies, often requiring adjustments to schedules on a frequent basis. 
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Inadequate usage of ICT in the breadth of I4.0 technologies can result in inconsistent 

scheduling computations across departments and sub-units, leading to scheduling 

irregularities (Germain and Lyer, 2006; Lu, Du and Peng, 2022). Such findings highlight the 

importance of comprehensively implementing I4.0 technology, showing that factory 

managers benefit from the seamless coordination among internal functions and data from 

other systems. 

Interestingly we find that the accelerated adoption of I4.0 technologies has raised concerns 

about the potential to disrupt factory schedules, indirectly introducing scheduling instabilities 

and delays. This is explained by past research indicating that the rapid implementation of I4.0 

sometimes outpaces the organisation's ability to manage and adapt to these advanced 

technologies. We indicated that as factories increasingly incorporate IoT devices and 

automation, the complexity of coordinating and maintaining these systems can result in 

unexpected downtime and production interruptions, causing scheduling delays. Our results 

also resonate with the findings of Perifanis and Kitsios, (2023) who noted that the integration 

of sophisticated data analytics and artificial intelligence in I4.0 may require substantial time 

for data training and system fine-tuning, potentially hampering immediate schedule 

adherence. This is demonstrated by the empirical results of this study, showing that SP is less 

prioritised as a competitive priority, compared to factory automation for instance, as evident 

from the relatively lower adjusted R2 (0.148) and F values for this relationship (1.035) (see 

table 22). 

 

6.4 Chapter Conclusion 

This chapter has discussed the results of the hypothesis. It is shown that integration capability 

is mostly linked with the capability to implement the breadth of I4.0 technologies at the 

factory. Specifically, the positive link between DMI and SI on the breadth of I4.0 technologies 

was elaborated. It was also discussed why MSI did not significantly link with the breadth of 

I4.0 technologies. The second half of the chapter discussed the second research question and 

elaborated in depth the positive link between the breadth of I4.0 technologies on AP, EP, and 

SP. The insignificant link between the former and production cost performance was justified 

based on alternative explanations. 
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Chapter 7. Conclusions and Future Research 

 

7.1 Chapter Introduction  

This study has examined higher-order integration capabilities as antecedents to the lower-

order capability of adopting and using the breadth of I4.0 technologies and competitive 

advantage gains at the factory level, based on a random sample of UK factory managers. The 

chapter discusses the theoretical and practical contributions and implications of this survey 

and highlights future streams of research requiring further exploration by I4.0 scholars based 

on the limitations and shortcomings of this study. 

7.2 Thesis Overview  

This is the first study to provide empirical evidence at the level of the factory on the link 

between second-order integration capability and the first-order capability of implementing 

the breadth of I4.0 technologies and competitive advantage. Previous studies focused on 

other general capabilities at the factory level such as internal networking (Shi and Gregory, 

1998; Eriksson, Nummela and Saarenketo, 2014) while integration capability was only 

mentioned in isolated studies. Also, the breadth of I4.0 was not previously studied at the 

factory level of analysis in relation to the competitive advantage outcomes. Studies at 

neighbouring units of analysis (mostly the firm level) increasingly suggested that integration 

capability related to learning and the reconfiguration of existing resources benefits production 

technology adoption (Schilke, 2014; Thomé and Sousa, 2016; Geleilate, Parente and Talay, 

2021). The factory manager’s ability to implement the breadth of I4.0 technologies, 

representing the capability to manage bundles or sets of I4.0 technologies in orchestration, 

remained unstudied. In addition, a systematic literature review found the I4.0 literature to be 

atheoretical and lacking in empirical evidence at many levels. In response to these pressing 

limitations in the I4.0 literature this research investigated these important capabilities as 

antecedents to lower-order capability of the breadth of I4.0 and competitive advantage 

(operational performance) at the level of the factory. 

Data was collected using an online web-based survey questionnaire with top factory managers 

of UK factories using I4.0 technology. Due to the methodology and rigorous research design, 

a high response rate was achieved, and 320 full responses were recorded and analysed using 
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multiple regression and structural equation modelling (SEM). Using the theory of dynamic 

capability, the results found that higher-order integration capability mostly benefits the first-

order capability of adopting and using the breadth of I4.0 technologies (Schilke, 2014; Teece, 

2022, Teece, 2023). While design-manufacturing integration and systems integration were 

shown to be positively and significantly related to the breadth of I4.0 technologies, 

manufacturing-strategy integration was not found significant in this relationship. In this case, 

the relationship shows that higher-order factory capability acts as an antecedent to first-order 

factory capability, while manufacturing-strategy integration was not specifically found to be 

important for managing the breadth of I4.0, at least not directly, but may benefit other 

measures of I4.0 adoption (Büchi, Cugno and Castagnoli, 2020; Cugno, Castagnoli and Büchi, 

2021). Another important contribution of this study is that the first-order capability of 

adopting and using the breadth of I4.0 technologies has been found to be positively and 

significantly related to the level of automation, environmental sustainability, and the 

scheduled attainment of the factory, showing competitive advantage benefits. The result 

indicated that the first-order capability of adopting and using the breadth of I4.0 technologies 

is not significantly related to the production costs of the factory, showing late or delayed 

manifestation of operational cost performance and the complex trade-off between cost and 

other competitive priorities of the factory. 

This research contributes to the industry 4.0 literature on orchestrating and managing several 

interconnected technologies. The results of this study identified unique combination of 

higher-order and lower-order capability. Factory managers strong in such capabilities have 

been shown to excel at resource orchestration and resource reconfiguration to not only fully 

realise the holistic benefit gained from using multiple complementary assets but also to 

protect the value generated by these I4.0 technologies from imitation (Lardo et al, 2020; 

Nayernia, Bahemia and Papagiannidis, 2022). 

7.3 Contribution to Theory 

This survey provides several theoretical contributions to the mostly atheoretical I4.0 literature 

and the mostly firm-level dynamic capability literature, most importantly, the empirical 

measurement of the scope and extent of technology usage beyond the rather technology-

centric measure of technology maturity. The study provided evidence on the capability of the 
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factory manager to implement a breadth of I4.0 technologies. In this case the measured 

breadth of I4.0 technologies consisted of ten unique technologies (see chapter 4.5). 

Second, the results identified transformational integration and alignment capabilities with the 

characteristics of second-order transformational capabilities. This study is the first to respond 

to the limitations of the I4.0 literature by testing these higher-order capabilities as 

antecedents to the capability of managing the breadth of I4.0 technologies. Specifically, 

design-manufacturing integration, manufacturing-strategy integration, and systems 

integration are identified as second or higher-capabilities related to new learning routines, 

routine changing routines, and the transformation of or adding to resources (Schilke, 2014; 

Danneels 2016; Danneels, 2017). 

Third, the results of this study contribute to the DC literature on the competitive advantage of 

factories (Xiaosong Peng, Schroeder and Shah, 2011; Vanpoucke, Vereecke and Wetzels, 

2014). The study provided empirical data on the level of factory automation, production costs, 

environmental sustainability in the form of emissions and pollutants, and schedule 

attainment. The results found competitive advantage benefits, except for production costs, 

for factory managers supporting their mere capability of adopting and using the breadth of 

I4.0 technologies with transformational integration capabilities. 

The results of the survey provide empirical evidence on the above relationship at the level of 

the factory and address the thus far limited literature on measuring both the capabilities 

needed for and competitive advantage outcomes of managing I4.0 technology (Felsberger et 

al, 2022; Rehman and Jajja, 2023). The use of DC theory enabled the researcher to quantify 

these difficult to measure resources and capabilities. The study provides evidence on how 

organisational sub-units, such as the factory, develop and adapt their capabilities in response 

to changes in technology. This adds to the understanding of how factory managers build the 

capacity to continuously innovate and optimise operations to respond to technological 

advancements in competitive markets. 

7.3.1 Integration antecedents to the breadth of I4.0 technologies 

In light of the important contributions noted above, several finer theoretical contributions 

stand out. Most critically, this study argues for second-order capabilities acting as antecedents 

to first-order capability instead of the reverse relationship, which some studies theoretically 

justify. Specifically, the literature shows that over time I4.0 benefits the cross-functional and 
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cross-system integration capability of managers. This is theoretically explained by studies 

showing that first and second-order capabilities have a two-way symbiotic relationship as 

opposed to the one-way relationship between second-order DC acting as antecedent to first-

order DC, which this study is focused on (Schilke, 2014). In effect, this study provides a 

theoretical contribution for the more studied impact of second-order DC acting as antecedent 

to first-order DC. The results show that factory managers have a better grasp of how best to 

use the breadth of I4.0 technology if they already possess or have recently developed higher-

order capabilities and competencies. 

These findings expand on recent similar results regarding second-order integration capability 

as an important antecedent to I4.0 use in manufacturing (Tabim, Ayala and Frank, 2021). The 

results of this study specifically show that factory managers are adept in systems integration 

and design-manufacturing integration capability (e.g., using mechanisms to connect and align 

production with those functions) to be able to develop a more robust capability to adopt and 

use an ever-increasing spectrum of available I4.0 technology in the market. Perhaps 

expectedly, such higher-order capability (routine changing routines) considered as part of the 

wider management literature is still theoretically disconnected from empirical studies on I4.0 

(Raj and Jeyaraj, 2022; Pozzi, Rossi and Secchi, 2023). In response to these major literature 

limitations, the study measures design-manufacturing integration, manufacturing-strategy 

integration, and systems integration capability as well as ten I4.0 technologies at the factory 

level used to drive competitive advantage. 

The relation between factory integration capability and the capability to implement the 

breadth of I4.0 technology reinforces the importance of factory planning, maturity models, 

frameworks, and the preparedness of factory managers to tackle the often-hidden tensions of 

digital transformation. Such higher-order capabilities need time to develop and must be better 

understood and developed prior to adoption by factory managers. These tools and 

mechanisms serve as an essential compass for navigating the complex terrain of digital 

transformation. Ultimately, we find I4.0 preparation considering different types of first and 

second-order capabilities offers a structured framework to guide factories in evaluating their 

current capabilities and to develop and strengthen selected capabilities based on internal and 

external resource availability (Simetinger and Zhang, 2020). 
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7.3.2 Breadth of I4.0 technologies as antecedent to factory performance 

There are several theoretical implications regarding lower-order capability and factory 

performance. This study provides theoretical justification for showing the need for 

performance trade-offs despite resource availability and the use of dynamic capabilities 

(Mapes, New and Szwejczewski, 1997; Helfat, 2007; Bag, Gupta and Kumar, 2021). A salient 

facet of the breadth of I4.0 and the positive link with environmental sustainability lies in the 

ability of factory managers to illuminate the intricate interplay between environmental and 

economic performance, each discussed individually in the results chapter. This is because 

many of the consumption and upkeep issues mentioned with regard to the production costs 

(see section 6.3.2) are also found to negatively affect factory environmental emission rates 

(Samadhiya et al, 2022). These results are in line with the theoretical justifications of past 

studies on this matter arguing for the need for a trade-off between these two domains, with 

environmental improvements potentially hampering economic metrics to some degree 

(Shultz and Holbrook, 1999). 

This study falls short of categorically claiming that there could be a symbiotic relationship 

between production costs and environmental performance at the factory. However, it is 

evident that managers have to balance between these two important competitive priorities 

(Hart, 1995; Klassen and Whybark, 1999; Klassen, 2001). This study hints at other factors that 

lead to production costs sometimes spiking independently of the environmental performance 

(EP). In rare cases, the finding reinforces the notion that a coherent sustainability strategy can 

effectuate waste reduction and pollution mitigation within manufacturing processes without 

compromising the economic viability of the factory (King and Lenox, 2001). 

7.3.3 Dynamic capability for smart factory competitive advantage 

We have shown dynamic capability to be a critical component for smart factory readiness for 

responding to competitive pressures. Development and strengthening of the dynamic 

capabilities of factory managers is deemed necessary at an early stage of technology adoption. 

The study indicated that adequate levels and combination of dynamic capability facilitates the 

development of comprehensive roadmaps to guide factory managers in systematically 

broadening and deepening the use of production technology (Chatterjee, Grewal and 

Sambamurthy, 2002; Črešnar et al, 2020; Liebrecht et al, 2021). These findings support 

proactive I4.0 planning, ensuring that factory resources are allocated effectively to best gain 
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competitive advantage (Wagire, Rathore and Jain, 2020). The results show that integration 

not only benefits the utilisation of sets of I4.0 technologies but also the development of other 

lower and higher-order dynamic capabilities and the enhancement of new learning routines 

and practices that can be used as a continuous learning asset for future technology adoption 

(Karimi and Walter, 2015; Schuchmann and Seufert, 2015). 

7.4 Contribution to Practice 

The results of this study guide factory managers, such as operations managers and factory 

supervisors, when investing in their higher-order integration capabilities as opposed to only 

focusing on the adoption and use of I4.0 technologies. In fact, the results of the study clearly 

indicate that the factory manager’s capability to implement these technologies is greatly 

enhanced by having developed over time the capability to integrate the various 

interdependent technologies, systems, and functions of the manufacturer and, to some 

degree, that of the value chain partners. The study can also guide factory top management in 

charge of adopting I4.0 technology in understanding the performance outcome of such 

change in production technology. 

Specifically, factory managers capable of integrating the design and the manufacturing 

functions (via mechanisms, routines, and practices) can best combine the usage of design 

technologies (e.g., CAD, simulation modelling, VR), production technologies (e.g., robotics, 

AGVs, additive manufacturing), and information technologies (e.g., IoT, BDA, cybersecurity, 

cloud computing). Also, factory managers capable of integrating systems, of upstream and 

downstream value chain partners, can best combine the usage of the numerous technologies 

available to factories in the age of I4.0. The findings inform factory managers capable of 

integrating the strategy and manufacturing functions that they should not expect benefits to 

their capability in managing bundles of I4.0 technology. Instead, managers also need to 

consider if the production strategy is driving corporate strategy (bottom-up) or if the 

corporate strategy is driving production strategy (top-down) and define which is more in line 

with competitive strategy (Swink, Narasimhan and Wang, 2007). Therefore, managers need 

to consider a wider range of strategies that impact technology adoption, not just production 

strategy, corporate strategy, and the integration between them. 

Equally important is the result for factory managers concerned with performance. The findings 

guide managers with the capability to implement the breadth of I4.0 technologies to deliver 
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greater factory performance. The findings guide factory managers in understanding the 

performance benefit of I4.0 technology bundles, not just for achieving a higher level of 

automation at the factory but also for reducing pollutants and toxic emissions from the factory 

by investing in developing their capability to integrate the various interdependent bundles of 

I4.0 technologies. The results also guide factory managers focusing on lowering the cost of 

production and other priorities, such as schedule attainment. The findings show that even 

factory managers who have developed the capability to implement bundles of I4.0 

technologies have to prioritise immediate competitive priorities over less pressing issues, such 

as ensuring the delivery timeliness of products at the cost of not gaining, and in some cases 

worsening, production cost performance. 

7.5 Limitations  

The researcher undertook several measures to ensure the validity, reliability and fit of the 

model with DC theory, according to the steps proposed by Forza (2002) for survey research in 

operations management. However, some limitations remain that need to be addressed by I4.0 

scholars in future research. First, while this study primarily focused on the exploitation of 

existing capabilities and resources in the adoption and utilisation of I4.0 technologies, future 

research should delve into the exploration aspect. Exploration involves experimenting with 

new technologies, processes, and business models to discover new opportunities and drive 

innovation and efficiency performance. Balancing exploration and exploitation is crucial for 

sustained competitive advantage. This would provide valuable insights into how factory 

managers can effectively navigate the trade-offs between exploiting current capabilities and 

exploring new opportunities to maintain long-term competitiveness and innovation. Future 

research should explore how factory managers develop the necessary capabilities for I4.0 

adoption. This includes examining training programs, organisational learning mechanisms, 

and the role of leadership in fostering a culture of innovation. Understanding these processes 

can provide insights into effective strategies for capability development and address the gaps 

identified in the current study. 

Second, the cross-sectional survey method, though beneficial for this study, can have certain 

disadvantages. For instance, Cross-sectional surveys capture data at a single point in time, 

making it challenging to establish causality in the context of I4.0 adoption. This study identified 

the correlation between the variables, but the evidence for causal conclusion is inherently low 
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for cross-sectional designs. Future experimental research methods and longitudinal survey 

studies are better suited for establishing causal relationships as they can more strongly 

distinguish the directionality and effect interactions between resources and competitive 

advantage (McIver and Lengnick-Hall, 2018). To an equal measure, the temporal ambiguity of 

cross-sectional survey design is not ideal for understanding dynamic processes such as 

constantly changing performances, which the above alternative methods and time series 

analysis can overcome (Bryman, 2016). Also, cross-sectional surveys often rely on closed-

ended questions (see section 4.5), restricting the depth of analysis. Alternative qualitative 

methods such as interviews and case studies provide a more conclusive understanding of the 

complex interaction between resources (Eisenhardt, 1989; Voss, 2010). 

Third, it is evident that Industry 4.0 technologies, such as the IoT, additive manufacturing, and 

robotics, offer substantial competitive advantage potential. Nonetheless, other important I4.0 

technology that is critical for factory operations is not included in the breadth of I4.0 

technologies of this study. For example, AI, machine learning, blockchains, CPS, digital twins, 

and edge computing can be added to the breadth of I4.0 technologies of future studies. This 

does not mean, however, that scholars should only focus on high breadth cases. Future studies 

could also investigate the complementarity of only a few I4.0 technologies in resource scarce 

conditions and low-tech sectors, as opposed to the high-tech sector often expected to also 

have a high breadth of advanced production technology due to more complex manufacturing 

processes (Cagliano et al, 2019; Jasperneite, Sauter and Wollschlaeger, 2020). Also, in highly 

customised or intricate manufacturing environments, complete automation and the use of 

excessive technology may be challenging due to the need for human intervention, creative 

problem-solving, and intuitive decision-making (Parasuraman, Sheridan and Wickens, 2000; 

Turner and Garn, 2022). 

Fourth, the management literature on capabilities extends far beyond integration. This 

oversimplification may not be representative of the diverse set of skills factory managers are 

expected to possess beyond integration, such as leadership and management support, 

decision-making, communication, and strategic thinking (Mintzberg, 1973; Smith, 2014). 

Different managerial capabilities are relevant in various contexts and industries and scholars 

may overlook industry-specific or context-dependent competencies that are crucial for 

successful factory management (Teece, Pisano and Shuen, 1997). By exclusively examining 

integration capability, scholars may miss crucial insights into the broader range of 
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management competencies that contribute to the effective use of technology, for instance, 

the agility and adaptability required to navigate the evolving challenges in the manufacturing 

sector and other capabilities that are synergetic to integration but are not included in this 

study (Eisenhardt and Martin, 2000; Hanson et al, 2016). 

Fifth, operational performance is a strong representation of competitiveness but not the only 

measure for competitive advantage. Rather, competitive advantage in the manufacturing 

sector is a multifaceted and dynamic concept that requires a more holistic approach. For 

instance, consumers and stakeholders increasingly value sustainability and CSR practices, yet 

merely examining environmental emission and waste rates may overlook the potential 

competitive advantage gained through environmentally friendly practices, green supply chain 

management practices and social responsibility initiatives (Hult and Ketchen, 2001; Porter and 

Kramer, 2006; Zhu, Sarkis and Lai, 2008). Also, an exclusive focus on static operational metrics 

may fail to capture the adaptability and agility required to respond to evolving market 

conditions and industry disruptions (Eisenhardt and Martin, 2000). In the same vein, ignoring 

factors such as supplier relationships, logistics efficiency, and collaborative networks can 

provide an incomplete picture of a factory’s overall competitiveness (Cohen and Roussel, 

2022). Furthermore, competitive advantage goes beyond operational efficiency and includes 

strategic positioning and customer-centric factors, such as product quality, customization 

capabilities, and customer service (Porter, 1985; Treacy and Wiersema, 1993; Phan, 2003; 

Sheth, Jain and Ambika, 2020). 

Finally, there are several limitations associated with only including UK manufacturers in the 

sample. Findings from a survey focused only on the UK manufacturing sector may lack 

generalisability to a global context. I4.0 implementation and the inherent cultural and regional 

challenges can vary significantly across different countries due to variations in technological 

infrastructure, regulatory environments, and industry structures (Lu, 2017). In this vein, 

relying only on UK data may limit the ability to capture the full spectrum of industry-specific 

nuances and variations in I4.0 adoption. This limits the understanding of how I4.0 is integrated 

across international operations (Castagnoli et al, 2022; Luo and Zahra, 2023). 

7.6 Future Research Avenues 

Given the limitations of this research identified in the previous section, several avenues for 

future research can be recommended. First, it is evident that the method of the empirical 
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research for studying the different aspects of I4.0 needs to expand beyond cross sectional 

examination. The operations management, strategy, and information system management 

literature points to interesting alternative empirical methods that could be used to measure 

and study the management of I4.0 technology (Flynn et al, 1990; Lyytinen, 1999; Bettis et al, 

2014). Future longitudinal survey studies could capture how the breadth of I4.0 changes over 

time and clarify if factory managers build the capability to implement the breadth of I4.0 

technologies over time to include more technologies in the factory. Such studies could clarify 

how the breadth changes in competitive markets and analyse why factories may use more, or 

in some cases, a lower number of I4.0 technologies over time. Such a longitudinal approach 

could also shed light on the depth of I4.0 and clarify how widely these advanced technologies 

are used in the value chain and how certain technologies proliferate more than others. 

Similarly, time-based studies could explore the source of I4.0 and determine if factories start 

to change strategy over time and develop production technology inhouse rather than 

purchasing from I4.0 solution providers. Future multiple case studies could focus on critical 

capabilities such as design-manufacturing integration and systems integration, which this 

study surveyed. 

Second, more I4.0 technologies could be added to the breadth of I4.0 measured in future 

studies. Many important I4.0 technologies, such as blockchain technology and artificial 

intelligence, were not in the breadth of I4.0 of this study. Including such technologies captures 

a more representative view of what I4.0 technologies factories have access to in the market 

(Cugno et al, 2022). Future studies could examine other measures of I4.0 technology usage 

that would represent the scope and maturity of the technology used, for instance, advanced 

manufacturing capability (Chung and Swink, 2009), complementary production asset adoption 

(Christmann, 2000), and advanced manufacturing technology (AMT) used in various areas of 

the factory such as inventory, job-shops, and assembly lines (Das and Narasimhan, 2001; Das, 

Narasimhan and Talluri, 2006). Equally, future empirical studies could shed light on digital 

maturity (Lorenz et al, 2020) and Industry 4.0 maturity as important technology related 

capabilities measures (Tortorella and Fettermann, 2017). 

Third, other capabilities could be measured as antecedents to the breadth of I4.0 

technologies. Future studies could clarify if integration capability with other functions could 

benefit the factory managers' capability to implement the breadth of I4.0 technologies, for 

instance, integration with marketing (Swink and Song, 2007; Feng, Huang and Avgerinos, 
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2018), sales (O’Leary-Kelly and Flores, 2002), Human Resources (Santos, 2000), and other 

aspects of the supply chain (Cagliano, Caniato and Spina, 2006). Beyond integration 

capabilities, other capabilities identified as second order capability could be studied as 

antecedents to the breadth of I4.0 technologies. For instance, factory flexibility could be 

further investigated as a key enabler (Koste, Malhotra and Sharma, 2004). Identifying 

resourceful and innovative combinations of different types of capabilities could further explain 

how to best protect I4.0 value in competitive markets (Ellonen, Jantunen and Kuivalainen, 

2011; Kuuluvainen, 2012).  

Fourth, this study only measured four performance outcomes at the factory level. Future 

studies could further investigate factory level performance and empirically measure other 

performance indicators representative of competitive advantage, such as customer 

satisfaction and customisation responsiveness (Das and Narasimhan, 2001; Bozarth et al, 

2009). Another important performance not measured here is quality. Future surveys could fill 

this gap and measure the delivery quality (Ahmad and Schroeder, 2009), conformance quality 

(Devaraj, Hollingworth and Schroeder, 2004) and factory level leadership involvement in 

quality (Xiaosong Peng, Schroeder and Shah, 2011). Equally, future studies could quantify the 

availability of quality data and reporting methods at the factory level to clarify the availability, 

timeliness and extent of data on various quality performance measures (Kaynak, 2003). 

Lastly, this study only examines the manufacturing sector of the UK. However, I4.0 

technologies are also widely used by other industrial and developing countries and for other 

sectors, such as the service sector. Such studies could clarify the cross-cultural and regional 

contingencies related to the development of capabilities, technology acceptance, and the ease 

of adopting new learning routines (Raj et al, 2020; Pessot et al, 2021). Studying the industry 

level context of implementing I4.0 technologies of factories in developed and developing 

countries could better explain the inter dependence between plants using I4.0 technologies 

(Gattiker and Goodhue, 2005). Conversely, future studies could compare implementation 

cases across different regional and cultural contexts to find similarities and point out the 

differences in adopting I4.0 technology, such as the developmental culture of the factory and 

factory culture (Naor, Linderman and Schroeder, 2010; Hardcopf, Liu and Shah, 2021). This 

would help understand the nuances and variations in I4.0 adoption globally and identify best 

practices that can be generalised or adapted to different settings. This approach addresses the 

limitation of the current study's focus on UK factories and enhances the generalisability of the 
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findings. In the same vein, future studies could investigate cultural aspects related to 

workforce development and learning from failure (Narasimhan et al, 2006; Carmeli, 2007). 
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Appendix A: Scopus I4.0 Search for Review Articles 
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Appendix B: Selected studies year, origin, field, method, and unit-of-analysis 

publication year (a), country of origin (b), field of science (c), research method used (d), and 

unit-of-analysis (e) 

 
 

 

 

Appendix C: Survey checklist based on Forza, (2002) 

Survey phase Check questions to assure survey research quality 

Before Survey 

Research design  

(1) Is the unit of analysis clearly defined for the study? 
(2) Are the construct operational definitions clearly stated? 
(3) Are research hypotheses clearly stated? 
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Defining the 

sample 

(4) Is the sample frame defined and justified? 
(5) What is the required level of randomness needed for the purposes 
of 
the study? 
(6) What is the minimum sample size required for the planned 
statistical 
analyses? 
(7) Can the sampling procedure be reproduced by other researchers? 

Developing 

measurement 

instruments 

(8) Are already-developed (and preferably validated) measures 
available? 
(9) Are objective or perceptual questions needed? 
(10) Is the wording appropriate? 
(11) In the case of perceptual measures, are all the aspects of the 
concept equally present as items? 
(12) Does the instrumentation consistently reflect that unit of analysis? 
(13) Is the chosen scale compatible with the analyses which will be 
performed? 
(14) Can the respondent place the answers easily and reliably in this 
scale? 
(15) Is the chosen respondent(s) appropriate for the information 
sought? 
(16) Is any form of triangulation used to ensure that the gathered 
information is not biased by the respondent(s) or by method? 
(17) Are multi-item measures used (in the case of perceptual 
questions)? 
(18) Are the various rules of questionnaire design (see above) followed 
or not? 

Collecting data (19) What is the response rate and is it satisfactory? 
(20) How much is the response bias? 

Assessing 

measure 

quality 

(21) Is face validity assessed? 
(22) Is field-based measure pre-testing performed? 
(23) Is reliability assessed? 
(24) Is construct validity assessed? 
(25) Are pilot data used for purifying measures or are existing validated 
measures adapted? 
(26) Is it possible to use confirmatory methods? 

Analysing data (27) Is the statistical test appropriate for the hypothesis being tested? 
(28) Is the statistical test adequate for the available data? 
(29) Are the test assumptions satisfied? 
(30) Do outliers or influencing factors affect results? 
(31) Is the statistical power sufficient to reduce statistical conclusion 
error? 

Interpretation 

of results 

(32) Do the findings have internal validity? 
(33) Is the inference (both relational and representational) acceptable? 
(34) For what other populations results could still be valid? 
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Appendix D: Pilot Study Interview Question Example 

Implementing I4.0 at the plant level 

The aim of this interview is to highlight some of the factors that distinguish between I4.0 

implementation between different factories. 

 

1. Can you talk to us about the implementation of Industry 4.0 at the firm and then at the 

plant level? (e.g., Are there differences or similarities?) 

2. What is the level of maturity of I4.0 at your company? 

3. Is implantation of I4.0 managed at the firm or plant level? 

4. What are the critical success factors for implementing I4.0 at the firm and plant level? 

5. What are the benefits of I4.0 at the firm level and at the plant level? 

6. How much are developed in house? Does your factory collaborate with external partners 

for the implementation of I4.0 in the factories? 

7. How many plants/factories are there in the company, in the base country and 

internationally? 

8. What are the core components of I4.0 at the plant level? 

9. What are the main changes that have been made at the firm and plant level to support 

the implementation of Industry 4.0? 

10. Is the level of investment of I4.0 similar across all plants? If not, what are the key factors 

that differentiate the level of I 4.0 across different plants. 

11. What are the plant characteristics that determine low and high levels of investment in 

I4.0? 

12. How important do you find the plants social sustainability as an enabler of I4.0? 

(Workforce learning and development, supplier/customer relations etc...) 

13. How important do you find the plants environmental sustainability as an enabler of I4.0? 

(Rate of plant emission etc.…) 

14. How important do you find the plants openness as an enabler of I4.0? (Working with other 

plants, departments etc...) 
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15. How important do you find the plant’s product complexity (or production complexity) as 

an enabler of I4.0? (I4.0 solutions only implemented for complex products?) 

16. Other than the above potential enablers and plant size, age, and production strategy, 

what other factors could enable the implementation of I4.0? 

Appendix E: Pilot Study Interview Response Example 

Role/Position Affiliation/
Field 

Interview Response Examples 

Global head of 
automation, 
electrical and 
digital engineering 

SPX Flow Q1: 'We have been able to collect more data 
and we have been able to contextualise that 
data'. ('giving the implementors a bigger 
torch'). 
Q6: 'I buy the equipment [sensors] from the 
people that make it good, but should I share 
the data from analysis with e.g., Microsoft?' I 
want a unique tool that’s better than 
everyone else … because everyone else 
already has their own tool'. 
Q13: 'They [companies] are not changing their 
habit to make their manufacturing process 
more sustainable' …. 'They buy carbon credits 
and plant trees'. 
Q14: 'education and training of the workforce 
is critical for cyber security'. 

Global Research 
Director for Digital 
Transformation 

Global 
Business 
Research 

Q4: 'decisions are pushed down the line' ... 
'90% of organisations are doing agile on paper 
only'. 
Q6: 'it forces the SMEs into partnership and 
cooperation' ... 'We used to sell the machines 
but now we sell services based on that 
machine'. 
Q9: 'top management has to understand but 
also empower employees' … 'depends on 
change management and culture'. 
Q12: 'use objective data to measure 
performance of employees' … ' Need to have 
the right data in the right form and at the right 
time to make decisions'. 
Q16: 'health and safety is important in 
automation (as an outcome)'. 

Senior Smart 
Factory Consultant  

Trumpf Q3: 'manufacturing strategy defines the firm’s 
strategy'. 
Q4: 'more alignment is needed as this will 
reduce the cost of the produced parts and 
products'. 
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Q5:’customers primarily implement 
digitisation projects to reduce cost of 
operation’. 
Q6:’the level of infrastructure of the customer 
determines the decision to outsource or 
[invest in] internal R&D’. 
Q12:’Sustainability and social aspects are very 
much relevant’. 
Q14:’perliminary study of the customers 
digitisation is needed… but to measure the 
digitisation maturity of customers a 
benchmarking is done’. ‘No general 
agreement between the firm and digitisation 
partners (customers) but instead NDA with 
and based on trust and reputation’. 
Q15:’ Product complexity determines, to a 
degree, the openness to share data [with 
suppliers] … SMEs are more affected’. 

Manager to CEO  Mercedes-
Benz 

Q4; ‘standardised assets form the basis of 
implementing future Industry 4.0 
[technology]’. 
Q6: ‘The full benefit we get when everything is 
connected in the whole chain either 
horizontally [and] or vertically’. 
Q9: different types of PLC’s require different 
systems integration and is going to be much 
more barrier [difficult]’. 
Q12; ‘the usage of less resources, less energy, 
less, air and light is embedded in the process 
of technology implementation’. ‘Sustainability 
is not the primary output’. 
Q14: ‘the end user of the technology is a part 
of the process of technology development’. 
Q15:’not as heavily, won’t need full system 
integration or additive manufacturing unit for 
simple products. 

Senior Researcher Innovation 
and 
Technolog
y 
Managem
ent 
(Newcastl
e 
University) 

Q4:’[enabler] such as lean are fine if you have 
a very well-functioning supply chain’. ‘It’s 
important to the customer to have the things 
when they want it not that it is only just in-
time [Agile]’. ‘Factories are dependent on 
technologies that allow you to maintain a very 
just-in-time [agile] supply chain’. 
Q9:’Technology is not easily imposed on 
people... [which is] often what’s going on in 
practice’. 
Q12:’workforce-development Is not an 
intrinsic measure of sustainability’. ‘When you 
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have people inputting data into a system… 
than you have issues of data quality’. 
Q13: ‘a lot of companies use the TBL 
characterisation of sustainability but trade 
one dimension against the other’. ‘TBL is being 
abused [misrepresented] being used for 
greenwashing’. 
Q14:’power relations between the 
organisations… the supplier has no choice to 
invest in the technology [CAD] if they want to 
stay in businesses. ‘The extent to which these 
[implemented] technologies are adhering to 
industry wide standards… [which firms] 
understood in 
telecommunications…microelectronic design’. 
Q15: ‘‘for certain products there are some 
instances where you don’t want things to be 
lean…where engineers [often] over-engineer’. 

 

 

 

Appendix F: Survey Questionnaire  

Survey: Smart Factory and Industry 4.0 in the UK Manufacturing 
Sector  
                                      
Welcome to this survey that aims to understand the capabilities and practices that would support 
Industry 4.0 technology use in the manufacturing sector in the UK. This survey is part of an Industry 
4.0 (I4.0) and Smart Factory research conducted by Hamed Nayernia (b5053090@newcastle.ac.uk) 
with the supervision of Dr. Hanna Bahemia and Prof. Savvas Papagiannidis at Newcastle University 
Business School in the UK. 
  
You should only proceed to answer this question if your role is Plant Manager/ Plant 
Supervisor/ Plant Director or Operations Manager/Supervisor. You will be asked questions related 
to your factory/plant. When you answer the questions, please refer to ONLY the plant at which you 
work. Do not consider other plants that your company may operate. If your responsibilities extend 
beyond a single manufacturing plant, please only refer to ONE plant at which you have a better 
understanding of its operations. 
  
Some questions may be of a personal nature. However, please be assured that all answers you 
provide will be kept confidential. Any information provided will be used solely for the purpose of this 
research. It is very important that you answer all the questions and provide answers that suit your 
circumstances best. The survey takes 15 minutes to complete. If you do not complete the survey, we 
will ignore the response and any data provided will not be used in the analysis. 
 

If you are a manager / supervisor / director at a factory and consent to using your responses as 

mentioned above, please enter your Prolific ID: 

mailto:b5053090@newcastle.ac.uk
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XXXXXX 

 

Q1: Degree of I4.0 Technology 

  
Please state if the following I4.0 technologies are adopted and implemented in the plant.  
  
If "Implemented" Please state the origin of the technology. (Either acquired from other companies OR developed in-house). 
 
If the technology was purchased or acquired from another firm, please select "Implemented and acquired from other 
companies". If in-house innovation and internal R&D led to implementation of the I4.0 technology, in contrast to being 
purchased from other firms please select "Implemented and developed in-house". 
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a) Advanced manufacturing solutions: This refers to the creation of 

interconnected and modular systems that guarantee automated industrial plans. 

These technologies include automatic material-moving systems and advanced 

robotics, the latter of which are now on the market as “Cobots” (collaborative 

robots) or automated guided vehicles or unmanned aerial vehicles. 

   

b) Augmented reality: This involves a series of devices that enrich (or lessen) 

human sensory perception through access to virtual environments; this is 

accompanied by sensory elements, such as sound, smell, or touch. These 

elements can be added to mobile devices (smartphones, tablets, or PCs) or other 

sensors to augment vision (augmented-reality glasses), sound (earphones), or 

touch (gloves) to provide multimedia information. 

   

c) Internet of Things: This corresponds to a set of devices and intelligent sensors 

that facilitate communication between people, products, and machines. 
   

d) Big data analytics: This relates to the technologies that capture, archive, 

analyse, and disseminate large quantities of data derived from the products, 

processes, machines, and people interconnected in a company, as well as the 

environment around it. 

   

e) Cloud computing: Cloud computing technologies facilitate the archiving and 

processing of large quantities of data with high performance in terms of speed, 

flexibility, and efficiency. Cloud computing also results in a greater number of 

services developed based on data for a productive system – including monitoring 

and control functions – to ensure quality and improve operations and production. 

   

f) Cyber security: This includes security measures designed to protect the flow of 

information over interconnected corporate systems. 
   

g) Additive manufacturing: This additive production process allows for complex 

products by creating layers of materials, including such different types of 

materials as plastics, ceramics, metals, and resins, thus eliminating the need to 

assemble the material. A significant example is 3-D printing. 

   

h) Simulation: This involves reproducing the physical world in virtual models and 

allowing operators to test and optimize the settings to obtain materials, 

productive processes (discrete elements), and products (finished or distinct 

elements). 

   

i) Horizontal and vertical integration: The integration offered by Industry 4.0 is 

characterized by two dimensions: internal versus external. The first (horizontal 

integration) concerns the integration and exchange of information among the 

different areas in the company. The second (vertical integration) concerns the 

company's relationships with its suppliers and customers. 

   

j) Other enabling technologies: These include several technologies used for 

specific fields, such as tools to determine where, when, and how energy 

resources are used with the aim of eliminating or reducing waste (Smart 

grid/energy). 
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Q2: Design Manufacturing Integration 

When it comes to the integration between the design unit of your company and the manufacturing unit at the plant, please 

state if you agree with the following statements. (1 = Strongly disagree, 2 = Disagree, 3 = Somewhat disagree, 4 = Neither 

agree or disagree, 5 = Somewhat agree, 6 = Agree, 7 = Strongly agree). 

 

a) Our product designers make use of manufacturability 

guidelines. 

1 2 3 4 5 6 7 

b) We have created new ways to coordinate 

design/manufacturing issues. 

1 2 3 4 5 6 7 

c) We use design-for-manufacture/assembly (DFMA) 

methods. 

1 2 3 4 5 6 7 

d) Manufacturing involvement and sign-off is required for 

new products. 

1 2 3 4 5 6 7 

e) Product designers and manufacturing staff have equal 

status in NPD projects. 

1 2 3 4 5 6 7 

f) We practise job rotation between design and 

manufacturing engineering 

1 2 3 4 5 6 7 

 

Q3: Manufacturing Strategy Integration 

When it comes to the integration between the strategy unit of your company and the manufacturing unit at the plant, please 

state if you agree with the following statements. (1 = Strongly disagree, 2 = Disagree, 3 = Somewhat disagree, 4 = Neither 

agree or disagree, 5 = Somewhat agree, 6 = Agree, 7 = Strongly agree). 

 

a) We have clearly defined strategic manufacturing goals 

and objectives. 

1 2 3 4 5 6 7 

b) Our firm's strategy leverages existing capabilities. 1 2 3 4 5 6 7 

c) Corporate strategy at our firm drives manufacturing 

decisions. 

1 2 3 4 5 6 7 

d) Manufacturing strategies and goals are communicated 

to all employees. 

1 2 3 4 5 6 7 

e) Manufacturing strategy is frequently reviewed and 

revised. 

1 2 3 4 5 6 7 

f) Manufacturing strategy is well aligned with corporate 

strategy. 

1 2 3 4 5 6 7 

 

Q4: Systems Integration 

When it comes to systems integration and the use of data in your plant, please state if you agree with the following 

statements. (1 = Strongly disagree, 2 = Disagree, 3 = Somewhat disagree, 4 = Neither agree or disagree, 5 = Somewhat agree, 

6 = Agree, 7 = Strongly agree). 

 

a) Data can be shared easily among various internal 

systems 

1 2 3 4 5 6 7 

b) Order changes are automatically reflected in 

downstream processes or systems 

1 2 3 4 5 6 7 

c) Our system can easily transmit, integrate and process 

data from suppliers/vendors and customers 

1 2 3 4 5 6 7 
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d) Our system shows continuous monitoring of order status 

at various stages in the process 

1 2 3 4 5 6 7 

e) Employees can easily retrieve information from various 

databases for decision support 

       

 

Q5: Product 

What is the main product(s) of your plant? 

 

Q6: Industry 

To which industry does your plant belong? 

 

Q7: Factory Age 

What is the age of the plant? (Years) 

up to 5 
6-10 

11-15 
16-20 

21 or more 

 

Q8: Unionisation 

Approximately what percentage of plant production workers 
(if any) are represented by a union(s)?  

None 
1–25% 

26–50% 
51–75% 
76–99% 

100% 

 

Q9: Production Strategy 

What production strategy do you predominantly use at your 
plant? 

Make-to-order (MTO)  
Make-to-stock (MTS) 

 Assemble-to-order (ATO)  
Engineer to order (ETO) 

 

Q10: Factory size 

How many full-time employees work in your plant? 

1-100 
101-200  
201-300 
301-400 
401-500 

501+ 

 

Q11: Production flexibility (Mix & Volume) 

How would you describe the primary product mix and volume 
at your plant? (Please choose one) 

High volume and high mix 
High volume and low mix 
Low volume and high mix 
Low volume and low mix 
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Q12: Automation 

Please rate the level of automation at your plant for the following operations. (1 = None, 2 = Low, 3 = Moderate, 4 = High, 5 

= Total). 

a) Tool change. 1 2 3 4 5 6 7 

b) Job set up. 1 2 3 4 5 6 7 

c) Job or product processing. 1 2 3 4 5 6 7 

d) Process monitoring 1 2 3 4 5 6 7 

e) Process inspection 1 2 3 4 5 6 7 

f) Material movement 1 2 3 4 5 6 7 

 

Q13: Schedule Attainment 

Please state if you agree with the following statements on schedule attainment at your plant compared to the industry 

average. (1 = Strongly disagree, 2 = Disagree, 3 = Neither agree or disagree, 4 = Agree, 5 = Strongly agree). 

a) We usually meet the production schedule each day 1 2 3 4 5 6 7 

b) Our daily schedule is completed on time. 1 2 3 4 5 6 7 

c) We cannot adhere to our schedule on a daily basis. 1 2 3 4 5 6 7 

d) It seems as if we are always behind schedule. 1 2 3 4 5 6 7 

 

 

Q14: Environmental Performance 

When it comes to environmental performance of the plant, please indicate the extent of the following, compared to 

industry average (1 = Very poor, 2= Poor, 3 = About the same, 4 = Good, 5 = Excellent). 

 

a) Reduction of air emission. 1 2 3 4 5 6 7 

b) Reduction of wastewater. 1 2 3 4 5 6 7 

c) Reduction of solid wastes. 1 2 3 4 5 6 7 

d) Decrease of consumption for hazardous/harmful/toxic 

materials. 
1 2 3 4 5 6 7 

e) Decrease of frequency of environmental accidents. 1 2 3 4 5 6 7 

f) Improve the enterprise’s environmental situation. 1 2 3 4 5 6 7 

 

 

Q15: Production Cost 

When it comes to the production cost of the plant, please indicate the extent to which your plant performs the following 

actions, compared to competition (1 = Strongly disagree, 2 = Disagree, 3 = Neither agree or disagree, 4 = Agree, 5 = Strongly 

agree). 

a) Produces products with low costs. 1 2 3 4 5 6 7 

b) Produces products with low inventory costs. 1 2 3 4 5 6 7 

c) Produces products with low overhead costs. 1 2 3 4 5 6 7 

d) Offers price as low as or lower than our competitors. 1 2 3 4 5 6 7 
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Q16: Role 

What is your position in the plant? 

 

Q17: Experience 

How many years have you worked in this position? 

 

Q18: Education 

What is your highest degree? 

Some high school or less 
High school graduate or equivalent 

Vocational/technical school (two-year program) 
Some college, but no degree 

College graduate (four-year program) 
Some graduate school, but no degree 

Graduate degree (MSc, MBA, PhD, etc.) 

 

Q19: Thank you very much for your time and effort to complete this survey. 
  
If you have any comment, please type it in the below field: 

 

To receive your funds from Prolific, please take a note of the code below and click 

next to submit the survey. 

XXXXXX 

End of Survey 
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Appendix G: Standard Industrial Classification (SIC) of the Sample 

 

SIC 

Code 

(Sector) 

Frequency 

(Factory) 

Percent 

(%) 

10130 1 0.3 

10612 1 0.3 

10860 28 8.8 

10890 4 1.3 

10920 1 0.3 

11040 1 0.3 

13300 3 0.9 

13923 2 0.6 

13960 1 0.3 

13990 2 0.6 

16290 4 1.3 

17120 4 1.3 

17211 1 0.3 

17220 1 0.3 

17230 3 0.9 

18129 6 1.9 

19201 2 0.6 

19209 1 0.3 

20110 1 0.3 

20130 3 0.9 

20160 3 0.9 

20170 1 0.3 

20301 3 0.9 

20411 3 0.9 

20420 3 0.9 

20590 3 0.9 

21100 13 4.1 

21200 2 0.6 

22110 1 0.3 

22210 2 0.6 

22220 7 2.2 

22290 2 0.6 

23190 1 0.3 

23320 5 1.6 

23430 1 0.3 

23700 1 0.3 

23990 2 0.6 

24100 5 1.6 

24200 11 3.4 

24450 1 0.3 

24520 1 0.3 

25110 4 1.3 

25120 1 0.3 

25210 2 0.6 

25290 1 0.3 

25400 2 0.6 

25500 1 0.3 

25610 1 0.3 

25620 2 0.6 

25940 1 0.3 

26110 14 4.4 

26120 3 0.9 

26200 1 0.3 

26301 1 0.3 

26309 2 0.6 

26400 1 0.3 

26511 6 1.9 

26512 1 0.3 

26513 2 0.6 

26701 1 0.3 

27110 1 0.3 

27120 1 0.3 

27320 3 0.9 

27400 2 0.6 

28110 5 1.6 

28131 2 0.6 

28140 3 0.9 
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28220 2 0.6 

28250 6 1.9 

28290 3 0.9 

28302 1 0.3 

28410 4 1.3 

28490 1 0.3 

28921 4 1.3 

28923 2 0.6 

28930 3 0.9 

28960 2 0.6 

28990 4 1.3 

29100 31 9.7 

29310 1 0.3 

29320 5 1.6 

30110 6 1.9 

30200 1 0.3 

30300 11 3.4 

31010 4 1.3 

31020 3 0.9 

31090 4 1.3 

32120 1 0.3 

32300 1 0.3 

32500 8 2.5 

32990 5 1.6 

33200 2 0.6 

Total 

Sample 320 100% 

Source: Based on Product/Sector. SIC from: https://resources.companieshouse.gov.uk/sic/ 

 

 

Appendix H: Survey Measures 

 

Item Label Source Operationalisation 

    

Design-Manufacturing Integration DMI Swink and 

Nair, 2007 

Adopted 

1. Our product designers make use of 

manufacturability guidelines. 

DMI-1   

2. We have created new ways to 

coordinate design/manufacturing 

issues. 

DMI-2   

3. We use design-for-

manufacture/assembly (DFMA) 

methods. 

DMI-3   

4. Manufacturing involvement and sign-

off is required for new products. 

DMI-4   

https://resources.companieshouse.gov.uk/sic/
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Item Label Source Operationalisation 

5. Product designers and manufacturing 

staff have equal status in NPD 

projects. 

DMI-5   

6. We practise job rotation between 

design and manufacturing 

engineering 

DMI-6   

    

Manufacturing-Strategy Integration MSI Narasimhan, 

Swink and 

Kim, 2006 

Adopted 

1. We have clearly defined strategic 

manufacturing goals and objectives. 

MSI-1   

2. Our firm's strategy leverages existing 

capabilities. 

MSI-2   

3. Corporate strategy at our firm drives 

manufacturing decisions. 

MSI-3   

4. Manufacturing strategies and goals 

are communicated to all employees. 

MSI-4   

5. Manufacturing strategy is frequently 

reviewed and revised. 

MSI-5   

6. Manufacturing strategy is well 

aligned with corporate strategy. 

MSI-6   

    

Systems Integration SI Barua et al, 

2004 

Adapted from 

firm to factory 

level 

1. Data can be shared easily among 

various internal systems. 

SI-1   

2. Order changes are automatically 

reflected in downstream processes or 

systems. 

SI-2   
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Item Label Source Operationalisation 

3. Our system can easily transmit, 

integrate and process data from 

suppliers/vendors and customers. 

SI-3   

4. Our system shows continuous 

monitoring of order status at various 

stages in the process. 

SI-4   

5. Employees can easily retrieve 

information from various databases 

for decision support. 

SI-5   

    

Breadth of Industry 4.0 technologies I4.0B Büchi, 

Cugno and 

Castagnoli, 

2020 

Adopted 

1. Advanced manufacturing Solutions 

(e.g., Robots) 

I4.0B-1   

2. Augmented reality I4.0B-2   

3. Internet of Things I4.0B-3   

4. Big data analytics I4.0B-4   

5. Cloud computing I4.0B-5   

6. Cyber security I4.0B-6   

7. Additive manufacturing I4.0B-7   

8. Simulation I4.0B-8   

9. Horizontal and vertical integration I4.0B-9   

10. Other enabling technologies (e.g., 

Energy technology) 

I4.0B-

10 

  

    

Automation Performance AP Ritzman and 

Safizadeh, 

1999 

Adapted from 5-

point to 7-point 

Likert scale 

1. Tool change. AP-1   
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Item Label Source Operationalisation 

2. Job set up. AP-2   

3. Job or product processing. AP-3   

4. Process monitoring AP-4   

5. Process inspection AP-5   

6. Material movement AP-6   

    

Production Cost Performance CP Wong, 

Boon-itt and 

Wong, 2011 

Adapted from 5-

point to 7-point 

Likert scale 

1. Produces products with low costs. CP-1   

2. Produces products with low inventory 

costs. 

CP-2   

3. Produces products with low overhead 

costs. 

CP-3   

4. Offers price as low as or lower than 

our competitors. 

CP-4   

    

Environmental Performance EP Zhu and 

Sarkis, 2004 

Adapted from 5-

point to 7-point 

Likert scale 

1. Reduction of air emissions. EP-1   

2. Reduction of wastewater. EP-2   

3. Reduction of solid waste. EP-3   

4. Decrease of consumption for 

hazardous/harmful/toxic materials. 

EP-4   

5. Decrease of frequency of 

environmental accidents. 

EP-5   

6. Improve the enterprise’s 

environmental situation. 

EP-6   
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Item Label Source Operationalisation 

Schedule Attainment Performance SP Bozarth et 

al, 2009 

Adapted from 5-

point to 7-point 

Likert scale 

1. We usually meet the production 

schedule each day 

SP-1   

2. Our daily schedule is completed on 

time. 

SP-2   

3. We cannot adhere to our schedule on 

a daily basis. 

SP-3   

4. It seems as if we are always behind 

schedule. 

SP-4   

 

 

 

Appendix I: Missing Value Analysis  

Univariate Statistics 
 

N Mean Std. 
Deviation 

Missing No. of 
Extremesa 

Count Percent Low High 

I4.0Breadth_AMS 320 1.51 0.686 0 0.0 0 0 

I4.0Breadth_AR 320 1.26 0.553 0 0.0     

I4.0Breadth_IoT 320 1.70 0.732 0 0.0 0 0 

I4.0Breadth_BDA 320 1.81 0.780 0 0.0 0 0 

I4.0Breadth_CC 320 1.91 0.684 0 0.0 0 0 

I4.0Breadth_CS 320 2.10 0.625 0 0.0 0 0 

I4.0Breadth_AM 320 1.61 0.780 0 0.0 0 0 

I4.0Breadth_S 320 1.47 0.725 0 0.0 0 0 

I4.0Breadth_HandV 320 1.50 0.743 0 0.0 0 0 

I4.0Breadth_energy 320 1.60 0.761 0 0.0 0 0 

Design_Manufacturing_Integration_1 320 5.47 1.211 0 0.0 16 0 

Design_Manufacturing_Integration_2 320 5.21 1.242 0 0.0 29 0 

Design_Manufacturing_Integration_3 320 4.80 1.565 0 0.0 11 0 

Design_Manufacturing_Integration_4 320 5.78 1.262 0 0.0 8 0 

Design_Manufacturing_Integration_5 320 4.66 1.407 0 0.0 4 0 

Design_Manufacturing_Integration_6 320 3.53 1.797 0 0.0 0 0 

Manufacturing_Strategy_Integration_1 320 5.55 1.253 0 0.0 23 0 

Manufacturing_Strategy_Integration_2 320 5.44 1.159 0 0.0 21 0 
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Manufacturing_Strategy_Integration_3 320 5.36 1.247 0 0.0 31 0 

Manufacturing_Strategy_Integration_4 320 4.95 1.622 0 0.0 10 0 

Manufacturing_Strategy_Integration_5 320 5.23 1.275 0 0.0 33 0 

Manufacturing_Strategy_Integration_6 320 5.24 1.271 0 0.0 28 0 

Systems_Integration_1 320 4.98 1.492 0 0.0 10 0 

Systems_Integration_2 320 4.65 1.517 0 0.0 10 0 

Systems_Integration_3 320 4.72 1.608 0 0.0 17 0 

Systems_Integration_4 320 4.98 1.619 0 0.0 17 0 

Systems_Integration_5 320 4.78 1.574 0 0.0 13 0 

Automation_1 320 3.04 1.609 0 0.0 0 0 

Automation_2 320 3.21 1.618 0 0.0 0 5 

Automation_3 320 3.91 1.591 0 0.0 0 0 

Automation_4 320 4.00 1.716 0 0.0 0 0 

Automation_5 320 3.35 1.744 0 0.0 0 0 

Automation_6 320 3.59 1.767 0 0.0 0 0 

Schedule_Attainment_1 320 5.43 1.479 0 0.0 41 0 

Schedule_Attainment_2 320 5.35 1.422 0 0.0 40 0 

Schedule_Attainment_3 320 4.67 1.815 0 0.0 0 0 

Schedule_Attainment_4 320 4.80 1.850 0 0.0 0 0 

Environmental_Sustainability_1 320 4.61 1.586 0 0.0 16 0 

Environmental_Sustainability_2 320 4.78 1.679 0 0.0 18 0 

Environmental_Sustainability_3 320 4.84 1.685 0 0.0 18 0 

Environmental_Sustainability_4 320 5.03 1.647 0 0.0 14 0 

Environmental_Sustainability_5 320 5.35 1.457 0 0.0 26 0 

Environmental_Sustainability_6 320 5.16 1.472 0 0.0 10 0 

Cost_1 320 4.55 1.647 0 0.0 0 0 

Cost_2 320 4.50 1.623 0 0.0 0 0 

Cost_3 320 4.60 1.591 0 0.0 0 0 

Cost_4 320 4.31 1.598 0 0.0 0 0 

Factory Size 320     0 0.0     

Production Strategy 320     0 0.0     

a. Number of cases outside the range (Q1 - 1.5*IQR, Q3 + 1.5*IQR). 

 

 

 

Appendix J: Mahalanobis Distance and Outlier test 

Observation number Mahalanobis Distance (D2) p1 p2 

68 108.669 .000 .000 

128  106.142 .000 .000 

160 105.506 .000 .000 

129 100.156 .000 .000 

154  89.906 .000 .000 

122 88.172 .000 .000 

127  86.568 .000 .000 
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79 84.573 .000 .000 

146  83.354 .000 .000 

5 83.174 .000 .000 

72 82.583 .000 .000 

31 80.271 .000 .000 

178 77.741 .000 .000 

218 77.638 .000 .000 

207 76.756 .000 .000 

81 72.503 .001 .000 

245 72.222 .001 .000 

173 71.843 .001 .000 

90 69.537 .003 .000 

71 68.609 .003 .000 

66 67.493 .004 .000 

83 67.335 .004 .000 

33 67.237 .004 .000 

186 64.773 .008 .000 

107 63.852 .010 .000 

272 63.261 .011 .000 

84 63.190 .011 .000 

100 62.865 .012 .000 

2 62.714 .012 .000 

222 62.541 .013 .000 

133 62.099 .014 .000 

151 61.668 .015 .000 

51 60.588 .019 .000 

87 59.877 .022 .000 

279  59.599 .024 .000 

58 58.642 .029 .000 

13 58.122 .032 .000 

61 58.107 .032 .000 

48 57.834 .034 .000 

241 57.698 .035 .000 

120 57.552 .036 .000 

34 56.621 .043 .000 

130 56.512 .043 .000 

115 56.188 .046 .000 

86 56.036 .047 .000 

290 56.033 .048 .000 

167 55.583 .052 .000 

4 55.205 .055 .000 

150 55.170 .056 .000 

277 54.884 .059 .000 

118 54.120 .067 .000 

53 53.913 .070 .000 

196 53.865 .070 .000 

188 53.786 .071 .000 



270 
 

238 53.692 .073 .000 

98 53.635 .073 .000 

38 53.296 .078 .000 

292 52.750 .085 .000 

253 52.682 .086 .000 

318 52.348 .091 .000 

140 52.167 .094 .000 

88 52.153 .094 .000 

29 52.003 .097 .000 

187 51.436 .106 .000 

78 51.365 .107 .000 

91 51.091 .112 .000 

280 51.039 .113 .000 

16 50.976 .114 .000 

64 50.944 .115 .000 

114 50.940 .115 .000 

204 50.902 .116 .000 

281 50.891 .116 .000 

124 50.656 .120 .000 

69 50.502 .123 .000 

210 50.344 .127 .000 

60 50.134 .131 .000 

169 49.855 .137 .000 

191 49.347 .148 .000 

36 49.216 .151 .000 

97 49.172 .152 .000 

95 48.667 .164 .000 

63 48.514 .167 .000 

12 48.240 .174 .000 

282 48.200 .175 .000 

255 48.161 .176 .000 

1 48.131 .177 .000 

283 48.098 .178 .000 

49 47.941 .182 .000 

216 47.934 .182 .000 

104 47.915 .182 .000 

152 47.548 .192 .000 

89 47.436 .195 .000 

289 47.372 .197 .000 

303 47.359 .197 .000 

123 47.113 .204 .000 

194 47.050 .206 .000 

185 46.869 .211 .000 

147 46.490 .223 .000 

85 46.365 .226 .000 

21 46.026 .237 .001 
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        = Cases also experiencing z-scores > 3.29 

 

 

 

Appendix K: Assessment of Normality 

Variable min max skew c.r. 
kurtosi
s 

c.r. 

I4.0Breadth_energy 1.000 3.000 .804 5.875 -.825 -3.011 

I4.0Breadth_HandV 1.000 3.000 1.093 7.979 -.332 -1.214 

I4.0Breadth_S 1.000 3.000 1.208 8.822 -.051 -.185 

I4.0Breadth_AM 1.000 3.000 .804 5.872 -.897 -3.274 

I4.0Breadth_CS 1.000 3.000 -.074 -.540 -.477 -1.743 

I4.0Breadth_CC 1.000 3.000 .120 .876 -.862 -3.148 

I4.0Breadth_BDA 1.000 3.000 .351 2.567 -1.274 -4.651 

I4.0Breadth_IoT 1.000 3.000 .525 3.833 -.982 -3.586 

I4.0Breadth_AR 1.000 3.000 2.037 14.875 3.080 11.248 

I4.0Breadth_AMS 1.000 3.000 .978 7.141 -.298 -1.089 

Systems_Integration_5 1.000 7.000 -.742 -5.416 -.199 -.728 

Systems_Integration_1 1.000 7.000 -.904 -6.604 .247 .900 

Systems_Integration_2 1.000 7.000 -.587 -4.288 -.435 -1.590 

Systems_Integration_3 1.000 7.000 -.724 -5.290 -.244 -.891 

Systems_Integration_4 1.000 7.000 -.946 -6.906 .137 .502 

Schedule_Attainment_4 1.000 7.000 -.579 -4.226 -.869 -3.173 

Schedule_Attainment_3 1.000 7.000 -.492 -3.590 -1.022 -3.733 

Schedule_Attainment_2 1.000 7.000 -1.163 -8.495 .993 3.626 

Schedule_Attainment_1 1.000 7.000 -1.197 -8.744 1.002 3.657 

Automation_6 1.000 7.000 .069 .501 -1.072 -3.915 

Automation_5 1.000 7.000 .163 1.191 -1.029 -3.758 

Automation_4 1.000 7.000 -.133 -.973 -.905 -3.305 

Automation_3 1.000 7.000 -.142 -1.035 -.620 -2.266 

Automation_2 1.000 7.000 .165 1.202 -.925 -3.379 

Automation_1 1.000 7.000 .278 2.033 -.810 -2.959 

Environmental_Sustainabili
ty_6 

1.000 7.000 -.885 -6.465 .493 1.801 

Environmental_Sustainabili
ty_5 

1.000 7.000 -1.152 -8.417 1.218 4.448 

Environmental_Sustainabili
ty_4 

1.000 7.000 -.832 -6.076 -.102 -.372 

Environmental_Sustainabili
ty_3 

1.000 7.000 -.724 -5.289 -.315 -1.149 

Environmental_Sustainabili
ty_2 

1.000 7.000 -.673 -4.913 -.371 -1.354 

Environmental_Sustainabili
ty_1 

1.000 7.000 -.563 -4.114 -.345 -1.260 

Cost_4 1.000 7.000 -.306 -2.233 -.687 -2.508 

Cost_3 1.000 7.000 -.400 -2.918 -.886 -3.236 

Cost_2 1.000 7.000 -.428 -3.123 -.834 -3.045 

Cost_1 1.000 7.000 -.481 -3.516 -.799 -2.917 

Manufacturing_Strategy_In
tegration_1 

1.000 7.000 -1.132 -8.269 1.568 5.724 

Manufacturing_Strategy_In
tegration_2 

1.000 7.000 -1.111 -8.116 1.768 6.456 

Manufacturing_Strategy_In
tegration_3 

1.000 7.000 -.889 -6.490 .579 2.113 
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Manufacturing_Strategy_In
tegration_4 

1.000 7.000 -.754 -5.503 -.302 -1.101 

Manufacturing_Strategy_In
tegration_5 

1.000 7.000 -.820 -5.990 .544 1.986 

Manufacturing_Strategy_In
tegration_6 

1.000 7.000 -.740 -5.402 .509 1.860 

Design_Manufacturing_Inte
gration_1 

1.000 7.000 -.974 -7.113 1.443 5.270 

Design_Manufacturing_Inte
gration_2 

1.000 7.000 -.778 -5.685 .601 2.193 

Design_Manufacturing_Inte
gration_3 

1.000 7.000 -.566 -4.133 -.386 -1.409 

Design_Manufacturing_Inte
gration_4 

1.000 7.000 -1.222 -8.923 1.380 5.039 

Design_Manufacturing_Inte
gration_5 

1.000 7.000 -.253 -1.846 -.457 -1.669 

Design_Manufacturing_Inte
gration_6 

1.000 7.000 .261 1.904 -1.097 -4.004 

Multivariate      254.132 33.492 

 

 

 

 

Appendix L: Multivariate normality test (Q-Q plots) 
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Appendix M: Linearity test (P-P plots) 
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