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Abstract 

Mass spectrometry (MS) is a powerful analytical technique, enabling unbiased and 

comprehensive analysis of analytes without requiring potentially disadvantageous chemical 

modifications that are used in label-based methods traditionally relied on for instance in high-

throughput (HT) screening. In this thesis, I will showcase the advantages of different MS 

approaches which provide increased throughput suitable for early drug discovery. I will apply 

these approaches to the immunology field and establish workflow performance by 

comparison to established techniques. 

First, I developed a matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) MS-

based biochemical drug discovery assay to identify inhibitors of ERAP1, an antigen modulator 

and therapeutic target for immuno-oncology and auto-immune diseases. With equal 

performance, this workflow increased throughput, enabled miniaturisation, and reduced costs 

compared to an established MS workflow. I addressed the demand to improve the translation 

of early drug candidates into the clinic by developing an innovative MALDI-TOF MS-based 

phenotypic screening assay, utilising human induced pluripotent stem cell-derived 

macrophages to study cell activation. The assay consistently distinguished between resting and 

pro-inflammatory macrophages, and successfully identified polarisation-specific “biomarkers”. 

A screen of 87 broad mechanism of action compounds demonstrated assay robustness. 

Screening of 86 inflammation-focused compounds identified 21 hits which correlated with an 

established label-based cytokine secretion assay. Complementary proteomics analysis 

provided insights into hit compounds mechanism of action and determined undesirable off-

target effects. 

In summary, I established two novel HT capable screening applications that leverage MALDI-

TOF MS. For both, biochemical and cellular applications, I demonstrated their power to 

support early drug discovery in immunology. Additionally, I showed the utility of proteomics 

for early drug discovery by functionally grouping compounds at the molecular level based on 

on-target and off-target pathway engagement. Further adoption of these MS techniques 

promises to enhance hit compound selection efficacy in early drug discovery. 

 

Keywords: MALDI-TOF MS, proteomics, drug discovery, immunology, high-throughput 

screening   
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Chapter 1. Introduction 
 

1.1 The drug discovery pipeline 

Continuous development of novel drugs and drug repurposing is essential to address 

conditions with no existing treatments, particularly as new diseases emerge and our 

understanding of disease biology is growing.1 Additionally, improving current treatment 

options is a key aspect of drug discovery, especially when potent drugs lose efficiency due to 

resistance. Reducing adverse effects, enhancing therapeutic efficacy, improving patient 

compliance, and reducing drug-drug interactions are further vital goals.2  

Traditionally in drug discovery, enzyme activity is modulated via small molecules but expanding 

the drug toolbox unfolds exciting opportunities. This includes strategies like targeted protein 

degradation via proteolysis targeting chimeras3, modulating RNA expression with 

oligonucleotides4 and targeted protein recognition through monoclonal antibodies5. These 

modalities hold great promise for treating challenging areas, such as immune-mediated 

diseases, for which drug adverse effects are frequently reported.6 

However, the drug discovery process remains arduous, often taking 10 to 15 years to bring a 

drug to market.7 Traditionally, the drug discovery and development pipeline entails multiple 

phases, starting with target identification, which is then followed by lead generation, lead 

optimisation, pre-clinical and clinical trials, and finished with drug approval (Figure 1.1).  

1. Target identification: Protein or gene targets are identified through diverse 

methodologies, such as bioinformatics, genomics and biochemistry, guided by insights 

into disease mechanisms or cellular experiments.8  

2. Lead generation: Conducting high-throughput screening (HTS), either computationally 

or chemically (in vitro) against large compound libraries (often exceeding 1 million 

compounds) to identify potential hits.9 Secondary ex/in vivo assays are performed with 

identified hit compounds to refine lead selection.  

3. Lead optimisation: Rational drug design is applied to selected hits for chemical library 

expansion with lead-like structures that include chemical modifications to achieve 

structural simplification, optimised potency, reduced cytotoxicity, increased efficacy, 

beneficial pharmacokinetics, and simplified synthesis and isolation. Beneficial 

structures are identified by in vitro assays and in animal models.10  
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4. Pre-clinical trials: Drug safety and selectivity are assessed in cellular disease and animal 

models.11  

5. Clinical trials: Within three different phases, drug safety, effectiveness, and dosage is 

established in humans.8 

6. Drug approval: Approval is sought from regulating bodies like the Food and Drug 

Administration and European Medicines Agency before a drug is released into the 

market.8  

In addition to the lengthy timeline, the drug discovery process is costly and inefficient, with 

recent studies indicating a 90% failure rate in clinical drug development.7 A key challenge in 

drug discovery is to increase the speed, robustness, efficiency, and translational success of 

methodologies across the pipeline, thereby reducing development times and costs. This task 

is further exacerbated by the introduction of novel drug modalities which require different 

design and validation approaches, hence requiring integration of specialised and advanced 

technologies into the drug discovery pipeline. 

 
Figure 1.1. Drug discovery and development pipeline.  
The pipeline entails six different steps and takes on average 10-15 years; (1) Target 
identification: Identification of gene or protein target, (2) Lead generation: High-throughput 
screening to allow hit compound selection, (3) Lead optimisation: Iterative rational drug design 
to improve lead compound properties, (4) Pre-clinical trials: Assessment of drug efficacy and 
safety in cellular and animal models, (5) Clinical trials: Drug safety, effectiveness, and dosage 
establishment in humans, and (6) Drug approval: Approval is sought from regulating bodies. 

 

1.2 Mass spectrometry as a tool in drug discovery  

Mass spectrometry (MS) is a well-established analytical technique used for the analysis of 

small and large biomolecules. It measures the mass-to-charge-ratio (m/z) and abundance of 
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analyte ions, allowing precise empirical mass determination and structural elucidation.12 A 

basic mass spectrometer consists of three main components: an ionisation source, a mass 

analyser, and a detector.12 In the ionisation source, sample analytes are converted into gas-

phase ions, which are then separated in the mass analyser based on their m/z and finally 

detected while the ion count is recorded.12 Mass spectrometers are often coupled to a 

chromatography system, allowing for sample separation prior to analysis.12 This integration is 

particularly valuable in the drug discovery pipeline, where MS technologies are prized for their 

high sensitivity, reproducibility, and versatility.  

Liquid chromatography-tandem mass spectrometry (LC-MS/MS) is widely employed in 

proteomics and metabolomics to gain insights into disease biology13, and to elucidate drug 

mechanism of action (MoA) and ligand-protein interactions14,15. LC-MS techniques are used in 

lead optimisation to assess compound structure and purity.16 Furthermore, they play a pivotal 

role in drug metabolism and pharmacokinetic studies, which are performed throughout the 

drug discovery process to evaluate drug safety by tracking the drug and selected biomarkers.17  

Chromatography-free methods, such as matrix-assisted laser desorption/ionisation (MALDI) 

time-of-flight (TOF) MS and MALDI Fourier-transform ion cyclotron resonance MS, are also 

valuable. These techniques allow for image-based examination of disease state by tracking 

metabolites and identifying disease biomarkers during target validation. Additionally, they can 

be used in lead optimisation to assess drug absorption, distribution, and metabolism at the 

sub-cellular organelle level.18,19  

Despite the widespread application of MS strategies throughout the drug discovery pipeline, 

they are currently underrepresented in the lead generation stage, primarily due to limitations 

in throughput and automation. Overcoming these challenges could further enhance the role 

of MS in this early drug discovery stage.  

 

1.3 Screening approaches in lead discovery stage of the drug discovery pipeline 

Screening approaches used to identify hit compounds from chemical libraries in the lead 

discovery phase are broadly categorised into computational- and experimental-based 

methods. Computational-based approaches predict ligand-target binding by surveying 

structural similarities within existing libraries. These methods are both fast and cost-
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effective.20 However, they are limited by their reliance on existing libraries, making them less 

suitable for exploring novel chemistry and biology. Moreover, even when potential binders are 

identified, experimental validation is required.20 Experimental-based approaches are 

categorised into target-based and phenotypic screens, each focusing on different aspects of 

drug discovery. Target-based approaches use workflows that are centred around a key disease 

protein target. In affinity binding assays, the biomolecular target is incubated with library 

compounds, followed by removal of unbound ligands.21 The detection of binding events 

typically requires labelling the target molecule or ligand, using various techniques such as 

radioligand assays, affinity chromatography, surface plasmon resonance, isothermal titration 

calorimetry, or light-based methods (e.g., absorbance, fluorescence, or luminescence).22 

Recently, DNA-encoded libraries have gained popularity. These libraries involve barcoding 

compounds with DNA, allowing for binder identification through high-throughput (HT) DNA 

sequencing.23  

Affinity binding assays are useful tools when the identified biomolecular target serves an 

unknown function, hampering development of biochemical assays. While these methods 

involve screening extensive small molecule compound libraries (>1 million compounds), a 

novel fragment-based screening approach has emerged. This technique uses smaller libraries 

of molecular fragments, offering improved coverage of the chemical space and better targeting 

of previously undruggable proteins.24,25 For instance, cysteine reactive fragments can be used 

to evaluate fragment engagement at the active protein site.26,27 However, fragment-based 

screening can encounter challenges, such as the need to couple warheads to fragments to 

ensure covalent binding, which may lead to side reactions.28 A further aspect that needs to be 

considered is the weak binding affinity of fragments to their targets.25 

Both traditional and fragment-based binding methods are adept at identifying molecule 

binders but fall short in assessing biological activity directly. To address this, enzymatic assays 

are employed to evaluate how compounds modulate protein function by measuring product 

generation and substrate depletion, providing greater biological relevance for hits.29 These 

biochemical or cellular assays mostly track product and substrate via absorbance or 

fluorescence29, but fluorescence and chemiluminescence-based method can suffer from high 

false-positive rates and reduced dynamic range30-33. Offering a different approach to assessing 
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biological activity and compound effects, electrophysiological measurements are used to 

evaluate ion channel activity in the presence of compounds.34 

Phenotypic screens on the other hand, focus on observable characteristics such as gene 

expression or cell morphology. These screens assess compound activity in a complex biological 

system, observing efficacy not only against the proposed target but also potentially involving 

unknown pathways, revealing additional information such as compound toxicity.35 Phenotypic 

screens are thought to improve the translation of early-stage hits, which is crucial for 

accelerating the drug discovery pipeline.36  

However, phenotypic screens are typically more challenging to implement. Ensuring 

physiological relevance requires careful selection of the model, stimulus, and assay endpoint.37 

Phenotypic assays range from highly specific models, such as mucus clearance cell model for 

evaluating cystic fibrosis treatments38, to tracking of disease specific biomarkers like cytokines 

via ELISA39 or monocyte cell surface markers via flow cytometry40, to broader approaches like 

Cell Painting and DrugSeq. Cell Painting uses fluorescence dyes to assess features such as signal 

area, intensity and shape of different cell components and compartments to compare 

morphological phenotypes against a large reference database.41 DrugSeq involves bulk RNA 

sequencing of disease-relevant or directed mutation cell models to evaluate gene signatures, 

revealing compound activity such as resistance or sensitivity.42,43 Despite their utility, these 

approaches often leave the protein target unknown, necessitating further downstream target 

deconvolution.36 

Overall, whether a target-based or phenotypic screening approach is chosen, depends on the 

biology being probed and the readout technology used. Across all strategies, there is a clear 

potential for novel fast and versatile HTS technologies that could enhance the efficacy of the 

lead discovery phase. 

 

1.4 Mass spectrometry in high-throughput screening 

A main advantage of MS is that it does not require labelling, thus eliminating the use of non-

native substrates, reducing cost, and increasing the dynamic range, hence, addressing 

limitations of traditional HTS approaches. However, affinity selection MS and fragment-based 

screening have primarily relied on LC-MS setups which take several minutes per sample, 
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making them unsuitable for HTS.44 With technological advancements, newer systems have 

emerged that offer higher throughput. I categorised these systems broadly based on the 

ionisation technique used: electrospray ionisation (ESI) or laser ionisation.45 These ion sources 

can be coupled to diverse mass analysers to achieve different mass resolution, dynamic ranges, 

and analysis times.  

 

1.4.1 Electrospray ionisation in high-throughput screening compatible mass spectrometers 

ESI is a soft ionisation technique. In this method, liquid-phase analytes are sprayed through a 

fine metal or glass needle near the sampling entry cone of the mass spectrometer (Figure 

1.2).46 A high voltage is applied to the needle, dispersing the sample into highly charged 

droplets.46 These droplets are exposed to heat and a flow of nitrogen gas to speed up the 

evaporation of the liquid within the droplets. Coulombic explosion or fission takes place when 

the decreasing droplets reach their Rayleigh limit, leading to ion expulsion.47 This process 

yields multiply charged ions.48 HT MS setups using ESI include RapidFire MS, and modified 

versions such as Echo MS, and DESI MS. 

The RapidFire MS (Agilent) automates the analysis of 96- and 384-well plates. It consists of a 

microfluidic sample collection system that aspirates the sample and loads it onto a cartridge 

to remove interfering components, such as salts and detergents, via solid-phase extraction, 

and from there injects the sample into an ESI-MS.49 This setup allows for sample processing 

speeds of four to eight seconds, although this is still slower than typical HTS speeds of less 

than one second per sample.49 Processing speeds of the setup can be improved by multiplexing 

samples50,51 or using the BLAZE-mode which bypasses the sample cleanup stage, reducing 

sample cycle times to 2.5 seconds49. The use of RapidFire MS has been reported for fragment 

screens52,53, enzymatic biochemical assays30-33,54-60, and cellular assays61-64. Furthermore, 

RapidFire MS has been used to measure intracellular compound concentrations.63 

Echo MS (Sciex), introduced in 2020, uses acoustic droplet ejection (ADE) to deliver nanolitre 

sample droplets to the mass spectrometer. This method reduces sample processing time, and 

consumables compared to the RapidFire MS setup and allows for repeat measurements.65 An 

acoustic ejection pulse pings nanolitre sample droplets into an open port interface (OPI) which 

delivers the sample to the mass spectrometer (Figure 1.2).66 The setup has been used to track 
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analytes in enzymatic assays67-70 and to identify covalent binders in intact protein analysis71. 

However, Echo MS can suffer from well-to-well variability as nanolitre volumes are difficult to 

control and ionisation interference from the sample matrix due to the lack of a purification 

step might be observed.66,72 

Desorption electrospray ionisation (DESI) MS is another ESI-based technique where 

electrospray droplets are directed onto a surface-based sample, resulting in desorption of 

analyte ions (Figure 1.2).73 This technique offers high-speed atmospheric pressure sampling 

and is more tolerant to matrix interference.73 While primarily marketed as a platform used for 

imaging, providing spatial resolution, DESI-MS has also been employed for enzyme activity 

monitoring74-76, and bacterial phenotyping77.  

 
Figure 1.2. Electrospray ionisation (ESI) and accompanying sample delivery techniques.  
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ESI: charged analyte droplets are generated by the spray nozzle and the liquid in the droplets 
reduced, leading to ion expulsion and subsequent delivery to the MS inlet. ADE: nanolitre 
sample droplets are ejected from the sample by an acoustic impulse and transported through 
an open port interface (OPI) to the mass spectrometer. DESI: electrospray droplets are directed 
onto a surface-based sample, resulting in desorption of analyte ions which are directed into 
the MS inlet.   

 

1.4.2 Laser ionisation in high-throughput screening compatible mass spectrometers 

Laser ionisation techniques include self-assembled monolayers coupled with laser 

desorption/ionisation (SAMDI) and MALDI. SAMDI involves immobilising analytes on a 

thiolate-gold coated surface, and laser irradiation to cleave the thiolate-gold bond, resulting 

in analyte desorption and ionisation.78 While SAMDI has been used for affinity binding 

studies79,80 as well as biochemical assays81-88, its broad applicability is limited by the need to 

design surface chemistry suitable for analyte immobilisation.  

MALDI-TOF MS has been successfully used in binding assays89, and various biochemical assays. 

It is a gold standard in clinical settings for bacterial phenotyping, indicating its potential for 

phenotypic screens.  

 

1.5 MALDI-TOF MS 

MALDI was first described by Hillenkamp and Karas.90 It is a soft ionisation technique capable 

of ionising oligonucleotides, metabolites, lipids, peptides, and proteins with a mass of up to 

100 kDa.91-93 MALDI has become amenable to HTS due to advancements in instrumentation, 

such as the integration of a 10kHz laser, enabling analysis times of less than one second per 

sample. Unlike other techniques, MALDI has a higher tolerance for contaminants (e.g. salts, 

buffers, detergents) and hence can be conducted without sample cleanup. Instead, samples 

are co-crystallised with a low molecular weight organic matrix on a metal target plate.94 The 

laser is then fired at the sample, and the energy absorbed by the matrix which facilitates 

desorption into the gas phase and proton transfer for analyte ionisation.95 MALDI is a soft 

ionisation technique and produces primarily singly charged ions.96  

The ion acceleration into the TOF mass analyser is delayed for a short time after the laser pulse 

to compensate for ion energy spreads (delayed extraction).97,98 The TOF mass analyser a field-

free high vacuum tube where lighter ions travel faster and reach the detector earlier than 
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heavier ions, under the premise that all ions receive the same kinetic energy.46 This mass 

analyser can operate in two modes: linear mode for larger biomolecules, where ions reach the 

detector immediately at the end of the flight path, and reflector mode, which extends the 

flight path for improved ion separation (Figure 1.3A). The latter is achieved by placing an ion 

mirror with a gradual electric field at the end of the linear path, allowing higher energy ions to 

penetrate deeper into the mirror before being repelled back. Finally, the detector measures 

both the ion arrival time and ion count, generating a spectrum that plots m/z against the signal 

intensity (Figure 1.3B). With this setup, MALDI-TOF MS can achieve attomolar sensitivity, 

making it a powerful tool for HTS in drug discovery.99 

 
Figure 1.3. Principles of MALDI-TOF MS.  
(A) Analyte (purple and orange) desorption and ionisation in the ion source by the aid of a 
laser and matrix (yellow), which is followed by ion separation and detection in the mass 
analyser which is equipped with a reflector to extend the flight path. (B) An exemplary mass 
spectrum obtained by MALDI-TOF MS. 
 

Several enhancements and modifications to the standard MALDI-TOF MS setup have emerged 

over the years, demonstrating potential for implementation in HTS. For instance, MALDI-2 is 

an advanced technique where a second laser pulse is applied post-ionisation to boost ion 

yields.100 Another notable development is atmospheric pressure MALDI MS, introduced by 

Laiko et al. in 2022. This method aims to generate multiple ion charge states similar to ESI, 

while using MALDI sample preparation techniques.101 This was further developed into liquid 

atmospheric pressure MALDI (LAP-MALDI) MS, where the analyte, MALDI matrix, and a viscous 

support matrix are co-deposited on the sample carrier. This allows prolonged laser excitation 

under atmospheric pressure102-104, improving workflow efficiency with acquisition speeds of 

up to 40 samples per second105,106. LAP-MALDI MS can be applied to detect lipids, peptides 

and proteins107, with uses ranging from distinguishing milk origins108 to rapid disease 
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diagnostics for bovine mastitis109-111, enzyme activity screening105, and bacterial 

phenotyping112. 

Infrared matrix-assisted laser desorption electrospray ionisation (IR-MALDESI) MS is another 

innovative approach, combining ESI with laser ablation to ionise neutrals.113 Originally used for 

imaging114-116, recent advancements have made it compatible with HTS and ultra HTS 

workflows, enabling measurements up to 22.7 samples per second117-119. This technology has 

been demonstrated in various applications120, including kinetic studies of isocitrate 

dehydrogenase 1118, analysis of monoclonal antibodies121, and a compound screen of tris(2-

carboxyethyl)phosphine oxidation119.  

MALDI-TOF MS, being more widely available, can be integrated with nanolitre liquid handling 

robots to automate and miniaturise workflows, making it suitable for industrial HTS and 

facilitating the move into the ultra HTS environment.122-125 To achieve optimal analyte 

detection with MALDI-TOF MS, several parameters must be optimised for each analyte. 

Without sample cleanup, ionisation can be affected by interfering solvent additives126, and 

adducts of common contaminant ions such as Na+ and K+ should be monitored127.   

Matrix choice, concentration, and sample ratio are crucial for efficient ionisation and 

minimised interference effects.128 Different matrices can be chosen based on the analyte’s 

ionisation properties, including organic matrices possessing an aromatic ring to absorb the 

laser energy, and acidic functional groups to facilitate ionisation. Proteins and peptides are 

often analysed in positive ion mode with sinapinic acid (SA) or α-cyano-4-hydroxycinnamic acid 

(CHCA) matrix.129,130 Lipids, due to their chemistry, can be detected in positive and negative 

ion mode, with matrices such as 9-aminoacridine (9-AA) in negative ion mode, and 2,5-

dihydroxybenzoic acid (DHB) in positive ion mode.94,131 For metabolites, matrix selection is 

crucial to avoid interference from matrix peaks. Metabolites are therefore frequently detected 

with 9-AA in negative ion mode.132 Oligonucleotides are analysed in negative ion mode with 

2,4,6-trihydroxy acetophenone (THAP) or 3,4-diaminoparabenzophenone (DABP).133 Different 

matrix additives can be used to improve analyte ionisation efficiency and sensitivity, as well as 

to reduce matrix clusters.134,135 Further, there are many inorganic matrices, including carbon-, 

silicon-, and metal-based (e.g. gold nanoparticles) materials which are distinguished by the 

absence of matrix associated peaks, hence showing reduced interference with low mass 

analytes.136 For organic matrices, the shape of the formed matrix crystals which is influenced 
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by solvent, matrix-sample deposition technique, and the drying method137 can affect spot-to-

spot reproducibility and analyte detection efficacy, especially for matrices that frequently form 

heterogeneous crystals138-140; vacuum drying can for instance be used to reduce matrix 

heterogeneity141. 

 

1.6 MALDI-TOF MS-based enzymatic in vitro screens 

MALDI-TOF MS is a versatile technology capable of detecting a wide range of analytes, making 

it an ideal readout technology for biochemical reactions that result in a mass shift. In a 

standard enzymatic assay, at the initial time point (t0), only the substrate is present. As the 

reaction progresses over time (Δt1, Δt2), the substrate is converted into the product, altering 

the substrate-to-product ratio. This change can be measured by MS, providing valuable 

insights into the reaction dynamics (Figure 1.4). 

Figure 1.4. Schematic of a MS readout from an enzymatic reaction.  
At the initial time point (t0), only the substrate (purple) is detected but over time the substrate 
is converted into the product, leading to detection of the substrate and product (orange) in 
different ratios at different time points (Δt1, Δt2).  

 
MALDI-TOF MS can be used to determine important enzyme kinetic parameters, such as KM 

and the reaction velocity. In HT screening, substrate concentrations are typically set around 

the substrate concentration at half maximum velocity (KM) to ensure the identification of all 

inhibitor classes.142 Furthermore, enzyme concentration, incubation time, and assay 

temperature are optimised to maintain low substrate turnover at the assay endpoint, enabling 

reaction monitoring under conditions close to the initial velocity.143 Dose-response curves 

have also been successfully measured by MALDI-TOF MS, allowing reliable determination of 

compound activity and calculation of half-maximal inhibitory compound concentrations 

(IC50s).144 To minimise errors caused by spot-to-spot variability, normalisation can be achieved 

using the substrate-product-ratio or by adding an internal standard, such as a heavy labelled 
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product.145 For large-scale HT screens, establishing platform quality and reproducibility is 

essential. The coefficient of variation (CV) is used to assess robustness of individual m/z 

features, while the Z’ factor provides a measure of overall assay robustness.146 This factor, 

which accounts for the mean and standard deviation of both positive (no compound) and 

negative (no enzyme) controls can be used with the median and robust standard deviations to 

mitigate the impact of outliers.147,148 

MALDI-TOF MS has proven effective in HT enzymatic screens, successfully identifying inhibitors 

of kinases122,149, phosphatases123, methylases125,150, deubiquitylases, and ubiquitin E3-

ligases124,151,152. It was also used in cellular assays to measure substrate-product 

concentrations in the presence of compounds, such as studies of histone acetylation153 and 

transporter activity154,155. Moreover, the technology has been exploited to track various 

metabolites, including trimethylamine156, acetylcholine126, cyclic GMP-AMP157 and 3-

methoxytyramine158. Despite its powerful capabilities for monitoring enzymatic reaction in 

vitro and in cellular assays, MALDI-TOF MS remains underutilised in the screening of high-

profile immunology targets.  

 

1.6.1 Use case: Endoplasmic reticulum aminopeptidase 1 as drug target 

The primary function of the immune system is defence of the host from harmful threats.159 

The immune system can be divided into two branches: the innate immune system, which 

provides rapid but non-specific responses, and the adaptive immune system, which offers 

slower but highly specific responses.159 Mammals have evolved a complex network of diverse 

cell types, chemical messengers, signalling pathways and physiological structures to achieve 

effective immune responses.159 In innate immunity, cellular responses are mediated by pattern 

recognition receptors, such as toll-like receptors (TLRs), which recognise harmful threats like 

microbial pathogens.160 In adaptive immunity, the immune system monitors peptides 

displayed on the host cell surface, allowing adaptive immune cells to identify diseased and 

aberrant cells.161 Alterations in the host cell state, in response to infection or cancer, leads to 

the presentation of “unusual” peptides, activating adaptive immune cells.162 These peptides, 

collectively known as the immunopeptidome, are presented on the host cell surface by human 

leukocyte antigen (HLA) molecules, where they can be recognised by CD8+ T cells.163 The 

presented peptides are generated through the antigen processing pathway (Figure 1.5A). In 
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this process, ubiquitylated proteins are degraded in the cytosol by the proteasome or 

immunoproteasome, resulting in peptide fragments of 2-25 amino acids.164,165 These 

fragments may be further cleaved by cytosolic aminopeptidases or transported directly into 

the endoplasmic reticulum.166,167 Within the ER, the peptide fragments are trimmed to lengths 

of eight to ten amino acids by the endoplasmic reticulum aminopeptidase 1 (ERAP1) to ensure 

the correct length for loading onto HLA molecules. The peptide-HLA complex is then 

transported to the cell surface via the secretory pathway where it plays a critical role in 

immune surveillance.166,167 

 

 
Figure 1.5. Simplified representation of the antigen processing machinery and the ERAP1 
structure.  
(A) Antigen presentation machinery. [1] Proteasomal degradation of ubiquitylated proteins, 
[2] Elongated antigenic peptide precursor degradation by cytosolic aminopeptidases with 
transport into the endoplasmic reticulum (ER), [3] Precursor peptide trimming to mature 
antigenic epitopes by ERAP1, [4] Mature antigenic peptide loading onto HLA, [5] HLA-peptide 
transport to the cell membrane via the secretory pathway. (B) ERAP1 structure in an open 
state. (C) ERAP1 structure in the closed state with a peptide bound to the active and regulatory 
binding sites. 

 
ERAP1 is a member of the M1 subfamily of zinc metalloaminopeptidases, characterised by a 

highly conserved catalytic sequence and zinc-binding motive, which is crucial for a variety of 
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cellular functions.168,169 For instance, endoplasmic reticulum aminopeptidase 2 complements 

ERAP1 by further trimming peptides that ERAP1 does not fully process.170 Structurally, EARP1 

consists of four domains, with three key features critical to its biological function. The active 

site and catalytic zinc ion, located in domain two, serve as the binding site for the peptide N-

terminus (Figure 1.5B).171 Domain four harbours a regulatory site where the peptide C-

terminus binds172, and it is hypothesised that this interaction triggers conformational changes 

that shift the enzyme into its active state, mediating the trimming of peptides to their mature 

length (Figure 1.5C)173,174. Additionally, the large cavity between the active and regulatory sites 

exhibits strong electrostatic potential, which likely contributes to ERAP’s preference for 

trimming peptides with positively charged or hydrophobic residues.175,176 Contrary to the 

current understanding, recent reports suggest that ERAP1 may also trim peptides while the 

peptides N-terminus is bound to the HLA molecule.177,178  

The role of ERAP1 in shaping the immunopeptidome is still not fully understood. However, 

certain ERAP1 allotypes, in conjunction with specific HLA mutations, have been identified as 

risk factors for auto-immune and auto-inflammatory diseases, including ankylosing 

spondylitis, Behcet’s disease, inflammatory bowel disease, insulin-dependent diabetes 

mellitus, multiple sclerosis, and psoriasis.179-181 Furthermore, ERAP1 has been proposed as a 

target in viral infections182, and its expression levels fluctuate in cancers of different histological 

origin183,184. Notably, ERAP1 upregulation is suspected to facilitate immune evasion by 

promoting the destruction of immunogenic tumour antigens.162,185 In 2023, Grey Wolf 

Therapeutics started a Phase I clinical trial with their lead immuno-oncology candidate, 

GRWD5769, an ERAP1 inhibitor tested for use alone and in combination with immune 

checkpoint inhibitors to treat different solid tumours.186 The development of ERAP1-targeting 

compounds has been challenging due to the enzyme’s structural homology with other M1 

aminopeptidase family members. Previously described inhibitors such as leucinethol and 

DG013A target ERAP1’s active site, but this approach has limited selectivity and therapeutic 

utility.187,188 However, in 2020, Liddle et al. discovered an ERAP1 inhibitor that targets the 

enzyme’s regulatory site, promoting selectivity.55 

Several HTS assays have been developed to measure ERAP1 activity. A fluorescence-based 

assay was initially used but found to have a limited dynamic range, leading to its replacement 

by a chemiluminescence-based assay.55 Both assays required peptide labelling at the C-
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terminus, which interfered with peptide binding to the enzymes’ regulatory site. This 

interference led to substrate hydrolysis upon simultaneous binding of the substrate to the N-

terminus and compound to the C-terminus, necessitating further analysis to confirm the 

activity of hit compounds in the presence of biologically relevant peptide precursors.55 To 

address this limitation, a RapidFire MS-based assay was introduced, enabling the evaluation of 

compound activity under conditions that preserve biological relevance. This platform also 

allowed for both single-concentration and dose-response screening.55 However, with analysis 

speeds of 7 seconds per sample, this setup proved incompatible with ultra HT screening 

efforts. A MALDI-TOF MS-based ERAP1 assay would be able to improve the screening 

throughput.  

 

1.7 MALDI-TOF MS-based cell phenotyping  

MALDI-TOF MS use was also reported in phenotypic screening and it is a standard technique 

for microorganism phenotyping in the clinical setting.189-192 Bacterial species are distinguished 

through differential expression of ribosomal proteins, a process known as biotyping.193,194 

Species identification based on the mass spectrum is achieved by either comparison against 

an annotated spectral library or by harnessing trained machine learning algorithms.195-197 The 

introduction of MALDI glycotyping, a workflow enabling the analysis of glycan patterns, has 

improved subtyping within bacterial species.198,199 As MALDI-TOF MS can provide rapid, 

reliable, and cost-effective microorganism identification in the clinic200,201, this technology is 

now also applied in other settings, including food and environmental testing202-205.  

 

1.7.1 Eukaryotic cell phenotyping by MALDI-TOF MS 

MALDI-TOF MS-based cell phenotyping approaches for whole mammalian cells have not yet 

reached the level of success seen in microorganism phenotyping. However, initial applications 

have emerged, primarily using specific m/z features (“biomarkers”) to distinguish between cell 

phenotypes, indicating broad applicability in phenotypic drug discovery screening.  

For eukaryotic cell phenotyping, most assays to date have focussed on the high molecular 

range (2,000 – 20,000 Da) which contains peptides and small proteins.44 These signatures have 

been used to differentiate between different cell types.206-208 For instance, Karger et al. 2010 

observed the clustering of 66 cell lines from 34 different species.209 Similarly, clustering has 
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been reported for different neuroblastoma210 and glioblastoma211 cell lines. In primary cell 

mixtures, different glial cell types212 or non-cancerous versus cancerous cells213 have been 

distinguished by MALDI-TOF MS. Beyond cell type differentiation, MALDI-TOF MS approaches 

have successfully identified different cell stages, such as stress, apoptosis, and 

necroptosis214,215, and have been used to detect neutrophil differentiation in whole blood 

samples216.  

In contrast to earlier workflows, most cellular MALDI-TOF MS drug discovery screening efforts 

have focussed on the low molecular mass range (100 – 1,000 Da) which is populated by 

metabolites and lipids.44 Lipid profiles are highly dynamic and often indicative of cell 

phenotype or disease state.217-219 Metabolite and lipid m/z features are commonly used in MS 

imaging (MSI), e.g. MALDI-TOF MS imaging220, for instance to classify astrocytes, neurons or 

tumours.221-224 In 2018, Weigt et al. identified lipid biomarkers in a phenotypic MALDI-TOF MS 

screen that enabled inference of kinase inhibitor activity.138 In another study, Weigt et al. 2019 

described a HTS-compatible MALDI-TOF MS assay that evaluated fatty acid synthase activity 

via the substrate malonyl-coenzyme A while also profiling additional metabolic pathways.225 

Recently, metabolite markers have also been used to infer complement-dependent 

cytotoxicity from different batches of antibodies.140 While these approaches focus on selected 

biomarkers, it has been suggested that analysing multiple features using unsupervised 

clustering approaches or machine learning strategies could additionally allow for MoA 

elucidation when performing large scale screens of unknown compounds in conjunction with 

well-annotated control compounds.44 

 

1.7.2 Immune cell phenotyping by MALDI-TOF MS 

In 2022, Blank et al. investigated lipopolysaccharide (LPS)-induced lipid alterations in microglia 

using MALDI-TOF MS, identifying 21 potential inflammation biomarkers, six of which were 

significantly reduced in a proof-of-concept treatment with the histone deacetylase inhibitor 

SAHA.139 Other studies aiming to conduct immune cell phenotyping by MALDI-TOF MS have 

focussed on the high mass range (2,000 – 20,000 Da).  

In 2010, Ouedrago et al. pioneered the field by phenotyping immune cells from the blood. At 

that time, flow cytometry was a standard technique for immune cell phenotyping, classifying 

cells based on labelled membrane proteins. Using the MALDI-TOF MS workflow, they 
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successfully distinguished between human macrophages, T cells, neutrophils and red blood 

cells.226 They improved clustering between different cell types by using a spectral reference 

library, similar to the bacterial phenotyping approach. An automated workflow was soon 

published, enabling phenotyping of differentiating neutrophils and monocytes from whole 

blood.216 Further publications have focussed on human macrophages, distinguishing between 

polarised pro- and anti-inflammatory cell states, and identifying a macrophage signature with 

a polarisation-independent mass peak at m/z 4964.227,228 

To address the challenge of translating these protocols into an industrial setting, Heap et al. 

2019 systematically evaluated the effect of various parameters, including cell lysis protocol, 

cell number, MALDI-TOF MS matrix choice, matrix concentration, and laser power on mass 

feature numbers and robustness, using different cell lines.208 Consistent with previous 

literature, they identified the macrophage-specific mass peak at m/z 4964 in monocyte cells, 

and they used this mass feature for intensity normalisation. This allowed them to conduct a 

compound screen with THP1 monocyte cells and evaluate compound activity in primary 

monocytes and acute myeloid leukaemia samples.229 Unlike other assays, they also employed 

multiple mass features to achieve separation between mouse embryonic stem cells with and 

without kinase inhibitor treatment. They distinguished between resting macrophages and 

different pro-inflammatory stimuli and further identified inflammation inhibitors as well as 

compound cytotoxicity by using unsupervised clustering.208,229  

 

1.7.3 Use case: macrophages as drug target  

During an inflammation response, immune cells such as monocytes, macrophages, dendritic 

cells, eosinophils, basophils, mast cells, and neutrophils are quickly recruited within hours 

following pathogen infection or tissue damage.159 Most of these cells originate from 

hematopoietic stem cells, which reside in the bone marrow and spleen. Tissue-resident 

macrophage pools originate from the yolk sack and are established during embryogenesis.230 

They can be found in organs like the brain, bones, kidney liver, and lung. The primary functions 

of these cells include pathogen detection and maintenance of tissue homeostasis, which they 

achieve through the internalisation of foreign matter and cellular debris.231-233 

Macrophages exhibit remarkable plasticity, allowing them to polarise into different cell states 

based on their environment.234 In the simplified model, macrophages can be categorised into 
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resting (M0), classical activated (M1), and alternatively activated (M2) macrophages (Figure 

1.6). M2 macrophages can for instance promote tissue regeneration and wound healing.235 

Polarisation into the M2 phenotype is induced by exposure to cytokines, such as IL-4, which 

binds to interleukin membrane receptor, and triggers the janus kinase/signal transducers and 

activators of transcription (JAK/STAT) signalling cascade.236,237 

 
Figure 1.6. Schematic representation of macrophage polarisation.  
Unstimulated macrophages are in the resting state (M0) from which they can be polarised into 
a classical activation (M1) or alternatively activated state (M2) by different stimuli. 

 
The pro-inflammatory M1 phenotype is better understood than the anti-inflammatory M2 

phenotype. M1 polarisation is triggered by exposure to pathogen-associated molecular 

patterns. These are biological molecules which are highly conserved within different 

pathogens and which the immune system is primed to respond to.160 They are recognised by 

pattern recognition receptors of immune cells, including c-type lectin, NOD-like receptors, and 

TLRs.160 For instance, LPS, a cell membrane component of gram-negative bacteria, binds to 

TLR4.238 LPS binding initiates downstream signalling cascades through both myeloid 

differentiation primary response protein (MyD88)-dependent and independent pathways 

(Figure 1.7). Both pathways activate interferon regulatory factors (IRFs, e.g. IRF-5, IRF-3), but 

only the MyD88-dependent pathway also activates mitogen-activated protein kinases (MAPKs, 

e.g. p38), as well as nuclear factor-kappa B (NF-κB) and its modulators (e.g. IKK).239,240 This 

pathway activation leads to the expression of pro-inflammatory genes and the secretion of 

pro-inflammatory cytokines.241  

Macrophages also respond to a variety of chemo- and cytokines, including interferons (IFNs), 

interleukins (ILs), and tumour necrosis factors (TNFs), which are secreted by host cells 

additionally in response to infection or cellular stress.242 For instance, IFN-γ, the only type II 

IFN, can enhance both innate and adaptive immune responses.243 IFN-γ signalling is mediated 
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through heterodimeric receptors (IFN-γR) and the JAK/STAT signalling cascade (Figure 1.7). 

Upon IFN-γ binding, the receptors dimerise and associate with another receptor pair, 

triggering a phosphorylation cascade from JAK2 via JAK1 to STAT1.244-246 The phosphorylated 

STAT1 dimer then translocates to the nucleus, where it induces the expression of IFN-regulated 

genes.247  

 
Figure 1.7. IFN-γ and LPS signalling pathways.  
(Left) IFN-γ signalling is mediated by receptor dimerization, and a JAK/STAT phosphorylation 
cascade that leads to transcription of interferon stimulated genes. (Right) LPS binding elicits 
downstream signalling cascades though MyD88-dependent and independent pathways. Both 
pathways result in activation of interferon regulatory factors (e.g. IRF-5, IRF-3), but only the 
MyD88-dependent pathway also activates MAPKs (e.g. p38), and NF-κB. LPS binding elicits for 
instance transcription of pro-inflammatory cytokines and interferons. 

 

The acute inflammation response mediated by macrophages is tightly regulated, but when 

over-activated or prolonged, it can lead to tissue damage and various diseases. Macrophage 

dysregulation is implicated in a broad range of conditions, including several auto-immune 

diseases such as diabetes248 and inflammatory bowel disease249. In the brain, macrophages 

play a crucial role in synapse formation, plasticity, and elimination; dysregulation in this 

context can contribute to neurodegenerative disorders such as Parkinson’s and Alzheimer’s.250 
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In cardiac tissue, macrophages are involved in immune defence, electrical conduction, and 

arterial tone regulation.251 Dysregulation in these cells is linked to heart failure, obesity (a risk 

factor for heart failure), and hypertension.251 Kupffer cells in the liver, which normally protect 

against drug-induced liver injury and toxin-induced fibrosis, can cause liver tissue damage 

when dysregulated.252 In oncology, tumour-associated macrophages (TAMs) are of significant 

interest because they promote tumour growth and metastasis development through different 

functions.253 TAMs promote angiogenesis by producing angiogenesis-promoting factors, and 

they remodel the extracellular matrix to facilitate tumour progression and to weaken the 

matrix around blood vessels.253 They enhance the invasive and migratory properties of cancer 

cells through the secretion of TNF-α and TGF-β, which can then migrate into the circulation 

(intravasation), subsequently forming metastasis in distal organs.253 TAMs also block the 

activity of cytotoxic T cells targeting tumour cells, making TAM modulation a potential strategy 

for cancer treatment, with many current drug discovery efforts focused on restoring cytotoxic 

T cell function.253      

 

1.7.4 Tools to study macrophages  

Consequently, macrophages are crucial targets for drug development. Studying macrophages 

and performing macrophage targeted drug discovery is challenging due to their complexity, 

plasticity and variability across species and individuals.254,255  

Selecting the appropriate model for macrophage research is critical as responses can vary 

significantly between enzymatic in vitro assays, cellular assays, and in vivo models. Cellular 

assays often use various cell models, including immortalised monocyte cell lines (e.g. THP1), 

induced pluripotent stem cell (iPSC)-derived macrophages, and primary macrophages from 

either murine (bone marrow derived, BMDMs), or human (peripheral blood derived, PBMCs) 

sources. Differences between species and cell models have been reported. For instance, 

Reynolds et al. 2015 observed increased inducible nitric oxide synthase in mouse models 

following LPS stimulation, while human responses included upregulation of CCL20, CXCL13, IL-

7R, and STAT4.256 Additionally, murine BMDMs and human PBMCs exhibit distinct metabolic 

responses in inflammation, highlighting the need to carefully select the model species.257 

Gudgeon et al. 2024 found significant variability in responses to inflammatory stimuli among 

murine cell lines, immortalised cells, and BMDMs.258 Likewise, human THP1 cells with genetic 
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mutations have displayed different immune responses compared to PBMCs.259 A limitation of 

primary cells is their constrained availability, leading to increased interest in iPSC-derived 

macrophages for disease modelling and drug discovery due to their higher biological relevance 

and scalability.260  

When evaluating macrophage polarisation, the choice of stimulus is also crucial. Current 

studies use isolated bacterial membrane proteins, such as LPS, or heat-killed and live bacteria 

to induce polarisation.261 Moore et al. 2000 demonstrated that pro-inflammatory cytokine 

release in response to Escherichia coli and LPS is mediated through different cell surface 

receptors.262 Further, external stimulants can be combined with host-derived chemokines and 

cytokines such as IFNs that are frequently released in inflammation responses. 

Macrophage polarisation is commonly determined using image-based or label-based 

methods. T cell activation can serve as a redout method for macrophage polarisation.263 

Fluorescence-based techniques can measure real-time phagocytosis activity264. Flow 

cytometry detects pro-inflammatory (CD40, CD80, and CD25) and anti-inflammatory (CD206 

and CD163) cell surface markers40,265,266. Compounds that increase M1 marker expression are 

typically explored in infection and immuno-oncology, while those that decrease M1 markers 

may be promising for auto-immune disease treatment. Another HTS approach to determine 

macrophage polarisation involves label-based analysis of pro-inflammatory and anti-

inflammatory cytokine secretion.39 However, while used for hit triaging in large scale screens, 

these techniques do not elucidate the MoA or intracellular targets of identified compounds. 

 

1.8 Proteomics 

Omics approaches, including genomics and transcriptomics provide a holistic view of the 

molecular landscape within a biological system.267 Insights into biological processes, such as 

the molecular basis of diseases, can be gained through understanding protein structure, 

function, and abundance, which are studied via proteomics.268 Beyond target identification 

and validation in the drug discovery and development pipeline, proteomics is also used in lead 

optimisation, pre-clinical trials, and clinical trials.269 The incorporation of proteomics into early 

drug discovery stages has gained increasing interest, as understanding drug MoA and drug 

targets in a physiologically relevant context can enhance the understanding of compound 

safety and efficacy.15 Techniques such as MS are frequently used to analyse protein expression, 
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modification, and interaction.268 “Top-down” and “bottom-up” MS-based proteomic 

approaches are distinguished by their analysis of intact proteins or peptides from proteolytic 

digestion of the protein, respectively.270 The four steps in a “bottom-up” proteomics workflow 

that enable the detection of thousands of proteins in a single sample are sample preparation, 

peptide separation, MS acquisition, and data analysis (Figure 1.8).271 

1. Sample preparation: Proteins are extracted from the biological sample and digested 

into peptides.  

2. Peptide separation: Chromatography, usually C18-based liquid chromatography (LC), 

is used to reduce the complexity of the peptide mixture before samples enter the mass 

spectrometer. 

3. Mass spectrometry acquisition: Peptides are ionised, precursor ions selected, selected 

ions fragmented, and m/z and abundance of fragment ions measured. 

4. Data analysis: Bioinformatic tools are used to infer peptide sequence from the mass 

spectrum, allowing for protein identification and quantification. 
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Figure 1.8. Schematic bottom-up proteomics workflow.  
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The workflow entails four different steps; (1) Sample preparation: Protein extraction, 
reduction, alkylation, and digestion into peptides (e.g. S-Trap method), (2) Peptide separation: 
Sample complexity reduction by liquid chromatography (e.g. Evosep or HPLC system), (3) Mass 
spectrometry: ESI is used for analyte ionisation in different MS instruments (e.g. timsTOF or 
Orbitrap MS) where peptide precursor ions are detected (MS1), ions which are selected either 
by an intensity (DDA) or window (DIA) dependent fashion fragmented, and fragment ion 
features such as m/z and abundance measured (MS2), (4) Data analysis: Bioinformatic tools 
infer peptide sequence, protein identification, and quantification. 

 

1.8.1 Sample preparation in proteomics 

The aim of the sample preparation step is to produce peptides with known cleavage motifs 

through enzymatic digestion that can be later analysed by MS.271 Sample preparation methods 

are numerous and can be mostly categorised into in-solution, in-gel, on-bead, and matrix-

aided digestion techniques.271 Varnavides et al. 2022 compared 16 widely used sample 

preparation methods and found that most showed high reproducibility and significant overlap 

between identified proteins. They noted differences in recovery for specific protein features, 

which should be considered alongside sample nature, processing time, and cost when 

selecting a sample processing technique.272  

A versatile and robust matrix-aided digestion method commonly used in proteomics 

workflows is the S-Trap method (Figure 1.8). Although it is associated with higher costs, it 

requires minimal hands-on time and improves the detection of low-abundant proteins.272 In 

this workflow, sample lysis and protein solubility are achieved by adding sodium dodecyl 

sulphate (SDS) to the sample.273,274 A reducing agent is then used to reduce disulfide bonds 

between cysteine residues, leading to protein denaturation, which is crucial for efficient 

enzymatic digestion.273,274 An alkylation agent is added to prevent the reformation of cysteine 

bonds.273,274 The samples are acidified and loaded onto a solid phase that non-specifically 

immobilises the denatured proteins.273,274 Interfering solvents are removed from the sample 

before endoproteinases such as trypsin (Lys-Arg cleavage, missed cleavage in proline 

proximity), Lys-C (C-terminal Lys cleavage) or Lys-N (N-terminal Lys cleavage) are used for 

protein digestion.275 The peptides are then eluted, dried, and resuspended in a MS-suitable 

buffer for analysis. 
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1.8.2 Peptide separation and mass spectrometry setups in proteomics 

LC is coupled to mass spectrometers to separate the resulting complex peptide mixtures before 

sample injection to improve MS sensitivity and resolution.276 Different LC systems have 

emerged (Figure 1.9); high-performance liquid chromatography (HPLC) and the Evosep One 

system (Evosep) are commonly used in proteomics analysis. In a conventional HPLC setup for 

proteomics analysis, the peptides are present in solution and picked up in the sample loop. 

They are then concentrated and purified on the trap column and eluted onto the analytical 

column where they are separated prior to MS injection. These HPLC systems are customisable, 

compatible with a range of flow rates, gradients, and column types, allowing for optimised 

resolution.277 A stationary phase, such as octyldecylsilane (C18), is frequently used in these 

columns for proteomics. Analyte elution from the column is controlled by the mobile phase, 

which often includes varying concentrations of an organic solvent.278  

In contrast, the Evosep system emphasises speed and reproducibility, using pre-defined, 

standardised gradients and providing compatibility with automation.279 Key features of the 

Evosep system are its unique sample delivery and loading strategies. For sample delivery, the 

peptides are bound to a C18 resin within the Evosep tip rather than using in-solution delivery 

as in HPLC.279 This resin acts as the trap column, concentrating and purifying the peptides while 

minimising sample carryover by using a new tip for each sample.279 Further, an organic 

gradient is formed in the sample loop, aiding pre-separation of analytes before they are eluted 

onto the analytical column where they are further separated before MS injection.279 

 
Figure 1.9. Schematic representation of different LC systems. 
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In conventional HPLC, samples are placed in vials and taken up in the sample loop, followed by 
sample concentration and purification on the trap column before samples are separated on 
the analytical column prior to MS. In the Evosep system, samples are first concentrated and 
purified in the Evosep tips before they are taken up and pre-separated in the sample loop, 
followed by more extensive sample separation on the analytical column prior to MS. 

 

Ionisation of the peptides is typically achieved by ESI, which is usually operated in positive ion 

mode.280,281 Within the mass spectrometer, the ESI ion source is traditionally coupled to a 

series of mass analysers which together form tandem/hybrid configurations. In the first mass 

analyser (MS1), a complex mixture of precursor ions is detected, and ion subsets selected for 

fragmentation.282 Fragmentation occurs in a collision cell where molecular bonds, often 

peptide bonds, are dissociated by collision with an inert gas.282 This process enables peptide 

sequence identification based on the m/z and abundance of fragment ions measured in the 

second mass analyser (MS2).282  

Two types of mass spectrometry instruments are commonly used within the proteomics field. 

The first type are hybrid Orbitrap instruments, such as the Q Exactive or Orbitrap Exploris 480 

from Thermo Fisher Scientific (Figure 1.10). After analyte ionisation, the ions are guided into 

the quadrupole which is composed of four metal rods that create an electric field to guide and 

eject ions based on their m/z, serving as a mass filter. The selected ions are passed through 

the C-Trap trap into the HCD cell where they are fragmented by collisional dissociation before 

being transported back into the C-Trap.283 The C-Trap consists of electrodes to which voltages 

are applied to initially trap, and stabilise ions, before ejecting them into the Orbitrap mass 

analyser.283 The Orbitrap, with its spindle-like central electrode and two cup shaped outer 

electrodes, traps ions in an orbital motion around the inner electrode. The frequency of 

rotation correlates with the ion m/z and the amplitude of the rotation correlates to the ion 

intensity; the mass spectrum is derived by Fourier-transformation.284 While Orbitrap mass 

analyser offer high mass resolution and accuracy, they have longer acquisition times compared 

to lower resolution mass analysers such as TOF, limiting throughput.284 When coupled with 

HPLC systems, cycle times of 60 to 120 minutes per sample are typically achieved. The recently 

released Orbitrap Astral by Thermo Fisher Scientific is a different type of instrument that 

combines the Orbitrap technology with the novel Astral mass analyser to offer enhanced 

acquisition speeds.285  
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Figure 1.10. Schematic representation of a hybrid Orbitrap instrument. 
Sample ionisation occurs in an ESI source and the generated ions are filtered in the quadrupole, 
fragmented in the collision cell and guided into the C-Trap from which they are injected into 
the Orbitrap mass analyser. 

 

The second type of mass spectrometry instruments that are frequently used in proteomics are 

featuring the TIMS technology to further reduce sample complexity and a different mass 

analyser, a TOF (chapter 1.5) in comparison to the hybrid Orbitrap instruments. Successful 

coupling of the TIMS technology with the TOF has resulted in instruments such as the timsTOF 

Pro or timsTOF HT from Bruker which achieve increased acquisition speeds, resolution and 

sensitivity. After analyte ionisation, the ions are delivered to the TIMS cell where they are 

initially bundled in the TIMS tunnel. Then they are subsequently separated according to their 

ion mobility (IM).286 The separation is achieved through a gas flow that pushes ions forward 

with a force that is proportional to their collisional cross-section (i.e. size). At the same time, 

an electric field is applied to the TIMS tunnel to additionally separate the ions according to 

their charge. A pulsed release is performed to transfer the ions from the TIMS cell into the 

quadrupole mass filter from which they get transported into the collision cell and subsequently 

into the TOF mass analyser.286 The timsTOF instruments offer higher speed and sensitivity but 

have reduced mass resolution and accuracy compared to Orbitrap instruments.287 They are 

invaluable for large-scale proteomics, as coupling with the Evosep One system allows whole 

proteome analysis in as little as 6 min per sample (200 samples per day method).288 
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Two acquisition modes, data-dependent acquisition (DDA) and data-independent acquisition 

(DIA) can be used with either hybrid Orbitrap or timsTOF instruments (Figure 1.8). DDA, the 

more established technique, selects the most abundant ions within MS1 for fragmentation.289 

This method provides high accuracy of peptide sequence identifications but may miss lower 

intensity precursor ions, reducing sample coverage and resulting in higher missing values (NAs) 

between samples.289 DIA, developed to increase sample coverage, selects all ions within a 

specified m/z and/or IM window of an MS1 scan for fragmentation, reducing NAs significantly 

in an exemplary study from 51% with DDA to 1.6% with DIA.290 However, DIA generates more 

complex fragment patterns, hampering peptide identification. Reference spectral libraries 

created in DDA mode are often used to increase accuracy of peptide identification, but their 

generation requires additional sample and instrument time.291 

 

1.8.3 Data analysis in proteomics 

The amino acid sequence of the peptide can be derived from the MS2 scan. Collision induced 

dissociation preferentially cleaves the amide bond in the peptide back bone, resulting in 

various fragment ions that differ by a single amino acid (Figure 1.8).292 The mass difference 

between these fragment ions, derived from the m/z, allows for the inference of the amino acid 

sequence of the precursor peptide. The only limitation of this technique is the inability to 

distinguish between leucine and isoleucine, which share the same monoisotopic mass.293  

Peptide identification and subsequent peptide-to-protein matching can be conducted in an 

automated fashion using various bioinformatic tools, known as search engines, such as 

MaxQuant and DIA-NN.294,295 In the software, the process begins with uploading and 

processing the raw spectrum data files.296 Peptide identification is then performed by 

comparing the obtained mass spectra to a peptide library, which can be either theoretically or 

experimentally derived. In a theoretical approach, an in silico digest of a species-specific FASTA 

file is performed with the chosen endopeptidase to generate peptides that can be theoretically 

observed within the analysis.296 Alternatively, experimental libraries are created by analysing 

samples with MS to generate a spectral library that is then used to match the acquired data.288 

After peptide matching, scoring and filtering steps are applied to minimise incorrect 

identifications.296 Finally, proteotypic peptides can be used to infer protein identity.297  
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1.8.4 Proteomics applications  

Applications of proteomics are diverse due to the customisable nature of sample preparation, 

peptide separation, MS, and data analysis techniques. For instance, in plasma proteomics, 

highly abundant proteins such as albumin and immunoglobulins can obscure the analysis of 

low-abundant proteins without specific enrichment or depletion strategies.298 Enrichment 

strategies are also used to study post-translational modifications (PTMs)299, such as 

phosphorylation300,301, ubiquitination302-304, and glycosylation305. A rapidly evolving field is 

single-cell proteomics, which demands minimal sample loss during preparation and high 

sensitivity in MS analysis.306 

Workflow modifications are also significant in chemoproteomics, a field which combines 

chemical biology and MS to identify drug-target interactions.307 Target enrichment is employed 

in workflows for affinity- or activity-based profiling.308 Additionally, methods inducing thermal, 

chemical, or enzymatic denaturation can be used to assess drug binding stability.15,309 While 

these methods provide valuable insights, they historically have low throughput, require a large 

sample amount, and are costly.15 Recent developments are improving workflow throughput, 

but further integration with unmodified standard proteomics workflow could enhance 

compatibility with early drug discovery stages. This approach’s feasibility was exemplified by 

studies such as Saei et al. 2019, which employed full proteome expression atlases to deduce 

MoAs and off-target effects through a fingerprinting approach.310 Furthermore, Mitchel et al. 

2023 conducted a comprehensive study documenting proteome-level changes induced by 875 

compounds in HCT116 cells, linking compound structure with MoA.311 
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1.9 Aims 

This thesis aims to demonstrate the advantages of MS in early drug discovery stages, where it 

is currently underutilised. I will exemplify this on research questions within the immunology 

field, a key drug discovery area due to its links to various diseases. Several MS systems exist 

that are compatible with HTS workflows. This thesis will highlight the potential of MALDI-TOF 

MS, a promising technology for target-based and phenotypic screens. I will further illustrate 

how leveraging a new wave of proteomics technologies that allow increased throughout can 

aid lead compound candidate selection by identifying desired and undesired compound 

effects. 

The key aims of my thesis are as follows:  

• Develop a biochemical MALDI-TOF MS drug discovery assay for the high-profile 

immunology target ERAP1. 

• Introduce automation for the developed MALDI-TOF MS-based ERAP1 workflow to 

enable robust screening against large compound libraries.  

• Compare the results from the MALDI-TOF MS ERAP1 screen to those from an 

established RapidFire MS assay to validate hit calling. 

• Optimise cell culture and stimulation conditions for iPSC-derived macrophages from 

human donors.  

• Develop a robust proteomics workflow to characterise pro-inflammatory human iPSC-

derived macrophage polarisation. 

• Develop a MALDI-TOF MS assay to phenotype resting and pro-inflammatory iPSC-

derived macrophages.  

• Introduce automation for the MALDI-TOF MS macrophage phenotyping workflow to 

screen compound libraries that cover broad and inflammation-specific mechanisms of 

action. 

• Compare the MALDI-TOF MS phenotypic screen of inflammation-specific compounds 

to an established pro-inflammatory cytokine screen. 

• Compare inflammation-specific compound hits determined by proteomics to the 

MALDI-TOF MS and cytokine screens. 

• Determine proteomics capability to identify on- and off-target pathway engagement 

for identified inflammation-specific hit compounds.  



31 
 

Chapter 2. Materials and methods 
 

Table 2.1. List of general chemicals and reagents. Indicated are also their supplier. 

Chemical/ reagent Supplier 

3-((3-cholamidopropyl) dimethylammonio)-1-
propanesulfonate (CHAPS) hydrate 

Sigma-Aldrich 

4-(2- hydroxyethyl)-1-piperazineethanesulfonic 
acid (HEPES) 

Sigma-Aldrich 

Acetonitrile (MeCN) MS grade 
Thermo Fisher Scientific / VWR 
Chemicals 

Ammonium dihydrogen phosphate (NH4H2PO4) Sigma-Aldrich 

Ammonium formate HPLC grade Thermo Fisher Scientific 

Ammonium hydroxide Sigma-Aldrich 

Benzonase® Nuclease HC, Purity > 99% Merck 

Bovine serum albumin (BSA) Sigma-Aldrich / Thermo Fisher Scientific 

Diammonium hydrogen citrate Sigma-Aldrich 

Dimethyl sulfoxide (DMSO) Sigma-Aldrich 

Dulbecco’s phosphate buffered saline (DPBS) Sigma-Aldrich 

Ethanol MS grade Thermo Fisher Scientific 

Fetal Bovine Serum, qualified, heat 
inactivated, Australia 

Thermo Fisher Scientific 

Formic acid (FA) LC-MS grade, 98-100% Sigma-Aldrich, Thermo Fisher Scientific 

Glycerol  Thermo Fisher Scientific 

Hela protein standard Pierce 

Iodoacetamide (IAA) Merck 

Isopropanol MS grade Thermo Fisher Scientific 

Macrophage colony-stimulating factor (M-CSF) Peprotech 

Methanol (MeOH) MS grade Thermo Fisher Scientific 

Phosphoric acid, 85% Merck 

Pierce™ BCA protein assay kit Thermo Fisher Scientific 

Roswell park memorial institute (RPMI) 1640 
Medium 

Gibco 

Sodium chloride (NaCl) Sigma-Aldrich 

Sodium dodecyl sulphate (SDS) Merck 

Triethylammonium bicarbonate buffer (TEAB), 
1 M 

Merck 

Trifluoroacetic acid (TFA) 
Sigma-Aldrich / Thermo Fisher Scientific 
/ Merck 

Tris(2-carboxyethyl)phosphine hydrochloride 
solution (TCEP), 0.5 M 

Sigma-Aldrich / Thermo Fisher Scientific  

Tris(hydroxymethyl)aminomethane 
hydrochloride (Tris-HCl), 1M, pH 7.5 

Invitrogen 

Trypsin Worthington Biochemical 

Trypsin/Lys-C Protease Mix MS grade Thermo Fisher Scientific / Pierce 

Tween-20 Sigma-Aldrich 

Water (H2O) MS grade Sigma-Aldrich / Thermo Fisher Scientific 
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2.1 ERAP1 assay peptide detection and in vitro assay conduction 

2.1.1 ERAP1 biochemical assay specific materials  

Table 2.2. List of assay peptides utilised in the ERAP1 biochemical assay. Indicated are also 

their peptide sequence, monoisotopic mass, DMSO stock concentration, and corresponding 

assay buffer.  

Peptide description 
Peptide 
sequence† 

Monoisotopic 
mass 

DMSO 
stock 

Assay buffer 
supplement 

Non-basic substrate YTAFTIPSI 1011.5 10 mM 
0.1 M CHAPS or 
0.002% Tween-20‡ 

Non-basic standard Ac-YTAFTIPSI 1053.5 10 mM 
0.1 M CHAPS or 
0.002% Tween-20‡ 

Non-basic product TAFTIPSI 848.5 10 mM 
0.1 M CHAPS or 
0.002% Tween-20‡ 

Basic substrate YTAFRIRSI 1125.6 10 mM 0.1 M CHAPS 

Basic product TAFRIRSI 962.6 10 mM 0.1 M CHAPS 

Basic standard TAFRIRSI(13C15N) 969.6 10 mM 0.1 M CHAPS 

† All peptides were obtained from Cambridge Research Biochemicals 
‡ 0.002% Tween-20 was only utilised in biochemical assays analysed by RapidFire MS 

 

Gistas et al. 2019 and Hutchinson et al. 2021 described how the C-terminal 6-His tagged ERAP1 

full-length protein (allotype 2) was produced.174,312 It was stored in a buffer with 50 mM HEPES, 

100 mM NaCl pH 7.0, 10% glycerol and 0.5 mM TCEP. While the Leucinethiol (Leu-SH) 

compound was purchased from Sigma-Aldrich, all remaining compounds were provided by 

GSK from their internal compound library. They utilised an Echo acoustic dispenser (Labcyte) 

to dispense the compounds into assay plates to final concentrations of 0.1 – 1% DMSO, 10 µM 

compound for single concentration screens, and from 1.7 nM to 1×105 nM compound for 

ERAP1 binder dose-response curves. The compound concentrations for the dose-response 

curves of known ERAP1 inhibitors (Leu-SH and DG013A) were manually pipetted and ranged 

from 3×10−3 nM to 1×104 nM with up to 1mM final TCEP concentration for Leu-SH. 

 

2.1.2 Detection of ERAP1 assay peptides 

Equimolar concentrations (1 µM) of the non-basic and basic peptides listed in chapter 2.1.1 

were prepared in a 1:1 mixture of the assay buffer (5 mM HEPES, 100 mM NaCl pH 7.0, 0.01% 

BSA, 0.1 M CHAPS) and 2x quench solution (0.75% TFA) and acquired by MALDI-TOF MS to 
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determine ionisation efficiency. To determine the limit of detection (LOD) with MALDI-TOF MS, 

serial dilutions of the assay peptides were prepared in a 1:1 assay buffer quench mixture. The 

LOD was reached when the analyte signal was detected in less than three out of five replicates 

when applying a signal to noise cut-off ≤ 3. Lastly, the linearity of signal detection by MALDI-

TOF MS was determined at a constant peptide concentration of 2 µM in a 1:1 assay buffer 

quench mixture. The peptide concentrations were stepwise increased or decreased in 

increments of 0.2 µM to mimic the enzymatic reaction progression (product: start 

concentration = 0 µM, end concentration = 2 µM; substrate: start concentration = 2 µM, end 

concentration = 0 µM). For both, limit and linearity of detection experiments, 1 µM internal 

standard final concentration was supplemented.  

 

2.1.3 ERAP1 biochemical in vitro assay 

Detailed information about the original RapidFire MS-based ERAP1 enzymatic assay can be 

retrieved from Liddle et al. 2020.55 Briefly, the assay was conducted in 25 μL 50 mM HEPES, 

100 mM NaCl pH 7.0, 0.01% BSA, 0.002% Tween-20 buffer and 5 µM non-basic substrate 

incubated with 1 nM ERAP1 for 1 h at RT. The reaction was stopped by addition of 25 µL quench 

solution (0.38% TFA final concentration) which contained 5 µM of the non-basic internal 

standard (2.5 µM final standard concentration).  

The initial MALDI-TOF MS workflow was based on the RapidFire MS method, utiling 5 µM non-

basic substrate, 3 nM ERAP1 and 2.5 µM non-basic internal standard. However, the assay was 

optimised and hence the workflow described in the following used for most experiments. 

ERAP1 (0.25 nM) was pre-incubated with compounds for 30 min at RT in the assay buffer (5 

mM HEPES, 100 mM NaCl pH 7.0, 0.01% BSA, 0.1 M CHAPS). The reaction was started by 

addition of 2 µM basic substrate and incubated for 60 min at RT (total volume = 4 µL). The 

reaction was stopped by addition of 4 µL quench solution (0.38% final TFA) which contained 

the basic internal standard (1 µM final concentration). The assay was conducted at two 

different locations which provided different automation capabilities. The previously outlined 

workflow was developed at Newcastle University where the Xrd- 384 reagent dispenser 

(fluidX) and Mosquito LV (SPT Labtech) were used. The full automation workflow at GSK was 

based around the Multidrop Combi dispenser which required adjustment to 5 µL dispense 

volumes while maintaining final assay concentrations and incubation times.  
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2.2 Cell culture of iPSC-derived macrophages 

The initial steps for the culture of the iPSC-derived macrophages cover the thawing and culture 

of the iPSCs, formation and cultivation of the embryoid bodies, as well as the harvest of the 

monocytes from the embryoid body factories. Detailed protocols for these steps have been 

previously published by van Wilgenburg et al. 2013 and Bernard et al. 2021.313,314 All 

monocytes were sourced from a GSK proprietary production pipeline which featured iPSC lines 

from three different human biological donors; UKBi006-A (Censo Biotechnologies), WTSli018-

A (Sanger Institute (EBiSC)), and S02315_C5 (UC San Diego, Frazer Lab). I received the 

monocyte precursors in suspension and then counted them with a NucleoCounter® NC-200 

(Via1-Casette™, ChemoMetec). Cells were centrifuged for 5 min at 300 xg, RT and resuspended 

in macrophage differentiation media (RPMI + 10% FBS + M-CSF (10 ng/mL or 100 ng/mL)) to a 

concentration of 1x105 cells/mL. Cells were either seeded manually or with a Multidrop Combi 

reagent dispenser (Thermo Fisher Scientific) (6 well = 4.8 mL cell suspension/well, 96 well = 

160 µL cell suspension/well). The cells were incubated at 37°C, 5% CO2 for 6 days. Only for the 

6 well plates, a media change was performed on day 4. On day 6, the compound incubation 

(optional) and stimulation were conducted. First, the media was replaced by fresh macrophage 

differentiation media. DMSO (final concentration 1%) or the compounds which originated 

from two different compound sets which will be referred to as Joint Undertaking of 

Morphological Profiling (JUMP), and inflammatory compound sets (Tables 2.3, and 2.4 

respectively) were added to a final concentration of 1 µM (JUMP set) and 10 µM (inflammation 

set) respectively. The different stimulants (Table 2.5) were added after 3 h compound 

incubation at 37°C, 5% CO2. The cells were harvested after another 24 h incubation at 37°C, 

5% CO2. The media was collected, and the cell pellets washed twice with DPBS. Cells and 

supernatants were stored at -80°C until further use. Brightfield microscopy images were 

captured throughout the cell cultivation, compound treatment and stimulation periods with 

an EVOS M5000 (Thermo Fisher Scientific). 

The outlined steps were automated when handling 96 well plates. The utilised platform 

featured a liquid dispenser (dragonfly® discovery; SPT Labtech) and a liquid handler robot 

(Bravo; Agilent) that conducted media change, compound, and stimulation addition, as well as 

media harvest and cell pellet washing.  
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Table 2.3. List of JUMP set compounds. Indicated are also their mechanism of action (MoA), 

and target annotation. 

Compound name† Mechanism of action (MoA) Target annotation 

A-366 
Histone lysine 
methyltransferase inhibitor 

EHMT1, EHMT2 

ABT-737 BCL inhibitor BCL2, BCL2L1, BCL2L2 

Acriflavine 
Hypoxia inducible factor 
inhibitor 

HIF1A 

Aloxistatin Protease inhibitor CTSG 

AMG900 Aurora kinase inhibitor AURKA, AURKB, AURKC 

Andarine Androgen receptor modulator AR 

Apratastat 
Matrix metalloprotease 
inhibitor, tumor necrosis factor 
production inhibitor 

ADAM17, MMP1, MMP13, 
MMP9 

APY0201 
Phosphoinositide dependent 
kinase inhibitor 

IL12A, IL12B, PIKFYVE 

AZ191 DYRK inhibitor DYRK1B 

AZD2014 mTOR inhibitor MTOR 

AZD7545 
Pyruvate dehydrogenase kinase 
inhibitor 

PDK1 

BI-78D3 JNK inhibitor MAPK8 

BIX-02188 MEK inhibitor MAP2K5 

BLU9931 FGFR inhibitor FGFR4 

BMS-566419 
Inosine monophosphate 
dehydrogenase inhibitor 

IMPDH1, IMPDH2 

BMS-863233 CDC inhibitor CDC7, PIM1 

BX-912 
Pyruvate dehydrogenase kinase 
inhibitor 

CDK2, CHEK1, GSK3B, KDR, 
PDK1, PDPK1 

Carmustine 
DNA alkylating agent, DNA 
inhibitor 

GSR 

CHIR-99021 
Glycogen synthase kinase 
inhibitor 

CDK1, GSK3A, GSK3B, MAPK1 

Cilostamide Phosphodiesterase inhibitor PDE3A, PDE3B 

CP-724714 
EGFR inhibitor, protein tyrosine 
kinase inhibitor 

ERBB2 

CPI-0610 Bromodomain inhibitor BRD4 

Dexamethazone Glucocorticoid receptor agonist ANXA1 

Dimethindene-(S)-(+) 
Acetylcholine receptor 
antagonist 

CHRM2 

Dosulepin 

Norepinephrine reuptake 
inhibitor, serotonin-
norepinephrine reuptake 
inhibitor (SNRI) 

CHRM1, CHRM2, CHRM3, 
CHRM4, CHRM5, HRH1, 
SLC6A2, SLC6A4 

Filanesib 
Kinesin inhibitor, kinesin-like 
spindle protein inhibitor 

KIF11 

Filgotinib JAK inhibitor JAK1, JAK2, JAK3, TYK2 
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FK-866 
Niacinamide 
phosphoribosyltransferase 
inhibitor 

NAMPT 

FR-180204 MAP kinase inhibitor MAPK1, MAPK3 

GDC-0879 RAF inhibitor BRAF 

GNF-5 Bcr-Abl kinase inhibitor ABL1, BCR 

GSK2334470 
Phosphoinositide dependent 
kinase inhibitor 

AURKA, AURKB, PDPK1 

GSK-3-inhibitor-IX 
Glycogen synthase kinase 
inhibitor, lipoxygenase inhibitor 

GSK3A, GSK3B 

GSK-J4 
Histone lysine demethylase 
inhibitor 

KDM6A, KDM6B 

GW-3965 LXR agonist NR1H2, NR1H3 

GW-5074 
RAF inhibitor, leucine rich 
repeat kinase inhibitor 

NTRK1, RAF1 

Halopemide Phospholipase inhibitor PLD1, PLD2 

Homochlorcyclizine Antihistamine HRH1 

ICG-001 Beta-catenin inhibitor CTNNB1 

IOX2 
Hypoxia inducible factor 
inhibitor 

EGLN1, KDM2A, KDM5C 

KH-CB19 CDC inhibitor CLK1, CLK3, DYRK1A 

LLY-283 
Protein arginine N-
methyltransferase inhibitor 

PRMT-5 

LY2109761 TGF beta receptor inhibitor TGFBR1, TGFBR2 

Mepyramine Antihistamine HRH1 

Mizoribine 
Immunosuppressant, inosine 
monophosphate dehydrogenase 
inhibitor 

IMPDH1 

MK-5108 Aurora kinase inhibitor AURKA, AURKB, AURKC 

ML-298 Phospholipase inhibitor PLD2 

ML-323 
Ubiquitin specific protease 
inhibitor 

USP1 

ML324 
Histone lysine demethylase 
inhibitor 

KDM4A 

Neratinib EGFR inhibitor EGFR, ERBB2, KDR 

NVP-AEW541 IGF-1 inhibitor IGF1R, INSR 

NVS-PAK1-1 p21 activated kinase inhibitor PAK1 

Olaparib PARP inhibitor PARP1, PARP2 

P5091 
Ubiquitin specific protease 
inhibitor 

USP7 

Palbociclib CDK inhibitor CDK4, CDK6 

PD-198306 
MAP kinase inhibitor, MEK 
inhibitor 

MAP2K1, MAP2K2 

PF-477736 CHK inhibitor CHEK1, CHEK2 

PFI-1 Bromodomain inhibitor BRD4 

Pitavastatin HMGCR inhibitor HMGCR 
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PNU-74654 Beta-catenin inhibitor CTNNB1, TCF4 

Pomalidomide 
Angiogenesis inhibitor, tumor 
necrosis factor production 
inhibitor 

CRBN, PTGS2, TNF 

Ponatinib 
Bcr-Abl kinase inhibitor, FLT3 
inhibitor, PDGFR tyrosine kinase 
receptor inhibitor 

ABL1, BCR, FGFR1, FGFR2, 
FGFR3, FGFR4, FLT3, KDR, KIT, 
LCK, LYN, PDGFRA, RET, SRC, 
TEK 

PS178990 Androgen receptor modulator AR 

Purmorphamine Smoothened receptor agonist SMO 

Quazinone Phosphodiesterase inhibitor PDE3A, PDE3B 

RGFP966 HDAC inhibitor HDAC3 

Rheochrysidin Protein tyrosine kinase inhibitor PTPN1 

Romidepsin HDAC inhibitor 
HDAC1, HDAC2, HDAC3, 
HDAC4, HDAC5, HDAC6, 
HDAC7, HDAC8, HDAC9 

Ruxolitinib phosphate JAK inhibitor JAK1, JAK2, JAK3, TYK2 

SAG Smoothened receptor agonist SMO, TRPC6 

SCH-900776 CHK inhibitor CDK2, CHEK1 

Selumetinib MEK inhibitor MAP2K1 

SGC-707 
Protein arginine N-
methyltransferase inhibitor 

PRMT3 

SGX523 
Hepatocyte growth factor 
receptor inhibitor 

MET 

SHP099 Protein tyrosine kinase inhibitor PTPN11 

Sirolimus mTOR inhibitor FGF2, FKBP1A, MTOR 

Skepinone-l p38 MAPK inhibitor MAPK14 

SU-11274 
Hepatocyte growth factor 
receptor inhibitor, tyrosine 
kinase inhibitor 

MET 

SU3327 JNK inhibitor MAPK8 

T-0901317 LXR agonist 
NCOA1, NCOA2, NR1H2, 
NR1H3, NR1I2, RXRB 

TC-S-7004 DYRK inhibitor DYRK1A, DYRK1B 

THZ1 CDK inhibitor CDK7 

UNC0642 
Histone lysine 
methyltransferase inhibitor 

EHMT1, EHMT2 

Valrubicin 
DNA inhibitor, topoisomerase 
inhibitor 

TOP2A 

Veliparib PARP inhibitor PARP1, PARP2 

VX-475 p38 MAPK inhibitor MAPK11, MAPK12, MAPK14 

WZ4003 AMPK inhibitor NUAK1, NUAK2 

† All compounds were provided by GSK 
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Table 2.4. List of inflammatory set compounds. 

Compound name† 

\N GSK2680029B GIT 27 PROTAC RIPK degrader-2 

\N GSK2941404A GSK 0660 RAC-MODIPAFANT 

A-485 GSK 2837808A Resiquimod 

ALLM GSK2580335 RP 52770 

AP-III-a4 (hydrochloride) GV109188 Ruxolitinib phosphate 

Apremilast (CC-10004) GW296115X S4 

ARN-3236 I-CBP 112 SAHA 

Astragalin Isoetharine mesylate SB219994 

AZD-5153 JNJ 27141491 Selinexor (KPT-330) 

AZD8055 KML 29 SH-4-54 

Bafetinib (INNO-406) L 748415 Spermidine trihydrochloride 

Batimastat LG 100754 Spermine tetrahydrochloride 

BMS 509744 Lonidamine ST 2825 

BMS-911543 LY294002 hydrochloride Staurosporine 

C188-9 M62812 T6167923 

Canertinib dihydrochloride MSDC-0602 TAK-242 

CGP 3466B maleate Neratinib (HKI-272) TCMDC-125545 

CGP 57380 Nilotinib Temsirolimus 

CHMFL-FLT3-122 NKH 477 TLR1 

Compound 41 OTAVA-BB 7119983925 TMI 1 

Corticosterone P005091 TPCA-1 

CP 690550 citrate Parthenolide Tulobuterol 

Dactolisib PD 166285 
Ulixertinib (BVD-523, 
VRT752271) 

EGCG PF 543 hydrochloride Vistusertib (AZD2014) 

Emixustat PF-06447475 VU 0155069 

ERBSTATIN Pifithrin-mu WYE-125132 

Febuxostat Ponesimod (ACT-128800) Z433927330 

FLLL32 
Prednisolone acetate 
(Omnipred) 

Z-Phe-CH2Cl 

Flupenthixol dihydrochloride Prostaglandin E2  

† All compounds were provided by GSK 

 

Table 2.5. List of different stimuli applied to iPSC-derived macrophages. Indicated are also 

treatment concentrations and supplier information. 

Stimulant Treatment concentration Supplier 

Interleukin-4 (IL-4) 20 ng/mL Thermo Fisher Scientific 

Interferon gamma (IFN-γ)* 20 ng/mL R&D systems 

Lipopolysaccharide (LPS)* 100 ng/mL Sigma-Aldrich 

* IFN-γ and LPS were also combined for cell treatment 
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2.3 Cytokine measurement 

2.3.1 Cytometric bead array on Mirrorball® 

The cell supernatant from the iPSC-derived macrophages containing secreted chemo- and 

cytokines was defrosted at RT and dilutions in PBS + 1% BSA prepared. 10 µL sample was placed 

in the wells of a black, µClear® bottom assay plate (#781091, Greiner). The BD™ Cytometric 

Bead Array (CBA) human IL-6 and TNFα flex sets (BD) were used. First, the included lyophilised 

standards were pooled and dissolved in a total volume of 1 mL (PBS + 1% BSA). For the 

calibration curve, at least ten 1:2 dilutions of the standard were prepared and transferred into 

the assay plate (10 µL/well). The bead mixture was prepared as a 1:175 dilution of the IL-6 and 

TNFα beads in PBS + 1% BSA buffer. After addition of 5 µL bead mixture to each well, the assay 

plate was shaken for 2h in the dark at RT. The antibody mixture was prepared as a 1:175 

dilution of the IL-6 and TNFα antibodies in PBS + 1% BSA buffer. After addition of 5 µL antibody 

mixture to each well, the assay plate was shaken for 2h in the dark at RT. The assay plate was 

centrifuged for 15 sec at 100 xg before data acquisition with the mirrorball® fluorescence 

cytometer (SPT Labtech) using the Cellista software. The following general settings were used: 

threshold type shot, feature length 1 - 100 µM, meniscus smoothing length 301 µM, object 

identification 0.5 µM (for x and y separation), and 5 µM minimum object depth. The 488 nm 

and 640 nm laser were enabled, and both operated at 6 mW. Three channels were enabled 

(FL-3: 565 - 605 nm, 400 V; FL-4: 667 - 685 nm, 450 V; FL-5: 717 - 800 nm, 680 V) and their 

sensitivity set to two. The FL-4 channel was selected as trigger. The IL-6 population was defined 

by FL-4 peak intensity 1376.119 - 5426.866, FL-5 peak intensity 5079.505 - 10275.62 and FL-4 

perimeter range 40 - 150. The TNFα population was defined by FL-4 peak intensity 7317.054 - 

12317.05, FL-5 peak intensity 3695.97 - 8195.971 and FL-4 perimeter range 40 - 150. The 

cytokine concentration in the samples was derived from the standard calibration curve fits 

(linear regression), taking prior sample dilutions into account. 

 

2.3.2 Multiplexed panels on Luminex® 

The cell supernatant from the iPSC-derived macrophages containing secreted chemo- and 

cytokines was thawed over night at 4°C and diluted in PBS. The cytokine 10-plex human panel 

kit (GM-CSF, IFN-γ, IL-1β, IL-2, IL-4, IL-5, IL-6, IL-8, IL-10, TNF-α) and the ProcartaPlex™ human 

cytokine & chemokine convenience panel 1A 34plex kit (CCL11, GM-CSF, CXCL1, IFN-α, IFN-γ, 

IL-1α, IL-1β, IL-1RA, IL-2, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12p70, IL-13, IL-15, IL-17A, IL-
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18, IL-21, IL-22, IL-23, IL-27, IL-31, CXCL10, CCL2, CCL3, CCL4, CCL5, SDF-1α, TNF-α, TNF-β) 

(both Thermo Fisher Scientific) were used. Bead activation was conducted by bead addition to 

the Luminex plate (50 µL/well), 2 min plate incubation on magnet, liquid removal on magnet, 

two times wash with 150 µL 1X wash buffer. The standards were prepared by adding 50 µL 

RPMI medium to the standard tube, 10 min incubation on ice and preparation of seven 1:4 

dilutions. The standards and samples were added to the assay plate containing the activated 

beads at 50 µL per well. Only for the 10-plex kit, another 50 µL incubation buffer and 50 µL 

assay diluent were added to the plate. The assay plate was shaken for 30 min at 450 rpm, RT 

and incubated over night at 4°C. The plate was shaken again at RT for 15 min before being 

washed twice with 1X wash buffer. The antibody was made up according to the manufacturer’s 

instructions and added to the assay plate. The assay plate was shaken for 1h at 450 rpm, RT 

and then washed. The Streptavidin-PE was added to the assay plate (25 µL/well). The plate 

was shaken for 30 min at 450 rpm, RT and then washed. Finally, wash (10-plex) or read buffer 

(34-plex) was added to the plate before it was measured by the Luminex FLEXMAP 3D® (R&D 

systems). A protocol with MagPlex™ bead type and 7,500 – 15,000 bead region was used for 

acquisition of the calibration-validation and sample plate in the Bioplex software. The cytokine 

concentration in the samples was derived from the calibration curves (4/5PL curve fit in 

Bioplex software), taking prior sample dilutions into account. For the IL-6 and IL-8 cytokines, 

the intensity values for the high concentration standards were extrapolated from the rest of 

the standard curve and a new 4/5PL curve fit performed in GraphPad Prism for cytokine 

concentration calculations. A standard curve was placed on each assay plate for larger batches. 

Positive and negative controls were used for batch effect corrections. 

 

2.4 RapidFire MS setup for the ERAP1 biochemical assay 

The RapidFire MS system that was used to acquire ERAP1 biochemical assay samples was a 

Rapidfire365 autosampler (Agilent Technologies) coupled to an API4000 triple quadrupole 

mass spectrometer (SCIEX) operated with a spray voltage of 5000V and a source temperature 

of 600°C. Samples were aspirated for 250 ms under vacuum. Solvent A (0.1% (v/v) FA) was 

used at a flowrate of 1.5 mL/min for 2000 ms to load samples onto the C18 cartridge. Sample 

elution was conducted for 2500 ms with solvent B (80% LC-MS grade MeCN, 0.1% (v/v) FA) at 

a flow rate of 1 mL/min. Re-equilibration of the cartridge followed for 500 ms with solvent A 
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at a flow rate of 1.5 mL/min. This resulted in a total cycle time of ~7 seconds per sample. The 

following transitions (Q1/Q3) were monitored for each analyte in positive electrospray 

multiple reaction monitoring mode with a dwell time of 50 ms: YTAFTIPSI 1012.6/697.4; 

TAFTIPSI 849.4/534.3; and Ac-YTAFTIPSI 1054.6/739.5. The RapidFire peak integration 

software (version 4.0.1) was utilised for peak integration and processing. The substrate-

product ratio was calculated and utilised for subsequent data analysis in a GSK proprietary 

software. 

 

2.5 MALDI-TOF MS 

2.5.1 MALDI-TOF MS setup for the ERAP1 biochemical assay 

Two different workflows were used for MALDI-TOF MS target plate spotting and acquisition of 

the ERAP1 biochemical assay samples. At Newcastle University, equal sample and matrix (5.6 

mg/ml CHCA in 85% MeCN, 0.1% TFA, 1 mM NH4H2PO4) volumes were mixed (3x 1000 nL) and 

then 0.5 µL deposited onto a stainless steel MTP384 MALDI-TOF MS target plate (Bruker 

Daltonics) with the Mosquito liquid handling robot (SPT Labtech). The plates were air dried 

and manually loaded into the rapifleX PharmaPulse MALDI TOF/TOF mass spectrometer 

(Bruker Daltonics). In contrast, at GSK, this process was fully automated. A robotic arm 

(Analytic Jena) moved ERAP1 assay and MALDI-TOF MS target plates from their storage 

locations onto a rotating disk where all pipetting steps were executed with a pipetting robot 

that was equipped with a 384 format pipetting head (CyBio Well vario, Analytic Jena). Equal 

volumes of the assay sample and matrix (6.25 mg/mL CHCA dissolved in 70% MeCN, 0.1% TFA) 

were mixed and 1 µL deposited onto HTS MALDI-TOF MS target plates (Bruker Daltonics). The 

plates were loaded into a heated vacuum dryer and then moved into the mass spectrometer. 

In parallel to the plate acquisition, the next target plate was prepared.  

The following MS instrument settings were utilised at Newcastle University for data acquisition 

in flexControl (version 4.0): positive ion reflector mode, m/z 920 – 1220, mass suppression up 

to m/z 635, 5000 shots at a 10 kHz frequency per spot, random walk pattern (complete 

sample), M5 Thin-layer laser, 50 µm x 50 µm scan range, 2000 µm spot diameter, and 200 shots 

per raster position. At GSK, these parameters were adjusted to 10000 shots at a 5 kHz 

frequency per spot, custom M5 flat laser, 50 shots per raster position, and mass suppression 

up to m/z 736. For each experiment, the laser power was individually adjusted to ensure an 
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overall spectrum intensity in the range of ~105 arbitrary units (a.u.) and the method was 

calibrated with peptide calibration standard II (Bruker Daltonics). Data acquisition and 

processing was performed with the MALDI PharmaPulse software (version 2.2). A centroid 

peak detection algorithm was utilised for basic assay peptide detection and the SNAP2 

algorithm was used for the non-basic peptides. A signal to noise threshold of three was used 

for initial exploratory experiments and later increased to five to improve signal reproducibility. 

The report.csv file from the MALDI PharmaPulse software contained the following information: 

m/z and summed area of all adducts for the product, substrate and internal standard peptide. 

The further data analysis is outlined in chapter 2.7.1. 

 

2.5.2 MALDI-TOF MS setup for the iPSC-derived macrophage assay 

Table 2.6. List of MALDI-TOF matrices used during the workflow development. Indicated are 

also solvent and supplier information. 

Matrix Matrix solvent Supplier 

1,5-diaminonaphthalene 
(DAN) 

70% MeCN, 0.1% TFA (or 0.1% FA) Sigma-Aldrich 

2,5-dihydroxyacetophenone 
(DHAP) 

750 µL ethanol + 250 µL 12mg/mL 
diammonium hydrogen citrate + 0.1% FA 

Bruker Daltonics 

2,5-dihydroxybenzoic acid 
(DHB) 

70% MeCN, 0.1% TFA (or 0.1% FA) Bruker Daltonics 

9-aminoacridine (9-AA) 50% EtOH Sigma-Aldrich 

𝛼-cyano-4-hydroxycinnamic 
acid (CHCA) 

70% MeCN, 0.1% TFA (or 0.1% FA) Sigma-Aldrich 

Sinapinic acid (SA) 70% MeCN, 0.1% TFA (or 0.1% FA) Bruker Daltonics 

 

The HTS compatible MALDI-TOF MS workflow that was used to phenotypically profile 

compound treated iPSC-derived macrophages was as follows: First, the cells previously frozen 

in 96 well cell culture plates were lysed by thawing for 20 min at RT, followed by 10 min shaking 

at RT, 1000 rpm in 6 µL/well extraction buffer (100 mM Tris-HCl, 0.1% FA). The cell suspension 

was transferred into a small volume, high base 384 well plate which was shaken again for 3 

min, 400 rpm. Three 1000 nL mix cycles were executed in the cell sample before 1 µL was 

spotted onto a plain steel HTS MALDI target plate with the Mosquito pipetting robot (SPT 

LabTech). The plate was dried at ambient temperature before 900 nL matrix (22.22 mg/mL 

DHB in 70% MeCN, 0.1% FA, 30 min sonicated) was deposited onto the target plate with the 

Mosquito. The plate was dried at ambient temperature and then loaded into the rapifleX 
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PharmaPulse MALDI TOF/TOF mass spectrometer. The following AutoExecute method settings 

were used for data acquisition in flexControl (version 4.0): positive ion reflector mode, m/z 

400 – 1000, mass suppression up to m/z 320, 10000 shots at a 10 kHz frequency per spot, 

random walk pattern (complete sample), M5 custom laser, 50 µm x 50 µm scan range, 2000 

µm spot diameter, and 500 shots per raster position. For each experiment, the laser power 

was individually adjusted to ensure an overall spectrum intensity between high 105 arbitrary 

units (a.u.) to low 106 a.u. and the instrument was calibrated with peptide calibration standard 

II (Bruker Daltonics). The data processing and peak list extraction is described in section 2.7.2. 

 

2.6 Proteomics of the iPSC-derived macrophages 

2.6.1 Proteomics sample preparation 

Table 2.7. List of buffers for the proteomics sample preparation. Indicated are also the final 

buffer composition and buffer components. 

Buffer name Final buffer composition Buffer components 

2x S-Trap lysis buffer 
10% SDS, 100 mM TEAB pH 
8.5 

SDS (20%), HPLC grade 
water, 1M TEAB  

S-Trap binding buffer 
100 mM TEAB pH 7.55 in 
90% MeOH 

Phosphoric acid (to pH), 
HPLC grade water, 1M TEAB  

S-Trap digestion buffer 50 mM TEAB pH 8.5 HPLC grade water, 1M TEAB  

Acidification buffer 12% phosphoric acid 
HPLC grade water, 
phosphoric acid (85%) 

Elution buffer 1 0.1% FA 
HPLC grade water, FA (98 - 
100%) 

Elution buffer 2 50% MeCN, 0.1% FA 
HPLC grade water, MeCN 
HPLC grade, FA (98 - 100%) 

 

 

For the proteomics sample preparation, cell culture plates containing the iPSC-derived 

macrophages were defrosted at RT for 20 min. 1x S-Trap lysis buffer was supplemented with 

Benzonase® 5000:1 and added onto the wells (6 well plate = 200 µL, 96 well plate = 50 µL). The 

solution was transferred into fresh reaction tubes or plates, mixed for 15 min at RT, 800 rpm 

(ThermoMixer C, Eppendorf) and then centrifuged at 1500 xg, RT for 2 min. 

The protein concentration in the lysate was quantified with the Pierce™ BCA protein assay kit 

(Thermo Fisher Scientific); 6 well plates only. 1x S-Trap binding buffer, supplemented with 

Benzonase®, was used to prepare the BSA standard curve according to the manufacturer’s 
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instructions and to dilute the samples. The standards and samples were placed in an assay 

plate (20 µL/sample) and 200 µL of a 50:1 mixture of the Pierce™ BCA solutions A&B added. 

The plate was incubated at 37°C for 30 min and then the absorbance at 562 nm measured with 

the SpectraMax iD3 microplate reader (Molecular Devices). The protein concentration in the 

samples was calculated from the BSA calibration curve (linear regression), taking prior sample 

dilutions into account. 

Sample preparation was continued with 10 µg protein from 6 well plates or the full lysate from 

the 96 well plates. TCEP was added (10 mM final concentration) and incubated for 20 min at 

60°C. IAA was added (10 mM final concentration) and incubated in the dark for 30 min at RT. 

Acidification buffer was added to a final concentration of 1.2%. The S-Trap binding buffer 

volume added was determined by the sample volume (7x sample volume = S-Trap binding 

buffer volume). The samples were loaded onto a 96-well S-Trap™ plate (ProtiFi) and 

centrifuged for 2 min at 1500 xg. The columns were washed three times with 200 µL S-Trap 

binding buffer per well, intercepted by 2 min centrifugations at 1500 xg. The digestion buffer 

was supplemented with Trypsin (1:10 ratio µg Trypsin to µg protein on column). A minimum 

of 1 µg Trypsin was used even when less than 10 µg protein were bound to the column. A total 

of 125 µL trypsin digestion buffer was placed in each well. The plate was loosely covered and 

incubated for 2 h at 47°C. The peptides were eluted from the column by sequential addition 

of 80 µL 50 mM TEAB, 80 µL elution buffer 1 and 80 µL elution buffer 2, with 2 min 

centrifugations at 1500 xg between each elution step. The samples were frozen and dried in a 

vacuum concentrator (Savant SPD1010 SpeedVac, Thermo Fisher Scientific). 

 

2.6.2 Proteomics sample acquisition with the timsTOF HT 

The lysed and digested iPSC-derived macrophage samples from a time course and an 

inflammation compound set treatment were acquired with a timsTOF HT MS (Bruker 

Daltonics) that was coupled to an Evosep One LC system (Evosep). The LC system specific C18 

Evosep tips were conditioned and equilibrated with the following steps: buffer B (100% MeCN, 

0.1% FA) wash, isopropanol incubation (5 min), buffer A (0.1% FA) wash. The dried down 

peptide samples were resuspended in buffer A and centrifuged for 1 h at 4000 xg. The 

equivalent of 0.5 - 2 µg protein sample load was placed onto the tip (standard load 0.5 µg). 

The tips were centrifuged, washed once with buffer A and then stored covered with buffer A. 
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The Evosep system was operated with an 8 cm x 100 µm reverse-phase column packed with 3 

µM C18 beads (Evosep, EV1094) at 23°C and the pre-defined 60 SPD (sample per day) protocol 

(21 min linear gradient from 0 to 35 % buffer B, 1 µL/min flow rate).  

The timsTOF HT was equipped with a 20 µm nano-electrospray ion source (CaptiveSpray, 

Bruker Daltonics) which was operated at 1600 V capillary voltage, 3.0 L/min dry gas and 50°C 

dry temperature. The DDA MS1 acquisition was performed with mass and IM ranges of m/z 

100 - 1700 and 0.6 - 1.45 1/K0 respectively. MS2 was performed using 10 parallel accumulation 

serial fragmentation (PASEF) MS/MS scans, target intensity and threshold of 20000 and 2500 

respectively, active exclusion for 0.4 min (with precursor reconsideration for MS2 if 

current/previous intensity was ≥4), ~1.17 sec total cycle time and 0.6 - 1.6 1/K0 IM. For all dia-

PASEF methods, the TIMS ramp and accumulation times were 100 ms, total cycle time ~1.8 

sec, and collision energy (applied in linear fashion) between 20 - 59 eV, auto-calibration 

enabled. The IM and mass ranges of the iPSC time course 16 variable width IM - m/z window 

dia-PASEF method with two quadrupole positions per window were 0.6 - 1.4 1/K0 and m/z 300 

- 1200 respectively. The pooled sample from all time course conditions was also acquired with 

5 different dia-PASEF methods optimised by Andrew Frey (Trost laboratory) that each covered 

a subset mass and IM range between IM 0.6 - 1.4 and m/z 350 - 1250 with overlaps (Range 1: 

m/z = 350 - 550, IM = 0.6 - 0.95; range2: m/z = 450 - 600, IM = 0.7 - 1; range 3: m/z = 550 - 750, 

IM = 0.75 - 1.1; range 4: m/z = 650 - 950, IM = 0.8 - 1.25; range 5: m/z = 850 - 1250, IM = 0.9 - 

1.4) to assemble a gas fractionated spectral library.315 With exception of IM and m/z, PASEF 

parameters of this method, including number of windows, were the same as previously 

described. For the acquisition of the inflammatory compound set treatment samples, a custom 

dia-PASEF method was generated with the py_diAID software from a 500 ng pool sample that 

was subjected to dda-PASEF.288 The IM and mass ranges of the resulting 16 variable width IM 

- m/z window pyDIA-PASEF method with two quadrupole positions per window were 0.6 - 1.4 

1/K0 and m/z 300 – 1400, respectively (Table 2.8). 

Table 2.8. Customised dia-PASEF method for the acquisition of iPSC-derived macrophages.  

#MS 
Type 

Cycle 
Id 

Start IM 
[1/K0] 

End IM 
[1/K0] 

Start Mass 
[m/z] 

End Mass 
[m/z] 

CE 
[eV] 

MS1 0 - - - - - 

PASEF 1 0.89 1.4 717.86 741.38 - 

PASEF 1 0.6 0.89 300.17 387.53 - 

PASEF 2 0.91 1.4 741.38 764.9 - 
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PASEF 2 0.6 0.91 387.53 422.58 - 

PASEF 3 0.92 1.4 764.9 787.78 - 

PASEF 3 0.6 0.92 422.58 448.24 - 

PASEF 4 0.94 1.4 787.78 812.09 - 

PASEF 4 0.6 0.94 448.24 472.52 - 

PASEF 5 0.95 1.4 812.09 836.92 - 

PASEF 5 0.6 0.95 472.52 494.76 - 

PASEF 6 0.96 1.4 836.92 862.47 - 

PASEF 6 0.6 0.96 494.76 515.95 - 

PASEF 7 0.97 1.4 862.47 888.92 - 

PASEF 7 0.6 0.97 515.95 535.28 - 

PASEF 8 0.99 1.4 888.92 918.9 - 

PASEF 8 0.6 0.99 535.28 554.3 - 

PASEF 9 1 1.4 918.9 950.94 - 

PASEF 9 0.6 1 554.3 572.64 - 

PASEF 10 1.01 1.4 950.94 982.26 - 

PASEF 10 0.6 1.01 572.64 592.35 - 

PASEF 11 1.03 1.4 982.26 1018.53 - 

PASEF 11 0.6 1.03 592.35 611.32 - 

PASEF 12 1.04 1.4 1018.53 1056.51 - 

PASEF 12 0.6 1.04 611.32 631.55 - 

PASEF 13 1.06 1.4 1056.51 1101.58 - 

PASEF 13 0.6 1.06 631.55 651.67 - 

PASEF 14 1.08 1.4 1101.58 1154.57 - 

PASEF 14 0.6 1.08 651.67 673.36 - 

PASEF 15 1.11 1.4 1154.57 1232.11 - 

PASEF 15 0.6 1.11 673.36 694.88 - 

PASEF 16 1.17 1.4 1232.11 1399.68 - 

PASEF 16 0.6 1.17 694.88 717.86 - 

 

2.6.3 Offline high-pH liquid chromatography fractionation of proteomics samples 

A pooled peptide sample composed of equal amounts from all macrophages treated with the 

inflammatory compound set was solubilised in 20 mM ammonium formate (pH 8.0) and 

separated on an UltiMate 3000 RSLCnano System (Thermo Fisher Scientific). The setup was 

operated with a Gemini C18 column (250 × 3 mm, 3 μm C18 110 Å pore size; Phenomenex) 

and a 72 min gradient from 1.0% to 37.5% MeCN, final wash 5 min 90% MeCN (flow rate 0.25 

ml/min) to generate 72 fractions. Those fractions were concatenated into 24 fractions so that 

the first sample was pooled with the 25th and the 49th sample up to the 24th sample that was 

pooled with the 48th and 72nd sample before all fractions were dried in a vacuum concentrator 

(Savant SPD1010 SpeedVac, Thermo Fisher Scientific) and resolubilised in 0.1% (v/v) TFA. 
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The samples (volume equivalent to ~125 ng protein) were acquired with a timsTOF HT (Bruker 

Daltonics) that was coupled to a nanoElute II HPLC system (Bruker Daltonics). The HPLC system 

was operated with a Bruker10 C18 column, 300 nL/min flowrate and a 60 min linear gradient 

(2 - 35% buffer B), followed by a 5 min elution at 95% buffer B. The timsTOF HT MS was 

equipped with the 20 µm CaptiveSpray source, as well as a pre-column 5 mM PepMap™ C18 

trap (Thermo Fisher Scientific) and operated in dda-PASEF mode as described in section 2.6.2.  

 

2.7 Data analysis and software 

2.7.1 MALDI-TOF MS-based ERAP1 assay data analysis 

The summed area of the protonated [M+H]+ and sodiated [M+Na]+adduct peaks which were 

measured by MALDI-TOF MS for the product and internal standard peptides of the ERAP1 

assay were used in the following. The product signal was normalised to the internal standard 

according to equation 1 to obtain the normalised product area. 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑟𝑒𝑎 =  
∑ 𝐴𝑟𝑒𝑎 𝑎𝑑𝑑𝑢𝑐𝑡𝑠𝑝𝑟𝑜𝑑𝑢𝑐𝑡

∑ 𝐴𝑟𝑒𝑎 𝑎𝑑𝑑𝑢𝑐𝑡𝑠𝑖𝑛𝑡𝑒𝑟𝑛𝑎𝑙 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑  
                                           (1) 

The absolute product concentration was then calculated from this normalised product area 

(equation 2). The utilised scaling factor was obtained from a calibration curve where the 

normalised product area was plotted against the known product concentration (Figure 3.3, 

linear regression fit). 

[𝑃𝑟𝑜𝑑𝑢𝑐𝑡] = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑠𝑒𝑑 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 𝑎𝑟𝑒𝑎 1.27                                                                           (2)⁄  

The normalised product area of the positive and negative controls was also utilised to 

determine the % enzyme activity and the Z’ of the assay based on a plate-by-plate analysis. 

The enzyme activity for each well was calculated according to equation 3: 

% 𝑒𝑛𝑧𝑦𝑚𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑠𝑎𝑚𝑝𝑙𝑒𝑛𝑜𝑟𝑚 − 𝑚𝑒𝑎𝑛 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑛𝑜𝑟𝑚

𝑚𝑒𝑎𝑛 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑛𝑜𝑟𝑚 − mean 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑛𝑜𝑟𝑚
× 100 (3) 

The standard deviation of positive (σ𝑝) and negative (σ𝑛) controls, as well as their mean values 

(𝜇𝑝 , 𝜇𝑛) were utilised to determine assay quality; Z’ (equation 4). 

Z′ = 1 −  
3 ∗ σ𝑝 +  3 ∗ σ𝑛

|𝜇𝑝 −  𝜇𝑛|
                                                                                                                    (4) 
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GraphPad Prism (version 5.0.4 and 9.0.0) and a GSK in house software were utilised for all 

subsequent statistical analysis, including linear regression, column statistics, correlation 

analysis, Michaelis-Menten curve, robust cut-off value determination and four-parameter 

logistic curve fits. 

 

2.7.2 MALDI-TOF MS-based iPSC-derived macrophages assay data analysis 

 
Figure 2.1. Schematic workflow of MALDI-TOF MS spectrum processing for cellular screens. 
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The original spectra were loaded into R where QC check, square root transformation, 
smoothing, baseline correction, normalisation, signal to noise estimation, warping, peak 
picking, peak binning, peak filtering and finally data visualisation and statistical testing were 
carried out. 

 

The raw data obtained from the MALDI-TOF MS acquisition of the iPSC-derived macrophages 

were converted into the open .mzxml file format with the CompassXport software (Bruker 

Daltonics). The peak list extraction from the MALDI-TOF MS data was performed in R (R version 

4.3.0, RStudio version 2021.09.2) with a customised workflow that was based on the 

MALDIquant package.316 The following R packages were required: MALDIquant, 

readMzXmlData, MALDIquantForeign, readBrukerFlexData, dplyr, MALDIrppa, rmarkdown, 

lmtest, usethis, devtools, tinytex, broom, tidyverse, RColorBrewer, corrplot, pvclust, sda, 

crossval, ggplot2, plyr, ggrepel, stats, ellipse, ggforce, plotly, rgl, IMIFA, umap, plot3D. The 

customised workflow will be briefly outlined and is depicted in Figure 2.1. The data was 

imported, and different quality controls (empty check, irregular check and m/z check) 

conducted. The spectrum intensity was square root transformed, peak smoothing conducted 

(default settings, threshold = 1), baseline corrected (TopHat, half window size = 200) and 

normalised (TIC method). Spectra were aligned with halfWindowSize = 200, noiseMethod = 

MAD, signal-to-noise ratio = 7, tolerance = 0.005, warpingMethod = lowess. Finally, the peaks 

were detected and binned (strict, tolerance = 0.001). Batch correction was performed with the 

limma package. Additional filtering was applied to the generated output file based on the 

positive and negative control columns. Mass features that showed a CV > 75% or a log2 fold 

change between 0.2 and -0.2 were excluded from further analysis. The filtered data was 

utilised in R to perform principal component analysis (PCA) and uniform manifold 

approximation and projection (UMAP). Statistical testing was carried out in GraphPad Prism 

(version 5.0.4 and 9.0.0) and heatmaps were generated in Perseus (version 2.0.3.1), as well as 

R. 

 

2.7.3 Proteomics data analysis 

Two different types of timsTOF MS raw data files were obtained from the iPSC-derived 

macrophages: DDA and DIA data. Both data types were matched against the SwissProt Homo 
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sapiens (UP000005640, with reviewed (DIA search) and unreviewed isoforms (DDA search) 

both downloaded in May 2023) and Hao Lab protein contaminants reference databases.317  

Protein identification and library construction from DDA data was performed using FragPipe 

(version 21.1) with MSFragger and Percolator for PSM, and EasyPQP for library construction.318 

Next to the default settings, the following parameters were used: mass tolerance for precursor 

and fragment ions 20 ppm, peptide length 7-50 residues, 1% FDR for peptide- and protein-

identification, trypsin specific digestion with 2 missed cleavages, fixed modification: IAA 

alkylation of cysteine, and variable modifications: oxidation of methionine, acetylation of 

protein N-termini. The resulting library.tsv file produced by easyPQP was further utilised in 

py_diAID to generate a custom-made dia-PASEF method as outlined in section 2.6.2 or for the 

search of DIA data in DIA-NN. 

DIA data was searched in DIA-NN software (version 1.8)295 with the following settings: protease 

trypsin, missed cleavages 1, maximum number variable modifications 2, modifications (N-term 

M excision, carbamidomethylation, oxidation, N-term acetylation), peptide length 7 - 30, 

precursor charge 2 - 4, mass and MS1 accuracy 15, MBR, single-pass mode, QuantUMS. The 

mass range and library-free/spectral library settings were individually selected for each 

experiment.  

The protein and peptide group files that were obtained from the DIA-NN software were 

imported into a custom R script (R version 4.3.0, RStudio version 1.4.1717) to merge, filter 

(remove contaminants, unique peptides per protein ≥2), transform (log2), normalise and batch 

correct (limma package) the data. General QC plots, including boxplots, density plots and PCA 

plots, as well as heatmaps and volcano plots were generated with R. In addition, a GSK 

proprietary R script was used to perform scalar projection analysis. The processed protein lists 

were imported into Perseus (version 2.0.3.1) to conduct statistical testing, including t-tests 

(Benjamin-Hochberg correction) and hierarchical clustering. The protein lists were also 

imported into STRING (https://string-db.org/, version 12.0) and ShinyGO 

(http://bioinformatics.sdstate.edu/go/, version 0.77) to perform network and GO Term 

analysis respectively. STRING network analysis was performed with medium confidence score 

(0.4) and experiments and databases as active interaction resources.  
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2.7.4 Data visualisation 

FlexAnalysis (version 4.0) was utilised for mass spectrum visualisation. Affinity designer 

(version 1.7.2.471), BioRender, ChemDraw 20.0, GraphPad Prism, R and Perseus were used for 

illustration.  
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Chapter 3. Application of MALDI-TOF MS high-throughput biochemical assays: 
A case study of ERAP1 

 

Chemiluminescence and fluorescence label-based enzymatic assays are traditionally used 

formats in drug discovery high-throughput screening (HTS) as they are fast, sensitive and 

robust. However, they are susceptible to artefacts and labelling might perturb the observed 

biology. Therefore, label-free MS methods are increasingly used alongside them.319 Specifically 

MALDI-TOF MS is ideally positioned for the use in HTS due to the analysis speed, which can 

facilitate large compound screens.125,320  

This chapter is based on my first author publication “A high-throughput MALDI-TOF MS 

biochemical screen for small molecule inhibitors of the antigen aminopeptidase ERAP1” 

published in SLAS Discovery in 2023.321 The RapidFire MS, affinity selection MS and Xevo-TOF 

MS data generation was carried out by employees of GSK (Amy Burton, Chloe Tayler, James 

Rowedder). Herein, I present the development of a biochemical MALDI-TOF MS-based drug 

discovery assay for a high-profile immunology target, ERAP1, and set it in the context of 

existing workflows to show the value of this method for early drug discovery screens. The M1 

aminopeptidase ERAP1 trims precursor peptides in the endoplasmic reticulum to a mature 

length for display on antigen presenting molecules.171,172,174,312 These antigens are detected by 

T cells and can trigger an immune response. Hence, ERAP1 is an important drug target in 

immuno-oncology and auto-immune diseases. However, the development of ERAP1-targeting 

compounds has been challenging due to the enzyme’s structural homology with other M1 

aminopeptidase family members. Building on a previously developed RapidFire MS assay by 

Liddle et al. 2020, I adapted this workflow to develop an automated MALDI-TOF MS screening 

method and benchmark its performance against the established assay.55 

 

3.1 Assay buffer and peptide alterations to ensure compatibility with MALDI-TOF MS  

Initially, I had to assess compatibility of the RapidFire MS assay with MALDI-TOF MS. Before 

outlining buffer and peptide optimisation steps, I will briefly summarise the original RapidFire 

MS assay, followed by a short description of a standard MALDI-TOF MS workflow.  

In the original assay, developed by Liddle et al. 2020, N-terminal ERAP1 trimming of the 9mer 

peptide with the sequence YTAFTIPSI, a 9-amino acid antigenic epitope from Gag-Pol 
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polyprotein from human immunodeficiency virus 1, into the peptide 8mer TAFTIPSI was 

observed.55 First, compounds were pre-incubated with the ERAP1 enzyme for 30 min. The 

reaction was started by addition of the substrate and stopped after 60 min reaction time by 

addition of an acidic quench solution. The quench solution contained an internal standard, the 

N-terminally acetylated version of the substrate (Ac-YTAFTIPSI), which cannot be cleaved by 

ERAP1. The total assay volume was 50 µL. The RapidFire autosampler, that was used for sample 

purification and enrichment, was coupled to a triple quad MS instrument. The substrate and 

product intensities were measured by targeted MS to derive the product concentration and 

the internal standard was monitored for quality control purposes.   

In the MALDI-TOF MS workflow, which is depicted in Figure 3.1, the enzymatic reaction is 

performed under the same conditions in an assay volume of 15 µL. Initially, I utilised the same 

buffer components, and peptides but then optimised these components which is described in 

chapters 3.1.1 and 3.1.2. After addition of the quench solution, samples for MALDI-TOF MS 

analysis were mixed with an organic matrix and spotted onto a MALDI-TOF MS target plate. In 

the MALDI ion source, the matrix facilitates analyte desorption and ionisation, before the ions 

are separated according to their m/z ratio in the TOF mass analyser. The substrate and product 

intensities were measured and normalised against the internal standard before they are 

further analysed.  



54 
 

 
Figure 3.1. Optimised MALDI-TOF MS workflow for ERAP1 screening.  
The compound is incubated with the enzyme (ERAP1) and the enzymatic reaction started by 
addition of the substrate (YTAFRIRSI). After a set time, the reaction is quenched using an acidic 
solution that contains the internal standard (heavy-labelled TAFRIRSI). The sample is mixed 
with an organic matrix (CHCA) to aid analyte desorption and ionisation in the MALDI ion 
source. Ions are separated in the TOF mass analyser according to their m/z ratio and then 
recorded by the detector. The signal intensities are normalised against the internal standard 
to infer product (TAFRIRSI) and/or substrate concentrations in the presence of compounds. 

 

3.1.1 HEPES reduction and Tween substitution in the assay buffer improved analyte detection 

by MALDI-TOF MS  

Firstly, the assay buffer composition was systematically evaluated. The initial enzymatic 

reaction was conducted in 50 mM HEPES (pH 7.0), 100 mM NaCl, 0.002% Tween-20 and 0.01% 

BSA. To ensure compatibility with MALDI-TOF MS, the buffer components were adjusted in 

accordance with the guidelines for MALDI-TOF MS compatible buffer components published 

by Chandler et al. 2017.126 
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First, the HEPES concentration was lowered from 50 mM to 5 mM to reduce ion suppression. 

Although, according to the guide, a high sodium chloride (NaCl) concentration (100 mM) is not 

expected to impact ionisation efficiency, spectra should be thoroughly examined for the 

presence of both, protonated and sodiated adduct peaks. Lastly, the detergent Tween-20 was 

assessed. Tween-20 shows multiple peaks in the mass spectrum which arise from the 

repeating polyethylene glycol units that make up Tween-20.322 Some of those peaks lay in the 

mass range of the assay analytes and hence might interfere with signal detection. In addition 

to signal interference, Chandler et al. 2017 reported ion suppression in the presence of this 

detergent.126 As a detergent was required in the buffer to facilitate liquid handling and improve 

protein solubility, Tween-20 was substituted with CHAPS which showed few background peaks 

and which was not reported to suppress ionisation efficiency.323 To summarise, the final 

optimised MALDI-TOF MS compatible assay buffer was composed of 5 mM HEPES (pH 7.0), 

100 mM NaCl, 0.01% BSA and 0.1 M CHAPS.  

Initial experiments were conducted with this optimised buffer but unfortunately, only sodium 

adducts of the assay peptides were identified (Figure 3.2) with a relatively poor limit of 

detection (LOD YTAFTIPSI: 8 fmol, LOD TAFTIPSI: 31 fmol). In a full screen with this buffer, the 

coefficient of variation (CV) was used to evaluate assay sensitivity while assay robustness was 

indicated by the Z’ which should be Z’ >0.5 for large HTS campaigns.146 I observed an increased 

data scatter (CV = 16%) and reduced assay quality (Z’ = 0.5) in comparison to the established 

RapidFire MS setup (CV = 3%, Z’ = 0.8). Hence, I investigated next if the assay peptides could 

be altered to improve LOD, assay sensitivity and robustness.  

 

3.1.2 Arginine introduction improved analyte detection by MALDI-TOF MS  

It is established that peptides containing arginine have increased ionisation efficiency due to 

their enhanced gas-phase basicity.324,325 Therefore, I decided to introduce arginine residues 

into the peptide sequence, resulting in the creation of the basic peptide pair YTAFRIRSI 

(substrate) and TAFRIRSI (product). As expected, the basic peptides showed enhanced 

ionisation compared to the non-basic peptides when tested at equimolar amounts (Figure 3.2). 

The protonated adduct was prevalent for the basic peptides, resulting in improved detection 

limits (YTAFRIRSI: 0.5 fmol, TAFRIRSI: 1 fmol).  
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Figure 3.2. Exemplary MALDI-TOF MS spectra displaying improved ionisation efficiency and 
adduct formation of basic peptides.  
(A) Product peptide peaks along their chemical structure (TAFTIPSI: non-basic, green; TAFRIRSI: 
basic, orange). (B) Substrate peptide peaks along their chemical structure (YTAFTIPSI: non-
basic, pink; YTAFRIRSI: basic, purple). 

 

Based on these findings, I decided to change the internal standard to the same arginine-

containing peptide wherein the C-terminal isoleucine of the product peptide was heavy 

labelled. No major differences in ionisation were observed between the product and internal 

standard when comparing the product concentration to the normalised product MALDI-TOF 

MS signal (Figure 3.3). This resulted in robust linearity of detection across five technical MALDI 

spot acquisitions and three experimental repeats indicated by an R2 of 0.97.  

 
Figure 3.3. Linearity of detection for the basic peptide product by MALDI-TOF MS.  
MALDI-TOF MS product signal area after normalisation with the internal standard plotted 
against the product concentration; linear regression, mean ± standard deviation, nanalytical = 3, 
ntechnical = 5. 
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To summarise, the newly introduced basic peptides were favourable for detection by MALDI-

TOF MS and hence they were utilised in combination with the optimised buffer composition 

(5 mM HEPES (pH 7.0), 100 mM NaCl, 0.01% BSA and 0.1 M CHAPS) for the MALDI-TOF MS-

based ERAP1 biochemical assay.  

 

3.2 Testing the optimised MALDI-TOF MS assay with known inhibitors of ERAP1 

With the introduction of the optimised assay buffer and peptides, general enzyme activity, as 

well as new peptide and enzyme concentrations had to be established for the biochemical 

assay. The enzymatic assay performance was subsequently validated with known ERAP1 

inhibitors. 

During the enzymatic reaction, successful N-terminal cleavage of the substrate peptide by 

ERAP1 was observed. I was able to establish two important reagent concentrations: (1) the 

substrate concentration at which target inhibitors and activators can be equally identified and 

(2) the enzyme concentration at which the reaction progression was linear. The required 

substrate concentration is reached when half of the maximum reaction velocity is achieved 

(KM). Analysing the substrate turnover across a wide range of concentrations, I identified the 

KM as 2 µM which was slightly lower than the non-basic substrate using the RapidFire MS setup 

(KM = 5 µM), indicating increased binding affinity of substrate and enzyme (Figure 3.4A).55 The 

selected enzyme concentration for linear reaction progression was 0.25 nM ERAP1 which was 

again lower than the non-basic peptide assay in the RapidFire MS setup (1 nM), enabling a 

lower tight-binding limit (Figure 3.4B).55 To summarise, the use of assay reagents, more 

specifically the substrate and enzyme concentrations were lowered in the MALDI-TOF MS 

assay compared to the RapidFire MS assay. It was hypothesised that the decrease in substrate 

and enzyme concentration was indicative of an increased binding affinity of substrate and 

enzyme.  

The performance of the optimised MALDI-TOF MS-based enzymatic assay was evaluated by 

determining pIC50 values for known ERAP1 inhibitors. I evaluated Leucinethiol (Leu-SH), which 

targets the zinc ion in the enzyme’s active site, and is commonly used in cellular assays326-328. 

Further, DG013A, an inhibitor whose side chains interact with the enzyme’s active pocket was 

probed188. The pIC50 values for both ERAP1 active site inhibitors were determined to be 7.7 for 

Leu-SH and 8.0 for DG013A (Figure 3.4C and D). DG013A exhibited a pIC50 in a range consistent 
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with reported literature data (pIC50 = 7.3 - 7.5) and the original RapidFire MS assay using non-

basic peptides (pIC50 = 7.0).188 These results suggested that minor variations in biological 

activity could arise from the differing enzymatic assay conditions used to determine the pIC50. 

Nevertheless, they emphasise the suitability of the MALDI-TOF MS assay for identifying ERAP1 

inhibitors. 

 
Figure 3.4. Substrate and enzyme concentration optimisation, as well as assay validation 
with the basic peptides by MALDI-TOF MS.  
(A) Enzymatic constant (KM = 2 μM) determined from the reaction velocity plot; Michaelis-
Menten curve, mean ± standard deviation, nanalytical = 4, ntechnical = 5. (B) Reaction progression 
with enzymatic titration and constant substrate concentration (2 μM); linear regression, mean 
± standard deviation, nanalytical = 1, ntechnical = 5. (C&D) Does-response-curves determined for 
two known ERAP1 inhibitors, Leu-SH (C) and DG013A (D); four-parameter logistical curve fit, 
mean ± standard deviation, nanalytical = 3, ntechnical = 4. 

 

3.3 The MALDI-TOF MS-based ERAP1 assay shows stability, robustness and reproducibility 

upon automation 

To conduct effective HTS, implementation of automation was required. I was able to utilise 

automation equipment at GSK, including a Multidrop Combi (Thermo Fisher Scientific) liquid 

dispenser for addition of reagents in the biochemical assay and access to a fully automated 

MALDI-TOF MS platform which was capable of MALDI-TOF MS target plate preparation, drying, 
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injection and measurement for 200 plates at a time. I had to establish assay stability and 

robustness in this setup, and needed to ensure that there was no reactivity towards common 

pan-assay interference compounds (PAINS). Those PAINS included compounds such as 

chelators, redox active, and highly conjugated compounds that can interfere with the enzyme 

activity.329 

Intra-plate and inter-day stability was demonstrated by measuring multiple DMSO plates 

which showed no inner-plate effects (Figure 3.5A), as well as low CV and high Z’ across multiple 

plates and days (CV = 2.67 - 3.04%, Z’ = 0.89 - 0.91) (Figure 3.5B). Consequently, assay stability 

was now comparable to the RapidFire MS assay (CV = 3, Z’ = 0.8). Enzyme activity was 

evaluated with a pilot set of ~1400 compounds containing diverse drug-like structures and 

PAINS. The assay was stable (Z’ = 0.7 – 0.9) and non-reactive to PAINS (Figure 3.5C). Further, 

two drug-like compounds just below the activity cut-off were identified as hits. Next, a set 

representative of a HTS collection as it contained ∼9,600 compounds with broad chemical 

diversity, was used to evaluate HTS capacities. The compounds were tested at a single 

concentration (10 µM). The resulting 58 plates showed an average Z’ of 0.8 and by selecting a 

75% enzyme activity cut-off, the noise was excluded while 0.9% of compounds were annotated 

as hits (Figure 3.5D). In HTS efforts, the goal is to identify ~1% hits because this presents a 

sensible number for follow-up experiments.125 Further, the screen was highly reproducible as 

indicated by the correlation between replicate screens (r = 0.90, R2 = 0.80, Figure 3.5E). 
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Figure 3.5. Robust MALDI-TOF MS assay performance in automated DMSO, pilot test and 
~9,600 compound set screening.  
(A&B) Results from the full plate DMSO stability screen (A) Exemplary plate activity plot with 
single negative control column, (B) Violin plots from well activity (excluding negative controls) 
across three plates; CV, Z’. (C) Enzyme activity after exposure to compounds from pilot test set 
(1403 compounds) with 75% and 125% hit cut-off (red dashed line); n = 1. (D) Enzyme activity 
after exposure to compounds from validation set (~9600 compounds) with 75% and 125% hit 
cut-off (red dashed line); n = 1. (E) Correlation of enzymatic activity from hit compounds of 
two replicate screens of the validation set; linear regression.  
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3.4 The MALDI-TOF MS-based ERAP1 assay showed comparable performance to the 

established RapidFire MS assay  

Following optimisation, validation and automation of the MALDI-TOF MS assay, I assessed its 

performance in the presence of experimentally confirmed ERAP1 binders identified via affinity 

selection mass spectrometry (ASMS). Moreover, I compared the assay’s performance with that 

of the established RapidFire MS assay.  

The single concentration screen of these binders using MALDI-TOF MS demonstrated a stable 

Z’ (0.8 - 0.9). Notably, a single activator was identified (Figure 3.6A). Most importantly, potent, 

and weak ERAP1 inhibitors were reproducibly identified (r = 0.96, R2 = 0.92, Figure 3.6B). The 

identification reproducibility of ERAP1 inhibitors by MALDI-TOF MS was comparable to that of 

the RapidFire MS setup (r = 0.98, R2 = 0.95, Figure 3.6C).  

 
Figure 3.6. Reproducibility of MALDI-TOF MS and RapidFire MS hit calling for 699 ERAP1 
binders. 
(A) Exemplary plate activity plot from the MALDI-TOF MS screen with positive and negative 
control columns to identify inhibitors and activators. (B) Correlation of enzymatic activity from 
hit compounds of two individual MALDI-TOF MS screens; linear regression. (C) Correlation of 
enzymatic activity from hit compounds of two individual RapidFire MS screens; linear 
regression. (D) Correlation of averaged pIC50 from dose-response screening of single screen hit 
compounds obtained by MALDI-TOF MS (n = 3) and RapidFire MS (n = 2); linear regression. 
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Dose-response curves were measured for 100 compound hits from the single concentration 

screen and pIC50 values determined to identify potential false-positives. Five compounds that 

were also hits in the single concentration screen could not be followed up as they were no 

longer available in the GSK compound library. As hypothesised previously, a slight shift in the 

pIC50 values between the different MS setups was observed due to differences in the enzymatic 

assays. To allow for better comparison, the enzymatic assay with the basic peptides should be 

analysed by RapidFire MS. However, in “substrate only wells”, detection of the substrate 9mer, 

product 8mer and a 7mer was observed (Supplementary Figure 1A and B). Ion chromatograms 

ruled out substrate contamination as the cause of these findings. In a XEVO-TOF MS 

experiment with “substrate only wells”, elution occurred at a single retention time, which was 

distinct from the product elution time measured in “product only wells” (Supplementary 

Figure 1C), suggesting in-source fragmentation in ESI MS.330 This observation was consistent 

with the mobile proton theory. This model describes that a mobile proton which is first 

localised on the most basic site of the molecule (N-terminus or basic peptides) can be 

transferred to less basic sites like the peptide backbone, allowing charge-directed cleavage at 

various sites.331  

Despite differences in the enzymatic assays, one-third of the hit compounds identified in the 

single concentration screen overlapped between the MALDI-TOF MS and RapidFire MS setups 

(Figure 3.7A). Between 78% and 84% hit compounds from the single concentration screen 

were validated as true hits in the dose-response curve screening depending on the platform 

(Figure 3.7B). Some exemplary stronger hits showed a pIC50 of 5.74, 6.23 and 6.54 in dose-

response curves obtained by MALDI-TOF MS (Figure 3.7C). Upon closer examination, 

compounds identified solely as hits in the RapidFire MS screen, clustered near the selected 

enzyme activity cut-off in the MALDI-TOF MS screen (RapidFire MS cut-off = 72.5%, MALDI-

TOF MS cut-off = 75%). This highlights the importance of carefully selecting the enzyme activity 

cut-off as this may explain discrepancies observed in hit identification (Figure 3.7D).  
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Figure 3.7. Overlap of the MALDI-TOF MS and RapidFire MS hit calling for 699 ERAP1 binders. 
(A) Venn diagram of hits identified in at least two replicates of the single concentration screens 
for MALDI-TOF MS or RapidFire MS respectively. (B) Venn diagram indicating the number of 
real hits based on the pIC50 (pIC50>4.0) when evaluated in dose-response curves on the MALDI-
TOF MS (left) or RapidFire MS (right) platform respectively along the total number of 
investigated single hit compounds. (C) Exemplary dose-response curves obtained with the 
MALDI-TOF MS platform; four-parameter logistical curve fit, mean ± standard deviation, n = 3. 
(D) Averaged (n = 3) enzyme activity after exposure to 699 ERAP1 binder compounds obtained 
from MALDI-TOF MS single concentration screening efforts with 75% hit cut-off (red dashed 
line). Hits that were identified in the single concentration screen on both screening platforms 
or only on a single one are indicated (Both platforms: purple triangle, MALDI-TOF MS only: 
blue square, RapidFire MS only: red square). 
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Nevertheless, a strong correlation was observed between the pIC50 values of the hit 

compounds measured by the two different MS platforms (r = 0.76, R2 = 0.95) (Figure 3.6D). 

Similar correlation has been reported in the literature for screens using the same enzymatic 

assay but different redout methods.125,157 The slope of the correlation suggests varying 

potency of the compounds in the newly developed MALDI-TOF MS assay, attributable to 

differences in enzyme activity. However, the ranking of compounds remained consistent across 

both MS platforms, highlighting their comparable performance. 

 

3.5 Discussion 

In this chapter, I have presented the optimisation of the ERAP1 assay buffer and assay peptides 

for MALDI-TOF MS detection. The adjustment of the enzyme assay conditions reduced the 

assay reagents in comparison to the established RapidFire MS setup. I have shown that the 

novel MALDI-TOF MS assay was stable, robust, free from interference, automatable and 

suitable for general HTS efforts. Moreover, the setup showed equal performance in evaluating 

activity of confirmed ERAP1 binders when compared to the RapidFire MS setup.  

 

3.5.1 The benefits and drawbacks of MALDI-TOF MS 

Chemiluminescence and fluorescence label-based biochemical assays are still widely used in 

the early drug discovery stages due to their speed, sensitivity and general robustness also 

when utilised by inexperienced users.319 They are however susceptible to artefacts, leading to 

a larger proportion of initial false positives, hence needing substantial subsequent follow up. 

In addition, label-based assays might have a limited dynamic range or perturb biology as it was 

reported for the fluorescence-based ERAP1 screen.55,171,332 The assay faced difficulties in hit 

compound identification as it suffered from the inner filter effect where a loss in product 

fluorescence intensity was observed due to the high substrate concentration that was utilised. 

Further, substrate labelling influenced ERAP1 enzyme activity. Traditional label-based assays 

are increasingly used alongside or replaced by label-free MS approaches which can directly 

quantify analytes and thereby circumvent the described issues of label-based setups.55 

Different MS systems can be used but one must consider the initial cost for a mass 

spectrometer and the need for trained personnel when comparing the benefits to label-based 

setups. A popular system used in MS screening is the RapidFire MS which was also used for 
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ERAP1 screening. Sample purification and enrichment on the cartridge prior to injection into 

the mass spectrometer eliminates the need to optimise buffer conditions, as required for 

MALDI-TOF MS.54,58 However, this clean-up comes at a cost of a cycle time of 7 – 13 seconds 

per sample as opposed to less than 1 second per sample for MALDI-TOF MS.54,58 Direct 

injections without cartridge, also known as BLAZE mode or multiplexing and pooling can 

increase the speed of RapidFire MS but it cannot match the speed of MALDI-TOF MS.49-51,125 

Further, the MALDI-TOF MS setup requires lower sample volumes, allowing miniaturisation 

(RapidFire MS: 50 µL assay volume, MALDI-TOF MS: 15 µL assay volume). In the presented 

ERAP1 example, the substrate and enzyme concentrations were lowered (RapidFire MS: 5 µM 

substrate, 1 nM enzyme; MALDI-TOF MS: 2 µM substrate, 0.25 nM enzyme), decreasing the 

enzyme tight-binding limit and also the overall assay cost. This highlighted the benefits that 

MALDI-TOF MS can provide in HTS drug discovery. 

 

3.5.2 The current application landscape of MALDI-TOF MS 

With the development of the novel MALDI-TOF MS-based ERAP1 assay, I was able to add to 

the growing number of targets that can be assessed by MALDI-TOF MS; targets include 

kinases122,149, phosphatases123, methylases125,150, trimethylamine-lyase156, deubiquitylases, 

and ubiquitin E3-ligases124,151,152. However, even with buffer, analyte, and matrix optimisation, 

not all interfering effects observed in MALDI-TOF MS can be eliminated, hampering analysis of 

enzymatic screens with products and substrates in the small molecular weight region (<500 

Da). To address this, Winter et al. 2022 have introduced an automation compatible post-

reaction derivatisation workflow to enable determination of catechol-o-methyltransferase 

activity by MALDI-TOF MS.158  

Alternatively, the RapidFire MS technology can be utilised to execute compound screens. This 

platform has been used to evaluate enzyme activity of targets such as kynurenine 3-

monooxygenase333, elongation of very long-chain fatty acids family 6 enzyme32 and major m17-

leucyl aminopeptidase334. The field of MS is constantly evolving, recognising an increasing 

interest in the development of label-free biochemical HT assays which led to the launch of the 

EchoMS system (SCIEX). This system has been used to screen activity of several enzyme targets, 

including diacylglycerol acyltransferase 2, and isocitrate dehydrogenase 1.67-70 
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These MS-based technologies are mainly applied in the field of biochemical screens. However, 

awareness for limited transferability of biochemical screen hits increases in the HTS 

community. There is an increasing demand to work with more biologically complex systems in 

the early stages of drug discovery to improve the translation of findings into the clinic. Hence, 

I want to evaluate if label-free MS approaches can provide benefits for screening more 

biologically complex models.  
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Chapter 4. Characterisation of induced pluripotent stem cell-derived 
macrophage phenotypes 

 

There is an increasing demand for screening cell-based models in the HT stage of the drug 

discovery pipeline to improve the translation of early drug candidates into the clinic. Unlike 

biochemical assays that track only a substrate and its product, cellular assays offer a more 

comprehensive evaluation of compound characteristics, including uptake, target engagement, 

and potency within a physiological context.35 This increased biological complexity allows for a 

deeper understanding of cytotoxicity, mechanisms of action, and off-target interactions.35 

Various cell models with different complexity, ranging from 2D models with a single cell type 

to 3D models with multiple cell types, can be used.335 Within these models, established cell 

lines, induced pluripotent stem cell (iPSC)-derived cells, or primary cells from different genetic 

backgrounds can be utilised.37 

I opted to work with iPSC-derived macrophages because they can be scaled up for culture and 

are genetically closer to primary cells than conventional cell lines.336 I polarised these cells into 

classically activated (M1) and alternatively activated (M2) macrophages. In this chapter, the 

aim was to optimise cell culture and stimulation conditions for iPSC-derived macrophages from 

human donors to facilitate subsequent phenotypic screening. I assessed the immune cell 

phenotypes by investigating their morphology, secreted cytokine profile, and proteomics 

profile. I developed a robust proteomics workflow to measure macrophage phenotype 

biomarkers and to validate them for subsequent use.  

 

4.1 Pro- and anti-inflammatory macrophage phenotypes were identified based on cell 

morphology 

The cell culture workflow for iPSC-derived macrophages involved thawing and culturing iPSCs 

obtained from three different human donors over a period of 14 days (Figure 4.1). 

Subsequently, from day 15 to 21, embryoid bodies were formed. Upon reaching full 

establishment, these embryoid bodies released monocytes into the cell suspension. The iPSC-

derived monocytes used throughout this thesis were generously provided by my industrial 

collaborator, GSK (Charlie Haslam, Thomas Dawson).  
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Following the isolation of monocytes, I proceeded with monocyte differentiation and 

macrophage polarisation (supported by Serena Bateman, GSK). Monocytes were seeded into 

well plates and induced to differentiate into macrophages through the addition of macrophage 

colony-stimulating factor (M-CSF) to the culture medium.337 Differentiation was complete after 

6 days, when the initially floating monocytes developed into adherent macrophages on the 

culture plates.313 These macrophages were then polarised into M1 macrophages with 

interferon gamma (IFN-γ), and lipopolysaccharide (LPS), and into M2 macrophages with IL-4. 

IFN-γ and LPS are synergistic stimulants in vivo that robustly activate macrophages during 

infection, and IL-4 is a cytokine commonly involved in tissue repair signalling.338 Cells were 

harvested at either 4- or 24-hours post-stimulation. To enhance efficiency and throughput, I 

implemented automation equipment for tasks such as cell seeding, media changes, addition 

of stimuli, and cell harvesting, enabling workflow miniaturisation into 96-well plates.  

 
 Figure 4.1. Induced pluripotent stem cell (iPSC)-derived macrophage cell culture timeline. 
Workflow illustrating the culture process of iPSC-derived macrophages, encompassing iPSC 
culture (days 1-14), embryoid body formation (days 15-21), monocyte production (days 22-
41), and six monocyte harvest/macrophage differentiation cycles (days 42-84). 

 

In an initial experiment, I utilised different concentrations of M-CSF (10 ng/mL and 100 ng/mL) 

for monocyte differentiation. In both conditions, cells attached firmly to the culture dish after 

six days. Additionally, these unstimulated macrophages (M0) exhibited a spindle-like cell shape 

(Figure 4.2).339 When macrophages were polarised with IFN-γ and LPS (IFN-γ+LPS) for 24 hours, 

they displayed a flatter, rounder cell morphology and they had many cell protrusions compared 
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to the M0 phenotype; this morphology is characteristic for pro-inflammatory macrophages 

(M1).339 Stimulation with IL-4 resulted in a more M0-like phenotype with further elongation of 

the cell body, a morphology commonly associated with M2 macrophages.339 These distinct cell 

morphologies were consistent across both M-CSF concentrations, confirming successful 

macrophage differentiation and polarisation in all conditions.  

 
Figure 4.2. Cell morphology of unstimulated and polarised macrophages. 
Representative morphology of terminally differentiated M0 resting macrophages, and 
classically activated (M1) and alternatively activated (M2) macrophages after 24 hours of 
stimulation with IFN-γ+LPS (dual) or IL-4 respectively. 

 

4.2 Search of LC-MS/MS DIA data with a hybrid spectral library improved search speed and 

number of protein identifications  

To further characterise macrophage phenotypes, a proteomics workflow was established 

based on time course experiment samples. I investigated iPSC-derived macrophages from 
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three different human donors that were differentiated with either 10 ng/mL or 100 ng/mL M-

CSF and polarised with IFN-γ+LPS (M1 phenotype) or IL-4 (M2 phenotype) for either 4 or 24 

hours. This resulted in a total of 42 samples, including resting macrophage (M0) controls at 0, 

4 and 24 hours. 

Sample preparation involved utilising the 96-well format S-Trap technology from ProtiFi, which 

integrates seamlessly with the macrophage culture automation workflow. Briefly, S-Trap 

involves suspension trapping of reduced and alkylated proteins to allow for protein digestion 

and subsequent peptide elution.340 The samples were acquired using an Evosep One LC system 

operated in 60SPD (sample der day) mode and a timsTOF HT. TimsTOF MS has been shown to 

produce high data quality at these sample run times.341,342 Finally, data independent 

acquisition (DIA) was conducted to increase sample coverage.343 The DIA-NN software was 

used for peptide and protein identification from the raw data. Three distinct DIA data search 

methods were evaluated: (1) library-free, (2) gas fractionation library, and (3) hybrid library 

search. The library-free approach employed theoretical methods to infer peptide identity, 

while the gas fractionation library method used a spectral library constructed from a pooled 

experimental sample acquired using five methods targeting different mass and ion mobility 

(IM) ranges.315 In the hybrid library approach, the spectral library incorporated both, previous 

experimental data and current experiment data that were consolidated into a large spectral 

library.  

Post-processing of the obtained peptide and protein lists included two filtering steps. First, 

known contaminants, including bovine proteins from the cell medium, keratins from the 

researchers’ skin and dust, as well as trypsin from enzymatic digestion were removed.317 

Further, proteins identified by only a single unique peptide match were removed according to 

standard proteomics practices.344 To remove unwanted variability that can derive from cell 

culture (e.g. different donors), storage conditions or sample preparation, normalisation and 

batch correction are routinely applied.345 Here, I used median normalisation, as well as batch 

correction on an iPSC donor level. 

First, the data quality was assessed. Overall, even prior to sample normalisation and batch 

correction, no outlier samples or batch effects were observed (Figure 4.3). All samples showed 

a similar log2 protein intensity average around 15, and the distribution of intensity values 
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within each sample was consistent across all samples. This was representatively shown for the 

hybrid library approach (Figure 4.3) but equally observed for the label-free and gas 

fractionation library search approaches. Additionally, there was a tight correlation (r = 0.97, R2 

= 0.94) between the log2 protein intensity values obtained from the library-free and hybrid 

library search approaches on an individual sample level (Figure 4.4, exemplary shown for 21 

macrophage samples differentiated with 100 ng/mL M-CSF). Together, this indicated high data 

quality and workflow robustness across the 42 samples.  

 
Figure 4.3. Data quality shown after hybrid library search of the cell culture condition 
optimisation experiment.  
Quality control plots for LC-MS/MS data of an iPSC-derived macrophage time course 
experiment obtained (A) prior and (B) after normalisation (median) and batch correction 
(donor level). Macrophages from three different human donors were differentiated with either 
10 ng/mL or 100 ng/mL M-CSF and polarised with IFN-γ+LPS or IL-4 for either 4 or 24 hours 
resulting in a total number of 42 samples, including resting macrophage (M0) controls. 
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Figure 4.4. Correlation of log2 protein intensity between different library search methods 
from samples of the cell culture condition optimisation experiment.  
Plots of the normalised and batch corrected log2 protein intensity of iPSC-derived 
macrophages obtained with the library-free and hybrid library search approaches. 21 
macrophage samples that were cultured with 100 ng/mL M-CSF and polarised with IFN-γ+LPS 
or IL-4 for 4 or 24 h, as well as M0 controls at 0, 4 and 24 hours from three different human 
donors were plotted.  
 

While data quality was comparable, a major difference between the data search approaches 

was the search speed: ~35 minutes per sample for library-free versus ~3 minutes per sample 

for library-based approaches on a desktop work station (Intel(R) Core(TM) i9-10900X CPU @ 

3.70GHz processor and 128 GB RAM). Pre- and post-filtering, the number of identified peptides 

and proteins was similar across the different methods (Figure 4.5). The highest number of 

peptides (average 55,157 per sample) and proteins (average 5,366 per sample) was observed 

with the hybrid library approach while the lowest was observed with the gas fractionation 

library approach (average 51,102 peptides and 5,090 proteins per sample), though the 

differences were marginal.  
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Figure 4.5. Peptide and protein numbers from different library searches of the cell culture 
condition optimisation experiment.  
Peptide (red) and protein (blue) identifications, along with the number of missing values (NAs) 
identified in the library-free, gas fractionation library and hybrid library searches of iPSC-
derived macrophage samples from three different human donors. Cells were differentiated 
with 10 ng/mL or 100 ng/mL M-CSF and polarised with IFN-γ+LPS or IL-4 for 4 or 24 h. (A) 
Before filtering. (B) After filtering for contaminants and unique peptides per protein ≥2. 
 

4.3 Macrophage polarisation with an IFN-γ+LPS dual stimulus for 24 h elicited large changes 

on a proteomics level   

Based on the data quality assessment (section 4.2), I decided to analyse the normalised and 

batch-corrected data from the hybrid library search approach to further characterise 

macrophage phenotypes. This approach offered the fastest search speed and highest number 

of protein identifications, enabling potentially the most detailed phenotype characterisation.  

Unsupervised clustering revealed no donor-specific clustering, indicating robust proteome 

level changes across donors (Figure 4.6A). Further, distinct clustering of the 10 ng/mL M-CSF 

(cluster 1 and 2) and 100 ng/mL M-CSF (cluster 3 and 4) cell culture conditions was observed. 

Within the 10 ng/mL M-CSF cluster one, the 24-hour macrophages clustered away from 0 and 

4-hour cell phenotypes, showing instead alignment with the 100 ng/mL M-CSF cluster three. 

It has been previously reported that higher or more prolonged M-CSF exposure resulted in a 

more pronounced macrophage phenotype, explaining these observations.337 The most distinct 

clustering from all other M-CSF concentration matched cell phenotypes was observed for the 

24-h polarisation with IFN-γ+LPS (cluster 2 and 4). Contrary to these findings, Murugesan et 

al. 2022 described distinct clustering for M0, M1 and M2 macrophages.346 Here, due to the 

nature of PCA, subtle differences are likely overlooked, whereas major changes, such as 

variations in M-CSF concentration or 24-hour polarisation with IFN-γ+LPS, dominate the plot 

space.347  
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Figure 4.6. Global proteome analysis from the cell culture condition optimisation 
experiment. 
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iPSC-derived macrophages from three different human biological donors were differentiated 
with 10 ng/mL or 100 ng/mL M-CSF and polarised with IFN-γ+LPS (M1) or IL-4 (M2) for 4 or 24 
h. (A) PCA plot generated with the normalised and batch corrected hybrid library search data. 
(B) Heatmap of the protein fold change obtained by t-testing (Benjamin-Hochberg correction) 
each condition to its time respective M0 control. 
 

Protein fold changes obtained by comparison of the different cell stimulations against their 

respective M0 control were visualised in a heatmap (Figure 4.6B). Few differentially regulated 

proteins were identified following 24-hour IL-4 treatment, though the number of proteins that 

showed a change remained minimal. This aligns with findings by Murugesan et al. 2022 who 

noted modest proteomics shifts induced by M2 polarisation, primarily affecting metabolic 

shifts.346 Further, M2 macrophage polarisation is frequently conducted for 48-hours to achieve 

a full macrophage shift.348 Consequently, this phenotype was not further examined. The 

heatmap confirmed most significant alterations in protein expression after 24-hour 

polarisation with IFN-γ+LPS. The protein expression changes after 24-hours likely included 

both, novel protein synthesis, as well as responses based on activation of secondary signalling 

cascades, a change potentially missed after 4-hour stimulation. Thus, I focussed my 

subsequent analysis efforts on the 24-hour IFN-γ+LPS dual stimulus to explore macrophage 

phenotypes suitable for MS-based cellular HTS endeavours.  

 

4.3.1 Differentiating macrophages with low levels of M-CSF reduced the magnitude of the 

inflammation response   

The proteins that were significantly changed during the 24-hour IFN-γ+LPS macrophage 

polarisation in comparison to their untreated controls were further analysed. The number of 

significantly downregulated proteins was similar for both the 10 ng/mL and 100 ng/mL M-CSF 

cell differentiation, with 25 and 34 proteins, respectively (log2 protein fold change cut-off = 2, 

-log10 adjusted p-value cut-off = 0.01) (Figure 4.7A and B). A closer examination of these 

downregulated proteins revealed minimal overlap between the two conditions: 8 proteins 

were common for both, while 17 proteins were unique to the 10 ng/mL M-CSF condition and 

26 proteins were unique to the 100 ng/mL M-CSF condition (Figure 4.7C). No STRING 

interactions were identified between more than two proteins (medium confidence and active 

interaction sources: experiments, databases), indicating that no downregulated signalling 

cascade was associated with the pro-inflammatory cell polarisation.  
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Figure 4.7. Significantly up- and downregulated proteins after 24h macrophage polarisation 
with IFN-γ+LPS after differentiation with 10 ng/mL or 100 ng/mL M-CSF. 
(A&B) Volcano plot showing log2 protein fold change (cut-off = 2) against -log10 adjusted p-
value (cut-off = 0.01) after t-testing (Benjamin-Hochberg correction) the polarised 
macrophages against the untreated controls with highlighted significantly down (blue) and 
upregulated (orange) proteins; (A) 10 ng/mL M-CSF, (B) 100 ng/mL M-CSF. Venn-Diagram 
comparing the significantly (C) down- and (D) up-regulated proteins highlighted in the volcano 
plots between the 10 ng/mL and 100 ng/mL M-CSF conditions. 

 

A larger number of proteins was significantly upregulated in both M-CSF conditions. The 

number of significantly upregulated proteins nearly doubled in the 100 ng/mL M-CSF condition 
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from 67 in the 10 ng/mL M-CSF condition to 154 in the 100 ng/mL M-CSF condition (Figure 

4.7A and B). A considerable overlap was observed in the upregulated proteins between the 

treatments: 48 proteins were common to both conditions, 19 were unique to the 10 ng/mL 

M-CSF condition, and 106 were unique to the 100 ng/mL M-CSF condition (Figure 4.7D). These 

increased protein levels in the higher M-CSF concentration were in line with previous 

observation indicating a stronger macrophage phenotype as cells seemed to respond more 

effectively to pro-inflammatory stimuli. 

I performed network analysis for these stronger responding macrophages which revealed that 

most differentially expressed proteins were associated with the immune system biological GO 

term. To further investigate the involved signalling pathways, proteins were assigned to 

different signalling cascades based on well-established GO terms, KEGG pathways, and a 

publication from Murugesan et al. 2022.346 The observed protein fold changes were then 

mapped accordingly to identify proteins that can be detected with the presented proteomics 

workflow and further used as biomarkers for M1 activation.  

Initially, cell surface markers were examined to evaluate the M1-like characteristics of the 

polarised iPSC-derived macrophages. Consistent with Murugesan et al. 2022, well-

characterised M1 cell surface markers such as PLD1 (CD274), CD38, TNR5 (CD40) and CD48 

were upregulated in response to IFN-γ+LPS stimulation (Figure 4.8). These markers are 

important immune checkpoints, cytokine secretion promoters and costimulatory molecules 

for T cell activation.346 Conversely, a decrease in CD36, a M0 marker involved in phagocytosis, 

was observed following IFN-γ+LPS stimulation.346 In addition, some novel markers suggested 

by Murugesan et al. 2022 were identified, such as CLM8 (CD300a) and CSF1R, both M0 

markers, as well as LILRB2, a M1 marker. This further consolidated the pro-inflammatory 

phenotype of the iPSC-derived macrophages and informed on biomarkers that can be reliably 

used for phenotype identification.  



78 
 

 
Figure 4.8. Expression of cell surface markers in the 100 ng/mL M-CSF 24 h IFN-γ+LPS dual 
stimulation. 
Shown are the log2 protein fold changes in the pro-inflammatory macrophages in comparison 
to the resting macrophages (t-testing: Benjamin-Hochberg correction) alongside highlighted 
circling for significance (adjusted p-value < 0.01). 

 

Next, I assessed the stimulus-specific signalling cascades. Few significantly upregulated 

proteins were detected in the TLR4 signalling pathway, which is activated by LPS binding 

(Figure 4.9). This may be because pathway activation is often associated with post-translational 

modifications (PTMs) rather than changes in protein expression levels.349 However, NFKB2, 

which signals downstream of TLR4-MyD88 activation, along with its modulators TANK and 

TNIP3, were significantly upregulated.350 Additionally, the transcription factors TF65 (RelA) and 

RelB, which are downstream of NF-κB signalling, were also upregulated.350 It was important to 

note that NF-κB activity is also associated with TNF-α signalling and that TLR4 stimulation leads 

to the expression of various chemo- and cytokines.351 Therefore, secondary signalling 

responses might also be captured in this proteomics analysis. 

In contrast, many upregulated proteins were associated with IFN-γ signalling (Figure 4.9). JAK 

and STAT proteins, which bind to the IFN-γR, were upregulated.346 STAT also serves as 
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transcription factor, which explains the high expression of IFN-γ induced genes such as IFIH1, 

IFIT1, IFIT2, IFIT3, ITIF5, IFM1, ISG15, ISG20, MX1, MX2 and OAS3 in response to the 

stimulus.346 Furthermore, IFN-induced GTPases, including GBP1, 2, 4, and 5 were increased.346  

 
Figure 4.9. Expression of LPS (left) and IFN-γ (right) signalling markers in the 100 ng/mL M-
CSF 24 h IFN-γ+LPS dual stimulation. 
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Shown are the log2 protein fold changes in the pro-inflammatory macrophages in comparison 
to the resting macrophages (t-testing: Benjamin-Hochberg correction) alongside highlighted 
circling for significance (adjusted p-value < 0.01).  

 

These results demonstrated that 24-hour IFN-γ+LPS stimulation effectively elicited a pro-

inflammatory immune response, M1 macrophage polarisation. Successful identification of 

biomarkers in both signalling cascades suggested that the MoA for this stimulation can be 

partially elucidated through proteomics. Additionally, it highlighted that this analysis is slightly 

biased towards detection of the IFN-γ signalling pathway, as this was associated with more 

significant protein expression changes compared to the LPS signalling cascade. 

Murugesan et al. 2022 reported changes in cell processes closely associated with the immune 

system, including antigen presentation and metabolism. Consistent with these findings, nearly 

all major proteins involved in antigen presentation, such as various HLA and TAP proteins, were 

upregulated (Figure 4.10). Additionally, Murugesan et al. 2022 described a metabolic shift 

towards tryptophan metabolism and aerobic glycolysis in response to pro-inflammatory 

stimuli. I observed upregulation of KYNU, SYWC (WARS), and I23O1 (IDO1), which are involved 

in tryptophan catabolism (Figure 4.10). Markers of aerobic glycolysis, such as F263 (PFKB3) and 

CMPK2, were also upregulated. However, several other glycolysis and ROS signalling markers, 

like F16P1, KCY and SODM, remained unchanged. In line with published literature, I also 

observed upregulation of apolipoproteins (APOL2 and APOL3), which regulate cholesterol 

levels.346 

I investigated the differential expression of proteins associated with secondary signalling 

pathways including responders to chemo- and cytokines (Figure 4.10). Proteins involved in 

TNF-α signalling, such as TNAP, TFIP, and TRADD, were upregulated.352 Other pattern 

recognition receptors and their modulators, like TLR8 and UN93B, were also upregulated, 

supporting the hypothesis that secondary signalling responses were captured by this 

proteomics analysis.353  

Furthermore, intracellular levels of various chemo- and cytokines were altered, including 

CXCL10, IL8, CXCL9, IL27B, IL1A, IL1B and OXLA (Figure 4.10). The secreted cytokine profile can 

be assessed via secretomics, however in HTS efforts, assessment is typically undertaken with 

label-based assays.39 
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Figure 4.10. Expression of antigen presentation (top left), metabolism (top right), secondary 
pathway (bottom left), and chemo and cytokine (bottom right) markers in the 100 ng/mL M-
CSF 24 h IFN-γ+LPS dual stimulation. 
Shown are the log2 protein fold changes in the pro-inflammatory macrophages in comparison 
to the resting macrophages (t-testing: Benjamin-Hochberg correction) alongside highlighted 
circling for significance (adjusted p-value < 0.01).  
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4.4 Pro-inflammatory macrophage polarisation for 24 h with LPS+IFN-γ was linked to pro-

inflammatory cytokine secretion  

A bead-antibody based assay was used to determine the levels of pro-inflammatory TNF-α and 

IL-6 cytokines in the cell media. Control samples at all time points showed low signal for the 

inflammatory markers (Figure 4.11). TNF-α concentrations remained constant across 4 and 24 

hours of stimulation (~10 pg/mL) (Figure 4.11A). The rapid increase in TNF-α levels can be 

attributed to the presence of a TNF-α precursor stored in the cell membrane.351 The early 

detection of TNF-α also suggested that secondary responses were captured at the proteome 

level after 24-hour stimulation. In contrast, IL-6 levels showed a time-dependent increase, 

rising from ~20 pg/mL to ~60 pg/mL (Figure 4.11B). This trend exemplified the progression 

from pathway activation to protein expression and protein excretion over time.354  

 
Figure 4.11. Cytokine levels in the media of 100 ng/mL M-CSF cultured macrophages. 
Macrophages from three different human donors were probed after 4 and 24 h stimulation 
with IFN-γ+LPS and compared to unstimulated controls at the indicated timepoints. A 
fluorescence readout (Mirrorball®) was used to determine cytokine levels of (A) TNF-α, and 
(B) IL-6; n = 3, mean ± standard deviation, n.d. = non-detected. 
 

4.5 Discussion  

In this chapter, I first validated successful M1 and M2 macrophage polarisation by morphology. 

Proteomics analysis showed that macrophage differentiation with 100 ng/mL M-CSF and 24-

hour IFN-γ+LPS stimulation produced the most distinct pro-inflammatory macrophage 

phenotype consistently across three human iPSC donors. Macrophages cultured with higher 

M-CSF concentrations seemed to exhibit a stronger macrophage phenotype. Further, the 
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customised proteomics workflow robustly identified pro-inflammatory marker proteins from 

different cell signalling pathways. Signalling responses that lead to novel protein expression 

and activity in secondary signalling cascades was captured with the proteomics workflow. 

Lastly, pro-inflammatory cytokine screening from the cell media was introduced as a HTS 

compatible technology for rapid pro-inflammatory macrophage polarisation phenotyping.  

 

4.5.1 The proteomics workflow  

In the following discussion, I will outline the components of the proteomics workflow that I 

selected for my customised iPSC-derived macrophage analysis, focussing on two key criteria: 

(1) workflow speed and (2) data quality.  

For sample preparation, I selected the S-Trap method. According to Varnavides et al. 2022, 

who evaluated 16 different sample preparation methods, most exhibited comparable overall 

performance, although there were variations in the recovery of specific protein features, such 

as low expression proteins that were enriched with the S-Trap sample preparation method.272 

Despite the potential for testing alternative workflows, I opted for the S-Trap method due to 

its established robustness. In addition, the 96-well plate format of the S-Trap facilitated 

efficient handling, allowing sample preparation with reduced hands-on time, and hence 

allowing preparation of multiple sample plates in parallel. 

High-performance liquid chromatography (HPLC) with a 2-hour gradient is a common setup 

for peptide separation in proteomics workflows.355 Instead, I chose the Evosep One system to 

achieve a significant reduction in sample run times to 24 minutes per sample while maintaining 

high data quality. The system can accommodate even higher throughput with 5.6 minutes per 

sample, though this significantly reduces protein identifications.341   

The samples were acquired with a dia-PASEF method on the timsTOF HT, followed by analysis 

with DIA-NN software. As anticipated, each sample yielded a high number of protein 

identifications. However, I observed that incorporating a spectral library decreased search 

speed. In addition, my data indicated that the quality of the library positively influenced 

protein identifications as the hybrid library approach revealed slightly more identifications 

than the spectral library search. An alternative, traditional approach would be to use off-line 

fractionation to reduce sample complexity and then acquire the sample in DDA mode to 
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improve accuracy of peptide sequence identifications.356 Reduced sample complexity might 

also be particularly useful for peptide pools of large sample to improve the generated spectral 

library. In addition, custom dia-PASEF acquisition methods could be generated with the 

py_diAID software to improve sample coverage.288 

Ongoing advances in MS are poised to further enhance workflow speed while preserving data 

quality. Innovations such as the 500 SPD method for the Evosep system, the Orbitrap Astral 

MS equipped with novel mass analyser technology357, as well as artificial intelligence and 

machine learning-driven real-time data analysis tools are leading the way. Despite these 

advancements, the speed of proteomics analysis is still significantly slower than the previously 

outlined HTS compatible MS setups, e.g MALDI-TOF MS and RapidFire MS. However, 

proteomics offers higher content data.  

 

4.5.2 Cell models in inflammation research   

In the subsequent chapters of this thesis, I will explore how different MS technologies can 

contribute to advancements in the immunology drug discovery space by profiling polarised 

iPSC-derived macrophages. In this chapter, I have successfully benchmarked the iPSC-derived 

macrophages through morphology, proteomics, and cytokine profiling, demonstrating a 

physiologically relevant response, particularly when differentiated with 100 ng/mL M-CSF and 

polarised for 24 h with IFN-γ+LPS. The consistency of the responses across three different 

human iPSC donors suggested a high level of biological relevance for this model. 

In macrophage research, various cell types are used, including immortalised human THP1 cells, 

iPSC derived macrophages, primary murine bone marrow-derived macrophages (BMDMs), 

and primary human peripheral blood mononuclear cells (PBMCs). THP1 cells, derived from 

monocytes of an acute myeloid leukaemia patient, possesses significant genetic mutations 

such as partial mono- and triploidy and various chromosomal rearrangements.259,336 Vincent 

et al. 2020 demonstrated that genetic changes can impact the translation of drug efficacy from 

cellular assays to animal models and patients.358 Indeed, differences in immune response 

between THP1 cells and PBMCs have been documented.259 Gudgeon et al. 2024 reported 

significant variability in responses to inflammatory stimuli among cell lines, immortalised cells, 

and primary murine BMDMs.258 Further, murine BMDMs and human PBMCs exhibit distinct 

metabolic responses to inflammation, with PBMCs relying on oxidative phosphorylation for 
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the generation of ATP.257 Although primary PBMCs and murine BMDMs provide high 

physiological relevance, they are challenging to maintain in culture. In contrast, iPSC-derived 

macrophages offer a favourable compromise, as they can be cultured at scale and are 

genetically closer to primary cells than THP1 cells.  

Considering the complexity of the inflammatory response, which involves crosstalk between 

various cell types, secondary cell responses, and diverse stimuli, a range of in vitro models, 

from simple 2D cultures to complex organoids with multiple cell types, are employed in 

inflammatory disease research.335,359 When designing cellular assays for HTS drug discovery 

efforts in immunology, it is crucial to balance the benefits of biological complexity with factors 

such as cost, resources, scalability, and the desired readout method. In the next chapter of this 

thesis, I will explore a MALDI-TOF MS-based readout for macrophage phenotyping. 
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Chapter 5. Application of cellular MALDI-TOF MS high-throughput assays: A 
case study of induced pluripotent stem cell-derived macrophages 

 

In the previous chapter, I characterised an inflammation cell model using proteomics and 

cytokine profiling, label-free medium-throughput, and label-based HT methods, respectively. 

With MALDI-TOF MS, fast and label-free cell phenotyping can be achieved. It is already the 

gold-standard tool for bacterial phenotyping in clinical settings, distinguishing microbial 

species based on unique fingerprints composed of ribosomal proteins and 

biomolecules.189,193,360 However, workflows for eukaryotic cell fingerprinting are less 

developed due to the cells’ complex composition and higher spatial and temporal 

dynamics.213,361 Mass features in the peptide and small molecular weight protein region have 

been harnessed to distinguish between different cell types, including different cell lines and 

complex cell mixtures206,207,209-213,362, to determine different cell states, including apoptosis and 

stress214,363, and to characterise cell differentiation for instance of neutrophils216. MALDI-TOF 

MS has been used to distinguish different immune cell types from blood and to classify 

monocyte subsets challenged with different bacterial stimuli.226-228 The lack of standardised 

protocols and data analysis procedures has limited the use of MALDI-TOF MS in cellular drug 

discovery efforts. Heap et al. 2019 initiated efforts to integrate this technology into HTS by 

developing an automation-compatible workflow to distinguishing between different cancer 

cell lines, including THP1 cells based on signals in the high mass region.208,229 Further, Weigt et 

al. 2019 monitored concentrations of the fatty acid synthase substrate malonyl-coenzyme A in 

a cellular assay and simultaneously evaluated expression of other lipid biomarkers.225 This 

paved the way for some first in line metabolite/lipid signature MALDI-TOF MS phenotypic 

screens that have been used to evaluate kinase activity138, microglial activation in response to 

LPS139 and complement-dependent cytotoxicity140 in the presence of a few selected drugs.  

In this chapter, I will present the development of a metabolite/lipid signature MALDI-TOF MS-

based cell phenotyping workflow for iPSC-derived macrophages, which were differentiated 

with 100 ng/mL M-CSF and stimulated for 24-hours with IFN-γ+LPS, by building on established 

methods. I will introduce automation to enable assay validation with a set of 87 well-

annotated compounds with known mechanisms of action. Subsequently, I will test a curated 

inflammation-specific set of 86 compounds and compare the results to cytokine secretion 

measurements to further asses the performance of the novel screening workflow.   
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5.1 MALDI-TOF MS cellular assays required optimisation of cell culture, sample preparation, 

and sample acquisition 

In the first 7 days of the customised workflow (Figure 5.1), the iPSC-derived macrophages from 

three human donors were cultured, compound treated, stimulated, and frozen, as described 

in chapter 4. The subsequently optimised sample preparation involved two key steps:  

1. Cell lysis: Different cell numbers and lysis conditions were tested to ensure analyte 

abundance. 

2. Target plate preparation: The matrix, its concentration and mixing ratio with the 

sample, as well as the spotting technique itself were optimised to improve analyte 

desorption and ionisation in the MALDI ion source.  

Upon data acquisition by MALDI-TOF MS, various instrument parameters, including mass 

range, and laser energy were altered. Initially, spectra were visually examined. Subsequently, 

different data analysis streams were established:  

1. Global analysis via unsupervised clustering: This approach provided an overview of the 

data and helped identify patterns and clustering which can be harnessed to multiplex 

assays for instance with cytotoxic compounds or known inhibitors to uncover compound 

MoA.  

2. Condition-specific “biomarkers”: This analysis focused on identifying unique “biomarkers” 

to inform phenotype-specific fingerprints. Selected “biomarkers” can then be used for hit-

triaging in HTS efforts. 

The optimised workflow should be able to reliably distinguish between resting (M0) and pro-

inflammatory (M1) macrophage phenotypes and assess the effects of various compounds on 

these cells. 
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Figure 5.1. Schematic cellular MALDI-TOF MS assay workflow. 
iPSC-derived macrophages from three human donors were cultured, treated with compounds, 
stimulated, and frozen. The preparation for MALDI-TOF MS acquisition involved defrosting the 
cells, preparing cells in a sample buffer, and spotting cells with the matrix onto the MALDI-TOF 
MS target plate. Following acquisition, the mass spectra were analysed using unsupervised 
clustering (e.g. principal component analysis (PCA)) or selected “biomarker” analysis to 
phenotype the macrophages and evaluate effects of compound treatment. 

 

5.1.1 Macrophage polarisation unique peaks were observed in a mass range of m/z 400 – 

1,000 with Tris-HCl extraction buffer and DHB matrix  

A list of parameters that were tested and combined to optimise the MALDI-TOF MS-based 

macrophage phenotyping workflow can be found in Table 5.1. 
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Table 5.1. List of workflow components tested during the cellular MALDI-TOF MS assay 
development. The components include different cell numbers, extraction buffers, matrices, 
matrix concentrations, matrix-sample-ratios, spotting techniques, and acquisition ranges. 

Optimisation stage Tested conditions 

Cell number 5000, 4500, 4000, 3500, 3000, 2500, 2000, 1500, 1000, 500 

Extraction buffer MALDI-TOF MS matrix, 100 mM Tris-HCl + 0.1% TFA, 30% MeCN 
+ 0.1% TFA, 50% MeOH + 0.1% TFA, 100 mM Tris-HCl + 0.1% FA, 
30% MeCN + 0.1% FA, 50% MeOH + 0.1% FA 

Matrix No matrix, Sinapinic acid (SA), α-cyano-4-hydroxycinnamic acid 
(CHCA), 2,5-dihydroxybenzoic acid (DHB), 9-aminoacridine (9-
AA), 1,5-diaminonaphthalene (DAN), 2,5-
dihydroxyacetophenone (DHAP) 

Matrix concentration Saturated, 1:2, 1:3, 1:5, 1:10, 1:20, 1:30, 1:50 

Matrix-sample-ratio 1:1, 1:3, 1:5 

Spotting technique Sample matrix mix, Dried droplet 

Acquisition range (m/z) 120 - 1200, 350 - 2000, 400 - 1000, 2000 - 10000 

 

First, the optimal cell number was titrated as previous studies have highlighted the importance 

of this step.216 Unsupervised hierarchical clustering showed separation between M0 and M1 

phenotypes when using higher cell numbers (3500 - 5000 cells), but no separation with lower 

cell numbers (500 - 3000 cells) (Figure 5.2). Previous studies working with peptide and protein 

mass features of immune cells have suggested ideal cell numbers ranging from 1,000 to as high 

as 1 million cells per spot.208,216,227 The variation in optimal cell number is likely explained by 

differences in the cell size and observed analytes.208 Previous lipid profile MALDI-TOF MS 

screens have reported an ideal cell number of 5,000.138 I decided to work with 4,500 cells to 

balance ionisation efficiency and ion suppression which was previously observed with larger 

cell numbers by Heap et al. 2019.208 

Further, it is important to ensure efficient analyte extraction from the cell. Multiple studies 

have established the necessity of a freeze-thaw cycle for effective analyte extraction.208,216 

Protocols involving cell resuspension in PBS or methanol (MeOH) fixation have 

emerged208,216,228, and the use of low acid concentrations in the extraction buffer and mild lysis 

conditions were recommended216,226. Here, I decided to perform a freeze-thaw cycle, followed 

by a test of different extraction buffers: Tris(hydroxymethyl)aminomethane hydrochloride 

(Tris-HCl), acetonitrile (MeCN), and methanol (MeOH), supplemented with formic acid (FA) or 

trifluoroacetic acid (TFA) acid. Consistent high-intensity peaks were observed across the 

different extraction buffers and cell phenotypes (Figure 5.2), but they were likely associated 
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with the matrix, due to their ubiquitous detection, and not analyte detection. I observed 

uncontrollable evaporative loss with the MeCN and MeOH extraction, which affected 

reproducibility. Therefore, I decided to resuspend the lysed cells in Tris-HCl to investigate the 

proposed matrix effect. 

Various matrices traditionally used in positive (CHCA, DHB, SA) and negative ion (9-AA, DAN) 

mode were tested to enable ionisation of different classes of analytes.94,131,364 CHCA and SA 

are commonly selected for their homogenous matrix crystals, improving signal robustness, 

while DHB, known for forming heterogeneous crystals, usually results in higher signal 

variability.94,208,216 Each matrix showed a different peak pattern in the mass spectrum, 

dominated by low mass features (< m/z 500), mainly matrix-associated features, in both M0 

and M1 phenotypes (Figure 5.2). Notably, peaks with stable peak intensity above m/z 500 were 

observed for DHB matrix and these features showed differences between the M0 and M1 

phenotypes.  

Assay parameters such as matrix concentration and sample-to-matrix ratio were carefully 

optimised and balanced to increase analyte ionisation efficiency and decrease matrix 

interference effects, which can lead to analyte suppression.128 The matrix and sample spotting 

technique was also optimised. Samples were either pre-mixed with the matrix or individually 

dried on the target plate in a sandwich fashion. I opted to use the second method as I 

observed, in line with other developed lipid-based MALDI-TOF MS assays, improved DHB 

matrix heterogeneity.138-140 Potentially, different organic solvent concentrations affected 

matrix drying time, explaining the observed crystallisation effects.137  

The final optimisation involved the acquired mass range. As eluded to earlier, previous MALDI-

TOF MS-based immune cell phenotyping workflows focussed on the m/z 2,000-20,000 range, 

which is mostly populated by peptides and small molecular weight proteins.208,227,228 I detected 

only ~20 peaks in this region, with three reproducible peaks, including m/z 4964, previously 

reported in monocytes and macrophages and associated with Thymosin-β4, an actin-

regulating protein with anti-inflammatory properties.216,365 Monitoring the low mass range 

revealed >300 peaks between m/z 400-1,000, which showed differences between the M0 and 

M1 phenotypes upon visual spectral inspection. Features from this mass range have been 

successfully used to distinguish cell phenotypes and determine drug efficacy of a few selected 

compounds in dose-response screening.138-140,225  
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Figure 5.2. Exemplary results of the cellular MALDI-TOF MS assay workflow development. 
Dendrogram obtained from 500 - 5000 M0 and M1 (IFN-γ+LPS) macrophages. Spectra 
obtained from cell extracts in Tris-HCl, acetonitrile (MeCN) or methanol (MeOH) buffer in CHCA 
matrix. Spectra obtained from Tris-HCl cell extracts and spotting with different matrices: CHCA 
= α-cyano-4-hydroxycinnamic acid, DHB = 2,5-dihyroxybenzoic acid, SA = sinapinic acid, 9-AA 
= 9-aminoacridine, DAN = 1,5-diaminonaphthalene. 
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In summary, my final optimised workflow used ~4,500 iPSC-derived macrophages that were 

lysed through freeze-thawing cycles and the addition of the Tris-HCl+FA buffer. The lysates 

were spotted onto the MALDI-TOF MS target plate and dried prior to addition of 22.22mg/mL 

DHB matrix (70% MeCN, 0.1% FA). Samples were acquired in the mass range of m/z 400 - 

1,000. With this method, I observed the most m/z features, which gave me the best chance to 

distinguish between the resting and pro-inflammatory macrophage phenotypes and to identify 

polarisation unique “biomarkers”. 

 

5.2 Data analysis workflows for MALDI-TOF MS cellular assays were assessed 

I introduced miniaturisation and automation into the optimised workflow to generate a higher 

number of data points for the implementation of robustness and statistical analysis, including 

PCA and “biomarker” identification. Cells were lysed in 96-well format and then transferred 

into 384-well plates, enabling the use of the Mosquito liquid handling robot for cell sample 

and matrix spotting onto the MALDI-TOF MS target plate. I utilised an automated acquisition 

method in MS, and an R script previously adapted by Maria Emilia Dueñas and Ruth Walker in 

the Trost laboratory, following Gibb et al. 2012, which I further refined by adjusting the data 

processing parameters, implementing data analysis and visualisation tools, as well as 

establishing data filtering criteria.316  

 

5.2.1 Separation between macrophage M0 and M1 phenotypes was observed in 

unsupervised clustering 

First, unsupervised clustering was performed by PCA to examine global trends. Without 

further data processing, nearly complete separation between the M0 and M1 macrophage 

phenotypes was observed (Figure 5.3A).  

To improve the clustering, I decided to reduce the complexity of the dataset, and hence filtered 

the peak list. First, I removed peaks that were classified as noise, characterised by low signal 

intensity and poor signal reproducibility, summarised by the CV. Secondly, I excluded peaks 

that showed minimal or no changes between the two treatments, indicating they were not 

indicative of a pro-inflammatory response. After testing multiple cut-offs, I decided to exclude 

peaks with a CV >75% in at least one of the two conditions and peaks with a log2 fold change 
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between -0.2 and 0.2 in the M1 when compared to the M0. The filtering resulted in a 67% 

reduction in peak numbers, from 326 to 108. Following this refinement, a clear and 

reproducible separation between the M0 and M1 macrophage phenotypes from three 

different human donors was observed (Figure 5.3B).  

Figure 5.3. Clustering of M0 and M1 macrophages based on m/z features observed by 
MALDI-TOF MS. 
PCA analysis of macrophage phenotypes from three human donors, (a) before peak list 
filtering and (b) after peak list filtering (excluding peaks with a CV >75% in at least one of the 
two polarisation conditions and peaks with a log2 fold change from the unpolarised to the 
polarised controls between -0.2 and 0.2); ntechnical = 92 per donor.   
 

Previously it was demonstrated that PCA can be used in drug discovery efforts to distinguish 

between desired and undesired phenotypes, such as cytotoxicity by including compounds with 

known MoA within the screen.44,229 However, the need for peak filtering to achieve clear 

phenotype separation as described here, may indicate potential challenges when analysing 

multiple compound-driven cell phenotypes with this method.  

 

5.2.2 Mass features were identified as “biomarkers” for resting and pro-inflammatory 

macrophage phenotypes  

The aim was to identify “biomarkers” in the MALDI-TOF MS assay that could be used to 

distinguish between resting and pro-inflammatory macrophages rapidly and reproducibly. I 

investigated “biomarker” expression upon IFN-γ+LPS dual stimulation, as well as individual 

stimulations with either IFN-γ or LPS alone, to see if I can distinguish between the different 

inflammation stimuli. Previous studies suggested that MALDI-TOF MS fingerprints of THP1 cells 

in the high mass region were primarily associated with TLR signalling.229  
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To assess biomarker suitability, I used the peak list pre-filtering and calculated the log2-fold 

change between all stimulants and the M0 control, and between the IFN-γ and LPS 

stimulations. Peaks that showed a log2-fold change >0.5 or <-0.5 in at least one condition were 

included in the analysis. The normalised peak intensities (z-scoring per row) of these m/z 

features were plotted in a heatmap for biomarker identification (Figure 5.4A). 

While some of the selected 74 peaks showed no visible difference in intensity between groups, 

others exhibited high signal intensity within a single group, making them potential 

“biomarkers”. Multiple high-intensity features (z-score ≥0.6) were detected for the resting M0 

(n = 13), IFN-γ (n = 6), LPS (n = 14) and IFN-γ+LPS (n = 4) stimulated macrophages. Consistent 

with previous reports from MALDI-TOF MS acquisitions in the high mass range, signal 

intensities across the m/z features showed high similarity between the LPS and IFN-γ+LPS 

stimulations.229  

Statistical analysis of four samples per macrophage stimulation from each of the three donors, 

acquired in analytical triplicate, resulted in the identification of three IFN-γ+LPS/LPS 

“biomarkers”, one IFN-γ “biomarker,” and three M0 “biomarkers” (Figure 5.4B). The IFN-

γ+LPS/LPS “biomarkers” m/z 642.06, 707.05 and 626.08 showed the highest intensity in the 

LPS treatment, closely followed by the IFN-γ+LPS treatment, and a significant reduction in the 

IFN-γ and M0 condition. This difference was visually exemplified for m/z 626.08 (Figure 5.4B). 

Here, signal intensity in the IFN-γ+LPS stimulated cells was in the low to mid 105 range and 

approximately four times less in the M0s.  

Conversely, the m/z 564.06 peak, a M0 marker along with m/z 664.25 and 450.07, had high 

signal intensity in the M0 condition (104 to low 105 region) and was nearly absent in the IFN-

γ+LPS stimulated cells (Figure 5.4B). While m/z 564.06 and 664.25 features were mainly 

detected in the M0 condition, higher baseline levels in the pro-inflammatory cell treatments 

were reported for the m/z 450.07 marker.  

Lastly, the m/z 697.59 peak was selected as IFN-γ marker. Although the signal intensity 

difference between the IFN-γ stimulation and the other three treatments was significant, the 

magnitude of the intensity change was low, indicating that “biomarker” robustness needed to 

be monitored closely in subsequent experiments.  
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Figure 5.4. Identification of MALDI-TOF MS “biomarkers” for different macrophage 
phenotypes. 
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(A) Heatmap displaying the normalised peak intensities (z-scoring per row) of 74 potential 
“biomarker” m/z features for M0 (purple) and pro-inflammatory macrophage phenotypes: 
IFN-γ (cyan), LPS (orange), or IFN-γ+LPS (green) stimulation. (B) Identification of significantly 
altered peak intensity levels for selected “biomarkers” (IFN-γ+LPS/LPS: m/z 642.06, 707.05, 
626.08; IFN-γ: m/z 697.59; M0: m/z 450.07, 564.04, 664.25). Statistical analysis was performed 
using one-way ANOVA, Tukey multiple comparison post-hoc test (n = 36; 4 samples from each 
of the three donors acquired in triplicate). Significance levels are indicated as follows: ns = p-
value ≥0.05, * = p-value 0.01 - 0.05, ** = p-value 0.001 - 0.01, *** = p-value 0.0001 - 0.001, 
**** = p-value >0.0001. Exemplary mass spectra showing peak intensity levels at m/z 564.06 
and 626.08 for M0 (purple) and IFN-γ+LPS (green) stimulated cells.  

 

5.3 Phenotypic screening with a broad mechanism of action compound set – JUMP 

To assess the performance of the developed MALDI-TOF MS workflow, including the 

subsequent data analysis pipeline, I screened the IFN-γ+LPS stimulated macrophages against 

87 well-annotated compounds of the Joint Undertaking of Morphological Profiling (JUMP) set 

(1 µM final assay concentration). This set was originally assembled for image-based profiling 

drug discovery efforts and possesses a large reference database to allow matching of 

compound MoA (https://jump-cellpainting.broadinstitute.org/). The compound set was 

slightly modified by my industrial collaborator GSK to encompass a total of 52 different MoAs 

(38 duplicate and 14 single MoA, chapter 2.2). The set included several compounds known to 

induce broad phenotypic changes and others with annotated targets in fundamental cell 

processes such as epigenetics, cytoskeleton, mitochondria, metabolism and cAMP, making 

them potential frequent hitters in phenotypic screens.358 It also contained compounds that 

had annotated targets in the IFN-γ and LPS signalling pathways. 

 

5.3.1 Unsupervised clustering did not identify hit compounds from the JUMP set 

After peak list filtering according to the previously established CV and fold change cut-offs 

based on the M0 and M1 controls, distinct M0 and M1 phenotype clusters were observed by 

PCA (four M0 and four M1 controls from each of the three donors acquired in triplicate, Figure 

5.5). However, no clearly distinct compound clusters were identified across the 87 JUMP 

compounds (tested in each donor once and acquired in triplicate). This could be due to the 

selected mass feature filtering approach or the large number of data points, impeding visual 

identification of clusters.  
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Figure 5.5. Clustering of control and JUMP compound set treated macrophages. 
PCA analysis of M1 activated macrophages after treatment with 87 JUMP compounds (orange) 
with untreated M1 (green) and unstimulated M0 (purple) macrophage controls derived from 
three human donors. Data were filtered according to the previously established CV and fold 
change methods for the M0 and M1 controls; nM0 = 4 per donor, nM1 = 4 per donor, all 
acquisitions conducted in triplicate. 
 

As an alternative approach to reduce the complexity of the large data set and to facilitate 

identification of hit compounds, I applied scalar projection analysis, a vector projection-based 

technique. This method determines two scores that characterise each compound within the 

space. First, a projection vector was drawn from the M1 to the M0 cluster to score the 

compound treatment’s likeness to cell polarisation. Next, the rejection from this vector was 

calculated to indicate how far a compound treatment pushed the cell phenotype away from 

the controls.  

The results showed that the M1 macrophages were clustered around a projection and 

rejection of 0 while the M0 macrophages were clustered around a projection of 1 and rejection 

of 0 (Figure 5.6A), demonstrating successful implementation of the workflow. However, there 

was considerable data spread within the controls, with M1projection of -0.5 to 0.6, and M0projection 

of 0.6 to 1.3. limiting the assay window. I conducted statistical testing with the z-scored 

projection and rejection values, comparing the compound treatments against the M1 

macrophage control. A high z-score indicated a large difference between the compound 

treatment and the M1 control in both the projection and rejection vector dimensions 

respectively. 
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Figure 5.6. Scalar projection analysis of control and JUMP compound set treated 
macrophages. 
(A) Scatter plot of rejection values plotted against projection values determined by scalar 
projection based on M1 (green) and M0 (purple) controls, nM0 = 4 per donor, nM1 = 4 per donor, 
acquisitions conducted in triplicate. (B) List of statistically significant compound projection z-
scores in comparison to the M1 controls; t-test (Bonferroni Holm). 

 

A comprehensive table of statistically significant hit compounds, along their projection and 

rejection scores, can be found in the supplementary materials (Supplementary Table S.1). 

Apart from a single compound (UNC0642, z-scorerejection = 6.99) (Supplementary Table S.1), no 

significant rejection was observed. For hit compound identification, the focus was on the 

projection z-score. The highest score was observed for the M0 macrophages (z-scoreprojection = 

2.4), followed by 34 additional hit compounds (z-scoreprojection between 0.38 and 2.2) (Figure 

5.6B). Notably, the DMSO-only control treatment appeared in 14th place on the hit list with a 

projection z-score of 1.2. This control was expected to align closely with the M1 macrophage 

phenotype and should not have been identified as hit compound, suggesting this could be an 

outlier or a result of the earlier observed data variability. Further analysis revealed that the 

M0 control was only 2.4 standard deviations away from the M1 cells, indicating suboptimal 

population separation and a limited signal window for hit calling. These findings highlighted 
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that scalar projection was not the most suitable tool for cellular MALDI-TOF MS data analysis, 

possibly due to the data input, prompting a shift to the analysis of the previously identified 

“biomarkers”, a more traditional approach to identify hits. 

 

5.3.2 “Biomarker” analysis identified phenotypic screen frequent hits and inflammation 

modulators from the JUMP compound set 

Initially, I examined the M0 “biomarker” features, m/z 450.07, 564.04 and 664.25. No mean 

intensity difference was observed between the M0 and M1 macrophages for the m/z 450 

marker (Supplementary Figure S.2). While different mean intensities were noted for the m/z 

564 and 664 features, a high data spread was observed (Supplementary Figure S.2). No hit 

compounds were identified which could be due to the compound treatment generating 

multiple phenotypes rather than just the goal M0 inflammatory phenotype. Consequently, the 

focus shifted to the pro-inflammatory stimuli m/z features, where signal reduction indicated 

M1 phenotype dissimilarity.     

The IFN-γ “biomarker” m/z 697, which required careful evaluation for signal robustness, failed 

to show a mean intensity difference between the M0 and M1 macrophages (mean normalised 

peak intensity = 1.5 and 1, respectively, Figure 5.7). As a result, this marker was excluded from 

the analysis.  

The remaining three IFN-γ+LPS and LPS-only stimulation markers, m/z 626.08, 642.06 and 

707.05, demonstrated a difference in mean intensity between the macrophage phenotypes 

(M0 = ~0.2 normalised peak intensity, M1 = 1 normalised peak intensity, Figure 5.7), proving 

them suitable for compound screen analysis. Notably, a high CV (%CV M0 = 95%, %CV M1 = 

52%) was observed for the m/z 642 marker, indicating reduced robustness and reproducibility. 

This variation could originate from outliers due to technical or experimental errors as stable 

signal intensities were previously reported. 
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Figure 5.7. Stability and reproducibility of M1 “biomarkers” across the controls in the JUMP 
compound set screen. 
Violin plots of the normalised peak intensities at m/z 626, 642, 697 and 707 from the resting 
(M0, purple) or pro-inflammatory (M1, green) iPSC-derived macrophage controls within the 
JUMP compound set screen. The %CV for each sample is indicated; nM0 = 4 per donor, nM1 = 4 
per donor, acquisitions conducted in triplicate. 
 

Upon evaluation of the 87 JUMP set compounds with the M1-specific “biomarkers”, the 

intensity of the m/z 642 peak decreased for a total of 44 compounds, indicating their less M1-

like phenotype or M1 dissimilarity (Figure 5.8). Given the earlier finding that this marker was 

less robust, I set a criterion that two markers had to show M1 dissimilarity (normalised peak 

intensity <0.6) for a compound to be considered a hit. This led to the identification of 17 hit 

compounds (Figure 5.8; indicated by the black box). The next step was to examine the MoA 

and target annotations for these hit compounds to narrow down hits and identify which 

phenotypes were detected with this assay. 
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Figure 5.8. “Biomarker” evaluation in the JUMP compound set screen. 
Heatmap of the averaged, normalised (based on M0 and M1) m/z 626, 642 and 707 signal 
intensities for 87 JUMP compounds and the M0 and M1 controls. The hit compound cut-off is 
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indicated by a black box (normalised peak intensity <0.6 for two markers); nM0 = 4 per donor, 
nM1 = 4 per donor, acquisitions conducted in triplicate. 
 

Based on their biological target annotation (Table 5.2), nine hit compounds can be categorised 

into different frequent hitter groups, namely metabolism, cell cycle and transcription 

modulators, as they are commonly detected by phenotypic screens due to the fact that they 

effect key cellular processes.358 FK-866 and AZD7545, were grouped as metabolism 

modulators.366,367 FK-866 targets nicotinamide phosphoribosyltransferase (NAMPT) and 

NAMPT inhibition can also reduce macrophage inflammation through NAD+/PARP1 pathway 

and hence hit detection might be cross-linked to inhibitory inflammation activity.368 

Romidepsin was grouped with RGFP966, LLY-283, T-0901317, and Dexamethazone as 

transcription modulator.369-372 Romidepsin targets histone deacetylases (HDAC) and HDAC 

inhibitors are known to have anti-inflammatory properties, again providing a cross-link to 

inflammation.373 Further, LLY-283 targets PRMT-5, a methyltransferase, which was linked to NF-

κB activity and hence hit calling might be inflammation associated.374 THZ1, targeting CDK7, a 

member of the cyclin-dependent protein kinase family involved in cell cycle progression, was 

grouped with SCH-900776 in the cell cycle modulators category.375,376 In inflammatory 

responses, CDKs regulate the activity of prominent transcription factors like NF-κB and STAT3, 

providing another cross-link.377  

FK-866 and Dexamethazone, detected within this screen, were recommended by the JUMP 

consortium as positive controls for image-based drug discovery efforts due to their highly 

diverse phenotypes. 

In addition to these potential frequent hitters, another subset of compounds encompassed 

the remaining eight hit compounds (Table 5.2). All eight compounds were associated with the 

immune system. CHIR-99021, FR-180204 and VX-475 target mitogen-activated protein kinases 

(MAPK), which are implicated in the inflammatory signalling cascade.378,379 ML-298 targets 

PLD2, which regulates macrophage polarisation in inflammation.380 Homochlorcyclizine, an 

antihistamine, affects LPS-induced signalling in macrophages.381 BCR-Abl, targeted by GNF-5 

and Ponatinib, activates cytokine signal transduction pathways in hematopoietic cells382, and 

Ponatinib has been demonstrated to target the p38 MAPK in the LPS signalling pathway229. 

Lastly, GSK2334470 targets AURKA, known to affect PLD-1, demonstrating beneficial effects in 

tumour-targeted therapy and immunotherapy.383 
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Table 5.2. JUMP set hit compounds from the MALDI-TOF MS assay biomarker analysis. 

Indicated are also their categorisation, mechanism of action, target annotation, and if they are 

recommended as screen positive controls by the JUMP consortium. 

Compound Categorisation 
Mechanism of 
action (MoA) 

Protein target 
Positive 
control 

Romidepsin Transcription HDAC inhibitor 

HDAC1, HDAC2, 
HDAC3, HDAC4, 
HDAC5, HDAC6, 
HDAC7, HDAC8, 

HDAC9 

No 

RGFP966 Transcription HDAC inhibitor HDAC3 No 

LLY-283 Transcription 
Protein arginine N-
methyltransferase 

inhibitor 
PRMT-5 No 

T-0901317 Transcription LXR agonist 
NCOA1, NCOA2, 
NR1H2, NR1H3, 

NR1I2, RXRB 
No 

Dexamethazone Transcription 
Glucocorticoid 

receptor agonist 
ANXA1 Yes 

THZ1 Cell cycle CDK inhibitor CDK7 No 

SCH-900776 Cell cycle CHK inhibitor CDK2, CHEK1 No 

FK-866 Metabolism 
Niacinamide 

phosphoribosyltrans
-ferase inhibitor 

NAMPT Yes 

AZD7545 Metabolism 
Pyruvate 

dehydrogenase 
kinase inhibitor 

PDK1 No 

CHIR-99021 
Inflammatory 

pathway 
Glycogen synthase 

kinase inhibitor 
CDK1, GSK3A, 

GSK3B, MAPK1 
No 

FR-180204 
Inflammatory 

pathway 
MAP kinase inhibitor MAPK1, MAPK3 No 

VX-475 
Inflammatory 

pathway 
p38 MAPK inhibitor 

MAPK11, MAPK12, 
MAPK14 

No 

GNF-5 
Inflammatory 

pathway 
Bcr-Abl kinase 

inhibitor 
ABL1, BCR No 

Ponatinib 
Inflammatory 

pathway 

Bcr-Abl kinase 
inhibitor, FLT3 

inhibitor, PDGFR 
tyrosine kinase 

receptor inhibitor 

ABL1, BCR, FGFR1, 
FGFR2, FGFR3, 

FGFR4, FLT3, KDR, 
KIT, LCK, LYN, 

PDGFRA, RET, SRC, 
TEK 

No 

GSK2334470 
Inflammatory 

pathway 

Phosphoinositide 
dependent kinase 

inhibitor 

AURKA, AURKB, 
PDPK1 

No 

ML-298 
Inflammatory 

pathway 
Phospholipase 

inhibitor 
PLD2 No 
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Homochlor-
cyclizine 

Inflammatory 
pathway 

Antihistamine HRH1 No 

 

Together, these results indicated that the MALDI-TOF MS workflow with subsequent biomarker 

analysis, was able to identify metabolism, cell cycle and transcription modulators, as well as 

inflammation-associated compounds. However, these proposed mechanisms of action were 

ambiguous, and did not exclude the possibility that compound activity could also be elicited 

via off-target effects such as cytotoxicity, that can lead to M1 “biomarker” decrease (loss-of-

function assay). As current data analysis workflows were insufficient to identify compound 

effects, for instance, an MTT assay could be conducted to test for cytotoxicity as follow up 

experiment. Further, cytotoxicity “biomarkers” could be determined and simultaneously 

measured by MALDI-TOF MS to filter out those compounds. However, I decided to proceed to 

screen a more targeted inflammation-specific compound set as I expected decrease in M1 

“biomarkers” alongside an increase in M0 “biomarkers” for inflammation signalling cascade 

hits which might enable me to distinguish between on- and off-target effects. 

 

5.4 Phenotypic screening with an inflammation-specific compound set 

I curated an inflammation-specific compound set, consisting of 86 compounds which were 

tested at a final assay concentration of 10 µM. These compounds were obtained from my 

industrial collaborator, GSK, and are part of their chemogenomics library. Chemogenomic 

libraries typically contain between 3,000 and 5,000 annotated compounds with significant 

biological diversity, providing insight into the biology captured by a phenotypic screen.384 The 

selected compounds in my inflammation-specific subset were annotated with various proteins 

involved in the inflammation signalling cascade, including ADAM17, BRD4, CREBBP, IKK, IRAK, 

JAK, MAPK, MTOR, MyD88, NF-κB, PIK, PLK, RIPK, STAT, and TLR4. The set also included 

compounds identified as hits in a proprietary anti-inflammatory screen conducted by GSK. 

Further modulators of glucose metabolism, which is altered in M1 macrophages were 

contained in the compound selection.  
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5.4.1 “Biomarker” analysis identified hits in the inflammation compound set and showed 

major hit alignment with an established cytokine profiling workflow 

I employed the “biomarker” analysis workflow to analyse the MALDI-TOF MS-based 

inflammation compound set data as scalar projection analysis was again unsuitable due to 

large variability within the controls (Supplementary Figure S.3). The M0 “biomarkers” m/z 

450.07, 564.04 and 664.25 exhibited again large signal variations and were therefor not used 

in the subsequent “biomarker” analysis (Supplementary Figure S.4). Similarly, the m/z 697 IFN-

γ “biomarker” was excluded because no difference in mean signal intensity was observed 

between the M0 and M1 macrophages (Supplementary Figure S.5).  

The remaining pro-inflammatory markers, m/z 626.08, 642.06 and 707.05, all showed stable 

%CV in the M1 polarised cells (20%, 15% and 21%, respectively) (Supplementary Figure S.5). 

The reduction in the m/z 642 CV from 52% in the previous JUMP screen to 15% in this screen 

resulted in an improved compound scoring alignment of this marker with the other two m/z 

features. Applying the previously established hit-calling criteria (two markers with normalised 

peak intensity <0.6), 24 hit compounds were identified (Figure 5.9A, black box). Within these 

hits, two subsets were distinguished based on the strength of the “biomarker” response, 

indicating either strong (10 compounds) or weak (14 compounds) M1 dissimilarity.  

To validate the identified MALDI-TOF MS hits, instead of using target annotation, results were 

compared to an established fluorescence-based cytokine profiling assay that was conducted 

by GSK employee Lee Booty. This label-based assay measured the secreted levels of pro-

inflammatory cytokines (IL-6, TNF-α, CXCL8 and GM-CSF) in the cell culture media.346,385 TNF-

α concentration was found to decrease first in response to compound treatment, indicating 

M1 dissimilarity for approximately one third of the tested compounds (Figure 5.9B). This 

response could be attributed to the lower overall concentration of TNF-α (chapter 4.4), which 

reduced the assay signal window and robustness. Therefore, consistent with the MALDI-TOF 

MS workflow, it was established that three cytokines had to show a normalised concentration 

<0.6 for hit calling. This criterion led to the identification of 20 hit compounds (Figure 5.9B, 

black box), further categorised into 12 compounds with strong M1 dissimilarity and 8 

compounds with weak M1 dissimilarity (Figure 5.9B). 
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Figure 5.9. MALDI-TOF MS “biomarker” and pro-inflammatory cytokine evaluation in the 
inflammation compound set screen. 
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Heatmap of the averaged, normalised (based on M0 and M1) (A) MALDI-TOF MS “biomarker” 
signal intensities at m/z 626, 642 and 707, and (B) IL-6, TNF-α, CXCL8, and GM-CSF cytokine 
concentrations after treatment with 86 inflammation-specific compounds. Hit compounds are 
indicated by a black box, with the hit threshold defined as a normalised peak intensity <0.6 (A) 
for two markers, and (B) four cytokines; nM0 = 4 per donor, nM1 = 4 per donor, acquisitions 
conducted in triplicate for MALDI-TOF MS only. 
 

Finally, a comparison of the hit compounds from the MALDI-TOF MS and cytokine profiling 

screen revealed a significant overlap: 18 hits (70%) were common between the two methods, 

6 hits (23%) were unique to MALDI-TOF MS, and 2 hits (3%) were unique to cytokine profiling 

(Figure 5.10A). The technology-unique compounds (MALDI-TOF MS: AP-III-a4, Spermidine 

trihydrochloride, LY294002 hydrochloride, T6167932, ARN-3236, Neratinib; Cytokines: 

Apremilast, TCMDC-125545) showed weak M1 dissimilarity within their respective screens. All 

compounds that showed strong M1 dissimilarity overlapped between the two screens. 

Further, the compound scoring between the two technologies showed a degree of correlation 

as demonstrated for the m/z 626 MALDI-TOF MS “biomarker” and the IL-6 cytokine (R2 = 0.41, 

Figure 5.10B). 

 
Figure 5.10. Comparison of inflammation compound set hits between the MALDI-TOF MS 
and cytokine screen. 
(A) Venn diagram of hits identified between the two different assays. (B) Correlation plot of 
the m/z 626 MALDI “biomarker” signal intensity and the IL-6 cytokine concentration; averaged 
and normalised data, linear regression fit. 

 

This large hit overlap between the MALDI-TOF MS method and the established cytokine screen 

indicated further successful hit calling by MALDI-TOF MS. However, I could not use the M0 

“biomarkers” as I anticipated to distinguish between on- and off-target hits within this MALDI-

TOF MS-based screen which was likely due to large signal variability. Further, the established 

cytokine screen also exclusively focussed on the reduction of pro-inflammatory cytokines and 
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hence also this approach cannot be used to profile false positive hits. Looking into the 

compound scoring within the inflammation-specific compound set, I noticed two compound 

subsets that either strongly or moderately reduced the inflammation marker. The group with 

the strongly decreased markers clustered together with the M0 control and could contain 

either highly effective or cytotoxic compounds that elicited signal loss. This hypothesis could 

be tested by including known cytotoxic compounds as controls into the screen or by 

performing different subsequent experiments that allow me to uncover compound MoA. 

 

5.5 Discussion 

I successfully developed a novel MALDI-TOF MS phenotyping workflow for resting and pro-

inflammatory iPSC-derived macrophages from three human donors based on m/z features of 

the lipid and metabolite region of the mass spectrum. I was able to cluster polarised cell 

phenotypes via PCA and identify phenotype-specific “biomarkers”. I used these “biomarkers” 

in conjunction with the target annotations of the JUMP compounds to hypothesise broad 

phenotypic changes induced by frequent phenotypic screen hits and inflammation-specific 

modulators. However, final MoA elucidation remained ambiguous. Instead, MALDI-TOF MS 

assay performance was validated by screening a customised inflammation-specific compound 

set. Multiple hits were robustly identified across three M1 “biomarkers” and a substantial 

overlap with results from an established cytokine profiling assay of the same compound set 

was observed. Notably, neither the MALDI-TOF MS assay nor the cytokine screen were able to 

distinguish between on- and off-target effects, such as cytotoxic as both approaches were loss 

of function assays, relying solely on a reduction in pro-inflammatory features for hit 

identification. 

 

5.5.1 MALDI-TOF MS cellular assays 

MALDI-TOF MS demonstrated promise as a novel tool for hit triaging in macrophage-centred 

phenotypic drug discovery screens. I systematically optimised the cellular MALDI-TOF MS 

workflow to achieve macrophage phenotype separation, featuring the importance of precise 

workflow optimisation as highlighted by Heap et al. 2019.208 Although PCA did not identify hit 

compounds from the full mass spectrum data, limiting its ability to cluster known compounds 

and potentially predict cytotoxicity effects44,229, further implementation of machine learning 
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algorithms could enhance spectral reference fingerprinting for better phenotype 

identification195,196,386,387. A novel software, M2ara, has recently been released for data 

evaluation of whole cell MALDI-TOF MS assays.388 It can be used to perform feature scoring 

and robustness evaluation to perform subsequently guided peak filtering which might result 

in improved clustering.  

Nevertheless, the robustly and reproducibly identified “biomarkers” effectively guided hit 

identification. A future directive could be the confirmation of the “biomarker” identity. As 

metabolites and lipids are detected in a mass range up to 1500 Da, confirming the identity of 

these “biomarkers” would require additional experiments, such as LC-MS/MS or Fourier-

transform ion cyclotron resonance MS.389,390 While identifying these “biomarkers” was beyond 

the scope for this thesis, it could be a particularly valuable approach when analysing disease-

specific cell phenotypes by MALDI-TOF MS.  

While MALDI-TOF MS is extensively developed for bacterial phenotyping, its use for eukaryotic 

cells is still emerging. Standardised protocols for bacterial species have led to large spectral 

libraries for reliable species identification.189,193,360 While ribosomal protein signatures are 

used to distinguish bacterial phenotypes, the workflow developed in this chapter focussed on 

lipids and metabolites (m/z 400 - 1,000). Overall, there is significant potential for translating 

MALDI-TOF MS cell phenotyping workflows to a broad range of cell phenotypes without the 

need to develop entirely new assays. For instance, a standardised MALDI-TOF MS workflow 

has already been used to rapidly characterise 66 different cell lines and a great methodological 

overlap between the here developed workflow and the already published lipid signature 

MALDI-TOF MS screens was observed.206,209 Given the success of MALDI-TOF MS imaging in 

tracking metabolites and lipids for various applications, it is likely that these approaches can 

be adapted for HTS in various cell types.  

 

5.5.2 Phenotypic screening 

Cellular phenotypic screens, in contrast to biochemical assays, focus on detecting the overall 

phenotype, providing the possibility to capture both on- and off-target effects, such as 

cytotoxicity. However, the directionality of the assay needs to be carefully selected as toxic 

compounds are often detected among hits in loss-of-function assays but are not typically 
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identified in gain-of-function assays.35,358 In this study, loss-of-signal assays were employed as 

reduction in pro-inflammatory MALDI-TOF MS “biomarkers” or cytokines was monitored. 

Further, the selection of compound sets for phenotypic screening assay validation is crucial. 

Unlike target-based screens, which use large, chemically diverse sets (~10,000 compounds), 

phenotypic screens utilise biologically diverse and well-annotated libraries, such as the JUMP 

compound set or chemogenomic libraries, to inform on the biology captured by the 

phenotypic assay.384 Customised libraries can be assembled for hypothesis-driven validation, 

reducing the scale of the initial screening efforts.  

Lastly, the assay readout is a critical factor in assay performance. Different readouts capture 

various biological endpoints, from gene expression to protein activity.37 While the gene 

expression is closely associated with the stimulus, protein activity would yield more 

information about the disease phenotype.37 The MALDI-TOF MS and cytokine release assays 

used here are aimed to capture disease relevant phenotypes, which was supported by the 

observed overlap in hit compounds between the two methods. However, these loss-of-

function assays require subsequent experiments to differentiate between on-and off-target 

effects. 

Other phenotypic screening assays exist that are used for evaluation of macrophage 

polarisation including T cell activation assays263, real-time phagocytosis activity assays264 and 

cell surface marker detection via flow cytometry40,265,266 but all are also unable to elucidate 

the MoA or intracellular targets of identified hits. These assays are mainly image-based or 

label-based methods that can suffer further from drawbacks outlined earlier for label-based 

assays. Still, they are frequently used for hit-triaging.  

Assays which offer more complex information have gained interest in the phenotypic screening 

community as they promise to provide further compound information. Cell painting which 

uses multiplexed fluorescence dyes for image-based profiling, and bulk RNA sequencing 

methods to study transcriptomic effects are examples of more complex screening approaches. 

Although not yet extensively implemented, a new wave of higher throughput proteomics 

approaches holds potential to provide more data depth for phenotypic screening in the future.  
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Chapter 6. Proteomics as a tool to deconvolute mechanisms of action for 
phenotypic screen hit compounds 

 

Interpreting the outputs of phenotypic screens can be complex and might require follow up 

experiments to distinguish if hits are acting by a desired or undesired MoA such as cytotoxicity. 

Various strategies for target identification and MoA profiling during and after phenotypic 

screening have been reported. First, compound-protein interactions can be identified 

subsequently to screening through methods such as affinity enrichment followed by 

chemoproteomics or thermal shift assays.15 A second strategy involves introducing genetic 

perturbations in conjunction with compound treatments, allowing MoA elucidation 

simultaneously to screening.391-393 Lastly, a common strategy involves comparing 

experimentally determined phenotype signatures against large libraries that already contain 

gene expression, cell morphology and biomarker information in response to chemical or 

genetic perturbations.41,394-396 One key advantage of this library-based approach is the 

feasibility of screening numerous compounds compared to legacy slow-throughput 

proteomics efforts, but this library-based approach relies on the similarity of phenotypes to 

known compounds and, consequently, known MoAs.35 In contrast, proteomics holds promise 

for discovering novel MoAs and with rapidly improving workflow capabilities is increasingly 

utilised. 

In this chapter, I aimed to investigate if an increased throughput, label-free DIA proteomics 

workflow was suitable as a phenotypic screening tool, and additionally determined if the 

workflow could be used to elucidate the MoA of hits. I assessed iPSC-derived macrophages 

from three human donors which were differentiated with 100 ng/mL M-CSF, treated with the 

86 curated inflammation compounds, and stimulated for 24-hours with IFN-γ+LPS. Initially, I 

determined hit compounds via scalar projection analysis and compared the results to the 

previously described phenotypic MALDI-TOF MS and cytokine profiling HTS approaches 

(chapter 5). Then, I attempted hit MoA elucidation by evaluating the global proteome and M1 

protein biomarker expression. 
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6.1 Global proteome analysis revealed six compounds with a large number of missing values  

IFN-γ+LPS polarised iPSC-derived macrophages (~27,000 cells) treated with the inflammation 

compound set (10 µM) were lysed, and subsequently the S-Trap method used for efficient 

peptide preparation. A peptide pool composed of equal amounts from all 288 samples was 

fractionated into 24 fractions (offline fractionation, chapter 2.6.3) and the resulting samples 

used for spectral library generation in FragPipe. Searching against this spectral library later in 

the analysis of the 288 samples (86 compounds, four M0 and four M1 polarised macrophage 

samples per donor) increased data analysis search speeds while maintaining data depth. The 

unfractionated peptide pool was acquired in DDA to design a 16 variable window dia-PASEF 

acquisition method (details chapter 2.6.2) that increased sample coverage. All 288 samples 

were acquired on the timsTOF HT MS, coupled to an Evosep LC system operated with the 60 

sample per day method (21 min gradient) to reduce the total run time to five days (~24 days 

with 2-hour gradient legacy method). Data were searched in DIA-NN (detailed search 

parameters chapter 2.7.3) and mean normalisation, as well as batch correction on a donor 

level conducted. Post-filtering was applied to remove known contaminants and single peptide-

protein matches.  

In total, 5505 proteins remained after filtering and 5477 of these proteins were quantified 

within 75% or more samples. An average of 46,747 peptides and 5,153 proteins (standard 

deviation = ±372) was observed per sample which aligned with previous macrophage time 

course experiment results, indicating sufficient data depth to evaluate macrophage 

polarisation. Further, workflow robustness across the three different donors was observed as 

highly similar average protein numbers per sample were detected between the donors (donor 

1 = 5141 ±306 proteins, donor 2 = 5169 ±421 proteins, donor 3 = 5148 ±382 proteins). The 

mean %CV of all protein intensities as an example investigated for the M0 and M1 macrophage 

controls indicated workflow robustness across technical replicates (donor 1: M0 = 13.72%, M1 

= 12.42%; donor 2: M0 = 11.28%, M1 = 10.22%; donor 3: M0 = 12.53%, M1 = 13.79%) and 

between different donors (M0 = 12.30%, M1 = 12.90%). 

The log2 signal intensity of the proteins was plotted for each compound treatment (Figure 6.1). 

In unsupervised hierarchical clustering, most compounds, as well as the resting and M1 

macrophages, clustered together. Within this cluster, high and low abundant proteins were 

detected, but little differential expression within a protein across different treatments was 
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observed. This aligns with previous findings of a 5% expression change in the overall proteome 

in response to macrophage polarisation.346,397 However, I observed a distinct cluster of six 

compounds, PD 166285, Ulixertinib, SH-4-54, A-485, TPCA-1 and Staurosporine (Figure 6.1; 

indicated by the black box), characterised by a higher number of missing values (six compound 

set: 1468 ±617 NAs, remaining compounds: 277 ±185 NAs), primarily in the lower intensity 

proteins. These missing identifications could indicate that these compounds induced 

significant cellular changes, affecting cellular protein content as seen in cell death, suggesting 

compound cytotoxicity.398 The next step was to identify hit compounds and evaluate their MoA 

alongside the proposed cytotoxic compounds. 

 
Figure 6.1. Macrophage compound treatment clustering on a global protein level.  
Heatmap with unsupervised hierarchical clustering of log2 intensity of all proteins maintained 
after filtering, normalisation and batch correction. Median normalisation and batch correction 
at donor level was performed. Filtering was performed for known contaminants and proteins 
with a single unique peptide match. Analysis was performed for M1 activated macrophages 
after treatment with 86 inflammation-specific compounds with untreated M1 (green) and 
unstimulated M0 (purple) macrophage controls derived from three human donors; nM0 = 4 per 
donor, nM1 = 4 per donor. 
 



114 
 

6.2 Scalar projection analysis revealed 17 hits from the inflammation compound set by 

proteomics, showing a large overlap with HTS screen hit calling 

I decided to test the previously described scalar projection analysis for hit compound 

identification from proteomics data. In the MALDI-TOF MS screen, scalar projection analysis 

suffered from high variability within the controls and further only ~150 features were used in 

the analysis. In contrast, with the proteomics dataset, >5000 proteins were detected and a 

tight clustering of the M1 (projection = -0.02 - 0.04, and rejection = -0.09 - 0.29) and M0 

controls (projection = 0.89 - 1.09, and rejection = -0.10 - 0.21) observed (Figure 6.2A). This, 

along with a high projection z-score for the M0 control (M0 z-scoreprojection = 4.1) (Figure 6.2B), 

confirmed that scalar projection was a suitable tool for hit calling from proteomics data.  

In total, 17 hit compounds were identified by t-testing against the M1 control, yielding an 

overall hit rate of 20%. Comparing these proteomics hits with the MALDI-TOF MS “biomarker” 

and cytokine screen hits showed a large overlap between all technologies, with 15 common 

compounds (Figure 6.2C). This large overlap further validated the assay’s suitability and the hit 

identification in the previously developed MALDI-TOF MS assay.  

Among the 15 common hits were six compounds that previously showed a higher number of 

missing values. These compounds were characterised by high projection scores (z-scoreprojection 

= 2.06 - 3.63), indicating high M1 dissimilarity, and some of the highest rejection scores (z-

scorerejection = 1.29 - 4.90), indicating high M1 and M0 dissimilarity (Figure 6.2B). This 

strengthened my hypothesis that these compounds induced off-target effects.  

The remaining common compounds were AZD-5153, AZD8055, Dactolisib, M62812, P005091, 

SAHA, Vistusertib, WYE-125132, and Z-Phe-CH2Cl, that exhibited lower projection and 

rejection scores (z-scoreprojection = 1.03 – 2.58, z-scorerejection = 0.48 – 2.34) (Figure 6.2B) than 

the first group.  

In addition to the 15 common hits, two compounds were identified uniquely by proteomics. 

These compounds showed a projection z-score of 2.00 and 1.03, and low rejection z-score of 

0.49, and 0.39, for Ruxolitinib phosphate and CP 690550 citrate, respectively (Figure 6.2B).  

Lastly, 11 compounds were identified as hits by either the MALDI-TOF MS or the cytokine 

screen (or both) but not by proteomics; three proteins were common to both methods, six 
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were unique to the MALDI-TOF MS screen, and two were unique to the cytokine screen (Figure 

6.2C).  

 
Figure 6.2. Scalar projection analysis of macrophage compound treatment induced 
proteome changes. 
(A) Scatter plot of rejection values plotted against projection values determined by scalar 
projection analysis of M1 activated macrophages after treatment with 86 inflammation-
specific compounds with untreated M1 (green) and unstimulated M0 (purple) macrophage 
controls derived from three human donors; nM0 = 4 per donor, nM1 = 4 per donor and 
highlighted high NA compounds identified earlier in global proteome analysis. (B) List of 
statistically significant compound projection z-scores in comparison to the M1 controls; t-test 
(Bonferroni Holm) and rejection z-scores. Highlighted on the y-axis are high NA compounds 
(pink) and proteomics screen unique hits (orange). (C) Venn diagram of hits identified with the 
proteomics (orange), MALDI-TOF MS (green) and cytokine (blue) screening assays. 

 

Further proteomics analysis of both, non-proteomics and proteomics hits, was conducted to 

identify true hits from these screens and elucidate their MoA.  
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6.3 Global M1 biomarker analysis indicated grouping of proteomics hit compounds into two 

subsets 

All compound treatments that led to an M1-deviating phenotype should show a reduction in 

M1 protein markers, including cell surface markers like CD44, interferon stimulated genes 

(ISGs) and interferon induced genes (IFITs), as well as proteins of the antigen presenting 

machinery (HLAs) extensively discussed in chapter 4.3.1. Following this loss of function 

approach, I assessed the fold change of the M1 protein markers (significantly upregulated 

proteins in the M1 polarisation compared to the M0, Supplementary Figure S.6) in the 

compound treatments relative to the M1 macrophage controls. The majority of compounds 

showed a low fold change in M1 protein markers, indicating that the compound treatment still 

resulted in an M1 macrophage phenotype (Figure 6.3A). However, 18 compounds exhibited a 

negative fold change, indicating an M1-deviating phenotype. Except for the PROTAC RIPK 

degrader-2, all 17 compounds had been previously identified as hits by scalar projection 

analysis of the proteomics data.  

Unsupervised hierarchical clustering separated the hit compounds into two distinct subsets 

based on the magnitude of the fold change (Figure 6.3A). The first subset showed a strongly 

reduced fold change in M1 markers across eight compounds. Six of these compounds were 

earlier characterised by an increased number of NAs, as well as high projection and rejection 

scores. Further, these compounds were associated with strongly reduced inflammation 

markers in the MALDI-TOF MS and cytokine screen. 

The second subset was characterised by a moderate fold change reduction in M1 protein 

markers and included ten compounds: AZD-5153, AZD8055, CP 690550 citrate, Dactolisib, 

P005091, PROTAC RIPK degrader-2, Ruxolitinib phosphate, Vistusertib (AZD2014), WYE-

125132, and Z-Phe-CH2Cl. These compounds had lower projection (z-scoreprojection = 1.03 - 

2.00) and rejection (z-scorerejection = 0.39 - 0.88) z-scores compared to set one (Figure 6.3B).  
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Figure 6.3. Macrophage compound treatment clustering based on selected pro-
inflammatory protein levels. 
Heatmap with unsupervised hierarchical clustering of z-scored log2 fold change intensities 
obtained by t-testing (Benjamin-Hochberg correction) the compound treated macrophages 
against the M1 controls. (A) Displayed M1 marker proteins were selected based on significant 
changes in comparison to the M0 control (log2 protein fold change cut-off = -2 or 2, -log10 
adjusted p-value cut-off = 0.01); nM0 = 4 per donor, nM1 = 4 per donor. (B) List of statistically 
significant compound projection z-scores in comparison to the M1 controls; t-test (Bonferroni 
Holm) and rejection z-scores. Highlighted on the y-axis are set 1 (pink) and set 2 compounds 
(cyan) determined in (A). 
 

The high overlap in grouping based on clustering and scalar projection approaches suggested 

that these initial analysis methods might distinguish between off-target/cytotoxic (set one) 

and on-target/inflammation-specific cell phenotypes (set two). However, the hypothesised 

biological effects leading to this clustering still needed to be confirmed. 

 

6.3.1 Distinguishing cytotoxic compounds and on-pathway hits by proteomics 

To classify the biological effects of the compounds, I analysed the Kyoto Encyclopaedia of 

Genes and Genomes (KEGG) pathway, as well as the Gene Ontology (GO) terms for biological 

processes (GO Bio), cellular components (GO Cell), and molecular functions (GO Molecular) 
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associated with the significantly downregulated proteins from each compound treatment in 

the two clusters. 

First, I noted a higher number of associated pathways for the set one compounds compared 

to set two (set one: 262-802 pathways, set two: 76-167 pathways, Figure 6.4A). This was due 

to a higher number of significantly downregulated proteins in set one compounds compared 

to set two compounds (set one: 260-1278 downregulated proteins, set two: 93-139 

downregulated proteins, Supplementary Figure S.7). I selected 22 GO Bio terms based on their 

adjusted p-value and fold enrichment to display inflammation/macrophage-specific pathways 

(12 terms, including inflammatory response, pattern recognition receptor signalling pathway, 

and response to cytokine) and cytotoxicity-associated pathways (10 terms, including 

autophagy, regulation of apoptotic signalling pathway, and response to reactive oxygen 

species) to determine the compound-induced biological effects.  

The set one compounds showed significant association with all terms, supporting the 

hypothesis that cytotoxicity was induced instead of inflammation, explaining the 

absence/reduction in inflammation markers (Figure 6.4B). Literature research and GSK target 

annotation evaluation (Supplementary Table S.2) revealed that most compounds are well-

known cell death inducers. Further, these compounds can be divided into three subsets. 

 

First subset: Kinase inhibitors 

Kinases targeted by Staurosporine, PD 166285, and Ulixertinib are key cell cycle checkpoint 

proteins, and their dysregulation can induce cell death.399 Ulixertinib is a potent ERK1/2 

inhibitor tested in the clinic for the treatment of solid tumours400,401, while Staurosporine is a 

broad-spectrum kinase inhibitor that demonstrated cytotoxicity in several human cancers via 

dysregulation of the PI3K/Akt pathway, which is also part of the LPS signalling cascade402.  

 

Second subset: Histone modulator inhibitors 

A-485 and SAHA, induced cell death via histone modulator inhibition. A-485 targets the histone 

acetyltransferase coactivator, which regulates transcription of genes for tumour progression, 

and its treatment has shown to induce cell death in murine hematopoietic cells.403 Reduction 

in cell viability was also observed after treatment with low micromolar concentrations of the 
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histone deacetylase inhibitor SAHA.404 Blank et al. 2022 have used SAHA to confirm the 

performance of their lipid-based MALDI-TOF MS screen for LPS-induced microglial activation 

as HDAC inhibitors showed next to cytotoxicity also beneficial effects in inflammation-related 

diseases.373,405 The authors reported a reduction in M1 characteristic lipid markers and 

cytokines, indicating inflammation reduction at 1 µM SAHA. However, their cell viability 

assessment with an average of 80% showed a large standard deviation (>±20%), highlighting 

the benefit of proteomics for subsequent analysis of loss-of-function screen hits to provide 

reliable off-target effect identification.139  

 

Third subset: Inflammation signalling cascade inhibitors 

SH-4-54, TPCA-1, and M62812 target proteins in the inflammation signalling cascade. SH-4-54 

and TPCA-1 are small molecule inhibitors of STAT3, a key protein in IFN-γ signalling, and 

M62812 is a TLR4 inhibitor. The experiments were conducted at 10 µM compound 

concentration, although all three compounds are reported to induce biological activity in cells 

at low nanomolar levels. Since compound toxicity is concentration-dependent, this explained 

the observed cytotoxicity.406-410  

 

In contrast to the compounds of this set one (including all three subsets), the ten proteomics 

hit compounds from set two were not associated with the off-target GO Bio terms (Figure 

6.4B). Furthermore, they showed a higher fold enrichment in the inflammation-associated 

terms compared to set one, supporting the hypothesis that they elicited inflammation 

pathway-specific effects.  

To summarise, proteomics allowed me to distinguish between cytotoxic compounds and 

potential inflammation pathway hits, which was not possible with the MALDI-TOF MS or 

cytokine HT screening efforts.  
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Figure 6.4. KEGG and GO term association of proteomics hit compounds. 
Utilised were the significantly upregulated proteins to generate (A) Bar charts representing the 
number of significantly changing KEGG (green), GO Bio (orange), GO Cell (blue), and GO 
Molecular (pink) terms for the set 1 and set 2 associated hit compounds, as well as the M0 
control. (B) Display of inflammation (top 12) and off-target/cytotoxicity (bottom 10) associated 
GO Bio terms for the set 1 (cyan) and set 2 (red) compounds. Fold enrichment from 
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significantly enriched terms (p-value <10-5) are plotted as small (lower significance) and large 
(higher significance) dots.  

6.4 Mechanism of action deconvolution of non-toxic proteomics hits revealed inflammation 

targets 

The next step was to evaluate whether proteomics could also be used to deconvolute the MoA 

for the ten proposed inflammation pathway hits. First, clustering on a global proteome level 

was performed with only these compounds, including M0 and M1 controls. Three distinct 

compound clusters were revealed (Figure 6.5A). The first cluster contained WYE-125132, 

AZD8055, Vistusertib (AZD2014) and Dactolisib which cluster together with the M1 control. 

The next cluster included AZD-5153, PROTAC RIPK degrader-2, P005091, and Z-Phe-CH2Cl and 

was located between the M0 and M1 controls but with a higher rejection compared to the last 

cluster. This last cluster contained CP 690550 citrate, and Ruxolitinib phosphate which were 

clustered closest towards the M0 control.  

This compound grouping was confirmed in a heatmap of the global proteome where only 

significantly changing proteins between the groups were analysed (Figure 6.5B).  

Next, a more detailed investigation of all previously established M1 protein markers 

(significantly upregulated proteins in the M1 polarisation compared to the M0, Supplementary 

Figure S.6) was performed and revealed the same grouping into the three compound subsets. 

All subsets showed a strong reduction across the M1 markers (Figure 6.5C).  

Together, this could indicate that differences between the subgroups were driven by the 

compounds ability to modulate the inflammatory response to the IFN-γ+LPS stimulus. 
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Figure 6.5. Clustering of proposed inflammation pathway hits based on the global proteome 
and inflammation specific proteins. 
(A) PCA based on global proteome changes, (B) Heatmap based on significantly changing 
proteins in the whole proteome between all groups, and (C) Heatmap based on M1 protein 
marker expression (marker selection based on differential M0/M1 expression). RPO = PROTAC 
RIPK degrader-2, AZD-5 = AZD-5153, P00 = P005091, ZPhe = Z-Phe-CH2Cl, Dac = Dactolisib, 
AZD-8 = AZD8055, Vis = Vistusertib, WYE = WYE-125132, Rux = Ruxolitinib phosphate, CP = CP 
690550 citrate. 
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Subsequently, I assessed the M0 likeness of the different compound treatments by evaluating 

the reduction of selected M1 protein markers that were associated with different 

inflammation signalling pathways to see if these markers can be used to evaluate the 

compound MoA. Based on the LPS and IFN-γ signalling-specific markers as well as cell surface 

proteins, I was able to distinguish the same three compound subsets previously described. 

 

First subset: Core inflammatory pathway targeting compounds 

The first subset contained four compounds: PROTAC RIPK degrader-2, AZD-5153, P005091 and 

Z-Phe-CH2Cl. These compounds were characterised by high M0 likeness across IFN-γ and LPS 

signalling as well as cell surface markers, suggesting they target core inflammatory pathway 

proteins like transcription factors, leading to complete suppression of M1 macrophage 

polarisation (Figure 6.6).  

• PROTAC RIPK degrader-2 targets RIPK2, a kinase downstream of pattern recognition 

receptors NOD1 and NOD2.411 NOD2 signalling can augment LPS-induced TLR4 

signalling by increasing MyD88 expression and IKKγ activation.412 High RIPK2 

expression is also associated with innate immunotherapy resistance through the 

JAK/STAT3 IFN-γ signalling pathway.413  

• AZD-5153 directly targets BRD4, which activates transcription of various immune and 

inflammatory genes.414  

• P005091 targets USP7, which can deubiquitinate NF-κB, a transcription factor activated 

both by MyD88-dependant and independent cascades in LPS signalling, and which 

interacts with STAT1 in IFN-γ signalling.415  

• Z-Phe-CH2Cl targets CREBBP (Supplementary Table S.3), a coactivator for transcription 

factors NF-κB and AP-1.416  

 

Second subset: LPS pathway targeting compounds  

The second subset included four compounds: Dactolisib, AZD8055, Vistusertib, and WYE-

125132. These compounds showed high M0 likeness in the chemo- and cytokines and in the 

LPS signalling protein targets upstream of the transcription factors (Figure 6.6), indicating 

possible activity in the LPS signalling cascade. Looking into the GSK target annotations revealed 

that all these compounds targeted mTOR, and Dactolisib also targeted PIK3 (Supplementary 
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Table S.3). While mTOR is a metabolism-associated target that according to Vincent et al. 2020 

is also targeted by frequent phenotypic screen hit compounds, mTOR activation is also 

described downstream of PI3K signalling in response to LPS stimulation.417 Typical M1 

metabolism markers were investigated, but no M0 likeness was observed in tryptophan 

catabolism or glycolysis (Supplementary Figure S.8). Although M0 likeness in chemo- and 

cytokines was observed, indicating the desired phenotype, the exact MoA remained unknown, 

highlighting a limitation of the proteomics workflow. 

 

Third subset: IFN-γ pathway targeting compounds 

The last subset contained two compounds: Ruxolitinib phosphate and CP 690550 citrate, 

detected only by proteomics and not in the MALDI-TOF MS or cytokine HT screens.  

• Ruxolitinib phosphate showed M0 likeness across most IFN-γ signalling and antigen 

presentation markers but only slight M0 likeness in the chemo- and cytokines (Figure 

6.6).  

• CP 690550 citrate showed similar response in chemo-and cytokines but only M0 

likeness in one-third of the IFN-γ signalling markers.  

Both compounds are annotated JAK inhibitors (Supplementary Table S.3). JAK1 and JAK2 are 

recruited by the IFN-γR to phosphorylate STAT1 in response to IFN-γ stimulation. This explains 

why Ruxolitinib phosphate, a selective and potent inhibitor of JAK1 and JAK2, exhibited more 

dominant effects compared to CP 690550 citrate, which is most potent for JAK3.418,419 
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Figure 6.6. M0 macrophage likeness scoring of set 2 proteomics hit compounds across 
different signalling pathways. 
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Log2 protein intensity recorded for each compound treatment was normalised against 
intensity levels in the M0 and M1 controls for proteins associated to (A) LPS signalling, (B) IFN-
γ, (C) chemo- and cytokine, (D) antigen presentation and (E) cell surface marker; RPO = PROTAC 
RIPK degrader-2, AZD-5 = AZD-5153, P00 = P005091, ZPhe = Z-Phe-CH2Cl, Dac = Dactolisib, 
AZD-8 = AZD8055, Vis = Vistusertib, WYE = WYE-125132, Rux = Ruxolitinib phosphate, CP = CP 
690550 citrate 

 

I was able to confirm the hits as inflammation modulators and proposed the MoA for some 

compounds but to evaluate the pathway engagement on the whole proteome level, I 

evaluated inflammation protein expression changes against the M0 control. Overall, I observed 

that the compounds reduced inflammation pathway activity, indicated by a decrease in 

inflammation pathway proteins detected after treatment compared to M1 macrophages but 

residual inflammation activity was still observed (Figure 6.7).  

The mTOR inhibitors showed the largest proportion of remaining upregulated inflammation 

associated proteins (Figure 6.7C). As they were proposed to act in the LPS signalling cascade 

which showed protein expression changes overall in fewer proteins compared to IFN-γ 

signalling pathways this could explain the observation. Further analysis of the significantly 

changing proteins for these compounds revealed association with inflammation pathways but 

not glycolysis, strengthening the hypothesis that inflammation inhibition was exhibited 

through the LPS signalling cascade and not by changes in the metabolism. Subsequent 

metabolomic analysis would provide a more comprehensive picture. 

The core inflammatory pathway targeting compounds showed reduced inflammatory protein 

levels (Figure 6.7A). An interesting compound within this group was the PROTAC RIPK 

degrader-2 which showed the largest proportion of downregulated proteins across all 

compounds. Analysis of the differentially regulated proteins revealed significant association 

with the G1/S-specific transcription (p-value = 0.01, fold enrichment = 18.5), and integrin cell 

surface interactions (p-value = 0.01, fold enrichment = 6) of the curated reactome pathways. 

This potentially indicated off-target effects associated to the PROTACs kinase degrading 

function. All kinases such as cyclin-dependent kinases that regulate the cell cycle and RIPK2 

which modulates inflammatory responses share a conserved catalytic domain, a potential 

source for compound binding that could result in off-target effects.420  
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Finally, I was able to determine effectiveness between the two JAK inhibitors. CP 690550 citrate 

showed higher residual inflammation protein levels compared to Ruxolitinib phosphate (Figure 

6.7B). Further, Ruxolitinib phosphate seemed to be the most potent inflammation inhibitor in 

this analysis. This inhibitor also clustered closest to the M0 control in PCA (Figure 6.5A) and 

showed the highest M0 projection z-score in scalar projection analysis after the cytotoxic 

compounds (Figure 6.3B). This highlighted that proteomics was also able to distinguish 

effectiveness of on-target compounds. 

To summarise, I utilised global proteomics to derive clustering based on the compound MoA. 

Subsequent analysis with biomarkers allowed for association of MoAs to the different 

compound clusters. Further, compound effectiveness and potential off-target effects were 

derived from global proteome pathway engagement analysis.  
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Figure 6.7. Protein expression changes of the set 2 proteomics hit compounds and the M1 
control in comparison to the M0 control. 
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Inflammatory proteins based on their reactome pathway association are labelled and then 
displayed separated into down- and upregulated proteins in a pie chart (chart size corresponds 
to number of proteins). Comparison against M0 control for (A) Core inflammatory pathway 
targeting compounds: RPO = PROTAC RIPK degrader-2, AZD-5 = AZD-5153, P00 = P005091, 
ZPhe = Z-Phe-CH2Cl; (B) IFN-γ pathway targeting compounds: Rux = Ruxolitinib phosphate, CP 
= CP 690550 citrate; (C) LPS pathway targeting compounds: Dac = Dactolisib, AZD-8 = AZD8055, 
Vis = Vistusertib, WYE = WYE-125132; (D) M1 control 

 

6.5 Mechanism of action analysis of HTS inflammation set hits revealed inflammation targets 

and potential false positive hits 

Finally, I assessed whether the six compounds unique to the MALDI-TOF MS screen, the two 

unique to the cytokine screen , and the two overlapping hit compounds that were all not 

detected by proteomics were true hits. For these compounds, no cytotoxic or off-target 

associated GO Bio terms were observed (Figure 6.8).  

In the broader inflammation-associated terms such as “inflammatory response” and 

“response to lipopolysaccharide” or “response to cytokine,” significant fold changes were 

observed. However, these changes were not highly significant, likely due to the low number of 

significantly downregulated proteins (2 - 58 proteins per treatment, Supplementary Figure 

S.7), potentially also explaining why these compounds were not initially identified as hits by 

proteomics. 

 
Figure 6.8. GO term association of MALDI-TOF MS and cytokine hit compounds. 
Analysis of significantly upregulated proteins after treatment with compounds not identified 
as proteomics hits but identified as hits in the cytokine (green), MALDI-TOF MS (blue) or both 
(purple) HTS screens. Fold enrichment from significantly enriched terms (p-value <1E-5) are 
plotted as small (lower significance) and large (higher significance) dots. 
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Similarly to the GO term determination, the overall M0-like phenotype scoring across all 

markers and pathways was much lower for these compounds compared to the previously 

identified proteomics hit compounds. This was likely due to the reduced number of 

significantly changing proteins. Despite this, I was able to assign MoAs to some compounds 

based on the LPS and IFN-γ signalling markers, as well as chemo-and cytokines.  

 

Core inflammatory pathway targeting compounds 

I identified two compounds that showed M0 likeness within the IFN-γ and LPS signalling, 

suggesting core inflammatory pathway targets as eluded to earlier (Figure 6.9). The two hit 

compounds, ARN-3236 and Neratinib, target kinases which not only induce cell death but also 

drive inflammation.421 ARN-3236 targets SIK2, which modulates the transcription factor 

coactivator CREBBP, regulating inflammation.422,423 Both compounds were only identified in 

the MALDI-TOF MS-based screen. Previously, Heap et al. 2017 demonstrated that a 

biochemical MALDI-TOF MS-based screen was well-suited for identifying kinase inhibitors and 

Weigt et al. 2018 have introduced lipid biomarkers that can be used to monitor kinase inhibitor 

activity in a cellular-based MALDI-TOF MS screen.122,225  

 

LPS pathway targeting compounds 

The highest M0 likeness in the chemo- and cytokine intensities determined by proteomics was 

observed for TAK-242 (Figure 6.9), a TLR4 inhibitor detected by both the MALDI-TOF MS and 

cytokine screens.424 The non-detection in the initial proteomics screen might be due to the 

low number of significantly changing proteins and the bias towards IFN-γ signalling detection 

by proteomics. Furthermore, TCMDC-125545 showed M0 likeness in LPS signalling and 

uniquely in two chemo- and cytokines (OXLA and GROA), indicating that it might target the LPS 

signalling pathway too (Figure 6.9). This compound is a PDE inhibitor, and PDE regulates cAMP 

levels known to inhibit LPS-elicited inflammatory responses.425 For instance, cAMP antagonists 

increase pro-inflammatory cytokine levels, which may explain why this compound was 

identified only by the cytokine and not the MALDI-TOF MS screen.425 Apremilast, another PDE 

inhibitor and hit in the cytokine screen, was expected to act via the same pathway, but this 

could not be confirmed by proteomics.426  
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Overall, half of the hit compounds not identified initially by proteomics were associated with 

an inflammation-relevant MoA, confirming them as true hits. Re-evaluation of these 

compounds showed that they were just on the edge of the hit selection via scalar projection 

(projection score = 0.15 - 0.22). Further, selecting a less stringent p-value (from 0.01 to 0.05) 

and fold change cut-off (from 2 to 1.5) to determine significantly changing proteins would still 

align with best practice in proteomics but allow to increase the number of changed proteins. 

Together, this would have resulted in the compound detection as hits by the proteomics 

workflow. This highlights the importance of carefully selecting cut-off values to balance missing 

identifications against false positive detections. 

 

Non-associated compounds 

The MALDI-TOF MS and cytokine HT screen hit GSK2580335 was excluded from further 

analysis as its target annotation was GSK proprietary. The remaining four MALDI-TOF MS 

screen hit compounds showed even lower M1 biomarker activity, and only 19 differentially 

expressed proteins on average, preventing confident MoA association (Figure 6.9). Hence, they 

were not confirmed as true hits by proteomics, indicating that they were potentially false 

positive hits.  

• Ap-III-a4 targets ENO1 which is active in the glucose metabolism which is altered in 

macrophage inflammation.427 This hit compound might have been detected by MALDI-

TOF MS as shifts in the metabolite and lipid region were observed with this technology. 

Moving the proteomics analysis towards a focus on metabolism or conducting 

metabolomics might help to evaluate compound activity.  

• LY294002 hydrochloride targets PI3K and may elicit downstream effects in LPS 

signalling, however cellular changes in a published macrophage-based assay were 

induced at 25 µM compound concentration, whereas I used only 10 µM.428  

• T6167923’s target annotation was MyD88, but only two proteins were significantly 

downregulated in response to the compound treatment, and to date, little validation 

work has been undertaken to confirm the proposed compound target.  

• Spermidine trihydrochloride targets eIF5A, EP300, MTP, hCA, NMDAR, which are not 

associated with inflammation biology (Supplementary Table S.4).  
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Instead of utilising proteomics, dose-response curves could be recorded to identify false 

positive hits from the MALDI-TOF MS screen. Dose-response curve screens are commonly 

performed in HTS efforts to eliminate commonly observed false positives and confirm true 

hits. 

 

To summarise, proteomics confirmed that some true hits were solely identified in the HTS 

efforts due to the stringent identification cut-offs values selected in proteomics, highlighting 

balance between missing identifications and false positive detections. Secondly, proteomics 

was also able to identify false positive hits form the MALDI-TOF MS screen. These hits were 

weak identifications in the MALDI-TOF MS screen and hence cut-off modification should also 

be evaluated in this case as it might prove beneficial to reduce the false positive observations.  
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Figure 6.9. M0 macrophage likeness scoring of MALDI-TOF MS and cytokine hit compounds 
across different signalling pathways. 
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Log2 protein intensity recorded for each compound treatment was normalised against 
intensity levels in the M0 and M1 controls for proteins associated to (A) LPS signalling, (B) IFN-
γ, (C) chemo- and cytokine, (D) antigen presentation and (E) cell surface marker; ncompound = 3, 
ARN = ARN-3236, Ner = Neratinib, TCM = TCMDC-125545, APR = Apremilast, GSK = 
GSK2580335, TAK = TAK-242, LY = LY294002 hydrochloride, Spe = Spermidine trihydrochloride, 
T6 = T6167923, AP = Ap-III-a4 
 

6.6 Discussion 

The substantial overlap between phenotypic screen hits identified by proteomics, MALDI-TOF 

MS and cytokine screens demonstrated robust hit calling and assay suitability. Proteomics 

analysis offered the advantage of deep data depth, enabling early identification of cytotoxic 

hit compounds. Further, clustering of hit compounds on a global protein level, MoA 

identification for compounds, determination of compound efficacy and potential identification 

of off-target effects was achieved by proteomics in a complex multimodal assay that uses 

multiple cellular stimuli. Proteomics was also able to identify false positive hits from the 

MALDI-TOF MS screen while failing identification of some true hits due to the stringent cut-off 

selection. 

 

6.6.1 MoA and target deconvolution tools  

MoA and target elucidation using proteomics is a rapidly evolving field. I decided to focus on 

inflammation protein markers, associating them to different inflammation signalling pathways 

to aid MoA elucidation of hit compounds. Alternatively to pathway-specific biomarker 

selection, I could have conducted subsequent screens in the presence of single IFN-γ or LPS 

stimulation, though this would limit biological complexity as both stimuli act synergistically in 

vivo for robust macrophage activation.  

Some researchers have employed full proteome expression atlases to deduce MoAs and off-

target effects using a fingerprinting approach.310 Different data analysis strategies for MoA 

identification from large proteomics datasets have emerged. For example, a study on lung 

cancer cell lines subjected to more than 50 compounds improved MoA identification by 

excluding ubiquitously responding proteins, revealing mitochondrial function inhibition as an 

off-target effect of PD184352.429 Mitchel et al. 2023 conducted the largest study to date, 

documenting proteome-level changes induced by 875 compounds in HCT116 cells to link 

compound structure and MoA.311 While most approaches use single compound 
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concentrations to maintain scalability, Eckert et al. 2024 demonstrated the advantages of 

systematic dose-response evaluation, showing that histone deacetylase inhibitors impaired 

human T cell activation.397  

Phosphoproteomics has been used to assess the activity of kinase inhibitors on a global 

phosphopeptide level, with recent work by Zecha et al. 2023 highlighting the time- and dose-

response characteristics of drug-induced PTMs, revealing kinase inhibitor-specific PTM 

signatures.430-432 This indicates an interesting starting point for further experiments to confirm 

the MoA of the LPS signalling cascade hits that were proposed within this thesis. LPS pathway 

activation is often associated with PTMs rather than changes in protein levels.349 Although 

these approaches shed light on broad proteome changes and MoAs, they are not sufficient to 

elucidate the drug target. 

Chemoproteomics, a field combining chemical biology and MS, has developed to determine 

drug-target interactions. Approaches can be classified into modification-based and 

modification-free workflows. Modification-based approaches involve enriching targets by 

immobilising, tagging, or labelling with probes, followed by affinity- or activity-based 

profiling.308 For example, kinobeads coated with kinase inhibitors successfully identified JAK 

inhibitors in human primary cells.433 In contrast, modification-free approaches rely on 

stabilising proteins against thermal, chemical, or enzymatic denaturation upon small molecule 

binding, thus avoiding perturbation of the probed biology.15 For instance, thermal proteome 

profiling has been used to identify the target of losmapimod in acute leukaemia cells.309 In 

contrast, the PISA approach uses ligand-induced alterations in protein solubility, offering 

reduced analysis time and sample consumption in comparison to other modification-free 

approaches.434-437 Despite the potential of proteomics to uncover novel MoAs and targets, its 

throughput remains limited, and sample costs are high compared to non-LC-MS/MS-based 

tools used for MoA and target deconvolution. 

HT, cost-effective cheminformatics tools can predict target interactions based on chemical 

similarity and protein-target interaction scoring that is derived from large libraries.42 

Biochemical screens expose a hit compound to prospective protein targets for rapid binder 

screening, although this can reduce biological relevance.43 Cell Painting, a morphology 

profiling technology using fluorescence dyes, captures features like cell size, shape, including 

cellular organelles, allowing the comparison of morphological phenotypes to a reference 
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library for MoA elucidation.41 Conversely, DrugSeq involves bulk RNA sequencing of disease-

relevant cell models or cells with directed mutations to reveal compound responses such as 

resistance or sensitivity.42 Gene signatures generated by this low-cost, HT screen are compared 

to control compounds or a gene signature library like the Connectivity Map for target and MoA 

deconvolution.43 

In summary, each deconvolution tool has its strength and limitations, and therefore they are 

often simultaneously used. Although knowledge of molecular targets and MoAs is not required 

for clinical trials or FDA approval, identifying these aspects in early drug discovery stages 

significantly enhances drug efficacy and safety by uncovering opportunities for therapeutic 

expansion and anticipating off-target effects like cytotoxicity.438,439 I presented a proteomics 

screen that was conducted subsequently of a MALDI-TOF MS and cytokine profiling HTS 

approach to identify cytotoxic compounds and MoAs related to the IFN-γ+LPS signalling 

cascades. With continued technological advancements in workflow speed and sensitivity, 

proteomics is expected to become a more widely used tool for MoA and target identification 

in earlier stages of drug discovery efforts.  

  



138 
 

7. Conclusion and outlook 
 

Throughout this thesis, I showcased the application of MS-based workflows in early drug 

discovery efforts, highlighting their advantages and limitations. I demonstrated applications 

within the immunology field, a cornerstone in drug discovery due to its links to oncology, 

infectious diseases, and auto-immune disorders amongst others.  

I developed a MALDI-TOF MS biochemical drug discovery assay for the high-profile 

immunology target ERAP1, building upon an established RapidFire MS assay. The development 

process included optimising buffer composition, analyte ionisation, as well as substrate and 

enzyme concentrations. Workflow automation enabled robust and reproducible screening of 

~10,000 compounds. Activity profiling of pre-determined ERAP1 binders was reproducible by 

MALDI-TOF MS and showed strong correlation with the established RapidFire MS platform. 

Hits were validated through dose-response screening, demonstrating the complementary 

value of these approaches. Both MS-based techniques outperformed label-based assays, 

which suffered from disrupted physiology and a limited dynamic range.55 While analyte and 

buffer optimisations were necessary for the MALDI-TOF MS assay due to the lack of a sample 

cleanup stage, the optimised assay showed increased throughput, miniaturisation, and 

reduced costs compared to the RapidFire MS assay.  

Further expansion of this MALDI-TOF MS assay format would allow evaluation of hit compound 

efficacy across different ERAP1 allotypes. Moreover, screening other highly homologous zinc 

metalloaminopeptidases, may provide insights into off-target effects, aiding lead selection. To 

increase biological relevance of findings, compound-modulated ERAP1 activity could be 

analysed by monitoring MHC associated cell surface peptides through immunopeptidomics. 

Findings could benefit the development of novel drugs in auto-immune and auto-

inflammatory diseases, as well as in immune-oncology. In summary, I highlighted the benefits 

of MS techniques for enzymatic screening approaches in early drug discovery. This leads the 

way to leverage higher-throughput compatible MS techniques, such as MALDI-TOF MS, in 

other early drug discovery target-based screens, including affinity binding, and fragment 

screening, which are still largely dominated by label-based and LC-MS techniques.  

Higher-throughput MS tools also hold significant potential for early drug discovery phenotypic 

screens which promise to deliver more translatable findings. To demonstrate the effectiveness 
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of MS in phenotypic screening approaches, I selected, optimised, and benchmarked an 

immunologically relevant phenotypic screening model using iPSC derived macrophages from 

three human donors. Macrophages are frequently targeted in early drug screening efforts, 

given their role in many auto-immune and auto-inflammatory diseases, as well as in immune-

oncology. I optimised iPSC-derived macrophage cell culture and demonstrated that increased 

M-CSF exposure heightened macrophage responsiveness to activating stimuli. I examined 

macrophage response to a dual stimulation with IFN-γ and LPS, synergistic stimulants in vivo 

that robustly activate macrophages during infection. Conversely, I also stimulated 

macrophages with IL-4, a cytokine involved in tissue repair signalling. Morphological 

examination confirmed polarisation into classically activated macrophages (M1) with IFN-

γ+LPS, and alternatively activated macrophages (M2) with IL-4. Proteomics analysis further 

characterised the cell phenotypes but revealed little differential protein expression in M2 

macrophages, likely due to metabolic shifts that drive M2 polarisation and a shortened 

stimulation time. However, the workflow effectively detected protein expression changes after 

M1 macrophage polarisation, identifying pro-inflammatory biomarkers, including cell surface, 

LPS signalling, IFN-γ signalling, and antigen presentation proteins, as well as chemokines and 

cytokines.  

Building on these findings, I used the adjusted M-CSF concentration and IFN-γ+LPS dual 

stimulation to develop a MALDI-TOF MS-based, HT compatible phenotypic screen. I optimised 

various parameters for the MALDI-TOF MS assay such as cell number, extraction buffer, matrix 

choice, matrix concentration, matrix-sample-ratio, matrix spotting technique and acquisition 

mass range. This resulted in a novel metabolite/lipid profile-based MALDI-TOF MS screen that 

robustly clustered resting (M0) and pro-inflammatory (M1) iPSC-derived macrophages across 

different donors. While it was hypothesised that this clustering approach allows for hit 

identification and inference of drug MoA, I was unable to achieve compound clustering, 

possibly due to a mixture of phenotype descriptive and non-descriptive mass features within 

the analysis. Implementation of machine learning algorithms to refine the data promises 

improvements. I identified robust “biomarker” mass features that drove the pro-inflammatory 

cell phenotype. First, I tracked these “biomarkers” in a screen with compounds exhibiting 

broad mechanism of action, establishing assay robustness. This informed detection of 

compounds frequently selected as hits in phenotypic screens and indicated activity of 
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inflammation associated compounds, however MoA association remained ambiguous. An 

inflammation-specific compound set was used to further profile inflammation signalling 

pathway engagement, resulting in the detection of 21 hit compounds that overlapped with hit 

calling from an established cytokine screen, confirming assay performance.    

To reduce false-positive hits and determine compound effectiveness, the screening should be 

extended towards dose-response measurements. Further, interrogating “biomarker” identity 

could be especially valuable when evaluating disease models by MALDI-TOF MS. A MALDI-TOF 

MS phenotypic screen analysing high mass range features has already shown utility to identify 

an anti-inflammatory drug that translated to activity in human monocytes derived from acute 

myeloid leukaemia.229 A standardised screening approach based on the low or high mass range 

of the spectrum should allow transfer across different cell and disease phenotypes without 

extensive method development that often precedes highly individualised phenotypic screens. 

While the presented workflow was suitable for hit triaging in drug discovery, it did not 

elucidate the MoA, and therefore could not distinguish between desired and undesired 

compound effects such as cytotoxicity. MoA could be explored by conducting screens with a 

single pro-inflammatory stimulus to deconvolute target engagement, however this would 

reduce the physiological relevance of the model. Cell viability assays could be used to evaluate 

compound cytotoxicity but would reduce workflow throughput and increase workflow cost.  

Instead, to distinguish desired and undesired compound effects, I employed proteomics which 

is traditionally used for biological target identification, and drug-target interaction elucidation 

in the drug discovery pipeline via historically low throughput methods. Here, I presented a 

medium-throughput proteomics workflow, which showed a large overlap in hit calling with the 

MALDI-TOF MS and chemokine screens for inflammation-specific compounds. Despite being 

lower throughput, the proteomics workflow had a major advantage in informing the 

compound’s MoA. I identified known cell death inducers, including inhibitors of kinases and 

histone modulators, as well as inflammation-specific compounds that induced cell death at 

higher concentrations. I revealed non-toxic hit compound clustering based on global protein 

expression and analysed the expression of pro-inflammatory M1 protein markers to propose 

a MoA for these compounds. Proteomics uniquely identified inhibitors acting only within the 

IFN-γ signalling cascade when compared to the MALDI-TOF MS and cytokine screen. By protein 

level comparison of the non-toxic hits against the resting macrophages, compound efficacy 
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and non-toxic off-target effects were determined. The proteomics workflow further identified 

false positive hits from the MALDI-TOF MS screen yet showed some false negative hits due to 

the stringent cut-off selection, highlighting the need to carefully balance cut-off values. 

Leveraging a new wave of higher-throughput proteomics technologies, I highlighted the power 

of proteomics in an initial step to profile drug MoA of HTS hits, particularly in complex 

multimodal assays that use multiple stimuli. With further advancements in sample preparation 

and MS technology, proteomics could become a standard tool in phenotypic screening, similar 

to the adoption of transcriptomics. A next step is to conduct more target-focussed analyses 

such as chemoproteomics to elucidate drug-target interactions. 

In conclusion, I demonstrated that MALDI-TOF MS is a valuable tool for hit-triaging in target-

based enzymatic and phenotypic screens in the lead generation stage of the drug discovery 

pipeline. Furthermore, I showed that a proteomics workflow with moderate throughput can 

significantly improve lead compound selection by elucidating off-target effects, such as toxicity 

and pathway-specific mechanisms of action. To develop this work further, additional 

inflammation-associated stimuli, such as bacteria could be employed, thereby expanding the 

application to a wider range of research questions while further assessing workflow 

performance and versatility. Efforts to improve pipeline efficiency in early drug discovery calls 

for utilisation of more biologically relevant models, and here my work contributes to advancing 

the application of MS technologies alongside iPSC derived models to meet these needs. 

Different cell models outside of immunology should be subjected to the developed workflows 

to establish transferability. Given the growing number of publications and technological 

developments in the MS field, I believe that MS will continue to gain further importance in 

early-stage drug discovery.  
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 Appendix A. Supplementary figures 

 
Supplementary Figure S.1: Fragmentation of basic peptides (BP) upon measurement by 
RapidFire MS. (A) Standard curve from substrate only wells obtained by plotting extracted ion 
chromatogram (XIC) counts per second (cps) for the doubly charged, protonated substrate 
(YTAFRIRSI, purple) and product (TAFRIRSI, orange); ntechnical = 6, mean ± standard deviation. 
(B) MS1 from 1 µM substrate injection into a Xevo G2-XS TOF system (QTOF, Waters) indicating 
relative abundance for the doubly charged, protonated 9mer substrate (YTAFRIRSI, purple, m/z 
563.80), 8mer product (TAFRIRSI, orange, m/z 482.27) and 7mer (AFRIRSI, cyan, m/z 431.75). 
(C) LC-MS analysis (Exion LC (Sciex), Sciex 6500+ triple quadrupole (QqQ) setup) of substrate 
(YTAFRIRSI), and 1:1 product:substrate (TAFRIRSI:YTAFRIRSI); product signal intensity (top 
panel, orange) and substrate signal intensity (bottom panel, purple) plotted against the 
retention time.  
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Supplementary Figure S.2: Boxplot of the normalised m/z 450, 564 and 664 M0 “biomarker” 
signal intensities for 87 different JUMP set compounds and the M0 (purple) and M1 (green) 
controls. nM0 = 4 per donor, nM1 = 4 per donor, acquisitions conducted in triplicate. 
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Supplementary Figure S.3: Scalar projection analysis of M1 polarised macrophages that were 

treated with the inflammation compound set. Bar chart of statistically significant compound 

projection z-scores in comparison to the M1 controls; t-test (Bonferroni Holm). 
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Supplementary Figure S.4: Boxplot of the normalised m/z 450, 564 and 664 M0 “biomarker” 
signal intensities for 86 different inflammation set compounds and the M0 (purple) and M1 
(green) controls. nM0 = 4 per donor, nM1 = 4 per donor, acquisitions conducted in triplicate. 
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Supplementary Figure S.5: Violin plots of the normalised peak intensities at m/z 626, 642, 

697 and 707 from the resting (M0, purple) or pro-inflammatory (M1, green) iPSC-derived 

macrophage controls contained within the inflammation compound set screen. Indicated is 

the %CV for each of the samples; nM0 = 4 per donor, nM1 = 4 per donor, acquisitions conducted 

in triplicate. 

 

 
Figure S.6: Volcano plot indicating the significantly up and downregulated proteins of the 

M1 macrophage stimulation in comparison to the resting macrophage. Both samples were 

taken from the inflammation compound set proteomics experiment. Log2 protein fold change 

(cut-off = -2 or 2) against -log10 adjusted p-value (cut-off = 0.01) after t-testing (Benjamin-

Hochberg correction) with highlighted significantly down (blue) and upregulated (orange) 

proteins. 
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Figure S.7: Number of significantly changing proteins in the inflammation compound set 

treatments in comparison to the M1 macrophage control (t-testing, Benjamin-Hochberg 

correction).  
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Figure S.8: M0 macrophage likeness scoring across different metabolic protein marker for 

compounds identified within the second set of proteomics hits. Log2 protein intensity 

recorded for each compound treatment was normalised against intensity levels in the M0 and 

M1 controls. 
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Appendix B. Supplementary tables 
Supplementary Table S.1: List of all significant hits according to the scalar projection analysis 
from the JUMP compound treatments when compared to the M1 macrophage phenotype.  
Listed are the mean, z-score and adjusted p-value for the compound projection and rejection; 
nM0 = 4 per donor, nM1 = 4 per donor, acquisitions conducted in triplicate, t-test (Bonferroni 
Holm). 

Compound Projection Rejection  
Mean z adj p-value Mean z adj p-value 

M1 0.00 0.30 1.00E+00 0.05 -0.43 1.00E+00 

Ruxolitinib phosphate 0.38 1.04 8.71E-04 -0.09 -0.75 3.97E-01 

PS178990 0.41 1.05 2.69E-07 -0.11 -0.71 2.75E-01 

Pomalidomide 0.38 1.05 4.81E-04 -0.14 -1.12 1.99E-01 

BMS-566419 0.39 1.05 5.73E-04 -0.03 -0.36 7.63E-01 

IOX2 0.37 1.05 1.78E-04 -0.11 -0.53 2.41E-01 

PNU-74654 0.36 1.06 1.57E-07 -0.12 -0.97 1.67E-01 

Pitavastatin 0.38 1.07 1.42E-06 -0.02 -0.73 8.17E-01 

UNC0642 0.29 1.07 4.67E-03 1.66 6.99 8.48E-04 

SCH-900776 0.36 1.10 1.42E-06 -0.09 -0.65 2.04E-01 

FK-866 0.34 1.10 2.39E-05 -0.12 -0.84 1.85E-01 

ML324 0.27 1.10 4.69E-02 0.06 -0.23 9.41E-01 

CHIR-99021 0.34 1.11 4.58E-03 -0.05 -0.43 5.33E-01 

SU-11274 0.43 1.13 1.94E-06 -0.02 -0.29 7.63E-01 

RGFP966 0.35 1.13 1.75E-04 -0.08 -0.83 3.97E-01 

ML-323 0.45 1.14 6.90E-06 -0.03 -0.41 7.41E-01 

A-366 0.42 1.17 7.11E-05 0.15 0.24 6.24E-01 

P5091 0.38 1.18 4.21E-07 -0.10 -0.53 2.04E-01 

Sirolimus 0.34 1.19 3.08E-03 -0.18 -1.07 4.79E-02 

WZ4003 0.44 1.21 7.73E-07 0.19 0.47 5.20E-01 

LLY-283 0.46 1.23 1.37E-04 0.04 -0.19 9.67E-01 

DMSO 0.47 1.24 9.07E-07 0.06 0.16 9.86E-01 

SGX523 0.42 1.24 1.26E-06 -0.05 -0.54 5.82E-01 

Purmorphamine 0.47 1.28 2.33E-04 0.00 -0.29 8.51E-01 

CPI-0610 0.49 1.32 4.04E-06 0.08 -0.51 9.19E-01 

GSK-J4 0.46 1.38 2.95E-07 0.05 -0.21 1.00E+00 

Carmustine 0.47 1.39 8.69E-07 0.01 -0.15 8.59E-01 

GSK2334470 0.52 1.41 3.77E-06 0.13 0.17 7.41E-01 

Filgotinib 0.39 1.41 3.75E-03 -0.06 -0.41 5.86E-01 

PFI-1 0.56 1.42 1.57E-07 0.01 -0.37 8.59E-01 

AZD7545 0.55 1.44 3.61E-08 0.02 -0.14 8.64E-01 

TC-S-7004 0.52 1.45 2.27E-05 0.06 -0.08 9.86E-01 

FR-180204 0.57 1.53 1.31E-09 0.17 0.45 4.98E-01 

Dexamethazone 0.58 1.54 6.26E-05 0.15 0.58 8.17E-01 

AZ191 0.85 2.18 1.31E-09 0.67 2.52 1.81E-08 

M0 1.00 2.42 5.03E-24 0.00 -0.31 8.49E-01 
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Table S.2: List of compounds identified within the first set of proteomics hits together with 

their annotated targets obtained from the GSK chemogenomic library.  

Compound Target annotation 

M62812 TLR4 

SAHA NCOR1, HDAC3, KDM1A, KDM4E, HDAC9, HDAC11, HDAC7, HDAC5, 
HDAC10, HDAC4, HDAC2, HDAC8, HDAC6, HDAC1, ESR1, BRD4, KCNH2, 
NCOR2, EGFR, ERBB2 

Ulixertinib  MAPK1, MAPK3, TAOK1 

TPCA-1 JAK2, IKBKB 

A-485 EP300, CREBBP 

SH-4-54 STAT3, STAT5A 

Staurosporine AAK1, ABL1, ABL2, AKT1, AKT2, AKT3, ALK, ANKK1, AURKA, AURKB, 
AURKC, AXL, BCL2L1, BLK, BMP2K, BMX, BRAF, BRSK1, BRSK2, BTK, 
C8orf44-SGK3, CAMK1, CAMK1D, CAMK1G, CAMK2A, CAMK2B, CAMK2D, 
CAMK2G, CAMKK1, CAMKK2, CASK, CCNA1, CCNA2, CCNB1, CCNB2, 
CCNB3, CCNC, CCND1, CCND3, CCNE1, CCNE2, CCNH, CCNK, CCNO, 
CCNT1, CCNY, CDC42BPA, CDC42BPB, CDC42BPG, CDC7, CDK1, CDK12, 
CDK16, CDK18, CDK2, CDK3, CDK4, CDK5, CDK5R1, CDK6, CDK7, CDK8, 
CDK9, CHEK1, CHEK2, CHUK, CILK1, CLK1, CLK2, CLK4, CSF1R, CSK, 
CSNK2A2, CYP11B2, DAPK1, DAPK2, DAPK3, DBF4, DCLK3, DDR1, DDR2, 
DMPK, DSTYK, DYRK1A, DYRK1B, DYRK3, EGFR, EIF2AK4, EPHA3, EPHA4, 
EPHA5, EPHA6, EPHB1, EPHB3, ERBB2, ERBB4, ERN1, ERN2, FER, FES, 
FGFR1, FGFR2, FGFR3, FGR, FLT1, FLT3, FLT4, FPGT-TNNI3K, FRK, FYN, 
GAK, GCK, GRK1, GRK2, GRK3, GRK5, GRK7, GSK3A, GSK3B, HCK, IGF1R, 
IKBKB, IKBKE, INSR, INSRR, IRAK1, IRAK3, IRAK4, ITK, JAK1, JAK2, JAK3, 
KDR, KIT, LATS1, LATS2, LCK, LIMK1, LIMK2, LMTK3, LRRK2, LTK, LYN, 
MAK, MAP2K1, MAP2K2, MAP2K3, MAP2K4, MAP2K5, MAP2K6, 
MAP3K10, MAP3K11, MAP3K12, MAP3K15, MAP3K19, MAP3K2, 
MAP3K21, MAP3K3, MAP3K5, MAP3K7, MAP3K9, MAP4K1, MAP4K2, 
MAP4K3, MAP4K4, MAP4K5, MAPK1, MAPK12, MAPK14, MAPK15, 
MARK1, MARK2, MARK3, MARK4, MELK, MERTK, MINK1, MKNK2, 
MNAT1, MST1R, MUSK, MYLK, MYLK2, MYLK4, MYO3B, NEK1, NEK11, 
NEK4, NEK8, NEK9, NIM1K, NTRK1, NTRK2, NTRK3, NUAK1, NUAK2, 
OSR1, PAK1, PAK2, PAK3, PAK4, PAK5, PAK6, PASK, PBK, PDGFRA, 
PDGFRB, PDK1, PDPK1, PEAK1, PHKG1, PHKG2, PIM1, PIM2, PIM3, PKN1, 
PKN2, PKN3, PLK4, PNCK, PREP, PRKAA1, PRKAA2, PRKACA, PRKACB, 
PRKACG, PRKCA, PRKCB, PRKCD, PRKCE, PRKCG, PRKCH, PRKCI, PRKCQ, 
PRKCZ, PRKD1, PRKD2, PRKD3, PRKG1, PRKG2, PRKX, PTK2, PTK2B, RAF1, 
RB1, RET, RIPK2, ROCK1, ROCK2, ROS1, RPS6KA1, RPS6KA2, RPS6KA3, 
RPS6KA4, RPS6KA5, RPS6KA6, RPS6KB1, RPS6KB2, SBK1, SBK3, SGK1, 
SGK2, SGK3, SIK1, SIK2, SIK3, SLK, SNRK, SRC, SRPK1, STK10, STK17A, 
STK17B, STK24, STK25, STK26, STK3, STK32A, STK32B, STK33, STK38, 
STK38L, STK39, STK4, SYK, TAB1, TAOK1, TAOK2, TAOK3, TBK1, TEC, TLK1, 
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TLK2, TNIK, TNK1, TNK2, TSSK1B, TSSK2, TSSK3, TSSK6, TTK, TXK, TYK2, 
TYRO3, ULK1, ULK2, ULK3, YES1, ZAP70 

PD 166285 WEE2, MYT1, PKMYT1, ACVR1, TNK2, ABL1, CSF1R, WEE1, PDGFRA, RET, 
LCK, SRC, BTK, FYN, MAPK14, EGFR, KDR 

 

 

Table S.3: List of compounds identified within the second set of proteomics hits together 

with their annotated targets obtained from the GSK chemogenomic library.  

Compound Target annotation 

PROTAC RIPK degrader-2 VHL 

AZD-5153 BDR4, BRD3, BRD2, BRDT 

P005091 USP7  

Z-Phe-Ch2Cl ATG4B, CMA1, EP300, CREBBP 

Dactolisib ATM, PIK3C3, PIK3CB, MTOR, PIK3CA, PIK3CG, AKT1, PIK3CD, 
PIK3R1, PIK3R5 

AZD8055 MTOR 

Vistusertib (AZD2014) MTOR, PFKP 

WYE-125132 MTOR 

Ruxolitinib phosphate JAK1, JAK2  

CP 690550 citrate DCLK3, JAK3, JAK1, JAK2, TYK2 

 

 

Table S.4: List of compounds not identified as proteomics hits but obtained from the MALDI-

TOF MS and cytokine HTS screens together with their annotated targets obtained from the 

GSK chemogenomic library.  

Compound Target annotation 

MALDI and Cytokine hits 

GSK2580335 Proprietary 

TAK-242 TLR4 

MALDI hits 

ARN-3236 SIK2 

AP-III-a4 (hydrochloride) ENO1 
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LY294002 hydrochloride PI3K 

Neratinib (HKI-272) STK24, STK26, ERBB3, STK25, MAP4K5, MAP3K19, 
MAP4K3, MAP3K8, ERBB4, TPTEP2-CSNK1E, ERBB2, EGFR 

Spermidine trihydrochloride eIF5A, EP300, MTP, hCA, NMDAR 

T6167932 MyD88 

Cytokine hits 

Apremilast PDE4 

TCMDC-125545 PDE3 
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