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Abstract

Epilepsy poses a significant treatment challenge due to its dynamic nature, char-

acterised by fluctuations in pathological brain activity and symptoms. Seizures can

manifest in different ways, resulting in diverse spatial and temporal patterns of features

within individual patients. While researchers have extensively studied fluctuations over

different timescales in seizure occurrence, the presence of similar fluctuations in other

seizure features and the expression of the underlying fluctuations in pathological brain

regions remain unclear.

To address these gaps, I investigated cyclical patterns of seizure network evolutions

and seizure duration (used as proxy for seizure severity) in refractory focal epilepsy

patients. Using long-term intracranial EEG (iEEG) recordings, I analysed how seizure

features change over time within subjects. Initially, I explored whether temporal fluc-

tuations in iEEG band power over seconds to days could explain variability in seizure

evolutions. Within each subject, a combination of ultradian, circadian and some slower

fluctuations accounted for most of the diversity in seizure evolution. Then, I explored

how seizure severity changes over time using iEEG band power cycles. Combinations

of multiple band power cycles explained most of the variability in seizure duration.

These findings suggest that cycles over multiple timescales in interictal iEEG prop-

erties, such as band power, may modulate seizure features and serve as markers for

seizure-modulating processes. I then examined the functional expression of band power

cycles in both pathological and healthy brain regions. Interestingly, ultradian and cir-

cadian cycles were diminished in brain regions identified as pathological, indicating that

brain pathology may alter biological rhythms on similar timescales.

In summary, my research contributes to the understanding of temporal changes in

seizure features. Disentangling the dynamic nature of the disease and specifically the

seizure modulating factors could improve personalised epilepsy treatments for seizure

control. Furthermore, by predicting not only seizure occurrences but also their dy-

namics, evolutions, severity, and symptoms, my work expands the scope of alternative

treatments. Fluctuations in iEEG features may serve as biomarkers for monitoring

treatment response and enabling on-demand treatment options. Finally, investigat-
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ing the relationship between altered cycles and pathology could unveil the biological

rhythm’s role in ictogenesis and epileptogenesis.
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Chapter 1. Epilepsy as a Dynamic Disease

1.1 Introduction

The history of epilepsy days back almost 4500 years (Patel and Moshé, 2020), when

identified as a clinical condition based on symptoms and signs that have been observed

and reported in documents. Epilepsy was thought to be a mystical disease (Patel and

Moshé, 2020), as the causes of this condition were unknown and empowered by the

religious beliefs at that time (Patel and Moshé, 2020). Hippocrates was the first one

to describe the disease as a neurological disease. By the beginning of 18th century,

epilepsy was determined as an idiopathic disease originating in the brain. Along the

years, several terms linked to their beliefs at the time were used to describe epilepsy,

such as sacred disease (Greek: ιερά νόσος), an illness sent by the gods, “lunacy” (Greek:

σεληνιασμός), possession by evil spirits or “demons”, “falling sickness” (Panteliadis

et al., 2017). The etymology of seizure or epilepsy is derived from the Greek word

‘ελαμβάνειν’, which means “to be taken hold of”, “to be seized” (Patel and Moshé,

2020). However, nowadays this word is used by the scientific community not only for

seizures, but rather to determine any severe and abrupt event. Thus, seizures related

to epilepsy are called epileptic seizures.

During the late 19th and early 20th century the scientific community made a shift

from the belief that epilepsy was a mystical disease. Advances in science led to a better

understanding of the disease, as different types of epilepsy (Fisher et al., 2017) were

described and electroencephalography (EEG) became an important tool for investiga-

tion by researchers (Panteliadis et al., 2017). Thus, epilepsies and seizures were better

described as etiologies and different types of seizures, as well as epilepsy syndromes

becoming better understood.

Epilepsy has been established as a chronic neurological disease characterised by

the recurrence of spontaneous and unprovoked seizures. An epileptic seizure is an

instantaneous, transient alteration of the normal electrical functioning of the brain

caused by an imbalance between inhibitory and excitatory activity (Stafstrom and

Carmant, 2015). Based on the International League Against Epilepsy (ILAE) and the

International Bureau for Epilepsy (IBE) (Fisher et al., 2017), an epileptic seizure is

defined clinically as “a transient occurrence of signs and/or symptoms due to abnormal

excessive or synchronous neuronal activity in the brain” (Fisher et al., 2005, p. 471).
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Clinical symptoms accompanying an epileptic event reflect the brain area/s in which

the seizure initiated and evolved through time. These signs can be evident as numbness,

jerking movements, loss of memory and consciousness, odd sensations and feelings, and

many others. The presence of a single seizure does not imply that an individual is

epileptic, as he/she may not experience seizures again during their lifetime. The state of

recurring seizures is one of the fundamental aspects that define epilepsy. The pathogenic

process of a normal brain becoming epileptic is termed as epileptogenesis. Typically, a

seizure can last a few seconds or minutes. However, seizures can be prolonged lasting

usually more than five minutes. These seizures are called status epilepticus and can

cause severe brain injuries or even lead to death.

The quality of life for patients with epilepsy can be significantly affected by the

epileptic events. In most cases they need to rely on carers for ensuring they will not

encounter mild or severe injuries in case of a seizure episode. Also, they face restrictions

in terms of several fundamental aspects of everyday life, such as ability to drive, finding

employment, career choice, social interactions and others (Smeets et al., 2007; Jacoby,

2002). Lastly, they may experience cognitive dysfunction or/and psychological problems

as a result of their condition (Devinsky and Lai, 2008).

Epilepsy is not a single disease or syndrome (Wirrell et al., 2022), but rather covers

a variety of syndromes characterised by a range of different types of seizures such as

focal-onset or generalised-onset seizures (Fisher et al., 2017). An epilepsy syndrome

is defined as “a characteristic cluster of clinical and electroencephalographic features,

often supported by specific etiological findings (structural, genetic, metabolic, immune,

and infectious)” (Wirrell et al., 2022, p. 1334); it reflects a number of different as-

pects that need to be consistent, such as the clinical symptoms that accompany the

seizure episodes, a defined seizure type, age of onset, EEG seizure patterns, response

to antiseizure medications (ASMs), any known factors triggering the events and genet-

ics (Stafstrom and Carmant, 2015). The complex nature of this disease is mirrored

in the multiple causes that have been identified, such as stroke, traumatic brain in-

jury, infections, autoimmune diseases as well as genetic conditions; each resulting to a

chronic state of brain dysfunction (Löscher and Klein, 2021). However, the underlying

mechanisms of epilepsy are only partially understood.

Epilepsy currently has no cure, so pharmacological recommendations for the symp-
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tomatic treatment of epilepsy still form core therapy for patients with epilepsy. As such,

one of the first lines of treatment for controlling seizures can be achieved with ASMs

(also referred to as anticonvulsant or antiepileptic drugs (AEDs)) by preventing or sig-

nificantly suppressing the initialisation and propagation of seizures or reducing their

severity. This is evident for almost 70% of patients suffering with epilepsy. Despite the

availability of numerous ASMs that employ different mechanisms for diminishing the

electrical activity of the brain, seizures found to be resilient/resistant to treatment are

found in 30% of patients (Chen et al., 2018; Perucca et al., 2020; Janmohamed et al.,

2020) (termed as refractory epilepsy, i.e. seizures cannot be suppressed by two or more

ASMs or any other therapies (Stafstrom and Carmant, 2015)). Patients with refractory

focal epilepsy often undergo surgery (Rosenow, 2001); the epileptogenic tissue (thought

to be the origin of seizures) is localised and removed surgically. However, for ∼ 60−70%

of patients surgery fails to render a patient seizure-free or provide a short-term benefit

(de Tisi et al., 2011). Importantly, a portion of patients suffering from drug-resistant

epilepsy might not be eligible candidates for surgery, as the epileptogenic zone might

lie on brain areas that form part of the eloquent cortex; the eloquent cortex comprises

of cortical areas that are responsible for critical functions, and thus removal or even

perturbation of those areas might cause serious neurological deficits. In patients who

are not eligible for a surgery or the surgery was not successful, vagus nerve stimulation

(VNS) (Ben-Menachem, 2002; Lin and Wang, 2017) can be an alternative treatment.

However, it is not effective to completely abolishing seizures, but rather might con-

tribute to the reduction of frequency or duration of seizures (Zamponi et al., 2011) in

45-65% of the patients (Toffa et al., 2020).

Due to the ineffectiveness of current treatments in a considerable amount of patients,

there is a need for better treatment of epilepsy; especially as ∼ 1% of the population

is suffering from epilepsy around the world. To this end, new treatments are currently

heavily researched and developed, such as neurostimulation techniques, including deep

brain stimulation, brain stimulation and brain-responsive neurostimulation (such as

RNS) (Jarosiewicz and Morrell, 2021; Lin and Wang, 2017). A better understanding

of the underlying excitatory and inhibitory mechanisms could enhance our knowledge

regarding the factors that lead to the epileptogenesis and hence enable researchers and

clinicians to improve current treatment techniques or develop new therapeutic solutions.
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Epilepsy is not a static disease. As the disease progresses, seizures themselves change

within the same patient. A repertoire of distinct patterns arise at the onset of seizures

even for patients with the same type of epilepsy (Lagarde et al., 2019; Perucca et al.,

2014). Diversity in cortical excitability differentiates how seizures spread across the

brain (Badawy et al., 2007). These changes may occur at brain regions distant from

the epileptogenic zone for a number of seizures (Lagarde et al., 2019; Saggio et al., 2020).

Ictal activity comprises of different spectral characteristics (Pacia and Ebersole, 1997;

Alarcon et al., 1995; Jiménez-Jiménez et al., 2015; Litt et al., 2001) and propagates in

various types (Karoly, Kuhlmann, Soudry, Grayden, Cook and Freestone, 2018; Cook

et al., 2016; Freestone et al., 2017). Duration of seizures varies based on the seizure

type, but also within seizures of the same type (Jenssen et al., 2006). Clinical symptoms

(semiology) of seizures change over time as well (Noachtar and Peters, 2009).

Thus, seizure features and electrographic seizure patterns reveal a time-dependent

trait. It is likely that the mechanisms underlying seizure activity to be also time-

varying. Importantly, if we find and characterise distinct patterns of variability in

seizure features, such as rhythms across a hierarchy of timecsales, then we might be

able to identify and distinguish the physiological mechanisms underlying seizures that

reveal similar patterns. This can be indicative of the provoking factors that not only

involved in seizure initiation, but also determine the duration, spread and severity

of seizures within a single patient. Two important questions can be raised: 1) Do

seizures occur in time randomly? and 2) How do seizures change over time in terms of

their duration, seizure spread, seizure trajectory patterns (seizure dynamics), seizure

severity? Recently, the availability of ultra long-term EEG recordings has demonstrated

the prevalence of daily (circadian) and slower rhythms in seizure occurrence for most

of the patients with epilepsy (Karoly, Rao, Gregg, Worrell, Bernard, Cook and Baud,

2021; Baud et al., 2018; Cook, 2021) leading us closer to an answer for the first question.

Even though seizures are abrupt events, the process of ictogenesis might not be;

the underlying neural activity may follow a prolonged transition between the inter-

ictal and ictal states that evolve over hours to days preceding a seizure (Litt et al.,

2001; Badawy et al., 2009). For almost a century, it has been known that seizure oc-

currence reveals temporal variability, following circadian and ultradian cycles (Karoly,

Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021). Recently, longer cycles have
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been recognised to influence seizure timing (Baud et al., 2018). Thus, there is evidence

that specific mechanisms fluctuate and affect the brain network to become epileptic in

a similar oscillatory manner that might be described by a combination of circadian and

multidien rhythms in a way that is unique for each subject. These time-varying pro-

cesses affect not only seizure likelihood (Karoly et al., 2017), but also seizure dynamics

(Schroeder et al., 2020). Consequently, variability in onset patterns (Wang et al., 2017),

seizure termination, seizure duration might be due to long-term dynamic processes that

reveal oscillatory behaviour. Importantly, these processes might affect the frequency,

duration, pattern and nature of seizures, resulting in changes in seizure severity. Dif-

ferent dynamic mechanisms might generate the distinct onset patterns (Wang et al.,

2017). And, more importantly, these mechanisms might reveal an oscillatory behaviour.

Advances in understanding the effect of rhythms across a range of timescales (such as

circadian, multiday etc.) on ictal activity can shed light on the endogenous or exogenous

factors involved in various seizure features, and could lead to novel treatments able

to completely suppress seizures across the entire range of seizure syndromes. Some

examples of such treatment approaches could be the use of chronotherapy (Ramgopal

et al., 2013) or deep brain stimulation at appropriate times based on periods of temporal

patterns (e.g. ultradian, circadian and/or multidien) associated with different seizure

features.

1.2 Diagnosis and Treatment

Epilepsy involves a spectrum of syndromes, each one characterised by a combination

of features that occur together and all have a common factor: recurring seizure events.

This group of similar clinical characteristics and physical signs includes specific seizure

patterns (seizure type(s)), the brain regions in which the seizures arose and evolved,

severity of the seizures, natural history, genetic information, prognosis, etiology, factors

that provoke seizures, age of onset, EEG patterns, and response to ASMs (Stafstrom

and Carmant, 2015). Taking all these together, clinicians should do a precise diagnosis,

in order to provide an appropriate treatment to patients and possibly control seizures.
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1.2.1 Diagnosis

Diagnosis of epilepsy becomes difficult, as it involves a detailed examination of all the

features related to a number of diseases and conditions (syndromes). Furthermore,

most of the time clinicians rely on the history provided by the carers, as the patient

most likely will not experience a seizure during the medical examination or will not

be able to provide a reliable report of the seizures he/she experienced. Also, seizures

can be triggered by a range of possible causes unrelated to epilepsy, such as mental or

emotional events (psychogenic seizures), leading to non-epileptic seizures (Oguni, 2004)

and the clinician should be able to distinguish those from the epileptic ones.

For the purpose of clinical diagnosis, the ILAE (Fisher et al., 2005, 2017) has defined

epilepsy as a disease that includes one of the following conditions:

� At least two unprovoked (or reflex) seizures occurring > 24 hours apart

� One unprovoked (or reflex) seizure and a probability of further seizures similar to

the general recurrence risk (at least 60%) after two unprovoked seizures, occurring

over the next 10 years

� Diagnosis of an epilepsy syndrome

Despite the scientific advances on technological and medical innovations mainly over

the last century, the pathophysiology and aetiology of epileptic seizures remain poorly

understood. However, advanced scientific knowledge of the disease is solid enough to

provide a classification scheme, even though this is constantly changing and adapting to

new knowledge and understanding of epilepsy. A revised classification of seizure types is

provided by the 2017 ILAE (Fisher et al., 2017). This scheme is mainly focused on three

main features: the seizure onset; the degree of impaired awareness and responsiveness;

the extent of muscle movement. Based on the origin of seizure in the brain, seizures

can be categorised as follows (Fisher et al., 2017):

� focal-onset seizures (seizures originating in one cerebral hemisphere)

� generalised-onset seizures (seizures originating in both cerebral hemispheres)

� seizures of unknown onset
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In focal seizures, the patient might be fully aware of their surrounding events and

environment or may lose their consciousness during the seizure. Also, there might

be short muscle spasm (myoclonic), or convulsions (clonic) amongst other symptoms.

These clinical symptoms determine if the seizure is motor onset, while the absence of

these signs implies non-motor onset. Non-motor seizures evolve cognitive, emotional

or sensory processes etc. It is possible for focal seizures to initiate in a localised brain

region in one cerebral hemisphere and propagate to both hemispheres of the brain

(focal to bilateral tonic-clonic seizure). Seizures originated in both hemispheres can

be motor seizures (myoclonic, tonic, clonic, tonic-clonic) or absence seizures (lose and

regain consciousness during the seizure).

The presence of numerous different types of epileptic seizures and the dynamic

nature of the disorder (seizures change over time within a patient, but also from patient

to patient), makes the classification and the identification of an epileptic syndrome with

regards to diagnosis even more challenging, especially throughout the lifespan of an

individual.

1.2.2 Electroencephalogram (EEG)

The fundamental discovery of the recording of the electrical activity of the brain by

Richard Caton originates back to 1875. His findings were reported in the article “The

electric currents of the brain” (Caton, 1875) to the British Medical Association. Caton

placed unipolar electrodes to the cerebral cortex of rabbits and amongst others, found

that electrical currents tend to increase with sleep and appear to vary with flashing

lights. However, it was almost 50 years later, when the first electroencephalogram

(EEG) in humans was recorded by Hans Berger (Haas, 2003). In 1925, Berger described

patterns derived from brain waves and one of the first rhythms he discovered was alpha

rhythm (8-13 Hz) (van Putten, 2020). The publication of his observations in 1929

advanced the science of neurophysiology.

For diagnosing epilepsy, clinicians examine the patient on physical and neurologi-

cal basis; these examinations might include blood test, EEG, intracranial EEG, head

computed tomography (CT), brain magnetic resonance imaging (MRI), functional MRI

(fMRI), positron emission tomography (PET), and single-photon emission computer-

ized tomography (SPECT). Each one of these tests is specialised to a particular aspect
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of diagnosis, for example a CT scan can provide information about the structural or-

ganisation of the brain (Oguni, 2004) or brain MRIs are used for localising the temporal

lobe abnormalities (Oguni, 2004). Despite all the different modalities developed over

the last years, EEG is the fundamental tool used for diagnosis, monitoring and man-

agement of seizure types, and hence for epileptic syndromes (Smith, 2005). Almost

a century on, EEG is the standard tool in clinical neurology with applications rang-

ing from diagnosing sleep disorders to pre-clinical evaluation and research on language

processing (van Putten, 2020). EEG captures the electrical activity generated from

millions of neurons in the brain and hence it is a useful tool for determining poten-

tial neurological deficit; in epilepsy, EEG are analysed for capturing the physiological

manifestations of abnormal activity in the brain.

EEG signals can be classified into two broad categories: the surface EEG (EEG)

and the intracranial EEG (iEEG).

Surface EEG records the electrical activity in the brain using electrodes that are

placed on the scalp or surface of the brain. Synchronous synaptic activity to cortical

pyramidal cells generates currents that are measured by the EEG signals (van Putten,

2020; Cohen, 2017). Voltages recorded at the scalp reveal a rhythmical activity (van

Putten, 2020). These voltage fluctuations measured with scalp EEG range within a

spectrum of frequencies; these can be infraslow (< 0.1 Hz) or higher frequencies, such

as 35–80 Hz (high gamma), and > 80 Hz (high-frequency oscillations). The most

commonly used limits for EEG frequency bands are: delta (1-4 Hz), theta (4-8 Hz),

alpha (8-13 Hz), beta (13-30 Hz), gamma (80-150 Hz), and high gamma (80-150 Hz)

(Groppe et al., 2013).

Intracranial EEG (iEEG) are EEG recordings obtained with intracranial electrodes,

either as depth electrodes penetrating the brain for accessing deeper sites (e.g., hip-

pocampus) without open brain surgery (craniotomy) known as stereoelectroencephalog-

raphy (SEEG) (Khoo et al., 2020) or as subdural grids and strips known as electro-

corticography (ECoG) (Fernández and Loddenkemper, 2013). Intracranial EEG are

most commonly used as a complementary tool for localising the epileptogenic zone in

patients with drug-resistant focal epilepsy.

Most of the research community has focused on analysing electrographic seizures

and interictal epileptiform activity using interictal spikes, bursts and high frequency
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oscillations. Furthermore, the relationship between seizure incidence or other seizure

characteristics as observed in a clinical setting has been mainly explored using short

time periods of data (often pre-ictal or interictal). However, compared to the current

research, our work differs in three key aspects: 1) we focused on more global character-

istics of continuous interictal EEG activity, such as frequency band power, 2) we used

data over long time periods and 3) we did not focus on seizure occurrence, but rather

investigated the relationship between cycles with other seizure features, such as seizure

dynamics and seizure duration.

1.2.3 Treatment

The most common form of treatment is ASM. ASM do not cure epilepsy, but rather

provide an effective way of suppressing or reducing seizures in some cases. However,

anti-epileptic treatment medication might not be effective for some patients. Those are

patients with refractory epilepsy and clinically are determined as the ones who do not

respond to two anti-epileptic treatments based on the ILAE (Kwan et al., 2009).

A number of other options are available for patients with refractory epilepsy includ-

ing surgery, dietary modifications, and neuromodulation treatments. Those treatments

might control or even abolish seizures and hence improve a patient’s quality of life.

Amongst them, surgery seems to be promising for focal epilepsies particularly in cases

of focal lesions such as tumors, arteriovenous malformations, and cortical developmen-

tal anomalies, as well as mesial temporal lobe epilepsies (MTLE) (Burneo et al., 2016).

Ketogenic diet treatments have been used for almost a century (U lamek-Kozio l et al.,

2019) and proven effective in controlling seizures both in adults and children with refrac-

tory epilepsy (Martin et al., 2016; Liu et al., 2018). An alternative therapeutic approach

for refractory epilepsy includes neuromodulation treatments capable of abolishing an

ictal event and proved to be effective in reducing seizure frequency (Salanova et al.,

2015; Bergey et al., 2015; Fisher et al., 2021). These treatments might be invasive us-

ing an implantable device and induced electrodes, such as VNS, deep brain stimulation

of the anterior nucleus of the thalamus (ANT-DBS), and responsive neurostimulation

(RNS) of the epileptogenic zone/s or non-invasive, such as transcutaneous VNS and

transcranial stimulation (Ryvlin et al., 2021; Salanova et al., 2015; Bergey et al., 2015).

Amongst them, only VNS, ANT-DBS, and RNS are currently approved treatments for
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refractory focal epilepsy.

1.3 Cyclical Patterns in Epilepsy

Epilespy is a chronic disease with a dynamic nature (Lopes da Silva et al., 2003; Milton,

2010); seizures change over time in terms of their features in a patient-specific manner.

One aspect of the disease’s dynamic nature is reflected in the fluctuations of different

timescales (Karoly, Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021), while another

is mirrored by abrupt and sudden changes in cortical activity manifesting as seizures.

Recently, the availability of ultra long-term EEG recordings helped delineate the cyclical

seizure patterns (Baud et al., 2018; Karoly, Goldenholz, Freestone, Moss, Grayden,

Theodore and Cook, 2018; Spencer et al., 2016; Karoly, Rao, Gregg, Worrell, Bernard,

Cook and Baud, 2021) that have been reported since the 19th century (Langdon-Down

and Russell Brain, 1929; Griffiths and Fox, 1938). While the vast majority of research

has focused on seizure occurrence oscillatory patterns (Baud et al., 2018; Mitsis et al.,

2020; Karoly et al., 2017; Stirling et al., 2021) and recently modulations in seizure

dynamics with artificially developed circadian and/or slower rhythms, it is unknown

whether other seizure features change in a non-random, oscillatory manner.

Researchers have explored the variability of interictal features and/or their rela-

tionship with ictal features (Baud et al., 2018; Karoly, Goldenholz, Freestone, Moss,

Grayden, Theodore and Cook, 2018; Mitsis et al., 2020; Gliske et al., 2018; Chen et al.,

2021; Schroeder et al., 2020). Seizure diaries made it possible to capture longer rhythms

of seizure occurrence as well (Karoly, Rao, Gregg, Worrell, Bernard, Cook and Baud,

2021). In this section, I will discuss the recent findings related to the cycles found in

seizure features, interictal EEG features and their association.

1.3.1 Cyclical nature of seizures

Seizure frequency has been shown to change over time periodically, with cycles over

multiple hours, days, months and years. Circadian patterns of seizures have been

extensively studied and reported in the literature (Anderson et al., 2015; Loddenkemper,

Lockley, Kaleyias and Kothare, 2011; Quigg, 2000). Additionally, subclinical seizures
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(without clinical symptoms) are also reported to follow circadian patterns (Jin et al.,

2017). Evidently, the prevalence of seizure cycles over longer time-periods might have

a strong impact as well (Baud et al., 2018). Apart from circadian cycles, ultradian

rhythms also were apparent in 98% of subjects (Spencer et al., 2016). It has been well

known for years that seizures occur at a specific time of day, with a propensity for both

nocturnal and diurnal cycles (Langdon-Down and Russell Brain, 1929) though diurnal

seizure peaks have been found to be more prominent (Gowers, 1885). However, recent

studies do not imply a specific timing in circadian seizure cycles among patients, but

rather a diversity across all hours of the day (Karoly, Goldenholz, Freestone, Moss,

Grayden, Theodore and Cook, 2018; Leguia et al., 2021).

Longer cycles in seizure occurrence have been extensively studied (Griffiths and Fox,

1938). In a study with seizure records over multiple years or decades, Griffiths and Fox

found longer cycles of 1.5, 2 and 3.5 months. Complementary to these results, recent

studies found strong weekly and longer cycles of seizure activity (Karoly, Goldenholz,

Freestone, Moss, Grayden, Theodore and Cook, 2018). Monthly seizure cycles have

been linked to menstrual periods (Herzog et al., 2015). However, recent studies have

showed that these cycles seem to be equally present in both men and women (Karoly,

Goldenholz, Freestone, Moss, Grayden, Theodore and Cook, 2018; Karoly et al., 2016;

Baud et al., 2018). Additionally, studies in canine epilepsy reveal circadian, weekly and

monthly cycles in seizure rate (Gregg et al., 2020). More importantly, these rhythmic

patterns might relate to external factors, such as physiological processes, as they are

not dependent on the anti-epileptic medication (Gregg et al., 2020). Excessively long

periods of seizure occurrence emerged for three epileptic patients with one year cycle

for one patient and two years cycle for the remaining two (Griffiths and Fox, 1938). For

decades seizures have been linked to lunar cycles in some patients and showed to occur

preferably during the full moon (Polychronopoulos et al., 2006; Leguia et al., 2021).

However, studies revealed an impact of moon cycle on quality of sleep (Casiraghi et al.,

2021), suggesting that seizure occurrence is likely to be affected by variations on the

quality of sleep.

Beyond the cyclical patterns in seizure timing, there are other seizure characteristics

that reveal variability through time within the same patient. Whether this variability

can be described by cyclical patterns or not is yet an open question for most of the
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seizure features if not all. A “repertoire” of seizure onset patterns has been identified

electrographically (Perucca et al., 2014; Jiménez-Jiménez et al., 2015; Lagarde et al.,

2016; Salami et al., 2020). Among them, the most prevalent were the low-voltage

fast activity and the ultra slow wave prior to low-voltage fast activity (Lagarde et al.,

2019). Some of these onset patterns have been linked to different underlying dynamic

mechanisms (Wang et al., 2017). Apart from the seizure initiation patterns, researchers

have studied how seizures end. There is evidence that seizures can terminate in different

ways revealing two distinct patterns of bursting, synchronous termination (seizures

end synchronously across the brain) and asynchronous termination (seizures end in

some regions while remaining in others) (Salami et al., 2022). Even seizures of the

same onset or seizure type revealed different termination patterns within the same

patient (Salami et al., 2022), suggesting different mechanisms affecting the termination

of seizure dynamics.

Another seizure characteristic that varies across intra- and inter-patient ictal events

is the duration of seizures. It is unclear, though whether this variability is attributed to

distinct dynamics, onset and termination patterns. Research has also focused on captur-

ing the dynamic changes through time within ictal periods. These dynamic changes can

be thought as a “motif” or “pathway” from onset time to termination (Burns et al.,

2014; Khambhati et al., 2015). Recent work in the quantification of seizure spatio-

temporal network evolutions has demonstrated that seizures with similar dynamics

tend to occur closer together in time (Schroeder et al., 2020). It is shown that seizure

duration has a multimodal distribution within-patients. Seizures were not accurately

predicted for patients with multiple seizure clusters (Cook et al., 2013), suggesting that

these seizure populations might be characterised by different pre-ictal dynamics. Short

and long seizures were characterised by distinct seizure evolutions/trajectories (Cook

et al., 2016; Karoly, Kuhlmann, Soudry, Grayden, Cook and Freestone, 2018), while

maintaining similar onset patterns (Karoly, Kuhlmann, Soudry, Grayden, Cook and

Freestone, 2018). However, other studies suggest that seizure duration might be linked

to distinct seizure onsets (Liu et al., 2022) and/or seizure types (Jenssen et al., 2006;

Afra et al., 2008; Dobesberger et al., 2015; Kaufmann et al., 2020). Such findings might

indicate that different seizure durations might be indicative of certain seizure onset

patterns or/and seizure dynamic trajectories.
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Finally, the clinical manifestation of seizures is diverse within patients (Noachtar and

Peters, 2009) both in time and location. Seizures with more severe clinical symptoms,

such as focal to bilateral tonic-clonic seizures or seizures accompanied by post-ictal

generalised EEG suppression preferably occur during sleep (Jobst et al., 2001; Lamberts

et al., 2013; Peng et al., 2017) and arise according to sleep/wake or day/night cycles

(Bazil and Walczak, 1997; Loddenkemper, Vendrame, Zarowski, Gregas, Alexopoulos,

Wyllie and Kothare, 2011; Sinha, 2006). Nonetheless, less severe seizures, such as

subclinical ones, tend to occur at specific times of day (Jin et al., 2017). Seizure timing

seem to be associated with the type and location of the epileptic focus (Quigg et al.,

1998; Crespel et al., 1998). Thus, seizure features reveal spatio-temporal patterns that

need to be identified for designing better treatments.

1.3.2 Cycles of interictal activity

Both clinical observations (Freestone et al., 2017) and long-term iEEG monitoring

(Cook et al., 2013) have revealed that seizures make up only a small part of a pa-

tient’s continuous brain dynamics. For example, seizures make up less than < 0.05%

of the chronic NeuroVista recordings, as demonstrated for 15 patients and up to three

years of monitoring data for each one of them (Cook et al., 2013). As such, other con-

tinuous measures are needed to characterise timescales of variability in brain dynamics,

as seizures alone might not reveal periodic changes in brain dynamics, especially in

longer timescales. For instance, cycles over multiple timescales might be better tracked

using continuous long-term interictal EEG features, including epileptic spikes or spike

rate, epileptiform bursts, high frequency oscillations (HFO), functional network mea-

sures, band power in the main frequency bands and measures of cortical excitability

derived from EEG. These features are biomarkers for epileptogenesis and contribute

significantly in clinical practice (Engel et al., 2013; Worrell et al., 2004; Pitkänen et al.,

2016).

In recent years, continuous ultra long-term EEG recordings ranging from months

to years, such as NeuroVista (Cook et al., 2013; Howbert et al., 2014), NeuroPace

RNS (Jarosiewicz and Morrell, 2021; Nair et al., 2020) have made it possible to capture

longer oscillations in epileptic brain dynamics as mirrored in interictal biomarkers (Baud

et al., 2018; Karoly et al., 2016; Maturana et al., 2020). Specifically, cyclical patterns
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were prevalent in interictal spike rate (Baud et al., 2018; Karoly et al., 2016; Leguia

et al., 2021; Maturana et al., 2020), network dynamics derived from EEG recordings

(Kuhnert et al., 2010; Mitsis et al., 2020), cortical excitability as measured using EEG

(Meisel et al., 2015; Ly et al., 2016), high frequency activity (Chen et al., 2021) and

other EEG features, such as autocorrelation and variance of EEG (Maturana et al.,

2020). Additionally, these interictal features have been shown to change over time

within patients, such as location of high frequency oscillations (Gliske et al., 2018) and

signatures of cortical excitability (Badawy et al., 2009). Thus, features of interictal

iEEG are modulated by cycles at various timecsales.

1.3.3 Oscillatory behaviour in signatures of epileptic brain activity and

seizure features

Existence of seizure cycles in various timescales has been extensively studied using

long-term iEEG recordings. Previous work has found that seizures most preferably

occurred at specific times during the day, revealing circadian (Karoly et al., 2017) and

longer-term rhythms (Baud et al., 2018). These findings indicate that the epileptic

brain state is possibly “activated” in an oscillatory way. This non-random pattern of

seizure occurrence might inform the prediction of higher seizure risk periods (Chiang

et al., 2018). Longer timescales, such as multi-day (Baud et al., 2018) and circaseptan

(weekly) rhythms (Karoly, Goldenholz, Freestone, Moss, Grayden, Theodore and Cook,

2018) of interictal epileptiform activity were shown to be significant and co-modulate

with seizures for most of the patients. Evidence shows that seizures tend to occur

during a specific phase of these underlying rhythms of interictal epileptiform activity

(Baud et al., 2018); seizures more preferably occur during the rising phase of a multidien

rhythm. Aligned phases observed between circadian rhythms of seizures and interictal

spikes (Karoly et al., 2016) possibly suggest that interictal epileptiform activity and

seizures are modulated by common biological mechanisms characterised by cycles over

a hierarchy of timescales.

We hypothesize that it is not only seizure occurrence that is influenced by the tem-

poral patterns of the underlying interictal activity, but also other seizure features. The

epileptic network is more likely to be influenced by modulatory processes, which shape
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the brain dynamics during a seizure, and affect the severity of an imminent seizure.

Investigating the association between various characteristics of interictal dynamics and

seizure features can provide a better understanding of the seizure network as a dynamic

system. More importantly, analysing the cyclical patterns that contribute to the process

of epileptogenesis can lead to a better understanding of the modulatory mechanisms

underlying the disease and hence provide more effective treatments. Furthermore, there

is a great need for personalised forecasting which may be enhanced with established

cyclical characteristics for providing more accurate predictions of various seizure fea-

tures (Karoly et al., 2017; Panagiotopoulou et al., 2022) based on the patient’s needs

and positively impact the quality of their life. For example, it might be critical for a

patient to know the type of an imminent seizure, or the duration, so as to be proactive

and plan his life routine.

1.4 Methodological Approach of Measuring

Cyclical Patterns in iEEG Features

1.4.1 Signal processing for iEEG

Several steps are involved in processing complex iEEG signals before performing rig-

orous statistical analysis. While the various steps taken in processing iEEG data may

vary based on the scope of individual analyses, there are some key steps that are more

commonly applied to the raw iEEG before analysing them. Intracranial electrodes are

wired to recording equipment to enable the acquisition and storing of the data. Even

though patients are restricted to rest in bed for prolonged periods of time throughout

the implantation, wires of electrodes (when stereotaxic-EEG (sEEG) are used, which

are wires of electrodes implanted in the brain without the need of craniotomy) are li-

able to be influenced by movement artifacts (Parvizi and Kastner, 2018). In general,

in order to remove high-frequency artifacts we might use a filtering technique, such as

a low-pass filter at the frequency of interest (for example 50 Hz). Low-frequency drifts

can be apparent in the data and use of a high-pass filter either at 0.1 Hz or 0.5 Hz can

minimise the effect of these drifts. Finally, we need to remove line noise from the iEEG

recordings. In order to attenuate electrical noise, we can notch filter the raw signals at
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line frequencies of 50 Hz or 60 Hz.

1.4.2 iEEG features and multiscale periodicities

In order to analyse brain activity captured from continuous EEG recordings, it is useful

to disentangle the frequency representation of an EEG signal. Fourier transform can

be used for extracting a frequency spectrum representation of a time series, as long

as the duration of the time series analysed is stationary; a time series is stationary

if some statistical moments of the data are constant, such as the mean, variance, and

frequency structure that should not change over time. Importantly, the frequency struc-

ture should be time-invariant across the entire recording. In other words, stationarity

can be thought of as: if we took a snapshot of a defined length of the recording, its

frequency structure would be repeated throughout the entire length of the recording.

Evidently, EEG signals are non-stationary data (Blanco et al., 1995; Dikanev et al.,

2005), as the frequency representation of the neurophysiological activity of the brain is

altered over time due to endogenous and/or exogenous processes.

The assumptions of fast fourier transform (FFT) are thus violated when using real

EEG/iEEG data, and the lack of stationarity of EEG data reflects dynamic proper-

ties of the brain (Kaplan et al., 2005; Lehnertz et al., 2017). In order to overcome

these problems, one can perform a sliding-window approach and long-term time-series

would be divided into (non)overlapping segments/windows. The system can be denoted

approximately as stationary within each segment, and thus EEG signal properties of

interest (such as spectral features) can be considered time-invariant for a brief time

slice of the recording, usually ranging 4 s to 1 min (e.g. segments of 10 s, 30 s etc.)

(Barlow, 1985; Rieke et al., 2003; Dikanev et al., 2005; Kaplan et al., 2005; Tong et al.,

2007; Kaplan, 1998; Lehnertz et al., 2021). Throughout seizures, the EEG waveforms

reveal abrupt changes suggesting special attention for choosing an optimal segment

length (probably small) (Jefferys, 1990). When the segment length is too short, the

feature of interest might become limited if we take into account the sampling frequency

(Hz) as well. A short window can lead to a low number of data points which might

increase the uncertainty of the feature of interest or limit the range of frequencies that

can be detected. Thus, choosing an appropriate segment length should be an interplay

between accuracy of features and the approximated stationarity within the specified
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segment length.

A variety of different features can be obtained from the iEEG recordings of one or

multiple channels for capturing the spatio-temporal evolution of different properties,

analyse the dynamics of interictal brain activity, and detect the seizure onset zone.

Interictal epileptiform discharges (IEDs), such as spikes, polyspikes, and sharp waves

have been associated with seizure activity and localisation of epileptogenic tissue mea-

sured as spike rate (Baud et al., 2018; Karoly et al., 2016; Conrad et al., 2020), but also

in terms of their various amplitudes, curvatures, and slopes (Chavakula et al., 2013).

Interictal spikes, though partially overlapping with the epileptogenic zone (EZ) forming

what is known as the irritative zone (Rosenow, 2001), can be detected outside of the

EZ as well (Bartolomei et al., 2016). HFOs have been tightly related to more accu-

rate identification of the EZ (Jacobs et al., 2008) and are in concordance with surgical

outcome (Haegelen et al., 2013; Wu et al., 2010). However, HFOs can resemble both

physiological (ripples: 80-250 Hz) and pathological processes (fast HFOs or fast ripples:

250-500 Hz); physiological HFOs are apparent in normal cognitive functions, such as

memory processing (Alkawadri et al., 2014; Lachner-Piza et al., 2021), while fast ripples

have been identified as pathological (Urrestarazu et al., 2007; Rosenow, 2001) and have

even been related solely to epileptic activity (Usui et al., 2011; Brázdil et al., 2017).

However, concurrence of ripples and spikes seem to capture pathological activity rather

than spikes or ripples alone (Roehri et al., 2018; Cai et al., 2021; Kramer et al., 2019).

A complementary marker of abnormal electrographic activity can be defined also by

obtaining the band power abnormality in various brain regions relative to a normative

map of spectral characteristics across brain regions (Taylor et al., 2022; Frauscher et al.,

2018; Groppe et al., 2013). Also, measures capturing functional brain networks allows

for investigating interactions from different parts of the brain that likely form a network.

Such measures are important for understanding the underlying network organisation

in epileptic processes, such as epileptogenesis and ictogenesis (Kramer and Cash, 2012;

Geier et al., 2015; Kramer et al., 2011).

Most epilepsy research has been focused on investigating the time-varying brain

dynamics using short segments before (preictal state), during seizure (ictal state), after

seizure (postictal state) and between seizures (interictal state). Even though researchers

utilise sliding window approaches to capture how the brain changes over time, it is
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still based on iEEG activity captured over only several seconds to minutes. Those ap-

proaches assume that the brain transitions from a baseline interictal state characterised

by properties that are relatively stable to an abrupt event (ictal state).

However, we need to account for longer timescales when analysing brain dynamics,

as different physiological and pathophysiological processes can be captured using iEEG

that are entrained to cycles of multiple timescales that range from seconds to weeks.

Recent advances on iEEG analysis allowed the recording of brain activity over days or

weeks (Cook et al., 2013; Duun-Henriksen et al., 2020) providing the opportunity to

analyse how the brain dynamics of single brain region or a network of brain regions

evolve on timescales that exceed several days.

It is well known that EEG signals, among other physiological outputs, such as heart

rate variability, body temperature, melatonin secretion and blood pressure are regu-

lated by endogenous and exogenous biological rhythms (Glass, 2001) and thus exhibit

rhythmical behaviour. The circadian rhythms with approximately 24 h periodicity

are inherently endogenous as those are regulated by neurons from the hypothalamic

suprachiasmatic nucleus (SCN) of the hypothalamus (Herzog, 2007) which acts as the

master circadian pacemaker in mammals. However, the SCN is entrained by external

(environmental) factors/stimuli, such as light condition. Circadian rhythms have been

identified in spectral properties of EEG and cortical excitability obtained from humans

(Scheich, 1969; Ly et al., 2016). Furthermore, an influence of ultradian rhythms has

been demonstrated on EEG. Ultradian rhythms are cycles with periods shorter than

24 h (Lehnertz et al., 2021). Example ultradian rhythms include the main states of

sleep, rapid eye movement (REM) and non-rapid eye movement (NREM) that alter-

nate during sleep in cycles of 90-120 min period. Additionally, the basic rest-activity

cycles are ultradian rhythms of variable periods from 20 min to a few hours occurring

both in sleep and wakefulness (Kleitman, 1982). Ultradian cycles of variable periods

in different frequency ranges of EEG signals have been reported in healthy individuals

during wakefulness (Kaiser, 2008; Chapotot et al., 2000). Cycles with periods greater

than 24 h are termed infradian cycles and can be weekly, monthly or annually. Physio-

logical and behavioural processes, such as the menstrual cycle in females, and seasonal

affective disorder are associated with infradian cycles.

Apart from circadian and ultradian timescales, pronounced fluctuations of longer
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timescales have been identified in various EEG features, such as interictal epileptiform

activity (Baud et al., 2018; Schroeder, Karoly, Maturana, Panagiotopoulou, Taylor,

Cook and Wang, 2022; Leguia et al., 2021), functional connectivity (Gregg et al., 2020;

Mitsis et al., 2020; Geier et al., 2015), high frequency oscillations (Gliske et al., 2018).

Importantly, temporal cycles of multiple timescales have been linked to seizures (Baud

et al., 2018; Karoly, Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021; Schroeder,

Karoly, Maturana, Panagiotopoulou, Taylor, Cook and Wang, 2022; Panagiotopoulou

et al., 2022).

In order to extract fluctuations from interictal features over multiple timescales

including long-term ranging from days to weeks, researchers have used different meth-

ods, such as continuous wavelet transform (Baud et al., 2018), auto-correlation (Mitsis

et al., 2020; Karoly et al., 2016) and variants of empirical mode decomposition (EMD)

(Schroeder, Karoly, Maturana, Panagiotopoulou, Taylor, Cook and Wang, 2022; Pana-

giotopoulou et al., 2022). In the following section, I will give a brief overview of some

EMD-based methods and discuss briefly advantages and limitations over other mode de-

composition methods suitable for identifying long-term fluctuations from non-stationary

and non-linear data commonly used in iEEG features.

1.4.3 EMD, MEMD and their variants

Some of the most commonly used methods for representing signals in the time-frequency

domain are the EMD-based methods (Huang et al., 1998; Rehman and Mandic, 2010).

EMD does not require basis function for identifying band-limited modes and thus does

not generate harmonics, unlike Wavelet-based approaches. The standard EMD has

some limitations. First of all, in cases where we have multivariate signals, the appli-

cation of EMD at the individual univariate signals results in frequency modes, where

there is no alignment across the different signal dimensions. This is the so-called mode-

alignment problem which can be mitigated by employing multivariate extensions of

EMD, such as the bivariate-EMD (Rilling et al., 2007), trivariate EMD (Ur Rehman

and Mandic, 2010), and multivariate MEMD (Rehman and Mandic, 2010). Secondly,

EMD might fail to effectively decompose a multiscale signal by fully separating its in-

herent modes. In other words, EMD should extract an intrinsic mode function (IMF)

that corresponds to a distinct frequency scale and does not overlap with frequency
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ranges/limits of other IMFs. In EMD, usually the frequency components embedded in

the input signal are relatively close or overlap across IMFs yielding the mode-mixing

problem (Huang et al., 1998), namely an IMF containing oscillations over multiple wide

scales resulting in overlapping frequency ranges covered by multiple IMFs. In order to

overcome the mode-mixing problem within IMFs, a number of EMD variants have

been introduced, such as ensemble EMD (EEMD) (Wu and Huang, 2009), Complete

Ensemble EMD with Adaptive Noise (CEEMDAN) (Colominas et al., 2014), MEMD

(Rehman and Mandic, 2010), and Noise-Assisted MEMD (Ur Rehman and Mandic,

2011). Additional developments in this area can potentially overcome most of the pit-

falls of EMD-based methods (Xue et al., 2015; Deering and Kaiser, 2005; Li et al.,

2015; ur Rehman and Aftab, 2019). In the following sections, we describe briefly the

aforementioned EMD and its variants.

Empirical Mode Decomposition (EMD)

EMD was developed for enhancing the multiscale decomposition of a time-series comple-

menting the time-frequency representation of signals. EMD is a data-adaptive method

suitable for decomposing a non-linear and non-stationary signal into its inherent oscil-

latory components termed intrinsic mode functions (IMFs) (Huang et al., 1998).

Given a time series y(n), n = 1, 2, . . . , T taking values in R we can summarise EMD

as follows:

y(n) =
L∑
i=1

ci(n) + r(n), n = 1, 2, . . . , T, (1.1)

where ci(n), i = 1, 2, . . . , L represents the i-th IMF, T is the number of time points

and r(n) is the residue signal capturing the residual information that was not captured

by the mode components.

A well-behaved IMF (Mandic et al., 2013) is defined as a function that meets the

following conditions:

1. The number of extrema and the number of zero-crossings should be the same or

differ by one.

2. The mean value of the local minima and the local maxima envelopes should be
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zero at any time point n, n = 1, 2, . . . , T .

For the input signal y(n), n = 1, 2, . . . , T (Fig. 1.1a) the decomposition using EMD

can be summarised by an iterative procedure named shifting process (Huang et al.,

1998) as follows:

1. Identify the extrema values of the signal (Fig. 1.1b).

2. Obtain the upper and lower envelopes using cubic spline line for the local maxima

and local minima, respectively (Fig. 1.1c & d).

3. Compute the mean between the upper and lower envelopes, m1(n), n = 1, 2, . . . , T

(Fig. 1.1e).

4. Find the first IMF by substracting the m1(n) from the input signal y(n).

s1(n) = y(n) −m1(n)

5. Check if the s1(n) satisfies the conditions mentioned above to be designated as

the first IMF.

6. If the s1(n) does not satisfy the required conditions, the shifting process is re-

peated using as input signal the s1(n).

7. The shifting process is replicated k times until the s1k can be denoted as an IMF.

The s1k(n) = c1(n) can be denoted as the first IMF, which contains the shortest

period component of the input signal y(n).

8. Once the first component has been identified, it can be separated from the data

by extracting it from the input signal y(n), y(n) − c1(n) = r1(n).

9. Then the shifting process will be iterated on r1(n).

10. Finally the signal can be expressed as a summation of L narrow-band components

and a final residue as shown in equation 1.1.
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a)

b)

c)

d)

e)

Figure 1.1 Illustration of the EMD steps for one IMF. Visual representation of the
shifting process of EMD for extracting the first IMF termed IMF1 in an example univariate
signal.

An illustration of the shifting process for extracting an IMF from a time series can

be seen in Fig. 1.1.

The narrow-limited modes (IMFs) embedded in an example time-series can be seen
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Figure 1.2 Fluctuations (IMFs) obtained from Empirical Mode Decomposition.
Illustration of extracted IMFs as obtained from EMD in an example univariate signal.

in Fig. 1.2.

Ensemble EMD (EEMD)

Ensemble EMD is a noise-assisted data analysis suitable for alleviating the mode-mixing

problem (Wu and Huang, 2009). This method is based on the idea of adding multiple,

k = 1, 2, . . . , K, realisations of white Gaussian noise, Wk(n) to the input signal y(n),

so multiple EMD decompositions and averaging cancels out the noise, and the input

signal is projected into distinct mode scales yielding physically meaningful modes that

resemble the narrow-band frequency components of the input signal. The EEMD can

be described by the following steps:

1. Generate K noise-assisted signals, yk(n) = y(n)+Wk(n) by adding white Gaussian

noise to the input signal, y(n). The sequences of white noise should be generated
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by maintaining the standard deviation of the Gaussian process stable (Guo and

Tse, 2013).

2. Apply EMD to each one of the noise-assisted signals and obtain the corresponding

L IMFs, cki(n), where k = 1, . . . , K denotes the number of all uniformed time-

frequency spaced white noise and i = 1, . . . , L is the number of the IMFs.

yk(n) =
L∑
i=1

cki(n) + rk(n), n = 1, 2, . . . , T. (1.2)

3. Finally, an estimation of the ensemble IMFs, c̄i(n) can be acquired by averaging

the IMFs of common index. Mathematically, this can be expressed as:

c̄i(n) =
1

L

K∑
k=1

cki(n) (1.3)

ȳ(n) =
L∑
i=1

c̄i(n) + r̄(n),where r̄(n) is the residue signal. (1.4)

Complete Ensemble EMD with Adaptive Noise (CEEMDAN)

Although the EEMD method alleviates the mode-mixing problem, it leads to a higher

reconstruction error of the signal as noise included in the signal is not entirely eliminated

during the decomposition. Thus, Torres et al. (Torres et al., 2011) introduced Complete

Ensemble EMD with Adaptive Noise (CEEMDAN) to overcome this limitation. The

CEEMDAN method involves performing multiple EMD trials with different randomly

generated white noise added. Finally, the outputs obtained from the decomposition

trials are averaged to derive the final IMFs.

Multivariate Empirical Decomposition (MEMD)

A natural extension of the EMD algorithm and it’s variants for multivariate signals

is the Multivariate Mode Decomposition (MEMD) (Rehman and Mandic, 2010). This

algorithm covers a more generic case of multivariate signal decomposition, where the

bivariate EMD (Rilling et al., 2007) and trivariate EMD (Ur Rehman and Mandic,
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2010) are special cases. The MEMD alleviates the mode-alignment problem in the

standard EMD methods. In other words, in MEMD common index IMFs extracted

from multiple channels are linked with the same narrow-band frequency components

allowing association of modes across the dimensions of multivariate signals. In the

standard EMD, the IMFs extracted from each channel might differ in number and also

are not aligned, so as IMFs of the same index do not necessarily represent the same

frequency band mode.

In the standard EMD method, the IMFs are obtained as local mean throughout

the entire span of the signal computed by averaging the upper and lower envelopes

of the signal. These envelopes are computed by interpolating the local maxima and

minima of the signal. Once each IMF is acquired through these steps, it is subtracted

from the initial signal and the process is repeated till a stopping criterion is met based

on the properties that IMFs should fulfil. Under similar logic, the local mean, and

hence the local maxima and minima should be obtained for the multivariate signals.

However, these local characteristics may not have a direct definition. To obtain the local

mean of the multivariate signals, several signal projections on multiple directions will

be taken across m-dimensional spaces. The Hammersley sequence will be employed for

generating the m-dimensional projections distributed uniformly on a (M − 1)-sphere

(Rehman and Mandic, 2010). Once, all the projections are obtained, the m-signal

envelopes will be calculated by cubic spline interpolation (Rehman and Mandic, 2010);

the local average of the multivariate signal will be obtained by averaging these multiple

envelopes. The outline of the MEMD algorithm can be summarised in six steps:

1. A suitable Hammersley sequence is chosen for sampling on an (M-1)-sphere.

(Rehman and Mandic, 2010).

2. Generate k projections of the input M-dimensional signal y(n) = (y1(n), . . . , yM(n)),

along the direction vθk = (vk1 , v
k
2 , . . . , v

k
M); each projection denoted as pθk(n),

where n = 1, 2, . . . , T .

3. Find the time instants, nθk that form the maxima of all the projected signals

pθk(n) = (pθk1 (n), pθk2 (n), . . . , pθkk (n)).

4. Interpolate [nθk ,y(nθk)] for all k projections to obtain the multivariate envelopes

eθk(n).
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5. The envelope signals will be averaged for obtaining the local mean m(n) =
1
K

∑K
k=1 e

θk(n).

6. Get the d(n) = v(n) − m(n). If d(n) satisfies the stopping criterion for an

appropriate multivariate IMF, then the steps above should applied to v(n)−d(n),

otherwise apply them to d(n) (Rehman and Mandic, 2010).

Every time an IMF is obtained it is subtracted from the input signal and the pro-

cess is repeated until only the residue signal remains following some stopping criteria

(Rilling et al., 2003); for the multivariate case the process might yield the residue signal,

when the projections do not include enough extrema, so as to construct multivariate

envelopes.

Noise-Assisted MEMD (NA-MEMD)

The Noise-Assisted MEMD is a noise-assisted method that relies on the quasi-dyadic

filter bank properties of MEMD on white Gaussian noise (Ur Rehman and Mandic,

2011) the same way the ensemble EMD results in IMFs that exhibit a quasi-dyadic

filter bank structure. The NA-MEMD adds noise to the multivariate signal, without

using multiple realisations of Gaussian noise as in the ensemble EMD. Specifically, a

number of extra channels of independent white Gaussian noise are added as additional

dimensions to the input multivariate signal and then MEMD is applied to this new

extended multivariate signal. The IMFs associated with the white noise channels are

discarded yielding a selection of the IMFs that corresponds to the input signal only.

The NA-MEMD algorithm can be summarised by the following steps:

1. Generate an uncorrelated white Gaussian noise g-variate signal of the same length,

n = 1, 2, . . . , T , as the input signal.

2. Extend the input m-variate signal by adding the white Gaussian noise g-variate

signals yielding an (m + g)-variate signal.

3. Apply MEMD to the new augmented signal ((m + g)-variate signal).

4. From the IMFs obtained from the previous step, keep only those associated with

the initial input signal; discard the IMFs linked to the white Gaussian noise

signals.
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1.5 Research Problem, Aims and Significance

Epilepsy can be recognised as a dynamic disease, characterised by time-varying com-

ponents in seizure features within each patient; diversity is captured in the timings

of seizures, seizure evolution, seizure severity etc. The prevalence of circadian cy-

cles in seizure timing has been well documented (Langdon-Down and Russell Brain,

1929; Karoly et al., 2017; Karoly, Goldenholz, Freestone, Moss, Grayden, Theodore

and Cook, 2018; Gowers, 1885) and quantified as 65% (Karoly, Rao, Gregg, Worrell,

Bernard, Cook and Baud, 2021) and only in recent years have a number of studies

identified the importance of long-term cycles (multi-day, multi-month) (Baud et al.,

2018; Karoly, Stirling, Freestone, Nurse, Maturana, Halliday, Neal, Gregg, Brinkmann,

Richardson, Gerche, Grayden, D’Souza and Cook, 2021) in epilepsy. Interictal epilep-

tic brain dynamics revealed longer cycles that are associated with seizure occurrence

(Baud et al., 2018; Chen et al., 2021; Karoly, Rao, Gregg, Worrell, Bernard, Cook and

Baud, 2021; Leguia et al., 2021). However, short-term cycles (e.g. ultradian with cy-

cle period less than 24h) have been studied only in a small number of studies (Mitsis

et al., 2020; Spencer et al., 2016), where authors analysed specific EEG features that

capture certain pathophysiological changes in brain activity and looked only at spe-

cific seizure features (seizure occurrence, seizure onset). Additionally, whether cycles in

iEEG features exhibit alterations in pathological tissue remains unclear. In this thesis,

we highlight the significance of all the different timescales that appear in the epileptic

brain activity. We make two hypotheses: 1) fluctuations with timescales ranging from

minutes to days are associated not only with seizure occurrence, but also with other

seizure features, such as the dynamics and severity of an imminent seizure; just like

in seismology where multiple changes happen on the scale of minutes, hours, days or

years that contribute to the burst of a seismic event and/or its magnitude, and 2) those

fluctuations are diminished in epileptogenic tissue.

In that notion, I captured the continuous brain dynamics using more global measures

of iEEG recordings (e.g. band power in main frequency bands) and extracted the

different fluctuations over a hierarchy of timescales. Instead of looking at the seizure

occurrence and its potential co-modulation with these fluctuations, I firstly analysed

how seizures dynamically evolve and secondly how seizure severity change in time.
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Finally, I investigated whether alterations in cycles are apparent in epileptogenic tissue

compared to healthy tissue. Specifically, in my thesis I tried to address the following

questions:

� Does the seizure dynamics oscillate on specific timescales?

� How do other seizure features, such as seizure severity change over time? Is seizure

duration modulated by multiple cyclical patterns?

� Is the pathology associated with the alteration of cycles in brain activity?

1.6 Outline of the Structure of the Thesis

In Chapter 2, I analysed continuous iEEG recordings obtained through video-telemetry

units and captured iEEG band power fluctuations over time periods that range from

minutes to 12 days. Not surprisingly, all subjects exhibited circadian fluctuations in

their iEEG band power, consistent with earlier research. Moreover, we observed other

fluctuations of comparable magnitudes that were unique to each subject. Recently,

we conducted a study to measure the varying spatio-temporal patterns of seizures in

individual patients (Schroeder et al., 2020). These patterns appeared to be influenced

by subject-specific circadian or longer-term fluctuations (Schroeder et al., 2020). Con-

sequently, in this chapter, I investigated whether interictal iEEG features recorded

continuously can detect such modulations over various time periods. Indeed, I found

that in most subjects, the combination of fluctuations over different time scales can

account for changes in seizure evolutions beyond what would be expected by chance.

These findings suggest that subject-specific fluctuations in iEEG band power over min-

utes to days may serve as markers of seizure-modulating processes. I anticipate that

future studies will link these fluctuations to their biological causes, which will be cru-

cial for the development of innovative treatment strategies that can mitigate the clinical

impact of seizures by reducing their spread, duration, or severity.

In Chapter 3, I built on work done in Chapter 2 and further investigated another

seizure feature, duration of a seizure. In particular, I tested whether continuously-

recorded interictal intracranial EEG (iEEG) features encapsulate signatures of modu-

lations over different timescales and whether those are associated with seizure severity.
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Seizure duration was used as an intermediate proxy of seizure severity. The duration

of seizures has been found to be associated with the type of seizure, with more severe

symptoms typically leading to longer durations. For instance, seizures that begin in

one area of the brain and then spread to recruit additional brain areas tend to have

longer durations than those that do not spread as much. This has been observed in

various studies such as (Dobesberger et al., 2015; Kaufmann et al., 2020; Ferastraoaru

et al., 2016). Additionally, longer seizures have been linked to extended periods of

postictal suppression, which is an established indicator of seizure burden and severity,

when compared to shorter seizures (Payne et al., 2018). Seizure severity is also mod-

ulated over short and long timescales, which suggests that cyclical modulators could

play a role. One potential biomarker for seizure properties is cycles of interictal EEG

features that appear to influence seizure evolution found in Chapter 2. In this chapter,

I investigated whether seizure severity can be predicted based on interictal features

using seizure duration as a proxy for severity. I analysed changes in seizure duration

and their association with EEG band power fluctuation cycles within subjects. These

findings suggest a relationship between interictal iEEG band power cycles and seizure

duration, providing new opportunities for forecasting seizure severity in the future.

Finally, in Chapter 4, I explored whether cycles over multiple timescales are altered

in pathological tissue in patients with refractory focal epilepsy. I captured ultradian

and circadian cycles from time-varying band power using continuous iEEG recordings.

I found that circadian and ultradian biological rhythms exist in the brain. Interestingly,

when analysing the magnitude of these biological rhythms in different brain regions,

we find that circadian and particularly multiple ultradian rhythms are diminished in

regions that were deemed pathological. Within each patient, the level of alteration

remained relatively stable over time. Further investigation of the causal mechanisms

underpinning our findings is needed, and may allow for novel therapies leveraging these

biological rhythms.
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2.1 Introduction

Epilepsy is a common neurological condition characterised by recurrent, unprovoked

seizures (Fisher et al., 2014). It affects approximately 1% of the world’s population and

a third of patients experience refractory epilepsy, where seizures are not adequately

controlled despite medication (Chen et al., 2018; Kwan and Brodie, 2000).

Importantly, epilepsy is not a static disorder; electrographic seizure and epileptiform

activities have been shown to fluctuate over hours to years in both intensity and spa-

tial distribution. Specifically, while seizures often share common features in the same

patient (Kramer et al., 2010; Schindler et al., 2011; Schevon et al., 2012; Burns et al.,

2014; Wagner et al., 2015; Truccolo et al., 2011), electrographic seizure activity may

change in terms of duration (Cook et al., 2016), spatial spread (Marciani and Gotman,

1986; Karthick et al., 2018; Naftulin et al., 2018; Pensel et al., 2020), spectral proper-

ties (Alarcon et al., 1995) from one seizure to the next. Our recent work (Schroeder

et al., 2020) has additionally shown that the seizure EEG spatio-temporal evolution

from seizure start to seizure termination (or short: “seizure evolution”) also changes

from one seizure to the next in the same patient. Notably, these changes were consis-

tent with daily (circadian) and/or longer-term fluctuations in most patients (Schroeder

et al., 2020). In support of our observations, a recent study quantifying single-channel

properties of seizure onset and offset also noted that different types of dynamics can be

seen across different seizures in the same patient (Saggio et al., 2020). Similarly, seizure

symptoms are also known to change over time. For example, focal seizures, which evolve

into bilateral tonic-clonic seizures, preferentially arise from sleep (Jobst et al., 2001).

Subclinical seizures (without clinical symptoms) are also reported to follow circadian

patterns (Jin et al., 2017). Finally, seizure severity appears to depend on the severity

of the preceding seizure in the same patient (Sunderam et al., 2007). Thus, epileptic

seizures are not a fully deterministic sequence of abnormal brain activity patterns, but

are clearly modulated by processes that shape the neural activity during a seizure and

affect seizure severity.

However, it is unclear what these seizure-modulating processes are, and how to

quantify and measure them. Given the evidence of seizure properties fluctuating over

various timescales of hours to days, we hypothesise here that the seizure-modulating
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processes will also fluctuate over these timescales. From existing literature, we also know

that continuously recorded EEG show fluctuations over such timescales. For example,

spectral properties of the EEG change from moment to moment (Oken and Chiappa,

1988) and also follow a circadian rhythm (Aeschbach et al., 1999). Global and local

characteristics of the continuously recorded (interictal) functional network fluctuate

over timescales from hours to days, with circadian rhythm having a particularly strong

effect on these dynamics (Geier et al., 2015; Geier and Lehnertz, 2017; Mitsis et al.,

2020). Interictal fluctuations related to epilepsy are also seen: HFO rates vary in

location and power within each subject over time (Gliske et al., 2018). Interictal spikes

also change in their location and rate over hours to days (Karoly et al., 2016; Gliske

et al., 2018; Conrad et al., 2020; Baud et al., 2018; Chen et al., 2021).

In this chapter, we therefore hypothesised that fluctuations of certain features cap-

tured in continuously recorded EEG may serve as biomarkers of seizure-modulating

processes. We expected these fluctuations to appear on the timescale of hours to days,

and we investigated whether they can also explain how seizure evolutions change within

the same patient. Previous work suggests that many interictal features, including inter-

ictal spike rate (Baud et al., 2018; Proix et al., 2021; Karoly et al., 2016, 2017) and high

frequency oscillation rate (Gliske et al., 2018; Scott et al., 2021; Chen et al., 2021) may

serve as biomarkers for modulatory processes. In this chapter, we investigate the full

spectral range, using band power in main EEG frequency bands, to capture a complete

view of brain activities. Specifically, we use clustering and dimensionality reduction

to detect subject-specific spectral patterns in continuously recorded EEG. We then ex-

tract the temporal fluctuations over minutes, hour, and days in these common spectral

patterns and explore whether fluctuations on different timescales are associated with

how seizure evolutions change in each subject.

2.2 Methods

2.2.1 Data acquisition

We analysed open source data from subjects with drug-resistant focal epilepsy in ac-

cordance with the ethical standards set by the Newcastle University Ethics Committee
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(Ref: 18818/2019). The data consist of a total of 2656 hours of long-term intracranial

electroencephalography (iEEG) from 18 subjects (available at http://ieeg-swez.ethz.ch).

Continuous recordings in each subject cover 24 to 128 EEG channels and vary between

2 and 12 days. More information about the data is given in Supplementary Section

2.5.1. Sampling frequency was either 512 or 1024 Hz depending on the subject. Elec-

trodes (strip, grid, and depth) were implanted intracranially by clinicians. The onset

and termination of seizures were defined electrographically in the intracranial EEG

recordings by visual inspection by an epileptologist for the purpose of subsequent data

analysis. The collection of the data was conducted in the Sleep-Wake-Epilepsy-Center

(SWEC) at the University Hospital of Bern, Department of Neurology, as part of their

presurgical evaluation programme, independently of this study (Burrello et al., 2019).

The iEEG signals were provided in already preprocessed form. Briefly, signals were

median-referenced and band-pass filtered from 0.5 − 120 Hz using a 4th order Butter-

worth filter (forward and backward). Seizure onset and termination times were deter-

mined by a board-certified epileptologist. Channels with artifacts were also identified

and excluded by the same epileptologist. These steps were all conducted independently

of this study and resulted in the publicly available data and annotations. All subjects

formally consented to their iEEG data being used for research purposes (Burrello et al.,

2019).

2.2.2 iEEG preprocessing

We performed additional preprocessing steps to extract iEEG band power from five

main frequency bands (Fig. 2.1a). For each recording channel, the signal was divided

into 30 s epochs (Fig. 2.1b). For each epoch, the band power was computed for the

following frequency bands: δ : 1 − 4 Hz, θ : 4 − 8 Hz, α : 8 − 13 Hz, β : 13 − 30 Hz

and γ : 30 − 80 Hz. Band power across the five main frequency bands was estimated

using Welch’s method for every 30 s epoch, with 3 s sliding window without overlap

between consecutive windows. This estimation yielded a time-varying band power,

with each time point corresponding to the mean power within a 30 s window. The band

power values were aggregated into band-specific matrices with dimensions #channels ×
#epochs. Then, these matrices were log transformed and standardised across all epochs

and channels within a frequency band. To enable subsequent analysis steps, we also
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Figure 2.1 Workflow of data preprocessing; calculation of band power in 30 s
epochs and subsequent dimensionality reduction to detect subject-specific spec-
tral patterns. (a) The multi-channel continuous iEEG recording was divided into 30 s
non-overlapping epochs. (b) The standardised, log and sigmoid transformed band power.
(c)&(d) NMF (dimensionality reduction) of the band power matrix results in the decomposi-
tion W ×H. (c) The matrix W contains the basis vectors, each of which had 5×#channels
weights that represents a pattern of frequency across all channels and frequency bands. (d)
The coefficients matrix H captures the contribution of each frequency pattern (basis vector)
to each time window.

Sigmoid transformed (S(x) = [1+exp(−x)]−1) the standardised data to ensure positive

entries between 0 and 1. For each subject, we then concatenated the matrices from all
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frequency bands yielding a single (5 × #channels) × #epochs (henceforth defined as

n × T ; Fig. 2.1b). We will refer to this matrix as the data matrix X throughout the

paper.

Note that we did not exclude seizure epochs from the construction of the data ma-

trix, as seizures only represent a few epochs in the context of the continuous recording.

Our downstream analysis (with empirical mode decomposition) is robust to “noise” of

this type, and we show in Supplementary Section 2.5.8 that this choice does not affect

our main results. Note also that our measure of how seizure evolutions change over

time (in Section 2.2.11) (Schroeder et al., 2020) was based on functional network ac-

tivity of the seizure, whilst we used band power features to measure fluctuations of the

continuous EEG. Therefore, the fluctuations of the continuous EEG were not trivially

related to variability in seizure evolutions (also shown in Supplementary Section 2.5.3).

2.2.3 Non-Negative Matrix Factorization for dimensionality reduction

As the data matrix X for each subject is high-dimensional with redundant information

(e.g. in different channels), we applied a dimensionality reduction step on X using Non-

Negative Matrix Factorization (NMF) (Lee and Seung, 1999). NMF provides a low-rank

approximation to a non-negative input matrix X ∈ Rn×T
+ as the product of two non-

negative matrices, W ∈ Rn×k
+ and H ∈ Rk×T

+ , such that X ≈ W × H ≡ X
′
, given

an integer k. Specifically, we applied the non-negative singular value decomposition

(SVD) with low-rank correction (NNSVD-LRC) (Atif et al., 2019), which is a method

of low-rank approximation using an NMF initialisation approach based on SVD.

In this way, we decomposed each subject’s band power data matrix X into W and

H matrices (Fig. 2.1c-d). Every column of matrix W corresponded to a single NMF

component and formed a basis vector or feature weight with n elements. Each row of H

represented how a single NMF component evolves over time across all T time epochs.

We also refer to a single row of H as the NMF-expression coefficient time series. This

dimensionality reduction step not only compressed the data matrix X into a few relevant

dimensions, but can also be understood as a data-driven pattern detection, or (soft)

clustering of recurrent spectral patterns in the continuously recorded EEG. For example,

Fig. 2.1 shows that the band power in each channel at a particular time window could

be (approximately) described as a weighted sum of three patterns (given by the three
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basis vectors in W ). The weights were given as the expression coefficients (in H) at

each time point. This data-driven spectral pattern detection essentially provided us

with a comprehensive view of the EEG in each subject, without the need to pre-define

specific patterns of interest, which may not acknowledge subject-specific variations in

these spectral patterns.

To determine the optimal number of representative NMF components, k, for each

subject, we performed NNSVD-LRC for k = 3, 4, . . . , 15. For each value of k, we

obtained the matrices W and H. Using these matrices, we calculated the relative

reconstruction errors ∑
n,T

|X −X ′|/(n× T ),

as well as the quantity

c = max{max(|Corr(W )|),max(|Corr(H)|)}

for each k, where max(|Corr(W )|) represents the maximum absolute correlation

among all column pairs of W , and max(|Corr(H)| represents the maximum absolute

correlation among all row pairs of H. The latter represents the strongest correlation or

anticorrelation between NMF components in terms of their feature weights W and their

expression coefficient time series H. In this way, redundant information, particularly

in H, was excluded whilst preserving the important spatio-temporal patterns for the

next processing steps. A distinct number of NMF components, k, was selected for each

subject. This was the k yielding the smallest correlation between the NMF components

that had a relative reconstruction error smaller than 5%.

After determining the optimal choice of k, we obtained two matrices for each sub-

ject, W and H. To reiterate, the matrix W consists of the basis vectors, while H

is a multivariate time series with dimensions equal to k × T (= the number of NMF

components × the total number of epochs).

2.2.4 Extracting fluctuations in interictal band power using MEMD

To investigate fluctuations in band power on different timescales, we analysed the ma-

trix H using Empirical Mode Decomposition (EMD) (Huang et al., 1998, 2003). It is
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well known that EEG signals are non-stationary processes characterised by time-varying

features (Kaplan et al., 2005; Fingelkurts and Fingelkurts, 2001). EMD is a popular

data-adaptive method to detect non-stationary and non-rhythmic fluctuations on dif-

ferent timescales. Compared to Fourier and Wavelet-based approaches, EMD does not

assume any particular basis function or local stationarity. EMD also does not require

detrended time series and does not make assumptions about trends or timescales of

trends. It has the advantage of fully decomposing the signal into the full range of

timescales of fluctuations; their point-wise summation fully reconstructs the original

signal. As the nature of these band power fluctuations is unknown and most likely

not stationary, we opted for a data-driven method that makes as few assumptions as

possible.

EMD decomposes an input signal Y (t), into M finite narrow-band fluctuations,

known as intrinsic mode functions (IMFs), based on the local extrema of the signal:

Y (t) =
∑M

i=1 IMFi(t) + r(t), where r(t) is the residue signal (Huang et al., 1998). The

IMFs additionally satisfy the properties that make the Hilbert-transform well-defined

and therefore naturally yield instantaneous frequency and phases for each IMF.

However, local extrema are not directly applicable to multivariate time series sig-

nals (Rehman and Mandic, 2010), as we have in the H matrix. Therefore, we used

an extension of the EMD to multi-dimensional space, called the Multivariate Empir-

ical Mode Decomposition (MEMD) (Rehman and Mandic, 2010). In MEMD, mul-

tiple projections of the multivariate signal are generated along different directions in

n-dimensional spaces; the multidimensional envelope of the signal is then obtained by

interpolating across the different envelopes of these projections (Rehman and Mandic,

2010). An additional advantage of this method is that it yields the same number of

IMFs across the different dimensions of the multivariate signal, and preserves fluctu-

ations of similar frequency across the different dimensions within each of the IMFs

(mode-alignment) (Rehman and Mandic, 2010).

For the purpose of this analysis, we used MEMD to decompose the NMF-expression

coefficient time series, H, into a number of multi-dimensional oscillatory modes. There-

fore, the matrix H can be represented by the sum of M multi-dimensional IMF signals,

where the dimension for each IMF is equal to k (i.e. the number of rows of the ma-

trix H, which corresponds to the number of NMF components). To clarify, we can
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think of all IMFs in a specific dimension as the decomposition of the corresponding

NMF-expression coefficient time series. Thus, IMFi,j refers to the j-th dimension of

the i-th IMF timescale. The j-th NMF-expression coefficient time series Hj = Yj(t)

can be written as Yj(t) =
∑M

i=1 IMFi,j(t) + rj(t). This equation applies to every NMF

component j = 1, . . . , k.

2.2.5 Extracting time-varying characteristics from band power

fluctuations (IMFs) using Hilbert Spectral Analysis

To obtain a time-frequency representation of the oscillatory modes (IMFs), and hence

derive their time-varying characteristics (instantaneous frequency, phase, and ampli-

tude), we applied a Hilbert-transform on each dimension of the IMF (following classical

analysis methods for EMD) (Huang et al., 1998, 2003; Huang, 2014).

For any (real-valued) univariate signal u(t), we can define its Hilbert transform as:

H(u)(t) =
1

π
P

∫ +∞

−∞

u(τ)

t− τ
dτ, (2.1)

where P represents the Cauchy principal value for any function u(t) ∈ LP class (Huang

et al., 1998).

The analytical signal v(t) obtained from the Hilbert transform can be expressed as:

v(t) = u(t) + iH(u)(t) = a(t)eiθ(t), (2.2)

where

a(t) =
√

u(t)2 + H(u)(t)2 (2.3)

and

θ(t) = tan−1

(
H(u)(t)

u(t)

)
(2.4)

where a(t) and θ(t) are the instantaneous amplitude and instantaneous phase, re-

spectively.

40



Chapter 2. Fluctuations in EEG Band Power at Subject-specific Timescales over
Minutes to Days Explain Changes in Seizure Evolutions

The instantaneous frequency, f(t), can then be calculated as follows:

f(t) =
dθ(t)

dt
. (2.5)

The application of EMD along with Hilbert transform leads to the so-called Hilbert-

Huang transform. Through the Hilbert spectral analysis, each IMF’s instantaneous

frequency can be represented as functions of time. The result is a frequency-time dis-

tribution of signal amplitude (or energy using the squared values of amplitude, a2(t)),

designated as Hilbert amplitude spectrum or Hilbert spectrum (or Hilbert energy spec-

trum if energy is used instead of amplitude), H(f, t).

For each univariate IMF signal, we can obtain the Hilbert energy spectrum as a

function of instantaneous frequency and time mathematically using the following for-

mula:

H(f, t) =

{
a2(t), f = f(t)

0, otherwise.
(2.6)

For visualisation purposes we will display the inverse of the instantaneous frequency,

i.e. the instantaneous period length, also termed ‘cycle length’ in the following.

The Hilbert-Huang marginal spectrum h(f) of the original signal u(t) can then be

defined as the total energy distributed across the frequency space within a time period

[0, T ]. Mathematically, this definition can be expressed as shown below:

h(f) =

∫ T

0

H(f, t)dt. (2.7)

By using Equations 3.6 and 3.7 we can obtain the Hilbert-Huang marginal spectrum

for a univariate IMF signal. However, the application of the multivariate EMD results in

multivariate IMF signals. In order to compute the Hilbert-Huang marginal spectrum

of each multivariate IMF signal across all dimensions, we simply averaged over the

dimensions Hi(f, t) across i = 1, . . . , k dimensions:

H̄(f, t) =

∑k
i=1 Hi(f, t)

k
. (2.8)

The corresponding marginal spectrum h̄(f) was then similarly defined as:
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h̄(f) =

∫ T

0

H̄(f, t)dt. (2.9)

For numerical computations, we discretised time t to compute the integrals as sums.

Figure 2.2 shows the marginal Hilbert-Huang spectra for different multivariate IMFs in

an example subject.

2.2.6 Peak fluctuation frequency in each IMF

Within each subject, each IMF was characterised by a peak fluctuation frequency (mea-

sured in cycles/day here). It was determined as the frequency with the highest power

based on the marginal Hilbert-Huang spectrum over all frequencies, h̄(f).

2.2.7 Finding a circadian IMF

We will later focus one part of our analysis on IMFs that fluctuate on the timescale of

24 hours (1 cycle/day). To detect those IMFs, we found IMF(s) with a peak fluctuation

frequency of 1 cycle/day. If two IMFs were found (i.e. both displayed a peak frequency

at around 1 cycle/day), then the circadian IMF was determined to be the IMF with

the higher power. This case only occurred in one subject.

2.2.8 Relative contribution of iEEG main frequency bands in different

IMFs

To understand how much each of the iEEG frequency bands and channels contributed

to a certain IMF, we first determined how much each dimension of the IMF contributed

to the overall power of the IMF. To this end, we first obtained the mean power Eij in

each dimension j of every i-th IMF signal:

Eij =

∑T
t=0 aij(t)

2

T
, (2.10)

where T is, as before, the number of time epochs, and aij(t) is the instantaneous

amplitude for the j-th dimension of i-th IMF signal at time point t. One of the main

properties of MEMD is that multivariate signals are decomposed into multivariate IMF
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signals of the same dimensions, where all dimensions within an IMF share fluctuations

of the same timescale (Lv et al., 2016). Hence, focusing on the mean power over time

of each dimension within an IMF is a good indication of the power on a particular

timescale. The relative contribution of each j-th dimension to the i-th IMF (or relative

power) was then defined as:

Rij =
Eij∑k
j=1Eij

, (2.11)

with k indicating the number of dimensions.

Using the relative contribution of each dimension as weights, we can then form

the weighted sum of all dimensions in terms of contributions of iEEG main frequency

bands. By summing channel contributions for each iEEG main frequency band (see

Fig. 2.3b&c for an example subject), we obtained a matrix of dimensions (# main

frequency bands = 5) × (# dimensions = k). This matrix was then multiplied with

the weight indicating the contribution of each dimension to yield a vector (of length #

main frequency bands = 5) representing the contribution of each main frequency band

to a particular IMF for each subject (Fig. 2.3d).

2.2.9 Different band power fluctuations reveal spatial heterogeneity within

iEEG main frequency band

To determine whether all recording channels contribute homogeneously to an IMF in a

particular frequency band, we used a measure that quantifies sparsity of a distribution:

the Gini index (Hurley and Rickard, 2009). Given a vector x = (x1, x2, . . . , xN) sorted

in ascending order such that x1 < x2 < · · · < xN , the Gini index can be derived using

the following formula:

G(x) = 1 − 2
N∑
i=1

xi

∥x∥1

(
N − i + 1

2

N

)
. (2.12)

It can range from 0 to 1, with values closer to 0 indicating low sparsity (homogeneity)

and values closer to 1 corresponding to higher sparsity (heterogeneity).

We derived the Gini index for each IMF across different channels within each main

frequency band. In other words, for each IMF, we first computed the contribution Ci to
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each i-th IMF as the product of the relative power (eqn. 2.11) and the weights matrix:

Ci =
∑

j Rij × Wj, with i indexing the IMF number, and j indexing its dimension.

Specifically, Wj is the j-th column of the W matrix from the NMF decomposition

(Fig. 2.1c), whereas Rij is a scalar representing the relative power of the j-th dimension

to the i-th IMF (see 2.2.8). The resulting Ci is a vector of length #frequency bands

(= 5) × #channels, i.e. the same length as Wj. As we are interested in the distribution

of each Ci across channels for each frequency band, we applied the Gini index to each

frequency band separately in each Ci, yielding one Gini index per frequency band and

IMF.

2.2.10 Seizure distance in terms of a particular band power fluctuation

(IMF)

For each subject, we quantified the difference between pairs of seizures in terms of each

IMF. This measure (which we subsequently term the “IMF distance”) thus quantifies

how different two seizures are to each other in terms of a particular fluctuation of the

band power. To obtain this difference, we first computed the product W × IMFi(t),

where IMFi(t) is the multi-dimensional i-th IMF (k × T matrix). The product yields

the matrices X ′
IMFi

for all i = 1, . . . ,M timescales. X ′
IMFi

reconstructs the i-th IMF in

the original space of all channels and frequency bands. For each X ′
IMFi

, we computed

a distance matrix based on the multivariate Euclidean distance of IMF values for each

pair of seizures: Di(a, b) = ||X ′
IMFi

(ta)−X ′
IMFi

(tb)||, where ta and tb are the time epochs

of the seizure pair’s onset. Therefore, we obtained M IMF seizure distance matrices

per subject, each representing the pairwise seizure distance for a specific IMF.

Note that any seizure-induced changes in the band power will only be present in a

few epochs (as we use 30 s long epochs). Therefore, the seizures are considered to only

influence the fastest IMFs (highest-frequency fluctuations), while they have little effect

on the slower IMFs. Supplementary Section 2.5.8 additionally shows that our main

results were reproduced by using the IMF seizure distances obtained from one epoch

before the seizure onset epoch (ta − 1 and tb − 1).
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2.2.11 Quantifying differences in seizure evolutions using seizure

dissimilarity

To quantify how seizures themselves change over time in terms of the seizure EEG

evolutions, in our previous work we introduced a quantitative measure of how dissimilar

two seizures are within a subject (Schroeder et al., 2020). Briefly, each epileptic seizure

in a subject was analysed in terms of its evolution through the space of functional

network dynamics (using exactly the same pipeline as (Schroeder et al., 2020)). Each

pair of seizures was then compared to each other using dynamic time warping (Sakoe

and Chiba, 1978), allowing us to recognise seizures with shared evolutions (or parts

of evolutions), even if the seizures evolved at different rates. The average distance

between the warped seizures was then taken as the dissimilarity measure. As such, for

each subject, we obtained a “seizure dissimilarity” matrix, which captures the pairwise

dissimilarity between the subject’s seizure evolutions.

2.2.12 Association between seizure dissimilarity and IMF seizure

distance

Finally, we related how seizure evolutions changed over time (quantified using seizure

dissimilarity) with fluctuations seen in the continuously recorded iEEG (quantified using

IMF seizure distances). In subjects with at least six recorded seizures, we investigated

whether IMF seizure distances were associated with seizure dissimilarity. For every

subject, we used a linear regression framework, where the seizure dissimilarity was the

response variable and the IMF seizure distances were the explanatory variables. The

observations were the entries of the seizure dissimilarity matrix and IMF seizure dis-

tance matrix. As each matrix was symmetric, we only used the upper/lower triangular

elements. We also included the EMD residue signal distances, and temporal distances

of seizures (how far apart in time each pair of seizures occurred) as additional explana-

tory variables. The responses, as well as the explanatory variables, were standardised

individually before fitting the model.

We performed a variable selection step for our analysis, as the number of explanatory

variables (i.e. M + 2) was relatively large. We used LASSO (Least Absolute Shrinkage
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and Selection Operator) (Tibshirani, 1996), which is a sparse shrinkage method. Linear

regression coefficients were calculated based on least squares, subject to the L1 penalty.

The LASSO also accounted for any collinearity issues between variables. As we were

interested in detecting positive relationships between the response variable (as these

were distances) and the explanatory variables, we used a constrained positive LASSO;

that is, coefficients were constrained to be non-negative. For the LASSO, the tuning

parameter λ was selected using a 10-fold cross validation method from a range of values

λ = 10−3, 10−2.95 . . . , 101.95, 102 (see Supplementary Fig. 2.12).

After selecting a small number of explanatory variables, an ordinary least squares

regression was performed for each subject to obtain R2 and 95% confidence intervals

for the coefficients.

2.2.13 Statistical analysis

To assess whether the level of explanatory power of the best model selected for each

subject has occurred by chance, we performed two separate tests of statistical signifi-

cance for the adjusted R2. Both tests yielded very similar results and are are shown in

Supplementary Section 2.5.4.

In the first test, we randomly selected seizure onset times by generating a sample

from the uniform distribution on the interval (0, T ) over 500 iterations. The size of the

sample was equal to the number of annotated seizures for each iteration. Then, keeping

the randomly picked seizure onset times unsorted, we obtained for each one of them

new IMF seizure distance matrices and performed the LASSO and linear regression,

as described in the previous section, leaving the response variable unchanged. Finally,

we calculated the adjusted R2 for each iteration. Across all iterations, the adjusted R2

values were used to estimate the distribution of the test statistic used in the permutation

test. P-values were then calculated as the percentage of adjusted R2 values that were

larger in the permutation distribution. Statistical significance was determined based

on a significance level of 5%.

In the second test, we permuted the order of the seizures without permuting the

seizure timing over 500 iterations. We then performed the LASSO and subsequent steps

as in the first test.
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2.2.14 Data and code availability

The long-term iEEG recordings for all subjects are available at http://ieeg-swez.ethz.ch/

under the section “Long-term Dataset and Algorithms” (Burrello et al., 2019).

Initial signal processing was performed using Matlab version 2019a and Matlab’s

built-in functions. NMF and MEMD were implemented using the following publicly

available functions:

� Non-negative matrix factorization was conducted using the NNSVD-LRC func-

tion from https://sites.google.com/site/nicolasgillis/code (Atif et al.,

2019).

� Multivariate empirical mode decomposition was applied using code from

http://www.commsp.ee.ic.ac.uk/~mandic/research/emd.htm

(Rehman and Mandic, 2010).

For the remainder of the analysis and the construction of all figures we used Python

version 3.5. Either standard functions obtained from published libraries supported by

Python were used or custom code written in Python. The main functions used in the

analysis are listed below:

� Hilbert transform: scipy.signal.hilbert

� LASSO: sklearn.linear model.Lasso

� k-fold cross-validation: sklearn.model selection.kFold

� Multiple Linear Regression: statsmodels.api.ols

Our analysis code and data (post processing) can be found at https://dx.doi.

org/10.5281/zenodo.5798022.

2.3 Results

We analysed fluctuations in band power for 18 subjects with focal epilepsy. We in-

vestigated whether fluctuations on specific timescales were driven by particular iEEG

frequency bands or spatially localised activity. We then explored whether these tem-

poral fluctuations were associated with how seizures change within subjects.
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2.3.1 iEEG band power patterns fluctuate on different timescales

After extracting band power in the main frequency bands (δ, θ, α, β, γ) in 30 s non-

overlapping sliding windows for each iEEG channel (Fig. 2.1a,b), we performed dimen-

sionality reduction using a non-negative matrix factorisation (NMF) approach. NMF

effectively grouped channels and frequency bands to form components that represent

specific band power patterns. Weights for channels and frequency bands in each com-

ponent are shown as columns in matrix W , Fig. 2.1c. The expression coefficients of

these components at each time point was then given by the H matrix, which essen-

tially yielded a time series for each component (Fig. 2.1d). The weight represented a

subject-specific pattern of EEG band power activity across channels, and the strength

of expression of this pattern at any given time point was given by the expression coeffi-

cients. In short, the set of coefficient time series (rows in H) indicated the fluctuations

of subject-specific EEG spectral patterns over time.

For each subject, we then used Multivariate Empirical Mode Decomposition (MEMD)

to determine the different fluctuations on different timescales for each NMF coefficient

time series. Figure 2.2a shows the MEMD results for a single NMF component in ex-

ample subject ID06, yielding 15 Intrinsic Mode Functions (IMFs) and a residue signal.

Faster IMFs (e.g., IMF1, 2 and 3) are often thought to contain noise, but might also

reflect genuine fluctuations in the initial signal, such as cyclic alternating pattern (Par-

rino et al., 2014). For simplicity, we retained all IMFs for the subsequent main results

and refer the reader to Supplementary Section 2.5.7 for a more detailed analysis of noisy

IMFs based on permutation tests.

Using the instantaneous frequency and amplitude through the Hilbert transform,

we obtained the marginal spectral densities of each IMF in each dimension. Figure 2.2b

shows the marginal spectral densities averaged across all dimensions for each IMF (blue

lines) for example subject ID06. Some distinct peaks are seen especially in the slower

IMFs, e.g. IMF13 (at cycle length of ≈ 1 day ), IMF14 (at cycle length of ≈ 3.3

days), IMF9 (cycle length ≈ 3 hours), IMF8 (cycle length ≈ 1.6 hours), etc. Note that

both EMD and MEMD essentially act as dyadic filter banks (Wu and Huang, 2004;

Flandrin et al., 2004; Ur Rehman and Mandic, 2011); thus, the dyadic pattern seen

in the faster IMFs is not surprising. Supplementary Section 2.5.7 shows the marginal

spectral densities corrected for potential noise fluctuations.
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Figure 2.2 MEMD detects fluctuations on different timescales for each subject. (a)
MEMD yields 16 IMFs in example subject ID06. Only one dimension of the IMF (correspond-
ing to the first NMF component) is shown for simplicity. IMFs are presented in ascending
order (fastest to slowest, top to bottom). The last trace is the residue signal. (b) Marginal
Hilbert spectrum for all IMFs aggregated across all dimensions in example subject ID06. The
black line represents the Marginal Hilbert frequency spectrum across all IMFs. The x-axis
shows the instantaneous period length (inverse of instantaneous frequency), which we also
termed ‘cycle length’. Top three peak fluctuations are indicated with arrows. (c) Marginal
Hilbert frequency spectrum across all IMFs for each subject. (d) Bubble plot of peak fluc-
tuations for the three highest power densities according to the Marginal Hilbert frequency
spectrum across all IMFs for each subject. The size of the bubbles indicates the first, second
and third peak in descending order.
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As expected from previous literature (Baud et al., 2018; Karoly et al., 2016), we

found that all subjects displayed circadian band power fluctuations (Fig. 2.2c). The

presence of these circadian fluctuations helps validate our approach for extracting rel-

evant timescales in interictal fluctuations. Meanwhile, fluctuations on other timescales

were more subject-specific in cycle length. For 10 out of 18 subjects (ID01, ID02, ID07,

ID08, ID09, ID11, ID12, ID13, ID17 and ID18) the circadian fluctuation had the high-

est density (Fig. 2.2d). For six subjects (ID03, ID04, ID05, ID14, ID15 and ID16) the

circadian fluctuation was slightly lower in density, as the highest density was seen in

slower or faster IMFs. For two subjects (ID06 and ID10) the circadian fluctuation did

not feature in the top three highest densities, but a peak at one cycle per day can still

be observed in ID06 (Fig. 2.2c).

2.3.2 All iEEG frequency bands contribute to the circadian IMF

Following the observation of a circadian fluctuation in all subjects, we assessed the

contribution of each iEEG frequency band to the circadian IMF. We first determined

the circadian IMF, which was IMF 13 in example subject ID06 (Fig. 2.3a). We then

calculated the relative power in each dimension of the IMF, each of which corresponded

to an NMF component. For example, in subject ID06, the majority of its power (54%)

was concentrated in dimension 1 (Fig. 2.3a). We also noted that the circadian fluctua-

tion did not follow the same phase in all dimensions of the IMF, potentially indicating

the presence of multiple processes fluctuating on a circadian timescale. Since we are

interested in the overall contribution of each frequency band to the circadian cycle, we

decided to assess the contribution of different frequency bands over all dimensions next.

From the dimensionality reduction step, we had already obtained the weights across

all iEEG frequency bands and channels (matrix W, see Fig. 2.3b). For each NMF

component, we computed the weight of each frequency band by summing the weights

of that frequency band across all channels (Fig. 2.3c). Finally, a sum weighted by the

relative power in the IMF over all dimensions was obtained representing the relative

contribution of each frequency band to the IMF. For most subjects, δ band power

contribution was slightly higher compared to the other frequency bands for the circadian

IMF. However, other frequency bands also contributed to the circadian IMF in most

subjects (Fig. 2.3d).
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Figure 2.3 Contribution of iEEG main frequency bands to the circadian IMF. (a)
IMF 13 in example subject ID06 shows circadian fluctuations across all three dimensions,
each of which corresponds to an NMF component. Dimension 1 shows the highest relative
power in this IMF. (b) W component weight matrix (same as Fig. 2.1c). (c) The sum of the
component weights across all channels within each frequency band. (d) Contribution of each
iEEG frequency band to the circadian IMF across all subjects obtained by forming the sum
over the matrix in (c) weighted by the relative power in (a). To be able to compare subjects
to each other, each column here has been normalised to form a percentage contribution.

2.3.3 Subsets of channels contribute to multidien band power

fluctuations

Within each frequency band we also investigated the contribution of each channel to

an IMF. Specifically, we investigated whether the contributions were heterogeneous

across channels. We used the Gini index as a measure of spatial heterogeneity, where 0
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Figure 2.4 Gini index of IMFs for the δ frequency band across all subjects. Across all
subjects, we grouped IMFs based on their peak IMF cycle length and show the distribution
of the corresponding Gini indices as a violin plot with enclosed box plot. The thick grey
bar represents the inter-quartile range. For visualisation, we converted the peak frequency to
cycle length (x-axis). The residue is shown separately.

(1) indicates a completely homogeneous (heterogeneous) channel contribution for each

IMF. Figure 2.4 shows the distribution of Gini indices of all IMFs in the δ band across

all subjects, where IMFs are grouped by the IMF peak frequency. Results for other

iEEG main frequency bands are similar and shown in Supplementary Fig. 2.11. Overall,

the Gini indices are low for all IMFs, indicating that IMFs are not driven by a small

group of channels. However, there is a clear tendency for long-term trends to display a

higher Gini index, indicating that a subsets of channels may contribute more to those.
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2.3.4 Band power IMF fluctuations are associated with seizure

dissimilarity in most subjects

As the final part of our analysis, we investigated whether these fluctuations on different

timescales influenced, or modulated, changes in seizure evolutions over time in individ-

ual subjects. Particularly, we previously showed that seizure network evolutions change

over time in every subject, and that these changes could be explained by hypothetical

circadian or longer timescale modulators (Schroeder et al., 2020). Hence, we explored

whether the subject-specific fluctuations represented by the IMFs were associated with

changes in seizure evolutions.

For each IMF in each subject, we first determined their corresponding seizure IMF

Euclidean distance matrix (Fig. 2.5a,b). For example, in subject ID06’s IMF6, we

calculated the Euclidean distance of every time point to the time point of the first

seizure (Fig. 2.5a) across all dimensions. By reading out all the Euclidean distances to

all the other seizure time points, we obtained the first row of the seizure IMF Euclidean

distance matrix (Fig. 2.5b). The same process was repeated for all other seizures in

this subject. This distance matrix had dimensions of number of seizures by number of

seizures and represented how different the IMF state was for each seizure pair.

By using the same techniques as in (Schroeder et al., 2020), we obtained a seizure

dissimilarity matrix, which expressed the dissimilarity of each pair of seizure evolutions

through the space of network dynamics (Fig. 2.5c,d). The seizure dissimilarity matrix

thus quantified how much each pair of seizures differed within a subject. By relating

the set of seizure dissimilarities to the corresponding set of IMF Euclidean distance,

we investigated whether there was an association between changes in seizure evolutions

and interictal band power fluctuations (Fig. 2.5e).

To generalise this approach to all IMFs in a subject, we fitted a multiple linear regres-

sion model, where the sets of seizure IMF distances (derived from different IMFs) were

explanatory variables and the seizure dissimilarity was the response variable (Fig. 2.6a).

We also included the EMD residue signal and temporal distance between seizures (i.e.

how far apart in time each seizure pair occurred) as explanatory variables to model fluc-

tuations of longer timescales than the recording time. The observations were pairs of

seizures. After LASSO variable selection and linear regression, the estimated regression
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the value of the IMF distance to the first seizure and colours of dots correspond to the colour
scale in (b). (b) Seizure IMF distance matrix for IMF6. The first row is a representation of
the data in (a). (c) Visualising seizure evolutions as pathways (see Supplementary Section
2.5.2 and (Schroeder et al., 2020)). Seizures are displayed with distinct colours to distinguish
seizure events. The starting points of seizures are marked with a black outline circle. In
this projection, parts of seizures with similar network evolutions tend to be placed closer
together, and seizures with similar evolutions will therefore approximately overlap (e.g., orange
and purple pathways). (d) Seizure dissimilarity matrix, capturing the differences in seizure
evolutions over time between each pair of seizures. (e) Scatter plot of seizure dissimilarity
and the seizure IMF distance (Spearman’s correlation, ρ = 0.58).

coefficients for example subject ID06 are shown in Fig. 2.6c. For this particular sub-

ject, the strongest explanatory effect (as measured by the standardised regression coeffi-

cients, also know as beta-weights) was seen in the EMD residue signal followed by some

faster IMFs (IMF [Cycle length]: IMF3 [4 min], IMF4 [7.5 min], IMF5 [15 min]
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and IMF6 [26 min]). According to the model, 67.42% of the variability in seizure

dissimilarities was explained by explanatory variables (i.e. adjusted R2 = 0.6742).

Across subjects, we fitted the multiple linear regression model only for subjects with

at least six seizures, resulting in eight subjects with analysed seizure evolutions. Out

of our cohort of eight subjects, six had an adjusted R2 around or above 0.6 (Fig. 2.6d).

Suppl. Fig. 2.9 additionally shows that the adjusted R2 values would have not occurred

by chance in any subject except for ID10. For six out of eight subjects, circadian IMFs

were also part of the explanatory variables (Fig. 2.6d). Ultradian IMFs also tended

to remain as explanatory variables in the models for all subjects. Temporal distance

between seizures remained as an explanatory variable in three subjects, and the residue

signal also remained as an explanatory variable in three additional subjects. Overall,

a subject-specific combination of different fluctuations provided a good explanation of

seizure variability in most subjects.

Note that band power fluctuations are not expected to trivially correlate with how

seizures change, as (i) the seizure network evolution changes are detected on a finer

timescale (seconds) using a functional network measure of the time series rather than

a spectral property; (ii) seizure onset network patterns (as measured by functional

networks) are also expected to differ substantially from pre-ictal network patterns (Shah

et al., 2019); (iii) the impact of seizures on the band power fluctuation are most likely

to be limited to one or few 30 s windows and hence also likely to be limited to the

fastest IMF only. In Suppl. Section 2.5.3 we show that the band power without being

decomposed into different timescales does not explain how seizures change, indicating

that our results did not arise from trivial associations between seizure evolutions and

their corresponding interictal periods. In Suppl. Section 2.5.8 we also reproduced

our results using the pre-ictal (one 30 s window ahead of the seizure) band power

fluctuations, which were not impacted by seizure evolutions.
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Figure 2.6 A combination of IMF seizure distances on different timescales can
explain seizure dissimilarity in most subjects in a multiple regression model. (a)
Standardised seizure dissimilarity matrix (response variable). Only the lower triangle of the
symmetric matrix is shown, where each entry serves as an observation. (b) Explanatory
variables: The matrix on the left shows the standardised temporal seizure distance. Each
entry corresponds to the absolute time difference between seizures. The remaining matrices
are standardised seizure IMF distance matrices. (c) Coefficient estimates (black dots), based
on ordinary least squares regression for subject ID06, with lines indicating 95% confidence
intervals. Only five explanatory variables were left after performing variable selection based
on constrained LASSO. (d) Summary across subjects based on Ordinary Least Squares (OLS)
models with explanatory variables obtained by the constrained LASSO. Top: Bar chart of
the adjusted R2. Red stars indicate p-values ≤ 0.05. Bottom: Scatter plot indicating the
OLS coefficient estimates for the residue, temporal distance (when these variables remained
in the model), together with explanatory IMFs and their corresponding IMF peak frequency
for each subject. For visualisation, we converted the peak frequency to cycle length.
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2.4 Discussion

In this chapter, we analysed fluctuations in subject-specific iEEG band power patterns

over time and found that these patterns fluctuate over a wide range of timescales (from

minutes to days), including a strong circadian fluctuation in most patients. A subject-

specific combination of these fluctuations provided a good explanation (adjusted R2 >=

0.6) for how seizure EEG spatio-temporal evolutions change from one seizure to the

next within the same subject. Based on these findings, we suggest that band power

fluctuations in continuously recorded EEG may be a marker of modulators of seizure

activity.

Fluctuations on various timescales of the continuous EEG have been reported in

several studies using iEEG recordings. The prevalence of a strong circadian rhythm

in EEG patterns has long been known (Scheich, 1969; Spencer et al., 2016; Smyk and

van Luijtelaar, 2020; Cummings et al., 2000). Weaker ultradian (more than 1 cycle

per day) rhythms have been reported in long-term EEG band power (Kaiser, 2008;

Chapotot et al., 2000) and functional connectivity (Mitsis et al., 2020). Subject-specific

multidien (multi-day, i.e. less than 1 cycle per day) rhythms have also been detected in,

for example, the rate of interictal epileptiform activity (Baud et al., 2018; Karoly et al.,

2016), and the variance and autocorrelation of EEG signals (Maturana et al., 2020). In

agreement, we observed the circadian cycle in all subjects and additional fluctuations

on ultradian and multidien timescales that were subject-specific.

These fluctuations of EEG features on different timescales most likely reflect biolog-

ical processes. However, the mapping from EEG biomarkers to underlying time-varying

processes is incomplete. Various hypotheses exist regarding the interpretation of these

EEG fluctuations (Bernard, 2021; Karoly, Rao, Gregg, Worrell, Bernard, Cook and

Baud, 2021; Rao et al., 2021), and their possible drivers (Badawy et al., 2012; Meisel

et al., 2015; Karoly, Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021; Payne et al.,

2021; Rakers et al., 2017) include hormonal and metabolic cycles, changes in antiepilep-

tic medications, and external influences such as the weather. In this work, we therefore

took a subject-specific data-driven approach that allowed us to detect any prominent

fluctuations, regardless of their subject-specific source. Future work will explore a wider

range of EEG biomarkers and elucidate the exact mapping between different fluctua-
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tions and the underlying physiological or pathological processes.

Additionally, we make two observations about band power fluctuations on differ-

ent timescales. First, we saw that different frequency bands appeared to contribute

a similar amount to the circadian fluctuation of iEEG band power, although subtle

subject-specific patterns of contribution are also noted. However, our analysis was

performed across all dimensions of our data. The different dimensions of the IMF can

display phase and amplitude differences (see e.g. Fig. 2.3a), indicating that different cir-

cadian fluctuations (with different phases) exist in each subject, as has been reported

before (Aeschbach et al., 1999). Future work may wish to investigate the frequency

contributions to different dimensions of IMFs and also relate those IMFs to other phys-

iological variables such as body temperature or plasma melatonin (Aeschbach et al.,

1999).

The second observation is that slower fluctuations (multi-day fluctuations, and slow

trends) tended to result from changes in subsets of channels, whereas faster (circa-

dian and ultradian) fluctuations tended to arise as a more equal contribution from all

channels. A limitation in our analysis is that iEEG provides limited spatial coverage

and the electrode layout is patient-specific, making it difficult to compare patterns of

band power fluctuations across subjects. To fully uncover the spatial and frequency

band contributions to each dimension of each IMF, we suggest that future work should

consider the spatial location of iEEG channels and perform an iterative combination

of dimensionality reduction and empirical mode decomposition to find components and

their contributions for each IMF. From a clinical perspective, information on the spa-

tial coverage and location of the electrodes would further allow us to investigate the

overlap of the location of these temporal fluctuations with the epileptogenic zone in

focal epilepsies.

We applied empirical mode decomposition (EMD) to derive band power fluctuations

on different timescales. EMD is a popular data-driven adaptive method with applica-

tions on a broad range of scientific topics, such as geology (Battista et al., 2007),

hydrology (Hu and Si, 2013), and neuroscience (Huang et al., 2013; Rojas et al., 2013)

amongst many others. It is suitable for extracting fluctuations on different timescales

without assumptions of local stationarity, linearity, or specific basis functions, and

for these reasons preferable for our application. Since EMD does not require a ba-
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sis function to identify different timescales of fluctuations, it also does not generate

harmonics (as in Fourier or Wavelet-type approaches) of fluctuations, making the de-

composed cycles easier to interpret. However, EMD also has some limitations. Most

notably, the IMFs’ timescales of fluctuations may overlap, which is known as ‘mode

mixing’ (Ur Rehman and Mandic, 2011). EMD may also struggle to distinguish two

distinct fluctuations that have very similar periods, and they may be merged into one

IMF. Ongoing developments (Xue et al., 2015; Deering and Kaiser, 2005; Li et al.,

2015) in this area may overcome these limitations. Future work should explore how to

capture non-stationary (Kaplan et al., 2005), non-linear (Stam, 2005), and potentially

hierarchical (Vidaurre et al., 2017) time-varying properties of the continuously recorded

EEG.

Our main goal was to investigate whether there is an association between variabil-

ity in seizure evolutions and fluctuations in long-term iEEG band power. Changes in

seizure evolutions can be quantitatively described using seizure dissimilarity, which cap-

tures how different any pair of seizures are in a given subject in terms of their seizure

network evolutions (Schroeder et al., 2020). Previous work has also shown that fluc-

tuations in seizure evolutions were well-explained by processes incorporating Gaussian

noise, circadian, and/or slower timescales of changes in most subjects (Schroeder et al.,

2020). In agreement with this work, we found that circadian or multidien fluctua-

tions contributed strongly in most subjects in explaining seizure dissimilarity. In three

subjects (ID04, ID06, ID12), the residue signal also contributed to the explanation,

indicating that fluctuations on longer periods than the recording durations also played

a role. Interestingly, we also found many faster (ultradian) fluctuations as explanatory

variables in most subjects. These fluctuations could be contributing explanatory power

through what previously was modelled as noise (Schroeder et al., 2020). However,

there may also be a true biological fluctuation underpinning the explanation; faster

fluctuations in the EEG have also been reported, for example in the cyclic alternating

pattern (Parrino et al., 2014). With larger datasets using more seizures recorded over

a longer period, future work should investigate ultradian contributions carefully and

assess whether noise would perform as well as the cumulative ultradian contributions.

While fluctuations in long-term iEEG band power can explain seizure dissimilarity

fairly well, this association should not be interpreted as causal evidence. The observed
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band power fluctuations can be understood as signatures of multiple biological pro-

cesses, which could directly dictate seizure evolutions or be co-modulated by the same

upstream processes as the seizure evolutions. Our data cannot distinguish these cases.

Additional fluctuations that are not captured by iEEG band power may also explain

changes in seizure evolutions, and a more detailed analysis of the exact fluctuations

and the differences in specific seizure features may be more informative. Interestingly,

band power fluctuations did not account for all the seizure variability in most subjects.

The highest adjusted R2 was around 0.8 and the unexplained variability based on the

models suggests that there are additional factors, or possibly a level of stochasticity,

that impact seizure evolutions. Nevertheless, to make our findings clinically useful, for

example as a predictive model of upcoming seizure evolutions or seizure severity, nei-

ther causality nor completeness of the predictors is required. Our results indicate that

a predictive model of seizure evolutions is possible with continuously recorded features

such as iEEG band power, and this model should achieve good predictive performance

in the majority of subjects.

To improve predictive performance, other factors could be considered in future,

e.g. the anti-epileptic drug (AED) level at any given time or additional EEG features.

Specifically, it is well-known that AED changes and withdrawal can change the sever-

ity and evolutions of seizures. For example, bilateral tonic-clonic seizures are more

prevalent when AED levels are reduced (Pensel et al., 2020). AEDs have further been

shown to impact inter- and peri-ictal brain activity (Badawy et al., 2009; Meisel et al.,

2015), making it an important feature to consider. In this study, we did not incor-

porate information regarding drug doses, but future studies may wish to investigate

how AED levels impact iEEG band power (Arzy et al., 2010), in combination with

their potential explanatory power for seizure evolution changes. However, it is un-

likely that AEDs are the sole driver of changing seizure characteristics, such as seizure

occurrence (Karoly, Freestone, Eden, Stirling, Li, Vianna, Maturana, D’Souza, Cook,

Richardson, Brinkmann and Nurse, 2021) and seizure evolution (Schroeder et al., 2020).

Notably, prior studies on canine epilepsy showed that various seizure cycles (circadian,

weekly and monthly) exist even in the absence of anti-epileptic medication (Gregg et al.,

2020). In future work, incorporating personalised medication records could unravel the

behaviour of seizure rhythms with respect to changes in drugs and/or doses. Any multi-
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way association between continuously recorded brain activity, seizure evolutions, and

treatments (such as AEDs) has the potential to introduce entirely new treatment strate-

gies. If, for example, particular interictal EEG signatures predict more severe seizures,

and these signatures are also influenced by AED dose, then one can hypothesise that

responsively adapting AED dose according to these interictal signatures might decrease

seizure severity. If this hypothesis can be verified, then on-demand drug-delivery sys-

tems programmed to respond to patient-specific interictal signatures could become the

next generation of epilepsy treatments (Carney et al., 2014; Manganaro et al., 2017;

Ramgopal et al., 2013).

In a more general context, our work is another contribution to the wider litera-

ture of explaining ictal features from interictal EEG features or hypothesised circa-

dian/multidien rhythms. For example, studies have established that there is often a

subject-specific relationship between fluctuations of interictal EEG features and the

timing of ictal events (Baud et al., 2018; Karoly et al., 2016; Mitsis et al., 2020; Mat-

urana et al., 2020; Leguia et al., 2021). Interestingly, we found no evidence of an

association between band power fluctuations of the interictal EEG and seizure occur-

rence (data not shown). Seizures were not more likely to occur during particular phases

of particular IMFs in most subjects in our data set. This finding is in agreement with

a previous study (Mitsis et al., 2020) that reported functional network fluctuations,

rather than band power fluctuations, to be more predictive of seizure timing. Future

work should investigate temporal fluctuations in a range of EEG features, such as band

power (Cummings et al., 2000), functional connectivity (Mitsis et al., 2020), high fre-

quency oscillations (Gliske et al., 2018), variance, and autocorrelation (Maturana et al.,

2020). Apart from seizure timing, our work has shown that band power fluctuations on

different timescales also explain changes in seizure evolutions. Future work should ex-

plore this avenue further to illuminate the exact processes and timescales that modulate

or dictate the various aspects of a seizure.

Finally, our study contributes to the growing literature of alternative treatment ap-

proaches in epilepsy that predict and react to the temporal changes of the disease. Most

prominently, predicting when seizures happen has been an active and re-invigorated area

of research for many years (Karoly et al., 2017; Cook et al., 2013; Freestone et al., 2017;

Stirling et al., 2021). Our work further contributes to being able to predict seizure dy-
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namics and evolutions and thus also seizure severity and symptoms. Additionally, the

aforementioned (slow) fluctuations in EEG features we and others investigate may also

serve as biomarkers that can track treatment response, and therefore open the gate-

way to on-demand treatment options (Karoly, Rao, Gregg, Worrell, Bernard, Cook and

Baud, 2021; Bernard, 2021; Carney et al., 2014; Leite Góes Gitai et al., 2019; Potruch

et al., 2020; Ramgopal et al., 2013). The association we investigated between how

seizures change and slow fluctuations in EEG features therefore serves as a vital link to

make the leap between treatment outcome (improved seizure symptoms/severity) and

the given intervention that can be tracked with slow fluctuations in EEG features.

In conclusion, fluctuating interictal EEG features may not only correlate with clin-

ical seizure timing, but also with seizure evolutions on multidien, circadian, and ultra-

dian timescales. In the future, it may be possible to use these temporal patterns of

EEG fluctuations to predict seizure evolutions. Prediction of various seizure features,

including seizure evolution and seizure severity is a critical unmet need for people with

epilepsy. If successful, this improved forecasting approach would open up new oppor-

tunities for therapeutics and maximising quality of life.
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2.5 Supplementary

2.5.1 Subject data information

Subject Duration Duration Number Mean seizure
in hours in days of seizures duration (minutes)

ID01 293 12 2 10.030
ID02 235 10 2 1.468
ID03 158 7 4 1.078
ID04 41 2 14 0.699
ID05 109 5 4 0.278
ID06 146 6 8 0.765
ID07 69 3 4 1.159
ID08 144 6 70 0.366
ID09 41 2 27 0.706
ID10 42 2 17 1.181
ID11 212 9 2 1.526
ID12 191 8 9 2.441
ID13 104 4 7 1.717
ID14 161 7 60 0.430
ID15 196 8 2 1.576
ID16 177 7 5 3.174
ID17 130 5 2 1.632
ID18 205 9 5 3.319
Total 2656 111 244
Average 1.864

Table 2.1 For each subject the following information is provided: Duration in hours: dura-
tion of iEEG recordings in hours. Duration in days: duration of iEEG recordings in days.
Number of seizures: number of subject’s seizures annotated. Mean seizure duration:
mean seizure duration across all annotated seizures in minutes.

2.5.2 Visualising seizure dissimilarity

The iEEG traces of all seizures for subject ID06 are shown in Suppl. Fig. 2.7 a for

visual comparison of the different seizures and the quantified seizure evolution differ-

ences displayed as trajectories (Suppl. Fig. 2.7b) along with the dissimilarity values
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Figure 2.7 Seizure dissimilarity matrix for example subject ID06. (a) Seizure iEEG
traces are shown in the top panel of the figure. (b) Functional network evolution of all
seizures projected into 2D space using multi-dimensional scaling (MDS) for visualisation of
seizure pathways (see (Schroeder et al., 2020) for details). Similar seizures tend to be placed
closer together in this projection. Seizures are displayed with distinct colours to distinguish
seizure events. The starting points of seizures are marked with a black outline circle. (c)
Seizure dissimilarity matrix, capturing the differences in seizure pathways between each pair
of seizures.

(Suppl. Fig. 2.7c) for each pair of seizures. The bottom panel of the figure is similar

to Fig. 2.5a,b.
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2.5.3 Association between seizure dissimilarity and seizure band power

distance

Here, we want to demonstrate that the band power signal itself does not explain how

seizure pathways change, or at least not as well as specific fluctuations of bandpower on

particular timescales (as we presented in the main results). To this end, we associated

each subject’s pathway dissimilarity matrix with differences in the raw band power

signal (termed band power distance from now on).

In order to explore whether band power distance explains seizure dissimilarity, we

applied a linear regression framework. We implemented two models: (i) using the

seizure onset time window and (ii) using the time window just before the seizure onset

(onset window - 1).

For consistency with the main part of our analysis (see Fig. 2.5a,b) and to allow

comparison with findings in Fig. 2.6, a pairwise band power distance was obtained as

the euclidean distance from the data matrix X shown in Fig. 2.1b. In other words, the

band power distance is the euclidean distance between two time windows in terms of

their band power in all frequency bands and channels.

As can be seen in Suppl. Fig. 2.8, the low values of adjusted R2 across all sub-

jects indicate the band power signal itself does not explain how seizures change over

time. Instead the decomposition of the band power signal into fluctuations of particular

timescales is crucial, and only some of these timescales contribute explanatory power,

as we have shown in Fig. 2.6.
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Figure 2.8 Relating seizure dissimilarity with seizure band power distance. (a) and
(b) Summary across subjects represented with bar charts of the adjusted R2 values obtained
from the linear models using the onset window (Left plot: (a)) and the onset window -1 (Right
plot: (b)).

2.5.4 Tests for statistical significance in model R2

Randomly shifted onset times

We randomly shifted seizure onset times to test whether the multiple linear regression

model R2 values would have occurred by chance. Adjusted R2 values for 500 iterations,

along with the actual adjusted R2 are shown in Suppl. Fig. 2.9.

Randomly permuted onset times

Similarly to the analysis described in the previous section, we additionally performed

a permutation test. In each permutation iteration, we first randomly permuted the

order of the seizures (but not their timing). Then, we obtained new IMF seizure dis-

tance matrices and performed the LASSO and linear regression, exactly as described

in Section 2.2.12, leaving the response variable unchanged. Finally, we calculated the

adjusted R2 for each iteration (see Suppl. Fig. 2.10). Statistical significance was de-

termined based on a significance level of 5%. Again, the aforementioned steps were

performed for all subjects with at least six recorded seizures. Significance levels were
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Figure 2.9 Distribution of the adjusted R2 values using random seizure timings, af-
ter implementing the positive LASSO and OLS regression model for each subject.
The seizure dissimilarity matrix was used as response variable, while the seizure IMF distance
matrices for the random seizure times and the seizure temporal distance were included in the
model as explanatory variables. The vertical red line represents the adjusted R2 for the same
analysis performed on the original seizure onset times (see Section 2.2.12 and Fig. 2.6d).

similar for all tested subjects as in the previous section.

2.5.5 Gini index for frequency bands θ, α, β and γ

As described in Section 2.2.9, we obtained the Gini index for the frequency bands:

θ, α, β and γ (see Suppl. Fig. 2.11) in the same way as for δ band (Fig. 2.4).
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Figure 2.10 Distribution of the adjusted R2 values using permuted seizure orders.
The seizure dissimilarity matrix was used as response variable, while the seizure IMF distance
matrices for the random seizures and the seizure temporal distance were included in the model
as explanatory variables. The vertical red line represents the adjusted R2 for the same analysis
performed on the original seizure order (see Section 2.2.12 and Fig. 2.6d).
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Figure 2.11 Supporting Gini Index results for the θ, α, β and γ frequency bands
across all subjects. Equivalent figure to Fig. 2.4
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Figure 2.12 Cross-validation MSEs for the application of positive LASSO regression
for example subject ID06. For each value of the tuning parameter λ, the CV-MSEs across
the 10 folds are displayed in blue along with error bars which cover the mean plus or minus
one standard error. Training MSE is displayed in yellow. The red vertical line represents the
selected λ value that corresponds to the minimum Cross-Validation MSE for the validated
data set.

2.5.6 Choice of tuning parameter λ for LASSO

Supplementary Figures 2.12 and 2.13 are complementary plots supporting the inter-

mediate steps of the analysis described in Section 2.2.12. We implemented a 10-fold

cross validation for choosing the best λ parameter in LASSO. We chose a λ that min-

imised the Cross-Validation Mean Square Error (CV-MSE) for the validated data set.

The CV-MSE error for the training data set is also presented in Suppl. Fig. 2.12 for

reference for one example subject, ID06.
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Figure 2.13 The effect of the tuning parameter λ on positive LASSO regression
coefficients for subject ID06. Each line represents the regression coefficient estimate for
each explanatory variable. The red vertical line corresponds to the λ parameter selected based
on 10-fold cross validation approach.
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2.5.7 Determining which IMF fluctuations overlap with noise

In order to evaluate whether each of the IMFs is a good representation of fluctuations

present in the data, we implemented an empirical analysis based on permutation re-

sampling of the original time series (H expression coefficients). We used this nullmodel

to produce distributions of IMF fluctuation frequencies that would be expected from

noise. In our nullmodel, we assumed a permuted time series (permuting time points in

H) to represent noise, i.e. we preserve the distribution of the values in the time series,

but the temporal fluctuations are destroyed through the permutation.

We randomly shuffled the columns (timing) of the H matrix over 50 iterations

and performed the MEMD analysis for each iteration. Then, for each IMF, in each

iteration, we estimated the 2D distribution of the instantaneous frequency, and instan-

taneous amplitude (across all time points). We formed the average distribution across

all iterations. We repeated the same analysis for the original (non-shuffled) data, for

each IMF. Therefore we can calculate overlap in the distributions (between original and

shuffled data).

We used a 2D grid of (frequency, amplitude) with 800 frequency bin between 10−3

and 104 in logarithmic scale, and 400 amplitude bins between 10−4 and 100 in loga-

rithmic scale (logarithmic scales of base 10 were used). In each (frequency, amplitude)

bin, where the original signal overlapped with the permuted signal, the corresponding

data points were labelled as overlapping with noise. These points can subsequently be

removed from the calculation of the marginal Hilbert-Huang spectra for the original

signal. These newly obtained marginal Hilbert-Huang spectra, excluding data points

overlapping with noise, are shown in red in Suppl. Figures 2.14 and 2.15.

In Supplementary Figures 2.14 and 2.15, we can clearly see that many frequencies

of fluctuations in IMF1-3 are overlapping with noise in most subjects. The slower IMFs

do not appear to be affected (as noise-IMF tend to decrease in amplitude for slower

IMFs). While we could discard faster IMFs as noise due to the overlap, it is worth

noting that these faster IMFs could carry some true fluctuation that is simply on the

same timescale and of the same amplitude as the noise. This would be impossible to

distinguish here, and therefore we present all results on all IMFs in the main text and

will present supporting results with the faster IMFs removed in Suppl. Section 2.5.8.
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Figure 2.14 Marginal Hilbert Spectrum for capturing the noisy IMF signals for
subjects ID01-ID09. Marginal Hilbert spectrum of frequency for all analytical IMF signals
across all dimensions for both the original data (blue line) and after excluding frequency-
amplitude data points overlapping with noise (red line). Each panel corresponds to one
subject.
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Figure 2.15 Marginal Hilbert Spectrum for capturing the noisy IMF signals for
subjects ID10-ID18. Continued: Marginal Hilbert spectrum of frequency for all analytical
IMF signals across all dimensions for both the original data (blue line) and after excluding
frequency-amplitude data points overlapping with noise (red line). Each panel corresponds
to one subject.
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2.5.8 Alternative models for explaining the diversity in within-subject

seizure evolutions

We tested additional models to see how well they explain seizure variability, using the

same framework as is described in Section 2.2.12.

Association between seizure dissimilarity and IMF seizure distance based

on the time window before the seizure

To further validate our model in terms of the time window chosen for obtaining the

seizure IMF distances, we performed an additional analysis using one time window

before the window containing the seizure onset (termed onset window-1). The reasoning

is that the IMF distances obtained in this manner cannot contain any seizure-related

changes in band power. As can be seen in Suppl. Fig. 2.16a and in the first two columns

of the Suppl. Table 2.2, the adjusted R2, as well as the coefficient estimates and the

IMF components remaining in the model for each subject are in agreement with the

model shown in Fig. 2.6d. Thus, both models perform similarly, indicating that the

IMF distance results are robust towards changing a single window.

Association between seizure dissimilarity & IMF seizure distance excluding

noise

We further performed the regression analysis in Section 2.2.12 excluding the first three

IMFs, which could represent noise (Suppl. Section 2.5.7). As can be seen in Suppl.

Fig. 2.16, the adjusted R2 values for the majority of subjects were comparable for the

two models (albeit generally slightly lower). Only for subject ID09, the adjusted R2

was dramatically lower for the model without the first three IMFs (see Supplementary

Table 2.2 and Suppl. Fig. 2.16b). Note also our Discussion on the role of the faster

IMFs.

We also observed that the IMFs and corresponding coefficients were substantially

different in ID04, ID09, and ID10 between the two models. This is not surprising given

that both ID04 and ID10 had a low adjusted R2 in the first place, and ID09 had a

low adjusted R2 in the model without the first IMFs. In summary, we conclude that

the first three IMFs do not contribute substantially to explaining seizure dissimilarities
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in most subjects. However, in some subjects, faster IMFs may play a strong role in

explaining seizure dissimilarities.

subjects
Seizure dissimilarity & IMF Seizure distance

Adjusted R2

onset window onset window -1
onset window
w/o noise

ID04 0.3343 0.1545 0.0347
ID06 0.6742 0.5755 0.6787
ID08 0.6207 0.6279 0.6201
ID09 0.5927 0.5601 0.1865
ID10 0.1419 0.1949 0.0608
ID12 0.7299 0.6489 0.6529
ID13 0.8243 0.8060 0.7197
ID14 0.5973 0.5834 0.5306

Table 2.2 Adjusted R2 values for additional models. Adjusted R2 values for the models
described in Section 2.2.12 and Supplementary Section 2.5.8 for each subject with at least six
recorded seizures.
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Figure 2.16Alternative models for explaining seizure variability within subjects. (a)
and (b) Summary across subjects based on OLS models with explanatory variables obtained by
the constrained LASSO using similar representation as in Fig.2.6d for the models described in
Supplementary Section 2.5.8. Top: Bar chart of the adjusted R2. Bottom: Dot plot indicating
the OLS coefficient estimates for the residue or time distance (when this variable remained in
the model) together with OLS coefficient estimates at the corresponding value of IMF peak
frequency for each subject. For visualisation, we converted the peak frequency to cycle length.
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3.1 Introduction

Seizure severity plays an important role in evaluating therapies for people with epilepsy

by identifying which treatments reduce severity. Importantly as the severity of seizures

naturally fluctuates over time (Lamberts et al., 2013; Jobst et al., 2001; Peng et al.,

2017; Gascoigne et al., 2023), characterising or forecasting severity in real-time could

improve treatment protocols or open new treatment avenues. Although multiple tools

have been developed to retrospectively quantify seizure severity in individual people

with epilepsy (Cramer and French, 2001; Todorova et al., 2013; Baker et al., 1991,

1998; Duncan and Sander, 1991; Gascoigne et al., 2023; Pattnaik et al., 2022), there is

no established way to forecast seizure severity.

Forecasting seizure severity is challenging since seizure properties change over time

within individual people with epilepsy (Karoly, Rao, Gregg, Worrell, Bernard, Cook and

Baud, 2021; Schroeder et al., 2020; Panagiotopoulou et al., 2022). For example, onset

locations (Gliske et al., 2018), propagation patterns (Karthick et al., 2018), network

evolutions (Schroeder et al., 2020; Panagiotopoulou et al., 2022; Mitsis et al., 2020),

durations (Cook et al., 2016; Schroeder, Chowdhury, Cook, Diehl, Duncan, Karoly,

Taylor and Wang, 2022), onset times (Karoly, Rao, Gregg, Worrell, Bernard, Cook and

Baud, 2021; Baud et al., 2018), and patterns of electrographic epileptiform activity

(Ilyas et al., 2022) can differ from one seizure to the next. Importantly, seizures with

more severe symptoms, such as focal to bilateral tonic clonic (FTBTC) seizures, are

more likely to occur at certain times during sleep/wake or day/night cycles (Bazil

and Walczak, 1997; Loddenkemper, Vendrame, Zarowski, Gregas, Alexopoulos, Wyllie

and Kothare, 2011; Sinha, 2006; Lamberts et al., 2013; Jobst et al., 2001; Peng et al.,

2017). These findings suggest that seizure properties, including severity, are modulated

over short (minutes, hours, and days) and long (weeks, months, and years) timescales

(Karoly, Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021; Schroeder et al., 2020;

Baud et al., 2018). Previous studies have not systematically investigated potential

cyclical modulators of seizure severity.

Cycles in interictal activity could be a biomarker of severity-modulating cycles.

Interictal iEEG markers showed prominent cyclical patterns over circadian (Pana-

giotopoulou et al., 2022; Mitsis et al., 2020; Karoly et al., 2016, 2017; Karoly, Golden-
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holz, Freestone, Moss, Grayden, Theodore and Cook, 2018; Spencer et al., 2016; Karoly,

Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021) and multi-day (Baud et al., 2018,

2019; Karoly et al., 2016; Karoly, Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021)

timescales that appear to influence seizure properties, such as seizure evolution (Pana-

giotopoulou et al., 2022; Schroeder et al., 2020). It is likely that interictal EEG features

and seizures are modulated by common biological factors that cyclically fluctuate over

different timescales. As such, cycles of interictal features are a potential biomarker for

seizure properties.

In this chapter, we investigate whether seizure severity can be predicted based on

interictal features. We use seizure duration as a proxy for seizure severity due to associa-

tion of seizure duration with clinical seizure types and severity symptoms (Dobesberger

et al., 2015; Jenssen et al., 2006; Afra et al., 2008; Kim et al., 2011; Kaufmann et al.,

2020; Ferastraoaru et al., 2016). We analysed changes in seizure duration, and their

association with EEG band power fluctuation cycles within subjects. We first examined

the association between seizure duration and each band power cycle using correlation

metrics. We then assessed the relationship between seizure duration and a combination

of band power cycles using a multiple regression framework. Our results demonstrate

the relationship between interictal iEEG band power cycles and seizure duration which

could provide new opportunities for forecasting seizure severity in the future.

3.2 Methods

3.2.1 Patient cohort and data acquisition

For this study, we analysed iEEG data collected during the presurgical evaluation from

20 adult subjects with refractory focal epilepsy. We used subjects with at least 15

annotated seizures. Data were obtained from the University College London Hospital

(UCLH) (13 subjects), the NHS Greater Glasgow and Clyde center (GGC) (three sub-

jects), as well as the Sleep-Wake-Epilepsy-Center (SWEC) at the University Hospital of

Bern, Department of Neurology (four subjects) (available at http://ieeg-swez.ethz.ch)

(Burrello et al., 2019). For all subjects, seizures were annotated by clinicians, inde-

pendently of this study. Seizure durations were measured in seconds, and for analysis
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converted into log seizure duration using the natural logarithm (Schroeder, Chowdhury,

Cook, Diehl, Duncan, Karoly, Taylor and Wang, 2022; Cook et al., 2016). Demographic

details are given in Supplementary Table 3.1.

3.2.2 iEEG preprocessing and band power computation

The iEEG signals from the SWEC cohort were provided in already preprocessed form.

Briefly, signals were median-referenced and band-pass filtered from 0.5 − 120 Hz using

a 4th order Butterworth filter (forward and backward). Channels with artifacts were

also identified and excluded by the same epileptologist. These steps were all conducted

independently of this study and resulted in the publicly available data and annotations

(Burrello et al., 2019).

For the UCLH and GGC cohorts, we applied similar pre-processing steps before

computing the iEEG features of interest. We divided each subject’s long-term iEEG

data into 30 s non-overlapping time segments. All channels in each time segment were

re-referenced to a common average references. Within each time segment channels

that appeared to have outlier amplitude ranges were denoted as noisy and disregarded

from the common average calculation. To remove power line noise, each time segment

was notch filtered at 50 Hz and 100 Hz. Finally, segments were band-pass filtered from

0.5−120 Hz (UCLH cohort) or 0.5−110 Hz (GGC Cohort) using a 4th order zero-phase

Butterworth filter (second order forward and backward filter applied).

For each subject within the SWEC, UCLH, and GGC cohorts, we processed their

entire iEEG recording. We extracted iEEG band power from 30 s non-overlapping

iEEG segments in five main frequency bands (δ : 1−4 Hz, θ : 4−8 Hz, α : 8−13 Hz,

β : 13− 30 Hz and γ : 30− 80 Hz) based on Welch’s method with 3 s non-overlapping

windows. Missing data were tolerated if one contiguous at least 15 s long segment was

available. If missing data were present for one time segment, we applied all processing

steps and computed the band power to the non-missing part of this segment.

For each frequency band, extracted continuous band power values were log trans-

formed (natural logarithm), standardised and summarised across all channels by their

median. This step resulted in a matrix A for each subject with five rows (number

of frequency bands) and number of columns equal to the total number of 30 s time

segments in the entire recording. Missing data in A were imputed (see Supplementary
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Section 3.5.1) to enable extraction of band power cycles on different timescales in the

data. Imputed data were not used for later analysis as seizure data were not available

in missing periods.

3.2.3 Delineating iEEG band power cycles using MEMD

To extract oscillatory modes embedded in band power, we applied a signal decomposi-

tion method called Empirical Mode Decomposition (EMD) (Huang et al., 1998, 2003)

that does not require any assumption about stationarity or signal outputs from a linear

process. EMD captures a finite number, M of narrow-band modes, known as intrinsic

mode functions (IMFs), based on the local minima and maxima of the signal. Here

the input signal is represented by Y (t) =
∑M

i=1 IMFi(t) + r(t), where r(t) is the residue

signal (Huang et al., 1998). The IMFs are limited to a narrow-band frequency and have

a local mean of zero, therefore satisfying the properties needed for Hilbert-transform.

Hilbert analysis can be applied to each IMF yielded instantaneous phase (see Supple-

mentary Section 3.5.3). As our input matrix A was multidimensional, we applied a

multivariate version of EMD, which results in multidimensional IMFs that have the

same five dimensions as A (see Supplementary Section 3.5.2). Following the same logic

as in the univariate case of EMD (MEMD), each mutlidimensional IMF will reflect a

frequency-range related mode across all dimensions (frequency bands).

Cycles refer to oscillations with a very narrow band frequency representation, whereas

fluctuations indicate signals with more variability in their frequency. IMFs are usually

narrow-band signals, but due to challenges in the signal, mode mixing may occur in

some instances and multiple frequencies may be present. Nevertheless, we will use the

term “cycle” refer to the IMF obtained from MEMD in following, to be more consistent

with previous literature investigating long-term phenomena in interictal iEEG.

3.2.4 Statistical analysis

To test if any band power cycle phase (circular variable) is correlated with seizure du-

ration (linear variable), we first performed Mardia’s linear-circular correlation (Mardia,

1976). This results in a correlation coefficient bounded between zero (no relationship)

and one (perfect relationship). P-values are calculated from randomisation tests (see
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Figure 3.1 Quantifying band power cycles and seizure duration. (a) Traces of iEEG
recordings across channels. Each one corresponds to 30 s of recording. (b) Traces of iEEG
recordings for five example seizures with their duration displayed. More severe seizures,
such as focal to bilateral tonic-clonic seizures tend to last longer, in comparison with less
severe seizures, such as focal or subclinical seizures. (c) Heatmaps of the natural logarithm
of (standardised) band power values across channels for each one of the five main frequency
bands used in the analysis. (d) Line plots of the median (log transformed standardised)
band power across channels against time. Each line plot depicts one frequency band and is
coloured accordingly. (e) Visualisation of some example cycles of the delta frequency median
band power as extracted using Multivariate Mode Decomposition (MEMD).
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Supplementary Section 3.5.5). FDR correction (see Supplementary Section 3.5.10) was

applied to all p-values across all individuals and tests; the significance level was set to

5%.

To test if a combination of band power cycles are able to explain seizure duration,

we applied Linear-circular regression (see Supplementary Section 3.5.6). We applied

a model selection process (see Supplementary Section 3.5.7). Model performance was

assessed using root-mean-squared-error (RMSE) and adjusted R2 as model performance

metrics. A range of models were tested in the selection process, including all band power

cycles (all IMFs) in the delta, theta, alpha, beta and gamma band individually, as well

as the strongest cycles embedded in the signals (cycles with very high power across all

dimensions (frequency bands) – we term the resultant models as “peak” models. Finally,

we tested if the variable selection and regression process for the selected model could

have yielded a high performance by chance using a permutation test (see Supplementary

Section 3.5.9 for details). The significance level was set to 5%.

3.3 Results

3.3.1 Association of seizure duration and individual band power cycles

For each subject, we first determined any association between the seizure duration

and the phase of each band power cycle at which the seizure occurred using the rank

linear-circular correlation Dn (Mardia, 1976). In example patient U10, Fig. 3.2a and b

illustrate a moderate correlation (Dn = 0.40, p = 0.0093) between the seizure duration

and a gamma band power cycle (7.4h characteristic cycle period). Longer seizures

tended to occur during the falling phase of the cycle (Fig. 3.2a and b). Fig. 3.2c shows

the correlations between the seizure duration and the phases of gamma band power

cycles across subjects. Overall, there are some weak to moderate correlations with

some stronger ones appearing for two subjects (ID10 and U5).

Across subjects, we mostly found weak to moderate correlations between the seizure

duration and the phases of individual band power cycles for every frequency band (see

Supplementary Fig. 3.7).
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Figure 3.2 Example associations of seizure duration with phases of band power
cycles. (a) Representation of the phase of the 7.4h gamma band power cycle [0, 2π]. The
curve illustrates the falling and rising phase of the band power cycle. Each point represents
one seizure that occurred at the corresponding phase of the band power cycle and are coloured
by seizure duration in seconds (log). (b) Alternative, scatter plot representation of the same
data as in (a): seizure duration shown against phases of the band power cycle. (c) Dot plot
of the Mardia’s rank correlation between the seizure duration and the phases of the band
power cycles across all subjects. Weak associations (Dn ≤ 0.2) are not shown for clarity of
visualisation.

3.3.2 Seizure duration is modulated by cycles on multiple timescales

We further investigated whether seizure duration is more strongly associated with a

combination of two or more band power cycles, as individual cycles only showed weak

to moderate associations (Fig. 3.2c and Suppl. Fig. 3.7). To uncover such associations,

we applied a circular-linear model selection and regression (see Supplementary section

3.5.6). Fig. 3.3 illustrates the selected model for an example subject, U4. This model

had the best fit on the data with an adjusted R2 of 82% (Fig. 3.3a). The performance

of this model can be seen in Fig. 3.3b, where the predicted seizure durations based on

band power cycles were close to the actual seizure duration values. Fig. 3.3c illustrates

how much each band power cycle contributed to the seizure duration predictions based
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Figure 3.3 Illustration of the final selected model for one example subject. (a)
Bar plots representing the performance of the different models evaluated for this example
subject. The top plot shows the adjusted R2, while the bottom plot shows the root-mean-
squared-error (RMSE) as obtained from the Leave-one-out-cross-validation (LOOCV). The
non-grey coloured bars indicate the selected model, while all the other models are displayed
with grey colour. Performance metrics for models that were not valid are not shown. (b)
Scatter plots depicting the estimated quantities obtained from the model against the actual
seizure duration (natural logarithm) in this patient. (c) Band power cycle importance as
expressed by its estimated amplitude/magnitude (see Supplementary section 3.5.6) for the
corresponding cycle included in the model plotted against their corresponding cycle period
(days/cycle).

Across subjects, we found 70% of the subject-specific models had an adjusted R2 over

60% (Fig. 3.4a). From these models, around 80% were deemed to be above chance-level

(p-value <= 0.05) based on permutation tests (see Fig. 3.4a, Supplementary Fig. 3.13).

The intercept model performed better compared to all the models in only one sub-
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ject (U12), indicating that this subject’s variability in seizure duration was not well-

predicted by band power cycles. Overall, these models could explain more than 60% of

the variability captured in seizure duration for those subjects.

Different band power cycles of various timescales contributed in seizure duration

variability in the selected models (Fig. 3.4b). Timescales less than 1 day contributed to

the seizure duration diversity in all 19 subjects. For subjects U9 and ID10 the circadian

cycle was not apparent. Thus, circadian band power cycle was detected and included in

the models in 17 subjects out of 19. In 11 out of these 17 subjects the circadian rhythm

contributed in the selected models. For four subjects, slower cycles with cycle period

2 or 4 days were included in the modeling process (subject (period of slower cycle in

days): ID14 (2 days), U4 (4 days), U8 (2 days) and U5 (2.3 days)) (see Supplementary

section 3.5.4), those appeared to have cycles with periods longer than one day in the

selected models.
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Figure 3.4 Selected models across subjects. (a) Barplot of the adjusted R2 as obtained
from the selected model for each subject. The significance is indicated with a red asterisk as
determined by a permutation test for the adjusted R2 (see Supplementary Fig. 3.13). (b) Dot
plot illustrating the cycle period of the variables selected in the final model for each subject.
Colours depict the frequency band associated with these band power cycles.
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3.4 Discussion

A combination of cycles in interictal band power can explain the variability in seizure

severity, as measured by seizure duration, within individual subjects. We found that

a range of timescales provided explanatory power, including faster cycles (cycle period

< 1 day), circadian cycles (cycle period = 1 day) and some slower cycles (cycle period

> 1 day). It is likely that a combination of oscillatory mechanisms, each with distinct

cycle period, shapes how seizure severity changes over time. The incorporation of these

findings into therapeutic interventions, such as chronotherapy (Carney et al., 2014;

Ramgopal et al., 2013) may mitigate seizure severity.

Even though a combination of different band power cycles could explain seizure du-

ration, this relationship should not be interpreted as a causal effect. Each band power

cycle is most likely a reflection of an underlying modulatory process. It is not sur-

prising that a combination of different timescales predicts seizure duration, as multiple

mechanisms (Panagiotopoulou et al., 2022; Schroeder et al., 2020) appear to modulate

features such as seizure occurrence (Karoly, Rao, Gregg, Worrell, Bernard, Cook and

Baud, 2021; Bernard and Nehlig, 2021) and seizure duration (Schroeder, Chowdhury,

Cook, Diehl, Duncan, Karoly, Taylor and Wang, 2022).

The nature of these modulatory processes is still elusive, although their timescales

may provide some insights. Circadian cycles might be due to molecular oscillations

(Bernard, 2021) or may be linked to the sleep-wake cycle (Jin et al., 2020). Shorter

timescales might be related to blood concentrations of metabolites, as glucose and

ketone bodies fluctuate in timescales ranging from minutes to hours (Verbeek et al.,

2016; Simeone et al., 2018). These metabolic substances have also been linked to

neural hyperexcitability (Simeone et al., 2018). Thus, cycles in iEEG markers such as

band power could serve as biomarkers for oscillatory mechanisms that influence brain

dynamics; these mechanisms might in turn modulate the initiation, severity, and/or

termination of seizures.

Although we found many associations between band power cycles and seizure du-

ration, we were unable to explain duration variability in a small number of individuals.

Incorporation of longer cycles (than the ones captured in our data) into the models

might contribute to the unexplained variability of seizure duration. However, the lack
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of ultra long-term iEEG recordings (several weeks or months) limited our analysis to

multiday cycles up to four days (see Supplementary Figures 3.5 and 3.6). In previous

studies, cycles over a span of 5.5-33 days (Baud et al., 2018) have been associated with

seizure occurrence. Additionally, multi-month cycles have been associated with changes

in features of seizure evolutions (Schroeder, Karoly, Maturana, Panagiotopoulou, Tay-

lor, Cook and Wang, 2022). Another explanation is some level of random variability

(stochasticity) on seizure duration (Lopes da Silva et al., 2003; Suffczynski et al., 2006);

this stochastic element cannot be predicted. Lastly, other non-rhythmic factors could

contribute to variable seizure duration. For example, environmental and physiological

factors (Payne et al., 2021) have been shown to affect seizure occurrence. Anti-seizure

drug withdrawal could be another contributing factor (Kirby et al., 2020; Spencer et al.,

1981; Zhou et al., 2002; Duy et al., 2020). These external and internal factors might

also impact other seizure characteristics, such as seizure duration and severity. A model

that quantifies these factors may achieve better predictive performance of the seizure

duration.

In this study, we analysed a broad spectrum of spectral properties of brain activity

represented by a time-varying band power. We focused on the temporal changes by

using the median band power across channels, providing an overview of the possible

time-scales of modulatory cycles. However, variability of seizure severity might be

linked to specific brain regions where band power cycles have a unique signature. For

example, more severe seizures, such as FTBTC seizures have been linked to subcortical

areas, such as the thalamus (Caciagli et al., 2020). Future work may therefore benefit

from including spatial information from iEEG or other modalities.

Another limitation is that we used seizure duration as a proxy for seizure severity.

Even though seizure duration has been linked to seizure types (Kaufmann et al., 2020),

postictal activity (Payne et al., 2018), and SUDEP (Ochoa-Urrea et al., 2021), it does

not encapsulate all aspects of seizure severity. Various other aspects of seizure severity

could be quantified electrographically, such as the strength and extent of spread of ic-

tal activity, as well as the duration of post-ictal suppression (Gascoigne et al., 2023).

Additionally, other physiological markers of seizure severity have been used in previous

studies (Gascoigne et al., 2023). As with seizure duration, individual markers of seizure

severity can be associated with band power cycles using our approach (Supplementary
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Fig. 3.14 shows one example). However, combining different severity markers may lead

to a more representative overall measure of severity for better evaluating its temporal

cyclical patterns. Identifying potential endogenous mechanisms (physiological and cog-

nitive) or/and external factors that fluctuate on similar periodicities might unravel the

physiological drivers of variable seizure severity.

Finally, we were limited to a relatively short recording period of a few days, possibly

missing longer cycles. The number of seizures in each patient was also relatively low,

and we therefore did not attempt testing the performance of a prospective predictor.

Although we could show statistically that our association was above chance-level, future

work should test whether prospective prediction is feasible.

In conclusion, we have observed that seizure severity can be explained by a range of

cycles on different timescales captured in time-varying iEEG band power. We conclude

that prospective predictions may be possible in future with longer recordings, possibly

including other modalities. Our results provide evidence for multiple modulatory cy-

cles on different timescales that impact seizures and their severity, which future work

may investigate further. Ultimately, a better understanding of the seizure modulating

processes will enable the development of novel treatment strategies that could minimise

seizure severity and therefore the clinical impact of seizures.
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3.5 Supplementary

3.5.1 Imputation of missing data

To allow subsequent steps of analysis, we imputed any missing data in the band power

matrix A before extracting the cycles on different timescales in the data. Missing values

were later placed at the corresponding entries in the data for the final output (i.e. we are

not using imputed data for our final analysis). For each frequency band, we identified

all the missing blocks of the band power and further imputed them. For missing blocks

of size equal to one, we used the mean of one value before and after the missing block.

For missing blocks of size greater than one, we first identified the segments of equal

length with the missing block, before and after the missing block. In cases where the

missing blocks were at the start of the recording or the preceding segment was lower

in size than the missing block, we applied imputation using just the segment following

the missing block. We linearly interpolated the data of missing blocks using the mean

of the surrounding segments. The final imputed values were the interpolated ones with

Gaussian noise of mean zero and standard deviation, the 60% of the standard deviation

of the surrounding segments. If there were missing data apparent in the surrounding

segments, those were ignored.

3.5.2 Capturing oscillatory modes using MEMD

In order to extract oscillatory modes embedded in band power, we applied a signal

decomposition method called EMD (Huang et al., 1998, 2003). EMD does not re-

quire any assumption about stationary or linear characteristics of the signal; EEG sig-

nals are non-stationary processes influenced by complex non-linear dynamics (Kaplan

et al., 2005; Fingelkurts and Fingelkurts, 2001; Lehnertz et al., 2017). EMD captures

a finite number, M of narrow-band modes from an input signal Y (t), known as in-

trinsic mode functions (IMFs), based on the local minima and maxima of the signal:

Y (t) =
∑M

i=1 IMFi(t) + r(t), where r(t) is the residue signal (Huang et al., 1998). The

IMFs correspond to a limited-band frequency and have a local mean of zero, satisfying

the properties needed for Hilbert-transform to be well-defined. Thus, Hilbert analysis

can be applied to each IMF yielding instantaneous characteristics of the signals, such

92



Chapter 3. Seizure Duration is Associated with Multiple Timescales in Interictal
iEEG Band Power

as amplitude, frequency and phases.

Therefore, in order to obtain a time-frequency representation of the oscillatory

modes (IMFs), and hence derive their time-varying characteristics (instantaneous fre-

quency, phase, and amplitude), we applied a Hilbert-transform on each dimension of

the IMF (following Hilbert Spectral Analysis methods for EMD) (Huang et al., 1998,

2003; Huang, 2014).

However, in order to decompose multivariate signals (in our case band power across

frequency bands) we used an extension of the EMD to multi-dimensional space, called

the Multivariate Empirical Mode Decomposition (MEMD) (Rehman and Mandic, 2010);

local extrema can not be applied to multidimensional data (Rehman and Mandic, 2010).

In MEMD, multiple projections of the multivariate signal are generated along different

directions in n-dimensional spaces; the multidimensional envelope of the signal is then

obtained by integrating across the different envelopes over all these projections (Rehman

and Mandic, 2010; Rilling et al., 2007). This method yields the same number of oscil-

latory modes (IMFs) across the different dimensions of the multivariate signal. Also,

each oscillatory mode across dimensions corresponds to the same narrow-band mode

(frequency) (mode-alignment) (Rehman and Mandic, 2010).

3.5.3 Representation of marginal Hilbert spectrum for IMF signals

A suitable representation of the energy or power of a non-stationary and/or non-linear

signal across the full range of frequency designated as marginal Hilbert spectrum and

can be obtained using Hilbert Spectral Analysis. This should not be misinterpreted

as Power Spectral Density (PSD) representation of a stationary signal extracted using

Fourier Transform. In a PSD, peak values in power at certain frequencies indicate a

cos or sin wave to be pronounced and contribute to the signal throughout the whole

time span. However, pronounced values of energy or power within the marginal Hilbert

spectrum indicate that there is a greater likelihood to be a pronounced sin or cos

component prevalent within the signal spread locally in time (Huang et al., 1998). In

order to calculate the marginal Hilbert spectrum, firstly we apply the Hilbert transform

(Huang et al., 1998, 2003; Huang, 2014) to each univariate signal (dimension of IMF

cycles) for deriving their time-varying characteristics (instantaneous frequency, phase,

and amplitude).
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For any (real-valued) univariate signal u(t), we can derive its Hilbert transform as:

H(u)(t) =
1

π
P

∫ +∞

−∞

u(τ)

t− τ
dτ, (3.1)

where P represents the Cauchy principal value for any function u(t) ∈ LP class (Huang

et al., 1998).

The analytical signal v(t) obtained from the Hilbert transform can be expressed as:

v(t) = u(t) + iH(u)(t) = a(t)eiθ(t), (3.2)

where

a(t) =
√

u(t)2 + H(u)(t)2 (3.3)

and

θ(t) = tan−1

(
H(u)(t)

u(t)

)
(3.4)

where a(t) and θ(t) are the instantaneous amplitude and instantaneous phase, re-

spectively.

The instantaneous frequency, f(t), can then be calculated as follows:

f(t) =
dθ(t)

dt
. (3.5)

Through the Hilbert spectral analysis, each IMF’s instantaneous frequency can be

represented as functions of time. Thus, an energy-frequency-time distribution can be

obtained for each IMF signal named as the Hilbert energy spectrum or Hilbert spectrum.

For each univariate IMF signal, we can obtain the Hilbert spectrum (the squared

value of the amplitude) as a function of instantaneous frequency and time using the

following equation:

H(f, t) =

{
a2(t), f = f(t)

0, otherwise.
(3.6)

For better clarity through visualisations, we will display the inverse of the instanta-

neous frequency, i.e. the instantaneous cycle period.

Taking into consideration a well-defined Hilbert spectrum H(f, t), we can then ob-
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tain the marginal Hilbert spectrum h(f) of the signal u(t). h(f) is the total energy

distributed across the frequency space within a time span of [0, T ]. Mathematically,

this is defined as:

h(f) =

∫ T

0

H(f, t)dt. (3.7)

In order to obtain a Hilbert spectrum representation for multivariate signals based

on equation 3.6, we simply averaged over the dimensions Hi(f, t) across i = 1, . . . , k

dimensions:

H̄(f, t) =

∑k
i=1 Hi(f, t)

k
. (3.8)

Then, equation 3.7 is applicable for obtaining the marginal Hilbert spectrum for

a univariate IMF signal. Because in our case we have multivariate IMF signals we

will compute the marginal Hilbert spectrum of each multivariate IMF signal across all

dimensions. In order to do that we are going to integrate over the full time span the

averaged Hilbert spectrum across all dimensions, H̄(f, t).

This can be expressed as:

h̄(f) =

∫ T

0

H̄(f, t)dt. (3.9)

For numerical computations, we discretised time t to compute the integrals as sums.

For each multivariate IMF signal, a marginal Hilbert (energy) spectrum was obtained.

For defining which frequency of the initial signal is representative from each IMF, we

identified the dominant frequency as the frequency with the global maximum energy

value within the marginal Hilbert (energy) spectrum representation. Then, each IMF

signal is characterised by a pair of (energy/power, frequency) and this can be visualised

for each subject as can be seen in Supplementary Figures 3.5 and 3.6.

3.5.4 Choice of band power cycles for further analysis

In order to select appropriate IMF signals for further analysis, we used the cycle period

(inverse of frequency) along with the power for each IMF (Supplementary Figures 3.5

and 3.6). Cycles lower or equal to the circadian cycle if apparent (cycle period ≤ 1
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day/cycle) were included in the analysis. Cycles greater than 1 day/cycle were included

in the analysis, if their cycle period was at least 1
3

of the total recording indicating that

this cycle is more stable and we are more confident that this cycle is embedded within

the signal as we do not rely on observing one cycle only, but at least three cycles within

the full recording. Thus, in most of the cases the last three or more slowest band

power cycles including the band power residue were extracted from the overall analysis.

Finally, the fastest band power cycle (named IMF1) was not included in the analysis

as it often captures noise from the raw signal.
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Figure 3.5 Characteristic cycle period and energy for the band power IMF cycles
as obtained from MEMD. Each plot corresponds to each subject and represents the power
for each cycle period (days/cycle) of all band power IMF cycles. Red coloured circles indicate
cycles that were included in the analysis, while grey coloured ones are the ones excluded. The
band power IMF1 cycle as well as the band power residue are excluded from each subject’s
plot. Only selected labels are shown in the graph for better clarity and visualisation.
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Figure 3.6 Characteristic cycle period and energy for the band power IMF cycles
as obtained from MEMD. Equivalent figure to Fig. 3.5

3.5.5 Linear-circular correlation between the phase of band power cycles

and severity measure – a univariate measure

For each patient, we compared the seizure duration for every seizure to the patient’s

band power cycles; for each mode within each frequency band (dimension), we found
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the mode phases of seizures based on the associated onset times and further correlated

those with seizure duration. Mode phases are angular data and thus common correlation

metrics, such as Pearson or Spearman’s rank correlation coefficients are not appropriate.

To determine the association between seizure duration (linear variable) and mode phase

in a frequency band (circular variable) we computed Mardia’s non-parametric Linear-

Circular Correlation coefficient which measures association using ranks (Mardia, 1976).

This is a non-parametric measure, which means that it does not assume any form of

underlying distribution for both the linear and circular variables. It can be thought

of as the equivalent to Spearman’s rank correlation coefficient between a linear and a

circular random variable.

Mardia’s rank correlation coefficient

A measure of association between two random variables X and Φ, where X is a linear

variable on (−∞,+∞) and Φ a circular variable on [0, 2π) was proposed by Mardia

(Mardia, 1976) where the random sample, (xi, ϕi), i = 1, 2, . . . , n, of observations on

(X,Φ) are re-arranged by their ranks; xi and ϕi are arranged by the ranks i and ri,

respectively. The observations of the linear variable are first reordered from smallest

to largest, so as x1 ≤ · · · ≤ xn and assigned a corresponding rank, i, based on the

associated index i = 1, . . . , n. For the circular observations ϕi, then a circular ranked

variable mi can be defined as:

mi =
2π(ri)

n
, (3.10)

where {ri, i = 1, . . . , n} represent the circular ranks and n is the sample size of the

linear-circular pairs of observations, (xi, ϕi). Then, Mardia’s rank correlation coefficient

is defined as:

Un =
24(T 2

C + T 2
S)

n2(n + 1)
∼ X2

2 for n → ∞, (3.11)

where X2
2 is the X2 distribution with 2 degrees of freedom and

TC =
n∑

i=1

xicos(mi)

TS =
n∑

i=1

xisin(mi).

(3.12)
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Higher values of Un indicate stronger association. Also, Un is invariant under a change

of origin for the linear variable, X or under rotations of the circular variable, Φ.

However, for reporting the correlation we used a scaled measure of the Un termed

Dn. This is because the Un does not scale within [0, 1], as the common R2 values.

Thus, using a suitable transformation function, an, we can obtain a scaled version of

the Mardia’s rank correlation coefficient within the range [0, 1] as follows:

Dn = an(T 2
c + T 2

S), (3.13)

where if n is even,

an =
1

1 + 5cot2(π
n
) + 4cot4(π

n
)
, (3.14)

whereas if n is odd,

an =
2sin4(π

n
)

(1 + cos(π
n
))3

. (3.15)

Randomisation test

For large n, Un under independence follows approximately the X2 on two degrees of

freedom if X and Φ have continuous distributions. Significance of the independence

can be established using the U∗
n = (T 2

C + T 2
S) measure of association (Pandolfo, 2015)

based on a randomisation test. We use U∗
n as it is less computationally intensive. For

the randomisation test, we randomly obtain the circular ranking and further define the

circular ranked variable mi which is paired randomly with the linear ranks i. The U∗
n

measure was obtained for 1, 000 random selected linear and circular ranking to form a

null distribution. The p-value of the observed U∗
n measure was the percentage of times

a U∗
n measure of association obtained from the random selected ranking was greater or

equal to the observed correlation coefficient, U∗
n.
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Linear-circular correlation between seizure duration and the phase of band

power cycles

To determine the association between the seizure duration and the phase of each band

power cycle at which the seizure occurred we performed the rank linear-circular correla-

tion Dn (Mardia, 1976) for each subject. Supplementary Fig. 3.7 shows the correlations

between the seizure duration and the phases of band power cycles in each frequency

band across subjects. Overall, there are some weak to moderate correlations across all

frequency bands.
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Figure 3.7 Associations of seizure duration with phases of band power cycles. Dot
plots of the Mardia’s rank correlation between the seizure duration and the phases of the band
power cycles across all subjects. Each dot plot represents one main frequency band. Band
power cycles from weak associations (Dn ≤ 0.2) are not shown for clarity of visualisation.
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3.5.6 Modeling seizure duration using linear-circular regression

Linear-circular regression for cylindrical data

For modelling the relationship between a linear response variable, Yt, and a circular

random variable ϕt, t = 1, 2, . . . , n we used the following cosine regression (Mardia,

1976; Pewsey and Garćıa-Portugués, 2021):

Yt = µ + βcos(ϕt − ϕ0) + ϵt (3.16)

The n represents the total number of seizures, ϕ. is the instantaneous phase for the

specific IMF cycle, Y. is the linear response of interest (here, the log seizure duration)

and ϕ0 is the so-called acrophase angle. This is the phase of the corresponding IMF

cycle where seizure occurrence reached its peak in the corresponding IMF cycle, as the

sample of phases for every IMF cycle was chosen based on the onset times.

The above cosine formula can be rewritten as:

Yt = µ + γcos(ϕt) + δsin(ϕt) + ϵt (3.17)

This regression can be thought of as a multiple linear regression of Y on (cos(ϕt), sin(ϕt)).

Extending this regression from the univariate case to the multivariate case by using

multiple (K) IMF cycles, this can then be written as (Mardia and Jupp, 1999):

Yt = µ +
K∑
k=1

βkcos(ϕ
k
t − ϕk

0) + ϵt (3.18)

Finally, the above cosine equation can be rewritten as:

Yt = µ +
K∑
k=1

γkcos(ϕ
k
t ) +

K∑
k=1

δksin(ϕk
t ) + ϵt (3.19)

In all the different forms of the cosine model, µ is the expected mean value of the

linear response variable Y . βk =
√

γ2
k + δ2k is the magnitude of contribution of the k-th

IMF cycle.

Equation 3.19 can be fitted based on data using a multiple regression framework

yielding estimates for γk, and δk, for each k-th IMF cycle. Subsequently, we can thus ob-
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tain the magnitude of contribution by each k-th IMF through βk. Previous study (Proix

et al., 2021) has used a similar approach for including cycles of multiple timescales into

a linear generalised regression model. Proix et al. obtained cycles from interictal spike

rate data using wavelet analysis, in order to predict whether a seizure will occur or not.

So the response variable was binary as opposed to our study, where the response can

take values in R.

3.5.7 Forming models for seizure duration

We wanted to investigate the relationship of seizure duration with combinations of band

power IMFs extracted from the MEMD. We fitted 12 models per subject, each with a

different selection of explanatory variables. The 12 models can be grouped into four

categories, the “frequency band models” (five models) (Fig.3.8), the “peak models” (five

models) (see Fig.3.9), the full (all explanatory variables) and the intercept (without any

explanatory variables) models.

The band power cycles from a given frequency band formed the explanatory vari-

ables for the corresponding “frequency band model” (Suppl. Fig. 3.8). Note that all

cycles corresponding to the cycle periods that selected for further analysis (see Supple-

mentary section 3.5.4) were identified within each frequency band and included in the

corresponding “frequency band model”. Fig. 3.8f illustrates the characteristic power

and cycle period of cycles included in each of the “frequency band models” for an ex-

ample subject, U8. For each one of the five “peak models”, we used the band power

cycles across all frequency bands that appeared to have more prominent amplitudes

(Suppl. Figures 3.5 and 3.6). Starting from the “peak 1” model that contains the band

power cycles (across all frequency bands) with the highest power, we then constructed

the “peak 2” model by adding the two most prominent band power cycles across all fre-

quency bands, and sequentially formed the remaining “peak models” (Suppl. Fig. 3.9).

Finally, we formed the full model and the intercept one. The former included all the

band power cycles across all frequency bands as independent variables, while the latter

had no variables, just the intercept term.

Initially, we performed a variable selection step for our analysis, as the number of

explanatory variables was relatively large compared to the sample size for all models

except the intercept one. We used group-LASSO (Yuan and Lin, 2006; Breheny and
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Figure 3.8 Illustration of “frequency band” models in an example subject. (a-e)
Heatmaps of all the different band power cycles for all frequency bands. The rows depict
the frequency bands and the columns the spectrum of the narrow-band band power cycles
selected for further analysis (see Suppl. Section 3.5.4). Cells coloured with yellow indicate
the corresponding variables used in each “frequency band” model. (f) Characteristic power
and cycle period (days/cycle) of cycles included in each of the frequency band models with
text displaying the band power cycle (IMF) and the characteristic cycle period in parenthesis.

Huang, 2015), which is a sparse shrinkage method and formed groups of the sin() and

cos() terms for each band power cycle involved in the model. For the LASSO, the

tuning parameter λ was selected using a 10-fold cross validation method from a range

of values λ = 10−3, 10−2.92 . . . , 104.92, 105.

After selecting a small number of explanatory variables, a linear-circular regression
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Figure 3.9 Illustration of “Peak” models in an example subject. (a-e) Within each
panel, the top plots show the characteristic power and cycle period (days/cycle) of all band
power cycles selected for further analysis (see Supplementary Section 3.5.4) represented by
circle dots for an example subject. Circle dots coloured in yellow depict the band power
cycles included in the corresponding “peak” models with text displaying their characteristic
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was performed for each subject. We obtained adjusted R2 as a model performance

metric. A LOOCV was also performed as an additional metric for assessing model

performance. Both performance metrics were used to select the “best” model. The

adjusted R2 was used to assess how well the model can explain the variability observed

in seizure duration, while the LOOCV was taken into account for accurately estimating

the out-of-sample error (overfitting) (Burman, 1989; Arlot and Celisse, 2010).

For choosing the best model, we first identified the model with RMSE0, RMSE0 =

min(RMSE), as well as the one with max(adjusted R2). If these two models matched,

then the final selected model was determined (see Supplementary Fig. 3.10 Case 2).

In cases where the model with min(RMSE) did not have the max(adjusted R2) (see

Supplementary Fig. 3.10 Case 1), we computed the absolute percentage difference of

the RMSE corresponding to all models with the RMSE0, RMSEdiff = abs(RMSE −
RMSE0)/RMSE0)∗100% (see Supplementary Fig. 3.10 c and f). If there was a model

with higher adjusted R2 and %RMSEdiff < 20%, then this was selected as “best”. In

cases where the RMSE0 corresponded to the “intercept” model, then this was chosen

as “best” model (this occurred only in one subject, U12).
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Figure 3.10 Selection of the “best” model in two example subjects. (a-c) Represen-
tation of model selection in an example subject, where the model with min(RMSE) obtained
from the LOOCV did not correspond to the model with max(R2). (d-f) Illustration of model
selection in an example subject, where the “best” model had min(RMSE) obtained from the
LOOCV and max(R2). (a,d) Bar plots of the adjusted R2 obtained across all models for two
example subjects. Non-grey coloured bars indicate the final selected model. (b,e) Bar plots of
the RMSE obtained from the LOOCV. (c,f) Bar plots representing the %absolute difference
between the RMSE of each model with the min(RMSE).
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3.5.8 Performance of the “best” model based on its predictive accuracy

For each subject, we performed a circular-linear model selection and regression (see

Supplementary Section 3.5.6). The performance of each subject’s “best” model can be

seen in Suppl. Figures 3.11 and 3.12, where the predicted seizure durations based on

band power cycles were plotted against the actual seizure duration values.
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Figure 3.11 Actual against fitted values across all subjects. Scatterplots of the actual
against the predicted values for seizure duration (log scale) for each subject as obtained from
the final “best” models.
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Figure 3.12 Actual against fitted values across all subjects. Equivalent to Fig. 3.11

3.5.9 Performance of the “best” models based on permutation tests

To assess the performance of the “best” models we performed a permutation test. In

each permutation iteration, we first randomly permuted the order of the seizures by

randomly shuffling the response variable (seizure duration). Then, using the band power
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cycles from the selected model, we applied group-LASSO and circular-linear regression

including only those variables (keeping them unchanged). Finally, we calculated the

adjusted R2 for each iteration. We repeated this procedure as many times as the number

of permutations, which we selected as 500. Statistical significance was determined based

on a significance level of 5%.
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Figure 3.13 Distribution of the adjusted R2 values using permuted seizure orders.
The seizure duration was used as response variable, while the band power cycles were included
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the same analysis performed on the original seizure order (see Suppl. Sections 3.5.6 and 3.5.7).
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3.5.10 Correction for multiple comparisons

We adjusted all p-values using the Benjamini-Hochberg false discovery rate FDR cor-

rection for multiple comparisons (Benjamini and Hochberg, 1995). FDR correction

was applied for all statistical tests across all subjects (except permutation tests). The

significance of Mardia’s rank correlation was assessed using randomization tests as de-

scribed in Supplementary Section 3.5.5 yielding uncorrected p-values. After applying

FDR correction, the significance level was set to 5%.

3.5.11 Statistical analysis for other severity measures

To assess whether band power cycles were associated with other markers of severity,

we performed all steps of the analysis for an example severity marker (Gascoigne et al.,

2023). Specifically, we used one of the “peak” markers, the top delta, calculated as

described previously (Gascoigne et al., 2023). Briefly, this marker encapsulates the

maximum level of activity in delta band power during a seizure. Within each subject,

seizures with pre-ictal period less or equal to 120 s were excluded from this analy-

sis (Suppl. Table 3.1). Suppl. Fig. 3.14a shows that 10 out of 18 subjects had an

adjusted R2 >= 60%. A combination of band power cycles of different timescales

could explain the variability in seizure severity, as measured from this peak marker

(Suppl. Fig. 3.14b). For two subjects, the intercept model performed better compared

to all the models, indicating that this subject’s variability in top-delta marker was not

well-predicted by band power cycles. Those subjects are not included in the Suppl.

Fig. 3.14.
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4.1 Introduction

Biological rhythms play a crucial role in regulating various physiological and behavioural

processes in the brain and peripheral organs. Such processes can be the sleep-wake

cycle (Wulff et al., 2009), core body temperature (Coiffard et al., 2021), blood pressure

(Agarwal, 2010), metabolic processes (Serin and Acar Tek, 2019), immune responses

(Keller et al., 2009) and neural activity/brain function (Colwell, 2011; Yang et al.,

2022). Evidently, alterations of the internal biological rhythms have adverse effects

on human health (Bass and Lazar, 2016; Roenneberg and Merrow, 2016) and elevate

the likelihood of developing chronic diseases, including cardiovascular diseases (Vetter

et al., 2016; Manohar et al., 2017), metabolic diseases (Davies et al., 2014; Bell et al.,

2013; Buxton et al., 2012), cancer (Savvidis and Koutsilieris, 2012) and neurological

disorders (Leng et al., 2019; Fifel and Videnovic, 2020; Yalýn et al., 2006; Khan et al.,

2018; Badawy et al., 2006; Li et al., 2017; Matos et al., 2018). Delineating the link of

biological rhythms and disease can lead to novel therapies.

One open question is whether pathology is associated with the alteration of biological

rhythms in neurological disorders. There is some evidence that individuals suffering

from neurological disorders often exhibit indications of alterations of their circadian

rhythms, as manifested from behavioural and biological markers of the circadian internal

clock, such as night shift work, travel across time zones, exposure to light-dark cycles,

sleep disturbances, changes in cortisol or melatonin expressions, cortical excitability and

others. Also, dynamic connectivity related to brain function in shorter timescales has

been shown to be altered in patients with epilepsy (Tauste Campo et al., 2018). At the

molecular level, dysregulation is observed in the expression of clock genes (Li et al., 2017;

Matos et al., 2018; Wallace et al., 2018; Cermakian et al., 2011; Cai et al., 2010; Breen

et al., 2014; Ding et al., 2011). Interestingly, in patients with drug-refractory temporal

lobe epilepsy, the expression of the CLOCK gene was found to be reduced in resected

epileptogenic tissue compared to healthy tissue (Wu et al., 2021). Also, disturbances in

sleep and changes in amplitude or phase of melatonin rhythms have been associated with

several neurodevelopmental disorders (Philipsen et al., 2006; Jin et al., 2018) and with

epilepsy (Yalýn et al., 2006; Molina-Carballo et al., 1994) and might even contribute to

more severe symptoms of the disease (Kothare and Zarowski, 2011; van Eeghen et al.,
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2011; Bonilla-Jaime et al., 2021; Rybak et al., 2007). Dysfunctions in other hormones,

such as changes in cortisol levels have been associated with various diseases (Baird

et al., 2012; van Campen et al., 2016; Pritchard III, 1991; Den Heijer et al., 2018);

for example cortisol levels have been associated with different types of epilepsy (van

Campen et al., 2016; Pritchard III, 1991; Den Heijer et al., 2018). Furthermore, cortical

excitability, which is regulated by circadian patterns (Ly et al., 2016) has been shown

to be increased during wakefulness following sleep deprivation in patients with focal or

generalised epilepsy with spatial changes related to epilepsy syndrome (Badawy et al.,

2006). As such, alterations on biological rhythms over specific timescales need to be

investigated in the pathological brain to understand how those affect the brain and link

them to possible modulatory processes contributing to the development of the disorders.

One way we can capture biological rhythms in the brain is through long-term elec-

troencephalographic (EEG) recording. Brain activity fluctuates over a wide range

of timescales spanning from milliseconds to several hours, which is evident on EEG

(Aeschbach et al., 1999; Geier and Lehnertz, 2017; Geier et al., 2015; Mitsis et al.,

2020; Panagiotopoulou et al., 2022; Lehnertz et al., 2021), and might reflect a spectrum

of physiological and pathophysiological functions. States of alertness and sleep depri-

vation have been linked to frequency-specific changes in brain activity as captured by

EEG (Strijkstra et al., 2003; Drapeau and Carrier, 2004; Meisel et al., 2017). Circadian

regulation of cortical excitability is associated with changes in measures of awake state

(EEG theta power) and cognitive performance (Ly et al., 2016). Furthermore, seizures

occur in divergent circadian patterns, depending on the type of epilepsy (etiology) (Lod-

denkemper, Vendrame, Zarowski, Gregas, Alexopoulos, Wyllie and Kothare, 2011), the

location of seizure onset (Durazzo et al., 2008; Hofstra et al., 2009; Karafin et al.,

2010; Loddenkemper, Vendrame, Zarowski, Gregas, Alexopoulos, Wyllie and Kothare,

2011), the semiology of seizures (seizure types) (Ramgopal, Shah, Zarowski, Vendrame,

Gregas, Alexopoulos, Loddenkemper and Kothare, 2012; Loddenkemper, Vendrame,

Zarowski, Gregas, Alexopoulos, Wyllie and Kothare, 2011; Hofstra et al., 2009) and

age (Ramgopal, Shah, Zarowski, Vendrame, Gregas, Alexopoulos, Loddenkemper and

Kothare, 2012; Ramgopal, Vendrame, Shah, Gregas, Zarowski, Rotenberg, Alexopoulos,

Wyllie, Kothare and Loddenkemper, 2012). Notably, complementary to the circadian

rhythms, there are other rhythms, such as ultradian rhythms that manifest in vari-
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ous brain activities, including neuronal firing rates, sleep arousals, sleep spindles, and

seizures (Leopold et al., 2003; Staba et al., 2014; Steriade et al., 1993). Ultradian

rhythms with period length from 90 minutes to approximately 110 minutes or even

longer in EEG might signify repeated cycling of the basic rest-activity states (Kleit-

man, 1982; Shannahoff-Khalsa, 1991) during wakefulness or alternating periods of dis-

tinct sleep stages; rapid eye movement (REM) and non-rapid eye movement (NREM)

sleep (Lubin et al., 1973; Aeschbach and Borbély, 1993; Dement and Kleitman, 1957).

Neurotransmitters and neuromodulators released in different regions of the brain follow

ultradian rhythms and are involved in different brain functions, such as brain arousal

(Blum et al., 2014), central blood pressure (Philippu, 1988) and might be negatively

correlated with rhythmic patterns of similar periodicities in theta and delta waves in

EEG (Philippu, 2019). However, alterations in rhythms of brain activity characteristics

over longer brain recordings have not been explored.

In this work, we first identify circadian and ultradian fluctuations in a brain ac-

tivity feature (band power) using long-term intracranial EEG from patients with focal

refractory epilepsy. We further explore the magnitude of those rhythms in different

brain regions aiming to compare pathological and healthy tissue. To this aim, we found

that circadian and ultradian rhythms were diminished in pathological tissue compared

to healthy tissue. Finally, we explored whether this effect of alteration in circadian

and ultradian rhythms remains stable throughout time. Even though there is some

within-patient variability in the level of alteration, we show that diminished rhythms

are consistent throughout time.

4.2 Methods

4.2.1 Preprocessing of long-term iEEG recordings

We analysed long-term iEEG recordings from 39 subjects with refractory focal epilepsy

from the University College London Hospital (UCLH) (Table 4.1). For each subject

we processed their entire iEEG recordings. Firstly, we divided each subject’s iEEG

data into 30 s non-overlapping, consecutive time segments. All channels in each time

segment were re-referenced to a common average reference. In each time segment,
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we excluded any noisy channels (with outlier amplitude ranges) from the computed

common average. To remove power line noise, each time segment was notch filtered at

50 Hz. Finally, segments were band-pass filtered from 0.5 − 80 Hz using a 4th order

zero-phase Butterworth filter (second order forward and backward filter applied) and

further downsampled to 200 Hz. Missing data were not tolerated in any time segment

and denoted as missing for the downstream analysis.

We then calculated the iEEG band power for each 30 s time segment for all chan-

nels. We extracted iEEG band power from 30 s non-overlapping iEEG segments in

five frequency bands (δ : 1 − 4 Hz, θ : 4 − 8 Hz, α : 8 − 13 Hz, β : 13 − 30 Hz

and γ : 30 − 47.5 Hz, 52.5 − 57.5 Hz, 62.5 − 77.5 Hz) using Welch’s method with 3 s

non-overlapping windows. In detail, for each channel in every 2 s window we calculated

the power spectral density (PSD) and used Simpson’s rule to obtain the band power

values which then averaged over all time windows within a 30 s segment to get the final

band power values. In order to remove electrical noise, we selected custom range limits

for the gamma frequency band. We log10-transformed and normalised the band power

values to sum to one for each 30 s segment yielding a relative log10 band power for each

frequency band. Thus, for each subject we obtained a relative log10 band power series

of values across the entire recording for all channels and frequency bands.

In order to map the relative log band power values obtained for each channel to

region of interest (ROI) level, we averaged over the relative log band power of all

electrodes included in each ROI. Thus, for each subject we had the relative log band

power at the ROI level for each frequency band.

In the majority of subjects iEEG recordings had missing data in time-varying rela-

tive log band power values that we imputed (Suppl. Section 4.5.1) to enable extraction

of cycles and their time-varying characteristics, such as instantaneous frequency and

amplitude. Imputed data were not used for subsequent analysis.

4.2.2 Extracting dominant band power cycles using bandpass filter

To extract cycles of various timescales from the relative log band power, we performed

a 4th order zero-phase Butterworth filter (second order forward and backward filter

applied). Within each subject, we extracted ultradian cycles across different period

lengths (1h-3h, 3h-6h, 6h-9h, 9h-12h, 12h-19h). Finally, we denoted a circadian cycle
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ILAE1 ILAE>1 Test statistic
N (%) 16(41%) 23(59%)
Age (mean,SD) 29.7 (4.3) 31.8 (9.5) p=0.41, t=-0.84
Sex (M,F) 7,9 11,12 p=0.80, χ2=0.06
Temporal, extratemporal 8,8 11,12 p=0.89, χ2=0.02
Side (Left, Right) 10,6 13,10 p=0.71, χ2=0.14
Num contacts (mean, sd) 76.9 (27.5) 63.3 (22.8) p=0.1, t=1.68
Recording Duration 122.9 (56.1) 123.1 (43.9) p=0.99, t=-0.01
in hours (mean, sd)

Table 4.1 Summary of UCLH patient data.

with period length of 19h-1.3d.

4.2.3 MRI processing for identifying regions and resected tissue

To map electrode coordinates to brain regions we used similar methods as described

previously (Taylor et al., 2022). In brief, we assigned electrodes to one of 128 regions

from the Lausanne scale60 atlas (Hagmann et al., 2008). We used FreeSurfer to generate

volumetric parcellations of each patient’s pre-operative MRI (Hagmann et al., 2008;

Fischl, 2012). Each electrode contact was assigned to the closest grey matter volumetric

region within 5 mm. If the closest grey matter region was >5mm away then the contact

was excluded from further analysis.

To identify which regions were later resected, we used previously described methods

(Taylor et al., 2018, 2022). We registered post-operative MRI to the pre-operative MRI

and manually delineated the resection cavity. This manual delineation accounted for

post-operative brain shift and sagging into the resection cavity. Electrode contacts

within 5mm of the resection were assigned as resected. Regions with >25% of their

electrode contacts removed were considered as resected for downstream analysis.

4.2.4 Computing AUC for band power cycles in pathological tissue

In order to quantify the strength of each band power cycle at the ROI level for each

subject, we computed the average power of each cycle obtained from the bandpass

filter. Thus, for each subject and band power cycle we obtained the mean power for
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all ROIs. In order to compare the strength of each cycle (in terms of power) between

pathological and healthy tissue, we computed the area under the curve (AUC). AUC

can be defined as a quantification which reveals the level of distinction between ROIs

classified as pathological and healthy with respect to the band power. AUC values

higher than 0.5 resemble diminished band power cycles in pathological tissue, while

AUC lower than 0.5 indicate diminished band power cycles in spared ROIs and finally

AUC = 0.5 indicates a random discrimination between pathological and healthy tissue.

Within each subject, pathological tissue was determined in two ways: 1) as the

resected regions; those were the ROIs that were later surgically resected and 2) as

the regions where seizures originated, which formed the seizure onset zone (SOZ) as

determined by clinician’s reports during the presurgical evaluation. The healthy tissue

was categorised either as regions that were spared or as non-seizure onset zone (non-

SOZ) regions.

4.3 Results

4.3.1 Diminished circadian cycles in pathological tissue

Fig. 4.1a shows the circadian cycle obtained for each ROI in one example, subject

95, along with the corresponding average power of the cycle. It is evident that the

magnitude of the circadian cycle as represented by the average power of the cycle tends

to be lower in brain regions labeled as SOZ. This is depicted by the high AUC value

(Fig. 4.1b and c), suggesting diminished circadian cycle in pathological tissue (SOZ)

compared to healthy tissue (non-SOZ) for this example subject. We further investigated

the expression of the circadian cycle across all subjects (38 subjects in total, where the

SOZ information was determined) in each frequency band.

Across subjects, the AUC values were overall higher than 0.5 (p-value = 0.003,

one-sided Wilcoxon signed rank test) with median AUC of 0.618 (Fig. 4.1d), implying

diminished circadian cycle in SOZ as expressed by the average power values of the cycle

in the delta frequency band. As can be seen in Fig. 4.1e, similar observations hold for

the circadian cycle obtained for all frequency bands (theta: p-value = 0.013, alpha:

p-value = 0.002, beta: p-value = 4e-05, gamma: p-value = 0.0005, one-sided Wilcoxon
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signed rank test).

We then investigated the magnitude of the circadian cycle between resected and

spared regions within each subject for all frequency bands. As the surgically resected

brain areas were available, we used the entire cohort for this analysis (39 subjects).

Fig. 4.2a shows the distribution of the AUC values between resected and spared across

subjects for the beta frequency band. Overall, the AUC values are greater than 0.5

(p-value = 3e-05, one-sided Wilcoxon signed rank test), with high median AUC of

0.705 (Fig. 4.2a). As can be seen in Fig. 4.2b, for all frequency bands, except gamma

band, the AUC values tend to be higher than 0.5, indicating that the circadian cycle

is strongly expressed in non-SOZ as opposed to SOZ in all subjects in most frequency

bands (delta: p-value = 0.008, theta: p-value = 0.03, alpha: p-value = 0.004, gamma:

p-value = 0.15, one-sided Wilcoxon signed rank test).

4.3.2 Ultradian rhythms of various timescales are diminished in

pathological tissue

We next investigated the expression of ultradian cycles in pathological tissue (either

SOZ or surgically resected tissue) as opposed to healthy tissue in our cohort. Analysis

involved the SOZ included 38 subjects, while analysis involving resected information

included the entire cohort of 39 subjects.

Fig. 4.3a shows the distribution of AUC values obtained between SOZ and non-SOZ

across subjects for the delta band. Within the delta band, AUC values were higher than

0.5 for all ultradian cycles (1h-3h: p-value = 1e-05, 3h-6h: p-value = 4e-05, 6h-9h: p-

value = 4e-05, 9h-12h: p-value = 7e-05, 12h-19h: p-value = 0.001, one-sided Wilcoxon

signed rank test). Faster ultradian cycles have a high median AUC (1h-3h: 0.71, 3h-6h:

0.70, 6h-9h: 0.72) and slower ones displayed moderate to high AUC values (9h-12h:

0.65, 12h-19h: 0.60). Thus, in all subjects ultradian cycles are diminished in SOZ

compared to healthy tissue in the delta frequency band. AUC values greater than 0.5

are apparent in all ultradian cycles and frequency bands, except the fastest ultradian

cycle with period length of 12h-19h in theta band (Fig. 4.3b).

Fig. 4.4a illustrates the distribution of AUC values for the beta band, represent-

ing the relationship between resected and spared brain regions across subjects. It is
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Figure 4.1 AUC values between SOZ and non-SOZ indicate diminished circadian
cycle for each frequency band. a-c) Example subject 95: a) The circadian cycles across
time as obtained using bandpass filter for each ROI. The colours depict tissue within SOZ
(red) and outside the SOZ (blue). b-c) Average power of subject’s prominent cycles for regions
within and outside the SOZ. The power values are shown as b) distributions for SOZ and non-
SOZ tissue and c) presented on brain surface from side views (Scholtens et al., 2021). The
SOZ is outlined with cyan color. d-e) All subjects: d) Distribution of AUC values across all
subjects for the circadian cycle for delta frequency band. The median AUC is shown with
a blue vertical line. e) Median AUC values for circadian cycle for all frequency bands. P-
values are shown for testing the hypothesis that AUC is equal to 0.5 against the alternative
hypothesis that AUC is higher than 0.5 (one-sided Wilcoxon signed rank test) across subjects
within each frequency band.
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Figure 4.2 AUC values between resected and spared tissue indicate diminished
circadian cycle for some frequency bands. a-b) All subjects: a) Distribution of AUC
values across all subjects for the circadian cycle for beta frequency band. The median AUC
is shown with a blue vertical line. e) Median AUC values for circadian cycle for all frequency
bands. P-values are shown for testing the hypothesis that AUC is equal to 0.5 against the
alternative hypothesis that AUC is higher than 0.5 (one-sided Wilcoxon signed rank test)
across subjects within each frequency band.

observed that within the beta band, all ultradian cycles exhibited AUC values higher

than 0.5. Statistical analysis using a one-sided Wilcoxon signed rank test confirms the

significance of these findings for each cycle (1h-3h: p = 5e-05, 3h-6h: p = 0.0, 6h-9h: p

= 6e-05, 9h-12h: p = 0.00015, 12h-19h: p = 0.0001). The median AUC for all ultradian

cycles (1h-3h: 0.69, 3h-6h: 0.72, 6h-9h: 0.74, 9h-12h: 0.71, 12h-19h: 0.71) was rela-

tively high. Therefore, in the beta band, resected areas demonstrate reduced ultradian

cycles as expressed by the average power of the cycle compared to healthy tissue across

all subjects. Except for some ultradian cycles in specific theta band (slowest ultradian

cycles) and all cycles in gamma band, AUC values greater than 0.5 were observed in

most ultradian cycles and frequency bands (Fig. 4.4b).
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Figure 4.3 AUC values between SOZ and non-SOZ indicate diminished ultradian
cycles for some frequency bands. a-b) All subjects: a) Distribution of AUC values
across all subjects for ultradian cycles for delta frequency band. Each plot corresponds to
an ultradian timescale. The median AUC is shown with a grey vertical line. b) Heatmap
representing the median AUC values across ultradian cycles and frequency bands. P-values
are shown for testing the hypothesis that AUC is equal to 0.5 against the alternative hypothesis
that AUC is higher than 0.5 (one-sided Wilcoxon signed rank test) across subjects within each
frequency band. Non-grey coloured squares depict cycles with AUC values higher than 0.5
based on the one-sided Wilcoxon signed rank test (p-value < 0.05) across subjects, while grey
squares denote AUC values with p-value >= 0.05 (we cannot reject the null hypothesis H0:
AUC = 0.5).

125



Chapter 4. Diminished Circadian and Ultradian Rhythms in Pathological Brain
Tissue in Humans in Vivo

(a) (b)
Across subjects, all frequency bands

delta theta alpha beta gamma

1h
-3

h
3h

-6
h

6h
-9

h
9h

-1
2h

12
h-

19
h

0.0

0.2

0.4

0.6

0.8

1.0
p-value >= 0.05

ul
tra

di
an

 c
yc

le
s

m
edian AU

C

p-value = 5e-05
median AUC = 0.688

p-value = 0.0
median AUC = 0.719

p-value = 6e-05
median AUC = 0.737

p-value = 0.00015
median AUC = 0.711

0.0 0.5 1.0

p-value = 0.0001
median AUC = 0.708

1h-3h

3h-6h

6h-9h

9h-12h

12h-19h

cycle period

AUC

median AUC

AUC = 0.5

Figure 4.4 AUC values between resected and spared tissue indicate diminished
ultradian cycles for some frequency bands. a-b) All subjects: a) Distribution of AUC
values across all subjects for ultradian cycles for beta frequency band. Each plot corresponds
to an ultradian timescale. The median AUC is shown with a grey vertical line. b) Heatmap
representing the median AUC values across ultradian cycles and frequency bands. P-values are
shown for testing the hypothesis that AUC is equal to 0.5 against the alternative hypothesis
that AUC is higher than 0.5 (one-sided Wilcoxon signed rank test) across subjects within
each frequency band. Non-grey colored squares depict cycles with AUC values higher than
0.5 based on the one-sided Wilcoxon signed rank test (p-value < 0.05) across subjects, while
grey squares denote AUC values with p-value >= 0.05 (we cannot reject the null hypothesis
H0: AUC = 0.5).
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4.3.3 Diminished rhythms are persistent in time

Finally, we investigated the variability of AUC values obtained between the SOZ and

non-SOZ in 38 subjects (38 out of 39 subjects). Fig. 4.5a shows the power of the circa-

dian cycle in the beta band across all ROIs in an example subject, 95. A representation

of the circadian cycles of all ROIs is shown in Fig. 4.5b demonstrating a lower mag-

nitude of the cycle in SOZ (red lines) as opposed to non-SOZ (blue lines). Then, to

delineate how stable the AUC is across time, we first computed the time-varying AUC

(Fig. 4.5c) using the power values (Fig. 4.5a) between the ROIs that contributed in

SOZ and non-SOZ and further obtained its rolling median using window equal to the

1.5 * cycle period (1.5 days for the circadian cycle). As can be seen in Fig. 4.5d, the

AUC was relatively stable around a high AUC of approx. 0.87, suggesting that the

diminished effect of circadian cycle is persistent in time and less variable. This is evi-

dent also visually by the distribution of AUC values (obtained from the rolling median

AUC), where values tend to concentrate around a particular value (Fig. 4.5e).

Fig. 4.6a shows the distribution of AUC values as obtained from the rolling median

AUC across time for the 38 subjects. Overall, for most subjects the distributions

exhibited a unimodal pattern, characterized by AUC values concentrated around a

specific value.

To quantify the stability of the level of alteration in cycles, we computed the percent-

age of time segments with AUC greater than 0.5 (Fig. 4.6b) within each subject; high

percentage indicates that the corresponding cycle is consistently diminished in SOZ.

Fig. 4.6b shows the distribution of the percentage of time segments with AUC greater

than 0.5 across subjects for ultradian and circadian cycles and frequency bands. Over-

all, all distributions are right skewed indicating that diminished cycles are relatively

consistent in time in all frequency bands.

4.3.4 Relation to patients’ metadata

There are multiple factors that may influence the cycles observed in patients with brain

disorders, as well as the presence and extent of alterations in brain activity cycles.

One such factor could be the duration of the disease. We examined the correlation

between the degree of cycle alterations and the duration of epilepsy, and we found
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Figure 4.5 Time-varying AUC between soz and non-SOZ for the circadian cycle in
beta frequency band in an example subject. a) Heatmap of the power of the circadian
cycle throughout the patient’s iEEG recording in each ROI for the beta frequency band.
Each cell represents the power of the circadian cycle in the corresponding ROI and 30 s time
segment. ROI names with red/blue color denote SOZ/non-SOZ. ROIs labeled as SOZ are
outlined with a black box. b) A representation of the circadian cycle obtained using bandpass
filter for each ROI; Red lines correspond to SOZ areas, while blue ones depict non-SOZ areas.
c) Time-varying AUC for the circadian cycle computed between SOZ and non-SOZ ROIs. d)
A rolling median of the time-varying AUC of the circadian cycle obtained using as window
1.5 * cycle period = 1.5d. e) A histogram of the rolling median AUC, with median value
marked with a vertical orange line.
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Figure 4.6 AUC variability across subjects captured by rolling median for all fre-
quency bands and cycles. a) Distribution of AUC computed between SOZ and non-SOZ
areas in each patient’s iEEG recording for the circadian cycle in beta frequency band. Similar
representation for example subject 95 is shown in Fig. 4.5e. Within each histogram, bars are
coloured with blue for AUC values greater than 0.5 and grey for values lower than or equal
to 0.5. Median AUC is marked with a vertical orange color line. b) Representation of the
percentage of time windows with AUC > 0.5 across subjects for each frequency band and
cycle. Each plot is a histogram of the % of time segments with AUC > 0.5 across subjects in
the corresponding cycle and frequency band. The height of the bars within each histogram
corresponds to the number of subjects.
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varied low-level associations in most cycles without a consistent direction across all

cases (Suppl. Fig. 4.11). When we analyzed the relationship between the magnitude of

cycles in pathological brain regions and the duration of epilepsy, we identified a weak to

moderate positive association in certain cycles and frequency bands (Suppl. Fig. 4.11).

It is possible that specific cycles over distinct timescales have been partially restored

with the passage of time and are more pronounced in pathological areas. As the disease

progresses, structural and functional deficits might impact specific cycles at different

stages throughout its course. Moreover, our results would provide more meaningful

insights if this analysis were to be replicated on a larger cohort of patients with varying

durations of epilepsy.

Other factors, such as age and gender, may also contribute to potential changes

in cycles. For example, it is well established that circadian cycles exhibit alterations

as we age (Chen et al., 2016; Cornelissen and Otsuka, 2017). It might be possible

that the effect of alteration might also change with age. In our cohort, we observed

reductions in cycles at the ultradian and circadian timescales that were similar between

men and women (Suppl. Fig. 4.14), suggesting that altered cycles in patients with

epilepsy may not be attributed to gender-related hormonal mechanisms. However, it

is still plausible that cycles of different timescales exhibit variations between males

and females, although some alterations may be shared across both genders. Regarding

age, we found a weak to moderate negative correlation between the degree of cycle

alterations and age across most cycles and frequency bands. Additionally, we identified

a positive association between the magnitude of cycles in pathological tissue and age in

specific cycles and frequency bands (Suppl. Fig. 4.10). To obtain more robust results,

future research should investigate further the association between alterations in cycles

and gender or age with using a larger cohort of patients capturing a wider age range.

4.4 Discussion

We analysed cycles in subject-specific interictal relative band power patterns over time

using intracranial continuous EEG recordings and found that biological rhythms exist in

the brain on a range of timescales, from hours (ultradian) to days (infradian). Notably,

when analysing the magnitude of these biological rhythms in various brain regions,
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we found diminished circadian and ultradian rhythms in regions that were identified

as pathological, suggesting that the expression of cycles is altered in brain regions

linked to the pathology. Furthermore, we have shown that this effect remains relatively

consistent over time, indicating that it is not a transient state. Instead, it may serve

as an indicator of pathological brain activity.

These findings hold potential implications for clinical practice, particularly in the

diagnosis of brain disorders. Our study has demonstrated the association between bi-

ological rhythms and pathology, and importantly, we have observed the persistence of

diminished cycles over time in patients with focal refractory epilepsy. This temporal

stability of diminished cycles could serve as an effective diagnostic marker for epilepsy,

indicating both the presence of pathological brain activity and the consistency of this

trait. We further observed a consistent diminished effect in cycles across various epilepsy

etiologies (pathologies) (Suppl. Fig. 4.13) or epilepsy syndromes (Suppl. Fig. 4.8). These

findings suggest that diminished ultradian and circadian cycles could serve as a poten-

tial diagnostic marker for focal epilepsy, irrespective of the underlying pathology or

specific pathological brain area. However, it is important to note that replicating this

analysis with a larger sample size in specific pathologies would provide more concrete

results. Additionally, further exploration is required to determine whether this trait

can be utilised for localising the epileptogenic tissue. When comparing our quantifica-

tion of cycle alterations (AUC) between patients who are seizure-free and those who

are not, we did not observe substantial differences between the two surgical groups

(Suppl. Fig. 4.7), suggesting that diminished cycles were apparent in all subjects in our

cohort. Diminished cycles might therefore be a sensitive, but not specific, marker of

pathology, and not necessarily epileptogenic pathology.

Our results do not imply a causal relationship between altered cycles and pathology,

but rather support an association between the two in epilepsy. However, identifying a

causal connection between altered cycles and pathology remains a challenge. Recent

studies have suggested that disorganised circadian rhythms may directly contribute to

promoting seizures, particularly in absence epilepsy (Smyk and van Luijtelaar, 2020).

Additionally, in individuals with Parkinson’s disease, sleep-wake disturbances often

precede the onset of motor or cognitive symptoms (Rothman and Mattson, 2012). Fu-

ture research should focus on exploring the causal relationship between disruptions of
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biological rhythms and brain disorders through experimental approaches. For exam-

ple, conducting laboratory experiments in humans where the natural sleep-wake and

melatonin rhythms are intentionally disturbed can help assess the impact of circadian

rhythm on clinical symptoms associated with brain disorders. Understanding the causal

relationship between altered biological rhythms and brain disorders is crucial for iden-

tifying the underlying mechanisms contributing to the manifestation or progression of

these disorders. Moreover, if a causal link is established, these temporal patterns can

potentially serve as effective diagnostic markers for the diseases.

Even though identifying a causal relationship might enhance altered biological rhythms

as a potential diagnostic marker, evidence for a bidirectional relationship between the

two cannot be disregarded. The relationship between altered biological rhythms and

neurological disorders is primarily bidirectional. On one hand, neurological disorders

such as epilepsy, Parkinson’s disease, and Alzheimer’s disease can disrupt the normal

functioning of biological rhythms, including sleep-wake cycles, circadian rhythms, and

other physiological oscillations. These disruptions can manifest as sleep disturbances

(Bonilla-Jaime et al., 2021; Moran et al., 2005; Rothman and Mattson, 2012), abnor-

mal hormone secretion (van Campen et al., 2016; Pritchard III, 1991; Den Heijer et al.,

2018; Videnovic and Zee, 2015), and impairments in various brain and body functions

(Benca et al., 2009). On the other hand, disrupted biological rhythms themselves can

contribute to the development or exacerbation of neurological disorders. Irregular sleep

patterns, for example, have been associated with increased susceptibility to more se-

vere seizures in epilepsy patients (Bonilla-Jaime et al., 2021) and can worsen cognitive

impairments in individuals with Alzheimer’s disease (Moran et al., 2005). Therefore,

unravelling the bidirectional relationship between altered biological rhythms and neu-

rological disorders is crucial for developing effective treatment strategies and improving

the well-being of individuals affected by brain disorders.

We found diminished cycles in pathological tissue, and whether chronotherapeutics

can be effective treatments for brain disorders remains an open question. Alternative

forms of chronotherapeutics may target directly altered biological rhythms by resetting

them to their normal rhythmicity. One potential method is the utilisation of pho-

totherapy, which has been widely employed to reset the circadian rhythm in both the

central pacemaker and peripheral organs (Gronfier et al., 2007; Cuesta et al., 2017).
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This form of therapy has shown effectiveness in improving sleep disturbances and rest-

activity alterations associated with neurodegenerative disorders, such as Alzheimer’s

(Yamadera et al., 2000) and Parkinson’s (Martino et al., 2018) diseases alleviating as-

sociated symptoms. The realignment of circadian clocks can also be achieved through

hormone supplementation, such as melatonin, for various brain disorders (Sánchez-

Barceló et al., 2011). In the case of epilepsy, melatonin administration may potentially

reduce the severity of seizures due to its anticonvulsant properties (Molina-Carballo

et al., 2007). Additionally, external behavioural adaptations such as exercise have been

reported to affect the circadian pacemaker, and thus help individuals adjust to a normal

sleep-wake schedules (Barger et al., 2004). Lastly, time-dependent neurostimulation de-

livery systems can be utilised for certain brain disorders (Jonsdottir et al., 2004). For

example, in epilepsy (Bergey et al., 2015) a targeted localised neurostimulation can be

applied specifically at the pathological tissue during nighttime or daytime depending

on whether the seizures are nocturnal or diurnal. This approach aims to prevent dis-

turbances in the sleep-wake cycle and gradually restore the circadian clock. Therefore,

chronotherapeutics that focus on rectifying dysfunction in biological rhythms may be

a promising avenue for treatment of various brain disorders, including epilepsy.

One limitation of our work is the lack of information regarding the doses of anti-

epileptic medication administered. In this chapter, we examined individuals diagnosed

with refractory focal epilepsy who underwent various treatments with anti-epileptic

drugs as part of their pre-surgical evaluation. Information about the exact timing and

dose of anti-epileptic drugs was not available for further analysis. Previous studies on

canine epilepsy have indicated that changes in anti-epileptic medication do not drive

the various seizure cycles observed, including circadian, weekly, and monthly patterns

(Gregg et al., 2020). However, it has also been demonstrated that decreased medication

dose increases the likelihood of seizures. More severe seizures, like focal seizures that

progress into bilateral tonic-clonic seizures, become more prevalent when the dose of

antiepileptic drugs is reduced (Pensel et al., 2020). Future research should explore the

relationship between the timing of drug administration and cycles, aiming to optimise

the differential dosing of drugs to alleviate the effect in biological rhythms associated

with anti-epileptic drugs leading to more effective time-adaptive interventions for pa-

tients with brain disorders.
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In summary, our research has demonstrated that pathological tissue reveals dimin-

ished circadian and ultradian cycles, as observed through interictal relative band power

in subject-specific intracranial continuous EEG recordings. This outcome suggests a

connection between altered cycles and the presence of pathology. Importantly, this

alteration in cycles remains consistent over time, indicating that it may not be a tem-

porary state that could be attributed to irregular biological rhythms associated with

specific changes in brain activity. Instead, it could potentially serve as an indicator of

pathology. Recognising the association between altered endogenous cycles could pave

the way for the development of diagnostic tools or alternative therapies capable of

restoring normal intra-body rhythms in patients with brain disorders such as epilepsy.
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4.5 Supplementary

4.5.1 Imputation of missing data

To facilitate further analysis, we employed imputation techniques to fill any gaps in

the relative log band power of each ROI before proceeding with cycle extraction at

various timescales. However, we did not utilise imputed data for the final analysis. We

identified missing blocks within each frequency band and imputed them accordingly. If

a missing block had a size equal to one, we replaced it with the mean of the value before

and after the block. For missing blocks larger than one, we identified the surrounding

segments of equal length before and after the block. When the preceding segment was

smaller than the missing block or the missing blocks were at the start of the recording,

we used only the following segment for imputation. We interpolated the data of missing

blocks using the mean of the adjacent segments and added Gaussian noise with a mean

of zero and standard deviation of 60% of the standard deviation of the surrounding

segments. Any missing data present in the adjacent segments was disregarded. The

final values used for analysis were the interpolated ones with added Gaussian noise.

4.5.2 Relation to patients’ metadata

For the subsequent analysis in the following sections we used AUC values determined

as level of distinguishability of cycle between SOZ and non-SOZ in terms of the average

power of the cycle (see Section 4.2.4). As information about SOZ was not available for

one subject, the total number of subjects included was 38.

Distribution of AUC by surgical outcome

We investigated whether the diminished effect of any cycle can localise epileptogenic

tissue by identifying whether the AUC can distinguish patients by their surgical outcome

(Fig. 4.7). For each cycle and frequency band, the distributions of AUC between seizure

free and not seizure free patients was similar, except for the 6h-9h ultradian cycle in

alpha band (p-value = 0.02, two-sided Wilcoxon rank-sum test).
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Across subjects, all frequency bands
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Figure 4.7 Distribution of AUC values by surgical outcome. Comparison of AUC
distributions between seizure free (good; ILAE1) and not seizure free (bad; ILAE2-5) after
surgery for each frequency band and cycle. Each plot corresponds to a frequency band and the
AUC distributions are shown as violin plots comparing the good and bad outcome patients
are shown for each cycle. Within each violin plot, the dashed lines represent the quartiles of
the corresponding AUC distribution.

Distribution of AUC values by epilepsy syndrome

In order to evaluate whether the diminished effect of ultradian and circadian cycles

is not a characteristic of a specific epilepsy syndrome, but rather a pattern in cycles
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Across subjects, all frequency bands
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Figure 4.8 Distribution of AUC values by epilepsy syndrome. Comparison of AUC
distributions between eTLE and TLE patients for each frequency band and cycle. Each
plot corresponds to a frequency band and the AUC distributions are shown as violin plots
comparing the eTLE and TLE patients for each cycle. Within each violin plot, the dashed
lines represent the quartiles of the corresponding AUC distribution.

across all patients with focal epilepsy, we compared the distributions of AUC values be-

tween temporal lobe epilepsy (TLE) and extra temporal lobe epilepsy (eTLE) patients

(Fig. 4.8). TLE and eTLE patients did not differ in terms of the diminished affect in

SOZ for any cycle and frequency band, except for the circadian cycle in delta band

(p-value = 0.04, two-sided Wilcoxon rank-sum test).
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Association between AUC values and age

To investigate the potential relationship between the degree of reduced cycles and the

age of patients, we measured the correlation between the AUC and age for each cycle

and frequency band across all participants.
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Figure 4.9 Association between AUC and age. Heatmap representing the Pearson’s
correlation coefficient between AUC and age across all subjects for all cycles and frequency
bands. Each entry corresponds to one cycle and frequency band.

Figure 4.9 presents the Pearson’s correlation coefficient between AUC and age, en-

compassing all cycles and frequency bands. In general, we observed a weak to moderate

negative correlation between AUC and age across most cycles and frequency bands.

This suggests that the extent of diminished cycles may be less prominent in older indi-

viduals.
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Association between power of cycles in SOZ and age

To assess the relationship between the intensity of cycles in the pathological regions

of the brain and the age of patients, we measured the correlation between the average

power and age across all individuals. This analysis was conducted for each cycle and

frequency range within the SOZ.
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Figure 4.10Association between power of cycles in SOZ and age. Heatmap illustrating
the Pearson’s correlation coefficient between the average cycle power in the SOZ and age,
encompassing all participants in all cycles and frequency bands. Each cell within the heatmap
corresponds to a specific cycle and frequency band combination.

The correlation between the average power of cycles in the SOZ and age is depicted

in Figure 4.10 using Pearson’s correlation coefficient. The findings indicate that, on

the whole, there is a weak to moderate positive correlation between the power of cycles

in the SOZ and age across most cycles and frequency bands. This suggests that the

magnitude of cycles in the SOZ tends to increase with age in certain frequency bands,

such as theta, beta, and gamma bands for ultradian cycles spanning 1 to 3 hours and

3 to 6 hours, as well as in the alpha band for cycles spanning 9 to 12 hours and 12 to
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19 hours.

Association between AUC and duration of epilepsy

To investigate the potential relationship between the degree of weakened cycles and the

duration of epilepsy in patients, we measured the correlation between the AUC and

epilepsy duration for each cycle and frequency band across all participants.
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Figure 4.11 Association between AUC and duration of epilepsy. Heatmap displaying
the Pearson’s correlation coefficient between the AUC and the duration of epilepsy for all
cycles and frequency bands across all subjects. Each entry in the heatmap corresponds to a
specific cycle and frequency band combination.

Fig. 4.11 presents the Pearson’s correlation coefficient between AUC and epilepsy

duration, encompassing all cycles and frequency bands. In general, we observed a weak

to moderate positive or negative correlation between AUC and epilepsy duration across

most cycles and frequency bands. This suggests that the extent of diminished cycles

may be less or more prominent in specific cycles and frequency bands as the disease

progresses.
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Association between power of cycles in SOZ and duration of epilepsy

To assess the relationship between the magnitude of cycles in the pathological regions

of the brain and the duration of epilepsy in patients, we measured the correlation

between the average power and epilepsy duration across all individuals. This analysis

was conducted for each cycle and frequency band within the SOZ.
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Figure 4.12 Association between power in SOZ and duration of epilepsy. Heatmap
representing the Pearson’s correlation coefficient between the average cycle power in SOZ and
the duration of epilepsy, including all participants in all cycles and frequency bands. Each
cell in the heatmap corresponds to a specific combination of cycle and frequency band.

The correlation between the average power of cycles in the SOZ and duration of

epilepsy is depicted in Fig. 4.12 using Pearson’s correlation coefficient. Overall, we

observed a weak to moderate positive correlation between the power of cycles in the SOZ

and the duration of epilepsy across most cycles and frequency bands. This suggests that

the magnitude of cycles in the SOZ tends to increases as epilepsy progresses, especially

in ultradian cycles in specific frequency bands. The circadian cycle depicted a weak

positive correlation only in the alpha band.
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Distribution of AUC by pathology

To evaluate the degree of diminished cycles among patient groups with different patho-

logical conditions, we examined the distribution of AUC between these groups. These

findings were derived from the evaluation of postoperative tissue samples.

All subjects, circadian cycle, alpha
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FCD = Focal cortical dysplasia
HS = Hippocampal sclerosis
DNT = Dysembryoplastic neuroepithelial tumour
DUAL = multiple pathologies

GL = Glioma
CAV = Cavernoma 
OTHER = other pathology

Figure 4.13 Distribution of AUC by pathology. Distributions of AUC for groups of
patients associated with different pathological post-operative findings for the circadian cycle
in alpha band. Within each violin plot, the dots correspond to the AUC value of one subject
and the dashed lines represent the quartiles of the corresponding AUC distribution.

Fig. 4.13 illustrates the AUC distribution for patients with different pathology find-

ings for the circadian cycle in the alpha band. Overall, the AUC is greater than 0.5 for

all subjects, regardless of the etiology of their epilepsy. However, it should be noted that
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for certain pathological findings, the sample size was insufficient to draw any conclusive

results. Similar observations were made across all cycles and frequency bands.

Distribution of AUC values by gender
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Figure 4.14 Distribution of AUC values by gender. Comparison of AUC distributions
between male and female patients for each frequency band and cycle. Each plot corresponds
a frequency band and the AUC distributions comparing the male and female patients are
shown as violin plots for each cycle. Within each violin plot, the dashed lines represent the
quartiles of the corresponding AUC distribution.

To determine whether the diminished effect of ultradian and circadian cycles differs
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by gender, we compared the AUC distributions between men and women (Fig. 4.14).

The distributions of AUC values were similar between men and women for all cycles

and frequency bands, except the 6h-9h ultradian cycle in theta band (p-value = 0.02,

two-sided Wilcoxon rank-sum test).
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5.1 Contributions of This Thesis

Epilepsy is recognised as a dynamic disease, where both seizure susceptibility and

seizure characteristics themselves change over time. Specifically, we recently quantified

the variable electrographic spatio-temporal seizure evolutions that exist within individ-

ual patients (Schroeder et al., 2020). This variability appears to follow subject-specific

circadian, or longer, timescale modulations. Furthermore, other seizure features, such

as seizure severity, exhibit temporal changes; seizure severity change from one seizure to

the next within individual people with epilepsy (Lamberts et al., 2013; Jobst et al., 2001;

Peng et al., 2017; Gascoigne et al., 2023). It is unclear if and how seizure evolutions and

seizure severity are modulated over multiple (longer) timescales. Characterising vari-

ability in seizure evolutions and severity over time could lead to tailored treatments. It

is therefore important to know whether continuously-recorded interictal iEEG features

can capture signatures of these modulations over different timescales.

Importantly, changes in brain activity captured by continuous iEEG recordings

might reflect biological rhythms in brain function. A variety of intra-body physio-

logical and behavioural functions are entrained to endogenous and exogenous rhythms,

from ultradian to circadian. While a variety of neurological disorders, such as epilepsy

(Li et al., 2017; Matos et al., 2018; Wallace et al., 2018) have been linked to the dysfunc-

tion of those biological rhythms (Logan and McClung, 2019), it is unclear whether the

rhythmicity is functionally diminished in pathological tissue in patients with epilepsy.

In this thesis, I first explored the temporal variability of seizure evolutions and

seizure severity using continuous iEEG recordings (Chapters 2 & 3). Then, I investi-

gated whether temporal patterns obtained from iEEG features exhibit alterations in

pathological tissue compared to healthy tissue (Chapter 4). Taking all this together, I

addressed the following open questions:

1. How do seizure dynamics change over time? Does variability in seizure dynamics

evolve in multiple timescales?

2. How do other seizure features, such as seizure severity, evolve over time? Does

seizure severity reveal a rhythmic organisation?

3. Is the pathology associated with the alteration of cycles in brain activity?
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In Chapter 2, I analysed continuous intracranial electroencephalographic (iEEG)

recordings from video-telemetry units and found fluctuations in iEEG band power over

timescales ranging from minutes up to 12 days. As expected and in agreement with

previous studies (Karoly, Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021), I found

that all subjects show a circadian fluctuation in their iEEG band power. I additionally

found other fluctuations of similar magnitude on subject-specific timescales. Impor-

tantly, I found that a combination of these fluctuations on different timescales can

explain changes in seizure evolutions in most subjects above chance level. These re-

sults suggest that subject-specific fluctuations in iEEG band power over timescales of

minutes to days may serve as markers of seizure modulating processes.

In Chapter 3, I analysed iEEG recordings of at least one day obtained from pa-

tients with focal refractory epilepsy. I identified cycles on timescales of hours to days

embedded in long-term iEEG band power and associated them with seizure severity,

which I approximated using seizure duration. In order to quantify these associations, I

created linear-circular statistical models of seizure duration that incorporated different

band power cycles within each subject. In most subjects, seizure duration was weakly

to moderately correlated with individual band power cycles. Combinations of multiple

band power cycles significantly explained most of the variability in seizure duration.

Specifically, we found 70% of the models had a higher than 60% adjusted R2 across

all subjects. From these models, around 80% were deemed to be above chance-level

(p-value ≤ 0.05) based on permutation tests. Models included cycles of ultradian, cir-

cadian and slower timescales in a subject-specific manner. These results suggest that

seizure severity, as measured by seizure duration, may be modulated over timescales of

minutes to days by subject-specific cycles in interictal iEEG signal properties. Thus,

these cycles likely serve as markers of seizure modulating processes.

In Chapter 4, I used intracranial continuous EEG recordings over multiple days in

patients with focal refractory epilepsy and demonstrated that biological rhythms on

circadian and ultradian timescales exist in the brain. Interestingly, when analysing the

magnitude of these biological rhythms in different brain regions, I found that circadian

and particularly multiple ultradian rhythms are diminished in regions that were deemed

pathological. Within each patient, the level of alteration remained relatively stable over

time. These findings suggest that brain pathology alters biological rhythms on circa-
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dian and ultradian timescales, and this alteration is likely to be a trait of pathological

activity, and not a transient state.

Overall, in this thesis, I have identified ultradian, circadian and slower fluctuations

captured in interictal iEEG features by analysing the entire length of iEEG recordings

from patients with refractory focal epilepsy. Importantly, when analysing the associa-

tion between those fluctuations and seizure features, such as seizure evolutions (Chapter

2) and severity (Chapter 3), I demonstrated that variability in these features can be

explained by a combination of multiscale fluctuations in a subject-specific manner. Fi-

nally, I evaluated that those fluctuations have different characteristics in brain regions

that are linked to the pathology (Chapter 4). The outcomes of this work provide

some evidence that not only seizure occurrence, but also other seizure features follow

multiscale temporal fluctuations, suggesting that seizures and their characteristics are

modulated by time-varying processes. These modulatory processes might include phys-

iological and behavioural factors that are reflected in biological rhythms. Thus, the

findings in Chapter 4, diminished ultradian and circadian fluctuations in epileptogenic

tissue, contribute further to a better understanding of the characteristics of those fluctu-

ations across different brain regions, both pathological and healthy. For the remaining

chapter, I will discuss limitations of the current work, and various recommendations for

future research.

5.2 Learning the Temporal Structure of Epilepsy

using Traits from Diverse Physiological Systems

Cycles obtained from interictal iEEG features have been associated with seizure fea-

tures, such as seizure occurrence (Baud et al., 2018; Karoly et al., 2016) and seizure

evolutions (Schroeder, Karoly, Maturana, Panagiotopoulou, Taylor, Cook and Wang,

2022). Our work contributes also to this growing field with evidence of cyclical pat-

terns related to seizure network evolutions and seizure duration (Chapters 2 & 3).

However, other modalities might be adequate for capturing cycles of similar timescales.

Such cycles have been identified from physiological signals of autonomic nervous system

function (heart rate variability) (Karoly, Stirling, Freestone, Nurse, Maturana, Halli-

day, Neal, Gregg, Brinkmann, Richardson, Gerche, Grayden, D’Souza and Cook, 2021;
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Gregg et al., 2023), electrodermal activity (Gregg et al., 2023), and body temperature

(Gregg et al., 2023) have been linked to seizure occurrence. Studies have indicated

a correlation between epilepsy and alterations in autonomic activity measured using

heart rate variability which mirrors how the autonomic nervous system affects the

heart (Opherk et al., 2002; Nei et al., 2000). Furthermore, sleep deprivation (Shouse

et al., 1996), and stress (Haut et al., 2003; Temkin and Davis, 1984) might be triggering

factors for ictogenesis.

Importantly, various potential indicators of physiological rhythms, such as heart

rate, sleep quality metrics, body temperature, blood oxygen levels, electrodermal ac-

tivity, and weather conditions (Gregg et al., 2023; Dumanis et al., 2017) can be easily

obtained using wearable devices and mobile apps for an extended period of time (even

for years) giving the opportunity to investigate a wide spectrum of timescales ranging

from seconds to years. The cyclical patterns of these measurements can be potential

biomarkers of several seizure features, such as seizure occurrence, seizure spread, seizure

evolutions and seizure severity.

Apart from currently available wearable biosensors, future work could explore a

number of sensors, such as sweat-sampling sensors capable for monitoring hormonal

and metabolic factors (Gualandi et al., 2016; Kim et al., 2015). Such factors linked

to epilepsy might be melatonin (Hofstra and de Weerd, 2009), cortisol (van Campen

et al., 2016), reproductive hormones (Herzog et al., 1997), glucose (Schauwecker, 2012),

and others (Brinkmann et al., 2021; Aminoff et al., 1984). Those measurements can be

available through non-invasive wearable devices using sweat-sampling sensors (Mart́ın

et al., 2017) capable of capturing cyclical characteristics over days or weeks from long-

term recording. Using those measurements we can utilise statistical models or machine

learning approaches (Nasseri et al., 2021) in real-time for forecasting an impending

seizure or different seizure properties, such as duration or severity of an imminent

seizure.

5.3 Incorporating Spatial Information

Obtaining details about the spatial coverage and positioning of the electrodes would

provide valuable insights from a clinical standpoint, as it would enable us to explore the

149



Chapter 5. Discussion

correlation between the location of temporal fluctuations and the epileptogenic zone in

focal epilepsies. Our results (Chapter 2) indicated that different frequency bands play

a comparable role in the circadian fluctuation of iEEG band power, with some subject-

specific patterns also observed. Nonetheless, it is worth noting that we conducted our

analysis across all dimensions of our data. Moreover, we found that slower fluctuations

(multi-day fluctuations and slow trends) tended to be the result of changes in specific

subsets of channels, whereas faster (circadian and ultradian) fluctuations were more

evenly distributed across all channels. However, our study was limited in terms of spatial

coverage of iEEG and the patient-specific electrode layout, which make it challenging

to compare band power fluctuation patterns across individuals. Future research should

consider the spatial location of iEEG channels and employ an iterative combination

of dimensionality reduction and empirical mode decomposition to identify components

and their contributions for each IMF in each dimension.

Establishing a potential association between the temporal patterns arising from

specific brain regions and seizure features, such as seizure evolutions and severity, may

inform novel treatment strategies. For example, identifying temporal patterns of seizure

severity in various brain areas within individual subjects could lead to the specific bio-

logical drivers of these detected fluctuations and may aid new treatments that minimise

seizure severity. Spatial patterns of various iEEG features, such as iEEG band power

(Panagiotopoulou et al., 2022), high frequency activity (Gliske et al., 2018), and interic-

tal spike rate (Conrad et al., 2020) change over time. Interestingly, band power changes

have been associated with seizure spread in areas outside of the seizure focus, suggesting

a widespread activity might manifest more severe seizures, such as secondarily gener-

alised ones (Naftulin et al., 2018). Cortical areas such as frontal and temporal lobe have

been associated with the phenomenon of seizure clustering (Ferastraoaru et al., 2016),

yielding to more severe seizure manifestations, as seizure clusters are associated with

an increased risk of prolonged seizures, status epilepticus (Haut et al., 2005), and/or

postictal morbidity, such as psychosis (Rose et al., 2003). Interestingly, seizure cluster-

ing reveals a predisposition on distinct circadian cycles/signatures between frontal and

temporal lobe seizures, as it occurs at different times between the two sites (Pavlova

et al., 2012). Future work can extend further our work in seizure evolutions (Chapter 3)

and severity (Chapter 4) by disentangling the spatio-temporal representation of cycles
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embedded in interictal iEEG features in order to identify oscillatory activity of specific

brain regions that could explain variability in seizure severity.

Spatial information of cycles in brain activity can also be useful for localising the

pathology. Identifying irregular patterns in cycles of various timescales might help in

localising the pathological tissue. One idea would be to explore cycles over multiple

timescales captured in iEEG band power from brain regions that form healthy tissue

from a large cohort of subjects constructing a normative map of the band power cycles.

Then, capturing the changes on those cycles in brain regions classified as epileptogenic

compared to this normative map (Bernabei et al., 2022; Taylor et al., 2022; Groppe

et al., 2013) would help us better identify brain areas with abnormal activity. It might

be that different cycles exhibit abnormal signatures in different brain regions and those

differences may be quantified as changes in various properties of the cycle, such as

alterations in phase, amplitude and duration. In Chapter 4, we touched on this idea

by looking at the extent of alteration in various cycles (mostly ultradian and circadian)

as expressed in terms of power obtained from pathological tissue, either later surgically

resected tissue or brain areas identified by clinicians as seizure onset zone. Future work

can further investigate constructing normative maps that describe cyclical properties of

brain activity in healthy tissue as those can be quantified using continuous long-term

EEG features, such as band power and network measures.

5.4 Importance of Ultradian cycles

It is important to note that the presence of ultradian cycles in physiology and epilepsy

might imply a link between biological driver(s) and seizure-modulating processes. Ul-

tradian cycles are important in various biological processes, including cycling of sleep

states, the basic rest-activity cycles occurring both in sleep and wakefulness (Kleit-

man, 1982), and brain activity in healthy individuals during wakefulness (Kaiser, 2008;

Chapotot et al., 2000). In this thesis, I found ultradian cycles associated with seizure

evolutions (Chapter 2) and durations (Chapter 3), as well as the pathology (Chapter

4). There is a critical need to better understand the role of ultradian cycles in seizure

modulating processes, as this will enable the development of novel treatment strategies

that could minimise the seizure spread, duration, or severity and therefore the clinical
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impact of seizures.

Identifying the exact biological factors underlying ictogenesis and epileptogenesis

involves a combination of different data collection and experimental techniques. One

idea would be to collect simultaneously EEG and actigraphy data from individuals

with epilepsy outside of the clinic. EEG data might be suitable for that purpose, as

they can be collected for extended periods of time while the patient is engaging in

their daily activities. Likewise, actigraphy data, which involves wearing a device that

records movement and activity, can provide information about temporal patterns during

sleep and activity levels in a non-clinic environment. Investigating the association

between ultradian cycles in sleep and wakefulness and seizure features might lead to

identification of the exact physiological processes that trigger a seizure or contribute

to more severe symptoms. Future work is needed for linking ultradian cycles to their

biological driver(s).

5.5 Chronobiology and Epilepsy

Epileptic seizures exhibit patterns that are not random and likely follow multiscale

fluctuations, such as ultradian, circadian and multidien rhythms which may be related

to day/night cycles, wakefulness and sleep (Shouse et al., 1996; Jin et al., 2020), time of

day, and internal biological clocks (Hofstra and de Weerd, 2008, 2009). These patterns,

(Langdon-Down and Russell Brain, 1929; Gowers, 1885; Karoly, Rao, Gregg, Worrell,

Bernard, Cook and Baud, 2021; Baud et al., 2018) and importantly their significance

in the treatment of seizures, have been identified for several decades (Ramgopal et al.,

2013). Recently, better methods of characterising day and nighttime patterns of differ-

ent epilepsy types have become available, and it is now possible to distinguish between

external regulators, such as time of day and internal markers, such as intra-body bi-

ological rhythms. Improved ways to quantify and record not only seizure timing, but

also other varying seizure properties, such as seizure spread, severity, duration, and

identify internal clocks are needed for advancing this area of research. Understanding

a person’s propensity to seize at certain times and importantly capturing the severity

associated with their seizure may allow us to develop personalised profiles of seizure

features that could guide treatment.
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Medications may be adjusted in time for a number of treatment strategies in pa-

tients with epilepsy. For example, vagus nerve (Fisher et al., 2021), deep brain or

cortical stimulation (Lin and Wang, 2017), and meal timing of diet treatments (i.e. ke-

togenic diet) (Fenoglio-Simeone et al., 2009). Treating seizures by the clock falls under

the area of chronobiology and has been termed chrono-epileptology (Loddenkemper,

2012). Chrono-epileptology has the potential not just to facilitate the modification of

treatments during periods of heightened seizure susceptibility by adjusting the dose

level based on the propensity of specific seizure type or severity to specific times of day

(Guilhoto et al., 2011; Yegnanarayan et al., 2006), but also enable the adjustment of

“zeitgebers” – external cues (e.g. temperature or blue light) that regulate the body’s

internal clock (Re et al., 2020). Future research will need to explore additional epilepsy

biomarkers, the role of sleep, the interaction with different seizure type or severity, and

whether resetting internal clocks can advance our understanding of epileptogenesis and

hence effectively treating epilepsy.

5.6 Limitations for Future Work

5.6.1 Antiepileptic seizure medication

Patients included in the thesis suffered from refractory epilepsy and hence received a

number of different drugs during treatment, as part of the pre-surgical evaluation. In the

analyses conducted for all research chapters (Chapters 2, 3 & 4), I did not incorporate

information regarding drug doses, as medication records were not available. Notably,

prior studies on canine epilepsy showed that various seizure cycles (circadian, weekly

and monthly) are not driven by the changes in anti-epileptic medication (Gregg et al.,

2020; Schroeder et al., 2020). It is likely that the various periodicities of seizure activity

might not be induced by changes in anti-seizure drug doses, but rather influenced by

endogenous time-varying factors. However, it has been shown that changes in medi-

cation increase seizure likelihood; focal seizures which evolve into tonic-clonic seizures

become more prevalent when antiepileptic drugs are reduced (Pensel et al., 2020). Also,

medication affects cortical excitability (Kimiskidis et al., 2006; Cantello et al., 2006)

and increasing cortical excitability might be related to higher seizure risk (Meisel et al.,
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2015) and also contributes to seizure spread (Badawy et al., 2009). Sleep also mod-

ulates cortical excitability (Usami et al., 2015) and sleep has been linked to epilepsy

(Jin et al., 2020). In future work, incorporating personalised medication records could

unravel the behaviour of rhythms in seizure features with respect to the changes in

drugs and/or doses. It might be that a change in medication dose has an impact on

other biological mechanisms that are reflected in certain characteristics of rhythms.

5.6.2 Approaches for capturing multiscale fluctuations in time series

In Chapters 2 and 3, I derived band power fluctuations on different timescales using

EMD. It is a data-adaptive and empirical method capable of extracting fluctuations

on different timescales without relying on assumptions of local stationarity, linearity,

or specific basis functions, and for these reasons it is preferable for our application.

EMD has been widely applied in a range of scientific topics, such as geology (Bat-

tista et al., 2007), hydrology (Hu and Si, 2013), and neuroscience (Huang et al., 2013;

Rojas et al., 2013) amongst many others. EMD is capable of identifying different

timescales of fluctuations, without pre-determined basis functions. It also does not

generate harmonics (as in Fourier or Wavelet-type approaches) of fluctuations, making

the decomposed cycles easier to interpret. However, EMD also has some limitations.

Most notably, the IMFs’ timescales of fluctuations may overlap, which is known as

‘mode mixing’ (Ur Rehman and Mandic, 2011). EMD may also struggle to distinguish

two distinct fluctuations that have very similar periods, and they may be merged into

one IMF. Ongoing developments (Xue et al., 2015; Deering and Kaiser, 2005; Li et al.,

2015) in this area may overcome these limitations. Future work should explore how to

capture non-stationary (Kaplan et al., 2005), non-linear (Stam, 2005), and potentially

hierarchical (Vidaurre et al., 2017) time-varying properties of the continuously recorded

EEG.

5.6.3 Seizure severity as a multifactorial entity

In Chapter 4, I used seizure duration as a proxy for seizure severity. Duration of a

seizure has been also used in other studies as a measure of severity (Gascoigne et al.,

2023; Beniczky et al., 2020). Interestingly, seizure duration has been linked to seizure
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types (Dobesberger et al., 2015; Jenssen et al., 2006; Afra et al., 2008; Kim et al., 2011):

seizure types with more severe symptoms tend to last longer. For example, seizures that

start in one area on one side of the brain (focal) and spread across the brain, recruiting

additional brain areas (bilateral tonic-clonic) tend to have longer duration compared

to those that do not spread further (Dobesberger et al., 2015; Kaufmann et al., 2020;

Ferastraoaru et al., 2016). Longer seizures have also been associated with extensive

periods of postictal suppression (an undisputed marker of seizure burden and severity)

compared to short seizures (Payne et al., 2018). Thus, seizure duration might be an

intermediate proxy of seizure severity.

Even though seizure duration is used as an intermediate proxy of seizure severity

(Chapter 4), there are multiple aspects contributing to the extent to which a seizure

is more severe or not that are not captured by seizure duration alone. A number

of physiological markers of seizure severity (Gascoigne et al., 2023) can be associated

with temporal patterns in band power. Future research may perform a methodologi-

cal approach suitable for detecting interactions between multivariate datasets, such as

Canonical correlation analysis (CCA) (Zhuang et al., 2020). One dataset can include

all the measures of seizure severity and the other will consist of cycles over multiple

timescales. Then, applying CCA one can identify the exact cycles each severity marker

is associated with.

5.7 Conclusion

In focal epilepsy, there is a need for understanding the mechanisms underlying epilepsy

and seizures for developing more effective treatments for patients that do not respond

to anti-epileptic medication and are not eligible for surgery. Even though cycles in

seizure timing have been studied for years (Griffiths and Fox, 1938; Langdon-Down and

Russell Brain, 1929), it is only recently there has been growing evidence of cycles in

brain dynamics (Baud et al., 2019; Leguia et al., 2021; Gliske et al., 2018; Proix et al.,

2021) and further investigation into their relationship (Karoly, Goldenholz, Freestone,

Moss, Grayden, Theodore and Cook, 2018; Baud et al., 2018; Leguia et al., 2021; Karoly,

Rao, Gregg, Worrell, Bernard, Cook and Baud, 2021). Importantly, clues for cycles in

other seizure features have just started to emerge (Schroeder et al., 2020; Gascoigne
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et al., 2023), but the full range of cycles (timescales) and their association with temporal

changes in brain activity is still an active area of research. Additionally, the link between

biological drivers and temporal changes in brain activity needs further investigation.

My work contributes to the growing literature of alternative treatment approaches in

epilepsy that predict and react to the temporal changes of the disease. This new

era of chronobiology in epilepsy has been termed chrono-epileptology (Loddenkemper,

2012) and is not only limited to adapting the timing of neurostimulation or drug dose

administration based on the propensity of seizure type or severity, but also enabling

the re-entrainment of the body’s internal clocks.

Predicting when seizures happen has been an active and re-invigorated area of re-

search for many years (Karoly et al., 2017; Cook et al., 2013; Freestone et al., 2017;

Stirling et al., 2021). My work further contributes to being able to predict seizure

dynamics, evolutions, seizure severity and symptoms. Additionally, the fluctuations in

EEG features we and others investigate may also serve as biomarkers that can track

treatment response, and therefore enable on-demand treatment options (Karoly, Rao,

Gregg, Worrell, Bernard, Cook and Baud, 2021; Bernard, 2021; Carney et al., 2014;

Leite Góes Gitai et al., 2019; Potruch et al., 2020; Ramgopal et al., 2013). The asso-

ciation I investigated between how seizures change and fluctuations in EEG features

therefore serves as a crucial link to bridge the gap between treatment outcome (im-

proved seizure symptoms/severity) and the given intervention that can be tracked with

fluctuations in EEG features. Furthermore, my work provides a first step in under-

standing the link between altered biological rhythms and pathology. I found dimin-

ished cycles in pathological tissue, and this finding enhances the research towards a

pillar of chrono-epileptology, the one that focuses on restoring biological rhythms to

their normal rhythmicity as an effective treatment.
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P., Daniel, P., Chrastina, J., Brichtová, E., Rektor, I., Worrell, G. A. and Jurák, P.

(2017). Very high-frequency oscillations: Novel biomarkers of the epileptogenic zone:

VHF Oscillations in epilepsy, Annals of Neurology 82(2): 299–310.

Breen, D. P., Vuono, R., Nawarathna, U., Fisher, K., Shneerson, J. M., Reddy, A. B.

and Barker, R. A. (2014). Sleep and circadian rhythm regulation in early parkinson

disease, JAMA Neurology 71(5): 589.

Breheny, P. and Huang, J. (2015). Group descent algorithms for nonconvex penalized

linear and logistic regression models with grouped predictors, Statistics and Comput-

ing 25(2): 173–187.

Brinkmann, B. H., Karoly, P. J., Nurse, E. S., Dumanis, S. B., Nasseri, M., Viana, P. F.,

Schulze-Bonhage, A., Freestone, D. R., Worrell, G., Richardson, M. P. and Cook,

M. J. (2021). Seizure diaries and forecasting with wearables: Epilepsy monitoring

outside the clinic, Frontiers in Neurology 12.

Burman, PRABIR. (1989). A comparative study of ordinary cross-validation, v-fold

cross-validation and the repeated learning-testing methods, Biometrika 76(3): 503–

514.

Burneo, J. G., Shariff, S. Z., Liu, K., Leonard, S., Saposnik, G. and Garg, A. X. (2016).

Disparities in surgery among patients with intractable epilepsy in a universal health

system, Neurology 86(1): 72–78.

Burns, S. P., Santaniello, S., Yaffe, R. B., Jouny, C. C., Crone, N. E., Bergey, G. K.,

Anderson, W. S. and Sarma, S. V. (2014). Network dynamics of the brain and

161



References

influence of the epileptic seizure onset zone, Proceedings of the National Academy of

Sciences 111(49): E5321–E5330.

Burrello, A., Cavigelli, L., Schindler, K., Benini, L. and Rahimi, A. (2019). Laelaps:

An energy-efficient seizure detection algorithm from long-term human iEEG record-

ings without false alarms, 2019 Design, Automation & Test in Europe Conference &

Exhibition (DATE), IEEE, Florence, Italy, pp. 752–757.

Buxton, O. M., Cain, S. W., O’Connor, S. P., Porter, J. H., Duffy, J. F., Wang, W.,

Czeisler, C. A. and Shea, S. A. (2012). Adverse metabolic consequences in humans of

prolonged sleep restriction combined with circadian disruption, Science Translational

Medicine 4(129).

Caciagli, L., Allen, L. A., He, X., Trimmel, K., Vos, S. B., Centeno, M., Galovic, M.,

Sidhu, M. K., Thompson, P. J., Bassett, D. S., Winston, G. P., Duncan, J. S., Koepp,

M. J. and Sperling, M. R. (2020). Thalamus and focal to bilateral seizures, Neurology

95(17): e2427–e2441.

Cai, Y., Liu, S., Sothern, R. B., Xu, S. and Chan, P. (2010). Expression of clock genes

Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease: Clock genes

in PD, European Journal of Neurology 17(4): 550–554.

Cai, Z., Sohrabpour, A., Jiang, H., Ye, S., Joseph, B., Brinkmann, B. H., Worrell,

G. A. and He, B. (2021). Noninvasive high-frequency oscillations riding spikes

delineates epileptogenic sources, Proceedings of the National Academy of Sciences

118(17): e2011130118.

Cantello, R., Civardi, C., Varrasi, C., Vicentini, R., Cecchin, M., Boccagni, C. and

Monaco, F. (2006). Excitability of the human epileptic cortex after chronic valproate:

A reappraisal, Brain Research 1099(1): 160–166.

Carney, P., Stanley, D. and Talathi, S. (2014). Chronotherapy in the treatment of

epilepsy, ChronoPhysiology and Therapy 4: 109–123.

Casiraghi, L., Spiousas, I., Dunster, G. P., McGlothlen, K., Fernández-Duque, E.,

Valeggia, C. and de la Iglesia, H. O. (2021). Moonstruck sleep: Synchroniza-

tion of human sleep with the moon cycle under field conditions, Science Advances

162



References

7(5): eabe0465.

Caton, R. (1875). The electric currents of the brain.

Cermakian, N., Waddington Lamont, E., Boudreau, P. and Boivin, D. B. (2011). Cir-

cadian clock gene expression in brain regions of Alzheimer ’s disease patients and

control subjects, Journal of Biological Rhythms 26(2): 160–170.

Chapotot, F., Jouny, C., Muzet, A., Buguet, A. and Brandenberger, G. (2000). High

frequency waking EEG: Reflection of a slow ultradian rhythm in daytime arousal,

NeuroReport 11(10): 2223–2227.

Chavakula, V., Sánchez Fernández, I., Peters, J. M., Popli, G., Bosl, W., Rakhade, S.,

Rotenberg, A. and Loddenkemper, T. (2013). Automated quantification of spikes,

Epilepsy & Behavior 26(2): 143–152.

Chen, C.-Y., Logan, R. W., Ma, T., Lewis, D. A., Tseng, G. C., Sibille, E. and McClung,

C. A. (2016). Effects of aging on circadian patterns of gene expression in the human

prefrontal cortex, Proceedings of the National Academy of Sciences 113(1): 206–211.

Chen, Z., Brodie, M. J., Liew, D. and Kwan, P. (2018). Treatment outcomes in patients

with newly diagnosed epilepsy treated with established and new antiepileptic drugs:

A 30-year longitudinal cohort study, JAMA neurology 75(3): 279–286.

Chen, Z., Grayden, D. B., Burkitt, A. N., Seneviratne, U., D’Souza, W. J., French, C.,

Karoly, P. J., Dell, K., Leyde, K., Cook, M. J. and Maturana, M. I. (2021). Spa-

tiotemporal patterns of high-frequency activity (80–170 Hz) in long-term intracranial

EEG, Neurology 96(7): e1070–e1081.

Chiang, S., Vannucci, M., Goldenholz, D. M., Moss, R. and Stern, J. M. (2018). Epilepsy

as a dynamic disease: A Bayesian model for differentiating seizure risk from natural

variability, Epilepsia Open 3(2): 236–246.

Cohen, M. X. (2017). Where does EEG come from and what does it mean?, Trends in

Neurosciences 40(4): 208–218.

163



References

Coiffard, B., Diallo, A. B., Mezouar, S., Leone, M. and Mege, J.-L. (2021). A tangled

threesome: Circadian rhythm, body temperature variations, and the immune system,

Biology 10(1): 65.

Colominas, M. A., Schlotthauer, G. and Torres, M. E. (2014). Improved complete

ensemble EMD: A suitable tool for biomedical signal processing, Biomedical Signal

Processing and Control 14: 19–29.

Colwell, C. S. (2011). Linking neural activity and molecular oscillations in the SCN,

Nature Reviews Neuroscience 12(10): 553–569.

Conrad, E. C., Tomlinson, S. B., Wong, J. N., Oechsel, K. F., Shinohara, R. T., Litt,

B., Davis, K. A. and Marsh, E. D. (2020). Spatial distribution of interictal spikes

fluctuates over time and localizes seizure onset, Brain 143(2): 554–569.

Cook, M. J. (2021). Advancing seizure forecasting from cyclical activity data, The

Lancet Neurology 20(2): 86–87.

Cook, M. J., Karoly, P. J., Freestone, D. R., Himes, D., Leyde, K., Berkovic, S., O’Brien,

T., Grayden, D. B. and Boston, R. (2016). Human focal seizures are characterized

by populations of fixed duration and interval, Epilepsia 57(3): 359–368.

Cook, M. J., O’Brien, T. J., Berkovic, S. F., Murphy, M., Morokoff, A., Fabinyi, G.,

D’Souza, W., Yerra, R., Archer, J., Litewka, L., Hosking, S., Lightfoot, P., Ruede-

busch, V., Sheffield, W. D., Snyder, D., Leyde, K. and Himes, D. (2013). Prediction

of seizure likelihood with a long-term, implanted seizure advisory system in patients

with drug-resistant epilepsy: A first-in-man study, The Lancet Neurology 12(6): 563–

571.

Cornelissen, G. and Otsuka, K. (2017). Chronobiology of aging: A mini-review, Geron-

tology 63(2): 118–128.

Cramer, J. A. and French, J. (2001). Quantitative assessment of seizure severity for

clinical trials: A review of approaches to seizure components, Epilepsia 42(1): 119–

129.

164



References

Crespel, A., Baldy-Moulinier, M. and Coubes, P. (1998). The relationship between sleep

and epilepsy in frontal and temporal lobe epilepsies: Practical and physiopathologic

considerations, Epilepsia 39(2): 150–157.

Cuesta, M., Boudreau, P., Cermakian, N. and Boivin, D. B. (2017). Rapid resetting of

human peripheral clocks by phototherapy during simulated night shift work, Scientific

Reports 7(1): 16310.

Cummings, L., Dane, A., Rhodes, J., Lynch, P. and Hughes, A. M. (2000). Diurnal

variation in the quantitative EEG in healthy adult volunteers, British Journal of

Clinical Pharmacology 50(1): 21–26.

Davies, S. K., Ang, J. E., Revell, V. L., Holmes, B., Mann, A., Robertson, F. P., Cui,

N., Middleton, B., Ackermann, K., Kayser, M., Thumser, A. E., Raynaud, F. I.

and Skene, D. J. (2014). Effect of sleep deprivation on the human metabolome,

Proceedings of the National Academy of Sciences 111(29): 10761–10766.

de Tisi, J., Bell, G. S., Peacock, J. L., McEvoy, A. W., Harkness, W. F., Sander, J. W.

and Duncan, J. S. (2011). The long-term outcome of adult epilepsy surgery, patterns

of seizure remission, and relapse: A cohort study, The Lancet 378(9800): 1388–1395.

Deering, R. and Kaiser, J. (2005). The use of a masking signal to improve empirical

mode decomposition, Proceedings. (ICASSP ’05). IEEE International Conference on

Acoustics, Speech, and Signal Processing, 2005., Vol. 4, pp. iv/485–iv/488 Vol. 4.

Dement, W. and Kleitman, N. (1957). Cyclic variations in EEG during sleep and their

relation to eye movements, body motility, and dreaming, Electroencephalography and

Clinical Neurophysiology 9(4): 673–690.

Den Heijer, J. M., Otte, W. M., Van Diessen, E., Van Campen, J. S., Lorraine Hompe,

E., Jansen, F. E., Joels, M., Braun, K. P. J., Sander, J. W. and Zijlmans, M. (2018).

The relation between cortisol and functional connectivity in people with and without

stress-sensitive epilepsy, Epilepsia 59(1): 179–189.

Devinsky, O. and Lai, G. (2008). Spirituality and religion in epilepsy, Epilepsy &

Behavior 12(4): 636–643.

165



References

Dikanev, T., Smirnov, D., Wennberg, R., Velazquez, J. P. and Bezruchko, B. (2005).

EEG nonstationarity during intracranially recorded seizures: Statistical and dynam-

ical analysis, Clinical Neurophysiology 116(8): 1796–1807.

Ding, H., Liu, S., Yuan, Y., Lin, Q., Chan, P. and Cai, Y. (2011). Decreased expression

of Bmal2 in patients with Parkinson’s disease, Neuroscience Letters 499(3): 186–188.
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Leite Góes Gitai, D., De Andrade, T. G., Dos Santos, Y. D. R., Attaluri, S. and Shetty,

A. K. (2019). Chronobiology of limbic seizures: Potential mechanisms and prospects

of chronotherapy for mesial temporal lobe epilepsy, Neuroscience & Biobehavioral

Reviews 98: 122–134.

Leng, Y., Musiek, E. S., Hu, K., Cappuccio, F. P. and Yaffe, K. (2019). Association

between circadian rhythms and neurodegenerative diseases, The Lancet. Neurology

177



References

18(3): 307–318.

Leopold, D. A., Murayama, Y. and Logothetis, N. K. (2003). Very slow activity fluctu-

ations in monkey visual cortex: Implications for functional brain imaging, Cerebral

Cortex 13(4): 422–433.

Li, H., Wang, C. and Zhao, D. (2015). An improved EMD and its applications to find the

basis functions of EMI signals, Mathematical Problems in Engineering 2015: e150127.

Li, P., Fu, X., Smith, N. A., Ziobro, J., Curiel, J., Tenga, M. J., Martin, B., Freedman,

S., Cea-Del Rio, C. A., Oboti, L., Tsuchida, T. N., Oluigbo, C., Yaun, A., Magge,

S. N., O’Neill, B., Kao, A., Zelleke, T. G., Depositario-Cabacar, D. T., Ghimbovschi,

S., Knoblach, S., Ho, C.-Y., Corbin, J. G., Goodkin, H. P., Vicini, S., Huntsman,

M. M., Gaillard, W. D., Valdez, G. and Liu, J. S. (2017). Loss of CLOCK results in

dysfunction of brain circuits underlying focal epilepsy, Neuron 96(2): 387–401.e6.

Lin, Y. and Wang, Y. (2017). Neurostimulation as a promising epilepsy therapy, Epilep-

sia Open 2(4): 371–387.

Litt, B., Esteller, R., Echauz, J., D’Alessandro, M., Shor, R., Henry, T., Pennell, P.,

Epstein, C., Bakay, R., Dichter, M. and Vachtsevanos, G. (2001). Epileptic seizures

may begin hours in advance of clinical onset: A report of five patients, Neuron

30(1): 51–64.

Liu, H., Yang, Y., Wang, Y., Tang, H., Zhang, F., Zhang, Y. and Zhao, Y. (2018).

Ketogenic diet for treatment of intractable epilepsy in adults: A meta-analysis of

observational studies, Epilepsia Open 3(1): 9–17.

Liu, Y., Razavi Hesabi, Z., Cook, M. and Kuhlmann, L. (2022). Epileptic seizure onset

predicts its duration, European Journal of Neurology 29(2): 375–381.

Loddenkemper, T. (2012). Chrono-epileptology: Time to reconsider seizure timing,

Seizure 21(6): 411.

Loddenkemper, T., Lockley, S. W., Kaleyias, J. and Kothare, S. V. (2011). Chrono-

biology of epilepsy: Diagnostic and therapeutic implications of chrono-epileptology,

178



References

Journal of Clinical Neurophysiology 28(2): 146–153.

Loddenkemper, T., Vendrame, M., Zarowski, M., Gregas, M., Alexopoulos, A. V., Wyl-

lie, E. and Kothare, S. V. (2011). Circadian patterns of pediatric seizures, Neurology

76(2): 145–153.

Logan, R. W. and McClung, C. A. (2019). Rhythms of life: Circadian disruption and

brain disorders across the lifespan, Nature Reviews Neuroscience 20(1): 49–65.

Lopes da Silva, F., Blanes, W., Kalitzin, S. N., Parra, J., Suffczynski, P. and Velis,

D. N. (2003). Epilepsies as dynamical diseases of brain systems: Basic models of the

transition between normal and epileptic activity, Epilepsia 44 Suppl 12: 72–83.
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