
Delta-Complete Linear Programming Techniques for

Satisfiability and Numerical Optimisation

Martin Sidaway

A thesis submitted for the qualification of

Doctor of Philosophy

in the School of Computing at Newcastle University.

June 2024

ii

Abstract

In this thesis, I develop rigorous algorithms for solving linear satisfiability and optimi-

sation problems within a Satisfiability Modulo Theories (SMT) framework. Over the last

20 years, extensive applications for such algorithms have opened up in the formal veri-

fication of software and, more recently, of rectified linear-unit (ReLU) neural networks.

These networks learn a function that is continuous and piecewise linear over the inputs.

Many of the most important safety properties for a ReLU neural network, in addition

to the linear segments of the network itself, can be encoded as conjunctions of linear

inequalities. This suggests that developing better methods to solve satisfiability problems

over conjunctions of linear inequalities (“linear feasibility problems”) should be a priority

for the neural network verification community.

The most popular, and in many cases the most efficient method for solving linear

feasibility problems is the simplex method. There also exists a family of methods known

as interior-point methods, which have been found in some cases to outperform the simplex

method. In this thesis, two algorithms are developed for the rigorous δ-complete solution

of linear feasibility problems. One is based on the simplex method, and the other is based

on an interior-point method.

(A solver is considered δ-complete if it is a sound and complete method for solving the

δ-decision problem corresponding to an SMT decision problem. The δ-decision problem

is the problem of deciding between unsatisfiability of the original SMT decision problem

and satisfiability of the δ-relaxed problem, which is the problem in which all arithmetic

constraints, expressed as a set of inequalities, have been “relaxed” by adding or subtracting

δ on one side or the other, in such a way as to make them easier to satisfy.)

Both algorithms were implemented in software, and the interior-point method was

found to be slower by many orders of magnitude. As a result, the majority of this thesis

focuses on the simplex-based method, implemented as dLinear4,1 which is my modified

version of the delta-complete SMT solver dReal4.2

To maximise the efficiency of the implementation, the simplex algorithm was built on

top of an inexact, floating-point solver. This solver is then enclosed in a loop that tries an

increasing sequence of floating-point precisions. I prove that the algorithm terminates, as

the floating-point solver will eventually identify the exact solution. Correctness (for the δ-

decision problem) is ensured by the rational checks that follow the call to the floating-point

solver. The time savings of making the method δ-complete are realised as a reduction in

the number of calls to the floating-point solver, when an infeasible basis is nevertheless

found to yield a δ-satisfying primal solution.

1https://github.com/martinjos/dlinear4
2https://github.com/dreal/dreal4

iii

https://github.com/martinjos/dlinear4
https://github.com/dreal/dreal4

My implementation dLinear4 was tested on a wide range of SMT- and LP-derived

problem instances. It was found to beat leading SMT solvers such as z33 and cvc44

on most LP-derived instances, even when an exact solution was sought (δ = 0). Some

additional time savings have been found on larger instances when δ > 0.

Finally, a new concept of δ-completeness for full linear programs is developed. This

concept demands rigorous bounds confining the optimal objective function value (where

applicable) to a range no larger than δ. An algorithm is defined, proven δ-complete

according to this new concept (building upon the proof for the feasibility case), and

implemented in dLinear4.

3https://github.com/Z3Prover/z3
4https://cvc4.github.io

iv

https://github.com/Z3Prover/z3
https://cvc4.github.io

Acknowledgements

I would like to thank Dr. Paolo Zuliani, my supervisor, for his continual support and

invaluable advice.

I would also like to thank my examiners, Dr. Sadegh Soudjani of Newcastle University,

and Dr. Ambros Gleixner of the Zuse Institute Berlin, for their invaluable feedback.

This research made use of the Rocket High Performance Computing service at Newcastle

University.

v

vi

Contents

1 Introduction 1

1.1 Background . 1

1.1.1 ReLU Neural Networks . 1

1.1.2 Delta-Decidability and Delta-Completeness 2

1.1.3 Verifying ReLU Neural Networks 2

1.1.4 Linear Programming . 3

1.1.5 Related Work . 3

1.2 Fundamental Preliminaries . 4

1.2.1 Floating-point arithmetic model . 4

1.2.2 Big O notation . 5

1.3 Overall Thesis Summary . 5

1.3.1 Scope of Problem . 6

1.4 Delta-Complete Decision Procedures . 6

1.4.1 Difference between the Nonlinear and Linear Cases 7

1.5 Aim and Objectives . 8

1.6 Thesis Outline . 8

2 δ-Complete Interior-Point Method for Satisfiability 11

2.1 Interior-Point System . 11

2.1.1 The unsatisfiable case . 13

2.2 Full-Newton Step Algorithm . 15

2.3 Proof of δ-Completeness . 15

3 The Bartels–Golub Simplex Algorithm 19

3.1 Introduction to the Bartels–Golub Algorithm 20

3.1.1 Further concepts and notation for the Bartels–Golub algorithm . . 21

3.1.2 The basics of the error analysis . 23

3.1.3 Error analysis of the retriangularisation factors 23

3.1.4 Key elements in the error analysis of the basis decomposition 25

3.2 Off-By-One Error in Bartels’ Error Analysis [1] 26

3.3 Updates to Bartels’ Floating-Point Arithmetic Model 28

3.4 Updated Analysis for Triangular Systems 28

vii

3.5 Updated Bound for the Product Sub-Factors C̃(i) 29

3.6 Updated Bound for the Product Sub-Factor Errors C̃(i) − C(i) 29

3.7 Updated Bound for the Product Factor Error δG(k) 30

3.8 Overall Bound for the Upper Triangular Factor U (k) 30

3.9 Updated Bound for the Basis Matrix Error δB(k) 32

3.10 Overall Error Bound . 34

3.11 Conclusion . 35

4 δ-Complete Simplex Method for Satisfiability 37

4.1 Simplex . 37

4.1.1 From satisfiability to optimisation 37

4.1.2 Basic solutions . 38

4.1.3 Duality . 38

4.1.4 Known results about the simplex algorithm 39

4.2 δ-Complete Algorithm . 39

4.3 Floating-Point Exceptions . 40

4.4 Proof of δ-Completeness: Correctness . 40

4.5 Proof of δ-Completeness: General Error Bounds 43

4.5.1 Iteration limit . 43

4.5.2 Initial rounding error . 43

4.5.3 Basis and substitution error . 44

4.6 Proof of δ-Completeness: Iterate Vector Error Bounds 45

4.6.1 Primal, dual and entering coefficient vector total error 45

4.6.2 Reduced cost vector total error . 47

4.6.3 Candidate update vector total error 47

4.6.4 Error bounds for Algorithm 4.2 . 48

4.7 Proof of δ-Completeness: Correct Behaviour 49

4.7.1 Correct optimality determination & entering variable choice 49

4.7.2 Correct unboundedness determination 50

4.7.3 Correct leaving variable choice . 51

4.8 Proof of δ-Completeness: Proof of Termination, and Conclusion 53

5 δ-Complete General Linear Programming Method 57

5.1 The Top-Down View . 57

5.2 The Practical View . 58

5.3 Proof of δ-Completeness . 59

6 Implementation 67

6.1 Interior-Point Algorithm . 67

6.2 Simplex for Satisfiability . 67

6.3 Simplex for Linear Programming . 68

viii

7 Evaluation 69

7.1 δ-Complete Interior-Point Method . 69

7.2 δ-Complete Simplex Methods . 69

7.3 The Sloane–Stufken Problem . 70

7.3.1 Comparison with third-party solvers 71

7.3.2 Maximum deltas / minimum precisions 71

7.3.3 Comparison of deltas . 72

7.4 Infeasible Instances . 73

8 Conclusion 77

8.1 Further Work . 77

8.1.1 LPs with irrational coefficients . 77

8.1.2 LPs with interval coefficients . 78

8.1.3 Neural networks using alternative activation functions 79

A Important Interior-Point Results from [2] 81

A.1 Analytical Subject and Duality . 81

A.2 From Optimisation to Inequalities . 82

A.3 Skew-Symmetry and Homogeneity . 83

A.4 The Interior-Point Condition . 83

A.5 The Slack Vector . 84

A.6 Self-Duality . 84

A.7 The Optimal Partition . 85

A.8 Full-Newton Step Algorithm . 85

A.9 Termination . 86

A.10 Proximity Measure . 86

A.11 Condition Number . 87

A.12 Iteration Bound . 87

A.13 Large and Small Variables . 88

A.14 Modified Form of the Feasibility Conditions 90

B Alternative Interior-Point Proofs 91

B.1 Simple Cases . 91

B.2 The Unsatisfiable Case . 91

C Elementwise Bounds for the Result of Gaussian Elimination with Partial

Pivoting 93

C.1 Partial Pivoting . 93

C.2 Bound for General Case . 94

C.3 Bound for Upper Hessenberg Case . 94

D Full LP: full results table 95

ix

Bibliography 127

x

Chapter 1

Introduction

1.1 Background

1.1.1 ReLU Neural Networks

ReLU1 neural networks have lately become the most widely-used form of artificial neural

network (henceforth “neural network”), and have been finding an ever-expanding range

of applications. They learn a function that is continuous and piecewise linear over the

inputs. In this piecewise linear function, the number of linear segments is exponential in

the number of network layers, often making it prohibitively expensive to rigorously verify

global properties of the function, especially in a “deep” network (one with many layers)

– which has been found to be the most powerful form of neural network.

In many cases the desired safety property is encoded as a decision problem in which

true means that the property is violated, and false means that it holds. For instance,

suppose we have a neural network that is designed to drive a car autonomously. Then

we may ask the question, “will the network ever accelerate when the speed is at or above

the speed limit?” And let’s say, just for the sake of argument, that we want (and expect)

the answer to be “no”, or in other words “false”. If the correct answer is “false” (it won’t

accelerate), but our solver gives us the answer “true”, this is okay – it may make us overly

cautious, but no-one will be hurt as a result. However, if the correct answer is “true”,

but our solver says “false”, then we may place undue trust in the network.

In such cases, overapproximation – where false positives are allowed but false negatives

are not – can be helpful. For instance, δ-complete methods (for satisfiability problems

over conjunctions of inequalities) rule out false negatives – which would correspond to

overlooked property violations – but permit false positives, provided that no bound is

violated by more than the chosen value δ. This value δ provides a means of tuning the

tradeoff between execution time and solution quality. The problem solved by a δ-complete

method is known as the δ-decision problem – as opposed to the decision problem, which is

the problem of finding the answer “true” or “false” with no allowance for false positives.

1Rectified Linear Unit

1

1.1.2 Delta-Decidability and Delta-Completeness

The concept of delta-decidability (or δ-decidability), introduced in [3], is concerned with

relaxing the strict completeness requirement of a decision procedure for nonlinear real

arithmetic sentences with quantifiers, in much the way indicated above for ReLU neural

networks. In [4], this concept is applied to the more restricted problem of the satisfiability

of quantifier-free Satisfiability Modulo Theories (SMT) [5] formulas. It is important to

understand that δ-completeness does not affect the correctness of the algorithms, nor

the guarantee of termination: only the nature of the results that may be provided. For

instance, a δ-complete algorithm for satisfiability pronounces either unsatisfiability or

δ-satisfiability, and in both cases, the result is exact. In the case of δ-satisfiability, it

constitutes a mathematically rigorous assertion that a bounded perturbation of the input

problem – known as the δ-decision problem – is exactly satisfiable.

1.1.3 Verifying ReLU Neural Networks

A ReLU neural network is a real-vector-valued, continuous, piecewise linear function of

real vectors, composed of “rectified linear units”, each of which is the composition of a

rectifier and a multivariate affine function. Typically, the rectifier itself is denoted ReLU,

despite the fact that ReLU stands for “rectified linear unit”. Hence, a rectified linear unit

with n inputs will typically look like

f(x) = ReLU(a · x+ b), for some a ∈ Rn and b ∈ R,

where

ReLU(χ) = max(0, χ), χ ∈ R,

and the components of x in f(x) may themselves be the outputs of further rectified linear

units.

Verifying the “behaviour” of these “networks” (i.e., how the function responds to its

inputs) typically involves composing a satisfiability problem, of which the function itself

is a parameter. For instance, we may ask a solver to prove (or, equivalently, to disprove)

the statement

∃x : f(x) ⩾ ζ, ℓ ⩽ x ⩽ u, (1.1)

where ℓ, u ∈ Rn bound some hyperrectangular region of the input space that we are

interested in, and ζ ∈ R is a value that we (usually) do not want the output to exceed

over this region. Naturally, since f(x) is piecewise linear, (1.1) will contain subproblems

that have only linear inequalities.

2

1.1.4 Linear Programming

The satisfiability problem for a system of linear inequalities, such as Ax ⩾ b where

A ∈ Rm×n and b ∈ Rm, is most commonly solved using a method for linear programming

(LP; also known as linear optimisation), which is in complexity class P – usually the

simplex algorithm, but sometimes an interior-point method. This is done by transforming

the satisfiability problem ∃x : Ax ⩾ b into an equivalent linear optimisation problem

(usually called a linear program). For a more general SMT formula using the theory of

quantifier-free linear real arithmetic (QF LRA), the satisfiability problem can be solved by

using a SAT solver to suggest conjunctions of theory literals, and feeding the equivalent

optimisation problems into an LP solver, using any negative results to guide the SAT

solver.

Linear programming is a large and well-studied topic, but although academic analyses

of the method have usually assumed exact arithmetic, solvers, including those arising from

academia, have tended to provide no formal guarantees, due to the use of inexact (floating-

point) arithmetic, and lack of any provision to rigorously detect incorrect solutions, or to

improve upon a solution, no matter how close to optimal, found to be incorrect. The fact

that the results have nevertheless usually proven to be adequate for academic (and indeed

industrial) purposes is probably a consequence of the fact that solution quality in LP is

mostly determined by finding the correct basis. Provided this can be found (which in most

practical problems it can, even using fixed-precision floating-point arithmetic), the only

error will arise from a single basis inversion and subsequent matrix-vector multiplication.

However, without any guarantee of finding the correct basis, the error can in principle

be arbitrary. Exact solvers have therefore found new interest with the development and

popularisation of simplex solvers for SMT [6], a domain in which no error can be tolerated,

although they have often tended to be very slow, due to the over-reliance on rational

arithmetic.

1.1.5 Related Work

An example of a state-of-the-art SMT solver that uses the simplex algorithm with exact

rational arithmetic for solving quantifier-free linear real arithmetic (QF LRA) problems

is Microsoft’s z3 [7]. Another high-performance SMT solver is CVC4 [8], from Stanford

University; while this solver uses exact rational simplex by default, it can be configured

to accelerate the solving of QF LRA conjunctions by initially attempting to solve them

using a floating-point solver, and then using the result to initialise an exact rational

solver—which can often save a significant amount of time.

QSopt-ex [9] is not an SMT solver, but it is notable in that it solves linear programs

exactly by applying a floating-point solver many times with successively increasing pre-

cisions, using exact rational arithmetic only to derive a solution from the resulting basis

and check its correctness. This approach scales better than falling back on a rational

3

solver, because as problems get larger and more complex, the usefulness of the results

found by any given fixed choice of floating-point precision diminishes, meaning that run-

ning time comes to be dominated by the rational solver. Unlike floating-point, rational

arithmetic has a non-constant operation cost that typically grows throughout the course

of the algorithm.

In [10], the QSopt-ex approach to exact LP is made more efficient using iterative

refinement, and given a formal grounding with a proof that the algorithm completes in

oracle-polynomial time under certain conditions. However, these conditions – specifically,

that the “limited precision LP oracle” (floating-point LP solver) must always be able to

“find a solution with residual errors bounded by a fixed constant” – can not easily be

guaranteed in practice, as noted in that paper itself.

Another approach to the exact LP problem is that described in [11] and used in the

software packages Lurupa and VSDP. This approach involves computing rigorous error

bounds on the optimal objective function value. These solvers have the advantage of

accepting interval input data, allowing them to model real-world uncertainty in the input.

However, the principal problem with this approach is that it does not suggest any general,

scalable way of improving a bad solution. It is stated in [11] that “nothing is assumed

about the quality” of the “approximate optimal solution” required in order to derive the

error bounds. However, clearly, the quality of the error bounds will be dependent on the

quality of this optimal solution – otherwise, we could simply use a random guess! Indeed,

the algorithms presented in that paper simply give up (returning infinite bounds) if the

approximate solver fails to provide a usable solution.

1.2 Fundamental Preliminaries

These preliminaries are simple, but fundamental to many parts of this thesis, so they are

introduced here before going any further.

1.2.1 Floating-point arithmetic model

Most modern floating-point systems (notably IEEE 754 and MPFR, but not GMP) are

designed in such a way that for every binary operation y := x1 op x2, the floating point

result y is such that

∀p ∈ {1,−1} : ∃z ∈ Q : y = (1 + z)p(x1 op x2), |z| ⩽ ϵ, (1.2)

and ϵ is the unit roundoff (sometimes called machine epsilon), which is inversely exponen-

tial in the number of bits of precision. The value of p ∈ {1,−1} may be chosen arbitrarily

according to convenience.

In this thesis, I abbreviate this as y := flϵ(x1 op x2) where the subscript ϵ indicates

the unit roundoff, and hence the precision used. However, I extend this notation such that

4

arbitrary linear algebra expressions are permitted within flϵ(·), and it is to be understood

that each scalar operation underlying the expression is to be carried out in that same

precision, in an arbitrary order. Furthermore, where I have a matrix B that is not

directly stored, but whose decomposition is stored, an expression such as b := flϵ(B
−1a) is

to be understood as signifying the computation of b from a using the appropriate solving

procedure(s), carried out entirely in the indicated precision.

1.2.2 Big O notation

In this thesis, I make frequent use of big O notation to express the rate of decay of a

particular value as the unit roundoff, ϵ, goes to zero. That is, when I say that f(ϵ) =

O(g(ϵ)) as ϵ→ 0, I mean that there exist positive real numbers ϵ0 and κ such that

∀ϵ ∈ [0, ϵ0] : |f(ϵ)| ⩽ κg(ϵ). (1.3)

In most cases, g(ϵ) will in fact be either 1, ϵ, or some power of ϵ.

Note that both f and g may have other parameters, such as the problem data, over

which (1.3) can be considered to be universally quantified. Also, equations may be freely

rearranged and big O terms combined, so that, for instance f1(ϵ) + O(g1(ϵ)) = f2(ϵ) +

O(g2(ϵ)) is equivalent to f1(ϵ) − f2(ϵ) = O(g1(ϵ) + g2(ϵ)). Finally, in some cases, if it is

likely that f(ϵ) ≪ g(ϵ) but this does not on its own provide a rigorous bound, I may write

something of the form f(ϵ) ⩽ g(ϵ) +O(h(ϵ)).

1.3 Overall Thesis Summary

This thesis builds upon the QSopt-ex approach, showing how satisfiability can be relaxed

in favor of δ-satisfiability, proving the δ-completeness of the resulting algorithm, introduc-

ing my implementation of these ideas, and demonstrating the utility and effectiveness of

the δ-complete algorithm on real-world problems. Given a small enough δ, my algorithm

is guaranteed to find an exact solution to any linear program, and for larger values of δ,

the running time and solution quality correlate inversely with δ.

To maximise the efficiency of the implementation, the simplex algorithm component

was built on top of an inexact, floating-point solver. Rather than treating this inexact

solver as a black box, and making assumptions about its properties, the precise algorithm

used by the solver is investigated, and its properties are explored. For this purpose, it is

found essential to make use of an inexact algorithm that uses a “partial pivoting” simplex

method, as recommended by Bartels and Golub in 1969–1971 [12, 1]. This enables the

errors produced by the algorithm to be bounded.

Although these bounds are usually not known (and in general are prohibitively ex-

pensive to compute), they are shown to be O(ϵ) for fixed problem data, in terms of the

unit roundoff ϵ. Bland’s rule is also used in order to guarantee termination once these

5

errors are sufficiently small, and there is an iteration limit to prevent looping in case

Bland’s rule fails (a condition that is proven not to affect the correctness or completeness

of the algorithm). (In real-world implementations, Bland’s rule may be replaced by a

more efficient heuristic rule, provided that Bland’s rule or something equivalent is used

as a fallback.)

It is hence shown that for any given linear feasibility problem, there exists some finite

precision and some tolerance value for which the floating-point algorithm finds a basis,

or subset of the columns of the input matrix, that enables an exactly correct solution

(or an exact proof of infeasibility) to be derived. This is extended to all possible input

problems by enclosing the floating-point solver in a loop that tries an increasing sequence

of precisions, and a decreasing sequence of tolerance values.

1.3.1 Scope of Problem

We consider formulas of the form

ϕ = t1(x1, . . . , xn) = 0 ∧ . . . ∧ tm(x1, . . . , xn) = 0 ∧ x1 ⩾ 0 ∧ . . . ∧ xn ⩾ 0, (1.4)

where

ti(x1, . . . , xn) = Ai1x1 + . . .+ Ainxn − bi, 1 ⩽ i ⩽ m, (1.5)

and all constants Aij and bi and variables xj are in Q.

The satisfiability problem for the formula ϕ may be written in standard linear algebra

notation as

∃x ∈ Qn : Ax = b, x ⩾ 0, (1.6)

where A ∈ Qm×n and b ∈ Qm. Here, the comma implies ∧ (and), the operators = and ⩾

are each to be understood as an elementwise conjunction over the elements of their vector

operands, and 0 denotes a zero vector of the required size. The relationship between A, b

and scalars Aij, bi from ϕ should be clear.

I have chosen this problem, rather than the simpler Ax ⩾ b, because it is more

commonly used in the linear programming literature. Note that the simpler problem is

equivalent to Ax−t = b, t ⩾ 0, which can be rewritten as Ax+−Ax−−t = b, x+, x−, t ⩾ 0,

and then, by renaming variables, as (1.6). All of these are considered linear programming

problems, because they are generally solved using linear optimisation.

1.4 Delta-Complete Decision Procedures

We have now established enough context to introduce the concept of a delta-complete

decision procedure, on which my thesis obviously depends a great deal. Here, I give only

the definitions necessary for my analysis. Further definitions and theory are available

in [3] and [4].

6

Definition 1.1. If ϕ is a Boolean formula in which every atomic formula is of one the

forms t = 0 or t ⩾ 0 where t is an arbitrary term, then the δ-weakening of ϕ, denoted

ϕ−δ, is, for any δ > 0, the formula obtained by replacing every atomic formula t = 0 with

|t| ⩽ δ, and every atomic formula t ⩾ 0 with t ⩾ −δ (or, equivalently, t+ δ ⩾ 0).

Clearly, if ϕ is defined as in (1.4), then ϕ−δ can be written as

ϕ−δ = |t1(x1, . . . , xn)| ⩽ δ ∧ . . . ∧ |tm(x1, . . . , xn)| ⩽ δ ∧ x1 ⩾ −δ ∧ . . . ∧ xn ⩾ −δ, (1.7)

and its satisfiability problem can be written in linear algebra notation as

∃x ∈ Qn : |Ax− b| ⩽ δ1m, x ⩾ −δ1n, (1.8)

or, more straightforwardly, but also more verbosely,

∃x ∈ Qn : Ax ⩾ b− δ1m, Ax ⩽ b+ δ1m, x ⩾ −δ1n, (1.9)

where 1σ = [1, . . . , 1]⊤ denotes a vector of ones of size σ.

Definition 1.2. A δ-complete decision procedure for satisfiability over a class of formulas

F is an algorithm that, if provided as input any formula ϕ ∈ F , terminates and outputs

(non-deterministically) exactly one of the following symbols:

1. unsat only if ϕ is unsatisfiable

2. δ-sat only if ϕ−δ (the δ-weakening of ϕ) is satisfiable

A δ-complete decision procedure for satisfiability over (1.4) must therefore be able to

provide either a negative answer to (1.6), or a positive answer to (1.8). Note that this is

non-deterministic, because both conditions can simultaneously be true.

1.4.1 Difference between the Nonlinear and Linear Cases

δ-complete (or delta-complete) decision procedures have also been used for non-linear real

arithmetic problems augmented with arbitrary continuous real functions (such as the sine

function). These approaches tend to involve interval arithmetic. This can handle arbitrary

functions, but often suffers from issues with unchecked growth of the overapproximation

error (which can be avoided in the linear case, as shown in this thesis) [3, 4, 13, 14]. The

linear case also permits methods that are much more efficient than interval arithmetic.

Also note that any complete method is, by definition, trivially delta-complete. In that

sense, delta-completeness of a linear problem is unavoidable when using e.g. a rational

simplex solver (because completeness is then unavoidable). The challenge in the linear

case is to find a method that is delta-complete without being complete, in a way that

provides a meaningful advantage over the complete method.

7

For general non-linear real arithmetic (NRA) problems augmented with arbitrary con-

tinuous real functions (such as the sine function), a complete solver is impossible, because

the result is uncomputable [15, p. 45]. For linear real arithmetic (with no extensions), a

complete solver is trivial (e.g. using rational arithmetic), but can take an unacceptably

long time for extremely large problems. There are of course optimisations that can offer

an improvement over the simplex algorithm with pure rational arithmetic, without sacri-

ficing the exactness of the solution (e.g. SoPlex [16, 17], QSopt ex [9, 18]). However, if a

problem is still too large to solve to completion (for a given application), even with these

optimisations, then it may be helpful to have a delta-complete solver.

1.5 Aim and Objectives

The aim of this work is to devise novel, numerically rigorous methods of solving linear

satisfiability (SMT) and optimisation problems partially, but with delta-completeness guar-

antees.

To that end, the following objectives were identified:

� investigate numerically rigorous techniques for solving linear programming problems

for both SMT and optimisation.

� develop algorithms that relax the completeness of these algorithms in favour of delta-

completeness (for SMT) or some equivalent concept (for optimisation), providing

results that are still useful, but with a time saving when full completeness is not

required.

� implement the developed algorithms in software, and apply them to the many avail-

able linear SMT and optimisation benchmark problems, comparing their perfor-

mance against the performance of the equivalent complete algorithms.

1.6 Thesis Outline

� Chapter 2 presents a version of the full-Newton step algorithm for interior-point lin-

ear optimisation, restricted to solving satisfiability problems, that is delta-complete

for those problems. The proof of delta-completeness of that algorithm is also pre-

sented.

� Chapter 3 presents an in-depth analysis of the guarantees provided by the Bartels–

Golub simplex algorithm, with several important updates relative to Bartels’ own

analysis, concluding with a set of bounds that will be important in Chapter 4.

8

� Chapter 4 presents a version of the simplex algorithm, restricted to solving sat-

isfiability problems, that is delta-complete for those problems. The proof of delta-

completeness of that algorithm, making use of the results of Chapter 3, is also

presented.

� Chapter 5 introduces a new concept of delta-completeness applicable to the general

linear programming problem for optimisation. An algorithm conforming to this

concept is presented, and proven to be delta-complete in accordance with this new

concept.

� Chapter 6 describes the developed software tool dLinear, in which the algorithms

presented in Chapters 4 and 5 are implemented. An experimental implementation

of the algorithm of Chapter 2 (dcipm simple) is also described.

� Chapter 7 demonstrates the performance of dLinear on a wide variety of problems

drawn from the LP and SMT communities. This is compared against that of theorem

provers Z3 and CVC, and exact linear programming solvers SoPlex and QSopt ex.

� Chapter 8 contains concluding remarks and directions for further work.

9

10

Chapter 2

δ-Complete Interior-Point Method

for Satisfiability

This chapter presents a version of the full-Newton step algorithm for interior-point linear

optimisation, restricted to solving satisfiability problems, that is delta-complete for those

problems. A proof of delta-completeness of the algorithm is also presented.

Many useful results on interior-point methods from [2] have been collected into Ap-

pendix A. In this chapter, when a result from [2] is required, the text will refer primarily

to the appropriate parts of Appendix A. Citations for the corresponding parts of [2] can

be found in Appendix A.

2.1 Interior-Point System

First we must embed (1.6) into an equisatisfiable inequality-form problem. This can be

achieved by rewriting Ax = b as Ax ⩾ b, Ax ⩽ b. Note that the δ-weakening of this form,

using the original definition, is equivalent to (1.8), which is the δ-weakening of (1.6). This

is important because it means that a δ-complete algorithm for the new problem will also

be a δ-complete algorithm for (1.6). By redefining A and b, we can then rewrite the

problem as:

∃x ∈ Qn : Ax ⩾ b, x ⩾ 0, (2.1)

and the δ-weakening as:

∃x ∈ Qn : Ax ⩾ b− δ1, x ⩾ −δ1. (2.2)

Next, we reformulate this as a linear optimisation problem. As we have no objective

function to optimise, but the method nonetheless calls for one, we simply use the constant

function 0⊤x. This gives:

min
{
0⊤x : Ax ⩾ b, x ⩾ 0

}
. (2.3)

That is, we want to find the minimum value (and, by convention, the corresponding

11

argument x) contained in the set consisting of 0⊤x for every x such that Ax ⩾ b and x ⩾ 0.

Clearly, unless the conditions Ax ⩾ b, x ⩾ 0 are unsatisfiable (in which case the set is

empty), this set is equal to {0}, and the minimum value is 0. However, the problem (2.3),

when given to an interior-point algorithm (which is iterative and convergent), causes the

iterates produced by the solver to converge in a way that is useful to us.

Every linear optimisation (LO) problem has a corresponding “dual” problem that is

also an LO problem. The dual of (2.3) is:

max
{
b⊤y : A⊤y ⩽ 0, y ⩾ 0

}
. (2.4)

In this context, (2.3) is referred to as the primal problem. By Lemma R-I.1 (see Ap-

pendix A.1), we have b⊤y ⩽ 0⊤x for all primal-feasible x and dual-feasible y (where

“feasible” means that it satisfies the relevant set-membership conditions). In other words,

b⊤y ⩽ 0 for all dual-feasible y. Furthermore, by Theorem R-I.26 (Appendix A.1), (2.4) has

a finite solution y∗ if and only if (2.3) has a finite solution x∗, in which case b⊤y∗ = 0⊤x∗.

That is, for any finite solution y∗ of (2.4), b⊤y∗ = 0.

In order to use (2.3) with an interior-point algorithm, we must first transform it into

a form that has the following properties:

1. It must be feasible (i.e. the set that we are optimising over must be non-empty),

even if (2.3) is not.

2. Infeasibility of (2.3) or (2.4) must be indicated in some way by the result.

3. It must be equal to its own dual problem (“self-dual”). (This is not a hard require-

ment, but it simplifies the analysis, and does not sacrifice generality.)

(a) In order for the problem to be self-dual, its matrix must be skew-symmetric.

This is also a useful property in and of itself.

4. It must satisfy the interior-point condition (IPC), which stipulates that there must

be some feasible vector that strictly satisfies all inequalities in the feasibility condi-

tions.

The optimality conditions for (2.3) and (2.4) are (see (R-2.5) in Appendix A.2):

Ax ⩾ b, x ⩾ 0,

−A⊤y ⩾ 0, y ⩾ 0,

b⊤y ⩾ 0.

(2.5)

The condition b⊤y ⩾ 0, when combined with the condition b⊤y ⩽ 0, which, as we have

already noted, is satisfied by any dual-feasible y, gives us the dual optimality condition

b⊤y = 0. Meanwhile, clearly, any primal-feasible x is also primal-optimal.

12

As in Appendix A.3 (and [2, p. 20]), we then embed this into the homogeneous skew-

symmetric inequality system, which is equisatisfiable:

M̄z̄ =

 0m×m A −b
−A⊤ 0n×n 0n

b⊤ 0⊤n 0

 y

x

κ

 ⩾

 0m

0n

0

, x ⩾ 0, y ⩾ 0, κ > 0. (2.6)

Theorem 2.1. Systems (2.5) and (2.6) are equisatisfiable.

Proof. Apply Theorem R-I.5 (Appendix A.4). Refer to (R-2.5), (R-2.7) and (R-2.8) (Ap-

pendices A.2 and A.3), and consider the case where c = 0. Note that (2.6) incorporates

κ > 0.

We then embed (2.6) into the IPC (interior-point condition) system (the same as

(R-2.16) in Appendix A.6):

min
{
q⊤z :Mz ⩾ −q, z ⩾ 0

}
, (2.7)

where

M =

[
M̄ r

−r⊤ 0

]
, z =

[
z̄

ϑ

]
, q =

[
0n−1

n

]
, r = e− M̄e, (2.8)

where M ∈ Qn×n, etc.

Theorem 2.2. From any optimal solution to (2.7) such that κ > 0, we can derive a

solution to (2.6), and vice-versa.

Proof. Apply Theorem R-I.5 (Appendix A.4).

Note that e is feasible for (2.7), with slack Me+ q = e (using the identity e⊤M̄e = 0,

which is a consequence of the skew-symmetry of M̄). This satisfies the most important

precondition of the interior-point algorithm (existence of a positive feasible vector with

positive slack; known as the interior-point condition or IPC).

2.1.1 The unsatisfiable case

Definition 2.3. A strictly complementary solution z to (2.7) is one in which Zs(z) = 0

(or, equivalently, zs(z) = 0) and z + s(z) > 0, where Z = diag(z) and s(z) =Mz + q.

Note that the condition Zs(z) = 0 where Z = diag(z) can be restated as zs(z) = 0, if

zs(z) denotes the Hadamard or elementwise product of the column vectors z and s(z).

Lemma 2.4. Any optimal solution to (2.7) is complementary – i.e. it has the “comple-

mentarity” or complementary slackness property zs(z) = 0 where s(z) =Mz + q.

Proof. As z = 0 is feasible for (2.7) and q ⩾ 0, we know that the optimal value is 0, so

that any optimal solution will have q⊤z = 0. From equation (R-2.23) (Appendix A.5), we

13

have q⊤z = z⊤s(z). Now, from (2.7) we clearly have z ⩾ 0 and s(z) ⩾ 0. So z⊤s(z) = 0

implies zs(z) = 0.

Theorem 2.5. The problem (2.7) has a strictly complementary optimal solution.

Proof. Apply Theorem R-I.20 (Appendix A.7).

Definition 2.6 (see Appendix A.7). The optimal partition of (2.7) is defined as

B := {i : ∃z : zi > 0, and z is optimal for (2.7)},

N := {i : ∃z : si(z) > 0, and z is optimal for (2.7)}.

Theorem 2.7. If (B,N) is the optimal partition of (2.7), then for every index i ∈
1, . . . , n, either i ∈ B and i ̸∈ N , or i ∈ N and i ̸∈ B – that is, (B,N) is a partition of

the index set of a solution vector z to (2.7).

Proof. This follows from combining Theorem 2.5 with Corollary R-I.11 (Appendix A.7)

(which establishes that B and N are disjoint).

Lemma 2.8. For every strictly complementary optimal solution z of (2.7),

zi > 0, si(z) = 0, where i ∈ B, and

zi = 0, si(z) > 0, where i ∈ N .

where (B,N) is the optimal partition of (2.7).

Proof. Optimality of the solution requires that either zi = 0 or si(z) = 0 for all i in the

index set of z and s(z), so that we can have z⊤s(z) = 0 (along with feasibility). Strict

complementarity then requires, for each i, either zi > 0 or si(z) > 0, so that we can have

zi + si(z) > 0. We must therefore have zi > 0 if i ∈ B and si(z) > 0 if i ∈ N , as the

opposite would contradict Definition 2.6. Theorem 2.7 ensures that this works correctly

for all i.

Theorem 2.9. κ is zero in the optimal partition of (2.7) if and only if (2.6) is unsatis-

fiable.

Proof. By Lemma R-I.10 (Appendix A.6), if κ is zero in the optimal partition, then it is

zero in every optimal solution of (2.7). However, if (2.6) is satisfiable, then by Theorem 2.2

there is an optimal solution to (2.7) such that κ > 0.

For the converse, observe that if κ > 0 in the optimal partition, then by Theorems 2.5

and 2.2, (2.6) is satisfiable. Therefore, by modus tollens, if (2.6) is unsatisfiable, κ is zero

in the optimal partition.

14

2.2 Full-Newton Step Algorithm

System (2.7) can be partially solved using the “full-Newton step algorithm” (Algorithm A.1

in Appendix A.8). This algorithm terminates after at most ⌈θ−1 log(nϵ−1)⌉ iterations,

where θ is the barrier update parameter 1 and ϵ is the accuracy parameter (Lemma R-

I.36, Appendix A.9). The returned partial solution satisfies z > 0 (Theorem R-I.16,

Appendix A.10), and is feasible for (2.7), but clearly not optimal (because ϑ > 0).

Algorithm 2.1 on p. 17 is essentially the same algorithm, but with the addition of lines

2–3 and 10–15.

The assignment of the slack vector s, which is left implicit in Algorithm A.1, is per-

formed explicitly on lines 4 and 9 of Algorithm 2.1. Similarly, the computation of the

Newton direction ∆z is now performed explicitly on line 7 (note that Z = diag(z) and

S = diag(s)). These are the same computations as those implied in Algorithm A.1.

And the input matrix M is analogous, and similar in form, to that used implicitly in

Algorithm A.1, as is the output primal solution z.

The only significant differences, then, are in the input and output precision δ, the

output result symbol (and the manner in which it and the output δ are determined),

the specific form of the parameters ϵ, θ (which in Algorithm A.1 are only given bounds),

and the additional termination condition on line 10. Or, in summary, the precision δ,

lines 2–3, and lines 10–15.

The need to input a precision δ is obvious: this is how the algorithm knows when

to terminate early on lines 10–11, giving a result of δ-sat, as proven to be correct in

Theorem 2.10. The particular choice of the ϵ parameter on line 2 is made in order to

ensure that the main loop will not otherwise terminate until the iterates are such that

the optimal partition can be found, meaning that the solution can be decided exactly.

This is implemented in lines 12–15, and made use of in Theorem 2.10. Finally, the choice

of θ on line 3 enables us to put a bound on the number of iterations required, as in

Theorem R-I.37.

2.3 Proof of δ-Completeness

Theorem 2.10. Algorithm 2.1 satisfies Definition 1.2: it is a δ-complete decision proce-

dure for satisfiability over (1.4).

Proof. First, we note that the algorithm terminates. This is because at each iteration of

the loop starting on line 5, µ is decreased by a factor of (1 − θ), which will eventually

lead to the condition nµ < ϵ. This means that one of the return statements on lines 11,

13 and 15 will eventually execute.

For any partial solution z = (x, y, κ, ϑ) returned by Algorithm 2.1 (p. 17), including,

in particular, that returned on line 11, the strict feasibility of z for (2.7) implies (see also

1This is not the same as ϑ, which is the so-called normalising variable of system (2.7).

15

system (R-4.16) (Appendix A.14)):

A
(x
κ

)
⩾ b− ϑ

κ
(b̄) ⩾ b− ϑ

κ

∥∥b̄∥∥∞e, x

κ
⩾ 0, (2.9)

where b̄ = b+ e−Ae (and obviously κ > 0). Using (2.2), we see that the solution proves

that the problem is δ-satisfiable for δ = ϑ
κ

∥∥b̄∥∥∞. As ϑ
κ

∥∥b̄∥∥∞ is less than or equal to the

input δ (due to line 10), we indeed have a valid assertion of δ-sat on line 11.

Otherwise, if line 12 is reached, we know that z is an ϵ-solution with ϵ as given on

line 2. According to Theorem R-I.42 (Appendix A.11), the condition number σSP of M

satisfies 1/(
∏n

j=1∥Mj∥2) ⩽ σSP . This means that we have ϵ ⩽ σ2
SP/(4n). As part of

the proof of Theorem R-I.47 (Appendix A.12), it is shown that an ϵ-solution with this ϵ

(or smaller) is sufficient to ensure complete separation between small variables and large

variables, meaning that the condition on line 12 is sufficient to decide the satisfiability

problem. This provides either a valid assertion of unsat, or a valid assertion of δ-sat with

δ = 0, which is equivalent to the statement that the original problem is satisfiable.

Note that if (2.1) is satisfiable, then limµ↓0
ϑ
κ
= 0 (Theorem R-I.58, Appendix A.13).

This makes it likely that the algorithm will terminate on line 11 where possible.

If δ-satisfiability (or satisfiability) is concluded, then the result can be trivially verified

by computing A(x/κ). If unsatisfiability (or satisfiability) is concluded, then, using the

returned z = (x, y, κ, ϑ) > 0, we can verify the result by checking that z is primal feasible

for (2.7), that max(zs)/min(zs) ⩽ 4, that ϑ ⩽ 1/(4n2(
∏n

j=1∥Mj∥2)
2) (note: n2 here

rather than n), and that we have the appropriate relationship between κ and sκ where

sκ = sn−1 and s :=Mz + q with q defined as in (2.8).

16

Algorithm 2.1: δ-complete full-Newton step algorithm (derived from Algo-
rithm A.1 (Appendix A.8)).

input : Problem matrix M ∈ Qn×n as in (2.8) and (2.6), decomposable into
(A, b, r);
Target precision δ ∈ Q.

output: Result symbol ∈ {δ-sat, unsat};
Primal solution z ∈ Qn, decomposable into (x, y, κ, ϑ);

Homogenising variable κ ∈ Q;
Normalising variable ϑ ∈ Q;

Actual precision δ ∈ Q (where applicable).
1 begin
2 ϵ := 1/(4n(

∏n
j=1∥Mj∥2)

2) where Mj is column j of M ; // Accuracy parameter

ϵ

3 θ := 1/
√

(2n) ; // Barrier update parameter θ

4 z := e; s := e; µ := 1 ; // Initial point: the µ-center for µ = 1

5 while nµ ⩾ ϵ do
6 µ := (1− θ)µ ; // Update barrier parameter µ using θ

7 ∆z := (S + ZM)−1(µe− zs) ; // Compute Newton direction

8 z := z +∆z ; // Perform full Newton step

9 s := s+M∆z;

10 if ϑ
κ

∥∥b̄∥∥∞ ⩽ δ where b̄ = b+ e− Ae then
11 return δ-sat(z, δ := ϑ

κ

∥∥b̄∥∥∞) ; // Early termination - δ-sat proven

12 if κ > sκ then
13 return δ-sat(z, δ := 0) ; // Satisfiability proven rigorously

14 else
15 return unsat(z) ; // Unsatisfiability proven rigorously

17

18

Chapter 3

The Bartels–Golub Simplex

Algorithm

Critical to the δ-complete simplex algorithm in Chapter 4 is a floating-point version of

the simplex algorithm with bounded errors. This property of having bounded errors is

sometimes called “stability”. A naive floating-point implementation of simplex has un-

bounded errors, because of potential division by arbitrarily small values during Gaussian

elimination.

The Bartels–Golub algorithm [12, 1], even after almost 50 years, is still regarded as

an important milestone in the development of simplex method implementations. One

of its successors, the Forrest–Tomlin algorithm [19], is widely used in modern simplex

implementations. However, it has been noted that Forrest–Tomlin lacks the stability of

Bartels–Golub. In particular, it omits the pivoting step which is the key to the Bartels–

Golub algorithm’s stability [20]. This means, simply put, that there is no a-priori bound

on the relative error of the Forrest–Tomlin algorithm applied to an arbitrary LP. By con-

trast, Bartels–Golub provides this a-priori bound. Other authors have suggested improve-

ments to Bartels–Golub that do not sacrifice this property. However, the Bartels–Golub

algorithm itself remains a key reference point for stable simplex implementations.

An error analysis of the Bartels–Golub algorithm was published by Bartels [1]. Un-

fortunately, there are a number of issues with that paper that impede comprehension

and progress. For one thing, because of its age, the error analysis contains complications

that were necessitated by obsolete hardware, and fails to make use of important results

and conventions that have simplified the field of error analysis since its publication. For

another, it appears to contain a number of actual errors, and at least one unnecessarily

complex bound, even taking into account the conventions of its day.

This thesis is not the right place for a full rewrite of Bartels’ analysis. However, in

this chapter, I provide an overview of the changes to [1] that I believe are necessary (or

desirable), including the key results that are used in this thesis (given as big-O bounds).

In this chapter, I make frequent references to specific equations in [1]. To avoid

excessive clutter, I do not explicitly reference [1] each time. Instead, I change the reference

19

(X.XX) from [1] by prefixing with B-, giving (B-X.XX). For example, (5.14) from [1]

becomes (B-5.14). This makes them easy to distinguish from equation references internal

to this thesis, which are written simply as, for instance, (3.10).

3.1 Introduction to the Bartels–Golub Algorithm

The Bartels–Golub algorithm is an algorithm for solving linear programming problems in

O(n2) time with bounded error. As a simplex-based method, it is based on performing

repeated pivots (changes of basis) until a basis is found in which all basic (non-derived)

variables may be set to their bounds to yield an optimal solution. This is possible because

the solution to an LP is always at a corner point; selecting variables to join the basis is

akin to selecting a set of planes from the set comprising a polyhedron (such that the

intersection of all selected planes is a corner point of the polyhedron).

This can seem, intuitively, like a trivial problem (and an exact O(n3) implementation

is indeed trivial), except that problems typically have thousands if not millions of dimen-

sions, making the performance of an exact O(n3) algorithm unacceptable. The wide range

of applications, and pivotal role that this algorithm can play (no pun intended), justify

intensive study of techniques for its optimisation.

Solving in O(n2) requires, first of all, for the current set of variable assignments to

be stored and updated implicitly, by storing and updating a triangular decomposition of

the basis matrix that can be used to derive the non-basic variables (and explicitly storing

the values of basic variables only). Secondly, for O(n2) performance, the basis matrix

decomposition must be updated by minimal modifications to its predecessor (from prior

to the pivot). And of course O(n2) performance is meaningless if arithmetic operations

(normally considered to be constant-time) become unacceptably slow, so floating-point

(inexact) arithmetic must be used. If this is not done carefully, it leads to the rapid

accumulation of errors in the basis matrix representation, which may cause the algorithm

to fail to identify a correct basis. The Bartels–Golub method mitigates this problem by

putting strict bounds on the accumulation of error at each pivot (but does not, in itself,

guarantee finding a correct basis).

In Richard Bartels’ 1971 paper [1], which provides the main source of detailed infor-

mation about the original Bartels–Golub method, it is called the Hessenberg-LU Imple-

mentation of the Simplex Method. This is because a key feature of this method is that

the triangular (“LU”) decomposition of the basis matrix is updated via the temporary

transformation of the upper-triangular matrix U to a Hessenberg matrix (that is to say,

a matrix that is almost upper-triangular, with zeros below the first subdiagonal (rather

than the main diagonal)).

More specifically, [1, p. 421] uses

ΠB = LU (B-5.1)

20

as the decomposition of the basis matrix B, where L is lower-triangular, U is upper-

triangular, and Π is a permutation matrix (enabling the rows of B to be rearranged). It

is also explained there that a linear system of the form Bv = q may be solved (for v) via

Lt = Πq and Uv = t (using trivial substitution due to the triangular structures of L and

U).

On [1, p. 416], an algorithm, (B-2.5), is given for performing a simplex pivot. It is clear

that in this algorithm, all of the computationally intensive steps are of the form Bv = q

or B⊤v = q (which is also easy to solve given a triangular decomposition). This algorithm

is given as the key component of a solution to the following problem ([1, p. 415]):

maximize the objective function: z = c⊤x,

subject to the constraints : Ax = b and x ⩾ 0.
(B-2.1)

Note that the constraints are the same as the conditions of my overall satisfiability prob-

lem (1.6) in Chapter 1. As noted there, conditions of the form Ax ⩾ b may easily be

converted into this form, and even a problem (such as (1.6)) with no objective function

must be solved using linear optimisation – essentially, you get the objective function “for

free” (more accurately, satisfying the constraints requires the introduction of a temporary

objective function).

3.1.1 Further concepts and notation for the Bartels–Golub al-

gorithm

All of the equations in this subsection are copied from [1].

This (from [1, p. 421]) is simply a decomposition of the basis matrix B into its columns,

each of which is a column of the original constraint matrix A from (B-2.1). Notice that

given A, the index vector ν ∈ Nm (using the Greek letter nu) completely specifies the

basis.

B = [Aν1 , . . . , Aνm]. (B-5.4)

An odd feature of [1] is that ν, which maps from column indices of B onto column indices

of A, appears to be local in scope: when it says on p. 422 that B(2) is to be formed from B(1)

in the same manner in which B(1) was formed from B, this implies that (B-5.4) is to be

applied to B(1) as it previously was to B, effectively redefining ν. Any other interpretation

results in difficulties, because if ν is invariant, we must then convert between the “original

basis” indices used to index ν and the “current basis” indices used to index U (or U (1),

etc., in subsequent pivots).

This (also from [1, p. 421]) shows how the second basis matrix, after the first pivot,

is simply the result of removing column νr1 of A from column r1 of B, and appending

column νs1 of A.

B(1) = [Aν1 , . . . , Aνr1−1 , Aνr1+1 , . . . , Aνm , As1]. (B-5.6)

21

A superscript with parentheses is used throughout [1] to indicate the pivot number (except

on r and s, where plain subscripts are used).

The following equation (from [1, p. 422]) shows the result of applying the above “pivot”

operation via a modification to the matrix U from the triangular decomposition ΠB = LU

(as in (B-5.1)), yielding a new triangular-Hessenberg decomposition ΠB(1) = LH(1).

L−1ΠB(1) = [U1, . . . , Ur1−1, Ur1+1, . . . , Um, L
−1ΠAs1]

= H(1).
(B-5.7)

Notice that the nature of matrix multiplication (along with the fact that Π simply per-

mutes the rows of B) means that the rearrangement of the columns of B can be expressed

simply by the same rearrangement of the columns of U . The appended column is also

very straightforward, because we can use the fact that a left-applied matrix (here, L−1Π)

modifies the columns of its matrix operand independently. The result is assigned the

symbol H(1), because this is the Hessenberg matrix resulting from the first pivot.

The following equation (also from [1, p. 422]) expresses the re-triangularisation of the

upper Hessenberg matrix H(1) to give a new upper-triangular matrix U (1). The Π
(1)
j are

trivial permutation matrices, while the Γ
(1)
j are trivial lower-triangular matrices. The

index j ranges from r1 to m − 1 because r1 is the column of B that was removed, and

m − 1 is the penultimate column of B (column m needs no adjustment because it is

entirely in the upper triangular part of the matrix).

U (1) = Γ
(1)
m−1Π

(1)
m−1 . . .Γ

(1)
r1
Π(1)

r1
H(1). (B-5.9)

This (also from [1, p. 422]) simply gives the name C(1) to the inverse of the operation

applied above to H(1) to give U (1). In other words, C(1)U (1) = H(1). However, it also gen-

eralises this to pivot i. Note that the permutation matrices Π
(i)
j are self-inverse (because

they only perform a single swap).

C(i) = Π(i)
ri
Γ(i)−1

ri
. . .Π

(i)
m−1Γ

(i)−1

m−1 . (B-5.12)

It is not explicitly stated in [1], but once we have the decomposition ΠB(1) = LC(1)U (1),

we can then pivot B(1) via similar manipulation of U (1) to that shown in (B-5.7), yielding

ΠB(2) = LC(1)H(2) (note that C(1) remains intact, alongside L). We may then again

apply an operation similar to (B-5.9), yielding C(2)U (2) = H(2), as above. Indeed, this

can be generalised to give C(k)U (k) = H(k) for any pivot k.

Ultimately, at iteration k, we will have ΠB(k) = LC(1)C(2) . . . C(k)U (k), which we may

abbreviate to ΠB(k) = LG(k)U (k), using:

G(k) = C(1) . . . C(k). (B-5.13)

22

3.1.2 The basics of the error analysis

At this point, we move into chapter 6 of [1]. This chapter is concerned with error analysis,

so error terms, prefixed by δ, are now introduced into the equations from chapter 5 of [1]

(and our Section 3.1.1). Consideration of the initial row permutation matrix Π is also

omitted (as it has no bearing on the analysis), meaning that our ΠB(k) = LG(k)U (k)

becomes:

B(k) + δB(k) = LG(k)U (k), (B-6.3)

which defines δB(k) simply as the difference between the value of B(k) and the true value

of LG(k)U (k), as if computed exactly but using the inexact stored values of L, G(k) and

U (k). (Note that it would not make sense to consider error introduced by multiplying

these three matrices, as that computation is never actually performed.)

Conceptually, δB(k) is the answer to the question “even if we were to solve exactly

using L, G(k) and U (k), it would not be the same as solving exactly using B(k) – so how

can we model the difference?”. The answer is that it would indeed be the same as solving

exactly using B(k) + δB(k).

Solving B(k)v = q for v (or, more accurately, solving (B(k) + δB(k))v = q for v) is

performed via each component of the decomposition of B(k)+ δB(k) given above – first L,

then G(k), then U (k), each introducing a new error term, as made explicit in the following

three equations:

(L+ δL)t = q, (B-6.4)

(G(k) + δG(k))w = t, (B-6.5)

(U (k) + δU (k))v = w. (B-6.6)

Substitution and expansion of (B-6.4), (B-6.5) and (B-6.6), followed by substitution

of (B-6.3) to eliminate the term LG(k)U (k), and then collection of all matrix terms apart

from B(k) into a single combined error term E (k), yields:

(B(k) + E (k))v = q, (B-6.7)

where:

E (k) = δB(k) + LG(k)δU (k) + LδG(k)U (k) + δLG(k)U (k) + LδG(k)δU (k)

+ δLG(k)δU (k) + δLδG(k)U (k) + δLδG(k)δU (k).
(B-6.8)

3.1.3 Error analysis of the retriangularisation factors

Solving (G(k)+δG(k))w = t is not done in a single step, because G(k) is not stored directly

– in fact, not even the C(1) . . . C(k) of which G(k) is composed are stored directly – instead,

we must look at both (B-5.13) and (B-5.12) to find the lower-triangular factors Γ
(i)−1

j , and

permutation matrices Π
(i)
j , which are stored and used directly.

23

In [1], it is shown that δG(k) may be modeled as:

δG(k) = C̃(1) . . . C̃(k) − C(1) . . . C(k), (B-6.27)

(noting that C(1) . . . C(k) is simply the expansion of G(k)), where

C̃(i) = Π(i)
ri
[Γ(i)−1

ri
− δΓ(i)−1

ri
] . . .Π

(i)
m−1[Γ

(i)−1

m−1 + δΓ
(i)−1

m−1]. (B-6.28)

Note that there is no need to introduce error terms for the Π
(i)
j factors, as they are

permutation matrices – in other words, they are themselves simply permutations of the

identity matrix, and as such, solving with them will be exact. As such, all of the error

implicit in δG(k) comes from solving with the Γ
(i)−1

j factors. Also note that the alternation

of − and + operators in (B-6.28) may safely be ignored: the error terms are used for their

magnitude only.

It is then shown that the permutation factors, being self-inverse, can be rearranged

in a useful way, giving new expansions for C(i) and C̃(i), as follows (compare (B-5.12)

and (B-6.28)):

C(i) = [Π(i)
ri
. . .Π

(i)
m−1]Ω

(i)
ri
. . .Ω

(i)
m−1 (B-6.34)

C̃(i) = [Π(i)
ri
. . .Π

(i)
m−1][Ω

(i)
ri

+ δΩ(i)
ri
] . . . [Ω

(i)
m−1 + δΩ

(i)
m−1] (B-6.35)

where

Ω
(i)
m−1 = Γ

(i)−1

m−1

Ω
(i)
m−2 = Π

(i)
m−1Γ

(i)−1

m−2Π
(i)
m−1

...
...

Ω(i)
ri

= Π
(i)
m−1Π

(i)
m−2 . . .Π

(i)
ri+1Γ

(i)−1

ri
Π

(i)
ri+1 . . .Π

(i)
m−1

(B-6.36)

“and similarly for Ω
(i)
j + δΩ

(i)
j (j = ri, . . . ,m− 1)”

(this is not explicitly shown in [1] – instead, the reader is left to imagine a version

of (B-6.36) with (Γ
(i)−1

ri + δΓ
(i)−1

ri) in place of Γ
(i)−1

ri , etc., and also Ω
(i)
ri + δΩ

(i)
ri in place

of Ω
(i)
ri , etc., but with the Π

(i)
j factors of course unchanged).

This rearrangement of the permutation factors is useful, because each of the Ω
(i)
j (and,

by extension, Ω
(i)
j + δΩ

(i)
j) factors is lower triangular, meaning that their product is also

lower triangular. This means that the expansions given by (B-6.34) and (B-6.35) consist

of a single permutation matrix followed by a single lower triangular matrix.

24

3.1.4 Key elements in the error analysis of the basis decompo-

sition

Each matrix C(i)−1
, introduced (implicitly) by (B-5.12) (which gives the inverse, C(i)),

whose purpose is to retriangularise the post-pivot upper Hessenberg matrix H(i) (yielding

U (i)), is composed of a series of elementary permutation (optional row swap) and lower-

triangular (elimination) matrices that descend from the lowest element in the pivot column

(column ri) of H(i), eliminating each subdiagonal element, proceeding downwards and

rightwards, until the whole matrix is upper triangular.

One of the implications of this is that each elimination (and permutation) only affects

columns to the right of (and including) the column of each respective subdiagonal ele-

ment to be eliminated. Since the eliminations are performed sequentially downwards and

rightwards, the first elimination applies to all columns from the pivot column onwards,

the second applies to all columns from the next column onwards, and so on. The final

elimination applies to the last two columns, since the final column needs no elimination

of its own.

For algorithm comprehension, C(i)−1
is all that is required here. However, for error

analysis, we must restrict C(i)−1
to perform only the operations necessary for each column.

The result of these restrictions are given (in inverse form, like C(i) – and for pivot number

i = k + 1) by:

Φ
(k+1)
j = [Γ

(k+1)
j Π

(k+1)
j . . .Γ(k+1)

rk
Π(k+1)

rk
]−1 for j = rk, . . . ,m− 1;

Φ(k+1)
m = Φ

(k+1)
m−1 .

(B-6.74)

The lower subscript j indicates the column of H(k+1) to which Φ
(k+1)−1

j performs the same

operation as C(k+1)−1
. Note that in fact Φ

(k+1)
m = Φ

(k+1)
m−1 = C(k+1), since the final two

columns of H(k+1) require all eliminations to be applied.

Given (B-6.74), and the knowledge that C(k+1) does not touch columns 1, . . . , rk−1 of

H(k+1) (see explanation above), we can model the error in the derivation of each column

of U (k+1) from H(k+1) using:

U
(k+1)
i = H

(k+1)
i for i = 1, . . . , rk − 1, (B-6.71)

and:

H
(k+1)
j = [Φ

(k+1)
j + δΦ

(k+1)
j]U

(k+1)
j for j = rk, . . . ,m. (B-6.75)

And then a matrix ψ(k+1) may be introduced, with columns obeying

ψ
(k+1)
1 = . . . = ψ

(k+1)
rk−1 = 0, (B-6.77)

ψ
(k+1)
j = δΦ

(k+1)
j U

(k+1)
j , for j ⩾ rk. (B-6.78)

Since Φ
(k+1)
j U

(k+1)
j = Φ

(k+1)
m U

(k+1)
j for all j (noting that Φ

(k+1)
m = C(k+1)), we may then

25

rewrite (B-6.71) and (B-6.75) as

H(k+1) = Φ(k+1)
m U (k+1) + ψ(k+1). (B-6.76)

3.2 Off-By-One Error in Bartels’ Error Analysis [1]

I feel that it is important to draw attention to a simple off-by-one error in Bartels’ error

analysis. This does not significantly affect the correctness of his analysis, nor mine. I

have chosen to go into so much detail here mainly because failing to do so could impede

comprehension. And I feel that it is fair to do so, because either I am correct, or else

there is a flaw in my own comprehension of Bartels’ analysis, which is something that

would be important to flag up for future researchers’ attention.

In the inductive case of the bounding of δB(k) (note that Bartels uses δ as a symbol

prefix, just as I use λ in this thesis; hence, δB is to be read as one symbol), there appears

to be a mistake in the use of indices. This can easily be seen by a comparison of the first

(partial) sentence on p. 422 of [1]:

let B(1) be obtained from B by dropping the r1-th column, shifting all sub-

sequent columns one position to the left, and appending As1 on the right.

([1], p. 422)

with the first sentence on p. 430:

LetB(k+1) be formed by dropping columnB
(k)
rk , shifting the subsequent columns

of B(k) left one place, and appending column Ask . ([1], p. 430)

In the base case, we have k = 0. Plugging k = 0 into the above quotation from p. 430, we

see that B(1) is formed from B(0), just as on p. 422. (B from p. 422 clearly corresponds

to B(0) from p. 430.) However, the leaving and entering column indices are then r0 and

s0, respectively, while on p. 422, they are r1 and s1, respectively.

Since r0 and s0 are never explicitly mentioned in [1], while r1 and s1 are mentioned

in many places (for instance, in (B-5.14)), and the use of rk and sk in the base case of

k = 0 causes various other contradictions throughout the proof, it seems likely that these

should instead be rk+1 and sk+1. In fact, it is hard to make sense of the analysis any other

way.

For instance,

C(i) = Π(i)
ri
Γ(i)−1

ri
. . .Π

(i)
m−1Γ

(i)−1

m−1 , (B-5.12)

([1], p. 422)

so that

C(k+1) = Π(k+1)
rk+1

Γ(k+1)−1

rk+1
. . .Π

(k+1)
m−1 Γ

(k+1)−1

m−1 . (3.1)

26

However,

Φ
(k+1)
j = [Γ

(k+1)
j Π

(k+1)
j . . .Γ(k+1)

rk
Π(k+1)

rk
]−1 for j = rk, . . . ,m− 1,

Φ(k+1)
m = Φ

(k+1)
m−1 ,

(B-6.74)

([1], p. 430)

and letting j = m − 1, and distributing the inversion across the matrix factors of

Φ
(k+1)
m−1 gives

Φ(k+1)
m = Φ

(k+1)
m−1 = Π(k+1)

rk
Γ(k+1)−1

rk
. . .Π

(k+1)
m−1 Γ

(k+1)−1

m−1 , (3.2)

(the Π(·)
. factors being elementary permutation matrices, which are symmetric and or-

thogonal, and therefore self-inverse). Note that the right-hand side of (3.2) would be the

same as that of (3.1), except for the fact that rk+1 is replaced by rk in the subscript of

the leftmost factors. Which means that, according to (B-5.12) and (B-6.74),

Φ(k+1)
m ̸≡ C(k+1). (3.3)

However, this leads to an apparent contradiction. Taking the following equation:

B(k+1) +∆B(k+1) = LG(k)H(k+1)

= LG(k)[Φ(k+1)
m U (k+1) + ψ(k+1)]

= LG(k+1)U (k+1) + LG(k)ψ(k+1),

(B-6.79)

([1], p. 431)

and subtracting LG(k)ψ(k+1) gives

LG(k)Φ(k+1)
m U (k+1) = LG(k+1)U (k+1). (3.4)

But we are also given

G(k+1) = G(k)C(k+1), (B-6.70)

([1], p. 430)

and substituting this into (3.4) gives

LG(k)Φ(k+1)
m U (k+1) = LG(k)C(k+1)U (k+1), (3.5)

which can not be guaranteed in general unless Φ
(k+1)
m ≡ C(k+1), contradicting (3.3).

27

3.3 Updates to Bartels’ Floating-Point Arithmetic

Model

In Section 4 of [1], Bartels bounds the errors in atomic floating-point computations. There

are three things about this analysis that can be updated:

1. There is no need for separate error factors for the terms in an addition or subtraction,

because all modern floating-point systems use a guard digit.

2. Each error factor in every atomic operation may optionally be inverted. This can

simplify certain parts of the analysis.

3. Modern practice avoids the use of mixed-precision operations (calculations in one

precision followed by rounding to another, say)—at least, on a conceptual level. A

single unit roundoff value is therefore sufficient, except where my algorithm explicitly

changes the precision.

From these considerations, we arrive at the arithmetic model in Section 1.2.1.

3.4 Updated Analysis for Triangular Systems

For the errors arising from the process of triangular substitution, as well as the errors

contained in the triangular factors themselves at the beginning of the first iteration,

Bartels cites a 1967 paper by Bruce A. Chartres and James C. Geuder. This analysis may

be entirely replaced using modern sources; for instance, from [21, pp. 106–107]:

(L+ δL)t = q, |δL| ⩽ O(ϵ)|L|, (3.6)

(U (k) + δU (k))v = w, |δU (k)| ⩽ O(ϵ)|U (k)|. (3.7)

And for the error in the triangular factors at the beginning of the first iteration, [22,

p. 164] provides:

B(0) + δB(0) = LU (0), |δB(0)| ⩽ O(ϵ)|L||U (0)|. (3.8)

As L does not change during the algorithm, its norm may be treated, for my purposes,

as an arbitrary but fixed constant – that is, ∥L∥1 = O(1). In any case, if partial pivoting

is used in the derivation of L, so that we can apply (C.2) from Appendix C.1, then we

have |L| ⩽ (1 + ϵ)L, where L is the lower-triangular matrix of ones. (In practice, partial

pivoting ensures that |L| ⩽ L even when ϵ > 0; however, it is not possible to prove this

using only the floating-point model of Section 1.2.1.) In [1], (B-6.82), which is derived

from (B-6.68), implies ∥L∥1 ⩽ m, which in turn implies that |L| ⩽ L; it may therefore be

preferable to use ∥L∥1 ⩽ m(1 + ϵ), and modify (B-6.82) accordingly.

28

3.5 Updated Bound for the Product Sub-Factors C̃(i)

Using the floating point model of Section 1.2.1, we can bound the components |ξ(i)j | and
|η(i)j | of the matrix |δΩ(i)

j | by considering, as on p. 425 of [1], the effect of an elementary

row operation matrix Γ in floating-point arithmetic (i.e. d = flϵ(Γa)). If the pivot row is

ν, so that the elimination is performed on row ν+1 of the upper Hessenberg matrix, this

gives:

di = ai, i ̸= ν + 1, (3.9)

(1 + σ)dν+1 = aν+1 − (1 + τ)gaν , (3.10)

where |σ|, |τ | ⩽ ϵ. Here, we have used the inverse form for the error in the subtraction.

Using dν = aν , (3.10) may be rewritten as

aν+1 = (dν+1 + gdν) + (σdν+1 + τgdν). (3.11)

Careful inspection of the derivation of δΩ
(i)
j from δΓ

(i)−1

j reveals that ξ
(i)
j and η

(i)
j are

the coefficients of dν and dν+1 respectively in the above error term (σdν+1+τgdν) (adapted

for Γ
(i)
j)—hence, ξ

(i)
j = τg

(i)
j and η

(i)
j = σ, for some |σ|, |τ | ⩽ ϵ. Since |g(i)j | ⩽ 1, as stated

on p. 426 of [1], we also therefore have |ξ(i)j |, |η(i)j | ⩽ ϵ.

This means that the non-zero elements of (Ω
(i)
j + δΩ

(i)
j) are bounded in magnitude by

(1 + ϵ). Hence, by the same logic that is used to derive the bound given in [1], we obtain

|C̃(i)| ⩽ (1 + ϵ)m−1I, (3.12)

where I is the matrix whose elements are all 1. Note that this differs from the bound

in [1, p. 427] only in the replacement of 3ϵ1/(1− ϵ1) by ϵ.

3.6 Updated Bound for the Product Sub-Factor Er-

rors C̃(i) − C(i)

On p. 428 of [1], it is stated that the matrix in (B-6.50), which is the product of the dia-

grammed matrix and L (the lower-triangular matrix of ones), is elementwise bounded

by 2
(
|ξ(i)j |+ |η(i)j |

)
L. In fact, it is quite easy to see that it is in fact bounded by(

|ξ(i)j |+ |η(i)j |
)
L. Furthermore, when the product of any number of these diagrammed

matrices (in order of increasing j) is taken, it is easy to show that j < ρ
(i)
j ensures that

column j of all but the last such matrix makes no contribution to the result. Thus, for

instance,

L|δΩ(i)
j1
|L|δΩ(i)

j2
|L ⩽ |η(i)j1

|
(
|ξ(i)j2

|+ |η(i)j2
|
)
L, (3.13)

29

and in general,

L|δΩ(i)
j1
| · · · L|δΩ(i)

jN
|L ⩽

(
N−1∏
k=1

|η(i)jk
|

)(
|ξ(i)jN

|+ |η(i)jN
|
)
L ⩽ 2ϵNL, (3.14)

where each |ξ(i)jk
|, |η(i)jk

| ⩽ ϵ for 1 ⩽ k ⩽ N .

Hence, using (B-6.48) from [1] (and taking into account the final row permutation

factors applied to turn this into C(i) − C̃(i)) we obtain

|C̃(i) − C(i)| ⩽ 2

[
(m− 1)ϵ+

(
m− 1

2

)
ϵ2 + . . .+ ϵm−1

]
I = 2((1 + ϵ)m−1 − 1)I = O(ϵ)I,

(3.15)

where I is the full matrix of ones. Note that this differs from the bound in [1, p. 429]

only in the replacement of τ by 2((1 + ϵ)m−1 − 1) (which is O(ϵ)).

3.7 Updated Bound for the Product Factor Error

δG(k)

In [1, p. 429], it is stated that |δG(k)| ⩽ τEk−1Ik−1 where E = 1+3ϵ1/(1−ϵ1), and I is the

matrix of ones. However, this appears to be a mistake. In fact, if (B-6.27) and (B-6.29)

are used, along with (B-6.43), (B-6.47) and (B-6.56), to derive this bound, we first of all

see that the expansion of (B-6.27) has k terms, each of which has one factor bounded

by (B-6.56) and k − 1 factors bounded by either (B-6.43) or (B-6.47). Hence, each of

the k terms is bounded by a product of τIk and between 0 and k − 1 factors of Em−1.

One possible bound would therefore be τ(1 + Em−1 + . . . + E(k−1)(m−1))Ik, for example.

Since E ⩾ 1, another possibility would be τkE(k−1)(m−1)Ik. It is hard to account for this

discrepancy.

In Sections 3.5 and 3.6, I have shown that (assuming that a single precision is used

for all computations, and that [m− 1]ϵ < 1) it is possible to replace E with 1 + ϵ, and τ

with O(ϵ). We therefore arrive at the following bound:

|δG(k)| ⩽ O(ϵ)k(1 + ϵ)(k−1)(m−1)Ik = O(ϵ)I, (3.16)

making use of k = O(1) (so boundedness of k is required).

3.8 Overall Bound for the Upper Triangular Factor

U (k)

As U (k) is derived from H(k) using a procedure that is equivalent to partial pivoting, while

H(k) is upper Hessenberg, we may use the bound (C.4) from Appendix C.3, similar to

(B-6.85) in [1]. Similarly, assuming that U (0) is derived from a subset of the columns of A

30

using partial pivoting, we can use the bound (C.3) from Appendix C.2, similar to (B-6.84)

in [1] (although Bartels does not state that U (0) is derived using partial pivoting).

For U (0), therefore, using (C.3) and maximising over j we get a bound of

|U (0)
ij | ⩽ (2(1 + ϵ)3)m−1max

p,q
|Apq| = O(1), for all i, j. (3.17)

We now turn our attention to (B-6.87) in [1]. It is obvious that ∥Ask∥1 ⩽ mmaxi,j |ai,j|
(noting that sk−1 must be replaced by sk, as discussed in Section 3.2).

It can be shown that ∥(G(k) + δG(k))−1∥1 = O(1), but the proof is somewhat more

involved. I sketch it here.

Lemma 3.1.

∥(G(k) + δG(k))−1∥1 = O(1). (3.18)

Proof. (Sketch.) Using (B-5.13) and (B-6.27) from [1], we haveG(k)+δG(k) = C̃(1) · · · C̃(k).

Expanding [C̃(i)]−1 using (B-6.35), we get some Π
(i)
j factors, each with norm 1, and some

[Ω
(i)
j + δΩ

(i)
j]−1 factors, in strictly decreasing order of j. These factors have the same

pattern of non-zeros as Ω
(i)
j + δΩ

(i)
j , and although they are multiplied in the reverse order,

we obtain the bound by a procedure similar to that used to derive (B-6.46).

This leaves us only to show that ∥(L + δL)−1∥ ⩽ 1 (approximately or otherwise). In

fact, I have so far not found a way to do this, but if the initial basis is decomposed using

partial pivoting, with the elements of |L| bounded exactly by 1, then it is possible to show

that ∥L−1∥ ⩽ 2m−1 [22, p. 148] (and this applies for both the ℓ1 and the ℓ∞ norm). If, on

the other hand, we introduce the substitution error δL, and also allow the elements of |L|
to be as large as 1+ ϵ (as discussed earlier), then we have ∥(L+ δL)−1∥ = O(1) as ϵ→ 0.

It is then possible to inductively prove a closed-form bound for |U (k)| where k > 0:

Lemma 3.2. Assuming k = O(1),

|U (k)
ij | = O(1). (3.19)

Proof. For k = 0, see (3.17). For k > 0, use (C.4) from Appendix C.3 with A0 = H(k),

A(2(n−1)) = U (k), and n = m, and take the maximum over j. This yields

|U (k)
ij | ⩽ m(1 + ϵ)3(m−1)max

p,q
|H(k)

pq |. (3.20)

From (B-6.86) in [1], we have

max
p,q

|H(k)
pq | ⩽ max{max

p,q
|U (k−1)

pq |, ∥H(k)
m ∥1}, (3.21)

31

where, as mentioned above,

∥H(k)
m ∥1 = ∥(G(k) + δG(k))−1(L+ δL)−1Ask∥1

⩽ O(1)mmax
i,j

|ai,j| = O(1).
(3.22)

Now, consider k = 1. In this case, using (3.17), we immediately have

max
p,q

|H(1)
pq | ⩽ max{max

p,q
|U (0)

pq |, ∥H(1)
m ∥1} = O(1). (3.23)

Now, we propose the hypothesis

max
p,q

|H(k)
pq | = O(mk). (3.24)

Note that we do not use O(1). Even though this may seem to work, it fails to take into

account the fact that each recursive application of (3.20) and (3.21) may contribute an

additional factor of m(1 + ϵ)3(m−1) = O(m).

Next, consider the inductive case for k + 1:

max
p,q

|H(k+1)
pq | ⩽ max{max

p,q
|U (k)

pq |, ∥H(k+1)
m ∥1}

⩽ max{m(1 + ϵ)3(m−1)O(mk), O(1)} = O(mk+1),

which does indeed prove the hypothesis for all k ⩾ 1.

Using k = O(1) and hence mk = O(1), and substituting into (3.20), we obtain the

bound in the lemma.

3.9 Updated Bound for the Basis Matrix Error δB(k)

I have addressed the bounding of B(0) in Section 3.4. We can now note that, provided that

partial pivoting is used for the initial basis factorisation, using (C.2) from Appendix C.1

and (3.17) from Section 3.8, the initial basis error bound (3.8) becomes

|δB(0)
ij | ⩽ O(ϵ)max

pq
|Lpq|max

pq
|U (0)

pq | = O(ϵ). (3.25)

For the inductive case, I can first make a few comments about Bartels’ analysis. First

of all, a comparison of (B-6.81) and (B-6.80) from [1] shows that ∥G(k+1)∥1 in (B-6.81)

may in fact be replaced by ∥G(k)∥1. Consideration of (B-6.79) confirms that this is correct.

From (B-5.13), we see that G(k) = C(1) · · ·C(k). This means that we can use the

bound (B-6.43) on |C(i)| to derive a bound on |G(k)|, and hence its norm. (B-6.82), which

is derived from (B-6.68), implies

∥G(k)∥1 ⩽ mk = O(1), (3.26)

32

making use of k = O(1) (so boundedness of k is required). This is indeed the expected

bound.

It may be helpful to realise that there appears to be no advantage to the use of

any of the Φ
(k+1)
j with j < m. The bounds derived in [1] would be the same even if all

instances of Φ
(k+1)
j were replaced by Φ

(k+1)
m . Indeed, in view of the identity Φ

(k+1)
m = C(k+1)

mentioned in Section 3.2, it might be better to replace them with C(k+1). However, in this

case, it is important to remember that each column in the solution of (B-6.75) from [1]

requires its own individual error matrix δΦ
(k+1)
j , and so we may, for instance, call these

error matrices δC
(k+1)
j , but we may not remove the index j (although no such index is

required on C(k+1)). In fact, this change of notation is helpful, because it makes it easy

to see the relationship between δC
(i)
j here and C̃(i) − C(i) from the analysis for δG(k).

(B-6.83) in [1] depends on ∥δΦ(k+1)
j ∥1 ⩽ m (or indeed ∥δC(k+1)

j ∥1 ⩽ m). Given that

δΦ
(k+1)
j (or δC

(k+1)
j) has the same error bound as C̃(k+1) − C(k+1), which is given by (B-

6.56), this effectively depends on τ ⩽ 1. In Section 3.6, I have shown how τ can here be

replaced by O(ϵ). Hence, this requirement is met as ϵ→ 0.

Now, we proceed to inductively derive a closed-form expression for a bound on δB(k)

(which is equally valid for the ℓ1 or the ℓ∞ norm):

Lemma 3.3. Assuming k = O(1),

∥δB(k)∥ = O(ϵ). (3.27)

Proof. For k = 0, see (3.25). For k > 0, first, we must consider ∥δAsk∥. Using (B-

6.68) from [1] (but remembering that erroneously has sk in place of sk+1, as explained in

Section 3.2), and assuming that L is derived using partial pivoting, we have, for k ⩾ 1,

∥δAsk∥ ⩽ (∥L∥∥δG(k−1)∥+ ∥G(k−1)∥∥δL∥+ ∥δG(k−1)∥∥δL∥)∥H(k)
m ∥

⩽
[
O(1)O(ϵ) +O(1)O(ϵ) +O(ϵ2)

]
O(1) = O(ϵ).

(3.28)

And next, ∥ψ(k)∥. As mentioned above, ∥δΦ(k)
j ∥ = O(ϵ). This gives, for k ⩾ 1, in place

of (B-6.83) in [1],

∥ψ(k)∥ ⩽ max
j

∥δΦ(k)
j ∥∥U (k)

j ∥ = O(ϵ). (3.29)

We propose an inductive hypothesis of ∥δB(k)∥ = O((k+1)ϵ) (noting that we already

have this result for k = 0) and then prove it for k ⩾ 1. Note that we do not use O(ϵ),

even though this may seem to work. This is because each recursive application of (B-6.81)

contributes an additional term of O(ϵ), as can be seen in the derivation below.

Again assuming partial pivoting for the initial basis, we have (noting that I use sk+1

in place of sk, as explained in Section 3.2, and G(k) in place of G(k+1), as explained earlier

33

in this section):

∥δB(k+1)∥ ⩽ max
{
∥δB(k)∥, ∥δAsk+1

∥
}
+ ∥L∥∥G(k)∥∥ψ(k+1)∥

⩽ max{O((k + 1)ϵ), O(ϵ)}+O(1)O(1)O(ϵ) = O((k + 2)ϵ).

Note that where k > 0, we can discard a redundant ϵ to obtain ∥δB(k)∥ = O(kϵ), following

which the boundedness of k gives the result in the lemma.

3.10 Overall Error Bound

The Bartels–Golub algorithm maintains an invertible decomposition B of the current

basis matrix AB at every iteration of the simplex algorithm. This can be used to derive

a column of the updated tableau matrix (B−1As where As is the corresponding column

in the initial tableau), the updated right-hand-side vector (B−1b where b is the initial

right-hand-side), and the updated objective function coefficients (B−⊤γ, where γ = cB, c

is the initial objective function and B is the current basis). This is enough information to

carry out an iteration of the simplex method, and update the decomposition for the next

iteration.

To understand the conditions under which the algorithm can make an incorrect piv-

oting decision, we need bounds on the errors in these three vectors. However, the details

of how to derive these bounds are covered in Section 4.6. The only part that must be

addressed here is the bound on the basis matrix total error, which Bartels calls E (k), and

which in the main part of this thesis I have called ∆MB. In this section, I use Bartels’

notation, to make it easier to follow this discussion alongside Bartels’. Hence, I consider

E (k), defined by:

(B(k) + E (k))v̂ = q̂, (3.30)

which is functionally the same as (4.7) in Section 4.5.3 of this thesis. The hats on v̂

and q̂ are my innovation, to show that they are approximate quantities (q̂ is approximate

because the inputs to my algorithm are rounded; v̂ is approximate both because it is

derived from q̂ and because of the solving error E (k)).

In equation (4.8), I give an expansion of ∆MB in terms of λMB, λB, G, U , λG and λU

(in which I choose to omit the iteration indices k). This is similar to Bartels expansion of

E (k), except that I use λ in place of δ, and assume that the initial lower-triangular factor

L is the identity matrix, meaning that its substitution error λL will be zero, while Bartels

does not seek, as I do, to account for the error λMB in the input data itself. This accounts

for the differences between my expansion in (4.8), and Bartels’, which is:

E (k) = δB(k) + LG(k)δU (k) + LδG(k)U (k) + δLG(k)U (k) + LδG(k)δU (k)

+ δLG(k)δU (k) + δLδG(k)U (k) + δLδG(k)δU (k).
(3.31)

34

3.11 Conclusion

For my purposes, the most important thing to derive from Bartels’ paper [1] is what I state

in Lemma 4.4: namely, that ∥∆MB∥∞ = O(ϵ), or, using Bartels’ notation and method-

ology, ∥E (k)∥1 = O(ϵ) (since λMB obeys (4.4), so that ∥λMB∥ = O(ϵ), this term in ∆MB

can safely be ignored). The norm used, whether ℓ1 or ℓ∞, is of no consequence, since this

can only affect the order of magnitude by a constant factor. I therefore omit the norm

suffix when bounding matrix norms. Since both of these norms are sub-multiplicative,

the overall bound on ∥E (k)∥ is easily derived from the subsidiary norms.

In this chapter, assuming that partial pivoting is used in the initial basis factorisation,

I have shown that, for all k ⩾ 0:

Reference Norm bound (ℓ1 or ℓ∞)

Appendix C.1, (C.2) ∥L∥ = O(1) as ϵ→ 0.

§ 3.4, (3.6) ∥δL∥ = O(ϵ) as ϵ→ 0.

§ 3.9, (3.26) ∥G(k)∥ = O(1) as ϵ→ 0 (for bounded k).

§ 3.7, (3.16) ∥δG(k)
ij ∥ = O(ϵ) as ϵ→ 0 (for bounded k).

§ 3.8, (3.19) (Lemma 3.2) ∥U (k)∥ = O(1) as ϵ→ 0 (for bounded k).

§ 3.4, (3.7) ∥δU (k)∥ = O(ϵ) as ϵ→ 0 (for bounded k).

§ 3.9, (3.27) (Lemma 3.3) ∥δB(k)∥ = O(ϵ) as ϵ→ 0 (for bounded k).

We can then see that for bounded k ⩾ 0, each term in (3.31) has at least one factor

whose norm is O(ϵ), with the remaining factors having norms that are O(1), showing that

∥E (k)∥ = O(ϵ) as ϵ→ 0.

As indicated in Section 3.10, this also demonstrates that ∥∆MB∥ = O(ϵ) as ϵ → 0

when k is bounded (using ∆MB as defined by (4.7), along with (4.4) to bound ∥λMB∥).

35

36

Chapter 4

δ-Complete Simplex Method for

Satisfiability

This chapter presents a version of the simplex algorithm, restricted to solving satisfiability

problems, that is delta-complete for those problems. A proof of delta-completeness of the

algorithm is also presented, making use of the results of Chapter 3.

4.1 Simplex

4.1.1 From satisfiability to optimisation

A linear satisfiability problem of the form (1.6) can be reformulated using a linear opti-

misation problem (i.e. a linear program). Specifically, that expression is equivalent to:

min
t,s∈Qm, x∈Qn

{
m∑
i=1

(ti + si) such that Ax+ t− s = b, x ⩾ 0, t ⩾ 0, s ⩾ 0

}
= 0. (4.1)

By letting M = [Im,−Im, A] and c = [1, . . . , 0, . . .] (2m ones followed by n zeros), this

can again be rewritten as:

min
z∈Q2m+n

{
c⊤z such that Mz = b, z ⩾ 0

}
= 0, (4.2)

and, for convenience, I define n̄ := 2m+ n, so that M ∈ Qm×n̄ and c ∈ Qn̄. The solution,

z ∈ Qn̄, is decomposable into [t, s, x], with these corresponding to the vectors in (4.1).

We say that a linear program is feasible if it has a non-empty domain, and that a

candidate vector is feasible if it is a member of the domain of the linear program. We call

c⊤z the objective function.

The formulation (4.1) is always feasible – for any A, b, we can form an initial feasible

assignment of (for instance) x = 0, t = max(b, 0), and s = max(−b, 0), where max is

applied elementwise.

37

4.1.2 Basic solutions

If the linear program in (4.2) has an optimal solution (i.e. z), then at least one of its

optimal solutions is basic. This means that it can be described by a basis consisting of a

sequence MB of m linearly independent columns of M (B being the sequence of indices

of these columns, and N = {1, . . . , n̄} \ B), such that MBzB = b and zN = 0. Since MB is

square and has linearly independent columns, it is invertible, meaning that zB is uniquely

determined. A point z that can be described by a basis in this way is called a basic

solution (a term that, on its own, does not connotate optimality, nor even feasibility).

Clearly, a basic solution z is feasible if and only if zB ⩾ 0.

The simplex algorithm, in its simplest incarnation, requires a feasible basic solution as

input. It proceeds iteratively through a series of pivots, in each of which a column ofMB is

exchanged for a column from MN in a way that preserves feasibility of the basic solution.

When it is no longer possible to do so, the algorithm terminates. In general, it will then

conclude either optimality or unboundedness, depending on the reason for termination.

However, in my case, since (4.1) is bounded (and since the number of possible bases is

finite), an optimal solution will always be found, provided that the algorithm does not

loop infinitely. To prevent looping, I use Bland’s rule [23] to choose the pivot.

If (4.2) is derived from (4.1), then an initial feasible basic solution can be found

by setting x, t and s as described previously, and then choosing the columns from M

corresponding to the non-zero values in t and s. Additional columns may then be chosen

arbitrarily (but preserving linear independence) in order to make up a total of m linearly

independent columns.

4.1.3 Duality

Every linear program, such as that in (4.2), has a corresponding dual problem (of which

the original problem is called the primal), which is also a linear program. In this case,

equating the dual problem to zero gives

max
y∈Qm

{
b⊤y such that M⊤y + r = c, r ⩾ 0

}
= 0. (4.3)

This statement is equivalent to (4.2) because of the following theorem (whose proof I

omit, because this is a well-known result – see Section 4.1.4 below).

Theorem 4.1 (Strong duality theorem). If z is optimal for the LO problem in (4.2) and

y is optimal for its dual problem shown in (4.3), then the objective function values are

related by b⊤y = c⊤z.

Another useful property of (4.2) and (4.3) is the weak duality theorem (whose proof

is trivial).

38

Theorem 4.2 (Weak duality theorem). If z is feasible for the LO problem in (4.2) and

y is feasible for its dual problem shown in (4.3), then the objective function values are

related by b⊤y ⩽ c⊤z.

This is especially useful for my purposes, as it means that any y feasible for (4.3)

such that b⊤y > 0, even if non-optimal, provides a positive lower bound on the objective

function value of (4.1), and, thereby, a proof of unsatisfiability of (1.6).

The dual has the property that if the basis B produces an optimal basic solution for

the LO problem in (4.2), then a basis of (in terms of variables) rN and y (with whatever

ordering we choose) will produce an optimal basic solution for the dual LO problem

in (4.3). This means setting the non-basic variables rB = 0, which allows y to be derived

from M⊤
B y = cB, following which it is trivial to derive rN (if required). Since MB is

square and invertible, the same can be said of M⊤
B (indeed, it may be helpful to note that

(M⊤
B)

−1 = (M−1
B)⊤).

4.1.4 Known results about the simplex algorithm

For some well-known results about the simplex algorithm, I refer to [24]. In particular,

invertibility and primal feasibility of the basis are preserved throughout [24, p. 68]. If the

algorithm returns a result of optimal, then the primal basic solution is indeed optimal [24,

p. 67], and the dual basic solution is also feasible and optimal [24, p. 88]. If it returns

unbounded then the problem is indeed unbounded [24, p. 68]. And if Bland’s pivot rule

is used, then it terminates [24, p. 73] (or indeed [23]). Note that [24] uses a different

formulation of the simplex algorithm, so some of the proofs are not applicable without

modification to the form used here.

4.2 δ-Complete Algorithm

In general, to find an exact answer to (1.6), we must use either exact or interval arithmetic.

For instance, if the solution set is a point, then in order to certify the result, we need

to find this point, which may be an arbitrary rational vector. Since the (finite) floating-

point numbers are dyadic, and the dyadic numbers are a strict subset of the rationals,

there exist rational vectors that cannot be found by any algorithm that exclusively uses

(non-interval) floating-point arithmetic.

The simplex algorithm with approximate (floating-point) arithmetic has been used

very successfully to accelerate the exact (rational) simplex algorithm. The main reason

for this success is that the simplex algorithm typically makes many unnecessary (or ex-

ploratory) pivots on its way to the final basis. Once an optimal basis is found, it can be

checked in rational arithmetic by making a sequence of no more than m pivots (known as

factorising the basis). However, the more difficult the problem, the less effective this will

be, because the returned basis will be further away from the nearest usable basis, requiring

39

expensive rational optimisation. There is no bound on the precision that may be needed

to find a usable basis for a given problem. Hence, it makes sense to use variable-precision

floating-point, increasing the precision until such a basis is found.

The δ-completeness of Algorithm 4.1 depends on the details of the simplex algorithm

used on line 8. In particular, correctness can be ensured without examining the details of

this step, but termination cannot. Without a proof of termination, the algorithm is not

δ-complete. For this reason, it is necessary to provide the details of the simplex algorithm

assumed. These details are given in Algorithm 4.2.

Algorithm 4.2 takes as input a floating-point precision with unit roundoff ϵ, and a

tolerance value τ . If, instead of a floating-point precision, we are able to choose for

rational arithmetic to be used (effectively setting ϵ = 0), and we additionally set τ = 0,

then flϵ(·) leaves its parameter unchanged, and the algorithm becomes equivalent to the

usual exact simplex algorithm. I refer to this as the exact version of Algorithm 4.2. In

this case, we can make use of the many known results about the simplex algorithm, and

in particular those mentioned in Section 4.1.4.

4.3 Floating-Point Exceptions

There are three ways that the model of floating-point arithmetic given in Section 1.2.1

could, in principle, break down during Algorithm 4.2. These are overflow, underflow, and

division by zero. Division by zero is prevented by the use of the condition d̂i > 0 in

line 17.

Overflow occurs when the result is larger in magnitude than the largest representable

magnitude; similarly, underflow occurs when the result of (x1 op x2) is non-zero but so

close to zero that there is no choice of z (satisfying |z| ⩽ ϵ) that makes (1 + z)(x1 op x2)

exactly representable. Both of these are caused by the limited precision of the exponent

field.

Note that so-called denormal (unnormalised) numbers do not address the underflow

problem, as they in fact only reduce the cutoff point, at the cost of a large increase in

ϵ. For present purposes, I therefore ignore the existence of denormal numbers. In a real

implementation, either denormals must be disabled or trapped, or ϵ must be adjusted

accordingly.

Addressing overflow is very difficult without an arbitrary-precision exponent repre-

sentation, which is currently rare in arbitrary-precision floating-point implementations. I

consider this problem to be outside of the scope of this thesis: I assume that all operations

(except division by zero) obey (1.2) exactly.

4.4 Proof of δ-Completeness: Correctness

Lemma 4.3. Algorithm 4.1 returns only correct results.

40

Algorithm 4.1: δ-complete simplex algorithm

input : Matrix A ∈ Qm×n and vector b ∈ Qm as in (4.1);
Infeasibility threshold δ ∈ Q.

output: Result symbol ∈ {δ-sat, unsat};
Final basis B;
Final primal and dual iterate (t, s, x, y);
Actual max infeasibility δ ∈ Q (where applicable).

Data: Infinite sequence of precisions such that the unit roundoffs
{ϵ0, ϵ1, ϵ2, . . .} ⊆ Q converge to zero

Data: Infinite sequence of tolerances {τ0, τ1, τ2, . . .} ⊆ Q that converge to zero
1 begin
2 M := [I,−I, A]; // Compound matrix as in Section 4.1.1

3 Set the objective coefficient vector: c ∈ Qn̄ where n̄ = 2m+ n so that ci = 1
where i ⩽ 2m, and ci = 0 otherwise;

4 Set the initial basis BI = [BI
1,BI

2, . . . ,BI
m] such that for each 1 ⩽ i ⩽ m, we

have BI
i = i if bi > 0 and BI

i = m+ i if bi ⩽ 0;
5 for k := 0 to +∞ do
6 for all (ϵi, τj) ∈ N× N such that i+ j = k do
7 try
8 Run the simplex algorithm (Algorithm 4.2) with matrix M , vectors

b and c, initial basis B := BI , the floating-point precision with unit
roundoff ϵi, and the tolerance τj, yielding a new basis B for M ;

9 catch Simplex returns status other than optimal
10 Go to next precision;

11 try
12 Factorise the basis matrix MB in rational arithmetic, yielding the

inverse basis matrix M−1
B ;

13 catch Basis is non-invertible
14 Go to next precision;

15 y :=M−⊤
B cB;

16 zN := 0;
17 zB :=M−1

B b; // Now z = [t, s, x]

18 if b⊤y > 0 and y is feasible for (4.3) then
19 return unsat ;

20 if x ⩾ 0 and |t− s| ⩽ δ1m then
21 return δ-sat(δ := max(0,maxmi=1(ti − si)));

41

Algorithm 4.2: Floating-point primal simplex algorithm, using the Bartels–
Golub update [1] and Bland’s pivot rule [23]

input : Matrix M ∈ Qm×n̄, and vectors b ∈ Qm and c ∈ Qn̄, as in (4.2);
Initial basis B;
Floating-point precision with unit roundoff ϵ ∈ Q;
Tolerance τ ∈ Q.

output: Status symbol ∈ {optimal, unbounded};
Final basis B;
Approximate final objective function value ω̂ ∈ Q (where applicable);
Last entering variable index j (where applicable).

1 begin

2 M̂ := flϵ(M); // Round inputs

3 b̂ := flϵ(b);
4 ĉ := flϵ(c);

5 Compute the initial triangular basis factorisation L,U of basis matrix M̂B
using Gaussian elimination (which involves constructing the row
permutation matrix Π), set G := I, and let B alias Π−1LGU ;

6 for k := 1 to n̄!/(n̄−m)! do

7 ẑB := flϵ(B
−1b̂); // Primal solution for B ≡ Π−1LGU ≈ M̂B

8 ẑN := 0;
9 ŷ := flϵ(B

−⊤ĉB); // Dual solution

10 r̂ := flϵ(ĉ− M̂⊤ŷ); // Reduced costs

11 if r̂ ⩾ −τ1n̄ then
12 return optimal, ω̂ := ĉ⊤B ẑB;

13 j := min{j ∈ {1, . . . , n̄} : r̂j < −τ} // Choose entering variable

14 d̂ := flϵ(B
−1M̂·j); // Entering variable coefficient vector

15 if d̂ ⩽ τ1m then
16 return unbounded ;

17 Compute the candidate updates ûi := flϵ(ẑBi
/d̂i) where d̂i > 0 and ûi := 0

otherwise, for 1 ⩽ i ⩽ m;
// Choose leaving variable (note that i will be an index into B due to

the ordering of d̂ and û):

18 i := min{i ∈ {1, . . . ,m} : d̂i > τ ∧ ûi ⩽ minm
i=1{ûi : d̂i > τ}+ τ};

19 B := [B1, . . . ,Bi−1,Bi+1, . . . ,Bm, j];
20 Update the basis factorisation L,G,U using the Bartels–Golub algorithm

[1] such that M̂B ≈ Π−1LGU , in floating-point arithmetic with unit
roundoff ϵ, letting B again alias Π−1LGU following the update. (Note
that Π and L do not change.)

42

Proof. If the algorithm returns on line 19, then the weak duality theorem (Theorem 4.2)

ensures that a feasible y such that b⊤y > 0 can exist only if the optimal value of (4.1) is

positive, in which case (1.6) is indeed unsatisfiable.

If the algorithm returns on line 21, then using |t − s| ⩽ δ1m and Ax + t − s = b

(from (4.1)), we have |Ax− b| ⩽ δ1m. Since we also have x ⩾ 0, the condition (1.8) (i.e.

the δ-weakening of (1.6)) is certified by x.

4.5 Proof of δ-Completeness: General Error Bounds

In order to prove that Algorithm 4.1 terminates, I must first establish some error bounds

that are used in the proof. In Section 4.7, I use these bounds to prove that with a

high enough finite precision (and appropriate choice of the tolerance parameter τ), Al-

gorithm 4.2 behaves the same as the exact version of the algorithm (where, effectively,

ϵ = 0 and τ = 0) at every stage. With the use of Bland’s rule, and an iteration cap to

prevent cycling when the precision is too low to allow Bland’s rule to work properly, this

is enough to establish, as I do in Section 4.8, that Algorithm 4.2 eventually terminates

with an appropriate basis if the precision is high enough, or otherwise at least terminates,

allowing Algorithm 4.1 to try higher precisions and ultimately terminate.

A consequence of this is that if δ is set to 0, then Algorithm 4.1 is complete.

4.5.1 Iteration limit

In Algorithm 4.2, the number of iterations is explicitly limited to n̄!/(n̄ −m)!, in order

to ensure that it terminates regardless of the precision. This is the number of possible

sequences of m columns of the matrix M , which has n̄ columns. I use the number of

sequences rather than the number of sets, because while Bland’s rule guarantees that

there are no cycles, and hence the algorithm can never return to the same state, it does

not explicitly guarantee that it will not return to a basis permutation [23]. The number

of sequences is safe to use because, in an exact implementation, the sequence of basic

variables describes the full state of a simplex algorithm iteration.

For the inexact (floating-point) case, I first seek to prove that there is some ϵ > 0 and

τ ⩾ 0 such that the algorithm behaves correctly in every iteration where k ⩽ n̄!/(n̄−m)!.

This guarantees the correct operation of Bland’s rule, which ensures that my n̄!/(n̄ −
m)! iteration limit is sufficient to visit every possible sequence of basic variables, and

hence terminate correctly. A convenient consequence of this is that we can regard k as a

bounded quantity—i.e. k = O(1).

4.5.2 Initial rounding error

The parameters M , b, and c may be arbitrary rationals, and hence are subjected to an

initial rounding step in lines 2 to 4 of Algorithm 4.2 to convert them into dyadic numbers

43

with the appropriate precision. After rounding, the corresponding vectors M̂ , b̂, and ĉ

will be such that

M̂ =M + λM, |λM | ⩽ ϵ|M |, (4.4)

b̂ = b+ λb, |λb| ⩽ ϵ|b|, (4.5)

ĉ = c+ λc, |λc| ⩽ ϵ|c|. (4.6)

4.5.3 Basis and substitution error

At each iteration of the algorithm, the inverse basis matrix M−1
B is used three times.

Conceptually, this matrix, when applied to a column of the initial tableau [M |b], converts
it to its current “pivoted” form. This is more efficient than maintaining the complete

tableau at each iteration; it also allows (if the matrix is suitably factorised) for improved

accuracy (and this turns out to be critical for proving termination). The inverse basis

matrix can also be used to derive the current dual vector y efficiently. These uses are

illustrated on lines 7, 9, and 14 of Algorithm 4.2.

To this end, during the course of the algorithm, the current basis matrix is factorised

(as specified in [1]) into a permutation matrix Π, a lower unit triangular matrix L, an

upper triangular matrix U , and a product of update factors G, such that B ≡ Π−1LGU

is the current invertible approximation of the basis matrixMB. In a real-world implemen-

tation, L and U would be refactorised periodically, effectively absorbing the factors from

G – to keep the proofs simple, this is not considered here. This means that L is constant,

because the factorisation updates only modify G and U .

When Algorithm 4.2 is invoked at line 8 of Algorithm 4.1, the choice of basis means

that no pivoting is required, so Π is the identity matrix, and Gaussian elimination at

line 5 produces an initial basis factorisation in which L is the identity matrix, and U

is a diagonal matrix whose diagonal elements are 1 or −1, depending on whether the

corresponding element of b is positive. This significantly simplifies the analysis, enabling

us to ignore L and Π, and even the initial Gaussian elimination step itself (which can be

replaced in this case by a much simpler procedure). However, in Chapter 5, Algorithm 4.2

will be invoked with more general settings of the parameters.

In a general iteration of Algorithm 4.2, there will be four sources of error: rounding

error λM = M̂ − M (which is constant throughout, but recall that in each iteration

the sequence of columns considered - denoted by B - is different), factorisation error

λB = B − M̂B, error λU from backward substitution of U (or forward substitution of

U⊤), and error λG from applying the factors in G.

If Π = L = I, then B = GU , and when solving Bv̂ = q̂ (i.e. v̂ = B−1q̂) we will have

(MB +∆MB)v̂ = (G+ λG)(U + λU)v̂ = q̂, (4.7)

44

hence,

∆MB = (G+ λG)(U + λU)−MB

= B + λGU +GλU + λGλU + λMB − M̂B

= λMB + λB +GλU + λGU + λGλU.

(4.8)

Similarly, when solving B⊤v̂ = q̂ (i.e. v̂ = B−⊤q̂) we will have

(M⊤
B +∆M⊤

B)v̂ = (U⊤ + λU⊤)(G⊤ + λG⊤)v̂ = q̂, (4.9)

and then ∆MB again obeys (4.8).

Lemma 4.4. The basis matrix total error ∆MB, as specified in (4.8), satisfies

∥∆MB∥∞ = O(ϵ) as ϵ→ 0 (4.10)

at any iteration of Algorithm 4.2, for fixed values of M, b, c.

Proof. See Chapter 3, Section 3.11 (Conclusion). As noted in Section 4.5.1, the iteration

limit in Algorithm 4.2 ensures that k = O(1). Note also that this bound applies irrespec-

tive of the current basis B, as the derivation makes no assumptions about the basis, of

which each problem has only a finite number.

4.6 Proof of δ-Completeness: Iterate Vector Error

Bounds

In this section, I present (for instance) (4.7) as v̂ := flϵ(M
−1
B q̂) – even though Algorithm 4.2

actually calls for B (the factorisation of M̂B) instead ofMB. The first thing to note about

this is that flϵ(·) implies the conversion of all inputs to floating-point with precision ϵ, and

the use of the most appropriate algorithm for the computation, so that in fact it makes

no difference which notation is used. The second is that changing (4.7) to use M̂B instead

of MB wouldn’t make any practical difference either, because it would simply move λMB

out of ∆MB and (loosely speaking) into M̂B. I therefore prefer to use the MB form in all

cases, both to reduce visual clutter, and to make it easy to trace the errors back to the

algorithm inputs.

4.6.1 Primal, dual and entering coefficient vector total error

Lemma 4.5. If q̂ = q + λq and we define v := M−1
B q, and v̂ := flϵ(M

−1
B q̂) using (4.7),

and ∆v := v̂ − v, and if ∥q∥∞ = O(1) and ∥λq∥∞ = O(ϵ), then

∥∆v∥∞ = O(ϵ) as ϵ→ 0,

45

for fixed M, b, c, and B.

Proof. Using the invertibility of MB, and q̂ = q + λq, (4.7) can be rearranged to:

MB(v̂ +M−1
B (∆MBv̂ − λq)) = q, (4.11)

therefore, using MBv = q, we see that v = v̂ +M−1
B (∆MBv̂ − λq), and therefore,

∆v = v̂ − v =M−1
B (λq −∆MBv̂).

Substituting v̂ = v +∆v into the RHS gives

∆v =M−1
B (λq −∆MBv)−M−1

B ∆MB∆v,

which rearranges to

(I +M−1
B ∆MB)∆v =M−1

B (λq −∆MBv).

Now, M−1
B is constant, so if the elements of |∆MB| go to zero as ϵ → 0, then as they

do so J := I +M−1
B ∆MB approaches the identity. Beyond a certain point, we will always

have |Jii| >
∑

j ̸=i |Jij| for every i, and then J will be invertible. Hence,

∆v = (I +M−1
B ∆MB)

−1M−1
B (λq −∆MBv), as ϵ→ 0.

Furthermore, if we let K := M−1
B ∆MB, then if ∥K∥∞ < 1, we have the convergent

Neumann series expansion [25, p. 191]:

(I +K)−1 = I −K +K2 −K3 + . . .

Indeed, using Lemma 4.4, we have
∥∥M−1

B ∆MB
∥∥
∞ = O(ϵ), for bounded k. Using the

squareness of K and the submultiplicativity of the induced matrix norm, we obtain the

following convergent power series:

∥∥(I +K)−1
∥∥
∞ ⩽ ∥I∥∞ + ∥K∥∞ +

∥∥K2
∥∥
∞ + . . . ⩽ 1 + ∥K∥∞ + ∥K∥2∞ + . . . = O(1).

Hence, as we approach the limit,
∥∥(I +M−1

B ∆MB)
−1
∥∥
∞ = O(1). This gives ∥∆v∥∞ =

O(∥λq∥∞ + ∥∆MB∥∞∥v∥∞). Hence, using ∥λq∥∞ = O(ϵ) and Lemma 4.4, and ∥v∥∞ ⩽∥∥M−1
B
∥∥
∞∥q∥∞ = O(1), we arrive at the result in this lemma.

Corollary 4.6. If M̂, b̂, ĉ obey (4.4), (4.5) and (4.6), and y = M−⊤
B cB, zB = M−1

B b, and

d = M−1
B M·j, and similarly ŷ = flϵ(M

−⊤
B ĉB), ẑB = flϵ(M

−1
B b̂), and d̂ = flϵ(M

−1
B M̂·j)

using (4.7) and (4.9), and we define ∆y := ŷ− y, ∆zB := ẑB− zB, and ∆d := d̂−d, then,

as ϵ→ 0,

∥∆y∥∞ = O(ϵ), ∥∆zB∥∞ = O(ϵ), and ∥∆d∥∞ = O(ϵ),

46

for fixed M, b, c, and B.

Proof. Apply Lemma 4.5. In the case of ∆y, use M⊤
B , ∆M

⊤
B , and (4.9) in place of MB,

∆MB, and (4.7), respectively.

4.6.2 Reduced cost vector total error

Lemma 4.7. If r̂ = flϵ(ĉ − M̂⊤ŷ), and M̂ and ĉ obey (4.4) and (4.6), and ∆y = ŷ − y

where y = M−⊤
B cB, and ŷ = flϵ(M

−⊤
B ĉB) using (4.9), and we define ∆r := r̂ − r where

r = c−M⊤y, then

∥∆r∥∞ = O(ϵ) as ϵ→ 0, (4.12)

for fixed M, b, c, and B.

Proof. We have r̂j = flϵ(ĉj−M̂⊤
·j ŷ) for each 1 ⩽ j ⩽ n̄. For error estimation purposes, this

can be viewed as an inner product between two vectors of length m+1. Hence, following

the analysis in [26],

∃ϕj : |ϕj| ⩽ (1 + ϵ)m+1 − 1, r̂j = (1 + ϕj)(ĉj − M̂⊤
·j ŷ), 1 ⩽ j ⩽ n̄,

noting that we have in total m additions, and each term has at most one multiplication.

Now, the total error ∆r obeys

∆rj = r̂j − rj

= (1 + ϕj)(ĉj − M̂⊤
·j ŷ)− (cj −M⊤

·j y)

= (1 + ϕj)(cj + λcj − (M·j + λM·j)
⊤(y +∆y))− (cj −M⊤

·j y)

= ϕjcj − ϕjM
⊤
·j y + (1 + ϕj)(λcj − λM⊤

·j y −M⊤
·j ∆y − λM⊤

·j ∆y)

= ϕjcj + (1 + ϕj)λcj − (ϕjM
⊤
·j + (1 + ϕj)λM

⊤
·j)y − (1 + ϕj)(M

⊤
·j + λM⊤

·j)∆y,

(4.13)

which gives

∥∆r∥∞ ⩽ ((1 + ϵ)m+2 − 1)(∥c∥∞ +
∥∥M⊤∥∥

∞∥y∥∞) + (1 + ϵ)m+2
∥∥M⊤∥∥

∞∥∆y∥∞. (4.14)

Note that y = M−⊤
B cB depends only on M, c, and B, and so can be considered constant

for the purposes of this lemma (so that ∥y∥∞ = O(1)).

Finally, therefore, ∥∆y∥∞ = O(ϵ) from Corollary 4.6 yields the lemma.

4.6.3 Candidate update vector total error

Lemma 4.8. If ûi = flϵ(ẑBi
/d̂i) wherever d̂i > 0, and ûi = 0 otherwise, for 1 ⩽ i ⩽ m,

and similarly ui = zBi
/di wherever di > 0 and ui = 0 otherwise, and ẑB = flϵ(M

−1
B b̂)

and d̂ = flϵ(M
−1
B M̂·j) using (4.7), and M̂ and b̂ obey (4.4) and (4.5), and we define

47

∆u := û− u, then

∥∆u∥∞ = O(ϵ) as ϵ→ 0

for fixed M, b, c, and B.

Proof. In Section 4.7.2, it is shown that if ϵ is small enough, then d̂i > 0 if and only if

di > 0; hence, for the purposes of determining limiting behaviour as ϵ → 0, we can take

this property for granted.

Where d̂i > 0, then, and defining the vector η such that |ηi| ⩽ ϵ for 1 ⩽ i ⩽ m, we

have an error

∆ui = ûi − ui = (1 + ηi)
zBi

+∆zBi

di +∆di
− zBi

/di

=
(1 + ηi)(zBi

+∆zBi
)di − (di +∆di)zBi

(di +∆di)di

=
(ηidi −∆di)zBi

+ (1 + ηi)∆zBi
di

(di +∆di)di
,

(4.15)

and the denominator is positive (assuming that ϵ is small enough for the condition of

Section 4.7.2).

In Section 4.7.2, it is shown that there exists a minimum positive value of di across all

bases B and all 1 ⩽ i ⩽ m, depending only on the inputs M and (via j) c, and I denote

this by d+min. Additionally, using Corollary 4.6, we have ∥∆d∥∞ = O(ϵ). From this, we

see that ∥1/((di +∆di)di)∥∞ ⩽
∥∥1/((d+min − ϵ)d+min)

∥∥
∞ = O(1) as ϵ → 0. This allows

us to bound ∥∆u∥∞ like this (using ηd to denote the Hadamard or elementwise product

between column vectors η and d, and similar for the products involving zB and ∆zB):

∥∆u∥∞ ⩽ O(∥(ηd−∆d)zB + (1m + η)∆zBd∥∞).

Now, clearly, this implies that

∥∆u∥∞ ⩽ m(∥η∥∞∥d∥∞ + ∥∆d∥∞)∥zB∥∞ +m(1 + ∥η∥∞)∥∆zB∥∞∥d∥∞, (4.16)

and using the fact that d and zB are determined entirely by the inputs and the current

basis, and are hence of norm O(1), and again using Corollary 4.6 to give us ∥∆zB∥∞ =

O(ϵ), we obtain the lemma.

4.6.4 Error bounds for Algorithm 4.2

Finally, we can combine Corollary 4.6, Lemma 4.7, and Lemma 4.8 into a single lemma,

showing how the errors in all of the important quantities in a given iteration of the

algorithm go to zero as the precision is increased (provided that no errors have been

made prior to this iteration).

48

Lemma 4.9. For an arbitrary iteration of Algorithm 4.2 (with k ⩽ n̄!/(n̄−m)!), we have:

∥∆zB∥∞ = O(ϵ), as ϵ→ 0, where ∆zB = ẑB − zB, (4.17)

∥∆y∥∞ = O(ϵ), as ϵ→ 0, where ∆y = ŷ − y, (4.18)

∥∆r∥∞ = O(ϵ), as ϵ→ 0, where ∆r = r̂ − r, (4.19)

∥∆d∥∞ = O(ϵ), as ϵ→ 0, where ∆d = d̂− d, (4.20)

∥∆u∥∞ = O(ϵ), as ϵ→ 0, where ∆u = û− u. (4.21)

for fixed M, b, c,B, where ẑB, ŷ, r̂, d̂, û come from the version of the algorithm with some

precision having unit roundoff ϵ and with tolerance τ , and zB, y, r, d, u come from the exact

version of the algorithm (see Section 4.2), provided that all of the decisions made by the

respective algorithms have (in effect) been the same up to the point where each respective

variable is calculated. In the case of zB, y, r this means only that they must have entered

iteration k with the same basis. In the case of d, u, they must also have chosen the same

entering variable j at line 13.

Proof. Apply Corollary 4.6, Lemma 4.7, and Lemma 4.8.

4.7 Proof of δ-Completeness: Correct Behaviour

Here, I aim to show that there is a finite precision with unit roundoff ϵ∗, and a tolerance

τ ∗, such that the simplex algorithm with any precision having unit roundoff ϵ ⩽ ϵ∗ and

any tolerance τ ⩽ τ ∗ makes the correct decisions at every stage (meaning the same

sequence of decisions as the exact version of the algorithm – see Section 4.2) – specifically,

at lines 11 (optimality determination), 13 (entering variable choice), 15 (unboundedness

determination), and 18 (leaving variable choice) – in every iteration.

4.7.1 Correct optimality determination & entering variable choice

This lemma asserts that Algorithm 4.2 can be made to determine optimality correctly,

and also choose the entering variable correctly, by making the tolerance low enough and,

for that tolerance, making the precision high enough.

Lemma 4.10. For each M, b, c, there exists some tolerance τ ∗ and some precision with

unit roundoff ϵ∗ such that, in any iteration k ⩽ n̄!/(n̄ − m)!, Algorithm 4.2 with this

tolerance and precision behaves the same at lines 11 (optimality determination) and 13

(entering variable choice) as the exact version of the algorithm, provided that both versions

have by this point reached the same basis B. Furthermore, this condition applies for any

0 < τ ⩽ τ ∗ (but potentially not with the same value of ϵ), and for any such τ , there

exists a corresponding precision with unit roundoff ϵ† such that for any precision with unit

roundoff ϵ ⩽ ϵ†, the condition applies for (τ, ϵ).

49

Proof. Let r̂ be the reduced cost vector computed at some iteration k ⩽ n̄!/(n̄ − m)!

of the algorithm given tolerance τ and some precision with unit roundoff ϵ, while r is

the reduced cost vector computed at iteration k of the algorithm given tolerance 0 and

rational arithmetic (ϵ = 0).

Define ∆r := r̂ − r, so that for 1 ⩽ j ⩽ n̄, we want to show that we can ensure

that rj + ∆rj + τ ⩾ 0 if and only if rj ⩾ 0 – then the behaviour at lines 11 (optimality

determination) and 13 (entering variable choice) will be the same.

It should be clear that the condition ∥∆r∥∞ ⩽ τ is sufficient in order to ensure that

rj ⩾ 0 implies rj +∆rj + τ ⩾ 0, for all j. The next thing is to show that rj < 0 implies

rj +∆rj + τ < 0. Clearly, if ∥∆r∥∞ ⩽ τ , and rj < 0 implies rj < −2τ , then this condition

is satisfied.

Now, r = c −M⊤y = c −M⊤M−⊤
B cB, so rj is a deterministic function of M , c, and

the basis B (of which there are finitely many). This means that across all bases B having

at least one negative value of rj, and all 1 ⩽ j ⩽ n̄, there exists a maximum (i.e. least

negative) negative value of rj – let us call this value r−max (and let this be −∞ if rj is

always nonnegative for every basis and all j).

Clearly, the condition r−max < −2τ ensures that rj < 0 will imply rj < −2τ across all

bases B and all j. Hence, the conditions ∥∆r∥∞ ⩽ τ and τ < −1
2
r−max, taken together,

imply that rj ⩾ 0 if and only if rj +∆rj + τ ⩾ 0, for all j. Using Lemma 4.7, we see that

for any given basis, ∥∆r∥∞ = O(ϵ), and hence for any of the finite number of possible

bases, there exists ϵ such that ∥∆r∥∞ ⩽ τ for any given value of τ > 0. If we take the

minimum such ϵ across all bases B, then we will have ∥∆r∥∞ ⩽ τ regardless of the basis.

Meanwhile, −1
2
r−max is a positive constant. Hence, we can choose any 0 < τ < −1

2
r−max,

and satisfy both conditions by also choosing ϵ appropriately for the chosen τ .

Furthermore, if τ ∗ is any value of τ obeying 0 < τ < −1
2
r−max, then it is clear that any

0 < τ < τ ∗ will also obey this condition. Similarly, if ϵ∗ is a value of ϵ such that regardless

of the basis, ∥∆r∥∞ ⩽ κϵ∗ ⩽ τ , where κϵ∗ is an instantiation of O(ϵ), then any 0 < ϵ < ϵ∗

also obeys this condition (noting that ϵ is effectively a parameter of ∥∆r∥∞).

4.7.2 Correct unboundedness determination

This lemma asserts that Algorithm 4.2 can be made to determine unboundedness correctly,

by making the tolerance low enough and, for that tolerance, making the precision high

enough.

Lemma 4.11. For each M, b, c, there exists some tolerance τ ∗ and some precision with

unit roundoff ϵ∗ such that, in any iteration k ⩽ n̄!/(n̄ − m)!, Algorithm 4.2 with this

tolerance and precision agrees with the exact version of the algorithm on the value of each

element of the Boolean conjunction d̂ ⩽ τ1m (as in line 15 – unboundedness determina-

tion), provided that both versions have by this point reached the same basis B, and selected

the same entering variable j. Furthermore, this condition applies for any 0 < τ ⩽ τ ∗ (but

50

potentially not with the same value of ϵ), and for any such τ , there exists a corresponding

precision with unit roundoff ϵ† such that for any ϵ ⩽ ϵ†, the condition applies for (τ, ϵ).

Proof. Let d̂ be the entering variable coefficient vector computed at some iteration k ⩽

n̄!/(n̄ −m)! of the algorithm given tolerance τ and some precision with unit roundoff ϵ,

while d is the equivalent vector computed at iteration k of the algorithm given tolerance 0

and rational arithmetic (ϵ = 0). Define ∆d := d̂−d. We want to show that we can ensure

that di +∆di − τ ⩽ 0 if and only if di ⩽ 0, for all 1 ⩽ i ⩽ m.

First, if we have ∥∆d∥∞ ⩽ τ , then this ensures that di ⩽ 0 implies di+∆di− τ ⩽ 0. If

we additionally have di > 0 → di > 2τ , then we additionally conclude that di > 0 implies

di > τ −∆di, proving the required reverse implication.

Now, d = M−1
B M·j, so di is a deterministic function of M , B, and j (noting that j

is in the exact rational case determined by M , c and B), meaning that across all bases

B (of which there are finitely many) and 1 ⩽ i ⩽ m, there exists a minimum positive

value of di (unless di is always nonpositive, in which case correct behaviour is ensured by

∥∆d∥∞ ⩽ τ alone) and I denote this value by d+min (and let this be +∞ if di is always

nonpositive for every basis and all i).

Using Corollary 4.6, we see that for any given basis, ∥∆d∥∞ = O(ϵ), and hence for

any of the finite number of possible bases, there exists ϵ such that ∥∆d∥∞ ⩽ τ for any

given value of τ > 0. If we take the minimum such ϵ across all bases B, then we will have

∥∆d∥∞ ⩽ τ regardless of the basis. Meanwhile, d+min is a positive constant. Hence, we can

choose any 0 < τ < 1
2
d+min, giving di > 0 → di > 2τ , and additionally satisfy ∥∆d∥∞ ⩽ τ

simply by choosing a small enough value for ϵ.

Furthermore, if τ ∗ is any value of τ obeying 0 < τ < 1
2
d+min, then it is clear that any

0 < τ < τ ∗ will also obey this condition. Similarly, if ϵ∗ is a value of ϵ such that regardless

of the basis, ∥∆d∥∞ ⩽ κϵ∗ ⩽ τ , where κϵ∗ is an instantiation of O(ϵ), then any 0 < ϵ < ϵ∗

also obeys this condition (noting that ϵ is effectively a parameter of ∥∆d∥∞).

Corollary 4.12. For each M, b, c, there exists some tolerance τ ∗ and some precision with

unit roundoff ϵ∗ such that, in any iteration k ⩽ n̄!/(n̄ − m)!, Algorithm 4.2 with this

tolerance and precision behaves the same at line 15 (unboundedness determination) as

the exact version of the algorithm, provided that both versions have by this point reached

the same basis B, and selected the same entering variable j. Furthermore, this condition

applies for any 0 < τ ⩽ τ ∗ (but potentially not with the same value of ϵ), and for any such

τ , there exists a corresponding precision with unit roundoff ϵ† such that for any ϵ ⩽ ϵ†,

the condition applies for (τ, ϵ).

Proof. This follows trivially from Lemma 4.11.

4.7.3 Correct leaving variable choice

This lemma asserts that Algorithm 4.2 can be made to choose the leaving variable cor-

rectly, by making the tolerance low enough and, for that tolerance, making the precision

51

high enough.

Lemma 4.13. For each M, b, c, there exists some tolerance τ ∗ and some precision with

unit roundoff ϵ∗ such that, in any iteration k ⩽ n̄!/(n̄ − m)!, Algorithm 4.2 with this

tolerance and precision behaves the same at line 18 (leaving variable choice) as the exact

version of the algorithm, provided that both versions have by this point reached the same

basis B, selected the same entering variable j, agree on the value of each element of the

Boolean conjunction d̂ ⩽ τ1m (as in line 15 – unboundedness determination), and reach

line 18. Furthermore, this condition applies for any 0 < τ ⩽ τ ∗ (but potentially not with

the same value of ϵ), and for any such τ , there exists a corresponding precision with unit

roundoff ϵ† such that for any ϵ ⩽ ϵ†, the condition applies for (τ, ϵ).

Proof. Let û be the candidate update vector (and d̂ the entering variable coefficient vector)

computed at some iteration k ⩽ n̄!/(n̄−m)! of the algorithm given tolerance τ and some

precision with unit roundoff ϵ, while u (respectively, d) is the equivalent vector computed

at iteration k of the algorithm given tolerance 0 and rational arithmetic (ϵ = 0). Define

∆u := û− u and ∆d := d̂− d.

We want to show that we can ensure that at each iteration,

ui +∆ui ⩽ min{ui +∆ui : di > 0}+ τ ⇐⇒ ui = min{ui : di > 0}.

Note that, as we assume here that both versions of the algorithm agree on the value of

each element of the Boolean conjunction d̂ ⩽ τ1m – so that di > 0 if and only if d̂i > τ ,

for all 1 ⩽ i ⩽ m – we can replace the condition d̂i > τ with di > 0 (which I have done

here). Since both versions of the algorithm reach line 18, it is clear that the referenced

minima exist.

Consider the sequence {α1, α2, . . . , αθ} of distinct values of ui (over 1 ⩽ i ⩽ m where

di > 0), arranged in ascending order. Either θ = 1, in which case all candidates have the

minimum value (and we may set β := +∞), or α2 − α1 > 0, in which case we may define

β := α2 − α1. In either case,

2∥∆u∥∞ ⩽ τ < β − 2∥∆u∥∞ (4.22)

is sufficient to ensure correct classification of all components, as shall be proven below.

Since α1 = min{ui : di > 0}, we have

α1 − ∥∆u∥∞ ⩽ min{ui +∆ui : di > 0} ⩽ α1 + ∥∆u∥∞. (4.23)

Now, if ui = α1, then ui +∆ui ⩽ α1 + ∥∆u∥∞; hence, using the left-hand sides of (4.22)

and (4.23),

min{ui +∆ui : di > 0}+ τ ⩾ α1 + ∥∆u∥∞ ⩾ ui +∆ui, (4.24)

correctly classifying the component as α1. For the other possibility, suppose ui ⩾ α2 (so

that it may be α2, or α3, or so on). Noting that ui+∆ui ⩾ α2−∥∆u∥∞ = α1+β−∥∆u∥∞,

52

and using the right-hand sides of (4.22) and (4.23),

min{ui +∆ui : di > 0}+ τ < α1 + β − ∥∆u∥∞ ⩽ ui +∆ui, (4.25)

ensuring that the component is not classified as α1.

Since ui = zBi
/di = (M−1

B b)i/(M
−1
B M·j)i where di > 0 and ui = 0 otherwise, we see

that u, and hence β, is a deterministic function of M , b, B, and (via j) c. Let u1∼2
min

be equal to the smallest positive value of β produced in this way across all bases B
that reach line 18 (leaving variable choice) with more than one distinct value of ui over

1 ⩽ i ⩽ m where di > 0, and u1∼2
min := +∞ if none such exists. Suppose that we have

found some value of τ satisfying 0 < τ < u1∼2
min, giving τ < β for every possible β (and also

ensuring that u1∼2
min − τ > 0). Then ∥∆u∥∞ < min{τ, u1∼2

min − τ}/2, which is equivalent to

2∥∆u∥∞ < τ < u1∼2
min − 2∥∆u∥∞, ensures that (4.22) holds regardless of the basis B, and

hence all components are correctly classified.

Finally, using Lemma 4.8, we see that for any given basis, ∥∆u∥∞ = O(ϵ), and

hence for any of the finite number of possible bases, there exists ϵ such that ∥∆u∥∞ <

min{τ, u1∼2
min − τ}/2 for any given value of 0 < τ < u1∼2

min. If we take the minimum such ϵ

across all bases B, then we will have ∥∆u∥∞ < min{τ, u1∼2
min−τ}/2 regardless of the basis.

Furthermore, if τ ∗ is any value of τ obeying 0 < τ < u1∼2
min, then it is clear that any

0 < τ < τ ∗ will also obey this condition. Similarly, if ϵ∗ is a value of ϵ such that regardless

of the basis, ∥∆u∥∞ ⩽ κϵ∗ < min{τ, u1∼2
min − τ}/2, where κϵ∗ is an instantiation of O(ϵ),

then any 0 < ϵ < ϵ∗ also obeys this condition (noting that ϵ is effectively a parameter of

∥∆u∥∞).

4.8 Proof of δ-Completeness: Proof of Termination,

and Conclusion

As determined in Section 4.7, the following conditions are sufficient for correct behaviour

of the simplex algorithm, at any iteration k ⩽ n̄!/(n̄−m)!:

1. τ < −r−max/2

2. ∥∆r∥∞ ⩽ τ

3. τ < d+min/2

4. ∥∆d∥∞ ⩽ τ

5. τ < u1∼2
min

6. ∥∆u∥∞ < min{τ, u1∼2
min − τ}/2

Along with the following note about −r−max/2, d
+
min/2, and u

1∼2
min, the problem is therefore

reduced to showing that ∥∆r∥∞, ∥∆d∥∞, and ∥∆u∥∞ go to 0 as ϵ→ 0.

53

We do not compute the values −r−max/2, d
+
min/2, and u

1∼2
min, but they exist, are deter-

mined entirely by the input dataM , b and c, and are known to be positive (although they

may be infinite). The definitions of these “latent values” are:

� r−max is the maximum (i.e. least negative) negative value across all bases B and all

1 ⩽ j ⩽ n̄ of the exact reduced cost rj = cj−(M·j)
⊤M−⊤

B cB that would be computed

by the exact version of Algorithm 4.2 for the given basis.

� d+min is the minimum (i.e. least positive) positive value across all bases B and all

1 ⩽ i ⩽ m of the exact entering variable coefficient di = (M−1
B)i·M·j that would

be computed by the exact version of Algorithm 4.2 for the given basis (given the

entering variable j chosen by this version of the algorithm for this basis, where

applicable).

� u1∼2
min is the minimum (positive) value across all bases B (if applicable, or else +∞)

of the absolute difference between the smallest and second-smallest distinct exact

values of ui = zBi
/di (where di > 0), among those (across 1 ⩽ i ⩽ m) that would

be computed by the exact version of Algorithm 4.2 for the given basis (given the

primal basic solution zB and entering variable coefficient vector d computed by this

version of the algorithm for this basis, where applicable).

Now, clearly, there exists a value τ ∗ such that any 0 < τ † ⩽ τ ∗ satisfies conditions

1, 3, and 5. For any such value τ †, Lemma 4.9 tells us that it will then be possible to

find some ϵ > 0 that is small enough to enable ∥∆r∥∞, ∥∆d∥∞, and ∥∆u∥∞ to satisfy

conditions 2, 4, and 6 with τ := τ †.

Lemma 4.14. For each M, b, c, and initial basis B, there exists a tolerance value τ ∗

such that for any τ ⩽ τ ∗, there exists a precision with unit roundoff ϵ∗ such that for any

precision with smaller unit roundoff ϵ ⩽ ϵ∗, Algorithm 4.2 with tolerance τ and a precision

with unit roundoff ϵ behaves the same as the exact algorithm (where τ = 0 and ϵ = 0) at

every part of every iteration, thereby giving the same results (status and basis).

Proof. Clearly, for eachM, b, c, there exists some pairing (τ ∗, ϵ∗) satisfying all four of Lem-

mas 4.10, 4.11 and 4.13 and Corollary 4.12. First, we find values of τ capable of satisfying

each lemma, and take the minimum, which we may call τ ∗. Then, we find precisions with

unit roundoffs ϵ such that (τ ∗, ϵ) satisfies each lemma, and take the precision with the

minimum such ϵ, which we may call ϵ∗. The resulting pairing (τ ∗, ϵ∗) then satisfies all

four lemmas.

This parameter choice ensures (via Lemma 4.10) identical behaviour at lines 11 (op-

timality determination) and 13 (entering variable choice) in each iteration, provided that

the basis is the same at the start of the iteration. Since the entering variable will be

the same, we then have identical behaviour (via Corollary 4.12) at line 15 (unbounded-

ness determination), and (via Lemma 4.11) agreement on the value of each element of

the Boolean conjunction d̂ ⩽ τ1m. We then have all of the preconditions necessary for

54

Lemma 4.13 to ensure identical behaviour at line 18 (leaving variable choice), should it

be reached.

This is immediately sufficient for behaviour to be identical during the first iteration,

provided that the initial basis is the same. Since this identical behaviour property guar-

antees that the bases being equal at the start of an iteration means that they will also

be equal at the end of the iteration, we can see that by induction, the entire sequence of

bases encountered, as well as behaviour at every part of every iteration, will be the same.

Clearly, for any τ ∗ satisfying the above conditions, any 0 < τ ⩽ τ ∗ will similarly

satisfy them. Similarly, for any τ and ϵ∗ satisfying the above conditions, τ paired with

any 0 < ϵ ⩽ ϵ∗ will also satisfy them. As the final basis is a function only of the pivoting

(and termination) decisions made during the algorithm, we find that both algorithms give

the same results.

Lemma 4.15. Algorithm 4.1 always terminates in finite time.

Proof. When Algorithm 4.2 is called at line 8 of Algorithm 4.1, M, b, c are passed in,

along with the initial feasible basis BI , and the simplex algorithm proceeds as for (4.2).

The objective function c⊤z is a positive sum of non-negative variables, meaning that the

minimisation is bounded below by 0. Referring to Section 4.1.4, this ensures that the exact

version of Algorithm 4.2 (as defined in Section 4.2) would not return a result of unbounded.

Indeed, in the exact case, the algorithm would terminate before reaching the iteration cap

(because of Bland’s rule), the result would be optimal, the returned basis MB would be

invertible, and the corresponding basic solutions (both the primal solution z and the dual

solution y) would in fact be feasible and optimal (for (4.2) and (4.3), respectively). By

the strong duality theorem (Theorem 4.1), we would have c⊤z = b⊤y, where y =M−⊤
B cB,

zB =M−1
B b, and zN = 0.

Now, suppose that b⊤y ⩽ 0. Then, naturally, c⊤z ⩽ 0, so that, in fact, using the

construction of c and the non-negativity of z (from (4.2)), we would have t = 0 and s = 0

(using the decomposition z = [t, s, x] as in Section 4.1.1). This gives t− s = 0, while we

also have x ⩾ 0 (again from non-negativity of z), meaning that the condition at line 20

is met, so that Algorithm 4.1 would terminate at line 21.

Otherwise, b⊤y > 0 with y dual feasible, meeting the condition at line 18, so that

Algorithm 4.1 would terminate at line 19.

Recall that this is for the hypothetical case in which it invoked the exact version of

Algorithm 4.2. Using Lemma 4.14, this means that Algorithm 4.1 also terminates, in the

current iteration, if, for the computed values M, b, c,BI (which are functions only of the

inputs A, b), the tolerance τ and (for this tolerance) unit roundoff ϵ are sufficiently small.

This, in turn, means that by the countability of N×N, Algorithm 4.1 always terminates

after a finite number of calls to Algorithm 4.2 (whose iteration count is explicitly bounded),

and hence in finite time.

Theorem 4.16. Algorithm 4.1 is a δ-complete decision procedure for satisfiability over

the class of formulas defined by (1.4).

55

Proof. Due to Lemma 4.15, Algorithm 4.1 always terminates in finite time. This result

is either unsat or δ-sat. If it is unsat, then by Lemma 4.3, the input formula is indeed

unsatisfiable. Similarly, if it is δ-sat, then by Lemma 4.3, the δ-weakening of the input

formula is satisfiable. Algorithm 4.1 hence satisfies Definition 1.2 for the class of formulas

that it accepts as input.

Algorithm 4.1 accepts as input a problem in the form (4.1), which is derived from (1.4)

by a chain of equivalences.

56

Chapter 5

δ-Complete General Linear

Programming Method

The previous two chapters have focused on using linear programming (LP) techniques

to solve satisfiability problems. However, linear programming is a more general problem

that has a linear objective function in addition to the linear constraints. The solution

must be both feasible, which means that it satisfies the linear constraints, and optimal,

which means that it optimises the objective function. This chapter extends the concept

of δ-completeness to the solution of general LP problems, and presents an algorithm that

is proven to be δ-complete (using this new definition) over the set of all possible LP

problems.

5.1 The Top-Down View

In Section 1.4, the concept of a δ-complete decision procedure is defined for decision

problems over Boolean formulas where every proposition is an atomic formula of the form

t ⩾ 0, where t is an arbitrary arithmetic term.

In Section 4.1.1, the decision problem for the case where each term t is linear is

formulated in (4.2) using standard linear algebra notation. In this case, because we are

solving a satisfiability problem, M and c must have a particular value (with respect to

the original problem matrix A) so that the sum of infeasibilities is minimised. Also, the

expression for the minimum is set equal to zero, converting the optimisation problem into

the required decision problem.

Here, we consider the more general problem where M and c may be arbitrary, and we

are not only testing for equality of the minimum to a particular value, but asking for the

value of that minimum, whatever it may be. Although this seems like a more difficult

problem, it is in fact solved using the same procedure.

The problem considered is therefore

min
x∈Qn

{
c⊤x such that Ax = b, x ⩾ 0

}
, (5.1)

57

where, as is conventional in the literature, I have used A and x, in place of the M and

z of Section 4.1.1, with A ∈ Qm×n. Note also that the feasibility conditions here are the

same as the satisfiability problem (1.6).

We now require a new definition of δ-completeness, because, as mentioned above,

the previous definition only covers decision procedures. For the satisfiability component

of (5.1) (usually called feasibility), namely the conditions Ax = b, x ⩾ 0, it would at first

seem that we can simply relax them as in (1.8). However, this will in fact prove to be

unhelpful.

For the optimality component, the most logical and helpful thing to do, from the end-

user perspective, is to provide some sort of guarantee about the optimal value. Unfortu-

nately, it is not possible to do this by simply applying the same logic about δ-feasibility

to the dual feasibility conditions, because there is no direct relationship between these

conditions and the distance to the optimal value.

So we must instead look directly at the optimal value. If we can bound it rigorously

to an interval of size no greater than δ, and the feasibility conditions are also δ-satisfied

by a given vector x attaining an objective value within this range, then it seems that we

can meaningfully say that the found approximate solution is a δ-satisfying assignment for

the optimisation problem, which we may then declare δ-satisfiable. If an algorithm, given

any linear program in the form (5.1), either finds a δ-satisfying assignment within finite

time, or else declares the problem either infeasible or unbounded, then we may say that

it is a δ-complete algorithm for linear programming.

5.2 The Practical View

Since linear programming is typically solved by a method that finds an individual optimal

assignment to the feasibility constraints, it makes sense for the definition to assume that

the algorithm will return such an assignment when successful. In fact, it turns out that in

order to provide a δ-enclosure on the optimal value, which we need in order to guarantee

that our assignment gets us within δ of the optimal value, we in fact need two assignments:

one to give the lower bound (which, assuming that we are minimising, must be rigorously

dual-feasible, but may be arbitrarily primal-infeasible), and one to give the upper bound

(which must be rigorously primal-feasible, but may be arbitrarily dual-infeasible).

It therefore looks like our new definition of a δ-complete algorithm for LP need not

mention δ-satisfaction of the feasibility conditions at all: exact feasibility, either primal

or dual (but not necessarily both) is in fact required. Note that if a given basis is both

exactly primal feasible and exactly dual feasible, then it is in fact exactly optimal – we

therefore obtain efficiencies by the use of a δ-complete algorithm only in the case where

our algorithm obtains two separate bases, one of which is primal but not dual feasible,

and the other of which is dual but not primal feasible, before it obtains an exactly optimal

basis. This may seem unlikely, but it is possible, and it may be more likely to occur in

58

especially large and complex problems.

Definition 5.1. A δ-complete algorithm for linear programming is an algorithm that,

when given any linear programming instance (in a form dependent on the design of the

algorithm, but with objective function c⊤x) terminates and outputs exactly one of the

following symbols:

1. δ-optimal only if there exist assignments x and y to the primal and dual optimisa-

tion variables (respectively) such that x is exactly primal feasible, y is exactly dual

feasible, and the duality gap |c⊤x− b⊤y| ⩽ δ;

2. infeasible only if the LP is infeasible;

3. unbounded only if the LP is unbounded.

Note that unlike in the satisfiability case, these possibilities are mutually exclusive: if

x exists, then the problem is feasible, and if y exists, then it is bounded. Also note that

we may have c⊤x = b⊤y (which is guaranteed if x and y may belong to the same basis),

in which case the solution is exactly optimal.

To interpret the δ-optimal case, we must recall that c⊤x is the primal objective function

of an exactly primal-feasible point, which means that by the duality theorems, it serves as

a rigorous upper bound on the objective function (that is being minimised). Similarly, b⊤y

is the dual objective function of an exactly dual-feasible point, which means that again

by the duality theorems, it serves as a rigorous lower bound on the objective function.

In this case, therefore, we have established an enclosure of size at most δ on the true

optimum value.

It is easy to see how this definition could be generalised to other types of optimisation

problem and solution method, provided that the method can determine infeasibility and

unboundedness, and has some concept of duality gap: the infeasible and unbounded cases

remain the same (but with LP replaced by the appropriate problem type), while the

δ-optimal case requires simply that the problem is determined to be neither infeasible

nor unbounded (and hence both primal and dual feasible), and that the duality gap

is determined to be bounded by δ. If the method provides either a primal or a dual

objective function iterate, then this, in combination with the corresponding duality gap,

yields the desired enclosure on the true objective function value. However, these values

must be rigorously computed, just as the primal and dual objective function values are

in Algorithm 5.1 prior to determining a result of δ-optimal.

5.3 Proof of δ-Completeness

The pseudocode for the δ-complete general LP algorithm is given in Algorithm 5.1. First,

we show correctness of the algorithm (including that its determination of a δ-optimal

result is always correct). Then, we will show that the algorithm terminates. Together,

this will prove that the algorithm is δ-complete according to Definition 5.1.

59

Algorithm 5.1: δ-complete full-LP simplex algorithm
input : Matrix A ∈ Qm×n (with full row rank, which implies that m ⩽ n) and vectors b ∈ Qm and c ∈ Qn as in

(5.1);
Optimality threshold δ ∈ Q.

output: Result symbol ∈ {δ-optimal, infeasible, unbounded};
Final bases BL and BU ;
Actual optimality bound δ ∈ Q (where applicable).

1 begin
2 n̄ := 2m+ n;

3 M :=
[
Im, −Im, A

]
; // Feasibility LP

4 Set the feasibility LP objective coefficient vector: c̄ ∈ Qn̄ so that c̄i = 1 where i ⩽ 2m, and c̄i = 0 otherwise;

5 Set the initial feasibility LP basis BF = [BF
1 ,BF

2 , . . . ,BF
m] such that for each 1 ⩽ i ⩽ m, we have BF

i = i if

bi > 0 and BF
i = m+ i if bi ⩽ 0;

6 for k := 0 to +∞ do
7 for all (ϵi, τj) ∈ N× N such that i+ j = k do
8 try
9 Solve the feasibility problem Ax = b, x ⩾ 0 approximately using Algorithm 4.2 with M , b,

c := c̄, initial basis B := BF , the floating-point precision with unit roundoff ϵi, and the
tolerance τj , yielding a new basis B for M and approximate final objective function value ω̂;

10 catch Simplex returns status other than optimal
// Incorrect result; feasibility LP is always feasible and bounded

11 Go to next precision;

12 if ω̂ > τj then
// Indicates infeasibility of original LP

13 try
14 Factorise the basis matrix MB in rational arithmetic, yielding the inverse basis matrix

M−1
B ;

15 catch Basis is non-invertible
16 Go to next precision;

17 zFB := M−1
B b;

18 ωF := c̄⊤B zFB ;

19 y := M−⊤
B c̄B;

20 r := c̄−M⊤y;

21 if zFB ⩾ 0 and r ⩾ 0 and ωF > 0 then
22 return infeasible;

23 if the returned basis contains indices below 2m+ 1 then
24 Replace these with arbitrary non-basic indices of at least 2m+ 1 and not already in the basis

(recall that m ⩽ n);

25 Solve the optimality problem (i.e. input LP) approximately using Algorithm 4.2 with M := A, b,
c, initial basis B := B2m+1,...,2m+n, the floating-point precision with unit roundoff ϵi, and the
tolerance τj , yielding a status (optimal or unbounded), a new basis B for A, and (if unbounded)
the last chosen entering variable index p;

26 try

27 Factorise the basis matrix AB in rational arithmetic, yielding the inverse basis matrix A−1
B ;

28 catch Basis is non-invertible
29 Go to next precision;

30 xB := A−1
B b;

31 if xB ⩾ 0 then
// Primal feasible; upper bound valid

32 ωU := c⊤BxB;

33 BU := B;

34 y := A−⊤
B cB;

35 r := c−A⊤y;
36 if r ⩾ 0 then

// Dual feasible; lower bound valid

37 ωL := b⊤y;

38 BL := B;
39 else if rp < 0 and xB ⩾ 0 and the returned status is unbounded then

40 d := A−1
B A·p;

41 if d ⩽ 0 then
42 return unbounded ;

43 if ωU and ωL are both set, and ωU − ωL ⩽ δ then
44 return δ-optimal(δ := ωU − ωL);

60

Lemma 5.2 (Correctness). Algorithm 5.1 returns only correct results (using the definition

of δ-optimality from Definition 5.1).

Proof. If the algorithm returns infeasible at line 22, then we have found an exactly primal

and dual feasible vector zFB that causes the objective function c̄⊤Bz
F
B of the feasibility LP

to be positive. Primal and dual feasibility means that this objective function value is

optimal. Since the objective function is the sum of infeasibilities of the original LP, and it

was being minimised, this means that a sum of infeasibilities of 0 is unattainable; hence,

the original LP is infeasible, as claimed.

If the algorithm returns unbounded at line 42, then there exists an exactly primal-

feasible basis B for A (since xB ⩾ 0) such that applying the inverse basis matrix A−1
B

(which yields the tableau for that basis) transforms a column A·p of the original tableau

to a vector A−1
B A·p that is entirely nonpositive. The variable corresponding to such a

tableau column (which must of course be non-basic, as otherwise it would be a unit

vector after the transformation) can be made arbitrarily positive without breaking primal

feasibility, since any increase can be balanced in each row by increasing that row’s basic

variable – which appears in that row only, and with a coefficient of 1. Since, ignoring

the constraint matrix, all variables are bounded only by their lower bound of zero, none

of these bounds is broken either. As the transformed objective function coefficient for

this variable, rp, is negative, and the basic variables by construction do not appear in the

transformed objective function, this enables the objective function to be made arbitrarily

negative without breaking feasibility. Hence, since the transformed LP is by construction

equivalent to the original, the LP is unbounded.

If the algorithm returns δ-optimal at line 44, then there exists an exactly primal-

feasible basis BU with corresponding primal variables xBU (primal feasibility being ensured

by xB ⩾ 0 and the basic construction of xB) and primal objective function value ωU =

c⊤BUxBU , and an exactly dual-feasible basis BL with corresponding dual variables y (dual

feasibility being ensured by r = c − A⊤y ⩾ 0 and the basic construction of y) and dual

objective function value ωL = b⊤y such that ωU − ωL ⩽ δ, which satisfies the definition

of δ-optimality from Definition 5.1. (Note that since ωU − ωL > 0 is ensured by weak

duality, it is not necessary to take the absolute value.)

What we have shown so far is that the algorithm can only return a correct result.

That is all very well, but how do we know that it will ever encounter a correct result? For

this, we must know a little more about the error bounds of various quantities produced by

the algorithm. Fortunately, the algorithm is very similar to that of Chapter 4, meaning

that only one new error lemma is needed:

Lemma 5.3 (Objective function value total error). If ω̂ = ĉ⊤B ẑB, and ẑB = flϵ(M
−1
B b̂)

using (4.7), and M̂, b̂, ĉ obey (4.4), (4.5) and (4.6), and we define ∆ω := ω̂ − ω where

ω = c⊤BzB and zB =M−1
B b, and ∆zB := ẑB − zB, then

|∆ω| = O(ϵ) as ϵ→ 0, (5.2)

61

for fixed M, b, c, and B.

Proof. Expanding the definition, we have

∆ω = ω̂ − ω = ĉ⊤B ẑB − c⊤BzB = (cB + λcB)
⊤(zB +∆zB)− c⊤BzB

= c⊤B∆zB + λc⊤BzB + λc⊤B∆zB.
(5.3)

Using (4.6) and Corollary 4.6, we have |λc| := |ĉ− c| ⩽ ϵ|c| and hence ∥λc∥∞ = O(ϵ), and

∥∆zB∥∞ := ∥ẑB − zB∥∞ = O(ϵ). Additionally using the fact that ∥zB∥∞ =
∥∥M−1

B b
∥∥
∞ =

O(1), this gives

|∆ω| ⩽ m∥cB∥∞∥∆zB∥∞ +m∥λcB∥∞∥zB∥∞ +m∥λcB∥∞∥∆zB∥∞
= O(1)O(ϵ) +O(ϵ)O(1) +O(ϵ)O(ϵ) = O(ϵ).

(5.4)

And along with this single new error lemma, we need only a single new correctness of

behaviour lemma. Note that unlike Lemma 5.2, this makes an assertion not about the

results that can be returned by the algorithm, but about its inner workings.

Lemma 5.4 (Correct infeasibility determination). For each A, b, c, there exists some

tolerance τ ∗ and some precision with unit roundoff ϵ∗ such that, provided that the floating-

point simplex algorithm (Algorithm 4.2) with this tolerance and precision as called at line 9

of Algorithm 5.1 returns the result optimal, Algorithm 5.1 with this tolerance and precision

then proceeds to behave exactly the same at line 12 as the exact version of Algorithm 5.1,

in which τ = 0 and rational arithmetic is used (so that, effectively ϵ = 0). Furthermore,

this condition applies for any 0 < τ ⩽ τ ∗ (but potentially not with the same value of ϵ),

and for any such τ , there exists a corresponding precision with unit roundoff ϵ† such that

for any precision with unit roundoff ϵ ⩽ ϵ†, the condition applies for (τ, ϵ).

Proof. The return of optimal ensures that ω̂ is defined and line 12 of Algorithm 5.1 is

reached. There is “correct” behaviour (identical to the exact version) at line 12 if and

only if

ω̂ > τ ⇐⇒ ω > 0. (5.5)

Defining ∆ω := ω̂ − ω, this may be rewritten

ω > τ −∆ω ⇐⇒ ω > 0. (5.6)

Clearly, if τ − ∆ω ⩾ 0, then the forward implication is satisfied. From Lemma 5.3,

we have |∆ω| = O(ϵ) as ϵ → 0, for any given M, b, c and B. This means that for any

τ > 0 and valid basis B, there exists some ϵ∗ > 0 such that for any 0 < ϵ ⩽ ϵ∗, we have

|∆ω| ⩽ τ when ω̂ is calculated using floating-point arithmetic with unit roundoff ϵ, and

hence this forward implication. If we take the minimum such value of ϵ∗ across all of the

62

finite number of bases B forM, b, c, then we acquire a value ϵ∗ (corresponding to the given

τ) such that any 0 < ϵ ⩽ ϵ∗ satisfies the forward implication regardless of basis.

Conversely, suppose that we define ω+
min to be the minimum positive value of ω across

all of the finite number of possible bases B (and +∞ if no such value exists), noting

that for each basis the value ω = c⊤BzB = c⊤BM
−1
B b depends only on the basis itself and

the fixed input values M, b, c. [Although we do not compute it, this “latent” value, like

those described in Section 4.8, exists, is determined entirely by the input data M, b, c,

and is known to be positive (although it may be infinite).] Then the reverse implication

is satisfied if we have τ − ∆ω < ω+
min. If |∆ω| ⩽ τ , then this requirement becomes

τ < ω+
min/2. Clearly, for any τ ∗ > 0 satisfying this condition, it is also satisfied by any

0 < τ < τ ∗.

Next, we can combine Lemma 5.4 with the lemmas of Chapter 4 to derive our desired

termination lemma.

Lemma 5.5 (Termination). Algorithm 5.1 always terminates in finite time.

Proof. Up to and including line 11, Algorithm 5.1 is functionally identical to the beginning

portion of Algorithm 4.1, up to and including line 10 of that algorithm. This includes

the initialisation of both algorithms, which sets up the exact same feasibility LP, the two

nested loops, which are identically quantified in both algorithms, and the initial try-catch

block inside the inner loop, which runs the floating-point algorithm in exactly the same

way and responds identically to a non-optimal return value.

This means that just as stated in Lemma 4.15, the simplex algorithm at this point

proceeds as for (4.2), and in the “exact case”, in which exact arithmetic is used throughout

the algorithm (including both calls to Algorithm 4.2), so that ϵi = 0, and also τj = 0, we

can use the known results of Section 4.1.4. So again, the minimisation is bounded below

by 0, so a result of unbounded would be spurious and can safely be ignored. Again, in

the exact case, the algorithm would terminate before reaching the iteration cap (because

of Bland’s rule), the result would be optimal, the returned basis MB would be invertible,

and the corresponding basic solutions (both the primal solution z and the dual solution y)

would in fact be feasible and optimal (for (4.2) and (4.3), respectively).

At this point, however, we face something new: in line 12 of Algorithm 5.1, there is

a comparison between ω̂, which is an inexact value returned by Algorithm 4.2 and τj.

However, in the exact case mentioned above, ω̂ is the exact optimal objective value of

the feasibility LP, and τj = 0. This means that the if block is entered if and only if the

true objective value, c̄⊤Bz
F
B , is greater than zero. Hence, the recomputations in lines 17–18

will in this case yield ωF > 0. Along with the guarantee of primal and dual feasibility

mentioned above, this ensures that the algorithm would terminate at line 22.

Otherwise, in the exact case, if ω̂ ⩽ 0, we know that the true optimal objective value

is indeed 0 (meaning that the original LP is feasible - as shown in Section 4.1.1), and as

mentioned above, the returned basisMB is invertible. This means, for one thing, that any

63

indices below 2m+1, which correspond to variables that occur in the feasibility objective

function with coefficient 1, must have variable values of 0, and hence can be dropped

from the basis in line 24. Adding arbitrary indices of at least 2m+1 is then necessary to

maintain a square basis matrix, and adds additional columns of A to the basis. The full

row-rank of A guarantees that this can be done (if necessary), and yields primal feasibility

of the basis for the original LP [24, p. 71]. If no such change is required, then the basis is

already primal feasible for the original LP, after the index changes in line 25.

In the exact case, the second call to Algorithm 4.2 at line 25 also finds the exact result,

this time to the input LP, (5.1). The final basis is again invertible and primal feasible

(these conditions are always guaranteed by exact primal simplex, but dual feasibility is

not, in general), and the result (optimal/unbounded) is correct. This means that the

factorisation on line 27 succeeds, the recomputed xB is found to be nonnegative, and ωU

is set on line 32.

If the result is optimal, then the basis is in fact dual feasible, so the recomputed r is

found to be nonnegative, ωL is set on line 37, and (due to the strong duality theorem,

and because ωU and ωL come from the same basis) the difference ωU − ωL is zero, and

the algorithm terminates at line 44.

If the result is unbounded, then the recomputed final entering variable’s reduced cost,

rp, is found to be negative, the recomputed candidate update vector d is found to be

nonpositive, and the algorithm terminates at line 42.

Recall that this is in the hypothetical case in which rational arithmetic is used through-

out both algorithms, and τj = 0. In an actual iteration of the inner loop in Algorithm 5.1,

floating-point arithmetic with unit roundoff ϵi > 0 is used within both calls to Algo-

rithm 4.2, and for the comparison on line 12 (which is between two floating-point values

with this precision), and τj > 0. Due to Lemma 4.14, for each of the two calls to Algo-

rithm 4.2, of there exists a tolerance value τ ∗ such that for any 0 < τ < τ ∗, there exists

a precision with unit roundoff ϵ∗ such that for any 0 < ϵ < ϵ∗, the algorithm with this

tolerance and a precision with this unit roundoff behaves the same as the exact algorithm,

giving the same results. In addition, due to Lemma 5.4, the same can be said about the

behaviour of the comparison on line 12.

There is a complication here caused by the fact that the second call to Algorithm 4.2

is given a basis that depends on the outcome of the first. However, we can overcome this

by noting that there are a finite number of possible bases for each of the problems passed

to Algorithm 4.2. This means that we can minimise this τ ∗ across all bases for the second

problem (and the initial basis for the first problem, and the comparison mentioned above),

giving us a value that is guaranteed to work for all three, regardless of the starting basis

used for the second call. Then, for any τ † > 0 less than or equal to this minimum τ ∗,

Lemmas 4.14 and 5.4 assert the existence of a corresponding ϵ∗, for both LP problems (and

the intervening comparison), regardless of basis. So just as with τ ∗, we can minimise ϵ∗

across all bases for the second problem, and the initial basis for the first problem (and the

64

comparison). Any pair (τ †, ϵ†), where ϵ† ⩽ ϵ∗, is guaranteed to ensure correct behaviour of

Algorithm 4.2 in both cases, and at line 12 of Algorithm 5.1, meaning identical behaviour

throughout the current iteration of Algorithm 5.1, guaranteeing termination, as noted

above.

This means that by the countability of N× N, Algorithm 4.1 always terminates after

a finite number of iterations, and hence a finite number of calls to Algorithm 4.2 (whose

iteration count is explicitly bounded), and hence in finite time.

And finally, we can put together correctness and termination to prove δ-completeness.

Theorem 5.6 (δ-Completeness). Algorithm 5.1 is a δ-complete algorithm for linear pro-

gramming (according to Definition 5.1).

Proof. Due to Lemma 5.5, Algorithm 5.1 always terminates in finite time. The result

is either infeasible, unbounded, or δ-optimal. If it is infeasible or unbounded, then by

Lemma 5.2, the input LP is indeed infeasible or unbounded, respectively. On the other

hand, if it is δ-optimal, then Lemma 5.2 states that the LP satisfies the definition of

δ-optimality from Definition 5.1. Algorithm 5.1 hence satisfies Definition 5.1.

65

66

Chapter 6

Implementation

6.1 Interior-Point Algorithm

The δ-complete full-Newton step algorithm of Algorithm 2.1 was implemented straightfor-

wardly in a project called dcipm simple. For this, I used the dense matrix functionality

in Dlib,1 which I extended to work with the mpq class (rational) type from GMP2 in

place of the native floating-point types.

In order to certify the result, it is necessary to obtain some prior overestimate of

the number of iterations required to achieve an exact solution. As in the pseudocode of

Algorithm 2.1, I use a very crude overapproximation based on the product of ℓ2 norms of

the columns of the fully assembled problem matrix. This is likely to result in many more

iterations than necessary, except in the case of an early exit due to δ-sat.

Making matters worse, the use of rational arithmetic causes each iteration to be more

expensive than the last. There has been some research into the use of floating-point

arithmetic for interior-point methods, but the conditions for convergence to an exact

solution tend to be vague and problem-dependent [27].

6.2 Simplex for Satisfiability

The δ-complete satisfiability simplex algorithm of Algorithm 4.1 was implemented in two

variants, both as driver routines within my modified version of QSopt ex:3

1. As QSdelta solver, which uses phase I (feasibility) simplex to solve the problem,

which should be provided as an ordinary (otherwise arbitrary) LP with its objective

function set to zero;

2. As QSexact delta solver, which uses phase II (optimality) simplex to solve the

problem, which should be provided as a feasible and bounded LP whose objective

function is set to the sum of infeasibilities of the input problem.

1http://dlib.net/
2https://gmplib.org/
3https://github.com/martinjos/qsopt-ex

67

http://dlib.net/
https://gmplib.org/
https://github.com/martinjos/qsopt-ex

Note that despite the naming, both routines compute exactly δ-complete results.

In both cases, the iteration over tolerances is omitted; a single tolerance is used

throughout. This is because of limitations in QSopt ex. Because of the way the algo-

rithm is designed, this can only affect the termination property (not correctness).

In order to support SMT-LIB input files, and arbitrary Boolean combinations of lin-

ear inequalities, the δ-complete SMT solver dReal44 was heavily modified such that

the core ICP solver routine was replaced by my modified version of QSopt ex (either

QSdelta solver or QSexact delta solver, depending on command-line options). The

resulting program is called dLinear4.5

6.3 Simplex for Linear Programming

The δ-complete full-LP simplex algorithm of Algorithm 5.1 was implemented as a third

driver routine (QSdelta full solver) within my modified version of QSopt ex. As in

the satisfiability case, only a single tolerance is used, and the same comments apply.

To support SMT-LIB input files with arbitrary Boolean combinations of linear inequal-

ities, this routine was also integrated into dLinear4. In order to activate QSdelta full solver,

the solver must be provided an input file with one of the optimisation extension commands

supported by dReal4 (maximize or minimize), which is used to set the objective function

and sense before calling check-sat. Instead of delta-sat or unsat, this will now output

delta-optimal, infeasible, or unbounded.

If the Boolean combination of constraints asserted in the SMT-LIB input file encodes

more than one linear program (for instance, if it is a disjunction of conjunctions of linear

inequalities), then each will be solved in turn (with the same objective function). If any

one is found to be unbounded, then the whole problem is of course declared unbounded. If

all are found to be infeasible, then the whole problem is declared infeasible. Otherwise,

each feasible LP in the combination will yield an upper and lower bound on the objective

function, and in each case these will differ by at most the chosen δ.

A suitable upper and lower bound for the optimal objective value over the entire

domain is found (in a minimisation problem) by independently taking the minimum of

the upper and lower bounds across all of the feasible LPs. For the lower bound, the

reasoning is obvious: the true minimum objective value may be as low as the lowest

lower bound across all LPs. For the upper bound, it is only slightly less obvious: the true

minimum objective value can never be higher than the lowest upper bound across all LPs.

In a maximisation problem, the same reasoning is applied, except with both the lower

and upper bound independently maximised, rather than minimised, across all of the LPs.

It is simple to verify that in either case, the final upper and lower bound will differ by at

most δ.

4https://github.com/dreal/dreal4
5https://github.com/martinjos/dlinear4

68

https://github.com/dreal/dreal4
https://github.com/martinjos/dlinear4

Chapter 7

Evaluation

7.1 δ-Complete Interior-Point Method

As detailed in Section 6.1, I wrote an experimental (and fairly naive) implementation of

Algorithm 2.1, which I called dcipm simple. As the properties of this algorithm, at least

as discussed in this thesis, depend on the use of exact arithmetic, I used GMP rationals

for all numerical operations. The resulting implementation took 3 minutes 29 seconds to

solve a single 3x3 instance with δ = 1/32 (giving, in this case, an exact result). I concluded

that it would not be feasible to use interior-point methods without acceleration by inexact

(i.e. finite-precision) arithmetic.

In [27], it was noted that interior-point algorithms can still converge under certain

conditions even when finite-precision arithmetic is used. This would be an interesting

avenue for further research into δ-complete interior-point methods. However, in view of

the extreme complexity of interior-point methods, and the relative maturity and ubiquity

of simplex methods, I decided that the time constraints of my project made it more

sensible and profitable to focus on simplex for the time being.

7.2 δ-Complete Simplex Methods

Algorithms 4.1 and 5.1 have been implemented in C++ in my fork of the software package

QSopt ex (“QSopt Exact”), which I shall here call QSopt dc (“QSopt Delta-Complete”).

Note that although a δ-complete solution is not necessarily an exact solution to the original

problem, QSopt dc does find exact solutions to the δ-relaxations of the input problems.

Just like QSopt ex, QSopt dc can be invoked directly using a command-line tool called

esolver, in which case LP problems in .mps or .lp format may be processed. Alterna-

tively, dLinear4, which is my heavily modified fork of dReal4, incorporates QSopt dc into

an SMT-style framework, allowing more complex queries in .smt2 format (with arbitrary

Boolean connectives) to be processed, with or without a linear objective function (i.e.

either LP or pure linear satisfiability).

Although the algorithms as described in this thesis use Bland’s rule as the simplest

69

way to enable theoretical termination properties to be derived, the implementations do

not. This follows standard practice in the field of linear programming, where it is recog-

nised that cycling (even in the presence of degeneracy) almost never occurs in real-world

problems, and Bland’s rule (in the pure form used for didactic purposes) is far too costly

to be justified. In the absence of degeneracy-induced cycling (and memory-permitting),

the termination property (Lemma 4.15) still holds for this implementation. A more so-

phisticated implementation might combine an efficient pivoting strategy with Bland’s rule

as a backstop.

Most tests were carried out on the Rocket HPC Service at Newcastle University, using

a single core on an Intel Xeon E5-2699 v4 CPU with 128 GB memory shared between

44 cores. Tests requiring a large amount of memory were instead carried out on the

Newcastle University School of Computing’s own (virtually disused) HPC system, using

a single core on an Intel Xeon E5-2690 v2 CPU with 512 GB of memory shared between

24 cores.

The SMT-LIB benchmarks were generally found to be less than ideal for testing my

approach, because they typically equate to a large disjunction of relatively small linear

conjunctions, while my solver is optimised for large conjunctions. More suitable problems

were found within the linear programming community. My solvers were tested on both

types of problem.

7.3 The Sloane–Stufken Problem

The Sloane–Stufken problem is a family of LPs introduced in [28] and used for benchmark-

ing in [9, 18]. The generated LPs are dense and feasible, and their dimensions grow rapidly

with the problem parameters. Many are incorrectly found infeasible by the commercial

CPLEX simplex and log-barrier solvers [9, 18].

In this thesis, I use the Sloane–Stufken LPs as generated by the program eg sloan

from QSopt ex [18]. However, as my solver is a satisfiability solver, the objective functions

were removed (including for the esolver tests).

In Table 7.5, cvc4 apx refers to CVC4 with the --use-approx command-line option,

which causes it to use a double-precision LP solver to bootstrap its exact rational solver,

which produces the final result. Normally, CVC4 uses a rational solver only, and these

timings are given in the cvc4 column. CVC4 was compiled in competition mode with

GPL dependencies enabled, and all relevant best-performance options turned on.

esolver indicates the original QSopt ex solver of that name.

dlin refers to my solver dlinear2, d0 and dmax indicate a delta parameter of 0 and

the maximum tested, respectively, and pI indicates the phase I version of dlinear2, which

uses phase I simplex (i.e. the solver’s built-in feasibility detection) instead of the usual

phase II. These can effectively be thought of as two separate solvers, although they share

some code, and both implement the same algorithmic concept.

70

The bits columns indicate the final floating-point precision used by the solver before

termination. This is present only for the esolver and dlinear2 tests, as only these solvers

use variable-precision floating-point.

7.3.1 Comparison with third-party solvers

First of all, there is, on most instances, a clear division between CVC4 and Z3 on the one

hand, and the better-performing QSopt ex-based solvers esolver and dlinear2 on the other.

The columns dlin d0 and dlin pI d0 are directly comparable with the other solvers, as

this parameter setting (delta=0) requires dlinear2 to find a complete (as opposed to δ-

complete) solution.

The times and bits in the esolver columns seem to be inconsistent with those reported

in [18, p. 30]. Even with the original problem files and the original precompiled binary,

I was unable to reproduce Espinoza’s results. I put this down to differences in computer

architecture.

Between CVC with/without --use-approx and Z3, the optimal solver seems to be

highly problem-dependent.

The variations among dlin d0 and dlin pI d0 are entirely the result of the different

(but equivalent) strategy that the phase I version of dlinear2 uses for determining satisfi-

ability. Specifically, the phase I version uses QSopt ex’s built-in feasibility determination

support (so-called phase I simplex), while the regular version uses the normal optimiser

(phase II simplex) with an artificial objective function (which makes it equivalent to phase

I simplex). Surprisingly, the regular version outperformed the phase I version on almost

all of the instances from [18]. However, on the new instances that I tested (those with

s1 = 40, s2 = 80, and k1 > 10), the phase I version was the best-performing by far.

These differences may be accounted for by variations in the solver implementations for

phase I and phase II simplex.

Daniel Espinoza’s esolver mostly outperforms dlinear2 with delta=0 on the instances

from [18], although there are a couple of exceptions. There are a number of things that

could account for this: dlinear2 has a more verbose input format which is more expensive

to parse, and it uses QSopt ex’s public API to input the data, whereas QSopt ex’s built-in

MPS parser uses an internal interface. dlinear2 also uses an extensively modified version

of QSopt ex which does a slightly different set of rational checks. However, on the new

instances (s1 = 40, s2 = 80, and k1 > 10), the phase I version of dlinear2 with delta=0

outperformed esolver – indeed, it was the best-performing complete solver on all of these

instances.

7.3.2 Maximum deltas / minimum precisions

The final four columns of Table 7.5 show the performance of dlinear2 on the highest tested

deltas – leading, naturally, to termination at the lowest precision. (This delta varied

71

by problem.) For the regular version of dlinear2 (dlin dmax), this led to termination,

in every case, after only the double-precision solve (and rational check), in most cases

“outperforming” all of the other solvers. Of course, with delta > 0, dlinear2 may give

a result of delta-sat, which, although rigorous, is not equivalent to (indeed, is weaker

than) the results found by the other solvers. However, this is also an advantage of the

delta-complete approach: the ability to terminate once a result is “close enough”, while

still deriving a rigorous assertion about the problem (specifically, that a perturbation to

every bound of magnitude no more than delta leads to a satisfiable problem).

It is notable that the phase I version of dlinear2 seems much less likely to terminate

with double-precision. This can perhaps be explained by the fact that the QSopt ex

library’s phase I simplex solver, as used by the phase I version, uses a fixed tolerance to

determine feasibility (which is then used to determine satisfiability of the input problem),

whereas when phase II simplex is used, as in the regular version, determining satisfiability

is entirely the responsibility of the caller. Note that this fixed tolerance does not affect the

properties of Algorithm 4.1, as it effectively just imposes an artificial upper bound on the

value of τ required to guarantee termination, forcing it in some cases to call Algorithm 4.2

some finite number of additional times.

7.3.3 Comparison of deltas

dlinear2 was tested on each problem with a wide variety of deltas. I have chosen to

focus here on the phase I version of dlinear2, as this version more often terminates at

intermediate precisions, making it more useful as a delta-complete solver.

Table 7.1 shows the performance of the phase I version of dlinear2 on all tested

instances that could be made to halt at a range of different precisions. All quoted timings

are the full running times for Algorithm 4.1. The first was present in [18]; the rest were

derived from this instance by adding the same number to k1 and k2 (increasing both the

number of variables and the number of constraints quadratically) and double this number

to t (which has the effect of maintaining a problem with exactly 2 inequality constraints).

On all of these derived problems, the phase I version of dlinear2 was the most efficient

solver, as shown in Table 7.5. In addition, in Table 7.1 it can be seen that there is a

clear negative correlation between delta and running time. Although the deltas here are

probably too large to be of any practical use, this suggests that there may be problems

for which my algorithm provides a useful way to perform a breadth-first search of the

solution space, expending the minimal amount of time and energy to find an adequately

precise solution. This could be especially helpful for tackling much larger problems.

72

Table 7.1: Sloane–Stufken LP running times (seconds) and maximum deltas – delta-
complete solver; all precisions (3+-precision instances)

Parameters 288 bits 192 bits 128 bits double

s1 k1 s2 k2 t delta time delta time delta time delta time

40 10 80 10 19 0–103 2.13 104–1011 1.26 1012 0.20

40 15 80 15 29 0–103 38.68 104–107 26.72 108–1060 15.01

40 16 80 16 31 0–105 45.44 106–108 27.85 109–1010 9.12 1011 1.74

40 17 80 17 33 0–106 79.17 107–1020 51.43 1021–10308 26.97

40 18 80 18 35 0–107 86.54 108–109 46.77 1010 13.91 1011 3.11

40 19 80 19 37 0–108 548.53 109–1024 488.42 1025–10107 436.22

7.4 Infeasible Instances

All of the problems in Section 7.3 are dense, and satisfiable (i.e. the LPs are feasible). In

this section, I discuss my findings for some sparse, unsatisfiable problems (infeasible LPs)

from the popular netlib set.1 I singled out four problems in particular, because these were

the problems that could be induced to return a result of delta-sat.

I set a timeout of just 5 minutes (i.e. 300 seconds), as these are relatively small

instances by today’s standards. As can be seen in Table 7.2, Z3 and CVC4 without

--use-approx timed out on three of the instances. CVC4 with --use-approx didn’t

time out, but still took longer than any of the QSopt ex-based solvers on those three

instances.

esolver is (again) Daniel Espinoza’s QSopt ex solver. dlinear2 (unsat) gives the

timing corresponding to the deltas in row delta (unsat), and dlinear2 (delta-sat)

gives that corresponding to the deltas in row delta (delta-sat). unsat signifies a run

in which the solver was driven to give an exact result, while delta-sat signifies a run in

which it halted on one of the preceding (lower) precisions.

dlinear2 was outperformed by esolver in all cases where the solver proceeded to find

an exact result, which can again largely be explained by differences in the parser and

the precise details of the solving routine. However, it “outperformed” esolver when the

required precision was sufficiently low (i.e. when delta was sufficiently large). For cplex2,

qual and vol1, the deltas may be small enough to make a delta-sat result acceptable. This

again suggests the potential of Algorithm 4.1 for larger problems where the solving times

may be much more significant.

1http://www.netlib.org/lp/

73

http://www.netlib.org/lp/

Table 7.2: Netlib infeasible timings (seconds)

gran cplex2 qual vol1

z3 0.078 timeout timeout timeout

cvc4 0.946 timeout timeout timeout

cvc4 --use-approx 0.965 1.409 0.826 1.678

esolver 2.679 0.094 0.191 0.215

dlinear2 (unsat) 14.821 0.172 0.399 0.377

dlinear2 (delta-sat) 0.660 0.032 0.077 0.051

delta (unsat) 0–22 0–10−6.7 0–0.015 0–0.03

delta (delta-sat) 23+ 10−6.523+ 0.02+ 0.04+

Table 7.3: Full LP. Qprec = QSopt ex precision.
Qprec #inst QSopt ex QSopt dc SoPlexfac

#iter time #iter time ∆t #iter time ∆t

Any 564 3688.7 8.3 3688.7 12.9 1.55 4725.1 6.8 0.82

64-bit 498 3307.2 7.1 3307.2 11.6 1.63 4434.0 6.7 0.95

128-bit 63 8532.0 25.0 8532.0 27.9 1.12 7825.4 7.3 0.29

192-bit 3 5142.4 21.0 5142.4 25.4 1.21 4297.6 5.8 0.27

Table 7.4: Repeated SoPlex results.
Test set #inst SoPlexfac SoPlexrec

#ref #fac tfac t #ref #rec trec t ∆t

All 1144 1.9 0.95 0.18 3.1 69.8 6.70 1.13 5.3 1.69

[1, 7200] 592 2.0 0.97 0.36 9.4 132.9 10.59 2.72 20.4 2.16

[10, 7200] 316 2.0 0.98 0.68 24.7 234.8 14.92 7.03 85.3 3.45

[100, 7200] 148 2.0 0.98 1.39 41.7 399.6 19.98 18.40 276.9 6.64

74

Table 7.5: Sloane–Stufken LP running times (seconds) and precision bits – all solvers
Parameters cvc4 cvc4 apx z3 esolver dlin d0 dlin pI d0 dlin dmax dlin pI dmax
s1 k1 s2 k2 t time time time time bits time bits time bits time bits time bits

2 100 3 2 4 * 31.65 * 0.90 128 6.33 128 2.66 128 1.42 dbl 1.64 dbl
3 18 5 18 35 16983.45 8255.55 52079.51 84.01 128 141.41 128 44.98 128 2.01 dbl 12.25 dbl
3 20 5 20 35 * 46625.52 * 198.03 128 323.97 128 235.04 128 4.43 dbl 81.56 dbl
5 18 7 18 35 5475.33 18079.95 16792.50 76.16 128 141.33 128 218.40 128 2.57 dbl 218.92 128
11 20 13 20 30 4976.15 * 7109.50 � 128 2485.74 192 2726.95 192 5.07 dbl 2726.95 192
17 20 19 20 10 11580.10 795.24 177.26 9.95 192 62.29 192 73.34 192 5.26 dbl 6.09 dbl
19 20 23 20 10 16026.04 * 215.84 9.58 192 54.53 192 74.65 192 5.23 dbl 5.87 dbl
31 20 37 20 10 2677.64 109.24 105.94 15.58 288 95.84 288 108.31 288 5.36 dbl 6.55 dbl
40 10 80 10 19 9.76 9.12 11.19 1.95 128 2.49 128 2.04 192 0.13 dbl 0.20 dbl
40 11 80 11 21 20.47 29.16 24.58 4.84 192 3.67 128 3.77 192 0.26 dbl 0.30 dbl
40 12 80 12 23 44.18 29.84 37.54 15.60 192 13.80 192 7.72 192 0.29 dbl 4.94 128
40 13 80 13 25 96.84 67.31 70.35 24.84 192 31.50 192 12.72 192 0.43 dbl 8.02 128
40 14 80 14 27 180.35 2086.27 131.27 39.43 192 50.25 192 17.91 192 0.63 dbl 10.42 128
40 15 80 15 29 324.85 187.08 217.37 68.24 192 135.78 192 39.08 288 0.94 dbl 14.92 128
40 16 80 16 31 599.63 10877.56 357.84 143.27 192 367.44 192 45.58 288 1.32 dbl 1.74 dbl
40 17 80 17 33 891.23 12804.80 466.80 220.79 288 360.96 192 80.21 288 2.02 dbl 26.93 128
40 18 80 18 35 1672.97 * 885.13 527.66 288 632.75 288 87.03 288 2.79 dbl 3.11 dbl
40 19 80 19 37 2556.60 966.18 2322.77 752.82 288 1937.63 288 553.44 288 4.22 dbl 433.52 128
40 20 80 20 39 3706.65 * 4503.21 1253.26 288 2291.99 288 153.08 288 5.41 dbl 6.33 dbl
43 20 47 20 10 2182.81 370.06 143.71 21.26 288 119.71 288 121.55 288 5.49 dbl 6.89 dbl
61 20 73 20 10 2589.18 472.60 139.95 13.11 288 103.35 288 145.15 288 5.53 dbl 6.16 dbl

200 20 250 20 10 1200.98 1079.33 165.14 21.95 432 134.67 432 291.80 432 5.84 dbl 6.33 dbl

* Command timed out (> 16 hours) � Command exited with error (floating-point exception)

75

76

Chapter 8

Conclusion

In this thesis, three new δ-complete algorithms for linear problems were developed, and

proven to be δ-complete. The first two algorithms were concerned with pure linear satis-

fiability problems, which are also known as linear feasibility problems within the optimi-

sation community. The first was based on interior-point methods, while the second was

based on the simplex algorithm.

The third algorithm was concerned with general linear optimisation problems, and

was also based on the simplex algorithm. For this algorithm, since δ-completeness has up

to now only been defined for satisfiability algorithms, a new concept of δ-completeness

for linear optimisation algorithms was developed. This could potentially be extended to

other types of optimisation algorithm in future.

All three algorithms were then implemented. The simplex-based algorithm imple-

mentations show promise, because their timings were clearly able to come close to the

state-of-the-art on some problems.

However, I speculate that something could perhaps prove more useful than the im-

plementation or the evaluation are the theoretical proofs, which could perhaps provide

insights into the nature of linear optimisation itself.

8.1 Further Work

In this section, I present a number of directions for further work that would build upon

the work presented in my thesis, along with my present state of thinking about these

ideas.

8.1.1 LPs with irrational coefficients

My work is largely concerned with overapproximations. For instance, at each stage of

my δ-complete simplex algorithm (Algorithm 4.1), a particular floating-point precision

and tolerance are chosen – in essence, deciding on the level of overapproximation. And

in subsequent steps, the level of overapproximation is reduced, until a sufficiently precise

solution is obtained.

77

Irrational coefficients may be handled in a similar way, selecting rational coefficients

that approximate the irrationals, in such a way as to make the problem an overapproxima-

tion. And then, in subsequent steps, new coefficients may be chosen – getting progressively

closer to the irrational values, but always overapproximating. It would of course be natu-

ral to always use the closest floating-point values, at the current precision, to the irrational

values, on whichever side is necessary to make the problem an overapproximation.

For instance, suppose we have a constraint 2a + πb ⩾ c. Provided that (without

loss of generality) we are using a method that uses only nonnegative variables, we can

overapproximate this constraint with 2a+ pb ⩾ c, where the new constant coefficient p ∈
Q > π. If we get a result of unsat, then, since b ⩾ 0, we know that 2a+ pb ⩾ 2a+πb ⩾ c,

and hence the problem with π in place of p is also unsatisfiable, since it has a tighter

constraint.

If, on the other hand, we get a result of δ-sat, then we have 2a+pb−c ⩾ −δ. However,
in order to declare δ-sat, we need 2a + πb − c ⩾ −δ, which is a tighter constraint, since

pb ⩾ πb. So we have two cases: either we are able to verify (perhaps using some arbitrarily

chosen p′ < π) that the tighter constraint holds, or we are not, in which case we proceed

to the next precision/tolerance combination.

(Note that adapting this for Algorithm 4.1 requires the addition of a slack variable.)

The thorniest question here is whether this affects termination. This would require

further work – but my intuitive sense is that it should not, since we are always overap-

proximating by δ, and hence there should always be an overlap between the cases that can

trigger unsat and the cases that can trigger δ-sat, regardless of any irrational coefficients.

8.1.2 LPs with interval coefficients

Sometimes, there may be bounded measurement error in the problem coefficients, and

then it may be felt necessary to encode the uncertainties using interval coefficients. In

such a case, there is usually some unknown true value of the coefficient that lies within

the given interval. Such intervals should be handled similarly to irrational coefficients.

The basic idea is that you use one side of the interval for unsat and the other side for

δ-sat. The side to use for unsat is the side that gives you the slacker constraint, since this

makes the unsat a stronger statement (which hence implies unsat for any value within the

interval). Similarly to the case of irrationals, this is the value you feed into the simplex

solver (as a scalar floating-point value in the target precision, “widened” if necessary in

the direction of greater slackness). And the side to use for δ-sat is the side that gives you

a tighter constraint – making the δ-sat valid for any value within the interval (because it

is then valid even for the tightest version of the constraint). Again, similarly to the case

of irrationals, this can be checked after you have found a putative solution, and so this

value does not need to be passed to the FP solver.

Termination would again need further attention. However, perhaps surprisingly, my

intuition is that, in this case, it may not be possible to find a general proof – it may be

78

that certain interval-based problems can not be solved if the delta is too small relative to

the sizes of the intervals (but in a problem-dependent way).

8.1.3 Neural networks using alternative activation functions

In the introduction, I mentioned that my methods could be used to answer questions

about neural networks with the ReLU activation function. Something to note here is

that my work doesn’t apply directly even to ReLU neural networks: it only applies to

linearisations of them. As such, it could be applied to any network that can be linearised

– albeit that a linearisation of a sigmoid neural network will only be an approximation,

whereas a linearisation of a ReLU neural network can be exact over a given subset of the

input space, due to the network’s piecewise linearity. In the case of the sigmoid, it is

likely not only that the linearisation will be inexact, but also that the subsets of the input

space over which a given linearisation is sufficiently close (for any given application) will

be smaller than in the ReLU case. However, it would be interesting to do a comparative

analysis of the two types of network and their amenability to this sort of investigation

technique.

79

80

Appendix A

Important Interior-Point Results

from [2]

All results, equations and definitions in this chapter are copied verbatim from [2], and

are used (directly or indirectly) in Chapter 2. To reduce confusion, I have labelled equa-

tions from [2] with (R-X.XX), where that book’s label for them is (X.XX). I have also

prefixed the numbers of theorems, definitions, etc. from [2] with “R-”, turning Lemma I.1

into Lemma R-I.1, etc. I have not included proofs unless the text of the proof is required

for my analysis.

After their introduction, all constants and variables may be assumed to retain their

identities up to the end of this chapter.

A.1 Analytical Subject and Duality

The following two optimisation problems from [2, p. 18] form the main analytical subject

of the book. They are also direct dependencies of Lemma R-I.1. It is assumed that

A ∈ Rm×n, c, x ∈ Rn, and b, y ∈ Rm. A, b, c are constants while x, y are variables. (Note

that this also implicitly introduces constants m,n ∈ N.)

(P) min{c⊤x : Ax ⩾ b, x ⩾ 0}, (R-2.1)

(D) max{b⊤y : A⊤y ⩽ c, y ⩾ 0}. (R-2.2)

It is asserted that (P) is in canonical form. However, it is made clear that (D), which is

the dual of (P), is not in canonical form.

Now we have weak and strong duality, respectively:

Lemma R-I.1 (Weak duality – from [2, p. 18]). Let x be feasible for (P) and y

for (D). Then

b⊤y ⩽ c⊤x.

Note that “x is feasible for (P)” means that x is a member of the set of which (P)

takes the minimum, and likewise for y and (D).

81

Theorem R-I.26 (Strong duality theorem, from [2, p. 39]). For an LO prob-

lem (P) in canonical form and its dual problem (D) we have the following two

alternatives:

(i) Both (P) and (D) are solvable and there exist (strictly complementary) op-

timal solutions x for (P) and y for (D) such that c⊤x = b⊤y.

(ii) Neither (P) nor (D) is solvable.

Strictly complementary is defined as follows:

Definition R-I.18 (from [2, p. 35]). Two nonnegative vectors a and b in Rn are

said to be complementary vectors if ab = 0. If moreover a + b > 0 then a and b

are called strictly complementary vectors.

Note that ab is, by convention, the vector whose entries are obtained by multiplying

u and v componentwise, as in Appendix A.6.

A.2 From Optimisation to Inequalities

The duality gap is defined in [2, p. 19] as follows:

c⊤x− b⊤y. (R-2.4)

The solvability of the following inequality system from [2, p. 19] is shown there to

be necessary and sufficient for (P) and (D) to have optimal solutions x, y with vanishing

duality gap (i.e. such that c⊤x− b⊤y = 0):

Ax ⩾ b, x ⩾ 0,

−A⊤y ⩾ −c, y ⩾ 0,

b⊤y − c⊤x ⩾ 0.

(R-2.5)

The importance of the vanishing duality gap is captured by the following corollary (of

Lemma R-I.1). Recall the definition of “feasible” introduced in the previous section.

Corollary R-I.2 (from [2, p. 18]). If x is feasible for (P) and y for (D), and

c⊤x = b⊤y, then x is optimal for (P) and y is optimal for (D).

“Optimal solution” may seem redundant on its own, to one not versed in the opti-

misation literature, until you realise that they also speak of so-called “feasible solutions”

that are members of the set being optimised, but not optima.

82

A.3 Skew-Symmetry and Homogeneity

The following definitions from [2, p. 20]:

M̄ :=

 0 A −b
−A⊤ 0 c

b⊤ −c⊤ 0

, z̄ :=

 y

x

κ

, (R-2.7)

are used there to show that the problem of finding optimal solutions to (P) and (D) with

vanishing duality gap can be reduced to finding a solution of the following inequality

system (also from [2, p. 20]):

M̄z̄ ⩾ 0, z̄ ⩾ 0, κ > 0. (R-2.8)

Notice that the condition on κ ∈ R (a new variable) is a strict inequality, unlike the

others.

I call this system the homogeneous skew-symmetric inequality system, because the

matrix M̄ is skew-symmetric, and the solution space is transformed into a homogeneous

coordinate system by the introduction of κ.

A.4 The Interior-Point Condition

The interior-point condition is defined by:

Definition R-I.4 (IPC – from [2, p. 20]). We say that any system of (linear)

equalities and (linear) inequalities satisfies the interior-point condition (IPC) if

there exists a feasible solution that strictly satisfies all inequality constraints in

the system.

The following three numbered “equations” (and one unnumbered equation) from [2,

p. 21] are needed by Theorem R-I.5.

This first one effectively defines M , r, and z. Note that on the same page, it is

indicated that, for instance, en denotes an all-one vector of length n (etc.). ϑ ∈ R is a

new variable; everything else is already defined.

M =

 0 A −b

−A⊤ 0 c

b⊤ −c⊤ 0

 r

−r⊤ 0

, r =

 em − Aen + b

en + A⊤em − c

1− b⊤em + c⊤en

, z =

y

x

κ

ϑ

.
(R-2.11)

And then we have a couple more definitions, both from [2, p. 21]:

n̄ = m+ n+ 2,

83

q :=

[
0n̄−1

n̄

]
, (R-2.12)

followed by an new system of inequalities, also from [2, p. 21] – I call this the IPC

system:

Mz ⩾ −q, z ⩾ 0. (R-2.13)

Finally, the following theorem ties together all the different ways of expressing the

core problem up to this point:

Theorem R-I.5 (from [2, p. 22]). The following three statements are equivalent:

(i) Problems (P) and (D) have optimal solutions with vanishing duality gap;

(ii) If M̄ and z̄ are given by (R-2.7) then (R-2.8) has a solution;

(iii) If M and z are given by (R-2.11) then (R-2.13) has a solution with ϑ = 0

and κ > 0.

Moreover, system (R-2.13) satisfies the IPC.

A.5 The Slack Vector

This equation, from [2, p. 22], defines the slack vector s(z) in terms of the variable z ∈ Rn,

and constants M, q, all of which we have seen already:

s(z) :=Mz + q. (R-2.17)

Note that it is sometimes written simply as s.

And here is an important identity from [2, p. 24] involving s(z):

q⊤z = z⊤(s(z)−Mz) = z⊤s(z)− z⊤Mz = z⊤s(z). (R-2.23)

A.6 Self-Duality

This minimisation problem, from [2, p. 22], is called the self-dual problem:

(SP) min{q⊤z :Mz ⩾ −q, z ⩾ 0}. (R-2.16)

The following excerpt from [2, p. 25] defines the elementwise product notation used

within Lemma R-I.10 (and elsewhere):

[. . .] In this lemma, and further on, we use the following notation. To any

vector u ∈ Rk, we associate the diagonal matrix U whose diagonal entries are

the elements of u, in the same order. If also v ∈ Rk, then Uv will be denoted

84

shortly as uv. Thus uv is a vector whose entries are obtained by multiplying

u and v componentwise.

The following lemma is important in proving properties that are shared by all optimal

solutions of (SP):

Lemma R-I.10 (from [2, p. 25]). Let z1 and z2 be feasible for (SP). Then z1

and z2 are optimal solutions of (SP) if and only if z1s(z2) = z2s(z1) = 0.

A.7 The Optimal Partition

The sets B and N are defined on [2, p. 24] as follows:

B := {i : zi > 0, for some optimal z},

N := {i : si(z) > 0, for some optimal z}.

The following is a corollary of Lemma R-I.10:

Corollary R-I.11 (from [2, p. 25]). The sets B and N are disjoint.

The identity of B, N above as the optimal partition is only informally stated within

the book, on [2, p. 36]:

[. . .] We are going to show that there exists an optimal vector z such that z

and s(z) are strictly complementary vectors. Then for every index i, either

zi > 0 or si(z) > 0. This implies that the index sets B and N , introduced in

Section 2.5 [edit: this should read “Section 2.6”] form a partition of the index

set, the so-called optimal partition of (SP).

The theorem (and proof) of the existence of this z is given further down the page, con-

cluding the matter:

Theorem R-I.20 (from [2, p. 36]). (SP) has an optimal solution z∗ with z∗ +

s(z∗) > 0.

A.8 Full-Newton Step Algorithm

Algorithm A.1 is the central algorithm of Part I of [2]. It is a polynomial-time algorithm.

Although the complexity bounds are not good enough for a real-world implementation,

they are good enough for the purposes of my proofs.

The computation of ∆z is omitted – it is given by the following equation from [2,

p. 49] (which makes use of both the diagonal matrix rule and the componentwise product

rule described in Appendix A.6, as well as the identity of e as an all-one vector of the

appropriate size):

∆z = (S + ZM)−1(µe− zs). (R-3.8)

85

Algorithm A.1: Full-Newton step algorithm – from [2, p. 50].

input : An accuracy parameter ε > 0;
a barrier update parameter θ, 0 < θ < 1.

1 begin
2 z = e; µ := 1;
3 while nµ ⩾ ε do
4 µ := (1− θ)µ;
5 z := z +∆z;

The initialisation and update of s is also omitted from the algorithm pseudocode. The

initialisation is given by (R-2.17) – see Appendix A.5.

The following unnumbered equations from [2, p. 49] give updates for both z and s,

calling the updated versions z+ and s+, which will be important later:

z+ := z +∆z,

s+ := s(z+) =M(z +∆z) + q = s+M∆z.

The inputs and outputs of the algorithm are also not made fully explicit (but the

missing items can easily be inferred).

A.9 Termination

This lemma is refreshingly simple, as it only makes use of algorithm inputs and locals:

Lemma R-I.36 (from [2, p. 51]). After at most⌈
1

θ
log

n

ε

⌉
iterations, we have nµ ⩽ ε.

While it is true that Algorithm A.1 requires nµ < ϵ for termination, this does not pose

any difficulties, since n is a positive integer, and µ is positive and scaled at each iteration

by a factor of 1− θ, which is in (0, 1).

A.10 Proximity Measure

The variance vector of z is defined on [2, p. 31] as:

v :=

√
zs(z)

µ
. (R-2.41)

86

The proximity measure is then defined, also on [2, p. 31], as:

δ(z, µ) := 1
2
∥v − v−1∥. (R-2.42)

Finally, the following theorem relates the proximity measure of z+ (the updated version

of z) to that of z:

Theorem R-I.16 (from [2, p. 31]). If δ := δ(z, µ) < 1, then the Newton step is

strictly feasible, i.e., z+ > 0 and s+ > 0. Moreover,

δ(z+, µ) ⩽
δ2√

2(1− δ2)
.

A.11 Condition Number

The condition number is defined on [2, p. 54] as

σSP := min{σz
SP , σ

s
SP},

where (also from [2, p. 54]):

σz
SP := min

i∈B
max
z∈SP∗

{zi}, σs
SP := min

i∈N
max
z∈SP∗

{si(z)},

and where (B,N) is the optimal partition of (SP) (see Appendix A.7), and SP∗ is the

set of all optimal solutions of (SP).

Theorem R-I.42 (from [2, p. 56]). The condition number σSP of (SP) satisfies

σSP ⩾
1∏n

j=1∥Mj∥
,

where Mj denotes the j-th column of M .

A.12 Iteration Bound

The distance of z to the central path is defined on [2, p. 59] as:

δc(z) :=
max(zs(z))

min(zs(z))
, (R-3.20)

where max and min here operate across the elements of their vector argument, and z > 0

and s(z) > 0.

The following lemma is a prerequisite of Theorem R-I.47:

Lemma R-I.46 (from [2, p. 61]). Let z be a feasible solution of (SP) such that

87

δc(z) ⩽ τ . If

z⊤s(z) <
σSP

2

τn
,

then the optimal partition of (SP) follows from

B = {i : zi > si(z)} and N = {i : zi < si(z)}. (R-3.22)

Finally, here is a theorem giving a bound on the number of iterations. I include the

proof this time, because it contains an important result that I make use of.

Theorem R-I.47 (from [2, p. 61]). After at most⌈√
2n log

4n2

σSP 2

⌉
(R-3.23)

iterations, the Full-Newton step algorithm yields a feasible (and positive) solu-

tion z of (SP) that reveals the optimal partition (B,N) of (SP) according to (R-3.22).

Proof. Let us run the Full-Newton step algorithm with ε = σ2
SP/(4n). Then

Theorem R-I.37 states that we obtain a feasible z with z⊤s(z) ⩽ σ2
SP/(4n) and

δ(z, µ) ⩽ 1/2. Lemma R-I.44 implies that δc(z) ⩽ 4. By Lemma R-I.46, with

τ = 4, this z gives a complete separation between the small variables and the

large variables. By Theorem R-I.37, the required number of iterations for the

given ε is at most ⌈√
2n log

4n2

σSP 2

⌉
,

which is equal to the bound given in the theorem. Thus the proof is complete.

And, for completeness, here are the additional results used within that proof:

Theorem R-I.37 (from [2, p. 52]). If θ = 1√
2n

then the algorithm requires at

most ⌈√
2n log

n

ε

⌉
iterations. The output is a feasible z > 0 such that q⊤z = nµ ⩽ ε and δ(z, µ) ⩽ 1

2
.

Lemma R-I.44 (from [2, p. 59]). If δ(z, µ) ⩽ 1
2
then δc(z) ⩽ 4.

A.13 Large and Small Variables

This lemma establishes that the iterates of variables (within z) whose index is in B of the

optimal partition can be lower-bounded, while the iterates of variables whose index is in

N can be upper bounded.

88

Lemma R-I.43 (from [2, p. 57]). For any positive µ we have

zi(µ) ⩾
σSP
n
, i ∈ B, zi(µ) ⩽

nµ

σSP
, i ∈ N,

si(µ) ⩽
nµ

σSP
, i ∈ B, si(µ) ⩾

σSP
n
, i ∈ N.

In [2, p. 58], it is shown that if

µ <
σSP

2

n2
,

then the optimal partition may be inferred from the current iterate z, using the bounds

from Lemma R-I.43. Needless to say, this is a very important result! For one thing, once

the optimal partition (B,N) has been established, we can use the fact that all zi such

that i ∈ N must be zero in the exact solution.

The following theorem, derived from the aforementioned result, establishes the con-

vergence properties of ϑ/κ2, and how this can help us to infer whether or not κ = 0 in

the exact solution:

Theorem R-I.58 (from [2, p. 82]). If κ is a large variable then

lim
µ↓0

ϑ

κ
= lim

µ↓0

ϑ

κ2
= 0,

and if κ is a small variable then

lim
µ↓0

ϑ

κ2
= ∞.

Although this theorem is presented in chapter 4, where alternative self-dual embed-

dings (other than (SP)) are considered, its proof (which is only informally stated in [2,

pp. 81–82]) depends only on Lemma R-I.43, from the previous chapter, where only (SP)

is used, and the fact that µ = ϑ on the central path. This fact, which is shown on [2,

p. 80], depends only on (R-4.11), (R-2.23), (R-2.11), and the definition of q on [2, p. 78].

However, noting that this definition of q is the same as in (R-2.12), and (R-4.11) is the

same as (R-2.46), meaning that we can eliminate all dependencies from chapter 4, we see

that µ = ϑ (on the central path) must be equally valid for (SP).

In any case, it can easily be shown that (SP2) is in fact a generalisation of (SP) – it

may be converted into the latter by setting the per-instance constants x0 := en, y
0 := em,

s0 := en, and t
0 := em – see Appendix A.14.

89

A.14 Modified Form of the Feasibility Conditions

The following re-expression of the feasibility conditions of (SP2) is from [2, p. 82]:

Ax̃ ⩾ b− ϑ
κ
b̄

A⊤ỹ ⩽ c+ ϑ
κ
c̄

c⊤x̃− b⊤ỹ ⩽ ϑ
κ
β

κ(b̄⊤x̃+ c̄⊤ỹ + β) ⩽ n+m+ 2.

(R-4.16)

where κ > 0 – which is true for any non-terminal iterate of an interior-point algorithm.

And where (from [2, pp. 78–79])

b̄ = t0 + b− Ax0,

c̄ = s0 − c+ A⊤y0,

β = 1− b⊤y0 + c⊤x0.

where (on [2, p. 78]) x0, y0 are defined to be arbitrary (constant) positive vectors of

dimension n and m respectively, and positive vectors s0 and t0 are defined (also on [2,

p. 78]) by

x0s0 = en, y0t0 = em.

(SP2), defined on [2, p. 78] is given by

(SP2) min{q⊤z :Mz + q ⩾ 0, z ⩾ 0},

with (also from [2, p. 78])

M :=

0mm A −b b̄

−A⊤ 0nn c c̄

b⊤ −c⊤ 0 β

−b̄⊤ −c̄⊤ −β 0

, q :=

0m

0n

0

n+m+ 2

,

using the above definitions of b̄, c̄, β.

Since (SP2) is identical to (SP) apart from the definition of M (see (R-2.16) and

(R-2.12)), and the definition of M used for (SP2) differs from that used for (SP) only in

the use of [b̄ c̄ β 0]⊤ in place of r (see (R-2.11)), and this vector differs from r only in the

use of t0, x0, s0, y0 in place of em, en, en, em, respectively (again see (R-2.11), and compare

with the definitions of b̄, c̄, β above), we may transform (SP2) into (SP) simply by setting

x0 := en and y0 := em (with s0 and t0 following suit due to the their definitions given

above).

This means that the results in [2] pertaining to (SP2) may also be applied to (SP) –

including the re-expression of the feasibility conditions in the form (R-4.16).

90

Appendix B

Alternative Interior-Point Proofs

B.1 Simple Cases

Theorem 2.1. Systems (2.5) and (2.6) are equisatisfiable.

Proof. If a solution to (2.6) is found, we have κ > 0, and so A(x/κ) − b ⩾ 0, −A⊤y ⩾ 0

and b⊤y ⩾ 0, so that (x/κ, y) satisfies (2.5). Conversely, if (x, y) satisfies (2.5), then

(x, y, 1) satisfies (2.6).

Theorem 2.2. From any optimal solution to (2.7) such that κ > 0, we can derive a

solution to (2.6), and vice-versa.

Proof. z = 0 is clearly feasible for (2.7), and therefore, because q ⩾ 0, optimal. So the

optimal value is 0. This means that zn = 0 (i.e. ϑ = 0) in any optimal solution of (2.7),

and therefore we can derive M̄z̄ ⩾ 0. This means that any solution of (2.7) in which

κ > 0 satisfies (2.6).

Conversely, if z̄ satisfies (2.6), then either r⊤z̄ ⩽ n, in which case (z̄, 0) is optimal

for (2.7), or else (νz̄, 0) is optimal for (2.7) for any 0 < ν ⩽ n/r⊤z̄ (and of course

r⊤z̄ > n > 0). The condition κ > 0, if present, is clearly preserved in either case.

B.2 The Unsatisfiable Case

According to Theorem I.20 in [2] (p. 36), the problem (2.7) has a strictly complementary

solution: this is a solution in which out of every variable and its corresponding dual

variable, one is equal to zero and the other is positive (in some contexts, these are referred

to as “small” and “large” variables, respectively). Combining this result with Corrolary

I.11 in [2] (p. 25), we conclude that for every matching pair of primal and dual variables

in a strictly complementary solution, the variable that is zero will in fact be zero in every

optimal solution.

In Section 3.3.4 of [2] (pp. 58–62), an algorithm is developed for finding the “optimal

partition”, which tells us the identities of the zero and positive variables in a strictly

91

complementary solution (noting that any strictly complementary solution will have the

same partition), without the need to find an exact solution.

These concepts can be used to prove the following theorem:

Theorem B.1. A strictly complementary solution to (2.7) such that κ = 0 exists (or,

equivalently, κ is a “small” variable in the optimal partition) if and only if (2.6) is un-

satisfiable.

Proof. If (2.5) is unsatisfiable, then a strictly complementary solution to (2.7) will nec-

essarily have κ = 0 (as otherwise (2.5) would be satisfiable, according to Theorems 2.2

and 2.1). Because of strict complementarity (or because we know the optimal partition),

we then know that κ can never be positive in any optimal solution to (2.7). However, any

solution to (2.5) would give us a solution to (2.7) with κ > 0, as proven in Theorems 2.1

and 2.2.

92

Appendix C

Elementwise Bounds for the Result

of Gaussian Elimination with Partial

Pivoting

This appendix is concerned with bounding the elements of the factors of an approximate

LU decomposition of a matrix A ∈ Rn×n where partial pivoting is used. This is commonly

expressed in terms of the growth factor [22, pp. 165–166], which is defined, for A = LU ,

as

ρn :=
maxi,j,k |Ak

ij|
maxi,j |Aij|

, (C.1)

where Ak is the matrix produced after k − 1 iterations of Gaussian elimination (so that

U = An, there being n − 1 iterations in total, and we can define A1 := A). Hence,

|Uij| ⩽ ρn maxp,q |Apq| provides the desired bound. Most discussions of the growth factor

fail to mention the effect of the use of floating-point arithmetic; hence, the need for this

appendix.

C.1 Partial Pivoting

Partial pivoting means rearranging the rows of the matrix Ak at each iteration of Gaussian

elimination so that the pivot element is maximal, preventing the production of large

numbers that may cause loss of precision [21, p. 127]. With exact arithmetic, this would

ensure that the elements of |L| are bounded by 1. Since L is the matrix of multipliers

from Gaussian elimination [21, p. 115], and these are formed by dividing two numbers

p/q such that (when using partial pivoting) |p| ⩽ |q| [21, pp. 113–114, 127], we know

(because of the way floating-point works) that we must have |p/q| ⩽ 1. However, this is

not guaranteed by the floating-point model of Section 1.2.1. Using that model, we have

|p/q| ⩽ 1 + ϵ; hence,

|Lij| ⩽ 1 + ϵ, for i > j, and hence for all i, j. (C.2)

93

C.2 Bound for General Case

In the general case, where partial pivoting is used, the growth factor is ρn ⩽ 2n−1 [22,

p. 166]. This is because, in the worst case, each element in each Ak is equal to a− (p/q)b

where a, b, p, q are all elements of Ak−1, while we know that p/q ⩽ 1 by partial pivoting.

Hence, at each iteration, the elements are at worst doubled in magnitude. If floating-

point arithmetic is used, then we must consider the error from the division, multiplication

and subtraction, so that |a − (p/q)b| ⩽ (1 + ϵ)(|a| + (1 + ϵ)2|b|) ⩽ 2(1 + ϵ)3max(|a|, |b|).
Hence, the worst-case multiplier at each iteration is 2(1+ ϵ)3 instead of 2, so that we have

ρn ⩽ (2(1 + ϵ)3)n−1, and

|Uij| ⩽ (2(1 + ϵ)3)n−1max
p,q

|Apq|, for i ⩽ j, and hence for all i, j. (C.3)

C.3 Bound for Upper Hessenberg Case

If A is upper Hessenberg, and partial pivoting is used, then the growth factor is ρn ⩽ n

[22, p. 172]. This is because at each iteration k, the only option is to swap rows k and

k + 1 – the remaining rows in the lower part of Ak being zero in column k. Also, this

means that only row k or k + 1 is modified at iteration k (becoming row k + 1). This

means that every computation a − (p/q)b of an element that is modified in iteration k

involves one element that has been modified in some previous iteration (from the former

row k), and one that has not been modified in any previous iteration (from the former

row k + 1).

Hence, if floating-point arithmetic is used, while we still have |a − (p/q)b| ⩽ (1 +

ϵ)3(|a| + |b|), we know that either a or b is directly from A, so there is no exponential

growth – except for that brought about by the 1+ϵ factors. This clearly leads to a growth

factor of ρn ⩽ n(1 + ϵ)3(n−1), so that

|Uij| ⩽ n(1 + ϵ)3(n−1)max
p,q

|Apq|, for i ⩽ j, and hence for all i, j. (C.4)

94

Appendix D

Full LP: full results table

LP esolver-do esolver soplex

10teams 0.2 0.1 0.1

16 n14 2562.9 2781.2 758.6

22433 0.1 0.0 0.0

23588 0.0 0.0 0.0

25fv47 0.8 0.9 1.0

30 70 45 095 100 22.0 17.8 11.7

30n20b8 0.4 0.4 0.6

50v-10 0.1 0.1 0.1

80bau3b 0.6 0.6 1.1

a1c1s1 0.3 0.3 0.1

aa01 5.9 6.0 3.5

aa03 6.0 6.1 2.6

aa3 4.2 4.0 2.6

aa4 1.2 1.2 0.9

aa5 2.8 3.0 2.7

aa6 1.9 1.9 1.0

acc-tight4 2.5 2.6 2.4

acc-tight5 2.4 2.7 1.7

acc-tight6 2.5 2.4 1.6

adlittle 0.0 0.0 0.0

afiro 0.0 0.0 0.0

aflow30a 0.0 0.0 0.0

aflow40b 0.1 0.1 0.1

agg2 0.0 0.0 0.0

agg3 0.0 0.0 0.0

agg 0.0 0.0 0.0

air02 0.2 0.2 0.2

air03 0.5 0.4 0.4

95

LP esolver-do esolver soplex

air04 5.5 5.9 3.3

air05 1.2 1.2 1.0

air06 6.2 6.0 2.5

aircraft 0.5 0.5 0.4

aligninq 0.1 0.1 0.1

app1-2 44.0 39.4 16.5

arki001 1.6 1.6 0.4

ash608gpia-3col 18.6 14.1 1.8

atlanta-ip 3161.2 4050.4 60.3

atm20-100 1.8 1.8 0.7

b2c1s1 0.6 0.7 0.1

bab1 63.4 68.7 223.1

bab3 360.9 396.2 8.9

bab5 3.5 3.2 11.4

bal8x12 0.0 0.0 0.0

bandm 0.1 0.1 0.1

bas1lp 2.9 2.6 3.1

baxter 4.9 4.1 12.6

bc1 3.4 3.1 2.9

bc 3.1 3.1 2.7

beaconfd 0.0 0.0 0.0

beasleyC3 0.1 0.1 0.1

bell3a 0.0 0.0 0.0

bell5 0.0 0.0 0.0

berlin 5 8 0 0.1 0.1 0.1

bg512142 0.2 0.3 0.2

biella1 3.2 3.2 4.8

bienst1 0.1 0.1 0.0

bienst2 0.1 0.1 0.0

binkar10 1 0.1 0.1 0.1

bk4x3 0.0 0.0 0.0

blend2 0.0 0.0 0.0

blend 0.0 0.0 0.0

bley xl1 5187.6 3944.2 16513.9

blp-ar98 0.9 0.8 1.0

blp-ic97 0.5 0.5 0.7

bnatt350 0.1 0.1 0.2

bnatt400 0.2 0.2 0.2

bnl1 0.2 0.2 0.1

96

LP esolver-do esolver soplex

bnl2 0.5 0.5 0.5

boeing1 0.0 0.0 0.0

boeing2 0.0 0.0 0.0

bore3d 0.0 0.0 0.0

brandy 0.0 0.1 0.0

buildingenergy 1680.4 1638.7 2656.5

cap6000 0.2 0.2 0.4

capri 0.0 0.0 0.0

car4 5.5 5.9 5.6

cari 0.6 0.6 0.6

cdma 42297.4 39670.2 3059.8

cep1 0.1 0.1 0.1

ch 1.3 1.6 2.2

circ10-3 14.9 16.5 21.3

co-100 11.4 10.3 11.4

co5 8.8 9.6 5.4

co9 63.4 69.1 29.3

complex 5.4 4.7 3.0

cont11 l 17.2 12.8 26.8

cont11 10388.2 29800.4 0.0

cont1 29487.6 29683.6 7955.2

cont4 10814.1 11169.9 25275.8

core2536-691 10.3 10.3 22.0

core4872-1529 128.6 138.0 137.6

cov1075 0.4 0.1 0.2

cq5 5.9 5.3 4.7

cq9 45.6 41.8 13.9

cr42 0.1 0.1 0.1

cre-a 0.4 0.5 0.2

cre-b 20.9 20.6 7.5

cre-c 0.4 0.4 0.2

cre-d 20.1 22.8 4.5

crew1 0.2 0.2 0.5

csched007 0.1 0.1 0.2

csched008 0.1 0.1 0.1

csched010 0.1 0.1 0.2

cycle 0.3 0.3 0.2

czprob 0.2 0.2 0.2

d10200 0.5 0.5 0.5

97

LP esolver-do esolver soplex

d20200 2.5 2.3 2.7

d2q06c 58.5 58.8 6.6

d6cube 4.6 4.5 0.4

dano3 3 63.8 55.3 27.2

dano3 4 53.2 57.6 26.2

dano3 5 57.7 55.6 28.4

dano3mip 64.5 60.7 30.5

danoint 0.2 0.2 0.2

datt256 0.0 0.0 31682.9

dbic1 275.9 227.3 0.0

dbir1 6.7 5.9 5.0

dbir2 5.3 6.0 8.0

dc1c 10.4 10.1 7.1

dc1l 69.6 54.6 36.7

dcmulti 0.0 0.0 0.0

de063155 2.1 2.0 0.5

de063157 0.1 1.2 0.0

de080285 1.1 1.2 0.2

degen2 0.1 0.1 0.1

degen3 0.7 0.8 0.6

degme 15.9 14.2 31.8

delf000 1.1 2.3 0.7

delf001 0.8 1.6 0.8

delf002 0.8 2.2 0.9

delf003 0.9 2.2 1.0

delf004 1.0 2.4 1.0

delf005 0.8 2.1 1.1

delf006 2.0 4.7 1.2

delf007 1.2 2.9 1.2

delf008 1.3 3.1 1.1

delf009 1.4 3.8 1.2

delf010 1.2 2.7 1.2

delf011 1.2 2.4 1.2

delf012 1.2 2.8 1.2

delf013 1.2 3.1 1.1

delf014 1.0 2.2 1.2

delf015 1.0 2.4 1.0

delf017 1.0 2.5 1.0

delf018 0.9 1.8 1.0

98

LP esolver-do esolver soplex

delf019 0.9 1.8 1.0

delf020 1.1 2.1 1.0

delf021 1.2 2.2 1.0

delf022 1.0 2.1 0.9

delf023 1.2 2.3 1.5

delf024 1.3 3.3 1.5

delf025 0.9 2.2 1.1

delf026 0.9 2.3 1.2

delf027 0.9 1.9 1.1

delf028 0.8 2.0 1.2

delf029 0.9 2.0 1.2

delf030 1.3 2.4 1.2

delf031 0.8 2.1 0.9

delf032 0.9 2.1 1.2

delf033 0.8 1.9 0.9

delf034 0.9 2.2 1.1

delf035 1.0 2.2 1.0

delf036 0.8 2.2 1.0

deter0 0.3 0.4 0.2

deter1 1.9 1.9 1.2

deter2 3.2 2.9 0.8

deter3 3.1 3.1 1.2

deter4 1.1 1.0 0.4

deter5 1.8 1.9 0.8

deter6 1.3 1.3 0.9

deter7 3.2 2.9 1.0

deter8 0.9 0.9 0.5

df2177 0.8 0.8 0.6

dfl001 85.5 109.0 159.8

dfn-gwin-UUM 0.0 0.0 0.0

dg012142 1.0 1.1 2.0

disctom 4.3 4.1 1.7

disp3 0.1 0.1 0.1

dolom1 21.7 25.9 9.3

ds-big 1168.3 1274.5 9.6

dsbmip 0.1 0.1 0.2

ds 62.5 61.9 33.7

e18 17.4 14.0 33.0

e226 0.0 0.0 0.0

99

LP esolver-do esolver soplex

egout 0.0 0.0 0.0

eil33-2 0.2 0.2 0.2

eilA101-2 7.8 8.2 39.2

eilB101 0.2 0.2 0.3

enigma 0.0 0.0 0.0

enlight13 0.0 0.0 0.0

enlight14 0.0 0.0 0.0

enlight15 0.0 0.0 0.0

enlight16 0.0 0.0 0.0

enlight9 0.0 0.0 0.0

etamacro 0.3 0.3 0.1

ex1010-pi 31.5 26.4 14.0

ex10 28910.2 28310.3 2285.5

ex3sta1 122.5 127.5 106.5

ex9 4807.5 6173.5 315.6

f2000 176.0 199.8 112.4

farm 0.0 0.0 0.0

fast0507 10.6 10.9 13.6

fffff800 0.0 0.0 0.1

fiball 2.0 2.1 1.6

fiber 0.0 0.0 0.0

finnis 0.0 0.0 0.1

fit1d 0.1 0.1 0.1

fit1p 0.1 0.1 0.2

fit2d 5.1 5.2 2.2

fit2p 5.1 5.0 3.9

fixnet6 0.0 0.0 0.0

flugpl 0.0 0.0 0.0

fome11 190.8 264.8 1927.3

fome12 457.5 560.4 1234.6

fome13 4509.6 4679.1 6210.5

fome20 36.6 49.5 37.8

fome21 112.7 125.5 197.8

forplan 0.0 0.0 0.1

fxm2-16 0.7 0.7 0.8

fxm2-6 0.2 0.2 0.2

fxm3 16 0.5 0.5 72.0

fxm3 6 0.1 0.1 1.8

fxm4 6 0.4 0.4 16.6

100

LP esolver-do esolver soplex

g200x740i 0.1 0.0 0.0

gams10a 0.0 0.0 0.0

gams30a 0.0 0.0 0.0

ganges 0.1 0.1 0.1

gen1 9340.7 11176.2 157.8

gen2 7501.8 7636.6 5347.6

gen4 0.0 0.0 7308.3

gen 0.1 0.0 0.0

ge 8.1 8.9 7.4

ger50 17 trans 1.2 1.1 2.9

germanrr 2.8 2.6 3.6

germany50-DBM 0.6 0.6 1.0

gesa2 o 0.1 0.1 0.1

gesa2-o 0.1 0.1 0.1

gesa2 0.1 0.1 0.1

gesa3 o 0.1 0.1 0.1

gesa3 0.1 0.1 0.1

gfrd-pnc 0.1 0.0 0.1

glass4 0.0 0.0 0.0

gmu-35-40 0.1 0.1 0.0

gmu-35-50 0.1 0.1 0.1

gmut-75-50 34.6 32.7 15.1

gmut-77-40 4.2 4.2 2.5

go19 0.3 0.3 0.1

gr4x6 0.0 0.0 0.0

greenbea 3.5 3.6 4.1

greenbeb 3.4 3.3 3.0

grow15 2.3 2.3 0.6

grow22 0.8 0.9 0.7

grow7 0.2 0.2 0.2

gt2 0.0 0.0 0.0

hanoi5 2.3 1.9 1.8

haprp 0.1 0.1 0.1

harp2 0.1 0.1 0.1

ic97 potential 0.0 0.0 0.0

iiasa 0.1 0.1 0.1

iis-100-0-cov 0.3 0.4 0.4

iis-bupa-cov 0.7 0.7 1.2

iis-pima-cov 1.4 1.4 1.2

101

LP esolver-do esolver soplex

i n13 88.4 117.7 3693.5

in 18.9 17.1 17.5

israel 0.0 0.0 0.0

ivu06-big 32.2 31.4 66.0

ivu52 272.5 230.0 156.9

janos-us-DDM 0.1 0.0 0.1

jendrec1 5.5 5.8 5.0

k16x240 0.0 0.0 0.0

karted 0.0 0.0 0.0

kb2 0.0 0.0 0.0

ken-07 0.2 0.1 0.2

ken-11 3.3 3.7 4.1

ken-13 43.3 47.9 27.5

ken-18 874.0 1025.1 489.2

kent 1.8 2.0 2.6

khb05250 0.0 0.0 0.0

kl02 0.9 0.7 1.1

kleemin3 0.0 0.0 0.0

kleemin4 0.0 0.0 0.0

kleemin5 0.0 0.0 0.0

kleemin6 0.0 0.0 0.0

kleemin7 0.0 0.0 0.0

kleemin8 0.0 0.0 0.0

l152lav 0.1 0.1 0.1

L1 d10 40 0.0 0.0 0.0

l30 271.1 29597.7 0.0

l9 0.2 0.2 0.1

large000 1.6 3.5 1.6

large001 1.0 2.5 2.7

large002 2.3 5.5 2.0

large003 1.9 5.0 1.9

large004 1.6 4.9 2.1

large005 1.4 3.5 1.9

large006 1.7 4.3 1.8

large007 1.7 4.1 1.9

large008 1.7 4.6 1.9

large009 2.3 5.7 2.1

large010 1.8 4.5 1.6

large011 1.6 4.0 1.9

102

LP esolver-do esolver soplex

large012 1.8 4.3 1.8

large013 1.5 3.6 1.7

large014 1.5 3.7 1.7

large015 1.6 4.1 2.1

large016 1.8 4.6 2.0

large017 1.5 3.5 1.9

large018 1.4 3.1 1.9

large019 1.4 2.6 1.8

large020 1.7 3.4 1.9

large021 1.5 3.4 1.8

large022 1.6 3.9 1.5

large023 1.6 3.6 1.8

large024 1.9 4.3 2.7

large025 2.4 5.8 1.9

large026 1.7 4.5 1.7

large027 1.5 3.2 1.6

large028 1.7 4.3 2.2

large029 1.8 4.4 2.0

large030 1.7 3.8 1.7

large031 2.1 4.7 2.0

large032 3.3 7.0 1.9

large033 1.4 3.3 1.9

large034 2.9 6.6 2.3

large035 3.2 7.3 2.6

large036 2.9 6.2 1.5

lectsched-1-obj 31.4 40.1 4.1

lectsched-1 29.5 30.3 3.8

lectsched-2 9.2 7.0 1.8

lectsched-3 19.5 17.5 3.2

lectsched-4-obj 0.7 0.6 0.6

leo1 0.6 0.6 0.7

leo2 1.3 1.3 4.3

Linf 520c 21481.8 18215.1 0.0

liu 0.1 0.1 0.1

lo10 47.7 67.4 13812.6

long15 16359.8 17577.4 5546.3

lotfi 0.0 0.0 0.0

lotsize 0.1 0.1 0.1

lp22 75.6 55.7 70.1

103

LP esolver-do esolver soplex

lpl1 11754.3 9255.0 5620.1

lpl2 0.2 0.2 0.3

lpl3 1.8 1.7 2.0

lrn 5.3 5.5 4.8

lrsa120 2.8 2.5 6.1

lseu 0.0 0.0 0.0

m100n500k4r1 0.0 0.0 0.0

macrophage 0.1 0.1 0.1

manna81 0.2 0.2 0.2

map06 1364.4 1174.8 106.7

map10 1183.6 1545.7 81.2

map14 1563.7 1194.8 117.3

map18 1143.6 1220.2 62.2

map20 1141.7 1307.8 56.0

markshare1 0.0 0.0 0.0

markshare2 0.0 0.0 0.0

markshare 5 0 0.0 0.0 0.0

maros 0.2 0.3 0.2

maros-r7 710.7 743.5 54.9

mas74 0.0 0.0 0.0

mas76 0.0 0.0 0.0

maxgasflow 0.6 0.6 0.7

mc11 0.1 0.1 0.1

mcf2 0.2 0.2 0.2

mcsched 0.3 0.3 0.2

methanosarcina 3.5 3.5 0.3

mik-250-1-100-1 0.0 0.0 0.0

mine-166-5 0.8 0.8 0.5

mine-90-10 0.7 0.7 0.4

mining 42030.3 36683.9 16.9

misc03 0.0 0.0 0.0

misc06 0.2 0.2 0.1

misc07 0.0 0.0 0.0

mitre 0.3 0.3 0.4

mkc1 0.1 0.1 0.1

mkc 0.1 0.1 0.1

mod008 0.0 0.0 0.0

mod010 0.1 0.1 0.1

mod011 0.4 0.4 0.9

104

LP esolver-do esolver soplex

mod2 499.1 556.6 274.9

model10 1500.6 1734.6 35.0

model11 4.0 4.0 1.5

model1 0.0 0.1 0.0

model2 0.1 0.2 0.5

model3 2.1 2.2 1.4

model4 4.4 4.7 3.2

model5 4.6 4.7 3.7

model6 21.2 22.0 3.9

model7 181.9 190.9 6.0

model8 0.2 0.1 0.5

model9 6.0 6.4 3.8

modglob 0.0 0.0 0.0

modszk1 0.1 0.1 0.1

momentum1 25.2 21.0 3.3

momentum2 44.0 74.0 41.4

momentum3 2392.9 5060.8 853.9

msc98-ip 1054.9 1065.9 3.6

mspp16 48.4 43.2 92.3

multi 0.0 0.0 0.0

mzzv11 20.7 18.8 46.2

mzzv42z 2.6 2.2 12.9

n15-3 242.5 256.4 161.4

n3-3 0.8 0.7 0.7

n3700 1.1 1.1 1.4

n3701 1.1 1.0 1.4

n3702 1.2 1.1 1.3

n3703 1.2 1.3 1.5

n3704 1.1 1.1 1.2

n3705 1.1 1.0 1.4

n3706 1.1 1.0 1.3

n3707 1.2 1.1 1.4

n3708 1.1 1.1 1.5

n3709 1.1 1.1 1.8

n370a 1.1 1.1 1.9

n370b 1.1 1.1 1.7

n370c 1.1 1.1 1.1

n370d 1.2 1.1 1.5

n370e 1.2 1.1 1.2

105

LP esolver-do esolver soplex

n3div36 1.3 1.3 1.7

n3seq24 47.0 49.9 22.1

n4-3 0.2 0.2 0.1

n9-3 0.7 0.6 0.4

nag 1.4 1.2 0.4

nb10tb 912.4 841.8 61661.5

nemsafm 0.0 0.0 0.1

nemscem 0.1 0.1 0.1

nemsemm1 5.4 6.7 11.1

nemsemm2 2.6 2.8 3.8

nemspmm1 7.6 8.1 5.4

nemspmm2 28.5 28.7 5.7

nemswrld 662.3 587.7 71.5

neos-1053234 0.1 0.1 0.1

neos-1053591 0.0 0.0 0.0

neos-1056905 0.0 0.0 0.0

neos-1058477 0.1 0.1 0.1

neos-1061020 49.5 55.1 10.0

neos-1062641 0.0 0.3 0.1

neos-1067731 25.8 28.0 1.9

neos-1096528 49.9 38.6 14.3

neos-1109824 0.6 0.5 0.5

neos-1112782 0.1 0.1 0.1

neos-1112787 0.1 0.1 0.1

neos-1120495 0.5 0.3 0.3

neos-1121679 0.0 0.0 0.0

neos-1122047 16.3 16.5 2.0

neos-1126860 9.7 11.2 1.4

neos-1140050 2017.2 2114.5 110.8

neos-1151496 0.2 0.2 0.4

neos-1171448 1.4 1.2 1.2

neos-1171692 0.3 0.3 0.2

neos-1171737 0.3 0.3 0.4

neos-1173026 0.1 0.1 0.0

neos-1200887 0.1 0.1 0.0

neos-1208069 0.3 0.3 0.5

neos-1208135 0.3 0.2 0.4

neos-1211578 0.0 0.0 0.0

neos-1215259 0.7 0.7 0.5

106

LP esolver-do esolver soplex

neos-1215891 0.8 0.7 1.2

neos-1223462 0.4 0.4 4.2

neos-1224597 0.2 0.2 1.8

neos-1225589 0.0 0.0 0.0

neos-1228986 0.0 0.0 0.0

neos-1281048 0.1 0.1 0.1

neos-1311124 0.1 0.0 0.1

neos-1324574 1.2 1.2 0.6

neos-1330346 0.4 0.4 0.3

neos-1330635 0.1 0.1 0.1

neos-1337307 1.9 1.8 1.7

neos-1337489 0.0 0.0 0.0

neos-1346382 0.0 0.0 0.0

neos-1354092 68.4 70.3 11.2

neos-1367061 147.7 114.7 59.4

neos-1396125 0.5 0.5 0.4

neos13 9.6 9.1 17.5

neos-1407044 323.9 301.9 91.4

neos-1413153 0.1 0.2 0.2

neos-1415183 0.2 0.2 0.2

neos-1417043 9.3 8.1 69.5

neos-1420205 0.0 0.1 0.2

neos-1420546 133.0 123.0 65.7

neos-1420790 0.8 0.9 2.6

neos-1423785 20.4 18.9 9.8

neos-1425699 0.0 0.0 0.0

neos-1426635 0.0 0.0 0.0

neos-1426662 0.1 0.0 0.0

neos-1427181 0.1 0.0 0.1

neos-1427261 0.1 0.1 0.1

neos-1429185 0.0 0.0 0.0

neos-1429212 239.1 337.4 2044.8

neos-1429461 0.0 0.0 0.0

neos-1430701 0.0 0.0 0.0

neos-1430811 300.8 292.9 3166.4

neos-1436709 0.1 0.0 0.0

neos-1436713 0.1 0.1 0.1

neos-1437164 0.1 0.1 0.1

neos-1439395 0.0 0.0 0.0

107

LP esolver-do esolver soplex

neos-1440225 0.2 0.2 0.1

neos-1440447 0.0 0.0 0.0

neos-1440457 0.1 0.0 0.1

neos-1440460 0.0 0.0 0.0

neos-1441553 0.1 0.1 0.1

neos-1442119 0.1 0.0 0.0

neos-1442657 0.0 0.0 0.0

neos-1445532 0.4 0.4 1.8

neos-1445738 0.5 0.5 3.7

neos-1445743 0.6 0.5 4.0

neos-1445755 0.5 0.5 3.6

neos-1445765 0.5 0.5 3.8

neos-1451294 1.1 1.1 1.4

neos-1456979 0.4 0.4 0.4

neos-1460246 0.0 0.0 0.0

neos-1460265 0.1 0.1 0.1

neos-1460543 0.6 0.6 1.6

neos-1460641 0.2 0.2 0.6

neos-1461051 0.1 0.1 0.2

neos-1464762 0.2 0.2 1.3

neos-1467067 0.0 0.0 0.0

neos-1467371 0.2 0.2 1.2

neos-1467467 0.2 0.2 0.7

neos-1480121 0.0 0.0 0.0

neos-1489999 0.1 0.1 0.1

neos-1516309 0.1 0.1 0.1

neos-1582420 1.0 1.1 0.5

neos-1593097 0.5 0.7 0.8

neos-1595230 0.1 0.1 0.0

neos-1597104 4.6 3.6 2.8

neos-1599274 0.2 0.2 0.2

neos15 0.0 0.0 0.0

neos-1601936 5.1 4.8 4.9

neos-1603512 0.1 0.1 0.1

neos-1603518 0.4 0.4 0.3

neos-1603965 16.8 41.4 255.9

neos-1605061 13.2 10.8 10.9

neos-1605075 10.2 7.4 9.4

neos-1616732 0.1 0.0 0.0

108

LP esolver-do esolver soplex

neos-1620770 0.5 0.4 0.1

neos-1620807 0.1 0.0 0.0

neos-1622252 0.3 0.3 0.1

neos16 0.1 0.0 0.0

neos18 0.7 0.6 0.2

neos1 251.9 263.5 26.9

neos2 492.6 408.5 54.1

neos3 39832.7 26730.2 13278.9

neos-430149 0.0 0.0 0.0

neos-476283 44.3 38.5 17.4

neos-480878 0.2 0.2 0.3

neos-494568 0.5 0.5 0.4

neos-495307 0.1 0.1 0.3

neos-498623 0.8 0.8 0.9

neos-501453 0.0 0.0 0.0

neos-501474 0.0 0.0 0.0

neos-503737 0.3 0.3 0.5

neos-504674 0.1 0.0 0.0

neos-504815 0.0 0.0 0.0

neos-506422 0.3 0.3 0.2

neos-506428 11.6 7.0 2.6

neos-512201 0.0 0.0 0.0

neos-520729 2.4 1.8 26.8

neos-522351 0.0 0.0 0.0

neos-525149 13.7 12.8 6.4

neos-530627 0.0 0.0 0.0

neos-538867 0.0 0.0 0.0

neos-538916 0.0 0.0 0.0

neos-544324 8.1 9.6 7.4

neos-547911 2.8 3.1 2.5

neos-548047 1.8 1.7 1.8

neos-548251 0.2 0.2 0.1

neos-551991 1.0 1.0 0.7

neos-555001 0.5 0.4 1.0

neos-555298 0.1 0.1 0.2

neos-555343 0.4 0.3 0.8

neos-555424 0.2 0.2 0.3

neos-555694 0.2 0.2 0.2

neos-555771 0.2 0.1 0.2

109

LP esolver-do esolver soplex

neos-555884 0.2 0.2 0.4

neos-555927 0.1 0.1 0.1

neos-565672 239.7 271.6 615.9

neos-565815 3.5 3.7 3.4

neos-570431 0.2 0.2 0.2

neos-574665 0.1 0.1 0.5

neos-578379 0.2 0.2 28.6

neos-582605 0.1 0.1 0.1

neos-583731 0.0 0.0 0.0

neos-584146 0.1 0.1 0.0

neos-584851 0.0 0.0 0.0

neos-584866 1.7 1.6 3.3

neos-585192 1.6 1.8 0.6

neos-585467 0.5 0.5 0.4

neos-593853 0.1 0.1 0.1

neos-595904 0.2 0.3 0.2

neos-595905 0.1 0.1 0.1

neos-595925 0.1 0.1 0.1

neos-598183 0.1 0.1 0.1

neos-603073 0.1 0.1 0.1

neos-611135 4.0 4.7 8.9

neos-611838 0.5 0.5 0.5

neos-612125 0.6 0.6 0.5

neos-612143 0.7 0.7 0.4

neos-612162 0.5 0.5 0.4

neos-619167 46.1 44.9 1.3

neos-631164 0.0 0.1 0.1

neos-631517 0.0 0.0 0.1

neos-631694 0.2 0.2 3.6

neos-631709 27.1 26.1 302.7

neos-631710 4166.9 3806.7 1408.4

neos-631784 9.0 7.2 81.7

neos-632335 1.5 1.7 6.1

neos-633273 0.8 0.9 4.6

neos-641591 5.1 5.7 8.8

neos-655508 0.3 0.3 0.3

neos-662469 6.0 5.6 11.5

neos-686190 0.2 0.2 0.2

neos-691058 0.9 0.9 1.3

110

LP esolver-do esolver soplex

neos-691073 1.1 1.1 1.1

neos-693347 1.5 1.4 2.4

neos6 1.4 1.3 3.7

neos-702280 34.8 33.4 28.9

neos-709469 0.0 0.0 0.0

neos-717614 0.2 0.2 0.1

neos-738098 95.9 98.3 54.4

neos-775946 0.6 0.6 0.8

neos-777800 3.4 3.2 0.4

neos-780889 176.4 154.8 158.3

neos-785899 0.1 0.1 0.1

neos-785912 0.1 0.1 0.2

neos-785914 0.1 0.1 0.1

neos-787933 2.0 1.8 52.1

neos788725 0.1 0.1 0.1

neos-791021 0.7 0.6 2.6

neos-796608 0.0 0.0 0.0

neos-799711 11.1 379.1 12.0

neos-799838 3.2 2.6 4.2

neos-801834 0.7 0.7 0.4

neos-803219 0.1 0.1 0.1

neos-803220 0.1 0.1 0.1

neos-806323 0.1 0.1 0.1

neos-807454 0.6 0.6 1.4

neos-807456 0.8 0.8 1.3

neos-807639 0.1 0.1 0.1

neos-807705 0.1 0.1 0.1

neos-808072 1.1 1.0 1.8

neos-808214 0.2 0.2 0.2

neos808444 0.7 0.6 12.5

neos-810286 2.8 2.6 3.9

neos-810326 0.9 0.9 1.2

neos-820146 0.0 0.0 0.0

neos-820157 0.1 0.0 0.1

neos-820879 0.5 0.5 0.6

neos-824661 270.6 341.7 7.5

neos-824695 71.5 66.4 1.3

neos-825075 0.1 0.1 0.1

neos-826224 38.0 32.3 2.2

111

LP esolver-do esolver soplex

neos-826250 17.6 16.4 0.8

neos-826650 0.5 0.5 1.0

neos-826694 16.2 13.9 4.0

neos-826812 8.4 8.6 2.1

neos-826841 1.0 1.0 0.5

neos-827015 36.7 47.9 16.4

neos-827175 23.8 27.9 4.2

neos-829552 14.4 13.7 5.5

neos-830439 0.0 0.0 0.0

neos-831188 1.3 1.3 1.0

neos-839838 16.5 15.9 1.9

neos-839859 0.7 0.7 0.3

neos-839894 267.4 226.8 52.0

neos-841664 2.8 2.8 0.5

neos-847051 0.4 0.4 0.4

neos-847302 0.4 0.4 0.2

neos-848150 0.1 0.1 0.2

neos-848198 0.1 0.1 2.2

neos-848589 9.5 8.6 8.0

neos-848845 0.4 0.4 1.0

neos-849702 0.3 0.3 0.9

neos-850681 0.7 0.6 4.9

neos-856059 0.5 0.5 0.3

neos858960 0.0 0.0 0.0

neos-859770 4.4 4.2 2.7

neos-860244 1.2 1.3 1.0

neos-860300 1.8 1.8 1.4

neos-862348 0.4 0.4 0.5

neos-863472 0.0 0.0 0.0

neos-872648 397.5 375.9 268.3

neos-873061 496.2 381.5 279.3

neos-876808 1064.7 737.8 110.5

neos-880324 0.0 0.0 0.0

neos-881765 0.0 0.0 0.1

neos-885086 2.1 1.3 1.5

neos-885524 1.3 1.4 7.2

neos-886822 0.2 0.2 0.2

neos-892255 0.4 0.4 0.2

neos-905856 0.1 0.1 0.1

112

LP esolver-do esolver soplex

neos-906865 0.1 0.1 0.1

neos-911880 0.0 0.0 0.0

neos-911970 0.0 0.0 0.0

neos-912015 0.1 0.2 0.1

neos-912023 0.1 0.1 0.1

neos-913984 0.8 0.8 4.3

neos-914441 7.7 87.3 7.1

neos-916173 0.5 0.6 0.6

neos-916792 0.8 0.9 1.1

neos-930752 4.5 4.5 10.0

neos-931517 2.1 1.9 2.4

neos-931538 4.9 4.0 2.9

neos-932721 5.4 6.2 13.0

neos-932816 22.8 21.3 15.9

neos-933364 0.1 0.1 0.1

neos-933550 0.5 0.5 0.3

neos-933562 8.0 7.5 1.0

neos-933638 45.0 47.8 31.2

neos-933815 0.1 0.1 0.1

neos-933966 29.3 23.6 22.3

neos-934184 0.1 0.1 0.1

neos-934278 64.1 63.2 33.1

neos-934441 65.8 58.3 37.6

neos-934531 1.7 1.5 0.9

neos-935234 31.1 29.0 40.4

neos-935348 29.6 27.7 39.0

neos-935496 3.1 3.2 0.8

neos-935627 35.2 32.7 22.8

neos-935674 4.1 4.2 0.8

neos-935769 11.8 9.7 19.3

neos-936660 17.5 18.2 22.5

neos-937446 20.0 17.5 22.6

neos-937511 17.0 13.0 27.4

neos-937815 47.6 49.9 44.4

neos-941262 15.9 15.7 21.0

neos-941313 167.4 134.8 142.9

neos-941698 0.2 0.2 0.2

neos-941717 0.4 0.4 0.5

neos-941782 0.3 0.3 0.2

113

LP esolver-do esolver soplex

neos-942323 0.1 0.1 0.1

neos-942830 0.2 0.2 0.2

neos-942886 0.1 0.1 0.0

neos-948126 31.6 25.5 36.4

neos-948268 0.9 0.8 4.0

neos-948346 15.6 15.0 9.2

neos-950242 4.7 4.8 6.3

neos-952987 1.2 1.1 0.9

neos-953928 177.5 161.8 5.1

neos-954925 1153.0 1062.7 1772.5

neos-955215 0.1 0.0 0.1

neos-955800 0.4 0.3 1.1

neos-956971 144.0 136.8 310.8

neos-957143 165.4 163.4 4984.8

neos-957270 1.5 1.2 1.5

neos-957323 87.0 77.1 7.7

neos-957389 2.6 3.6 1.2

neos-960392 2.1 2.3 29.4

neos-983171 17.8 17.9 28.2

neos-984165 28.0 25.9 35.1

neos 1972.6 2204.8 1223.3

nesm 0.2 0.4 0.6

net12 1.6 1.5 3.9

netdiversion 90.7 71.5 41.9

netlarge2 10429.5 9667.3 13.5

netlarge3 32.6 29.0 63.6

newdano 0.1 0.1 0.0

nl 13.4 11.8 5.3

nobel-eu-DBE 0.1 0.1 0.2

noswot 0.0 0.2 0.0

npmv07 104.5 134.4 106.2

ns1111636 43.9 42.7 174.2

ns1116954 1103.1 831.6 57.4

ns1208400 1.6 1.6 7.1

ns1456591 1.6 1.6 1.1

ns1606230 9.9 9.4 6.2

ns1631475 149.3 127.6 954.1

ns1644855 1387.1 1345.0 203.6

ns1663818 22.0 21.5 20.8

114

LP esolver-do esolver soplex

ns1685374 1462.8 3139.7 1303.0

ns1686196 0.2 0.2 0.3

ns1687037 76398.2 76867.7 0.0

ns1688347 0.2 3.3 0.2

ns1688926 2561.1 2567.4 0.0

ns1696083 1.3 1.2 1.5

ns1702808 0.1 0.0 0.0

ns1745726 0.3 0.3 0.3

ns1758913 225.3 178.3 1037.4

ns1766074 0.0 0.0 0.0

ns1769397 0.4 0.4 0.5

ns1778858 6.7 6.9 16.0

ns1830653 3.0 2.7 0.8

ns1853823 0.0 0.0 38431.0

ns1854840 0.0 0.0 16765.3

ns1856153 0.9 0.9 1.0

ns1904248 627.7 667.4 188.7

ns1905797 2.3 2.4 5.7

ns1905800 0.3 0.3 0.4

ns1952667 0.9 0.9 1.4

ns2017839 467.4 532.2 707.7

ns2081729 0.1 0.0 0.0

ns2118727 769.8 670.6 133.7

ns2122603 117.1 304.0 9.1

ns2124243 292.6 224.5 288.1

ns2137859 11.1 11.8 18.7

ns4-pr3 0.5 0.5 2.0

ns4-pr9 0.4 0.4 1.4

ns894236 31.3 28.0 15.9

ns894244 1345.7 1329.9 26.6

ns894786 289.4 244.3 26.0

ns894788 1.0 1.0 1.3

ns903616 352.0 309.7 47.3

ns930473 4.1 3.8 22.4

nsa 0.1 0.1 0.1

nsct1 4.1 4.9 5.9

nsct2 4.1 3.8 3.5

nsic1 0.0 0.0 0.0

nsic2 0.0 0.0 0.0

115

LP esolver-do esolver soplex

nsir1 0.6 0.6 0.8

nsir2 0.6 0.6 0.9

nsr8k 1145.7 1148.4 453.3

nsrand-ipx 0.5 0.7 0.5

nu120-pr3 0.5 0.6 0.9

nu60-pr9 0.3 0.3 0.8

nug05 0.0 0.0 0.0

nug06 0.1 0.1 0.1

nug07 0.4 0.4 0.5

nug08-3rd 8685.8 9061.4 7217.9

nug08 1.2 1.2 1.8

nug12 1100.1 1187.5 251.6

nug15 0.0 0.0 55976.9

nug20 0.0 0.0 0.0

nug30 0.0 0.0 0.0

nw04 2.5 2.4 2.8

nw14 4.5 4.1 3.9

ofi 159.1 160.7 328.4

opm2-z10-s2 1075.3 1006.0 218.5

opm2-z11-s8 3126.1 3541.9 353.0

opm2-z12-s14 1339.0 1147.4 580.0

opm2-z12-s7 3984.3 4224.6 588.2

opm2-z7-s2 46.0 31.9 24.0

opt1217 0.0 0.0 0.0

orna1 1.7 1.9 1.2

orna2 1.6 1.9 1.2

orna3 1.7 2.1 1.2

orna4 2.8 3.1 1.2

orna7 1.7 2.0 1.3

orswq2 0.0 0.0 0.0

osa-07 0.7 0.7 1.1

osa-14 2.7 3.1 2.7

osa-30 7.6 7.4 14.1

osa-60 27.0 26.6 65.4

p0033 0.0 0.0 0.0

p0040 0.0 0.0 0.0

p010 3.8 3.6 5.5

p0201 0.0 0.0 0.0

p0282 0.0 0.0 0.0

116

LP esolver-do esolver soplex

p0291 0.0 0.0 0.0

p0548 0.0 0.0 0.0

p05 1.0 1.0 1.0

p100x588b 0.0 0.0 0.0

p19 0.0 0.0 0.1

p2756 0.0 0.1 0.1

p2m2p1m1p0n100 0.0 0.0 0.0

p6000 0.1 0.1 0.2

p6b 0.1 0.1 0.1

p80x400b 0.0 0.0 0.0

pcb1000 0.5 0.5 0.3

pcb3000 2.3 2.3 1.6

pds-02 0.1 0.1 0.2

pds-06 1.1 1.0 1.7

pds-100 2975.1 3130.2 9363.8

pds-10 3.6 3.4 4.0

pds-20 29.2 28.5 30.7

pds-30 218.4 172.9 155.3

pds-40 417.1 466.3 199.4

pds-50 1214.4 925.5 2739.7

pds-60 2039.8 1870.4 3927.3

pds-70 2002.6 2901.0 5131.7

pds-80 2809.3 3001.2 9225.0

pds-90 3165.1 3275.8 13481.8

perold 6.3 6.5 1.4

pf2177 1.7 1.3 3.3

pg5 34 0.1 0.1 0.1

pg 0.0 0.1 0.1

pgp2 6.3 4.6 0.3

pigeon-10 0.0 0.0 0.0

pigeon-11 0.1 0.0 0.1

pigeon-12 0.1 0.0 0.1

pigeon-13 0.1 0.1 0.1

pigeon-19 0.2 0.1 0.1

pilot4 0.7 1.0 0.8

pilot87 3822.7 4019.9 361.9

pilot-ja 19.0 19.4 3.2

pilotnov 4.1 4.2 1.1

pilot 122.4 263.1 31.2

117

LP esolver-do esolver soplex

pilot-we 2.0 2.6 1.5

pk1 0.0 0.0 0.0

pldd000b 1.2 1.2 0.4

pldd001b 1.1 1.2 0.4

pldd002b 1.3 1.3 0.4

pldd003b 1.0 1.0 0.4

pldd004b 1.1 1.2 0.4

pldd005b 0.9 1.0 0.4

pldd006b 1.6 1.6 0.4

pldd007b 1.1 1.1 0.4

pldd008b 1.6 1.7 0.5

pldd009b 1.6 1.6 0.4

pldd010b 1.7 1.8 0.5

pldd011b 1.6 1.6 0.5

pldd012b 1.4 1.4 0.4

pltexpa2-16 0.1 0.1 0.1

pltexpa2-6 0.0 0.0 0.0

pltexpa3 16 4.4 4.0 5.2

pltexpa3 6 0.3 0.3 0.4

pltexpa4 6 204.8 197.1 5.2

pp08aCUTS 0.0 0.0 0.0

pp08a 0.0 0.0 0.0

primagaz 0.5 0.5 0.4

problem 0.0 0.0 0.0

probportfolio 0.0 0.0 0.0

prod1 0.0 0.0 0.0

prod2 0.1 0.0 0.0

progas 11.8 15.5 6.1

protfold 0.7 0.7 1.1

pw-myciel4 0.5 0.4 0.4

qap10 16.5 15.5 17.5

qiulp 0.2 0.5 0.1

qiu 0.2 0.5 0.1

qnet1 o 0.0 0.0 0.1

qnet1 0.0 0.0 0.1

queens-30 647.9 624.0 67.3

r05 1.7 1.6 1.7

r80x800 0.0 0.0 0.0

rail01 1463.5 1709.8 14987.4

118

LP esolver-do esolver soplex

rail02 0.0 0.0 0.0

rail03 27089.0 29582.6 8.3

rail2586 16.2 13.9 24.3

rail4284 19.2 17.6 17.1

rail507 14.5 12.7 21.5

rail516 3.3 3.9 7.1

rail582 11.0 9.3 10.1

ramos3 980.7 954.4 416.5

ran10x10a 0.0 0.0 0.0

ran10x10b 0.0 0.0 0.0

ran10x10c 0.0 0.0 0.0

ran10x12 0.0 0.0 0.0

ran10x26 0.0 0.0 0.0

ran12x12 0.0 0.0 0.0

ran12x21 0.0 0.0 0.0

ran13x13 0.0 0.0 0.0

ran14x18 1 0.0 0.0 0.0

ran14x18-disj-8 4.1 8.9 0.8

ran14x18.disj-8 4.1 9.1 0.8

ran14x18 0.0 0.0 0.0

ran16x16 0.0 0.0 0.0

ran17x17 0.0 0.0 0.0

ran4x64 0.0 0.0 0.0

ran6x43 0.0 0.0 0.0

ran8x32 0.0 0.0 0.0

rat1 9.4 10.5 4.0

rat5 511.1 524.9 224.8

rat7a 10949.6 11166.3 6503.0

rd-rplusc-21 63.0 65.3 1112.6

reblock166 5.9 4.9 2.3

reblock354 23.5 20.4 15.9

reblock420 83.1 76.2 41.3

reblock67 0.2 0.2 0.2

recipe 0.0 0.0 0.0

refine 0.0 0.0 0.0

rentacar 0.7 0.6 2.1

rgn 0.0 0.0 0.0

rlfddd 1.1 0.9 1.6

rlfdual 4.6 4.1 3.3

119

LP esolver-do esolver soplex

rlfprim 30.5 34.3 37.6

rlp1 0.0 0.0 0.0

rmatr100-p10 1.9 1.8 1.1

rmatr100-p5 2.4 2.5 4.0

rmatr200-p10 31.6 34.9 25.9

rmatr200-p20 23.9 22.6 13.7

rmatr200-p5 57.6 52.1 33.7

rmine10 239.5 224.7 50.1

rmine14 11185.1 9111.4 3658.8

rmine21 86.5 75.9 17.9

rmine25 22.1 18.5 31.5

rmine6 1.0 1.0 0.4

rocII-4-11 2.2 1.9 1.3

rocII-7-11 4.4 4.8 2.7

rocII-9-11 6.1 5.8 3.3

rococoB10-011000 0.1 0.1 0.9

rococoC10-001000 0.1 0.1 0.2

rococoC11-011100 0.2 0.2 1.5

rococoC12-111000 0.3 0.3 2.2

roll3000 0.3 0.3 0.4

rosen10 1.2 1.2 1.1

rosen1 0.2 0.2 0.2

rosen2 0.5 0.5 0.6

rosen7 0.0 0.1 0.1

rosen8 0.1 0.1 0.2

route 5.5 5.8 1.7

rout 0.0 0.0 0.0

roy 0.0 0.0 0.0

rvb-sub 12.2 11.6 4.3

satellites1-25 4.0 3.5 9.6

satellites2-60-fs 60.9 55.2 580.8

satellites2-60 90.7 76.2 583.0

satellites3-40-fs 322.4 309.9 6315.3

satellites3-40 466.0 430.3 6521.4

sc105 0.0 0.0 0.0

sc205-2r-100 0.1 0.1 0.7

sc205-2r-1600 1.1 1.0 2203.0

sc205-2r-16 0.0 0.0 0.0

sc205-2r-200 0.4 0.4 4.7

120

LP esolver-do esolver soplex

sc205-2r-27 0.0 0.0 0.0

sc205-2r-32 0.0 0.0 0.0

sc205-2r-400 1.4 1.4 35.7

sc205-2r-4 0.0 0.0 0.0

sc205-2r-50 0.1 0.0 0.1

sc205-2r-64 0.1 0.0 0.2

sc205-2r-800 4.2 4.3 306.9

sc205-2r-8 0.0 0.0 0.0

sc205 0.0 0.0 0.0

sc50a 0.0 0.0 0.0

sc50b 0.0 0.0 0.0

scagr25 0.0 0.0 0.0

scagr7-2b-16 0.0 0.0 0.0

scagr7-2b-4 0.0 0.0 0.0

scagr7-2b-64 2.2 2.5 2.3

scagr7-2c-16 0.0 0.0 0.0

scagr7-2c-4 0.0 0.0 0.0

scagr7-2c-64 0.2 0.2 0.3

scagr7-2r-108 0.4 0.4 0.4

scagr7-2r-16 0.0 0.0 0.0

scagr7-2r-216 1.5 1.6 1.5

scagr7-2r-27 0.1 0.1 0.1

scagr7-2r-32 0.1 0.1 0.1

scagr7-2r-432 8.4 7.7 5.9

scagr7-2r-4 0.0 0.0 0.0

scagr7-2r-54 0.2 0.2 0.2

scagr7-2r-64 0.2 0.2 0.3

scagr7-2r-864 49.0 41.3 25.2

scagr7-2r-8 0.0 0.0 0.0

scagr7 0.0 0.0 0.0

scfxm1-2b-16 0.4 0.4 0.4

scfxm1-2b-4 0.1 0.1 0.1

scfxm1-2b-64 25.7 22.2 15.8

scfxm1-2c-4 0.1 0.1 0.1

scfxm1-2r-128 23.2 19.9 19.6

scfxm1-2r-16 0.4 0.4 0.4

scfxm1-2r-256 76.8 63.6 113.8

scfxm1-2r-27 0.6 0.6 0.7

scfxm1-2r-32 1.1 1.0 1.0

121

LP esolver-do esolver soplex

scfxm1-2r-4 0.1 0.1 0.1

scfxm1-2r-64 4.7 4.3 4.8

scfxm1-2r-8 0.1 0.2 0.2

scfxm1-2r-96 11.5 12.5 11.2

scfxm1 0.0 0.0 0.0

scfxm2 0.1 0.1 0.1

scfxm3 0.1 0.1 0.2

scorpion 0.0 0.0 0.0

scrs8-2b-16 0.0 0.0 0.0

scrs8-2b-4 0.0 0.0 0.0

scrs8-2b-64 0.1 0.1 0.1

scrs8-2c-16 0.0 0.0 0.0

scrs8-2c-32 0.0 0.0 0.0

scrs8-2c-4 0.0 0.0 0.0

scrs8-2c-64 0.1 0.1 0.1

scrs8-2c-8 0.0 0.0 0.0

scrs8-2r-128 0.1 0.1 0.2

scrs8-2r-16 0.0 0.0 0.0

scrs8-2r-256 0.3 0.3 0.5

scrs8-2r-27 0.0 0.0 0.0

scrs8-2r-32 0.0 0.0 0.0

scrs8-2r-4 0.0 0.0 0.0

scrs8-2r-512 1.0 1.0 1.6

scrs8-2r-64b 0.1 0.1 0.1

scrs8-2r-64 0.1 0.1 0.1

scrs8-2r-8 0.0 0.0 0.0

scrs8 0.1 0.1 0.1

scsd1 0.0 0.1 0.0

scsd6 0.6 0.5 0.1

scsd8-2b-16 0.0 0.1 0.1

scsd8-2b-4 0.0 0.0 0.0

scsd8-2b-64 11.8 11.8 0.7

scsd8-2c-16 0.1 0.1 0.1

scsd8-2c-4 0.0 0.0 0.0

scsd8-2c-64 3.2 3.1 0.9

scsd8-2r-108 2.4 2.2 0.4

scsd8-2r-16 0.1 0.1 0.1

scsd8-2r-216 6.3 5.6 1.0

scsd8-2r-27 0.2 0.2 0.1

122

LP esolver-do esolver soplex

scsd8-2r-32 0.2 0.2 0.1

scsd8-2r-432 9.8 7.5 1.9

scsd8-2r-4 0.0 0.0 0.0

scsd8-2r-54 0.6 0.6 0.2

scsd8-2r-64 0.7 0.7 0.2

scsd8-2r-8b 0.0 0.0 0.0

scsd8-2r-8 0.0 0.0 0.0

scsd8 0.1 0.1 0.2

sct1 16.5 17.6 9.6

sct32 12.2 11.3 5.4

sct5 24.2 27.5 4.3

sctap1-2b-16 0.0 0.0 0.0

sctap1-2b-4 0.0 0.0 0.0

sctap1-2b-64 1.0 1.0 1.1

sctap1-2c-16 0.0 0.0 0.0

sctap1-2c-4 0.0 0.0 0.0

sctap1-2c-64 0.1 0.1 0.2

sctap1-2r-108 0.2 0.2 0.3

sctap1-2r-16 0.0 0.0 0.1

sctap1-2r-216 0.8 0.7 0.7

sctap1-2r-27 0.1 0.0 0.1

sctap1-2r-32 0.1 0.1 0.1

sctap1-2r-480 2.4 1.9 2.4

sctap1-2r-4 0.0 0.0 0.0

sctap1-2r-54 0.1 0.1 0.1

sctap1-2r-64 0.1 0.1 0.2

sctap1-2r-8b 0.0 0.0 0.0

sctap1-2r-8 0.0 0.0 0.0

sctap1 0.0 0.0 0.0

sctap2 0.1 0.0 0.1

sctap3 0.1 0.0 0.1

seba 0.0 0.0 0.0

self 100.7 21448.8 2987.3

set1ch 0.0 0.0 0.0

set3-10 1.6 1.6 0.2

set3-15 1.6 1.6 0.3

set3-20 1.8 1.7 0.3

seymour-disj-10 30.8 31.2 6.1

seymour.disj-10 28.5 29.1 6.1

123

LP esolver-do esolver soplex

seymourl 1.6 1.5 0.9

seymour 1.4 1.5 0.8

sgpf5y6 268.4 216.7 1630.5

share1b 0.0 0.0 0.0

share2b 0.0 0.0 0.0

shell 0.0 0.0 0.1

ship04l 0.0 0.1 0.1

ship04s 0.0 0.0 0.0

ship08l 0.1 0.1 0.1

ship08s 0.1 0.1 0.1

ship12l 0.1 0.1 0.2

ship12s 0.1 0.1 0.1

shipsched 9.0 9.3 13.1

shs1023 552.1 731.3 1542.5

siena1 54.9 53.4 32.6

sierra 0.1 0.1 0.1

sing161 24335.6 26224.4 9.8

sing245 14571.9 11173.0 3098.6

sing2 59.3 72.5 112.8

sing359 18031.7 14099.3 12774.3

slptsk 12.5 14.1 10.3

small000 0.1 0.1 0.1

small001 0.1 0.1 0.1

small002 0.1 0.2 0.1

small003 0.1 0.1 0.1

small004 0.1 0.1 0.1

small005 0.1 0.1 0.1

small006 0.1 0.1 0.1

small007 0.1 0.1 0.1

small008 0.1 0.1 0.1

small009 0.1 0.1 0.1

small010 0.1 0.1 0.1

small011 0.1 0.1 0.1

small012 0.1 0.1 0.1

small013 0.1 0.1 0.1

small014 0.1 0.1 0.1

small015 0.1 0.1 0.1

small016 0.1 0.1 0.1

south31 42.0 49.7 27.8

124

LP esolver-do esolver soplex

sp97ar 2.7 2.3 4.7

sp97ic 0.6 0.6 0.7

sp98ar 2.9 3.0 22.1

sp98ic 1.2 1.3 5.5

sp98ir 0.4 0.4 0.5

spal 004 48.1 48.1 43.2

splan1 94.0 2739.1 0.0

square15 16454.4 17657.8 6402.7

stair 3.2 3.5 0.7

standata 0.0 0.0 0.0

standmps 0.0 0.0 0.0

stat96v1 1737.1 24261.9 21729.6

stat96v2 31424.0 24108.9 0.0

stat96v3 28409.4 23577.3 19.6

stat96v4 2401.7 18201.8 1884.7

stat96v5 812.3 2686.7 570.5

stein27 0.0 0.0 0.0

stein45 0.0 0.0 0.0

stocfor1 0.0 0.0 0.0

stocfor2 0.2 0.2 0.3

stocfor3 20.2 11.5 15.7

stockholm 174.7 176.9 46.9

stormg2 1000 16565.3 13356.4 21.9

stormG2 1000 7694.6 17698.0 7961.3

stormg2-125 120.9 120.7 100.0

stormg2-27 3.0 3.0 2.2

stormg2-8 0.4 0.4 0.4

stp3d 4240.2 3192.3 7747.1

sts405 4.9 5.5 0.7

sts729 35.7 30.1 3.8

swath 0.2 0.2 0.2

sws 0.7 0.7 1.2

t0331-4l 52.6 45.2 25.5

t1717 35.0 31.0 32.2

t1722 6.1 6.3 9.1

tanglegram1 3.7 3.3 5.6

tanglegram2 0.2 0.2 0.2

Test3 48.0 37.8 9.6

testbig 4.2 4.0 272.4

125

LP esolver-do esolver soplex

timtab1 0.0 0.0 0.0

timtab2 0.0 0.0 0.0

toll-like 0.1 0.1 0.1

tp-6 23.3 18.8 14.5

tr12-30 0.0 0.0 0.0

transportmoment 6.2 6.4 2.4

triptim1 295.8 287.1 143.4

triptim2 18187.9 15413.8 989.4

triptim3 14237.3 11562.3 509.7

truss 1.8 1.8 3.2

ts-palko 0.0 0.0 0.0

tuff 0.0 0.0 0.0

tw-myciel4 2.4 2.2 2.7

uc-case11 488.4 459.2 99.6

uc-case3 104.9 104.9 159.5

uct-subprob 0.3 0.3 0.4

ulevimin 24.1 28.4 124.4

umts 3.3 3.6 0.8

unitcal 7 4.1 3.6 28.1

us04 1.8 1.6 1.3

usAbbrv-8-25 70 0.4 0.4 0.1

van 20.2 18.4 21.5

vpm1 0.0 0.0 0.0

vpm2 0.0 0.0 0.0

vpphard2 20.8 19.6 49.8

vpphard 27.2 26.2 29.1

vtp-base 0.0 0.0 0.0

wachplan 2.0 1.9 0.6

watson 1 555.2 542.8 1384.4

watson 2 4968.3 6398.2 3276.6

wide15 16362.5 17566.5 7376.6

wnq-n100-mw99-14 123.8 110.7 22.2

wood1p 0.6 0.8 0.7

woodw 0.3 0.3 0.5

world 770.2 949.7 291.1

zed 0.0 0.0 0.0

zib54-UUE 0.2 0.2 0.2

126

Bibliography

[1] R. H. Bartels, “A stabilization of the simplex method,” Numerische Mathematik,

vol. 16, pp. 414–434, Feb 1971.

[2] C. Roos, T. Terlaky, and J.-P. Vial, Interior Point Methods for Linear Optimization.

New York: Springer, 2nd ed., 2006.

[3] S. Gao, J. Avigad, and E. M. Clarke, “Delta-decidability over the reals,” in 2012 27th

Annual IEEE Symposium on Logic in Computer Science, pp. 305–314, June 2012.

[4] S. Gao, J. Avigad, and E. M. Clarke, “δ-complete decision procedures for satisfia-

bility over the reals,” in Automated Reasoning: 6th International Joint Conference,

pp. 286–300, Springer, 2012.

[5] C. Barrett and C. Tinelli, “Satisfiability modulo theories,” in Handbook of Satisfia-

bility, volume 185, chapter 26, pp. 825–885, IOS Press, 2009.

[6] B. Dutertre and L. de Moura, “Integrating Simplex with DPLL(T),” tech. rep., CSL,

SRI International, 2006.

[7] L. de Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and Algorithms

for the Construction and Analysis of Systems 2008, European Conferences on Theory

and Practice of Software, pp. 337–340, Springer, 2008.

[8] C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanović, T. King,

A. Reynolds, and C. Tinelli, “CVC4,” in Proceedings of the 23rd International

Conference on Computer Aided Verification (CAV ’11) (G. Gopalakrishnan and

S. Qadeer, eds.), vol. 6806 of Lecture Notes in Computer Science, (Snowbird, Utah),

pp. 171–177, Springer, July 2011.

[9] D. L. Applegate, W. Cook, S. Dash, and D. G. Espinoza, “Exact solutions to linear

programming problems,” Operations Research Letters, vol. 35, no. 6, pp. 693–699,

2007.

[10] A. M. Gleixner and D. E. Steffy, “Linear programming using limited-precision ora-

cles,” Mathematical Programming, pp. 1436–4646, Nov. 2019.

[11] C. Jansson, “Rigorous lower and upper bounds in linear programming,” SIAM Jour-

nal on Optimization, vol. 14, no. 3, pp. 914–935, 2004.

127

[12] R. Bartels and G. Golub, “The simplex method of linear programming using LU

decomposition,” Communications of the ACM, vol. 12, no. 5, pp. 266–268, 1969.

[13] M. Fränzle, C. Herde, T. Teige, S. Ratschan, and T. Schubert, “Efficient solving

of large non-linear arithmetic constraint systems with complex Boolean structure,”

Journal on Satisfiability, Boolean Modeling and Computation, vol. 1, no. 3–4, pp. 209–

236, 2006.

[14] C. Herde, Efficient Solving of Large Arithmetic Constraint Systems with Complex

Boolean Structure. PhD thesis, University of Oldenburg, 2010.

[15] A. Tarski, A decision method for elementary algebra and geometry. Berkeley: Uni-

versity of California Press, 2d ed., rev.. ed., 1951.

[16] A. M. Gleixner, D. E. Steffy, and K. Wolter, “Improving the accuracy of linear pro-

gramming solvers with iterative refinement,” in Proceedings of ISSAC ’12, pp. 187–

194, 2012.

[17] A. M. Gleixner, D. E. Steffy, and K. Wolter, “Iterative refinement for linear pro-

gramming,” INFORMS Journal on Computing, vol. 28, no. 3, pp. 449–464, 2016.

[18] D. G. Espinoza, On Linear Programming, Integer Programming and Cutting Planes.

PhD thesis, School of Industrial and Systems Engineering, Georgia Institute of Tech-

nology, May 2006.

[19] J. Forrest and J. Tomlin, “Updated triangular factors of the basis to maintain sparsity

in the product form simplex method,” Mathematical Programming, vol. 2, no. 1,

pp. 263–278, 1972.

[20] N. Higham, R. Chan, C. Greif, and D. O’Leary, Commentary on Matrix Factor-

izations and Applications, pp. 227–235. United Kingdom: Oxford University Press,

2007.

[21] G. H. Golub and C. F. van Loan, Matrix Computations. Johns Hopkins Studies in the

Mathematical Sciences, Baltimore: Johns Hopkins University Press, 4th ed., 2013.

[22] N. J. Higham, Accuracy and Stability of Numerical Algorithms. Philadelphia: Society

for Industrial and Applied Mathematics, 2002.

[23] R. G. Bland, “New finite pivoting rules for the simplex method,” Mathematics of

Operations Research, vol. 2, no. 2, pp. 103–107, 1977.

[24] J. Matousek, Understanding and using linear programming. Universitext, Springer,

2007.

[25] M. Reed and B. Simon, Functional Analysis, vol. 1 of Methods of modern mathemat-

ical physics. New York: Academic Press, rev. and enl. ed., 1980.

128

[26] J. H. Wilkinson, “Error analysis of floating-point computation,” Numerische Math-

ematik, vol. 2, pp. 319–340, Dec 1960.

[27] S. J. Wright, “Effects of finite-precision arithmetic on interior-point methods for

nonlinear programming,” SIAM Journal on Optimization, vol. 12, no. 1, pp. 36–78,

2001.

[28] N. Sloane and J. Stufken, “A linear programming bound for orthogonal arrays with

mixed levels,” Journal of Statistical Planning and Inference, vol. 56, no. 2, pp. 295–

305, 1996.

129

	1 Introduction
	1.1 Background
	1.1.1 ReLU Neural Networks
	1.1.2 Delta-Decidability and Delta-Completeness
	1.1.3 Verifying ReLU Neural Networks
	1.1.4 Linear Programming
	1.1.5 Related Work

	1.2 Fundamental Preliminaries
	1.2.1 Floating-point arithmetic model
	1.2.2 Big O notation

	1.3 Overall Thesis Summary
	1.3.1 Scope of Problem

	1.4 Delta-Complete Decision Procedures
	1.4.1 Difference between the Nonlinear and Linear Cases

	1.5 Aim and Objectives
	1.6 Thesis Outline

	2 Delta-Complete Interior-Point Method for Satisfiability
	2.1 Interior-Point System
	2.1.1 The unsatisfiable case

	2.2 Full-Newton Step Algorithm
	2.3 Proof of Delta-Completeness

	3 The Bartels–Golub Simplex Algorithm
	3.1 Introduction to the Bartels–Golub Algorithm
	3.1.1 Further concepts and notation for the Bartels–Golub algorithm
	3.1.2 The basics of the error analysis
	3.1.3 Error analysis of the retriangularisation factors
	3.1.4 Key elements in the error analysis of the basis decomposition

	3.2 Off-By-One Error in Bartels' Error Analysis Bartels1971
	3.3 Updates to Bartels' Floating-Point Arithmetic Model
	3.4 Updated Analysis for Triangular Systems
	3.5 Updated Bound for the Product Sub-Factors (i)
	3.6 Updated Bound for the Product Sub-Factor Errors (i)-C(i)
	3.7 Updated Bound for the Product Factor Error G(k)
	3.8 Overall Bound for the Upper Triangular Factor U(k)
	3.9 Updated Bound for the Basis Matrix Error B(k)
	3.10 Overall Error Bound
	3.11 Conclusion

	4 Delta-Complete Simplex Method for Satisfiability
	4.1 Simplex
	4.1.1 From satisfiability to optimisation
	4.1.2 Basic solutions
	4.1.3 Duality
	4.1.4 Known results about the simplex algorithm

	4.2 Delta-Complete Algorithm
	4.3 Floating-Point Exceptions
	4.4 Proof of Delta-Completeness: Correctness
	4.5 Proof of Delta-Completeness: General Error Bounds
	4.5.1 Iteration limit
	4.5.2 Initial rounding error
	4.5.3 Basis and substitution error

	4.6 Proof of Delta-Completeness: Iterate Vector Error Bounds
	4.6.1 Primal, dual and entering coefficient vector total error
	4.6.2 Reduced cost vector total error
	4.6.3 Candidate update vector total error
	4.6.4 Error bounds for fp-primal-simplex-algo

	4.7 Proof of Delta-Completeness: Correct Behaviour
	4.7.1 Correct optimality determination & entering variable choice
	4.7.2 Correct unboundedness determination
	4.7.3 Correct leaving variable choice

	4.8 Proof of Delta-Completeness: Proof of Termination, and Conclusion

	5 Delta-Complete General Linear Programming Method
	5.1 The Top-Down View
	5.2 The Practical View
	5.3 Proof of Delta-Completeness

	6 Implementation
	6.1 Interior-Point Algorithm
	6.2 Simplex for Satisfiability
	6.3 Simplex for Linear Programming

	7 Evaluation
	7.1 Delta-Complete Interior-Point Method
	7.2 Delta-Complete Simplex Methods
	7.3 The Sloane–Stufken Problem
	7.3.1 Comparison with third-party solvers
	7.3.2 Maximum deltas / minimum precisions
	7.3.3 Comparison of deltas

	7.4 Infeasible Instances

	8 Conclusion
	8.1 Further Work
	8.1.1 LPs with irrational coefficients
	8.1.2 LPs with interval coefficients
	8.1.3 Neural networks using alternative activation functions

	A Important Interior-Point Results from RoosCornelis2006Ipmf
	A.1 Analytical Subject and Duality
	A.2 From Optimisation to Inequalities
	A.3 Skew-Symmetry and Homogeneity
	A.4 The Interior-Point Condition
	A.5 The Slack Vector
	A.6 Self-Duality
	A.7 The Optimal Partition
	A.8 Full-Newton Step Algorithm
	A.9 Termination
	A.10 Proximity Measure
	A.11 Condition Number
	A.12 Iteration Bound
	A.13 Large and Small Variables
	A.14 Modified Form of the Feasibility Conditions

	B Alternative Interior-Point Proofs
	B.1 Simple Cases
	B.2 The Unsatisfiable Case

	C Elementwise Bounds for the Result of Gaussian Elimination with Partial Pivoting
	C.1 Partial Pivoting
	C.2 Bound for General Case
	C.3 Bound for Upper Hessenberg Case

	D Full LP: full results table
	Bibliography

