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 Abstract 

For some types of special-purpose marine vessels, such as dredgers, the variability of mass 

in onboard stemming from their operational dynamics causes a distinctive challenge. This 

variability can swiftly induce unforeseen loads within short time periods during their 

unloading working conditions, leading to unexpected structural responses and potential 

fatigue damage. Specifically, in the case of dredgers, the additional loads arising from 

variations in mass during specialized operations raise significant concerns. What adds to 

the complexity is that these challenges often escape effective consideration during the 

design phase. This dynamic interplay of mass variation, occurring within short time 

intervals, has the potential to compromise structural integrity of the vessel and underscores 

the need for a more accuracy approach to design and structural analysis in the realm of 

specialized marine technology. 

This thesis stands as a pioneering endeavour, proposing a innovate mathematical and 

numerical model for structural dynamic analysis of variable cross-section hull girder with 

time-varying mass characteristics subjected to complex operational and sea environmental 

loads. At its core, the proposed model leverages the modified Euler-Bernoulli beam theory 

to accommodate variable mass functions and employs a semi-analytical approach for the 

vibration characteristics analysis in the variable cross-section beam. The loads acting on 

the hull girder are composed of hydrodynamic loads, engine excitation loads, and propeller 

excitation loads respectively defined in the dynamic model. Furthermore, an improved 

Kane’s dynamic equation is established and integrated into the mathematical and numerical 

model, tailored for time-varying mass systems, serving as the primary dynamic module 

solver. Dynamic results calculated by the proposed mathematical and numerical model can 

be transferred into three-dimensional finite element model of the target vessel for the 

further structural analysis in ANSYS to obtain strength and fatigue assessments. 

A customized programme, written in FORTRAN language, is developed based on the 

proposed mathematical and numerical model. In addition, some verification results and 

user-defined case studies are given in this thesis. The semi-analytical approach for vibration 

analysis of various cross-section Euler-Bernoulli beam has been verified with FEA results. 

The varying wet surface and trim characteristics of the ship hull within a short period are 

also taken into consideration via dividing wet surface into 10 shifting waterlines and load 

cases under variable mass working conditions. Hydrodynamic results pre-calculated by 
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SESAM are inputted and read by the program for further calculations. Finally, dynamic 

results including displacement and angular responses of each predefined rigid cross-section 

in the hull girder are calculated by the programme, which have been used for further FEA 

to achieve detailed structural assessments.  

Dynamic response results, including displacement and angular responses of each 

predefined rigid cross-section in the hull girder, are calculated by the customized program, 

which has been used for further FEA analysis to achieve detailed stress and deformation 

structural assessments. The key findings of this research highlight the significant impact of 

mass variability on the dynamic responses of marine vessels. Structure was found to be 

more sensitive to oblique wave impacts, necessitating careful design considerations. The 

study also verified the accuracy of the semi-analytical approach by comparing it with FEA 

results, demonstrating its efficacy for vibration analysis of variable cross-section beams. 

Furthermore, the integration of pre-calculated hydrodynamic analysis results from SESAM 

into the customized program facilitated a comprehensive evaluation of the vessel’s dynamic 

behaviour under variable mass conditions. These advancements contribute to a more 

precise and efficient method for assessing and ensuring the structural integrity of special-

purpose marine vessels during their design and operational phases. 

The proposed mathematical and numerical model can be used in the design stage for marine 

vessels who have time-varying mass features to evaluate their special structural responses 

during loading or unloading operations. 

Keywords: Structural dynamics, marine vessel, time-varying mass model, hull girder, 

variable cross-section, dynamic analysis, FEA 

  



 

III 

 

 Acknowledgement 

I would like to express my deepest gratitude and appreciation to all those who have 

contributed to the completion of my Ph.D. study. 

First and foremost, I am profoundly thankful to my supervisor, Professor Zhiqiang Hu, 

whose guidance, supports, and encouragements have been invaluable throughout this 

research journey. His expertise and commitments to academic excellences have shaped my 

scholarly endeavours and personal growth significantly. 

I extend my sincere thanks to my second supervisor, Dr Yongchang Pu, for their insightful 

feedback, constructive criticisms, and unwavering supports. His expertise and dedications 

have played a pivotal role in shaping the quality and rigor of my Ph.D. research. 

I am indebted to Newcastle University for providing a conducive academic environment 

and resources essential for undertaking this research. The school of engineering has been a 

source of inspiration and collaboration, fostering an atmosphere of intellectual curiosity 

and academic excellence. 

My heartfelt appreciation goes to my colleagues and fellow researchers for their 

camaraderie, stimulating discussions, and shared passion for advancing knowledge in our 

field. The collaborative spirit within marine technology group has significantly enriched 

my research experience. 

To my friends and families, your unwavering supports, understandings, and 

encouragements have been my pillars of strength. Your belief in my abilities has been a 

constant motivation. 

Much appreciated to everyone who has been a part of this transformative experience. 

  



 

IV 

 

 Table of contents 

 

Abstract ................................................................................................................................ I 

Acknowledgement ............................................................................................................. III 

Table of contents ................................................................................................................ IV 

Lists of figures ................................................................................................................ VIII 

List of tables .................................................................................................................. XVII 

Lists of abbreviations ................................................................................................... XVIII 

Nomenclature .................................................................................................................. XIX 

List of publications ....................................................................................................... XXII 

Chapter 1. Introduction ........................................................................................................ 1 

1.1. Background of dredgers......................................................................................... 1 

1.2. Natural features of dredgers .................................................................................. 3 

1.2.1. Time-varying mass characteristics .............................................................. 3 

1.2.2. Discontinuous structure characteristics ....................................................... 5 

1.2.3. Complex loads ............................................................................................. 5 

1.3. Overview of doctoral programme.......................................................................... 6 

1.3.1. Motivation ................................................................................................... 6 

1.3.2. The research background and significance ................................................. 7 

1.3.3. Aim and objectives ...................................................................................... 8 

1.3.4. Overview of novelties ................................................................................. 9 

1.3.5. Outline of the thesis................................................................................... 10 

Chapter 2. Literature review .............................................................................................. 13 

2.1. Literature reviews on dredgers ............................................................................ 13 

2.1.1. Structural research reviews of dredgers .................................................... 13 

2.1.2. Studies of excitation loads on dredgers ..................................................... 18 



 

V 

 

2.2. Literature reviews on dynamic analysis of marine structures ............................. 22 

2.3. Literature reviews of hydrodynamic analysis in marine vessels ......................... 26 

2.3.1. Classical hydrodynamic analysis methods in marine field ....................... 26 

2.3.2. Hydrostatic and hydrodynamic analysis of special marine vessels........... 29 

2.4. Literature reviews of time-varying structures ..................................................... 31 

2.4.1. Time-varying structure studies .................................................................. 31 

2.4.2. Numerical algorithms of dynamic analysis of linear mass-varying structures

 ............................................................................................................................. 34 

2.5. Literature reviews of strength and fatigue analysis in marine vessels ................ 37 

2.5.1. Global strength analysis of specific marine vessels .................................. 38 

2.5.2. Detailed fatigue analysis of specific marine vessels ................................. 40 

2.6. Summary of Chapter 2 ......................................................................................... 41 

Chapter 3. Methodology .................................................................................................... 43 

3.1. Fundamentals of proposed mathematical and numerical model ......................... 43 

3.2. Modified Euler-Bernoulli beam theory with time-varying mass function .......... 47 

3.3. Semi-analytical of vibration analysis of variable cross-section beam ................. 50 

3.3.1. Modelling assumptions and simplification ............................................... 51 

3.3.2. Relationship of continuity and transfer matrix for lateral beam equation . 52 

3.3.3. Boundary conditions and non-linear eigen equation for lateral beam 

equation ............................................................................................................... 56 

3.3.4. Relationship of continuity and transfer matrix for axial beam equation ... 58 

3.3.5. Boundary conditions and non-linear eigen equation for axial beam equation

 ............................................................................................................................. 60 

3.4. Hydrodynamic load calculation for draft-varying conditions ............................. 60 

3.4.1. Coordinate Definition ................................................................................ 61 

3.4.2. Linear potential flow theory ...................................................................... 61 

3.4.3. First order hydrodynamic loads calculation method ................................. 66 



 

VI 

 

3.4.4. Radiation force .......................................................................................... 67 

3.4.5. Static restoring force ................................................................................. 67 

3.4.6. Pre-calculation in SESAM based on boundary element method .............. 68 

3.5. Other excitation loads .......................................................................................... 70 

3.5.1 Excitation loads from propeller .................................................................. 70 

3.5.2 Excitation loads from diesel engine ........................................................... 70 

3.6. Numerical solver for dynamic analysis of proposed mathematical model by 

improved Kane’s dynamic equation ........................................................................... 71 

3.6.1 Basic dynamic equation of variable mass points system ........................... 72 

3.6.2. Generalized forces ..................................................................................... 73 

3.6.3. Dynamical equations ................................................................................. 75 

3.6.4. Matrix form of dynamical equations ......................................................... 81 

3.7. Determinations in improved Kane’s dynamic equation for marine structures .... 89 

3.8. The Runge-Kutta time integration method .......................................................... 90 

3.9. Multiple point constraints technology in FEA .................................................... 92 

3.10. Outline of proposed mathematical and numerical model .................................. 94 

3.10.1. Outline of TVM_HullGirder program .................................................... 95 

3.10.2. Application of TVM_HullGirder program in FEA ................................. 96 

3.11. Summary of Chapter 3 ....................................................................................... 97 

Chapter 4. Case studies and discussions ............................................................................ 98 

4.1. Verifications of the semi-analytical approach ..................................................... 98 

4.1.1. Vibration analysis results of the cantilever Euler-Bernoulli beam in axial 

direction ............................................................................................................... 98 

4.1.2. Vibration analysis results of the cantilever Euler-Bernoulli beam in 

transverse ........................................................................................................... 102 

4.2. Model descriptions and case settings................................................................. 106 

4.3. Pre-calculation results by SESAM .................................................................... 115 



 

VII 

 

4.3.1. Added mass ............................................................................................. 117 

4.3.2. Damping coefficients .............................................................................. 120 

4.3.3. RAOs ....................................................................................................... 122 

4.4. Vibration natural frequency due to mass-variation ........................................... 129 

4.5. TVM_HullGirder simulation results during unloading conditions ................... 136 

4.5.1. Motion responses of the hull girder......................................................... 137 

4.5.2. Structural vibration responses ................................................................. 144 

4.6. Results by FE analysis ....................................................................................... 161 

4.6.1. FE Model settings in ANSYS ................................................................. 162 

4.6.2. FEA results in ANSYS by MPC ............................................................. 164 

4.6.3. Verifications by qualitative analysis ....................................................... 175 

4.7. Summary of Chapter 4 ....................................................................................... 177 

Chapter 5. Conclusions and future works ........................................................................ 178 

5.1. Proposed math and numerical model................................................................. 178 

5.2. Novelty and impact of the work ........................................................................ 179 

5.3. Future works ...................................................................................................... 181 

List of references.............................................................................................................. 184 

Appendices ....................................................................................................................... 200 

Appendix A. Bisection method codes for solving non-linear equation .................... 200 

Appendix B. Transfer matrix method codes for solving natural frequency ............. 202 

Appendix C. Orthonomal basis solution codes ........................................................ 208 

 

 

  



 

VIII 

 

 Lists of figures 

Figure 1. Drawing of one of newest dredger commissioned (Vidal, 2001). ................ 2 

Figure 2. Rainbowing clean sand for land reclamation (N. Bray & Cohen, 2004). ..... 2 

Figure 3. The dumping process of TSHDs at the disposal site (Dragados, 2017). ....... 3 

Figure 4. The typical working cycle of TSHDs (Mourik & Osnabrugge, 2014). ........ 4 

Figure 5. A schematic view of the change in draught of a TSHD in service (Basic et 

al., 2017). .............................................................................................................. 4 

Figure 6. The typical cross-section at midship of TSHDs (DE JONG, 2010). ............ 5 

Figure 7. Hybrid driving system of TSHDs (Vlasblom W, 2007). .............................. 6 

Figure 8. The outline of this thesis. ............................................................................ 11 

Figure 9. Ship ratio of TSHDs in year of construction (Vlasblom, 2003). ................ 14 

Figure 10. Payload-draught relation of TSHDs (Vlasblom, 2003). ............................ 15 

Figure 11. Planform of a typical TSHD (Walton, 1902). ........................................... 16 

Figure 12. A diesel engine directly drives propeller (Shi, 2013). .............................. 18 

Figure 13. Diesel engine directly drives dredge pump (Shi, 2013). ........................... 18 

Figure 14. Diesel directly drives propeller and electrically drives dredge pump (Shi, 

2013). .................................................................................................................. 19 

Figure 15. Outline of the latest drive line in a hopper dredger (Petit & Loccufier, 2009).

 ............................................................................................................................ 19 

Figure 16. Reduced model of the mass-elastic system (Petit & Loccufier, 2009). .... 20 

Figure 17. Side-by-side configuration of the dredging ship and the mud barge (Song 

Chang, 2017). ..................................................................................................... 31 

Figure 18. Classical hull girder with variable cross-sections. .................................... 43 

Figure 19. The outline of proposed math model. ....................................................... 44 

Figure 20. Hull girder model subjected to complex excitation loads with variable mass 

systems................................................................................................................ 46 



 

IX 

 

Figure 21. Results transferred from calculation programme into FEM by MPC 

technology. ......................................................................................................... 46 

Figure 22. Force diagram of classical Euler-Bernoulli beam element. ...................... 47 

Figure 23. Time-varying mass beam with variable mode shape in time domain. ...... 50 

Figure 24. N segments of variable cross-section beam. ............................................. 51 

Figure 25. Coordinate systems defined in hydrodynamic calculation. ....................... 61 

Figure 26. Transformation from wave spectrum to wave time-series (Faltinsen, 1993).

 ............................................................................................................................ 65 

Figure 27. Sampling method in frequency-domain. ................................................... 65 

Figure 28. Source point on wetted interface of ship hull structure. ............................ 69 

Figure 29. Schematic diagram of the motion vector relationship of the mass point. . 76 

Figure 30. Outline and application of proposed model. ............................................. 95 

Figure 31. The outline of TVM_HullGirder program. ............................................... 96 

Figure 32. Dynamic response information transferred into FEM by MPC in selected 

cross-section. ...................................................................................................... 97 

Figure 33. The geometric model of the cantilever Euler-Bernoulli beam in ABAQUS.

 ............................................................................................................................ 99 

Figure 34. Natural frequency results in axial calculated by ABAQUS and the semi-

analytical approach. .......................................................................................... 101 

Figure 35. Difference percentage in axial of ABAQUS and the semi-analytical 

approach. ........................................................................................................... 101 

Figure 36. Geometric model of the cantilever Euler-Bernoulli beam in ABAQUS. 103 

Figure 37. Natural frequency results in transverse calculated by ABAQUS and the 

semi-analytical approach. ................................................................................. 104 

Figure 38. Difference percentage in transverse of ABAQUS and the semi-analytical 

approach. ........................................................................................................... 104 

Figure 39. Mode shape generated by the semi-analytical approach. ........................ 105 

Figure 40. Basic structural diagram of a TSHD from the side view. ....................... 107 



 

X 

 

Figure 41. Basic structural diagram of a TSHD from the top view. ......................... 107 

Figure 42. Hull lines plan of a TSHD. ...................................................................... 107 

Figure 43. Hull girder model with defined variable-mass beam elements in the middle.

 .......................................................................................................................... 108 

Figure 44. Example of cross-sectional parameters calculation in ANSYS/Spaceclaim.

 .......................................................................................................................... 110 

Figure 45. Panel model in SESAM. ......................................................................... 111 

Figure 46. Weight distribution along with ship frame in ten load cases. ................. 112 

Figure 47. Variation in TSHD draft line................................................................... 115 

Figure 48. Variable draft line at the bow and stern of the TSHD. ............................ 115 

Figure 49. Approximation of the objective ship hull by 2408 quadrilateral elements.

 .......................................................................................................................... 116 

Figure 50. The panel model in fully weighted load case 01. .................................... 116 

Figure 51. The panel model for fully lighted load case 10. ...................................... 116 

Figure 52. Added mass in surge with 10 load cases. ................................................ 117 

Figure 53. Added mass in sway with 10 load cases. ................................................ 117 

Figure 54. Added mass in heave with 10 load cases. ............................................... 118 

Figure 55. Added mass in roll with 10 load cases. ................................................... 118 

Figure 56. Added mass in pitch with 10 load cases.................................................. 119 

Figure 57. Added mass in yaw with 10 load cases. .................................................. 119 

Figure 58. Damping coefficients in surge with 10 load cases. ................................. 120 

Figure 59. Damping coefficients in sway with 10 load cases. ................................. 120 

Figure 60. Damping coefficients in heave with 10 load cases. ................................ 121 

Figure 61. Damping coefficients in roll with 10 load cases. .................................... 121 

Figure 62. Damping coefficients in pitch with 10 load cases. .................................. 122 

Figure 63. Damping coefficients in yaw with 10 load cases. ................................... 122 

Figure 64. RAOs in surge with 10 load cases in 0-degree wave. ............................. 123 



 

XI 

 

Figure 65. RAOs in heave with 10 load cases in 0-degree wave. ............................ 123 

Figure 66. RAOs in pitch with 10 load cases in 0-degree wave. .............................. 124 

Figure 67. RAOs in surge with 10 load cases in 45-degree wave. ........................... 124 

Figure 68. RAOs in sway with 10 load cases in 45-degree wave. ........................... 125 

Figure 69. RAOs in heave with 10 load cases in 45-degree wave. .......................... 125 

Figure 70. RAOs in roll with 10 load cases in 45-degree wave. .............................. 126 

Figure 71. RAOs in pitch with 10 load cases in 45-degree wave. ............................ 126 

Figure 72. RAOs in yaw with 10 load cases in 45-degree wave. ............................. 127 

Figure 73. Dredger in load case 03 (left) and load case 04 (right). .......................... 127 

Figure 74. The first-order natural frequency results with four different simulation cases 

involving three various added mass calculation methods (Wet) and the case 

without consideration of added mass (Dry) in Y direction. ............................. 130 

Figure 75. The first-order natural frequency results with four different simulation cases 

involving three various added mass calculation methods (Wet) and the case 

without consideration of added mass (Dry) in Z direction. .............................. 130 

Figure 76. The first-order natural frequency results with three various added mass 

calculation methods (Wet) in Y direction......................................................... 132 

Figure 77. The first-order natural frequency results with three various added mass 

calculation methods (Wet) in Z direction. ........................................................ 132 

Figure 78. The second-order natural frequency results with four different simulation 

cases involving three various added mass calculation methods (Wet) and the case 

without consideration of added mass (Dry) in Y direction. ............................. 134 

Figure 79. The second-order natural frequency results with four different simulation 

cases involving three various added mass calculation methods (Wet) and the case 

without consideration of added mass (Dry) in Z direction. .............................. 134 

Figure 80. The second-order natural frequency results with three various added mass 

calculation methods (Wet) in Y direction......................................................... 135 

Figure 81. The second-order natural frequency results with three various added mass 

calculation methods (Wet) in Z direction. ........................................................ 135 



 

XII 

 

Figure 82. Descriptions for outputted results from the hull girder model. ............... 136 

Figure 83. Oscillation results of hull girder in heave with various dynamic model and 

mass change settings. ........................................................................................ 137 

Figure 84. Acceleration of hull girder in heave as a rigid-flexible coupled body with 

variable mass (8211) and invariant-mass (7211) working conditions. ............. 139 

Figure 85. Acceleration of hull girder in heave as a rigid body with variable mass (6211) 

and invariant-mass (5011) working conditions. ............................................... 139 

Figure 86. Acceleration of hull girder in pitch as a rigid-flexible coupled body with 

variable mass (8211) and invariant-mass (7211) working conditions. ............. 139 

Figure 87. Acceleration of hull girder in pitch as a rigid body with variable mass (6211) 

and invariant-mass (5011) working conditions. ............................................... 140 

Figure 88. Oscillation results of the hull girder in heave in 0-degree and 45-degree 

wave direction during unloading operations. ................................................... 141 

Figure 89. Angular results of the hull girder in pitch in 0-degree and 45-degree wave 

direction during unloading operations. ............................................................. 142 

Figure 90. Oscillation results of the hull girder in heave in 0-degree and 45-degree 

wave direction during invariant-mass working conditions. .............................. 143 

Figure 91. Angular results of the hull girder in pitch in 0-degree and 45-degree wave 

direction during invariant-mass working conditions. ....................................... 143 

Figure 92. Acceleration results of the hull girder in heave under 0-degree and 45-

degree wave sea condition respectively. ........................................................... 144 

Figure 93. Angular acceleration results of the hull girder in pitch under 0-degree and 

45-degree wave sea condition respectively. ..................................................... 144 

Figure 94. Displacement results of invariant-mass beam element 01 - 06 in Z direction 

under unloading working conditions. ............................................................... 145 

Figure 95. Displacement results of time-varying mass beam element 07 - 14 in Z 

direction under unloading working conditions. ................................................ 146 

Figure 96. Displacement results of invariant-mass beam element 15 - 20 in Z direction 

under unloading working conditions. ............................................................... 146 



 

XIII 

 

Figure 97. Displacement results of beam element 01 in Z direction with variable mass 

(8211) and invariant mass (7211) working conditions respectively................. 147 

Figure 98. Displacement results of beam element 06 in Z direction with variable mass 

(8211) and invariant mass (7211) working conditions respectively................. 147 

Figure 99. Displacement results of beam element 10 in Z direction with variable mass 

(8211) and invariant mass (7211) working conditions respectively................. 148 

Figure 100. Displacement results of beam element 16 in Z direction with variable mass 

(8211) and invariant mass (7211) working conditions respectively................. 148 

Figure 101. Displacement results of beam element 20 in Z direction with variable mass 

(8211) and invariant mass (7211) working conditions respectively................. 149 

Figure 102. Angular results of invariant-mass beam element 01 - 06 about Y axis under 

unloading working conditions. ......................................................................... 150 

Figure 103. Angular results of time-varying mass beam element 07 - 14 about Y axis 

under unloading working conditions. ............................................................... 150 

Figure 104. Angular results of invariant-mass beam element 15 - 20 about Y axis under 

unloading working conditions. ......................................................................... 151 

Figure 105. Angular results of beam element 01 about Y axis with variable mass (8211) 

and invariant mass (7211) working conditions respectively. ........................... 151 

Figure 106. Angular results of beam element 06 about Y axis with variable mass (8211) 

and invariant mass (7211) working conditions respectively. ........................... 152 

Figure 107. Angular results of beam element 10 about Y axis with variable mass (8211) 

and invariant mass (7211) working conditions respectively. ........................... 152 

Figure 108. Angular results of beam element 16 about Y axis with variable mass (8211) 

and invariant mass (7211) working conditions respectively. ........................... 153 

Figure 109. Angular results of beam element 20 about Y axis with variable mass (8211) 

and invariant mass (7211) working conditions respectively. ........................... 153 

Figure 110. Displacement results of the beam element 01 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. ............................................. 155 



 

XIV 

 

Figure 111. Displacement results of the beam element 06 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. ............................................. 155 

Figure 112. Displacement results of the beam element 10 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. ............................................. 156 

Figure 113. Displacement results of the beam element 16 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. ............................................. 156 

Figure 114. Displacement results of the beam element 20 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. ............................................. 157 

Figure 115. Angular results of the beam element 01 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. .................................................... 158 

Figure 116. Angular results of the beam element 06 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. .................................................... 159 

Figure 117. Angular results of the beam element 10 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. .................................................... 159 

Figure 118. Angular results of the beam element 16 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. .................................................... 160 

Figure 119. Angular results of the beam element 20 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. .................................................... 160 

Figure 120. Geometric model of middle sections in ANSYS from main view. ....... 162 

Figure 121. Geometric model of middle sections in ANSYS from top view. .......... 162 

Figure 122. Finite element model of middle sections in ANSYS. ........................... 163 

Figure 123. MPC settings in six cross sections of middle parts. .............................. 163 

Figure 124. MPC setting at A surface corresponds to beam element 07. ................. 164 

Figure 125. MPC setting at C surface corresponds to beam element 09. ................. 164 

Figure 126. Maximum von-Mises stress during the simulation time with different case 

settings. ............................................................................................................. 165 

Figure 127. Maximum principal stress during the simulation time with different case 

settings. ............................................................................................................. 165 



 

XV 

 

Figure 128. Maximum stress intensity during the simulation time with different case 

settings. ............................................................................................................. 166 

Figure 129. Maximum equivalent strain during the simulation time with different case 

settings. ............................................................................................................. 167 

Figure 130. Maximum principal elastic strain during the simulation time with different 

case settings. ..................................................................................................... 167 

Figure 131. Maximum elastic strain intensity during the simulation time with different 

case settings. ..................................................................................................... 168 

Figure 132. Maximum total deformation during the simulation time with different case 

settings. ............................................................................................................. 169 

Figure 133. Maximum equivalent von-Mises stress in 0-degree wave - 8211. ........ 170 

Figure 134. Maximum equivalent von-Mises stress in 0-degree wave - 7211. ........ 170 

Figure 135. Maximum equivalent von-Mises stress in 45-degree wave - 8211. ...... 170 

Figure 136. Maximum equivalent von-Mises stress in 45-degree wave - 7211. ...... 171 

Figure 137. Selected von-Mises stress points on the cross-section of beam element 07 

in 0-degree wave -8211. ................................................................................... 172 

Figure 138. Selected von-Mises stress points on the cross-section of beam element 07 

in 0-degree wave -7211. ................................................................................... 172 

Figure 139. Selected von-Mises stress points on the cross-section of beam element 07 

in 45-degree wave -8211. ................................................................................. 173 

Figure 140. Selected von-Mises stress points on the cross-section of beam element 07 

in 45-degree wave -7211. ................................................................................. 173 

Figure 141. Column distribution diagram in engine room of the TSHD. ................ 175 

Figure 142. Velocity spectrum (left) and virtual value (right) of engine room column 

1. ....................................................................................................................... 176 

Figure 143. Velocity spectrum (left) and virtual value (right) of engine room column 

2. ....................................................................................................................... 176 

Figure 144. Velocity spectrum (left) and virtual value (right) of engine room column 

7. ....................................................................................................................... 176 



 

XVI 

 

  



 

XVII 

 

 List of tables 

Table 1. The Euler-Bernoulli beam parameters for vibration analysis in axial direction.

 ............................................................................................................................ 99 

Table 2. Natural frequency analysis results of the cantilever Euler-Bernoulli beam in 

axial direction outputted from ABAQUS software and the semi-analytical 

approach. ........................................................................................................... 100 

Table 3. The Euler-Bernoulli beam parameters for vibration analysis in transverse 

direction. ........................................................................................................... 102 

Table 4. Natural frequency analysis results of the cantilever Euler-Bernoulli beam in 

transverse direction outputted from ABAQUS software and the semi-analytical 

approach. ........................................................................................................... 103 

Table 5. The main scantlings of the dredging ship. .................................................. 106 

Table 6. Structural property data as input................................................................. 109 

Table 7. Main parameters in each beam element. .................................................... 110 

Table 8. Hydro parameters in ten load cases. ........................................................... 112 

Table 9. Simulation parameters as input. ................................................................. 113 

Table 10. Sea environmental data as input. .............................................................. 113 

Table 11. Definitions for users as input. ................................................................... 114 

 

 

  



 

XVIII 

 

 Lists of abbreviations 

CFD  Computational Fluid Dynamics 

COB  Centre of Buoyancy 

COG  Centre of Gravity 

FEA  Finite Element Analysis 

FEM  Finite Element Model 

FLNG  Floating Liquefied Natural Gas 

FPSO  Floating Production Storage and Offloading 

MPC  Multiple Point Constraints 

RAO  Response Amplitude Operator 

TSHD  Trailing Suction Hopper Dredger 

TVM  Time-Varying Mass 

  



 

XIX 

 

 Nomenclature 

𝐴  Cross-sectional area of the beam 

𝐴ଵ  System vector 

𝐴ଶ  System vector 

𝐴ଵ
்  Transposition of the system vector 

𝑎⃗஻   Acceleration of the local coordinate system in global coordinate system 

𝑎⃗௞  Acceleration of the 𝑘௧௛ mass point with respect to global coordinate system 

𝑎⃗௄/஻ Acceleration of the 𝑘௧௛ mass point with respect to local coordinate system 

𝑏ሬ⃗   Modal integral 

𝐶  Generalized damping matrix 

𝐶௧
ଵ  Ordinary differential equation solution coefficient at time 𝑡 

𝐶௧
ଶ  Ordinary differential equation solution coefficient at time 𝑡 

𝐶௧
ଷ  Ordinary differential equation solution coefficient at time 𝑡 

𝐶௧
ସ  Ordinary differential equation solution coefficient at time 𝑡 

𝑑௞  Deflection of the 𝑘௧௛ mass point 

𝐷௥  Modal integral 

𝑑௥௝  Modal integral 

𝛿௥௜  Kronecker delta 

డమథ

డ௧మ
  Deflection acceleration of the beam 

𝐸ଵ  Generalized mass matrix 

𝐸𝐼  Cross-sectional stiffness of the beam 

𝜂  Modal coordinate vector 

𝜂̇  First time derivation of modal coordinate vector 

𝜂̈  Second time derivation of modal coordinate vector 



 

XX 

 

𝜂௜  Modal coordinate vector for 𝑖௧௛ mode 

𝜂̇௜  First time derivation of modal coordinate vector for 𝑖௧௛ mode 

𝜂̈௜  Second time derivation of modal coordinate vector for 𝑖௧௛ mode 

𝑓௘௫௧
஻   Total external force vector acted on the body 

𝐹⃗௞  External force vector acted on the 𝑘௧௛ mass point 

𝐹௥  𝑟௧௛ generalized active force in Kane’s method 

𝐹௥
∗ 𝑟௧௛ generalized inertia force due to the time rate of change of velocity in 

Kane’s method 

𝐹௥
∗∗ 𝑟௧௛ generalized inertia force due to the time rate of change of mass in Kane’s 

method 

𝑔⃗  Modal integral 

𝐻ሬሬ⃗   Angular momentum of the body 

𝐼መ  Inertia tensor of the body 

𝐾  Generalized stiffness matrix 

𝑘௚  Geometric stiffness 

𝜆௧  Ordinary differential equation coefficient at time 𝑡 

𝑀  Generalized mass matrix 

𝑀ଵ  Kane’s system matrix 

𝑚௧
஻  Total mass of the body at time 𝑡 

𝑚௚௘௡  Generalized mass 

𝑚௞  Mass of the 𝑘௧௛ mass point 

𝑁௜  Modal integral 

𝜔ሬሬ⃗ ஻ Angular velocity of the local coordinate system with respect to global 

coordinate system 

𝜔ሬሬ⃗ ௥
஻ Partial derivation of angular velocity of the local coordinate system in global 

coordinate system for the 𝑟௧௛ generalized speed 



 

XXI 

 

𝛺௜  Natural frequency at 𝑖௧௛ mode 

𝑝௞  Undeformed position vector of the 𝑘௧௛ mass point 

𝜙௧(𝑥)  Mode shape of the beam at time 𝑡 

𝜙(𝑥, 𝑡)  Deflection function of the beam 

𝑟̃௖  Average moment arm of all mass points 

𝜌(௧)  Mass density function of the beam with respect to time 

𝑆  Modal integral 

𝑆ሚ  Skew-symmetric matrix of vector 𝑆 

𝑡௘௫௧
஻   Total external torque vector acted on the body 

𝑈  Identity matrix 

𝜈⃗஻ Velocity of the local coordinate system with respect to the global 

coordinate system 

𝜈⃗௞∕஻  Velocity of the 𝑘௧௛ mass point with respect to the local coordinate system 

𝜈⃗௘
௞  Mass loss velocity of the 𝑘௧௛ mass point 

𝜈⃗௥
஻ Partial derivation of velocity of the local coordinate system with respect to 

global coordinate system for the 𝑟௧௛ generalized speed 

𝜈⃗௥
௞ Partial derivation of velocity of the 𝑘௧௛ mass point with respect to global 

coordinate system for the 𝑟௧௛ generalized speed 

𝑋ଵ  Kane’s system vector 

𝑌ଵ  Kane’s system vector 

𝑍ଵ  Kane’s system vector 

𝜉  Modal damping coefficient 

  



 

XXII 

 

 List of publications 

Journal publication: 

Zhang, Y., Pu, Y. and Hu, Z., 2023. A mathematical and numerical model for variable 

cross-section hull girder with time-varying mass systems applied in marine vessels. 

(submitted to Marine Structures, revision) 

Conference publications: 

Zhang, Y. and Hu, Z., 2023. A mathematical model for variable cross-section hull girder 

with time-varying mass characteristics. In Advances in the Analysis and Design of Marine 

Structures (pp. 309-317). CRC Press. 

Zhang, Y. and Hu, Z., 2023. Hydrodynamic and vibration analysis of specific offshore 

engineering vessels with time-varying wet surface and longitudinal inclination 

characteristics. International Conference on Collison and Grounding of Ships and Offshore 

Structures (ICCGS 2023) 

 



 

1 

 

 Chapter 1. Introduction 

This chapter provides the background of dredgers, especially Trailing Suction Hopper 

Dredgers (TSHDs), focusing on their specific working conditions, structural 

characteristics, and current challenges of design and structural analysis. The proposed 

mathematical and numerical model, a central aspect of this Ph.D. research, is introduced 

to underline its novelty and potential contributions to the marine engineering industry. 

1.1. Background of dredgers 

Advancements in sciences and technology have given rise to a growing variety of 

specialized vessels designed for specific oceanic operations, for instance, pipe layer, 

and dredger etc. These kinds of vessels are designed by cutting-edge technology 

(Andrun et al., 2020), which are playing a significantly important role in the field of 

marine and offshore engineering. Presently, dredging industry is playing a distinctly 

essential role in the field of coastal and offshore engineering. In general, dredgers can 

be broadly classified into two main types: (i) mechanical dredgers; (ii) hydraulic 

dredgers (Yell & Riddell, 1995). One of hydraulic dredgers is called Trailing Suction 

Hopper Dredgers (TSHDs) which has become an essentially specific ship in the 

dredging industry (R. N. Bray et al., 1997). 

TSHD is a kind of dredgers that has a full sailing capacity used to maintain navigable 

waterways, deepen the maritime canals (Figure 1) and construct new land (Figure 2). 

This is made possible by large powerful pumps and engines able to suck sand, clay, silt 

and gravel (R. N. Bray et al., 1997). Its hull and exterior resemble typical self-propelled 

transport vessels. In addition to featuring standard navigation machinery and various 

facilities, it is equipped with a set of dredging equipment for dredging suction and a 

mud chamber for loading slurry, as well as equipment for discharging cargoes through 

the hopper doors at the bottom (Figure 3). 
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Figure 1. Drawing of one of newest dredger commissioned (Vidal, 2001). 

 

Figure 2. Rainbowing clean sand for land reclamation (N. Bray & Cohen, 2004). 
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Figure 3. The dumping process of TSHDs at the disposal site (Dragados, 2017). 

1.2. Natural features of dredgers 

In order to achieve their special engineering purposes, however, TSHDs have some 

particular structural designs and characteristics in operations that are different from 

general ships. 

1.2.1. Time-varying mass characteristics 

The main working feature of TSHDs is to excavate a large number of materials from 

the seabed and then transport them to a designated area for unloading. Therefore, the 

working cycle of TSHDs can be briefly separated by four main working operations, 

which are sailing empty, dredging, sailing loaded and discharging respectively (Figure 

4). 
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Figure 4. The typical working cycle of TSHDs (Mourik & Osnabrugge, 2014). 

Moreover, according to the study of DE JONG (2010), it shows that “frequency of 

loading and discharging is up to four times per day and the freeboard can be increased 

from the dredger load line to the summer load line within eight minutes under normal 

operation of the dumping system.” It means that TSHDs have obvious characteristics 

of variable mass due to loading or unloading working conditions. Not only is the 

frequency of such changes in a day very high, but the short-term dumping periods lead 

to an increase in the rate of mass change for this vessel (Figure 5). 

 

Figure 5. A schematic view of the change in draught of a TSHD in service (Basic et 

al., 2017). 
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During the rapid shift operation time, the weight and displacement of a dredger can be 

reduced as quick as several minutes, which leads to substantial variations in vessel’s 

mass and makes it a typical mass-variation system. 

1.2.2. Discontinuous structure characteristics 

With the purpose of loading and unloading, the middle structures of TSHDs had to be 

designed into a large number of discontinuous structures (Figure 6). That is to say, 

numerous discontinuous structures must exist on TSHDs rather than that of general 

ships, which potentially causes the stiffness of such this kind of ships to be seriously 

insufficient. 

 

Figure 6. The typical cross-section at midship of TSHDs (DE JONG, 2010). 

1.2.3. Complex loads 

Due to the invention of the centrifugal pump, high-performance coupling and clutch as 

well as gearbox, this makes new types of TSHDs can be driven by a hybrid system 

technically feasible (Figure 7). This hybrid system powered by main diesel engines is 

composed of dredging pumps, propellers and generators with some linking components 

such as couplings and clutches etc. Consequently, this hybrid system arranges some 

devices that can generate the main excitation source at the stern of the ship, and they 

are connected with each other instead of separately to generate excitation force. In other 

words, such a specially driving system as a source of ship’s own excitation is necessary 

for detailed study as well as other external loads such as hydrodynamic loads with time-
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varying wet surface and mass changing in the ocean environment during operational 

conditions. 

 

Figure 7. Hybrid driving system of TSHDs (Vlasblom W, 2007). 

In short, the main characteristics of TSHDs are the changes of structural mass properties 

during working conditions, and a series of structural discontinuities lead to a significant 

reduction in structural stiffness properties, as well as complex loads generated by 

special equipment on the ship and ocean environment. Consequently, some main 

challenges of TSHDs in this project could be summarized due to their natural 

characteristics as: 

 Time-varying mass system with frequently changing of its natural properties 

during working conditions.  

 Many discontinuous structures.  

 Various complex loads due to engineering mechanical vibrations, hydrodynamic 

loads with time-varying wet surface and mass changing. 

1.3. Overview of doctoral programme 

1.3.1. Motivation 

In view of unique engineering purposes of TSHDs, the structural design of these vessels 

with time-varying mass characteristics often involves inherent structural discontinuities. 

This structural design potentially has low stiffness characteristics along ship hull length 

due to a large opening on the deck and several openings at the bottom of ship hull. 

When coupled with these characteristics and complex operating loads, the dynamic 
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effects stemming from time-varying mass become significant potentially. To 

addressing this challenge is unavoidable during the design and development phases, 

especially considering the rapid changes in mass during unloading operations.  

However, there is a noticeable scarcity of research that has specifically addressed the 

structural dynamics for these unique offshore structures who have time-varying mass 

system and many discontinuous structures subjected to complex loads. Furthermore, 

currently available commercial software or calculation programmes lack the capability 

to perform dynamic analysis for marine structures with variable mass characteristics. 

Given this scenario, the development of variable-mass marine structures necessitating 

the establishment of a flexible structural dynamics model that not only accounts for the 

influence of time-varying mass and structural discontinuity, but also accommodates the 

complex sea environmental and operational loads acted on the marine structures. 

Therefore, it becomes imperative to develop mathematical models and numerical 

programme tailored to these variable-mass marine structures. These tools can serve as 

indispensable analytical resources for structural designers during the preliminary 

research and design phases. 

1.3.2. The research background and significance 

The study of dynamic analysis in marine structures under varying mass conditions is 

crucial for marine engineering and naval architecture. Here is a concise overview of the 

research background and significance: 

(1) Static and time-varying dynamic loading condition 

While static loading conditions refers to loads that are applied slowly and remain 

constant or nearly constant over time provide a foundation for understanding the basic 

structural requirements of a marine vessel, time-varying dynamic loading conditions 

involves loads that change over time in magnitude, direction, and location are essential 

for capturing the complexities of real-world operations for marine vessels. These 

dynamic loads are influenced by the movement of marine vessels and the surrounding 

environment. Accounting for time-varying dynamic loads of marine structures ensures 

comprehensive design, enhancing the marine structural safety, durability, and 

performance in the dynamic marine environment. 

(2) Challenges of variable mass system in marine structures 
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Some specific engineering vessels experience dynamic challenges due to changing 

mass during loading and unloading operations such as TSHDs. Understanding these 

challenges and developing relevant analysis tools are essential for structural integrity 

and operational safety in marine engineering field. 

(3) Development challenges of innovative modelling approach 

This research employs advanced mathematical models based on innovative 

methodologies to simulate and analyse dynamic responses of specific marine vessels 

under time-varying mass conditions coupled with complex loads, providing accurate 

predictions of structural behaviour not only applied in such TSHDs, but also other types 

of marine vessels who have same operational characteristics. 

(4) Design and safety implications: 

Outcomes will inform improved design practices, operational guidelines, and safety 

protocols for marine structures who have variable-mass system and coupled operational 

loads, enhancing overall safety and efficiency. 

(5) Contributions to marine engineering: 

This study advances understanding in marine engineering, addressing gaps in the 

knowledge and paving the way for more robust methodologies in the analysis and 

design of vessels facing variable mass conditions subjected to complex operating loads. 

In summary, this research on dynamic analysis in structures of marine vessels such 

TSHDs or other vessels who have similar characteristics under time-varying mass 

conditions contributes significantly to safety, efficiency, and reliability in loading or 

unloading operations coupled with external and internal operating loads. An innovative 

mathematical and numerical model is proposed, and a programme is developed in this 

study, which is at the forefront of advancements in structural dynamics of marine 

vessels. 

1.3.3. Aim and objectives 

(1) Aim 

The aim of this project is to propose an innovative approach for estimating dynamic 

structural response on time-varying mass system subjected to various complex loads 

including hydrodynamic loads with time-varying wet surface, and other excitation 
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loads when its natural properties are frequently changing. With the proposed approach, 

structural dynamic responses can be analysed in a better accuracy, which can be 

transferred into FEM for further structural strength and fatigue assessments. The 

proposed approach will be conveniently applied for guiding the real offshore 

engineering practices. 

(2) Objectives 

In this project, the biggest challenge and the most innovative point is to propose a 

mathematical and numerical model that meets the main aim based on the existing finite 

element technology. Through programming language FORTRAN and code editor 

Microsoft Visual Studio, the proposed novel mathematical model would be built into a 

flexible and accurate calculation program that can meet engineering applications and 

other analysis. The followings are objectives of this study: 

 Propose a mathematical model that combines complex loads including 

hydrodynamic loads, excitation loads such as excitation load generated by diesel 

engine and propellers during the motion with time-varying mass operations. 

 Build a programme to link the proposed mathematical model with global structural 

analysis in finite element software ANSYS to fulfil the dynamic structural analysis 

and other structural strength assessments. 

 Investigate the dynamic responses based on finite element technology with the 

proposed mathematical and numerical model coupled with various complex loads 

and time-varying mass system. 

 Summarize the dynamic analysis results and provide useful recommendations for 

further engineering field. 

1.3.4. Overview of novelties 

From introducing groundbreaking methodologies that redefine traditional approaches 

to unveiling innovative findings that push the boundaries of existing knowledge, the 

novelties of this research can be summarized as follows: 

 An innovative mathematical and numerical model for dynamic analysis of specific 

marine vessels during time-varying mass working conditions are proposed. 
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 The proposed model has been compiled as a time-history dynamic analysis 

programme by FORTRAN language - TVM_HullGirder programme. 

 The programme can calculate and output motion responses of the marine vessel 

and local structure dynamic responses and other variable values in time domain. 

 Results calculated by the programme could be transferred to detailed FEM by MPC 

technology for further structural analysis and assessment. 

 Through post-processing analysis of structural FEA, design flaws or other 

deficiencies of the structure can be evaluated to meet the needs of engineers. 

1.3.5. Outline of the thesis 

In this thesis, a mathematical and numerical model is proposed to investigate the 

dynamic analysis of marine structures featuring time-varying mass systems. Figure 8 

shows the brief outline of this thesis. The general scope of each chapter is arranged as 

below: 



 

11 

 

 

Figure 8. The outline of this thesis. 

Chapter 2: A literature review of dredgers is made in this chapter. Moreover, this 

chapter compiles relevant literatures about dynamic analysis of marine vessels and 

time-varying dynamic structures. Furthermore, an extensive review of literatures 

related to hydrodynamics analysis and other excitation loads in marine structures is 

presented. 

Chapter 3: The theoretical foundations and methodologies of the proposed innovative 

mathematical and numerical model are detailed in this chapter. These primarily 

encompass the modified Euler-Bernoulli beam theory with time-varying mass function, 

semi-analytical approach of vibration characteristic analysis of variable cross-section 

beam, time-varying hydrodynamic calculation method, other excitation load calculation 
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methods, and the improved Kane’s dynamic equations with time-varying mass system 

as main dynamic analysis approach. 

Chapter 4: Semi-analytical approach of vibration characteristic analysis on variable 

cross-section beam has been verified in this chapter by comparing with FEA results. 

Pre-calculation results of user-defined case study during unloading operations have 

been shown in this chapter, which includes vibration analysis results and hydrodynamic 

analysis results respectively. Moreover, motion responses and structural dynamic 

responses of the hull girder are outputted by self-developed programme, which are 

transferred into FEM by MPC technology in ANSYS for further strength assessments. 

FEA results of real-scale three-dimensional model of the vessel based on calculation 

outputs from self-developed programme are shown in final part in this chapter. 

Chapter 5: This chapter concludes the present works. Some novel summarises of this 

research and contribution to marine structure safety are concluded. Finally, the 

directions and possibilities of future research are discussed. 
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Chapter 2. Literature review 

This chapter summarizes some recent literature reviews about structure and excitation 

loads research in dredgers, dynamic analysis, hydrodynamics and structural analysis of 

marine structures, which provides a valuable reference for the study of this project. 

2.1. Literature reviews on dredgers 

Dredging techniques are defined as soil or rock erosion, transport, and sedimentation 

processes, which are carried out through human intervention and specially designed 

machines. The dredging industry has evolved from localized activities to maintain the 

navigable waterways as a global industry that includes maintenance dredging, coastal 

and port construction, land reclamation, and offshore structures by leveraging 

increasingly complex and powerful dredgers.  

Among all types of dredgers, the Trailing Suction Hopper Dredger (TSHD) stands out 

as one of the leading vessel types in the dredging industry, with vast prospects and 

considerable development potential. In this part, the existing literatures on the structural 

analysis and complex loads of TSHDs will be summarized in this section. 

2.1.1. Structural research reviews of dredgers 

The TSHD is the advanced vessel type in the dredging industry, however, its complex 

structure poses various challenges that require in-depth research. Due to the need for 

multiple structural openings, such as at the bottom, sides, and deck, to fulfil specific 

operational purposes, the TSHD exhibits discontinuities in its longitudinal structural 

components. This condition results in distinct characteristics in terms of structural 

strength, overall deformation, and global vibration properties compared to conventional 

vessels. Therefore, it is imperative to conduct a comprehensive structural analysis of 

the TSHD. 

TSHDs are essential in dredging operations due to their self-propelled, self-loading, 

self-dredging, and self-unloading capabilities (Zhou et al., 2024). These vessels are 

widely utilized in large-scale dredging projects globally. Moreover, the book of Eisma 

(2005) has illustrated that with the exception of the TSHD, all dredgers are unsuitable 

for working under offshore conditions, besides they are special designed for it.  
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From the view of geometric design, professor Vlasblom (2003) introduced specific ship 

ratio of TSHDs (L/B, B/H and B/T ratio’s, L=length, B=width, H=depth and T=draught) 

concerning market requirements over time (Figure 9).  

 

Figure 9. Ship ratio of TSHDs in year of construction (Vlasblom, 2003). 

Ship proportions critically influence both performance and structural design. A high 

width-to-draught (B/T) ratio offers initial stability but may lead to pronounced ship 

motions and increased resistance. Conversely, a high length-to-width (L/B) ratio 

supports streamlined and cost-effective construction with lower resistance. Smaller 

width-to-height (B/H) and larger L/B ratios generally lead to reduced building costs. 

However, considerations for draught (T) costs should align with enhanced usability to 

justify any additional expenses. This study highlights the need for a balanced approach 

to optimize performance, structural robustness, and cost-efficiency. Integrating 

advanced simulation and real-time data can further refine these design principles, 

ensuring TSHDs remain efficient and adaptable. 

For specialized tasks like harbour maintenance, the ship’s data and production capacity 

are usually well-defined. However, for international dredging contractors, predicting 

future needs, especially regarding average cycles and production capacity, is complex. 

Their primary focus is cost-effective dredging to outperform competitors, driving a 

preference for larger dredgers. The main constraint in building larger vessels is the 

draught, as increased draught reduces ship usability. Contractors, considering expected 
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work and initial dredging depth, must balance ship availability with draught constraints 

(Figure 10). 

 

Figure 10. Payload-draught relation of TSHDs (Vlasblom, 2003). 

On the other hand, this type of dredger, loading is carried out with the ship moving 

slowly forward, and unloading is usually carried out by means of a bottom-discharge 

arrangement, or by pump discharge, in the latter case usually by pumping to the shore. 

It means TSHDs have a large hatch opening at the deck and discontinuous openings at 

the bottom construction for their nature of working. The implication is that it has severe 

structural discontinuities in this kind of ships. Nowadays, classification society rules 

and structural analysis methods provide a means of determining the dimension and 

thickness of each part of the ship’s structure. When these resources and methods are 

properly applied, the designer may reasonably define these so as to provide sufficient 

strength for the hull structure. Equally important, however, is structural continuity. 

Taggart (1980) has argued that “structure has continuity when it is capable of 

transferring the loads in the structure without creating abrupt changes in stress levels.” 

This means that for ships with discontinuous structural features, the structure is prone 

to cause abrupt changes in stress levels when transmitting loads.  

In this study, as far as dredgers are concerned, which fall into various categories such 

as suction, grab, or bucket type. Additionally, these might be with or without their own 

hopper. Where the dredgers carry their own spoil, this is carried in a hopper situated 
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amidships and generally requiring buoyancy tanks at the sides, port and starboard, for 

the length of the hopper (Walton, 1902). This can be illustrated in Figure 11. 

 

Figure 11. Planform of a typical TSHD (Walton, 1902). 

As shown in the above figure, it easily can be found that there are several discontinuous 

openings in the bottom of the dredgers’ hopper due to the nature of their activity.  

Moreover, in the introduction of Taggart (1980) it is notable by him that the structural 

arrangements of self-unloaders are highly specialized, there being usually not tight 

transverse bulkheads and the double bottom being unusually shallow. Large ballast 

tanks are formed by the sloping hopper plating and the side shell. The implication is 

that for the TSHDs, it also has highly similar structural features. This special design not 

only increases the space for cargoes with shallow double bottom, but also arranges the 

fuel tanks, freshwater tanks and buoyancy tanks at both sides, and the hopper in the 

middle can be used as the ballast tank to improve the stability of the ship during 

navigation. Meanwhile, it was shown by Walton (1902) that the ratio of length of 

hopper space to ships’ length is usually small being between 0.2 and 0.35. However, 

with the development of technology today, this ratio is usually larger than 0.35 for 

TSHDs. It means that this kind of ships should pay more attention to analyse the 

longitudinal and torsional strength since it has a longer hopper space with discontinuous 

openings at the bottom. 

For such ships, the hopper can usually carry 5,000 to 25,000 tons of spoils according to 

the textbook of Vlasblom (2003), and these spoils are distributed over the hopper 

amidships, the weights at the ends of the ship being comparatively small. In such cases, 

the sagging bending moment in still water can be considerable. Moreover, it was 
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claimed by Walton (1902) that in contrast with dredgers, perhaps in no other ship has 

the block coefficient so important an influence on strength. However, in author’s study, 

the block coefficient is determined as 0.88, which could easily be double the bending 

moment in light of the book of Walton (1902).  

Some studies have investigated the motion response of TSHDs under swell conditions, 

highlighting the importance of accounting for environmental factors in their design and 

operation. Peng et al. (2023a) emphasize that understanding how TSHDs respond to 

swells is crucial for ensuring their stability and operational efficiency. This research 

underscores the need for comprehensive environmental assessments in the design phase 

to mitigate adverse effects on vessel performance and safety. 

Additionally, optimization algorithms have proven effective in enhancing ship 

structures, including the midsection of TSHDs. Vuijk (2020) demonstrates that these 

algorithms can provide significant improvements by advising on the structural design 

process. By optimizing the midsection, these methods can lead to more robust and 

efficient designs, reducing stress concentrations and improving overall vessel integrity. 

This approach not only refines the structural performance of TSHDs but also supports 

cost-effective construction and maintenance strategies. Integrating optimization 

algorithms into the design process can thus play a pivotal role in advancing TSHD 

technology, ensuring these vessels meet the demanding requirements of modern 

dredging operations. 

In additions, the paper of Vujasinović et al. (2012) aims to present the structural 

analysis conducted on a 14,000 m3 Trailing Suction Hopper Dredger. The calculations 

were executed to explore stress and buckling behaviour within the hopper region, with 

a specific focus on assessing stress concentration around the rounded corners of large 

openings. The objective was to attain optimized structural dimensions, particularly 

concerning the primary structure and significant openings. The rational structural 

design approach has successfully led to a reduction in structural weight. 

To investigate the significance of the discharge process dynamics on actual ship 

stability, unsteady numerical simulations were performed with the Discrete Element 

Method (DEM) for symmetrical hopper opening during cargo discharge procedure, 

without the hull opening failure modes examined. Numerical simulations indicate that 
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the dynamics of the cargo during its discharging should not be ignored due to its effect 

on the transverse stability of the ship (Basic et al., 2017). 

In conclusion, the reviewed literature underscores the necessity for comprehensive 

structural analysis and innovative design approaches to address the unique challenges 

posed by TSHDs. Ensuring structural integrity and optimizing performance require a 

deep understanding of the factors influencing stress, strain, and overall deformation, as 

evidenced by the discussed studies. 

2.1.2. Studies of excitation loads on dredgers 

During its operational lifespan, a vessel is subjected to various excitations, including 

hydrodynamic loads, excitation loads generated by main engine and propeller etc. For 

TSHDs, the excitations become even more intricate. In addition to the typical loads 

encountered by conventional ships, TSHDs face the added challenge of mass variations 

during operations. These sustained excitations over prolonged periods can result in 

structural damage to the vessel, posing risks to the well-being of onboard personnel and 

significantly impacting navigational safety. 

The paper of Shi (2013) has introduced that there are few types of layouts of the drive 

line of a hopper dredger, (1) propeller and dredge pump directly driven by diesel 

engines separately (Figure 12 and Figure 13), (2) Diesel directly drives propeller and 

electrically drives dredge pump (Figure 14). 

 

Figure 12. A diesel engine directly drives propeller (Shi, 2013). 

 

Figure 13. Diesel engine directly drives dredge pump (Shi, 2013). 
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Figure 14. Diesel directly drives propeller and electrically drives dredge pump (Shi, 

2013). 

Another paper from Petit and Loccufier (2009) has presented the newest layout of 

driving line of TSHDs currently (Figure 15).  

 

Figure 15. Outline of the latest drive line in a hopper dredger (Petit & Loccufier, 

2009). 

This paper studies torsional vibrations on a hopper dredger due to transient conditions 

by a reduced model of the mass-elastic system (Figure 16). The different transient loads 

are described in detail for the specific case of a TSHD.  Transient loads involve among 

others starting/stopping the engine, engaging/disengaging clutches, altering the vessel’s 

speed and changing the pitch of the propeller. The various factors contributing to this 

transient load and their influence are elucidated without the need for a complex 

simulation model. 
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Figure 16. Reduced model of the mass-elastic system (Petit & Loccufier, 2009). 

While the study provides valuable insights into the torsional vibrations of TSHDs under 

transient conditions, it would benefit from a more comprehensive approach that 

includes complex simulation models to capture the intricate dynamics accurately. 

Simplified models, although useful for initial analysis, might overlook critical 

interactions and nonlinear effects that could significantly impact the vessel's 

performance and safety. Moreover, the paper does not sufficiently address the long-

term effects of these transient loads on the structural integrity and fatigue life of the 

vessel. A detailed fatigue analysis would be necessary to understand the cumulative 

damage and its implications for maintenance and operational planning. 

TSHDs are generally equipped with diesel engines as single power source. The 

integration of hybrid propulsion systems in TSHDs represents a significant 

advancement towards sustainable and efficient marine operations. Zhan et al. (2015) 

explored optimal retrofitting of a hybrid propulsion system using NSGA-ii algorithm 

for trailing suction hopper dredger. The nondominated sorting genetic algorithm II 

(NSGA-II) is adopted to optimize the hybrid propulsion system design, showing 

promising potential for improving efficiency and reducing emissions. This study 

highlights the importance of adopting advanced optimization algorithms to enhance the 

performance and environmental footprint of marine vessels. However, while the use of 

NSGA-II provides a robust framework for optimization, it is crucial to validate the 

theoretical models with real-world data to ensure the practical applicability of the 

proposed hybrid systems. In additions, the detailed research of dredge pumps has 

studied by the paper of Musriyadi and Naifah (2020), which describes about drawing 

process and computerized simulation at Ansys Software for pump performance with 
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three different fluid types and five variations of impeller rotation. This study is 

instrumental in understanding the performance dynamics of dredge pumps under 

various operational conditions, which is critical for the efficient design and operation 

of TSHDs. The use of Ansys for simulation offers a precise and comprehensive analysis 

of pump performance, yet it is essential to conduct experimental validation to 

corroborate the simulation results. Nonetheless, the reliance on simulation data alone 

might not capture all real-world variables, such as wear and tear, maintenance 

challenges, and unexpected operational stresses. Therefore, combining simulation with 

empirical testing would offer a more comprehensive evaluation of the pump’s 

performance and reliability. 

On the other hand, Sheehan et al. (2010) present the annual profits or losses for each 

scenario for a range of topsoil production quantities and integrated into the current 

dredging regime at the Port of Waterford. The real-time prediction of drag-head motion 

induced by trailing suction hopper dredger motion is important to enable high operating 

efficiency and crucial to proper design of wave compensation device of drag-head. The 

real-time prediction of drag-head motion induced by trailing suction hopper dredger 

motion is important to enable high operating efficiency and crucial to proper design of 

wave compensation device of drag-head. Zhanglan et al. (2014) study the numerical 

prediction of drag-head motion of trailing suction hopper dredger in time domain. A 

numerical method to predict the drag-head motion excited by the dynamic response of 

trailing suction hopper dredger to disturbance is introduced.    

With the continuous development of the dredging business to overseas markets, 

dredging ships are faced with a more and more complex hydrodynamic environment. 

Focused on the TSHDs, Zhu et al. (2023b) study the motion response characteristics of 

the TSHD under the influence of swell. Other influential works in this part include 

paper of Bisschop et al. (2010), Wit et al. (2014) and Li et al. (2021). 

In recent years, although some progress has been made in the optimization design of 

the structural dynamic response of TSHDs, there are still many issues that need to be 

addressed. These include: 

(1) Current research on TSHDs often focuses on individual consideration of the hull or 

specific structural components. There is a limited amount of coupled research on 

various loads. In practical situations, the coupling of complex loads cannot be ignored. 
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(2) Regarding the optimization design of the overall ship structure, most optimizations 

are targeted at small-scale models. Finite element models are not large, or simplified 

models such as hull girder hybrid models or local models are used. Beam or local 

detailed models are not comprehensive for the analysis of the entire ship structure. 

Traditional optimization methods are also challenging to apply to large and complex 

whole ship structures (finite element models with at least tens of thousands of nodes). 

Therefore, for the optimization design of large and complex whole ship structures, 

appropriate sensitivity analysis methods and optimization algorithms need to be 

selected. A rational optimization model needs to be established, and new optimization 

methods should be applied for solutions. 

(3) The excitation loads of TSHDs are highly complex. In addition to the conventional 

excitations present in typical vessels, such as propeller, hydrodynamic loads, and 

engine loads, working conditions also involve rapidly changing mass situations. The 

issues and analysis situations involved in dynamic response are extremely complex. 

(4) The dynamic optimization design of the whole ship structure is limited to the 

optimization design of vibration characteristics. The constraint conditions generally 

only consider strength and low-order natural frequency constraints. There is limited 

research on the dynamic response optimization design of the entire ship structure. The 

model for the dynamic response optimization of the whole ship structure of self-

propelled hopper dredgers will become more complex. The optimization solution will 

also become more challenging, considering constraints such as stress, displacement, 

natural frequencies, dynamic response, etc. Compared to the optimization design of 

dynamic characteristics, it is much more intricate. However, dynamic response is a 

crucial mechanical performance indicator that plays a vital role in the safe operation of 

the entire ship structure. Therefore, it is imperative to conduct dynamic response 

optimization design for the whole ship structure. 

2.2. Literature reviews on dynamic analysis of marine structures 

The research focused structural dynamics in the marine and offshore field primarily 

encompasses structural vibration analysis, excitation load calculations, dynamic 

responses etc. Structural vibration analysis being the most fundamental and crucial 

issue in dynamic research. In general, three methods are commonly employed to 

compute the vibration analysis of the variable cross-section hull girder: (i). Empirical 
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formula estimation method; (ii). Finite element method; and (iii). Transfer matrix 

method. 

The empirical formula estimation method primarily proposes approximate estimation 

formulas to assess the lower-order frequencies of hull girder vibrations (Weng, 1978; 

D. Y. Zhao, 1979), thus mitigating the risk of encountering low-order resonance 

(Kumai, 1967; Yin et al., 2014). The use of empirical formulas for estimating lower-

order frequencies is a well-established practice in naval architecture. These formulas, 

derived from extensive empirical data, offer a straightforward method for evaluating 

vibrational characteristics without the need for complex computations. However, one 

of the primary limitations of this approach is its reliance on historical data, which may 

not always accurately reflect the nuances of modern ship designs and materials. As a 

result, while empirical formulas provide valuable initial insights, they should be 

supplemented with more detailed numerical analyses as the design progresses. 

The finite element method involves the discretization of the hull structure into discrete 

elements, with each element regarded as a continuous structure. By establishing 

stiffness and mass matrix for each of these elements, they are subsequently aggregated 

to construct the comprehensive stiffness matrix and overall mass matrix for the entire 

structure (Hakala, 1986; Yucel & Arpaci, 2010). This systematic approach facilitates 

the derivation of a multi-degree-of-freedom vibration equation for the hull girder, 

whose solution provides the natural frequency and corresponding vibration mode (Avi 

et al., 2021; Muis Alie et al., 2016). While the finite element method offers unparalleled 

precision and flexibility, it is not without its challenges. One of the primary drawbacks 

is the computational intensity required for detailed FEM analyses. High-fidelity models 

can be resource-intensive, necessitating significant computational power and time. This 

can be a limiting factor, especially in the preliminary stages of design when quick 

assessments are needed. Additionally, the accuracy of FEM analyses depends heavily 

on the quality of the input data and the expertise of the analyst. Inaccurate material 

properties, boundary conditions, or simplifications in the model can lead to erroneous 

results. Therefore, it is essential to combine FEM with empirical data and validation 

experiments to ensure the reliability of the outcomes. 

The transfer matrix method (TMM) is a powerful tool in structural vibration analysis, 

particularly beneficial for complex structures such as ship hulls. This method's primary 
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advantage lies in its ability to break down a complicated system into smaller, 

manageable segments, making the analysis more tractable (Attar, 2012; Cui et al., 2012). 

By using matrices to relate the motion and forces at one end of the structure to those at 

the other, TMM provides a systematic approach to understanding how vibrations 

propagate through the structure (Han et al., 2012). 

One significant benefit of TMM is its efficiency in handling large and complex systems. 

Unlike finite element methods that can become computationally intensive, TMM 

allows for a more straightforward representation and solution of the system's dynamic 

equations (Boiangiu et al., 2016). This efficiency is particularly useful in the 

preliminary stages of design, where quick assessments of vibrational characteristics are 

essential. 

Feyzollahzadeh and Bamdad (2020) and J. W. Lee and Lee (2016) highlight that TMM 

is highly effective in modelling the dynamic behaviour of multi-span structures, which 

are common in marine vessels. This method can accurately predict the natural 

frequencies and mode shapes of the structure, which are critical for ensuring the vessel's 

structural integrity and operational safety. 

While the transfer matrix method offers several advantages, it is not without its 

limitations. One of the primary challenges is that TMM can sometimes oversimplify 

the representation of complex structures, potentially overlooking critical local effects 

and interactions. For instance, in a ship hull, localized structural details and 

discontinuities might not be adequately captured, leading to less accurate predictions of 

stress concentrations and failure modes. Moreover, TMM requires a precise definition 

of boundary conditions and connections between elements. Any inaccuracies in these 

definitions can propagate through the analysis, resulting in erroneous predictions. 

Therefore, engineers must exercise caution and validate the TMM results against 

experimental data or more detailed simulations when possible. Another limitation is 

that while TMM is efficient for linear systems, its application to non-linear dynamic 

problems is less straightforward. Many real-world structural problems involve non-

linearities, such as material behaviour and large deformations, which TMM might not 

handle effectively without significant modifications. 

Despite these limitations, the transfer matrix method remains a valuable tool in the 

engineer's toolkit. Its ability to provide quick and reasonably accurate insights into the 
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dynamic behaviour of complex structures makes it particularly useful in the early 

design stages. However, it should ideally be used in conjunction with other methods, 

such as finite element analysis and experimental validation, to ensure comprehensive 

and reliable structural assessments. 

In short, the transfer matrix method enables the vibration analysis of multi-degree-of-

freedom systems, including multiple interconnected substructures. In contrast to 

traditional empirical approaches, it offers more precise modal data and frequency 

responses, making it suitable for analysing complex structures. However, it differs from 

the finite element method in that it does not require overly complex numerical models, 

extensive computational resources, or specialized finite element modelling expertise. 

This makes it a valuable tool for initial design and quick estimations, delivering 

accurate vibration analysis results without the need for intricate computational 

procedures. 

On the other hand, the investigation of hull vibration has assumed growing significance, 

primarily attributed to the continuous trend of marine structures undergoing elongation 

and expansion (Thekinen & Datta, 2019). For modelling the ship’s structures, the 

concept of hull-girder can be adopted (Lewis, 1988). In the domain of one-dimensional 

beam modelling research, pioneering efforts were initiated by Schlick (1884), who 

treated the ship’s hull as a Bernoulli-Euler beam with free-free boundary condition, 

thereby determining the ship’s first-order natural frequency in the vertical direction. 

Besides, as the ship transversal dimensions are not negligible when compared to the 

longitudinal ones, the hull-girder may be classified as a short beam (Weaver Jr et al., 

1991). Due to the large dimensions of the ship (length, breadth, etc.), the stresses 

suffered by the structure may propagate by the scantlings, which demands the use of 

thin-walled shear flow theory when the 1D model is to be used. The research of Ohtaka 

et al. (1964) employed a one-dimensional beam model to compute the natural 

frequencies of the ship’s vertical vibrations. Jensen (1983) provided a comprehensive 

consolidation of beam models for ship vibration analysis. When calculating the higher-

order vibration natural frequencies of the ship’s hull using a one-dimensional beam 

model, it is necessary to make corrections. Currently, two main methods, the reduction 

coefficient method and the shear lag coefficient method, are employed for this purpose. 

The reduction coefficient method involves multiplying the sectional moment of inertia 

by the corresponding reduction coefficient when calculating the higher-order vibration 
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natural frequencies of the ship’s hull beam. Cowper (1966) provided a correction to the 

Timoshenko beam theory, deriving a formula for calculating shear coefficients and 

presenting specific expressions for common beam section shear coefficients. 

Furthermore, Ozsoysal (2004) summarized the research achievements in the field of 

ship vibration from 2000 to 2003. Previous investigations on the vibration 

characteristics of the variable cross-section beam have been limited and frequently 

focused on specific cross-sectional variations. Gupta (1985) utilized the finite element 

method to calculate natural frequencies of the variable cross-section beam. 

Naguleswaran (1994) presented an approximate formula for calculating the natural 

frequencies of rectangular cross-section beams when the side lengths are a quadratic 

function of the axial length. Laura et al. (1996) proposed an approximation for the 

natural frequencies of rectangular cross-section beams based on the Euler-Bernoulli 

beam model, but this method required a constant beam width and bilinear variation of 

thickness along the axial direction. Other studies (Q. Mao, 2011; Q. Mao & Pietrzko, 

2010) employed the Adomian decomposition method (ADM) to investigate the lateral 

vibration of step beams. However, there has been limited research on rapidly computing 

the vibration characteristics of the arbitrary variable cross-section beam. It is evident 

that early research on the vibration characteristics of variable cross-section beam was 

often restricted to specific cases, with finite element analysis being the primary method. 

In addition, finite element method has some limitations including complicated 

modelling works and time-consuming computations. 

2.3. Literature reviews of hydrodynamic analysis in marine vessels 

Though the ship behaves as an elastic body in a seaway and ship structural dynamics 

have been treated as separate subjects over the years. The rapid increase in the size of 

ships constructed during the 1960s has led to the realization that the wave induced ship 

hull vibration can give rise to significant stresses in the hull. This section concludes that 

general hydrodynamic calculation methods and applications in specific marine vessels. 

2.3.1. Classical hydrodynamic analysis methods in marine field 

The rapid increase in the size of ships constructed during the 1960s has led to the 

realization that the wave induced ship hull vibration can give rise to significant stresses 

in the hull (Jung et al., 2003). In recent times, there has been a considerable amount of 
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research on the hydrodynamics of ship structures. For example, the study of Troesch 

(1984) conducted a comprehensive study on wave-induced hull vibrations, both 

through theoretical analysis and experimental investigations. However, the springing 

mode shape was notably simplified, adopting a piece-wise rigid-body mode. The 

outcomes of this research included the derivation of normalized springing response 

spectra for various Froude numbers, specifically focusing on the Great Lakes bulk 

carrier model. 

Jung et al. (2003) outlines the construction of an analytical model designed for 

assessing the hull girder response of ships under the influence of waves, with a specific 

focus on incorporating torsional effects. The analysis re-evaluates springing effects on 

the hull girder, taking into account non-linear wave excitations and torsional vibrations. 

The stress distribution on the hull girder is computed using the Timoshenko beam 

model, and the solution is derived through the application of the superposition method. 

Jensen (1996) conducted an extensive investigation into the statistical properties of 

wave-induced bending moments and shear forces in non-prismatic Timoshenko hull 

vibrations within stochastic seaways, covering both short-term and long-term analyses. 

This study employed quadratic strip theory for analysis. 

Newman (1993, 1994) explored the bending behaviours of diverse structures such as 

slender barges, vertical columns, hinged barges, and wave effects in a channel. The 

study involved establishing a 2D boundary value problem in radiation-diffraction, 

considering both rigid-body and flexural radiation potentials. Despite the 

comprehensive nature of the investigation, the structures maintained a uniform 

configuration. 

Wu and Moan (2005) conducted an analytical and experimental investigation into 

similar phenomena, incorporating dynamic effects such as slamming. The study aimed 

to comprehensively understand the intricate interactions involved. 

Kim et al. (2009) conducted a numerical exploration of springing coupled with rigid 

body modes, employing a fully coupled CFD-FEM analysis and the higher-order 

Rankine-panel method. Notably, this computationally intensive analysis was confined 

to the time domain. 

Zhu et al. (2011) took an experimental route to analyse bending and torsional hull 

vibrations using a backbone model. However, this approach, while insightful, is both 
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resource-intensive and time-consuming, bypassing certain mathematical rigor in the 

process. 

On the other hand, in the field of hydrodynamics, there has been extensive research on 

both linear and nonlinear aspects. For instance, two papers authored by Singh and Sen 

(2007b, 2007a) provide comprehensive summaries of several representative linear and 

nonlinear hydrodynamic analysis methods employed for predicting the motion of 

floating structures. Sen (2002) utilized a Force-Kelvin (F-K) nonlinear time-domain 

computational model to predict both the linear and nonlinear motion responses of the 

Wigley ship at various speeds. The study also investigated the nonlinear motion 

response characteristics of sway and yaw under different speeds and wave steepness 

conditions. Qiu et al. (2001) and Fonseca and Soares (2002) applied this theory to 

predict nonlinear wave pressure and load responses. 

In recent years, there has been a growing trend in using the boundary element method 

to calculate hydrodynamic loads on marine structures. The paper of Lin and Yue (1991), 

based on the theory of free surface nonlinearity, established boundary integral equations 

satisfied by the distribution of source density on an instantaneous free surface using the 

three-dimensional time domain Green’s function method. They conducted numerical 

predictions for the large-amplitude motions of surface-piercing bodies such as spheres 

and the Wigley ship. The research of Yang and Ertekin (1992) studied nonlinear wave 

diffraction problems using the constant panel method. Lee et al. (1995) and Ning and 

Teng (2007) applied high-order boundary element methods to simulate fully nonlinear 

numerical wave propagation problems. The fully nonlinear time domain theory takes 

into account various nonlinear factors and is closer to real-world conditions. However, 

this theory requires tracking the instantaneous free surface at each moment, determining 

the intersection between the instantaneous free surface and the instantaneous body 

surface, and remeshing the grid and solving linear algebraic equations, which 

significantly increases computational and storage requirements. 

Linear theories addressing the computation of springing excitation and motion 

coefficients are typically characterized by strip or slender-body approximations. Strip 

theories often employ a combination of rational and intuitive approaches, with notable 

examples found in the works of Belgova (1962), Goodman (1971), Van Gunsteren 

(1974), and Hoffman and van Hoof (1976). Slender-body theory, on the other hand, 
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leverages matched asymptotic expansions, as exemplified by the works of Bishop et al. 

(1977), Maeda (1980), Beck and Troesch (1980), and Skjordal and Faltinsen (1980). 

Chen and Chiou (1981) offer a systematic comparison of several prevalent strip and 

slender-body theories. The nonlinear aspect of the problem is further compounded by 

the intricate conditions imposed by the complex free surface and hull boundaries. 

Investigations into the nonlinear effects of ship springing in the presence of long waves 

have been undertaken by researchers such as Jensen and Pedersen (1981) and various 

Japanese scholars. 

In fact, the periodic deflection of the main hulls of large tankers could be visually 

observed. With increase in size or speed of the ship and increase in flexibility due to 

geometrical considerations (open containership, shallow-draft ship), or with the 

application of high strength steel in ship construction, a phenomenon of hull flexural 

vibration, known as springing, may be observed. An example of full-scale springing 

stresses in Great Lakes bulk carriers was shown by Stiansen et al (1977). 

Moreover, all theoretical ship hydrostatic particulars are pre-calculated in advance for 

all possible loading conditions, containing three degrees of freedom for a quasi-static 

ship condition of the draught, the angle of trim and the heel angle (Basic et al., 2017). 

2.3.2. Hydrostatic and hydrodynamic analysis of special marine vessels 

According to the study of Jiang et al. (2011), in the case of cutter-suction, whose 

slotting is at the bow and stern, the amplitude of longitudinal motion is larger than that 

of transverse motion. It was proved by comparing calculative RAO results between a 

cutter-suction dredger and a similar ship without the slotting at its bow and stern. It 

means that the green water is more likely to get on the deck and the propeller out of 

water, which will significantly reduce the safety and reliability of some equipment and 

structural components. Meanwhile, Kim et al. (2011) have summarized that, for large 

vessels, green water loading in sagging conditions has a more serious negative influence 

on the wave induced vertical bending moments than hogging conditions on bow deck. 

However, in author’s study, the objective dredger’s influence on its motion response 

should be considered differently, as its slotting is at the middle-bottom part, and the 

green water loading will happen on the stern deck in most situations, where the dredger 

is overloaded sailing at rough sea state. Thus, it is necessary to re-analyse these 

conclusions by using similar methodology in WASIM for this kind of dredgers. 
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In addition, the hydrodynamic effects on dredgers in restricted or shallow waterways 

should be considered carefully because of their unique working conditions. Recent 

research proposed that calculating hydrodynamic interaction in restricted waterways 

with a numerical method could be used to improve safety factor of vessels’ operation 

(C.-K. Lee, 2012). Furthermore, Li, et al (2003) argued that the prediction for the 

motion performance of large FPSOs in shallow water should use the linear three-

dimension potential theory and time domain simulations. Thus, these two papers could 

provide numerical methods to get results, which can be compared to simulate results in 

SESAM for the performance analysis of dredgers in restricted and shallow waterways. 

In recent years, an innovative dredging approach has been proposed and practiced, 

which is the side-by-side configuration of the dredging ship and the mud barge during 

the dredger’s side cast dredging operation. Zhao, et al (2018) pointed out that the 

hydrodynamic interactions would have a significant impact on the ships’ motion when 

they get close to each other. Meanwhile, they also found that those interactions are 

sensitive to wave directions for shielding effects. Similarly, another paper of Zhao, et 

al. (2018) also focused on hydrodynamic interactions of side-by-side floating bodies. 

They asserted that roll motions, sloshing and free surface motions are sensitive to 

excitation frequencies and damping levels for FLNG-side-by-side offloading. 

Moreover, in light of Zhao, et al. (2012), the low-frequent motion responses of two 

vessels could be affected by the hydrodynamic interactions, which can also affect the 

loads among connection systems. These studies show that the hydrodynamic interaction 

of the side-by-side configuration between two floating bodies is worth exploring, 

especially for dredgers’ offloading. It is notable that the dredger is moving at a low 

speed (< 3 knots) during sidecast dredging operation, which is different from FLNG or 

FPSO that is moored. In addition, Zhao, et al. (2013) and Zhao, et al. (2014) proposed 

a hydrodynamic analysis of FLNG systems in offloading operation where the carrier 

connects to the stern of the FLNG, and a prediction of hydrodynamic performance of 

an FLNG system in offloading operation, respectively. Therefore, due to the complexity 

and difference of offloading conditions between dredgers and FLNGs or FPSOs, the 

hydrodynamic interactions on this up-to-date productive technology need to be 

analysed, so as to improve productivity greatly.  
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Figure 17. Side-by-side configuration of the dredging ship and the mud barge (Song 

Chang, 2017). 

2.4. Literature reviews of time-varying structures 

With the increasing size of dredgers, their structural stiffness decreases, and flexibility 

increases, making the coupling effect of flexibility and rigidity more pronounced. This 

issue cannot be avoided during the design and development phase. Additionally, 

dredgers experience rapid changes in mass during unloading condition, and as a 

consequence of the declining structural stiffness, additional dynamic loads induced by 

time-varying mass become more significant. Given this section, in the development 

process of dredgers, establishing a flexible structural dynamic model that 

simultaneously considers the effects of time-varying mass and rigid-flexible coupled 

body is of paramount importance. 

2.4.1. Time-varying structure studies 

At present, there have been numerous research outcomes related to rigid body dynamics 

with time-varying mass. The body of research on rigid body dynamics with time-

varying mass has significantly expanded over the years. The contributions by Bestaoui 

(2010), along with the studies by Waishek et al. (2009), Waishek et al. (2010), 

Pourtakdoust and Assadian (2004), and Majji et al. (2010), have laid a robust 

foundation in understanding and modelling the complexities associated with these 

systems. These studies collectively underscore the importance of considering mass 

variations in the dynamic analysis of rigid bodies, which is particularly relevant in 

applications such as aerospace engineering and marine structures. 
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The work of Strzałko and Grabski (1995) and Henson (2008) provides crucial insights 

into time-varying single-degree-of-freedom systems and beam structures. Their focus 

on these areas highlights the critical need for simplified models to understand the 

fundamental behaviours of more complex systems. These simplified models are 

invaluable in offering initial insights and guiding more detailed, multi-degree-of-

freedom analyses. However, it is essential to note that while these models are insightful, 

they may not capture all the intricacies of real-world applications, which often involve 

multi-degree-of-freedom systems and more complex interactions. 

Furthermore, the application of boundary element methods (BEM) in the modelling and 

simulation of time-varying mass systems, as demonstrated by Grant et al. (2009), H. 

Holl & Irschik (1996), and H. J. Holl et al. (1999), represents a significant 

methodological advancement. BEM offers an efficient computational approach, 

particularly beneficial for problems involving infinite or semi-infinite domains, such as 

those encountered in marine and aerospace engineering. However, while BEM is 

powerful, it also presents challenges, particularly in handling non-linearities and 

complex boundary conditions, which are often present in practical engineering 

problems. 

The research on rigid body dynamics with time-varying mass has made substantial 

progress, offering valuable theoretical and methodological contributions. However, to 

advance this field further, it is crucial to focus on multi-degree-of-freedom systems, 

address the limitations of boundary element methods, and prioritize experimental 

validation. These steps will ensure that the theoretical advancements translate 

effectively into practical engineering solutions, enhancing the design and analysis of 

systems with time-varying mass properties. 

Nikkhoo et al. (2007) conducted research on the dynamic behaviour and control of 

beam structures with moving concentrated masses. Similarly, the paper of Bilello et al. 

(2004) carried out experimental studies on small-sized beam models with moving 

concentrated masses. Two papers of Van Horssen et al. (2010; 2011) established the 

control equations for a linear time-varying mass single-degree-of-freedom damped 

system and investigated its free and forced vibrations. For free vibrations, they provided 

the minimum damping ratio required to maintain the system’s indefiniteness. They also 

studied the forced vibration response and stability of the system under periodic impacts 
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and harmonic loadings. The study of Nhleko (2009), based on the previous work by Li 

(2000), conducted a more detailed subdivision of the response parameter range for 

systems with time-varying mass parameters. This study examined the response patterns 

of single-degree-of-freedom systems with time-varying mass parameters and the 

system’s stability under rapid mass changes within different parameter ranges. 

Additionally, it elucidated the additional damping characteristics caused by time-

varying mass and validated the summarized vibration response patterns using numerical 

examples. McGhee (2004) explored the approximation of deformation in flexible 

structures with time-varying mass using canonical modal series. 

Moreover, the mass-variation influence on engineering structure has been broadly 

employed in aerospace field. The study of Joshi (1995) investigated the variations in 

mode shapes and mode frequencies of time-varying mass flexible rocket structures 

under axial thrust with acceleration loads. In this study, it initially established 

differential equations for the lateral vibration control of variable cross-section beams 

subjected to time-varying axial loads. Then it discretized the structure into a series of 

small segments, each satisfying the requirements of approximately constant axial loads 

and cross-sectional parameters. This led to the derivation of control differential 

equations for each small segment. Finally, they solved the simultaneous equation 

system formed by the mode functions of each small segment and boundary conditions. 

This paper also presented numerical simulation examples for a variable cross-section 

rocket structure under constant thrust conditions.  

However, the article by Meirovitch (1970) first established the dynamic equations of 

the rocket structure with time-varying mass for the flow of internal objects. These 

include six ordinary differential equations that express the motion of a rigid body and 

three ordinary differential equations that express the elastic deformation. These 

equations are nonlinear and with time-varying coefficients. The article also introduces 

the analysis of dynamic characteristics of structures with time-varying mass. This 

played a great guiding role in the first phase of the project. 

Moreover, the study of Banerjee (2000) established a rocket structural system of solid 

propellant with time-varying mass. This model considers that the mass of some 

structures gradually decreases during the flight of the rocket. And the Kane’s equation 

developed by the research of Kane (1961) and Kane et al. (1983) is used to establish 
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the dynamic equation of the model in this study. This article also proposes to 

continuously update the modal information for the solution of the dynamic equations 

by continuously solving the characteristic equations or calculating the modal shape only 

at some discrete time freezing points. This suggestion provided effective help for the 

research of this project. The study of Banerjee (2000) also rewritten the dynamic 

equations into matrix form. In other words, in this project, the following research work 

which is the secondary development of ANSYS modal analysis will be largely similar 

to it. 

Furthermore, Huang and Zeiler (2006) employed the Lagrange’s equation to formulate 

dynamic equations for time-varying mass flexible rocket structures. Tobbe et al (2009) 

conducted dynamic modelling and numerical simulations of flexible structures with 

time-varying mass parameters using the ARTEMIS software relied upon by the Ares I 

rocket structure. In their research, they initially derived dynamic equations for time-

varying mass flexible structures based on the Boltzmann-Hamel equation (P. A. Tobbe, 

1995). Nevertheless, they did not consider the influence of mode shape rates of change 

with respect to time, which resulted from mass variations, and instead accounted for 

the effects of time-varying mass by continuously updating the mass matrix and mode 

shape matrix during the dynamic equation solving process. The study also treated 

various sections of the rocket structure as substructures, combined with multi-threaded 

parallel computing techniques to enhance real-time simulation computational 

efficiency. Finally, numerical simulations were conducted for a time-varying mass 

flexible beam structure, and the results were compared with calculations from 

NASTRAN and TREETOPS software. 

In summary, the extensive research on time-varying mass structures has provided 

significant theoretical and methodological advancements. Foundational studies have 

underscored the importance of accounting for mass variations in dynamic models, 

leading to more accurate predictions and robust designs. These steps will enhance the 

design and analysis of systems with time-varying mass properties, translating 

theoretical progress into real-world marine engineering solutions. 

2.4.2. Numerical algorithms of dynamic analysis of linear mass-varying structures 

Up to now, several studies have developed a variety of numerical algorithms for the 

calculation of the dynamic response of linear time-varying structures. The research of 
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Holl et al. (1998) developed a semi-analytical dynamic response calculation method for 

transient response analysis of linear time-varying systems with non-classical damping 

based on the modal method. In this method, the transient response is decomposed into 

two parts: the transient response corresponding to the external load and the transient 

response corresponding to the load caused by time-varying parameters. Consequently, 

the equations of motion in this system are correspondingly decomposed into two sets 

of equations. This algorithm may be used as a guide or directly applied in the future 

research of this project, because this method can largely conform to many practical 

situations of TSHDs, such as such as the external load considered by this method and 

the load caused by time-varying parameters.  

Moreover, a transient response analysis method for linear multi-degree-of-freedom 

systems with time-varying damping and stiffness systems has been proposed by the 

study of Kucharski (2000). This method uses the state variable method to establish the 

system dynamics equations, which decomposes the system state transition matrix into 

time-invariant parts and time-varying parts. Furthermore, it gives an efficient 

estimation method for the state transition matrix. At this stage of the project, the multi-

degree-of-freedom system with time-varying mass parameters needs to be studied, 

which is very similar to the study. In addition, only the hopper section of the TSHD 

vessel in this project has the time-varying mass characteristic, and the rest remains the 

time-invariant characteristic. In other words, the research method has a strong reference 

significance for this project. Fortunately, the article of Bartels (2003) developed a 

method for calculating the dynamic response of structural dynamic equations based on 

the state transition matrix on the basis of Kucharski’s study (2000). This method can be 

used to analyse the transient response of any linear time-varying parameters system and 

nonlinear systems. It means this provides a great reference value for the transient 

response analysis of the nonlinear system of this project in the future. 

In addition, the precision direct integration method that is widely used in the transient 

response analysis of linear time-invariant structures has also been extended to the 

transient response analysis of linear time-varying structures by many researchers. The 

study of Liu et al. (2014) has proposed an improved precision direct integration method 

for solving the dynamic response of linear time-varying systems with time-varying 

polynomial function coefficient matrix by introducing new variables and extending 

latitude. Moreover, an improved precise integration method for transient response 
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analysis of linear time-varying structures has been proposed by the research of Yue et 

al. (2016) based on Magnus expansion method and precision direct integration method. 

Compared with the Newmark algorithm in linear time-varying structure, this improved 

method based on Magnus has higher calculation accuracy. Furthermore, some other 

literatures have also done a similar study of the precision direct integration method in 

time-varying structural dynamic systems. This is supported by the article of Zhou and 

Jiang (2005), two papers of PENG and WU (2009; 2009), Tan and Zhong (2006), Fu et 

al. (2012). 

Besides, time-domain finite-element algorithm, which is widely used in the transient 

response analysis of linear time-invariant structures, has also been extended to the 

transient response analysis of linear time-varying structures by many researchers. The 

papers of Penny and Howard (1980) and Yu et al. (1997) have developed a time-finite 

element algorithm for the transient response analysis of linear single-degree-of-

freedom and multi-degree-of-freedom systems with time-varying parameters 

respectively based on the Hamilton principle of constant mass systems. These methods 

use the Hermitian difference to approximate the mass, damping and stiffness matrices 

at each time step. Their research results show that the method has high calculation 

accuracy. On the other hand, some papers have proposed a space-time finite element 

method for transient response analysis of linear systems with moving inertial loads 

(Bajer & Dyniewicz, 2008, 2009, 2012; Dyniewicz, 2012). 

The above research results show that in the study of linear time-varying structural 

dynamic response algorithms, in addition to methods from the papers of Holl et al. 

(1998), Kucharski (2000) and Bartels (2003), there are also the precision direct 

integration method that is widely used in time-invariant structural dynamics, as well as 

the time-domain finite-element algorithm and space-time finite element method. 

However, not all methods are efficient and accurate in engineering applications. And 

so far, no time-varying dynamic response algorithm has been proposed in the field of 

ships. Therefore, developing a linear time-varying structure dynamic response 

algorithm applied in the field of ships will be the main challenge in this project. 

While applying the linear time-dependent structural time finite element algorithms 

developed based on the Hamiltonian principle for constant mass systems to compute 

the dynamic response of time-varying mass structures, it observed that the results 
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obtained from these algorithms are not always accurate. It is evident from these 

computations that these time finite element algorithms are suitable for linear time-

varying structures where mass release or absorption relative to the inertial reference 

frame has zero velocity. Further investigation revealed that the main reason for this 

phenomenon is that the Hamiltonian principle for constant mass systems is only 

applicable to variable mass systems with mass release or absorption having zero 

velocity relative to the inertial coordinate system. Numerical algorithms based on the 

variational principles of mechanics inherit the applicability range of the variational 

principles of mechanics. Additionally, the number of unknowns in the linear system of 

equations that needs to be solved at each time step in these linear time-varying structural 

time finite element algorithms is at least twice the number of system degrees of freedom. 

When practical engineering requirements necessitate the computation of large and 

complex time-varying structural dynamic responses with smaller time steps, these 

linear time-varying structural time finite element algorithms become computationally 

expensive. 

In summary, the extensive research on time-varying mass structures has significantly 

advanced the theoretical and methodological frameworks essential for marine vessel 

analysis in this study. Foundational studies in rigid body dynamics with time-varying 

mass have laid a robust groundwork, emphasizing the necessity of incorporating mass 

variations to predict structural behaviour accurately. Simplified models provide 

valuable initial insights but must evolve to encompass multi-degree-of-freedom 

systems to address the complexities inherent in marine structures. 

In the context of marine vessels, this research fills critical gaps by enhancing the 

accuracy of dynamic response predictions, especially for specialized vessels like 

TSHDs that experience significant mass variations. By integrating these advanced 

methodologies, the thesis proposes a comprehensive framework for the dynamic 

analysis of marine vessels, ensuring more robust design and operational strategies. This 

work helps bridge the gap between theoretical advancements and practical engineering 

solutions, contributing to safer and more efficient marine vessel operations. 

2.5. Literature reviews of strength and fatigue analysis in marine vessels 

This review explores the structural integrity and fatigue analysis of specific marine 

vessels. It encompasses studies on structural responses to diverse loading conditions, 
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materials in vessel construction, and methodologies for assessing fatigue life. These 

insights contribute to ongoing efforts in improving design, maintenance, and overall 

safety, crucial for dredging vessel operation across diverse marine applications 

accordingly. 

2.5.1. Global strength analysis of specific marine vessels 

With the purpose of exploring the hull girder of dredgers, firstly, a number of studies 

have shown that the simple beam theory cannot be addressed to analyse the hull girder 

response, especially for ships with large deck openings (Payer et al., 1994; Valsgard et 

al., 1995). Similarly, Rörup, et al. (2017) compared this approach with global FE model 

and suggested that it is necessary for the model with large deck openings to apply 

warping force on the boundary condition in order to get more accurate results. That is 

to say, these conclusions not only have an impact on the hull girder of containers with 

large deck openings but may also on dredgers with large deck openings and several 

bottom holes. Secondly, although Paik, et al. (2001) argued that if the magnitude of 

torsion is not predominant, the torsion would not be very sensitive to the load 

component of the ultimate vertical bending moment of container hulls. As we know, 

the object of this paper has large openings on the deck, which is different from dredgers 

with large openings both on the deck and bottom. That means the conclusions might be 

changed by analysis of dredgers. Moreover, in light of the paper of Chen (2016), who 

proposed following important conclusions of reliability assessment of FPSOs’ hull 

girder: first of all, the hull girder reliability will be decreased as the return period of the 

extreme value of vertical wave-induced bending moment increases. Secondly, the hull 

girder of this kind of ship is sensitive to specific wave states. Finally, the environmental 

severity factor has a significant impact on the reliability of hull girder. These two papers 

summarized some important results of hull girder of a container and FPSOs respectively, 

which could be based on the analysis of dredgers’ hull girder.  

Furthermore, Sun and Bai (2003) suggested that a modified Smith method to calculate 

ultimate value of the longitudinal bending moment at the amidships section for hull 

girders’ and according to Gaspar, et al. (2016), the direct calculation method provides 

more accurate prediction for the reliability of actual hull girders under sagging 

conditions, because current design formulation underestimates the effects of nonlinear. 
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Therefore, these conclusions could be used to analyse the hull girder of dredgers in 

global FEA as fundamental methods.  

In light of the study of Saad-Eldeen, et al. (2016), the effects of different dent shapes 

for highly damaged plates were summarized to cope with various damage conditions. 

Moreover, he also concluded that when the plate slenderness ratio is less than 2.63, the 

dent shape is beneficial to the behaviour of the structure and the effect of deeper dent 

is missing in the ultimate strength. In other words, it means that the maintenance cycle 

will be extended for highly damaged plates, which will reduce costs to a great extent. 

Moreover, Underwood et al. (2015) claimed that all potential failure modes of the 

structure should be considered for the ultimate strength assessment of damage stiffened 

steel structures in order to accurately assess the true residual strength of the structure 

when it happens. It is inevitable for dredgers to collide or have accidents during running 

and maintaining periods. The implication is that all potential modes should be applied 

to structural components of dredgers, especially for specific sections, such as the panels 

around hopper doors and dredging pumps room. Furthermore, the bottom plates and the 

lower parts over side shells of the ship are mainly resulted from the uniaxial and biaxial 

compressive or tensile loads with hydrostatic water pressure, which has been researched 

for many years by Crisfield (1975) and Paik et al. (2000). Some ideas could be 

borrowed from their research for studying non-continuous bottom of specific vessels, 

like dredgers. It is important to investigate the ultimate limit state of the bottom 

structure for specific ships. Meanwhile, Xu, et al. (2017) proposed some useful 

formulas to identify the difference of constrained condition on the ultimate strength 

under simulated loads. And they also suggested to use different formulas to forecast the 

ultimate strength of stiffened plates for different positions of ship. It means that these 

different formulas should be used to special positions of dredgers like hopper doors. 

Besides, it is necessary to analyse some panels which already have cut-outs. This is 

supported by Mohtaram, et al. (2012), Kumar, et al. (2007), Kumar, et al. (2009a) and 

another study of Kumar, et al. (2009b). He analysed ultimate limit state of rectangular 

plates with groove-shaped cutouts, square plate with rectangular openings, stiffened 

plates with a square opening and stiffened panel with circular opening, respectively. 

Meanwhile, Yu and Lee (2012) argued that the ultimate strength of plate with transverse 

opening has not been affected by opening position ratio. Nevertheless, the plate 

slenderness parameter plays a role on the ultimate strength of plate with longitudinal 
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opening when it less than 1.77. Furthermore, Yu, et al. (2015) asserted that the nonlinear 

finite element method could be used to analyse the ultimate strength of stiffened panel 

with various opening locations and fit design formulas for them on the basis of 

experimental data. Although it is inconvenient to collect experimental data, some FEA 

software could simulate the data like ANSYS. In the paper of Saad-Eldeen, et al. (2014), 

an expression was developed to estimate the ultimate strength of the plate with a large 

opening. 

In summary, the comprehensive studies on the global strength analysis of marine 

vessels, specifically focusing on dredgers, reveal critical insights into their structural 

behaviour under various conditions. Traditional beam theory often falls short in 

accurately predicting the responses of hull girders, particularly those with significant 

structural discontinuities like large deck and bottom openings. The research 

underscores the necessity of using advanced methods, such as global finite element 

analysis and modified Smith methods, to achieve more precise assessments. The studies 

also highlight the importance of considering potential damage and ultimate strength in 

design, emphasizing the role of detailed FEA in evaluating non-continuous structures 

and cut-outs. By integrating these advanced analytical methods, this thesis addresses 

existing gaps in the structural analysis of marine vessels, particularly TSHDs, ensuring 

more robust design and operational strategies to enhance their reliability and safety. 

2.5.2. Detailed fatigue analysis of specific marine vessels 

For fatigue analysis, according to Ringsberg, et al. (2015), the amidships hatch corners, 

amidships engine room and the bilge regions are critical regions for a container ship, 

which is proved by using SESAM software, and they also did linear and nonlinear 

analysis as well as the assessment of the partial fatigue damage for those parts. It means 

that some critical regions could be found by using SESAM under a specific state sea 

for detailed fatigue analysis of models firstly, and there is no exception for dredgers 

with openings in the deck and bottom. Li, et al. (2012) mentioned that a traditional 

method should be questioned when being applied to the ship with large deck openings. 

As it would cause low torsion rigidity of the structure, which influences the assessment 

of ship structural fatigue damage. Meanwhile, he confirmed that the speed of ship has 

a significant impact on the fatigue damage accumulation. In a similar way, the trailing 

suction hopper dredger not only has a large deck opening, but also has several big holes 
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at the bottom structure, and it always work at various speeds in different working 

conditions. Cross sections at the centreline of each hopper door or adjustable overflow 

well are worth considering, and their fatigue damage is derived from wave induced 

loads for dredgers at various normal speeds. Another study of Li, et al. (2013) advised 

that the time-domain-based procedure, which contained more factors, is more realistic 

than the spectral method for analysing the fatigue of the ship side-shell structure. This 

recommendation is useful for this dissertation, as it is conductive to exploring the 

fatigue damage of suction inlets over side-shell for dredgers. Fortunately, Mao, et al. 

(2015) proposed an accurate method to calculate fatigue damage in detailed for hatch 

corners and side shell structures of ship with more complex stress. Meanwhile, Li, et al. 

(2011) presented a novel procedure of calculating fatigue damage of ship structure 

details directly, and he also argued “it is believed to give more accurate predictions in 

fatigue assessment”. These two calculation methods for fatigue damage of ship 

structure are suitable for dredging ships, whose structural features are similar to that of 

the models in these papers; thus, they could be adopted for analysing fatigue damage 

details of specific parts for dredgers, for example, hatch corners, corners of side-shell 

around suction inlets, the detailed corners of hopper doors, and etc. 

The studies on fatigue analysis highlight the importance of identifying and assessing 

critical regions in marine vessels, particularly those with structural discontinuities like 

large deck and bottom openings. For dredgers, which operate under varying speeds and 

complex loading conditions, these regions include amidships hatch corners, engine 

room areas, and bilge regions. Research suggests that traditional methods may not 

adequately address the unique fatigue challenges posed by such structures, emphasizing 

the need for more realistic time-domain-based procedures and advanced analysis tools 

like SESAM. By applying these advanced methodologies, this thesis aims to fill the 

gaps in fatigue analysis for TSHDs, providing more accurate predictions and effective 

strategies for enhancing structural durability and safety in the design and operational 

phases. 

2.6. Summary of Chapter 2 

In Chapter 2, the literature review comprehensively examines various aspects related 

to dredgers, dynamic analysis of marine structures, and the impact of hydrodynamic 

and time-varying mass effects. For TSHDs, structural challenges due to large deck and 



 

42 

 

bottom openings necessitate in-depth research, yet an integrated model addressing these 

discontinuities under operational conditions is lacking. Existing studies on excitation 

loads, hydrodynamic behaviours, and dynamic analysis primarily treat these factors in 

isolation, missing the combined effects crucial for TSHDs. While classical 

hydrodynamic methods and recent advancements in time-varying structure analysis 

provide valuable insights, they often fall short in addressing the complex geometries 

and operational profiles of TSHDs. Moreover, strength and fatigue analysis methods 

need refinement to accurately predict the behaviour of TSHDs, highlighting a gap in 

applying these methods to vessels with significant structural discontinuities and 

variable operational profiles. This thesis aims to fill these gaps by developing a 

comprehensive model that integrates structural dynamics, hydrodynamic responses, 

and fatigue analysis for TSHDs, ensuring a holistic understanding of their behaviour 

under various conditions. 
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Chapter 3. Methodology 

This chapter gives the fundamental theories and methodologies of the proposed novel 

mathematical and numerical model and outline of self-developed programme 

TVM_HullGirder for dynamic analysis of mass-varying marine vessels in time-domain. 

3.1. Fundamentals of proposed mathematical and numerical model 

The hull girder model employed in this study perceives the ship structure as a variable 

cross-section Euler-Bernoulli beam with free-free boundary condition. Based on ideally 

finite segment idea, it typically divides hull girder into twenty beam elements. The hull 

girder model consists of twenty beam elements interconnected through nodes, with 

mass and stiffness properties of each beam element being calculated from the geometric 

model of the full-scale vessel. Accurate calculations necessitate prior knowledge of the 

geometric characteristics of twenty-one stations along the ship’s structure and the mass 

properties of twenty beam elements, as depicted in the diagram below (Figure 18). 

Theoretically speaking, increasing the number of subdivided beam elements brings the 

hull girder model closer to the actual ship structure, enhancing the accuracy of 

calculation results. 

 

Figure 18. Classical hull girder with variable cross-sections. 

The derived key theories and methodologies behind the proposed mathematical model 

include: 
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(1) The modified Euler-Bernoulli beam theory to achieve the capability of handling 

variable mass function.  

(2) A semi-analytical approach based on the transfer matrix method for vibration 

analysis of the variable cross-section hull girder with analytical modal solutions. 

(3) The calculation method of time-varying hydrodynamic loads. 

(4) The calculation method of other excitation loads generated by key components 

installed on the vessel. 

(5) Improved Kane’s dynamic equation to accommodate the dynamic analysis of rigid-

flexible coupled offshore floating structure with time-varying mass systems. 

The Figure 19 shows the outline of the proposed mathematical model in this study. 

 

Figure 19. The outline of proposed math model. 

In this outline of proposed mathematical model, it separates the model as two main 

sections which are pre-calculation section includes part 1, part 2, part 3 and main solver 

section includes part 4, part 5, part 6 respectively based on corresponding key 

methodologies and tool applications. The mathematical model proposed in this paper 

is developed to address the challenges posed by the structural dynamic analysis of 

offshore floating structures with variable-mass characteristics. This mathematical 

model is primarily based on several key theories to provide supports as below: 

(1) Beam theory of hull girder for mass-varying property 
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The hull girder model is based on a modified Euler-Bernoulli beam theory, allowing 

for the simulation of structural motion and flexible deformation, particularly in 

structures with variable mass characteristics. 

(2) Semi-analytical vibration analysis approach 

This part would introduce a semi-analytical approach based on the transfer matrix 

method, specifically focusing on the computation of natural frequency with numerical 

solutions and mode shape with analytical solutions, which tailored for the study of the 

vibration characteristics of variable cross-section Euler-Bernoulli beam. Moreover, this 

method provides a foundation for subsequent dynamic analysis. 

(3) Time-varying hydrodynamic analysis 

In the hydrodynamic analysis section, the three-dimentional potential flow theory will 

serve as the foundation. It will employ the hydrodynamics software SESAM to 

precompute hydrodynamic parameters for various load cases. The output files from this 

precomputation will be used as input files for self-developed program to calculate time-

varying hydrodynamic loads for the target vessel under loading or unloading conditions. 

(4) Excitation loads simulation 

The program employs trigonometric functions to model and compute the excitation 

forces from diesel engines and propellers.  

(5) Dynamic analysis of time-varying mass systems 

A dynamic analysis solver for that considers time-varying mass systems based on 

modified Kane’s dynamic equation is used in this study. The dynamical equations of 

the model will be reformulated into matrix form to facilitate subsequent numerical 

simulation computations. 

The principal theories and methods of the proposed novel mathematical and numerical 

model consist of parts (1) – (5)  and a self-developed program TVM_HullGirder in 

FORTRAN is implemented to perform dynamic response calculations for the hull 

girder subjected to complicated loads with time-varying mass systems, as shown in the 

Figure 20.  
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Figure 20. Hull girder model subjected to complex excitation loads with variable mass 

systems. 

(6) Results transformation by MPC in FEM 

Dynamic response results calculated by TVM_HullGirder programme can be 

transferred into FEM by Multiple Point Constraints (MPC) technology (Figure 21) in 

finite element software for further structural assessments. 

 

Figure 21. Results transferred from calculation programme into FEM by MPC 

technology. 

Subsequent parts introduce and derive the relevant theories with regards to modules in 

program. 
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3.2. Modified Euler-Bernoulli beam theory with time-varying mass function 

The flexural properties of a hull girder are derived from the transverse vibration of a 

Euler-Bernoulli beam with time-varying mass functions applied in further dynamic 

model without mass point at boundary conditions as shown in Figure 22, (Craig Jr & 

Kurdila, 2006). In this part, the basic theory of Euler-Bernoulli beam was modified for 

achieving time-varying mass functions to make sure that could be applied in target 

vessel and further dynamic analysis based on improved Kane’s dynamic equation. 

 

Figure 22. Force diagram of classical Euler-Bernoulli beam element. 

It is assumed that no distributed load over the length of beam, the transverse vibration 

equation of general Euler-Bernoulli beam in the partial differential equation (PDE) 

form as an example (Figure 22) is shown below (Bauchau & Craig, 2009; Thekinen & 

Datta, 2019): 
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Where, the density of the beam is expressed as 𝜌, which is constant in general analysis. 

The beam stiffness, 𝐸𝐼, is constant over the length of the beam as well as 𝐴 which is 

the cross-section area of the beam, 𝜙(𝑥, 𝑡) expresses the deflect function of the beam. 

Drawing inspiration from earlier research that employed the Rayleigh-Ritz method to 

account for added mass in beam theory (Ilanko et al., 2014; Lamb, 1920), by integrating 

the capabilities of the established commercial finite element software SESAM (DNV, 

2017), the conventional beam theory has been adapted for marine structures to 

incorporate the consideration of added mass, as outlined below: 
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Where, 𝜌௔𝐴௔ expresses added mass of marine structures which can be pre-calculated 

by SESAM software. 

In the analysis of a variable-mass Euler-Bernoulli beam, the density of the beam 𝜌(𝑡) 

is treated as a time function to characterize variations in mass. Due to loading or 

unloading working condition, the wetted surface of target vessel would be time-varying 

changed accordingly. As a result, added mass part is supposed to be changed in time 

domain as 𝜌௔(𝑡)𝐴௔(𝑡). Consequently, the transverse deflection of the Euler-Bernoulli 

beam with time-dependent mass properties can be mathematically expressed as: 
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The separation of variables is used to solve the PDE in general Euler-Bernoulli beam, 

the mode shape is assumed to be the product of a function of the position along the 

beam (mode function) and a function of time (mode coordinate) by mode superposition 

method. Therefore, 

      ,x t x t    (4) 

Where Φ(𝑥) is the spatial function and 𝜂(𝑡) is the mode coordinate function. 

Based on mode superposition method, the PDE of a Euler-Bernoulli beam becomes: 
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Collecting like terms yields: 
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As typically done in the method of separation of variables, when it considers the spatial 

equation involving Φ(𝑥)  to be equal to the temporal equation involving 𝜂(𝑡) , the 

middle part of above equation, they have to equate to a constant represented as the 

squared eigenvalue 𝜔ଶ . Consequently, the PDE is decomposed into two ordinary 

differential equations as shown below: 
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The second equation in above has a time varying coefficient, which makes the solution 

difficult. That means the spatial equation Φ(𝑥) has relationship with two time varying 

functions not only temporal equation 𝜂(𝑡) but also the presence of part of density 

changes [𝜌(𝑡)𝐴 + 𝜌௔(𝑡)𝐴௔(𝑡)] , which violates the assumption of separation of 

variables in Equation (4). Thus, it has to assume that the rate at which the beam’s mass 

changes over time is minimal compared to natural frequencies. Consequently, the 

Equation (6) can be rewritten as: 
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This leads to: 
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Hence, the analytical mode solution to the above equation base on boundary conditions 

of the beam can be expressed as the below form with invariant nature frequencies: 
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Where, 
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Figure 23. Time-varying mass beam with variable mode shape in time domain. 

In addition, it is also possible to update nature frequency in each time step according to 

mass changed as well as mode shape accordingly, then the coefficient 𝜆 would be 

defined as below: 
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The time-varying natural frequency has more accurate results, but time-consuming 

calculations as natural frequencies and mode shape need to be updated in very time step 

due to variable mass. 

3.3. Semi-analytical of vibration analysis of variable cross-section beam  

In light of the above section, an analytical solution for the vibration analysis of the 

Euler-Bernoulli beam with time-varying mass characteristics can be approached in 

time-domain analysis. However, for the investigation of the hull girder in this study, 

which inherently constitutes a variable cross-sectional beam, a homogeneous beam 

analysis is deemed insufficient. Consequently, there arises the necessity for an 

analytical mode shape solution tailored to variable cross-section Euler-Bernoulli beams, 

which not only enables the vibration analysis of the hull girder but also finds application 

in dynamic analysis based on improved Kane’s dynamic equation method with time-

varying mass systems. 

Leveraging the Euler-Bernoulli beam theory, it formulates the vibration equation for 

the beam with variable cross-sections, where the bending stiffness and mass distribution 

may exhibit continuous or discontinuous variations along the beam. This method treats 

the variable cross-section beam as an equivalent assembly of multiple uniform beam 

segments. It establishes relationships for modal functions between two adjacent 

uniform beam segments based on the continuity conditions of displacements (including 
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translational and rotational) and forces (including bending moments and shear forces) 

at the interfaces between them. After addressing boundary conditions of the beam, it 

formulates non-linear eigen equation and modal functions can be computed by obtained 

natural frequencies from the non-linear eigen equation. The Bisection method or 

Newton-Raphson can be subsequently applied to solve the non-linear eigen equation 

for corresponding natural frequencies. The following derivation details of this approach 

take transverse vibration equation of variable cross-section Euler-Bernoulli beam as an 

example. 

3.3.1. Modelling assumptions and simplification 

Based on the idea of segmentation, the variable cross-section beam can be divided into 

a combination of several uniform beam segments connected to each other. When the 

number of beam segments is sufficient, each beam segment is regarded as an isometric 

homogeneous beam as shown in the Figure 24.  

 

Figure 24. N segments of variable cross-section beam. 

The equivalent bending stiffness and cross-sectional density of the 𝑖௧௛ beam segment 

can be expressed as: 

    
1

1 i

i

x

i x
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EI EI x dx
l 
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i x
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 
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   (14) 



 

52 

 

Where, 𝐸𝐼(𝑥)  stands for the bending stiffness at 𝑥 position of the beam, 𝜌𝐴(𝑥) 

expresses the cross-sectional density at 𝑥 position of the beam, 𝑙௜ expresses the length 

of the 𝑖௧௛ beam segment (𝑖 = 1,2,⋯ ,𝑁). 

Based on the Equation (10) in above section, the mode shape function of the 𝑖௧௛ beam 

segment can be expressed as: 

 
  1 2

1 1

3 4
1 1

sin ( ) cos ( )

sinh ( ) cosh ( )

i i i i i i i

i i i i i i

x C x x C x x

C x x C x x

  

 
 

 

   

   
 (15) 

Where, 𝑥଴ = 0, 𝐶௜
ଵ, 𝐶௜

ଶ, 𝐶௜
ଷ, 𝐶௜

ସ are modal coefficients of the 𝑖௧௛ beam segment. 

Similarly, the mode shape function of the 𝑖 + 1௧௛ beam segment can be expressed as: 

 
  1 2

1 1 1 1 1

3 4
1 1 1 1

sin ( ) cos ( )

sinh ( ) cosh ( )

i i i i i i i

i i i i i i

x C x x C x x

C x x C x x

  

 
    

   

   

   
 (16) 

It is noted that natural frequencies here in 𝜆 stand for the whole beam rather than that 

of 𝑖௧௛ beam segment. 

According to above 3.2 section, the coefficients 𝐶௜
ଵ, 𝐶௜

ଶ, 𝐶௜
ଷ, 𝐶௜

ସfrom Equation (10) are 

determined by boundary conditions of the beam. 

3.3.2. Relationship of continuity and transfer matrix for lateral beam equation 

From the continuity of displacement, rotation, bending moment and shear force 

between the 𝑖௧௛ beam and the 𝑖 + 1௧௛ beam at the connection point 𝑥௜, the following 

relationships can be obtained: 

(1) Displacement: 

     1t i i t i ix x    (17) 

Hence, based on Equation (17), the following derivations can be derived: 
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 (18) 
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     
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 (19) 

Consequently, from relationship of displacement, the following relationship of 

coefficients can be found: 

 1 1 sin cos sinh coshi i i t i i i t i i i t i i i t i iB D A l B l C l D l          (20) 

(2) Rotation: 

    1t i i t i ix x    (21) 

Hence, based on Equation (21), the following derivations can be derived: 

 

     
   

1 1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1

1 1 1 1

cos sin

cosh sinh

0 0

t i i i t i t i i i i t i t i i i

i t i t i i i i t i t i i i

i t i i t i

i t i i t i

x A x x B x x

C x x D x x

A C

A C

    

   

 
 

      

     

   

   

    

   

   

 

 (22) 
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 (23) 

Consequently, from relationship of rotation, the following relationship of coefficients 

can be found: 

 
1 1 1 1 cos sin

cosh sinh
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 (24) 

(3) Bending moment: 

        11 t i i t i ii i
EI x EI x 

   (25) 

Hence, based on Equation (25), the following derivations can be derived: 
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 (27) 

Consequently, from relationship of bending moment, the following relationship of 

coefficients can be found: 
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 (28) 

(4) Shear Force: 

        11 t i i t i ii i
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   (29) 

Hence, based on Equation (29), the following derivations can be derived: 
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 (31) 

Consequently, from relationship of shear force, the following relationship of 

coefficients can be found: 
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Then here, it can build a relationship between 𝑖௧௛  beam segment and 𝑖 + 1௧௛  beam 

segment with a transfer matrix based on above continuity relationships: 

      1i i iA Z A   (33) 

Where, 𝐴௜ = [𝐶௜
ଵ, 𝐶௜

ଶ, 𝐶௜
ଷ, 𝐶௜

ସ]்  and 𝐴௜ାଵ = [𝐶௜ାଵ
ଵ , 𝐶௜ାଵ

ଶ , 𝐶௜ାଵ
ଷ , 𝐶௜ାଵ

ସ ]்  are undetermined 

coefficients of 𝑖௧௛ beam segment and 𝑖 + 1௧௛ beam segment respectively, 𝑍(௜) is noted 

as transfer matrix between 𝑖௧௛ beam segment and 𝑖 + 1௧௛ beam segment as below: 
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Thus, the relationship between undetermined coefficients of first beam segment and 

final beam segment can be expressed as below: 

    1NA ZA  (35) 

Where, 𝑍 = 𝑍(ேିଵ)𝑍(ேିଶ)⋯𝑍(ଶ)𝑍(ଵ) expresses the transfer matrix between first beam 

segment and final beam segment. 

3.3.3. Boundary conditions and non-linear eigen equation for lateral beam equation 

In this section, it will derive the eigen equation for calculating the natural frequencies 

of transverse vibration of the variable cross-section beam with fixed-free boundary 

condition. For cantilevered beams, boundary conditions with respect to displacements 

(including translational and rotational) and forces (including bending moment and shear 

force) are as follows: 

(1) Boundary condition at fixed end 

i. Displacement:  

  1 0 0t   (36) 
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ii. Rotation:  

  1 0 0t   (38) 
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 (39) 

(2) Boundary condition at free end 

i. Bending Moment:  

     0t NN
EI L   (40) 
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ii. Shear Force: 

     0t NN
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In terms of Equation (37), (39), (41) and (43), the following matrix equation can be 

written: 
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Where, the third row in left matrix is: 

        2 2 2 2sin cos sinh cosh [ ]t N t N N t N t N N t N t N N t N t N NN N N N
EI l EI l EI l EI l Z            (45) 

The fourth row in matrix is: 

        3 3 3 3cos sin cosh sinh [ ]t N t N N t N t N N t N t N N t N t N NN N N N
EI l EI l EI l EI l Z          (46) 

Where, the matrix 𝑍 is the transfer matrix as below: 

        4 4 1 2 2 1[ ] N NZ Z Z Z Z     (47) 

If combined above equations, a matrix equation can be rewritten as below: 

  1 0A   (48) 

Where 𝐴(ଵ) = [𝐴ଵ 𝐵ଵ 𝐶ଵ 𝐷ଵ]
். 

For the above equation to have a non-zero solution, the determinant of its coefficient 

matrix has to be zero, so a non-linear eigen equation of the beam is obtained: 
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31 32 33 34

41 42 43 44

det 0

    
      
    
     

 (49) 
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The above eigen equation is a nonlinear function of natural frequencies, which can be 

solved by the Bisection method or the Newton-Raphson iteration method to obtain 

natural frequencies of the variable cross-section beam under the corresponding 

boundary conditions; Substituting solved natural frequencies into Equation (15) and 

Equation (33), mode shape functions of the beam can be obtained with regards to each 

mode order. 

3.3.4. Relationship of continuity and transfer matrix for axial beam equation 

The analytical solution of mode shape for 𝑖௧௛ beam and the 𝑖 + 1௧௛ beam in axial are 

shown as below respectively: 

 
     
     

1 1

1 1 1 1 1

sin cos

sin cos
t i i t i i i t i i

t i i t i i i t i i

x A x x B x x

x A x x B x x

  
  

 

    

   
    

 (50) 

Where, the coefficient of natural frequency is expressed as 𝛽௜ = 𝜔௡ට
ఘ

ா
. 

From the continuity of displacement and axial force between the 𝑖௧௛  beam and the 

𝑖 + 1௧௛ beam at the connection point 𝑥௜, the following relationships are obtained: 

(1) Relationship of displacement:  

    1t i i t i ix x    (51) 

Hence, based on Equation (51), the following derivations can be derived: 

 
     1 1 1 1 1

1

sin cost i i i t i i i i t i i i
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   


 (52) 

 
     
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A l B l

  

 
    

 
 (53) 

Consequently, from relationship of displacement, the following relationship of 

coefficients can be found: 

    1 sin cosi i t i i i t i iB A l B l     (54) 

(2) Relationship of axial force: 

        11 t i i t i ii i
EA x EA x 

   (55) 



 

59 

 

Hence, based on Equation (55), the following derivations can be derived: 

      1 1 1 1 1 1 1cos sint i i t i t i i i t i t i ix A x x B x x                (56) 

      1 1cos sint i i t i t i i i t i t i ix A x x B x x           (57) 
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 

      


(58) 
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   
 (59) 

Consequently, from relationship of axial force, the following relationship of 

coefficients can be found: 

          1 11
cos sini t i i t i t i i i t i t i ii i

EA A EA A l B l     
     (60) 

Then here, it can build a relationship between 𝑖௧௛  beam segment and 𝑖 + 1௧௛  beam 

segment with a transfer matrix based on above continuity relationships, which is similar 

to Equation (33): 

      1i i iA Z A   (61) 

Where, 𝐴(௜) = [𝐴௜ 𝐵௜]
்  and 𝐴(௜ାଵ) = [𝐴௜ାଵ 𝐵௜ାଵ]

்  are undetermined coefficients 

of 𝑖௧௛ beam segment and 𝑖 + 1௧௛ beam segment respectively, 𝑍(௜) is noted as transfer 

matrix between 𝑖௧௛ beam segment and 𝑖 + 1௧௛ beam segment as below: 

   2 1

1 2

i i i i
i

i i

p n p n
Z

n n

     
 (62) 

Where, 

 
  11

t ii
i

t ii

EA
p

EA


 

  

 1 sini i in l  

 2 cosi i in l  
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3.3.5. Boundary conditions and non-linear eigen equation for axial beam equation 

In this section, it will derive the eigen equation for calculating the natural frequencies 

of axial vibration of the variable cross-section beam with fixed-free boundary condition. 

For cantilevered beams, boundary conditions with respect to displacements and axial 

forces are shown as follows: 

(1) Boundary condition at fixed end 

Displacement:  

  1 0 0t   (63) 

 
     1 1 1 1 1

1

0 sin 0 0 cos 0 0

0
t t tA B

B

     

 
 (64) 

(2) Boundary condition at free end 

Axial force:  

     0t NN
EA L   (65) 

          cos sin 0t N N t N t N N N t N t N NN N
EA L EA A l B l           (66) 

In terms of Equation (64) and (66), the following matrix equations can be written: 

   1

1

0 1 0
A

B

 
 

 
 (67) 

          cos sin 0t N t N N t N t N NN N
EA l EA l Z        (68) 

Rest of solving procedures are similar to the section 3.3.3. 

3.4. Hydrodynamic load calculation for draft-varying conditions 

In this section, it introduces various methods for calculating hydrodynamic loads on 

hull girders, including wave calculation method in time-domain, first-order wave 

excitation force calculation method, radiation hydrodynamic calculation method, and 

static water restoring force calculation method. Based on these theoretical foundations 

and using the existing commercial finite element software SESAM for pre-calculation, 

it would obtain hydrodynamic calculation results in frequency-domain for different 

loading conditions. These calculations consider not only the characteristics of mass 
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variation but also the characteristics of time-varying wet surfaces and trim changes. 

This approach is designed to fulfil the requirements of calculating time-varying 

hydrodynamic loads for the ships under study in this paper. 

3.4.1. Coordinate Definition 

It is necessary to define two Cartesian coordinate systems when calculating the 

hydrodynamic load of the floating structure on the sea as shown in Figure 25: the 

inertial (global) coordinate system: 𝑂 − 𝑥𝑦𝑧 ; and the ship body (local) coordinate 

system: 𝑂଴ = 𝑥଴𝑦଴𝑧଴. 

 

Figure 25. Coordinate systems defined in hydrodynamic calculation. 

The translational displacement is described by the space coordinates through the origin 

of the ship’s body coordinate system 𝑂଴ = 𝑥଴𝑦଴𝑧଴  in inertial coordinates 𝑂 − 𝑥𝑦𝑧 , 

which are the surge displacement along the x-axis of the inertial coordinate system, the 

sway displacement along the y-axis, and the heave displacement along the z-axis 

respectively. The three angular rotations of the ship are determined by the spatial 

relationship between the ship body coordinate system and the inertial coordinate system. 

The descriptions are the roll motion rotating around the 𝑥 axis, the pitch motion rotating 

around the 𝑦 axis and yaw motion rotating about the 𝑧 axis. 

3.4.2. Linear potential flow theory 

The motion of large floating structures can be obtained from the linear potential flow 

theory. It is considered that the floating structure is in a wave field and producing six 

degrees of freedom under the disturbance of the waves. Moreover, it is assuming that 
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the flow is ideal with irrotational, incompressible and inviscid characteristics. The 

velocity potential exists and meets the Laplace equation and boundary conditions as 

below: 

 2 0    (69) 

 
2

2
0, 0g z

t z

  
  

 
 (70) 

 0, z d
z


  


 (71) 

 nV
n





 (72) 

Where, the Equation (69) is for the boundary conditions of the flow field, the Equation 

(72) is for the boundary conditions on the body surface, Φ is the total velocity potential 

in the flow field, which can be split into the incident wave potential Φூ, the diffraction 

wave potential Φௌ and the scattering wave potential Φ். The following formula is the 

total velocity potential: 

 I S T      (73) 

Furthermore, different boundary conditions for Φூ, Φௌ and Φ் is in order to solve the 

velocity potential as shown below:  
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 (76) 

The target researching ships are not working in a complex ocean environment. Hence, 

the linear wave theory (Airy wave theory) could be applied in this project as 

hydrodynamic loads calculation (J. Chen et al., 2019). 

Wave height of regular wave:  

    , cosx t A kx t       (77) 

Where, 𝐴,  𝜔,  𝑘,  𝜀 are expressed wave amplitude, angular frequency, wave number 

and wave phase. 

The dispersion relation in deep water:  

  2 tanhgk kh    (78) 

Where, 𝑔 is the gravity acceleration and ℎ is the depth of water. 

In actual sea conditions, waves are random and irregular. Assuming a stationary 

stochastic process with ergodicity, when simulating irregular waves using the linear 

wave theory mentioned above, irregular waves can be considered as the linear 

superposition of numerous individual waves with different wave lengths, amplitudes, 

and phases, as illustrated in Figure 26. 

Therefore, wave height of irregular waves can be expressed as below:  

      
1 1

, cos cos
N

i i i i i i i i
i i

x t A k x t A k x t    


 
          (79) 

Where, 𝑁 is a sufficiently large positive integer used as an approximation for an infinite 

series. 𝐴௜  represents the wave amplitude of the 𝑖௧௛  wave component, 𝑘௜  is the wave 

number of the 𝑖௧௛  wave component, 𝜔௜  is the angular frequency of the 𝑖௧௛  wave 
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component, and 𝜀௜ is the phase angle of the 𝑖௧௛ wave component. The wave amplitude 

𝐴௜ can be obtained through the wave spectrum 𝑆(𝜔) and is expressed as: 

  21

2 j jA S     (80) 

Here, ∆𝜔 represents the frequency interval between adjacent evenly spaced sampled 

frequency points. The instantaneous wave height of the wave follows a Gaussian 

distribution with a mean of 0 and a variance of ∫ 𝑆(𝜔)𝑑𝜔
ஶ

଴
. 

The velocity and acceleration of the water mass point at each section of the underwater 

structure are also the linear superposition of the velocity and acceleration of the water 

mass point caused by the wave of each element component. 
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Where, 𝑢  and 𝑤  are the horizontal and vertical velocity of the water mass point 

respectively;  𝑎௨ and 𝑎௪ are the horizontal and vertical acceleration of the water mass 

point respectively; 𝑧 is the water depth of the calculation target, and ℎ is the still water 

surface to the depth of the sea. 

The spectrum represents the wave energy distribution of each wave frequency in 

stationary sea conditions. The most relevant spectra for ships are the two-parameter 

Pierson-Moskowitz (PM) and JONSWAP (Joint North Sea Wave Project) wave 

spectrum. In this section, JONSWAP wave spectrum 𝑆(𝜔) is applied. 
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Where, 𝜔  = wave frequency in rad/s, 𝜔௉ = spectral peak frequency = 2π/𝑇௣, in rad/s, 

𝐻ௌ  = significant wave height, in m, 𝛼 =
଴.଴଺ଶସ

[଴.଴ଶଷ଴ା .ଷ଺଺ఊି଴.ଵ଼ହ(ଵ.ଽାఊ)షభ]
 and 𝜎 =

൜
0.07, 𝜔 ≤ 1/𝑇௣
0.09, 𝜔 > 1/𝑇௣

. 

In above equations, 𝛾  is the spectral shape parameter, 𝐻ௌ  and 𝑇௣  represent the 

significant wave height and peak period of the spectrum, respectively. To avoid the 

additional periodic characteristics introduced by the periodicity of frequency 𝜔 values 

in the time history of wave elevation, a random treatment is applied to the frequency E 

values. This study adopts the correction method proposed by Faltinsen (1993), as shown 

in Figure 26, the spectrum is evenly divided into 𝑁 segments, and the frequency 𝜔௝ is 

randomly selected within the 𝑗௧௛ segment. 

 

Figure 26. Transformation from wave spectrum to wave time-series (Faltinsen, 1993). 

 

Figure 27. Sampling method in frequency-domain. 
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3.4.3. First order hydrodynamic loads calculation method 

In this section, the main domination of dynamic part of hydrodynamic loads as first 

order hydrodynamic loads has been introduced. 

The velocity potential of the flow field can be solved by the boundary element method, 

and then the pressure on the wet surface of the floating body can be calculated through 

the Bernoulli equation, after that, the corresponding hydrodynamic coefficient can be 

obtained. The hydrodynamic coefficient in this section can be calculated by the three-

dimensional frequency domain potential flow calculation software program WAMIT 

(Wave Analysis at Massachusetts Institute of Technology) (C.-H. Lee, 1995), including 

wave excitation force coefficient, wave radiation force coefficient, quadratic transfer 

function matrix coefficient and hydrodynamic restoring force coefficient, etc (Jonkman 

et al., 2014; C. H. Lee & Newman, 2006). These frequency-domain hydrodynamic 

coefficients will be read in by the program developed in this paper, and according to 

the actual sea conditions, the time-domain hydrodynamic loads of the hull girder can 

be obtained by the time-frequency conversion method.  

The wave excitation force of the floating body includes incident wave force and 

diffracted wave force. Among them, only the force of the incident wave flow field on 

the floating body is considered, which is called the incident wave force, also known as 

the Froude-Krylov force. The hydrodynamic force caused by the disturbance to the 

incident wave flow field when the floating body is fixed is called the diffracted wave 

force. Under the assumption of linear wave, this paper adopts the harmonic 

superposition method to solve the first-order wave excitation force. This method 

assumes that random waves can be formed by the linear superposition of many regular 

waves with different frequency components. Therefore, the wave excitation force can 

also be superimposed by the wave loads generated by these regular waves with different 

frequency components, as follows: 

  
1

j

N
i tw

j j
j

F H e  


        
   (86) 

Where, 𝜔௝  is wave frequency of 𝑗௧௛  regular wave, 𝐻(𝜔௝) is the frequency response 

function with respect to the wave frequency 𝜔௝, 𝜁ሚ௝  is the amplitude of the 𝑗௧௛ complex 

wave component, and the symbol ℜ denotes taking the real value of the expression. 



 

67 

 

3.4.4. Radiation force 

The offshore floating structure usually has a large range of motion. Therefore, it is 

necessary to consider the linear wave radiation force of the free surface memory effect 

according to the indirect time domain method. The calculation is as follows: 
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Here, 𝑗, 𝑘 represent the motion modes, including six motion modes: heave, sway, surge, 

roll, pitch and yaw motion mode. 𝜇௝௞(ஶ) denotes the added mass coefficient at infinite 

frequency, which is only related to the shape of the object. The second term on the right 

side of the equation ධ 𝐾௝௞(𝑡 − 𝜏)𝑥̇௞(𝜏) 𝑑𝜏
௧

ିஶ
 represents the potential flow damping 

term of the 𝑘௧௛ modal motion caused by the free surface memory effect for the 𝑗௧௛ 

motion mode, where 𝐾௝௞(𝑡) is the corresponding time delay function. According to the 

relationship between the impulse response function and the frequency response 

function of linear systems, there exists the following relationship between the damping 

coefficient 𝜆௝௞ and the added mass coefficient 𝜇௝௞: 
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3.4.5. Static restoring force 

In addition to considering the above-mentioned wave force, the offshore floating 

structure will also be affected by the hydrostatic restoring force due to the change of 

the wet surface caused by the movement of the floating body in the hydrostatic flow 

field, resulting in the change of the hydrostatic pressure. Generally speaking, the 

horizontal motion modes of the floating body, such as surge, sway and yaw, do not 

cause significant changes in the wet surface of the platform and the volume of the 

displaced water, so there is no hydrostatic restoring force and moment. For vertical 

motions, such as roll, pitch, and heave, changes in the wet surface of the marine 

structure and the volume of displaced water are usually caused, resulting in hydrostatic 
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restoring forces. According to the changes of the wet surface, the volume of the 

discharged water, the centre of buoyancy and the centre of gravity of the floating 

structure caused by the movement of each degree of freedom when the floating structure 

is in motion, the hydrostatic restoring force and the buoyancy of the offshore structure 

can be obtained. 

  00 0 0 0 0
TsF gV C X    (91) 

Where, first term of Equation (91) represents the buoyance force, second term 

expresses static restoring force. 
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Here, 𝑉ఇ is displaced water volume. 𝐶 is the static restoring force coefficient matrix, 

which depends on the changes in wet surface and metacentric height. In the case of 

symmetric ship design, it can be expressed in the form of Equation (92), where 𝐴௪ 

represents the waterplane area of the offshore floating structure, 𝜌 is the density of 

seawater (assumed to be 1025.0 kg/m3), 𝑔 is the acceleration due to gravity (taken as 

9.806 m/s2), 𝐼௫  and 𝐼௬  are the moments of inertia of the waterplane about the local 

coordinate 𝑥ଵ  and 𝑦ଵ , 𝑧஻  is the metacentric height, and 𝑋  is the column vector 

representing the six degrees of freedom motion of the vessel. 

According to the above hydrodynamic load components, the total hydrodynamic load 

of the offshore floating structure can be written as 

 w R s
HF F F F    (93) 

3.4.6. Pre-calculation in SESAM based on boundary element method 

The boundary element method discretizes only the boundary interface, reducing the 

dimensionality of the computation by one compared to fluid finite elements. This 

reduction decreases the amount of original information and degrees of freedom, leading 

to improved computational efficiency. The boundary element method employs 
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fundamental solutions for infinite domains and singularities, making it highly effective 

for solving problems involving infinite or semi-infinite domains. Unlike the finite 

element method, which discretizes elements throughout the entire fluid domain, the 

boundary element method only discretizes the boundary region. Therefore, its errors 

are limited to the boundary interface. By combining numerical and analytical 

approaches, the boundary element method is recognized for its reliability and accuracy, 

surpassing finite element methods in computing the added mass effects of external 

water. 

In the SESAM finite element software, the Laplace equation for fluid motion is solved 

using the source-sink method by defining fluid density, draft height, and wet surface 

elements. The vibration of the draft structure and the effect of the flow field can be 

distributed as pulsating sources on the fluid-structure coupling interface. Nodal forces 

can be obtained by solving the pressure and velocity vector equations of the flow field 

points. Added mass is obtained by inversely solving the mass matrix, along with other 

hydrodynamic parameters (C.-H. Lee & Newman, 2005) 

The motion of the structure and the interaction with incident waves, when solved using 

the source-sink method, can be viewed as pulsating sources distributed at the fluid-

structure interface. These pulsating sources can be discretized into a finite number of 

source points, as shown in Figure 28. 

 

Figure 28. Source point on wetted interface of ship hull structure. 

With the help of SESAM software, it is possible to calculate hydrodynamic parameters 

in the frequency domain. 
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3.5. Other excitation loads 

Hull vibrations primarily stem from propeller-induced forces, with historical concerns 

related to substantial vibrations originating from the vessel’s engines. Propellers and 

diesel engines are fundamentally regarded as the principal excitation sources in the ship 

structures. Diesel engines, integral to propulsion, generate dynamic forces and 

moments due to variations in torque and power output. Simultaneously, propellers, 

interacting with the surrounding fluid, produce hydrodynamic forces, leading to 

fluctuations in thrust and torque. The intricate interplay between these two systems 

significantly influences the dynamic response and overall structural behaviour of 

marine vessels. 

3.5.1 Excitation loads from propeller 

Vibration generated by ship propeller is a multifaceted subject of study, involving the 

geometric and structural attributes of the propeller, as well as the intricate interactions 

of numerous factors during its operation. This vibrational phenomenon can be primarily 

categorized into two main aspects: hydrodynamic-induced vibrations arising from the 

propeller’s interaction with water and structural vibrations emanating from the 

mechanical dynamics of the propeller itself. These complex vibrations have a 

significant impact on the performance and structural integrity of the vessel, making 

their thorough analysis and control imperative in the realm of maritime engineering. 

Consequently, model experiments and empirical formulas are often employed to 

address this issue (Jensen, 2001). In addition, the majority of articles focusing on 

analysis of propeller excitation force indicate that the pulsating excitation force 

generated by the propeller on the ship’s structure can be approximated as a 

trigonometric waveform function (Dyson, 2000; G. Zhang et al., 2014). 

3.5.2 Excitation loads from diesel engine 

The vibration of a diesel engine is a complex dynamic phenomenon caused by the 

motion and interactions of internal mechanical components. These sources of vibration 

can be categorized into two main types. Firstly, there are periodic mechanical vibrations 

resulting from the motion of pistons, connecting rods, and the rotation of the crankshaft. 

These include inertia vibrations and rod vibrations. The second category comprises 

non-periodic vibrations generated by the explosive forces and pressure fluctuations 

during the combustion process of the internal combustion engine. Zheng et al. (2001) 
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and Yuan et al. (2016) have presented some relevant findings from vibration research 

of the diesel engine. It is evident that the vibration loads of the diesel engine are 

primarily trigonometric waveforms in the time domain. 

In order to investigate the impact of the excitation forces generated by the diesel engine 

and the propeller on the hull girder, this paper employs trigonometric waveforms as the 

format for simulating the vibration loads of both the diesel engine and the propeller. 

These waveforms are applied as external loads in the dynamic model as below: 

    sinp p pF t Am t   (94) 

    sinD D DF t Am t   (95) 

Where, 𝐹௣(𝑡) is the excitation force generated by propellers, 𝐴𝑚௣ is the amplitude of 

force caused by propeller and 𝜔௣ is the vibrational frequency of propellers. Similarly, 

𝐹஽(𝑡) is the excitation force generated by diesel engines, 𝐴𝑚஽ is the amplitude of force 

caused by diesel engines and 𝜔஽ is the vibrational frequency of diesel engines. 

3.6. Numerical solver for dynamic analysis of proposed mathematical model by 

improved Kane’s dynamic equation 

Kane’s method was chosen for this study due to its exceptional capability to handle 

complex dynamic systems with time-varying parameters. The structural design of 

offshore specialized engineering vessels like TSHDs presents unique challenges, such 

as inherent discontinuities, low stiffness, and high flexibility. These characteristics lead 

to significant rigid-flexible coupling effects that traditional dynamic analysis methods 

struggle to accurately capture. Kane’s method offers a systematic approach to derive 

equations of motion for systems with complex interactions between rigid and flexible 

components. Its ability to incorporate time-dependent changes in mass and vibrational 

modes makes it particularly well-suited for analysing the dynamic behaviour of marine 

structures under varying operational conditions. 

The seminal work of Meirovitch (1970) marked the initial establishment of dynamic 

equations for rocket structures accounting for time-varying mass associated with the 

flow of internal objects. These equations encompass six nonlinear ordinary differential 

equations governing the motion of rigid body and three additional ordinary differential 

equations accounting for elastic deformation. The coefficients in these equations vary 
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with time. Moreover, the article delves into the analysis of dynamic characteristics for 

structures featuring time-varying mass, playing a pivotal guiding role in the early 

phases of this project. Furthermore, the paper of Banerjee (2000) introduced a model 

for a flexible rocket structure with time-varying mass, taking into account the gradual 

decrease in mass for specific components during the flight of the rocket. Kane’s 

dynamic equations (Kane, 1961; Kane et al., 1983) were employed in Banerjee’s study 

to formulate the dynamic equations for the flexible structure with time-varying mass. 

The article also proposed a method to continuously update modal information, either 

by solving characteristic equations continuously or by calculating modal shapes only at 

specific discrete time intervals. This proposal significantly contributed to the 

advancement of this research. 

In this section, it presents the development of a dynamic model that integrates rigid and 

flexible components for offshore floating structures with variable mass characteristics 

in the marine environment. The proposed dynamic model considers variations in mass 

and vibrational modes over time and is specifically designed for marine structures. It 

utilizes Kane’s dynamic method to derive dynamical equations for this model. 

Subsequently, these equations will be converted into matrix form to streamline 

subsequent numerical simulations. 

3.6.1 Basic dynamic equation of variable mass points system 

It is assumed that the variable mass system is composed of “n” variable mass points 

𝑃௜(𝑖 = 1,2,⋯ , 𝑛), and the configuration of the variable mass system is determined by 

𝑙 generalized coordinates 𝑞௝(𝑗 = 1,2,⋯ , 𝑙). Secondly, it is assumed that the mass of the 

variable mass point is a function 𝑚௜ = 𝑚௜൫𝑞௝; 𝑞̇௝; 𝑡൯  with respect to generalized 

coordinates, generalized speed and time. It is also assumed that the position vector of 

the variable mass point in the inertial reference system is a function 𝑟௜ = 𝑟௜൫𝑞௝; 𝑡൯ with 

respect to generalized coordinates and time. Therefore, the kinetic energy function of 

the variable mass system can be expressed as 𝑇 = 𝑇൫𝑞௝; 𝑞̇௝; 𝑡൯ . In addition, it is 

assumed that the active force and the constraining force acting on the variable mass 

point are 𝑓௜  and 𝑓௖௜  respectively. According to above assumptions and momentum 

theorem, the basic dynamic equation of variable mass point which is also named 

Meshchersky’s equation can be expressed as (Casetta & Pesce, 2014): 
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   0i i i ci Rim r f f f     (96) 

Where, 𝑓ோ௜ is the reactive force which is also named Meshchersky’s force caused by 

the change of mass of the point 𝑃௜ . Its expression is 

 Ri i oi i i i rif m v m r m v       (97) 

Here, 𝜈௢௜ is the velocity vector of the point 𝑃௜ released or absorbed by the mass relative 

to the inertial reference frame, and 𝜈௥௜ is the velocity vector of the mass released or 

absorbed by the mass point relative to the mass point 𝑃௜. 

3.6.2. Generalized forces 

It is assumed that there is a system comprised of mass point 𝑃௞(𝑘 = 1,2,⋯ ,𝑁), the 

mass of the point 𝑃௞ changes over time. Generalized velocities 𝜈 are used to describe 

the kinematic equation of this system (Banerjee, 2000; Kane & Levinson, 1985). 

It is supposed that there is a mass point 𝑃௞, the mass of the point changes over time. At 

𝑡 time step, the mass of the point 𝑃௞ is 𝑚௞, its velocity is 𝑣௞and it is subjected to a 

external force 𝐹௞; At next time step 𝑡 + 𝛥𝑡, the mass point 𝑃௞ is discharging a mass 

−𝑚̇௞𝛥𝑡 outward at a speed 𝜈௘
௞ relative to the mass point 𝑃௞. Thus, the acceleration of 

discharging mass is 𝜈௘
௞/𝛥𝑡 so that the mass point gains a velocity 𝜈௞ + 𝛥𝜈௞. 

According to the Newton’s second law, the force subjected to the discharging mass is: 

   /k k k k k
e e eF m t v t m v        (98) 

Hence, the reaction force of the mass point 𝑃௞ is −𝐹௘
௞ = 𝑚̇௞𝜈௘

௞. 

Again, according to the Newton’s second law, the dynamic equation of the mass point 

is written as: 

 
k

k k k k k k k k
e e

dv
m a m F F F m v

dt
       (99) 

In this mass points system 𝑃௞(𝑘 = 1,2,⋯ ,𝑁), the mass of each point varies with time, 

and the motion of the mass points system is described using 𝜈 generalized velocities. 

For this system consisting of 𝑁 mass points, Kane defines the generalized forces as 

(Kane, 1961; Kane et al., 1983): 

(1) Generalized active force 
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  
1

, 1, ,
N

k k
r r

k

F v F r v


  
   (100) 

Where, 𝜈⃗௥
௞ is the partial velocity related to the 𝑟௧௛ generalized coordinate for the mass 

point 𝑃௞. 

(2) Generalized inertia forces (due to the time rate of change of velocity) 

    *

1

, 1, ,
N

k k k
r r

k

F v m a r v


        (101) 

Where, 𝑚௞ expresses the mass of 𝑘௧௛ point, 𝑎⃗௞ is acceleration vector of 𝑘௧௛ point. 

(3) Generalized inertia force (due to the time rate of change of mass) 

    **

1

, 1, ,
N

k k k
r r e

k

F v m v r v


       (102) 

Where, 𝑚̇௞ is mass change rate of 𝑘௧௛ point, 𝜈⃗௘
௞ is speed of mass change of 𝑘௧௛ point. 

Based on three types of forces described above, the dynamic equation of the mass points 

system 𝑃௞ can be written as: 

 * ** 0r r rF F F    or  
1

0
N

k k k k k k
r e

k

v F m a m v


   
    (103) 

The above equation represents the Kane’s dynamical equation for a system of points 

with variable mass. 

The modal superposition method is employed to establish the dynamic response of the 

time-varying mass flexible structure. The vibration motion is described by the 

following equations of motion: 

  M C K F t       (104) 

In which, 𝜂   represents the vector of generalized coordinates, local coordinates, or 

modal coordinates, 𝑀 is the modal mass matrix, 𝐶 is the modal damping matrix, and 𝐾 

is the modal stiffness matrix. 𝐹(𝑡) stands for the modal external force vector. 

The modal mass matrix 𝑀 is defined as: 

 TM m    (105) 
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Here, 𝛷 is the modal shape matrix composed of modal shape vectors, 𝑚 is the mass 

matrix, 𝑀 is a diagonal matrix with diagonal elements being the generalized mass 𝑚ఓ 

for each mode order. 

The modal damping matrix 𝐶 is defined as: 

 TC c    (106) 

Where, 𝑐 is the damping matrix. 𝐶 is a diagonal matrix with diagonal elements equal to 

twice the product of damping ratio 𝜁௡, modal frequency 𝜔௡ and the generalized mass 

𝑚ఓ. 

The modal stiffness matrix 𝐾 is defined as: 

 TK k    (107) 

Where, 𝑘 is the stiffness matrix. 𝐾 is a diagonal matrix with diagonal elements equal to 

the square of the modal frequencies 𝜔௡. 

The definition of the modal force vector 𝐹(𝑡) is given by: 

    TF t f t   (108) 

Where, 𝑓(𝑡) is the external excitation force vector applied to each point. 

The subsequent derivation relies on the properties of vector products, mainly 

encompassing the following three equations: 

      a b c b c a c a b       
       

 (109) 

      a b c b a c b a c       
       

 (110) 

      a b c b a c c a b       
       

 (111) 

3.6.3. Dynamical equations  

The offshore floating structure, considering the time-varying mass system, can be 

effectively approximated as a system of mass points capable of deformation relative to 

its initial position. This system consists of mass points, each endowed with six degrees 

of freedom, comprising three translational motions (surge, sway, heave) and three 

rotational motions (roll, pitch, yaw) for each individual mass point and deflection 

degrees of freedom as illustrated below. 
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Figure 29. Schematic diagram of the motion vector relationship of the mass point. 

Where, 𝑝௞  is the undeformed position of 𝑘௧௛  mass point with respect to local 

coordinate, 𝑑௞ is the deflection of 𝑘௧௛ node with respect to local coordinate. 𝐼 is the 

original point of global coordinate stands for the hull girder. The inertial coordinate 

system is the reference frame in which the ship is considered with the global coordinates 

defined by the sea, while the local coordinate system 𝐵 is the motion reference frame 

of the ship as the global coordinate system. 

Under the assumption of small deformation, the deformation of the flexible body can 

be expressed using the modal superposition method. That is, the deformation of point 

𝑃 relative to the local coordinate system 𝐵, fixed on the flexible body as shown in 

Figure 29, can be expressed as the sum of the product of the 𝜇 modal shapes and their 

corresponding generalized modal coordinates 𝜂௜: 

 
1

k k
i i

i

d


 



 

 (112) 

In the inertial reference coordinate system 𝐼, the position vector of any point 𝑃 can be 

expressed as: 
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  k B k kr r p d  
  

 (113) 

Here, 𝑟⃗஻  is the position vector of the origin 𝐵  in the local coordinate system with 

respect to the global coordinate system. 

The expression for the velocity vector of any point 𝑃  with respect to the global 

coordinate system 𝐼 is given by the sum of the velocity of the point when the flexible 

body undergoes rigid body motion and the velocity when the flexible body undergoes 

only elastic deformation: 

   /
k B B k k

K Bv v p d v    
   

 (114) 

where, 𝜔ሬሬ⃗ ஻  is the angular velocity of local coordinate system with respect to global 

coordinate system, 𝜈௄/஻ is the relative velocity of the point 𝑝௞ with respect to the local 

coordinate system 𝐵, where the point coincides with the position of the point 𝑝௞. 

Due to the vectors 𝑝௞  and 𝑑௞  being defined in the local coordinate system 𝐵, their 

differentials in the global coordinate system 𝐼 inevitably include cross-product terms 

with the angular velocity 𝜔஻. According to the Equation (111), the last term on the right 

of Equation (114) can be written as: 

  /
1

k k
K B i i

i

v d


 


 
    (115) 

Substituting Equation (115) into Equation (114) yields the expression for the velocity 

of point 𝑃 relative to the global coordinate system 𝐼: 

    
1

k B B k k k
i i

i

v v p d


  


    
     (116) 

Similarly, the expression for the acceleration of point 𝑃 relative to the global coordinate 

system 𝐼 is given by 

     / /2k B B k k B B k k B
K B K Ba a p d p d a v             

         
 (117) 

Here, 𝑎⃗௞  is the acceleration of point 𝑃  in the global coordinate system, 𝑎⃗஻  is the 

acceleration of point 𝑃 in the local coordinate system, 𝑎௄/஻ is the acceleration of the 

local reference coordinate system relative to the global reference coordinate system, 
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𝜔஻ is the angular velocity of the local reference coordinate system relative to the global 

reference coordinate system,  

Substituting Equation (115) into Equation (117), the expression for the acceleration of 

point 𝑃 in the global coordinate system 𝐼 is obtained as follows: 

        
1 1

2k B B k k B B k k k k
i i i i

i i

a a p d p d
 

      
 

 
          

 
 

          (118) 

To develop the Kane’s equation, it is first necessary to obtain the partial derivative 

vector of the velocity vector with respect to the 𝑟௧௛  generalized velocity. The 

expression for the partial derivative vector of the velocity vector of point 𝑃 with respect 

to the 𝑟௧௛ generalized velocity is given by: 

  
1

k B B k k k i
r r r i

i r

v v p d
 

 


 
       


    


 (119) 

The above equation can be rewritten in the following form: 

  k B B k k k
r r r ri iv v p d      

     (120) 

Or 

  k B B k k k
r r r rv v p d     

     (121) 

Where, 𝛿௥௜ is the Kronecker delta, when 𝑟 = 𝑖, 𝛿௥௜ = 1, otherwise, 𝛿௥௜ = 0 

The translational, rotational and vibrational equation based on Kane’s method can be 

obtained by substituting Equation (116), (118) and (121) into Equation (100), (101), 

(102) and (103), which gives: 
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 (122) 

The Equation (122) can be simplified based on Equation (121) as below: 
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 (123) 

Where, the mass change velocity, 𝑣⃗௘
௞ of the 𝑘௧௛ mass point is shown below or user-

defined value: 

    
1

k B B k k k
e i i

i

v v p d


  


 
      

 


      (124) 

The following is dynamical equations for rigid-flexible body with variable mass system 

based on improved Kane’s dynamic equation: 

(1) Translational equation 



 

80 

 

The translational equation can be obtained by dot multiplying Equation (123) with the 

first term of Equation (121), which gives: 
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 (125) 

Where, 𝑑௞ =෍ 𝜙ሬ⃗ ௜
௞𝜂௜

ఓ

௜ୀଵ
 is the deflection of 𝑘௧௛  mass point with respect to local 

coordinate system, 𝜔ሬሬ⃗ ஻ is the angular velocity of body with respect to global coordinate 

system, 𝛼⃗஻is the angular acceleration of body with respect to global coordinate system. 

(2) Rotational equation 

Similarly, the rotational equation can be derived from taking the scalar product of 

Equation (123) with second term of Equation (121). It gives as below: 
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 (126) 

The expression for the angular momentum 𝐻ሬሬ⃗  of the mass points system is given by: 

     
1

ˆ
N

B k k k B k k

k

H I m p d p d 


       
    

 (127) 

Where, 𝐼መ is the body inertial tensor. Similary, the rate of change of the moment of 

inertia is given by: 

     
1

ˆ
N

B k k k B k k

k

H I m p d p d 


       
    

 (128) 

Hence, the rotational equation can be rewritten by: 
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 (129) 

(3) Vibrational equation 

Similarly, if only the third term on the right-hand side of Equation (121) is nonzero, 

Equation (123) can be simplified to the vibration equation: 
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 (130) 

If neglecting geometric stiffness terms and incorporating the flexible terms in Equation 

(104), (105), (106), (107) and (108), the above vibration equation can be rewritten as: 
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 (131) 

Where, 𝛺௜  is 𝑖௧௛ natural frequency; 𝜉  is the modal damping coefficient; 𝑓௘௫
௞  is the 

external force on 𝑘௧௛ mass point. 

3.6.4. Matrix form of dynamical equations 

The equations in vector form for translational, rotational, and vibrational motion of the 

variable mass rigid-flexible coupled body were derived in the aforementioned sections 

3.6.1 - 3.6.3. To implement this algorithm in a programme, it is necessary to transform 
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these vector equations into scalar equations which are the matrix form of the dynamic 

equations. 

The translational Equation (125) and rotational Equation (129) can be rewritten in 

matrix form as: 

 
1 1 1

0

0

B
T

B

a
M A X


   

     
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
  (132) 

Where 𝑀ଵ is the inertial matrix of rigid body, 𝐴ଵ
் is structural coupling vector of rigid 

and flexible motion, and 𝑋ଵ is force vector of rigid body in translational and rotational 

motion. 

Expanding Equation (125), the following translational equation can be obtained: 
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 (133) 

Similarly, expanding Equation (129), the following rotational equation can be obtained: 
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 (134) 

The inertia matrix is a six times six symmetric partitioned matrix. The upper left three 

times three matrix is associated with the translational components of the rigid body. 

The lower right three by three matrix is associated with the rotational components of 

the rigid body. The upper right and lower left matrix are associated with coupling 

between the translational and rotational components of the rigid body. 

The 𝑎⃗஻ term in Equation (125) is three by three diagonal matrix in the upper left of 𝑀ଵ, 

which is: 
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 
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  

 (135) 

Where 𝑈 is the three-by-three identify matrix and 𝑚஻ is the total mass of the body. 

In terms of Equation (125), some modal integral items, which are 𝑆 and 𝑏ሬ⃗  respectively, 

can be defined as below: 
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And 
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N
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The term 𝛼⃗஻ in Equation (125) can be expressed as below: 
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Similarly, the term 𝑎⃗஻ in Equation (129) can be written as below: 

  
1

N
k k k B B

k

p d m a Sa


  
    (139) 

Where it is noted that the term 𝑆ሚ on above is expressed as below in assumption of rigid 

body dynamic analysis: 
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The inertia tensor 𝐼መ is expressed as: 

  0
1

ˆ ˆ T
i i i

i

I I N N





    (141) 

Here, the term 𝐼መ଴ is inertial tensor of the rigid body: 
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 (142) 

The term of production of 𝑁௜ and 𝜂௜ is the inertia tensor of the flexible body which will 

be introduced in the following derivations. 

Therefore, the inertial matrix 𝑀ଵ can be written as: 
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The term 𝜂̈ in translational dynamical Equation (125) can be written as below based on 

the modal integral, 𝑏ሬ⃗ , mentioned in Equation (137) above: 
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If defined another modal integral term, 𝑔⃗, as: 
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The expression with respect to term 𝜂̈ in rotational Equation (129) can be written as 

below: 
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Consequently, the structural coupling vector for flexible and rigid body motion in 

Equation (132) can be written as: 

 1
T b

A
g

    
  



  (147) 

Comparing Equation (132) with Equation (133), the expression for the force 

component in the translational equation is obtained as: 
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Which can be rewritten as: 
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Where 𝜔෥஻ can be expressed as below which similar to 𝑆ሚ: 
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Comparing Equation (132) with Equation (134), the expression for the force 

component in the translational equation is obtained as: 
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If the higher-order terms in the above equation are neglected, the Equation (150) can 

be simplified to: 
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Where 𝑟̃௖  expresses the average position of the particles, 𝑡௘௫௧
஻  is the total resultant 

external torque on the body as below respectively. 
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The vibration Equation (131) can be rewritten in matrix form as: 
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Where 𝐴ଶ is the coupling vector of deflection motion and rigid motion of the body, 𝐸ଵ 

is the generalized mass matrix, 𝑍ଵ is the flexural motion forcing vector.  

Expanding the Equation (130), the following equation can be obtained: 
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The terms including 𝑎⃗஻ in Equation (156) can be simplified as below: 

  
1 1

1,2, ,
T

N N
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r r r
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 
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The terms including 𝛼⃗஻ in Equation (156) can be simplified as below: 
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In terms of Equation (155), (157) and (158), the term 𝐴ଶ can be expressed as below: 

  2 1
T TA b g A 
 

 (159) 

In Equation (156), the terms including 𝜂̈ can be simplified as below: 
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Hence, the generalized mass matrix 𝐸ଵ can be expressed as below: 

 1
1

T
N

k k k
i j

k

E m 



 

  (161) 

The remaining terms in Equation (156) are the flexural motion forcing vector 𝑍ଵ, which 

can be expanded as below: 
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 (162) 

The terms including 𝜙ሬ⃗ ௜
௞𝜂̇௜  in the Equation (162) can be simplified to the following 

expression: 
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If let 
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Then the Equation (163) can be simplified to: 
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The terms including 𝜙ሬ⃗ ௜
௞𝜂௜  in the Equation (162) can be simplified to the following 

expression: 
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If let 
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Then the Equation (166) can be simplified to: 

 
1 1

T T
N

k k B B k k B B
r i i r

k i

m p D


      
 

         
    

 
    (168) 

Substituting Equations (165) and (168) into Equation (162), the expression for the 

vibration force vector of the flexible structure is as follows: 

  2
1 1 2g T

gen gen extZ Y m k f m f           (169) 

Where 𝑚௚௘௡  is the generalized mass, 𝑘௚  is the geometrix stiffness, 𝛺  is the modal 

frequency, and the 𝜉  is the modal damping coefficient, the 𝑌ଵ௥  can be expressed as 

below: 
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Then, 
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 (171) 

Assembling the translational, rotational, and vibrational equations in matrix form 

together, the dynamic equations in matrix for the rigid-flexible structure system can be 

obtained as below: 
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 (172) 

High-order state variables can be obtained by left-multiplying the inverse of the system 

matrix with the right-hand vector of Equation (172). Given the initial conditions for 
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low-order state variables, the values of high-order state variables at each time step can 

be obtained through numerical integration. 

3.7. Determinations in improved Kane’s dynamic equation for marine structures 

To formulate the mathematical model for ship motion accurately, it is imperative to 

determine the added mass components (D. T. Sen & Vinh, 2016). With the improved 

Kane’s dynamic equation, in this study, the influence due to added mass is also included. 

The objective of this part is to develop a comprehensive methodology for calculating 

all components of added mass and inertia moment in all six degrees of freedom, thereby 

facilitating the simulation of ship’s movement. 

The inertia matrix of the system, denoted as 𝑀ଵ  from above section which is with 

respect to time history due to variable mass, encompasses the inertia contributions from 

both the rigid body and added mass as shown below: 

 1
a

t t I tM M M   (173) 

Where, 𝑀ூ is inertia matrix of rigid body in global coordinate, 𝑀௔  stands for added 

inertia moment matrix of hull girder in the ocean. 
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 (174) 
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In the case of ships, where the hull exhibits symmetry along the port-starboard (x-y) 

plane, it can be deduced that vertical motions caused by heave and pitch do not generate 

transverse forces, hence: 
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 32 34 36 52 54 56 0a a a a a a
t t t t t tm m m m m m       (176) 

Thanks to the symmetry of the added mass matrix, it can be inferred that 𝑚௜௝
௔ = 𝑚௝௜

௔ , 

then the following components in added matrix can be generated as below: 

 23 43 63 25 45 65 0a a a a a a
t t t t t tm m m m m m       (177) 

Similarly, the same rationale applies to longitudinal motions induced by acceleration in 

a particular direction 𝑖 = (2,4,6): 

 12 14 16 0a a a
t t tm m m    (178) 

 21 41 61 0a a a
t t tm m m    (179) 

Consequently, for a ship experiencing motion in six degrees of freedom, the thirty-six 

components of added mass have been reduced to eighteen components as below: 
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The challenge lies in predicting and determining the remaining components in the 

added mass matrix could be solved by commercial software such as SESAM. 

Ultimately, under the assumption of symmetry in marine structures, the final time-

varying inertia tensor can be expressed as follows: 
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(181) 

3.8. The Runge-Kutta time integration method 

Once the aforementioned modules have independently computed the loads and the 

second derivative of the degrees of freedom (acceleration) of the variable-mass hull 

girder, it is necessary to link these modules through a time integral module to iteratively 
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update the displacement and first derivatives (velocity) of the degrees of freedom for 

the next time step.  

In this study, the Fourth Order Runge-Kutta (RK4) method is primarily employed for 

the time integral module. The RK4 method is selected for time integration due to its 

high accuracy, stability, and computational efficiency. It significantly improves 

accuracy over lower-order methods by evaluating derivatives at multiple points within 

each time step, which is crucial for capturing dynamic behaviour accurately. RK4 also 

maintains stability, essential for stiff equations and long-term integrations, while 

balancing complexity and performance better than higher-order methods. Its 

widespread use and proven reliability, combined with ease of implementation, make 

RK4 a trusted and practical choice for dynamic analysis of complex systems like marine 

vessels. 

Assuming that at time 𝑡଴, the displacements and velocities of the system degrees of 

freedom are known to be 𝑋௡ and 𝑋̇௡ respectively, the second derivative of the degrees 

of freedom with respect to time (acceleration) at next time step can be obtained through 

the dynamic control equation: 

  , ,n n n nX f X X t   (182) 

Where 𝑡௡ stands for the current time, 𝑋௡ and 𝑋̇௡ express the vector of system states 

(positions and velocities respectively) at time 𝑡௡ , 𝑓൫𝑋௡, 𝑋̇௡, 𝑡௡൯  is the acceleration 

(second derivative 𝑋̈௡) calculated at time based on the current states. 

To construct the first intermediate term based on the fourth-order Runge Kutta method, 

it calculates the values at the midpoint of the time step, which can denote 
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
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         1 1 1 1, ,n n n nX f X X t   (186) 

Where 𝛥𝑡 as the time step. 
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To construct the second intermediate term for the Runge-Kutta method: 
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         2 2 2 2, ,n n n nX f X X t   (190) 

To construct the third intermediate term for the Runge-Kutta method: 
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    3 2
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         3 3 3 3, ,n n n nX f X X t   (194) 

The final values of the system’s degrees of freedom (displacements and velocities) at 

time 𝑡௡ + 𝛥𝑡 can be obtained by using the Runge-Kutta method as below 
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Where 𝑡௡
(ଵ)
, 𝑡௡
(ଶ)
, 𝑡௡
(ଷ) represent the successive time intervals computed by the Runge-

Kutta method, 𝑋௡ାଵ indicates the degrees of freedom information for the next time step, 

𝑋௡
(ଵ)
, 𝑋௡

(ଶ)
, 𝑋௡

(ଷ) represent the intermediate values of the degrees of freedom during the 

Runge-Kutta method calculations. 

3.9. Multiple point constraints technology in FEA 

Multiple Point Constraints (MPC) technology in Finite Element Analysis (FEA) is a 

numerical technique used to model and analyse complex structural systems where 

traditional constraints are complex. In FEA, constraints are used to define the 
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relationships between degrees of freedom (DOFs) at different nodes in a finite element 

model. MPC technology extends this concept to allow the imposition of constraints on 

multiple points or nodes simultaneously, providing a more flexible and powerful 

approach to modelling certain physical behaviours. 

The theoretical underpinnings of ANSYS Workbench MPC technology are deeply 

rooted in structural mechanics and numerical analysis. The key formulations include: 

(1) Equation of motion 

The dynamic behaviour of structures is governed by the equations of motion. For a 

dynamic system with mass 𝑀, damping 𝐶, and stiffness 𝐾 matrices, the equation of 

motion is given by: 

 MU CU KU F     (197) 

Where 𝑈̈  is the acceleration vector, 𝑈̇  is the velocity vector, 𝑈  is the displacement 

vector, 𝐹 is the force vector. 

(2) Compatibility and equilibrium 

MPCs ensure compatibility and equilibrium among multiple points in a surface 

structure. The compatibility equation is given by: 

 0CU   (198) 

Where 𝐶 is the compatibility matrix, 𝑈 is the displacement vector. 

(3) Matrix algebra 

Matrix algebra is employed to efficiently handle interconnected DOFs. The overall 

system matrix equation is: 

 K U F  (199) 

Where 𝐾 is the global stiffness matrix, 𝑈 is the displacement vector and 𝐹 is the force 

vector. 

(4) Constraint enforcement 

MPC technology enforces constraints by introducing relationships between selected 

DOFs. The MPC equation is formulated as: 

 0MPC MPCC U   (200) 
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Where 𝐶ெ௉஼ is the MPC constraint matrix and 𝑈ெ௉஼ is the MPC displacement vector. 

(5) Lagrange multipliers: 

The introduction of Lagrange multipliers facilitates the incorporation of constraints into 

the equations of motion. The augmented equations become: 

 T
MPCMU CU KU F C       (201) 

Where the 𝜆 is the vector of Lagrange multipliers. 

(6) Virtual work principle: 

The virtual work principle is employed to derive the equations of motion with 

constraints. The virtual work done by applied forces and constraint forces must be zero: 

 
1 1

0
2 2

T TW U KU U F          
   

 (202) 

In traditional FEA, constraints are typically applied between pairs of nodes, specifying 

how the displacements or rotations at one node are related to those at another node. 

However, there are situations where a constraint needs to involve more than two nodes 

or where a complex relationship between multiple nodes must be defined. This is where 

MPC technology comes into play. 

MPCs enable the user to define more sophisticated constraints involving multiple nodes, 

allowing for the modelling of various physical scenarios. This can include simulating 

interactions between different parts of a structure, enforcing symmetry conditions, or 

representing complex connections such as hinges or sliding interfaces. 

In this study, the dynamic response information of each node on the hull girder, 

computed by using in-house program, is applied to the corresponding cross-sections of 

a three-dimensional ship finite element model using MPC technology to facilitate finite 

element analysis. 

3.10. Outline of proposed mathematical and numerical model 

Utilizing the foundational methodologies elucidated in the preceding sections, this 

section provides a detailed exposition of the outline and application of the proposed 

mathematical and numerical model. The complexity of the model is visually distilled 

in the illustrative depiction presented in the following Figure 30, offering a 
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comprehensive representation of the model’s conceptual framework and its practical 

implementation.  

 

Figure 30. Outline and application of proposed model. 

3.10.1. Outline of TVM_HullGirder program 

The outline of the TVM_HullGirder program based on proposed model in this paper is 

shown in Figure 31. The proposed model is a dynamic response calculation program in 

time-domain compiled by FORTRAN language for analysing variable cross-section 

hull girder with time-varying mass characteristics subjected to various complex loads. 
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Firstly, the program is initialized by pre-defined input parameters including structure 

data, environment data and simulation data by users as well as pre-calculated files from 

SESAM for hydrodynamic analysis. Based on input data, the vibration analysis of the 

hull girder and pre-computed hydrodynamic files are calculated and generated as an 

initial task. 

Secondly, all user-defined excitation loads are computed and updated at every time step 

to construct dynamic equation with results generated by initial module based on 

improved Kane’s dynamic equation. Then the acceleration vector at current time step 

would be solved. 

Finally, the displacement and velocity information of the next time step would be 

calculated by the time integral method such as fourth order Runge-Kutta method based 

on current results program stored to realize the closed-loop calculation of the user-

defined simulation time. 

 

Figure 31. The outline of TVM_HullGirder program. 

3.10.2. Application of TVM_HullGirder program in FEA 

The dynamic response calculation results of the TVM_HullGirder program, including 

the motion response results of the hull girder in the global coordinate system and the 
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structural dynamic response results in the local coordinate system, can be seamlessly 

transferred to the three-dimensional finite element model of the vessel by using MPC 

technology. Further analysis, such as stress, strain, strength, and fatigue analysis and 

assessments etc, can be conducted using commercial finite element software, as 

illustrated in the Figure 32. 

 

Figure 32. Dynamic response information transferred into FEM by MPC in selected 

cross-section. 

3.11. Summary of Chapter 3 

In Chapter 3, it concludes by presenting the foundational theories and methodologies 

underlying the innovative mathematical and numerical model developed for this 

research. This includes an in-depth exploration of the time-varying mass Euler-

Bernoulli beam theory, semi-analytical methods for analysing vibration characteristics 

of beams with variable cross-sections, and advanced techniques for calculating time-

varying hydrodynamic and excitation loads. Additionally, the chapter details the 

improved Kane's dynamic equations adapted for systems with time-varying mass, 

which serve as the primary approach for dynamic analysis. The chapter also introduces 

the self-developed program, TVM_HullGirder, which is designed for the 

comprehensive dynamic analysis of marine vessels with varying mass in the time 

domain. 
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Chapter 4. Case studies and discussions 

This chapter firstly verified the feasibility and efficiency of the semi-analytical 

approach for the vibration analysis of the variable cross-section beam compared with 

FEA results. Secondly, SESAM software is utilized to pre-calculate hydro parameters 

for ten load cases during unloading working conditions. Thirdly, a self-developed 

program TVM_HullGirder is employed for vibration analysis of the three-dimensional 

hull girder model, and its effects on time-varying hydrodynamic results are assessed 

and compared. Fourthly, the program is utilized to calculate the dynamic response of 

the three-dimensional hull girder model, producing results that encompass the rigid-

flexible coupling motion response of the hull girder and structural dynamic response 

outcomes for selected cross-section of the hull girder. Finally, results outputted by 

TVM_HullGirder program are transferred into the corresponding sections of the ship’s 

finite element model using MPC technology for structural response assessment by FEA. 

4.1. Verifications of the semi-analytical approach 

In this part, it employs the finite element software ABAQUS to conduct a comparative 

analysis and validation of the proposed semi-analytical approach in pre-calculation 

module of the TVM_HullGirder program for vibration analysis of a designed variable 

cross-section Euler-Bernoulli beam. 

The purpose of this calculation and comparison are to verify the semi-analytical 

approach proposed in this research. To verify the semi-analytical solutions of variable 

cross-section Euler-Bernoulli beam, the compared results between this approach and 

ABAQUS software have been shown in part 4.1.1 and 4.1.2 for axial and transverse 

vibration analysis of two-dimensional cantilever Euler-Bernoulli beam respectively (Y. 

Zhang & Hu, 2023). 

4.1.1. Vibration analysis results of the cantilever Euler-Bernoulli beam in axial 

direction 

A designed example and calculation results to prove the accuracy of proposed semi-

analytical approach in axial direction of a three-dimensional cantilever Euler-Bernoulli 

beam is shown as below. 
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Table 1 shows the designed model of a three-dimensional cantilever Euler-Bernoulli 

beam with detailed parameters and the Figure 33 shows the geometric model of this 

Euler-Bernoulli beam in ABAQUS. 

Table 1. The Euler-Bernoulli beam parameters for vibration analysis in axial direction. 

Section 

num. 

Cross-

section 

shape 

Area of 

cross-

section 

(m2) 

Length of 

beam 

element (m) 

Young’s 

Modulus (Pa) 

Density of 

material 

(kg/m3) 

Section 1 Circle 4.00E-04 0.25 2.10E+11 7800 

Section 2 Circle 3.00E-04 0.25 2.10E+11 7800 

Section 3 Circle 2.00E-04 0.25 2.10E+11 7800 

Section 4 Circle 1.00E-04 0.25 2.10E+11 7800 

 

 

Figure 33. The geometric model of the cantilever Euler-Bernoulli beam in ABAQUS. 

To verify the suitability of the semi-analytical method for vibration analysis of a 

variable cross-section beam, results were compared with FEA. The selection of a 

variable cross-section beam with circular sections and the provided parameters for this 

analysis is justified for several reasons: 

(1) Simplicity and clarity: Circular sections with varying areas simplify the geometry, 

making it easier to isolate and evaluate the numerical method’s performance against 

FEA without additional geometric complexities. 
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(2) Analytical benchmark: The simplicity of circular sections allows for more 

accessible analytical solutions, providing a reliable benchmark for verifying the 

accuracy of the numerical method. 

(3) Material consistency: Using the same material properties (Young’s Modulus and 

density) across sections ensures that any variations in the results are due to changes in 

the cross-sectional area rather than material inconsistencies. 

(4) Gradient complexity: The gradual change in the cross-sectional area provides a clear 

gradient, testing the numerical method’s ability to handle varying stiffness and mass 

distribution along the beam length. 

(5) Comprehensive testing: The given sections with specific lengths and material 

properties provide a comprehensive test scenario to evaluate the numerical method’s 

robustness in handling both stiffness and mass variations. 

Natural frequency results of first eight mode orders of the designed cantilever Euler-

Bernoulli beam in axial direction are shown in the Table 2 computed by two calculation 

methods, which are FEA from ABAQUS and the proposed semi-analytical approach 

respectively. It also shows the difference percentage between these two methods. 

Table 2. Natural frequency analysis results of the cantilever Euler-Bernoulli beam in 

axial direction outputted from ABAQUS software and the semi-analytical approach. 

Mode order 

num. 

Natural frequency from 

ABAQUS (rad/s) 

Natural frequency 

from semi-analytical 

approach (rad/s) 

Difference 

percentage (%) 

1st 11067.20 11068.54 0.01 

2nd 25385.95 25402.01 0.06 

3rd 39740.52 39801.68 0.15 

4th 53981.99 54135.15 0.28 

5th 75844.33 76272.24 0.56 

6th 89887.25 90605.71 0.80 

7th 103886.20 105005.40 1.08 
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8th 117702.90 119338.80 1.39 

 

Figure 34. Natural frequency results in axial calculated by ABAQUS and the semi-

analytical approach. 

  

Figure 35. Difference percentage in axial of ABAQUS and the semi-analytical 

approach. 
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From the detailed results of Table 2 and the comparison curves of Figure 34 and Figure 

35, it can be readily observed that the results of the two methods in calculating the 

natural frequencies of axial beam vibration are almost identical. In this computational 

case, the natural frequencies of eight mode orders were selected for comparisons. For 

large structures like ships, the chosen mode order is sufficient to assess the accuracy 

and applicability of the methods. 

Moreover, from the comparison results, it can be observed that the natural frequency 

calculation results of the two methods are nearly identical in low-order modes, with 

only minor deviations appearing in higher-order modes. The results of the semi-

analytical approach are consistently slightly higher than the FEA calculation results in 

all selected mode orders. The higher the mode order, the greater the discrepancy 

between the natural frequency calculation results of the two methods. However, overall, 

the percentage deviation is entirely acceptable. 

4.1.2. Vibration analysis results of the cantilever Euler-Bernoulli beam in transverse 

A designed example and calculation results to prove the accuracy of proposed semi-

analytical approach in transverse direction of a three-dimensional cantilever Euler-

Bernoulli beam is shown below. 

Table 3 shows the designed model of a three-dimensional cantilever Euler-Bernoulli 

beam with detailed parameters and the Figure 36 shows the geometric model of this 

Euler-Bernoulli beam in ABAQUS. 

Table 3. The Euler-Bernoulli beam parameters for vibration analysis in transverse 

direction. 

Section 

num. 

Cross-

section 

shape 

Radius 

of cross-

section 

(m) 

Length of 

beam 

element 

(m) 

Young’s 

Modulus (Pa) 

Density of 

material 

(kg/m3) 

Section 1 Circle 9.40E-03 0.25 2.10E+11 7900 

Section 2 Circle 8.15E-03 0.25 2.10E+11 7900 

Section 3 Circle 6.90E-03 0.25 2.10E+11 7900 

Section 4 Circle 5.65E-03 0.25 2.10E+11 7900 
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Figure 36. Geometric model of the cantilever Euler-Bernoulli beam in ABAQUS. 

The natural frequency results of first eight mode orders of the designed cantilever Euler-

Bernoulli beam in transverse direction are shown in the Table 4 computed by two 

calculation methods, which are FEA from ABAQUS and the proposed semi-analytical 

approach respectively. It also shows the difference percentage between these two 

methods. 

Table 4. Natural frequency analysis results of the cantilever Euler-Bernoulli beam in 

transverse direction outputted from ABAQUS software and the semi-analytical 

approach. 

Mode order 

num. 

Natural frequency from 

ABAQUS (rad/s)  

Natural frequency 

from semi-analytical 

approach (rad/s)  

Difference 

percentage (%) 

1st 114.44  114.46  0.02  

2nd 479.13  479.56  0.09  

3rd 1187.21  1189.71  0.21  

4th 2230.09  2238.45  0.37  

5th 3804.66  3829.34  0.65  

6th 5569.73  5620.61  0.91  

7th 7707.58  7801.40  1.22  

8th 10224.63  10388.75  1.61  
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Figure 37. Natural frequency results in transverse calculated by ABAQUS and the 

semi-analytical approach. 

  

Figure 38. Difference percentage in transverse of ABAQUS and the semi-analytical 

approach. 
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Similar to the results in section 4.1.1, from the comparison results, it can be observed 

that the natural frequency calculation results of the two methods are nearly identical in 

low-order modes, with only minor deviations appearing in higher-order modes. The 

results of the semi-analytical approach are consistently slightly higher than the FEA 

calculation results in all selected mode orders. The higher the mode order, the greater 

the discrepancy between the natural frequency calculation results of the two methods. 

However, overall, the percentage deviation is entirely acceptable. 

Furthermore, for transverse vibration analysis by using the semi-analytical approach in 

the TVM_HullGirder program, it is necessary to generate the mode shapes of the beam 

in selected mode orders to effectively prove that the mode shape results are also 

reasonable. The Error! Reference source not found. shows transverse mode shapes 

in eight selected mode orders computed by the semi-analytical method. 

 

Figure 39. Mode shape generated by the semi-analytical approach. 

In terms of the above results, the proposed semi-analytical approach has performed a 

good result as well as FEA. That proves this approach not only has the same accuracy 
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can obtain the mode analytical solution of the variable cross-section beam to support 

further dynamic analysis based on improved Kane’s dynamic equation with time-

varying mass system. That means this method could be applied to the further dynamic 

model constructed by Kane’s dynamic method. 

4.2. Model descriptions and case settings 

In pursuit of examining the structural dynamic responses of TSHDs with variable-mass 

features operating under rapid unloading conditions, this chapter presents a case of 

study with a numerical model, which is built for a TSHD vessel. The self-developed 

programme, TVM_HullGirder, was employed to generate essential data, encompassing 

the vessel’s motions during unloading scenarios and the dynamic responses of specific 

cross-sections on the hull structure. The main scantlings of the TSHD vessel are shown 

in Table 5. 

Table 5. The main scantlings of the dredging ship. 

The main scantlings 

Overall length (m) 138.0 

Length between perpendiculars 

(m) 
128.60 

Breadth (m) 27.15 

Depth (m) 10.40 

International freeboard draft 

(m) 
7.35 

Dredging freeboard draft (m) 8.90 

Displacement (t) 22000.0 

Light weight (t) 9060.0 

Dead weight (t) 13000.0 

The following figures show basic structural diagram of a TSHD from the side and top 

views, and the hull lines plan of the target research TSHD (Figure 40, Figure 41 and 

Figure 42). 
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Figure 40. Basic structural diagram of a TSHD from the side view. 

 

Figure 41. Basic structural diagram of a TSHD from the top view. 

 

Figure 42. Hull lines plan of a TSHD. 

In the initial stage of numerical simulation, this model is strategically segmented and 

approximated to determine structural profile parameters for equivalent beam elements 

along different segments of the hull girder. These parameters calculated by 

ANSYS/Spaceclaim are then utilized as input data for TVM_HullGirder programme to 

complete the model’s establishment. 

Within the pre-calculation module, a hydrodynamic model was generated by SESAM 

software. Additionally, different mass models are defined for various loading 

conditions and corresponding drafts. These results serve as input files for 

TVM_HullGirder program, thus finalizing the preparation of input data for the pre-

calculation module. Finally, using the TVM_HullGirder programme, the dynamic 
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response results of the hull girder are generated under specific unloading condition. In 

post-progress, dynamic response results outputted by the TVM_HullGirder programme 

are transferred to FEM in ANSYS by MPC technology for stress, strain and other 

further assessments. 

The program initialization process involves a series of file inputs, model establishment 

and parameters configuration. 

(1) Numerical modelling 

As in shown in the Figure 43, the middle section of the hull girder, consisting of beam 

elements numbered 07 to 14, is defined as the variable-mass beam elements, 

representing the hopper of the TSHD. This section experiences a significant mass 

variation during unloading conditions. Beam elements numbered 01 - 06 represent the 

stern part of the vessel, while beam elements numbered 15 - 20 represent the bow part 

of the ship’s structure, meanwhile, they are all considered as invariant-mass beam 

elements. 

 

Figure 43. Hull girder model with defined variable-mass beam elements in the middle. 

Using the rigid-flexible coupled hull girder dynamics model based on Kane’s equation, 

the aftmost point of the stern on the hull girder is chosen as the reference point to 

represent the rigid body motion of the vessel. This is because it is the easiest way to 

simulate the flexible deformation of the hull girder by employing mode shapes of a 

cantilever beam when the reference point represented for the rigid body is located on 

the end of the hull girder. By combining the rigid body motion and flexible deformation 
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modelling, this way provides a comprehensive understanding of the hull girder’s 

dynamics, ensuring precise and reliable analysis. 

Therefore, the left node in the beam element 01 serves as the reference point for the 

hull girder (highlighted in yellow in Figure 43) and is considered the reference point 

for rigid body motion in the dynamic model. The other nodes (highlighted in black in 

Figure 43) represent the dynamic response data of the hull girder’s cross-section at their 

respective positions. 

(2) Structural properties 

The structural section attributes are those matching the structural property of the real-

scale TSHD vessel (Table 6 and Table 7). 

Table 6. Structural property data as input. 

Structure data 

Young’s modulus (Pa) 2.10E+11 

Num. of beam elements 20 

Num. of modal orders selected 2 

Coefficient of density change (kg/m3) 8150 

Damping ratio of structure 0.05 

Length of each beam element (m) 6.75 

The following figure (Figure 44) show example of the cross-section parameter 

calculation in ANSYS/Spaceclaim for inputs of structural parameters in the programme. 

The key cross-section parameters are calculated for relevant ship frames in three-

dimensional geometric model of full-scale vessel by ANSYS/Spaceclaim module, 

which are cross-section areas, second moment of areas about Y and Z axis respectively. 
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Figure 44. Example of cross-sectional parameters calculation in ANSYS/Spaceclaim. 

Based on above calculations of key cross-sectional parameters by ANSYS/Spaceclaim, 

main structural parameters for each equivalent beam element as a representative in the 

variable cross-section hull girder can be obtained as shown in the following table (Table 

7) in this case study. 

Table 7. Main parameters in each beam element. 

Main parameters of each beam element 

Element 

ID 

Variable 

mass 

(1-No / 2-

Yes) 

Equivalent 

Cross-

section area 

(m2) 

Equivalent 

material 

density 

(kg/m3) 

Equivalent 

second 

moment 

of area 

about Y 

axis Iyy 

(m4) 

Equivalent 

second 

moment 

of area 

about Z 

axis Izz 

(m4) 

1 1 1.5968 337500.00 4.5564 78.4726 

2 1 2.1114 506250.00 17.1229 113.8862 

3 1 2.2839 573750.00 30.6364 138.2759 

4 1 2.2944 607500.00 33.9115 156.3682 

5 1 2.9126 742500.00 42.6458 186.9058 

6 1 2.0597 877500.00 35.2697 165.6185 

7 2 2.1303 2497500.00 21.5129 179.9092 
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8 2 2.1303 2666250.00 21.5129 179.9092 

9 2 2.1303 2801250.00 21.5129 179.9092 

10 2 2.1303 2666250.00 21.5129 179.9092 

11 2 2.1303 2565000.00 21.5129 179.9092 

12 2 2.1303 2598750.00 21.5129 179.9092 

13 2 2.1303 2598750.00 21.5129 179.9092 

14 2 2.1303 2531250.00 21.5129 179.9092 

15 1 2.6671 540000.00 36.1242 173.1724 

16 1 2.253 573750.00 34.5681 168.3403 

17 1 1.8127 405000.00 25.7684 87.8449 

18 1 1.5439 371250.00 21.1778 55.7969 

19 1 1.3147 303750.00 14.0321 25.5842 

20 1 0.7729 121500.00 3.624 6.1909 

(3) Hydrodynamic analysis parameters settings. 

The pre-calculation of hydrodynamic analysis for TSHD vessel is described here. The 

hydrodynamic model built in SESAM as panel model is shown in Figure 45.  

 

Figure 45. Panel model in SESAM. 

Ten different drafts are defined in Table 8. The pre-processing results of hydrodynamic 

analysis in SESAM software, which mainly establishing panel model of the dredging 

vessel with variable mass models for defining different loading condition to compare 

key hydrodynamic parameters. Based on the loading manual of target vessel, it is 
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assumed that ten loading conditions are adopted during the unloading operation from 

fully weighted load to lighted load and vary approximately linearly (Figure 46) with 

drafts and trim characteristics (Table 8). 

 

Figure 46. Weight distribution along with ship frame in ten load cases. 

Table 8. Hydro parameters in ten load cases. 

Load case LC01 LC02 LC03 LC04 LC05 LC06 LC07 LC08 LC09 LC10 

Z-waterline 

(m) 
1.56  1.22  0.87  0.52  0.18  -0.17  -0.52  -0.87  -1.21  -1.56  

Trim (deg) -0.19  -0.36  -0.54  -0.72  -0.90  -1.07  -1.25  -1.43  -1.60  -1.78  

Draft AP (m) 1.56  1.22  0.87  0.52  0.18  -0.17  -0.52  -0.87  -1.21  -1.56  

Draft FP (m) 1.24  0.58  -0.08  -0.73  -1.39  -2.04  -2.70  -3.36  -4.01  -4.67  

(4) Simulation parameters settings 

In this case study, the duration of the unloading operation is defined as 4 minutes (240 

seconds). This duration represents the typical operation time required for a TSHD to 
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transition from a fully loaded condition to a completely lighted condition. The total 

simulation time is set to 360 seconds. The time when mass variation begins is set at 60 

seconds, and the time when mass variation ends is defined at 300 seconds. The time 

step size for dynamic analysis calculations is set as 0.0125 seconds. Table 9 shows key 

simulation parameters settings as inputs in the TVM_HullGirder programme. 

Table 9. Simulation parameters as input. 

Simulation data 

Total simulation time (s) 360.0  

Time step (s) 0.0125  

Mass changed start time (s) 60.0  

Mass changed end time (s) 300.0  

(5) Sea environmental parameters settings 

Moreover, the hydrodynamic parameters settings are shown in Table 10. The irregular 

wave is chosen for wave type in this case study. The JONSWAP is selected for wave 

spectrum as most common case and gamma value is set with 3.3 being a commonly 

used value for moderately peaked spectra. Significant wave height is set as 0.8 meters. 

Wave direction is set with 0-degree as heading wave and 45-degree as oblique wave for 

different simulation cases to compare and discuss further respectively. Furthermore, in 

terms of recent study on TSHD, it presents that the structures of TSHDs play a crucial 

role in the dredging construction process, especially when encountering medium to 

long-period waves (Qi et al., 2023). Therefore, in this case study, the wave period is set 

as 20.0 meters. 

Table 10. Sea environmental data as input. 

Sea environmental data 

Wave type Irregular wave 

Wave spectrum JONSWAP 

Wave direction (°) 
0° heading wave / 

45° oblique wave 
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Significant wave height (m) 0.8 

Peak period (s) 20.0 

Gamma 3.3 

(6) Definition of simulation cases 

For the purpose of facilitating comparisons between the simulation results of different 

variable settings, Table 11 defines the simulation case descriptions used in this paper. 

These descriptions encompass the types of dynamic models, the types of hydrodynamic 

analysis, and whether added mass is considered in the dynamic model and vibration 

analysis module. 

Table 11. Definitions for users as input. 

Simulation cases (*/*/*/*) Definitions 

Dynamic analysis type 

(*/-/-/-) 

5 3D rigid body (No mass changes) 

6 3D rigid body (mass changes) 

7 
3D rigid-flexible body (No mass changes 

& No ‘X’ deflection) 

8 
3D rigid-flexible body (mass changes & 

No ‘X’ deflection) 

Hydrodynamic analysis 

type 

(-/*/-/-) 

0 
No time-varying wet surface - input pre-

hydro analysis results of LC01 as constants 

1 

Time-varying hydro cal. – input pre-hydro 

analysis results of LC01-10 as constants 

for relevant time period 

2 

Time-varying hydro cal. – input pre-hydro 

analysis results of LC01-10 by linear 

interpolate method for each time step 

Added mass function 

switch 
0 

Turn off - not take account to added mass 

in dynamic analysis 
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(-/-/*/-) 
1 

Turn on - take account to added mass in 

dynamic analysis 

Wet mode function switch 

(-/-/-/*) 

0 
Turn off – (Dry) not take account to added 

mass in vibration analysis 

1 
Turn on – (Wet) take account to added 

mass in vibration analysis 

4.3. Pre-calculation results by SESAM 

The status of deadweight of the TSHD with time-varying mass system can be expressed 

as below (Figure 47 and Figure 48): 

 

Figure 47. Variation in TSHD draft line. 

 

Figure 48. Variable draft line at the bow and stern of the TSHD. 

The pre-calculation of hydrodynamic analysis for TSHD vessel is described here. The 

hydrodynamic model built in SESAM is shown in Figure 49. Ten different drafts and 

trims are based on Table 8 in section 4.2. The pre-processing results of hydrodynamic 

analysis in SESAM software, which mainly establishing panel model of the dredging 
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vessel with variable mass models for defining different loading condition to compare 

key hydrodynamic parameters. 

 

Figure 49. Approximation of the objective ship hull by 2408 quadrilateral elements. 

In terms of data of real ship from loading manual, the following figure shows panel 

model with related mass model in fully weighted and lighted load case respectively in 

SESAM/HydroD program (Figure 50 and Figure 51). 

 

Figure 50. The panel model in fully weighted load case 01. 

 

Figure 51. The panel model for fully lighted load case 10. 

The following parts show added mass, damping coefficients and RAOs of the ten 

different load cases calculated by SESAM/WADAM during the unloading operation 

conditions of the TSHD. 
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4.3.1. Added mass 

The following figures show added mass of ten different load cases calculated by 

SESAM/WADAM. 

 

Figure 52. Added mass in surge with 10 load cases. 

 

Figure 53. Added mass in sway with 10 load cases. 
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Figure 54. Added mass in heave with 10 load cases. 

 

Figure 55. Added mass in roll with 10 load cases. 
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Figure 56. Added mass in pitch with 10 load cases. 

 

Figure 57. Added mass in yaw with 10 load cases. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0

2.5x1010

3.0x1010

3.5x1010

4.0x1010

4.5x1010

5.0x1010

5.5x1010

6.0x1010

A
dd

ed
 m

as
s 

in
 p

itc
h 

(k
g

m
2 )

Angular frequency (rad/s)

 LC01
 LC02
 LC03
 LC04
 LC05
 LC06
 LC07
 LC08
 LC09
 LC10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
-5.0x109

0.0

5.0x109

1.0x1010

1.5x1010

2.0x1010

2.5x1010

3.0x1010

A
dd

ed
 m

as
s 

in
 y

aw
 (

kg
m

2 )

Angular frequency (rad/s)

 LC01
 LC02
 LC03
 LC04
 LC05
 LC06
 LC07
 LC08
 LC09
 LC10



 

120 

 

4.3.2. Damping coefficients 

The following figures show damping coefficients of ten different load cases calculated 

by SESAM/WADAM. 

 

Figure 58. Damping coefficients in surge with 10 load cases. 

 

Figure 59. Damping coefficients in sway with 10 load cases. 
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Figure 60. Damping coefficients in heave with 10 load cases. 

 

Figure 61. Damping coefficients in roll with 10 load cases. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

5.0x106

1.0x107

1.5x107

2.0x107

D
am

pi
ng

 c
oe

ff
ic

ie
nt

 in
 h

ea
ve

 (
kg

/s
)

Angular frequency (rad/s)

 LC01
 LC02
 LC03
 LC04
 LC05
 LC06
 LC07
 LC08
 LC09
 LC10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

2.0x107

4.0x107

6.0x107

8.0x107

1.0x108

1.2x108

1.4x108

D
am

pi
ng

 c
oe

ff
ic

ie
nt

 in
 r

ol
l (

kg
m

2 /s
)

Angular frequency (rad/s)

 LC01
 LC02
 LC03
 LC04
 LC05
 LC06
 LC07
 LC08
 LC09
 LC10



 

122 

 

 

Figure 62. Damping coefficients in pitch with 10 load cases. 

 

Figure 63. Damping coefficients in yaw with 10 load cases. 

4.3.3. RAOs 

The following figures show RAOs of ten different load cases calculated by 

SESAM/WADAM for 0-degree and 45-degree wave direction respectively. 
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(1) RAOs in 0-degree wave direction 

 

Figure 64. RAOs in surge with 10 load cases in 0-degree wave. 

 

Figure 65. RAOs in heave with 10 load cases in 0-degree wave. 

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0

1

2

3

4

5

6

R
A

O
 in

 s
ur

ge
 (

m
/m

)

Angular frequency (rad/s)

 LC01
 LC02
 LC03
 LC04
 LC05
 LC06
 LC07
 LC08
 LC09
 LC10

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

R
A

O
 in

 h
ea

ve
 (

m
/m

)

Angular frequency (rad/s)

 LC01
 LC02
 LC03
 LC04
 LC05
 LC06
 LC07
 LC08
 LC09
 LC10



 

124 

 

 

Figure 66. RAOs in pitch with 10 load cases in 0-degree wave. 

(2) RAOs in 45-degree wave direction 

 

Figure 67. RAOs in surge with 10 load cases in 45-degree wave. 
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Figure 68. RAOs in sway with 10 load cases in 45-degree wave. 

 

Figure 69. RAOs in heave with 10 load cases in 45-degree wave. 
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Figure 70. RAOs in roll with 10 load cases in 45-degree wave. 

 

Figure 71. RAOs in pitch with 10 load cases in 45-degree wave. 
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Figure 72. RAOs in yaw with 10 load cases in 45-degree wave. 

It is evident from above figures that a significant nonlinear behaviour is exhibited 

between LC03 and LC04, primarily within the frequency range of 0.5-1.5 rad/s. This 

frequency range experiences notable nonlinearity due to the initial exposure of the 

bulbous bow of the vessel’s hull to the water surface, which triggers this nonlinear 

hydrodynamic response (Figure 73). Conversely, in other load cases and their 

respective frequency domain ranges, a predominantly linear response is also observed. 

 

Figure 73. Dredger in load case 03 (left) and load case 04 (right). 
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pronounced nonlinearity in a specific frequency range, highlighting its critical 

importance for the hydrodynamic performance of TSHDs. It is primarily attributed to 

two factors: 

(i) Influence due to draft variation and bow exposure 

During the unloading operation, the TSHD’s draft undergoes changes during the 

transition from fully weight load to light load conditions. In this process, the increased 

exposure of the submerged bulbous hull affects the variation in hydrodynamic 

parameters. This nonlinearity may manifest different trends within various frequency 

ranges and can significantly impact the TSHD’s vibration response and stability. For 

instance, in RAO in heave (Figure 65 and Figure 69), within the frequency range of 

0.5-1.5, the reduction in hydrodynamic parameters may be more pronounced compared 

to those in other frequency ranges. 

The exposure of the bulbous bow of the TSHD to the water surface is another crucial 

factor which relates to the changing of draft. When the bow becomes exposed, it 

triggers a rapid change in hydrodynamic parameters, resulting in a noticeable nonlinear 

effect. This effect may exhibit different characteristics within specific frequency ranges, 

such as Figure 62 damping coefficient in pitch within the 0.5-1.5 frequency range. It 

may create peaks or troughs in the response amplitude function. Understanding this 

effect is vital for the safety and stability of TSHDs. 

(ii) Frequency dependency 

The nonlinear variation in hydrodynamic parameters can exhibit distinct trends within 

different frequency ranges. This implies that TSHDs may be subject to varying types 

of hydrodynamic effects across different frequency ranges. This frequency dependency 

is crucial for the design and operational strategies of TSHDs. For example, during the 

dredging process, different operational measures may be required in various frequency 

ranges to ensure the vessel’s stability and performance. 

In summary, the above results provide a deeper understanding of the hydrodynamic 

performance of TSHDs under unloading conditions, emphasizing the significance of 

nonlinear effects. These findings have important implications for the design, operation, 

and performance enhancement of TSHDs. Therefore, special attention must be paid to 

the impact of this nonlinearity in the design and operation of TSHDs to ensure stable 

hydrodynamic performance under different conditions. 



 

129 

 

4.4. Vibration natural frequency due to mass-variation 

Based on the hydrodynamic data computed in previous section 4.3, the programme 

initiates its calculations by utilizing this data as the input with time-varying added mass, 

in conjunction with user-defined parameters and other data for vibration characteristics 

analysis of the hull girder model. 

The pre-calculation module of the program is configured with various drafts and trim 

features as well as switches for different functionalities related to the proposed 

mathematical and numerical model. To emphasize the importance of parameters in 

vibration analysis, the format of results for different cases are defined in this section. 

In the figures from Figure 74 to Figure 81, ‘Dry’ calculation results indicate natural 

frequencies without consideration of the added mass, representing dry modal natural 

frequencies. ‘Wet’ calculation results consider the added mass in vibration analysis, 

categorized into ‘Wet – 8011’ for time-invariant added mass from load case 01, ‘Wet – 

8111’ for added mass from 10 load cases at each time interval, and ‘Wet – 8211’ for 

time-varying added mass through linear interpolation of the 10 load cases for natural 

frequency analysis.  

As shown in the figures from Figure 74 to Figure 77, they present the first-order natural 

frequency calculation results of the reference hull girder during an unloading scenario 

over a simulation period of 360 seconds. 
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Figure 74. The first-order natural frequency results with four different simulation 

cases involving three various added mass calculation methods (Wet) and the case 

without consideration of added mass (Dry) in Y direction. 

 

Figure 75. The first-order natural frequency results with four different simulation 

cases involving three various added mass calculation methods (Wet) and the case 

without consideration of added mass (Dry) in Z direction. 
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In the Figure 74 and Figure 75, the labels serve as indicators for the different scenarios 

that were examined during the vibration analysis of hull girder concerning the inclusion 

of the added mass effect for both of Y and Z direction respectively. The graph provides 

a clear and compelling depiction of how the added mass has a profound impact on the 

natural frequencies of the hull girder. In this case of study, when conducting the natural 

frequency calculations for the first-order vibration mode, the influence of added mass 

is notably pronounced, exceeding a range of 3 - 4 rad/s especially for Z direction. This 

substantial effect serves to underscore the critical importance of accounting for the 

added mass when delving into the dynamic response analysis of the hull girder. As the 

mass of the hull girder decreases, the differences in considering added mass in vibration 

analysis gradually become more pronounced. This significance is particularly 

highlighted in scenarios where variations in mass conditions come into play. The 

findings emphasize the need for a comprehensive approach that incorporates added 

mass considerations, as it significantly affects the structural behaviour and performance 

of the hull girder in practical applications. 

The Figure 76 and Figure 77 provide a zoomed view of the first-order natural frequency 

calculation results for the hull girder vibration for both of Y and Z direction respectively, 

considering different added mass calculation methods during the mass-variation 

process to compare importance of time-varying hydrodynamic analysis. 
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Figure 76. The first-order natural frequency results with three various added mass 

calculation methods (Wet) in Y direction. 

 

Figure 77. The first-order natural frequency results with three various added mass 

calculation methods (Wet) in Z direction. 
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It is evident from the figures above that different time-varying added mass calculation 

methods yield different results. Specifically, in the vibration analysis, when considering 

only structural mass changes without accounting for time-varying added mass, the 

differences in first-order natural frequencies compared to simulations that consider 

time-varying added mass become increasingly significant. In this case, the maximum 

difference can reach up to 0.2 rad/s (8011 vs. 8211&8111) in analysis results of Z 

direction. This implies that the method of calculating time-varying added mass is highly 

significant for the vibration analysis of hull girders with variable mass. In other words, 

while changes in structural mass have a dominant impact on structural inherent 

characteristics in the short term, the variations in added mass due to changing wet 

surfaces in water also influence the structural inherent characteristics to a certain extent 

and should not be neglected. On the other hand, the two methods for calculating time-

varying hydrodynamics show similar results in vibration analysis (8211&8111). This 

means that if time-varying added mass is considered in vibration analysis, the results 

will only slightly differ within certain time periods without introducing significant 

errors. Theoretically speaking, employing linear interpolation for time-varying added 

mass can yield more precise results, although this method requires a longer 

computational time compared to other approaches. 

Similarly, Figure 78 to Figure 81 display the natural frequency calculation results for 

the second-order mode in Y and Z direction respectively. 
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Figure 78. The second-order natural frequency results with four different simulation 

cases involving three various added mass calculation methods (Wet) and the case 

without consideration of added mass (Dry) in Y direction. 

 

Figure 79. The second-order natural frequency results with four different simulation 

cases involving three various added mass calculation methods (Wet) and the case 

without consideration of added mass (Dry) in Z direction. 
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Figure 80. The second-order natural frequency results with three various added mass 

calculation methods (Wet) in Y direction. 

 

Figure 81. The second-order natural frequency results with three various added mass 

calculation methods (Wet) in Z direction. 
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Figures from Figure 74 to Figure 81 illustrate the vibration characteristics analysis of 

the hull girder, particularly the changes in its natural frequency during the unloading 

process. The low order natural frequencies are a critical parameter in understanding the 

structural response and vibration behaviour of the hull girder under mass-variation 

conditions. The ability to predict these characteristics is essential for ensuring the 

structural integrity and safety of specialized vessels like TSHDs. 

Based on these results, it is evident that, in vibration analysis, the consideration of added 

mass has a substantial impact on the analysis outcome. Additionally, the time-varying 

hydrodynamic parameters also influence the accuracy of the vibration analysis results 

to a significant extent. These different approaches allow for a comprehensive 

exploration of the added mass effect under various conditions during the variable mass 

process. The results help in understanding how the vibration characteristics of the hull 

girder change with respect to the inclusion of added mass in different ways over time. 

4.5. TVM_HullGirder simulation results during unloading conditions 

The objective of developing a dynamic response calculation program in time-domain 

is to investigate the motion and structural dynamic responses of a hull girder with time-

varying mass systems subjected to various coupled complex loads. In this section, 

building upon the outcomes of the pre-calculation module described in section 4.3 and 

section 4.4, the TVM_HullGirder programme is employed to conduct dynamic analysis 

based on the improved Kane’s dynamic equation. Subsequently, the post-processing 

work was conducted to output the dynamic responses from the hull girder model. It 

conducts discussions on the structural analysis of the time-varying mass hull girder by 

comparing different parameter settings and variations in the proposed mathematical 

model. Figure 82 describes key outputs from positions on the hull girder model by the 

TVM_HullGirder program. 

 

Figure 82. Descriptions for outputted results from the hull girder model. 
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The subsequent parts are primarily divided into two sections. Section 4.5.1 presents the 

motion responses of the hull girder as a single rigid-flexible coupled body under 

complex operational and sea environmental loads, particularly during mass unloading 

working conditions. Section 4.5.2 focuses on the structural dynamic responses of the 

hull girder, with an emphasis on some specific cross-section on the hull girder model, 

also subjected to complex loads under unloading working conditions. 

4.5.1. Motion responses of the hull girder 

In this section, the motion response results for the reference point of the hull girder are 

given, corresponding to the yellow point on the left of beam element 01 in Figure 82. 

These results include the displacement of the reference point, representing changes in 

the draft of hull girder, as well as velocity and acceleration responses. Furthermore, it 

analyses and discuss the impact of these results on the structure by comparing them 

under various operating conditions and model parameter settings. 

(1) Unloading operation analysis with 0-degree wave sea condition 

Figure 83 illustrates the dynamic calculation results of the draft at the reference point 

of the hull girder under various mathematical model configurations. 

  

Figure 83. Oscillation results of hull girder in heave with various dynamic model and 

mass change settings. 

The curves in Figure 83 clearly demonstrate that starting from 60 seconds (mass change 

start settings), the changing mass condition significantly affects the vibration of the hull 

girder (representing the mass-changing conditions of the TSHD during unloading 
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300 seconds when mass changing ceases, it is evident from the graph that the oscillation 

responses in heave in unloading conditions (8211 and 6211) significantly exceeds that 

in invariant mass working conditions (7211 and 5011). In this case, the change in 

amplitude is nearly twice as much as that in the constant mass condition. However, 

whether in the mass-changing conditions (8211 and 6211) or in the invariant-mass 

conditions (7211 and 5011), the influence of considering flexible deformation terms in 

the dynamic model on the oscillatory response of the hull girder is almost negligible. 

Specifically, as time progresses, the mass variation gradually exerts an impact on the 

draft variation. In the 8211 and 6211 conditions, as the mass gradually decreases, the 

oscillation of the hull girder in heave increases significantly, especially after 300 

seconds when the mass stops losing. In the same sea conditions, the oscillation of the 

hull girder is noticeably large under the mass-variation condition due to the effective 

mass the hull bears decrease relative to its inertial and dynamic characteristics, affecting 

the vessel’s dynamic responses. Mass change significantly influences the hull’s free 

vibration responses and frequency characteristics, making it more susceptible to 

external excitation forces, typically resulting in a pronounced increase in oscillation in 

heave. This phenomenon is crucial for understanding the vessel’s oscillatory responses 

and oscillation amplitude variations under different conditions, particularly when mass 

variation is significant. 

In contrast, under invariant-mass working conditions (5011 and 7211), the oscillation 

of the hull girder in heave remains relatively stable. These results emphasize the 

significant impact of mass change on the oscillatory responses of the hull girder. 

Simultaneously, the effect of the flexible deformation terms on the oscillatory responses 

is minimal, whether under conditions of mass change or invariant mass. This finding 

holds significant implications for gaining a deeper understanding of the dynamic 

behaviour of the hull girder and for design considerations. 

The following figures respectively illustrate the acceleration responses of the reference 

point on the hull girder as a rigid-flexible coupled body and as a rigid body in heave 

(Figure 84 and Figure 85) and pitch (Figure 86 and Figure 87). 
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Figure 84. Acceleration of hull girder in heave as a rigid-flexible coupled body with 

variable mass (8211) and invariant-mass (7211) working conditions. 

  

Figure 85. Acceleration of hull girder in heave as a rigid body with variable mass 

(6211) and invariant-mass (5011) working conditions. 

  

Figure 86. Acceleration of hull girder in pitch as a rigid-flexible coupled body with 

variable mass (8211) and invariant-mass (7211) working conditions. 
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Figure 87. Acceleration of hull girder in pitch as a rigid body with variable mass 

(6211) and invariant-mass (5011) working conditions. 

Upon a more in-depth examination of these results, it becomes essential to conduct a 

comprehensive analysis of the hull girder’s structural dynamics and the impact of 

variable mass conditions on its performance. Firstly, the critical distinctions between 
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revolves around rigid body vibration modes, often limiting the accuracy of acceleration 

responses. This limitation becomes apparent as acceleration responses substantially 

diminish due to the inadequate consideration of flexible characteristics. 

Conversely, when employing the rigid-flexible coupled structure model, the internal 

flexible features are incorporated, including bending vibrations and deformations. This 

model more accurately captures the dynamic behaviour of the hull girder, leading to 

more pronounced acceleration responses in the analysis. This underscores the vital 

significance of considering flexible characteristics in structural dynamic analysis, 

particularly when addressing high-frequency responses or complex vibration modes. 

Furthermore, it is evident that the variation in mass significantly influences the 

vibration response of the hull girder. As mass decreases, effective mass diminishes as 

well, resulting in an increased vibration amplitude. This phenomenon arises due to the 

close relationship between effective mass and the hull’s inertia and dynamic 

characteristics. Consequently, mass variations exert a substantial impact on the hull 
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girder’s free vibration response and frequency characteristics. This understanding is 

crucial for gaining insight into the vessel’s vibration response under various operational 

conditions, especially in scenarios featuring substantial mass variations as explored in 

this study.  

(2) Unloading operation analysis with 45-degree wave sea condition 

To investigate the impact of different wave conditions on the motion response of the 

vessel during unloading operations, this part presents the displacement responses in 

heave and angular responses in pitch of the vessel under 0-degree heading waves and 

45-degree oblique waves sea conditions respectively. 

The Figure 88 and Figure 89 respectively illustrate the oscillation responses in heave 

and angular responses in pitch of the vessel under 0-degree and 45-degree wave 

conditions during the unloading operations. 

 

Figure 88. Oscillation results of the hull girder in heave in 0-degree and 45-degree 

wave direction during unloading operations. 
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Figure 89. Angular results of the hull girder in pitch in 0-degree and 45-degree wave 

direction during unloading operations. 

The motion responses of the hull girder are significantly influenced by the wave 

conditions, as evident from the above results. Specifically, for motion responses of the 

vessel in heave, the oblique wave condition has a more pronounced impact. In contrast, 

for the motion response of the vessel in pitch, the head wave condition exerts a greater 

influence. 

To further investigate the motion responses under varying wave conditions accurately, 

the following presents the motion response analysis results for the invariant-mass 

condition as output by the TVM_HullGirder programme. The preceding analysis 

focused on the motion responses of the hull girder in unloading working conditions 

under different wave scenarios. 

The Figure 90 and Figure 91 respectively illustrate the oscillation responses in heave 

and angular responses in pitch of the vessel under 0-degree and 45-degree wave 

conditions during the invariant-mass working conditions. 
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Figure 90. Oscillation results of the hull girder in heave in 0-degree and 45-degree 

wave direction during invariant-mass working conditions. 

 

Figure 91. Angular results of the hull girder in pitch in 0-degree and 45-degree wave 

direction during invariant-mass working conditions. 
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unloading working conditions or under constant mass conditions, different wave 

conditions exert a significant influence on various motion components of the vessel. 

The Figure 92 and Figure 93 respectively illustrate the acceleration responses in heave 

and in pitch of the vessel under 0-degree and 45-degree wave conditions during the 

unloading operations. 
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Figure 92. Acceleration results of the hull girder in heave under 0-degree and 45-

degree wave sea condition respectively. 

 

Figure 93. Angular acceleration results of the hull girder in pitch under 0-degree and 

45-degree wave sea condition respectively. 
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(1) Unloading operation analysis with 0-degree wave sea condition 

In this part, it mainly takes calculation results of several cross-section of beam elements 

on the hull girder model in Z axis with dynamic displacements and about Y axis with 

rotational dynamic responses. 

The following figures present dynamic displacement results of invariant-mass beam 

elements numbered 01 – 06 at the stern part (Figure 94) and 15 – 20 at the bow part 

(Figure 96)  of the hull girder model as well as variable mass beam elements numbered 

07 – 14 represented the middle part of the hull girder model (Figure 95). 

 

Figure 94. Displacement results of invariant-mass beam element 01 - 06 in Z direction 

under unloading working conditions. 
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Figure 95. Displacement results of time-varying mass beam element 07 - 14 in Z 

direction under unloading working conditions. 

 

Figure 96. Displacement results of invariant-mass beam element 15 - 20 in Z direction 

under unloading working conditions. 
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The following figures take displacement results of illustrate the displacement responses 

of beam elements 01, 06, 10, 16, and 20 with comparison results under unloading 

working conditions and invariant mass working conditions. These beam elements 

respectively represent key cross-sectional locations of interest: the stern, 1/4 length 

from the vessel, midship, 3/4 length from the vessel, and the bow. These positions are 

crucial for analysing the dynamic behaviour of the ship’s structure. 

 

Figure 97. Displacement results of beam element 01 in Z direction with variable mass 

(8211) and invariant mass (7211) working conditions respectively. 

 

Figure 98. Displacement results of beam element 06 in Z direction with variable mass 

(8211) and invariant mass (7211) working conditions respectively. 

0 60 120 180 240 300 360
-6.0x10-4

-4.0x10-4

-2.0x10-4

0.0

2.0x10-4

4.0x10-4

6.0x10-4

8.0x10-4

D
is

p
la

c
em

en
t 

re
su

lt
s 

in
 Z

 a
xi

s
 (

m
)

Time (s)

 Beam element 01 - 8211
 Beam element 01 - 7211

0 60 120 180 240 300 360

-6.0x10-5

-4.0x10-5

-2.0x10-5

0.0

2.0x10-5

4.0x10-5

6.0x10-5

8.0x10-5

D
is

p
la

ce
m

e
n

t 
re

s
u

lt
s

 in
 Z

 a
xi

s
 (

m
)

Time (s)

 Beam element 06 - 8211
 Beam element 06 - 7211



 

148 

 

 

Figure 99. Displacement results of beam element 10 in Z direction with variable mass 

(8211) and invariant mass (7211) working conditions respectively. 

 

Figure 100. Displacement results of beam element 16 in Z direction with variable 

mass (8211) and invariant mass (7211) working conditions respectively. 

0 60 120 180 240 300 360

-3.0x10-4

-2.0x10-4

-1.0x10-4

0.0

1.0x10-4

2.0x10-4

3.0x10-4

4.0x10-4

D
is

p
la

c
em

e
n

t 
re

su
lt

s 
in

 Z
 a

xi
s

 (
m

)

Time (s)

 Beam element 10 - 8211
 Beam element 10 - 7211

0 60 120 180 240 300 360

-1.5x10-4

-1.0x10-4

-5.0x10-5

0.0

5.0x10-5

1.0x10-4

1.5x10-4

2.0x10-4

D
is

p
la

ce
m

e
n

t 
re

s
u

lt
s

 in
 Z

 a
xi

s
 (

m
)

Time (s)

 Beam element 16 - 8211
 Beam element 16 - 7211



 

149 

 

 

Figure 101. Displacement results of beam element 20 in Z direction with variable 

mass (8211) and invariant mass (7211) working conditions respectively. 
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working conditions of variable mass and invariant mass. However, at the 1/4 length of 

the hull girder (beam element 06), midship (beam element 10), and 3/4 length of the 

hull girder (beam element 16), the dynamic responses exhibit significant differences. 

Notably, under variable mass conditions, the amplitude of dynamic response is 

considerably larger compared to the invariant-mass working condition. This highlights 

the substantial impact of mass variation on the ship’s dynamic behaviour at these 

critical sections. 

On the other hand, from a ship structural design perspective, the angular response of 

the vessel’s structure is of paramount importance. Design engineers typically pay close 

attention to the angular response of the ship’s cross-section and the subsequent 

implications for structural strength and fatigue analysis. Therefore, it is essential to 

provide the computed results of the cross-sectional angular response for both variable-

mass and constant-mass beam elements. The following figures present angular dynamic 

results of invariant-mass beam elements numbered 01 – 06 at the stern part (Figure 102) 

and 15 – 20 at the bow part (Figure 104)  of the hull girder model as well as variable 

mass beam elements numbered 07 – 14 represented the middle part of the hull girder 

model (Figure 103). 
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Figure 102. Angular results of invariant-mass beam element 01 - 06 about Y axis 

under unloading working conditions. 

 

Figure 103. Angular results of time-varying mass beam element 07 - 14 about Y axis 

under unloading working conditions. 
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Figure 104. Angular results of invariant-mass beam element 15 - 20 about Y axis 

under unloading working conditions. 

Similarly, the following figures take angular dynamic results of beam elements 01, 06, 

10, 16, and 20 with comparison results under unloading working conditions and 

invariant mass working conditions. 

 

Figure 105. Angular results of beam element 01 about Y axis with variable mass 

(8211) and invariant mass (7211) working conditions respectively. 
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Figure 106. Angular results of beam element 06 about Y axis with variable mass 

(8211) and invariant mass (7211) working conditions respectively. 

 

Figure 107. Angular results of beam element 10 about Y axis with variable mass 

(8211) and invariant mass (7211) working conditions respectively. 
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Figure 108. Angular results of beam element 16 about Y axis with variable mass 

(8211) and invariant mass (7211) working conditions respectively. 

 

Figure 109. Angular results of beam element 20 about Y axis with variable mass 

(8211) and invariant mass (7211) working conditions respectively. 

Overall, the results clearly indicate that the dynamic response in terms of angular results 

is greater under varying mass working conditions compared to invariant mass 

conditions. This underscores the pronounced impact that changes in mass have on the 

torsional dynamics of the vessel. 
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The comparison between variable-mass and constant-mass operational conditions, as 

depicted in the figures above, reveals that the additional loads induced by mass 

variation result in substantial extra torsional loads on the vessel’s cross-sections. This 

effect is particularly evident in the structural elements located at the stern, midship, and 

bow sections of the hull girder correspondence to beam elements 01, 10, and 20, which 

bear a greater share of these additional torsional loads. As a result, these areas 

experience a more significant impact from the dynamic response under variable mass 

operational conditions. 

The findings highlight the critical importance of accounting for mass changes in the 

design and analysis of such vessels. Ignoring these changes could lead to an 

underestimation of the torsional loads and, consequently, the structural demands on key 

sections of the hull. Therefore, it is essential to incorporate considerations of mass 

variation to ensure the integrity and performance of the vessel under operational 

conditions. 

(2) Unloading operation analysis with 45-degree wave sea condition 

To comprehensively analyse the dynamic response of the ship’s hull girder under 

different wave conditions, in this part, it examined the displacement and angular 

responses at various key sections of the hull.  

The following figures illustrate the dynamic responses of five critical beam elements 

located at the stern (beam element 01), one-quarter length from the stern (beam element 

06), midship (beam element 10), three-quarter length from the stern (beam element 16), 

and the bow (beam element 20). These sections were chosen to represent the overall 

behaviour of the hull girder. Each figure compares the displacement responses under 0-

degree (head-on) wave conditions and 45-degree (oblique) wave conditions, providing 

insights into the impact of wave direction on the structural dynamics of the vessel. 
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Figure 110. Displacement results of the beam element 01 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. 

 

Figure 111. Displacement results of the beam element 06 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. 
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Figure 112. Displacement results of the beam element 10 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. 

 

Figure 113. Displacement results of the beam element 16 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. 
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Figure 114. Displacement results of the beam element 20 in Z direction with 0-degree 

and 45-degree sea wave conditions respectively. 
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wave direction compared to the bow and stern (beam elements 01 and 20). The 

amplitude of the dynamic response is generally higher in the 45-degree wave condition 

compared to the 0-degree wave condition, suggesting that oblique waves impose greater 

dynamic loads on the hull girder, leading to increased structural response. The midship 

region (beam element 10) and sections close to it are more susceptible to dynamic loads 

induced by varying wave directions, indicating the need for special consideration in the 

design and analysis phase to ensure structural integrity under different sea conditions. 

Conversely, the stern and bow sections show consistent dynamic responses irrespective 

of the wave direction, indicating these areas are less affected by changes in wave 

approach angles, likely due to their inherent structural stiffness and design 

characteristics. Understanding the dynamic response under different wave conditions is 

crucial for optimizing the design and ensuring the safety and longevity of the ship's 

structure. These observations highlight the importance of considering wave direction 

and dynamic loading conditions in the structural analysis of marine vessels to ensure 

robust and resilient design. 

On the other hand, similarly, the following figures illustrate the angular responses for 

these sections, providing insights into how different wave directions impact the ship’s 

structural dynamics. 

 

Figure 115. Angular results of the beam element 01 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. 
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Figure 116. Angular results of the beam element 06 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. 

 

Figure 117. Angular results of the beam element 10 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. 
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Figure 118. Angular results of the beam element 16 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. 

 

Figure 119. Angular results of the beam element 20 in Z direction with 0-degree and 

45-degree sea wave conditions respectively. 

Based on the above figures, the angular response for beam element 01 (stern) shows 

similar patterns for both wave conditions, indicating minimal variation. For beam 

element 06 (quarter length from stern), there is a noticeable difference, with higher 

amplitude and frequency in the 45-degree wave condition. Beam element 10 (midship) 

also shows increased amplitude under the 45-degree wave condition, suggesting greater 

sensitivity to oblique wave impacts. Beam element 16 (three-quarter length from stern) 
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exhibits significant differences between the wave conditions, with higher amplitude 

oscillations in the 45-degree wave condition. Lastly, beam element 20 (bow) shows 

minimal differences between the two conditions, similar to the stern, with slight 

variations in amplitude. 

The angular response results highlight that the dynamic response of the ship’s hull 

girder is significantly influenced by the direction of the waves. The midship and 

sections near the midship (beam elements 06, 10, and 16) exhibit greater sensitivity to 

changes in wave direction compared to the bow and stern (beam elements 01 and 20). 

The amplitude of the dynamic response is generally higher in the 45-degree wave 

condition, indicating that oblique waves impose greater dynamic loads on the hull 

girder. This suggests that the midship region and its adjacent sections should be given 

special consideration in the design and analysis phase to ensure structural integrity 

under different sea conditions. The stern and bow sections show consistent dynamic 

responses irrespective of the wave direction, likely due to their inherent structural 

stiffness and design characteristics. Overall, these observations underscore the 

importance of considering wave direction and dynamic loading conditions in the 

structural analysis of marine vessels to ensure robust and resilient design. 

In this section, all the results presented are expressed in the local coordinate system of 

the hull girder. Whether they are angular or translational displacement responses, these 

results can be transferred to the corresponding sections of the ship’s finite element 

model using MPC technology in ANSYS software. This will enable the sectional 

motion in the finite element model to be based on the computed time-history response 

results, ultimately allowing for stress computations in the finite element model. This 

step is crucial for in-depth stress distribution analysis and a more comprehensive 

structural response assessment. 

4.6. Results by FE analysis 

This section gives FEM analysis results of target research vessel in ANSYS and its 

further structural analysis results throughout the MPC technology based on dynamic 

responses results calculated by the TVM_HullGirder programme from section 4.5. 
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4.6.1. FE Model settings in ANSYS 

A significant number of discontinuous ship structural components are primarily 

distributed in the midship section of the TSHD vessel. Therefore, in this section, a real-

size model is established in ANSYS for the midship section of the TSHD, which is also 

a variable mass structure, as shown in Figure 120 and Figure 121. 

 

Figure 120. Geometric model of middle sections in ANSYS from main view. 

 

Figure 121. Geometric model of middle sections in ANSYS from top view. 

The geometric model above is based on the actual ship dimensions and plate thickness, 

with appropriate structural simplifications and modifications to achieve more accurate 

computational results with maximum computational efficiency. 

Figure 122 illustrates the meshing of the finite element model using predominantly 

quadrilateral shell elements in ANSYS. 
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Figure 122. Finite element model of middle sections in ANSYS. 

Figure 123 displays the configuration of MPC surfaces in the finite element model. In 

this context, the definition of the MPC surfaces from A, B, C, D, E, F (shown in Figure 

123) corresponds to the right nodes of beam elements 7, 8, 9, 10, 11, 12, 13 in the hull 

girder model (Figure 82). 

 

Figure 123. MPC settings in six cross sections of middle parts. 

Figure 124 and Figure 125 illustrate examples of MPC technology settings in ANSYS 

at points A (beam element 07) and C (beam element 09). In this case study, the dynamic 

response results for translational and rotational degrees of freedom are applied to the 

corresponding FEM ship cross-sections using MPC technology. 
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Figure 124. MPC setting at A surface corresponds to beam element 07. 

 

Figure 125. MPC setting at C surface corresponds to beam element 09. 

4.6.2. FEA results in ANSYS by MPC 

Based on the calculation results outputted by the TVM_HullGirder program from 4.5 

section, this section selects the structural vibration dynamic response results expressed 

in local coordinate system with the 0-degree heading wave and 45-degree oblique wave 

sea states during the unloading working conditions. These results account for the 

coupled effects of rigid motion and flexible deformation of the TSHD. They are 

inputted into the FEM in ANSYS using MPC technology. The post-processing analysis 
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results for the following structure are all outputted by the ANSYS finite element 

software. 

The following figures illustrate the stress analysis results for the hull girder under 

various wave conditions and mass scenarios, specifically focusing on the maximum 

equivalent von-Mises stress (Figure 126), maximum principal stress (Figure 127), and 

maximum stress intensity (Figure 128). 

 

Figure 126. Maximum von-Mises stress during the simulation time with different case 

settings. 

 

Figure 127. Maximum principal stress during the simulation time with different case 

settings. 
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Figure 128. Maximum stress intensity during the simulation time with different case 

settings. 

The above figures illustrate the stress analysis results for the hull girder under various 

wave conditions and mass scenarios. Figure 126 displays the maximum equivalent von-

Mises stress over the simulation time, comparing stress levels between 0-degree wave 

(heading wave) and 45-degree wave (oblique wave) under both unloading (variable 

mass, labelled as 8211) and invariant mass (labelled as 7211) conditions. Figure 127 

presents the maximum principal stress during the simulation time for the same 

conditions, and Figure 128 shows the maximum stress intensity throughout the 

simulation period, comparing different wave directions and mass scenarios. 

The analysis of the stress response of the hull girder under different wave directions 

and mass conditions reveals significant insights into the vessel’s structural behaviour. 

The stress responses exhibit considerable variation between 0-degree and 45-degree 

wave conditions, with the 45-degree wave direction resulting in higher stress levels 

across all measures, indicating that oblique waves exert more substantial dynamic loads 

on the hull girder. In 8211 scenarios, representing unloading (variable mass) conditions, 

generally show higher stress values compared to the 7211 scenarios (invariant mass 

conditions), demonstrating that mass variation during unloading significantly 

influences stress distribution and magnitude, necessitating careful consideration during 

the design and operational phases. Stress peaks are more pronounced in the 45-degree 

wave conditions, suggesting greater stress concentrations and potential fatigue issues 

under oblique wave impacts. These findings underscore the importance of accounting 

for both wave direction and mass variability in the structural analysis of marine vessels, 

ensuring that the structural design can withstand these dynamic loads to maintain 
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structural integrity and prevent fatigue damage over time. In summary, the results 

highlight the critical role of dynamic loading conditions, particularly wave direction 

and mass variation, in the stress response of marine vessels, essential for optimizing 

design and ensuring long-term durability and safety. 

Similarly, the following figures illustrate the strain analysis results for the hull girder 

under various wave conditions and mass scenarios, specifically focusing on the 

maximum equivalent strain (Figure 129), maximum principal elastic strain (Figure 130), 

and maximum elastic strain intensity (Figure 131). 

 

Figure 129. Maximum equivalent strain during the simulation time with different case 

settings. 

 

Figure 130. Maximum principal elastic strain during the simulation time with 

different case settings. 
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Figure 131. Maximum elastic strain intensity during the simulation time with different 

case settings. 

Based on the above figures, the analysis of the strain responses of the hull girder under 

different wave directions and mass conditions reveals significant insights into the 

vessel’s structural behaviour. The strain responses exhibit considerable variation 

between 0-degree and 45-degree wave conditions, with the 45-degree wave direction 

resulting in higher strain levels across all measures, indicating that oblique waves exert 

more substantial dynamic loads on the hull girder. In the 8211 scenarios, representing 

unloading (variable mass) conditions, strain values are generally higher compared to 

the 7211 scenarios (invariant mass conditions), indicating that mass variation during 

unloading significantly influences strain distribution and magnitude, necessitating 

careful consideration during design and operational phases. The peaks in strain are more 

pronounced in the 45-degree wave conditions, suggesting greater strain concentrations 

and potential fatigue issues under oblique wave impacts. 

Additionally, the following Figure 132 illustrate maximum total deformation analysis 

results for the hull girder under various wave conditions and mass scenarios. 
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Figure 132. Maximum total deformation during the simulation time with different 

case settings. 

The deformation responses show significant variation between 0-degree (heading wave) 

and 45-degree (oblique wave) conditions. The 45-degree wave direction results in 

higher deformation levels, indicating that oblique waves exert greater dynamic loads 

on the hull girder. The variable mass scenarios (8211) exhibit generally higher 

deformation values compared to the invariant mass scenarios (7211). This suggests that 

mass variation during unloading significantly impacts the deformation distribution and 

magnitude. Deformation peaks are more pronounced under 45-degree wave conditions, 

highlighting greater deformation concentrations. This indicates that the hull girder faces 

more significant structural loads and potential fatigue issues under oblique wave 

impacts. The analysis underscores the importance of considering both wave direction 

and mass variability in the structural design and analysis of marine vessels. The findings 

highlight that oblique waves and variable mass conditions lead to higher deformation. 

In summary, the structural analysis of stress, strain, and total deformation conducted in 

ANSYS clearly indicates that both the oblique wave condition and variable mass 

condition significantly impact the ship’s structure. The analysis reveals that oblique 

waves exert greater dynamic loads, leading to higher stress, strain, and deformation 

levels. Similarly, the variable mass conditions during unloading also result in increased 

structural responses compared to constant mass conditions. Consequently, for the 

TSHD vessel structure, it is crucial to account for the combined effects of oblique waves 

and variable mass during the design and operational phases. Among the various 

conditions analysed, the head wave dumping condition exerts the least influence on the 
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vessel’s structural integrity, making it the most favourable scenario in terms of 

minimizing structural impact. 

The following figures provide a visual representation of the maximum equivalent von-

Mises stress distribution in the middle parts of real-scale ship’s FEM under different 

wave directions and mass conditions at 326s. These images help to analyse the 

structural integrity of the hull under various operational scenarios. 

 

Figure 133. Maximum equivalent von-Mises stress in 0-degree wave - 8211. 

 

Figure 134. Maximum equivalent von-Mises stress in 0-degree wave - 7211. 

 

Figure 135. Maximum equivalent von-Mises stress in 45-degree wave - 8211. 
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Figure 136. Maximum equivalent von-Mises stress in 45-degree wave - 7211. 

The analysis of the von-Mises stress distribution under different wave directions and 

mass conditions reveals significant insights into the structural behaviour of the vessel. 

When comparing the stress responses between the 0-degree and 45-degree wave 

conditions, it becomes evident that the oblique waves exert greater dynamic loads on 

the vessel. Specifically, the maximum stress under the 45-degree wave condition with 

invariant mass (7211) reaches 177.4 MPa (Figure 136), which is higher than the 155.1 

MPa (Figure 134) observed under the 0-degree wave condition. 

Further examining the impact of mass variation, the variable mass scenarios (8211) 

generally show higher stress values compared to the invariant mass scenarios. Under 

the 0-degree wave condition with variable mass, the maximum stress is 178.6 MPa 

(Figure 133), significantly higher than the invariant mass scenario. This effect is even 

more pronounced under the 45-degree wave condition, where the maximum stress 

increases to 204.5 MPa with variable mass (Figure 135). These findings suggest that 

mass variation during unloading significantly influences the stress distribution and 

magnitude, necessitating careful consideration during the design and operational phases. 

The stress concentrations are more pronounced under the 45-degree wave conditions 

and variable mass scenarios, with the highest stress levels observed in Figure 135. This 

indicates that the hull girder faces more significant structural loads and potential fatigue 

issues under oblique wave impacts and varying mass conditions. The higher stress 

peaks in these scenarios highlight the need for robust design strategies to ensure the 

vessel’s structural integrity and longevity. 

In summary, the structural analysis of von-Mises stress in ANSYS demonstrates that 

both oblique wave conditions and variable mass scenarios significantly impact the 

ship’s structure. The highest stress levels, reaching up to 204.5 MPa, are observed under 
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45-degree wave conditions with variable mass in this case study. These results 

underscore the necessity for meticulous design considerations to maintain the structural 

integrity and prevent fatigue damage over time. For TSHD vessels, accounting for 

dynamic loading conditions, such as wave direction and mass variation, is crucial in 

optimizing design and ensuring the long-term durability and safety of the ship’s 

structure. 

The design of the ship’s cross-section plays a significant role in determining its ability 

to withstand dynamic loads. The cross-sections analysed in the following figures 

display varying stress distributions by selecting some key points of beam element 07 at 

326s as examples under different wave and mass conditions. 

 

Figure 137. Selected von-Mises stress points on the cross-section of beam element 07 

in 0-degree wave -8211. 

  

Figure 138. Selected von-Mises stress points on the cross-section of beam element 07 

in 0-degree wave -7211. 
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Figure 139. Selected von-Mises stress points on the cross-section of beam element 07 

in 45-degree wave -8211. 

   

Figure 140. Selected von-Mises stress points on the cross-section of beam element 07 

in 45-degree wave -7211. 

The stress analysis values from the selected points on beam element 07 under various 

wave and mass conditions provide detailed insights into the structural performance and 

stress distribution in critical areas of the ship’s hull girder. Under the 0-degree wave 

and invariant mass scenario (7211), the stress distribution is relatively uniform, with 

notable stress concentrations around the structural cutouts. The stress values range from 

31.4 MPa to 142.4 MPa, indicating that while the structure handles the head-on wave 

direction relatively well, certain areas experience higher stress due to geometric 

discontinuities. 

In contrast, when the mass changes during unloading (8211) under the same wave 

conditions, the maximum stress increases significantly, ranging from 42.0 MPa to 162.2 

MPa. This highlights the impact of mass variation on stress distribution. The increase 

in stress values compared to the invariant mass scenario indicates that dynamic loading 
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conditions during unloading significantly affect the structural integrity. Design 

improvements should focus on accommodating these variable loads, possibly through 

material enhancements or additional support structures. 

Under oblique wave conditions (45-degree wave), the stress values show a higher range, 

from 37.8 MPa to 161.7 MPa, even with invariant mass (7211). This scenario 

demonstrates that oblique waves impose greater dynamic loads on the structure. The 

stress concentration near the cutouts and supports in the upper structure necessitates 

focused reinforcement to mitigate the effects of oblique wave impacts. When mass 

variation is introduced in the 45-degree wave scenario (8211), the stress levels are the 

highest observed, ranging from 42.0 MPa to 185.0 MPa. The combination of oblique 

wave direction and mass variation presents the most challenging scenario for structural 

integrity, indicating that these areas are highly susceptible to dynamic loads and 

potential fatigue issues. 

The analysis of selected points on beam element 07 under different conditions reveals 

critical areas of high stress concentration, particularly around structural cutouts and 

support structures. Both wave direction and mass variation significantly influence the 

stress distribution, with oblique waves and variable mass conditions leading to the 

highest stress levels. To ensure the structural integrity and longevity of the ship’s hull 

girder, it is essential to reinforce areas around cutouts and support structures, use higher 

strength materials or additional supports in high-stress regions, and consider the effects 

of dynamic loading conditions, particularly during unloading operations. By addressing 

these factors in the design phase, the ship can better withstand dynamic loads, maintain 

structural integrity, and reduce the risk of fatigue damage over time. 

In this section, the dynamic response results calculated by the TVM_HullGirder 

program in Section 4.5 are applied to the FEM of the study object using the MPC 

technology in the finite element software ANSYS. Utilizing finite element techniques 

enables a more detailed post-processing analysis of ship structures, including stress 

analysis, strain analysis, and deformation analysis. Moreover, users can customize the 

selection of specific nodes or structural regions to output the time history results of 

structural calculations. This is not limited to stress, strain, and deformation but can also 

include subsequent assessments such as fatigue evaluations and strength analysis results. 
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4.6.3. Verifications by qualitative analysis 

In this section, it performs a qualitative analysis to verify the validity of computational 

results of proposed model, specifically focusing on the engine room column distribution 

and the associated vibrations and stresses in the TSHD vessel. The analysis conducted 

by a dredging company in 2019 using the PRUFTECHNIK Vibxpert II vibration 

analyser provides critical data points for key equipment and structural regions, 

including the columns in the engine room. The following figure shows the columns 

distribution in the engine room by the measurement analysis report of a TSHD vessel 

provided by a dredging company. 

 

Figure 141. Column distribution diagram in engine room of the TSHD. 

The measurement task primarily focused on low-frequency vibration analysis to 

determine whether conditions such as imbalance and misalignment fell within the DNV 

standards. The primary standard utilized for report analysis was the DNV Vibration 

Class, Ch6 Pt 15 (DNV GL, 2005), which is used for ships and offshore drilling 

platforms, providing guidelines for the installation of marine gearboxes, diesel engines, 

motors, and bearing boxes etc. 

In the report, it was found that the bearing box of the high-pressure water pump 

exhibited rotational looseness, and resonance occurred in some of the engine room 

columns. The vibration measurements indicated that the vibrations in the engine room 

columns predominantly originated from the propeller rotation frequency and the 

operating frequency peaks of the main diesel engine. 

During the measurement period, it was observed that the resonance phenomenon of 

column 1 (Figure 142) had disappeared, with the total vibration value falling below the 

DNV alarm standard. However, columns 2 (Figure 143) and 7 (Figure 144) exhibited 

resonance at 35Hz (3.5 times the main diesel engine’s rotational frequency), with total 

vibration values exceeding the DNV warning standard. Other columns maintained total 

vibration values below the DNV standards, indicating minimal impact on surrounding 
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equipment. It was recommended that the surrounding equipment of columns 1 and 2 in 

the engine room be inspected before restarting after prolonged shutdowns to prevent 

secondary failures caused by vibrations. 

 

Figure 142. Velocity spectrum (left) and virtual value (right) of engine room column 

1. 

 

Figure 143. Velocity spectrum (left) and virtual value (right) of engine room column 

2. 

 

Figure 144. Velocity spectrum (left) and virtual value (right) of engine room column 

7. 

Based on the qualitative analysis of the engine room columns, it is evident that the 

vibrational responses and stress concentrations at the 1/4 positions of the ship’s hull, 

specifically around columns 1, 2, 9, and 12, align with the computational results 

presented in section 4.5.2 and 4.6 in this thesis. The resonance and vibration data 
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corroborate the modelled dynamic responses, particularly in regions prone to higher 

stress and vibrational impact due to the unique structural characteristics of the TSHD 

vessel. 

The qualitative data from the vibration measurements serve as a verification for the 

computational models used in this study. The alignment of observed resonance 

phenomena and stress concentrations with the simulated outcomes demonstrates the 

reliability and accuracy of the proposed models. This congruence between empirical 

data and simulation results strengthens the validity of proposed approach in analysing 

the dynamic structural responses of marine vessels with large openings and complex 

load distributions, such as TSHDs. 

4.7. Summary of Chapter 4 

In Chapter 4, it concludes with a comprehensive validation of the semi-analytical 

approach for analysing the vibration characteristics of variable cross-section beams by 

comparing it with FEA results, confirming its feasibility and efficiency. The chapter 

also details the use of SESAM software to pre-calculate hydrodynamic parameters for 

ten unloading load cases. Subsequently, the self-developed program TVM_HullGirder 

is employed to analyse the vibration response of a three-dimensional hull girder model, 

assessing the effects of time-varying hydrodynamic results. This includes the 

calculation of the rigid-flexible coupling motion response and the structural dynamic 

response of selected cross-sections of the hull girder. Finally, the dynamic response 

results generated by the TVM_HullGirder program are integrated into the ship’s finite 

element model using MPC technology in ANSYS for further structural strength 

assessments, and the FEA results for the full-scale three-dimensional vessel model are 

presented. Additionally, qualitative analysis based on the engine room column data 

further validates the model results, showing concentrated vibration responses and stress 

distributions at the 1/4 sections of the hull, aligning well with the computed outcomes. 
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Chapter 5. Conclusions and future works 

As some special vessels in the field of marine engineering, such as TSHD is designed 

with unique purposes and distinctive structural features to meet the requirements of 

marine engineering applications. These vessels, along with other types of offshore 

vessels exhibiting similar characteristics, such as variable mass properties and large 

structural discontinuities, present significant challenges in both design and assessment. 

The inherent complexities of their dynamic behaviours, influenced by time-varying 

mass and structural discontinuities, create gaps in the current understanding and 

capabilities of structural analysis and design methods.  

To address these challenges, this thesis has developed a set of innovative time-domain 

programs specifically tailored for the dynamic response calculation of such specialized 

vessels. This programme, when combined with existing commercial software, enables 

efficient and versatile analysis that fills critical gaps in the field. These gaps include the 

accurate prediction of dynamic responses under variable mass conditions, the impact of 

structural discontinuities on overall vessel integrity, and the need for robust tools that 

integrate seamlessly with advanced finite element analysis (FEA) for detailed stress, 

strain, and deformation analysis. The implementation of these programs not only 

enhances the precision of dynamic response predictions but also provides engineers 

with the tools necessary for thorough and effective design assessments, ensuring the 

safety, reliability, and performance of specialized marine vessels. 

5.1. Proposed math and numerical model 

In this thesis, a novel mathematical and numerical model for dynamic analysis of 

marine vessel during loading or unloading working conditions based on the following 

key theories and approaches has been proposed (TVM_HullGirder programme): 

 Modified Euler-Bernoulli beam with time-varying mass functions. 

 Improved Kane’s dynamic method with time-varying mass system applied in 

variable cross-section hull girder with support from the semi-analytical approach 

for the vibration characteristic analysis of variable cross-section Euler-Bernoulli 

beam. 
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 Time-varying wet surface and trim characteristics of the hull girder considered in 

time-varying hydrodynamic calculations. 

 Complex excitation loads coupled with dynamic model. 

The proposed math model has been developed and compiled as a time-history dynamic 

analysis programme by FORTRAN language, and it is suitable for the following 

purposes: 

 Vibrational characteristics analysis of marine vessels with time-varying mass 

systems, combined with pre-analysis results from SESAM as input files. 

 Motion response calculations for marine vessels with time-varying mass systems, 

treated as either rigid body or rigid-flexible coupled body. 

 Dynamic response calculations for individual cross-sections of marine vessels with 

time-varying mass systems, considered as rigid-flexible coupled body. 

Most types of dynamic responses that engineering applications concerned about can be 

outputted from TVM_HullGirder programme based on the proposed model in this 

thesis. These dynamic results could be transferred into individual cross-sections on the 

FEM of the target vessel by MPC technology in commercial FE software for the further 

stress, strain, and strength and fatigue assessments. 

5.2. Novelty and impact of the work 

From pioneering new methodologies that challenge conventional paradigms to 

revealing innovative insights that expand the boundaries of current knowledge, and the 

cases of studies based on results calculated by proposed model and its programme 

combined with application of current finite element software, the novelties of this 

research are highlighted as follows: 

 A novel mathematical and numerical model for dynamic analysis of marine vessels 

under time-varying mass conditions has been developed. 

 This model has been implemented into a time-history dynamic analysis program, 

TVM_HullGirder, written in FORTRAN. 
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 The TVM_HullGirder program is capable of calculating and outputting both 

motion responses of the marine vessel and local structural dynamic responses in 

the time domain. 

 The results produced by the program can be seamlessly transferred to a detailed 

FEM using MPC technology for further structural analysis and assessment. 

 By conducting post-processing structural FEA, engineers can quickly identify 

design flaws or other deficiencies, facilitating rapid evaluation and optimization of 

the structure during the design phase. 

The research conducted by this PhD study has made significant contributions to the 

field of marine engineering, specifically in the dynamic analysis of marine vessels with 

time-varying mass properties. The development and implementation of a novel 

mathematical and numerical model for TSHDs represent a substantial advancement in 

the understanding and assessment of these complex structures. Some impacts of this 

research are summarized as follows: 

(1) Methodological advancements 

One of the primary impacts of this research is the introduction of a robust time-domain 

program that effectively calculates the dynamic response of specialized marine vessels. 

This program, tailored for marine vessels, addresses the unique challenges posed by 

variable mass properties and large structural discontinuities. By integrating this 

program with existing commercial software, the research has bridged significant gaps 

in current analytical capabilities, providing a more comprehensive and accurate tool for 

structural analysis. 

(2) Contribution to structural design and assessment 

This PhD work has improved the design and assessment processes for marine vessels, 

ensuring better safety and performance. The ability to accurately predict the dynamic 

behaviour of TSHDs under various operational conditions allows for more informed 

design decisions and enhances the reliability of these vessels. This research also sets a 

precedent for the analysis of other offshore vessels with similar characteristics, 

broadening the applicability of the developed methodologies. 

(3) Academic and industry impact 
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Academically, this research has added valuable knowledge to the field of marine 

engineering. The findings and methodologies have the potential to be widely cited and 

used as a foundation for further studies. For the industry, the practical implications of 

this research are profound. Ship designers and engineers now have access to advanced 

tools that can significantly improve the structural integrity and operational efficiency 

of TSHDs and similar vessels. 

(4) Future research and development 

The impact of this research extends to future studies and developments. The 

methodologies and tools developed can be adapted and expanded to explore new areas 

within marine engineering. This includes the integration of additional variables 

affecting ship dynamics, such as hydrostatic loads and axial vibrations, in subsequent 

versions of the program. The groundwork laid by this study paves the way for 

continuous improvements and innovations in the dynamic analysis of marine structures. 

(5) Personal contributions and development 

I have demonstrated a high level of expertise and innovation throughout the research 

process. The successful development and implementation of the proposed model 

underscore my capability to tackle complex engineering problems and contribute 

valuable solutions. This experience has not only enriched my academic and 

professional skills but also positioned them as a significant contributor to the field of 

marine engineering. 

5.3. Future works 

The mathematical and numerical model developed in this thesis still faces many 

challenges. For example, the dynamic model does not consider the hydrostatic load of 

the ship, etc. This part of the module calculation needs to be added and verified in future 

work. 

From the perspective of each module in the model proposed in this thesis, the following 

shortcomings can be identified: 

(1) The excitation force calculation module of the hybrid-drive system of TSHDs 

should be continuously updated and developed to obtain more accurate excitation force 

calculation results in the programme. 
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The future challenge of the excitation force calculation module for the hybrid-drive 

system of TSHDs can be addressed by simplifying the hybrid-drive system through a 

mass model and coupling it with an appropriate stiffness and damping structure model. 

This approach can then be programmed and embedded into the current program to 

accurately calculate the vibration load output and its impact on the hull girder. 

(2) The hydrodynamic calculation module in the current version of the programme 

needs to be added calculation function of hydrostatic loads of the marine vessel. 

The challenge of enhancing the hydrodynamic calculation module in the current version 

of the program to include the calculation function of hydrostatic loads can be addressed 

by integrating a dedicated hydrostatic load calculation algorithm. This integration will 

involve developing and embedding the necessary computational routines within the 

existing program to accurately assess the hydrostatic loads on the marine vessel. 

(3) The current program turns off the variables affecting the ship’s axial vibration, and 

subsequent updated versions should consider this part for more precise calculation and 

analysis. 

The challenge of incorporating variables affecting the ship’s axial vibration in 

subsequent versions of the program can be addressed by integrating axial vibration 

analysis algorithms in Kane’s dynamic equation. This will involve updating the 

program to include the necessary computational models and routines that account for 

axial vibration factors, ensuring more precise calculation and analysis of the ship’s 

dynamic response. 

(4) The dynamics module in the current mathematical model does not consider the 

impact of vibration modes on the first-order derivative and second-order derivative 

variables with regard to the time. Subsequent updated versions should consider this to 

explore whether it has a greater impact on the dynamic response of the structure. 

The challenge of incorporating the impact of vibration modes on the first-order and 

second-order derivative variables with respect to time in the current mathematical 

model can be addressed by integrating the relevant derivative terms into the dynamics 

module based on Kane’s dynamic equation. This can be achieved by updating the 

program to include these derivative effects in the equations of motion, thereby 

providing a more comprehensive analysis of the dynamic response. This update will 
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allow for the exploration of whether these factors have a significant impact on the 

structural dynamic response. 
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 Appendices 

Appendix A. Bisection method codes for solving non-linear equation  

    SUBROUTINE BisectionMethod(T, FuncName, A, B, H, EPS, X, N, M) 

    INTEGER, INTENT(IN) :: FuncName 

    REAL(8), INTENT(IN) :: A, B, H, EPS 

    INTEGER, INTENT(IN) :: N 

    REAL(8), INTENT(IN) :: T 

    INTEGER, INTENT(OUT) :: M 

    REAL(8), DIMENSION(N), INTENT(OUT) :: X 

    REAL(8) :: Z, Y1, Z1, Y0, Z0, F 

    M = 0    

    Z = A 

    CALL BISECTION_FUNCTION_SELECT(T, FuncName, Z, F)                !%%% 

    Y = F                                                        !%%% 

10  IF ((Z.GT.B + H / 2.0).OR.(M.EQ.N)) RETURN 

    IF (ABS(Y).LT.EPS) THEN 

        M = M + 1 

        X(M) = Z 

        Z = Z + H / 2.0 

        CALL BISECTION_FUNCTION_SELECT(T, FuncName, Z, F)        !%%% 

        Y = F                                                !%%% 

        GOTO 10 

    END IF 

    Z1 = Z + H 

    CALL BISECTION_FUNCTION_SELECT(T, FuncName, Z1, F)            !%%% 

    Y1 = F                                                    !%%% 

    IF (ABS(Y1).LT.EPS) THEN 

        M = M + 1 

        X(M) = Z1 

        Z = Z1 + H / 2.0 

        CALL BISECTION_FUNCTION_SELECT(T, FuncName, Z, F)        !%%% 

        Y = F                                                !%%% 

        GOTO 10 

    END IF 

    IF (Y * Y1.GT.0.0) THEN 
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        Y = Y1 

        Z = Z1 

        GOTO 10 

    END IF 

20  IF (ABS(Z1 - Z).LT.EPS) THEN 

        M = M + 1 

        X(M) = (Z1 + Z) / 2.0 

        Z = Z1 + H / 2.0 

        CALL BISECTION_FUNCTION_SELECT(T, FuncName, Z, F)        !%%% 

        Y = F                                                !%%% 

        GOTO 10 

    END IF 

    Z0 = (Z1 + Z) / 2.0 

    CALL BISECTION_FUNCTION_SELECT(T, FuncName, Z0, F)            !%%% 

    Y0 = F                                                    !%%% 

    IF (ABS(Y0).LT.EPS) THEN 

        M = M + 1 

        X(M) = Z0 

        Z = Z0 + H / 2.0 

        CALL BISECTION_FUNCTION_SELECT(T, FuncName, Z, F)        !%%% 

        Y = F                                                !%%% 

        GOTO 10 

    END IF 

    IF (Y * Y0.LT.0.0) THEN 

        Z1 = Z0 

        Y1 = Y0 

    ELSE 

        Z = Z0 

        Y = Y0 

    END IF 

    GOTO 20 

    END SUBROUTINE BisectionMethod 
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Appendix B. Transfer matrix method codes for solving natural frequency 

    SUBROUTINE NaturalFrequencyY(T, X, NonLinearFuncY) 

    USE ComData 

    USE SimulData 

    USE StrctData 

    USE EnvirData 

    IMPLICIT NONE 

    REAL(8), INTENT(IN) :: X 

    REAL(8), INTENT(IN) :: T 

    REAL(8), INTENT(OUT) :: NonLinearFuncY 

    REAL(8), DIMENSION(HullGirder%SumElement) :: PreBetaY 

    REAL(8), DIMENSION(4, 4, HullGirder%SumElement - 1) :: Z 

    REAL(8), DIMENSION(HullGirder%SumElement - 1) :: P, M1, M2, M3, M4, N1, N2, N3, 
N4 

    REAL(8), DIMENSION(4, 4) :: TAO, TransferMatrix 

    REAL(8), DIMENSION(1, 4) :: temp_row3, temp_row4 

    INTEGER :: I 

    REAL(8) :: y11, y12, y13, y14, y21, y22, y23, y24, y31, y32, y33, y34, y41, y42, y43, y44, 
y51, y52, y53, y54, & 

        y61, y62, y63, y64, y1, y2, y3, y4, y5, y6 

    REAL(8) :: Rho 

    DO I = 1, HullGirder%SumElement 

        IF (WetModeSwitch == 1) THEN 

            IF (HullGirder%BElement(I)%BeamMass == 2) THEN 

                CALL TimeVaryingRho(T, HullGirder%BElement(I)%Equiv_Rho, Rho) 

                PreBetaY(I) = (((HullGirder%BElement(I)%Equiv_A * Rho                                                   
& 

                    + HullGirder%InfiniteAddedMass(2,2) / HullGirder%SumElement ) /                                     
& 

                    (HullGirder%YoungModulus * HullGirder%BElement(I)%Equiv_Iyy)) * (X ** 
2)) ** (1.0 / 4.0) 

            ELSE 

                PreBetaY(I) = (((HullGirder%BElement(I)%Equiv_A * 
HullGirder%BElement(I)%Equiv_Rho                      & 

                    + HullGirder%InfiniteAddedMass(2,2) / HullGirder%SumElement ) /                                     
& 

                    (HullGirder%YoungModulus * HullGirder%BElement(I)%Equiv_Iyy)) * (X ** 
2)) ** (1.0 / 4.0) 

            END IF 
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        ELSE 

            IF (HullGirder%BElement(I)%BeamMass == 2) THEN 

                CALL TimeVaryingRho(T, HullGirder%BElement(I)%Equiv_Rho, Rho) 

                PreBetaY(I) = (((HullGirder%BElement(I)%Equiv_A * Rho) / & 

                    (HullGirder%YoungModulus * HullGirder%BElement(I)%Equiv_Iyy)) * (X ** 
2)) ** (1.0 / 4.0) 

            ELSE 

                PreBetaY(I) = (((HullGirder%BElement(I)%Equiv_A * 
HullGirder%BElement(I)%Equiv_Rho) / & 

                    (HullGirder%YoungModulus * HullGirder%BElement(I)%Equiv_Iyy)) * (X ** 
2)) ** (1.0 / 4.0) 

            END IF 

        END IF 

    END DO 

    DO I = 1, HullGirder%SumElement - 1 

        P(I) = ((HullGirder%YoungModulus * HullGirder%BElement(i)%Equiv_Iyy) * 
PreBetaY(I) ** 2) / & 

            ((HullGirder%YoungModulus * HullGirder%BElement(I + 1)%Equiv_Iyy) * 
PreBetaY(I + 1) ** 2) 

        M1(I) = (P(I) + 1) / 2.0 

        M2(I) = (P(I) - 1) / 2.0 

        M3(I) = PreBetaY(I) * (P(I) + 1) / (2.0 * PreBetaY(I + 1)) 

        M4(I) = PreBetaY(I) * (P(I) - 1) / (2.0 * PreBetaY(I + 1)) 

        N1(I) = SIN(PreBetaY(I) * HullGirder%BElement(I)%Length) 

        N2(I) = COS(PreBetaY(I) * HullGirder%BElement(I)%Length) 

        N3(I) = SINH(PreBetaY(I) * HullGirder%BElement(I)%Length) 

        N4(I) = COSH(PreBetaY(I) * HullGirder%BElement(I)%Length) 

        Z(1, 1, I) = M3(I) * N2(I) 

        Z(1, 2, I) = - M3(I) * N1(I) 

        Z(1, 3, I) = - M4(I) * N4(I) 

        Z(1, 4, I) = - M4(I) * N3(I) 

 

        Z(2, 1, I) = M1(I) * N1(I) 

        Z(2, 2, I) = M1(I) * N2(I) 

        Z(2, 3, I) = - M2(I) * N3(I) 

        Z(2, 4, I) = - M2(I) * N4(I) 

 

        Z(3, 1, I) = - M4(I) * N2(I) 

        Z(3, 2, I) = M4(I) * N1(I) 
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        Z(3, 3, I) = M3(I) * N4(I) 

        Z(3, 4, I) = M3(I) * N3(I) 

 

        Z(4, 1, I) = - M2(I) * N1(I) 

        Z(4, 2, I) = - M2(I) * N2(I) 

        Z(4, 3, I) = M1(I) * N3(I) 

        Z(4, 4, I) = M1(I) * N4(I) 

    END DO 

    TransferMatrix(:, :) = Z(:, :, 1) 

    DO I = 2, HullGirder%SumElement - 1 

        TransferMatrix(:, :) = MATMUL(Z(:, :, I), TransferMatrix(:, :)) 

    END DO 

 

    temp_row3(1, 1) = - HullGirder%YoungModulus * 
HullGirder%BElement(HullGirder%SumElement)%Equiv_Iyy * & 

        PreBetaY(HullGirder%SumElement) ** 2    & 

        * SIN(PreBetaY(HullGirder%SumElement) * 
HullGirder%BElement(HullGirder%SumElement)%Length) 

    temp_row3(1, 2) = - HullGirder%YoungModulus * 
HullGirder%BElement(HullGirder%SumElement)%Equiv_Iyy * & 

        PreBetaY(HullGirder%SumElement) ** 2    & 

        * COS(PreBetaY(HullGirder%SumElement) * 
HullGirder%BElement(HullGirder%SumElement)%Length) 

    temp_row3(1, 3) = HullGirder%YoungModulus * 
HullGirder%BElement(HullGirder%SumElement)%Equiv_Iyy * & 

        PreBetaY(HullGirder%SumElement) ** 2    & 

        * SINH(PreBetaY(HullGirder%SumElement) * 
HullGirder%BElement(HullGirder%SumElement)%Length) 

    temp_row3(1, 4) = HullGirder%YoungModulus * 
HullGirder%BElement(HullGirder%SumElement)%Equiv_Iyy * & 

        PreBetaY(HullGirder%SumElement) ** 2    & 

        * COSH(PreBetaY(HullGirder%SumElement) * 
HullGirder%BElement(HullGirder%SumElement)%Length) 

 

    temp_row4(1, 1) = - HullGirder%YoungModulus * 
HullGirder%BElement(HullGirder%SumElement)%Equiv_Iyy * & 

        PreBetaY(HullGirder%SumElement) ** 3    & 

        * COS(PreBetaY(HullGirder%SumElement) * 
HullGirder%BElement(HullGirder%SumElement)%Length) 
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    temp_row4(1, 2) = HullGirder%YoungModulus * 
HullGirder%BElement(HullGirder%SumElement)%Equiv_Iyy * & 

        PreBetaY(HullGirder%SumElement) ** 3    & 

        * SIN(PreBetaY(HullGirder%SumElement) * 
HullGirder%BElement(HullGirder%SumElement)%Length) 

    temp_row4(1, 3) = HullGirder%YoungModulus * 
HullGirder%BElement(HullGirder%SumElement)%Equiv_Iyy * & 

        PreBetaY(HullGirder%SumElement) ** 3    & 

        * COSH(PreBetaY(HullGirder%SumElement) * 
HullGirder%BElement(HullGirder%SumElement)%Length) 

    temp_row4(1, 4) = HullGirder%YoungModulus * 
HullGirder%BElement(HullGirder%SumElement)%Equiv_Iyy * & 

        PreBetaY(HullGirder%SumElement) ** 3    & 

        * SINH(PreBetaY(HullGirder%SumElement) * 
HullGirder%BElement(HullGirder%SumElement)%Length) 

 

    temp_row3 = MATMUL(temp_row3, TransferMatrix) 

    temp_row4 = MATMUL(temp_row4, TransferMatrix) 

 

    TAO(1, 1) = 0.0 

    TAO(1, 2) = 1.0 

    TAO(1, 3) = 0.0 

    TAO(1, 4) = 1.0 

 

    TAO(2, 1) = PreBetaY(1) 

    TAO(2, 2) = 0.0 

    TAO(2, 3) = PreBetaY(1) 

    TAO(2, 4) = 0.0 

 

    TAO(3, 1) = temp_row3(1, 1) 

    TAO(3, 2) = temp_row3(1, 2) 

    TAO(3, 3) = temp_row3(1, 3) 

    TAO(3, 4) = temp_row3(1, 4) 

 

    TAO(4, 1) = temp_row4(1, 1) 

    TAO(4, 2) = temp_row4(1, 2) 

    TAO(4, 3) = temp_row4(1, 3) 

    TAO(4, 4) = temp_row4(1, 4) 
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    y11 = tao(1, 1) * tao(2, 2) * tao(3, 3) * tao(4, 4) 

    y12 = -tao(1, 1) * tao(2, 2) * tao(3, 4) * tao(4, 3) 

    y13 = -tao(1, 1) * tao(2, 3) * tao(3, 2) * tao(4, 4) 

    y14 = tao(1, 1) * tao(2, 3) * tao(3, 4) * tao(4, 2) 

    y1 = y11 + y12 + y13 + y14; 

 

    y21 = tao(1, 1) * tao(2, 4) * tao(3, 2) * tao(4, 3) 

    y22 = -tao(1, 1) * tao(2, 4) * tao(3, 3) * tao(4, 2) 

    y23 = -tao(1, 2) * tao(2, 1) * tao(3, 3) * tao(4, 4) 

    y24 = tao(1, 2) * tao(2, 1) * tao(3, 4) * tao(4, 3) 

    y2 = y21 + y22 + y23 + y24; 

 

    y31 = tao(1, 2) * tao(2, 3) * tao(3, 1) * tao(4, 4) 

    y32 = -tao(1, 2) * tao(2, 3) * tao(3, 4) * tao(4, 1) 

    y33 = -tao(1, 2) * tao(2, 4) * tao(3, 1) * tao(4, 3) 

    y34 = tao(1, 2) * tao(2, 4) * tao(3, 3) * tao(4, 1) 

    y3 = y31 + y32 + y33 + y34 

 

    y41 = tao(1, 3) * tao(2, 1) * tao(3, 2) * tao(4, 4) 

    y42 = -tao(1, 3) * tao(2, 1) * tao(3, 4) * tao(4, 2) 

    y43 = -tao(1, 3) * tao(2, 2) * tao(3, 1) * tao(4, 4) 

    y44 = tao(1, 3) * tao(2, 2) * tao(3, 4) * tao(4, 1) 

    y4 = y41 + y42 + y43 + y44 

 

    y51 = tao(1, 3) * tao(2, 4) * tao(3, 1) * tao(4, 2) 

    y52 = -tao(1, 3) * tao(2, 4) * tao(3, 2) * tao(4, 1) 

    y53 = -tao(1, 4) * tao(2, 1) * tao(3, 2) * tao(4, 3) 

    y54 = tao(1, 4) * tao(2, 1) * tao(3, 3) * tao(4, 2) 

    y5 = y51 + y52 + y53 + y54 

 

    y61 = tao(1, 4) * tao(2, 2) * tao(3, 1) * tao(4, 3) 

    y62 = -tao(1, 4) * tao(2, 2) * tao(3, 3) * tao(4, 1) 

    y63 = -tao(1, 4) * tao(2, 3) * tao(3, 1) * tao(4, 2) 

    y64 = tao(1, 4) * tao(2, 3) * tao(3, 2) * tao(4, 1) 

    y6 = y61 + y62 + y63 + y64 

 

    NonLinearFuncY = y1 + y2 + y3 + y4 + y5 + y6 
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    END SUBROUTINE NaturalFrequencyY 
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Appendix C. Orthonomal basis solution codes 

SUBROUTINE Orthonormal_Basis_Solver(Matrix, OthonormalBasis) 

    IMPLICIT NONE 

    REAL(8), DIMENSION(2, 2), INTENT(INOUT) :: Matrix     

    REAL(8), DIMENSION(2), INTENT(OUT) :: OthonormalBasis     

    INTEGER :: LDX, N, P, LDU, LDV, JOB, INFO 

    INTEGER :: I, J 

    REAL(8), DIMENSION(2, 2) :: S, U, V 

    REAL(8) :: E(max(2 + 1, 2))            

    REAL(8), ALLOCATABLE, DIMENSION(:) :: WORK 

    N = 2    !row 

    P = 2    !column 

    JOB = 11    !或 10 

    LDX = N 

    LDU = N 

    LDV = P 

    ALLOCATE (WORK(1:N)) 

    Matrix = TRANSPOSE(Matrix)  

    CALL DSVDC(Matrix, LDX, N, P, S, E, U, LDU, V, LDV, WORK, JOB, INFO) 

    DO I = 1, 2 

        DO J = 1, 2 

            IF (S(I, J) /= 0.0 .AND. S(I, J)< 0.1) THEN 

                OthonormalBasis(:) = U(:, I)         

            END IF 

        END DO 

    END DO 

    END SUBROUTINE Orthonormal_Basis_Solver 

    subroutine DSVDC (X, LDX, N, P, S, E, U, LDU, V, LDV, WORK, JOB, & 

        INFO) 

    ! 

    !! DSVDC performs the singular value decomposition of a rectangular matrix. 

    ! 

    !***LIBRARY   SLATEC (LINPACK) 

    !***CATEGORY  D6 

    !***TYPE      DOUBLE PRECISION (SSVDC-S, DSVDC-D, CSVDC-C) 

    !***KEYWORDS  LINEAR ALGEBRA, LINPACK, MATRIX, 
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    !             SINGULAR VALUE DECOMPOSITION 

    !***AUTHOR  Stewart, G. W., (U. of Maryland) 

    !***DESCRIPTION 

    ! 

    !     DSVDC is a subroutine to reduce a double precision NxP matrix X 

    !     by orthogonal transformations U and V to diagonal form.  The 

    !     diagonal elements S(I) are the singular values of X.  The 

    !     columns of U are the corresponding left singular vectors, 

    !     and the columns of V the right singular vectors. 

    ! 

    !     On Entry 

    ! 

    !         X         DOUBLE PRECISION(LDX,P), where LDX  >=  N. 
  

    !                   X contains the matrix whose singular value 

    !                   decomposition is to be computed.  X is 

    !                   destroyed by DSVDC. 

    ! 

    !         LDX       INTEGER.   

    !                   LDX is the leading dimension of the array X. 

    ! 

    !         N         INTEGER.   

    !                   N is the number of rows of the matrix X. 

    ! 

    !         P         INTEGER.   

    !                   P is the number of columns of the matrix X. 

    ! 

    !         LDU       INTEGER.   

    !                   LDU is the leading dimension of the array U. 

    !                   (See below). 

    ! 

    !         LDV       INTEGER.   

    !                   LDV is the leading dimension of the array V. 

    !                   (See below). 

    ! 

    !         WORK      DOUBLE PRECISION(N).  

    !                   WORK is a scratch array. 
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    ! 

    !         JOB       INTEGER.   

    !                   JOB controls the computation of the singular 

    !                   vectors.  It has the decimal expansion AB 

    !                   with the following meaning 

    ! 

    !                        A  ==  0    do not compute the left singular 

    !                                  vectors. 

    !                        A  ==  1    return the N left singular vectors 

    !                                  in U. 

    !                        A  >=  2    return the first MIN(N,P) singular 

    !                                  vectors in U. 

    !                        B  ==  0    do not compute the right singular 

    !                                  vectors. 

    !                        B  ==  1    return the right singular vectors 

    !                                  in V. 

    ! 

    !     On Return 

    ! 

    !         S         DOUBLE PRECISION(MM), where MM=MIN(N+1,P).  

    !                   The first MIN(N,P) entries of S contain the 

    !                   singular values of X arranged in descending 

    !                   order of magnitude. 

    ! 

    !         E         DOUBLE PRECISION(P). 

    !                   E ordinarily contains zeros.  However see the 

    !                   discussion of INFO for exceptions. 

    ! 

    !         U         DOUBLE PRECISION(LDU,K), where LDU  >=  N.  

    !                   If JOBA  ==  1, then K  ==  N. 

    !                   If JOBA  >=  2, then K  ==  MIN(N,P). 

    !                   U contains the matrix of right singular vectors. 

    !                   U is not referenced if JOBA  ==  0.  If N  <=  P 

    !                   or if JOBA  ==  2, then U may be identified with X 

    !                   in the subroutine call. 

    ! 

    !         V         DOUBLE PRECISION(LDV,P), where LDV  >=  P.  
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    !                   V contains the matrix of right singular vectors. 

    !                   V is not referenced if JOB  ==  0.  If P  <=  N, 

    !                   then V may be identified with X in the 

    !                   subroutine call. 

    ! 

    !         INFO      INTEGER. 

    !                   The singular values (and their corresponding 

    !                   singular vectors) S(INFO+1),S(INFO+2),...,S(M) 

    !                   are correct (here M=MIN(N,P)).  Thus if 

    !                   INFO  ==  0, all the singular values and their 

    !                   vectors are correct.  In any event, the matrix 

    !                   B = TRANS(U)*X*V is the bidiagonal matrix 

    !                   with the elements of S on its diagonal and the 

    !                   elements of E on its super-diagonal (TRANS(U) 

    !                   is the transpose of U).  Thus the singular 

    !                   values of X and B are the same. 

    ! 

    !***REFERENCES  J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. 

    !                 Stewart, LINPACK Users' Guide, SIAM, 1979. 

    !***ROUTINES CALLED  DAXPY, DDOT, DNRM2, DROT, DROTG, DSCAL, DSWAP 

    !***REVISION HISTORY  (YYMMDD) 

    !   790319  DATE WRITTEN 

    !   890531  Changed all specific intrinsics to generic.  (WRB) 

    !   890531  REVISION DATE from Version 3.2 

    !   891214  Prologue converted to Version 4.0 format.  (BAB) 

    !   900326  Removed duplicate information from DESCRIPTION section. 

    !           (WRB) 

    !   920501  Reformatted the REFERENCES section.  (WRB) 

    !***END PROLOGUE  DSVDC 

    INTEGER LDX, N, P, LDU, LDV, JOB, INFO 

    DOUBLE PRECISION X(LDX, *), S(*), E(*), U(LDU, *), V(LDV, *), WORK(*) 

    ! 

    ! 

    INTEGER I, ITER, J, JOBU, K, KASE, KK, L, LL, LLS, LM1, LP1, LS, LU, M, MAXIT, 
& 

        MM, MM1, MP1, NCT, NCTP1, NCU, NRT, NRTP1 

    DOUBLE PRECISION DDOT, T 
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    DOUBLE PRECISION B, C, CS, EL, EMM1, F, G, DNRM2, SCALE, SHIFT, SL, SM, SN, 
& 

        SMM1, T1, TEST, ZTEST 

    LOGICAL WANTU, WANTV 

    !***FIRST EXECUTABLE STATEMENT  DSVDC 

    ! 

    !     SET THE MAXIMUM NUMBER OF ITERATIONS. 

    ! 

    MAXIT = 30 

    ! 

    !     DETERMINE WHAT IS TO BE COMPUTED. 

    ! 

    WANTU = .FALSE. 

    WANTV = .FALSE. 

    JOBU = MOD(JOB, 100) / 10 

    NCU = N 

    if (JOBU  >  1) NCU = MIN(N, P) 

    if (JOBU  /=  0) WANTU = .TRUE. 

    if (MOD(JOB, 10)  /=  0) WANTV = .TRUE. 

    ! 

    !     REDUCE X TO BIDIAGONAL FORM, STORING THE DIAGONAL ELEMENTS 

    !     IN S AND THE SUPER-DIAGONAL ELEMENTS IN E. 

    ! 

    INFO = 0 

    NCT = MIN(N - 1, P) 

    NRT = MAX(0, MIN(P - 2, N)) 

    LU = MAX(NCT, NRT) 

    if (LU  <  1) go to 170 

    DO 160 L = 1, LU 

        LP1 = L + 1 

        if (L  >  NCT) go to 20 

        ! 

        !           COMPUTE THE TRANSFORMATION FOR THE L-TH COLUMN AND 

        !           PLACE THE L-TH DIAGONAL IN S(L). 

        ! 

        S(L) = DNRM2(N - L + 1, X(L, L), 1) 

        if (S(L)  ==  0.0D0) go to 10 
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        if (X(L, L)  /=  0.0D0) S(L) = SIGN(S(L), X(L, L)) 

        call DSCAL(N - L + 1, 1.0D0 / S(L), X(L, L), 1) 

        X(L, L) = 1.0D0 + X(L, L) 

10      CONTINUE 

        S(L) = -S(L) 

20      CONTINUE 

        if (P  <  LP1) go to 50 

        DO 40 J = LP1, P 

            if (L  >  NCT) go to 30 

            if (S(L)  ==  0.0D0) go to 30 

            ! 

            !              APPLY THE TRANSFORMATION. 

            ! 

            T = -DDOT(N - L + 1, X(L, L), 1, X(L, J), 1) / X(L, L) 

            call DAXPY(N - L + 1, T, X(L, L), 1, X(L, J), 1) 

30          CONTINUE 

            ! 

            !           PLACE THE L-TH ROW OF X INTO  E FOR THE 

            !           SUBSEQUENT CALCULATION OF THE ROW TRANSFORMATION. 

            ! 

            E(J) = X(L, J) 

40      CONTINUE 

50      CONTINUE 

        if (.NOT.WANTU .OR. L  >  NCT) go to 70 

        ! 

        !           PLACE THE TRANSFORMATION IN U FOR SUBSEQUENT BACK 

        !           MULTIPLICATION. 

        ! 

        DO 60 I = L, N 

            U(I, L) = X(I, L) 

60      CONTINUE 

70      CONTINUE 

        if (L  >  NRT) go to 150 

        ! 

        !           COMPUTE THE L-TH ROW TRANSFORMATION AND PLACE THE 

        !           L-TH SUPER-DIAGONAL IN E(L). 

        ! 
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        E(L) = DNRM2(P - L, E(LP1), 1) 

        if (E(L)  ==  0.0D0) go to 80 

        if (E(LP1)  /=  0.0D0) E(L) = SIGN(E(L), E(LP1)) 

        call DSCAL(P - L, 1.0D0 / E(L), E(LP1), 1) 

        E(LP1) = 1.0D0 + E(LP1) 

80      CONTINUE 

        E(L) = -E(L) 

        if (LP1  >  N .OR. E(L)  ==  0.0D0) go to 120 

        ! 

        !              APPLY THE TRANSFORMATION. 

        ! 

        DO 90 I = LP1, N 

            WORK(I) = 0.0D0 

90      CONTINUE 

        DO 100 J = LP1, P 

            call DAXPY(N - L, E(J), X(LP1, J), 1, WORK(LP1), 1) 

100     CONTINUE 

        DO 110 J = LP1, P 

            call DAXPY(N - L, -E(J) / E(LP1), WORK(LP1), 1, X(LP1, J), 1) 

110     CONTINUE 

120     CONTINUE 

        if (.NOT.WANTV) go to 140 

        ! 

        !              PLACE THE TRANSFORMATION IN V FOR SUBSEQUENT 

        !              BACK MULTIPLICATION. 

        ! 

        DO 130 I = LP1, P 

            V(I, L) = E(I) 

130     CONTINUE 

140     CONTINUE 

150     CONTINUE 

160 CONTINUE 

170 CONTINUE 

    ! 

    !     SET UP THE FINAL BIDIAGONAL MATRIX OR ORDER M. 

    ! 

    M = MIN(P, N + 1) 
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    NCTP1 = NCT + 1 

    NRTP1 = NRT + 1 

    if (NCT  <  P) S(NCTP1) = X(NCTP1, NCTP1) 

    if (N  <  M) S(M) = 0.0D0 

    if (NRTP1  <  M) E(NRTP1) = X(NRTP1, M) 

    E(M) = 0.0D0 

    ! 

    !     if REQUIRED, GENERATE U. 

    ! 

    if (.NOT.WANTU) go to 300 

    if (NCU  <  NCTP1) go to 200 

    DO 190 J = NCTP1, NCU 

        DO 180 I = 1, N 

            U(I, J) = 0.0D0 

180     CONTINUE 

        U(J, J) = 1.0D0 

190 CONTINUE 

200 CONTINUE 

    if (NCT  <  1) go to 290 

    DO 280 LL = 1, NCT 

        L = NCT - LL + 1 

        if (S(L)  ==  0.0D0) go to 250 

        LP1 = L + 1 

        if (NCU  <  LP1) go to 220 

        DO 210 J = LP1, NCU 

            T = -DDOT(N - L + 1, U(L, L), 1, U(L, J), 1) / U(L, L) 

            call DAXPY(N - L + 1, T, U(L, L), 1, U(L, J), 1) 

210     CONTINUE 

220     CONTINUE 

        call DSCAL(N - L + 1, -1.0D0, U(L, L), 1) 

        U(L, L) = 1.0D0 + U(L, L) 

        LM1 = L - 1 

        if (LM1  <  1) go to 240 

        DO 230 I = 1, LM1 

            U(I, L) = 0.0D0 

230     CONTINUE 

240     CONTINUE 
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        go to 270 

250     CONTINUE 

        DO 260 I = 1, N 

            U(I, L) = 0.0D0 

260     CONTINUE 

        U(L, L) = 1.0D0 

270     CONTINUE 

280 CONTINUE 

290 CONTINUE 

300 CONTINUE 

    ! 

    !     if IT IS REQUIRED, GENERATE V. 

    ! 

    if (.NOT.WANTV) go to 350 

    DO 340 LL = 1, P 

        L = P - LL + 1 

        LP1 = L + 1 

        if (L  >  NRT) go to 320 

        if (E(L)  ==  0.0D0) go to 320 

        DO 310 J = LP1, P 

            T = -DDOT(P - L, V(LP1, L), 1, V(LP1, J), 1) / V(LP1, L) 

            call DAXPY(P - L, T, V(LP1, L), 1, V(LP1, J), 1) 

310     CONTINUE 

320     CONTINUE 

        DO 330 I = 1, P 

            V(I, L) = 0.0D0 

330     CONTINUE 

        V(L, L) = 1.0D0 

340 CONTINUE 

350 CONTINUE 

    ! 

    !     MAIN ITERATION LOOP FOR THE SINGULAR VALUES. 

    ! 

    MM = M 

    ITER = 0 

360 CONTINUE 

    ! 
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    !        QUIT if ALL THE SINGULAR VALUES HAVE BEEN FOUND. 

    ! 

    if (M  ==  0) go to 620 

    ! 

    !        if TOO MANY ITERATIONS HAVE BEEN PERFORMED, SET 

    !        FLAG AND RETURN. 

    ! 

    if (ITER  <  MAXIT) go to 370 

    INFO = M 

    go to 620 

370 CONTINUE 

    ! 

    !        THIS SECTION OF THE PROGRAM INSPECTS FOR 

    !        NEGLIGIBLE ELEMENTS IN THE S AND E ARRAYS.  ON 

    !        COMPLETION THE VARIABLES KASE AND L ARE SET AS FOLLOWS. 

    ! 

    !           KASE = 1     if S(M) AND E(L-1) ARE NEGLIGIBLE AND L < M 

    !           KASE = 2     if S(L) IS NEGLIGIBLE AND L < M 

    !           KASE = 3     if E(L-1) IS NEGLIGIBLE, L < M, AND 

    !                        S(L), ..., S(M) ARE NOT NEGLIGIBLE (QR STEP). 

    !           KASE = 4     if E(M-1) IS NEGLIGIBLE (CONVERGENCE). 

    ! 

    DO 390 LL = 1, M 

        L = M - LL 

        if (L  ==  0) go to 400 

        TEST = ABS(S(L)) + ABS(S(L + 1)) 

        ZTEST = TEST + ABS(E(L)) 

        if (ZTEST  /=  TEST) go to 380 

        E(L) = 0.0D0 

        go to 400 

380     CONTINUE 

390 CONTINUE 

400 CONTINUE 

    if (L  /=  M - 1) go to 410 

    KASE = 4 

    go to 480 

410 CONTINUE 
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    LP1 = L + 1 

    MP1 = M + 1 

    DO 430 LLS = LP1, MP1 

        LS = M - LLS + LP1 

        if (LS  ==  L) go to 440 

        TEST = 0.0D0 

        if (LS  /=  M) TEST = TEST + ABS(E(LS)) 

        if (LS  /=  L + 1) TEST = TEST + ABS(E(LS - 1)) 

        ZTEST = TEST + ABS(S(LS)) 

        if (ZTEST  /=  TEST) go to 420 

        S(LS) = 0.0D0 

        go to 440 

420     CONTINUE 

430 CONTINUE 

440 CONTINUE 

    if (LS  /=  L) go to 450 

    KASE = 3 

    go to 470 

450 CONTINUE 

    if (LS  /=  M) go to 460 

    KASE = 1 

    go to 470 

460 CONTINUE 

    KASE = 2 

    L = LS 

470 CONTINUE 

480 CONTINUE 

    L = L + 1 

    ! 

    !        PERFORM THE TASK INDICATED BY KASE. 

    ! 

    go to (490, 520, 540, 570), KASE 

    ! 

    !        DEFLATE NEGLIGIBLE S(M). 

    ! 

490 CONTINUE 

    MM1 = M - 1 



 

219 

 

    F = E(M - 1) 

    E(M - 1) = 0.0D0 

    DO 510 KK = L, MM1 

        K = MM1 - KK + L 

        T1 = S(K) 

        call DROTG(T1, F, CS, SN) 

        S(K) = T1 

        if (K  ==  L) go to 500 

        F = -SN * E(K - 1) 

        E(K - 1) = CS * E(K - 1) 

500     CONTINUE 

        if (WANTV) call DROT(P, V(1, K), 1, V(1, M), 1, CS, SN) 

510 CONTINUE 

    go to 610 

    ! 

    !        SPLIT AT NEGLIGIBLE S(L). 

    ! 

520 CONTINUE 

    F = E(L - 1) 

    E(L - 1) = 0.0D0 

    DO 530 K = L, M 

        T1 = S(K) 

        call DROTG(T1, F, CS, SN) 

        S(K) = T1 

        F = -SN * E(K) 

        E(K) = CS * E(K) 

        if (WANTU) call DROT(N, U(1, K), 1, U(1, L - 1), 1, CS, SN) 

530 CONTINUE 

    go to 610 

    ! 

    !        PERFORM ONE QR STEP. 

    ! 

540 CONTINUE 

    ! 

    !           CALCULATE THE SHIFT. 

    ! 

    SCALE = MAX(ABS(S(M)), ABS(S(M - 1)), ABS(E(M - 1)), & 
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        ABS(S(L)), ABS(E(L))) 

    SM = S(M) / SCALE 

    SMM1 = S(M - 1) / SCALE 

    EMM1 = E(M - 1) / SCALE 

    SL = S(L) / SCALE 

    EL = E(L) / SCALE 

    B = ((SMM1 + SM) * (SMM1 - SM) + EMM1**2) / 2.0D0 

    C = (SM * EMM1)**2 

    SHIFT = 0.0D0 

    if (B  ==  0.0D0 .AND. C  ==  0.0D0) go to 550 

    SHIFT = SQRT(B**2 + C) 

    if (B  <  0.0D0) SHIFT = -SHIFT 

    SHIFT = C / (B + SHIFT) 

550 CONTINUE 

    F = (SL + SM) * (SL - SM) - SHIFT 

    G = SL * EL 

    ! 

    !           CHASE ZEROS. 

    ! 

    MM1 = M - 1 

    DO 560 K = L, MM1 

        call DROTG(F, G, CS, SN) 

        if (K  /=  L) E(K - 1) = F 

        F = CS * S(K) + SN * E(K) 

        E(K) = CS * E(K) - SN * S(K) 

        G = SN * S(K + 1) 

        S(K + 1) = CS * S(K + 1) 

        if (WANTV) call DROT(P, V(1, K), 1, V(1, K + 1), 1, CS, SN) 

        call DROTG(F, G, CS, SN) 

        S(K) = F 

        F = CS * E(K) + SN * S(K + 1) 

        S(K + 1) = -SN * E(K) + CS * S(K + 1) 

        G = SN * E(K + 1) 

        E(K + 1) = CS * E(K + 1) 

        if (WANTU .AND. K  <  N) & 

            call DROT(N, U(1, K), 1, U(1, K + 1), 1, CS, SN) 

560 CONTINUE 
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    E(M - 1) = F 

    ITER = ITER + 1 

    go to 610 

    ! 

    !        CONVERGENCE. 

    ! 

570 CONTINUE 

    ! 

    !           MAKE THE SINGULAR VALUE  POSITIVE. 

    ! 

    if (S(L)  >=  0.0D0) go to 580 

    S(L) = -S(L) 

    if (WANTV) call DSCAL(P, -1.0D0, V(1, L), 1) 

580 CONTINUE 

    ! 

    !           ORDER THE SINGULAR VALUE. 

    ! 

590 if (L  ==  MM) go to 600 

    if (S(L)  >=  S(L + 1)) go to 600 

    T = S(L) 

    S(L) = S(L + 1) 

    S(L + 1) = T 

    if (WANTV .AND. L  <  P) & 

        call DSWAP(P, V(1, L), 1, V(1, L + 1), 1) 

    if (WANTU .AND. L  <  N) & 

        call DSWAP(N, U(1, L), 1, U(1, L + 1), 1) 

    L = L + 1 

    go to 590 

600 CONTINUE 

    ITER = 0 

    M = M - 1 

610 CONTINUE 

    go to 360 

620 CONTINUE 

    return 

    end 
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    !------------------------------------------------------------------------- 

    !>No.1 DAXPY 

    !------------------------------------------------------------------------- 

    subroutine DAXPY (N, DA, DX, INCX, DY, INCY) 

    ! 

    !! DAXPY computes a constant times a vector plus a vector. 

    ! 

    !***LIBRARY   SLATEC (BLAS) 

    !***CATEGORY  D1A7 

    !***TYPE      DOUBLE PRECISION (SAXPY-S, DAXPY-D, CAXPY-C) 

    !***KEYWORDS  BLAS, LINEAR ALGEBRA, TRIAD, VECTOR 

    !***AUTHOR  Lawson, C. L., (JPL) 

    !           Hanson, R. J., (SNLA) 

    !           Kincaid, D. R., (U. of Texas) 

    !           Krogh, F. T., (JPL) 

    !***DESCRIPTION 

    ! 

    !                B L A S  Subprogram 

    !    Description of Parameters 

    ! 

    !     --Input-- 

    !        N  number of elements in input vector(s) 

    !       DA  double precision scalar multiplier 

    !       DX  double precision vector with N elements 

    !     INCX  storage spacing between elements of DX 

    !       DY  double precision vector with N elements 

    !     INCY  storage spacing between elements of DY 

    ! 

    !     --Output-- 

    !       DY  double precision result (unchanged if N  <=  0) 

    ! 

    !     Overwrite double precision DY with double precision DA*DX + DY. 

    !     For I = 0 to N-1, replace  DY(LY+I*INCY) with DA*DX(LX+I*INCX) + 

    !       DY(LY+I*INCY), 

    !     where LX = 1 if INCX  >=  0, else LX = 1+(1-N)*INCX, and LY is 

    !     defined in a similar way using INCY. 

    ! 
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    !***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. 

    !                 Krogh, Basic linear algebra subprograms for Fortran 

    !                 usage, Algorithm No. 539, Transactions on Mathematical 

    !                 Software 5, 3 (September 1979), pp. 308-323. 

    !***ROUTINES CALLED  (NONE) 

    !***REVISION HISTORY  (YYMMDD) 

    !   791001  DATE WRITTEN 

    !   890831  Modified array declarations.  (WRB) 

    !   890831  REVISION DATE from Version 3.2 

    !   891214  Prologue converted to Version 4.0 format.  (BAB) 

    !   920310  Corrected definition of LX in DESCRIPTION.  (WRB) 

    !   920501  Reformatted the REFERENCES section.  (WRB) 

    !***END PROLOGUE  DAXPY 

    DOUBLE PRECISION DX(*), DY(*), DA 

    !***FIRST EXECUTABLE STATEMENT  DAXPY 

    if (N <= 0 .OR. DA == 0.0D0) RETURN 

    if (INCX  ==  INCY) IF (INCX - 1) 5, 20, 60 

    ! 

    !     Code for unequal or nonpositive increments. 

    ! 

5   IX = 1 

    IY = 1 

    if (INCX  <  0) IX = (-N + 1) * INCX + 1 

    if (INCY  <  0) IY = (-N + 1) * INCY + 1 

    DO 10 I = 1, N 

        DY(IY) = DY(IY) + DA * DX(IX) 

        IX = IX + INCX 

        IY = IY + INCY 

10  CONTINUE 

    return 

    ! 

    !     Code for both increments equal to 1. 

    ! 

    !     Clean-up loop so remaining vector length is a multiple of 4. 

    ! 

20  M = MOD(N, 4) 

    if (M  ==  0) go to 40 
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    DO 30 I = 1, M 

        DY(I) = DY(I) + DA * DX(I) 

30  CONTINUE 

    if (N  <  4) RETURN 

40  MP1 = M + 1 

    DO 50 I = MP1, N, 4 

        DY(I) = DY(I) + DA * DX(I) 

        DY(I + 1) = DY(I + 1) + DA * DX(I + 1) 

        DY(I + 2) = DY(I + 2) + DA * DX(I + 2) 

        DY(I + 3) = DY(I + 3) + DA * DX(I + 3) 

50  CONTINUE 

    return 

    ! 

    !     Code for equal, positive, non-unit increments. 

    ! 

60  NS = N * INCX 

    DO 70 I = 1, NS, INCX 

        DY(I) = DA * DX(I) + DY(I) 

70  CONTINUE 

    return 

    end 

    !------------------------------------------------------------------------- 

    !>No.2 DDOT 

    !------------------------------------------------------------------------- 

    DOUBLE PRECISION FUNCTION DDOT (N, DX, INCX, DY, INCY) 

    ! 

    !! DDOT computes the inner product of two vectors. 

    ! 

    !***LIBRARY   SLATEC (BLAS) 

    !***CATEGORY  D1A4 

    !***TYPE      DOUBLE PRECISION (SDOT-S, DDOT-D, CDOTU-C) 

    !***KEYWORDS  BLAS, INNER PRODUCT, LINEAR ALGEBRA, VECTOR 

    !***AUTHOR  Lawson, C. L., (JPL) 

    !           Hanson, R. J., (SNLA) 

    !           Kincaid, D. R., (U. of Texas) 

    !           Krogh, F. T., (JPL) 

    !***DESCRIPTION 
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    ! 

    !                B L A S  Subprogram 

    !    Description of Parameters 

    ! 

    !     --Input-- 

    !        N  number of elements in input vector(s) 

    !       DX  double precision vector with N elements 

    !     INCX  storage spacing between elements of DX 

    !       DY  double precision vector with N elements 

    !     INCY  storage spacing between elements of DY 

    ! 

    !     --Output-- 

    !     DDOT  double precision dot product (zero if N  <=  0) 

    ! 

    !     Returns the dot product of double precision DX and DY. 

    !     DDOT = sum for I = 0 to N-1 of  DX(LX+I*INCX) * DY(LY+I*INCY), 

    !     where LX = 1 if INCX  >=  0, else LX = 1+(1-N)*INCX, and LY is 

    !     defined in a similar way using INCY. 

    ! 

    !***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. 

    !                 Krogh, Basic linear algebra subprograms for Fortran 

    !                 usage, Algorithm No. 539, Transactions on Mathematical 

    !                 Software 5, 3 (September 1979), pp. 308-323. 

    !***ROUTINES CALLED  (NONE) 

    !***REVISION HISTORY  (YYMMDD) 

    !   791001  DATE WRITTEN 

    !   890831  Modified array declarations.  (WRB) 

    !   890831  REVISION DATE from Version 3.2 

    !   891214  Prologue converted to Version 4.0 format.  (BAB) 

    !   920310  Corrected definition of LX in DESCRIPTION.  (WRB) 

    !   920501  Reformatted the REFERENCES section.  (WRB) 

    !***END PROLOGUE  DDOT 

    DOUBLE PRECISION DX(*), DY(*) 

    !***FIRST EXECUTABLE STATEMENT  DDOT 

    DDOT = 0.0D0 

    if (N  <=  0) RETURN 

    if (INCX  ==  INCY) IF (INCX - 1) 5, 20, 60 
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    ! 

    !     Code for unequal or nonpositive increments. 

    ! 

5   IX = 1 

    IY = 1 

    if (INCX  <  0) IX = (-N + 1) * INCX + 1 

    if (INCY  <  0) IY = (-N + 1) * INCY + 1 

    DO 10 I = 1, N 

        DDOT = DDOT + DX(IX) * DY(IY) 

        IX = IX + INCX 

        IY = IY + INCY 

10  CONTINUE 

    return 

    ! 

    !     Code for both increments equal to 1. 

    ! 

    !     Clean-up loop so remaining vector length is a multiple of 5. 

    ! 

20  M = MOD(N, 5) 

    if (M  ==  0) go to 40 

    DO 30 I = 1, M 

        DDOT = DDOT + DX(I) * DY(I) 

30  CONTINUE 

    if (N  <  5) RETURN 

40  MP1 = M + 1 

    DO 50 I = MP1, N, 5 

        DDOT = DDOT + DX(I) * DY(I) + DX(I + 1) * DY(I + 1) + DX(I + 2) * DY(I + 2) + & 

            DX(I + 3) * DY(I + 3) + DX(I + 4) * DY(I + 4) 

50  CONTINUE 

    return 

    ! 

    !     Code for equal, positive, non-unit increments. 

    ! 

60  NS = N * INCX 

    DO 70 I = 1, NS, INCX 

        DDOT = DDOT + DX(I) * DY(I) 

70  CONTINUE 
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    return 

    end 

    !------------------------------------------------------------------------- 

    !>No.3 DNRM2 

    !------------------------------------------------------------------------- 

    DOUBLE PRECISION FUNCTION DNRM2 (N, DX, INCX) 

    ! 

    !! DNRM2 computes the Euclidean length (L2 norm) of a vector. 

    ! 

    !***LIBRARY   SLATEC (BLAS) 

    !***CATEGORY  D1A3B 

    !***TYPE      DOUBLE PRECISION (SNRM2-S, DNRM2-D, SCNRM2-C) 

    !***KEYWORDS  BLAS, EUCLIDEAN LENGTH, EUCLIDEAN NORM, L2, 

    !             LINEAR ALGEBRA, UNITARY, VECTOR 

    !***AUTHOR  Lawson, C. L., (JPL) 

    !           Hanson, R. J., (SNLA) 

    !           Kincaid, D. R., (U. of Texas) 

    !           Krogh, F. T., (JPL) 

    !***DESCRIPTION 

    ! 

    !                B L A S  Subprogram 

    !    Description of parameters 

    ! 

    !     --Input-- 

    !        N  number of elements in input vector(s) 

    !       DX  double precision vector with N elements 

    !     INCX  storage spacing between elements of DX 

    ! 

    !     --Output-- 

    !    DNRM2  double precision result (zero if N  <=  0) 

    ! 

    !     Euclidean norm of the N-vector stored in DX with storage 

    !     increment INCX. 

    !     If N  <=  0, return with result = 0. 

    !     If N  >=  1, then INCX must be  >=  1 

    ! 

    !     Four phase method using two built-in constants that are 
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    !     hopefully applicable to all machines. 

    !         CUTLO = maximum of  SQRT(U/EPS)  over all known machines. 

    !         CUTHI = minimum of  SQRT(V)      over all known machines. 

    !     where 

    !         EPS = smallest no. such that EPS + 1.  >  1. 

    !         U   = smallest positive no.   (underflow limit) 

    !         V   = largest  no.            (overflow  limit) 

    ! 

    !     Brief outline of algorithm. 

    ! 

    !     Phase 1 scans zero components. 

    !     move to phase 2 when a component is nonzero and  <=  CUTLO 

    !     move to phase 3 when a component is  >  CUTLO 

    !     move to phase 4 when a component is  >=  CUTHI/M 

    !     where M = N for X() real and M = 2*N for complex. 

    ! 

    !     Values for CUTLO and CUTHI. 

    !     From the environmental parameters listed in the IMSL converter 

    !     document the limiting values are as follows: 

    !     CUTLO, S.P.   U/EPS = 2**(-102) for  Honeywell.  Close seconds are 

    !                   Univac and DEC at 2**(-103) 

    !                   Thus CUTLO = 2**(-51) = 4.44089E-16 

    !     CUTHI, S.P.   V = 2**127 for Univac, Honeywell, and DEC. 

    !                   Thus CUTHI = 2**(63.5) = 1.30438E19 

    !     CUTLO, D.P.   U/EPS = 2**(-67) for Honeywell and DEC. 

    !                   Thus CUTLO = 2**(-33.5) = 8.23181D-11 

    !     CUTHI, D.P.   same as S.P.  CUTHI = 1.30438D19 

    !     DATA CUTLO, CUTHI /8.232D-11,  1.304D19/ 

    !     DATA CUTLO, CUTHI /4.441E-16,  1.304E19/ 

    ! 

    !***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. 

    !                 Krogh, Basic linear algebra subprograms for Fortran 

    !                 usage, Algorithm No. 539, Transactions on Mathematical 

    !                 Software 5, 3 (September 1979), pp. 308-323. 

    !***ROUTINES CALLED  (NONE) 

    !***REVISION HISTORY  (YYMMDD) 

    !   791001  DATE WRITTEN 
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    !   890531  Changed all specific intrinsics to generic.  (WRB) 

    !   890831  Modified array declarations.  (WRB) 

    !   890831  REVISION DATE from Version 3.2 

    !   891214  Prologue converted to Version 4.0 format.  (BAB) 

    !   920501  Reformatted the REFERENCES section.  (WRB) 

    !***END PROLOGUE  DNRM2 

    INTEGER NEXT 

    DOUBLE PRECISION DX(*), CUTLO, CUTHI, HITEST, SUM, XMAX, ZERO, & 

        ONE 

    SAVE CUTLO, CUTHI, ZERO, ONE 

    DATA ZERO, ONE /0.0D0, 1.0D0/ 

    ! 

    DATA CUTLO, CUTHI /8.232D-11, 1.304D19/ 

    !***FIRST EXECUTABLE STATEMENT  DNRM2 

    if (N  >  0) go to 10 

    DNRM2 = ZERO 

    go to 300 

    ! 

10  ASSIGN 30 TO NEXT 

    SUM = ZERO 

    NN = N * INCX 

    ! 

    !                                                 BEGIN MAIN LOOP 

    ! 

    I = 1 

20  go to NEXT, (30, 50, 70, 110) 

30  if (ABS(DX(I))  >  CUTLO) go to 85 

    ASSIGN 50 TO NEXT 

    XMAX = ZERO 

    ! 

    !                        PHASE 1.  SUM IS ZERO 

    ! 

50  if (DX(I)  ==  ZERO) go to 200 

    if (ABS(DX(I))  >  CUTLO) go to 85 

    ! 

    !                                PREPARE FOR PHASE 2. 

    ! 
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    ASSIGN 70 TO NEXT 

    go to 105 

    ! 

    !                                PREPARE FOR PHASE 4. 

    ! 

100 I = J 

    ASSIGN 110 TO NEXT 

    SUM = (SUM / DX(I)) / DX(I) 

105 XMAX = ABS(DX(I)) 

    go to 115 

    ! 

    !                   PHASE 2.  SUM IS SMALL. 

    !                             SCALE TO AVOID DESTRUCTIVE UNDERFLOW. 

    ! 

70  if (ABS(DX(I))  >  CUTLO) go to 75 

    ! 

    !                     COMMON CODE FOR PHASES 2 AND 4. 

    !                     IN PHASE 4 SUM IS LARGE.  SCALE TO AVOID OVERFLOW. 

    ! 

110 if (ABS(DX(I))  <=  XMAX) go to 115 

    SUM = ONE + SUM * (XMAX / DX(I))**2 

    XMAX = ABS(DX(I)) 

    go to 200 

    ! 

115 SUM = SUM + (DX(I) / XMAX)**2 

    go to 200 

    ! 

    !                  PREPARE FOR PHASE 3. 

    ! 

75  SUM = (SUM * XMAX) * XMAX 

    ! 

    !     FOR REAL OR D.P. SET HITEST = CUTHI/N 

    !     FOR COMPLEX      SET HITEST = CUTHI/(2*N) 

    ! 

85  HITEST = CUTHI / N 

    ! 

    !                   PHASE 3.  SUM IS MID-RANGE.  NO SCALING. 
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    ! 

    DO 95 J = I, NN, INCX 

        if (ABS(DX(J))  >=  HITEST) go to 100 

95  SUM = SUM + DX(J)**2 

    DNRM2 = SQRT(SUM) 

    go to 300 

    ! 

200 CONTINUE 

    I = I + INCX 

    if (I  <=  NN) go to 20 

    ! 

    !              END OF MAIN LOOP. 

    ! 

    !              COMPUTE SQUARE ROOT AND ADJUST FOR SCALING. 

    ! 

    DNRM2 = XMAX * SQRT(SUM) 

300 CONTINUE 

    return 

    end 

    !------------------------------------------------------------------------- 

    !>No.4 DROT 

    !------------------------------------------------------------------------- 

    subroutine DROT (N, DX, INCX, DY, INCY, DC, DS) 

    ! 

    !! DROT applies a plane Givens rotation. 

    ! 

    !***PURPOSE  Apply a plane Givens rotation. 

    !***LIBRARY   SLATEC (BLAS) 

    !***CATEGORY  D1A8 

    !***TYPE      DOUBLE PRECISION (SROT-S, DROT-D, CSROT-C) 

    !***KEYWORDS  BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION, 

    !             LINEAR ALGEBRA, PLANE ROTATION, VECTOR 

    !***AUTHOR  Lawson, C. L., (JPL) 

    !           Hanson, R. J., (SNLA) 

    !           Kincaid, D. R., (U. of Texas) 

    !           Krogh, F. T., (JPL) 

    !***DESCRIPTION 
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    ! 

    !                B L A S  Subprogram 

    !    Description of Parameters 

    ! 

    !     --Input-- 

    !        N  number of elements in input vector(s) 

    !       DX  double precision vector with N elements 

    !     INCX  storage spacing between elements of DX 

    !       DY  double precision vector with N elements 

    !     INCY  storage spacing between elements of DY 

    !       DC  D.P. element of rotation matrix 

    !       DS  D.P. element of rotation matrix 

    ! 

    !     --Output-- 

    !       DX  rotated vector DX (unchanged if N  <=  0) 

    !       DY  rotated vector DY (unchanged if N  <=  0) 

    ! 

    !     Multiply the 2 x 2 matrix  ( DC DS) times the 2 x N matrix (DX**T) 

    !                                (-DS DC)                        (DY**T) 

    !     where **T indicates transpose.  The elements of DX are in 

    !     DX(LX+I*INCX), I = 0 to N-1, where LX = 1 if INCX  >=  0, else 

    !     LX = 1+(1-N)*INCX, and similarly for DY using LY and INCY. 

    ! 

    !***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. 

    !                 Krogh, Basic linear algebra subprograms for Fortran 

    !                 usage, Algorithm No. 539, Transactions on Mathematical 

    !                 Software 5, 3 (September 1979), pp. 308-323. 

    !***ROUTINES CALLED  (NONE) 

    !***REVISION HISTORY  (YYMMDD) 

    !   791001  DATE WRITTEN 

    !   861211  REVISION DATE from Version 3.2 

    !   891214  Prologue converted to Version 4.0 format.  (BAB) 

    !   920310  Corrected definition of LX in DESCRIPTION.  (WRB) 

    !   920501  Reformatted the REFERENCES section.  (WRB) 

    !***END PROLOGUE  DROT 

    DOUBLE PRECISION DX, DY, DC, DS, ZERO, ONE, W, Z 

    DIMENSION DX(*), DY(*) 
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    SAVE ZERO, ONE 

    DATA ZERO, ONE /0.0D0, 1.0D0/ 

    !***FIRST EXECUTABLE STATEMENT  DROT 

    if (N  <=  0 .OR. (DS  ==  ZERO .AND. DC  ==  ONE)) go to 40 

    if (.NOT. (INCX  ==  INCY .AND. INCX  >  0)) go to 20 

    ! 

    !          Code for equal and positive increments. 

    ! 

    NSTEPS = INCX * N 

    DO 10 I = 1, NSTEPS, INCX 

        W = DX(I) 

        Z = DY(I) 

        DX(I) = DC * W + DS * Z 

        DY(I) = -DS * W + DC * Z 

10  CONTINUE 

    go to 40 

    ! 

    !     Code for unequal or nonpositive increments. 

    ! 

20  CONTINUE 

    KX = 1 

    KY = 1 

    ! 

    if (INCX  <  0) KX = 1 - (N - 1) * INCX 

    if (INCY  <  0) KY = 1 - (N - 1) * INCY 

    ! 

    DO 30 I = 1, N 

        W = DX(KX) 

        Z = DY(KY) 

        DX(KX) = DC * W + DS * Z 

        DY(KY) = -DS * W + DC * Z 

        KX = KX + INCX 

        KY = KY + INCY 

30  CONTINUE 

40  CONTINUE 

    ! 

    return 
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    end 

    !------------------------------------------------------------------------- 

    !>No.5 DROTG 

    !------------------------------------------------------------------------- 

    subroutine DROTG (DA, DB, DC, DS) 

    ! 

    !! DROTG constructs a plane Givens rotation. 

    ! 

    !***PURPOSE  Construct a plane Givens rotation. 

    !***LIBRARY   SLATEC (BLAS) 

    !***CATEGORY  D1B10 

    !***TYPE      DOUBLE PRECISION (SROTG-S, DROTG-D, CROTG-C) 

    !***KEYWORDS  BLAS, GIVENS ROTATION, GIVENS TRANSFORMATION, 

    !             LINEAR ALGEBRA, VECTOR 

    !***AUTHOR  Lawson, C. L., (JPL) 

    !           Hanson, R. J., (SNLA) 

    !           Kincaid, D. R., (U. of Texas) 

    !           Krogh, F. T., (JPL) 

    !***DESCRIPTION 

    ! 

    !                B L A S  Subprogram 

    !    Description of Parameters 

    ! 

    !     --Input-- 

    !       DA  double precision scalar 

    !       DB  double precision scalar 

    ! 

    !     --Output-- 

    !       DA  double precision result R 

    !       DB  double precision result Z 

    !       DC  double precision result 

    !       DS  double precision result 

    ! 

    !     Construct the Givens transformation 

    ! 

    !         ( DC  DS ) 

    !     G = (        ) ,    DC**2 + DS**2 = 1 , 
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    !         (-DS  DC ) 

    ! 

    !     which zeros the second entry of the 2-vector  (DA,DB)**T . 

    ! 

    !     The quantity R = (+/-)SQRT(DA**2 + DB**2) overwrites DA in 

    !     storage.  The value of DB is overwritten by a value Z which 

    !     allows DC and DS to be recovered by the following algorithm. 

    ! 

    !           If Z=1  set  DC=0.0  and  DS=1.0 

    !           If ABS(Z)  <  1  set  DC=SQRT(1-Z**2)  and  DS=Z 

    !           If ABS(Z)  >  1  set  DC=1/Z  and  DS=SQRT(1-DC**2) 

    ! 

    !     Normally, the subprogram DROT(N,DX,INCX,DY,INCY,DC,DS) will 

    !     next be called to apply the transformation to a 2 by N matrix. 

    ! 

    !***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. 

    !                 Krogh, Basic linear algebra subprograms for Fortran 

    !                 usage, Algorithm No. 539, Transactions on Mathematical 

    !                 Software 5, 3 (September 1979), pp. 308-323. 

    !***ROUTINES CALLED  (NONE) 

    !***REVISION HISTORY  (YYMMDD) 

    !   791001  DATE WRITTEN 

    !   890531  Changed all specific intrinsics to generic.  (WRB) 

    !   890531  REVISION DATE from Version 3.2 

    !   891214  Prologue converted to Version 4.0 format.  (BAB) 

    !   920501  Reformatted the REFERENCES section.  (WRB) 

    !***END PROLOGUE  DROTG 

    DOUBLE PRECISION  DA, DB, DC, DS, U, V, R 

    !***FIRST EXECUTABLE STATEMENT  DROTG 

    if (ABS(DA)  <=  ABS(DB)) go to 10 

    ! 

    ! *** HERE ABS(DA)  >  ABS(DB) *** 

    ! 

    U = DA + DA 

    V = DB / U 

    ! 

    !     NOTE THAT U AND R HAVE THE SIGN OF DA 
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    ! 

    R = SQRT(0.25D0 + V**2) * U 

    ! 

    !     NOTE THAT DC IS POSITIVE 

    ! 

    DC = DA / R 

    DS = V * (DC + DC) 

    DB = DS 

    DA = R 

    return 

    ! 

    ! *** HERE ABS(DA)  <=  ABS(DB) *** 

    ! 

10  if (DB  ==  0.0D0) go to 20 

    U = DB + DB 

    V = DA / U 

    ! 

    !     NOTE THAT U AND R HAVE THE SIGN OF DB 

    !     (R IS IMMEDIATELY STORED IN DA) 

    ! 

    DA = SQRT(0.25D0 + V**2) * U 

    ! 

    !     NOTE THAT DS IS POSITIVE 

    ! 

    DS = DB / DA 

    DC = V * (DS + DS) 

    if (DC  ==  0.0D0) go to 15 

    DB = 1.0D0 / DC 

    return 

15  DB = 1.0D0 

    return 

    ! 

    ! *** HERE DA = DB = 0.0 *** 

    ! 

20  DC = 1.0D0 

    DS = 0.0D0 

    return 
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    ! 

    end 

    !------------------------------------------------------------------------- 

    !>No.6 DSCAL 

    !------------------------------------------------------------------------- 

    subroutine DSCAL (N, DA, DX, INCX) 

    ! 

    !! DSCAL multiplies a vector by a constant. 

    ! 

    !***LIBRARY   SLATEC (BLAS) 

    !***CATEGORY  D1A6 

    !***TYPE      DOUBLE PRECISION (SSCAL-S, DSCAL-D, CSCAL-C) 

    !***KEYWORDS  BLAS, LINEAR ALGEBRA, SCALE, VECTOR 

    !***AUTHOR  Lawson, C. L., (JPL) 

    !           Hanson, R. J., (SNLA) 

    !           Kincaid, D. R., (U. of Texas) 

    !           Krogh, F. T., (JPL) 

    !***DESCRIPTION 

    ! 

    !                B L A S  Subprogram 

    !    Description of Parameters 

    ! 

    !     --Input-- 

    !        N  number of elements in input vector(s) 

    !       DA  double precision scale factor 

    !       DX  double precision vector with N elements 

    !     INCX  storage spacing between elements of DX 

    ! 

    !     --Output-- 

    !       DX  double precision result (unchanged if N <= 0) 

    ! 

    !     Replace double precision DX by double precision DA*DX. 

    !     For I = 0 to N-1, replace DX(IX+I*INCX) with  DA * DX(IX+I*INCX), 

    !     where IX = 1 if INCX  >=  0, else IX = 1+(1-N)*INCX. 

    ! 

    !***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. 

    !                 Krogh, Basic linear algebra subprograms for Fortran 
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    !                 usage, Algorithm No. 539, Transactions on Mathematical 

    !                 Software 5, 3 (September 1979), pp. 308-323. 

    !***ROUTINES CALLED  (NONE) 

    !***REVISION HISTORY  (YYMMDD) 

    !   791001  DATE WRITTEN 

    !   890831  Modified array declarations.  (WRB) 

    !   890831  REVISION DATE from Version 3.2 

    !   891214  Prologue converted to Version 4.0 format.  (BAB) 

    !   900821  Modified to correct problem with a negative increment. 

    !           (WRB) 

    !   920501  Reformatted the REFERENCES section.  (WRB) 

    !***END PROLOGUE  DSCAL 

    DOUBLE PRECISION DA, DX(*) 

    INTEGER I, INCX, IX, M, MP1, N 

    !***FIRST EXECUTABLE STATEMENT  DSCAL 

    if (N  <=  0) RETURN 

    if (INCX  ==  1) GOTO 20 

    ! 

    !     Code for increment not equal to 1. 

    ! 

    IX = 1 

    if (INCX  <  0) IX = (-N + 1) * INCX + 1 

    DO 10 I = 1, N 

        DX(IX) = DA * DX(IX) 

        IX = IX + INCX 

10  CONTINUE 

    return 

    ! 

    !     Code for increment equal to 1. 

    ! 

    !     Clean-up loop so remaining vector length is a multiple of 5. 

    ! 

20  M = MOD(N, 5) 

    if (M  ==  0) GOTO 40 

    DO 30 I = 1, M 

        DX(I) = DA * DX(I) 

30  CONTINUE 
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    if (N  <  5) RETURN 

40  MP1 = M + 1 

    DO 50 I = MP1, N, 5 

        DX(I) = DA * DX(I) 

        DX(I + 1) = DA * DX(I + 1) 

        DX(I + 2) = DA * DX(I + 2) 

        DX(I + 3) = DA * DX(I + 3) 

        DX(I + 4) = DA * DX(I + 4) 

50  CONTINUE 

    return 

    end 

    !------------------------------------------------------------------------- 

    !>No.7 DSWAP 

    !------------------------------------------------------------------------- 

    subroutine DSWAP (N, DX, INCX, DY, INCY) 

    ! 

    !! DSWAP interchanges two vectors. 

    ! 

    !***LIBRARY   SLATEC (BLAS) 

    !***CATEGORY  D1A5 

    !***TYPE      DOUBLE PRECISION (SSWAP-S, DSWAP-D, CSWAP-C, ISWAP-I) 

    !***KEYWORDS  BLAS, INTERCHANGE, LINEAR ALGEBRA, VECTOR 

    !***AUTHOR  Lawson, C. L., (JPL) 

    !           Hanson, R. J., (SNLA) 

    !           Kincaid, D. R., (U. of Texas) 

    !           Krogh, F. T., (JPL) 

    !***DESCRIPTION 

    ! 

    !                B L A S  Subprogram 

    !    Description of Parameters 

    ! 

    !     --Input-- 

    !        N  number of elements in input vector(s) 

    !       DX  double precision vector with N elements 

    !     INCX  storage spacing between elements of DX 

    !       DY  double precision vector with N elements 

    !     INCY  storage spacing between elements of DY 
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    ! 

    !     --Output-- 

    !       DX  input vector DY (unchanged if N  <=  0) 

    !       DY  input vector DX (unchanged if N  <=  0) 

    ! 

    !     Interchange double precision DX and double precision DY. 

    !     For I = 0 to N-1, interchange  DX(LX+I*INCX) and DY(LY+I*INCY), 

    !     where LX = 1 if INCX  >=  0, else LX = 1+(1-N)*INCX, and LY is 

    !     defined in a similar way using INCY. 

    ! 

    !***REFERENCES  C. L. Lawson, R. J. Hanson, D. R. Kincaid and F. T. 

    !                 Krogh, Basic linear algebra subprograms for Fortran 

    !                 usage, Algorithm No. 539, Transactions on Mathematical 

    !                 Software 5, 3 (September 1979), pp. 308-323. 

    !***ROUTINES CALLED  (NONE) 

    !***REVISION HISTORY  (YYMMDD) 

    !   791001  DATE WRITTEN 

    !   890831  Modified array declarations.  (WRB) 

    !   890831  REVISION DATE from Version 3.2 

    !   891214  Prologue converted to Version 4.0 format.  (BAB) 

    !   920310  Corrected definition of LX in DESCRIPTION.  (WRB) 

    !   920501  Reformatted the REFERENCES section.  (WRB) 

    !***END PROLOGUE  DSWAP 

    DOUBLE PRECISION DX(*), DY(*), DTEMP1, DTEMP2, DTEMP3 

    !***FIRST EXECUTABLE STATEMENT  DSWAP 

    if (N  <=  0) RETURN 

    if (INCX  ==  INCY) IF (INCX - 1) 5, 20, 60 

    ! 

    !     Code for unequal or nonpositive increments. 

    ! 

5   IX = 1 

    IY = 1 

    if (INCX  <  0) IX = (-N + 1) * INCX + 1 

    if (INCY  <  0) IY = (-N + 1) * INCY + 1 

    DO 10 I = 1, N 

        DTEMP1 = DX(IX) 

        DX(IX) = DY(IY) 
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        DY(IY) = DTEMP1 

        IX = IX + INCX 

        IY = IY + INCY 

10  CONTINUE 

    return 

    ! 

    !     Code for both increments equal to 1. 

    ! 

    !     Clean-up loop so remaining vector length is a multiple of 3. 

    ! 

20  M = MOD(N, 3) 

    if (M  ==  0) go to 40 

    DO 30 I = 1, M 

        DTEMP1 = DX(I) 

        DX(I) = DY(I) 

        DY(I) = DTEMP1 

30  CONTINUE 

    if (N  <  3) RETURN 

40  MP1 = M + 1 

    DO 50 I = MP1, N, 3 

        DTEMP1 = DX(I) 

        DTEMP2 = DX(I + 1) 

        DTEMP3 = DX(I + 2) 

        DX(I) = DY(I) 

        DX(I + 1) = DY(I + 1) 

        DX(I + 2) = DY(I + 2) 

        DY(I) = DTEMP1 

        DY(I + 1) = DTEMP2 

        DY(I + 2) = DTEMP3 

50  CONTINUE 

    return 

    ! 

    !     Code for equal, positive, non-unit increments. 

    ! 

60  NS = N * INCX 

    DO 70 I = 1, NS, INCX 

        DTEMP1 = DX(I) 
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        DX(I) = DY(I) 

        DY(I) = DTEMP1 

70  CONTINUE 

    return 

    end 

 


