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Abstract 

An item may be said to reach a standard suitable for use if it has some prescribed 

attributes. Suppose that a variable 2: measures the standard and TE, if an item qT. 

has the desired attributes. The variable -T may be very expensive to measure and 

so, some cheaper to measure screening variables, X say, correlated to I may be used 
to classify items. The purpose of screen design is to determine CX, the region of X 

space, for which an item should be said to reach the standard. 

If the error probabilities of classifying an item based on X are very high it may 
be economical to measure IT. 

Chapter 2 deals with this idea in the context of a very 

simple two-stage set-up in which, at the first stage of the screen a univariate screening 

variable X is measured. Some items are sentenced as acceptable or unacceptable, 

and the remainder are passed on to the second stage at which T is determined. The 

optimal screen is found that minimises cost, where costs are given for misclassifying 

items and for measuring the variables. The variable T is assumed binary and the 

model for TIX is a probit regression model. 

In designing a two-stage screen, Chapter 3 considers: (a) a general stochastic 

structure for (1, X), (b) a general loss function set up for misclassification costs and 
(c) assumes no fixed form for the screen. Also in Chapter 3, we consider a scenario in 

which a statistical goal or constraint is imposed in addition to the decision-theoretic 

target of minimising expected cost. 

In Chapter 4 we consider a sequential screen that operates as follows. At each 

stage of a sequence a covariate is measured and items may be accepted as suitable, 
discarded or passed on to the next stage. At the final stage the performance variable 
T is measured. 

Returning to the simple one-stage screen based solely on measuring covariates, 
Chapter 5 poses the question of how many and which covariates to include as part of 

the screen. 
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Chapter I 

Screening 

In quality control, screening is the action of inspecting all items to check quality 

before shipment. With the development of automated manufacturing systems, such 

inspection has become more cost-effective and A. S. Q. C. (1987) reports that, at that 

time, about 85% of organisations used screening in their quality control procedures. 

Tang & Tang (1994) give a review of screening procedures in this context. Screening 

is also used in many other contexts, for example, medicine (Gastwirth (1987) and 

Geisser & Johnson (1992)), education (Thomas et al. (1977)) and in personnel se- 

lection, where employers often select only those candidates who score above a given 

level on a predetermined scoring scheme. In quality control (and analogously in other 

applications), the quality of the item, or the presence of attributes the item must have 

for it to be useful, can be described by a univariate or multivariate performance vari- 

able T. The item has the necessary attributes if I takes any of a known set of values, 

say 7: E CT, where CT 9 OT, and OT is the sample space of T. For example, for an 

electronic device to perform satisfactorily it may be the case that the voltage at an 

internal point must be within a known range of values. Here the purpose of screening 

is to assess whether the voltage, which is the performance variable, falls within the 

required range. If it is easy and inexpensive to do so, a screening procedure should 

simply measure the performance variable and discard items if appropriate. However, 

in many cases it may be expensive or destructive to measure T, and so the assessment 
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of the suitability of an item is based on the measurement of some cheap to measure 

variables X that are correlated to T. Classification using correlated variables will be 

cheaper but prone to error and so we have a trade-off between accuracy and cost. 
To measure the voltage at an internal point in an electronic device will involve disas- 

sembling the device and so instead, to assess whether the item might fail, one might 

measure the voltage at an external point on the device which is easier to measure 

and strongly correlated to the voltage at the internal point. The correlated variables 

are called screening variables and we denote as CX, the set of values of x for which 

an item is passed as acceptable by the screen. Many screens are based on corre- 
lated variables only, and here screen design is concerned with finding an appropriate 
Cx. Another set-up that involves measuring T on some items will be described in 

section 1.2 and is the focus of Chapters 2&3. 

Three main factors are considered in screen design: 

Objective or criteria. Two types of objective have been proposed as the purpose 

of a screen. One type considers statistical goals, that is, items accepted and 

rejected by the screen should attain goals in terms of P(7: E CT) and/or P(7: V 

CT). For example, an item accepted by the screen should have a high probability 

of being Suitable, or the rate of conforming items accepted by the screen should 

be high. The other type of objective follows a decision theoretic (economic) 

approach and sets a target of minimising cost for screen design. These two 

types of objective are, in some sense, interchangeable. A decision-theoretic 

set-up is implicit in the choice of statistical goal and a statistical goal will be 

explicit in the solution to the decision-theoretic objective. It may be the case 

that one wants to explicitly set both economic and statistical objectives. For 

example, in section 3.4, we design a screen to minimise expected cost and to 

satisfy a constraint on the proportion of items left unclassified by the part of 

the screen based on correlated variables. However, we see that imposing the 

constraint is essentially equivalent to increasing one of the cost parameters. 

Structure for (7:, X), The components of the performance variable can be dis- 
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crete or continuous. In the discrete case, the component is typically a binary 

variable denoting whether or not a desired attribute is present. Continuous com- 

ponents are often divided into three types: the-nominal-the-best, the-smaller- 

the-better or the-larger-the-better. For the purpose. of analysis it is simple to 

convert the former two types into the latter type. A nominal-the-best variable, 
by taking the inverse of the distance from the desired nominal value and, a 

smaller-the-better variable, by multiplying by -1. Such considerations should 

be part of the model selection process for (T, X). The covariates that are used 

in the screening variable X can also be discrete or continuous and it may be 

necessary to transform the variable in some way to suit the assumptions behind 

a chosen model or design. 

The backbone of screen design is the model for (7:, X). We denote the joint 

probability model for (7:, X) as p(f, x 12), where a is a vector of parameters. We 

learn about the relationship between T and X through the parameters 0 but, in 

a sense, they are nuisance variables and we wish to deal with the unconditional 
(predictive) model p(f, z) - There are three main approaches for obtaining such 
information, 

(i) Parameters known. In some rare cases the parameters of the probabil- 
ity model may be known, for example, they may be a function of some 

quantities in the manufacturing system. Here we just write 

P(t 1) = P(t 12 = i), 

where 0 is the known value of the parameters 0. Owen, McIntyre & 

Seymour (1975) develop a screening procedure assuming parameters are 
known. Clearly, when there is any uncertainty about the value of the pa- 

rameters one should construct a distribution to model the beliefs about 

their value (see (iii) below). 

(ii) Estimative approach. Suppose we have available training data in the form 

of a random sample (fl, il), (t2,12), 
.., 

(t,,, 1,, ) from the unscreened pop- 

ulation. One approach is to use the sample to obtain an estimate or 
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confidence interval for 0. The unconditional model may then be estimated 
by 

P(t 1) = Xt a= b), 

where & is the estimate of 0. Given a confidence interval for 0, intervals for 

various probabilities determined by p(t, I) could also be given. Such an 

approach is adopted in the context of screening by Owen & Boddie (1976) 

and Owen & Su (1977). Their methods generally involve tolerance region 

analysis. 

(iii) Predictive approach. Taking a Bayesian approach, knowledge about the 

parameters 0 is summarised by a probability distribution 7r(2). The distri- 

bution 7r (2) is based on a training sample on (7:, X) and/or other (prior) 

information about T and X. For example, in the case of a manufacturing 

process, knowledge about the interaction of the process parameters can 

be built into the distribution 7r(k). Now a predictive approach can be 

taken for the model in which we average over the uncertainty about the 

parameters 0, 

P(t 20 = 1ý0- [P(t, gde)l - 

We advocate the third approach as it is realistic, unlike the first approach, and 

takes full account of the uncertainty about the parameters within the coherent 

framework of a Bayesian analysis. In the remainder of this chapter we will focus 

on work that takes the third approach, referencing other works only when they 

present ideas yet to be covered by a predictive approach. 

In their review of screening procedures, Tang & Tang (1994) discuss the possi- 

bility of inspection error in the measurement of variables. For the performance 

variable, a measurement with error can simply be considered as another cor- 

related screening variable, see Tang & Schneider (1990). A screening variable 

with inspection error is simply another screening variable, with larger variance. 
This does lead to the question of how to obtain a training sample on the perfor- 

mance variable if it is always measured with error or is measured via destructive 
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testing. In the latter case, in a quality control context, the training sample may 
have been taken either (i) before or as the item is constructed, or (ii) once the 

item has been seen to work well or fail. However, (ii) can lead to the problem of 

verification bias, see Greenes & Begg (1985) for an explanation in the context 

a medical application. In such problems, the training sample is not a random 

sample from the population but is taken from a collection of cases in which 
(f, z) has been observed. However, the reason why (t, z) was observed may not 
be independent of (7:, X) and so, if the circumstances under which the the sam- 

ple is taken are not built into the model correctly, the inferences made about 

the population from which the sample is taken may be incorrect. For example, 

care must be taken to ensure that observed cases have no common factor that 

affects (7:, X) which will not generally be present in the population under con- 

sideration. While these issues are important they are beyond the scope of this 

thesis. 

Logistics. A number of practical considerations need to be taken into account 

in screen design. Is it possible or economic to measure the performance variable 
in any part of the screen? Are there any constraints on the measurement of 

screening variables? Is it appropriate to design a screen in which each screening 

variable is measured in turn with some items discarded at each stage? The 

decision-theoretic approach must consider what costs should be imposed and 

how they relate to each other. We consider some of-these topics as the thesis 

progresses, for further discussion see Tang & Tang (1994). 

1.1 Designing screens with statistical goals 

In this section we review literature in which the objective of screen design is to find 

the screening region Cx that satisfies some statistical criteria. 
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1.1.1 Global criteria 

A common motivation given for screening is to discard items so that those that 

remain contain a prespecified high proportion of conforming (good) items. That is, 

if we denote -y = P(j: E CT) as the pre-screening conforming rate, then the purpose 

of screen design is to find Cx? the values of x for which the screen accepts an item, 

so that 

P(7: E CTIX E Cx) = 6, (1.1) 

where 6 is some specified value with b> -y. 

How to attain this goal and whether it is attainable will depend on the performance 

variable, the specification region CT and the correlation between the screening and 

performance variables. When (1.1) is achievable, there may be multiple solutions for 

Gýx and, in such cases, it is suggested that the best of these solutions is the one that 

minimises 

6= P(7: E CTIX V Cx), 

that is, the rate of good items that are screened out. 

Normal models 

Boys & Dunsmore (1986) provide a Bayesian approach to the screening problem based 

on predictive probabilities. They take the case in which T and X are univariate and 

consider specification regions CT of the form [f , oo), (- oo, ul and [f , ul with f and/or 

u known in advance. For each case the authors take the natural form for the screen 

when X is positively correlated to T. That is, for CT = [f, oo) they assume that 

Cx = [w, oo) and for CT = [t, u] they assume that Cx = [v, w]. Situations ill which 

CT = (-oo, ul can be transformed to the case with CT = [f, oo) by multiplying the 

performance variable by -1. The target of screen design is then to find the screening 

parameters w or (V, W)T that satisfy the screening criteria based on (1.1) and (1.2). 
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Boys & Dunsmore describe a procedure to find the screening parameters in the case 

of a bivariate normal model for p(t, x16) with a conjugate prior distribution for 
-0. 

When X is multivariate and has p(> 1) components X= (XI, X2,.., 
,X 

)T, the P 
selection of a 'natural' form for the screening region Cx is not so straightforward. In 

an unpublished paper, Boys & Dunsmore suggest three forms for Cx, 

(i) a linear discriminant in which 

Cýx = 
jj: aTx > wl, 

with the p-dimensional vector a, aTa=1, and the constant w as the parameters 

of the screen design, 

(ii) a quadratic discriminant with 

cx = JZ: XTQj > WI) 

where Q is apXp matrix, and 

(iii) a region made up of separate regions for each component of X, 

Cx = cx, nCX2n... n cxs 

with each Cxj assumed to be of the form [wi, oo). 

Boys & Dunsmore investigate the construction of such screening regions in the context 

of a multivariate normal model for (T, X). 

Binary responses 

As the usefulness of an item is defined by a simple dichotomy on the performance 

variable, TE CT for a good item and TV CýT otherwise, an alternative approach to a 
full model for (T, X) is to model the relationship between. the dichotomy and X. In 

other words, if we define a new univariate performance variable T as T=1 if 
-T 

E CT 

and T=0 if TV CýT, we model (T, X) - This is a particularly useful simplification in 
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situations in which there is a complex multivariate performance variable that might 
pose difficult modelling problems. Also, such a simplification imposes less structure 
than the full normality of Boys & Dunsmore (1986). However, care should be taken 
that the advantages of a simple form for T are not outweighed by a loss in performance 
of the screen. The full model for (T, X) may be a much more accurate model for 

prediction purposes than a model relating a binary T and X. Also, when dealing with 
a decision-theoretic approach, care should be taken that any simplified cost structure 
is consistent with the full cost structure for (T, X). 

With T as a binary variable, the construction of screening regions is equivalent 

to designing a discrimination or classification rule with two groups. Hence a large 

amount of discrimination theory can now be applied to the screening problem. In 

such a set up, Dawid (1976) and Aitchison & Begg (1976) have distinguished two 

modelling approaches that factorise the joint model p(t, x1e). One is the diagnostic 

paradigm, which models the relationship between T and X through the conditional 

model for T given X, with p(t, 112) = p(tlj, ý)p(; Klý) where 0= (ý'±)T. Notice 

that the parameters ý and 0 are independent in the likelihood and so if they are 

also independent a priori, the parameters will be independent a posteriori. Under 

such circumstances the predictive models p(tliz) and p(gý) can be obtained separately. 
The second approach follows the sampling paradigm which factorises p(t, xJ0) as 

p(jzlt, 77)p(tJ3ý), with 0= (77', 0 T. Similar comments apply about the independence of 

the parameters and consideration of the predictive models. Dawid (1976) shows that 

diagnostic models are robust to verification bias. Connections have been made be- 

tween logistic models for p(t1j, ý) and a number of models for p(Ilt,! Z). For example, 

if AILIt = i, y), i=0,1, are multivariate normal with identical variance matrices, and 

p(tlV)) is Bernoulli, then the diagnostic model for p(tljz, ý) is linear logistic. A brief 

proof follows. 
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Suppose that XIT =i is NP (j! j, E), for 0,1. Also suppose that T is Bernoulli 

with P(T =I 1,0) = 0. Then 

P(T = llx, 1LO, pl, E,, O) 

p (11T = 1, Lýl, E) P(T 

p ý11T = 1, jLl, E) P(T =l IV)) +p (11T = 0, Ito, E) P(T = 017p) 

exp 
J_ (Z 

_ ! ýJ)T E_j (Z 
_ Zjj /2 10 

exp 
t_ (2 

_ jýl)T 
Z_, (z 

- Ij /2 e+ exp 
t_ (1 

_ 110)T Z_, (2 
-E- ý0) 

1- 

: 0) 
/21 (1 

exp f ýýT1S-1x - 2. TE-1p, /21 ýb 

eXp TE-1� - ETE-lml/21,0 + exp IMT 
0 _MTOE-1ti 

9)' 
0/21 

(1 ý 

Now reparameterise as follows, 

ao 
T1 

= -L! 6 E- 
_ILO/2 

+ log(l - 

al = _ILTE-1 IL /2 + log(o), 

This results in 

P(T=1jj, ceo, aj, &, pl) = 
exp (a, + ýTlg: ) 

exp (a, + ýTjj) + exp (ao + gj) 

_O)T - exp jai 
- ao + (gl - fl X) 

exp fal 
- ao + (21 - flo)TXI +1 

Reparameterising once more clearly shows that the above is a linear logistic model, 

exp ýo + ýTX) 

P(T =1 [L, Co, ý) =-/I + exp 
(ýo 

+ ýT 

where ýo = a, - ao and ý= fl, - _Po. 
El 

It has also been shown that Normal models for XIT, 71 with different variance 
matrices result in a quadratic logistic model for T IX, ý. 

The choice of paradigm often depends on the context of the problem and it is 

important to distinguish the different sampling schemes that may give rise to the 
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sample on (T, X) as they provide different information. Anderson & Blair (1982) 

distinguish the sampling schemes as follows. 

(i) Mixture sampling. In an observational study (also known as a natural experi- 

ment) all the sample values tj and ji are undetermined prior to the study and 

so they make up a random sample on (T, X). Anderson & Blair term this mix- 

ture sampling. In both the diagnostic and sampling paradigms the data can be 

used to produce posterior updates for all parameters, as we have information 

on TIX, X, XIT and T. 

(ii) X-conditional sampling. In a designed experiment, observations of T might be 

taken at fixed, predetermined values j,,.. This is termed x-conditional sampling. 
Here we only learn about the diagnostic conditional model for TIX and the 

sample values can be used to produce posterior updates for the parameters ý 

in the model p(tjj, k). The data can not easily be used to update any other 

parameters in either paradigm. In particular, nothing is learned about the 

marginal distribution of X and so a separate random sample on X may be 

taken to update the parameters 0. 

(iii) T-conditional sampling. An alternative form of designed experiment fixes the 

number of observations of X taken at each value of t, n, measurements are 

taken with t=1 and no measurements with t=0, where no and n, are chosen 

in advance and n= no + ni. This t-conditional sampling observes XIT and 

so the data can be used to obtain posterior updates of the parameters 77 in the 

conditional model p(jit, 77). A separate random sample on T might be taken to 

learn about the parameters 0. 

It is plain from the above discussion that the sampling scheme should be taken into 

account when determining the way in which the model p(t, gLjý) is factorised. Often 

the choice of sampling scheme is driven by the context of the problem. 

In Boys & Dunsmore (1987) (hereafter B& D) and Dunsmore & Boys (1987) 

(hereafter D& B), the authors take the case in which T is binary, modelling the 
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dichotomy that defines whether the item is acceptable. They discuss the construction 

of screen designs under both a diagnostic approach and a sampling approach. 

For the diagnostic approach, the authors assume a logistic model for TIX, ý with 

P(T = ljj, ý) =JT lo /(1 + 
JTlo), 

where xO = (1, X)T. D&B assume a multivariate normal model for p(jj 0) and, in 

the context of a medical example, find the screening region Cx of the form (1.3) that 

satisfies the screening criteria based on (1.1) and (1.2). As an alternative that reduces 

computation, both B&D and D&B propose dimensionality reduction schemes based 

on fixing q in (1.3) prior to screen design. For example, qTX could be chosen as (i) 

a principal component, (ii) the first crimcoord (Gnanadesikan (1977), p. 86) or (iii) 

Fisher's linear discriminant function. In addition, D&B suggest, for the case of a 
large training sample on (T, X), setting a as the maximum likelihood estimate of ý in 

the logistic model for TIX, ý. With a fixed and no longer a parameter of screen design, 

one can model in terms of the variable D= aTX rather than X and hence reduce 
dimensionality. For large data sets D can be assumed to be approximately normal and 

so a normal model is proposed for p(djo) with D univariate. Also, if X is multivariate 

normal, then D is normal. The authors discuss finding an appropriate screening 

region CD of the form Id :d -> w}, where w is the parameter that characterises 

screen design. 

In the sampling approach both papers suppose a normal model for p(lilt = i,!! ), 

i=1,0 and a binomial model for the number of successes (T = 1) in the training 

sample. D&B again assume a screening region of the form (1.3) and, for their 

example, obtain the region of that form that satisfies the global screening criteria. In 

D&B, the authors once more propose dimensionality reduction schemes and obtain 

screening regions of the form Id :d >- w} for D= aTX , where a is given by Fisher's 

linear discriminant. B&D take the case in which X is univariate (supposing that 

any dimensionality reduction has already taken place) and obtain CX that has the 

form [w, oo), the natural form of the screening region if X is positively correlated to 

T. 
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Nonparametric methods 

A nonparametric approach to the screening problem is proposed by Boys (1992). With 

T binary and X univariate, a kernel estimation method (Copas (1983)) is described 

for calculating the probability in (1.1) and, with Cx = [w, oo), a method for finding 

w is given. Another approach suggested is to smooth the empirical estimate of (1.1) 

which is given by 

number of sample cases with ti =1 and xi ý! ?v 
number of sample cases with xi >w 

A note of caution 

It may not always be possible to find a Cx that satisfies (1.1) and Liu (1992) gives 

an upper bound on achievable values of 6. Liu also considers screening under the 

bivariate normal model of Boys & Dunsmore (1986) and shows that, when X and T 

are positively correlated, the screening region that satisfies (1.1) and minimises (1.2) 

may not be of the form Cx = [w, oo) when CT is of the form = [t, oo). 

1.1.2 Local screening 

So far we have discussed the construction of screens designed to satisfy (1.1) with 
any indeterminacy avoided by minimising the error probability in (1.2). Suppose that 

one of the items passed by the screen is picked at random. What is the probability 

that the item is acceptable given all that we know about it? We know that it is an 
item that has been passed by the screen and so we might say that the probability 
that it is suitable is 6 in (1.1). However, after screening we also know x for each 
item and so we can calculate (or approximate) P(7: E CT11). This probability may 
be greater than or less than b for an item passed by the screen. P(j: E CýTj! ) is 

a local statement about each individual item given the measurement of X for that 
item. P(7: E CTIX E Cx) is a global statement about all the items that are passed 
by the screen. The global statement averages P(T E CTIX) over the conditional 
distribution of XJX E Cx- 
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Wong, Meeker & SelwYn (1985) and Dunsmore & Boys (1987,1988) suggest a local 

alternative to the global criterion given by (1.1). The screening region Cx is required 

so that 

P(T E CTIX) 
ý! 6L for xE Cx, 

6L for xV CýX, 
(1.4) 

for some specified 6L. This criterion ensures that each item passed by the screen has 

a suitably high probability of being acceptable. Note that choosing 6L =6 is Unlikely 

to give the same screening region Cx for the global and local screens. In fact, a 

screening region that satisfies (1.4) will give P(7: E CTIX E Cx) at least as big as 

6L, as under (1.4), 

P(I: C- CTIX E Cx) 
- 

Ex f P(I: (z- CT IX)I(X E Cx) 1 

P(X E Cx) 

>E 
P(X E ix) 

where 

Normal models 

I(X E Cx) =I 
1 if E CX, 

otherwise. 

With T univariate and a single screening variable X, Wong, Meeker & Selwyn (1985) 

describe a predictive approach to screening under (1.4), with p(t, x12) bivariate normal 

and conjugate priors for 0. When T and X are positively correlated, they obtain Cx 

that has the natural form [w, oo) for the one-sided specification region CT = [f, oo). 

With an increase in the number of screening variables X, the local approach is 

also taken by Tsai & Moskowitz (1986) who term the probability P(T V CT11), the 

individual nonconforming probability (INP). The INP for those items retained by 

the screen is called the individual unit misclassification error (IME). The screening 

criterion is given as: 

IME <, 8 P(T V CT 11) :5P for xE Cx, 
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where P is predetermined. With P=1- 6L, this criterion is equivalent to the rule 

in (1.4). The authors' approach takes a one sided specification region for univariate 

T with CT = [t, oo) but assumes no form for CX. Instead, once X=x has been 

measured, they propose calculating P(T E CT11) for each item and then comparing 
P(T E CTJx) with the criterion (1.4) to determine whether the item should be ac- 

cepted. The screening procedure is described in the context of a multivariate normal 

model for p(t, x 12), with parameters assumed known. Under the same modelling as- 

sumptions, Moskowitz & Tsai (1988) and Moskowitz, Plante & Tsai (1993) extend 

this approach to multi-stage screening procedures in which a covariate is measured 

at each stage of the screen. If we denote as '. T the values of the covariates measured 

up to and including stage i of the screen, then, at stage i, an item is accepted as 

useful if P(T E CTI'x) > 61 and ail item is rejected if P(T E CTI'-. T) 62, where 

61 and 62 are prespecified. Those items that are unsentenced are passed on to stage 

i+1. At the final stage of the screen all items are sentenced by the rule in (1.4) 

with 6L = 61. The motivation behind this sequential procedure is to save cost - the 

screen may sentence an item without the need to measure all of the covariates. In 

the conclusion of the paper, the authors suggest that 61 and 62 might be chosen using 

decision theory. 

Binary responses 

For the case in which a univariate T is binary and X is univariate, Dunsmore & Boys 

(1988) compare screening regions constructed under the local and global screening 

criteria. The global approach is as described in Boys & Dunsmore (1987) and the local 

screen is constructed under the same modelling assumptions. In the local approach, 

all that is required is an expression for the probability P (T = 11 x) with Cx then given 

as those values of x for which P(T = 1jx) is greater than 6L- Under the diagnostic 

paradigm the authors take a logistic model for TIX, ý and assume that the posterior 
distribution of ý is approximately normal. Under three different approximations to 

P(T = lix), they show that the form of P(T = 1jx) is reasonably straightforward 
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and, supposing that Cx is of the form [W, oo), the screening parameter w is easy to 

obtain. It is seen that an advantage of a local screen designed under a diagnostic 

approach is that no model for X is required. The sampling approach takes a normal 

model for X IT = i, 77, i=1,0, a binomial model for the number of cases with t=1 

and vague priors for the parameters. Again, there is a simple form for P(T = lix). 

The local and global screens are compared for a numerical example With 6= 6L- In 

both approaches the authors assume that Cx is of the form Ix :x> wl and it is 

seen that w for the local screen is larger than w for the global screen. Hence, in their 

example, the local screen will discard more items than the global screen. 

Nonparametric methods 

A nonpararnetric approach for obtaining a local screening procedure can be adopted 
by taking a kernel estimate (Copas (1983)) for the regression function P(T = 1jx) 

and then solving (1.4); see Boys (1992). 

1.1.3 Other statistical screening criteria 

Turkman & Amaral Turkman (1989) report that the global screening condition (1.1) 

has drawbacks. Rule (1.1) may not be attainable and when attainable, the misclas- 

sification probability (1.2) may be raised to unacceptable levels. An alternative is 

proposed in which the screening region Cx that maximises P(7: E CTIX E Cx) is 

found, subject to a given acceptance rate a= P(X E Cx). The rate a is termed the 

size of the screening region. A solution is produced that assumes no fixed form for 

the region Cx and that is equivalent to the local screening condition in (1.4) with 
6L = k-y, where k is chosen to ensure the appropriate size a. The authors propose 

that the size of the screen might be chosen using decision theory, see section 1.2. The 

method is illustrated under a predictive approach with a bivariate normal model for 

P(t, x 10)- 

Another screening problem is posed by Owen, Li & Chou (1981). Values of C, 
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m and k are given and a screen is constructed so that, with probability C, at least 

m of k items retained by the screen are acceptable. Writing V for the unknown 
number of acceptable items among the k that are retained, the first step is to find 

bm = P(j: E CTIX E Cx), the probability that a retained item is acceptable, that 

satisfies 

P(V > ? nlk, 6,,, ) = C. 

The random variable V is binomial with k 'trials' and probability 6,,, of a 'success'. 

Hence, 6,,, is required so that 

After solving for 6,,,, the screening region Cx that satisfies P(7: E CTIX E Cx) = bm 

can be found using methods referenced in section 1.1.1. 

Tang & Tang (1994) report on two interesting ideas which we will not discuss 
beyond this section. One is group testing, in which it is possible to simultaneously 

test a group of items to determine whether the group contains one or more bad items. 

If the group fail the test, the items are tested individually. The other is the idea of 
burn-in testing which is appropriate for types of items that are likely to fail only 
in early use and so they are submitted to a rigorous bur n-in period of use before 

shipment. 

1.2 Designing screens using decision theory 

In a decision-theoretic approach to screen design, losses are assigned depending on 
both the action of the screen (retain or discard) and the performance of the item. 

A screen based on covariates retains an item if XE Cx and so the possible losses 

incurred by screening an item can be described by the following table. 

1: E CT 2: ý Cr 

E Cx C.. C., 

0 ck c,,, (t, x) c,,. (t, x) 
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The costs c ... 
(t, 2: ) and c,, (t, j) are paid when the screen accepts a good item or 

rejects a bad item, respectively. Misclassification costs are paid when the screen 

wrongly assigns an item, these are: q,, (t, i), the cost of retaining an unacceptable 
item and c,. (t, x), the cost of discarding a good item. Additionally, there may be a 

cost for operating the screen denoted c,. 

The ranking by size of these costs and the choice of appropriate loss functions will 

depend on the context of the problem. However, it is generally agreed that c,,, (t, 11) 

denotes the smallest of the costs (in reality it is usually negative and hence a profit) 

and it is usually set at zero, with the other costs assessed relative to it. 

In a medical context c, (t, 2z) might also be set to zero indicating that a correct 
diagnosis by the screen, whether positive or negative, is equally beneficial. In any 

case? crr(t, x) will usually be small in comparison with the costs of misdiagnosis given 

by c, (t, x) and c,,, (f, x), and so is often considered negligible. 

Quality control literature often assumes that the loss function for rejection is the 

same whether the item is good or bad, with c,. (t,., r) = c,, (ta) = c*,! ). In such a 

scenario, the cost of rejecting an item c, (f, 1) represents the cost of sending the item 

for repair, or the loss in sales from the item being discarded or sold at a reduced 

price. 

Normal models 

Under a bivariate normal model for p(t, xJ6), Boys & Dunsmore (1986) suggest a 
decision-theoretic approach to screening with penalties for misclassification only. For 

the case in which CT = [E, oo), the screening region is assumed to be of the form 

CX = [w, oo), and w is chosen to minimise the expected cost of screening an item, 

given by 

IC(w) = Expected cost of wrongly discarding the item 

+ Expected cost of wrongly retaining the item, 
00 W 00 

00 
Cra (t, x)p(t, x) dX dt + 1W 

Car (t, x)p(t, x) dx 
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where p(t, x) is the predictive distribution for (T, X). The solution for the case in 

which c,,, (t, x) and c, (t, x) are positive constants is described. 

Tang (1987,1988a) also assumes bivariate normality but supposes that parameters 

are known. In the former paper, Tang (1987), the author assumes that CT and Cx are 

of the same form as Boys & Dunsmore (1986) but considers a different loss function 

set-up. With c ... 
(t, x) = 0, c,,, (t, x) is the cost of acceptance which is paid when a 

customer is dissatisfied with a substandard item. Three loss functions are considered 

for c, (t, x), namely, 

Car (t, X) = V, 

Car (t, x)= b(9 - t), 

Car (t, x) =k (f - t) 2 

(1.5) 

where v, b and k are positive constants. The first cost function denotes cases in 

which dissatisfaction with an item is the same however bad it is. The latter two loss 

functions denote increased dissatisfaction with items as performance level decreases. 

Tang supposes that the cost of rejection is constant for all items, with c,,, (t, i) = 

Crr (L X) = Cr - 

In Tang (1988a) the performance variable has an 'ideal' value, -r say, and accept- 

able items are those with t close to r. The screening region Cx is assumed to be of 

the form [v, w] and a cost for quality is assigned to those items that are accepted by 

the screen. This cost is given by various functions of 1r - tj similar to those in (1-5). 

A constant cost for rejection is again imposed. Based on this approach, Tang & Tang 

(1989) make a technical note that concerns situations with a multivariate screening 

variable X and suggest dimensionality reduction schemes based on taking a linear 

combination of the components of the screening variable as in (1.3). In the context 

of a multivariate normal model for T, X12 with parameters known, for constructing 

a screening region of the form (1.3), it is shown that the optimal linear combination 

of the screening variables has coefficients -a 
that maximise corr(JX, T). 
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Binary responses 

In the simple case with constant misclassification costs c, and C', Kim & Bai (1990) 

examine the case with T binary, X univariate, and CX = [w, oo). Under the diag- 

nostic modelling approach they take a logistic model for p(tlx, ý) and in the sampling 

approach use normal models for p(xlt, 71). They consider cases in which the parame- 

ters are known or are estimated from a sample on (T, X). 

Boys & Glazebrook (1992) consider the same set up as Kim & Bai but restrict 

themselves to the diagnostic modelling paradigm with p(tlx, ý) modelled by a probit 

regression. The advantage of this choice of link function is that, in a predictive 

approach, the probability P(T = lix) has a closed form when the distribution for 

ý is normal. The parameters of the probit model are approximately normal when 

their distribution is based on a large sample and relatively weak prior information 

(see Lindley (1961)). Under a normality assumption for ý, the authors give a solution 

which is simple and intuitive in terms of model parameters. Also, a robustness study 

shows that the expected cost of screening an item under their optimal designs is 

robust to departures from the normality of 6. Note that, here, under the diagnostic 

paradigm, no model for p(x) is needed to construct Cx. Recall that this was also 

the case in the solution for the local screening criterion (1.4) under a diagnostic 

modelling approach. However, a model for p(x) is needed to compute expected costs 

for comparison purposes. 

The optimal screening region under costs for misclassification 

The Turkman & Turkman (1989) paper referred to in section 1.1.3 suggests a decision- 

theoretic approach to the screening problem. With losses for misclassification, the 

authors show that the optimal screening region Cx contains those X for which ac- 

ceptance is cheaper then rejection, a very intuitive and simple result. They also show 

that, when c.,. and c,. are constants, their decision-theoretic solution is equivalent 

to the local condition (1.4) with bL = c,,, I(c,,, + c,. ). 
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A two-stage screen 

The classification of items based on measurements of correlated variables is prone to 

misclassification errors. Although the performance variable is usually expensive to 

measure it may still be worthwhile doing so if the probability of a misclassification 
based on X is high enough. For the unrealistic case in which model parameters are 
known, Tang (1988b) develops a two-stage procedure in which the first stage is based 

on a correlated variable and at the second stage the performance variable is measured 
for those items left unsentenced by the first stage. A decision-theoretic approach is 

taken with a cost for measuring the performance variable, C', ' say, added to the cost 

structure assumed in Tang (1987). Under a bivariate normal model with known 

parameters and with T and X positively correlated, the first stage of the screen is 

assumed to take the form: if 
_x E (-oo, v] then reject the item, if 

_x E [w, 00) then 

accept the item, otherwise pass the item to the second stage where T is measured. 

In this set up, values for the design parameters (v, w) T, v<w are obtained with 

Car (t, x) given by each of the three loss functions in (1.5). The paper concludes with 

a study of the sensitivity of the expected cost of an optimal design to the choice of 

loss function. 

1.3 Overview of the thesis 

Here we briefly describe the content of the thesis with reference to the literature 

reviewed above. Further information and motivation is given in the introduction to 

each chapter. 

In a decision-theoretic framework, Chapter 2 considers the two-stage screening 

procedure suggested by Tang (1988b) with T binary and X univariate. As already 

mentioned, we advocate predictive models and the simple and robust solution ob- 

tained by Boys & Glazebrook (1992) prompts us to follow their approach with con- 

stant costs for misclassification and a probit regression model for TJX, ý- For X 

positively correlated to T, the form of the first stage of the screen is assumed to 
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be the same as in Tang (1988b). Simple solutions are obtained for the screening 

parameters v and w and the method is illustrated by an example. 

Whereas Chapter 2 concerns the simple case of a two-stage screen under specific 

cost and modelling assumptions, Chapter 3 allows: (a) a general stochastic structure 
for (7:, X), (b) a more general loss function set up for misclassification costs and (c) 

assumes no fixed form for the screen. The optimal screening regions are obtained and 

the solution is illustrated in the context of the probit regression model of Chapter 2. 

The solutions obtained in Chapter 2 are shown to be cost-optimal under conditions 

on the parameters of the model and the misclassification costs. Also in Chapter 3, 

we consider a scenario in which a statistical goal or constraint is imposed in addition 

to the decision-theoretic target of minimising expected cost. We suppose that there 

are limited resources for measuring the performance variable and so a constraint is 

placed on the proportion of items passed to the second stage of the screen. The 

solution obtained for this constrained problem is intuitive: if too high a proportion of 

items are passed through to the second stage, the cost of measuring the performance 

variable is increased. The example of Chapter 2 is extended to illustrate the methods 

presented in Chapter 3. 

In Chapter 4 we propose a sequential screen similar in form to that described in 

Moskowitz, Plante & Tsai (1993). At each stage of a sequence a covariate is measured 

and items may be accepted as suitable, discarded or passed on to the next stage. At 

the final stage the performance variable T is measured. The simple designs found in 

Chapter 2 are used in a heuristic design to the sequential screen and the heuristic 

solution is described in full for the case of two covariates. The performance of the 

heuristic is assessed in a simulation study and in an illustrative example. 

Returning to the simple one-stage screen based solely on measuring covariates, 
Chapter 5 poses the question of how many and which covariates to include as part 

of the screen. As there may be a restriction on cost, it may not be possible to use 

all available covariates. Heuristics for choosing screening components are proposed 
that avoid the computationally intensive task of comparing expected costs and the 
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performance of these heuristics is assessed in a numerical study. 

Chapter 6 makes some final remarks about the techniques presented in the pre- 

ceding chapters and suggests some avenues for further research. 
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Chapter 2 

The economic design of a simple 

two-stage screen 

2.1 Introduction 

In this chapter we develop solutions for a two-stage screen as considered in Tang 

(1988b). A univariate correlated variable X is measured at the first stage and used as 

a screening variable. At the second stage a single performance variable T is measured 
for those items for which the first stage is inconclusive. The motivation here is that 

there may be economic advantages in reducing error probabilities by measuring T 

even when it is expensive to do so. 

In Tang's model all parameters are assumed known, a situation that is unrealistic. 

For the case in which T is binary, Boys & Glazebrook (1992) assume a probit model 
for TIX and, with asymptotic posterior distributions, yield an optimal design for the 

one-stage screen based only on the screening variable X. Their solution is easy to 

use and interpret. Here we use the model of Boys & Glazebrook in the context of a 
two-stage screen. 

In section 2.2 we develop Bayes optimal solutions for a two-stage screen when the 

model for (T, X) is as in Boys & Glazebrook. We assume large values of X imply 
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that T=1 and so investigate screens assumed to be of the fcrm: 

XE [w, 00) accept the item, 

XE (V, W) measure T; 

XE (-00, V] reject the item. 

We also show that, under certain conditions, ail optimal screen of this form is prefer- 

able to at least one other alternative. Section 2.3 reviews some of the model as- 

sumptions of section 2.2 and discusses the robustness of our solutions to departures 

from these model assumptions. Also, section 2.3 gives mathematical details omitted 

from section 2.2. We give an illustrative example of the application of our method in 

section 2.4. The example would be more commonly thought of as a discrimination 

problem but screening theory is equally applicable. 

2.2 A Bayes optimal two-stage screen 

Suppose that the performance variable T is a binary response variable with T=1 if 

and only if an item meets the standard and should be accepted. Otherwise T=0 and 

the item is not fit for use and should be rejected. We think of T as a "gold standard" 

measurement, and so assume that measurement of T is error-free. Further suppose 

that the screening variable X is continuous with marginal density function O(x) and 

that the dependence of T on X is expressed through a generalised linear model with 

P(T =1 Ix, ý) = F(ýo + &), 

where F is a link function. Here F is required to be a monotonically increasing 

function that maps R into (0,1). Hence 

P(T = llx) F(ýo + ýjx)r(ý)q, 

where the distribution of the regression parameters, 7r(ý), summarises our posterior 

beliefs about ýo and ý1. The distribution 7r(ý) may be based on a sample of data, 
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from past measurements of (T, X), and/or prior information about ý. Note that 7r(ý) 
does not change after observing x. 

For the moment we shall assume that large values of X tend to indicate that the 
item meets the standard (T = 1). This larger-the-better assumption corresponds to 

the model assumption that ý, > 0. Since measuring T is expensive, we shall consider 

a screen which, where possible, eliminates the need for T to be measured. Taking into 

consideration the assumptions made above, it is natural to design a screen in which, 

when X is above a cut-off point, w say, the item is accepted. Similarly, the design 

should include a cut-off point, v say, such that if X<v the item is rejected. This 

eliminates the need to measure T for items that we are reasonably sure of correctly 

classifying using the screening variable only. When v<X<w, we remain unsure 

whether to accept or reject the item and it is necessary to measure T. Graphically, 

we consider a screen of the form 

accept 

w 
I 

continue 

v 

reject 

that is, we accept an item only if X>w or v<X<w and T=1. The above 

screening procedure is characterised by the values of v and w and we shall determine 

optimal values for these quantities using Bayes decision theory. 

Suppose that the cost structure of the screening mechanism is as follows. The 

unit cost incurred by rejecting a good item using the X-screen is C, and that incurred 

by accepting a bad item is c, The costs (per item) of measuring X and T are c, and 

c,,, respectively. The Bayes cost (expected cost) of screening an item is therefore 

IC(v, w) = c, P(reject a good item) + c. P(accept a bad item) 

+ c. P(need to measure T) + c, P(need to measure X). 
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In terms of the screen design above, 

IC(v, w) = cP(T= 1, X < v) +c. P(T= O, X > W*) 
+c .. P(v <X< W) + C, I(V, W), -00 <v<w< 00, 

where 

I(V, W) 
1, if either v or w are finite, 1 

0, otherwise. 

Note that, if -oo <v=w< oo then we have a reduction to a one-stage screen in 

which sentence is passed on the basis of X only. If both v and w take limiting values 
X is not measured. In the three cases in which both v and w are not finite the screen 

acts as follows: 

(i) in the limits v -4 oo and w --+ oo, the screen rejects all items without measuring 
X or T, 

(ii) in the limits v --+ -oo and w --4 -oo, the screen accept all items as reaching 

the standard without measuring X or T, 

(iii) in the limits v -+ -oo and w -+ oo, the screen measures the performance 

variable T on all items. 

In all of these reductions (2.1) gives the appropriate cost. 

The penalties incurred given the decision based on the X-screen for finite v and 

w are illustrated below. 

q, P(T = OIX > w) 

w 
I 

continue 

c, P(T = lIX < v) 

Ca 

CM 
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Definition 2.1 (v*, w*) is a Bayes design if 

IC(v*, w*) = inf IC(v, w), 
V, W 

where the above infimum is over all (v, w) satisfying -oo <v< iv < oo. 

Note from (2.1) that, once X has been measured, a decision to measure T will never 
be optimal if c,,, > min(c,, c,,, ). When c,, > min(c,, c,, ) and for any choice of v and w, 

clearly c,, will always be greater than minf cP(T = 11X < v), c,, P(T = OIX > w)}, 

and so T should never be measured. 

When IC(v, w) is not minimised in the limit as v --+ ±oo and w --+ ±oo consider- 

ation of the turning points of 

/C'(V, W) = /C(V, W) - C, I(V, W) 

will yield a Bayes design. IC'(v, w) is the Bayes cost per item, the cost of measuring 

excepted. Expressing this cost in terms of the statistical model we obtain 

v IC'(v, w) = c, 
I F(ýo + ýjx)r(ý), O(x)<dx 

00 F (6o + ý, x)} 7r (x) cKdx + Ca 
I' 

w 

c.. O(x)dx -00 < v, w < 00. 

Note from the above that we deem IC to be defined by this formula for all pairs (v, w) 

and not only those with v<w. However, from the perspective of the development 

of Bayes designs, it will plainly be of interest to determine when IV has a minimum 

(VI, w') such that -oo < v' < w' < oo. From the subsequent analysis it emerges that 

a necessary condition for this is that c. - I+c, -. '<c;. See comment 2 of Theorem 2.1. 

Trivially, 

v 
I)C'(v, w)} V)(v) 

fc, f F(ýo + c,. (2.2) 

IK'(v, W)} O(W) 
fCa f F(ýo + ýjw)7r(ý)q ca + c. 

1 

W 

27 



and hence the turning points (v, w) satisfy 

F(ýo + F(ýo + ýjw)7r(ý)q E! 2. (2.3) 
Cr c Ca 

Note that V)(x), the marginal density of X, plays no part in the solution. Also, as 

equations (2.3) are not coupled and are of a similar form, the determination of the 

turning points of IV is fairly straightforward. 

We now investigate, in detail, the solution when TIX follows a linear probit re- 

gression, that is, F =- 4), where 4) is the standard normal cumulative distribution 

function. Hence 
Co+Cix 

P(T =1 Ix, 4)(ýo + 
00 

O(z)dz, 

where 0(. ) is the standard normal density function. We also assume that the re- 

gression parameters ý follow a bivariate normal distribution, N2 (M, S), say. This 

would be (approximately) the case if 7r(ý) were a posterior distribution based on 

a sufficiently large sample of (T, X) so that 7r(ý) may be well approximated by its 

asymptotic normal form. In this case, m is the maximum likelihood estimate for ý 

and S is the inverse of Fisher's information matrix evaluated at m. To make the 

notation more explicit we write 

Mo S2 0 rsos, 

2 Ml rsos, sI). 

So, for given v and w, 

77 ýo + 6, v - N(mo + mlv, s2+ 2vrsos, +v2s 2) (2.4) 01; 
C 6o + ýjw - N(mo+ MlW, S2 2 2). 

0+ 2wrsosl +ws, 

The following result enables us to show that, by inserting the probit link function 

and under a normality assumption for ý, the left hand sides in equations (2.3) are in 

a closed form. 

Lemma 2.1 If Y- N(p, u2) then 

E 1-1)(Y)} = 41) 
1 IL 1 

(2.5) 
(i + U2)1/2 
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Proof 

a-lff',,, 4)(y)0j(y-jL)/o-jdy, 

P(Z < Y), where Z- N(O, 1) and Y are independent, 

P(Z-Y<O)) 

= 4) 1 ILI (1 + 4or2)1/21 . 
ED 

With a probit link function, the left hand sides in (2.3) are Ef (4) (71)} and Ef (4) (()1 

respectively. Asq and C both have normal distributions (see (2.4)) then, by Lemma 2.1, 

equations (2.3) become 

+S2 

mo + 7711V 

2 2)1/2 ki; (2-6) 
0+ 2vrsos, +vs, 

4) 
+82 

7710 + 77117V k21 

0+ 2wrsos, + W2S2)1/2 I 

where k, = c,, Ic, and k2 =1- Cm/Ctt- 

Without loss of generality we may assume that ? no = 0,51 =1 and ? nj > 0. 

If si :A1 or mo 00 then a change of regression parameters from (Co, ý1) to (CO - 

moCi/mi, Cilsi) ensures that s, =1 and mo = 0. If m, <0 then a further change in 

parameters from (CO, Cj) to (Co, -Cl) results in a case with m, > 0. See section 2.3.8 

for the resultant data transformations. Note that when mo = m, = 0, equations (2.6) 

have no solutions in which v and w are finite. Under the assumptions that mo = 0, 

s, =1 and m, >0 equations (2.6) simplify to give, 

g(v) = C, and g(W) = C2v (2.7) 

where 
9(X) 

+ S2 

MIX 

0+ 2xrso + X2)1/2 

and ci = -I)-' (ki), i=1,2. Under these conditions, the following result describes 

exactly when there exist turning points (v, w) minimising ICI(v, w). Since equations 
(2.7) are not coupled, the turning points (v, w) can be determined by considering each 

variable separately, and so we analyse the functions ICI(u, w) for fixed wE (-00,00) 

and rs, '(v, u), for fixed vE (-oo, oo), in turn. 
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Theorem 2.1 Statements (a), (b) and (c) describe the turning points of IC(u, iv) 
for fixed wE (- oo, oo) - 

(a) When cl > 01 

(i) if m, > cl then 

+=2 2)(1 2-2} 1/2 (, n, 2 
Cl [rSo + Jr2SO + (Ml 

_01 C2) Ul cl +S )c 
1 

achieves a (global) minimum; 

(ii) if m, = cl, r<0 then u', = -(1 + s2o)/(2rso) achieves a (global) minimum; 10 
22+2 2)(1 + 

'62)C-2 (iii) if 0<m, < cl, r<0 and r so (Ml - cl 01>0 then u+j in (i) 

achieves a (local) minimum; 

(iv) in all other cases with mi > 0, there are no turning points. 

(b) Wlien ci < 01 

(i) if m, > -cl then 

2[rSo 
_ 

jr2S2 + (M2 -2}1/2 22 
u =c + S2)C 110101 

JAMI 
- cl) 

achieves a (global) minimum; 

(ii) if mi = -cl, r>0 then u', = _(1 + S02)1(2rso) achieves a (global) mini- 

mum; 

01 1)(1 + S2)C (iii) if 0< Mi < -cl, r>0 and r2S2 + (M2 
012>0 then u- in (i) 

achieves a (local) minimum; 

(iv) in all other cases with mi > 0, there are no turning points. 

t (c) When c, = 0, ul =0 achieves a (global) minimum. 

A description of the turning points of IC'(v, u) for fixed vE (-oo, co) can be found 

+I- t). by replacing (cl, u, ,u, u-, ut) in the above by (C2 
i U+ I U1 IU, U i112222 
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Proof 

The turning points of IC(u, w) for fixed w are solutions to 

g(u) = 
7nju (2.8) (1 + so + 2urso + U2)1/2 

= Cl* 

Since m, > 0, when cl =0 the only real u satisfying (2.8) is zero. Otherwise, the 

sign of cl and of any real solution ?t of (2.8) coincide. We square both sides of (2.8) 

and look for real roots which are positive for cl >0 and negative for cl < 0. The 

roots of the resulting quadratic are 

±= 
C2 [rSo ± 2S2 + (7112 

_ C2)(1 + S2)C-2}1/2] 2_ 
C2); mi :A cl, ul 1 Ir 01101 /(7n, I 

MI = Cl, u, = -(l + so)1(2rso). 

Under the conditions stated in (a) (i), (ii) and (b)(i), (ii) there is one real root with 
the appropriate sign, for (a)(iii) and (b)(iii) there are two candidate roots and for 

(a) (iv) and (b)(iv) there are none. 

To verify which of the above turning points represent a minimum we now look at 

the second derivatives of /C'(u, w) under the probit model (for fixed w). As equations 
(2.2) are not coupled it is enough to show that 02/CI(U, W)/, 9U2 >0 at the turning 

point concerned, for that point to represent a minimum. Now 

a'K'(u, w) (U) 
+ 

04) WU)} 
aU2 

b {g(U)} - au 
(u) 

au Cm au 

However, at a turning point, u* say, equation (2.6) gives 4) lg(u*)} = cm/c,, so 

al)v (U, W) = C"O(U*) CqU2 

lu=u* 

19U 

lu=u* 

Therefore, if we can show that g(u) is increasing in u at a stationary point then there 

exists a minimum of IV(u, w) for fixed w at that stationary point. 

Now 
, 9g (U) m, (1 + so + urso) 

49U (1 + so + 2urso + U2)3/2 
and so g (u) has only one turning point at u+ S2 0)/rso. To determine the nature 

of this turning Point we examine the second derivative of g(u) which is: 
a2 mlrso 3m, (1 + s02 + urso) (rso + u) g(u) 

=0 aU2 + sO + 2urso + U2)3/2 (1+82 + U2)5/2 0+ 2urso 
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Figure 2.1: Plots of 9(u) 

The second term of this second derivative is zero at the turning point. The square 

root in the denominator of the first term is a standard deviation term (see equation 

(2.5)) and we take the positive root. Hence, for a real g(u), the denominator of the 

first term is positive, as are ml and so, and the sign of r determines the nature of 

the turning point. 

If r<0, a maximum of g(u) occurs at u=u...... -= -(l + s')Irso. As g(u) has 0 

no other turning points for m, > 0, g(u) is increasing in u for all u<u,,.,, and 

decreasing in u for all u>u,,,,.,. See Figure 2.1(a). It is easy to see that 

1+S2 1/2 

g(U"' M, 0> mi and lim g(U) = mi. a1+ S2 - r2 Uý00 

10 

; io 

I 

As there is only one turning point, we have g(u) > m, >0 for all u> Umax- Hence 

g(u) is increasing in u for all non-positive and unique positive solutions of (2-8), 

(u+l in (a)(i), u', in (a)(ii), uT in (b)(i) and ut, in (c)). There are two positive real 
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roots under conditions given in (a)(iii), these are u-4- and ul-. As u,,,,., is the only 1 
turning point of g(u) one of the roots must be larger than u,,,,, and the other smaller. 
Under the conditions stated in (a) (iii) it is easy to see that ul < ul and conclude 

that ul < u,,,,,, < ul-. Hence ul occurs on the increasing slope of g(u) and is the 

location of a minimum. However the other real root, u-1 represents a local maximum 

suggesting that the minimum at ul may be a local minimum. In this case we must 

check that limu-,,,, IC(u, w) > IC'(ul , w). 

Similarly, if r>0, we can establish that g(u) is increasing in u for all non- 

negative and unique negative solutions of (2.8) (u+l in (a)(i), ? LT in (b)(i), u', in 

(b)(ii) and ull in (c)). See Figure 2.1(b). Of the two negative real roots, 71T and 

ul , found under the conditions stated in (b)(iii), the larger (smaller in magnitude) 

of the two, ul , represents a (local) minimum of IV(u, w). Here we must check that 

limU. 
-. 

)V(U' W) > IV(U1 , W). 

The analysis of turning points of IC'(v, u) for fixed vE (-oo, oo) proceeds in a 

similar fashion and so we omit the details. 0 

Comments 

1. In those circumstances where no turning points exist, IC'(v, w) is minimised in 

the limit as v -+ ±oo and/or w --+ ±oo. 

2. Suppose now that turning points do exist. The existence of a minimum satis- 

fying (2.7) requires that the function g(. ) be increasing at both v and w. Since 

g has only one turning point, it must follow that g is increasing at all values 

between v and w. Hence, for the pair (v, w) with v<w to minimise IC'(v, w), 

we require that cl < c2, that is 

r ca- I+ C-1 < CV. (2.9) 

When c, > C2 it will follow that minimising IC'(v, w) over the design space 

-oo <v<w< oo will be achieved at the boundary of the space. Either we 
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will have v=w or both of v and w taking limiting values. 

3. As IC'(v, w) has at most one local minimum, the global minimum is easily found 

using Theorem 2.1. For example, if C2 > MI > cl >0 then the global minimum 

of /C(v, w) is either at (u+j, u2+) or (u+j, oo), whereas if -cl > -c2 > m, > 0, the I 

global minimum is at one Of (711 
1 U2 ), (-001712 ), and (-oo, -oo). Note that 

(u-j, -oo) is not a solution of the constrained problem (v < w). 

4. These optimal designs arise from the minimisation of Bayes cost IC'(v, w). How- 

ever, K and IC' coincide when both v and w take infinite values. This corre- 

sponds to the degenerate case of not using the screening variable, either by re- 

jecting, accepting or measuring the performance variable on all items. Plainly 

when C is minimised in the limit as v -+ ±oo and w -+ ±oo then IC will be 

minimised by taking the same limit. Where one or both of the minima of IV 

are finite, it may still be cheaper not to use the screen and thereby save the 

screening cost c,. Therefore, before claiming the minima of IC' as a Bayes design 

we must verify that the associated Bayes cost IC is less than 

min lim K(v, w), jim K(v, w), lim K(v, w) - 00 --00 - -- 00 to-00 w- 00 

1 

5. We have described designs that minimise Bayes cost for the case in which the 

moments of the regression parameters are such that mo =0 and s, = 1. In 

section 2.3.8 we describe data transformations which change a case with general 

regression parameters to a problem of this form. Hence, once we have imple- 

mented these changes and found the optimal designs using Theorem 2.1, to 

recover the designs relating to the original general case of parameters, the data 

transformation should be reversed. Rearranging equations (2.16), the Bayes 

design (v*, w*) in the general case of regression parameters can be recovered 

from the Bayes design in the case with mo =0 and s, 1, given by (V, w') say, 

by the following equations, 
v MO 

*w 
MO 

v =- and w= (2.10) 
Sl MI Sl MI 
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If the original problem has m, <0 and a data transformation has been per- 
formed to obtain a case in which m, > 0, then the Bayes design for the original 

problem can be recovered via the transformations v --+ -v and w --+ -w. In 

this case it is likely that ý, <0 and it is intuitive that the screen is of the form 

in (2.11) below, that is: Accept the item if X<w, reject the item if X>v 

and measure T if w<X<v. 

6. The Bayes designs calculated using Theorem 2.1 are simple and easy to under- 

stand in terms of the cost parameters and the first and second moments of the 

regression parameters in the probit model. 

So far we have identified the optimal screening regions of the form: accept the 

item if XE [w, oo), reject it if XE [-oo, v) and measure T if XE (v, w). This is the 

natural form for the screen when C, > 0. An important question is whether regions 

of the above form are Bayes optimal when m, > 0. For example, is it possible that 

the procedure "accept the item if XE [-oo, w), reject it if XE [v, oo) and measure 
T if XE (v, w)" could achieve a lower expected cost when mi > 0? The following 

result shows that this cannot happen when V)(x) is symmetric (even when we ignore 

the constraint v< w). 

Theorem 2.2 If m, >0 and O(x) is symmetric then a screening procedure of the 

form "(II): accept the item if XE [-oo, w), reject it if XE [v, co) and measure T if 

E (w, V)" 

reject 

v 
I 

continue 

w 

accept 

x (2.11) 
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can always be improved on by using a procedure of the form "(I): accept the item if 

E [w, co), reject it if XE [-oo, v) and measure T if XE (v, w)" or by using no 

screen at all. ý 

The proof of Theorem 2.2 is given in section 2.3.9. Note that the assumed sym- 

metry of 0 is a much stronger condition than is actually needed for the theorem to 

hold. The crucial determinant of whether or not to screen is the size of nt, (The- 

orem 2.1), that is, in terms of non-standardised quantities, the size of ml/sl. It is 

plain that it will never be optimal to screen when m, = 0. In section 3.3.1 we provide 

more detailed conditions under which the form of screen assumed in this chapter is 

optimal. 

2.3 Details and discussion 

In section 2.2 we omitted discussion of the assumptions made in forming the solution. 

Here we comment on those assumptions and also give some mathematical details that 

were intentionally left out. 

2.3.1 The performance variable 

We assume that the performance variable, T, is binary, emphasising the divide be- 

tween an item reaching the standard (T = 1) and not (T = 0). In quality control this 

may relate to the dichotomy of items that will work well in use (T = 1) and those 

that will quickly fail in use (T = 0). When T is not binary and possibly multivariate, 

our method can be used in cases in which the dichotomy TE CT versus Tý CT 

can be summarised by a binary variable without loss in screen performance. Here 

the attributes necessary for an item to perform well are given by CT and the binary 

variable is set at 1 if the attributes are present and 0 otherwise. 

In section 2.2 we further assume that measurement of T is error free. When this 

is not the case and inspection error is present, Tang & Schneider (1990) show that 
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the observed value of the performance variable can be treated as a screening variable. 
In such a case we may wish to use this measurement of the performance variable as a 

second screening variable in a sequential screen (see Chapter 4) or in a batch screen 
(see Chapters 3& 5). 

2.3.2 The screening variable 

In our solution no assumption is made about the distribution of the screening variable 

X. Hence we can choose as the screening variable any function of a measurement 

on an item without concern for its distributional form. The choice of which function 

of the variable to use in the screen should be a made when ensuring linearity in the 

probit regression model for TJX. 

2.3.3 The relationship between T and X 

We have taken the diagnostic approach to factorising the joint model for (T, X), 

with the joint density p(t, x12) written as p(tlx, ý)p(XJO), where the parameters of the 

model are given by VT = (ýT, OT). Hence we use the standard form of binary response 

models. The design of a simple two-stage screen under the sampling paradigm is 

discussed in section 6.1. Questions of model adequacy and goodness of fit to data 

are always important but we will omit them here, see Collett (1991) for a thorough 

coverage of the issues. We further assume that ý1, the coefficient of X, is positive. 

This modelling set up is the natural way to describe a situation in which larger values 

of X imply that an item is more likely to reach the standard. In Chapter 1 we note 

that the form of a performance variable can be changed by a suitable transformation. 

The screening variable can be adjusted in the same way. For example, when X is a 

smaller-the-better screening variable, multiplying by -1 creates a larger-the-better 

variable. Also, when X close to some known nominal value implies that the item is 

more likely to reach the standard, then taking minus the distance from the nominal 

value gives a larger-the-better screening variable. Further problems involve the case 
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in which X very large or very small implies that the item does not reach the standard 
(T = 0). The natural solution here would involve quadratic regression models for TIX 

-a possible future extension of this work. 

Note that the suitability and fit of any particular model may be crucial in screen 

design. Here we use models that are appropriate to many situations and variables. 

However, we note later that our solutions are robust to departures from some of these 

modelling assumptions. 

2.3.4 Screen design 

The proposed screen design is simple and intuitive to the assumptions made about the 

relationship between the screening and performance variables. Theorem 2.2 shows 

that, under certain conditions, our design is preferable to one other design and Theo- 

rem 3.2 in section 3.3.1 gives conditions based on model and cost parameters for the 

designs obtained in section 2.2 to be optimal. 

2.3.5 Cost structure 

We assume a cost structure that is based on misclassification and screening costs. 

The cost of wrongly rejecting a good item, a type I error, is c,. Typically, c, in- 

cludes the cost of unnecessary repair and return of items or, in a different context, the 

costs of unnecessary patient stress and further treatment when a patient is wrongly 

diagnosed as unwell. 

The cost of wrongly accepting a bad item, a type 11 error, is c.. As well as any 

warranty, repair or handling costs incurred in industrial procedures, q, may account 

for loss in sales due to a loss of reputation from selling below standard items. In 

medical applications c. is the cost of wrongly diagnosing that a patient is healthy. If 

the patient is not intending to take further action that may reveal the illness, c. may 

be very high. 
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The costs c, and c,, represent those associated with any tests or procedures that 

are used to assess the screening and performance variables respectively. 

Note that here the costs do not depend on the observed value of the screening 

variable X: they only depend on whether X<v, v<X<w or X>w and the 

value of the performance variable T. Costs dependent on the explicit value of X and 
the (unknown) value of a continuous performance variable are considered in Boys 

& Dunsmore (1987), Turkman & Amaral Týirkman (1989) and, in the context of a 

two-stage screen, in Chapter 3. Boys & Dunsmore (1987) and Tang (1988b) also 

examine, in detail, commonly used loss functions that are functions of a continuous 

performance variable. 

Tang (1988b) proposes a fixed cost for rejecting an item, independent of whether 

the item is of good quality or not. In quality control applications there is an arguable 

case in favour of a cost representing payments due to rejecting a bad item but it is 

intuitive that these payments would not be equivalent to the loss in revenue incurred 

from rejecting a good item. In applications in which all rejected items are thrown 

away there will be a loss in revenue from discarding good items but not bad items. 

On the other hand, when all rejected items are sent for repair, good items will not 

need repair whereas bad items will. Clearly, the cost set up should be chosen carefully 

to suit the application. 

If an all encompassing rejection cost, c,, j say, is used to build a simple design 

similar to that given in section 2.2, the natural form of the X-screen would have the 

following two regions. If X was above a cut-off point, w say, then an item would be 

accepted, otherwise (X < w) the item would be rejected (if c,, j < C"') or passed on 

to the T-screen (if c,,, < c,, j). If X<w and c,, = c,, j there would be an arbitrary 

choice between rejection and measuring T to minimise cost. 

Note that any procedure to elicit costs is simplified by the fact that it is only 

necessary to assess costs relative to one another. For example, it would be enough to 

define costs such as c, =5c,, c, = c, 1100 and c, = c, /10. 
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2.3.6 Choice of link function 

Our use of a probit link function is mainly motivated by the closed form that results 

when a probit link is used in conjunction with a normality assumption for C, see 
Lemma 2.1. In any case, we invoke the well-known robustness properties of link 

functions to suggest that our solutions are unlikely to be sensitive to our choice of a 

probit link for TJX. Boys & Dunsmore (1987) discuss in detail the use of a logistic 

model, which is a common alternative to the probit. Here 

P(T = llx, ý) = 
exp (ZO + ei x) 

1+ exp(eo + eix)' 

Gauss-Hermite quadrature techniques, a normal approximation to the logistic distri- 

bution and a method described in an unpublished Valencia report by JM Bernardo 

are all proposed to evaluate P(T = 1jx) when the posterior distribution of ý is bi- 

variate normal. Another frequently used link function is the complementary log-log 

form. For a discussion of its use in this context see Boys (1985). 

2.3.7 The distribution of the regression parameters 

We assume the sample on which the screen will be based is large enough so that 

the posterior distribution 7r(ý) may be well approximated by its asymptotic normal 
form, N2(m, S) say (Lindley (1961)). Here m is the maximum likelihood estimate of 

ý, and S is the inverse of Fisher's information matrix evaluated at m. These can be 

calculated as follows. The details proceed from Dobson (1983). 

Suppose we have a sample of n observations (ti, xi) On (TX). The likelihood 

function assuming a probit link is 

n 
J14)(Co + ýjxj)ti 11 

- ý5(Co + ýjxj)}'-ti 

and hence the log-likelihood is 

n 
[tj log 4)(CO + ýJxj) + ti) 10911 - (WO + 6xi)}1 
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Differentiating, the score with respect to Cj is: 

n ti ti Ui xii +6 xi) 

i=l 

[4, 
(ýo + ýjxj 1- 4)(ýo + ýjxj)j 

where j=0,1 and xio -1 and xil = xi. Differentiating further gives the (j, k) 

element of the observed information matrix, (j, k=0,1), as 

Hik 192f 
aýj 194 

n ti I- ti 
XijXik (ýO +6 Xi) 0 (ýO + ýl Xi) 

4qo + 6xJ 1- 4qo + 6xi) 
(2.12) 

n ti 1- ti 
+ XijXik 10(6 + &i)}' -+ 

14)(ýo 

+ ýJxj)l {1 P(ýo + 6xiWI 

Taking the expectation of this matrix over the distribution of TJX, ý gives Fisher's 

information matrix. As ETjx, jT) = ýD(ýo + &j), the components of Fisher's infor- 

mation matrix are given by, (j, k=0,1) 

a21 n 
-N 

10(6 + ýjXi) }2 
ETJX, ý Xij-Xik 

ýjXi) ING + 6xi)Y 

(2.13) 

Maximum likelihood estimates of ý are found by solving either of the following iter- 

ative equations 

M(a) = M(a-1) + H(m(a-1))-l U(M(a-1)), (2.14) 

or 

m 
(a) 

= M(a-1) + I(M(a-1))-IU(M(a-1)) 
1 (2.15) 

where a indicates the ath approximation, m is the vector of estimates, H(M) is the 

observed information matrix evaluated at -m and I(m) is Fisher's (expected) infor- 

mation matrix evaluated at m. Equation (2.14) defines a Newton-Raphson scheme 
for obtaining the maximum likelihood estimate and equation (2.15) is an adjustment 

of (2.14) in which H(m) is replaced by I(m). The scheme defined by (2.15) is known 

as Fisher's method of scoring. Both procedures converge to the maximum likelihood 

estimate but we prefer the latter for two reasons. Firstly, our method requires both 
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the maximum likelihood estimates m and Fisher's information matrix evaluated at 

m- these will both be available at convergence of the scheme based on (2.15). Sec- 

ondly, computer packages such as GLIM and S-PLUS implement schemes based on 
(2.15) and so we can obtain the information we need relatively painlessly. 

A typical procedure that implements the rule (2.15) would involve taking starting 
(0) (0) values, MO and m, , and solving the above equation to produce estimate updates. 

This procedure would be repeated until some convergence criteria is fulfilled (typically 

based on the size Of M, (a) 
- M(a-1) 

--). 
The value of m that satisfies the convergence 

criteria, m(l) say, is the maximum likelihood estimate of ý to an accuracy dependent on 

the convergence criteria used. Also I(m(l)) is Fisher's information matrix evaluated 

at m(l). 

Boys & Glazebrook (1992) perform a robustness study that shows that their de- 

signs are close to optimal under quite large departures from the assumed normality of 

ý- In their study they show that when ý follows a very skew log-normal distribution 

their solutions continue to perform well. As our designs generalise their designs it is 

clear that they will inherit this robustness property. 

Alternatively, when the normality assumption is questionable, methods of finding 

P(T = lix) are discussed in Boys & Dunsmore (1987). In particular, they refer to 

Laplace's method (see Tierney & Kadane (1986)). 

2.3.8 Moments of the regression parameters 

The screening solution for v and w given in Theorem 2.1 assumes that s, = 1, 

mo =0 and m, > 0. The following details show that we can assume this without loss 

of generality. 

if s, ýý 1 or mo 00 we change parameters from to where 
ý01 = ýO - ýjmo/mj and ýj = ýjlsj. To ensure consistency of the probit model, 

a change in regression parameters is accompanied with a transformation in the ex- 

planatory (screening) variable. The linear predictor in the probit regression model 
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with parameters (CO, Cl) is 

10 1 6+6x G-aL+L1 SIX + ao- 
7n, M, 

)l 

eI ix +II 

where x' = 8& + mo/mj). Therefore, when using Theorem 2.1, we can use the 

moments of (ýO', ý0), to obtain optimal choices of 

I v=S, (v + 71101nil) aild ? vl = si(iv + 7no/7n, ). (2.16) 

It is straightforward to verify that the mean and variance of ýO and ýl satisfy the 

conditions assumed in Theorem 2.1, that is, mo = E(ýO) = E(Q - moE(ý, )/mj =0 

and sl' = Var(ý, ) = Var(ý, )Isj = 1. The other mean and variance parameters of 
(60', ý, ) are 

I= mi E(ý, ) = E(Cl)lsl 

= ml/sl 
2 

so Var(Co') Var(CO) + M2 (C, )/M2 
oVar I- 2moCov(CO, ýj)/m, 

S2 + M2S2 2_ 
00 1/ml 2morsosi/mi 

r so cov(&', ý1) Cov(Co, Cl)lsl - moVar(C, )/simi 

= rso - MOSI/ml 

If Mi <0 we change variables from (6o, 61) to (ýo, -61). The corresponding data 

transformation is, 

2 2) 2 2). (v, wl mo) mi I so, rsosi, sl --+ 
(-v, 

-wl mol -mil so, -rsosi, sl 

By a combination of the two changes in regression variables above we can ensure that 

S2=1 mo =0 and m, > 0. The case m, =0 will always result in a decision not to II 

screen and is of little interest here. 

2.3.9 Proof of Theorem 2.2 

Let IC(v, w) denote the screening cost per item for a screening procedure of form (II) 

and IC(v, w) denote that for a procedure of form (I), where -oo < v, w< oo. Then 

K(v, w) = CJ(T = 1, X> v) + CJ(T = 0, X< w) + c�, P(w <X< v) + c., I(v, w). 
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Note that when k(v, w) is minimised in both limits, this corresponds to a decision 

not to screen and so a procedure of the form (II) is not optimal. 

When IC(v, w) is not minimised in the limits, the turning points of 

]C'(V, W) = IC(V, W) - C. I(V, W) 

will coincide with the turning points of k(v, iv). We denote as IC'(v, w) the equivalent 

cost for a procedure of form (I), that is IC'(v, w) = )C(v, w) - cI(v, ? v). Then 

(V, W) 

= crP(T=l, X> v)+c. P(T=0, X< w)+c .. P(w <X< v) 

= cP(T = 1) + c�P(T = 0) + c�, P(iv <X< v) + cP(v <X< w) - K'(v, w) 

Here we shall use the convention 

P(W<X<V)=-P(V<X<W), V<_Wl 

so that 
Ü'(v, w) = cP(T = 1) + c�P(T = 0) - K'(v, w). 

Hence 

inf k'(v, w) = cP(T = 1) + c,, P(T = 0) - sup IC'(v, w). (2.17) 
V, W V, W 

However, in the proof of Theorem 2.1 we analysed the turning points of /C'(v, w) and 
found that in the situation where a global minimisation is achieved (possibly in the 

limit) 

sup )C(v, w) = max lim IC'(v, w), jim IC'(v, w), 
V, W V- co --00 

I 

W--00 W-00 

lim /C'(V, W), lim K'(V, W) W-00 v 
Co 

W--00 W-00 

and therefore 

inf K'(v, w) = min lim k'(v, w), 
. 
1im K- I (v, w), V, W V--Co --00 W--CO WýClo 

lim Ü'(v, w), 1~ 1? -oo 
im K'(v, w) u 00 W-00 
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This is a decision not to use the X-screen and will be preferable to any screening 

procedure of form (II). 

In cases where a local minimum of IC'(v, w) is found with respect to either one 

or both v and w there is also a local maximum. If this maximum is not a global 

maximum with respect to either v or w then (2.18) holds. However, if this maximum 

is a global maximum with respect to one of v and iv, say at v=ý, then 

inf IC' (v, w) = min lim IC' (ý, W), lim IC' (ý, W) 
V, W 

IIV--#-00 
W--+00 

If the maximum is a global maximum with respect to both v and w, say at v= i) 

and w= iv- then 
inf k(v, w) 
V, W 

It was shown in the proof of Theorem 2.1 that 

ý=v- and/or i7v=w- (v- > O, w- >0) if r<O, 

ý=v+ and/or i-v=w+ (v+ <O, w+ <0) if r> 0, 

where v- = u- w- = u-, v+ = u+ and w+ = u+ and u- and u-ý are as defined in 
112121iI 

the statement of Theorem 

Consider the case r<0. Since V)(x) is symmetric about x=0 and 4) is an 

increasing function it follows that 

00 
ýo(V) 

+, S2 

MJV 

+ V2)17/72 
Cm] dv 1, 

-0+ 2vrso 

e(V) (D 
ý iniv 

- cn] dv, 
[c 

(1 +, S2 +V2 12 
o+ 2vrso 

that is 
oo d {/C'(v, w) I dv >d y-I/C'(v, w) I dv. 

v TV V 
However, in the proof of Theorem 2.1 we saw that vI is the smaller of two turning 

points of IC'(v, w) and is a minimum, so 

(V, w)} < 0, -v- <V<V+, dv 

and hence 

00 d"d 
y-I/C'(v, w)ldv ý: IV 

v 
IIC'(v, w)}dv. (2.19) 

.7 
IV 

vv 
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An equivalent result for w holds: 

w 00 d IIC'(v, w)}dw >d (2.20) 
w 

JK'(v, w)}dw. 
w dw w 

When r>0 it follows that 

f oo d V+ d I IC'(v, 7v) I dv >7 {IC'(v, w) I dv. 
v+ dv 

Im 
v 

Here v- is the larger of two turning points of K'(v, w) and is a minimum and hence 

d {K 1 (V, w)} > 0, v- <v< -v+ 1 dv 

and equation (2.19) follows. Similarly equation (2.20) holds when r>0. 

We now look at all cases when a (local) minimum of kl(v, w) occurs and in each 

case find a screen of form (I) that is at least as good as the optimal screen of form 

(II). 

(i) inf,,,. k'(v, w) = k'(v-, 

Combining equation (2.19) with (2.20) and noting that AIK'(v, w)} is constant dv 

for all w and -! L IIC'(v, w)} is constant for all v, gives dw 

lim 
d- 

w)}dv +d -{C(v-, w)}dw 
W--+OO W- 

Tw 
v+ d w+ d 

> +)}dv + lim T Qc' (V, wvw 
- +-00 w 

IIC'(v, w)}dw. 
v 

Hence 

lim K'(V, W) - r-, (V-, W-) ý: r-, (V+, W+) - KIM K'(V, W), V- -00 W-co W--oo 
and 

c, P(T = 1) - K'(v-, w-) ýý K'(v+, w+) - caP(T = 0). (2.21) 
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From this we see that 

c, P(T = 1) + c�P(T = 0) - K'(v-, w-) ýý K'(v+, w+), 

and it follows from equation (2.17) that 

/C'(v-, W-) = ilif K'(V, W) > r-, (V+, W+). 11,10 

IC'(v, w) = IC'(v+, w+) 

Rearranging equation (2-21) gives 

C, P(T = 1) + c�P(T = 0) - K'(v', w') ý: K'(v-, w-), 

and so 
k'(v+, w+) = inf IC'(v, w) ý: IC'(v-, w-) 

11, W 

(iii) inf . ..... 
k'(v, w) = min I k'(v-, w), lini,,,,,,, fC'(v-, w) I 

From (2.19) and remembering that T' ,, 
f IC'(v, w)} is constant for all w dv 

lim 
d IIC'(v, w)} dv > lim Id 

w__#Oo v 
IK(v, w)} dv 

.7 W--4-00 dv v 

and so 

lim ]C'(V, W) - lim /C'(v-, W) ý: lim ]C'(V+, 'W) - jim K'(V, W). U-00 W-0-00 Wýoo --00 
W--00 W-Co 

Hence 

c, P(T = 1) + c�P(T = 0) - c�, - lim K'(v-, w) ýý lim K'(v+, w) - c�, W--*-00 w--*OO 

(2.22) 

and therefore 

lim k'(v-, w) ýý lim K'(v+, w). (2.23) 
*-CO W-+OO 
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Similarly 

lim 1 00 d I/Cl(v, ? v)} dv > 
wlim 

PI)+ d 
w-oo ,- dv _m 

fm 
dv 

IIC'(v, 7v) I dv 

and 

lim IC'(v, 7v) - lim IC'(v-, iv) ý: lim IC'(v+, iv) - Eini IC'(v, 7v). Wýoo W-0-00 -00 W-00 W-00 
Hence 

c, P(T = 0) - lim K'(v-, w) > lim K(v+, w) - cP(T = 1) wýOO wý-00 

(2.24) 

and therefore 

lim r, -, (V- W) ý: lim /C'(V+, W). (2.25) 
Wýoo Wý-Oo 

From equations (2.23) and (2.25) we conclude that 

min lim lý'(v-, w), lim K~'(v-, w) inf k'(v, w) 
tw 

b 00 w--+OO v, w 
>min lim K'(vl, w), lim K'(v+, w) fw 4-00 

IV--+00 

1 

inf,,,,, k'(v, w) = min k'(V+, W), k'(V+, W) I 

Rearranging equation (2.22) gives 

C, P(T = 1) + c�, P(T = 0) - lim K'(v', w) : 2t lim K'(v-, w) wýOO wý-00 

and so 

lim k'(V+, W) ý: lim ]C'(v-, W). (2.26) 
W--ýOo W--+-00 

Similarly equation (2.24) gives 

crP(T = 1) + cP(T = 0) - lim K'(v+, w) k lim K'(v-, w) w> 00 W-+OO 
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111111 

and hence 

lim k'(V+, W) > lim )C'(v-, W). (2.27) 
w +-00 W--. )OO 

Here, from (2.26) and (2.27) we know that 

min lim k'(v+, qv), lim k'(v+, ? v) inf k(v, w) 
fw 

*-00 W-+00 V, 1V 
> min 

f lim IC'(v-, w), hin liv-4-00 
10ý00 

inf,,,,, k'(v, w) = min k(v, w-), lirn,,. 
-.,,. 

k'(v, w-) I 

From (2.20) and noting that -ýL dw 
I'C'(VI W)} is constant for all v 

wd 
äw f K'(v, w) 1 dw > 

', 
lim {K(v, w)} dw 
- -oo 

foo 
dw 

and so 

lim/c, (V, W) - lim IV (V, W-) ý! lim IV (V, W+) - , 
KIM IV (V, W). V- Výoo V--*-00 -00 

W-00 W--()O 

Hence 

c, P(T = 1) - lim K(v, w-) ý: lim K'(v, w') - c�P(T = 0), výCO v--+-00 

(2.28) 

and therefore 

lim /C'(V, W-) ý! lim /C'(v, W+). (2.29) 
V--4100 V-6-00 

Similarly 

00 d w+ d 
lim I' 

T {/C'(v, w)} dw > lim f 

V--+ 00 vw 
IIC'(v, w)} dw 

w_ --*00 w 

and 

lim IC' (V, W) - lim IC' (vlw-) ýý lim IC'(V, W+) - lim /C'(V, W). V 00 V--+-Oo V--+00 V-00 
W-00 W-00 
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Hence 

Crn - lini K'(v, w-) ý: lim K'(v, w+) - cP(T = 1) - c�P(T = o) + cn. vw výOO 

(2.30) 

and it follows that 

lim )C'(V, W-) ý: lim )C'(V, TV+). (2.31) 
0-00 Výoo 

Therefore (2.29) and (2.31) show that 

min lim k'(v, w-), lim k'(v, w-) inf kl(v, w) 
IV 

ý-Oo Výoo V, W 

mila li2L K, (V, W+), lim IV (V, W+) 
Výoo 

inf,,,, k'(v, w) = min k'(V, W+), limty--Ooo k'(V, W+) I 

Rearranging (2.30) gives 

c, P(T = 1) + c. P(T = 0) - Jim KI(v, w+) ýý lim K'(v, w-) V-+OO v--+-00 

and so 

lim IC'(V, W+) ý: lim /C'(V, W-). (2.32) 
V-1+00 V--ý-Oo 

Equation (2.28) gives 

c, P(T = 1) + c�P(T = 0) - lim K'(v, w+) k lim K'(v, w-) výCO 

and 

lim /C'(V, W') ý! lim /C'(V, W-). (2.33) 
v $. -00 V--+00 

Therefore we conclude from equations (2.32) and (2.33) that 

min lim k'(v, w+), lim k'(v, w+) inf k'(v, w) 
IV 

4-00 v--#oo V, W 

min lim X'(v, W-), lim X'(v, W-) 
IV-. 

-OO V-400 
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Now, recall that 

IC(v, W) = IC'(V, W) + C., I(V, TV). 

Hence the design that minimises cost ICI(V, w) also minimises cost IC(v, w) except in 

the case when k(v, w) is minimised in the limits of both v and 7v. However, this 

corresponds to a decision not to screen and is not of interest here. In cases when the 

ininimum of k(v, w) occurs when at least one of v and ?v do not take limiting values 

we have that 

(v, IV) = (v, IV) + C, 
]C(V, W) = /C'(V,? V)+C, 

and so if we find that IV(ý, i-v) :5 inf ...... 
k'(v, ? v) for some 0 and i-D, we also know that 

IC(ý, i-v) :! ý, inf,,,,, k(v, w) - Hence in each of the cases (i)-(vi) above we have shown 

that a design of form (1) is at least as good as the optimal design of form (11). 0 

2.4 A numerical example 

To illustrate the method, we consider the construction of an optimal screen for Conn's 

syndrome, a rare syndrome of hypertension. It is known that the syndrome is due 

to either a benign tumour (T = 1) or to a more diffuse condition of the adrenal 

glands (T = 0). The cause can be determined precisely by means of an exploratory 

operation. Screening for these different causes is important as the treatment given 
differs radically between them: a total adrenalectomy is required for a tumour whereas 

only drug therapy is used for the gland condition. We will focus on the design of a 

screen to identify patients to be given a total adrenalectomy, that is, the T=1 

group. We have available measurements of the concentration of potassium in the 

blood plasma on which we can base the screen. We use data given in Aitchison 

& Dunsmore (1975), pp-10-11. Inspection of the data reveals that a linear probit 

regression for TIX is plausible when using log-concentrations as covariates. Also, 

the calculation of Bayes cost is more straightforward if we use log-concentrations as a 
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Table 2-1: Cases of Conn's syndrome 

Cause of syndrome log (concentration) of K 
X* 

Standardised screening variable 
x 

T=1 0.833 1.131 1.099 1.030 -1.275 0.136 -0.019 -0.346 
1.281 1.131 0.916 0.916 0.842 0.136 -0.881 -0.881 
0.876 1.065 0.833 0.789 -1-074 -0.180 -1.275 -1.485 
0.993 1.131 1.065 1.131 -0.517 0.136 -0.180 0.136 

0.642 1.308 0.789 0.993 -2.178 0.972 -1.485 -0.517 
T=0 1.459 1.163 1.281 1.099 1.682 0.286 0.842 -0.019 

1.435 1.224 1.281 1.335 1.571 0.572 0.842 1.098 

1.194 1.281 1.482 0.431 0.842 1.791 

normality assumption for X is then plausible. Data from 31 cases of Conn's syndrome 

is given in Table 2.1. In these cases the level of potassium has been measured and 

the cause of syndrome is known. 

Throughout the thesis we shall assume that any screening variables are standard- 
ised (mean zero and variance one). This will allow simple comparisons between the 

estimates of the parameters of any probit regression models that are used. We stan- 
dardise the screening variable by subtracting the sample mean and dividing by the 

adjusted sample standard deviation. So here the screening variable is given by 

X* - 1.102 
0.2115 * 

The results of this transformation are given in Table 2.1. Note that large values 

of X* and hence X occur more frequently when T=0. The misclassification and 

measurement costs are: 
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c, = the cost of wrongly diagnosing that a patient has bilateral hyperplasia 

q, = the cost of wrongly diagnosing that a patient has a benign tumour 

c, = the cost of measuring the concentration of potassium in blood plasma 

c,,, = the cost of correct diagnosis using surgery 

We will assume that these (relative) costs have been elicited and are as follows: 

Cr = Cr , C, =3 er/4, cn =3c, /40, C, = 0. 

These costs reflect the fact that the clinician would prefer not to identify a turnour pa- 

tient as requiring drug therapy and that the exploratory operation is only moderately 

expensive. Note also that these costs satisfy equation (2.9). The cost of measuring 

the screening variable is set at zero indicating that the measurement may already be 

available through a routine test on the patient or c, is so small relative to C', c,, and 

c.. that it can be thought of as negligible. In any case the only effect of c, on screen 

design is on the decision of whether to perform the X-screen. 

Fitting a probit regression model to the data using S-PLUS gives: 

0.8812 ), 
S=(0.1612 -0.1546 (2.34) 

- 1.863 -0.1546 0.4103 

Tests of model adequacy and goodness of fit are omitted. In order to use Theorem 2.1 

we change regression parameters so that mo = 0, s, =1 and m, > 0. Following 

section 2.3-8, moments for the new variables are, 

MO 0(0.1067 -0.06165 
) 

7n', 

)=(2.909 
VarUý ) 

-0.06165 1 
(2.35) 

Rom equations (2-6), 

cl 
cm 

= ý>-' = -1.440, C2 1- 
ý2) 

= 'D-l 
Co) 

= 1.282. 
Cr 

) (40) 
Ca 

As m, > -CI > C2 >0 we refer to (b)(i) in Theorem 2.1 to find the optimal lower 

(transformed) cut-off point v' and (a)(i) for the upper (transformed) cut-off point w'. 

Here 

(V II wl) = (uT, u2+) = (-0.6193,0.5016) (2.36) 12 

11 It 

ý It !I 

III I 
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drug therapy 

1.440 

-- -0.3103 

x 

) exploratory operation to determine T 

total adrenalectomy 

Figure 2.2: The optimal two-stage screen for the Conn's syndrome data. 

Now we reverse the change of variables, returning to the original regression parameters 
(ýO, ý, ) that relate to the screening variable X. Following comment 5 in section 2.2 

the Bayes design (v*, w*) is given by 

V* =- 
(Vt 

- 
mo 

= 1.440; 
Sl 7n, 

) 

W*, =- 
(w, 

- 
mo) 

= -0.3103. Sl Ml 

Note that we have a problem in which the data indicates that X small implies that 

T=1 and so we assume that the screen is of the form: Accept (T = 1) if the patient 
has X<w, reject (T = 0) if the patient has X>v and measure T if w<X<v. 
As the screening cost c. is zero and the above solution represents a global minimum 

of ICI (v, w), it is not necessary to check that our design is cheaper than not using the 

X-screen (see comment 4, section 2.2). The Bayes design is presented graphically in 

Figure 2.2. 

Submitting the 31 cases given in Table 2.1 to the screen shown in Figure 2.2, 

results in the following classifications: 

Actual I Total I X-screen classification 
1T=0 measure T 

T-1 1 20 1 11 09 

T=O 1 11 1038 

Note that none of the cases would have been misdiagnosed. A better assessment of 
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the performance of the screen would be obtained via the use of the design on further 

observations of (T, X) or by a simulation study. 
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Chapter 3 

A class of Bayes optimal two-stage 

screens 

3.1 Introduction 

In the previous chapter, we constructed two-stage screens designed to assess whether 

an item will satisfy some pre-defined criteria. The criteria are satisfied if 7: E CT 

where I is the measurement of a performance variable on the item. At the first stage 

of the screen, the measurement of a covariate X was used to classify some items and 
those that remain unsentenced are passed to the second stage where a "gold standard" 

measurement of T is taken. For the case in which T is binary and TIX is modelled 
by a probit regression, we obtained Bayes optimal designs using a decision theoretic 

approach based on misclassification costs and the costs of measuring the covariate 

and the performance variable. We also assumed that the screen took a pre-specified 
form and optimised within that class of screens. Hence, Chapter 2 was concerned 

with building designs useful in many scenarios but which cover only a subclass of 

the many stochastic structures that may be useful in modelling situations in which 

screening may be applied. 

In this chapter we suppose that for each item we can measure a batch of covariates 
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X on which to base the first stage of the screen. We assume a general stochastic 

structure for (7:, X) and optimise without assuming a form for the screen. Also, we 

adopt a more general cost set-up in which the misclassification costs may be functions 

of X and T. The cost structure assumed in Chapter 2 is retained as a special case. 
In Chapter 2 we saw that the cost associated with measuring X is only important 

when deciding whether it is optimal to perform the X-stage of the screen. Here we 

shall assume a priori that it will always be better to operate the first stage of the 

screen than not to do so. Hence we do not include a cost for measuring X. 

Section 3.2 describes the form of the optimal Bayes two-stage screen for a fully 

general model on (1, X). The solution is straightforward and some of the results of 
Týirkman & Amaral Turkman (1989) can be recovered as special cases. The simplicity 

of the solution is illustrated within a probit regression model in section 3.3. We have 

already seen in Chapter 2 that this model combines a reasonable level of generality 

with a capacity to yield simple, intuitive screen designs when the posterior distri- 

bution for the regression parameters takes its asymptotic Normal form. Section 3.4 

considers Bayes optimal screens for situations when, due to limited resources, there is 

an upper bound on the proportion of patients (or items) that can have their perfor- 

mance variable measured. The solution to this constrained problem is shown to take 

the same form as that of the unconstrained problem described earlier, and is again 
illustrated within a probit regression model in section 3.5. 

3.2 Bayes optimal two-stage screens 

Suppose we are interested in screening for items with attributes described by 1: E CT 

using a p-dimensional screening variable X. We shall denote the sample spaces of T 

and X by Of and Qx respectively. The set of attributes CT is a subset Of QT, and 7: 

may be univariate or multivariate. A two-stage screen partitions Qx into the three 

regions JQA i OR) Qm}. At the first stage of the screen X is measured and if 
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XE QA ) item is accepted 

XE OR ) item is rejected 
XE Qm = Qx \ JQA U QR} ) item is passed onto the second stage. 

At the second stage, T is measured and the item classified accordingly. Recall that 

classification based on the screening variable -X 
is open to error and so it may be 

economically advisable to incorporate such a second stage based oil T even though 

it may be expensive to do so. 

The costs associated with screening are determined by c, c, and c, all functions 

from QT X QX into R+. These yield the costs associated with acceptance, rejection 

and measurement of -T respectively. We do not include a cost associated with the 

measurement of X. We shall suppose that 

c�, (L, 1) = 0, fE CT,! E 9x and C, (L, 
-1) = 0, L« cýT, 

-'r 
G0x, 

that is, no costs are incurred when accepting an item which meets the standard or 

when rejecting an item which does not. This assumption may not be reasonable in 

some applications and is discussed in section 2.3.5. Finally, we shall refer to the 

following choices of c,,, cr and c, as the standard case: 

c, (tliý) = Cli(t « CJTI cl (fl i) = CJ(f c- CO, c. (t, Z) = C. ) 

where c, c, and c,,, are constants and 

I(t A) 
1, tEA 1 

0, otherwise. 

Chapter 2 assumes this simple cost structure. It is based on the assumption that 

all items with 1: E CT are equally valuable and all items with TV Cz are equally 

worthless. Tang (1988b) and other authors describe loss functions that are linear 

or quadratic in the distance of I from the boundary of CT and argue that such 
loss functions are more realistic. The method given by this chapter is capable of 

incorporating such loss functions. 
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The relationship between T and X is given by the conditional model TIX, ý where 

ý are unknown parameters with posterior distribution 7r(ý). The goal is to choose a 

screen to minimise the Bayes; cost 

IC = E(Cost of the option chosen at the first stage of the screen) 

=E (Acceptance cost if item is accepted 

+ Rejection cost if item is rejected 

Cost of measuring T if measured). 

That is, we choose IOA 
i 

ORj QM} to minimise 

K(QA; QRiQM) = EýT, 2L, ýjCa(7:, X)I(XEQA) 

C, (T, X)I(X E QR) + cn(7:, X)I(X E Ilm)}(3.1) 

Definition 3.1 A Bayes two-stage screen (Q* 
, Q* , 

Q* ) is a partition of Qx satisfy- ARM 

ing 

(Q* f2*, Q* )= inf )1 (3.2) ARM (OAvflRvnM) 
K (QAi SlRi OM 

the infimum in (3.2) being over all threefold partitions of Qx. 

In order to describe Bayes two-stage screens we introduce 6,,, Z, and 6, all 

functions from SIX into R+ summarising the conditional expected costs incurred when 

an item with X=x is accepted, rejected or passed onto the second stage respectively, 

viz. 

Et [EýTjX=l, 
t Icr (7:, z) (3.3) 

Et[EýTjX=j, tjcm(T, j)}]. 
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Theorem 3.1 Any partition of Qx such that 

Q* c 
A -T E Ox 6. (X) = min (IT 

c 
R- 

JZ E Qx 6, (IT) = min [6,, (x), 

Q* c X)II M -fxE 
Qx (Z) = min [Z, (1), ý, (T), Z,, 

is a Bayes two-stage screen. 

Proof 

From (3.1) and (3.3) we have that 

)C(QA7OR70M) --"z Eýx(Et[EýTj2Ltjc. (7:, X)I(XEOA) 

Cr(I:, Z)I(X G QA) + C,. (1:, X)I(X E QA)1]) 

= EýX RaW)IM E OA) + ýrGKMX E OR) +E Qm)} 

Given X, the cost of each option (acceptance, rejection, measuring 7: ) must be at 

least as big as the cost of the cheapest option and so the Bayes cost 

K(QAiQRi2M) ý: Ex{min{6. (X), ý, (X), Z .. 
(X)} I(X E QA) 

min JE, (X), Zý, (X)j I(K E SIR) (3.4) 

min 16, (X), I(X E llm)}, 

for any partition (PA, QRi QM)- Under such a partition, for any XE Qx, 

I(X E QA) + I(X E OR) + I(X E Qm) = 1, 

as X must be contained in one and only one region of the partition. The bound in 

(3.4) simplifies to 

K (9A) 9R) QM) ýý EX [Min {ga(Z)ý Er(X» gm(Z)ll 
-- 

(3.5) 

Plainly any partition (Qý, Qý, SlIf ), as described in the statement of the theorem, ARM 

achieves the lower bound in (3.4) and (3-5). 0 

Theorem 3.1 confirms that, once X has been measured, the optimal decision is 

to choose the option with the lowest expected cost. However, there are multiple 
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solutions for cases in which the minimissation concerned is attained by more than one 

of the arguments for any 1, that is, two or more options achieve the lowest expected 

cost. In order to remove this problem, we will adopt a tie-breaking convention which 

ranks the regions in the order, QA, N and QM. Thus, those values of x resulting 

in a three-way tie will be placed in the region nA, those with a tie between QR and 

Qm, in QR, and so on. We will assume this convention throughout the remainder of 

this chapter, noting that, in any case, Bayes cost is not affected. 

We note that if E, (j, ) ý! minfE,, (x), ý, (x)} for all x r= Ox then7 from Theorem 3.1, 

an optimal choice is Qm =0 and we have the one-stage screen as considered by 

Turkman & Amaral Turkman (1989). Note also from Theorem 3.1 that knowledge 

of the marginal distribution of X is not necessary for a Bayes two-stage screen. The 

following result summarises Theorem 3.1 for the standard case. 

Lemma 3.1 For the standard case, if cý,, Ic, <1-c,. Ic,,, then a Bayes two-stage 

screen is 

iE Qx: Ei cm OA [P(7: E CTIZ, >1- 
Ca 

ý1ý ZE Ox : Eý [P(2: E CT <- 
Cm 1, 

cr 
f 

ZE Ox: E! a < Eý m_ 
[P(7: E CTIL <1 

- Cr Ca 

otherwise the one-stage screen 

Q*= A 2: E Qx : Eý [P(7: E CT I!, > 
I-- C- 

Ca + Cr 

* 
R = ! EQx: Eý 

I-_ [P(7: E CT Il, < 
Ca 

Ca + Cr 
Q* m = 

0. 

is optimal. 

Proof 

In the standard case 

EC [EýTIZ=m, 
C 

fc. I(T V CT)J] 

Ca[l-EcJP(TECTJIý, ý))]. 
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lilt I 

Similarly 

Er(l) = CrEý JP(7: E CTJLý)) 

and 
Zm (1) = Et f EýT1, L=.,, t (c,, ) I= 

Cyn - 

Theorem (3.1) gives the set Q*Af as the following requirements on x 

Cm < Ca [1 
- Eý JP(7: E CTIL ý) 1] 

7 

and 

Cm < CrEý I P(7: E CT ý) I- 

Rearranging, the region Qý4 is made up of those x for which M 

cm 
< Eý JP(2: E CTI-1:, ý) I<1- Cyn 

* Cr Ca 

If c,,, Ic, ý! 1-c, 1c, this requirement will not be satisfied by any z and Q* = M 

Here a one-stage screen based on the covariates X is preferable to a two-stage screen. 

When this is not the case c,,, Ic, <1-c,,,, Ic,, and so 

CaCr 
CM 

Ca + Cr 

is a condition for Q* to be non-empty. M 

The set Q* must satisfy A 

Ca 
[1 

- EC jP(l: E CTIL ý) 1] 
:5 Cm, 

and 

Eý JP(7: E Cfli, ý))]: 5 cEý JP(TE CTJZ, ý)j 
I 

which, when rearranged, become 

(3.6) 

rm 
Ej JP(l E CTIZ ý)j ý: 1 

Ca 
(3.7) 
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and 

Ej JP(7: E CT I!, ý) I ý! 
Ca 

(3.8) 
Ca + C, 

Under condition (3.7) and the requirement that Q* is non-empty, (3.6), it is clear that M 
(3.8) is satisfied. Similarly, when QM* is empty and (3.6) is not met, the requirement 
(3.8) is a sufficient condition for Q* and condition (3.7) is obsolete. A 

By a similar argument, the set Q* must satisfy R 

Ej f P(T E CT < 
C' 

C, 

when f2* is non-empty and M 

1ý JP(T E CTI!, ý)j < 
Ca 

Ca + C, 

when Q* = 0. All inequalities follow the tie-breaking convention. 0 m 

3.3 Probit regression model 

Here we illustrate our designs within a probit regression model for TJX. Here OT : -- 
10,1} with T=1 if and only if the item has the required attributes. In Chapter 2, 

such a model was used to obtain optimal screen designs when X is univariate and 

the screen is of a fixed form. Here we shall begin by taking X to be continuous and 

p-dimensional and give the Bayes two-stage screen for the standard case. Then, in 

section 3.3.1, we look at the case of X univariate and recover some of the results 

obtained in section 2.2. We also describe the conditions under which the form of the 

screen assumed in Chapter 2 is optimal. Section 3.3.2 considers the case when X 

is bivariate. In section 3.3.3 we give the Bayes two-stage screen for the numerical 

example introduced in section 2.4 and extend the example to the p=2 case by 

including a second covariate related to the cause of Conn'ý syndrome. 

The probit model has 

P(T =1 ji, ý) = 4) (ýTxo) 
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where 4)(a) = P(Z < a), Z- N(O, 1) and xOT = (1, gjT). As most standard link 

functions give qualitatively similar results, the choice of probit link function is in part 

motivated by the closed form for EtIP(T = which results when 7r(ý) takes 

its asymptotic posterior form. Here the regression parameters follow a multivariate 

normal distribution, ý- Nj, +, (RI, S), as would approximately be the case if 7r (ý) were 

a posterior distribution based on a moderately sized data set. In this latter scenario, 

m. would be the maximum likelihood estimate of ý and S, the inverse of Fisher's 

information matrix evaluated at m. 

Lemma 3.2 

Ej JP(T =11= 4) Ln'xo 
(i + ATSIO)", 

Proof 

Given xo, 77 = KT; Ko - N(mxo, zoSjo), and, by Lemma 2.1, 

Eýe IP(T 
ýO/ 

(1 + zeý. 0 sx E3 
1/2 1 

EI7 tMT 
XT 

Hence, following Lemma 3.1, when c,,, Ic, <1-c,, Ic., the following partition 

yields a Bayes two-stage screen for the standard case, 

Q* MT-. Tko 
AE 

Qx 
+ 2: OTSXO)112 

ýý* C2 

Q* MT-XO 
R 

ýZ 
E Ox 

(1 + ZTOSl: 0)112 
< C, (3.9) 

M= XEQx: cl< 
MT-zo 

mj <C2 
(1 + XOTSXOF12 

where C2 = iD-I(l - clc,, ) and cl = (P-l(cm/c, ), with cl < c2. Notice that cl and C2 

are as defined in equations (2.7) in section 2.2. 
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3.3.1 Screening with one covariate 

We now examine the case p=1 more closely. Here X is univariate and ý is bivariate 

with mean and covariance written as, 

n 
,,,, ý() and 

S(2 rsosi 

2 7'SOSJ sI) 

From (3.9) a Bayes two-stage screen for the standard case, with c,, Icý <1- 

is given by 

Q* 
? r?, O + MJX 

A=xE Qx: 
+ S2 2)1/2 

ýýo C2 
10+ 

2xrsos, + X2S, 

Q* =xE Qx: 7710 + MJX 
-<C, (3.10) R +82 2)1/2 

0+ 2xrsos, + X2S, 

MO + MIX 
m= 

Ix 
E Ox: cl < (1 + S2 + 2xrsos, + X2 2)1/2 < C2 

0 si 

I 

If we employ a suitable data transformation, as in section 2.3-8, we may assume that 

mo =0 and s, = 1. For this case we now investigate the form of the Bayes two- 

stage screen and compare it with the form of screen assumed in Chapter 2. First, for 

i=1,2, we define 

i)(1 + S2)Ci _ 
?) ut = C? 

2 2+(M2_ 2 -2}1/2 2 
i[rso 

± Ir so 1c0 
IAMI cl 

Ut =+ S2 0)/2rso. 

When both uil and u, -. are real and distinct, which will always be the case for m2C? Ii1> j) 

notice that, 
ut > u- for M2 > C2 siI il 

U- > ut for M2 < iII i* 

Lemma 3.3 When the quadratic equation 

x2 +2bx+c= 0 

(b, c constants) does not have real roots then, 
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(a) no real x satisfy 

x2+ 2bx +c<0, 

(b) all real x satisfy 

x2+ 2bx +c>0. (3.12) 

Proof 

The roots of the quadratic are given by 

c7 

where the roots are not real when c>b2. 

(a) For inequality (3.11) to hold for some real x, there must exist ad>0 such that 

x2 +2bx+c= -d 

has real roots. The roots are real for b2>c+d. This will never be the case as 

> and d>0. 

(b) Each real value of x must satisfy at least one of (3.11) and (3.12). In part (a) 

we have shown that no real x satisfy (3.11) and so all. real x must satisfy (3.12). 

0 

Theorem 3.2 Under requirements on costs and regression parameters, the following 

table gives Q*, the acceptance region of a Bayes two-stage screen, when TIX is A 
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modelled by a probit regression and X is univariate. 

mi >0 

>01r<0 

M, <0 

>01r<0 

m2> 1 x>u+ 
-2 

x< U- 2 

2= C2 >0 Mi 4 NA x> 71, - x<U, - 
NA 

2 2t m <c 12 NA U+ <x< '11, 22 +<X<? L- 1,, 22 NA 

1< C2 2 
7n 2t NA NA NA NA 

m2> 1 x 2 x<u+ 2 

C2 <0 M2 = C2 12 x>U, AA AA x<U, 
m2< c3t 1 x< u+ or x> u- 22 AA AA x< u+ or x> u- 22 

m2<c 2t 
12 AA AA 

1 
AA AA 

C2 0 x>0 x<0 

where, NA denotes that no items should be accepted by the first stage of the screen, 
AA denotes that all items should be accepted by the first stage of the screen, t 

indicates that condition 

222_ 4)(1 + S2)q2 >0. r So+ (MI 
0 (3.13) 

holds, and t indicates that (3.13) does not hold. 

Proof 

Under the data transformation, QA* denotes those values of x for which 

(J+S2 

MIX 
-> C2 (3.14) 

0+ 2xrso + X2)1/2 - 

On squaring both sides of this inequality, the form of the region is determined by the 

sign Of C2- 

For C2 > 0, inequality (3.14) is satisfied when both 

MIX >0 (3.15) 

and 

m2x 
2/ (1+S2 

+ 2xrso + X2) (3.16) 0 
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are true. When m2>c2 rearranging (3.16) gives the requirement 1 27 

x2_ 
2rsoq 

x-02>0 (3.17) 2_22_ C2 MI C2 ml 2 

Solving for equality in (3.17) 9'VeS X= U2 and (3.17) can be rewritten as 

(-- 
- 

Hence, x must be either greater than both u- and u+ less than both, or equal to at 221 

+ is negative and so condition (3.16) is least one. In this case, U2 is positive and U2 

satisfied when either 

x>u+ or x< U- 2-2 

When m, > 0, rule (3.15) requires that x>0 and so only those x> u+ meet 2 

inequality (3.14). Also, when mi < 0, (3.15) requires x<0 and x <- U2 is the 

appropriate rule. 

2 When m, = c22, inequality (3-16) rearranges to give the simple requisite 

2 2xrso + so +1<0. 

This is met when 

x<U, if r>0; (3.18) 

x>U, if r<0. (3.19) 

In the first instance, with r>0, u' is negative and in the second, with r<0, u' is 

positive. However, when m, > 0, inequality (3.15) demands that x>0, which will 

not be satisfied for any x that comply with the requirement for r>0. Here Qý = 0. 

Similarly, for m, < 0, (3.15) requires that x<0 which will not be true for any x that 

fulfil the condition for r<0. In the other cases, m, >0 and r<0, and m, <0 and 

r>0, the x that satisfy the appropriate rule from (3.18) and (3.19) will also comply 

with (3.15). 

2 In the case of m, < 4, the rule given by (3.16) becomes 

x2_2- 
C2 

x-2<0. (3.20) 
mi 2 mi -4 

68 



and so 
(X 

- U2 
) (X 

- U2+) 

where u- and u+ 22 are real when condition (3.13) holds. When the roots at equality in 

(3.20) are not real then it follows from Lemma 3.3 that no real x will satisfy (3.20) 

and no items should be accepted by the first stage of the screen. When the roots are 

real then condition (3.20) is met when either 

U2- <x< U+ or 711+ <x< ? I- 22--2 

Here u- is greater than u+ and so the first rule above is obsolete. When r>0 both 22 

of the roots are negative and for r<0 both are positive. Hence, when m, >0 

and r>0, there will be no x which agree with both the second rule in (3.21) and 

condition (3.15). Here Q* 0. Also, when m, <0 and r<0, no x will satisfy both A 

conditions. Otherwise, when m, >0 and r<0, or m, <0 and r>0, all x that 

satisfy the second rule in (3.21) will also satisfy (3.15). 

For C2 < 0, inequality (3.14) is satisfied when 

MIX >0 (3.22) 

or both 

MIX <0 (3.23) 

and 
2 2/(l+S2 + X2) 2 mlx 0+ 2xrso !ý ci (3.24) 

2 
are true. When m, ýýO C'2 the condition (3-24) becomes inequality (3.20). However, 21 

here condition (3-13) always holds andU 2+ (which is positive) is greater thanU 2- 
(negative). Hence (3.24) gives the requirement that 

U- <x<u+ 2--2 (3.25) 

When mi > 0, condition (3.22) accepts all non-negative x and together, (3.23) and 

(3.25) accept negative x such that x> u2. Hence, for (3.14) to hold, it is enough to 

require x> uý - Similarly, for mi < 0, the appropriate rule is x u+2 2 
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2 When m, = 
02, (3.24) rearranges to give 

2 2xrso + so +1>0. 

This holds when 

x>U, if r>0; (3.26) 

x< 71" if r<0. (3.27) 

Here u' is negative in the first case, when r>0, and positive in the second, when 

r<0. When m, >0 and r>0, condition (3.22) accepts all non-negative x and 
(3.23) allows negative x. Hence all x> u' will satisfy (3.14). For mi >0 and r< 01 

the rules (3.27) and (3.23) accept all negative x and (3.22) accepts all non-negative 

x. Here all items should be accepted by the first stage of the screen. Similarly, for 

m, <0 and r<0, the rule x< u' must be satisfied for (3.14) to be met and, for 

m, <0 and r>0, all items should be accepted. 

2 In the case of mI< C2, the rule given by (3.24) becomes inequality (3.17), where 2 

the roots at equality, u- and u+ 22, are real only when condition (3.13) is satisfied. For 

real u- and u+, the root u- is greater than u+ 2222 and so (3.17) requires that either 

x<u+ or x> U- 2-2 (3.28) 

When r<0, both roots are positive and for r>0, both are negative. In cases with 

m, >0 and r<0, requirement (3.22) accepts all non-negative x, and rules (3.23) and 

(3.28) accept all negative x. Here QA* = Ox. For m, >0 and r>0, (3.22) accepts all 

non-negative x and (3.23) and (3.28) accept all negative x for which (3.28) is true. As 

both U2 and u- are negative, (3.28) is a sufficient condition for acceptance. Similarly, 2 

for mi <0 and r>0, all items should be accepted, and when m, <0 and r<0, 

condition (3-28) is sufficient for acceptance. In cases when (3.13) is not satisfied, it 

follows from Lemma 3.3 that all real x satisfy (3.17) and so (3.22), (3.23) and (3.24) 

admit all values of x. Hence Qý = Ox. 

For C2 = 0, the acceptance rule (3.14) simply becomes the rule mlx > 0. For 

m, 0, it follows that all items with x>0 should be accepted and for m, <0 all 

items with x<0 should be accepted. 0 
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Corollary 3.1 The table below gives Qý, the rejection region of the Bayes two-stage 

screen. 

M, >0 
T>01T<0 

M, <0 
r>01T<0 

m2>c2 x<u+ x> U- 

2= C2 cl>O mi 1 AR x<u x> 71" AR 
2 2t mi < cl AR + 

x< ul or x uT 
+ 

x: 5 ul or x ý: uT AR 
2<C? mi lt AR AR AR AR 

m2> C2 II x< U- 
-1 

x>u+ 
-1 

2 C? C, <0 mi 1 X< ul NR NR x>U, 
2 M, < elt ut :5x :5 UT NR NR U+1: 5 X: 5 UT 

m2< C2 t 11 NR NR 
1 

NR NR 
1 

Cl =0 1x<0 x>0 

where, NR denotes that no items should be rejected by the first stage of the screen, 

AR denotes that all items should be rejected by the first stage of the screen, t indicates 

that condition 

r2S2+ (M 2_22 -2 (3.29) 01 Ci)(1 + SO)c1 >0 

holds, and t indicates that (3-29) does not hold. 

Proof 

After the data transformation, Qý is made up of those x for which 

(J+S2 

MJX 
-< cl* (3.30) 

0+ 2xrso + X2)1/2 - 

Multiplying (3.30) through by -1, the result follows easily from Theorem 3.2, by 

substituting -mi for mi, -cl for C2 and 'reject' for 'accept'. 0 

Comments 

1. The conditions on X under which the performance variable T should be mea- 

sured can be recovered from the relation f2* = Qx \, (Q* u f2* MAR 
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2. When rn, > max(Ic1l, IC21) the Bayes two-stage screen has the simple form: 

accept an item if x>w, say, reject an item if x <_ v, say, and pass an item to 

the second stage if v<x<w. This is in accord with Chapter 2 which assumed 

a priori that the two-stage screen was of this simple form and optimised within 

this restricted class. We have shown, inter alia, that when rn, > max(Ic, 17 IC2 D) 

the solution given in Chapter 2 is in fact globally optimal. 

Similarly, when rn, < -max(Icll, IC21), we have the simple Bayes two-stage 

screen: accept an item if x< iv, say, reject an item if x>v, say, and pass an 

item to the second stage if w<x<v. 

3. Notice that, when ImIl Mill(IC11) IC21)t it may be optimal to omit the X-stage 

of the screen and either accept, reject or measure T for all items. 

4. For the case in which the regression parameters are standardised so that MO =0 

and s, = 1, Theorem 3.2 and Corollary 3.1 describe the form of the screen 

conditional on the values of m, and r. In terms of unstandardised quantities, 

these requirements should be made on the values of 

M1 and mirso - mos, 
S1 (M 2S2 2S2 

- 2momlrsos, ) 
T/-2 

I O+MO 1 

respectively. See section 2.3.8. 

3.3.2 Screening with two covariates 

The results presented for the p=1 case have analogues for cases with p>1. When 

p=2 and the standardised mean regression parameters Imi/sil and IM2/S21 are 

large enough, the boundaries of Sl*, M and Q* in (3.9) are hyperbolae. By way of ARM 

example, consider a case with mean regression parameter m= (0,1,2)T, covariance 

structure var (ýi) = 1, i=0,1,2 and corr (Ci, ýj) = 0.2, i, i=0,1,2 (i :0 j), and costs 

(c,,,, ca, c, ) = (1,4,6). Here c2 = 4ý-1(0.75) = 0.6745 and so Q* in (3.9) contains A 

those 1E Ox for which 

x, + 2X2 
->0.6745. 

1+2: 2 + _, 
2 + 0.4(xi+ X2 + X1X2)1112 212 
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By squaring both sides and then following similar reasoning to that used in the proof 

of Theorem 3.2, the Bayes two-stage screen accepts those items for which 

-12 > -Xl 
2 

and 

(3.31) 

(-'r2 
- 10 

1 (-T2 
- IV-) ý! 0, (3.32) 

where 

2 1/2 

w 0.02567 - 0.5385xi ± (0.1363x, + 0.02369x, + 0.2573) 

Plainly, w+ will always be larger than w- and so rule (3.32) will be satisfied when 

either X2 > W+ orX2 < w-. However, for bothX2 :5 w- and requirement (3.31) to 

hold, we must have 
-Xj 

< 
2 

Writing in w- explicitly and rearranging, this will be true for any x, such that 

0.02567 - 0.0385x, 
> (3.33) 

(0.1362X2 + 0.02369xi + 0.2573) 112 1 

Analysis of the turning points of the left hand side shows there to be only a maximum 

of 0.1188 at x, = -3. Hence the inequality will not hold for any xi. Therefore, no 

X2 < w- will satisfy inequality (3-31). Also, if w+ > -xj/2 for all x, then all values 

Of (X1 
i X2) that satisfy the rule X2 >- w+ will also satisfy (3.31) 

. 
This will be the case 

if the inequality 

iv+ < -xi/2 (3.34) 

does not hold for any xi. Rearranging (3.34) and substituting in for w+, we again 

obtain inequality (3.33) which never holds. Hence, w+ > -xi/2 for all x, and 

requirement (3.31) is always true for X2 ý: w+. The acceptance region of the Bayes 

two-stage screen, Q* , for this example is now given by those (X1, X2) for which A 

X2 
1/2 

12> 0.02567 - 0.5385xi + (0.1363 
1+0.02369x, + 0.2573) 
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X2 

1' 

X1 

-%o 

Figure 3.1: Plot of screening partition 
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Also cl 0.9674 and by a similar analysis, M is made up of those R 

(X1 
7 X2) for which 

X2 < 0.06108 - 0.5916xi - 
(0.329 1X2 + 0.04989xi + 0.6146) 

1/2 
1 

Figure 3.1 depicts the screen graphically. Note that the regions are not symmetric in 

x, and X2 because m, 0 M2 and c,, =A c,. 

3.3.3 Conn's syndrome example 

Now we return to the numerical example presented in section 2.4. There we dealt with 

the construction of a two-stage screen to determine the cause of Conn's syndrome. 

The cause of the illness determines the correct treatment. The first stage of the screen 

was based on a single covariate, the concentration of potassium in the blood plasma. 

At the second stage, patients were submitted for an exploratory operation which will 

verify the cause. We gave the Bayes design of the screen within a restricted class 

of forms for the screen and under probit modelling assumptions. Also, we assumed 

that the cost structure was as in the standard case with c. = 3c, /4 and C.. 3c, /40 

and that the regression parameters were standardised so that m, > 0, mo 0 and 

81 = 1. In section 3.3.1, we have shown that when m, > max(Icil, Jc2l) then the form 

of the screen assumed in Chapter 2 is Bayes optimal. In this example, we have that 

cl = -1.440 and c2 = 1.282, under the standaxdisation m, = 2.909 and so the two- 

stage screen described by (2.36) is Bayes optimal. In section 2.4 we also recovered 

the Bayes design for unstandardised values of the regression parameters by reversing 

the data transformation and supposing that, when m, < 0, the screen is of the form: 

accept an item if x<w, say, reject an item if x>v, say, and pass an item to the 

second stage if w<x<v. In section 3.3.1 we show this to be the correct form of the 

Bayes two-stage screen for (unstandardised) mi/s, <- maX(IC11, IC21)- Clearly this 

inequality holds for this case and the two-stage screen given by Figure 2.2 is Bayes 

optimal. 

The Bayes two-stage screen for the p=1 case was based on 31 cases of Conn's 
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syndrome in wbich both the cause of the illness had been established and a measure- 

ment of the covariate had been taken. For each of these 31 cases, a measurement on 

a second covariate was also taken, the concentration of carbon dioxide in the blood 

plasma. We now consider a Bayes two-stage screen using both available covariates 
(p = 2). To compute the Bayes cost of a screen we will need to make an assumption 

about the distribution of the screening variables. Taking log concentrations makes a 

bivariate normality assumption reasonable. We recommend standardising the screen- 

ing variables to ease comparison between the parameters of the regression model. 

These factors lead us to design a Bayes two-stage screen using 

X, = standardised log concentration of potassium, 

X2 = standardised log concentration of carbon dioxide. (3.35) 

For the log concentration of carbon dioxide, we standardise using the sample estimates 

of the mean and variance which are 3.334 and 0.1115', respectively. The procedure 

used to standardise the log concentration of potassium is given in section 2.4. The 

transformed data is given in Table 3.1. 

Estimates of the regression parameters can be found by a simple extension of the 

iterative maximum likelihood method described in section 2.3.7. Using S-PLUS to 

implement such a scheme, from the data we have 

1.241 0.3030 -0.2202 0.1468 

M -1.576 and s -0.2202 0.4874 0.0254 

0.953 0.1468 0.0254 0.3129 (3.36) 

Assuming the same. costs as in the p=1 example, and that a linear probit regression 

model is appropriate for TIX1, X2, the Bayes two-stage screen takes the form of (3.9), 

that is, 

Q* 
A 

JZ: 9(XliX2) ý! 1.2821, 

I!: 9(XliX2): 5 -1.440}, (3.37) 

11: -1.440 ": ý 9(XliX2) < 1.282}. m 
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Table 3.1: Cases of Conn's syndrome 

Cause of 

syndrome 

Standardised 

log concentration of K 
X, 

Standardised 

log concentration Of C02 

X2 

T=1 -1.275 0.136 -0.019 -0.346 0.691 -0.305 -0.341 1.462 

0.842 0.136 -0.881 -0.881 -1.363 -0.018 0.484 0.601 

-1.074 -0-180 -1.275 -1.485 1.238 0.448 -0.682 1.650 

-0.517 0.136 -0.180 0.136 1.462 0.332 -0.206 1.013 

-2.178 0.972 -1.485 -0.517 1.596 -0.206 1.462 -0.179 

T=0 1.682 0.286 0.842 -0.019 -1.623 -1.031 -0.753 -2.179 
1.571 0.572 0.842 1.098 -0.081. -0.018 -1.031 -0.682 
0.431 0.842 1.791 -0.341 -0.682 -0.816 

where 

N 1.241 - 1.576xi + 0.953X2 
17 -12) X21 + 9X2)1/2' (1.3030 - 0.4404xi + 0.2936X2 + 0.0507xlX2 + 0.4874 0.312 2 (3.38) 

Notice that Imil/si > Irn2l/S2> 
max(Ic, I, 

Ic2l) and the boundaries of the regions are 

hyperbolae as shown in the graph of the partition in Figure 3.2. 

Computing Bayes cost 

With costs as in the standard case the Bayes cost of a Bayes two-stage screen is 

* n* K(OAI ) Q* )= Ex Ic�Ee [P(T = 012C, el I (Z. E Q*) RMA 

+ cEe [P(T =11 (Z E 9ý) + emI E 9211)1. 

With a probit regression model for TIX that is based on a moderately sized sample, 

Lemma 3.2 describes the closed form for Et [p(T 
=1 12i, k)]. Hence, for the Conn's 
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0 

X1 

Figure 3.2: Plot of 2-dimensional screening regions 

syndrome data, the Bayes cost of the screen is 

, 9ý, 9; f) = Eýx K(9A. RM 
[caý> {-9(X1, X2)} I (X E ný) 

+ CA {9(X1, X2)} I (X G Q* )+ CJ (X 
R 

To compute the Bayes cost of the screen we must make an assumption about the 

distribution of the screening variables (X,, X2). As in the p=1 case, it seems 

reasonable to assume that the log concentrations are normal. Hence, we suppose 

that the screening variables (3.35) are bivariate standard normal with correlation 

coefficient given by the sample value, -0.6783. Under this assumption the Bayes 
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cost becomes 

K(Q *7 Q* 
IQ* 

[Caq) 1-9(117 XV2) AR M) = 
IIRR2 

Crd) J9(X1) X2)} I (X IE 9*R) 

CTnI(2, i E O*M)102(XliX2jrx 
= -0.6783)d., r, 

where 
02 (111 

X21rx) is the bivariate normal density function with correlation rx. A 

simple way of estimating this integral is to use Monte-Carlo techniques (see, for 

example, Hammersley and Hanscomb (1964)). We denote 

h(x,, X2) Ca4lýj-9(Xl? X2)jI(--, rEO*A) 

CA) J9(Xli X2)} 1 (1 E 9* )+ cmI (X E 9* ), (3.39) R 

and suppose that we have a random sample, (X(1), X(1)) (X(2) X(2) (n) X(n)) 
12)112 

)1*-- 
i(X1 121 

frOM 02(lliX21rx = -0.6783). Then 

h(X, ('), X2(')) 

is an unbiased estimator of IC. The variance of k is a'/n, where 

ol 
2= Varx jh(XI, X2)} 

JR2 

h(X,, X2 )2 02(XltX21r,: 
= -0.6783) cU - 

K2. 

To estimate IC we use a computer to generate a pseudo-random sample (P) x(l)) 112 
(X(2)) X(2)),. (X(n) W) 

121 X2 from 02(XIX21r.,, 
: -- -0.6783) and calculate IC for the sam- 

ple. The variance a2 can be estimated by the (adjusted) sample variance of h(X1, X2), 

1 k2 
0,2 =tE h(X, ', X('»2 -n 7-11 

i=l 

By the Central Limit Theorem, for n large enough, the estimator k will be ap- 

proximately normal with mean IC and variance o, 2 /n. Hence an approximate 95% 

confidence interval for IC is given by 

1.96Vfu"72/n. 
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Notice that we make a further approximation by substituting the sample estimate 

of the variance for the variance. As n is typically very large this will make little 

difference. To specify the accuracy of the answer we can give a threshold value, 6', ', 

say, for the relative error and continue sampling until the threshold is breached. That 

is, we can continue generating samples until 

1.9 6 V/Oýr 
ý2/ 

n 
(3.40) 

For a value of b,,,, = 10', we will be reasonably sure (95%) that the result of the 

procedure will be accurate to a significant figures. Notice that the left hand side 

above decreases proportional to -., Fn. Hence, to improve the accuracy of the answer 

by one significant figure the number of simulations must be multiplied by 100. The 

algorithm used to compute Bayes cost is given below. 

Algorithm 

1. Initialise at zero two storage bins that will -hold E, denoting the sum of the 

sample values of h(xi, X2) and E2, denoting the sum of the squared values of 

h(xl, X2). 

2. Generate a pseudo random observation, (x(i) I, X(i)), from 02(Xl, X21r., = -0.6783) 2 

using a standard routine for generating random numbers from a bivariate nor- 

mal random variable, for example N. A. G. routine G05EZF, see N. A. G. (1990). 

W Calculate h(xl , x(')) as follows. 2 

W Evaluate g(xl , x(')) and 2 

(i) if g(x('), x('» ý: 1.282 then x(') EW and h(x('), x('» = cal) -9(x('» X(i» 1212112 
13 

else, if g(x('), x(')) :5 -1.440 then x(') E 11ý and h(x('), x(')) = (X(O' (0) 
1212 C14) 

19 
1 X2 

I 

(iii) otherwise, 110) EM and h(x('), x(')) = cm. m12 

4. Let E=E+ h(x('), x(')) and E' + h(x('), X(i))2. 1212 
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Table 3.2: Screen classifications 
1-d screen classification 2-d screen classification 

Actual I Total IT=IT=0 measure TiT=1T=0 measure T 

T1 20 11 0 9 13 0 7 

T0 11 0 3 8 0 2 9 

5. Either return to step 2 or, for i> 1000 say, calculate E/n and Or2 
JE2 -n 

k2 )/(n - 1) and test for the required accuracy with requirement (3.40). 

If the current accuracy of the answer is sufficient then stop, otherwise return 

to step 2. 

In order to calculate the Bayes cost correct to four significant figures, for this example 

we chose a value of 6,,, = 10-4. To achieve such an accuracy took over 2 hours of 

computer time and over 100 million pairs Of (XI 
7 X2) were generated. Clearly this 

method is not very efficient for this problem but it is easy to implement and suffices 

for our purposes. The Monte-Carlo integration method works well when the h- 

function in (3.39) does not vary much; plainly, here this will not be the case. The 

simplicity of the method for our problem is highlighted by the case with which a 

change in the distribution of (Xj, X2) can be incorporated. All that is required is to 

swap over the routine that generates observations of (Xj, X2) to generate from the 

new distribution. 

The Bayes cost was calculated as IC = 0.0488c, a reduction of almost 10% over the 

1-dimensional screen which has Bayes cost IC = 0.0542c,, calculated using a simple 

modification of the above algorithm and under the full two covariate model. Table 3.2 

shows that using the additional screening variable increases the number of correctly 

classified patients at the first stage, with fewer going through to the more expensive 

second stage. We note in passing that none of the cases would have been wrongly 

diagnosed using this screen, though a more thorough assessment of the performance 

of the'screen could be obtained by validating its performance on a large training set 

or via the model using simulation methods. 
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0 3.4 Limited resources 

In some situations, limited resources of manpower or equipment may force us to 

impose limits on the proportion of items passed oil to the second stage of the screen. 

Hence, it seems natural to consider the problem of minimising K(ý4 ORt OAI) subject 

to the constraint 

P(X E Qm) (3.41) 

for some aE (0,1). We note in passing that the methods of this section are capable of 

accommodating other constrained versions of the optimisation problem of section 3.2. 

As a necessary preliminary, we consider a problem with an equality constraint, 

that is 

minimise KWA, QR) OM) subject to P(X E Qm) = a. (3.42) 

Any partition solving (3.42) will be called a-optimal and any partition that satisfies 

the constraint P(X E Qm) =a will be called feasible for (3.42). To solve (3.42) we 

introduce the Lagrangian 

L(QAiOR7OMAO) : -- K(QAiOR70M)+A{P(XEOm)-a} 

= EX [ga(Z)I(X- E 9A) +E 9R) 

+A} I(X E Qm)] -Aa 

from (3.1) and (3.3). By a simple extension of Theorem 3.1, the minimisation of L 

is achieved by 

QAý = IIE Q: Z,, (j) = +All? 

{Z E= Min [Ea W, Er (4, Ern (Z) + A] (3.43) 

{2: E 

Lemma 3.4 p(A) =- P(X E Q-ý ) is decreasing in A. M 

Proof 
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Plainly, from (3.43), A> PA C Q' and the result follows. C3 M- M 

The following corollary is a consequence of the strong Lagrangian principle, see Whit- 

tle (1971). 

Corollary 3.2 The partition (QA, QA, QA ) will be a-optimal if it is feasible for the ARM 

minimisation problem in (3.42), that is, if p(A) = a. 

Proof 

Denote as (! 
%, Ni f2m) any a-optimal partition. We write 

(%} for the set of all 

threefold partitions of Ox and IQ'} for the set of all feasible threefold partitions. If 3 

(QA PA Qlý ) is feasible then clearly, as 
0A, 

solves (3.42), Al R7 M 

:5K (QX XX KPA? QR; QM) Ai QR7 nM) (3.44) 

Also, 

K(QAi OR) QM) = mi 
'n} 

KPA, QR7 nM) 
W3 

= min PCPA, OR) QM) + AIP(X E Qm) - a}] (f 113" 1 

min [K(f2A, QRi nM) + AIP(X E f2m) - a}] {fl3l 

L(PA, QA, f2' 
ARM 

IC(Q-1, f2l" oll (3.45) ARM 

as P(X E SIMk) = a. It follows from (3.44) and (3.45) that the Bayes costs IC(! %, f2Rt! 5M) 

and 1C(QA, 11A, SIA ) are equal and so (Q-1, M, Qk ) is a-optimal. 0 ARMARM 

The key focus, then, is feasibility. In Theorem 3.3 we give conditions which are 

sufficient to establish the existence of a feasible partition of the form (Q, ý 
, f2A , QA ) ARM 

for any aE (0,1). 

Theorem 3.3 If 6. (i), Z, (jj) and F,, W are bounded above and p: R ý--+ [0,11 is 

continuous then p(R) = [0,1]. 

1ti 
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Proof 

Let 'E,, 4 and z. be upper bounds for E. (z), and respectively. Let 

=-c for some e>0. If A<A then 

c .. +A<+A< -c < min 2ý(x)} for all xE Qx, 

as all costs are bounded below by zero. That is, when A<A, (3.43) gives Q. 1 = Qy. 

Hence there exists aA such that p(A) = 1. Similarly if T= min {Z., 7ý} +c then, 

when A>W, 

> ý,, (j)+min JZ., Zý}+E > min {Z!,, Zý, } ý: min for all -T E QX, 

and so (3.43) gives Qý' = 0. Hence there also exists a A'such that p(A) = 0. The M 

result now follows by the continuity of p and the intermediate value theorem. 

Theorem 3.4 is an immediate consequence of Theorem 3.3 and Corollary 3.2. 

Theorem 3.4 Under the hypotheses of Theorem 3.3, 

(i) for all aE (0,1) there exists a A(a) such that p IA(a)} = a; 

ARM is a-optimal where A(a) is as in (i). (ii) any partition Q\(c), Q'\(c)) 

Consider now the hypotheses of Theorem 3.3. The boundedness of the costs 

seems natural and indeed required in practice but the continuity of p needs further 

consideration. This continuity (which is satisfied for the probit regression model of 

section 3.3. when X is absolutely continuous) is related to the requirement that sets 

of the form 

ix: 2�(2C) - =XI and IX: ý, (X) - 2, (X) =A}, 

for given \EP., should always have probability zero. This will frequently be violated, 

inter alia, when X is discrete. To illustrate this further, suppose X is univariate and 

discrete. Also, suppose that for some xi E Qx, we have P(X = xi) = pi and 

ar(xi) > aa(xi) > E, (xj). Then, Ai = 6,, (Xi) - E,. (xi) is greater than zero and the set 

{X: ß(X)-ö, fl(X)=)} 
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will have a probability of at least pi. Plainly, xi E 11' for all A< Aj, and xi V Q, \ mm 
for all A> Aj. Also, if we define 

p E- limp(, \i - E) = limP(X E 
dE-0 £-0 

then p(Ai) =p- pi+ where pi+ ý: pi. Hence lim, 
-.. o p(Aj z-- c) - p(Ai) = pi+ and there 

exists a discontinuity of p at Aj. 

Hence consider a problem in whicli the equation p(A) =a has, no solution, that 

is, aV p(R). Following Neyman-Pearson theory, we can come close to a-optimality 

via a suitable randornisation. Let a,, a2 E p(R) and a, <a< a2. By Lernina 3.4, 

A(al) > A(a2). Suppose that p, and P2 satisfy 

Plal +P2a2 ýa and PI +P2 -: -- 1- (3.46) 

That is, 

a2 a 
Pi = a2 al 

and P2 =a- 
cil (3.47) 

a2 - a, 

We consider the randomised, two-stage screen 

, \(Ctl) \(at) A(at) (Q, \(Ck2)2 Q, \(a2) A(a2) 
PJO(QA If2R sQM 

)+P20 
ARI 

f2m ) 

where, with probability p, we use the a, -optimal screen and with probability P2 we 

use the a2-optimal screen. Note that the onlY items affected by the randomisation 
A(CQ) 

are those for which gj E Qm \ Q)m("') and the proportion of such items will be small 

if A(al) - A(a2) iS SMall. 

By (3.46), this randomised screen satisfies the a-constraint in (3.42) and has 

associated Bayes cost 

pl)C 
(P A(al) 

IQ 
X(al) 

?Q 
A(al) + P2K QA(02), Q-\(CZ2) fl, \(&2) (3.48) ARm)(AR. iM 

Lemma 3.5 The Bayes cost in (3.48) comes within 

1 
(a2 - al)JA(al) - 

A(a2)} (3.49) 
4 

of the cost of an a-optimal screen, should one exist. 
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Proof 

Let (QA, QR7 Qm) be an a-optimal screen, assuming one exists. By the properties 

of (Qx(ai), QA(aj) 1i=1,2, with respect to the Lagrangian we have ARM 

L (Q\(c") 
,Q 

A(aj) 
,Q 

X(aj) A(al), al) :ý L(f2Ai! ýR7f2m, A(aj), aj) ARMI 

IC (Q A(aj) 
'Q 

A(aj) 
7Q 

A(aj) )< IC 
AR 

(ý4 f2R,! L) +, \(a, ) IP(X E! ýAI) 
- al 

I 

IC(f2A, Nf2Af)+A(aj)(a-aj) (3.50) 

and, similarly, 

Ic 
(Q, \(a2), Q \(Ck2) Q A(a2) ) :5K (3.51) ARm 

(f2A) f2Ri f2M) + A(02)(a - a2). 

Multiplying (3.50) by pi, (3-51) by P2, the Bayes cost in (3.48) is within 

p, A(al) (o - al) + P2/\(Ci2) (a - 02) 

Of K(f2Ai ý2Ri ýW). We deduce from (3.47) that this is 

(02 
- o) (a - a, ) A(a2)1 
(a2 - al) 

It is easy to show that (02 - a) (a - a, ) :5 (a2 - a, )'/4, where the bound is attained 

when a= (al+a2)/2. The result follows. 0 

From the definition of p it is clear that p(R) 9 [0,1]. Hence, p(A) is real valued 

for all real A. By Lemma 3.4, p(A) is decreasing in A and it is easy to establish that 

when aV p(R) we must have that 

sup JA; p(A) > a} = inf JA; p(A) < a}. 

Hence A(al), A(a2) may be chosen to make (3-49) arbitrarily small. Hence we have 

c-Bayes optimality via this randomisation device. 

We are now able to turn to the problem of primary interest to us, that of choosing 

(QA 
i 

ORi OM) to 

minimise IC (f? A, f2R, ýW subject to P(X E Slm) :5a. (3.52) 
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We shall suppose henceforth that the hypotheses of Theorem 3.3 are satisfied, bearing 

in mind that any discontinuity in p may be accommodated via the randomisation 

device above. In Theorem 3.5, (Q* 
, 
Qý, Q; j) is an (unconstrained) Bayes two-stage A 

screen, as in Theorem 3.1. 

Theorem 3.5 Under the hypotheses of Theorem 3.3, our constrained problem (3.52) 

is solved by 

(a) the globally optimal Bayes two-stage screen (Q* 
, Qý, Qjf) if P(X E Qýf) :5a, A 

any a-optimal screen (0"), QA("), Qx(")) when P(X E Q* )>a. ARMM 

Proof 

Part (a) is trivial - if the globally optimal solution is feasible for the constrained 

problem (3.52) then it must be optimal for it. 

Suppose now that the globally optimal solution is infeasible, with 

P(X E Q* ) m (3.53) 

Using the notation in (3.43), it is clear from the Lagrangian formulation that (under 

consistent tie-breaking rules) 

(Q 
*) Q* 

In*= 
(no, no, no ). 

AR M) ARM 

Hence (3.53) implies that 

p(O) 

It then follows from Lemma 3.4 that A(a) > 0. Hence if PAi Ni QM) is any feasible 

solution to (3.52) it follows that 

X(ct) 
I 

QA(a) 
IS2 

X(a) A(a), a) 

RM 
X(a) X(a)) 
Rm 

as required. 0 

Comments 

:5 L(QA, nRiQMiA(Cf)iCl) 

:5 K(QAillRiQM)+, \(a)IP(XEQM)-a} 

:5 K(OAJ2R7QM) 
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1. When the globally optimal screen is not feasible, that is, P(X E Q* )>a, M 

notice that the constrained optimum is obtained by increasing the penalty of 

measuring the performance variable. In fact, the initial assessment of 

should have taken into account any limitation on resources and the procedure 

in this section would not be needed. Hence the method here is useful as a 

way of ensuring that costs parameters have been chosen to fully reflect resource 

limitations. 

2. Our method restricts throughput to the second stage of the screen, by constrain- 

ing at a the probability of an item passing to the second stage. In practice, 

there may be a more immediate restriction, on the number of items from a 

batch that may be admitted to the second stage. Here, if the globally optimal 

procedure is not feasible, that is, it admits too many items from the batch to 

the second stage, one suggestion would be to increase A in (3.43) until only the 

required number of items are passed to the second stage. Further work needs 

to be done to establish whether such a scheme would be optimal. 

a0 3.5 Probit regression model 

Here we illustrate screening under limited resources assuming the standard cost struc- 

ture and a probit regression model. The case in which X is univariate is covered in 

detail by section 3.5.1 and in section 3.5.2 we look at limited resources in the context 

of the Conn's syndrome example. 

Firstly, we assume that c,,, Ic, <1-c,,, Ic,,, ensuring that it is optimal to have a 

two-stage screen (with Q;, :A 0). In section 3.3.1 we saw that, when X is univariate 

and milsi is small enough, it may be better not to perform the X-stage of the 

screen and reject, accept or measure T for all items. Here we shall assume that 

the standardised regression parameters mi/si are large enough so that it will always 

be optimal to perform the X-stage of the screen. We limit the number of items 

passing to the second stage of the screen by the constraint P(X E Qm) :5a. By 
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Theorem 3.5, when p(O) > a, the optimal two-stage screen subject to this constraint 

is given by any a-optimal two-stage screen. In this case, following (3.9) and (3.43), 

when (c, + A)/c, <1- (c,,, + A)/c,,, the Lagrangian is minimised by 

9, \ MT-X: Lo 
AE 

9x 
+ XT XO)112 

> C2(1\) 
: iý. 0 

S- 

1 

g2, \ 
MIT., ro 

R 
Qx 

+XT X< cl (3.54) 
! lý. 0 

S_, 
0) 

1/2 

TE flx: cl(, \) <0< C2 m--(1+ 
--T 01, 

s 
-X 0 

jF/ 21 

whereC2 
(, \)= and cl(A) With CJ(A) < C2(A)- 

Simple algebra yields that for A<ý, 

c,,, A<1 cm 
Cr Ca 

(3.55) 

where ý= ccl(c,, + c, ) - cv, > 0. To find the a-optimal screen we require A(a), 

the value of A that solves p(A) = a. As X is absolutely continuous, the continuity 

of P is guaranteed and so, by Theorem 3.4, there exists aA such that p(A) =a for 

all aE (0,1) - Plainly, Q1 =0 =ýý p(ý) =0 and we know that p(O) > a, hence M 

p(O) > p{A(a)j >0 and by Lemma 3.4,0 < A(a) <k Hence (3.55) will hold for 

A= A(a), and so the a-optimal screen is determined by the value of A that solves 
ýcl(A) 

<< C2 (-X)= 
a, (1 + SXO)1/2 xý 

__ 

1 

where -X--o 
= (1, X)T. 

3.5.1 Constrained screening with one covariate 

Here we discuss the effect of limited resources when X is univariate. We consider the 

case in which mo =0 and s, =1 and suppose that m, > MaX(ICII, IC21), which in 

turn guarantees that mi > max(lcl(, \)I, lc2(A)1), 0<A<k From Theorem 3.2 and 

Corollary 3.1 we infer that in the range AE [0, A), the screen (Q', SI' , Q'ý ) minimising ARM 

L(QA) QR, SIM, A, a) is given by: 

IWA 
100) 1 

ý"R' = QA = (VA, WA), 
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where w, \ and v, \ can be found by substituting C2 (A) for C2 in Theorem 3.2 and cj(A) 

for c, in Corollary 3.1. Hence 

p(A) =P IX E (V, \, WX)l, 0 <A < Ä. 

In the case in which the screening variable X, N(O, 1), for given A, we can simply 

compute v, \ and w, \ from Theorem 3.2 and Corollary 3.1, and then obtain 

p(A) = 4)(iv. \) - (I)(v, \). 

In Figure 3.3, find plots of p(A), 0<A<ý, for examples in which X, N(O, 1), the 

regression parameters have mean mo = 0, m, = 1,2,3,4,5 and covariance structure 

so - s, - 1, r=0.5, with costs (c,,,, c, c, ) = (1,4,6). 

We now consider a scenario in which resources are limited in such a way that 

we are interested in the constrained minimisation problem (3.52) with a=0.25. 
From Figure 3.3, we see that when m, =4 or 5, p(O) :50.25 and, so the globally 

optimal screen (Q* , Q* , Q* ) is feasible and hence is optimal for the constrained ARM 

problem, see Theorem 3.5(a). However, when m, = 1,2 or 3 then p(O) > 0.25 

, QX(0.25), g\(0.25), QX(O. 25)) 
and, by Theorem 3.5(b), a 0.25-optimal screen (ARM solves the 

problem. We can find A(0.25) directly from the plot or use a numerical equation 

solving technique, such as halving, to find 

A(0.25) = (A : 4) (wx) - -cD (vx) = 0.25). 

The plot could be used to choose sensible starting points for such a routine. For 

example, when mi =2 we have A(0.25) = 0.554 and the optimal screen for the 

constrained problem is 

9 X(O. 25) 
= [0.213, oo), 9 X(O. 25) 

= (-oo, -0.428], 
qX(O. 25) 

= (-0.428,0.213 Rm 

These results are consistent with the notion that large values of m, correspond to 

more effective X-filters for the attributes. Hence in cases when mi is large, less use 

is made of the second stage. 
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3.5.2 Conn's syndrome example 

Consider again the Conn's syndrome data described in section 2.4 and section 3.3.3. 

A Bayes optimal design based only on the covariate Xl, the standardised log concen- 

tration of potassium, is given by Figure 2.2. Assuming that X, is standard Normal, 

the probability of a patient being passed oil to the second stage of the screen is 

p(O) = P(-0-31 < X1 < 1.44) = 0.55) 

which may well be too large to be practicable. Suppose that the throughput to the 

second stage must not exceed 25%. To attain this level of throughput and to maintain 

Bayes optimality under this constraint, the cost of reaching the second stage must 

be increased by an amount A(0.25) and the screening parameters recalculated. The 

amount A(0-25) is found by performing a simple search algorithm: 

1. Take as starting values Ao =0 and A, =ý=0.3526c,. Hence p(Ao) = 0.55 and 

P(Al) = 
2. Obtain standardised values of the regression parameters that ensure that mo = 

0 and s, = 1, see section 2.3.8. For this example, the untransformed and 

transformed regression parameters are given by (2.34) and (2.35) respectively. 

3. Calculate the new point as 

A2 -"": 
Ao 10.25 - p(A, )} + A, lp(Ao) - 0.25} 

P(AO) - P(AI) 

4. Find the values of the cut-points v' and w' from Theorem 3.2 and Corol- 
, 
X2 1\2 

lary 3.1, replacingC2 
byC2(, \2) 4)-111 - 

(Cm + e\2)lCa)} and c, byC1 (A2) 

'ýD_Ij(Crn+A2)/Cr)}. These values are cut-points under the data transformation 

that ensures mo =0 and s, = 1. 

5. Reverse the data transformation of section 2.3.8 to obtain cut-points relating 

to the variable Xj: 
I A2 MO 

VA2 
Sl Ml 

A2 MO 
WA2 - 

Sl Ml 
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6. Calculate P(A2) 

7. If P(A2)> a then set Ao A2, otherwise set Al : -- A2- 

8. If some convergence criteria is met, say jp(Al) - p(Ao) I<6, \ for some small 6, \ 
then set A(0.25) A2 and stop, otherwise return to step 3. 

Notice that in each iteration p(Ao) > 0.25 and p(AI) < 0.25. The algorithm computes 

a new point as the point where a straight line drawn between the two current points 

crosses the line p(A) = 0.25. Using the above algorithm on the Conn's syndrome 

data and imposing the convergence criteria in step 8 with 6, x = 10-5c,, we found that 

A(0.25) = 0.1515c,, i. e. p(O. 1515c, ) = 0.25. Reading off the cut-points from step 5 

of the final iteration of the algorithm, a 0.25-optimal 1 dimensional Bayes two-stage 

screen is 

X, 

drug therapy 

0.92 

i exploratory operation to determine T 

0.18 

total adrenalectomy 

and has Bayes cost IC = 0.0740c, (computed as in section 3.3.3). The overall classifi- 

cation of the 31 cases on this screen is given in Table 3.3. Notice that, by restricting 

the throughput to the second stage, the Bayes cost has increased by around 37%. 

The number of cases correctly classified has increased from 14 to 22 but the number 

of misclassified cases has also increased from 0 to 2. 

A bivariate version of this screen based on the two covariates X, and X2 in (3.35) 

is calculated as follows. Again we shall assume that (Xi, X2)' follows a bivariate 

standard normal distribution with known correlation coefficient r., = -0.678, the 

sample correlation coefficient. The 2-dimensional Bayes two-stage screen is given by 

(3.37) in section 3.3.3. That screen passes P(O) = P(X E 11m) = 47% of patients on 

to the second stage. Again suppose we wish to limit the throughput to not exceed 
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25%. The search algorithm proceeds as above but with step 2 deleted and steps 4-6 

replaced by the calculation of 

P(A2) -: -: P IC1 (A2) <9 (Xl 
i 
X2) < C2 (A2)} 

i 

whereg (2; 11 -Y'2) is as defined in (3.38). We calculate this probability using the Monte- 

Carlo integration method first described in section 3.3.3. We sample pseudo observa- 

tions from the bivariate normal distribution with density 02(-TI, 
-121rx = -0.678) and, 

for a generated pair (x(') x(')) the h-function in (3.39) is replaced by: I12? 

WW 
(x('), x(') =11 

if Cl (A2) <9 
(Xi 

, X2 
)< 

C2 (A2) 
i )0 

otherwise. 

Here the function h(Xj, X2) is a Bernoulli random variable with probability P(A2) of a 
'success'. Hence its variance is simply given by P(A2) 11 - P(A2)}. An initial search was 

performed with 6,,, set to 10-2 in a modified form of the relative error convergence 

criterion (3.40), so that we find p(A) accurate to 2 significant figures and then, using 

values from that search as starting points, we performed a search with 6,,, = 10-3. 

In this latter search, the number of pairs generated to find each value Of P(A2) Was 

typically of the order of 11.96ý03.25(1 --0.25)/(0.25 x 10-ý3) 12 = 11,524,800. The 

search found that p(O. 1175c, ) = 0.25 and so we take A(0.25) = 0.1175c,. Therefore a 

0.25-optimal 2-dimensional Bayes two-stage screen is 

Q* j9ZEQ2L: 
9(XbX2)>0.654j 

E Qx : 9(XliX2) < -0.8691 

III E f2x : -0.869 < 9(Xl i X2) < 0.654). 

This screen is shown graphically in Figure 3.2. As expected, the central region which 

passes patients on to the second stage has, been reduced in size to accommodate the 

restriction in throughput. The performance of this screen on the 31 cases is given in 

Table 3.3. The screen has Bayes cost IC = 0.0600c, (calculated as in section 3.3.3, an 

improvement of nearly 20% over the 0.25-optimal 1-dimensional screen. In terms of 

the cases, the use of the extra dimension has resulted in correctly classifying one of the 
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Table . 3: Screen classifications under limited resources 
1-d screen classification 2-d screen classification 

Actual Total T=1T0 measure TT=1T=0 measure T 

T=1 20 18 1 18 11 

T=O 

1 

11 146056 

previously misclassified cases. Comparing the limited resources 2-dimensional screen 

with its unlimited version, we see that restricting the throughput has increased the 

Bayes cost by around 23%. Also, as in the 1-dimensional comparison, the number of 

correctly and incorrectly classified cases has increased: the number correctly classified 

from 15 to 23 and the number incorrectly classified cases from 0 to 1. 
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Chapter 4 

Sequential screening 

4.1 Introduction 

In Chapter 2 and Chapter 3, we have developed optimal designs for two-stage pro- 

cedures, the second stage of which is an observation of the performance variable T. 

In this chapter, as in Chapter 3, we consider the case in which we have more than 

one screening variable, or covariate, available with which to assess whether an item 

reaches the standard. Chapter 3 was concerned with the design of a two-stage screen 

in which the first stage is a classification based on a batch of covariate measurements. 

Here we take a different approach and discuss the design of a sequential screen. In 

such a screen, at each stage of a sequence, a covariate is measured and a decision is 

made to either (i) sentence the item as acceptable, (ii) sentence the item as unaccept- 

able, or (iii) pass the item on to the next stage. At the final stage of the sequence 

the performance variable is measured on those items that remain unsentenced. In 

many practical situations, the only form of the screen that is considered both simple 

enough to be workable and that makes full use of the available information (that 

is, full use of the covariates) is a sequential screen. As we shall see, the problem of 

finding the optimal design of a sequential screen is not trivial and in order to simplify 

the problem we assume that the order of the screens is fixed in advance of the design 

stage. 
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Recall that, for the case in which T is binary, the optimal two stage designs 

of Chapter 2 were seen to be simple and easily understood in relation to the cost 

parameters and the nature of the regression model. Also, the performance of those 

two stage designs has been found to be robust to departures from model assumptions 

(Boys & Glazebrook (1992)) and so it seems natural to try to use those designs in 

a sequential screen. Hence, in this chapter, we. take advantage of the considerable 

strengths of the optimal two stage designs given in Chapter 2, using them as building 

blocks for a heuristic solution to the problem of designing an optimal sequential screen 

with a fixed screen order. 

Consider a situation in which the screening variable X= (XI, X2.... 
I 

Xp) is 

multivariate and T is binary. We wish to consider the problem of how best to design 

a sequence of screens, one for each Xi. Let 7r be a permutation of {1,2,... 
'pj 

corresponding to an ordering of the screens, that is, X7, (I) i X1r(2) v ... 1 X7r(p) is the 

sequence of screens corresponding to permutation 7r. We seek a Bayes sequential 

design of the form: 

(i) an item that is not sentenced by the first (i-1) screens based onX7r(l) 
i 

Xw(2)) 
i 

Xlr(i-1) 

respectively, is passed on to the X, (j)-screen; 

(ii) an item that is not sentenced by any of the p screens is passed on to the (p+ 1)th 

stage where T is measured. 

We assume, for each Xj, i=1,2, . .., p, that large values of Xi tend to indicate 

that T=1. In other words, each component of the screening variable X can be 

thought of as a larger-the-better screening variable when considered individually. 

We further assume that this assumption will hold when conditioning on the value of 

other components in X, that is, Xi IX[j, = ; Z4,1, i=1,2.... p, is a larger-the-better 

screening variable for all values of X(j], where X[j] is a vector of some or all of the 

components of X excluding Xi. If an item has not been sentenced on the basis of 

the first i-1 screens for X, (1) I 
Xw(2) i 

Xr(i- 1) respectively then we assume the 
I 
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natural form for the ith stage of the sequential screen, 

accept 

continue 

Vw(i) 

reject 

for suitably chosen v, (i) < w, (i), i=1,2, . .., p. In other words, for v"(i) < w, (i), if 

X,, (i) ý: W,, (i) then the item is accepted, if X, (i) :5v, (i) then the item is rejected, and 

if v, (i) < X, (i) < w, (i) then the item is passed on to screen i+1 for further testing; 

when v, (i) = w, (i) we adopt the convention that if X, (i) ý: w, (i) then the item is 

accepted, otherwise it is rejected. Should sentence not have been passed on the item 

at any of the p screens, then T is measured. Therefore the pth screen is assumed to 

have the form: 
accept 

Wr(P) 

continue 

V-(P) T 
T reject 
X7r(P) 

Chapter 2 concerns the case p=1 and in Chapter 3 we have shown this form of 

screen to be optimal for the p=1 case under conditions on the parameters of a 

probit model for TIX. 

There are two design questions. The first concerns the best ordering 7r of the 

p screens (see Bergman & Gittins (1985)) and the second, the optimum choice of 
(111r, 191r) ý-- (Vir(I)iVr(2)) 

... 7 Vir(p) 7 Ww(j) I Ww(2)) ... , w, (p)) for a given screen order. We 

(in the main) consider the second of these questions only, noting that in many contexts 

there will in any event be strong constraints on the orderings allowed. The sequencing 

problem is nevertheless part of ongoing work in the area. In the remainder of this 
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chapter, 7r will be taken to be the identity permutation, that is, without loss of gen- 

erality, we assume that the ordering of screens is Xj, X2, ..., Xp and the parameters 

that characterise a sequential screen are denoted (r, Lv) : -- 
(V1 

v V2) ... i Vp7 WI i W2) ... I Wp)- 

In section 4.2, we develop a heuristic design by (iteratively) using an approximate 

dynamic programming approach which performs successive backward passes through 

the problem, that is, redesign screen p, then p-1, and so on. At each stage, within 

each iteration, a delta method approximation is used to reduce each update to a 

version of the two-stage model of Chapter 2. Hence at each stage of the iterative 

procedure, and most importantly, at the final stage, the design of each screen is 

based on the simple, robust methods employed for the two-stage designs. Section 4.3 

discusses the p=2 case in detail and section 4.4 describes computational work that 

assesses the performance of our heuristic design and its sensitivity to changes in model 

parameters. In section 4.5 we design a sequential screen for the Conn's syndrome data 

and section 4.6 gives a couple of suggestions for improvements or alterations to our 

approach. 

4.2 A heuristic multi-stage screen 

In this section we develop a heuristic approach to the design of a sequential screen 

based on a dynamic programming methodology. In order to do that we first introduce 

the following vector notation: suppose that r= (rl, r2 , ... , rp) is a p-vector. We write 

ir = (ri, r2, ... , ri) for the vector of the first i elements of r, 

r' = (ri, rj+j .... , rp) for the vector of the last p-i+1 elements of r, 

r(j) = (r, 
, r2 , ... , ri-I , rj+j . .., rp) for the vector of the elements of r with ri deleted. 

Also suppose that q= (qj, q2 qp) and t= (t1 
i t2) ---, tp) are p-vectors , then we 

write 
(- (ql, q21 ... I qi-l I 7*i) ti+,, 

---, tp) 
- 

We assume a simple cost structure similar to that of the standard case, used 
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in Chapter 2. We denote as e. and e,., i=1,2, ... , p, the unit costs of wrongly 

accepting and wrongly rejecting an item at screen i (respectively) and we denote as 

e, the screening cost per item at screen i. The unit cost of measuring the performance 

variable of an item is denoted c,,. 

Write 10) (v, ig) for the conditional Bayes cost incurred from the implementation 

of the final p-i+1 screens (i. e., screens i to p) for items unsentenced by the first 

i-1. Then for i=1,2,. .. 

e, P (good item rejected by ith screen I item reaches ith screen) 

+ e. P (bad item accepted by ith screen I item reaches ith screen) 
+I0+I)(jz, jL)P (item passed to (i+ 1)th screen I item reaches ith scree 

+ cost of implementing ith screen, 

where the cost of implementing the ith screen is c' or zero. This cost will be zero S 
when the strategy at stage i is to reject or accept all items or pass all items on to 

screen i+1. The following diagram illustrates the conditional Bayes costs that will 

be paid given each of the three possible outcomes at screen i and given that the item 

has reached screen i unsentenced: 

e. P(T = OjXj ý! wi, i-lv < i-lX < 

Wi 

continue 

Vi 

c!, P(T = llXi: 5 vi, '-'v < '-'X < i-1w) 

es 

The expression i-lv < i-lX < i-lw is short-hand for the event 

i-i 

nivi < xi < wj}, 

/C(i+l) (v 
I 1g) 

namely that an item has passed the first i-1 screens in the design (r, m) unsentenced. 
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Hence the conditional Bayes cost in equation (4.1) is 

'-'X < "W 

e. P (T = 0, Xi: 2: wil"v < '-'X < '-lw) 

+ K('+1)(n, Lv)P (vi < Xi < wil'-'v < '-'X < (4.2) 
+ e, I(vi, wi) 

where IC(P+l) =- c,,,, the cost of the final stage of measuring T, and IC(l)(t, Lv) = 

JC(V, LV) is the Bayes cost for all p screens. The screening cost e, is not paid at the 

ith stage when vi and wi both take infinite values, that is when I(vi, wi) = 0, where 

I(vi, wi) = 
1, if either vi or wi are finite, 

(4.3) 
1 

0, otherwise. 

Definition 4.1 (KIP', w*Pt) is a Bayes sequential design if 

IC(n'P', ivP') = inf IC(Iz, Lv), (4.4) 
vsw 

where the infimum in (4.4) is over all (2,1g) satisfying -oo < vi : ý, wi ! ý, oo, i= 

1,2,... 

The following result describes an optimality principle for the problem of obtaining 

a Bayes sequential design. It formally states that the optimal design parameters for 

screen i are those that minimise the conditional Bayes cost 10) given the optimal 

design parameters of the other p-1 X-screens. 

Lemma 4.1 If (toP', wOP') is a Bayes sequential design such that 

t< j-1x < j-1wopt) > 0, j=1,29 ... tp p(viop, < xi < wjopl i j-I-Vop 
(4.5) 

then, for i=1,2,.. -, 

(izopt, wopt) = inf )C(i) (i-l)vopt, V(i)) (i-l)wpt, w(i) (4.6) 
V(i) YL iI(---- 

)) 

IM 
= inf 10) 1( (i-l)vopt 

, vi, ifp, (i+, ) (i-, ) 
-Wopt, wi, m opt(i+l)) 14.7) 

vilwi 
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Proof 

Suppose condition (4.6) fails for i=I, say. This implies the existence of (, D(I), iV-(I)) 

such that 

KM 1( (1-1) V opt 
I D(I) H (I-1)7vopt, iv(, ) )I < JCM (Ifpt I ?V opt) 

Use of recursion (4-2) for i=1,2,. J-1, together with inequality (4.5) yields 

KM (I-1)VOPt,; V-(I)) , 
((I-1)7VOPt"6)(I) I(-)I< IC(1) (I)fpt, wo"t) 

which contradicts the optimality of (IfPt, 
-7i; 

Pt). This proves (4.6). Equation (4.7) 

formulates a weaker condition and follows immediately. 0 

Note that condition (4.5) simply guarantees that each screen makes a contribution 

to the overall Bayes cost IC(LOPI, wOPI). If (4-5) fails for the first time at j=J, then 

no items will proceed to screen J+1 and in an appropriate reformulation we recover 
(4.6) and (4.7) for i=1,2, . .., J. Note also that if the infimum in (4.7) is attained 

in the limit as vi --+ -oo and wi --+ oo then the Xi screen is omitted from the optimal 

design. 

Relations (4.2) and (4.7) do not yield a dynamic programming approach to the 

determination of Bayes sequential designs based on conventional backwards induction 

because the cost 10) depends upon the entire design (r, jg) and not only upon the 

design of the final p-i+1 screens. However, these relations are strongly suggestive 

of a heuristic approach which is iterative. In this iterative scheme, the current design 

(V!, Id) is updated to the new design (e, Ld') by using a backwards induction as 
follows: perform a backward sweep through the problem, recalculating the designs in 

the order p, p-1, ---, 1. Suppose that the updates (vj", wj"), j=i+1, i+2, ... ,p 
have been obtained. We consider the problem of calculating (vi", wi"). The r. h. s. of tz 
(4.7) suggests that we need to consider the minimisation of a suitable approximation 

of 
(i-I)VI 

7 Vi,: dl(i+l) ((i-, )-W" wi, idl(i+i) 

with respect to (vi, wi). The approximating cost bi) is derived from 10) by applying 

a delta-type approximation to the conditional distribution of Xil i-1v < '-'X < 
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if 

that is, we approximate the distribution of Aýj)j i-lr < i-1X < '-11v by its Nn 

expected value. A further approximation we use is to evaluate the cost 10+1) at 
t 

(OvI, vtl('+')) ,( 
(Old, Id'('+')) and so, in the updating procedure for screen i, the 

cost 0+1) is not a function of vi and wi. Following (4.2) we have W" 

k(i) (i-I)VI 1ý1(i+l) /I(i+l)) 
-7 

Vi, 
)7( (i 1) Mv "wi, V-) 

P (T 
= 1, Xi < vjj, ýY(j) = LL(, )) 

+e. P (T = 0, Xi ý: wilA ýj) 

+ e, ., I (vi 7 wi) 
+P (vi < Xj < wjjxýj) = LL(i)) 

x K(i+l) (OV, 11(i+l) Wwl 7VII(i+l) f( )v)I( 

-1 - )) I 
where 

E(i) =E [X(i) l'-'v' < '-'X < '-'iv'] 

and (vi" wi") are chosen to satisfy the relation SIS 

vv 
((i-l)wf, 

wil(i) 

inf (i-l)wt, wi, jdl(i+l) -I Vi, 2- )I 

(4.8) 

(4.9) 

Notice that, taking cm = IC('+'), the Bayes cost in (4.8) is of the same form 

as the Bayes cost given in Chapter 2, equation (2.1) and the relation (4.9) is of a 

similar nature to that given in Definition 2.1. Hence, one effect of this approximative 

dynamic programming approach is that when TIZ is modelled by a probit regression 

then each optimisation (4.9) has the form of the simple two-stage problems discussed 

in Chapter 2. The designs obtained by this route thus inherit all the advantages 

of simplicity and interpretability of the solutions discussed there. The next section 

describes the updating procedure more thoroughly. 

A full backward sweep produces an updated sequential design (IZI, w"). We con- 

tinue updating until some convergence criterion defined by Bayes cost IC(r, 1g) is 

satisfied. If is the limit design (assuming it exists and is unique), we have from 
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(4.9) that, for i=1,2 1 

I( (i- 1) & vi, j(i+ 1) +1) inf 
) 
k(') ), ( (i-, ) i-v, wi, Lv(i 

Vi, Wi 
)I 

(4.10) 

which has the form of the optimality equation (4-7) but for the approximate Bayes 

cost k(i). 

This completes an outline of our heuristic approach to designing a sequential 

screen. Section 4.3 details the case p=2 and in Section 4.4 we present a cornpu- 

tational study that compares the heuristic designs based upon this approximative 

approach with designs that are Bayes optimal. 

4.3 A heuristic three-stage screen 

We now give in full detail, the solution procedure for the simplest, interesting case, 

namely p=2. We develop the model for this case as follows. Screening variables 

X, and X2 have joint probability density function 0 (XI 
i X2) - 

We assume a model for 

TIX expressed via a probit link function, that is, 

P(T =1 JýZ, ý) = qqýTlo) 

where 
(ýO, ý,, ý2)T and x. 0 Xb X2 )T. We write the first and second moments 

of 6 as 

2 E(ýj)=mj, var(ýj =si, corr(ýj, ýj)=rjj, i, j=0,1,2 i5ýj. 

Also, we write the moments of the conditional distributions of XjJX2 -"' -'ý2 and 
X21X, = x, as 

E(XlIX2 12) A112(X2)) 

E(X2lXl Xl) 11211(XI)i 

= (72 var(XIIX2 =-- X2) 112(X2)i 

var(X2IX, = X, ) = or2 211 
(X1) 

* 
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Under the assumption that X, and X2 are larger-the-better screening variables 

the natural form of the design is: 

accept 

Wl 
I 

continue 

VI 

reject 

x1 

accept 
W2 

I 

continue 
V2 

reject 
X2 

That is we accept an item only if 

(i) Xi > wi, 

(ii) vi < X, < w, and X2 > W2, or 

(iii) Vl < XI < Wli V2 < X2 < W2 and T=1. 

The Bayes cost of the above set-up is 

C, 1, p(T=1, Xl: 5v, )+ClP(T=0, Xlý: w1) (4.12) 

+ K(2) (, Z, lop(V, < X, < Wl) + Cslj(V1, Wl), 

where 

/C(') (r, 1g) = c, 2P(T 
=li X2: 5 V2 IVI < XI < WI) 

2 CýP(T = 0, X2 ý: W2 1V1 < Xl < Wl) 

+ CMP(V2 < x2 < W2 1V1 < Xl < Wl) + 2s I(V2) W2) 7 

is the conditional Bayes cost incurred from the implementation of the second screen 
for items unsentenced by the first. The indicator function I(vi, wi) is defined in 

equation (4.3). Here I(vi, wi) is zero when both vi and w, take infinite values, that 

is, when the first screening variable is not used in the design and hence screening cost 

C1 is not paid. Otherwise I(vj, wi) =1. Similarly, I(V2 
7 W2) =1 if the second screen 3 
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is implemented and zero otherwise. Here we use the heuristic method outlined in 

section 4.2 to find sub-optimal values of the characterising parameters (V1 
i W1 i V2 i W2) - 

In the iterative scheme of section 4.2 we denote tile current solution by (v!, Lq! ) = 
II (V1 
I V2 7 Wl w') and compute updated values (U! ', 

-&'). 
Of the two stages that will form 

11 2 

an iteration, the first stage is to find updates (V2, w") of the parameters characterising 2 

II the second screen. Hence we consider 10) (Vi i V2 i WD IV2) above and write 

IL, = E(Xilv, < X, (4.14) 

Note that this conditional expectation is in factP(2) defined in (4.8). We then have 

k(2) (V, 
,12 1 V2 i Wi 1102) -= CrP(T = 1, X2 :5 V2 IXI 

+C2. P(T = 0, X2 ýý W21X1 = 111) (4.15) 

2 +CMP(V2 < X2 < W21X1 = til) + Cs I(V2, W2) 

as our approximation to Bayes cost K(2)(V 
11 V2 i W1 i W2). Following (4.9), the updated 

values (0, w") are solutions to the minimisation problem 22 

k(2) (VI /I I k(2)(Vf, 
lIV2, WIIW2")= inf 

1 V2 i IVIJ i W2) 
(V2 

sW2) 

(4.16) 

However (4.16) can be recast as a single screen (p = 1) problem of the kind discussed 

in Chapter 2 as follows: 

(a) the key cost parameters are c!., c2,, c, 2 
and c,; 

(b) the probit regression of T on X2 given that X, = jil has parameters ý* = 
(& ý1*)T, where ý0* = Co + it', Cl and Cl* = C2. 

0 

Part (b) follows because, under the probit regression model, 

P(T=ljý, Xl=1-Zj, X2) = 'ýD(6+611'1+6X2) 

: -- ýý [VO + 61411 + 6121 

+ 

P(T X2)- 
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The mean of the regression parameters ý* is 

E(r) 0 
mi 

(M ) E(Co) + plE(ý, ) 

E(C2) 

7no + li'lm, 

'111,2 

and the covariance structure of ý* is 

Var(ýO*) = s*o 
2= 

Var(ýo) + jil 
2 Var (ý, ) + 21L, Cov (CO, CI), 

= S2 t2 2 
0+ it, sl + 21L'lrolsosi, 

Var(61*) :H s*j 2= Var(62), 

2 S2) 

Cov(ýo*, ýj*)E: r*so*sj = Cov(ýo, ý2)+1i'lCov(ý1, C2) 
01 

I 'r02SOS2 + /Llrl2SlS2- 

Since in general we do not have m*0 =0 and s*1 2=1 then a change of variable to 

(60t, 61t), where 60t = 60* - mO*6j*/m*j and ýjt = 61*ls2*, is needed before application of 0 
Theorem 2.1. Following section 2.3.8 this results in the following mean and covariance 

structure for the new variables: 

E(e0t) --= mOt = 0, E(elt) EE mt, = m*, /s*, 1j 
t2 *2 222 

st2 Var(eot) =- so = so + m*o s*, /M*, - 2m*, r*so*s*, /m*� Var(Elt) 01 
cov(e0t, elt) =- rtstost, =r SO - mos*I/M*l. 

With this change of variable, design parameters for the second screen are now derived 

from Theorem 2.1 and denoted (vt, wt). 22 

Having obtained (A wt), reversing the change of variable (see equations (2.10)) 12 

gives the updated screen for X21XI = It', that is, (0, w") in (4.16) as: 122 

V211 = V2t/51* - Mo*/M*j = V2t/S2 (7nO + MIAID /M2 
(4.17) 

W" = WtIS* - M*/M*l = W2t/S2 1 2210 
(MO + MlAl) /M2- 

This completes the update of the second screen parameters and we now use (v", w") 22 

11 to derive new iterates (vl, w") for the design of the Xi-screen. I 
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We write 

r /12=E X2 

where p' is p(j) defined in (4.8). We now have 2 

k(l)(vj, v", wj, w") = 'P(T=1, XI: 5v, 22 Cý JX2 = 142) 

P(T = 0, Xl ýý'1V1 1X2 = It') 

" I(vi, IV, ) +C' 
K(2) (VI 

1 
11 1 11) +P(VI < XI < WIJX2 /112) w V2, Wls 2 

(4.18) 

(4.19) 

as our approximation to the Bayes cost ICM (vi, v", wi, w"). Following (4.9) again, we 22 

to satisfy choose (vi, w, 

k(')(V", V", W", W")= inf k(l)(Vl, v" D. (4.20) 1212 27 Wb W2 

The minimisation (4.20) may be recast as a single screen (p = 1) problem of the kind 

discussed in Chapter 2 as follows: 

(a) the key cost parameters are cl, c,, cl and ICM (v, v", w, w") a81212 

(b) the probit regression of T on X, given that X2 = A' has parameters 2 

T, 
where ýo + ji'ý2 and 2 

Part (b) follows because, under the probit regression model, 

P(T = lIe, x1, X2 = /4) = '(eo +ixi +e2,4) 
4) [M + 6-0121 + 64 

+ &XI 

P(T=11ý, xj). 

The mean of the regression parameters Z is 

( ffio E(Q + /L'E(ý2) 2 

Ml E(ý, ) 

MO + A12M2 

Ml 
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and the covariance structure of ý is 

Var(Q = g2 Var(ýo) + IL' 
2 

02 Var (C2) + 21L' COV (CO 
i 
C2) 

2 

S2 t2 2 
0+ A2 S2 + 2jt! 

2rO2SOS2, 

Var(CI) =-: 9', -- Var(Cl), 

S2 11 

COV(&7ý1)-=ýýOýl = COV(CO)61)+/112COV(6? 6) 

I T01SO81 + /12rl2SI82- 

Since we do not in general have 77to =0 and 91, =1 then a change of variable to 

01 11 ffioý, /fnj, ý1/91) is needed before application of Theorem 2.1. For 011 V) 

completeness we give the mean and covariance structure of (ý01, ý11) which follows from 

section 2.3-8: 

E(6oý) = mto = 07 E(ýjt) EE nil, = 774,191, 
-2 2g2/fn2 E St2 = qt2 =So+Mo 11 Var(60t) -o2? 7n'of9o§j/fi-tj, Var(ýIf) 1 

Cov(601, ýf) Ostst 
= Ro - ffi 

101 091/ffil. 

With this change of variable, the optimum design for the first screen is now derived 
t D. from Theorem 2.1 and denoted (vi, W, 

Reversal of the transformation gives the updates of the first screen as cut-off points 

for the variable X, JX2 = 0, that is, (vl', wl) in (4.20) are given by 

v VIA ýnO/inl = VIISI (7nO + M2Al) /Ml 
12 (4.21) 

ww 
t/§, ffio /ffi- 

I= WI/51 (MO + MW12) /7nl' 

This now completes a single iteration for the heuristic solution. We continue to 

iterate until an appropriate convergence criterion defined with respect to Bayes cost 

IC(v, w) is satisfied. This concludes discussion of the p=2 case. 

Comments 

Not surprisingly in such a complicated set-up, we have not been able to prove 

convergence of the above scheme to a unique limit theoretically. Considerable 
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computational experience (which is reported in the next section) suggests that 

convergence is rapid. 

2. The design Ol 
i 

ý2 
7 '1ý1 7 7M obtained at convergence in the p=2 case above can 

be characterised via equations (4.17) and (4.21) since iterating from the limiting 

design will leave it unchanged. 

3. Simplifications to the scheme arise when X is assumed to be multivariate normal 
because of the special forms of the conditional means and variances used in the 

computations, see the next section. 

4. Since this heuristic solution is based on approximations using robust two-stage 

screens, it is plain that the method will inherit properties of robustness in 

performance to departures from model assumptions. 

5. Note that initial values of v, and w, are needed to start the iterative procedure. 
Computational evidence (given later) suggests that the choice of starting values 

has little effect on the design obtained at convergence but has some small effect 

on the speed of convergence. 

6. In Chapter 2 we make a normality assumption about the regression parameters 

in the probit model. In our solution to the sequential problem we make the 

same assumption about the parameters ýo, ý, and 6 of the probit regression 

model on TIX1, X2. Note that throughout section 4.3 all changes of regression 

variable involve a linear combination of normal vaxiables and hence the new 

variables will also be normal. 

7. Note that knowledge of the distribution of (Xj, X2) is needed to compute our 
heuristic design. This information is needed to calculate: (a) V), the condi- 

tional Bayes cost of the second screen only, which is required to calculate the 

design for screen one, and (b) IC = )C('), the full Bayes, cost of the design, which 

is required to assess whether the cost of the design has converged. 
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4.4 Performance of the heuristic solution 

Here we present a simulation study that compares the performance of the heuristic 

design developed in section 4.3, with that of a fully optimal 2-screen sequential design. 

We vary the possible inputs to the design and look at the effect oil the performance 

of the heuristic. 

Section 4.4.1 describes the inputs required to find both the fully optimal and 

heuristic designs of the sequential screen. This section also gives the range of val- 

ues chosen for the inputs to the simulation study. These were chosen to make the 

study manageable while still considering many possible scenarios. The algorithm 

for computing the heuristic screen is given in section 4.4.2, together with a note on 

computing the fully optimal design. Finally, section 4.4.3 gives the results of the 

simulation study. 

4.4.1 Inputs 

Here we list the information needed to compute the heuristic design and the fully 

optimal Bayes sequential design for the 2-screen case. To make the subsequent sim- 

ulation study more tractable we reduce the range of possible values for inputs by 

making some assumptions. 

Initial values. We will look at the effect of a selection of starting designs for 

the first screen, denoted (vjO, w0j) say, for the iterative process that is used to 

compute the heuristic design. It seems sensible to consider values of vO and wO 11 
that correspond to reasonably likely values of the variable X1. We will assume 

0 that X, is standard normal and so we allow v, and wO, to take values in the 

range (-3,3). 

(ii) Cost parameters. Recall that only the relative size of the cost parameters is 

important and so we set the cost of measuring the performance variable c.. =1 

and vary c, ', c, 2, c. 1 and 6.2. We further assume that the screening costs cS1 and 
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C2 
, will be negligible and so set c, 1 = c2 = 0. As discussed elsewhere, this will 

often be the case in practice. 

Recall that in Chapter 2, equation (2.9) gives a requirement in terms of cost 

parameters for a non-trivial solution of the one-screen problem to exist. In the 

heuristic design of our two-screen procedure in whicli cý, =1 this requirement 

becomes 

1-+ (4.22) 

when designing the second screen and 
111 

(4.23) T! - + Tl :5 JC(2) 
ar 

when designing the first screen. Plainly 161) in (4.23) will be unknown prior to 

screen design but will be at most 1 (when it is not optimal to use the second 

screen and K(2) =c.. ). Hence to ensure that both (4.22) and (4.23) are satisfied 

we put a lower bound of 2.5 on misclassification costs. Also in Chapter 2, the 

expressions (2.6) and (2.7) refer to cost functions k, and k2 which take values 

between 0 and 1, so that c, = (D-l(ki) and C2 = 4)-'(k2). To avoid taking 

values of ci in the tail we only consider values of ki E (0.0667,0.9333), that 

is ci E (-1.501,1.501). From the definition of k, and k2 this corresponds to 

setting an upper bound of 15 on misclassification costs. Hence we consider 

Of (Cl 
r, C2 values r, Cal, C! a) between 2.5 and 15. (In initial trials a bound of 20 

on misclassification costs resulted in too many scenaxios in which it was not 

optimal to base the screen on both covariates. ) 

(iii) Distribution of X. We assume throughout the study that (Xj, X2) follows 

a bivariate standard normal distribution with correlation coefficient r.,. Under 

such a normality assumption, the conditional moments in (4.11) are A112(l) 

-, x and 0,12 W= 0'211 W=1-r.. Also ji, in (4.14) can be computed IL211 (I) =r222 

by noting that: 
f 

vi 
1 xiO(xi)dx, O(V1) - O(W1) 111 E(Xi iv, < Xi < wl) = P(V, < X, < wj) (D(Wi) - e(V1), 

(4.24) 
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where 0(. ) is the standard normal density function and 4)(. ) is the standard 

normal cumulative distribution function. 

As we assume that both X, large and X2 large imply that T=1 it seems 

natural to only consider cases in which X, and X2 are positively correlated, 

that is r.,; > 0. We also only allow the correlation coefficient between screening 

variables to be moderately high, that is we allow r.,, E [0,0.751. This is to avoid 

cases in which the measurement of one covariate almost determines the second 

covariate. 

(iv) Probit model parameters. Information about the probit regression param- 

eters ý= (Co, 61, ý2)' is given in terms of the first and second moments of ý 

denoted by 

2 MO so rOlSOS1 r02SOS2 

2 MI and S rolsos, si rl2SlS2 

2 M2 r02SOS2 rl2SIS2 S2 

Assuming a large sample on (T, X1, X2)T, the posterior distribution of ý is 

N3(m, S), where m is the maximum likelihood estimate of ý and S is the 

inverse of Fisher's information matrix evaluated at m. In practice m and S can 
be calculated using a method similar to that given in section 2.3.7. 

In the simulation study we allow m to vary but calculate the covariance struc- 

ture of ý as the inverse of the expected value of Fisher's information matrix 

assuming a linear probit regression with parameters (MO 
i M1 I M2) T, the expec- 

tation being taken with respect to the distribution of (X1, X2 )T. Thus the 

covariance structure is typical of those obtained when ý has a posterior distri- 

bution based on a reasonably large sample of data. Following (2.13), under a 

probit regression model the (j, k)th element of Fisher's information matrix from 

one observation (t, XI, X2)T On (TI X1, X2)T is, j, k = 0,1,2: 

Zjk (ýi Xl i X2) --: -- 
XjXkO(CO + CJXJ + C2X2 )2 

4)(CO + CIXI + C2X2)11 
- 41)(CO + ClXl + C2X2)} 

(4.25) 
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where xO = 1. Hence, assuming a standard bivariate normal distribution for 
(XI, X2)' and that the probit regression parameters are 

(MOiMbM2 )Tj the ex- 

pected value of Fisher's information matrix for one observation on (T, X11 X2 )T 

has elements 
00 00 Exj, X2 

{Zjk(L? 
-, 7 

Xl) X2)1 " 
1,00 foo 

%jk(lT%XI, X2)02(XI, X2jr. ) dxl dX2, 

(4.26) 

where j, k=0,1,2 and02 
(11 

, -r2jr,,, 
) is the bivariate standard normal density 

function with correlation r.,. Therefore, for a sample of n observations, the ex- 

pected value of Fisher's information matrix, 
Ex,, 

X2 JI(m, X1, X2)}, has (j, k)th 

element 

Ex 1, X2{Ijk(MýXliX2)} -: -: 
EEXIJ2 {Ijk (M) Xi 

9 
X2)} 

i=l 

nExl, X2 
{tjk (M7 Xl 

t 
x2)} 

In oul study we suppose that we base our screen on a sample of size n= 30. 

Under a linear probit regression model 

P(T = 1) = Eýx, c 
[P(T =1 IX, ý)] = EýX, C 

['D (6 + ClXl + C2X2)) 
- 

Making a delta-type approximation gives 

P(T = 1)!: ý, P [T 
=1 IX = E(X), E(ý)] = (D (mo) (4.27) 

since E(X) = j! and E(ý) = m. Here we only consider cases in which the value 

of mo gives only weak or moderate inferences about T and restrict values of 

mo to the range (-1,1). In the approximation (4.27), this corresponds to the 

range (0-1587,0.8413) for P(T = 1). We assume that X, large and X2 large 

imply that T=1, in the probit model above we then have ý, >0 and ý2 >0 

and hence we only consider cases in which m, and M2 are positive. 

4.4.2 Algorithms 

Given the inputs to the design described in section 4.4.1 above, we now outline the 

method for computing both the parameters that characterise our heuristic design and 

U 
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those of the fully optimal design. We also discuss computing Bayes costs with which 

we can compare the two designs. 

Covariance structure 

For each set of inputs, the first computational problem to be solved is that of cal- 

culating the covariance structure as in section 4.4.1 (iv) above. The information 

matrix is symmetric so that the (j, k)th element and the (k, j)th element are equal. 

Therefore to calculate the expectation of Fisher's information matrix we need to 

perform 6 integrals of the form of equation (4.26). Simple quadrature routines for 

performing integration over unbounded intervals transform a problem to integration 

over some bounded interval, such as (0,1), by making a suitable change of variables. 

Experimentation has shown that such routines typically do badly for numerical com- 

putation of these six two dimensional integrals. However, as we shall see, a method 

called Gauss-Hermite quadrature will work well for this problem. 

For integration over RP, a Gauss-Hermite product rule that evaluates the function 

at ni different values of xi, will integrate exactly functions of the form 

pi (1) exp 
Z'z 

1 
(4.28) 

1- 

21 

where the function p, (gý) is a polynomial of order 2ni -1 in xi, i= 11 21 ... I p. Hence, 

for integrating a function that is loosely approximated by a Np(2, I) density (I is 

the identity matrix) multiplied by a polynomial, such rules will provide a reasonably 

accurate answer provided the function is evaluated at a suitable number of design 

points. Now suppose that we have a function that is loosely approximated by 

P2W X Op F-) 
, 

(4.29) 

where P2(j) is a polynomial in each of the components of x and Op (gLjp, E) is the 

multivariate Normal density function with mean IL and variance matrix E. If we 

make a change of variables to 

B-1 (z-E) 
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those of the fully optimal design. We also discuss computing Bayes costs with which 

we can compare the two designs. 

Covariance structure 

For each set of inputs, the first computational problem to be solve d is that of cal- 

culating the covariance structure as in section 4.4.1 (iv) above. The information 

matrix is symmetric so that the (j, k) th element and the (k, j) th element are equal. 

Therefore to calculate the expectation of Fisher's information matrix we need to 

perform 6 integrals of the form of equation (4.26). Simple quadrature routines for 

performing integration over unbounded intervals transform a problem to integration 

over some bounded interval, such- as (0,1), by making a suitable change of variables. 

Experimentation has shown that such routines typically do badly for numerical com- 

putation of these six two dimensional integrals. However, as we shall see, a method 

called Gauss-Hermite quadrature will work well for this problem. 

For integration over RP, a Gauss-Hermite product rule that evaluates the function 

at ni different values of xi, will integrate exactly functions of the form 

pi (z) exp 
Z'z 

1 
(4.28) 

1- 

21 

where the function pi (1) is a polynomial of order 2ni -1 in xi, i=1,2'. .., p. Hence, 

for integrating a function that is loosely approximated by a Np(Q, I) density (I is 

the identity matrix) multiplied by a polynomial, such rules will provide a reasonably 

accurate answer provided the function is evaluated at a suitable number of design 

points. Now suppose that we have a function that is loosely approximated by 

P2 (X) X Op Z) 
, 

(4.29) 

where P2W is a polynomial in each of the components of x and Op (21IL!, E) is the 

multivariate Normal density function with mean it and variance matrix E. If we 

make a change of variables to 

B-1 (jý 
- E) 
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Figure 4.1: Plots of the approximation of (D(x){l - -1)(x)} by exp (-2x'/7r -2 log2) 

then the function in (4.29) has the form 

IB JP2 (Bz + L) x Op I). 

Therefore, as P2(') is now a polynomial in each of the components of z, the function 

is approximately of the form (4.28) and can be accurately integrated using a Gauss- 

Hermite rule. In the above, B is a square root of the variance matrix E, such as the 

Cholesky square root, and so BTB=E. 

We now show that our integration problem is approximately of the form in (4.29) 

and tackle the problem of choosing IL and E. 

First notice that the denominator in (4.25) is 4)(. ) {1 - 4)(. )}, given by the solid 

line in the left plot of Figure 4.1. Clearly the function resembles a normal likelihood 

and analysis of -1)(-) 11 - -1)(-)} shows that the function has only one turning point, 
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Figure 4.2: Plots of the approximation of log [4ý(x)jl - ýý(x)}] by -2X2/7r - 2log2 
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the maximum at zero, and 4)(x) 11 - 4)(x)} = 0. To find a normal likelihood 

that might approximate 4)(-) 11 - ýD(-)} one idea is to look at the first few terms in a 

Taylor series expansion of log [(D(x) 11 - 4)(x)j] about the origin. Such an expansion 

only has even terms and the first few are given by, 

-2log2 -2x 
2+ (2 

_2x4 (4.30) 
7r 

T2 T7r 
)+*,, 

Unfortunately we have not been able to discover whether the remainder term of this 

series tends to zero. However, Figure 4.2 shows that the first two terms of the series 

give a loose approximation to the function. In Figure 4.2, the solid line is given 
by log [4)(x) 11 - ib(x)}] and the dotted line denotes the first two terms in (4.30). 

The discrepancy between the two functions is shown in the right hand plot. It is 

now natural to propose that 4)(x) 11 - 4)(X)} might be loosely approximated by the 

function 

exp 
2x2- 

2log2 
(- 

7r 

In the left hand plot of Figure 4.1 the solid line is 4)(x) 11 - 4)(x)} and the dotted line 

. 
ZX2 is given by exp (- Ir -2 log 2). The right hand plot shows the difference between 

the two functions. Notice that here the approximation appears to perform better. 

Finally, we assess whether O(x)'l [ýD(x) 11 - ib(x)}] may be approximated by 

1 
exp -1_ 

2) 
X2 +2 log2 27r 

I 

7r 

I- 

The left plot in Figure 4.3 displays the two functions and the right plot gives the 

disparity between them. The approximation appears reasonable and hence we take 

O(X)21 [(D (X) 11 - 4) (x)}] as approximately proportional to aN (0,7r/ 12 (7r - 2) 1) den- 

sity. Note that here we are not intending to use the approximating functions as a 

substitute for the actual functions in any calculations, our purpose is to find a normal 

likelihood that looks something like the integrand in (4-26). The likelihood will then 

be used as a starting point for the scaling parameters of a Gauss-Hermite quadrature 

scheme. A full analytical examination of the functions discussed above may need to 

be carried out if the approximating functions are to be used for other purposes. 
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Returning to the integrand in (4.26) we can now see that it is approximately 

proportional to a polynomial in x, and X2 multiplied by 

q(i) = exp 
1 

TTM(o» 
2_1 

XT -'X, A 
2a 

("to+ 
2- -1 

where 
7r 

a 2(7r - 2) 
XT = (XliX2) 

TnT(O) = (771liM2) 

-rx 

Plainly 

LMOTTMýO)J] 
q(x) oc exp[-ljiiT(lpo)výo)+A-1). x+ 2aa 

L! 
)T Z_j L Z) 

1, 
oc exp -1 2 

where 

Z-, =1 mý(» mT0) 
a 

ß= -20-EMý0). 
In order to find E and /, t we write out the matrix E-1 

E-1 
1 m2l r., 2,,, ) +a MlM2(l - r. 2) 

- r., a 
a(l - rx M2(1 

( 

MIM2(1 r., 2, ) 
- r..,, a 2 -rx2)+a 

and so 
(1 

_ r2 

2+ M2 

m22 r., 2, ) +ar., a - MlM2 1) 

mi 2+ 
2mjM2r., +a. M2(1 - r. 2) +a 

( 

,a- MlM2(l - rý, 2) 
1 

)(4.31) 

and 

L= 
-MO m, + rM2 

(4.32) 2+ M2 + 2mlM2r, +a mi 2(r. Ml + M2 
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It now follows that the integrand in (4.26) is approximately proportional to a polyno- 

mial. multiplied by a bivariate Normal density function with mean /I given in (4.32) 

and variance matrix E given by (4.31) and is approximately of the form in (4.29). 

The approximations in the above are imprecise but a Gauss-Hermite rule should 

perform well if it evaluates the function at enough points. 

So far we have shown that Gauss-Hermite quadrature should do well for our 
integration problem by showing that the integrand is of an appropriate form and we 

have given a reasoned choice for the scaling parameters /i and E. However, we have 

only shown that our choice of L and E corresponds to a loose approximation of the 

integrand and a better choice may exist. So, in our algorithm, we use the values of 

IL and E in (4.32) and (4.31) as a starting point for the iterative rescaling method 

of Naylor & Smith (1982). Using their method, given current values of the scaling 

parameters, A(') and 
0) 

say, we suppose that, for j=k=0, the integrand in (4.26) 

is a density function of two random variables, Yj and Y2 say, up to a constant of 

proportionality. We then obtain new values of the scaling'parameters by estimating 

the mean and variance matrix of the random variables. That is, we use Gauss- 

Hermite quadrature based on the current values A(') and : b(t) to compute estimates, 

c, E(Yj) and E(YjYk) respectively, of 

00 
C=f 

00 

roo 
ZOO (M) Yl i Y2) 02 (Yl 

9 Y2 dy, dY2 

l(00 00 1 00 
E(Y4) = 3c-f 

00 
Yj 200 (Mi Yl) Y2) 02 (Yl 

i Y2 1 r., ) dy, dY2 

c 00 
E (Yj Yk) =c 

1-00 1-00 
YjYkt00 (MY Yl s Y2) 02 (Yl 

3 Y2 dy, dY2 
0 0 

for j, k=1,2. The new values of the scaling parameters are then found by setting 

E(Yj) 

and 
E(YjYk) - E(Yj)E(Yk), 

for j, k=1,2. The procedure is repeated until the estimates satisfy some convergence 

criteria (typically that any change in the value of the estimates between iterations is 
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below some threshold value). At the outset the scheme starts with a small number 

of design points, say 5, in each direction and then, when convergence is reached, the 

number of grid points in each direction is increased by one. The final estimates are 

taken when an increase in grid size also results in a negligible change in the estimates. 

The integrals in (4.26) can easily be recovered from the final estimates obtained 

as 
Exl, X2 {Zjk (M) Xl) X2)1= cE(Yjl"k) 

where Yo =1 and for j, k=0,1,2. 

The result of each integration (4.26) is multiplied by 30 to give the expectation 

of Fisher's information matrix for 30 observations. The covariance structure is then 

computed by inverting this matrix using a routine based on Gaussian elimination. 

Heuristic screen design 

The heuristic design of the three-stage screen is computed by making a series of 

iterative steps that terminate when a convergence criteria in terms of Bayes cost is 

met. The algorithm to perform one iteration of this process is as follows. Recall that 

the parameters of the current design are denoted by (v,, w,, v2, w2) and those of the 

new design by (0, w", 0, w") - When computing integrals in the following algorithm 1122 

we approximate infinite bounds by ±5, as appropriate, computing one dimensional 

integrals using the N. A. G. routine D01AHF and two dimensional integrals using the 

N. A. G. routine D01DAF, see N. A. G. (1990). Outside of the range ±5 each integrand 

has negligible value. 

Second screen design 

1. Calculate IL, = E(Xllvl < X, < wi) using the formula given in equation 
(4.24). The standard normal distribution function 4+) can be calculated 

using the N. A. G. routine G01EAF, (N. A. G. (199o)). 

2. Compute the mean and covariance structure of the probit regression pa- 

rameters ý* for the regression on X21X, = it',. Formulae for this calculation 
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are given in section 4.3 in terms of the mean m (an input to the algorithm) 

and the covariance structure S (calculated above) of the probit regression 

model of T on X, and X2. 

3. Further, compute the mean and covariance structure of ýt, the regression 

parameters of a model that has moments with the property that Tilt =0 0 
t and s, = 1. Section 4.3 contains formulae for computing these values from 

the moments of the regression parameters of ý* computed above. 

4. Now use Theorem 2.1, with the values Tnt tt 
1, so and ro computed above and 

the cost parameters c,, 0. and cyn) to compute values vt 2 and Mt. The 

values vt and wt are the parameter values for an optimal design of a single 22 

screen based on the regression parameters ýt. 

5. The design parameters of the second screen, 0 and w" can now be com- 22 

puted from equation (4.17). 

6. Note that when obtaining the values vt and wt 22 and hence 0 and w", 

we must remember to ensure that they specify a global minimum of the 

one screen problem. That is, if we find that one or both of 0 and w" 22 

represent a local minimum via Theorem 2.1, we should check whether the 

minimum is a global minimum by comparing the Bayes cost of the design 

with the cost of designs in which one or both of the design parameters 

take limiting values (±oo). To check whether this is the case we must 

calculate the approximating Bayes Cost k(2) in (4.15). Under our modelling 

assumptions, the approximate Bayes cost in (4.15), for finite 0 and w", is 22 

v ff k(2) (VI 222 
1, v2l WI, W2 Cr 

1-00 
4ýý 1f GLIJ) X2) }0 (X2 I r., Ii'l, rx) dX2 

+2 If (14, X2)}] O(X21r., 11', r )dX2 (4.33) 
x 2 

It 

+ C. 
W2 rx/li 2 -- r. 

(1 2)1/2 

V" "ILI + 
-r (1 

- r2)1/2 jj 
xx 

where 

(XI 
i X2) 

S2 + X2 S2 2 

MO + MlXl + M2X2 
A+ 2rolsoslxl + 2rO2SOS2X2 + 2rl2SlS2XIX2 

01 1+X2 2 
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If, for example, V21 (and hence V2") represents a local minimum then we 

compare (4.33) with the cost of )ý(2) (VI 
I V2 i W1 7 W121) When V2 takes limiting 

values - the formula follows easily from equation (4.33). We proceed 

similarly if there is a local minimum at 7'02t' We compare the Bayes cost of 

designs with the parameters of the finite (local) minima, with the Bayes 

cost for limiting values of the design parameters to assess where the true 

global minima lie. Note that throughout the simulation study we assume 

that c2, =0 and hence there is no need to compare the approximate Bayes 

cost k(2) with the cost of scenarios in which the screening cost is not paid, 

c. f. comment 4, section 2.2. 

(b) First screen design 

1. Work out the full Bayes cost, IC(2) (VI, VII, WI, W11) given in equation (4.13), 1212 
of the second screen under the current design (the updated second screen 

design and the yet to be updated first screen design). Under the assump- 

tions of our model, for the design (VI 
7 V2) Wh W2) , 

in which all parameters 

are finite, 

K(2) (VI 
i V2 j WI) W2) 

I] - 

(Cr2 I WIfV2 
(I)If(II, X2)j02(X1, X2jr, )dX2dX1 

VI -00 

2 jW1 
" Ca If (XI 

v X2)}] 02 (XI 
v X21rx)dX2dxl (4.34) 

00 

V tj I 
fW2 

" cm 
JW1 W2 

02(XI, X21r.., )dX2dxl) 14)(wi) - 4)(vl)}-' + C? 
VI 

IV 

2 

wheref 
(XI 

i X2) is as given in (4.33) above. 

2. Throughout the study we assume that X2 is standardised with mean zero 

and so IL'2 in (4.18) is zero. Hence ýo and and the moments of 
& follow directly. 

3. Compute the mean and covariance structure of ý1, regression parameters 

that have moments so that E(ý01) = m1o =0 and Var(d) =A=1. Sec- 

tion 4.3 contains formulae for computing these moments from the moments 

of ý- 
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ttt 4. Follow Theorem 2.1 to find a solution vf, and wl, using values ml, so and 
rt computed above and cost parameters 1 cl and JC(2) (VI, VII) WI 11), 0 C; i a2 I)W2 

the latter having been computed in step 1. The parameters vt and wt 

describe an optimal design of a single screen based on a probit regression 

with parameters ý1. 

5. The updated parameters for the first screen, v'l and 7, v'l, can now be ob- 

tained from equations (4,21). 

tt 6. Again we must ensure that the values v, and w, and hence v1' and wi 

constitute a global minimum of this one screen problem. Hence we must 

calculate the approximate Bayes cost k(') in (4.19) for v1' and wl' and 

compare the result with the Bayes cost when v, and/or w, take infinite 

values. Under our usual assumptions, for finite vi 'and 0, the approximate 

Bayes cost k(') in (4.19) is 

v k(1)(vii, 11 11 11) 12 

00 x 1 v2, Wl , W2 Cr 
1 

(1) ff (x� 0)} O(xi 10,1 -r )dxl 

00 + e,, 
£� 11 

- l) {f (xl, 0)}] O(xi 10,1 
-r2 

)dxl 

1x 
(4.35) 

IC(2) (VI "ID Wli it Dv W, w --I - (I) 
I--+C, 

21 12 2)1/2 2)1/2 

Formulae for computing k(l) when v, and/or w, take limiting values follow 

easily from (4.35). The screening cost c' is assumed to be zero throughout 8 
our simulation study so we have no need to consider situations in which it 

is not paid (again refer to comment 4, section 2.2). 

Convergence 

The iterative procedure is terminated when IC(O, vll, w", w1l), the Bayes cost of the up- 1212 
dated design, is sufficiently close to the Bayes cost of the current design K(v,, v', w', w'). 212 

That is, the initial convergence criteria devised for our scheme is that 

PC(V, l v It w It 'W") - K(v', V', W', w') 12121212 
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is small enough. However, to ensure that the convergence criteria remains reasonably 

consistent whatever the Bayes costs we suppose that convergence is reached if 

lK(V It v It w It 1w 
11) IC(Vt 1 01 

1212-1 11 V21 W11 I W2 
< be (4.36) K (V'l, V2, W'l I ? V2') 

for some small 6, Here the absolute difference between the costs is assessed relative 
to IC(v',, v', w', w), the cost of the current design. Throughout our study we fixed 212 

6C= 10-5. To assess whether the convergence criteria has been met we compute the 

Bayes cost K(V1, V21 W1; 7V2) for the updated and current design. Under our modelling 

assumptions, from (4.13) the full Bayes cost IC of a design with finite parameters 

(r, 1g) is given by 

v 00 K(Vl, V2, WltW2) = C, 11'1 l' 
4)If(XI, X2)102(Xl)X21r., )dX2dxl 

00 -Co 
+ Cal 

f 00 00 
If (XI) X2)}] 02 (Xl 

i X2 I rx)dX2 dxj (4.37) 
wl 

f 
00 

+ K(2) 1 (VI 
7 V2 i Wl 7 W2) 14) (Wi) 

- 4) (Vi) + Cs 

where JC(2) (Vl, V2 y Wl, W2) and f (XI) X2) are as given in (4.34) above. We denote the 

design reached at convergence as (011 ý2) 7ý1 i 7ý2) - 

The optimal design 

So far we have described how to compute a heuristic design, (01,02 
1 Ibb 7b2) , 

for the 

three-stage sequential screen and the Bayes cost of this design. To assess whether 

our heuristic scheme is performing well we compare the heuristic design with the fully 

optimal design that minimises Bayes cost IC. The fully optimal design can be found 

using numerical techniques and the routine we use is due to Davidon-Fletcher-Powell 

(see Chambers (1973)). This routine finds the minimum of a function with respect to 

one or more variables given first derivatives of the function and starting values for each 

variable. Here the function we need to minimise is IC in (4.37) above, with respect to 

the parameters of the screen design (V1, V20DI, W2)- We set (2, M) = (-1, -1,1,1) as 

starting values for finding the fully optimal design and, for reference, we give below 
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the derivatives of Bayes cost IC with respect to each Of V1, V2, wi andW2- 

2)1/2 aAC 00 rz 
C 1,1 2 r.,, Vl d12 

r- 
4) If (Vb 12)} 

X 
2)1/2 O(VI) 19VI -00 rx 

112 
C2 

V X2 - rVl 

r 
(I) If (VI 

7 X2)) 01 dX2 

-00 r2)1/2 xI 
0. X2 - 7*xVI 

C'. 
1,2 

[1 - 4) U (VI, X2)}] 
r2)1/2 

d-'1: 2 
x1 

2)1/2 7,02 - rxv, V2 - r. TVI 
c,, 

(l 
- r. 

r2)1/2 r2)1/2 

C2 
2)1/2, r. 
T 

2 00 r X)1/2 
aK 

1 {f (Wli X2) 
X2 - rxW1 

dX2 
o(W1) 'ä 

wl 
-cý 2)1/2 

-00 x 
112 v X2 - r. -, Wl 

q) ff (Wl 
t X2)} 

r2)1/2 
dX2 

r., X2 w, 00 
" Ca2 

JW2 
[1 

- 1) jf(Wlil72))1 0 
r2)1/2 

dX2 

2)1/2 W2 - r.,: wl 
_4) 

1 V2 rxWl 
" cm(l - rx )1 

(1 rx (1 
- r2)1/2 2)1/2 

14 

x 2)1/2, +6,2(l - rx 

r2)1/2 ak Wl I Xl - rxV2 

x C2 4) If (Xls V2)} 
r2)1/2 

dxj O(V2) aV2 
vi xI 

_ CM(l _ r2)1/2 
[qý I Wl - rxV2 I_ 

ýý 
I VI - rxV2 

r2)1/2 -, r2)1/2 xx 

2 aK w r x)1/2, - = -C2 
' [1 x, - rxW2 4) If (Xlv ýW2)}] 0 

2)1/2 dxl O(W2) aW2 rx 

+ CM(l 
2)1/2 Wl - rxW2 I_ 

(D 
Vl - 7xW2 

rx 
r2)1/2 r2)1/2 xx 

Again, integration is carried out using the N. A. G. routine D01AHF, with infinite limits 

approximated by ±5, as appropriate. The design computed using this minimisation 

routine specifies a Bayes sequential design (see Definition 4.1) of the screen, with 
t opt opt opt). Bayes, cost K(vjOP , wi iV2 sW2 
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4.4.3 Results 

The sensitivity of the performance of the heuristic design procedure to input param- 

eters can now be assessed and we do so by a series of simulation studies. As the 

heuristic scheme is only appropriate for designing a sequential screen which has at 

least two X-Stages we discard any problems in which it is optimal to screen using 0 

or I covariates. This may bias our results slightly but we argue that we should avoid 

making claims about the performance of the heuristic in cases in whicli its use is not 

appropriate. 

0), (i) Initial values. The first study deals with the initial start-up values, (vol, w, 

of the heuristic procedure. We investigate whether the heuristic design al- 
ters under different start-up values and hence we compare both the designs at 

convergence 
(ýl 

7 
ý2) 7ý1 11702) and the Bayes costs of such designs, under varying 

0 0). 
values of (v, , w, 

In the study we generated 1000 design problems, each problem taking values of 

the input parameters generated from independent uniform distributions on the 

following intervals: Crl E (2.5,15), c, 1 E (2.5 
7 15), c, 2 E (2.5,15), c2. E (2.5,15), 

mo E (-17 1), mi E (0-1,3.1), M2 E (0-1,3.1) and r, E (0.07 0.75). For each 

problem we further generated ten sets of initial value parameters (VO1, w0j) where 
00 both v, and w, were generated from independent uniform distributions on 

(-3,3). 

In each of the one thousand problems, for all ten pairs of (01, w0j) the iterative 

procedure converged to the same Bayes cost to within the desired accuracy 

specified by the choice of 6, in (4.36). This achievement is despite the fact that 

for many cases the starting values were such that wO < vO. In all cases the 

screening parameters at convergence 011 02 
j 7ý1 OýV2) were seen to be the same 

to an accuracy of at least five decimal places. The smallest number of steps 

taken to convergence was 2 and the largest number was 8. In each problem the 

number of iterations until convergence varied by at most 2 steps. 
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As it is apparent that the choice of initial values has little effect on the design 

reached at convergence, throughout the remaining studies we fix vo = -1 and 

w0=1. I 

In the remainder of the simulation studies we assess the performance of the licuris- 

tic design by (i) contrasting the design at convergence with the fully optimal design 

and (ii) comparing the Bayes costs of the two designs. To assess the difference be- 

tween the screening parameters of the heuristic design and those of the optimal design 

for each stage of the screen we use a standard deviation measure given by, 

Ai = 
[i I (ýj 

- vj'P')' + (? ýj - wj'P')' 
1/2 

for i=1,2. As X, and X2 are assumed standardised normal variates, cases in 

which the absolute value of any screening parameter is greater than or equal to 5 

are effectively cases in which at least one of the screening parameters is given by an 

infinite limit. To prevent such cases from distorting the results of the study we do 

not calculate Aj for those problems in which one of Jýjj, Iv? 'I 17bil or lwr'l is found 

to be greater than 5. 

The difference in Bayes costs is measured by the percentage discrepancy between 

the Bayes cost of the heuristic design and the Bayes cost of the fully optimal design, 

given by 
opt opt opt K(ý1AXO1X02)-K(VjOPtjWj 

)V2 iW2 
)x 

100. 
t "t opt K(Vl", W? , V2 I W2 ) 

In the main we present our results in the form of box-and-whisker plots. As 

there is a variety of styles for such plots it seems appropriate to quickly describe the 

style used here. The edges of the box are formed at the lower and upper quartiles 

respectively with the median drawn as a line that divides the box. The whiskers 

are dashed lines that extend from the lower and upper quartiles to the most extreme 

value not beyond a standard span from the quartiles, where a standard span is defined 

as 1.5xInterquartile Range. Those data values more extreme than the whiskers are 

marked separately. The width of the box is proportional to the square root of the 

number of data points used in the plot. 
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We performed two further studies, each under a different cost set-up. In the first 

we assumed that the costs of wrongly accepting and wrongly rejecting an item remain 

fixed through both stages of the screen, with c, = C, ' = c2, and ca = Ca = c2a. The 

second study supposes that there may be different costs of misclassification at the two 

different X-Stages of the screen but at each stage the penalty for wrongly sentencing 

an item is the same whether retaining a bad item or discarding a good item. Here 

we write cl = cl = cal and c2 = C2 = C2 . 
Hence we, first vary costs within stages and rra 

secondly, between stages. Both of these cost scenarios are likely to occur in practice. 

Study I 

We generated 5000 design problems with input parameters drawn from independent 

uniform distributions on the following intervals: C, E (2.5,15), q, E (2.5,15), mo E 

(-1,1), mi E (0.1,3.1), M2 E (0.1,3.1) and r., E (0.0,0.75). The parameters m, and 

M2 were permuted to create a re-ordering of the stages of the screen and the heuristic 

and fully optimal designs, together with their associated Bayes costs, were obtained 

for both orderings. Hence for each set of inputs we have two values for m, and M2 

and two observations on each of A,, A2 and AIC. We now assess the effect of the 

inputs to the algorithm on the performance of the heuristic. 

Oid) Cost parameters. 

Effects on design. Figure 4.4 and Figure 4.5 display boxplots of A, and A2 

against (a) c, (b) c., both grouped in intervals of 1.25, (c) C, - c. and (d) 

Cr + ca, both grouped in intervals of 2.5. The effect of the magnitudes of cr and 

ca on the difference between the heuristic and optimal designs seems minimal. 

However, it seems possible that the difference between the designs is likely to 

be slightly larger when cr and/or ca are larger. Also, the plots which display Ai 

against c, + ca indicate more strongly that performance in design terms is likely 

to be worse for cases in which the sum of the costs is large. The effect of the 

difference cr - ca on Ai also seems minimal with slightly worse performances 

when the differences are small. However, care should be taken when making 

130 



:a 

---H_H- 
"- 

"- 

". ---H_H- 
" .. - 

" ------LU- 
" "- 

sa 0'a 93 ol To 00 

t -M-a 

a 

". 

«------H_H- 
----HITh 

---Lfl- 
" ""--------1 IH 

" ---HJI- 
- ... "-... 

---LU- 
. -----u1- 

" -". - 

--Lll 

9 ein 

i; 

gr 

t. 

.q 

'"1 

"1 

a 

.» -ý - -Efl- 

ge 01 l'a 019 so 01 

t eima 

". 

" "---:: iJ- 
""". S--- 

-1111.1111 
- 

---LU- 
" S. -S 

" ----. --- -4 

-S " 

- 

- 

2,9 Wa elt wt WO WC 

t rm 

r- 

Ur 

ff 

er 

Figure 4.4: Boxplots of A, for simulated values of (a) c, (b) c., (c) c, - c,,, and 
(d) c, + c,,. 
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Figure 4.7: Boxplots of (a) A, and (b) A2 for simulated values of r.. 

inferences from the plots for c, - c. and c, + c. - It is difficult to distinguish 

effects as due to c, - c,, or C, + q, as when c, + c. is very large or very small 

then Ic, - c,, l must be small. Similarly when 1c, - c. 1 is large then c, + c. must 

take a value in the middle of its range. 

Effects on cost. The degree of suboptimality of the heuristic in terms of Bayes 

cost is shown in Figure 4.6, with boxplots of A/C versus (a) C', (b) c., (c) C, - q, 

and (d) c, + c,,, grouped as before. Again the effect of cost parameters on 

performance seems minimal and the only observation worthy of note is that 

there is some indication that A/C is more likely to be larger when the sum of 

cost parameters c, + c, is larger. 

(ifil) Distribution of X. 
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Effects on design. The boxplots in Figure 4.7 show A, and A2, respectively, 

against the correlation coefficient r,,, grouped in intervals of 0.15. In both cases, 

'typical' values for Ai are more likely to be small when r,, is large, except for 

r.,; very large. However, the length of the tail, which denotes large observations 

also increases as r-- increases. 

Effects on cost. Figure 4.8 plots percentage discrepancy in Bayes cost against 

r,,, again grouped in intervals of 0.15. It is very clear from this plot that the 

heuristic performs more consistently well when r_. is large. 

(iv. i) Probit regression parameters. 

Effects on design. The influence of the mean of the probit regression parameters 

on the heuristic design can be assessed by Figures 4.9 & 4.10. Here A, and A2 

are plotted against (a) mo, grouped in intervals of 0.25, (b) mi and (C) M2, 

both grouped in intervals of 0.3. The difference in the heuristic and optimal 

parameters of the first stage can be seen to be typically larger when Imol is 

larger, m, is smaller or M2 is larger. A2 is also larger when Imol is larger and, 

ignoring the first boxplot for mi which is based on relatively few observations, 

the effect of m, and M2 on A2 is the reverse of their effect on A,. 

Effects on cost. Figure 4.11 shows boxplots of AIC against (a) mo, (b) mi and 

(C) M2. Here it is clear that the heuristic is more likely to perform well when 
Imol, mi or M2 is small. The M2 effect is the most marked. 

Study 2 

The second study followed along the same lines as the first. Another 5000 problems 

were generated using a similar scheme for drawing input parameters as in the first 

study. Here the only difference was that the cost parameters were cl = C., = C" 

and c2 = c2. = c2, both drawn from a uniform distribution on (2.5,15). That is, 

misclassification costs varied between X-screens rather than within X-screens. When 

permuting the covariate stages of the screen we swapped cl and cý as well as m, and 
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M2 - 

(ii. ii) Cost parameters. 

Effects on design. Figure 4.12 and Figure 4.13 display boxplots of A, and A2 

against (a) cl, (b) 0, both grouped in intervals of 1.25, (c) 0-0 and (d) c'+c, 

both grouped in intervals of 2.5. Again there is no clear correlation between 

the performance of the heuristic and the cost parameters, with the possibility 

that larger magnitudes of cl and c' give a slightly worse performance. 

Effects on cost. A comparison of the heuristic and optimal designs in terms of 

Bayes cost is shown in Figure 4.14, with boxplots of A/C versus (a) cl, (b) 0, 

(c) cl - c' and (d) c' + c, grouped as before. As in Study 1 the only inference 

we can make is a tentative remark that the heuristic does worse when the cost 

parameters are larger. 

(iii. ii) Distribution of X. 

Effects on design. Figure 4.15 shows boxplots of A, and A2, respectively, 

against the correlation coefficient r, grouped in intervals of 0.15. Again the 

'location' of the performance indicators A, and A2 improve with r,, but their 

variability of also increases with r, 

Effects on cost. Figure 4.16 plots percentage discrepancy in Bayes cost against 

r, again grouped in intervals of 0.15. The very clear relationship between the 

level of suboptimality and the correlation coefficient r_- is repeated. 

(iv. ii) Probit regression parameters. 

Effects on design. Figures 4.17 & 4.18 plot A, and A2 against (a) mo, grouped 

in intervals of 0.25, (b) mi and (C) M2, both grouped in intervals of 0.3. The 

effects reported in (iv. i) above are replicated. 

Effects on cost. Figure 4.19 shows boxplots of AIC against (a) mo, (b) mi and 
(C) M2. Again it is clear that the heuristic is more likely to perform well when 
Imol, m, or M2 are small, with the M2 effect the most distinct. 
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Comments 

Clearly the performance of the heuristic is variable, with the discrepancy in 

Bayes cost over 40% for some problems. However, when the correlation coeffi- 

cient r,, is above 0.45 the heuristic performs consistently well. As both X, and 

X2 are, by necessity, strongly correlated to T then it is intuitive that in most 

cases X, will be reasonably highly correlated to X2. 

2. Note that we must take care in inferring from the plots any joint conditions on 

input parameters under which the heuristic performs well. The plots show the 

marginal effect of each parameter and it is not clear how these effects interact. 

However, it is clear that the heuristic performs worst when M. 2 is large and r_. 

is small. 

3. When the covariance structure of the regression parameters is as typical and 

misclassification costs are the same at each stage of the screen, then, intuitively, 

ordering the stages of the screen by decreasing mi-value should be optimal. In 

such a scenario the most discriminative variables are measured first and so items 

are sentenced by the screen as early as possible in the sequence. In Study 1 

the misclassification costs are assumed constant at both covariate stages of the 

screen and a comparison of the Bayes costs of the fully optimal designs under 

both permutations of mi and M2 yields an optimal ordering with m, > M2 on 

93.8% of occasions. 

4. The poor performance of the heuristic when the regression parameter M2 is 

large is a natural result. It is sensible that the delta approximation of the 

distribution of X2 by its expected value in (4.19) will be poorest when X2 is 

highly correlated with T, that is whenM2 is larger. 

5. Notice also that the differences between the optimal and heuristic design pa- 

rameters for the second stage of the screen are more consistent and likely to be 

smaller than the differences at the first stage of the screen. 
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4.5 Conn's syndrome examPle 

Returning to the numerical example described in section 2.4 and section 3.3.3, we 

consider the construction of a sequential screen to determine the cause of Conn's 

syndrome. Section 3.3.3 described the optimal two-stage screen for this example. 
Two screening variables, denoted X, andX2, are measured at the first stage of that 

screen, with patients sentenced according to the value of both measurements. A 

sequential screen will have three stages, at each of the first two stages one of the 

covariates is measured and patients may be either, (i) said to have a benign tumour 

(T = 1) or a condition of the adrenal glands (T = 0), or (ii) passed on to the next 

stage of the screen. Any patients that remain unsentenced by the covariates are 

passed on to the third stage of the screen where an exploratory operation determines 

the cause of Conn's syndrome. 

To obtain both the heuristic and fully-optimal sequential screen designs requires 

computation of Bayes costs, which, in turn, requires the distribution of the screening 

variable to be specified. In section 3.3.3 we have noted that a bivariate normality 

assumption is reasonable for (XI, X2)T as given in (3.35). Also X, and X2 are stan- 

dardised. However, from the data given in Table 3.1 and the subsequent analysis it 

is clear that X, is a smaller-the-better screening variable with m, < 0. Our method 

now requires that both covariates are larger-the-better screening variables and so we 

develop sequential screens based on 

-Xj = -standardised log concentration of potassium, 

X2 = standardised log concentration of carbon dioxide. 

The data estimates for the regression parameters, ý-, under a probit model for 

Tj - X1, X2 can easily be recovered from those for the TIX,, X2 model given in 

section 3.3.3, as 

P(T=11-Xl, X2, C "Wý -G XI + CýX2) 

= ýD(ýo+ýiXi+ý2X2)=P(T=11X,, X2, ý), 
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by setting 6o, ý1 = -ýj and 62. Hence the moments of and 

will be the same as those of 60 and 62 and E(61 -E(61), Var(61 Var(61), 

Cov(60,61 -Cov(6o, 61) and Cov(ý,, 62) = -Cov(61,62). Hence, from (3.36), the 

data give 

1.241 
( 

0.3030 0.2202 0.1468 

1.576 and s- 0.2202 0.4874 -0.0254 
0.953 0.1468 -0.0254 0.3129 

Making a further simple adjustment to the model used in section 3.3.3, we assume 

that the distribution of (_XI' X2 )T is bivariate normal with correlation coefficient 

given by the sample value, r.., = 0.6783. The cost structure is as before, with the 

costs of misclassification the same at both covariate stages of the screen, that is, 

1212 C; = C, - = Cr, C, - = C, - = C, = 3cý/4, and p,, = 3cr/40. 

The costs of measuring the covariates are assumed negligible and so we set cl = cl = 0. 

Now we compare and contrast the heuristic and fully optimal sequential screens under 

the two orderings of the covariate stages of the screen. 

Ordering I 

First we fix the ordering of the covariates so that the Xi-stage comes before the X2- 

stage. Submitting the model parameters given above to the algorithm that determines 

the heuristic design of the screen, as given in section 4.4.2, the iterative procedure 

gives, 

Iteration 

Number V2 

Design parameters 

ff /I W2 vi It wl 

Bayes cost 
/C WI ie) 

1 -00 0.2997 -2.5051 0.2352 0.06050 

2 -2.7080 2.3064 -2.3712 0.1743 0.05584 

3 -2.5906 2.4329 -2.3723 0.1748 0.05579 

4 -2.5916 2.4318 -2.3723 0.1748 0.05579 

151 



where the initial parameters for the first stage of the screen were specified as vO =-1.0 

and wo, = 1.0, and -oo denotes that FC(I) in (4-15) was minimised in the limit as 

V2 --+ -oo. The convergence criterion of the heuristic scheme was chosen to match 

that imposed throughout the simulation study of the previous section. The heuristic 

design at the final iteration is depicted by, 

T=l 

0.1748 

-2.3723 

1 
continue 

T=O 

-xi X2 

T=l 

2.4318 
1 

continue 

-2.5916 T 

T=O 

and has Bayes cost IC = 0.05579c,. Using numerical methods, the fully optimal 

sequential screen under this ordering of covariates is 

T=l 

0.3205 

-1.5595 

1 
continue 

T=O 

-xi X2 

T=l 

0.9650 
1 

continue 

-2.1455 T 

T=O 

and has Bayes cost IC = 0.05342c,. Comparing the two screens, the screening param- 

eters (g, 1g) are appreciably different for both covariate stages of the screen, but the 

Bayes cost of the heuristic design is only an increase of 4.44% over the Bayes cost 

of the fully optimal design. Table 4.1 shows how the cases used in the design of the 

screen are classified by the covariates. Those cases remaining unclassified are passed 

on to the final stage of the screen. The fully optimal design performs better than the 

heuristic, correctly classifying two more patients. However, notice that at the first 

stage, the heuristic screen correctly classifies at least one of the cases with T=1 that 

the fully-optimal screen fails to classify. No cases were misclassified. 
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Table 4.1: Screen classifications of the sequential screen - ordering 1 

Heuristic design Optimal design 

1st stage 2nd stage 1st stage 2nd stage 

Actual Total IT=1 T=O T=1 T=O T=l T=O T=1 T=O 

T1 

T0 

20 

11 

13 

0 

0 

0 

0 

0 

0 

0 

11 

0 

0 

3 

1 

0 

0 

1 

Or ering 

Under the ordering of X2-stage then Xi-stage, the iterates of the heuristic design are: 

Iteration Design parameters Bayes cost 

Number vil wit vil wit ICOZ fI Wit) 2211-- 

1 -2.1006 0.1602 -oo +00 0.05490 

2 -2.1006 0.1602 -oo +00 0.05490 

0 where the initial parameters for the first stage of the screen are again v, = -1.0 and 

WO = 1.0, and ±oo denotes a minimisation in the appropriate limit. Note that here v" 

and 0 are parameters of the X2-stage of the screen and v" and w" are parameters of 122 
the XI-stage. The heuristic scheme reaches convergence immediately but it converges 

to a screen in which the covariate X2 is never measured. Hence the two-stage screen 

below gives the heuristic design for this ordering of the screens, 

T=l 

0.1602 
1 

continue 

-2.1006 T 

T=O 

_xl 
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Table 4.2: Screen classifications of a sequential screen - ordering 2 
Heuristic design Optimal design 

lst stage 2nd stage lst stage 21ld stage 

Actual Total jT=1 T=O T=1 T=O IT=l T=O T=l T=O 

T=1 

T=O 

20 

11 

13 0 

00 

60 

00 

50 

03 

This screen has Bayes cost IC = 0.0549c, The fully optimal sequential screen for this 

ordering is not degenerate in the same way as the heuristic. It is given by 

T=l 

1.1801 

-2.5132 

continue 

T=O 

X2 -X, 

T=l 

0.2960 
1 

continue 

-1.5077 
T=O 

and has Bayes cost IC = 0.0528c,. Again, the parameters that characterise the 

screen are appreciably different for both covariate stages of the screen, in fact, the 

heuristic recommends that an X2-stage should not come before an Xj-stage, contrary 

to the fully optimal design. However, comparing Bayes costs, the cost of the heuristic 

design is an increase of only 3.97% on the fully-optimal design. Table 4.2 shows the 

classification of the case data under both screens. Again the optimal design performs 

marginally better in terms of numbers correctly classified but the heuristic design 

correctly classifies at least two cases which the optimal fails to classify. No cases are 

wrongly categorized. 

Further comparisons 

Clearly, for both the heuristic and fully-optimal designs, the second ordering of the 

covariates is Bayes optimal. However, notice that the fully optimal design under the 
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Figure 4.20: Plot of Bayes optimal batch and sequential screens 

first ordering correctly classifies more of the sample cases than its counterpart when 

ordering is reversed. 

Comparing the optimal sequential screen with a Bayes two-stage screen described 

in section 3.3-3, the Bayes cost of 0.0528c, is an increase of 8.2% on the Bayes cost 

of the optimal two-stage screen. This seems intuitive, as in this chapter we impose 

a form to the regions of X that make up the screen and optimise over all regions 

of that form. Jn Chapter 3 we optimise assuming no fixed form for the screen. 

Figure 4.20 displays the optimal sequential screen and the Bayes two-stage screen. 

Here the cost of measuring covariates is assumed negligible and the optimal two-stage 

screen is preferable to a sequential screen. This may not be the case in general, a 

sequential screen will be more competitive when the cost of measuring covariates at 
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the later stages of the screen is substantial. In such cases, there will be some benefit 

to classifying items or patients as early as possible in the screen, and so measuring 

covariates in the latter part of the screen less often. In the next chapter we look at 

the effect of reducing the number of covariates in a one-stage screen. 

4.6 Further Comments 

Here we briefly discuss a few further observations but, in the main, refer the reader 
to the discussion in section 2.3 which covers many points relevant to this chapter. 

1. Interaction terms. In section 4.3 we assume a model for TIX expressed via a 

probit link function which is linear in the screening variables X as well as linear 

in the regression parameters ý. This does not allow for the inclusion of any 
interaction term that may be important in the model for TIX. When there are 

only two screening variables, as there are in section 4.3, including an interaction 

term results in the probit regression model 

P (T = lji, ý)= '11) (CO + ClXl + 6X2 + C3XIX2) 
- 

If such a term significantly improves the fit of the model then we can easily 

adapt our method accordingly. 

In the heuristic of section 4.3 we design the second screen by making the approx- 

imation that X, = it, given in (4.14) and show that the minimisation problem 

can be recast as a single screen problem as in Chapter 2. To adapt to a model 

that includes an interaction term the only change needed here is that the pro- 

bit regression of T on X2 given that X, = p, now has parameters 

where ý0* = 60 + A'161 and ýj = 62 + A1163 aS 

P(T=ljýjXl=jljiZ2) = 41ý(CO+6/lj+C2X2+C3/lJX2) 

ý-- 41ý I(CO + 6/11) + (C2 + C3AI) 
-'1721 

= 

= P(T =llr7 
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The moments of (60*, ý, *) can easily be calculated from those of 6. 

Similarly, in the design of the first screen we make the approximation that 

I X2 -= 112 = E(X2) and reduce to a one screen problem. For the case in which 

X2 is standardised with mean zero, the inclusion of an interaction term in the 

probit model for TIX1, X2 leaves the parameters of the model for T on X, given 

X2 =0 unchanged, since 

P(T= liZ, Xl, X2 =0)='D(e0+ZIX1+e2 X 0+Z3X1 X 0) =(I)(ZO+eiX1). 

Further computational studies could be carried out to determine the importance 

of any interaction term and its effect on the performance of our heuristic. 

2. In practice, when an item reaches the ith screen having been unsentenced by 

the first i-1 screens, the measurements of the first i-1 screening variables for 

that item are available. Hence, whenever it is practical to do so, the remaining 

p-i+1 screens can be redesigned conditional on these known values. While less 

practical than a scheme in which screen designs remain fixed, such a method 

would make use of all the available information at each stage. 
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Chapter 5 

Dimensionality reduction in screen 
0 

esign 

5.1 Introduction 

Recall that in a typical screening scenario, a p-dimensional screening variable X 

is used to screen for attributes described by a performance variable T such that 

7: E CýT- So far we have largely ignored the possibility that, in cases when the cost 

of measuring covariates is not negligible, it may be optimal to reduce the number of 

covariates measured when screening for 
IT. 

In Chapter 3, for a two-stage screen, we 

assumed the case in which all (or none) of the covariates are measured in the screen 

and in Chapter 4, in the context of a sequential screen, we imposed a screening 

cost for measuring each covariate but assumed that such costs were negligible in the 

simulation study that looked at screen designs. Here we impose a cost for performing 

a screen, and look at the problem of choosing 

(a) the number of covariates; to use in the screen, and 

(b) which covariates to use in the screen, 
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in the context of the simple screening scenario of a one-stage screen. In a one-stage 

screen all items axe sentenced as acceptable or unacceptable based on a measurement 

of the screening variable X. Such a screen is appropriate when the performance vari- 

able T is measured via destructive testing or is considered too expensive to measure, 

for example, when q. > ccl(c. + c, ) in Chapter 2 and Chapter 3. In the case 

when T is binary and TIX is modelled by a probit regression, we propose a variety of 

heuristic approaches for choosing screening components and assess the performance 

of the heuristics with a numerical study. 

Under the standard case of costs, as defined in Chapter 3, section 5.2 recovers 

the Bayes optimal one-stage screen for a general model on (7:, X). The result is 

taken from Turkman & Amaral Turkman (1989) and is a special case of Theorem 3.1. 

Turkman & Amaral Turkman give an example in which (T, X) is multivariate normal 

with a conjugate prior for the model parameters. Here we take the case in which T is 

binary and TIX is modelled by a probit regression model. Section 5.3 discusses the 

construction of screen designs that use d(< p) components of the screening variable, 

and reviews the problem of choosing how many and which covariates should be used 

in the screen. In the context of the probit regression model, we suggest some heuristic 

approaches to choosing screening components in section 5.4. We suppose that the cost 

of measuring each covariate is the same and base our heuristics on model parameters. 
Section 5.5 investigates the performance of the heuristics in a numerical study. 

5.2 Optimal screening regions 

Suppose we have a performance variable 1: which defines whether an item is accept- 

able (T_ E CT) or unacceptable (1: V CT). Suppose also that a one-stage screen is to 

be based on a p-dimensional screening variable X(P) = (Xj, X2,... 
, 
Xp), with sample 

space QX(P), which advocates the acceptability of an item if X(P) E Cx(p). We shall 

assume, without loss of generality, that the screening variable has been standardised 

so that its components each have zero mean and unit variance. As the rationale is 
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to predict whether 7: lies in CT using X(P) it is sensible to focus on the relation- 

ship between the performance and screening variable through the conditional model 
7: IX(P), ý where C are unknown parameters with distribution ? r(ý). The distribution 

7r(C) will typically be a posterior distribution based on a training sample on (7:, X(P)) 

and any prior information about the relationship between 
-T and -X(P). 

The costs of misclassification by the screen are as in the standard case of Chap- 

ter 3, with a cost of c. for wrongly retaining a defective item, and c, for rejecting a 

satisfactory item. Notice that as T will never be measured there is no cost c,,,. The 

cost of operating the screen will depend on how many (and possibly which) compo- 

nents or elements of X(P) are used. We write this cost as c, (p), making explicit the 

dependence on the dimension of the screening variable. 

The expected cost of using a one-stage screen with acceptance region Cx(, ) is 

cP(reject a good item) + c,, P(accept a bad item) + c, (p) 

= CP(7: ECT, X(P)VCX(,. ))+CP(ZVCýT, X(P)ECX(p))+C, (P)- 

Expressing this explicitly in terms of a model for TIX(P), ý the Bayes cost of using 

the screen is 

EX(, )[cECIP(7: ECTIX(p), ý)II(X(P)VCX(p)) 

+c. Et I P(T V GýT JX(P), I(X(P) E Cx(p))] + (P). (5.1) 

where 
IQL(P) E A) 

1, X(P) E A) 

0, otherwise. 

Definition 5.1 A Bayes one-stage screen Cý(, ) is any subset of SIX(, ) satisfying 

n)} = inf IC{Cx(, )}, (5.2) K{Ci(F 
cx(p) - 

the infimum in (5.2) being taken over all subsets of Qx(, ). 

The following corollary is a direct consequence of Turkman & Amaral Turkman 

(1989) and is also recoverable as a special case of Theorem 3.1 given in section 3.2. 
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For illustrative purposes we give two short proofs, the first follows Turkman & Amaral 

Turkman and the second follows the proof of Theorem 3.1. However, we stress that 

the following conjecture is merely a corollary, easily inferred from results proved 

elsewhere. We give proofs to illustrate how we arrive at the solution to our formulation 

of the screening problem. 'Ale use the convention that, when there is an arbitrary 

choice between accepting or rejecting an item in terms of Bayes cost then the item 

will be accepted. 

Corollary 5.1 A Bayes one-stage screen is given by 

G'i(P) "-'2 
[Z(p) 

E 92x(P) : Ee IP(i: E CTII(P), ý)1 ý: 
Ca ]. 

(5.3) 
c, + Cr 

Proof I (Turkman & Amaral TVrkman) 

The Bayes cost in (5.1) can be rewritten as 

)CJCX(, )} = Ex(, ) 
JZý(X(P))I(X(P) ý Cx(p)) 

+6. (X(P))I(X(P) E CX(, ))) + C. (P), (5.4) 

where 

Er(Zp)) crEýJP(TECTJX(P), ý)) 

Z. (Zp)) c. EýtjP(TýGýTJX(P), ý)). 

As I(X(P) V CX(p)) =1- I(X(P) E Cx(p)), 

K{C, K(, )} = EX(, ) 
[2ý(X('» +f ga(X(P» - Er(X(P»l I(X(p) E CX(p»] 

Here it is easy to see that IC[Cx(, )} is minimised when the second term above 

is negative for all X-(P) E C, (, ), and hence 

19L(p) QX(P) : Za(Z(P)) 

The result follows from the definitions of 6. (z(P)) and 8, (z(P)) with a little alge- 

bra. 0 
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Proof 2 (Theorem 3.1) 

From equation (5.4) it follows that 

K{CX(�)} ýý EX(, ) 
[min 19, (Z- (P», 2«(1(P»1] 

The bound is clearly attained by the one-stage screen, 

Cý(P) li(p) E Qx(p) 

and the result follows with a little manipulation. 0 

Note that the Bayes one-stage screen given by (5.3) has no dependence on the 

distribution of the screening variable -X(P) or the screening cost c, (p). As in Chapter 3, 

a more general result follows when the misclassification costs c. and cr are allowed 

to be functions of I and X(P). 

Calculation of the Bayes acceptance region is far from trivial and involves com- 

putationally intensive methods with many choices of model for TIX(P), ý and ý. To 

find a simple and robust solution to this problem we follow earlier chapters which 

consider a binary performance variable T (which takes the value 1 when an item is 

acceptable and 0 otherwise) and a linear probit regression for T IX(P), ý: 

P(T =1 JX(P) = x(P), ý) = -4ý (ýTxo(p)) 
.0 

where -xo(p) - X(p)T)T. 

As in earlier chapters, the choice of a probit link function is motivated by the 

fact that has a closed form when ý is assumed to have a Np+, (M, S) 

distribution. This is the case when the posterior distribution of ý can be approximated 

by its asymptotic normal form, where m is the maximum likelihood estimate of ý and 

S is the inverse of Fisher's information matrix evaluated at m. For this model, given 
x(P), following Lemma 3.2 o 

MTI(op) 

I)T S. T(P) 
1/2 1(1+!. 

0 : L. )I 
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Thus under this model, the Bayes acceptance region is 

Cý(p) j(p) E Rp : 
MT 

-. 
x lop) 

> C. (5.5) 
+ 

(p)T (P))1/2 
x0 SXO 

(c, 

+ C, 

Advantages of this solution are that it is simple to calculate and interpret. Also 

Boys and Glazebrook (1992) show that for the p-1 case this solution is robust to 

modest departures from modelling assumptions concerning the link function and the 

distribution of ý. Clearly cases with p>1 will inherit such robustness properties. 

5.3 Reduction in dimensionality 

In many situations there is a significant price to pay for measuring each component of 

the screening variable. It may be cheaper to operate a d-dimensional screen (d < p) 

and save some of the screening cost. In this section we investigate the calculation of 

marginal Bayes costs and explore various strategies for determining which covariates 

to use in the screen. 

Consider a partition of the p-dimensional screening variable into two parts, one 
d-dimensional, corresponding to the components to remain as part of the screen, and 

the other (p - d)-dimensional, corresponding to the components to be omitted from 

the screen: 
X(p) - (X(d)"y(p-d)). Our main task is to find a d-dimensional one-stage 

,, 
(d) that minimises Bayes cost screen C 

KI CX (d) 
EX(d) [rrEX(p-d)IX(d) jlý( CT JX(d), X(p-d), I(gK(d) ý CX(d)) [P(j: E 

[P(7: ýT -d), I(X(d) + CaEX(p-d)j2L(d) X(p E CX(d))] (5.6) 

c. 

Comparing the Bayes costs (5.6) and (5-1) it follows from Corollary 5.1 that the 

d-dimensional Bayes one-stage screen is 

C* 
(d) X(d) E EX(p-d)IX(d)=. 

T(d) 
JEý [P(T ECT JIL (d)l X(p-d), 

ca 

Ca + Cr 

(5-7) 
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Hence if we build a model that uses a p-dimensional screening variable but we only 

wish to use d of those dimensions when performing the screen we must account for the 

unused p-d dimension via a suitable conditional expectation. It would be possible 

to construct a new model involving only the required d screening components but 

care would be needed to ensure that the marginal model was consistent with the full 

p-dimensional model. Assuming the marginal model was of the same form as the full 

model would generally only be suitable as an approximate method. So, in order to 

use the Bayes acceptance region (5.7) we need to average our diagnostic probabilities 

over the distribution of X(p-d)IX(d) = X(d) . 
This will generally involve numerical 

integration methods such as quadrature or Monte-Carlo techniques. In terms of the 

linear probit regression model considered above, the d-dimensional Bayes one-stage 

screen is 

TX (d) + 7, nTXOD-d) C M11 
-2- a 

(d) 1(d) EQX(d) : EX(p-d)j2L(d)=. 
T d) 4, > 17XL 

I (d) 1/2 f X(p-d) Ca + cr 

where 

f (X(d) 
I 

X(p-d)) =1+ IL(Od)T S1 12: 
(Od) 

+ X(p-d)T S22X(P-d) + 2-xo(d)TS12 X(p-d), 
-: ýO - 

X(Od) = 
(l, 

2L(d)T)T, and the Sij and mi are the d+1 and p-d constituent parts of S 

and m respectively. Note that the region is more complex than in (5.5). 

We now have an optimal one-stage screen for a given set of d(: 5 p) screening 

components. In order to compare the Bayes cost for optimal regions of different 

components, the full distribution of -X(P) must be specified. The cost calculation will 

in general involve numerical methods. 

An important ancillary question in the reduction of the dimension of the screen 

is how to choose which screening components to use in a d-dimensional screen. In 

cases in which the cost of measuring the screening variable c, (d) is a constant for 

each dimension d, that is, c, (d) is the same under each of the different combinations 

of covariates, that could make up a d-dimensional screening variable, the problem of 

finding the optimal screen design can be split into two stages. Firstly, that of choos- 

ing which components are the cheapest to use for each d=1, 
---, A and secondly, 
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comparing the Bayes cost of the optimal components for different d via consideration 

of screening cost c, (d). 

Let 2P denote all the subsets of screening components jX1, X2, 
- .., Xp} and let 

Sd denote all PQ subsets of IXI, X2,... Xp) of order d. Consider a choice of d 

screening components, o, (E 2P), and its minimum Bayes cost excepting the screening 

cost 

K(a) = IC {C, *} - c, (d). 

The best choice of components, a, of a given dimension d, written ad, satisfies 

K(o, d) = min K(u). 
OIESd 

Comparing the minimum Bayes cost for each member of Sd will yield ad. However, 

this can be computationally intensive and in section 5.4 we look at some heuristic 

approaches to finding ud. 

Once we have ad for all choices of d (= 1, ..., p) we can incorporate the screening 

cost and find the optimal screening design to employ. 

Definition 5.2 The Bayes design is ad. such that 0< d" <p and 

c, (d*) + K(aj. ) = min fc,, (d) + K(od) (5.9) 
O<d<p 

where d=0 corresponds to rejecting all items or accepting all items without using 

any screening procedure. 

Note that it is natural to assume that c, (d) is increasing in d. K(ad) is certainly 

decreasing in d, since any screen based on d components may be considered as a d+ 1 

component screen. The best choice of components for dimension d+1 is od+l and 

so K(ad+l) 5 K(od). Hence we are seeking an optimum tradeoff between complexity 

and precision. 
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5.4 Heuristic approaches for choosing screening 

components 

When there are only small differences between the costs of measuring different com- 

ponents in the screening variable it is intuitively sensible that those components 

with the most joint discriminative power will minimise Bayes cost. In trying to 

find a very simple heuristic choice of components to include in the screen, some 

measure of individual discriminative power that also accounts for the uncertainty 

about that power would seem appropriate as a starting point. Boys & Glazebrook 

(1992) show that when TJX(P), ý follows a linear probit model, the magnitude of 

milsi =- E(Ci)1s. d. (Ci) is a good measure of the discriminative power of screening 

component i alone. Therefore this measure can be used here to rank components. 

Section 5.5 presents some numerical work that shows this technique to be a good 

heuristic for the choice of screening components. However, some account may need 

to be taken of the correlation structure of the probit regression parameters C. 

When all of the components are of roughly equal discriminative power with mi 

j=1,2, p the ranking method above degenerates to a ranking based on 

the precision of ýj given by si '. Assuming that the distribution of ý is based on 

a moderately large sample and weak prior information, C is approximately normally 

distributed with mean m given by the maximum likelihood estimate (posterior mode) 

of C and the inverse of the variance matrix S-1 given by Fisher's information matrix 

17(ý) evaluated at C=m. Hence, given m, the matrix S-I is a function of the data 

on X and has expected value Ex 11(m)}. So, as an alternative to a ranking based 

-2 on Si , here it seems natural to look at the properties of the distribution of X for 

an appropriate heuristic. With each covariate assumed standardised with zero mean 

and unit variance, a possible base for a ranking of components is the correlation 

structure of X(P). When the correlations between screening components are equal, 

(corr(Xi, Xj) =p for ij = 1,... p, (i :A j) and -(p - 1)-1 <p< 1), all of 

the screening components are exchangeable and any d-dimensional choice will be 
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optimal. The design problem is reduced to finding the optimal number of screening 

components to use (discussed in section 5.3). 

Another special case, which offers some insight, is that of serial correlation. Here 

corr(Xj, Xi) = pl'-jl for ij = 1,... p, i ýý j and IpI < 1. A useful heuristic 

would be a univariate summary of the value of any particular choice of components 

which would, in turn, enable a ranking of choices. As the focus is on correlation 

structure a natural choice is a ranking based on maximising the determinant of the 

correlation matrix of the screening components being considered. We now investigate 

this heuristic in detail. 

Consider a choice of d screening components, a= 
IXtI 

I 
Xt2) 

" *I Xt, }, taken from 

a p-dimensional screening variable with serial correlation, where tj E {1,21 ... 7A 

and f, < 12 < ... 
< Id. Denoting Md(u) = Corr(u), the correlation matrix of the 

(standardised) screening components a, then 

1 

lob 

Md(tlvt21 
... s 

1d) 

ptd-1-11 

p4d-li 

2-tl p 
td-l-tl 

p 
td-tl 

p 
td-l-t2 

p 
td-t2 

p 
td-l-t2 

p 
td-td-I 

td-t2 
p 

td-td-I 
p 11 

By subtracting p' 2-11xrow 2 from row 1 of the above matrix it is easy to see that the 

determinant of the matrix satisfies the relation: 

det{Md(tl, 121... 
It 

x= (1 
_, 02(t2-11)) det{Md- 

I 
V2 

II 
Ed)} 

- 

Denoting as Dd(a) the determinant of Md(o-), 

d-I 
Dd(tl 

t 
t2 td) (5.10) 

As the evaluation of Dd is based on the differences ti+l - ti, we can redefine the 

problem in terms of ki = Ij+j - Ii, i=1,2,. .., d-1. Now our task is to choose 

k= (ki, k21 ---) 
kd-1) which maximises DA). Note that for all possible choices of -k, 

d-I 

R(k) ki=td-tl <P-1- 
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It follows from the following theorem that Dd is maximised when all the elements of 
k take one of two values, r or r+1, subject to satisfying (5.11). 

Theorem 5.1 For any choice of k such that I ki - kj I>1, for some i, jE 11,2,. d- 

11, there exists an alternative choice of -k = -4,; 
*, with Dd(, L*) > DA)- 

Proof 

Consider 
-k = (ki, k21 

--- ki,... kd-1), where lkj - kil >1 and, without 
loss of generality, kj > ki. Now consider an alternative choice -k* = (ki, k2, ---, ki + 
1,... , kj - 1,... , kd-1) with R(j) = R(. L*). From (5-10) it can be seen that Di(k*) > 
Dd(k) if 

(1 _ P2(ki+l))(1 _ 
ý2(ki-l)) > (1 

_ p2ki)(1 _ p2kj). 

After a little algebra this is equivalent to 

(1 
_ 

ý2)(p2kj 
_ 

ý2(ki-l)) 

which . istrueaskj-1 >ki and IpI <1.0 

With the result given in Theorem 5.1 we can solve the problem of choosing a 

suitable k and hence a. 

Theorem 5.2 The choice of k= (kl, k27--- 
, 

kd-1) which maximises Dd(k) iS: 

Any (d-l)-[(p-l)mod(d-1)] oftheki=(p-l)div(d-1) 

and the other (p-l)mod(d-1) oftheki=(p-l)div(d-l)+l, 

where i=1,2,... ,d-1. 

Proof 

Theorem 5.1 shows that the optimal choice of k must of the form: any a of the ki 

say, and the other b= (d - 1) -a of the ki =r+1. So we need to find r, a and b 

that maximise Dd, where 

Dd = 
(i 

- 
e)" (i 

- 
ýI(r+l) )b) 
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subject to 

ar+b(r+l) : 5p-1 

and a+b=d-1. Given r, it is clear that b should be as large as possible. Under 
(5.12) it follows that (d - 1)r < (p - 1) and the largest possible value r can take is 

r* = (p - 1) div (d - 1). 

Maximising Dd for this choice of r, the largest value of b, subject to (5.12), satisfies 

equality in (5.12) and is given by: 

b* = (p-l)-(d-l)x(p-l)div(d-1) 

= (p-1) mod (d-1). 

Hence, these choices of r and b give 

Dd " (1 
-p 

2r* ) d-l-b* (1 
_ 

ý2(r*+I) ) b* 
. (5.13) 

v or choices of r< r*, we can choose b=d-1 and still satisfy the constraint 
Hence, for such choices of r, the largest value of Dd is 

Dd "': 
(1 

_ 
ý2(r*-n+l) ) d-1 

I 

where 0<n< r*. Plainly this is smaller than Dd in (5-13) above for all n, 0<n< r*. 

Hence r* and b* give the location of the constrained maximum of Dd and the result 
follows from these choices of r and b. C1 

When we have the special case of serial correlation, Theorem 5.2 gives us the choice 

of screening components which maximise the determinant of their correlation matrix. 
In essence it says that when choosing the components to use I 

{X11 
1 

X121 
-I 

Xtd} 
I 

the i's should be as spaced out as possible. For example, if we have a 10-dimensional 

screening variable and we wish to use 3 screening components, there are two choices of 

screening components that satisfy Theorem 5.2, namely IX1, X5, Xiol and JXI, X6, X10}. 

This heuristic choice of screening components is, of course, applicable to any correla- 

tion matrix. Its main advantage is its simplicity, though its performance needs to be 
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assessed. Section 5.5 investigates the performance of this heuristic choice of screening 

components within a serial correlation framework. 

The heuristic above is based solely on the correlation structure of those elements to 

be employed in the screen and takes no account of the influence of those components 

not to be included. Other sensible heuristics based on the correlation matrix involve 

the maximisation or minimisation (as appropriate) of the determinant or trace of the 

matrices EX(p-d) [Corr (X(d) IX(p-d))] and/or Ex(d) [Corr (X(p-d) I X(d))] 
. 

When X (p) 

is multivariate normal these expected conditional correlation matrices are straight- 

forward to calculate as the conditional matrices do not depend on the components 

over which the expectation is taken. However, in general this is not the case and 

the simpler heuristic described earlier may be more attractive. The performance of 

heuristics that use these procedures in the context of a multivariate normal screening 

variable are investigated in section 5.5. 

5.5 Some numerical examples 

Under the probit model for TIX(P), in this section we give some numerical examples 

of d-dimensional screen design and evaluate the heuristic proposals of section 5.4 

numerically. Throughout this section we fix the cost of incorrectly accepting or 

rejecting an item as equal (c. = c, = 1) and assume that the cost of measuring 

the d-dimensional screening variable X(d) is of the form c, (d) = dc., where c, is the 

constant cost of measuring any one of the covariates. For convenience we also assume 

that the (standardised) screening variable has a standard normal distribution with 

correlation matrix E. 

As necessary preliminaries, in section 5.5.1 we describe the calculation of the 

screening region and section 5.5.2 describes an algorithm to compute a covariance 

matrix for the regression parameters that would be tYPical. if the screen were based 

on large sample. Section 5.5.3 describes the estimation of Bayes; cost of the screen 

and we finally turn to the performance of the heuristics in section 5.5.4. 
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5.5.1 The optimal one-stage screen 

When all of the available covariates are used in the screen the form of the Bayes one- 

stage screen given in (5.5) is easy to calculate. However, the optimal d-dilnensional 

screen (d < p) given in (5.8) is more complex and is determined by an expectation 

over the conditional distribution of the unused covariates. In our numerical work we 

calculate this expectation as follows. 

Partitioning the correlation matrix of X(P) into its d and p-d constituent parts 

we write 
Ell 1312 

ET 
12 

EJ22 

Then, under the properties of the normal distribution it is easy to show that 

p-d)IX(d) = X(d) 
(�X(d), S211 

) 
X( 

-' 
Np-d 

- 

ET E1 and E211 = E22 _ET 
I 

where it= 12 11 12ETI 
E12. Hence, the conditional expectation 

in (5.8) is over a normal distribution. Making a change of variables, we can rephrase 

the expectation as one over a multivariate standard normal random variable. We 

write 
4K(p-d) 

JX(d) = X(d) +E 1/2 z 
211 

where Z- N(p-d)(0, I) and I is the identity matrix. After some algebra the expec- 

tation in (5.8) becomes 

Ct + #TZ 
z PT (5.14) 

where 

MT 
(d) T 

JX6 
+ tX(d) a- 

1/2T E211 M2 

(d)T S X(d) 
(d)T S (d) (11 . (d))T 

IIX(d) 'Y +. Tý +2 gL S22 11- -16 12[19L + 

E112)TX(d) 2(SO2 
211 - 

E 1/2T S2213 1/2 
211 211 
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To compute the expectation in (5.14) we use the Monte-Carlo integration method 

discussed in section 3.3.3, with the multivariate standard normal distribution as the 

sampled distribution and the h(. )-function given by 

a+ OTZ 

(-y ig + ATAZ) 
1/2 

1 

Recall that the precision of the estimate of the integral (expectation) increases with 

more sampling. Hence we can sentence an item as soon as we have done enough 

sampling to be reasonably sure whether the expectation is greater than or less than 

c, l(c, + c,, ). The following algorithm was used to determine the suitability of items 

based on a measurement X(d), of a d-dimensional screening variable. 

Algorithm 

Compute 1L, 1/2 and other quantities in (5.15) that can be computed without E211 

knowing z(d) and z. 

2. Now compute quantities in (5.15) that include X(d) and exclude 

Set at zero storage bins for the sum of the simulated values of the h-function 

and the sum of squared values of the h-function, denoted 4PF, and 'I)F, 2 say. Also 

set i= 

4. Let i=i+1 and generate p-d standaxd normal pseudo-random observations 
WWW Z1 I Z2 zý-d, say, using N. A. G. routine G05DDF, N. A. G. (1990). As is 

W 
standardised with each component of Z independent, set P) = (z(') z Ii Z2 P-d/ 

5. calculate h(j(')), where h(-) is as in (5.15) and let (Dr, = (PE + h(K(O) and 
(DE2 = 4DE2+ h(i('))'. 

6. If i< imin then return to step 4, otherwise calculate an estimate of the expec- 

tation (5.14) and an estimate of the variance of the estimator as follows, 

PT 

Var(PT) 
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7. If PT 
- 1.96rVar(P^T) ? ca/(c,, + c, ) then accept the item and stop, 

if PT + 1.96rVar(PT) < cal(c. + c, ) then reject the item and stop. 

If i< im,, then return to step 4, otherwise, if PT ý: c. 1(c. + c, ) accept the 

item, else reject the item, in both cases noting the possible inaccuracy of the 

allocation. 

Step 7 uses a normal approximation for PT to sentence the item if the estimate of 

the expectation is more than 1.96 standard deviations above or below ql(c, + CO. 

The bounds i .. i,, and i ...... are the minimum and maximum number of simulations 

that should be generated to sentence an item. In the last step the estimate of the 

expectation is not accurate enough to be sure of a correct sentence. Here, if i= 

we sentence based on the final estimate and flag that the allocation may be incorrect. 

In the studies of the performance of the heuristic in section 5.5.4 we set imin = 1000 

and im. = 100000 when using the algorithm in section 5.5.3 to estimate Bayes cost. 

These choices resulted in less than 0.5% of allocations being made by step 8. 

5.5.2 Covariance structure of the regression parameters 

Recall that when the probit regression model on TIX is based on a large sample of 

data, the parameters of the regression model 6 are approximately normally distributed 

with mean given by the maximum likelihood estimate of 6- and the covariance as the 

inverse of Fisher's information matrix evaluated at the maximum likelihood estimator. 

Hence given the mean E(ý) =m and the distribution of X(P), 

E, (p) 
jVar(ý)-'j = EX(p)(S-) = Ex(, ) {I(m)}, (5.16) 

where I(m) is Fisher's information matrix of ý based on a sample of size n evaluated 

at m. Throughout the numerical work presented in this section, given m and Z, the 

correlation matrix of X(P), we compute the covariance matrix of ý as the inverse of 

the expectation in (5.16). Hence S will be typical of the covariance matrices found 

when p(ý) is based on a moderate sample of data. 
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Following (2.13) and (4.25), under a probit regression for TIX(P) the (j, k)th ele- 

ment of Fisher's information matrix of the parameters ý from one observation (t, ZO) 

on (T, X(P)) is, j, k=0,1, ..., P, 

XjXko(eTX(P»2 
ljk (Zi X(p» : -- ' -ýO 

7 

with xO = 1. Evaluating (5.17) at ý=m. and taking an expectation over the distribu- 

tion of X(P) gives the elements of the expected value of Fisher's information matrix 

as 

CL . 7; 
(P) Eýxw j%jk(MXp))j 

%jk(M)M(P))Op(--X(P)jE) 
.1 IR RP 

where Op (aL(P) I E) is the standardised multivariate normal distribution with correlation 

matrix E. For a sample of n observations, the elements of the expected value of 

Fisher's information matrix Ex(, ) I. T(m)} in (5.16) has (j, k)th element 

n= 

nEx(, ) 
lzjk(m, X(P))l EX(P) f Ijk E12L(P) I Zjk (M) X(P)) 

As in Chapter 4, throughout our examples we suppose that the sample size is n= 30. 

To compute the integrals in (5.18) we use Monte-Carlo integration in preference 

to Gauss-Hermite quadrature as used in section 4.4.2. The reasoning behind this 

choice is that here the computation will involve integration over a larger number 

of dimensions than in section 4.4.2 and quadrature may not perform as well. Also, 

the accuracy of the estimate of the integral is not essential as we only want the 

information matrix and hence covariance matrix to be roughly typical of those from 

a large sample. In fact, the implementation of the Monte-Carlo method that is 

described below essentially calculates the information matrix at m for a large number 

of pseudo observations on X(P) and then rescales to the smaller sample size of n= 30. 

The Monte-Carlo technique has already been described in detail elsewhere and so 

we simply give the algorithm for computing an estimate of the expectation in (5.16): 

Algorithm 
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1. Initialise at zero -T, a (p + 1) x (p + 1) matrix of storage bins to hold the 

information matrix. Set the number of simulations generated so far i=0. 

2. Set i=i+1 and generate a pseudo-random observation x(i) on X(P), using 

N. A. G. routine G05EZF say, N. A. G. (1990). 

3. For j, k=0,1, p, calculate the information from this observation zjk 

and add it to the elements of current information matrix 
±jk 

jk+Zjk(?? 6XP)- 

4. If i< ima, then return to step 2, otherwise compute the estimate of the expected 

observed information matrix (5.16) for 30 observations as ±= 30±/imax- 

5. Invert ± to obtain the covariance matrix. 

Notice that we do not stop the simulation process when a desired accuracy is achieved, 

as in earlier implementations of the Monte-Carlo method. This is because here it 

seems more natural to compute the covariance matrix for all problems based on the 

same number of pseudo-observations. Some experimentation can be carried out to 

find an ima., that gives a reasonable accuracy by computing the standard error of the 

estimate ± in the usual way. In the numerical studies in section 5.5.4 we found that 

imax = 1,000,000 gave a suitably accurate answer (the information matrix correct to 

at least 2 decimal places). 

5.5.3 Computing Bayes cost 

For our model, the Bayes cost of a d-dimensional Bayes one-stage screen is, 

Tx(p) 
IC d) 

+M011 

(IL (d) Cý(d)) 

- -. 4) 

I C'I( I JRP 
[Cr4l) I 

XO(P)T SX(P)) 1/2 

_MTX(P) 
+ CA) 

III 
(I(d) 

ECý(d) Op (Z(P) I E) 42; (P) + C. (d). 
T SXO(P))112 x 

71P) T 

The Monte-Carlo algorithm used to estimate this Bayes cost follows easily from that 

given to calculate the Bayes cost of a two-stage screen in section 3.3.3. The main 

difference is that in step 3 we partition x('), the simulated observation on X(P) into its 
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d and p-d constituent parts X((i)(d) ) and X((i)(p-d) ) and submit X((i)(d)) to the algorithm 

described in section 5.5.1 to determine whether it is at an acceptable level or not. If 

C. 4){ T(op)/(, + X(p)T q-(P))1/2}} _MT. otherwise is acceptable we set h(i(')) :! LO 
(P) T SX(P))1121}. 

we set h (1(')) = cr 11, IMT-x-(op) + ýU 10 When d=p the acceptability of 

an item is determined by the simple rule given in 5.5. Unfortunately, the extra step 

X(d) is acc ptable increases of having to take an expectation to determine whether _e 
the computational time needed to compute Bayes cost. Hence, in the study of the 

performance of the heuristics in the next section we were only able to obtain estimates 

of Bayes cost with a standard error typically just under 0.5% of the Bayes cost. 

5.5.4 Performance of the heuristics 

We now turn to the performance of the suggested heuristics, whose aim is to determine 

the optimal d-dimeDsional choice of components without resorting to the numerically 

intensive calculation of Bayes cost. 

First we examine the heuristic that ranks components according to the - magni- 

tude of mi* m mi/si = E(ýj)ls. d. (ýj). We suppose that we have available three 

covariates on which to base the screen. We compare the ranking of components 

under the heuristic with the Bayes-optimal ranking by estimating Bayes costs, as 

in section 5.5-3. The heuristic is intended for ranking components and so we are 

interested in finding ud, the optimal components in the screen for fixed d. Hence, 

we compare Bayes costs with the cost of performing the screen, c, (d), subtracted. 

To make the study manageable we assume that each covariate is independent of the 

others so that Corr (Xi I Xj) = 0, i, j=1,2,3 (i 0 j) and compute the covariance 

matrix as the inverse of the expected value of Fisher's information matrix using the 

algorithm given in section 5.5-2. Hence the only inputs to the screen that we vary in 

our study are the mean regression parameters M. 

We set mo =0 and m, =1 and considered all possible designs in which M2 = 0-91 

0.95,0.975,0.99,0.995,0.999,0.9995,1.0 and M3 = 1-0,1.0005,1.001,1.005,1.01, 

1.025,1.05,1.1. Hence there were 64 different values for m and for each value of M 
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there were 7 different designs (three in which only one screening component is used, 

three in which two are used and one in which all three screening components are used 

- the last of these is of little interest here). The structure of the study was chosen 

so that the spacing in the grid of 7n-values gradually increases as the difference in 

m-values increases. 

Consider choosing the optimal component for use in a one dimensional screen. In 

the above setup, a ranking of components by m-value will always give an ordering 

of 3,1,2 (other than when M2 -': 1.0 and/or M3 : -- 1.0). However, recall that we 

only compute the covariance structure to be roughly as expected. Hence an ordering 

by m-value may not correspond to ordering by m*-value. All cases with mi > mj, 

j, j=1,2,3 in our study, resulted in mý > I mj* but those cases with mi = mj did not 

give mi* = m, *. To compare the ranking of components by m*-value with a ranking 

by the Bayes cost of a one component screen, we compare the differences in m*-value 

with the differences in Bayes, cost. That is, denoting as ai the Bayes cost of operating 

a screen based only on component i, i=1,2,3, we compare the differences m*1 - m2*, 

M* - mj* and m3* - m2* with a2 - a,, a, - a3 and a2 - a3 respectively. Hence we define 3 

772,1 ý 
a2 - a, 

_x 100) 
min(al, a2) 

where the magnitude of positive values of n2,1 gives the percentage loss in Bayes cost 
by using a screen that involves component 2 if a screen using component 1 is cheaper. 
The magnitude of negative values correspond to the reverse - the percentage loss in 

Bayes cost by using a screen that includes component 1 if a screen using component 

2 is cheaper. Figure 5.1 (a) plots estimates of 772,1 against the difference m*1 - m*2, each 

point corresponding to a different choice of -m- 
However, Figure 5-1(a) is constructed 

with Monte-Carlo estimates of Bayes cost and, as already noted, 'we are only able to 

estimate Bayes cost to a given accuracy. Recall that under the Monte-Carlo scheme 

for estimating Bayes cost, the Bayes cost of the screen ai is approximately normally 

distributed with mean given by the Monte-Carlo estimate, ai say, and variance given 

by the variance of the estimator, estimated by Var(hi) say. In cases in which each 

Monte-Carlo estimate of Bayes cost is computed using different pseudo-samples from 
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Figure 5.1: Performance of W-ordering heuristic for 1-d screening 
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the multivariate normal distribution, the Bayes costs are independent. In our study 

this was the case and so the difference in Bayes costs ai - aj is approximately normal 

with mean ai - tij and variance Var(ttj) + Var(Ftj). Based on this normal approxima- 

tion we use the estimates of Bayes cost and their standard error to construct Figure 

5.1(b) which plots P(al < a2) versus m*1 - m;. When P(al < a2) is close to 0 or 1 2 

it is clear which Bayes cost is greater, otherwise the estimates of Bayes cost are not 

accurate enough to make any inferences. We also define 

771,3 --": 
a, - a3 

x 100 and 772,3 -` 
a2 - a3 

x 100. 

min(al, a3) min(a2, a3) 

The interpretations Of 771,3 and 772,3 follow naturally from the interpretation Of 172,1 - 

Figure 5 .1 (c) plots estimates Of 771,3 against m*3 - m7 and Figure 5.1 (e) plots estimates 

Of 772,3 against m* - m*2. Also, Figure 5.1(d) plots P(a3 < al) versus m3* - m*,, and 3 

Figure 5.1(e) shows P(a3 < a2) against m* - m* 3 2* 

These plots show that when the difference in m*-values is large enough, say greater 

than 0.05, it is clear that ranking by m*-value works well. For example, in cases when 

m*1 is much larger than m*2,772,1 is large and positive and P(al < a2) is close to 1. 

However, when W-values are close, the inaccuracy in the computation of Bayes costs 

does not allow us to assess whether a ranking by m*-value performs well. 

When selecting components to use in a 2-dimensional screen, a ranking by 

value orders pairs of components as 11,31,12,3} then 11,2}. Denoting as aij, i, j= 

1,2,3, i<j, the Bayes cost of operating a screen incorporating measurements on 

components i and j, we define 

7712,13 -- 
a12 - a13 

x 
min(O. 12, a13) 

with 7712,23 and 7723,13 defined similarly. Positive values of 7712,13 give the percentage 

of Bayes cost lost by using a screen that incorporates components 1 and 2 when a 

screen that uses components 1 and 3 is cheaper. The magnitude of negative values 

Of 7712,13 gives the percentage loss in Bayes cost by using a screen with components 

1 and 3 when a screen with components 1 and 2 is cheaper. The interpretations of 

7712,23 and 7723,13 follow naturally. To compare the ranking of pairs of components by 
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Figure 5.2: Performance of W-ordering heuristic for 2-d screening 
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m*-value with ranking by Bayes cost we compare the differences ms! + Mj* - (M* + ;) 1, M 

with aA; l - aij for i, j, k, 1 11 213, i<j, k<I. Hence, Figure 5.2(a) plots estimates 
* (m*, + m*), Figure 5.2(c) plots estimat S Of 2 23 agai st Of 7712,13 against 7n, * + m3 2C 771 ,n 

7n2* + 7n3* - (m*l + m2*) and Figure 5.2(e) plots estimates Of 7723,13 against 7n*j + 7n3* - 2 
(m* + m3*). As in the 1-dimensional case we should assess the performance of tile 2 

heuristic in light of the accuracy of the estimates of Bayes cost and we use tile normal 

approximation for Bayes cost to plot probabilities. Figure 5.2(b) plots P(a13 < a12) 

1+m*-(m*+m*), Figure 5-2(d) plots P(a23 < a12) versus 7n 7n versus m* *I+M2) 312 M2*+ 3-( 

and Figure 5.2 (f) plots P(al3 < a23) versus m* + m* - (m* + m3*). When the difference 132 

in the sum of m*-values is large enough the heuristic clearly performs well, with 

uncertainty about the difference in Bayes costs, and hence uncertainty about tile 

performance'of the heuristic, present when the sums of m*-values are close. 

We now consider situations in which each covariate Available for screening has 

roughly equal discriminative power and the uncertainty about such power is as ex- 

pected from a typical (large) sample. Here we assess the performance of the heuristics 

based on the correlation matrix E, focusing on the special cases in which the covari- 

ates are equi-correlated or serially correlated. 

Consider such a case in which we have a possible five (standardised) screening 

components on which to base our screen and the mean regression Parameters in the 

linear probit model are equal (mo = 0, ml = M2 = ... = M5 = 1). If the screening 

components are equally correlated then the problem reduces to choosing the optimal 

number of components to use in the screen. Figure 5.3(a) shows theestimated Bayes 

cost when using different numbers of components (d) for the case c, = 0.03 and 

correlation parameter p=0.4. It demonstrates that the optimal screen should be 

based on (any) three of the five components. This scree plot is typical of those used in 

multivariate analysis for dimensionality reduction. The sensitivity of the dimension 

calculation to the screening cost per component (c. ) is easily assessed. 

The calculation for the serial correlation case is more complex. Not only must 

the dimension of the screen be determined but also which components to use. Fig- 

181 



(a) 

U, 
O1 

0 

Cl) 
u) 0 
0 

CY to 

ci « 

S"" 

0 

0 

(b) 

Ci 
0 

ai C-i 

0234 

Number of screening components 

012345 

Number of screening components 

Figure 5.3: Bayes costs for d-dimensional screens 

ure 5.3(b) shows the estimated Bayes cost, again for the case c, = 0.03 and correlation 

parameter p=0.4. The plot shows the cost of each of the 5Q choices of compo- 

nents. It is clear that the optimal choice of components decreases in importance as 
the number of components included increases. 

In the case of serial correlation, we now assess the performance of the heuristics 

that are based on the correlation matrix E. Let (1) denote the d-dimensional choice aý 

of the "equal spacing" heuristic based on Theorem 5.2. Also, let ?) and Cr(3) aa d denote 

the choices of heuristics based on the minimisationof tr JEX(p-d) [Corr (X(d) IX(P-d))] I 

and tr 
JEýX(d) [Corr (2&-d) IX(d))] I 

respectively. Under our assumption of normality 
for the standardised screening variable X(P), 

Corr (X(d) 12L (P-d)) 
= 1311 - 142E2-211: 

21i 

Corr (2E(p-d) 12E(d)) = 1ý22 - 1ý21E1-111312i 

where the Ejj are the d and p-d constituent parts of of the correlation matrix. Hence 
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Table 5.1: Performance of heuristics 
p 

d 5Cd 0.2 0.4 0.6 0.8 

1 5 

O'd(l) 2 10 N (14%) N (23%) N (24%) N (15%) 

3 10 y y y y 

4 5 y y y y 

1 5 y y y y 
(2) 

Ud 2 10 y y y y 

3 10 y y y N (3%) 

4 5 N (0.33%) N (0.33%) N (0.11%) N (0.41%) 

1 5 y y y y 

o, d(3) 2 10 y y y N (4%) 

3 10 y y y y 

4 5 y y y y 

the correlation matrices of the conditional variables are not functions of the random 

variables over which the expectation is taken and the calculation of the proposed 
heuristics is reasonably straightforward. 

The heuristics performed well in a variety of serial correlation models, with up 

to five possible components, in the majority of situations giving the choice with 

the lowest estimated Bayes cost. Table 5.1 shows whether the choice with lowest 

estimated cost was obtained for various dimensions and values of p (indicated Y 

or N) and where the choice was different (N), the percentage difference in Bayes 

cost. Again these results need to be assessed in the light of the accuracy of the 

estimates of Bayes; cost. Under the normality approximation for Bayes cost, Table 5.2 

gives some indication of the accuracy of the results in Table 5.1. For those cases in 

which the design with lowest estimated Bayes cost was selected by the heuristic (Y), 

Table 5.2 gives the probability (correct to 4 significant figures) that the choice with 
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Table 5.2: Accuracy of results 

p 

d 5 Ccl 0.2 0.4 0.6 0.8 

1 5 

ad(l) 2 10 (1-000) (1-000) (1-000) (1-000) 

3 10 0.1810 0.9297 0.9970 0.9364 

4 5 0.5641 0.7578 0.7364 0.7675 

1 5 0.9253 1.000 1.000 1.000 
(2) 

ad 2 10 1.000 1.000 1.000 0.9990 

3 10 0.1810 0.9297 0.9970 (0.9670) 

4 5 (0.6354) (0.6233) (0.5394) (0.6334) 

1 5 0.8296 1.000 1.000 1.000 
(3) 

ad 2 10 1.000 1.000 1.000 (0-9990) 

3 10 0.1810 0.9297 0.9970 0.9364 

4 5 0.5641 0.7578 0.7364 0.7675 

lowest estimated cost has lowest Bayes cost - remember that we already know that 

it is the choice that is most likely to have lowest Bayes cost. When the heuristic 

chooses a design different to that with lowest estimated Bayes cost, Table 5.2 gives 

the probability that the choice with lowest estimated Bayes cost has Bayes cost lower 

than the heuristic choice. Notice that in some cases the uncertainty over Bayes cost 

results in uncertainty over the performance of the heuristic, even so it is clear that 

the heuristics Perform well. 
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Chapter 6 

Further work 

In this chapter we discuss alternatives, improvements and extensions to the techni . ques 

described in the thesis and end with some concluding remarks. 

6.1 Designing two-stage screens under the sam- 

pling paradigm 

Recall the case in which T is a binary performance variable, X is the screening variable 

and 2 denotes the parameters of the joint model for (T, X). In Chapter 2 and the 

probit example in Chapter 3 optimal two-stage designs are achieved when the joint 

density p(t, z12) is factorised as p(t 11:, ý)p(zlý), with OT = qT, OT). We discuss here an 

alternative which follows the sampling approach in which p(t, p(jIt,! Z)P(tID. 

With the standard case of constant misclassification costs given by c. and c, and 

the cost of measuring the performance variable written as c,., Lemma 3.1 gives the 

Bayes two-stage screen as an optimal partition (Qý, 11ý, Q* ) of Qx where QX is M -1 - 
the sample space of X. It is clear from Lemma 3.1 that an expression for P(T 

111) = E([P(T = ljj, ý)) is required to investigate the form of the screening regions 
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(QýI Q*Rf Q! f)- Under the sampling approach, Bayes Theorem gives 

P(T = 11: 2) = 
p(zit = 1)P(T = 1) 

(6.1) 
p(Ilt = 1)P(T = 1) + p(ilt = 0)P(T = 0) * 

Inserting (6.1) into Lemma 3.1, with c; .. /c, <I -c,. Ic. the optimal screening partition 

is given by 

p(21t = 1) k2 
OA = 

t2 
E nx. 

p(Ilt = 0) > P(T = 1) 
(1 

- 
k2) 

ý9 

qý = j2 E SIx : 
ki 

1 p(llt 0) P(T 
(1 

- kl) 
1 

gl* fIx * 
kl 

< 
P(T 0) ( k2 

P(T 1) 
(1 

- ki) P(Zlt = 0) - T(T 1) ýi --k2) 

where ki = cý,, Ic, and k2 =1-c,, 1c.. Note that the rule for accepting an item is 

similar to the acceptance rule obtained by taking a sampling approach to the design 

of a one-stage screen that satisfies the local criterion given in (1.4), see Dunsmore & 

BoYs (1988). 

The designs obtained in Chapter 2 and the example of Chapter 3 have the advan- 

tages of simplicity and robustness. The advantages of taking the approach described 

here need to be assessed. Boys & Dunsmore (1987) and Dunsmore & Boys (1988) are 

useful resources for this purpose. They propose models for p(jjt, ý) and p(tl±) and 

describe methods for obtaining the predictive probabilities P(T = i), i=1,0 and 
densities p(x-lt = i), i=1,0. 

other two-stage designs 

The very general result given by Theorem 3.1 will allow us to develop two-stage 

procedures for a variety of models for (7:, X) and loss functions for misclassification. 

In particular, it would be interesting to use Theorem 3.1, or, if necessary, extend it, 

to obtain screen designs for the loss functions proposed by Tang (1988b), taking a 

predictive approach to the model for (T, X). 
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6.2 Multiple alternatives 

The idea of using a screening variable X to predict the binary result of whether 
1: E CT or 7: ý CE can be extended to cases in which an item should be allocated to 

one of a number (> 2) of classes depending on 7:. For example, Bai & Hong (1992) 

suppose that the quality of an item, defined by T-, will deterinine which of -in ordered 

choice of markets an item should be shipped to. That is, if T- E Afj say, then the 

item should be allocated to market i. A procedure based on a correlated screening 

variable X is again proposed as a cheap method of classifying items. 

Suppose that there are N markets and the screen allocates an item to market i if 

X- E Qj, where (111 
v 112) ... v SIN) is a partition of the sample space SIX.. Denote the 

cost associated with the action of allocating an item to market i as cj(x. ). Generalising 

Theorem 3.1 as follows provides the optimal partition (11*1,112*, 11ý). The Bayes 

cost of operating the screen is 

ci(X-)P(z) d-x ýý m in {cj (x-)} p (z) d--t- Inz 
i 

Therefore, the bound is attained when 

ne =fAE nK: ci(2) = min {cj(x)} 
Zi19 (6.2) 

for i=1,2,. .., N. This result is similar to the Bayes minimum risk- decision rule, 

see Hand (1981) p. 6. Theorem 3.1 concerns the case in which 

91 = nA, Cl (2) = 2ý (2), 

02 
--: -- 

IlRi C2(1) -"'ý 
Zr(Z)v 

Q3 
--",: 

QMs C3(2: ) --"'2 
ým(2: )- 

In the simple case in which T denotes the number of the correct market for an 

item, the probit modelling approach taken by Boys & Glazebrook (1992) can be 

generalised. Suppose that losses are only incurred by the misclassification of items 

and cij denotes the cost of wrongly allocating an item to market i that should have 

been dispatched to market j, i, j=1,2, ---, N, i 96 j. The Bayes cost is then given 
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by 
NNNN 

EEcijP(T=j, X E fli) Ef 
f 

EcijP(T=jlx) p(x)(Ix. 
i=l Jul i=i ni Jul ji" j$i 

I 

Following the result given by (6.2) above 

NN 
I: cijP(T=jlx)=iniii I: ckiP(T=jlt. ) (6.3) ll*= XEQx: 
J-1 

k 
jml 

i0i ift 

To obtain the predictive probability P(T = i1x) we propose the N-category ordered 

probit model for P(T = iliz, ý). Such a model may be appropriate when the number 

of the market denotes its position in a ranking of markets. The model is written ws 

P(T < ijj, Ajjý) = (I) (Ai + #Tz), i=1,2,..., N-1, 

where # and A are the parameters of the model and A, < 1\2 :5. :5 AN-,. When 

the parameters of the model are assessed via a large sample on (T, X) and relatively 

weak prior information, 

NormalN+p-l VI 

where 

t is the maximum likelihood estimate of 
b is the maximum likelihood estimate of P, 

V is the inverse of Fisher's information matrix evaluated at 

A little algebra gives a similar result to Lemma 3.2, 

P(T < i1j) = (D 
ti + Fx- 

I 
( 

(1 + si' + 2rTa: + mTSp2-z) 
-1/2 

) 

where si' = Var(Aj), Sp = Varg and L- = Cov(Aj, p). Under such a construction 

the predictive probability P(T = i1j) follows easily. For i=2,3,... ,N-1, 

P(T = iliz) = (D 
ti + ex- 

+ si2 + 2ff. X+ jrS, 6M) 1/2 

-4)( 
ti-I + ex 

Z)1/2 + si2,1 + 2rT- jX 9- _+ 
jrS. 

_ 
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The case in which i=1 has 

P(T = llx) = 4) t, + ex, ((1 
+ s, + 2ej',, T+, zTSoj-)-I12 

and for i=N 

P(T = NI., r) =1- (D 
((1+52 tN 

-I 
+ L)Tl,: 

N-1 + 2jý-Ix, + 

The optimal allocation regions given by (6.3) can now be analysed. 

6.3 Other ideas 

There are other, less well-developed ideas we have for research into topics important 

in screening. Here we discuss some of these ideas. 

Sequential versus batch screening 

In the context of the Conn's syndrome example, in section 4.5 we saw that the Bayes 

cost of the optimal sequential screen was more than that of the optimal design of a 
'batch' two-stage screen that assumes no fixed form for the X--stage. However, there 

we assumed that the costs of performing the screen were negligible in comparison 

with misclassification costs. When the cost of screening is higher it is intuitive that 

a sequential screen will become more competitive as all the covariates will not need 
to be measured on all items. Work could be carried out to assess the cost levels 

at which a sequential screen becomes economic and the effects of model parameters 

on the choice of sequential or batch screen. Moskowitz & Tsai (1988) compare their 

sequential procedure with a batch screen for the case in which there are two covariates. 
Also, it may be optimal to mix sequential and batch screening. That is, one or more 

of the stages in the sequential screen may be based on two or more covariates. 
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Stopping and updating 

In a sense, obtaining a sample on (T_, 2: ) is equivalent to operating a two-stage screen 
in which all items are passed to the second stage. One idea is to continue operating 

such a screen until it becomes economic to start implementing the K-stage of the 

screen. That is, until enough is known about (T_, X) for the K-stage to be efrective. 
Hence we could devise a rule that gives the optimal stage at which the K-filter should 

come into operation. Once the 2: -stage of the screen is implemented, the question 
becomes how to update the screen design with new data. A measurement on K 

is available for those items sentenced at the first stage of the screen and, for the 

remainder, a full measurement on (7:, X) is taken. For the case in which T is binary, 

the diagnostic modelling approach factorises the likelihoo d in such a way that the 

updating scheme should be straightforward. All the observations on X. can be used 

to update the parameters of the model for K and observations on T at those X values 

that pass the item to the next stage can be used to update the model for TIE.. The 

sampling scheme can be thought of as separate sampling schemes for TIX. and X. 

Unusual observations 

Suppose that at the first stage of the screen the variable X is measured for an item 

and the value obtained, 2z, is unlike any of the observations on X contained in the 

training sample used for screen construction. What inference should be made about 
T and, in particular, what decision should be made about the item in a two-stage 

screen, accept it, reject it or measure 7:? The intuitive answer to the latter question 
is that 

-T should be measured, as we should be very uncertain about the item having 

not encountered an item like it in the past. However, an implicit assumption in 

the linear structure assumed in the probit regression model of Chapter 2 is that 

items with relatively high magnitudes for the components of X are of high or low 

quality, as appropriate. Some thought should be given to whether this is a realistic 

assumption in the context of future observations that might have very high or very 
low values of x. If such observations are considered to be a potential problem, then 
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the sampling modelling approach may become more appealing as it is based on the 

densities p(jIT = i), i=1,0 and is likely to give the intuitive allocation of rogue 

observations to the second stage of the screen. These arguments are based on simple 
intuition and need to be researched further. 

Eliciting costs 

Throughout the thesis little thought has been given to the problem of assesshig costs. 
It will usually be difficult to accurately assess relative costs especially when they are 

of a different type. For example, in medical applications the financial cost of per- 
forming an operation may need to be assessed relative to the moral, psychological 

and physical cost of misdiagnosing the illness of a patient. Here the procedure de- 

scribed in section 3.4 might be useful. A clinician may find it easier to think about 

a constraint on the proportion of patients that are passed to the second stage of 

the screen rather than a cost for operating the second stage. A good text that de- 

scribes procedures for assessing utility (loss) functions is Smith (1988). In fact, Smith 

points out that unbounded loss functions, such as the latter two in (1.5) used by Tang 

(1987,1988b), can be problematical. The Bayes cost can be sensitive to small changes 

in the distribution of the random variables concerned and so information about the 

variables must be specified very accurately, something which is practically difficult. 

In the quality control literature methods of cost assessment for the loss functions in 

(1.5) are given by Hald (1960), Campanella & Corcoran (1982), Bhuyan (1982) and 
Taguchi (1984). 

Dynamic models 

In many medical screening programmes, patients may be subjected to a screen at a 

number of different times throughout their lifetime. One idea would be to include such 

a case history of measurements in the model used to construct the next screen. As well 

as the problem of designing optimal screens, other questions arise. For example, what 

is the optimal time for the next measurement of the screening variable? Uncertainty is 
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likely to increase as the time since the last measurement increases and so this question 

essentially asks, when will there be enough uncertainty so that another measurement 

of X is necessary? 

Normal approximation 

Throughout the thesis we have cited a Normal approximation to the posterior distri- 

bution of parameters in which the mean is given by the in. uhnuin likelihood estimate 
(m. l. e. ) of the parameters and the variance is the inverse of Fisher's information ina- 

trix evaluated at the m. l. e.. For a finite sample size, this approach can be inefficient 

or wasteful of information. A method of inference based on the data alone can be se- 

riously flawed if real prior information is available that is strong enough to contribute 

substantialy to that contained in the likelihood function. As an alternative one might 

use a Normal approximation in which the mean is given by the posterior mode of the 

parameters and the variance is given by the inverse of the obsemcd information (that 

is, minus the second derivative of the log-posterior). This approximation results from 

a Taylor series expansion of the log-posterior about the posterior mode. For a further 

discussion of these issues see Chapter 4 of Gelman et al. (1995). 

6.4 Concluding remarks 

Here we add some final conclusions to the comments made throughout the thesis. 

The idea of the two-stage screen described by Tang (1988b) is a simple one but 

Tang's assumption of known parameters is unrealistic. In Chapter 2 we have taken 

a Bayesian approach to modelling and have provided simple designs that are robust 

to modelling assumptions. 

Chapter 3 presented a general result for the optimal design of a two-stage screen 

under misclassification costs. The theory can be used to'design screens under any 

appropriate model for (7:, X) and any loss functions for the costs. Also in Chapter 3, 
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we described optimal two-stage screen designs under a constraint on the proportion 

of items passed to the second stage of the screen. The result can easily be adapted 
to the case of constraints on the proportion of items accepted or rejected at the first 

stage of the screen. We also suggested that the limited resources screen might be 

useful for eliciting costs and for solving the problem of -allocating items in a situation 

when a maximum of k out of a batch of m items should be passed to the second stage 

of the screen. 

The sequential screen described by Chapter 4 provided a low cost alternative when 

the cost of measuring covariates is high. The hetiristic design proposed makes use 

of the simple and robust designs obtained in Chapter 2 and is seen to perform well 

when compared with optimal designs. 

In Chapter 5 we made progress towards assessing which covariates are best to 

include in a screen. We proposed some heuristics for choosing covariates and these 

heuristics were seen to perform well in a variety of situations. 

Finally, in this chapter we have provided a number of suggestions for improvements 

and extensions to our work. There is much scope for further research. 
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