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ABSTRACT 

Affective states, or emotions, are internal states of an organism, brought about by an 

appraisal of the environment, which result in specific physiological, cognitive, and 

behavioural responses. These states can significantly influence information processing 

and alter cognition and perception. Recent research has argued for similar emotion-

like states in bees, using judgment bias tests, a widely accepted method for measuring 

emotional states in mammals. Although these findings suggest the possibility of 

emotion-like states in bees, alternative explanations have been suggested for these 

results. There is also little knowledge of how these states influence other cognitive and 

sensory responses. In this thesis, I develop robust tests for these states in bees and 

investigate their effect on multiple visual responses.  

In the first experimental chapter, I develop a novel test for pessimistic cognitive 

biases in bees that controls for alternative interpretations and provides stronger 

evidence of the presence of emotion-like states in bees. Having established the 

presence of these states, subsequent experimental chapters delve into their impact on 

information processing during different stages of decision-making. In the second 

experimental chapter, I examine how negative emotional states affect visual acuity, 

revealing that such states may facilitate the ability to resolve fine spatial details, 

potentially aiding in threat detection. The third experimental chapter explores how 

negative states influence behavioural flexibility. I demonstrate that experiencing 

negative states facilitates the ability to estimate and update expectations of reward 

value, consequently enabling flexible responses to environmental change. The last 

experimental chapter explores methods to investigate the neural structures linked to 

emotion-like states and visual learning in bees for future research. Collectively, these 

experiments provide strong support for the existence of emotion-like states in bees and 

suggest that these states may serve as adaptive mechanisms to enhance survival. 
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1.1. Visually guided decision-making in bees 

Understanding how miniature brains accumulate, process, store, retrieve and respond 

to sensory information has long been a popular field of study. Studying insects not only 

helps us understand how rather complex cognitive functions can be supported by 

simpler neural architectures but perhaps most importantly, it broadens our 

understanding of the evolutionary histories of these abilities. Among insects, social 

bees, particularly honeybees and bumblebees, have proved to be a valuable model. 

Social bees are central place foragers. These insects have therefore evolved to utilise 

their nests as places for storing resources, and castes whose main task is to 

continuously supply the colony with these resources (Goulson, 2003). Having such a 

high foraging specialisation might make resource gathering seem a simple task. 

However, both nectar and pollen availability fluctuate across space and time, not only 

due to species-specific flowering patterns and weather conditions but also due to intra- 

and interspecies competition (Núñez, 1977; Bowers, 1986; Witt et al., 1999; Plos et al., 

2023). These pressures have predisposed bees to evolve cognitive abilities to support 

a high level of behavioural plasticity. The resultant flexible decision-making capacity 

makes bees an attractive model for studying cognition.  

Foraging bees greatly rely on vision. Incoming visual information is processed 

by the peripheral visual system. This consists of compound eyes, located on both sides 

of the head capsule, and single-lens eyes, ocelli, on the top of the head capsule. The 

compound eye of the bee comprises multiple units, ommatidia, that hold 

photoreceptors. Photoreceptor spectral sensitivity, peaking at the ultraviolet (~350 nm), 

blue (~450 nm) and green (~550 nm) regions of the spectrum (Peitsch et al., 1992), 

makes bee vision trichromatic. Colour processing, therefore, requires all three 

photoreceptors. The achromatic signal however is processed by green-sensitive 

photoreceptors only (Lehrer et al., 1988; Giger and Srinivasan, 1996).  

Given the ecological pressures, the bee visual system has evolved the capacity 

to perceive and utilise different floral traits, including but not limited to colour (Gumbert, 

2018), size (Essenberg et al., 2015), shape (Lehrer and Campan, 2005) and even 

symmetry (Moller, 1994). Several factors, however, impact the extent to which visual 

information is used to guide bee decisions. To better illustrate how visual decision-

making in bees can be modulated, I will provide examples of how innate biases, as 

well as both personal and social learning can contribute to this process.  
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Innate preferences 

Bees prefer certain colours. These innate colour preferences, often referred to as 

sensory biases, likely represent evolutionary adaptations that existed prior to any 

experience with flowers. They have been suggested to have evolved to help naive 

bees select profitable flowers (Giurfa et al., 1995; Raine and Chittka, 2007), and are 

even believed to drive the evolution of floral traits (Trunschke et al., 2021). It has been 

shown that newly emerged bumblebees, which have never been exposed to flowers, 

display a strong preference for colours in the violet-blue range (Briscoe and Chittka, 

2001; Chittka and Wells, 2004). After experiencing rewards on different flowers, 

however, these biases are overridden. Therefore, through experience bees can form a 

reward association with any colour (Gumbert, 2018). However, the learning acquisition 

will still be faster if the colour falls within the preferred colour range (Giurfa et al., 1995). 

 

Prior experience 

Stimulus generalisation is an adaptation that is well documented in bees. However, 

social bees have also demonstrated the generalisation capacity that goes beyond a 

single stimulus feature, e.g., colour (Gumbert, 2018). For instance, visual 

generalisation has been demonstrated using complex visual patterns (Stach, Benard 

and Giurfa, 2004). In this study, bees were subjected to a discrimination learning task, 

where they had to learn to differentiate between patterns that only shared local 

orientation embedded in noise. After a series of trials, bees indeed learned to 

discriminate between the patterns, demonstrating the outstanding ability to extract 

common regularities in otherwise noisy information. Bees were also able to generalise 

their learning to novel stimuli with shared commonalities, and even to novel stimuli only 

partially related to training set. The fact that, through learning, bees were able to “fill 

in” missing information when test patterns contained only partial similarity with trained 

stimuli, shows that in addition to extracting common regularities, learning also 

facilitates image processing by completing missing details (Cavanagh, 1991). This 

ability was explored in a later study. In this set of experiments, the authors 

demonstrated that training bees on conspicuous shapes later facilitate discrimination 

between the same but highly camouflaged shapes (Zhang and Srinivasan, 1994). 

Importantly, without the initial familiarisation of fully visible shapes, bees failed to 

distinguish camouflaged shapes even after extensive training sessions. Taken 
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together, the few examples provided in this section demonstrate how prior experience 

can facilitate learning in bees and improve their visual search in noisy visual 

environments. 

 

Social learning 

In addition to personally acquired information, social information can also modulate 

foraging behaviour in bees. For example, bees can use social cues (e.g., the visual 

presence of conspecifics) to make their floral choices (Worden and Papaj, 2005; 

Leadbeater and Chittka, 2007; Dawson et al., 2013). The use of social cues itself, 

however, can also be modified by prior experience. For instance, if bees experience 

the presence of visual social cues (such as conspecific-occupied flowers) always 

coupled with a high reward, they are more likely to rely on social information in their 

subsequent choices. In contrast, if the social cues do not reliably predict reward, the 

use of social information decreases (Leadbeater and Chittka, 2009). The use of social 

over personal information also depends on resource availability. When the availability 

of rewards is highly variable and flowers do not consistently offer high-quality rewards, 

bees tend to prefer flowers with visual social cues. In this situation, bees employ a 

“copy-when-uncertain” strategy (Smolla et al., 2016). Conversely, another study has 

shown that when previously rewarding flowers become empty, prior exposure to the 

odour of new rewarding flowers within the colony does not directly facilitate switching 

to these new alternatives (Leadbeater and Florent, 2014). However, once the new 

alternative flower option is discovered, prior exposure to the olfactory information 

acquired within the colony, resulted in greater commitment to it. As a result, bees visit 

these new flowers significantly more often than bees that have no socially acquired 

information about this new option. 

 

All the above behaviours are examples of appetitive learning, demonstrating the 

ability of bees to assign a positive value to an otherwise neutral stimulus. Bees also 

can learn stimuli associated with negative experiences – such as a punishment or an 

aversive solution - and thus avoid such stimuli (Ings and Chittka, 2008). Therefore, 

both positive and negative values directly impact bee decision-making. It is, however, 

very important to highlight that such value-driven decision-making in bees goes beyond 
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simple stimulus-response mapping. Instead, it involves the capacity to flexibly 

modulate their subsequent choices by shaping expectations and outcome evaluation. 

For example, compared to bees that experienced increasing reward availability, bees 

that experienced declining reward availability were found to be less persistent in 

searching for food at a patch without rewards (Gil, Marco and Menzel, 2007). Similar 

behaviour was observed in bees that experienced a change in reward levels of a 

different magnitude. If a change was large bees were more persistent in searching for 

rewards when flowers offered none, compared to bees that had experienced smaller 

changes (Gil and De Marco, 2009). These examples demonstrate that based on prior 

experience with the reward, bees develop certain expectations. Bees that experience 

declining rewards or a change in reward levels of a smaller magnitude ceased 

searching, arguably due to the anticipated absence of a reward. Therefore, having an 

internal representation of reward expectation allows bees to respond to stimuli in a 

more flexible way, thus adjusting their investment of time and energy while foraging.  

The ability to flexibly respond to aversive stimuli has also been demonstrated in 

bees. This was done by employing a motivational trade-off behavioural paradigm 

where bees had to choose between two competing motivations: obtaining a reward or 

avoiding punishment (Gibbons et al., 2022). First, bees were trained to forage from two 

types of feeders: one being a high-quality feeder offering a reward with a 40% sucrose 

concentration, and the alternative feeder containing either the same high reward or a 

lower reward (30%, 20%, or 10% sucrose concentration). Next, bees’ choices were 

tested under two conditions. The first condition comprised of a heated high-quality 

feeder and an unheated alternative feeder. In the second condition both high and 

alternative feeders were unheated. The results showed that when an alternative feeder 

offered a lower reward, bees were more likely to “tolerate” noxious heat and choose to 

land on a heated high-rewarding feeder. This was not true, however, when both feeders 

offered high rewards. In this case, bees were more likely to land on unheated 

alternative feeders. Bees, therefore, may choose to accept aversive experience only if 

the payoff associated with such a decision is higher. The cost-benefit estimation 

associated with the outcomes demonstrated here once again showcases the flexibility 

behind decision-making in bees that goes beyond stimuli-response mapping. 

Flexible value-based decision-making implies the existence of an internal 

representation of positive and negative valence (Adolphs and Anderson, 2018). This 

internal representation allows bees to assess potential future outcomes and make 
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weighted choices, whereas in the absence of such inner representation, making 

decisions based on expectations and cost-benefit estimation would not be possible. 

Systems must therefore exist within the bee brain to sustain this flexible value-based 

decision-making, enabling them to go beyond simple stimulus-response reactions.  

To adaptively navigate their environments, animals must have the capability to 

ascribe value to various stimuli. Positive-valenced stimuli are generally believed to 

trigger approach behaviour, whereas negative-valenced stimuli tend to evoke 

avoidance responses (Søvik, Perry and Barron, 2015). So, how exactly do bees 

“assign” value to neutral stimuli? This function is usually associated with two major 

biogenic amines: dopamine with negative valence and aversive learning, and 

octopamine with positive valence and appetitive learning (Søvik, Perry and Barron, 

2015). As dopamine is a key component in the mammalian mesolimbic system, i.e., 

the reward system (Arias-Carrián et al., 2010), it may seem that dopamine has an 

opposite function in the brains of insects and mammals. However, recent studies show 

that the dopaminergic system is far more complex. Noxious stimuli can excite certain 

dopaminergic neuron populations while inhibiting others (Bromberg-Martin, Matsumoto 

and Hikosaka, 2010), suggesting a vast diversity of mammalian dopaminergic neurons. 

Similar valance-driven diversification has also been reported in Drosophila 

melanogaster, with anatomically and genetically distinct subpopulations of 

dopaminergic neurons involved in both aversive and appetitive learning (Owald and 

Waddell, 2015). The flexibility within dopaminergic signalling suggests that dopamine 

neurons do not encode motivational signals in a fixed manner. Instead, these neurons 

consist of multiple subpopulations that encode events in distinct value-specific ways. 

Although there are currently no tools for conducting similar investigations in 

bees some valuable insights have been obtained relating positive value and dopamine. 

In a recent study, Huang et al. (2022) investigated the role of dopamine in “wanting” in 

bees (Huang et al., 2022). “Wanting” here refers to the motivation to acquire a reward 

and is thought to be one of the key aspects associated with reward (Berridge, 2007). 

In this study, authors assessed dopamine levels in bees engaging in several 

behaviours, specifically reward communication (waggle dance), reward 

responsiveness, and reward learning. A transient increase in dopamine levels was 

observed with all these behaviours. Additionally, the inhibition of dopamine receptors 

reduces food-seeking behaviours, whereas activating these receptors increases 

seeking behaviour. These results provide the first evidence for the existence of a 
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dopamine-dependent “wanting” system in bees. Given the discovery of this system, 

and the numerous shared aspects of brain morphology and functionality between bees 

and Drosophila (Søvik, Perry and Barron, 2015), it is plausible that, as in flies, distinct 

dopaminergic populations in the bee brain may also drive both reward and aversive 

responsiveness.  

In this section, I have tried to highlight certain points. First, social bees exist in 

a complex environment that poses multiple challenges, such as the spatiotemporal 

fluctuation of much-needed resources. Because of this, bees evolved cognitive abilities 

to sustain a high level of behavioural flexibility that can be guided not only by different 

innate sensory biases but also by personal or social learning. I also point to the fact 

that while bees are skilled at assigning value to stimuli, their value-based decision-

making remains flexible. It is influenced by future expectations as well as the evaluation 

of possible outcomes. This suggests the presence of an inner representation of 

valence. While detecting and accurately responding to the value of stimuli is a complex 

process involving a number of neurotransmitters and neuromodulators (Even, Devaud 

and Barron, 2012; Søvik, Perry and Barron, 2015), the dopaminergic system seems to 

be flexible enough to support it. Behavioural and neuropharmacological evidence 

provided in this section, therefore, implies that bee brains possess the ability to 

respond to rewards and punishments in adaptable ways beyond simple stimulus-

response mapping. As I will discuss later, in mammals, such a function is attributed to 

emotions. Can it be that bees also have evolved the capacity for emotions at least in 

its primitive form? And if so, can emotions in bees modulate bee behaviour in the same 

adaptive manner as it does in mammals? To answer these questions, I will first discuss 

how emotions have been conceptualised and linked to decision-making, as well as 

studies across animals.  

 

1.2. Conceptualising Emotion  

1.2.1. What is Emotion?  

Since ancient times thinkers such as Socrates have tried to unpack and understand 

the complexity of emotional phenomena (Russell, 2003). What started as a 

philosophical discourse, developed into a separate discipline – affective science, 
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following the advancement in psychology and neuroscience of the 20th century,  

(Gendron and Feldman Barrett, 2009). 

Affective science has gained increasing popularity with scholars of psychology, 

neuroscience, philosophy, economics, literature, history, sociology and computer 

science, all working to understand the nature of emotion. However, do we all agree on 

what we study? Ongoing debate over the precise definition of emotion perhaps argues 

otherwise (Gendron, 2010; Russell, 2012). While the field of affective science has 

grown exponentially, only very little progress has been made in defining the 

cornerstone definition - emotion. For instance, in 1981, more than 93 definitions of 

emotion were proposed (Kleinginna and Kleinginna, 1981). To stress this paradox, 

Fehr and Russell (1984) highlight that while people generally have a good 

understanding of what an emotion is, when asked for a precise definition, it becomes 

apparent that no one truly knows (Fehr and Russell, 1984). This presents a problem. 

The absence of a clear definition not only complicates the integration of discoveries 

made in different disciplines but also confuses the understanding of findings, even 

within the same field. Therefore, without a clear understanding of what is being studied 

it becomes challenging to make meaningful discoveries and draw conclusions. 

By the end of the 20th century however, substantial attempts have been made 

to reconcile this paradox, and finally describe emotion (Izard, 2010), starting by 

acknowledging the complexity of phenomena. Each discipline that studies emotion 

only focuses on specific aspects. For example, neuroscientists might be only interested 

in what brain structures generate a certain emotion, while economists, would be most 

interested in how emotions shape human decision-making. Therefore, definitions are 

discipline-specific and thus are centred on a subset of aspects specific to a given field 

– for example, neural processes, facial expressions, appraisals, adaptive functions, 

action tendencies, or motivation (Nabi, 1999). Thus, no single definition 

comprehensively encompasses all aspects of emotion. While this is true with most 

complex phenomena, the key question is whether these definitions are in conflict.  

To determine if there is a shared understanding among scholars of different 

fields regarding what “emotion” is, Izard (2010) asked 35 distinguished scientists to 

participate in a survey. Participants were asked several questions regarding emotion 

(e.g. its function, future research, etc.), as well as provide their definition. The results 

confirmed that emotion cannot be encapsulated by a single simple definition. However, 
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each of the provided definitions complemented each other pointing to different but 

equally important aspects of emotion. Although differences exist, some agreement was 

also present. First, emotions are generally considered short-lived, multifaceted states, 

comprising neural circuits (some of which are specialised) and response systems 

(physical and behavioural reactions) and subjective experiences. Furthermore, 

emotions are initiated by cognitive appraisals, provide information to motivate either 

approach or avoidance behaviour and organise cognition and actions more generally. 

Taken together, the most accepted definition of emotions describes them as short-lived 

inner states that arise from stimulus appraisal and are accompanied by changes in 

physiology, behaviour, cognitive and subjective experience. Can this definition, 

however, accommodate emotion research in non-human animals?  

When it comes to including animals in emotion studies, perhaps the biggest 

challenge arises around whether the conscious experience of these states is a 

necessary requirement. When the famous question “What is emotion?” was posed by 

William James in the 19th century, emotions were thought of as intrinsically human, 

subjective experiences. Since then, little has changed. Even in recent days, “emotion” 

and “feelings” are viewed as synonyms and are used interchangeably. Importantly, this 

is true among the general population and among scholars. Making very little distinction 

between these two terms causes confusion. Some researchers even argue whether 

terms like “emotion”, “fear”, “sadness”, or “joy” should be applied to animals 

(Winkielman and Berridge, 2004; Damasio, 2014; Ledoux, 2014; LeDoux, 2017; 

Berridge, 2018; LeDoux and Hofmann, 2018). Others suggest using different 

terminology such as “survival circuits”, when referring to animal emotions to avoid 

equating animal emotion with human-like conscious experiences (LeDoux, 2012; 

Ledoux, 2014). Yet, other considerations argue against dismissing the idea of animal 

emotion. Here there are several key assumptions to consider.  

The first, and most obvious consideration is about the subjective experience of 

emotion. It is important to explore whether emotions in humans are always consciously 

experienced. A growing body of evidence suggests that perhaps they are not (Berridge 

and Winkielman, 2003; Paul et al., 2020). Research shows that the human brain reacts 

to emotion-eliciting stimuli without conscious awareness (De Gelder, Morris and Dolan, 

2005; Öhman, 2005). Therefore, the neurophysiological and behavioural responses 

may indeed occur within an individual that is fully oblivious to the presence of emotional 

stimuli. Exactly this was demonstrated earlier by Winkielman et al. (2005). In this study, 
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subliminal images of happy and angry faces were shown to participants. Following this 

presentation the participants’ behaviour in relation to a pleasurable stimulus such as 

drinking when thirsty was observed (Winkielman, Berridge and Wilbarger, 2005). While 

participants reported no change in their emotional state, drinking behaviour was indeed 

affected. Despite all participants being in a heightened motivation state (thirst), those 

exposed to the happy face poured and drank more of an unfamiliar beverage, contrary 

to the group exposed to an angry face who poured and drank less. The authors 

therefore concluded that emotions triggered outside conscious awareness and 

persisting beyond it can influence behaviour and the evaluation of emotionally charged 

events. Therefore, emotion need not always be conscious to trigger a response. 

While not all emotions are consciously perceived many believe it is 

unreasonable to disregard the possibility that animals also have subjective emotional 

experiences (Burghardt, 2019; Paul et al., 2020; Kret, Massen and de Waal, 2022). 

There is a recent surge in interest to finally start recognising the uniqueness of each 

species. It is hard to argue against the fact that each species has evolved in response 

to unique evolutionary pressures that finely tuned species brains and bodies in a 

unique way. “Feeling” fear when in danger might therefore be a very different 

experience in humans than, for example, flies. Just as other functions, such as light 

processing vary across species, the subjective experience of emotion can also differ 

(Kret, Massen and de Waal, 2022). While this perspective opens the door to 

acknowledging the potential for subjective feelings in animals, it is important to 

emphasise that there are currently no available methods to directly measure these 

feelings. However, as I will argue later, perhaps we do not need to just yet. Exploring 

other emotional components, such as behaviour and cognition offers a comparative 

approach to an emotion that permits a much deeper understanding of the phenomena 

beyond the mere notion of whether emotion is consciously experienced in a given 

species.  

A final consideration addresses the function of emotion. The idea that emotion 

evolved to facilitate adaptive behaviour in a way that promotes an approach towards 

resources while avoiding harm, is not new (Bethell, 2015). Emotion is also thought to 

evolve from reflexes (Adolphs and Anderson, 2018). However, contrary to the latter, 

emotion offers a degree of flexibility in responding to environmental challenges in a 

way that simply surpasses that of hardwired automatic responses (Adolphs and 

Anderson, 2018). For example, the startle reflex, triggered by abrupt and intense 
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stimulation, serves an adaptive function. It may initiate a quick escape. However, it is 

not flexible enough to account for all the dangerous situations animals may face. This 

is because surviving in the presence of a threat does not always benefit from rapid 

movement. In some situations, staying still (freezing), or even initiating an attack, is 

more advantageous. Contrary to reflexes, emotions indeed possess the flexibility to 

accommodate behaviour that is best in a given context (Mendl and Paul, 2020). 

Emotion can therefore be considered as a greater functional adaptation (Dawkins, 

1990; Öhman and Mineka, 2001; Nettle and Bateson, 2012; Trimmer et al., 2013; 

Anderson and Adolphs, 2014). If so, would such functionality also be beneficial to 

species other than humans? While this is an open question, my thesis argues that it 

might, even for insects. 

1.2.2. Theoretical approaches to emotion 

Emotion is a complex phenomenon. There is no single simple definition that could in 

detail encompass all that there is to emotion. Instead, several dominant theoretical 

approaches have been developed to try and conceptualise emotion. These broadly 

can be categorised into discrete emotion, dimensional emotion, and appraisal theories. 

Discrete emotion theories, as the name states, view emotion as discrete, basic 

“programmes” that are evolutionary predetermined and exist in a limited number. 

Unlike discrete theories, dimensional theories conceptualise emotion as constructed 

within a two-dimensional space of valence and arousal. Therefore, in this view, there 

could be an infinite number of emotions. Appraisal theories, however, adopt a more 

cognitive approach viewing emotion as a multi-component process driven by 

information appraisal. In the following section, I will give a concise yet thorough 

depiction of each theory.  

 

Discrete emotion theories 

The development of the discrete emotion framework started with explorations of 

human bodily expressions of and responses to different emotions. In the 1960s, Ekman 

and others were committed to investigating if similarity in emotional facial expressions 

and recognition of these expressions are inherently universal (Colombetti, 2009). The 

pioneering study by Ekman et al. (1969) involved presenting photos depicting facial 

expressions of different emotions, such as fear, anger, happiness, disgust, surprise, 
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and sadness to participants worldwide (Ekman, Sorenson and Friesen, 1969). The 

results suggested that basic emotions are recognised globally. However, the study was 

conducted in parts of the world that are vastly impacted by Western culture, leading to 

doubts about whether this recognition is hardwired or acquired. To address these 

concerns, Ekman and Friesen conducted a follow-up study. This study took place in a 

culture isolated from the Western world, specifically, the Fore people in Papua New 

Guinea (Ekman and Friesen, 1971). The results further confirmed the initial conclusion 

that basic emotions exist. While the idea that certain emotions are hardwired became 

generally accepted, the number of such discrete emotions is still debated, with some 

proposing nine (Tomkins, 1980) while others proposing eight basic emotions (Plutchik, 

2001). Nevertheless, most agree on the so-called “Big Six” (Moores, 2004): fear, 

disgust, anger, sadness, surprise and enjoyment.  

Taken together, the discrete emotional framework postulated three main ideas 

(Izard, 1992, 2007; Ekman, 1994; Vytal and Hamann, 2010). First, there are only a 

limited number of “basic” emotions. Second, all basic emotions are evolutionary 

predetermined “programmes”, therefore in the brain where the hardwired emotion-

specific activation mechanism exists. The activation of such a mechanism (through 

cognitive appraisal) elicited specific emotions. Third, each emotion evolved to carry a 

distinct function.  

 

Dimensional emotion theories 

Given the emphasis of the existence of only a limited number of emotions - the “Big 

Six”- discrete theories of emotions are not immune to criticism. Specifically, proponents 

of dimensional theories (also known as constructed emotion theories) argue that the 

evidence supporting such ideas is rather inconsistent (Russell and Barrett, 1999; 

Watson et al., 1999; Carver, 2001; Russell, 2003). For example, humans, when asked 

about their subjective emotional experiences usually fail to place their feelings into a 

single discrete category (Posner, Russell and Peterson, 2005). Such observations 

highlight the fact that human emotions are vastly intercorrelated and lack distinct 

boundaries, which is contrary to what discrete emotion theories imply. Moreover, the 

universality of emotional expressions is also questionable. Barrett (2009) argues that 

fear, for instance, manifests diversely across human brains and is experienced 

differently among individuals.  
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Instead of viewing emotions as distinct entities, proponents of dimensional 

theories offer viewing emotions as existing along a continuous spectrum, or 

multidimensional space (Russell and Barrett, 1999; Watson et al., 1999; Carver, 2001; 

Russell, 2003; Posner, Russell and Peterson, 2005). This space has two dimensions - 

the “valence” and “arousal”/“intensity” (Russell and Barrett, 1999; Watson et al., 1999; 

Carver, 2001; Russell, 2003). These two descriptive dimensions are also known as 

core affect (Russell, 2003). Here, valence refers to a degree of pleasantness or 

unpleasantness of a state and arousal to a degree of physiological and psychological 

activation/stimulation associated with it (see Figure 1). For example, fear is a state of 

negative valence and high arousal whereas excitement a state of pleasant valence and 

high arousal. Thus, the two-dimensional core affect constructed along valence and 

arousal is a key feature of all dimensional emotion theories. Moreover, core affect does 

not restrict emotion to a specific place within this space, but rather permits swift change 

along the valence-arousal axes in response to stimulus appraisal (Russell, 2003). 

similar to discrete theories, dimensional theories also consider emotion, specifically 

core affect, as serving functional adaptations (Burgdorf and Panksepp, 2006; Nettle 

and Bateson, 2012). Thus, valence and arousal indicate an animals’ tendency to 

initiate approach or avoidance. For example, high-arousal-positive-valence states are 

likely to promote resource acquisition, while high-arousal-negative-valence states 

could assist in danger avoidance (see Figure 1). 

 

Cognitive appraisal theories of emotion 

Unlike discrete or dimensional emotion theories, cognitive appraisal theory views 

emotions more as processes rather than states. The core premise is that emotions are 

triggered by stimulus appraisal (Smith and Lazarus, 1990; Scherer, 2009; Ellsworth, 

2013; Moors et al., 2013; Roseman, 2013). In other words, emotion is not viewed as a 

direct response to the stimuli but rather as a result of stimulus appraisal. For instance, 

being in a state of fear when exposed to a snake is not a result of perceiving the snake 

per se; instead, fear emerges from appraising the snake as associated with danger. 

Therefore, cognitive appraisal is thought to be a continuous process that runs outside 

of the scope of awareness (Scherer, 2009; Ellsworth, 2013). 

There are several criteria that stimuli are evaluated upon, and the same criteria 

can be used to differentiate emotions. These are not limited to valence (pleasant or 
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unpleasantness) but could include  stimulus novelty, predictability and significance, the 

ability to cope with the consequences of the event(Moors et al., 2013). If a person, for 

example, appraises a situation as being intrinsically unpleasant/punishing (valence), 

and sudden (predictability), she will form a multicomponent response pattern which 

can be called “fear”. The multicomponent response, as such, can be characterised by 

the intensity and quality of action tendencies, neurophysiological, behaviour and 

subjective changes.  

The simplest form of appraisal theory postulates that emotions are first triggered 

by the appraisal of stimuli. Stimulus appraisal is subsequently a continuous process 

triggering specific emotions when the set of criteria is met (e.g., “excitement” arises 

when the stimulus is evaluated as pleasant, novel, and significant). Finally, the 

outcome of such cognitive appraisal is a multi-component response characterised by 

changes in neurophysiology, behaviour, cognition, and subjective experience.  

 

1.2.3. An integrative framework to study animal emotion 

The frameworks presented in this section are well-used to study human emotions. 

However, how can these theories be applied to the study of emotions in animals? 

Some proponents of discrete emotions, for example, argue that basic emotions are the 

result of conserved neurobehavioral systems. Therefore certain basic human 

emotions are likely shared with other mammalian species (Panksepp, 2011). While this 

argument is valid on the basis of the existence of brain structures homologous to those 

in humans, it fails to accommodate species with no such similarities. Unlike discrete 

emotion theories, dimensional emotion theories seem to offer more flexibility in their 

views. Nevertheless, the significant reliance on subjective experience within this 

framework again poses a challenge when it comes to animals.  
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Figure 1. Two-dimensional core affective space with discrete emotions positioned within it. 
Arousal (ranging from low to high) and valence (ranging from pleasant to unpleasant) constitute the two 

axes of core affect. Words in italicised font indicate specific discrete emotions positioned within core 

affect, determined by their valence and arousal levels. Green arrows illustrate the tendencies for the 

pursuit and acquisition of rewards associated with core affect. The experience of tendencies for 

obtaining rewards is highest in high-arousal positive states (depicted in saturated green) and lowest in 

low-arousal negative states (depicted in unsaturated green). Red arrows demonstrate tendencies to 
avoid fitness-threatening aversive stimuli, which are most pronounced in high-arousal negative states 

(depicted in saturated red) and least in positive low-arousal affective states (depicted in unsaturated 

red). Blue dashed lines indicate how current core affect can shift in response to specific external stimuli. 

Adapted from Mendl et al. (2010).  

 

Recently, there has been an effort to bridge the gap between these theories and 

a framework applicable to studying emotions across taxa has been proposed (Mendl, 

Oliver and Paul, 2010). This framework starts with acknowledging one thing that all 

theories agree on – emotions are valenced. The valence, however, is determined by 

the cognitive appraisal of stimuli/situations as being either punishing/unpleasant or 
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rewarding/pleasant (Mendl, Oliver and Paul, 2010). Therefore, emotions evolved as a 

mechanism to inform organisms about their success in maximising rewards and 

minimising punishments (Bethell, 2015). As a result, emotion serves an adaptive 

function, thus raising consideration of whether these states can be evolutionarily 

conserved across taxa. Mendl et al. (2010) further conceptualise discrete emotions as 

short-term appraisal-driven states; therefore, movement through core affect space is 

then determined by these discrete emotions, reflecting the animal’s success or failure 

in obtaining rewards and avoiding punishments (Fig.1). For instance, failing to find food 

would shift the emotional state position in a core affective space towards a more 

negative-valence-high-arousal state, that of “frustration”, which, if the struggle to 

acquire rewards continues, may transition into a negative-valence-low-arousal state of 

“sadness”. Consequently, a given position within core affective space generally reflects 

how well an animal is doing in maximising fitness. 

As I attempt to highlight, all theories stress the possibility that emotions carry an 

adaptive function. However, reconceptualising core affect as a mechanism that 

coordinates organisms to achieve survival goals opens the possibility of studying 

emotion in animals. Moreover, by focusing on the adaptive function of emotions, 

questioning whether animals experience these states consciously becomes 

secondary. This is because affective responses can be expected to those stimuli that 

either maximise the acquisition of fitness-enhancing rewards or minimise exposure to 

fitness-threatening punishers (Mendl, Oliver and Paul, 2010). Affect thus represents 

an animal’s overall experience with reward and punishment, expressed through 

behaviour, neurophysiology, cognition, and (possibly) subjective experience.  

 

1.2.4. Defining Key Terms 

Through my thesis, I will adopt the componential view of emotion as proposed by Mendl 

et al. (2010) as discussed in earlier section. Therefore, emotions will refer to a short-

lived multicomponent response tendency that are generated by stimulus appraisal and 

facilitate species survival (Mendl et al. 2010; LeDoux 2012; Nettle and Bateson, 2012). 

The response tendencies elicited by the appraisal process unfold across loosely 

connected component systems, encompassing subjective experience, behaviour, 

cognitive processes and physiological changes. On the other hand, mood will be used 



CHAPTER ONE. Introduction 

  30 

to describe a long-lasting state that is not triggered by immediate appraisals (Mendl, 

Oliver and Paul, 2010). In simpler terms, mood represents a “background” state - it 

develops gradually as a combination of all previous emotional states. Finally, following 

the example of many researchers studying animal emotion, I will use “affect” as the 

overarching umbrella term that encompasses both emotions and moods (Paul, Harding 

and Mendl, 2005; Bethell, 2015). I also recognise the complexity of human specific 

emotions, especially the depth and richness of subjective experiences that accompany 

these states in our species. Therefore, in my research as with other scholars(Solvi, 

Baciadonna and Chittka, 2016; Paul et al., 2020), I adopt the common practice of using 

terms such as “emotion-like”, “anxiety-like” and “fear-like” when referring to states in 

bees that display behavioural and/or physiological resemblances to human emotions. 

However, it is important to note that consideration of whether these emotion-like states 

in bees involve subjective experiences falls beyond the scope of my study. 

 

1.3. Emotion and decision-making  

In the past scholars tended to underestimate how much emotions can impact cognition 

especially when it comes to decision-making. Many decision-making models, like the 

expected utility model (Loewenstein, Rick and Cohen, 2008), assume that a decision-

maker carefully evaluates information and chooses actions that maximise benefits. Yet 

reality contradicts this assumption, as emotions significantly influence this process 

(Loewenstein and Lerner, 2003; Brosch et al., 2013; Lerner, 2014). Importantly, there 

is a two-way relationship between emotions and cognition. According to theories of 

emotion, emotions arise based on stimulus appraisal (Smith and Lazarus, 1990; 

Scherer, 2009; Ellsworth, 2013; Moors et al., 2013; Roseman, 2013). Once an 

emotional state is triggered it also affects cognitive functions (Brosch et al., 2013). For 

example, when an individual appraises a stimulus as dangerous a state of fear is 

triggered, subsequently fine-tuning cognition to facilitate the rapid allocation of 

attention to such stimuli (Brosch et al., 2008). In another case, when experiencing 

heightened arousal triggered by emotion, the prioritisation of storing emotionally salient 

information in memory occurs (McGaugh, 2013). Hence it is important to acknowledge 

that cognitive processes trigger emotions, while emotions also influence cognition to 

support emotional response. Therefore, cognition is needed to elicit emotion, at the 

same time emotion modulates cognition to support emotional responses. The latter are 
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described as cognitive biases – for example, attention biases, memory biases and 

judgment biases (Paul, Harding and Mendl, 2005). In a later section, I provide more 

examples of how emotion-induced cognitive biases are used in affective science. 

Emotion thus can modulate all processes via which individuals acquire, process, 

store or utilise information for later decision-making (Ono, Nishijo and Uwano, 1995; 

Math and Mackin, 1998; Mogg and Bradley, 1998; Kindt and van den Hout, 2001; 

Phelps, 2004; Phelps and LeDoux, 2005; Bar-Haim et al., 2007). The cognitive 

decision-making process unfolds in a series of distinct stages when an individual 

encounters a signal (Mendl et al., 2009). First, the individual perceives the incoming 

information through their senses and directs their attention to it. Here, at the early 

stages of sensory information, the information is processed into a neural percept (i.e., 

neural representation). Subsequently, processes of percept interpretation and 

evaluation take place where the expected utility of a possible decisions is calculated. 

The expected utility takes into account the anticipated value and the probability of a 

specific outcome (Loewenstein, Rick and Cohen, 2008). This process is based on the 

prior experience of the individual as well as their current needs. The final stage of the 

processing of sensory information that leads to the decision is action selection. 

Subsequently, the individual takes action, responding to the sensory information in a 

way that was evaluated as best. In the brain these processes are executed through 

multiple interconnected parallel-processing circuits. Therefore, affective states may 

modulate each process individually or cumulatively (Mendl et al., 2009). At its simplest, 

affective modulation can occur at different stages of sensory information processing: 

either the early stages of signal registration or the later stages of information evaluation 

(Fig. 2).  

 

Early signal processing: perception and attention 

In natural environments, the stimuli perceived by animals can often be ambiguous. 

Take for example the scenario of a movement in the bush while in a forest. This 

movement could either indicate the presence of a hidden predator or simply the 

harmless passing of a rabbit. Thus, the rustling of the bush might serve as a signal for 

danger or just a neutral event. To react to this signal, it must first be perceived and 

attended to, and emotions can impact this early stage. For instance, fear has been 

theorised to have evolved as a mechanism to aid individuals in detecting environmental 
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threats and responding quickly and effectively to them, consequently when in such a 

state perceptual and attention mechanisms become finely tuned to detect potential 

dangers (Mogg and Bradley, 1998). This is supported by physiological studies showing 

that individuals in a negative affective state, particularly anxiety, tend to allocate 

attentional resources toward stimuli related to threats or dangers (Math and Mackin, 

1998; Mogg and Bradley, 1998; Kindt and van den Hout, 2001; Bar-Haim et al., 2007). 

Conspicuous, threatening information has a particularly strong ability to capture 

attention. 

Emotionally charged stimuli not only capture attention but also enhance spatial 

attention by acting as salient cues, directing attention to the area of the visual field 

where they initially appear. The detection of a target among distractors has been shown 

to be faster if the target is threat-related (Öhman, Lundqvist and Esteves, 2001). 

However, the detection of a non-emotional target is also faster if it appears in the same 

location as the emotionally relevant cue (Pourtois et al., 2006), and even faster in 

individuals with anxiety (Fox, 2002; Mogg and Bradley, 2002).  

Moreover, emotions can directly influence pre-attentive perceptual processes, 

altering how individuals see. Phelps, Ling, and Carrasco (2006) initially demonstrated 

that the detection of a single target (a tilted sinusoidal grating) among three distractors 

(sinusoidal gratings oriented vertically) with decreasing contrast was improved when a 

fearful face, as opposed to a neutral one, was presented (Phelps and LeDoux, 2005). 

Subsequently, the authors aimed to determine whether the enhancement in contrast 

sensitivity due to the presentation of a fearful face was attributable to spatial attention 

or if it involved modulations in the pre-attentive mechanisms. To investigate this, fearful 

and neutral faces appeared at four potential locations, effectively “cueing” all four 

positions. Once again, the presentation of a fearful face led to an increase in contrast 

sensitivity. As a result, the authors reached the conclusion that emotions indeed have 

an impact on the ability to perceive visual information. A later study also demonstrated 

the emotional modulation of another low-level visual feature. Bocanegra and 

Zeelenberg (2009) revealed that while negative emotions improve the perception of 

low spatial frequencies they also impair the perception of high spatial frequencies 

(Bocanegra and Zeelenberg, 2009). They then suggested that this difference in 

perception may be attributed to the inhibition between visual pathways where each 

pathway specialises in processing different aspects of visual information (Bocanegra 

and Zeelenberg, 2009; Bocanegra, 2011). 
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Later signal processing: outcome valuation 

In the previous example about the perception of the movement in the bush, once the 

signal of movement in the bush has been registered, it can be interpreted as either 

neutral, requiring no immediate action, or potentially dangerous, initiating a threat 

response. To interpret sensory signals individuals must calculate the expected utility 

for both possible outcomes. Expected utility-based decisions take into account not only 

estimations of the probability that something will happen but also estimates of the value 

of that outcome (pay-offs) (Loewenstein, Rick and Cohen, 2008). After comparing the 

expected utilities, the action believed to yield the most positive or least negative result 

will be selected. Emotions, once again, play a critical role in this process.  

Butler and Mathews (1983) demonstrated empirically the existence of 

pessimistic world views among those in a negative state (Butler and Mathews, 1983). 

The experiment employed self-reports. Participants were presented with an ambiguous 

scenario such as “you suddenly wake up in the middle of the night, thinking you heard 

a noise, but all is quiet”. They were then asked to provide three possible answers to 

an open-ended question: “What could have caused you to wake up?”. Anxious and 

depressed participants were more inclined to interpret ambiguous scenarios as 

threatening. Next, participants were asked to score the likelihood of some events 

occurring. Those in negative states were more likely to assign a high likelihood score 

to negative events. Importantly, a higher likelihood of negative events was only 

assigned if the context of situations directly affected them. These results show that 

those in a negative state “choose” a more negative interpretation over a more positive 

one. This notion was further supported by later findings suggesting that individuals in 

negative states have access to both positive and negative interpretations, but they tend 

to select the interpretation that aligns with their current emotional state (French, 1992; 

Huppert et al., 2007). What this suggests is that when in a negative emotional state, a 

more negative interpretation holds a greater expected utility either by being perceived 

as more likely to occur or as having a higher anticipated value. For example, negative 

emotions, such as fear, may not only increase the estimated likelihood of a negative 

outcome but also amplify the perception of the consequences as more negative (Maner 

and Gerend, 2007). 
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Figure 2. A simplified schematic of emotional modulation of decision-making stages. Incoming 

sensory information is registered through perceptual and attentional pathways. The sensory percept is 
then evaluated, and the expected utility of all potential outcomes is evaluated. This calculation considers 

the probability of each outcome and the anticipated value, or payoff, associated with each. Based on 

this evaluation, an action is taken, and the individual responds to the incoming signal. Emotions can 

impact any of these early or later processes. They can influence how the signal is perceived or attended 

to in the early stages, and they can also affect the estimation of the probability of an outcome occurring 

and the magnitude of payoffs associated with potential outcomes at later stages (figure adapted from 

Mendl et al., 2009).  

 

1.4. Measuring emotion across species 

As stated previously, emotions are multicomponent states comprising of 

neurophysiological, behavioural, cognitive and subjective components. For instance, 

during a fear episode, several neurophysiological changes occur – the heart beats 

faster, breathing quickens, the eyes widen, facial expression, and posture change. 

Simultaneously, an overwhelming sense of terror spreads throughout the body, 

triggering a desire to either freeze or flee. Each of these changes serves a specific 

purpose. For example, the elevated heart rate and increased respiration enhance the 

oxygen supply to peripheral muscles improving the ability to flee. Meanwhile, pupil 

dilation enhances peripheral vision and, consequently, threat detection. Together, this 

cascade of coordinated changes in each of the emotional components enables an 

individual to successfully survive danger. Table 1 summarises all systems and their 

function that are involved in emotional response.  
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Table 1 

The interconnection between emotional components, their functions, and the 
organism's subsystems (adapted from Scherer, 2005) 

Emotion 
component 

 
Emotion function 

 Subsystems within the 
organism and primary 

substrates 

Cognitive 
(appraisal) 

 Evaluation of objects and events  Information processing 
(CNS) 

Neurophysiological 
(bodily symptoms) 

 System regulation  Support (CNS, NES, ANS) 

Behaviour 
(behaviour and 

motivations) 

 Preparation and direction of 
action 

Communication of reaction and 
behavioural intention 

 
Executive (CNS) 

Action (SNS) 

Subjective 
(feelings) 

 Monitoring of internal state and 
organism-environment interaction 

 Monitoring (CNS) 

CNS – central nervous system; NES – neuro-endocrine system; ANS – automatic nervous system; 
SMS somatic nervous system. 

 

Each of the components, however, can and do act independently outside 

emotional experience. For instance, while fear causes elevated heart rate, so does 

digestion (Abramson and Sidney, 1941). Therefore, the key role of emotion lies in the 

coordination and synchronisation of all systems supporting physiological, neurological, 

behavioural and cognitive changes that together generate emotional response 

(Scherer, 2005). Studying how emotions are expressed through each of these 

components aids our understanding of emotion in animals (Paul, Harding and Mendl, 

2005; Mendl, Oliver and Paul, 2010; Waal, 2011; Anderson and Adolphs, 2014; Bliss-

moreau, 2017; Gygax, 2017; LeDoux and Hofmann, 2018; Paul and Mendl, 2018). In 

the following sections, I will first demonstrate the application of the multicomponent 

approach in studying emotions in mammals. Then, I will discuss the research 

conducted in invertebrates, being more dissimilar to humans. I will end by summarising 

what studies have been conducted in bees so far. 
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1.4.1. Measuring emotions in humans and mammals  

Subjective approach 

To date, the only methods allowing us to assess the subjective component of emotion 

is self-reports. These can take different forms – for instance, questionnaires, rating 

scales and interviews (Russell, 2003; Paul, Harding and Mendl, 2005). While these 

methods are perhaps most frequently used when it comes to determining emotional 

states in humans, they are also the most debated (Mayer, Salovey, & Caruso, 2008). 

This is because subjective experiences require introspection, and this capability is 

limited and varies greatly among individuals (Mayer, Salovey, & Caruso, 2008). The 

inability to recognise, describe or even process emotions in some individuals (i.e., 

those with alexithymia) may also skew results (Lane et al., 1997). Furthermore, prior 

experiences, beliefs, episodic memory, culture and other aspects of rich human life 

also shape the self-assessment of emotional state (Robinson and Clore, 2002; Barrett, 

2017). Therefore, the subjective approach may lack the desired objectivity. Moreover, 

this method is only accessible in humans making it unusable for study in other species.  

 

Behavioural approach 

Behaviour reflects how organisms engage with their surroundings. Therefore, 

observing emotion-induced changes in behaviour has proven to be a useful method of 

measuring emotions. For example, threat-induced freezing is a recognised negative 

emotional indicator in both humans and animals (Roelofs, 2017), while play behaviour 

is considered a sign of a positive state (Held and Špinka, 2011). More general 

behaviours such as those expressed in anticipation of reward/punishment can also be 

used (Spruijt, Bos and Pijlman, 2001).  

Changes in some body parts can also be a useful measure. These could be, for 

example, facial expressions. Scientists developed a tool known as the Facial Action 

Coding System (FACS)(Ekman and Friesen, 1976) to identify basic emotions through 

facial expressions. FACS tracks and measures facial muscle movements based on 

identified pattern assigned specific emotion. Similar systems have also been 

developed for primates e.g. chimps (Vick et al., 2007), orangutans (Caeiro et al., 2013); 

also FACS-inspired the Grimace Scale for nonprimates including mice (Langford et al., 
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2010) and pigs (di Giminiani et al., 2016). Other body parts, such as ear position can 

also be used (Reefmann, Wechsler and Gygax, 2009; Reefmann et al., 2012). Another 

popular behavioural indicator is vocalisation. Humans for instance, can identify 

emotion from brief vocalisation (Cowen et al., 2019) whereas rats use vocalisations of 

different frequencies to communicate the valence of emotional experience with the 

environment (Brudzynski, 2009; Gloveli et al., 2023). Given the social importance of 

vocalisation, these metrics can be a useful measure of emotion in different species.  

 

Neurophysiological approaches 

In mammals, emotional reactions are accompanied by physiological changes 

supported by the sympathetic and parasympathetic nervous systems. Measuring these 

changes such as heart rate, blood pressure, skin temperature or respiration is a 

common practice (Mauss and Robinson, 2009; Kreibig, 2010). Nevertheless, while 

physiological patterns have been identified for all basic emotions (Rainville et al., 2006) 

they significantly overlap. The similarity in heart contractions, electrodermal activity 

and respiration can be observed not only in emotional states of the same valence, for 

example fear and anxiety, but also with emotions of opposite valence, such as 

happiness and excitement. Therefore, physiological measures are more likely to be 

related to the arousal of the state rather than valence and should be treated as non-

specific indicators of emotion (Cacioppo et al., 2000; Paul, Harding and Mendl, 2005). 

Another impartment indicator of emotional states are biogenic amines. In 

mammals, dopamine, serotonin and noradrenaline are of particular interest given their 

role in valence-based decision-making (Lövheim, 2012; Kremer et al., 2020). For 

example, dopamine plays a crucial part in reward processing (Bromberg-Martin, 

Matsumoto and Hikosaka, 2010), serotonin in how the brain appraises emotionally-

valenced information (Harmer, 2008; Cowen and Browning, 2015), while noradrenaline 

is responsible for fight-or-flight regulation (Lövheim, 2012). Disruption in both 

dopaminergic and serotonergic systems is associated with emotion dysregulation not 

only in humans (Ruhé, Mason and Schene, 2007; Grace, 2016) but also in other 

animals. In rats for example, suppressed dopamine transmission to the nucleus 

accumbens results in increased anxiety and depression-like behaviours (Bahi and 

Dreyer, 2019) as does serotonin inhibition in sheep (Doyle et al., 2011). While often 

measured separately it is important to stress that biogenic amines most likely work in 
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synergy to create a pathway supporting the efficient transmission of emotional 

information to various brain regions (Lövheim, 2012).  

As emotions are brain-generated states, it is not surprising that numerous 

attempts have been made to try and map specific emotions to particular brain regions. 

In humans methods like brain imaging and electrophysiology are commonly used 

(Mauss and Robinson, 2009), while with less strict ethical regulation in other mammals 

more invasive techniques are employed, including brain lesions, electrical stimulation, 

single-cell recording, and others (Paul, Harding and Mendl, 2005). To date, several 

brain areas have been identified as involved in emotion (Paul, Harding and Mendl, 

2005; Kremer et al., 2020). However, attempts to detect emotion-specific neural 

correlates unfortunately fail to provide substantially consistent results (Barrett, 2012; 

Lindquist et al., 2012). 

 

Cognitive approaches  

As I mentioned in earlier studies, emotions trigger various cognitive changes. 

Numerous tasks that require attention, memory, and judgment have been used to 

discover these changes. 

 

Attention bias 

Affect-congruent attention bias refers to the tendency of individuals in negative 

affective states such as fear or depression to exhibit heightened awareness of or 

increased attention towards novel or negative elements in their surroundings (Paul, 

Harding and Mendl, 2005). For example, in humans fear primes the processing of 

threatening information (Math and Mackin, 1998; Mogg and Bradley, 1998; Kindt and 

van den Hout, 2001; Bar-Haim et al., 2007). Moreover, it also primes the specific region 

of the visual field previously occupied by emotional stimulus (Fox, 2002; Mogg and 

Bradley, 2002; Pourtois et al., 2006). In mammals, attention bias has been 

demonstrated in sheep (Lee et al., 2016; Monk et al., 2018) and cattle (Lee et al., 

2018). When exposed to a threat-inducing stimulus, such as an image of a dog, 

animals that received treatment with anxiogenic drugs increase the time spent looking 

at the image of a dog. Other forms of attention, such as selective attention to novel 
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stimuli, are also utilised as emotional markers. For instance, as with humans, horses 

displaying signs of depression demonstrate deficits in selective attention to novel 

auditory stimuli (Rochais et al., 2016). Although promising, these methods are not yet 

popular in animal studies (Jacob-Dazarola, Ortíz Nicolás and Cárdenas Bayona, 

2016). 

 

Memory bias 

Another less popular method among animal researchers involves memory biases. This 

method is again inspired by human clinical research. Individuals experiencing sadness 

and depression tend to have an increased recall of memories that align with the 

negative valence of their emotional state (Kremer et al., 2020). To date, there is only a 

handful of animal studies that applied these methods. For instance, whether such 

emotion-congruent memory recall is also present in rats has been investigated 

(Burman and Mendl, 2018). Rats were first trained to receive one food pellet in each 

arm of a radial arm maze. Subsequently, rats were subjected to forced-choice trials in 

which they encountered positive (12 food pellets), neutral (1 food pellet), or negative 

events (food pellets soaked in quinine). The hypothesis was that rats in a more positive 

affective state, such as those with higher social status, would demonstrate improved 

memory for arms associated with positive events compared to arms associated with 

negative events and vice versa. Memory performance was assessed based on the rats’ 

approach and avoidance behaviours. While the experimental design was indeed 

promising, this study failed to demonstrate the effect of social status on memory recall. 

An earlier study, however, did demonstrate affect-congruent memory bias (Takatsu-

Coleman et al., 2013). In this study, mice that displayed depression-like behaviour 

induced by short-term social isolation were indeed better able to remember the arm of 

the plus-maze where they experienced a shock, compared to mice that were not 

socially isolated.  

 

Judgment bias 

Emotions can significantly affect our judgments – the process of evaluating information 

and making decisions based on that evaluation. When studying this phenomenon in 

humans, researchers often focus on how people interpret ambiguous situations and 
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anticipate future outcomes. What consistently emerges from these studies is that 

individuals in a more negative affective state such as anxiety or depression, tend to 

have a more pessimistic interpretation of otherwise ambiguous information (Hirsch et 

al., 2016). The classic illustration of this state-dependent interpretation or judgment 

bias is captured by the question “Is the glass half empty or half full?”. Generally, people 

in a positive emotional state tend to make optimistic judgments about ambiguity (“glass 

half full”), while those in a negative emotional state tend to adopt a more pessimistic 

view (“glass half empty”). As a result, it is proposed that one’s emotional state can act 

as a valence-dependent predictor, similar to a Bayesian prior, influencing their 

interpretation of ambiguity and expectations about future outcomes when dealing with 

ambiguity (Mendl and Paul, 2020). For example, MacLeod and Byrne (1996) 

demonstrated how being in a negative or positive state influences people's future 

outlook (Macleod and Byrne, 1996). When participants were given a minute to 

generate as many future scenarios as possible individuals with anxiety or depression 

tendencies generated more negative and fewer positive future expectations compared 

to the control group. A similar pattern emerged in another study (Andersen, Spielman 

and Bargh, 1992). In this study participants with depression and a control group without 

depression were given prompts and asked to respond quickly with either “yes” or “no”. 

The prompts included statements such as “I will find a job” and “I will fall ill”. Consistent 

with previous research, individuals with depression were found to be more inclined to 

respond “yes” to negative prompts but not as much to positive prompts when compared 

to the non-depressed group. Furthermore, when responding, depressed individuals 

were much faster, indicating a more automatic response.  

To investigate the possibility that animals could also display emotion-congruent 

judgement biases, Harding et al. (2004) developed a novel method based on tone 

discrimination. First, the authors conditioned rats to press a lever when they heard a 

tone associated with a reward (food pellet) and to withhold from pressing the lever 

when they heard another tone associated with punishment (white noise) (Harding, Paul 

and Mendl, 2004). In a subsequent test, animals were exposed to non-reinforced tones 

with frequencies between the two conditioned tones. The authors observed that rats 

exposed to “unpredictable” housing conditions (a manipulation predicted to induce a 

mild, depression-like state) took longer to respond to the positive tone and the tone of 

a frequency closer to the positive tone than rats with more regular housing conditions. 

They were also less likely to press the lever in response to these tones. The authors 
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concluded that rats in a negative affective state show diminishing anticipation of 

positive events resembling decreased optimism in depressed humans. These state-

dependent shifts in responses to ambiguous information can be functionally defined as 

“optimistic” or “pessimistic” without suggesting that animals experience human-like 

optimism or pessimism (Bateson, 2016). 

Since Harding et. al. (2004), the use of judgment bias tests to measure animal 

emotion has become increasingly popular. Judgment biases have been explored 

across modalities and involved different types of tasks. However, despite their 

popularity some findings have contradicted the general expectations (Lagisz et al., 

2020). Therefore, when designing experiments, it is important to consider non-

emotional factors that can complicate later inference. It is therefore important to 

account for subjects’ activity or motivation levels (Mendl et al., 2009, 2010), the 

duration of training (Roelofs et al., 2016), and training process itself (Roelofs et al., 

2016), as all these factors may impact later result interpretation. Similarly, repeated 

exposure to test cues may diminish animal responses as they learn to associate such 

cues with no reward (Doyle et al., 2010). 

It is also important to note that the type of task itself can also contribute to the 

above issues. Most studies use go/no-go type of judgment bias tests. In this type of 

test, animals are trained to respond to positive stimuli (go) and withhold from 

responding to negative stimuli (no-go). However, as mentioned earlier, certain factors 

such as a lack of motivation or reduced activation levels can also lead to a lack of 

response. Importantly, this absence of response might then be mistakenly interpreted 

as a no-go response suggesting the presence of a judgment bias (Mendl et al., 2009). 

An alternative method, the active choice judgment bias test, can be used to 

address these issues. This approach ensures that animals exhibit the same behaviours 

(go) in response to both negative and positive stimuli. Therefore, it becomes possible 

to control for animals’ motivation and general activation, the reduced levels of which 

can manifest through choice omission. This particular type of judgment bias test has 

been previously utilised with birds (Matheson, Asher and Bateson, 2008; Brilot, Asher 

and Bateson, 2010), lab rodents (Brydges et al., 2012; Novak et al., 2016), monkeys 

(Pomerantz, Terkel and Suomi, 2012), and pigs (Murphy, Nordquist and van der Staay, 

2013). 
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The development of an Active Choice type of Judgment Bias test for 

bumblebees is one of the aims of my thesis. Therefore, I delve further into the issues 

associated with go/no-go paradigm in Chapter Two.  

 

1.4.2. Measuring emotion in invertebrates 

Behavioural approaches 

Although some behavioural measures involving the observation of specific body parts, 

such as facial expressions in mammals, are inaccessible in invertebrates due to 

obvious differences in morphology, using other measures can be an interesting avenue 

to explore. For instance, vocalisations imply the production of sound using a vocal 

cord, but insects also produce sounds with the help of different body parts. They use 

such acoustic communication to support different needs – for example, to attract 

mates, or avoid threats (Leonhardt et al., 2016). Therefore, it would be interesting to 

investigate whether such acoustics could be used to measure emotions in 

invertebrates. After all, Charles Darwin was convinced that stridulation could indeed 

be one of the ways insects convey emotions (Darwin, 1998). 

Some of the better-explored behavioural measures in invertebrates involve 

whole-body assessment. For example, in anticipation of punishment, invertebrates, 

like mammals, display adaptive behaviours to increase survival. All animals are 

hardwired to express these behaviours in response to naturally aversive stimuli, for 

example, electric shock or a shadow overhead. However, through experience, neutral 

stimuli can also elicit such a response. This is known as fear conditioning, a 

phenomenon well-documented in mammals (Ledoux, 2014). Carew and Kandel (1981) 

were the first to demonstrate this in invertebrates (Carew et al., 1981). When exposed 

to noxious stimuli, like an electric shock, slugs demonstrate the defensive behaviour of 

head withdrawal. Following the pairing of an electric shock with a neutral stimulus, the 

authors were able to demonstrate the elicitation of the same defensive behaviour solely 

upon the presentation of the neutral stimuli. Thus, as in mammals, the conditioned fear 

response can be a useful measure of negative emotion in invertebrates.  

The perceived threat activates an animal’s fight-or-flight system which when 

activated, leads to initiating escape, freezing, or fighting. While all these action 
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tendencies are a natural and adaptive response to danger, if excessively expressed, 

they become traits linked to anxiety (Cisler et al., 2010). Therefore, measuring, for 

example, the escape response can serve as a good metric to measure anxiety in 

animals. In mammals, this is done by using an elevated plus-maze (Walf and Frye, 

2007). The maze consists of several arms: a well-lit open arm and a dark enclosed 

arm. When exposed to danger animals tend to seek shelter. Therefore, those with high 

anxiety typically avoid open arms and spend more time in the dark enclosed one. Using 

a similar apparatus, anxiety-like behaviour was also demonstrated in crayfish. Crayfish 

that experienced electric shocks (Fossat, Bacque-cazenave and Delbecque, 2014) or 

a decline in their social status (Bacqué-cazenave et al., 2017) showed a higher 

preference for the dark arm. Importantly, this was not a conditioned response or 

response to immediate dangers. Instead, increased preference for the darker arm 

reflected previous negative experiences, and thus reflected the overall state of the 

animal. 

In flies, Drosophila melanogaster, whole-body behaviour was also used to 

investigate the flexibility of their emotional responses. Most animals, including 

Drosophila, will display defence behaviours to overhead looming stimuli (Card, 2012; 

Pereira and Moita, 2016). Environmental factors, such as how close the predator is 

and the availability of escape routes, determine what this defence response will be 

(Schmidt et al., 2008). Zacarias et al. (2018) conducted a series of studies exposing 

flies to an overhead looming stimulus (Zacarias et al., 2018). In this study, a shift in 

behavioural response was observed over a period of time. Upon the initial repeated 

presentations of the looming threat, flies displayed the tendency to jump. However, as 

the stimulation continued, more flies shifted their behaviour from jumping to freezing. 

Gibson et al. (2015) demonstrated similar results. Here however, continuous exposure 

to looming stimuli not only intensified flies’ defence responses but also interfered with 

another motivational behaviour, that of feeding. Another study showed an even more 

intricate mechanism underlying such switching in Drosophila melanogaster. Von Reyn 

et al. (2014) investigated what features associated with threat stimuli determine the 

type of escape response (Von Reyn et al., 2014). When a predator approaches, flies 

are known to initiate either a quick but energetically costly escape or a slower energy-

conserving response. The findings suggest that which of the two responses is initiated 

depends on the size of the threatening stimulus and its velocity. Short take-offs are 

initiated when the stimulus approaches fast and long ones if the stimulus approaches 
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slower. Although not explicitly discussed by the authors of the above studies it is 

intriguing to speculate that the reported change in flies’ behaviour was driven by 

stimulus appraisal. As I discussed earlier, stimulus appraisals help determine the 

emotional response to stimuli (see 1.2.2. Theoretical approaches to emotion). In the 

given studies, two appraisals – relevance and certainty – could drive a change in flies’ 

defence response. For example, continuous exposure to an overhead shadow (Gibson 

et al., 2015; Zacarias et al., 2018), or a larger and faster approach of the shadow (Von 

Reyn et al., 2014) may lead to an appraisal of a threat stimulus as more relevant and 

perhaps more inevitable (certain). Therefore, flies switched from a more active defence 

strategy to a more energy-saving, passive one. Overall, these studies demonstrate a 

level of flexibility in the emotional response of invertebrates. Moreover, this flexibility is 

likely driven by stimulus appraisal.  

A more long-term mood-like state has also been demonstrated in invertebrates. 

The inability to cope with stress, known as “learned helplessness”, is associated with 

negative mood states, such as depression (Willner, 1986; Eisenstein and Carlson, 

1997). The ability to cope with continuous stress was investigated in fruit flies, 

Drosophila melanogaster (Batsching, Wolf and Heisenberg, 2016). Two flies were 

placed in a dark chamber. Whenever the master fly paused to rest, both the master 

and yoked flies received an electric shock. Therefore, the master fly could control the 

delivery of a shock simply by avoiding pausing. At the same time, the yoked fly could 

not, and its action did not determine whether she would get shocked or not. When 

compared to the control group that never received an electric shock the master flies 

showed no difference in walking speed, number, and duration of pauses. The yoked 

flies however, demonstrated reduced activity in all parameters. Thus, the inability to 

control stress delivery resulted in reduced motivation due to the inability to cope with 

stress.  

 

Neurophysiological responses  

Invertebrate morphology greatly complicates the assessment of emotion-induced 

physiological responses e.g. heart rate. Neurochemical methods are, however, well 

explored and offer a promising opportunity for comparative studies. Using this 

approach, a degree of similarity in emotional regulation in both mammalian and 

invertebrate brains has been revealed. For instance, in mammals, drugs like diazepam, 
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reduce anxiety behaviour (Sigel and Baur, 1988). A similar effect was observed in 

Drosophila flies, where the administration of diazepam reduced anxiety-related 

defensive behaviours (Mohammad et al., 2016). Similar anxiolytic effects were 

observed with another GABAA-modulating drug chlordiazepoxide (Fossat, Bacque-

cazenave and Delbecque, 2014), here the anxiety-like behaviour observed in crayfish 

exposed to electric shock or social harassment was eased with the administration of 

this drug. The anxiolytic effect of these drugs is linked to the modulation of GABAA 

receptors, which are evolutionary conserved (Robinson et al., 1986). 

Studies on biogenic amines in invertebrates, also point to the existence of 

commonalities in neurological pathways involved in emotional regulation across taxa. 

Both mammals and insects have the same neurotransmitters, dopamine and serotonin, 

unique to insect octopamine, on the other hand, is considered structural and 

functionally similar to mammalian noradrenaline (Roeder, 1999; Pflüger and 

Stevenson, 2005; Caveney et al., 2006). In mammals, negative emotional states, such 

as anxiety are associated with lower serotonin (Ruhé, Mason and Schene, 2007; Doyle 

et al., 2011) thus, some anxiety and depression medications have serotonin 

reabsorption inhibitors which ensure adequate levels of this amine in the synapses. 

One such drug is fluoxetine. The anxiolytic effect of this drug was shown in the crab 

Pachygrapsus crassipes (Hamilton et al., 2016). In this study, fluoxetine administration 

led to a reduction in anxiety-like behaviours, as evidenced by the crabs’ decreased 

time spent in the dark zone during light/dark preference assays, where increased time 

in the dark zone is typically associated with heightened anxiety. While this behavioural 

response is consistent with the drug’s anxiolytic effects observed in humans, the 

specific neurochemical mechanisms driving these effects remain unclear. 

In this overview, I only present a few instances where neuropharmacology has 

been utilised to address emotional “dysregulations” in invertebrates. Although this area 

of research is still relatively unexplored, the findings indicate a potential similarity in 

how the nervous systems of both invertebrates and mammals regulate emotions. 

 

Cognitive approaches 

To the best of my knowledge only the judgment bias paradigm has been used to 

cognitively assess emotion-like states in invertebrates. To date there are a total of five 
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independent studies using these tests in invertebrates, specifically insects, four of 

which were conducted in bees. As I dedicate a separate section for an in-depth 

discussion on what has been done in bees, here I will briefly cover how this paradigm 

was applied to another insect species, Drosophila melanogaster.  

Judgment bias tests measure an animals’ interpretation of ambiguous 

information. The underlying hypothesis is that such interpretation is state-dependent, 

pessimistic when in a negative state and optimistic when in a positive emotional state. 

To test this hypothesis Drosophila flies were first subjected to discrimination learning 

in a T-maze (Deakin et al., 2018). Flies learned to approach the positive odour 

associated with a reward and avoid the negative odour associated with an electric 

shock. Next, flies were either shaken to induce a negative state or left unmanipulated. 

In a subsequent test, one arm was filled with plain air, while the alternative arm with 

an ambiguous odour (1:1 mixture of two conditioned odours). As compared to the 

control, shaken flies were less likely to approach ambiguous odours. Shaken flies thus 

perceived an ambiguous odour as similar to a conditioned odour that was previously 

associated with an electric shock and shaken flies chose not to approach it. It was 

therefore concluded that flies, like mammals, display a pessimistic bias when in a 

negative state.  

 

1.4.3. Emotion-like states in bees 

Arguably, the study that provided the first comprehensive evidence demonstrating an 

emotion-like state in insects was a study by Bateson et al. (2011). Moreover, it was the 

first time that the judgment bias test, originally introduced by Harding et al. (2004), was 

adopted and applied to insects. To do so, researchers used the classical olfactory 

proboscis extension paradigm (Bateson et al., 2011). Honeybees, Apis mellifera, were 

first trained to extend their proboscis in response to a rewarding odour and withhold it 

for an unrewarding one. Next, half of the bees were subjected to vigorous shaking. 

Shaking imitated a predatory attack, thereby subjecting animals to a negative state. In 

the test, the extension of the proboscis to ambiguous odours (mixtures of two 

conditioned odours) was recorded. Remarkably, as compared to unmanipulated bees, 

bees that had been shaken before testing were more inclined to refrain from extending 

their proboscis upon the presentation of an ambiguous odour. Therefore, shaken bees 
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were more “pessimistic”. To further investigate the possible mechanism behind the 

observed judgment bias, Bateson et al. (2011) measured the levels of systemic 

biogenic amines in both shaken and control bees. They showed that shaking reduced 

the levels of dopamine, octopamine, and serotonin. Such reduced levels of biogenic 

amines are commonly associated with depression not only in humans (Luchins, 1976) 

but also in Drosophila melanogaster (Araujo et al., 2018). These results, once again, 

point to the similarities in neurophysiological systems supporting emotional responses 

across taxa (more evidence was presented in earlier sections).  

These behavioural results were replicated in another study. In their study, 

Schlüns et al. (2017) applied the same judgment bias test as before; the results 

confirmed that shaken honeybees indeed behave “pessimistically” (Schlüns et al., 

2017). In addition to replicating earlier studies, the authors also tested whether the 

same pessimistic bias would occur after exposing bees to formic acid, a standard 

treatment against bee pests. Unlike the shaken bees, those treated with formic acid 

did not show a difference in their response to ambiguous odour. 

While the vast majority of judgment bias tests conducted in animals assessed 

the effects of negative states, only very few focused on positive states (Lagisz et al., 

2020). One such study was done on bumblebees, Bombus terrestris. Solvi et al. (2016) 

first trained bees to distinguish between artificial flowers of two colours, one associated 

with a sugar reward and the other with no reward (water)(Solvi, Baciadonna and 

Chittka, 2016). Bees, therefore, learned to approach rewarding and avoid unrewarding 

flowers. Before testing with ambiguous colours, half of the trained bees received a 

small droplet of high-concentration sugar reward. In humans, such unexpected snacks 

are known to induce positive emotions (Macht and Mueller, 2007). Interestingly, 

unexpected rewards also induced a positive state in bees. Unlike the control, bees that 

received a sugar droplet were quicker to approach flowers of ambiguous colours, 

indicating an “optimistic” bias. To complement these behavioural results, the authors 

also manipulated the levels of biogenic amines pharmacologically. To test what amines 

are involved in “optimistic” bias, bees were topically treated with receptor antagonists 

for dopamine, octopamine and serotonin. Blocking the dopamine receptor (but not the 

others) resulted in the elimination of “optimistic” bias, suggesting the importance of this 

amine in regulating positive emotion-like states in bees.  
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Cumulatively, the existing studies in social bees (Bateson et al., 2011; Solvi, 

Baciadonna and Chittka, 2016; Schlüns et al., 2017; Strang and Muth, 2023) indicate 

that their tendencies to interpret ambiguous information align with the valence of their 

current state. Studies also suggest that this process could be mediated through 

biogenic amines (Bateson et al., 2011; Solvi, Baciadonna and Chittka, 2016). However, 

some researchers remain cautious of such interpretations. For example, when 

reviewing the work of Solvi et al. (2016), Baracchi et al. (2017) suggest that the 

observed “optimistic” bias stems from an increased motivation after receiving a high-

sugar reward, and they also point out that antagonist used to block octopamine is not 

octopamine-specific (Baracchi, Lihoreau and Giurfa, 2017). An alternative 

interpretation of the results of Bateson et al. (2011) has also been put forward (Giurfa, 

2013). In his review, Giurfa (2013) emphasises low discriminability between 

conditioned odours in the non-manipulated honeybees. Indeed, in the test, the control 

bees were well responsive to both conditioned odours, with a level of discriminability 

of approximately 35%. In the shaken group, however, discriminability increased to 65% 

(due to a reduced response to negative odour). Therefore, Giurfa (2013) suggests that 

the observed pessimistic bias could be a result of stressed bees simply becoming 

better at discriminating between two odours. Cumulatively, existing critiques of earlier 

work emphasise the necessity for an improved experimental design that could 

eliminate such alternative explanations. This highlights as I will argue later, the need 

to revisit judgment biases in bees. 

 

1.5. Summary of aims 

Affective states are internal “emotion-like” states of an organism, brought about by an 

appraisal of the environment that result in specific physiological, cognitive and 

behavioural responses. A growing number of studies show that these states can 

impact information processing leading to altered cognition and perception. Recently, 

the application of tests measuring behavioural responses that are known to be 

influenced by affect in humans has led to the discovery of similar affect-induced 

behaviours in several species, including bees. Earlier discoveries, showing that 

affective states can impact bees’ decisions, indicate that even insects may have the 

capacity for emotion-like experiences. If so, emotions may be more phylogenetically 
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widespread than previously thought. While this idea is interesting, some remain 

cautious or unconvinced.  

Less is known, however, about the mechanisms underlying affect-induced 

behavioural patterns. Affective states could, in principle, modulate several stages of 

decision-making, including the capture, coding and processing of a visual signal at the 

early stages and the later integration and interpretation of information. For example, 

negative emotions can facilitate the detection of an emotional signal (e.g. threat) by 

modulating visual acuity. Similarly, emotion could also modulate how new information 

is integrated and evaluated to form flexible future decisions. Affect therefore can be 

viewed as an adaptive mechanism promoting the allocation of cognitive and 

behavioural resources towards fitness-relevant stimuli.  

Given this adaptive function of emotion, it is important to investigate if the same 

is true in insects. Therefore, the aim of my project is to provide the insights into whether 

and how emotion-like states in bees impact their visual decision-making. I hypothesise 

that affective states will modulate multiple stages of visual decision-making, including 

perception, cognitive flexibility and reward learning in a way that facilitates species 

survival. In addition, given the potential of using bees as a model for studying affect, it 

is essential to initiate the development of new methods for investigating neural 

structures in freely-moving animals. One such method could involve combining 

microinjections with behavioural assays within a virtual reality context. I aim to initiate 

the exploration of this method.  

In summary, this thesis is dedicated to exploring the influence of affective states 

on decision-making in Bombus terrestris, the buff-tailed bumblebee. The specific aims 

of the thesis include: 

1. Developing a novel judgment bias test utilising an active choice design and using it 

to reassess the existence of negative judgment biases in bees.  

2. Assessing the impact of affective states on visual acuity in bees. 

3. Investigating the influence of affective states on behavioural flexibility. 

4. Evaluating the effects of microinjections on bee learning within a virtual reality setup. 
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2.1. Introduction 

The presence of emotions in non-human animals is much debated and can have 

important societal implications. As pointed earlier (see 1.2. Conceptualising Emotion), 

most research on animal emotions has focused on vertebrates (Panksepp, 2011; Paul 

et al., 2020), and only a handful of recent studies have explored analogous states in 

insects (Bateson et al., 2011; Gibson et al., 2015; Solvi, Baciadonna and Chittka, 2016; 

Schlüns et al., 2017; Deakin et al., 2018; Strang and Muth, 2023). In these studies, 

emotions are defined as valenced brain states triggered by both internal and external 

stimuli and comprise subjective, behavioural, physiological and cognitive components. 

Research on emotion-like states in insects has primarily relied on judgement bias tests, 

a method initially developed for assessing affective states in rats (Harding, Paul and 

Mendl, 2004), and discussed in earlier sections. In brief, these tests assess how 

animals respond to ambiguous stimuli. An animal typically is trained to associate one 

stimulus with a reward and another with a lack of reward or punishment. It is then 

tested with an ambiguous stimulus that is in-between the two learnt stimuli. Animals 

that respond as if this stimulus indicates a reward are considered optimistic, while 

those that respond as if the stimulus indicates a lack of reward or punishment are 

considered pessimistic. 

Judgement bias tests have been used in five studies on insects, including on 

honeybees, bumblebees and fruit flies (Bateson et al., 2011; Solvi, Baciadonna and 

Chittka, 2016; Schlüns et al., 2017; Deakin et al., 2018; Strang and Muth, 2023). Some 

of these studies showed that physical agitation can reduce the response of bees and 

flies to ambiguous odours (Bateson et al., 2011; Schlüns et al., 2017; Deakin et al., 

2018). Others showed that bees are quicker to fly towards (Solvi, Baciadonna and 

Chittka, 2016) and more likely to choose (Strang and Muth, 2023) ambiguous visual 

stimuli after encountering an unexpected reward of sucrose solution, suggesting 

optimistic behaviour. While these results parallel results from studies of emotions in 

vertebrates, other explanations have also been suggested, including changes in 

motivation or increased discrimination ability (Giurfa, 2013; Baracchi, Lihoreau and 

Giurfa, 2017). 

The majority of insect studies to date have utilized go/no-go judgment bias 

tasks, with only one study (Deakin et al., 2018) employing an alternative active choice 

approach, which will be discussed later. Here, the animal is trained to respond to a 
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positive stimulus (“go”) and suppresses the response to a negative one (“no-go”). 

When faced with an ambiguous stimulus, responding (“go”) or suppressing (“no-go”) a 

response is thought to reflect optimistic and pessimistic judgements, respectively. 

While very popular (Mendl et al., 2009; Mendl, Oliver and Paul, 2010; Bethell, 2015), 

there are concerns associated with this paradigm. Firstly, the suppression of a 

response could result from a general reduction in activity and motivation rather than a 

judgment bias (Mendl et al., 2009). A reduction of responses, therefore, could also 

indicate merely an absence of response (omission) rather than a deliberate choice 

(Enkel et al., 2010; Baciadonna and McElligott, 2015). Moreover, the animal may fail 

to attend or detect a stimulus, especially when stressed. This would lead to a failure to 

respond, which can be mistakenly attributed to a pessimistic judgment (Bethell, 2015; 

Jones et al., 2018). Without a test that can address these issues, we currently do not 

have strong evidence of emotion-like states in insects. In addition, we lack models for 

the mechanisms underpinning the observed behaviours – though recent work has 

proposed that judgement biases in bees can arise from shifts in stimulus-response 

curves (Strang and Muth, 2023). 

One way of reducing the likelihood of confounds is to use an active choice 

judgment bias test (Matheson, Asher and Bateson, 2008; Enkel et al., 2010; Whittaker 

and Barker, 2020). Unlike go/no-go tasks, the active choice paradigm requires the 

animal to make an active choice between two alternative responses. Such behaviour 

may be, for example, press the left key upon the presentation of a negative cue, and 

press the right key upon the presentation of a positive cue. Both actions are 

behaviourally comparable. In the test, to determine the state of an animal we make an 

inference based on which response it chooses. Therefore, employing an active choice 

approach can help eliminate possible confounds associated with go/no-go paradigm. 

I therefore used an active choice type of judgment bias test to rigorously assess 

judgement biases in bumblebees (Bombus terrestris). Bees had to choose between 

two rewarding locations depending on the stimulus displayed, clearly signalling their 

judgement when faced with ambiguous stimuli by moving to one of the two locations. 

To induce negative affective states, I used two types of manipulations simulating 

predatory attacks – shaking and trapping by a robotic arm. These manipulations have 

previously been shown to be associated with cognitive and physiological changes 

(Davenport and Evans, 1984; Chen, Hung and Yang, 2008; Bateson et al., 2011). In 

addition, to further understand the mechanisms underlying our behavioural results, a 
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signal detection modelling framework was applied to behavioural data. Specifically, the 

framework was employed to test whether physical agitation affected the prior 

expectation of a reward in bees or their ability to distinguish between stimuli due to 

shifts in stimulus-response curves. 

 

2.2. Materials and Methods 

Animals and experimental set-up  

All experiments were run on female worker bumblebees (Bombus terrestris) obtained 

from a commercial supplier (Koppert, UK). I transferred the bumblebees to one 

chamber of a bipartite plastic nest box (28.0 × 16.0 × 12.0 cm). The nest box was 

connected via a transparent acrylic tunnel (56.0 × 5.0 × 5.0 cm) to a flight arena (110.0 

× 61.0 × 40.0 cm) with a UV-transparent Plexiglas® lid and lit by a lamp (HF-P 1 14-

35 TL5 ballast, Philips, The Netherlands) fitted with daylight fluorescent tubes (Osram, 

Germany). When not part of an experiment, bees were fed with ~ 3 g of commercial 

pollen daily (Koppert B. V., The Netherlands) and provided sucrose solution (20% w/w) 

ad libitum. Although invertebrates do not fall under the Animals (Scientific Procedures) 

Act, 1986 (ASPA), the experimental design and protocols were developed 

incorporating the 3Rs principles. Housing, maintenance, and experimental procedures 

were non-invasive and were kept as close as possible to the natural living conditions 

of the animals. 

Visual stimuli were solid colours covering the entire display of an LED monitor 

(Dell U2412M, 24", 1920 x 1200 px) and were controlled by a custom-written MATLAB 

script (MathWorks Inc., Natick, MA, USA) using the PsychToolbox package (Brainard, 

1997). I measured the spectral reflectance of all colours used in the experiment using 

an Ocean Optics Flame reflectance spectrophotometer (Ocean Optics Inc., Florida, 

USA). The perceptual positions of the colours in the bee colour hexagon space (Fig.1B) 

were calculated using the spectral reflectance measurements and spectral sensitivity 

functions for Bombus terrestris photoreceptors (Chittka, 1992; Skorupski, Döring and 

Chittka, 2007). 
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Figure 1. Experimental Protocol. A) Training phase. Bees were trained to associate two colours, green 

and blue, presented on an LED screen with different sugar rewards at different locations. The bees were 

presented one colour at a time in pseudorandomized order. The figure depicts a training scenario with 

green associated with a high reward (50% sucrose solution) in the right chamber and blue with a low 

reward (30% sucrose solution) in the left chamber. The association between colour, reward and location 

was counterbalanced across trials. Further details in the text. B) Cue colours plotted in bee colour space 

(colour cue: B, blue; NB, near blue; M, medium; NG, near green; G, green). The three vertices 
correspond to maximum excitation of photoreceptors sensitive to blue, green and ultraviolet (UV) light. 

The distance from the centre to any vertex is 1 and the distance between points represents hue 

discriminability, with 0.1 being easily distinguishable. C) Judgement bias testing. The test phase 

consisted of five trials with different colours presented on the screen in a pseudorandomized order (cue 

value: H, high; NH, near high; M, medium; NL, near low; L, low). The colours included the two 

conditioned colours and three ambiguous colours of intermediate value. In our example here, the screen 

shows the medium colour with blue as the low-reward colour (H) and green as the high-reward colour 
(L), but this was counterbalanced across bees. Entering a chamber associated with a high reward during 

training was considered an optimistic choice, while entering a chamber associated with a low reward 

during training was deemed a pessimistic choice.  
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I positioned two vertical panels (40.0 × 8.0 cm) 8.5 cm in front of the righthand 

and lefthand sides of the LED monitor, leaving the central area of the monitor open and 

visible. Each panel was equipped with an opening to place a reward chamber (7 ml 

glass vial, 10 mm inner diameter) 7 cm above the arena floor. Bees thus needed to fly 

from the arena entrance to the panels before entering the reward chamber. On each 

visit to the arena, the reward chambers were changed to ensure that pheromones and 

scent marks were not available during the next visit. In preparation for the next 

experimental day, all used chambers were washed in 70% ethanol and hot water and 

left to dry.  

 

Training procedure 

Before the onset of training, bees were familiarised with both reward locations. A plastic 

cup was used to gently capture each bee. The opening of the cup was positioned so 

that it aligned with the entrance of the reward chamber, inside which the bee found a 

droplet of sucrose solution (0.2 ml, 30% w/w). I repeated the procedure equally on 

each side (left and right) without displaying any colour on the LED screen. Individual 

bees that learnt the location of the reward and performed repeated foraging bouts were 

tagged for later identification using number tags (Thorne, UK). The process of tagging 

entailed placing every bee inside a marking cage, using a sponge to gently press it up 

against the mesh, then attaching the tag to the thorax with a drop of superglue (Loctite 

Super Glue Power Gel). 

In each training trial, I presented bees (n = 48) with one of two colours on the 

LED screen. The two colours used were green (RGB= 0, 255, 75) and blue (RGB= 0, 

75, 225). When one of the colours was displayed, the bee was provided a high-value 

reward of 0.2 ml 50% (w/w) sucrose solution in one of the two chambers (e.g., on the 

left), and an equal amount of distilled water in the other chamber (e.g., on the right). In 

different trials, when the other colour was displayed the bee was provided a low-value 

reward of 0.2 ml 30% (w/w) sucrose solution in the chamber opposite (e.g., on the 

right) to the one where, in the other trials, a high-reward was presented. Here again, 

an equal amount of distilled water would be present in the other chamber (e.g., on the 

left). Thus, on any given trial, the bee saw only one colour and could encounter either 

the high or low reward (not both), with water on the unrewarding side. In addition, the 

locations of the high and low rewards were on opposite sides in their respective trials. 
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Across bees, the combinations of each colour (green or blue), reward location 

(right or left) and reward type (high or low) were counterbalanced. Each bee 

encountered only one possible combination of each during training (e.g., green 

indicating a high reward on the left on half the trials, and blue indicating a low reward 

on the right on the other half). Trials presenting colours associated with high and low 

rewards were presented an equal number of times in a pseudorandom order, ensuring 

that no colour was repeated more than twice in a row. To ensure that the bee entered 

the reward chamber fully to sample its content, we placed the droplets of solutions at 

the very end of the reward chamber (Fig. 1A). In all cases, the reward quantity of 0.2 

ml allowed bees to fill their crop within a single reward chamber visit (Pattrick et al., 

2020). I recorded a single choice on each trial, with a choice defined as a bee entering 

a chamber far enough to sample its content. Incidences of landing or partial entering 

(less than 1/3 of the body length) were not considered choices. Bees that reached the 

learning criterion (80% accuracy in the last 20 trials) continued to the test phase. 11 

bees did not pass the initial conditioning test due to strong side biases. The last ten 

training trials were video recorded using a camera on a mobile phone (Huawei Nexus 

6P phone 1440 × 2560 px, 120 fps) placed above the arena. 

 

Predatory attack simulation 

I randomly assigned individual bees (n=48 from six different colonies) that reached the 

learning criterion in the training phase to one of the three treatment groups. Two groups 

were subjected to manipulations which simulated predatory attacks and were predicted 

to change their affective state (Bateson et al., 2011). One of these two treatments 

involved shaking the bee on a Vortex shaker (Shaking, n=16), while the other involved 

trapping the bee with a custom-made trapping device (Trapping, n=16). A third 

unmanipulated group served as a control (Control, n=16). The manipulations were 

applied to a bee before entering the arena for each test. Each bee in the Shaking 

treatment was allowed to enter a custom-made cylindrical cage (40 mm diameter, 7.5 

cm length). After entering, the bee was gently nudged down with a soft foam plunger 

until the distance between the plunger and the bottom of the cage was reduced to ~3 

cm. Once the plunger was secured, the cage with the bee was placed on a Vortex-T 

Genie 2 shaker (Scientific Industries, USA) and shaken at a frequency of 1200 rpm for 

60 s. After shaking, the bee was released into the tunnel connecting the nest box and 
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experimental arena via an opening on the top of the tunnel. The bee was shaken before 

each test trial and released into the flight arena as soon as it was ready to initiate a 

foraging bout.  

Each bee in the Trapping treatment was trapped using a trapping device. This 

consisted of a soft sponge (3.5 × 3.5 × 3.5 cm) connected to a linear actuator system 

(rack and pinion). A micro-servo initiated the linear motion of the trapping device (Micro 

Servo 9g, DF9GMS), powered, and was controlled by a microcontroller board (Arduino, 

Uno Rev 3). A custom-written script written in the Arduino Software (IDE) triggered an 

initial plunging movement of the trapping device, followed by release after three 

seconds. This permitted consistent trapping across all tested individuals. As in the 

Shaking treatment, the bee was trapped before each test trial and released into the 

flight arena for testing as soon as it was ready to initiate a foraging bout.  

Bees in the Control treatment were allowed to fly out into the flight arena without 

hindrance as in the training phase. 

 

Final sample size calculation 

To determine the final sample size needed, we used a Bayes Factor approach 

implemented with the brms package in R (Bürkner, 2017; München et al., 2017; 

Moerbeek, 2021). Prior beliefs about the parameters were specified using a normal 

distribution with mean 0 and standard deviation 1. Data collection was stopped when 

the Bayes Factor ≥ 3 (indicating moderate support for HA (Moerbeek, 2021). 

 

Judgement bias testing 

The test phase consisted of five trials, each with a cue of a different colour presented 

on the screen. The test colours were the two conditioned colours (green and blue), and 

three ambiguous colours of intermediate value between the two conditioned colours 

(near blue (RGB=0, 140, 150); medium (RGB= 0, 170, 120); near green (RGB= 0, 200, 

100) (Fig. 1B). We classified the ambiguous colours as near-high, medium, and near-

low cues depending on their distance to the high or low rewarding colour for each bee. 

The colour presentation order was pseudorandomized between all bees, so that the 
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first test colour was always one of the three ambiguous colour cues. Within the test 

phase, all colour cues (ambiguous and learnt) were not rewarded, i.e., both chambers 

contained 0.2 ml of distilled water. We classified the entry of a bee into a reward 

chamber as a choice. After it made the first choice, we gently captured the bee with a 

plastic cup and returned it to the tunnel connecting the nest and the arena. Between 

presentations of each of the five test cues, bees were provided refresher trials 

consisting of two presentations of each conditioned colour with the appropriate reward 

at the correct location. All trials were video recorded for later video analysis using the 

camera of a mobile phone (Huawei Nexus 6P, 1440 × 2560 px, 120 fps). We obtained 

the latencies for the choices from the video analysis. 

 

Measuring foraging motivation using ingestion rate 

To assess if our manipulations changed feeding motivation in bees, I measured sugar 

reward ingestion rates. A separate group of bees (n=36 from six colonies) were pre-

trained to forage of an elevated feeder consisting of the reward chamber used above 

with a 1.5 mL Eppendorf placed inside. After learning this location and completing five 

consecutive foraging bouts, bees were randomly allocated to one of three treatment 

groups as in the above experiment for the ingestion test (Control: n=12, Shaking: n=12, 

Trapping: n=12). The test consisted of a single foraging bout on a feeder with sucrose 

solution (~1 ml, 50% w/w). The feeder was weighed before and immediately after the 

test bout to determine the mass of ingested solution using a Kern Weighing Scale 

ADB100-4 (Resolution: mg±0.001, Kern & Sohn, Balingen, Germany). The feeding 

bouts were recorded using a mobile phone camera (Huawei Nexus 6P, 1440 × 2560 

px, 120 fps). The recordings were used to determine the time taken for ingestion. 

Ingestion time was defined as the time from when the bee first touched the sucrose 

solution with its proboscis until the bee stopped drinking. For each bee, I calculated 

the absolute ingestion rate 𝑖 (mg s-1): 

𝑖 = (𝑚1 −𝑚2)/𝑡 

where 𝑖 is the absolute ingestion rate of a bee, m1 is the mass of the feeder 

before the foraging bout, m2 is the mass of the feeder after the foraging bout, and t is 

the ingestion time of the bee. Upon the completion of the test, the bee was sacrificed 

by freezing and stored in 70% ethanol at -20°C. We measured the intertegular distance 
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(the width between the wing bases on the dorsal side of the thorax, ITD) and the length 

of the glossa (nectar-gathering tongue) of each bee with a digital calliper (RS PRO 

Digital Caliper, 0.01 mm ± 0.03 mm) under a dissecting microscope. We then adjusted 

the absolute ingestion rate 𝑖 to account for individual size variability using the formula: 

𝐼 = 𝑖𝑊!/#	𝐺 (Harder, 1983), 

where 𝑖 is the absolute ingestion rate of a bee, 𝐺 is the length of the glossa and 

𝑊 is the intertegular distance. This is an adaptation of the formula developed earlier 

(Harder, 1983) with intertegular distance instead of weight, as it has been shown to be 

precise at estimating bumblebee weights (Hagen and Dupont, 2013). 

To control for evaporation, we located an additional Eppendorf with 50% sugar 

solution on the opposite side of the test chamber and recorded its weight pre-and post-

test for an individual bee. This loss of mass due to evaporation was subtracted from 

the mass of the test feed after the foraging bout.  

 

Video analysis 

Video analysis was done using BORIS© (Behavior Observation Research Interactive 

Software, version 7.10.2107 (Friard and Gamba, 2016). In the judgment bias 

experiment, we coded two behaviours for each bee. The first behaviour, “Choice”, 

indicated bee entry into a reward chamber and was classified as a point event, an 

event which happen at a single point in time. The second coded behaviour, “Latency 

to choose”, was the time of making the choice and was classified as a state event, i.e., 

an ongoing event with a duration. For the foraging motivation experiment, we coded a 

single behaviour, “Drinking duration”, which was classified as a state event that 

indicated ingestion time. 

 

Statistical analysis 

My hypothesis and statistical analyses of the main active choice experiment were 

preregistered at aspredicted.com (#62198). The data were plotted and analysed using 

RStudio v.3.2.2 (The R Foundation for Statistical Computing, Vienna, Austria, 

http://www.r-project.org) and custom-written scripts. All subsequent statistical models 

http://www.r-project.org/
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for the data were fit by maximum likelihood estimation and, when necessary, optimised 

with the iterative algorithms BOBYQA. In each analysis, several models were run and 

compared using the model.sel function in the MuMIn package (Barton, 2023) to select 

the most appropriate model based on the Akaike information criterion (AIC) scores. I 

considered the model with the lowest AIC score the best model, i.e., the model that 

provides a satisfactory explanation of the variation in the data (Johnson and Omland, 

2004). Following accepted convention, models with an AIC difference of less than 2 

units were considered not significantly better than the model it is being compared to 

(Burnham and Anderson, 2004). In such case, anova() was used to determine whether 

adding interaction term significantly improved model fit. I used the package DHARMa 

(Hartig, 2020) for residual testing of all models.  

For the judgment bias analysis, I used the probability of an optimistic choice as 

the dependent variable, coding choices of reward chambers previously associated with 

high-value and low -value cues as 1 and 0 respectively. I fit a generalized linear mixed-

effect model (GLMM) using the glmer function of the lme4 package with binomial errors 

and a logit link function (Bates et al., 2015). The explanatory variables included in the 

model were “Treatment” (categorical: Control, Shaken, Trapped) and “Cue” 

(continuous: 1-5, where 1 = high and 5 = low value cue) which refers to the colour 

displayed on the screen. The identity of the bee (“ID”) was included as a random 

intercept variable. 

For the analysis of the choice latency in the judgment bias test, I fit a linear 

mixed-effect model (LMEM) using the lmer function of the lme4 package (Bates et al., 

2015). To normalise the error distribution, latency data were natural log-transformed 

and latencies greater than 1.5 times the Inter Quartile Range were excluded (Hubert 

and Van Der Veeken, 2008). The explanatory variables included in the model were 

“Treatment” (categorical: Control, Shaken, Trapped) and “Cue” (continuous: 1-5, where 

1 = high and 5 = low value cue). In addition, since we expected that optimistic 

responses would be faster, I also included "Response Type" (coded as 1 for optimistic 

responses, and 0 for pessimistic responses) as an explanatory variable in the model 

selection process. Bee identity (“ID”) was included as a random intercept variable.  

In addition to the above models, I ran other statistical tests for some analyses. 

Data for these tests were first tested for normality and the appropriate tests were 

subsequently employed for analysis. I ran a one-way ANOVA on the adjusted body size 
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ingestion rate data (as described in the SI) to test for differences between treatment 

(Control, Shaking, Trapping). I also used Kruskal-Wallis tests to compare the average 

number of trials to the criterion in the training phase for different treatment groups, and 

to investigate the potential impact of the side and colour associated with a high-value 

cue on learning. 

 

Signal Detection Theory model1 

We examined whether the behaviour of the bees could be modelled with standard 

signal detection theory, and what could then be inferred about the underlying 

mechanisms. We assumed that bees learn to make their foraging decisions during 

training based on the value of an internal signal that is affected by noise. When this 

signal exceeds an internal decision boundary, the bees behave appropriately for the 

low reward situation and when it is less than the boundary, they behave appropriately 

for the high reward situation. We modelled the distribution of the noisy signal and 

derived the probability of an optimistic response. 

We assumed that bees learn to make their foraging decision during training 

based on the value of an internal signal x which indicates whether they are in a high or 

low reward situation. We specified x as a “low reward signal” which has a high value 

when the cue indicates a low reward. We assumed that bees have some internal 

decision boundary B, such that when x>B, they behave appropriately for the low-

reward situation, and conversely when x<B for the high-reward. Although on average 

the value of x reflects the cue, it is affected by noise, explaining why bees do not always 

make the same decision in the same experimental situation. 

Since we have fitted our data with a logistic link function, we modelled the 

distribution of the noisy signal as the first derivative of a logistic function. The standard 

logistic is  

𝐹(𝑥) =
1

1 + exp(−𝑥)	 

 
1 The signal detection modelling described here was carried by Prof Jenny Read at Newcastle 

University 
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Equation 1 

and its first derivative is 

𝑓(𝑥) =
𝑑𝐹
dx =

exp(𝑥)
[1 + exp(𝑥)]% 

Equation 2 

which is therefore the distribution we assume for our noise. This closely 

resembles a Gaussian distribution with the same standard deviation but has more 

weight both at the centre and at the tails. 

The probability density function governing the distribution of the signal x is 
!
&
𝑓 :'()

&
;, where C represents the value of the cue and s is the noise. The probability 

of an optimistic response on any given trial is the probability that the value of x on this 

trial is less than the decision boundary B, given the value of the cue on this trial. This 

is 

𝑃*+, = = 𝑑𝑥
-

(.

1
𝜎 𝑓 ?

𝑥 − 𝐶
𝜎 A = 𝐹 ?

𝐵 − 𝐶
𝜎 A 

Equation 3 

The bee’s behaviour is thus influenced by the noise s and the decision boundary 

B. The noise may vary depending on factors like fatigue or attention, while the decision 

boundary may reflect a cognitive strategy. A common assumption is that the decision 

boundary is chosen so as to maximise expected reward.  

During training, the expected reward is  

< 𝑅 > 	 = 𝑃/0𝑅/0𝐹 ?
𝐵 − 𝐶/0

𝜎 A + 𝑃/0𝑊 F1 − 𝐹 ?
𝐵 − 𝐶/0

𝜎 AG + 𝑃1*𝑅1* F1 − 𝐹 ?
𝐵 − 𝐶1*

𝜎 AG

+ 𝑃1*𝑊𝐹 ?
𝐵 − 𝐶1*

𝜎 A 

Equation 4 

where PH and PLo represent the probabilities that a given trial offers high or low 

rewards, RH and RLo represent the utility to the bee of the 50% and 30% sucrose offered 
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on high or low trials, and W represents the utility of the water obtained when the bee 

makes the wrong choice.  

The optimal boundary Bopt , that maximises the expected reward then satisfies 

the equation 

𝑃/0(𝑅/0 −𝑊)𝑓 ?
𝐵*+, − 𝐶/0

𝜎 A = 𝑃1*(𝑅1* −𝑊)𝑓 ?
𝐵*+, − 𝐶1*

𝜎 A 

Equation 5 

(found by taking the derivative of the expected reward, Equation 4, with respect 

to B and finding where this is equal to 0). Note that it is possible that the bee is not 

maximising expected reward itself, but some transform of the reward (e.g., reward 

squared). Since our model has only two values for reward (High and Low), we can still 

represent any transform as two values (RHi and RLo) and the model would not be 

affected by non-linear transforms. 

Equation 5 has a simple graphical interpretation. First, the probability 

distributions for high and low reward are rescaled by their prior probability and by the 

additional utility of getting the trial right, compared to the water available with the wrong 

decision. Then, the optimal boundary is where these rescaled distributions cross over 

(Fig. 4). If the priors and reward utilities were equal, i.e. 𝑃/0(𝑅/0 −𝑊) = 𝑃1*(𝑅1* −𝑊), 

then the optimal decision boundary would be exactly in the middle between the two 

cues values: 𝐵*+, = 0.5(𝐶/0 + 𝐶1*). If the boundary was shifted to the right or left of the 

middle, this would indicate optimistic or pessimistic behaviour.  

We fit this model to our data and obtained the decision boundary and the noise 

for an optimal response given the reward values we used. We compared this decision 

boundary to the middle value of our response variable. If the boundary was shifted to 

the right or left of the middle, this would indicate optimistic or pessimistic behaviour 

respectively. 

 

2.3. Results 

Bumblebees were trained to associate cues of one colour with a location containing a 

high reward of 50% sucrose solution and cues of another colour with another location 
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containing lower reward of 30% sucrose solution. The association of rewards with the 

cue colours and the locations were counterbalanced across all the bees. Bees then 

experienced one of three treatment conditions. Two groups of bees were physically 

stressed by shaking or trapping, while the third group served as a control. I then 

presented the bees with cues of ambiguous colours between the two learnt colours in 

tests and noted whether they chose the location previously associated with high or 

lower rewards. I also presented the bee with the cues of the learnt colours during the 

tests and noted their choices. All the tests were unrewarded and only offered distilled 

water in the previously rewarding locations. 

 

Training 

During training, a total of 48 bumblebees achieved the learning criterion (80% correct 

on the last 20 choices) and continued to the judgment bias test. Bees completed 

training within a minimum of 30 and a maximum of 60 trials. There were no significant 

differences in the number of trials required to reach the criterion among bees that 

experienced the high reward on the right or left location (Kruskal-Wallis test: χ2 = 2.94, 

df = 1, p = 0.09). Similarly, there was no difference in the total number of trials to 

criterion for bees that experienced blue or green as the high reward colour (Kruskal-

Wallis test: χ2 = 0.94, df = 1, p = 0.33). The number of trials required to achieve the 

learning criterion also did not differ among bees used in each of the three treatment 

groups (Kruskal-Wallis test: χ2 = 0.88, df = 2, p = 0.64).  

In the last set of trials in the training phase, bees took longer to make a choice 

in trials with a low-reward compared to those with a high-reward cue (Appendix Table 

2, LMEM, Estimate ± standard error = 0.59±0.09, t = 6.79, p < 0.001). The median 

latency for choosing in low reward cue trials was 32.2 s (IQR: 35.8), and 17.3 s (IQR: 

7.34) for the high reward cue trials. Thus, bees could differentiate between both the 

colour cues and the two rewards. 

 

Physically stressed bees are less optimistic 

The best model for my data included the main effects of cue colour and treatment 

(shaking, trapping and control) but not an interaction effect (see supplementary 
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Appendix Table 1 for model selection details). Shaking significantly reduced the 

probability of bees responding optimistically, i.e., choosing the location associated with 

a high reward (Fig. 2A, Appendix Table 2, GLMM, Estimate ± standard error = -1.49 ± 

0.57, z = -2.61, p < 0.01). Trapping with a robotic arm also significantly reduced the 

likelihood of an optimistic response (Fig. 2A, Appendix Table 2, GLMM, Estimate ± 

standard error = -1.26 ± 0.56, z = -2.23, p = 0.026). Bees were also significantly less 

likely to respond optimistically to cues with colours further away from that of the high 

reward cue (Fig. 2A, Appendix Table 2, GLMM, Estimate ± standard error = -1.79 ± 

0.21, z = -8.39, p < 0.001). 

 

Feeding motivation and choice latencies 

I examined the change in latency to make a choice in the testing phase. The 

model that included Cue, Response, Treatment, and their interaction had the lowest 

AIC (234.6447). The closest competing model, which excluded Treatment, had a 

slightly higher AIC (235.4639). With a delta AIC of 0.8192, indicating no strong support 

for one model over the other. The ANOVA comparison shows that adding Treatment to 

the model does not provide a statistically significant improvement (χ²(2) = 4.82, p = 

0.09). The best-fitting model, therefore, included cue value and response type 

(optimistic or pessimistic) as fixed predictors and an interaction between them 

(Appendix Table 1). Including Treatment as an explanatory factor did not improve 

model fit, suggesting that the treatment group had limited power in explaining choice 

latency. All bees were significantly slower to make a choice when the cue colour was 

further away from that of the high reward cue (LMEM, Estimate ± standard error = -

0.09 ± 0.03, t value = -2.9, p = 0.0139). Additionally, bees were faster when making 

optimistic choices compared to pessimistic ones (LMEM, Model Estimate ± standard 

error = -0.91 ± 0.16, t = -5.6, p < 0.001). Importantly, the interaction between Cue and 

Response was significant, indicating that the effect of the cue on latency differed 

depending on whether the response was optimistic or pessimistic (LMEM, Estimate ± 

standard error = 0.26 ± 0.05, p < 0.001). 

I also tested the ingestion rate of sucrose solution as a measure of the feeding 

motivation of the bees. The mean (± s.d.) ingestion rate by shaken and trapped bees 

was 3.42 ± 0.67 mg/s, and 3.17 ± 0.61 mg/s respectively. These rates were not 



CHAPTER TWO. Physically stressed bees expect less reward  

  68 

significantly different from control bees (Fig. 2C, ANOVA: F(2, 33) = 0.642, p = 0.533), 

whose average ingestion rate was 3.17 ± 0.55 mg/s.  

 

 

 

Figure 2. Bee responses to test cues. A) Proportion of bees (N = 16 per treatment) making an 

optimistic choice (choosing a reward chamber associated with a high reward) in response to each of 
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five cues. B) Latency of making the choice in response to each of five cue values (N = 16 bees per 

treatment). C) Average ingestion rate of high reward (50% sugar solution) for bees in each treatment 

group (N = 12 bees per treatment). The treatment groups were control (blue), shaking (red), and trapping 

(orange). The test cues were high, near high, medium, near low, and low value cues depending on their 

distance to the colours of high- and low-reward cues. Points and bars represent means, and the shaded 

areas and error bars represent 95% bootstrapped confidence intervals. Grey dots in panel C represent 
values form individual bees. 

 

Signal-detection theory model 

According to a standard signal-detection theoretic approach, the probability that 

a bee makes an optimistic choice for Cue level C is (Equation 3) 

𝑃*+, = 𝐹 ?
𝐵 − 𝐶
𝜎 A, 

where σ is the noise on the internal signal, B is the decision boundary, and F is 

the logistic function. This is exactly the model fitted by our generalized linear mixed 

model (GLMM, see above), with the fitted gradient for Cue corresponding to −1/𝜎 and 

the intercept corresponding to 𝐵/𝜎. Thus, the fact that no interaction between Cue and 

Treatment has been found indicates that the effective noise level is not changed by our 

manipulations. The estimate of -1.79 for the gradient (Appendix Table 2) allows us to 

infer an effective noise level of σ = 0.56, in our units where Cue runs from 1 (high 

reward) to 5 (low reward).  

However, the significant main effect of Treatment indicates that the decision 

boundary was different in the two cases. The estimate of 6.05 (Appendix Table 2) for 

the intercept in the control condition implies that the decision boundary in this condition 

is 3.38. Bees in the Control treatment (Fig. 2A) are thus equally likely to make the 

optimistic or pessimistic response when the cue is a little closer to “near low” than 

medium (3). The fact that the intercept drops by -1.49 for the Shaking treatment and -

1.26 for Trapping (Appendix Table 2) implies that the boundary shifts leftward to 2.55 

and 2.68, respectively, in these conditions. The point at which these bees are equally 

likely to make optimistic and pessimistic choices is closer to “near high” than to medium 

(Fig. 3B).  

In the fitted model, weighted probability distributions for both low and high 

rewards have an equal spread, reflecting the noise level inferred from the GLMM. In 
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the Control treatment, the shift of the decision boundary reflects the greater weight 

given to the high reward. Quantitatively, the extent of the shift, together with the fitted 

noise level, implies that the high reward is given 3.6 times the weight of the low reward. 

This result also cannot be explained merely by the bees not perceiving the medium 

colour as midway between blue and green since both the high and low reward trials 

combine data from trials where the cue was blue and trials where it was green. Instead, 

this result might, for example, indicate that the bees understand that both rewards are 

equally likely (PHi = 50%) and find the 50% sucrose solution 3.6 times as rewarding, 

relative to water, as the 30% solution.  

The fact that the decision boundary is to the left of neutral in the Shaking and 

Trapping treatments indicates that here, greater weight is given to the low reward (Fig. 

3B). Assuming we can discount the possibility that the reward value has inverted (i.e., 

that stressed bees find 30% sucrose more rewarding than 50%), this must represent a 

shift in the priors, such that stressed bees now consider high-reward trials less likely. 

To match the extent of the leftward shift, given the noise level inferred from our GLMM 

fit, the low reward must be weighted 4.6 times as much as the high reward. If the 

reward ratio were 3.6, this would imply that the bees behave as if the perceived 

probability of the high reward was 6%. However, if stressed bees find 50% and 30% 

sucrose equally valuable, i.e., the stress has removed the difference in reward utility, 

then the observed shift in decision boundary could be produced with a less dramatic 

shift in the priors, with perceived probability of the high reward being 18%.  
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Figure 3. Bee decision-making boundaries and priors fitted by a signal-detection model. Curves 

depict the probability density functions for responses based on the internal signal x indicating a low 
reward. In each case, the original distribution has been weighted by the product of the value of that 

reward and its probability of occurring (Equation 5). The two curves in each panel depict the probabilities 

that the cue indicates high reward (green, centred on 1) or low reward (blue, centred on 5). Solid lines 

depict the decision boundary B inferred from the Generalized Linear Mixed Model fit to our data. Dotted 

lines indicate the medium point for comparison. Regions to the right of the solid boundary line are regions 

where the bee makes pessimistic choices (shaded blue). Regions to the left are regions where the bee 

makes optimistic choices (shaded green). Arrows depict the shift in boundaries compared to the control 

condition. The three panels depict the conditions for the A) Control, B) Shaking and C) Trapping 
treatments. Note the change in axes in the lower two panels. 
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2.4. Discussion  

I developed a novel task to assess emotion-like states in bees. Using an active choice 

judgment bias task, we demonstrated that physically stressed bees are more likely to 

make pessimistic choices when faced with ambiguous stimuli. A signal detection model 

of our data suggests that this behaviour is explained by a reduced expectation of 

rewards. I thus provide strong evidence for bee judgement biases and a possible 

explanation for bee behaviour in judgement bias tasks.  

Most studies of judgement bias tests have used a go/no-go paradigm. The 

results of these studies can be challenging to interpret due to confounds from other 

factors that do not involve stimulus judgements such as, for example, motivation. The 

active choice design presented here avoids these complications. Motivation alone 

cannot therefore explain the observed shift in responses in the manipulated bees in 

my experiment. This is further supported by the results of ingestion rate experiment, 

where I do not find differences in feeding motivation. Only one previous study has used 

an active choice design to study judgement biases in insects (Deakin et al., 2018). In 

that study, flies had to choose between two odours, one associated with a reward and 

another with punishment. Rather than using reward and punishment, we developed a 

novel paradigm for insects that uses two rewards of different quality. This allowed to 

investigate the mechanisms underlying the judgement bias in further detail and test 

how negative states modulate expectations and perceptions of reward. Using previous 

paradigms involving reward and punishment as the expected outcome can make it 

easier to detect affect-dependent judgement bias (Lagisz et al., 2020). I, however, find 

a bias in bee behaviour when using two rewards and an active choice paradigm, 

providing stronger evidence for affect-dependent processing in insects. 

 

Bees learnt the stimulus-outcome associations 

When performing an active choice task, it is important to ensure that the rewards used 

to condition the animals’ responses are not perceived as equally favourable. If so, the 

results of tests using ambiguous stimuli would reflect the animal’s colour preferences 

rather than its value-based interpretation. Bumblebees, however, can use colour cues 

to discriminate between rewards of varying value and prefer higher concentrations of 

sugar solution, including the colours and concentrations I used in my experiments 
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(Nityananda and Chittka, 2021). In my experiments, too, the bees chose high rewards 

significantly faster than lower rewards at the end of the training phase. In the tests, 

bees in all treatment groups also made slower choices as the cue value moved further 

away from the one indicating a high reward. The faster choice latency towards the high 

reward cue suggests that bees maintain their preference for higher rewards even after 

experiencing stress. This demonstrates that the bees distinguished between the high 

and low rewards, regardless of the associated colour. 

 

Physical stress was not detrimental to bee sensory perception 

Manipulations in judgement bias tasks need to change decision-making without 

impairing sensory perception or discrimination. In one previous test of judgement 

biases, shaken honeybees showed a decreased response not only to ambiguous 

odour mixtures but also to the conditioned negative odour (Bateson et al., 2011). This 

decrease has been suggested to indicate an improved ability to differentiate odours 

rather than a negative bias in judgement (Giurfa, 2013). In my experiment, however, 

the bees were perfectly accurate when responding to both conditioned cues (high and 

low) in the tests. The manipulations thus did not impair the colour discrimination 

abilities and memory of the bees. The preservation of high colour discrimination 

abilities is not surprising, as previous studies on Drosophila have successfully used 

shaking in aversive learning paradigms (Bicker and Reichert, 1978). Similar trapping 

mechanisms to the ones we used have also been employed in aversive learning tasks 

in bees (Ings, Wang and Chittka, 2012). 

 

Active choices are better indicators of judgments than latencies 

Latency is often used in go/no-go judgment bias tests to evaluate the emotional states 

of animals (Solvi, Baciadonna and Chittka, 2016). When evaluating an emotional state, 

it is important to determine whether it is positive or negative (known as valence). 

However, relying solely on latency as a measure of valence is not always reliable, as 

it can be affected by other factors unrelated to emotions. An increase in approach 

latency may be associated with a general increase in reactivity and arousal, for 

example, due to the increased energetic demands after experiencing stressful events 

(Even, Devaud and Barron, 2012). It may also indicate a shift in the perceived value of 
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the reward and differences in motivation (Karagiannis, Burman and Mills, 2015). 

Relying solely on latency can therefore make it challenging to interpret the results of 

judgment bias tests. For instance, exposure to a positive event has been reported to 

cause both longer (Burman et al., 2011) and shorter (Verbeek et al., 2014) response 

times to ambiguous stimuli. 

Only one study has used latencies to measure emotion-like states in bees 

(Solvi, Baciadonna and Chittka, 2016). This study used go/no-go type of judgment bias 

test to demonstrate an optimistic bias in bumblebees after receiving an unexpected 

reward of sugar solution. As predicted, unexpected rewards reduced the latency with 

which bees approached ambiguous stimuli. However, the treatment also caused an 

increase in thoracic temperature which has been linked to increased motivation for 

foraging in other studies (Sadler and Nieh, 2011). Further experiments did indicate that 

optimism was a more plausible explanation, but choice latency clearly could be 

influenced by motivational changes as well as judgements. The results of the present 

study showed that after trapping, bees had shorter latencies than the control bees. 

This could, in principle, have indicated a positive state, again demonstrating the 

difficulty of using latencies alone to interpret judgement bias data. However, since our 

study was an active choice design, I could more reliably use the choices made by the 

bees rather than their latencies. Choices can better indicate affective valence, showing 

that the trapped bees were in a pessimistic state. This makes a strong argument in 

favour of active choice judgement bias tasks such as the one we used in my study. 

 

Pessimistic choices by bees is related to a significant change in prior 
expectations 

To unravel the potential mechanisms underlying the choices made by the bees, a signal 

detection approach has been employed. This framework has previously been 

suggested as a valuable tool for investigating affective biases (Locke and Robinson, 

2021). A recent study has suggested that judgement biases in bees may be caused by 

a shift in stimulus-response curves (Strang and Muth, 2023). However, this study did 

not investigate the underlying causal mechanisms of this shift. In our model, the 

estimation of future outcomes combines estimates of the probability of an outcome 

occurring and the magnitude of the payoff from an outcome. The signal detection 

analysis demonstrates that control bees exhibit a higher probability of responding 
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optimistically to ambiguous cues, indicating an expectation of high rewards. Such a 

bias would not be suboptimal as it is in fact what is predicted by a rational, fully informed 

strategy which optimises expected reward. Even if the bees are estimating the priors 

correctly as 50-50, the difference in reward utility will still shift the decision boundary 

towards the cue indicating low reward (Fig. 4A). Our model shows that the control bees 

are behaving as if 50% sucrose is 3.6 times more valuable, relative to water than 30% 

sucrose. Thus, the data admit the possibility that the bees’ behaviour is completely 

rational and unbiased, and the 50% sucrose is much more rewarding. 

However, the decision boundary for the stressed bees is harder to interpret. 

Here, the decision boundary is to the left of neutral. Previous studies have shown that 

acute stress can increase an animal’s sensitivity to the reward (Hernandez et al., 

2015). However, the observed left shift of the decision boundary in stressed bees 

cannot plausibly reflect such a change in reward sensitivity since a leftward shift could 

only be produced if the value of high and low rewards were swapped, i.e., if 50% 

sucrose became less rewarding than 30%. However, it could reflect a pessimistic bias 

in expectations, i.e., that the stressed bees behave as if high-reward priors are less 

likely (PHi < PLo), perhaps because in nature high rewards are indeed scarcer when 

conditions are stressful. This can account for a leftward shift, but the large quantitative 

extent of the shift is still surprising. Since the noise remains relatively small, as 

indicated by the perfect performance for high and low cues, we have to postulate 

enormous changes in the priors to produce the observed shift. To obtain the decision 

boundary of 2.55 inferred for shaken bees, we would have to postulate that shaken 

bees estimate PLo = 94%, i.e., they expect a high reward to be available on only one 

trial in 20. This assumes that the reward utility remains the same, with a high reward 

3.6 times as valuable as a low. If the relative utility of the high reward increased, e.g., 

because of an increased need for sucrose after stress (Even, Devaud and Barron, 

2012), the priors would have to shift even further from 50%. However, one possibility 

is that, contrary to the assumptions of our model, the noise was not uniform for all cues, 

and there was more sensory noise on intermediate values of the cue. If this were so, 

the change in priors would not need to be as dramatic, although the basic result of 

changed priors would remain true. 

By employing an active choice judgment bias task, my results support the 

possibility of emotion-like states in bees, further suggesting the widespread nature of 

these states. Moreover, I also provide robust evidence that neither motivational factors 
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nor colour discrimination alone can account for the observed cognitive biases. 

Importantly, the modelling indicates that the pessimistic-like behaviour results from a 

significant shift in prior expectations of rewards occurring after stress. These novel 

insights into the underlying causal mechanisms of state-dependent judgment biases in 

insects open new avenues for exploring state-dependent decision-making in insects. 

 



CHAPTER TWO. Physically stressed bees expect less reward  

  77 

2.6. Appendix  

 Table 1 
 

 Summary of model selection to analyse the impact of stress treatments 
(shaking/trapping) on performance in the judgement bias task 
 

Explanatory variables    

Dependent variable Fixed Random d.f. AIC ΔAIC 
Optimistic Response Treatment+Cue ID 5 179.81 0.00 
 Treatment*Cue ID 7 183.24 3.43 
 Cue ID 3 184.39 4.57 
 Treatment ID 4 335.19 155.38 
 (1|ID) ID 2 336.11 156.30 
log(Choice latency) Cue*Response+Treatment ID 8 234.64 0.00 
 Cue*Response ID 6 235.46 0.82 
 Cue+Treatment+Response ID 14 242.35 7.70 
 Cue*Treatment*Response ID 6 256.38 21.73 
 Response ID 4 256.47 21.83 
 Cue+Response ID 5 257.39 22.74 
 Cue+Treatment+Response ID 7 257.46 22.82 
 Cue*Treatment+Response ID 9 259.14 24.50 
 Cue+Treatment*Response ID 8 260.15 25.51 
 Cue ID 4 260.17 25.52 
 Cue+Treatment ID 6 260.92 26.28 
 Cue+Treatment*Response ID 9 261.28 26.64 
 Cue*Treatment ID 8 262.74 28.09 
 (1|ID) ID 3 273.35 38.71 
log(Training latency) Cue ID 4 137.36 0.00 
 Cue+Treatment ID 6 144.68 7.32 
 Cue*Treatment ID 8 150.98 13.62 
 (1|ID) ID 3 162.20 24.83 
 Treatment ID 5 169.53 32.17 
Three models were fit to analyse 1) the likelihood of choosing reward chamber associated with high reward (optimistic 

response) and 2) Choice latency in the test and 3) Choice latency during training in trials with high and low cues. Only 

summaries of the best fit models are shown. For each model, fixed and random explanatory variables, degrees of freedom 

(d.f.) and Akaike’s Information criterion (AIC) are detailed. For each dependent variable, the selected model, i.e., the one with 

the lowest AIC, is indicated in bold. 
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Table 2 

Summary of the best fit statistical models analysing the impact of stress treatments 
(shaking/trapping) on performance in the judgement bias task. 

Response variable  Estimate Std. Error z value/ 
t value Pr(>|z|) 

Optimistic response (Intercept) 6.05 0.81 7.46 0.000 
 Cue -1.79 0.21 -8.39 0.000 
 Treatment(Shaking) -1.49 0.57 -2.61 0.009 
 Treatment(Trapping) -1.26 0.56 -2.23 0.026 
log(Choice latency) (Intercept) 3.63 0.15 24.87 0.000 
 Cue -0.09 0.03 -2.48 0.014 
 Response(Optimistic 

choice) -0.91 0.16 -5.59 0.000 

 Cue*Response(Optimistic 
choice) 0.26 0.05 5.06 0.000 

log(Training 
latency) (Intercept) 2.87 0.08 35.95 0.000 
 Cue 0.59 0.09 6.79 0.000 
The table provides summaries of the best fit models for the effects of the treatments, shaking and trapping, on the performance 
of subjects in the judgment bias task. The data is presented in terms of estimated coefficients, standard errors, z-values 
(Optimistic response model) or t-values (Choice latency model), and the associated p-values for response variables and 
predictor variables. 
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CHAPTER THREE 

Stress increases the resolution of bee vision 
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3.1. Introduction 

Bees inhabit an environment rich in visual cues. To support a colony’s needs, social  

bees have evolved the capacity to use different floral traits to obtain a reward. For 

example, bees use colour (Gumbert, 2000) and size (Ronacher, 1992; Spaethe, Tautz 

and Chittka, 2001) to guide their flower choices. They can also discriminate visual 

patterns based on orientation (Wehner, 1971; Srinivasan, Zhang and Rolfe, 1993; 

Giger and Srinivasan, 1996), shape (Zhang and Srinivasan, 1994), and even symmetry 

(Moller, 1994). In addition to using single traits to guide their behaviour towards reward, 

bees can also extract regularities from more complex visual patterns to achieve their 

goals (Stach, Benard and Giurfa, 2004).  

Not all visual cues in the bee environment, however, are reward-related. Some 

cues signal dangers. For example, crab spiders, sit-and-wait predators, can 

camouflage themselves on flowers, making flowers dangerous foraging sites, and 

therefore reducing pollinator visitation frequency as well as the overall time spent on 

flowers (Romero, Antiqueira and Koricheva, 2011). To maximise energy intake, bees 

therefore constantly need to balance their “attention” between visual cues needed for 

flower identification and cues indicating danger (Wang et al., 2013). Given that past 

experiences shape how animals perceive the world (Snyder et al., 2015), it is 

reasonable to assume that this attention allocation trade-off would prioritise processing 

threat-reated stimuli if previously encountered with a predatory attack. Consequently, 

negative past experiences can result in attentional bias, i.e., an increased processing 

of threat-related stimuli (Math and Mackin, 1998; Mogg and Bradley, 1998; Kindt and 

van den Hout, 2001; Bar-Haim et al., 2007). The pronounced presence of attentional 

biases seen with negative emotional states suggests the inherent functionality of these 

states — for instance, swift threat detection (for examples see 1.2. Conceptualising 

Emotions). The mechanisms for such adaptation can, for example, involve a fine-

tuning of perception towards the detection of specific features within enviroment that 

potentiate survival (Mogg and Bradley, 1998). Given this adaptive function of negative 

states, could bees also benefit from it? Could experiencing a sudden predatory event 

that induces a negative state in bees (as discussed in Chapter Two) potentially 

enhance their visual perception and improve the detection of task-relevant 

information?  
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While visual perception is predetermined by the optical quality of the eye (e.g., 

eye size), this only sets its upper boundary (Spaethe and Chittka, 2003). In humans, 

affective states can play a crucial role in directly influencing visual perception 

(Vuilleumier, 2005; Mathewson, Arnell and Mansfield, 2008; Bocanegra and 

Zeelenberg, 2009; Zadra and Clore, 2011). Recent studies demonstrate that emotion-

induced modulation can occur at the level of early vision, thereby directly altering the 

processing of low-level visual information. For instance, in mammals, an early-warning 

system mediated by the amygdala has been proposed (LeDoux, 2000; Phelps and 

LeDoux, 2005). Here, the amygdala drives a rapid and pre-attentive evaluation of 

threat-related cues in a way that enables a swift shift of attention toward such cues and 

initiates subsequent behavioural responses. Thus, affect can prepare the visual system 

for detecting relevant information in the environment (Schwarz and Clore, 1983; Zadra 

and Clore, 2011). 

Several human studies have shown that fear can modulate early visual 

perception, heighten stimulus-driven attention, and, consequently, facilitate visual 

search. For instance, Phelps, Ling, and Carrasco (2006) demonstrated that the brief 

presentation of a fearful face facilitates target detection by enhancing contrast 

sensitivity. Similarly, fear-induced states have been found to facilitate the detection of 

non-threatening but task-relevant objects (Becker, 2009). Researchers have also 

shown increased sensitivity to low-level spatial frequencies, another crucial component 

of visual acuity, in response to fear (Bocanegra and Zeelenberg, 2009; Bocanegra, 

2011). Similarly, emotional arousal leads to a shift in peak contrast sensitivity towards 

lower spatial frequencies (Lee et al., 2014).  

Recent research has shed light on how acute exposure to negative events 

simulating predatory attack can influence the internal state of bees, resembling 

negative emotional states in other animals (see Chapter Two). Although little is known 

about the underlying mechanisms, the findings clearly show state-induced modulations 

of responses to ambiguous information. We do not however know at what stages of 

information processing these modulations occur. 

In this study, I therefore explored whether the emotion-like states previously 

observed in bees have a similar influence on how bumblebees perceive their visual 

environment as they do in humans. To address this question, I adopted the assay 

developed to characterise visual acuity in Bombus terrestris (Chakravarthi et al., 2016). 
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Bees were trained to discriminate rewarding horizontal sigmoidal gratings from 

unrewarded vertical ones in a Y-maze set-up. Subsequently, bees were tested on 

grating pairs with varying spatial frequencies and decreasing contrasts to determine 

their spatial resolution and contrast thresholds. I hypothesised that exposing bees to 

simulated predatory attacks, and the resultant negative emotional states would lead to 

a shift in contrast and spatial resolution thresholds.  

 

3.2. Materials and methods 

Animals and housing  

For this experiment, I used four commercially raised Bombus terrestris colonies 

(Agralan, UK) that I transferred to bipartite plastic nest-boxes (28.0 × 16.0 × 12.0 cm). 

The nest-box was connected to the Y-maze via a transparent acrylic tunnel (56.0 × 5.0 

× 5.0 cm). Multiple shutters allowed me to control which bees accessed the maze. 

Bees were kept under standardized temperature conditions (23 ± 2 ̊C). To provide 

illumination, I attached double LED tubes (Philips CorePro LEDtube UN 600mm HO 

8W865 T8) above the flight arena. The luminance was equally spread in the Y-maze, 

with an average of 1100 lux in both arms and 1020 lux at the entrance to the maze, as 

measured by a digital light meter (Dr. meter, LX1010BS, USA).  

Through the experimental period, colonies were fed with ~ 3g commercial pollen 

daily (Koppert B. V., The Netherlands) and provided with sucrose solution (20% w/w) 

ad libitum outside the experimental work. Before the onset of training or testing, bees 

were food-deprived by removing the feeder for the arena. Although invertebrates do 

not fall under the Animals (Scientific Procedures) Act, 1986 (ASPA), the experimental 

design and protocols were developed incorporating the 3Rs principles. Housing, 

maintenance, and experimental procedures were non-invasive and were kept as close 

as possible to the natural living conditions of the animals.  

 

Training Apparatus 

Bumblebees were individually trained in a Y-maze custom-built at Newcastle University 

(see Fig. 1A). This Y-maze design followed the specifications of a previously published 
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experiment designed for measuring visual acuity in Bombus terrestris (Chakravarthi et 

al., 2016). The Y-maze comprised three identical arms, each measuring 20 cm in 

height, width, and length, and covered with UV-transparent Plexiglas sheets. Two of 

these three arms served as decision arms, while the third functioned as the entrance 

arm. The entrance arm contained a transparent Plexiglass tunnel (3 cm x 3 cm x 3 cm), 

which connected to the other two arms within the maze. This tunnel in the entrance 

arm provided direct access to an outer tunnel leading to the nest-box. The back wall of 

each decision arm was equipped with a hole (1cm in diameter) used for the insertion 

of a reward chamber.  

 

 

Figure 1. Experimental setup and morphological measurements. A) Experimental setup and stimuli. 

Bees accessed the decision arms through the entrance at the end of the tunnel. Both decision arms (20 

x 20 x 20 cm) contained openings that led to a rewarding chamber which bees had to enter in order to 

sample its content. During training and testing trials, achromatic sinusoidal gratings were positioned on 
the back wall of each decision arm. The choice was determined by the first crossing of the 20 cm 

decision line in either of the two decision arms. B) Morphological measurements included the length of 

the compound eye (EL) and the intertegular width (ITW). 

 

Stimuli 
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The stimuli were identical to those in Chakravarthi et al., 2016 and consisted of 

achromatic sinusoidal gratings with pattern wavelengths of 6.6, 5, 2.5, 1.53, 1.25, 1.0, 

and 0.5 cm, corresponding to spatial frequencies of 0.035, 0.070, 0.140, 0.280, 0.437, 

and 0.699 cycles deg−1 of visual angle at the 20 cm decision line (see Fig. 1A). Patterns 

with spatial frequency of 0.070 cycles deg−1 and 87% contrast were used for training 

because they have previously been shown to be the easiest for bees to resolve 

(Chakravarthi et al., 2016). For the contrast sensitivity experiments, I used gratings 

with a fixed spatial frequency of 0.070 cycles deg−1, and varying in Michelson contrasts, 

specifically 89%, 68%, 54%, 39%, and 22%. For the spatial resolution experiment, I 

used gratings of varying spatial frequencies of 0.035, 0.070, 0.140, 0.280, 0.437, and 

0.699 cycles deg−1 at a fixed contrast, 87%.  

 

Training and testing procedure 

Pre-training  

Bees foraging on the feeder were marked with a paint marker (Edding 750, Japan) and 

later recruited for training. The initial training step involved familiarising the bees with 

the two reward chamber locations. To do so, I used a cup to capture a bee at the 

entrance to the maze and aligned the opening of the cup with the entrance to the 

reward chamber. This manipulation forced the bee to enter the reward chamber and 

discover a sugar solution droplet for the first time (0.2 ml, 50% w/w). This procedure 

was repeated twice for each reward chamber for a total of four trials. During pre-

training, bees were presented with two gratings for the first time: one positioned 

horizontally and the other vertically, with one grating in each arm (see Fig. 1A). Through 

the experiment, the horizontal grating was always associated with a reward, and the 

vertical grating with water. During pre-training, the initial presentation of the rewarding 

horizontal grating was randomised across bees. Subsequently, the side of this grating 

in the three following pre-training trials was alternated based on the initial presentation 

sequence (e.g., L-R-L-R or R-L-R-L).  

 

Training  
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After the forced-choice pre-training, the subsequent training phase began by allowing 

bees to access the reward chamber freely. As before, on each training trial bees were 

presented with horizontal and vertical gratings positioned in the decision arms. The 

reward chamber on the arm with the horizontal grating contained a sugar reward (0.2 

ml, 50% w/w), while the reward chamber on the side of the vertical grating contained 

water (0.2 ml). The side of the rewarding horizontal gratings was pseudorandomised 

across trials, with no more than two consecutive presentations of horizontal gratings 

on the same side. A new pseudorandom sequence was generated for each bee. In 

both training and test phases, reward chambers were changed on each trial to provide 

bees with fresh sucrose reward/distilled water and to control for the presence of any 

pheromones or scent marks remaining when bees entered the chamber. In preparation 

for the next experimental day, all used chambers were washed in 70% ethanol and hot 

water and left to dry. 

In previous visual acuity experiments (Chakravarthi et al., 2016), a stationary 

point at the entrance to the maze was used as the decision point. However, I observed 

that some bees crawled instead of taking off immediately upon entering the tunnel. 

Therefore, this stationary point was considered ineffective as a decision point for my 

study. To avoid inaccurate measurements, and following some previous studies (e.g. 

(Spaethe and Chittka, 2003), the choice point was defined as the first crossing of the 

20 cm decision line in either of the two decision arms. This adjustment allowed bees 

to navigate a small triangular area after entering but before making their choice. Bees 

that successfully learned to distinguish between horizontal and vertical gratings and 

met the learning criterion (80% accuracy in the last 20 trials) proceeded to the testing 

phase. 

 

Testing 

Each bee underwent a total of 14 test trials. Each test trial consisted of the presentation 

of one vertical and one horizontal grating with identical spatial frequencies and contrast 

levels. In separate test trials, each bee was tested on six distinct spatial frequencies, 

all at a fixed maximum of 87% contrast. The six spatial frequencies used were 0.035, 

0.070, 0.140, 0.280, 0.437, and 0.699 cycles deg−1. Of these spatial frequencies, three 

(0.280, 0.437, and 0.699 cycles deg−1) were tested twice for each bee, as they are less 

effectively resolved by bees (Chakravarthi et al., 2016). To assess contrast sensitivity, 
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bees were presented with gratings featuring a fixed spatial frequency of 0.070 cycles 

deg−1 but varying contrasts of 87%, 68%, 54%, 39%, and 22%. As before, the bee's 

choice was recorded when it crossed the decision line for the first time. Additionally, 

the final decision of the bee, i.e., entering a reward chamber, was also recorded. Bees 

failing to enter either reward chamber within a 120-second period were categorised as 

“omissions” from making a final choice. 

All test trials were unrewarded, with both reward chambers containing 0.2 ml of 

distilled water. Following each test trial, bees were given a minimum of two refresher 

trials, which required them to perform the same task as during training and were 

rewarded for making the correct choice.  

 

Predatory attack simulation 

Prior to testing, individual bees were randomly allocated to one of two groups: shaking 

(n = 20) or an unmanipulated group that served as a control (n = 20). The bees in the 

shaken group were individually subjected to 60 seconds of shaking at 1200 rpm using 

a Vortex-T Genie 2. Before entering the flight arena, I allowed the bee to enter a 

custom-made tagging cage softened by the sponge to prevent physically harming 

animals while shaking (40 mm diameter, 7.5 cm length). After entering, the bee was 

gently nudged down with a soft foam plunger until the distance between the plunger 

and the bottom of the cage was reduced to ~3 cm. Once the plunger was secured, the 

cage with the bee was placed inside the vortex cup head. I then ran the Vortex at 1200 

rpm for 60 seconds to shake the bee. After the shaking, performed before each test 

trial, I released the bee into the tunnel connected to the Y-maze via an opening on the 

top of the tunnel. The bee was allowed to enter the Y-maze for testing as soon as it 

was ready to initiate a foraging bout (up to a maximum time of 60 seconds).  

 

Video analysis 

All test trials were recorded using a Huawei Nexus 6P phone with a 1440 × 2560 pixels 

resolution, capturing video at 120 frames per second (fps). Subsequently, I used the 

video analysis program BORIS 7.10.2107 (Friard and Gamba, 2016) to analyse the 

recorded videos and extract information about bee choices. Specifically, the following 



CHAPTER THREE. Stress increases the resolution of bee vision 

  90 

time points were coded during analysis: 1) the bee entering the Y-maze, 2) the bee 

crossing the decision line, and 3) the bee entering the reward chamber. These coded 

timepoints were used to determine which arm was entered when the decision line was 

crossed, and which reward chamber was entered. They were also used to calculate 

latencies for both decisions. 

 

Statistical analysis  

My hypothesis and statistical analyses of the main active choice experiment were 

preregistered at aspredicted.com (#132314). The data were plotted and analysed 

using RStudio v.3.2.2 (The R Foundation for Statistical Computing, Vienna, Austria, 

http://www.r-project.org) and custom-written scripts. To determine the thresholds for 

contrast sensitivity and spatial resolution, I fit a logistic psychometric function 

(quickpsy, “quickpsy” package (Linares and López-Moliner, 2016) to the binomial 

choice data of the bees. In this model, a choice of 1 indicated crossing the decision 

line in the arm with the rewarding stimulus (hereafter rewarding arm), while a choice of 

0 indicated crossing in the arms with the unrewarding stimulus (hereafter non-

rewarding arm). The psychometric function is defined as: 

𝜓	(𝑥) = 	𝛾 + (1 − 	𝛾 − 	𝜆) :1 + 𝑒2
!"#
$ 3;

(!
, (1) 

here 𝜓	(𝑥) represents the proportion of correct choices across different spatial 

frequencies or contrasts. The parameter 𝛾 represents chance performance and was 

held constant at 0.5, while the parameter 𝜆 accounts for stimulus-independent error or 

lapse rate, allowing for variability (set as “TRUE”) (Wichmann and Hill, 2001). The 

function was fit using a maximum likelihood method and parametric bootstrapping to 

estimate confidence intervals.  

I fit a generalized mixed effect model (GLMM) with a binomial error distribution 

and a logit link function (glmmTMB, “glmmTBM” package (Magnusson et al., 2017) to 

assess if shaking modulated a bee's ability to discriminate between horizontal and 

vertical patterns with decreasing contrasts and varying spatial frequencies. While the 

effects of spatial frequency and contrast were analysed separately, the response 

variable in all sets of models was choice accuracy (coded as 1 for crossing the decision 

line in the positive arm with horizontal grating and 0 for crossing the decision line in the 

http://www.r-project.org/
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negative arm with vertical grating). For the analysis of the effects of contrast, the 

explanatory variables were Michelson contrast (“Contrast”, coded as a continuous 

variable and included all five contrasts: 22%, 39%, 54%, 68%, and 87%), treatment 

(“Treatment”, coded as a factor with two levels: control and shaking) and bee eye width 

(“Eye width”, coded as a continuous variable). For the analysis of the effect of spatial 

frequency, the explanatory variables were spatial frequency (“Frequency”, coded as a 

factor of six levels: 0.699, 0.437, 0.280, 0.140, 0.070, and 0.035 cycles deg−1), 

treatment (“Treatment”: coded as a factor with two levels: control and shaking) and bee 

eye width (“Eye width”, coded as a continuous variable). In all models, the identity of 

the bee (“ID”) was included as a random intercept variable. 

Both initial choice (crossing the decision line) and final choice (entering the 

reward chamber) latency was modelled using a linear mixed effect model (LMEM) 

(lmer, lme4 package (Bates et al., 2015). As before, the effects of spatial frequency 

and contrast were analysed separately. In all models, the response variable, latency, 

was log-transformed to normalise the right-skewed nature of the data. To assess if 

shaking affected the latency (either initial or final) on the trials with decreasing contrast, 

the explanatory variables were Michelson contrast (“Contrast”, coded as a factor of five 

levels: 22%, 39%, 54%, 68%, and 87%), treatment (“Treatment”, coded as a factor with 

two levels: control and shaking). To analyse the effect of varying spatial frequencies, 

the explanatory variables were spatial frequency (“Frequency”, coded as a factor of six 

levels: 0.699, 0.437, 0.280, 0.140, 0.070, and 0.035 cycles deg−1), treatment 

(“Treatment”: coded as a factor with two levels: control and shaking) and bee eye width 

(“Eye width”, coded as a continuous variable). As before, in all models, the identity of 

the bee (“ID”) was included as a random intercept variable. 

The final choice of reward chamber in each test was categorised according to 

three mutually exclusive choice categories: choosing a reward chamber on the side of 

horizontal gratings (correct), choosing a reward chamber on the side of vertical 

gratings (incorrect), and omission of response (omission). Response omission was 

recorded if the bee did not enter either reward chamber for longer than the cut-off 

criterion of 120 seconds. Each choice was transformed into binary response variable 

for each choice category. Thus, if a bee entered a reward chamber in the correct arm 

with horizontal grating, the choice was recorded as (1, 0, 0) for a choice of the correct, 

incorrect, and omission, respectively.  
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Choices were analysed using generalized mixed linear models (GLMM) using 

the glmer function of the lme4 package with binomial errors and a logit link function 

(Bates et al., 2015).The independent variables (fixed factors) were the treatment group 

(Treatment) and the choice category (Choice). As before, the identity of the bee (ID) 

was included as a random factor. For best-fitting models with interaction, the 

significance for each fixed factor and interaction term were estimated using Anova() 

(“car” package (Fox et al., 2012)). The Tukey method was used for multiple 

comparisons (emmeans, “emmeans” package (Lenth et al., 2019) within the model 

with a significant interaction. 

For each response variable, the model selection process comprised comparing 

models with and without all possible interactions between explanatory variables. The 

most appropriate model was selected based on the Akaike information criterion (AIC) 

scores. I considered the model with the lowest AIC score the best model, i.e., the model 

that provides a satisfactory explanation of the variation in the data (Johnson and 

Omland, 2004). Following accepted convention, models with an AIC difference of less 

than 2 were considered not significantly better than the model it is being compared to 

(Burnham and Anderson, 2004). In such case, anova() was used to determine whether 

adding interaction term significantly improved model fit. I used the package DHARMa 

(Hartig, 2020) for residual testing of all models.  

 

3.3. Results 

A total of eight bees were excluded either due to ceasing foraging or being unable to 

overcome side bias, resulting in a final sample size of 40 bees. Half of the bees that 

successfully learned to discriminate between vertical and horizontal gratings were 

randomly allocated to the shaking group and the other half were allocated to the control 

treatment group. Bees in the shaking group were subjected to 60 seconds of vigorous 

shaking before each test trial, while control bees were left unmanipulated. The test 

consisted of the presentation of vertical and horizontal gratings at varying spatial 

frequencies and decreasing contrasts. Each bee was tested on six different spatial 

frequencies, with three of them repeated twice, all at a fixed contrast of 87%. Bees 

were also tested with gratings with decreasing contrasts (68%, 54%, 39%, and 22%) 

at a fixed spatial frequency of 0.070 cycles deg−1. 
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Morphometric measurements of shaken and control bees 

The intertegular width of the bees ranged from 3.62 mm to 4.27 mm for control bees 

(mean ± standard deviation: 3.99 ± 0.156 mm) and 3.65 mm to 4.19 mm for shaken 

bees (mean ± standard deviation: 3.93 ± 0.202 mm). The eye length fluctuated 

between 2.52 mm to 2.79 mm for control bees (mean ± standard deviation: 2.65 ± 

0.085 mm) and 2.42 mm to 2.90 mm for shaken bees (mean ± standard deviation: 2.72 

± 0.112 mm). In line with previous studies (Spaethe and Chittka, 2003), the correlation 

between these two measures was statistically significant (Control: r = 0.75, p < 

0.00001; Shaking: r = 0.70, p < 0.00001). Given the high correlation between these 

measures, I used eye length to assess whether bee response accuracy was influenced 

by bee size across treatments and tests. Consequently, eye length was included as an 

explanatory factor in all subsequent models assessing bee performance. 

 

Shaken bees have higher contrast thresholds and a shift of the spatial resolution 
threshold towards higher frequencies  

Contrast thresholds 

The contrast threshold was determined by fitting a logistic function to the proportion of 

correct choices made at a decision line. The data included trials where gratings were 

expressed at five contrasts (87%, 68%, 54%, 39%, and 22%) with a fixed spatial 

frequency of 0.070 cycles deg−1. A value of 0.8 correct choices was chosen to measure 

the threshold for both the control and shaken treatment groups, as this value was 

exceeded at most contrasts (see Fig. 2A). The control group had a contrast threshold 

of 22.10% Michelson contrast, while the shaken group had a lower contrast sensitivity, 

with higher contrast threshold of 35.93%. These results suggest that shaken bees have 

worse discriminability at lower contrasts, as they require a higher contrast threshold to 

achieve the same level of performance as the control bees. 

 

Spatial resolution thresholds 



CHAPTER THREE. Stress increases the resolution of bee vision 

  94 

To determine the spatial resolution threshold, I again fit a logistic function to the 

proportion of correct choices made at a decision line. Here, data included trials with 

gratings of varying spatial frequencies (0.035, 0.070, 0.140, 0.280, 0.437, and 0.699 

cycles deg−1), and fixed contrast (87%). Due to the relatively poor performance, 

especially at higher spatial frequencies (see Fig. 3A), the value of 0.65 correct choices 

was set to measure the threshold for both the control and shaken treatment groups. 

Although lower than the one used for contrast sensitivity, this value remained 

significantly above the chance level (binomial test, X2 = 8.41, df = 1, p-value = 0.0037).  

For control bees, the spatial resolution threshold for discriminating between 

vertically and horizontally oriented sinusoidal grating patterns was determined to 

correspond to a spatial frequency of 0.235 cycles deg−1. However, the spatial 

resolution for shaken bees was higher, with a spatial frequency of 0.344 cycles deg−1. 

Therefore, while control bees were able to distinguish gratings expressed in three out 

of six tested spatial frequencies (0.035, 0.07, 0.140 cycles deg−1) with an accuracy 

above 65%, shaken bees demonstrated the capacity to discriminate patterns 

expressed at even higher spatial frequencies; including all three that control bees could 

(0.035, 0.07, 0.140 cycles deg−1), in addition to 0.280 cycles deg−1. A spatial resolution 

of 2.91° in shaken bees suggests they can distinguish finer details and patterns at a 

smaller angular size than the control group.  

 

 

Figure 2. Shaking reduces the contrast sensitivity threshold and choice latency but only at 
contrast of 54%. A) Proportion of correct choices made by control (blue bars) and shaken (red bars) 
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bees at the decision line. The dotted line represents the thresholds at 0.80 proportion of correct choices 

for both groups, derived from the fitted logistic function (blue solid line control, red solid line shaking). 

Error bars represent the 95% confidence interval for the threshold. B) Average latency to cross the 

decision line for control (blue) and shaken (red) bees. The solid grey line indicates the cumulative latency 

averaged across all bees. The averages are presented as a median with the 95% confidence interval 

(shaded area). 

 

Figure 3. Shaking increases spatial resolution without affecting latency. A) Proportion of correct 

choices made by control (blue bars) and shaken (red bars) bees at the decision line. The dotted line 

represents the thresholds at 0.65 proportion of correct choices for both groups, derived from the fitted 

logistic function (blue solid line control, red solid line shaking). Error bars represent the 95% confidence 

interval for the threshold. B) Average latency to cross the decision line for control (blue) and shaken 
(red) bees. The solid grey line indicates the cumulative latency averaged across all bees. The averages 

are presented as a median with the 95% confidence interval (shaded area). 

 

Shaking does not affect initial choice accuracy or choice latency at the decision 
line 

The effect of contrast sensitivity 

Surprisingly, bees demonstrated remarkable accuracy in distinguishing between 

horizontal and vertical gratings, even when tested at lower contrast levels (see Fig. 

2A). Despite the high performance, the contrast threshold for shaken bees was found 

to be higher (Fig. 2A). I, therefore, wanted to determine whether this higher contrast 

threshold had a substantial impact on their overall choice accuracy. 
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The model for evaluating grating discrimination accuracy at the decision line, 

which included treatment, contrast, and eye width as fixed predictors without any 

interaction terms, had the lowest AIC (149.34). The closest competing models, which 

included interaction terms, had slightly higher AIC values (150.25 for the model with 

an interaction between contrast and eye width; 150.88 with an interaction between 

treatment and eye width; 150.99 with an interaction between treatment and contrast). 

A delta AIC lower than 2 units indicates no strong support for these alternative models 

over the best-fitting model. ANOVA comparisons further confirmed that adding any of 

the interaction terms does not provide a statistically significant improvement (Appendix 

Table 1). Therefore, the best-fitting model included treatment, contrast, and eye width 

as fixed predictors without any interaction terms (see Appendix Table 1). 

As contrast levels increased, there was a corresponding increase in the 

likelihood of bees making the correct choice (Model Estimate ± standard error = 0.030 

± 0.011, z = 2.761, p < 0.01). Importantly, this trend was consistent across both 

treatment groups, as shaken bees showed no significant difference in their likelihood 

of making the correct choice compared to control bees (Model Estimate ± standard 

error = -0.410±0.505, z = -0.811, p = 0.417). Eye width also was not a significant 

predictor of the response accuracy (Model Estimate ± standard error = -0.498 ± 2.309, 

z = -0.022, p = 0.8291). This finding demonstrates the ability of bees to maintain 

discrimination accuracy even as contrast levels decreased, irrespective of their 

treatment group. 

While the accuracy of bee choices remained unaffected by shaking across 

different contrast levels, I also explored whether there were variations in the time it 

took for bees to make a choice and cross the decision line. The model estimated the 

choice latency included treatment and contrast as fixed factors and an interaction term 

had the lowest AIC (350.70). The closest competing model, which excluded an 

interaction term, had a slightly higher AIC (348.94). With a delta AIC of 1.76, indicating 

no strong support for one model over the other. The ANOVA comparison shows that 

adding an interaction term to the model does indeed provide a statistically significant 

improvement (χ²(2) = 12.83, p < 0.05). The best-fitting model, therefore, included 

treatment and contrast as fixed factors and an interaction term (Appendix Table 2). 

Fixed effects of contrast (X2 = 8.84, df: 4, p = 0.065) and treatment (X2 = 0.025, df: 1, 

p = 0.874) were not significant. However, the effect of treatment was contrast 

dependent (X2 = 12.69, df: 4, p = 0.008), with shaken bees making significantly faster 

choices only at contrast of 54% (t = 2.697, p = 0.008) (Fig. 2B).  
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The effect of spatial frequency 

When examining the accuracy of bee performance in making a choice and crossing 

the decision line on the trials with varying spatial frequencies, the model which included 

treatment, spatial frequency and eye width as fixed predictors without any interaction 

between factors had the lowest AIC (396.01). (see Appendix Table 5). The closest 

competing model, which included interaction term between treatment and eye width, 

had slightly higher AIC values (397.49). With a delta AIC of 1.5, indicating no strong 

support for one model over the other. The ANOVA comparison shows that adding an 

interaction term to the model does indeed provide a statistically significant 

improvement (χ²(2) = 1.5, p = 0.221). (Appendix Table 5). Therefore, the best-fitting 

model included treatment, spatial frequency, and eye width as fixed predictors without 

any interaction terms. This model coded spatial frequency as a categorical variable 

with six levels. Unlike the linear relationship observed with contrast levels (as contrast 

decreases, the accuracy also decreases), the response to varying frequencies 

displayed a different pattern. The highest accuracy is expected at 0.07 cycles deg−1, 

and it gradually declines as we move away from this point toward both higher and lower 

frequencies. Precisely this response was observed across bees (Fig. 3A). When 

keeping a spatial frequency of 0.07 cycles deg−1 (trained resolution) as a reference 

group, the performance of bees decreases at the lowest (Frequency 0.035 cycles 

deg−1, Model Estimate ± standard error = -1.480 ± 0.717, z = -2.064, p = 0.039) as well 

as the three highest spatial frequencies (Frequency 0.28 cycles deg−1, Model Estimate 

± standard error = -2.200 ± 0.658, z = -3.342, p < 0.001; Frequency 0.437 cycles deg−1, 

Model Estimate ± standard error = -2.210 ± 0.660, z = -3.347, p < 0.001; Frequency 

0.699 cycles deg−1, Model Estimate ± standard error = -2.682 ± 0.700, z = -3.383, p < 

0.001). At the same time, bees showed no decrease in accuracy when presented with 

gratings at a spatial frequency of 0.14 cycles deg−1, which is double their trained 

frequency of 0.07 cycles deg−1 (Model Estimate ± standard error = -0.723 ± 0.693, z = 

-1.043, p = 0.297). This suggests that bees can generalize to higher frequencies to 

some extent. Once again, shaking did not affect choice accuracy (Model Estimate ± 

standard error = 0.031 ± 0.307, z = 0.102, p = 0.918), or the likelihood of crossing the 

correct decision line (Model Estimate ± standard error = 0.298 ± 0.328, z = 0.906, p = 

0.3650). As before, eye width did not significantly affect bee accuracy either (Model 

Estimate ± standard error = -2.890 ± 1.579, z = -1.830, p = 0.0672).  
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I further examined whether the decreased choice accuracy observed at lower 

and higher spatial frequencies also led to an increase in choice latency at the decision 

line and whether shaking impacted this latency. The best-fitting model for assessing 

the latency to cross the decision line included treatment and spatial frequency as fixed 

predictors without considering their interaction (see Appendix Table 6). Similar to the 

findings with decreasing contrasts, shaking also had no statistically significant effect 

on choice latency during trials involving varying spatial frequencies (Model Estimate ± 

standard error = 0.048 ± 0.122, t = 3.96, p = 0.6941). Interestingly, bees took longer to 

make their choice and cross the decision line at higher spatial frequencies when 

compared to the trained spatial frequency of 0.07 cycles deg−1 (Fig. 3B), which is easily 

resolvable. Choice latency was significantly different when the grating had a spatial 

frequency of 0.699 cycles deg−1 (Model Estimate ± standard error = 0.237 ± 0.109, t = 

2.175, p = 0.003). Notably, these were also the spatial frequencies at which bees were 

less likely to choose the correct arm (Fig. 3B). Therefore, the increase in choice latency 

on these trials may indicate a lack of certainty at these specific spatial frequencies. 

 

The effect of shaking on final choices  

The crossing of the first decision line reflects the early perception-driven choices of 

bees. I also wanted to explore if shaking affected their final decision – choosing which 

reward chamber to enter. As the arms in the Y-maze were not separated, bees could 

freely change their flight trajectory, exit the initially chosen arm, and enter an alternative 

one. Thus, a longer latency to choose to enter one of two reward chambers indicated 

a lack of certainty in the bees’ decision. If shaking induced a higher arousal state, bees 

should be faster in their decision-making and thus show shorter latencies to enter the 

reward chamber. To account for cases where bees did not choose even after inspection 

of both gratings at a close, I set a time limit of 120 seconds. Bees that took longer than 

this cut-off I considered to be omitting a choice, and thus, the latencies exceeding this 

threshold were not included in the choice latency analysis. I was also interested in 

evaluating whether there were differences in the likelihood of making correct or 

incorrect final choices, and omissions between the groups. 

 

Fixed spatial frequency and varying contrast  
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The model for assessing the latency to enter the reward chamber included contrast 

and treatment as fixed factors and choice accuracy but not their interaction had the 

lowest AIC (562.05) (see Appendix Table 3). The closest competing model, which 

included interaction term between treatment and choice accuracy, had slightly higher 

AIC values (563.19). A delta AIC of 1.14 indicating no strong support for one model 

over the other. The ANOVA comparison shows that adding an interaction term to the 

model does indeed provide a statistically significant improvement (χ²(2) = 0.68, p = 

0.41). (Appendix Table 3). Therefore, the best-fitting model included contrast and 

treatment as fixed factors and choice accuracy but not their interaction. As anticipated, 

with decreasing contrast levels, bees took longer to enter one of the two reward 

chambers (Model Estimate ± standard error = -0.012 ± 0.003, t = -4.023, p < 0.001). 

However, there was no effect of shaking on the latency (Model Estimate ± standard 

error = -0.321 ± 0.193, t = -1.662, p = 0.171), and choosing the correct reward chamber 

was not faster than choosing the incorrect chamber (Model Estimate ± standard error 

= -0.010 ± 0.215, t = -0.465, p = 0.642). 

The model for the likelihood of choices included choice category and treatment 

as factors (see Appendix Table 4). Overall, bees were less likely to make incorrect 

choices (Model Estimate ± standard error = -3.245 ± 0.274, z = -11.855, p < 0.0001) or 

omit from choosing (Model Estimate ± standard error = -6.149 ± 0.736, z = -8.355, p < 

0.0001) compared to making correct choices. The likelihood of making any choice 

(correct, incorrect, or omission) was also unaffected by shaking (Model Estimate ± 

standard error < 0.0001 ± 0.269, z < 0.0001, p = 1). 
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Figure 4. Shaking does not affect the latency of correct choices or the probability of choices 
across contrasts. A) Latency to make correct choices as a function of contrast. For Control (blue) and 
Shaken (red) bees. The solid grey line represents the cumulative latency averaged across all bees. Dots 

represent median values with 95% confidence intervals (shaded area). The size of each dot represents 

the number of bees.  B) Proportions of correct choices, incorrect choices, and omissions for Control 

(blue bars) and Shaken (red bars) bees. 

 

Fixed contrast and varying spatial frequency 

To investigate the effect of varying spatial frequency I also analysed a set of trials with 

fixed contrast and varying spatial frequencies. As above, the cut-off criterion of 120 

seconds was applied to the latency of a correct choice to determine choices and 

omissions. The best-fitting model for the latency data included treatment, frequency, 

and accuracy as fixed factors with an interaction between treatment and accuracy had 

the lowest AIC (881.54) (see Appendix Table 7). When the spatial frequency of 0.07 

cycles deg−1 (resolution used in training) was used as a reference group, the latency 

to enter the reward chamber significantly increased for all other spatial frequencies 

(Frequency 0.035 cycles deg−1, Model Estimate ± standard error = 0.782 ± 0.197, t = 

3.964, p < 0.0001; Frequency 0.140 cycles deg−1, Model Estimate ± standard error = 

1.154 ± 0.170, t = 6.798, p < 0.0001; Frequency 0.280 cycles deg−1, Model Estimate ± 

standard error = 1.770 ± 0.174, t = 10.165, p < 0.0001; Frequency 0.437 cycles deg−1, 

Model Estimate ± standard error = 1.915 ± 0.179, t = 10.719, p < 0.0001; Frequency 

0.699 cycles deg−1, Model Estimate ± standard error = 2.163 ± 0.212, t = 10.218, p < 

0.0001). As in the tests with varying contrasts, there was no fixed effect of shaking 
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(Model Estimate ± standard error = -0.009 ± 0.197, t = -0.045, p = 0.965). However, 

the effect of treatment was accuracy dependent (X2 = 7.14, df: 1, p = 0.008), with 

shaken bees making significantly faster correct choices (t = 4.176, p = 0.0001) but not 

incorrect choices (t = 0.044, p = 0.965).  

When assessing the likelihood of making correct or incorrect choices, or 

omissions, the best-fitting model included choice category, treatment, and an 

interaction between these factors (see Appendix Table 8). Unlike with the varying 

contrast trials, the likelihood of a particular choice depended on whether the bee had 

been shaken or not (X2 = 10.404, df: 2, p = 0.006). Shaken bees were more likely to 

enter the correct reward chamber compared to control bees (t = -2.154, p < 0.032), as 

well as less likely to omit responding (t = 2.218, p = 0.027). 

 

 

Figure 5. Shaken bees are faster to make correct choices, more likely to choose correctly and 
less likely to omit to choose. A) Latency to make incorrect (left) and correct (right) choices for Control 

(blue) and Shaken (red) bees. The solid grey line represents the cumulative latency averaged across all 
bees; Dots represent median values with 95% confidence intervals (shaded area). Each dot’s size 

represents the number of bees contributing to the median. B) Proportions of correct and incorrect 

choices, and omissions for Control (blue bars) and Shaken (red bars) bees. 

 



CHAPTER THREE. Stress increases the resolution of bee vision 

  102 

3.4. Discussion 

Shaking affects spatial frequency generalisation  

Bumblebees exposed to acute stress through simulated predatory attacks, i.e., 

shaking, displayed reduced contrast sensitivity, with their threshold rising to 36% 

Michelson contrast. Unmanipulated bees demonstrated higher sensitivity to lower 

contrasts, with a low contrast threshold of 22%. This is somewhat opposite to the 

response observed in human subjects, where exposure to a stimulus inducing fear 

enhanced low-level vision by improving contrast sensitivity thresholds (Phelps, Ling 

and Carrasco, 2006). While there is a decrease in contrast sensitivity with shaking, 

there is also a shift in spatial resolution that enhances the perception of fine-grained 

spatial features. This shift results in a spatial frequency threshold of approximately 0.34 

cycles deg-1, compared to the coarser perception observed in control bees, where the 

spatial resolution threshold was at around 0.24 cycles deg-1.  

Importantly, as with contrast sensitivity, these effects are somewhat opposite to 

what has been observed in human studies. Specifically, in humans, following the 

presentation of a fear-inducing facial expression, the response is enhanced for 

perceiving low spatial frequencies while impaired for perceiving high spatial 

frequencies (Bocanegra and Zeelenberg, 2009). Thus, fear in humans leads to a 

prioritisation of processing broader, global configurations at the expense of fine visual 

details. Results presented here show that in bees, just like in humans, negative 

emotions facilitate spatial resolution. However, in contrast to humans, this 

enhancement is not due to improved processing of low spatial frequencies but rather 

high spatial frequencies.  

Interestingly, Bocanegra and Zeelenberg's (2009) study demonstrates that 

emotions do not simply change, but rather inverse perceptual prioritisation. The 

detection ability of individuals in a neutral state was highest for the patterns expressed 

in higher and poorest for those in lower spatial frequencies. This was opposite to what 

was observed in individuals exposed to fearful faces: their detection was best at lower 

and worst at higher spatial frequencies. Thus, emotions shifted the peak sensitivity 

from high to low spatial frequencies. Contrary, the control and shaken groups in my 

study, maintained peak sensitivity at the trained spatial frequencies (see Fig. 5A). 

However, there was a clear difference in how the response curves attenuated; the 
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shaken bees exhibited a smoother “flatter” response as similarity with conditioned 

resolution decreased, while the control bees displayed a steeper decline (Fig. 4A, 5A). 

Consequently, shaking did not shift the maximum response point but rather facilitated 

further generalisation, extending bee responses to higher spatial frequencies. Stimulus 

generalisation may occur after absolute conditioning, and implies that a learned 

conditioned response goes beyond the trained stimuli, specifically to novel stimuli that 

share similarities with the trained ones (Shepard, 1987). In a seminal work, Guttman 

and Kalish (1956) first trained pigeons to associate specific wavelengths of light with a 

reward (Guttman and Kalish, 1956). When tested with a series of unfamiliar light 

wavelengths, the pigeons exhibited generalisation of their responses to these novel 

stimuli; the pigeon greatly responded to those wavelengths that were most similar to 

the learned one, and as the similarity decreased, so did the response. Overall, such 

stimulus generalisation that leads to a broadening response curve reflects an animal’s 

ability to react adaptively to new stimuli based on past experience (Shepard, 1987). 

This ability is even more crucial in the context of threat-related responses. Since 

animals are unlikely to encounter the exact same threats, the capacity to generalise 

from prior experiences to similar but novel contexts becomes vital for survival. The 

generalisation of threat-related stimuli to conceptually or perceptually similar stimuli 

has been also previously demonstrated (Dunsmoor, White and LaBar, 2011; Dymond 

et al., 2015). Moreover, excessive fear generalisation is also linked to conditions such 

as anxiety-related disorders (Cooper et al., 2022). However, the influence of task-

irrelevant affective states on response generalization of non-affect-related stimuli 

remains unknown. Based on the results presented here, bees could be a good model 

system to address these questions.  

Taken together, the results presented here show that in bumblebees, exposure 

to acute stress reduces contrast sensitivity while enhancing spatial frequency 

sensitivity. This suggests the possibility of a trade-off, where the bee’s vision sacrifices 

contrast detection in favour of better resolution of fine details. This shift likely reflects 

an adaptive response, prioritising the perception of fine spatial features over contrast 

in stressful situations. While these results may seem to contrast with those in humans, 

where stress enhances contrast sensitivity but reduces fine detail perception, 

considering the different ecologies, it is possible to suggest that the direction of the 

trade-off is species-specific, supporting the unique needs of each species. Future 

studies could explore the possible neural mechanisms underlying such a trade-off. 



CHAPTER THREE. Stress increases the resolution of bee vision 

  104 

Negative affect potentially prepares the visual system for a predatory response 

Early studies in honeybees demonstrate that while both local (finer details, such as 

inner pattern textures) and global (broader spatial characteristics, like shape or size) 

features can be used in pattern recognition, bees exhibit an overall preference for 

global information (Dafni, Lehrer and Keyan, 1997; Avarguès-Weber et al., 2015). 

However, while the global preference might come from favouring low spatial 

frequencies, their ability to change toward finer details with prior experience shows the 

flexibility of the visual system (Dafni, Lehrer and Keyan, 1997; Avarguès-Weber et al., 

2015).  

In humans, rapid threat detection has been proposed to rely on fast and 

automatic processing of coarse visual features (Öhman, 2005; Lojowska et al., 2019). 

For example, studies have shown that the response to snake images (stimuli known to 

induce fear) was much faster than to neutral images like frogs or rabbits. However, this 

was true only when the images were filtered using low-spatial and not high-spatial 

frequency filters (Mermillod et al., 2018). Similarly, compared to individuals in a safe 

state, those in a threatened state (i.e., anticipating an electric shock) exhibit faster 

detection of a subliminally presented grating orientation when the grating has low, but 

not high, spatial frequencies (Lojowska et al., 2019). These examples show how the 

visual system in humans can be fine-tuned for better processing of specific spatial 

resolutions. It, however, remains an open question whether similar mechanisms drive 

the shift in spatial resolution threshold towards a finer resolution observed in the 

present study. If so, shaking could indeed fine-tune bee visual system to prioritise high 

spatial resolution over low spatial resolution, which is typically used to guide bee 

decisions (Dafni, Lehrer and Keyan, 1997; Avarguès-Weber et al., 2015). 

Despite the differences in the architecture of the visual systems, it is safe to 

assume that bees, just as mammals, have evolved to maximize survival. This would 

imply that, in a state of heightened alertness, both mammals and bees should prioritise 

the processing of spatial information critical for a fast response. However, the exact 

characteristics of information gaining priority will be shaped by a species ecology, and 

thus may differ. To detect and escape threats, humans, for example, would benefit from 

perceiving low spatial features, such as a more global environment configuration. 

Bees, however, could gain an advantage from perceiving finer information to detect 

their natural predators, such as crab spiders Misumena vatia (Dukas and Morse, 
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2003). This spider can camouflage among the flowers and become almost 

indistinguishable from the environment. One mechanism that enables bumblebees to 

enhance their ability to detect cryptic spiders is side-to-side scanning (Ings, Wang and 

Chittka, 2012). These movements improve edge detection by gradually amplifying the 

cryptic spider shape. Thus, resolving fine details is crucial for bees to detect predators.  

While side-to-side scanning can facilitate predator detection, it is time-

consuming and thus costly (Ings, Wang and Chittka, 2012). However, if the risk of 

predation increases, the ability to quickly notice fine details like edges and textures 

becomes crucial. In this study, I show that being in a negative state itself may facilitate 

this process, as bees that experienced adverse events simulating a predatory attack, 

show a response generalisation towards higher spatial frequencies. If shaking indeed 

simulates a predation attempt, which typically indicates high-risk situations and 

imminent dangers, it is possible that being in the resulting heightened fear-like state 

automatically sharpens bee perception for detecting fine features in their surroundings. 

This increased perception of finer details could then potentially be an adaptive 

mechanism that enhances bees' capacity to spot the features of their sit-and-wait 

predators. 

 

Shaken bees make faster and more accurate final choices with increasing spatial 
frequency 

In my experiments, the final choices of bees, which involved entering the reward 

chamber, were also affected by shaking but only in the trials with varying spatial 

frequencies. Shaken bees outperformed control bees in choosing the correct reward 

chamber and did so significantly faster. While resolving high spatial frequencies to 

make a correct entry required investing more time in control bees and hence trading 

speed for accuracy, this was not the case with shaken bees. The faster accurate final 

choices in shaken bees are somewhat opposite to the expected psychophysical speed-

accuracy trade-off that postulates increasing accuracy with increasing decision time 

(Chittka et al., 2003; Marshall et al., 2006; Heitz and Schall, 2012).  

The principle of the speed-accuracy trade-off is based on two factors: sensory 

evidence accumulation and decision time. Decision-making involves gradually 

accumulating sensory evidence until a certain threshold is reached, at which point a 
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choice is made. When dealing with noisy signals, such as those associated with 

increasing spatial frequencies, investing more time in gathering evidence may improve 

accuracy (Chittka et al., 2003; Marshall et al., 2006; Heitz and Schall, 2012). Therefore, 

longer decision times may indicate weaker sensory evidence. This looks exactly the 

case for the control bees in my experiment. As spatial frequency increases, the choice 

latency becomes longer as bees spend more time scanning both gratings until the 

spatial frequency is resolved and the correct choice can be made. Some control bees 

did not reach the decision threshold even after 120 seconds of close inspection of both 

gratings. Control bees therefore were more likely to omit responses when unsure. 

When making a correct choice, shaken bees choose the reward chamber faster 

than control bees. Despite a tendency to slow down as spatial frequency increases, 

the difference in latencies when making correct choice remained across all frequencies 

(see Fig. 5A). Importantly, the latencies on trials with gratings of frequency 0.14, 0.28, 

and 0.437 cycle deg-1 are similar to those for the trained spatial frequency, suggesting 

that bees may be generalising to higher spatial frequencies, which is also supported 

by the shift in thresholds (Fig. 3A). Therefore, these results suggest that shaken bees 

needed less time to accumulate evidence and make correct choices. Possibly, shaking 

reduced the perceptual noise as a result of increased in visual acuity. These findings 

are in line with findings in humans that demonstrate that exposure to emotionally 

arousing auditory cues (e.g., growling dogs and fire alarms) reduced search times 

without compromising accuracy (Asutay and Västfjäll, 2017). However, the effect was 

observed only on the trials where distinguishing between targets and distractors was 

harder.  

Interestingly, recent studies however demonstrate that honeybees can make 

accurate decisions fast, arguing against the speed-accuracy trade-off (Maboudi et al., 

2023). Authors point out that when considering the speed-accuracy trade-off, usually 

a fixed evidence threshold for making decisions is used. However, this is not an 

ecologically accurate assumption, as there are associated costs with longer sampling 

(e.g., predation, energy). Therefore, the authors suggest that one way to avoid these 

costs is to adjust the threshold and accept only those options that gain high confidence 

after short sampling. The costs of sampling are likely to increase after experiencing 

shaking, for example, due to stress-induced energy losses (Even, Devaud and Barron, 

2012) or an increased risk of predatory attacks (Mobbs et al., 2018). Applying Maboudi 

et al. (2023) proposed rationale to the observed fast and accurate choices in shaken 
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bees suggests the possibility that shaking resulted in shifting the decision threshold 

towards the acceptance of options when the evidence for being correct is high and 

accumulates in a short scanning period. However, under this strategy, Maboudi et al. 

(2023) also suggest that the rate of rejections (both false positives and correct) will 

increase. Assessing rejection rates in the present study would require a more in-depth 

video analysis that measures scanning behaviour around the grating and reward 

chambers. Unfortunately, this is not available within the scope of the current thesis but 

is worth investigating in the future. 

From the physiological viewpoint, an alternative explanation may be that 

shaking could increase tonic arousal, making bees move faster without perceptual 

effects. Exposure to acute stressful events induces a flight-or-fight response, making 

animals, including bees, more aroused (Even, Devaud and Barron, 2012). However, 

simply being aroused would most likely result in desire to escape. If so, bees would 

likely be flying erratically and not engaging in the task that requires making 

energetically costly choices. Similarly, increasing choice speed without perceptual 

effects would not make shaken bees more accurate. Alternatively, increased arousal 

can also temporarily modulate alertness, increase neuronal responsiveness and boost 

attention and perception (Phelps and LeDoux, 2005; LeDoux, 2012). This could explain 

the result observed in my experiment. 

The absence of an effect in trials with high saliency reported in Asutay and 

Västfjäll (2017) may suggest why shaking bees did not affect bee responses in trials 

with decreasing contrast in the present study. The contrasts selected for this 

experiment were rather salient to bees, with all bees performing well (proportion of 

correct choices ≥75%). This high salience, and therefore easy discriminability between 

horizontal and vertical patterns, is likely influenced by the high luminance of the setup. 

Nevertheless, as the contrast decreased both control and shaken bees were slower to 

choose (see Fig. 4A). It is, therefore, possible to speculate that a more significant 

difference in choice latency could occur at much lower contrasts. Lower contrast levels 

(e.g., 3%) should be included in future research.  

 

Unmanipulated bees show similar spatial resolution but greater contrast 
sensitivity than previously characterised 
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Finally, it is worth discussing the results of the control group and comparing them to 

previous work on bumblebees. Chakravarthi at el. (2016) reported a relatively low 

contrast sensitivity threshold, 63.6%, for Bombus terrestris, whereas, in our study, 

control bees exhibited higher sensitivity with a threshold of 22%. Although the setup 

and stimuli used in the present study are identical to those in Chakravarthi et al. (2016), 

some differences remain that may explain the significant variation between my results 

and theirs. 

The first and most apparent is a difference in the luminance condition of both 

studies. Chakravarthi et al. (2016) conducted their experiments in relatively dim 

conditions, with just 500 lux. The setup illumination in the present study, however, was 

much brighter with 1100 lux. Visual acuity is heavily influenced by luminance; at low 

light levels, there may not be sufficient photons for reliable signal processing, leading 

to reduced contrast sensitivity. The visual acuity in bees is particularly reduced under 

low illumination conditions, and it improves logarithmically with increasing light levels 

until reaching a peak (Hecht and Wolf, 1929). Testing bees in a set-up with luminance 

that was twice as bright as the previous study could therefore easily explain the 

improved contrast perception I observed.  

Another contributing factor to the difference in contrast sensitivity could be the 

behavioural aspect of the experiments. In our study, bee choice was defined as 

crossing a line positioned 20 cm from the grating in either decision arm for the first 

time. This gave the bees the freedom to move before making their decisions. In 

contrast, Chakravarthi et al. (2016) required bees to make decisions from a fixed point. 

Consequently, because of the movement allowed in the present study, stimuli 

appeared to be in motion for the bees, potentially resulting in higher sensitivity. 

Previous research in birds has shown increased contrast sensitivity for moving stimuli 

(Haller et al., 2014). 

When analysing the spatial frequency results, I found that the spatial resolution 

threshold of 0.24 cycles deg-1 in control bees closely aligns with what was reported 

earlier by Chakravarthi et al. (2016). The reported resolution threshold of 0.21 cycles 

deg-1 was determined for a proportion of 0.75 correct choices. In the present study, 

however, the threshold was lower, 0.65. If the criterion of 0.65 correct choices were 

used in this earlier study, like I did, their threshold would approximate at 0.26 cycles 

deg-1, somewhat close to the threshold observed in the present study. The difference 
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could also be due to the different orientations used as the rewarding cue: horizontal in 

the current study and vertical in Chakravarthi et al. (2016). It has been shown, that the 

interommatidial angle of bees in the vertical and horizontal plane are different (Spaethe 

and Chittka, 2003). It is possible that the difference in the angle between orientations 

could play a role in the variations in acuity found in both current and earlier study. 

However, this seems unlikely since a previous study on Bombus impatiens 

demonstrated similar results in detecting targets with both horizontal and vertical 

orientations (Macuda et al., 2001). This suggests that the orientation of the conditioned 

grating might not have an impact on visual acuity. 

The current results suggest that a previously discovered emotion-like state 

(here and elsewhere (Bateson et al., 2011; Solvi, Baciadonna and Chittka, 2016; 

Schlüns et al., 2017; Strang and Muth, 2023) may potentially modulate bee vision in a 

way that facilitates task performance. Shifts in both contrast and spatial frequency 

thresholds indicate that this modulation is a fine-tuning of bee vision for better fine-

detail discrimination. Moreover, the observed correct, and fast final choices, further 

suggest that shaking reduced noise in bee visual perception. Arguably, the effects 

observed in the present study may be the first insight into the adaptive function of 

emotion-like states in insects. Considering the potential benefits of emotion, such as 

fear, when it comes to detecting and responding to relevant information, it should not 

perhaps be surprising that mechanism analogous to those known in humans may be 

conserved across species or evolved independently through convergent evolution.  
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3.5. Appendix  

Table 1 

Summary of model selection to analyse the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
 Explanatory variables       

Dependent variable Fixed  Random d.f. AIC ∆AIC 

Accuracy at 20 cm Treatment+Contrast+Eye width ID 5 149.340  

 Treatment+Contrast*Eye width ID 6 150.255 0.915 

 Treatment*Eye width+Contrast ID 6 150.883 1.542 

 Treatment*Contrast+Eye width ID 6 150.990 1.650 

 Treatment*Contrast*Eye width ID 9 154.391 5.051 

Model pairwise comparison: Assessing the significance of interaction terms using anova() 

 Explanatory variables       

Dependent variable Fixed  Random d.f. χ2 Pr(>χ2) 

Accuracy at 20 cm Treatment+Contrast+Eye width ID 5   

 Treatment+Contrast*Eye width ID 6 1.086 0.298 

      

 Treatment+Contrast+Eye width ID 5   

 Treatment*Eye width+Contrast ID 6 0.458 0.499 
      

 Treatment+Contrast+Eye width ID 5   

  Treatment*Contrast+Eye width ID 6 0.350 0.554 

The table presents the model selection procedure. Models induced “Accuracy at decision line” (briary variable, 1 for crossing 
decision line in the correct arm, 0 for crossing in the incorrect arm) as response variable; treatment group (two level factor: 

control and shaking), contrast (fixed factor Contrast) , and “Eye width” (continuous ascending variable) as explanatory 
factors. The table includes specifications for both fixed and random explanatory variables, along with corresponding degrees 

of freedom (d.f.) and Akaike’s information criterion (AIC) values. The preferred model for each dependent variable, as 
determined by the lowest AIC value, is denoted in bold. More complex models—with an interaction term—that had a ∆AIC < 
2 were considered not significantly different from the simplest model with only fixed factors. In such cases, the significance of 

the interaction term was further assessed using anova(). 
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Table 2 

Summary of model selection to analyse the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
 Explanatory variables       

Dependent variable Fixed  Random d.f. AIC ∆AIC 

log(latency) at 20 cm decision point   Treatment+Contrast ID 8 348.944  

 Treatment*Contrast ID 12 350.702 1.758 

Model pairwise comparison: Assessing the significance of interaction terms using anova() 

 Explanatory variables       

Dependent variable Fixed  Random d.f. χ2 Pr(>χ2) 

log(latency) at 20 cm decision point   Treatment+Contrast ID 8   

 Treatment*Contrast ID 12 12.830 0.012 

The table presents the model selection procedure. Models induced “log(Latency)” at decision line (log-transformed time 
taken to cross decision line) as response variable; treatment group (two level factor: control and shaking), and contrast (fixed 

factor Contrast) as explanatory factors. The table includes specifications for both fixed and random explanatory variables, 
along with corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) values. The preferred model for 

each dependent variable, as determined by the lowest AIC value, is denoted in bold. More complex models—with an 
interaction term—that had a ∆AIC < 2 were considered not significantly different from the simplest model with only fixed 

factors. In such cases, the significance of the interaction term was further assessed using anova(). 

      

Table 3 

Summary of model selection to analyse the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
 Explanatory variables       

Dependent variable Fixed  Random d.f. AIC ∆AIC 
log(latency) to enter reward 
chamber   Treatment+Contrast+Accuracy ID 6 562.054  

 Treatment*Accuracy+Contrast ID 7 563.196 1.142 

 Treatment+Contrast*Accuracy ID 7 571.425 9.371 

 Treatment*Contrast+Accuracy ID 7 572.093 10.039 

 Treatment*Contrast*Accuracy ID 10 590.741 28.687 

Model pairwise comparison: Assessing the significance of interaction terms using anova() 

 Explanatory variables       

Dependent variable Fixed  Random d.f. χ2 Pr(>χ2) 
log(latency) to enter reward 
chamber   Treatment+Contrast+Accuracy ID 6   

 Treatment*Accuracy+Contrast ID 7 0.682 0.409 

The table presents the model selection procedure. Models induced “log(Latency) to enter” (log-transformed time taken to 
enter reward chamber) as response variable; treatment group (two level factor: control and shaking), contrast (fixed factor 

Contrast), and “Accuracy” (binary variable, 1 for entering reward chamber in the correct arm, 0 for entering reward chamber 
in the incorrect arm) as explanatory factors. The table includes specifications for both fixed and random explanatory 

variables, along with corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) values. The preferred 
model for each dependent variable, as determined by the lowest AIC value, is denoted in bold. More complex models—with 
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an interaction term—that had a ∆AIC < 2 were considered not significantly different from the simplest model with only fixed 
factors. In such cases, the significance of the interaction term was further assessed using anova(). 

 

 

Table 4 

Summary of model selection to analyse the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
 Explanatory variables       

Dependent variable Fixed  Random d.f. AIC ∆AIC 

Choice Treatment+Category ID 5 391.497  

 Treatment*Category ID 7 392.765 1.268 

Model pairwise comparison: Assessing the significance of interaction terms using anova() 

 Explanatory variables       

Dependent variable Fixed  Random d.f. χ2 Pr(>χ2) 

Choice Treatment+Category ID 5   

 Treatment*Category ID 7 2.732 0.255 

The table presents the model selection procedure. Models induced “Choice” (binary variable, see Materials and methods) as 
response variable; treatment group (two level factor: control and shaking), and “Category” (three level factor: correct, 

incorrect and omission) as explanatory factors. The table includes specifications for both fixed and random explanatory 
variables, along with corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) values. The preferred 
model for each dependent variable, as determined by the lowest AIC value, is denoted in bold. More complex models—with 
an interaction term—that had a ∆AIC < 2 were considered not significantly different from the simplest model with only fixed 

factors. In such cases, the significance of the interaction term was further assessed using anova(). 
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Table 5 

Summary of model selection to analyse the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
 Explanatory variables       

Dependent variable Fixed  Random d.f. AIC ∆AIC 

Accuracy at 20 cm Treatment+Frequency+Eye width ID  9 396.005  

 Treatment*Eye width+Frequency ID 10 397.498 1.492 

 Treatment*Frequency+Eye width ID 14 403.668 7.663 

 Treatment+Frequency*Eye width ID 14 404.174 8.168 

 Treatment*Frequency*Eye width ID 25 418.684 22.678 

Model pairwise comparison: Assessing the significance of interaction terms using anova() 

 Explanatory variables       

Dependent variable Fixed  Random d.f. χ2 Pr(>χ2) 

Accuracy at 20 cm Treatment+Frequency+Eye width ID 9   

 Treatment*Eye width+Frequency ID 10 1.498 0.221 

The table presents the model selection procedure. Models induced “Accuracy at decision line” (briary variable, 1 for crossing 
decision line in the correct arm, 0 for crossing in the incorrect arm) as response variable; treatment group (two level factor: 
control and shaking), spatial frequencies (six level fixed factor Frequency), and “Eye width” (continuous ascending variable) 

as explanatory factors. The table includes specifications for both fixed and random explanatory variables, along with 
corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) values. The preferred model for each 

dependent variable, as determined by the lowest AIC value, is denoted in bold. More complex models—with an interaction 
term—that had a ∆AIC < 2 were considered not significantly different from the simplest model with only fixed factors. In such 

cases, the significance of the interaction term was further assessed using anova(). 

 

 
Table 6 

Summary of model selection to analyse the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
 Explanatory variables       

Dependent variable Fixed  Random d.f. AIC ∆AIC 

log(latency) at 20 cm decision point   Treatment+Frequency ID 9 572.529  

 Treatment*Frequency ID 14 588.676 16.147 

The table presents the model selection procedure. Models induced “log(Latency)” at decision line (log-transformed time 
taken to cross decision line) as response variable; treatment group (two level factor: control and shaking), and spatial 

frequencies (six level fixed factor Frequency) as explanatory factors. The table includes specifications for both fixed and 
random explanatory variables, along with corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) 
values. The preferred model for each dependent variable, as determined by the lowest AIC value, is denoted in bold. More 

complex models—with an interaction term—that had a ∆AIC < 2 were considered not significantly different from the simplest 
model with only fixed factors. In such cases, the significance of the interaction term was further assessed using anova(). 

      

  



CHAPTER THREE. Stress increases the resolution of bee vision 

  114 

Table 7 

Summary of model selection to analyse the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
 Explanatory variables       

Dependent variable Fixed  Random d.f. AIC ∆AIC 
log(latency) to enter reward 
chamber   Treatment*Accurcy+Frequency ID 11 881.541  

 Treatment+Accurcy+Frequency ID 10 885.405 3.863 

 Treatment*Accurcy*Frequency ID 26 885.655 4.114 

 Treatment+Accurcy*Frequency ID 15 892.062 10.521 

 Treatment+Frequency+Accurcy ID 15 892.963 11.422 

The table presents the model selection procedure. Models induced “log(Latency) to enter” (log-transformed time taken to 
enter reward chamber) as response variable; treatment group (two level factor: control and shaking), and spatial frequencies 

(six level fixed factor Frequency), and “Accuracy” (binary variable, 1 for entering reward chamber in the correct arm, 0 for 
entering reward chamber in the incorrect arm) as explanatory factors. The table includes specifications for both fixed and 
random explanatory variables, along with corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) 
values. The preferred model for each dependent variable, as determined by the lowest AIC value, is denoted in bold. More 

complex models—with an interaction term—that had a ∆AIC < 2 were considered not significantly different from the simplest 
model with only fixed factors. In such cases, the significance of the interaction term was further assessed using anova(). 

 

 

Table 8 

Summary of model selection to analyse the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
 Explanatory variables       

Dependent variable Fixed  Random d.f. AIC ∆AIC 

Choice Treatment*Category ID 7 819.644  

 Treatment+Category ID 5 826.971 7.327 

The table presents the model selection procedure. Models induced “Choice” (binary variable, see Materials and methods) as 
response variable; treatment group (two level factor: control and shaking), and “Category” (three level factor: correct, 

incorrect and omission) as explanatory factors. The table includes specifications for both fixed and random explanatory 
variables, along with corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) values. The preferred 
model for each dependent variable, as determined by the lowest AIC value, is denoted in bold. More complex models—with 
an interaction term—that had a ∆AIC < 2 were considered not significantly different from the simplest model with only fixed 

factors. In such cases, the significance of the interaction term was further assessed using anova(). 
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Table 9 

Summary of statistical model results analysing the impact  of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 

Response variable  Estimate Std. Error z value Pr(>|z|) 

Accuracy at decision line  (Intercept) 2.083 6.165 0.338 0.7354 

 TreatmentShaking -0.410 0.505 -0.811 0.4175 

 Contrast 0.030 0.011 2.761 0.0058 
 Eye width -0.498 2.309 -0.022 0.8291 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 
on the likelihood of making a correct first choice at the decision line. The response is a binary variable “Accuracy at decision 
line”; fixed factors are Treatment (two level fixed factors: control and shaking), Contrast (ascending continuous fixed factor) 
and Eye width (ascending continuous fixed factor). The data is presented in terms of estimated coefficients, standard errors, 

z-values, and associated p-values for response variables and predictor variables. 

 

 

Table 10 

Summary of statistical model results analysing the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 
Response variable Factor Chisq df Pr(>Chisq) 

log(latency) at 20 cm decision point   Treatment 0.03 1 0.874 

 Contrast 8.84 4 0.065 

 Treatment*Contrast 12.69 4 0.013 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 

on the latency of making a correct first choice at the decision line. The response is a log-transformed “(log)Latency”; fixed 

factors are Treatment (two level fixed factors: control and shaking), Contrast (six level factor: 22%, 39%, 54%, 68%, 87%), 

and their interaction term. 
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Table 11 

Summary of statistical model results analysing the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 

Response variable  Estimate Std. Error t value Pr(>|t|) 

log(latency) to enter (Intercept) 2.528 0.259 9.762 0.0000 
 TreatmentShaking -0.321 0.193 -1.662 0.1050 

 Contrast -0.012 0.003 -4.023 0.0001 
 AccuracyCorrect -0.010 0.215 -0.465 0.6420 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 

on the latency of making a correct first choice at the decision line. The response is a log-transformed “(log)Latency”; fixed 

factors are Treatment (two level fixed factors: control and shaking), Contrast (ascending continuous fixed factor) and 

Accuracy (two level fixed factor: correct and incorrect). The data is presented in terms of estimated coefficients, standard 

errors, t-values, and associated p-values for response variables and predictor variables. 

      

Table 12 

Summary of statistical model results analysing the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 

Response variable  Estimate Std. Error z value Pr(>|z|) 

Choice (Intercept: Control; Correct) 1.585 0.231 6.854 0.000 

 CategoryIncorrect -3.245 0.274 -11.855 0.000 

 CategoryOmission -6.149 0.736 -8.355 0.000 
 TreatemntShaking 0.000 0.269 0.000 1.000 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 
on the likelihood of making a correct, incorrect of omitting from choosing the reward chamber to enter. The response is a 

binary variable “Choice”; fixed factors are Category (three level fixed factors: correct, incorrect and omission) and Treatment 
(two level fixed factors: control and shaking). The data is presented in terms of estimated coefficients, standard errors, z-

values, and associated p-values for response variables and predictor variables. 
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Table 13 

Summary of statistical model results analysing the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 

Response variable  Estimate Std. Error z value Pr(>|z|) 

Accuracy at decision line (Intercept: Control; Frequency 
0.070) 10.255 4.267 2.403 0.0163 

 TreatmentShaking 0.298 0.328 0.906 0.3650 
 Frequency 0.035 -1.480 0.717 -2.064 0.0391 
 Frequency 0.14 -0.723 0.693 -1.043 0.2970 

 Frequency 0.28 -2.200 0.658 -3.342 0.0008 
 Frequency 0.437 -2.210 0.660 -3.347 0.0008 
 Frequency 0.699 -2.682 0.700 -0.383 0.0001 
 Eye width -2.890 1.579 -1.830 0.0672 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 
on the likelihood of making a correct first choice at the decision line. The response is a binary variable “Accuracy at decision 
line”; fixed factors are Treatment (two level fixed factors: control and shaking), Frequency (six level factor: 0.07, 0.035, 0.14, 

0.28, 0.437 and 0.699 cycle deg-1) and Eye width (ascending continuous fixed factor). The data is presented in terms of 
estimated coefficients, standard errors, z-values, and associated p-values for response variables and predictor variables. 

      

Table 14 

Summary of statistical model results analysing the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments. 

Response variable  Estimate Std. Error t value Pr(>|t|) 

log(latency) at decision line (Intercept: Control; Frequency 
0.070) -0.876 0.112 -7.849 0.0000 

 TreatmentShaking 0.048 0.122 0.396 0.6941 

 Frequency 0.035 -0.048 0.109 -4.441 0.6596 

 Frequency 0.14 -0.060 0.095 -0.630 0.5293 

 Frequency 0.28 0.043 0.095 0.457 0.6482 

 Frequency 0.437 0.169 0.095 1.775 0.0770 
 Frequency 0.699 0.237 0.109 2.175 0.0304 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 
on the latency of making a correct first choice at the decision line. The response is a log-transformed “(log)Latency”; fixed 
factors are Treatment (two level fixed factors: control and shaking) and Frequency (six level factor: 0.07, 0.035, 0.14, 0.28, 

0.437 and 0.699 cycle deg-1). The data is presented in terms of estimated coefficients, standard errors, t-values, and 
associated p-values for response variables and predictor variables. 
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Table 15 

Summary of statistical model results analysing the impact of stress treatments (shaking/trapping) on 
performance in the visual acuity experiments 

Response variable  Estimate Std. Error t value Pr(>|t|) 

log(latency) to enter (Intercept) 1.127 0.205 5.496 0.0000 
 TreatmentShaking -0.009 0.197 -0.045 0.9645 

 AccuracyCorrect 0.171 0.161 1.063 0.2888 

 Frequency 0.035 0.782 0.197 3.964 0.0001 
 Frequency 0.14 1.154 0.170 6.798 0.0000 
 Frequency 0.28 1.770 0.174 10.165 0.0000 
 Frequency 0.437 1.915 0.179 10.719 0.0000 
 Frequency 0.699 2.163 0.212 10.218 0.0000 
 TreatmentShaking*AccuracyCorrect -0.581 0.217 -2.672 0.0079 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 
on the latency of making a correct first choice at the decision line. The response is a log-transformed “(log)Latency”; fixed 

factors are Treatment (two level fixed factors: control and shaking), Frequency (six level factor: 0.07, 0.035, 0.14, 0.28, 0.437 
and 0.699 cycle deg-1) and Accuracy (two level fixed factor: correct and incorrect). The data is presented in terms of 

estimated coefficients, standard errors, t-values, and associated p-values for response variables and predictor variables 
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Table 16 

Analysis of Deviance Table (car::Anova, Type II Wald chi-square tests) summarises the statistical 

significance of each factor and interaction in the statistical model, analysing the impact of shaking on 

the on latency to enter reward chamber in the trials with varying spatial frequencies 

 Chisq df Pr(>Chisq) 

Treatment 11.03 1 0.001 

Accuracy 1.33 1 0.248 

Frequency 173.05 5 0.000 

Treatment*Accuracy 7.14 1 0.008 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 

on the latency of making a correct first choice at the decision line. The response is a log-transformed “(log)Latency”; fixed 

factors are Treatment (two level fixed factors: control and shaking), Frequency (six level factor: 0.07, 0.035, 0.14, 0.28, 0.437 

and 0.699 cycle deg-1) and Accuracy (two level fixed factor: correct and incorrect). 

 

 
Table 17 
Analysis of Deviance Table (car::Anova, Type II Wald chi-square tests) summarises the statistical 

significance of each factor and interaction in the statistical model, analysing the impact of shaking on 

the likelihood of a final choice being correct, incorrect, or omitted 

 Chisq df Pr(>Chisq) 

Treatment 0.02 1 0.896 

Category 323.41 2 0.000 

Treatment*Category 10.40 2 0.006 

The table provides an overview of the results obtained from statistical analyses aimed at investigating the effects of shaking, 

on the type of final choice. Individual choices were translated into a response variable of binomial format (0 or 1) within each 

choice category; fixed factors are Treatment (two level fixed factors: control and shaking) and Category of choice (three level 

fixed factor: correct, incorrect, omission). 
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CHAPTER FOUR 

Acute stress enhances reversal learning in bees for 

contrasting but not similar outcome values



CHAPTER FOUR 
. Acute stress enhances reversal learning in bees  

  122 

 

  



CHAPTER FOUR 
. Acute stress enhances reversal learning in bees  

  123 

4.1 Introduction 

In a changing world, the ability to adjust behaviour is key to survival. Cognitive flexibility 

is the ability to flexibly adapt to occurring changes in the environment (Kehagia, Murray 

and Robbins, 2010). Behavioural flexibility, on the other hand, represents the 

observable outcome of these cognitive processes. In humans, both emotional 

regulation and behavioural flexibility involve the same brain structure – the orbital 

prefrontal cortex (Rolls et al., 1994; Bechara, Damasio and Damasio, 2000; Rudebeck 

et al., 2013). Research has demonstrated that dysfunction in this brain area can result 

in difficulties with regulation and behavioural flexibility (Rolls et al., 1994). In other 

mammals, behavioural flexibility is also affected by emotions. Individuals who suffer 

from emotional dysregulation disorders, such as anxiety or depression, often exhibit 

impairments in overall cognitive function (Goldstein and Mcewen, 2002; Holmes and 

Wellman, 2009; Gagnon and Wagner, 2016; Xia et al., 2021) and lack behavioural 

flexibility (Holmes and Wellman, 2009; Izquierdo et al., 2017). As stress, both acute 

and chronic, leads to negative emotions, research has focused on how stress impacts 

behavioural flexibility.  

Reversal learning is a behavioural assay that measures behavioural flexibility 
(Kehagia, Murray and Robbins, 2010). Specifically, it measures the ability to adapt 

behaviour when previously rewarded contingencies are reversed. In the classic 

reversal learning paradigm, subjects are first trained to associate one stimulus with a 

reward and the other with punishment. Once the association is learned, the stimulus-

outcome contingency is reversed. The previously rewarding stimulus is now punishing 

and vice versa. To succeed in reversal learning, subjects must suppress previously 

rewarded responses and learn a new response.  

Using a reversal learning task, the effect of stress on behavioural flexibility has 

been shown to be more intricate than initially believed. Exposure to unpredictable 

chronic stress not only increases anxiety-like behaviour in rats, but rats also 

consistently demonstrate reduced behavioural flexibility (Bondi et al., 2008; Jett and 

Morilak, 2013; Naegeli et al., 2013). On the other hand, when animals experience 

short-term stress, it helps improve their ability to learn from reversals. For example, 

rats exposed to acute stress delivered by 30 min of restraint stress before the reversal 

learning task, required fewer trials to reverse the learned association (Thai, Zhang and 
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Howland, 2013). Similar effects were observed in mice that underwent 10 minutes of 

swim stress (Graybeal et al., 2011), or rats exposed to acute elevated-platform stress 

(Dong et al., 2013). Other stresses, e.g., tail pinching, however, do not show such 

facilitating effects (Butts, Floresco and Phillips, 2013). Thus, the effect of acute stress 

appears to depend on various factors, including the type, intensity, and repetition of 

the stressor (for a more detailed discussion, see (Hurtubise and Howland, 2017). 

Social bees live in a naturally complex, ever-changing environment. As the 

availability of nectar and pollen can change over time, bees must be able to adapt their 

decisions in line with these changes (Harder, 1990; Chittka, Gumbert and Kunze, 

1997). It is, therefore, crucial for bees to maintain the capacity for behavioural flexibility. 

Behavioural flexibility using reversal learning tasks has been demonstrated in bees in 

both the olfactory (Ben-Shahar et al., 2000; Komischke et al., 2002; Hadar and Menzel, 

2010; Mota and Giurfa, 2010) and visual domains (Chittka, 1998; Raine and Chittka, 

2012; Strang and Sherry, 2014). A recent study investigated the neural substrate for 

reversal learning, showing that the mushroom bodies are required for reversal learning 

but not for initial differential conditioning (Devaud et al., 2007). The fact that reversal 

learning requires higher-order brain structures, such as the mushroom bodies, 

suggests, that these tasks are more demanding and involve conflict resolution.  

While most studies focused on intra-colony differences in reversal learning 

abilities (Ben-Shahar et al., 2000; Carr-Markell and Robinson, 2014; Cabirol et al., 

2018), to my knowledge, no study has investigated the effects of stress exposure on 

reversal learning in bees. Bees are subjected to multiple environmental stressors 

(Klein et al., 2017), and they also tend to develop negative emotion-like states in 

response to acute stress exposure (see Chapter 2). It is, therefore, unknown if being 

in this negative state modulates the ability to maintain behavioural flexibility in bees. I 

therefore aimed to test whether exposure to an acute stress, a predatory attack 

simulated by vigorous shaking, would impair, or improve behavioural flexibility in bees. 

Successful performance in reversal learning tasks heavily relies on reward 

processing. The individual must consistently track outcome values and detect 

changes, disengage from unrewarding stimuli, and develop a new rewarding stimulus-

response association. I therefore used two experimental conditions to gain better 

insights. In both experimental conditions, bumblebees, Bombus terrestris, learned to 

forage in a flower patch with yellow and green artificial flowers. In the first experimental 
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condition (Experimental Condition 1), I specifically examined how shaking would 

impact learning when the value of possible outcomes was highly contrasting. Here, 

flowers of one colour provided a high-value reward, while flowers of another colour 

offered no reward. Therefore, the feedback bees received in this condition is highly 

informative. In the second condition, Experimental Condition 2 both flower types were 

rewarding but differed in value (high vs low reward value). This second condition was 

designed to test if shaking would modulate fine reward perception. In Experimental 

Condition 2, I predicted that stress would reduce the sensitivity of bees to differences 

in reward. As a result, bees would be more likely to accept low rewards. In the reversal 

learning phase, flowers that the bees had earlier learnt as high rewarding would now 

be low rewarding, but stressed bees would still be willing to accept these flowers. If so, 

the acceptance of low reward would result in taking longer to switch their choices to 

the flowers that were now highly rewarding. I therefore hypothesised that in this 

experimental condition, shaking would slow down or impair reversal learning. 

 

4.2. Materials and methods 

Animal housing and preparation 

I used five commercially raised bumblebee (Bombus terrestris) colonies (Koppert B.V., 

The Netherlands) in this experiment. After receiving bumblebees from the commercial 

breeder, I transferred bees to bipartite plastic nest boxes (28.0 × 16.0 × 12.0 cm) 

connected a flight arena with a transparent acrylic tunnel (56.0 × 5.0 × 5.0 cm) with a 

UV-transparent Plexiglas® lid and lit by a lamp (HF-P 1 14-35 TL5 ballast, Philips, The 

Netherlands) fitted with daylight fluorescent tubes (Osram, Germany). Animals were 

kept under standardised temperature conditions (23 ± 2 ̊C). Housing, maintenance, 

and experimental procedures were non-invasive and were kept as close as possible to 

the natural living conditions of the animals. Through the experimental period, colonies 

were fed with ~ 3g commercial pollen daily (Koppert B. V., The Netherlands) and 

provided with sucrose solution (20% w/w) ad libitum outside the experimental work. 

Before the onset of the experiment, bees were food-deprived by removing the feeder 

for the arena. Food deprivation increases foraging motivation, as colonies with reduced 

food show higher activity and a more significant number of foraging bouts (Molet et al., 

2008). Although invertebrates do not fall under the Animals (Scientific Procedures) Act, 
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1986 (ASPA), the experimental design and protocols were developed incorporating the 

3Rs principles. 

 

Experimental set-up 

All experiments were conducted with individual free-flying bees in a contained flight 

arena (110.0 × 61.0 × 40.0 cm). All experiments consisted of a pre-training phase 

followed by an initial conditioning phase and reversal learning phases. All phases 

included bees feeding on artificial flowers consisting of square chips (24 x 24 mm) with 

a well in which rewarding solutions could be placed. Each chip was placed on a glass 

vial (7 ml, 10 mm inner diameter) that elevated them 3 cm above the floor of the testing 

arena. In total, there were 30 flower positions, equally spaced at 11 cm from each other 

(Fig. 1). I recorded flower choices in each foraging bout; it began when a bee entered 

the arena and ended when the bee filled her crop and left the arena. The spatial 

arrangement of flowers was randomised between successive foraging bouts. After 

each foraging bout, I cleaned all flowers with 70% ethanol and hot water to eliminate 

any potential residual pheromonal cues left by the bee and then dried them with paper 

before reusing the flowers. 

 

 

Figure 1. Reversal learning experimental set-up. The experiment consisted of two phases: the initial 

conditioning phase, Initial Phase, and the reversal learning phase, Reversal Phase. In the Initial Phase, 

all bees had to perform a discrimination task to learn the initial association between colours and rewards. 

Bees that reached the learning criterion (80% accuracy in the last 20 choices) proceeded to Reversal 

Phase, where the colour-reward association was reversed. The total number of flowers and the colours 

used were the same in both experimental conditions. The picture here depicts green flowers as 
rewarding in the initial phase and yellow flowers as unrewarding, but this was counterbalanced across 

all the bees. 
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Bee identification and pre-training 

Before conducting the main experiments, the bees were given unrestricted access to 

the flight arena with 30 transparent flowers (24 x 24 mm) filled with 15 µl of a 50% 

(w/w) sugar solution placed at the centre of the flower. Motivated foragers were 

identified as ones that repeatedly filled their crop and returned to the nest. These 

foragers were individually marked with number tags for later identification (provided by 

Christian Graze KG, Weinstadt-Endersbach, Germany).  

The individually marked bees were then trained to forage from 15 artificial 

flowers with two halves, each measuring 12x24 mm. One half was yellow (Perspex® 

Yellow 260), and the other green (Perspex® Green 6205). All bicoloured flowers were 

filled with 15 µl of a 50% (w/w) sugar solution placed at the centre of the flower. 

Therefore, during the pre-training phase, colour-naïve bees were exposed to both 

yellow and green colours for the first time simultaneously. This exposure allowed them 

to associate both colours used in the subsequent reversal learning task with the sugar 

reward. Pre-training continued for at least four foraging bouts to ensure that the bees 

had adequately learned to associate the colours with the sucrose reward. 

 

Experimental Condition 1: Initial Phase 

During training, all bees foraged individually in our set-up with yellow and green 

flowers. Experimental Condition 1 aimed to assess if agitating bees impairs their ability 

to reverse their learning when there is a large difference in rewards between the two 

flower types. Bees in this condition had to learn to distinguish between rewarding and 

non-rewarding flowers based on colour. In the initial phase, I trained 24 individual 

foragers on 15 yellow and 15 green flowers, each measuring 24×24 mm. The 

rewarding flowers provided 15 µl of 50% (w/w) sugar solution, while the non-rewarding 

flowers had 15 µl of distilled water. The rewarding colours (green or yellow) were 

counterbalanced across bees for both treatment groups.  

I recorded the choice sequence for each bee in each foraging bout until the bee 

made at least 120 choices. A choice was recorded when a bee probed a flower by 

either extending its proboscis or touching it with her antennae. Bees that reached the 
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learning criteria (80% accuracy in the last 20 choices) within 120 choices continued to 

the reversal phase.  

 

Experimental Condition 1: Reversal Phase 

All bees were allowed to forage overnight from feeders containing 20% sugar solution. 

The following day, bees that had been trained in the initial phase proceeded to the 

reversal learning phase, where I reversed the previously learned reward contingency. 

Prior to the reversal, individual learners were allowed to forage in an arena with 

transparent artificial flowers. The purpose of this was to reintroduce them to the 

availability of 50% sugar solution and boost their foraging motivation. The reversal 

phase began after they completed three foraging bouts. 

In the reversal phase, flowers of the previously rewarding colour contained 15 

µl of water, while previously unrewarding flowers contained a sugar reward of 15 µl of 

a 50% (w/w) sugar solution. As in the initial phase, I recorded bee choices until the 

learning criterion was met (80% accuracy in the last 20 choices) with a minimum of 

120 choices. Upon the completion of the reversal phase, the bee was sacrificed by 

freezing and stored at -20°C. I measured bee body size by taking intertegular width 

under a dissection microscope with a digital calliper (RS PRO Digital Caliper, 0.01 mm 

± 0.03 mm) (Hagen and Dupont, 2013). 

In this experiment, five bees were excluded in the reversal phase as they either 

ceased foraging before completing 120 choices or failed to probe rewarding flowers 

within 60 min of being let in the flight arena.  

 

Experimental Condition 2: Initial and reversal phase 

The purpose of Experimental Condition 2 was to determine if a negative state affected 

the bees’ ability to accurately assess reward value and detect a change in colour-

reward contingency. Here, both flower types contained a reward that varied in its 

quality. For example, if green flowers were high-rewarding, they contained 15 μl of 50% 

(w/w) sucrose solution, and the alternative yellow flowers 15 μl of 30% (w/w) sucrose 

solution, thus were the low-rewarding option. The rest of the procedure in Experimental 



CHAPTER FOUR 
. Acute stress enhances reversal learning in bees  

  129 

Condition 2 was the same as Experimental Condition 1. In the reversal phase, in 

addition to recording flower choices as described in Experiment Condition 1, I also 

recorded if a lower-quality reward was consumed or rejected. Bees are sensitive to 

reward concentration and will reject poor rewards in the presence of better ones. I was 

therefore interested in whether bees in a negative affective state would modulate their 

sensitivity to reward concentration, making shaken bees more likely to accept low 

rewards and fully deplete the sugar solution. The rest of the procedure in this 

experiment followed the steps described earlier in Experimental Condition 1.  

In this experiment, two bees were excluded in the reversal phase as they either 

ceased foraging before completing 120 choices or failed to probe rewarding flowers 

within 60 min of being let in the flight arena.  

 

Predatory attack simulation 

In my previous work, I confirmed that shaking induces a negative affective state, as 

measured through a judgment bias test (see Chapter Two). Therefore, this treatment 

was chosen to examine whether a negative affective state could influence reversal 

learning in bees. 

In each experiment, individual bees were randomly allocated to one of two 

groups: shaking (Group 1, n=12) or an unmanipulated group that served as a control 

(Group 2, n=12). The bees in the Shaken group were individually subjected to 60 

seconds of shaking at 1200 rpm using a Vortex-T Genie 2. Before entering the flight 

arena, I allowed the bee to enter a custom-made tagging cage softened by the sponge 

to prevent physically harming animals while shaking (⌀ 40 mm, 7.5 cm length). After 

entering, the bee was gently nudged down with a soft foam plunger until the distance 

between the plunger and the bottom of the cage was reduced to ~3 cm. Once the 

plunger was secured, the cage with the bee was placed inside the vortex cup head. I 

then ran the Vortex at 1200 rpm for 60 seconds to shake the bee. The bee was shaken 

before each foraging bout during the reversal phase in both experimental conditions. 
After the shaking, I released the bee into the tunnel connected to the testing arena via 

a top opening. All bees initiated their foraging bouts in under 60 seconds. 
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Statistical analysis 

Our hypothesis and statistical analyses of the main active choice experiment were 

preregistered at aspredicted.com (#82555). The data were plotted and analysed using 

RStudio v.3.2.2 (The R Foundation for Statistical Computing, Vienna, Austria, 

http://www.r-project.org) and custom-made scripts. All models were fit using maximum 

likelihood estimation. The nlminb optimiser was used where models failed to converge 

(glmmTMB function in the R glmmTMB package, (Brooks, Kristensen, van Benthem, 

et al., 2017). In each analysis, several models were run and compared to identify 

significant fixed factors as well as possible interactions. The Akaike information 

criterion (AIC) scores for all models were calculated. I considered the model with the 

lowest AIC score the best model, that is, the model that provides a satisfactory 

explanation of the variation in the data (Johnson and Omland, 2004). Following 

accepted convention, models with an AIC difference of less than 2 were considered 

not significantly better than the model it is being compared to (Burnham and Anderson, 

2004). In such case, anova() was used to determine whether adding interaction term 

significantly improved model fit. I used the package DHARMa (Hartig, 2020) for 

residual testing of all models.  

To analyse the total choices and errors made before reaching the learning 

criterion, I fit generalised linear mixed models (Poisson distribution) to the data. 

Treatment (Control, Shaking) and Experimental Condition (Experimental Condition 1 

(50% vs water), Experimental Condition 2 (50% vs 30%) were included as fixed factors 

and bee identity as a random factor to correct for repeated measurements. Separate 

models were run with the total number of choices and the total number of errors as 

dependent variables. To analyse the number of low-reward depletions in Experimental 

Condition 2, I also fit a generalised linear mixed model adjusted for zero-inflated count 

data (Brooks, Kristensen, Benthem, et al., 2017). This model was fit using a Poisson 

distribution and the logarithm (log) link function. The models were fitted to a subset of 

choice data that included only incorrect choices. This is because, in the reversal phase, 

low-reward flowers are incorrect flowers only. Here treatment (Control, Shaking) and 

the order of flower choices were included as fixed factors and bee identity as a random 

factor. The order of flower choices was used to investigate how bee behaviour changed 

as they made more choices. 

http://www.r-project.org/
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Some earlier studies have found the effect of stress is greater on late reversal 

learning. I therefore split the data into early and late phases (Graybeal et al., 2011; 

Bryce and Howland, 2015). To do this, I first calculated a 20-choice moving average 

across all flower choices for each bee (i.e., choices 1–20, 2–21, 3–22, …). Next, I 

compared the moving averages sequentially to identify the point at which the bees 

achieved an accuracy of 50% in the last 20 flower choices. The early reversal learning 

phase was defined as the phase before bees achieved this criterion. The late phase of 

reversal learning was defined as the phase after achieving the criterion. I then ran 

separate generalized linear models with the choices to criterion and errors as 

dependent variables. I ran the models as detailed above with treatment (Control, 

Shaking) and the stage of reversal learning (early, late) as fixed factors and bee identity 

as a random factor. I modelled data with and without interaction between fixed factors 

and compared the models using the AIC.  

 

4.3 Results  

The current study aimed to investigate the impact of shaking on the ability of the bees 

to adjust their behaviour in response to the changed reward contingencies. Half of the 

bees that successfully learned the reward-colour discrimination in the Initial phase 

were subjected to 60 seconds of vigorous shaking repeated before each foraging bout. 

I compared the shaken group's performance with an unmanipulated control group of 

bees. 

 

Initial phase: No difference in learning between treatment groups 

The best model included both treatment and experimental condition as explanatory 

factors. The model estimated that neither Treatment nor Experimental Condition had 

any apparent effect on the initial discrimination learning (for details see Appendix Table 

1) On average, bees in the initial phase took longer (mean ± sd: 136 ± 34.9 vs 117 ± 

33.8) and made more errors (mean ± sd: 71.4 ± 23.1 vs. 64.1 ± 17.2) in Experimental 

Condition 2 compared to Experimental Condition 1. However, these differences were 

not significant (Appendix Table 1 and Table 2). In summary, bees in all treatments and 
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experimental conditions demonstrated comparable learning abilities in the initial colour 

discrimination task (Fig. 2).  

 

 

Figure 2. Bees show no differences in initial learning acquisition. The plot shows bees in different 

experimental conditions that were later assigned to different treatments performed equally well in the 

initial colour discrimination task. On average, bees in Experimental Condition 2 took longer to meet the 

learning criterion than those in Experimental Condition 1 (mean ± sd: 71.4 ± 23.1 vs. 64.1 ± 17.2, 

respectively). However, this difference was not statistically significant. Lines show the proportion of bees 

reaching the learning criterion (80% in the last 20 choices) over the course of the 120 choices in the 

initial phase of the experiments. Red lines depict the performance of bees that later went on to the 

Shaking treatment (n=12). Blue lines depict the performance of bees that were later included in the 
Control treatment (n=12). The left panel depicts Experimental Condition 1 with rewarding flowers 

containing 50% sucrose solution and non-rewarding flowers that only contained water. The right panel 

depict Experimental Condition 2 with high rewarding flowers containing 50% sucrose solution and lower 

rewarding flowers containing 30% sucrose solution. 

 

Reversal phase: Shaking facilitates reversal learning 

To investigate if acute stress affects bee reversal learning, half of the bees were shaken 

for 60s before each foraging bout. Bees in Experimental Condition 1 received between 

4-12 stress events, with an average of 7.33 ± 2.71 stressors. While different bees 
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therefore received a different number of stress events, there was no correlation 

between the number of stress events and the number of errors made in the reversal 

phase (r = -0.045, p= 0.889). This suggests that the acute negative impact caused by 

shaking, in conjunction with the rewarding nature of foraging, enabled the bees to 

restore their homeostasis following each stress occurrence.  

The model that best fit the choices to criterion data included two fixed factors, 

the treatment and the experimental condition, and an interaction between factors. 

While there were no significant main effects of either Treatment (Model Estimate ± SE 

= 0.064 ± 0.108, z = 0.60, p = 0.551) or Experimental Condition (Model Estimate ± SE 

= -0.011 ± 0.108, z = -0.11, p = 0.913) on the total number of choices, the interaction 

between factors was significant (Model Estimate ± SE = -0.323 ± 0.0.154, z = -2.09, p 

< 0.05). This significant interaction implies condition-dependent effect of shaking. 

Specifically, shaken bees in Experimental Condition 1 needed fewer choices to 

complete reversal (Fig.3A).  

The model for the total number of errors before reaching the learning criterion 

that included Treatment and Experimental Condition as fixed predictors with an 

interaction had the lowest AIC (428.51). The closest competing model, which excluded 

interaction term, had a slightly higher AIC (429.23). A delta AIC of 0.72, indicating no 

strong support for one model over the other. The ANOVA comparison shows that 

adding an interaction to the model does indeed provide a statistically significant 

improvement (χ²(2) = 2.72, p = 0.05). The best-fitting model, therefore, included 

Treatment and Experimental Condition as fixed predictors and an interaction between 

them (Appendix Table 3). As with the number of choices, the main effects of Treatment 

and Experimental Condition were not significant (Treatment: Model Estimate ± SE = 

0.055 ± 0.119, z = 0.47, p = 0.640; Condition: Model Estimate ± SE = 0.023 ± 0.119, z 

= 0.19, p = 0.849). The interaction effect between Treatment and Experimental 

Condition approached significance (Model Estimate ± SE = -0.281 ± 0.168, z = -1.67, 

p = 0.0948). There is therefore perhaps weak evidence suggesting that the impact of 

shaking on the number of errors may also depend on the experimental condition bee 

is exposed to (Fig.3B).  
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Figure 3. The impact of shaking on reversal learning. A) The total number of choices to reach the 

learning criterion (80% accuracy in the last 20 choices). In Experimental Condition 1 (50% vs H2O), 

bees subjected to shaking (red, n=12) required significantly fewer flower choices to reach the learning 

criterion compared to the control (blue, n=12). However, this pattern did not replicate in Experimental 

Condition 2 (50% vs 30), showing no significant difference between control (blue, n=12) and shaken 

bees (red, n=12). B) The total number of errors to reach the learning criterion (80% accuracy in the last 

20 choices). In Experimental Condition 1 (50% vs H2O), shaken bees made fewer errors compared to 
the control bees. However, the observed difference, while showing a tendency, was not yet statistically 

significant. Similar patterns were not replicated in Experimental Condition 2 (50% vs 30), where both 

control (blue, n=12) and shaken bees (red, n=12) made a similar number of errors to reach the criterion. 

The bars indicate the mean, and the error bars represent the standard deviation. The asterisk (*) 

indicates significance at p < 0.05. 

 

Experiment Condition 1: Early vs late reversal  

For the analysis of bee performance in the early and late reversal phases, the 

model that included the treatment and the stage of reversal learning as fixed factors 

and the interaction between them had the lowest AIC (461.02). The closest 

competing model, which excluded interaction term, had a slightly higher AIC 

(462.63). A delta AIC of 1.6, indicating no strong support for one model over the 

other. The ANOVA comparison shows that adding Treatment to the model does not 

provide a statistically significant improvement (χ²(2) = 3.60, p = 0.05). The best-fitting 

model, therefore, included the treatment and the stage of reversal learning as fixed 

factors and the interaction between them (Appendix Table 4). While there was no 
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significant main effect of treatment (Model Estimate ± SE = 0.024 ± 0.190, z = 0.12, p 

= 0.897) or learning stage (Model Estimate ± SE = 0.237 ± 0.182, z = 1.302, p = 

0.193), the interaction was marginally significant (Model Estimate ± SE = -0.526 ± 

0.273, z = -1.927, p = 0.054). The best-fitting model for the total number of errors 

made before reaching the criterion also included treatment and the stage of reversal 

learning as fixed factors and the interaction between them. As with choice to criterion, 

there was no significant main effect of treatment (Model Estimate ± SE = 0.012 ± 

0.195, z = 0.063, p = 0.949) or learning stage (Model Estimate ± SE = -0.298 ± 0.211, 

z = -1.409, p = 0.158), but the interaction was significant (Model Estimate ± SE = -

0.674 ± 0.331, z = -2.034, p = 0.0419). Therefore, the number of choices and errors 

to criterion was lower in the later reversal learning in shaken bees (Fig.4A, B).  

 

 

Figure 4. Experimental Condition 1: shaking facilitates late but not early reversal learning. A) No 

difference in the total number of choices during the early stage of reversal learning (50% correct choices 

in the last 20 choices, “Early”) was observed. However, in the later stage of reversal learning (>50% 

correct choices in the last 20 choices, “Late”), shaken bees (red, n=12) required fewer choices than the 

control group (blue, n=12). B) During the early stage of reversal learning, there was no significant 

difference in the total number of errors made between treatment groups. In the later stage, however, 
shaken bees (red, n=12) made fewer errors compared to the control (blue, n=12). The bars indicate the 

mean, and the error bars represent the standard deviation. The asterisk (*) indicates significance at p < 

0.05. 
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Experiment Condition 2: Early vs late reversal  

As in Experimental Condition 1, bees in Experimental Condition 2 received between 5-

12 stress events, with an average of 8.67 ± 2.02 stress events. Despite the difference 

in the number of stress events experienced by each bee, here too there was no 

correlation between the number of stress events and the number of errors made in the 

reversal phase (r = 0.31, p= 0.329). 

Analysis of early and late reversal learning further confirmed that there was no 

effect of shaking on reversal learning in Experimental Condition 2 (Fig.5A, B). The 

model of total choices to criterion that included treatment (Control vs Shaking) and 

stage (Early vs Late) as fixed factors only without an interaction had the lowest AIC 

(465.75). The closest competing model, which included an interaction term, had a 

slightly higher AIC (467.41). A delta AIC of 1.65, indicating no strong support for one 

model over the other. The ANOVA comparison shows that adding Treatment to the 

model does not provide a statistically significant improvement (χ²(2) = 0.35, p = 0.56). 

The best-fitting model, therefore, included treatment (Control vs Shaking) and stage 

(Early vs Late) as fixed factors only without an interaction (Appendix Table 4). While 

the overall choices to criterion were significantly larger in the later phase of reversal 

learning (Model Estimate ± SE = 0.384 ± 0.124, z = 3.08, p < 0.0021), shaking had no 

significant effect on the total choices to criterion (Model Estimate ± SE = 0.023 ± 0.122, 

z = 0.19, p = 0.850). The model with the lowest AIC (420.18) for the total number of 

errors made before reaching the learning criterion included treatment and the stage of 

reversal learning as fixed factors. A competing model, which had a slightly higher AIC 

but with a delta AIC of less than 2 units, also included the interaction term between the 

fixed factors (Appendix Table 4). As with choices to criterion, further ANOVA 

comparison confirmed that including the interaction term did not significantly improve 

the model fit (χ²(2) = 0.52, p = 0.47), thus simpler model was selected. There was no 

significant main effect of treatment (Model Estimate ± SE = -0.099 ± 0.198, z = -0.501, 

p = 0.617) or stage (Model Estimate ± SE = -0.263 ± 0.206, z = -1.277, p = 0.202) and 

the interaction term was also not significant (Model Estimate ± SE = 0.209 ± 0.291, z 

= 0.719, p = 0.472).  
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Figure 5. Experimental Condition 2: Shaking had no effect on either early or late reversal 
Learning. A) The number of choices was not statistically different between the control (blue, n=12) and 

shaken (red, n=12) bees, either in the early stage (50% correct choices in the last 20 choices, “Early”) 

or in the later stage of reversal learning (>50% correct choices in the last 20 choices, “Late”). B) Similarly, 

no difference in the number of errors was observed in either the early or late stages of reversal. The 

bars represent the mean, and the error bars indicate the standard deviation. Blue bars correspond to 

the Control treatment, while red bars correspond to the Shaking treatment. 

 

Impact of shaking on low-reward depletions 

In the reversal phase of Experimental Condition 2, bees faced two possibilities when 

landing on previously correct but now incorrect flowers: they could either probe and 

reject the low-reward (30% sugar solution) or deplete it. Compared to control bees, 

shaken bees were more likely to consume the low-quality sugar reward when landing 

on incorrect flowers (167 occurrences vs 20, Fig. 6). The number of depletions had a 

strong and significant positive correlation with the number of choices (r = 0.753, p < 

0.01) and errors (r = 0.833, p < 0.001) required to complete the reversal in shaken 

bees, but not in control bees (Choices: r = 0.294, p = 0.354; Errors: r = 0.110, p = 

0.733).  
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Figure 6. Low-reward depletions made by bees in the reversal phase of Experimental Condition 
2. Each bar represents the cumulative number of depletions for individual treatment groups over 

consecutive bins of 10 flower choices. The number of bees contributing to the cumulative total of 

depletions per bin is indicated by a sample size above each bar. 

 

I further investigated if these low-reward depletions were treatment-dependent 

and if they were more likely to happen at the beginning of the reversal phase when 

bees lacked experience with the new high-rewarding flower. To do so I fit generalized 

linear mixed models using a Poisson distribution and a log link function. The best-fitting 

model included Treatment and Choice Order as fixed predictors without their 

interaction. 

As expected, the choice order significantly affected the low-reward depletion 

rate (Model Estimate ± standard error = -0.009 ± 0.002, z = -4.596, p < 0.001). As bees 

continued to make choices, the number of low-reward depletions decreased, indicating 

that bees chose to reject, not deplete, incorrect flowers. Shaking also had a significant 

positive effect (Model Estimate ± standard error = 2.222 ± 0.443, z = 5.015, p < 0.001), 

showing that the depletion rate was treatment-dependent and increased with shaking. 

 

Bee morphology did not affect the learning performance 

I measured the intertegular width of all bees that completed reversal learning 

successfully. The intertegular width ranged from 3.25 to 4.33 mm for all bees, 

regardless of treatment and experimental conditions. The average intertegular widths 
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for shaken bees in Experimental Conditions 1 and 2 were 3.42 ± 0.269 mm and 3.50 

± 0.288 mm, respectively, while the average intertegular widths of control bees were 

3.56 ± 0.237 mm and 3.25 ± 0.262 mm, respectively. All bees were therefore highly 

similar in size. 

While treatment-dependent differences in reversal learning were observed, the 

performance in both groups also varied greatly (see Fig.3). I, therefore, wanted to 

investigate if there was a correlation between bee body size and learning performance 

across treatments in each experimental condition. Although the size of a bee has been 

previously linked to learning and memory (Worden, Skemp and Papaj, 2005; Riveros 

and Gronenberg, 2009), I did not find any correlation with the number of choices or 

errors to criterion in our experiments (Appendix Table 3).  

I also explored whether the observed differences in reversal performance could 

be attributed to certain bees inherently having better learning abilities. To address this, 

I again performed Pearson Correlation between bee performance in the initial and the 

reversal phase. There was no correlation observed between the number of choices or 

total errors to criterion during both the Initial and Reversal Phases for any of the 

experimental conditions (Appendix Table 1). This indicates that the variability in 

learning performance cannot be attributed to individuals being better or worse in 

learning. 

 

4.4 Discussion  

In this study, I investigated how subjecting bumblebees to shaking modulates their 

behavioural flexibility. To do this, I used a reversal learning task. Although reversal 

learning has been previously studied in social bees (Chittka, 1998; Ben-Shahar et al., 

2000; Komischke et al., 2002; Hadar and Menzel, 2010; Mota and Giurfa, 2010; Raine 

and Chittka, 2012; Strang and Sherry, 2014), to my knowledge, this is the first study 

looking at the effects of stress on their behavioural flexibility.  

 

Shaking facilitates late reversal learning when choosing between rewarding and 
non-rewarding flowers 
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Shaking can induce a negative state in bees. This was earlier demonstrated using the 

judgment bias test paradigm (see Chapter Two). Applying shaking treatment 

immediately before bees began foraging significantly affected reversal learning in 

Experimental Condition 1, where flowers contained reward or no reward (water). Here, 

bees in a negative state reached the learning criterion with significantly fewer flower 

choices and fewer total errors. Thus, the stress appears to facilitate reversal learning 

in this experimental condition. 

These results are consistent with some previous findings in the mammalian 

literature, which show that acute stress can indeed improve reversal learning. Thai et 

al. (2013) demonstrated that exposing rats to acute restraint stress just before the 

reversal learning test significantly enhanced their performance. Stressed rats 

completed reversal with fewer trials and errors. Similarly, acute elevated-platform 

stress delivered for 30 min immediately before the reversal trials enhanced spatial 

reversal learning in rats (Dong et al., 2013).  

Just as with any discrimination learning, reversal learning is a two-process 

phenomenon. It consists of excitatory learning and extinction learning (Hadar and 

Menzel, 2010; Nilsson et al., 2015). For example, in a two-stimuli-discrimination task, 

the excitation learning driven by positive reinforcement promotes the approach of 

stimuli associated with a reward, while no reward associated with alternative stimuli 

gradually suppresses the approach via extinction learning. However, classic 

discrimination learning starts with stimulus-naïve individuals. This is not true for 

reversal learning. Here, learning unfolds based on existing knowledge and rules 

associating a stimulus with specific outcomes; it poses a challenge for acquiring new 

excitatory and new extinction learning. The previously formed stimulus-outcome 

association results in a tendency to persevere in approaching the initial stimulus that 

was rewarded and avoiding the initial stimulus that was not rewarded, despite the 

change in contingencies (Nilsson et al., 2015). This is especially true at the start of the 

reversal. It is, therefore, assumed that early errors reflect the strength of the initial 

stimulus-reward association (perseverance), whereas later errors indicate the ability to 

acquire a new stimulus-reward association (Boulougouris, Dalley and Robbins, 2007; 

Bryce and Howland, 2015; Nilsson et al., 2015). Investigating early and later reversal 

can thus provide attentional insight.  
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Some earlier studies applied this logic to their analyses and showed that 

animals exposed to acute stress make fewer errors than unstressed animals but only 

during later stages of reversal learning (Graybeal et al., 2011; Bryce and Howland, 

2015). Later in reversal, the performance is no longer dominated by persevering on 

the previously rewarded stimulus but is primarily driven by learning the new rewarding 

association. Thus, acute stress seems to affect new excitation learning but not 

extinction learning. In line with these findings, I also observed that the facilitating effect 

of shaking on reversal learning in Experimental Condition 1 was mainly driven by the 

improved performance during late stages (after accuracy increased above 50%). 

Shaken bees made fewer choices and made fewer errors to criterion. This suggests 

that shaking may indeed facilitate excitatory learning of a new stimulus-outcome 

association but without simultaneously affecting extinction learning of the initial 

stimulus-response associations. When taken together, these findings suggest that 

shaking has a delayed effect on reversal learning in bees. Stress did not interfere with 

the early stages of reversal learning, where the extinction of the initial association is 

needed. However, after the high rates of persevering on previously rewarding flowers 

had ceased, experiencing acute stress facilitated the acquisition of new excitatory 

learning.  

 

Why does stress facilitate reversal learning? 

In the present study, bees were exposed to mild stress delivered at the beginning of 

each foraging bout. Although shaking was administered several times during the 

reversal phase, the short-lived nature of the stress, coupled with the positive effect of 

receiving a reward during successful foraging, likely allowed bees to restore 

homeostasis and recover after each shaking event. This assumption is confirmed as 

the number of stresses administrated did not correlate with learning performance 

during reversal learning. Thus, shaking can be considered a repeated yet acute 

stressor.  

The fight-or-flight response is a well-known coping mechanism that is initiated 

by acute stress exposure. In mammals, such response is mediated by activation of the 

sympathetic nervous system and the hypothalamic-pituitary-adrenal axis. The 

unfolding cascade of neurological, physiological, and behavioural changes support 
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response to threats, and later, help an organism to return to a state of balance (De 

Kloet, Joëls and Holsboer, 2005). A similar stress response model has been proposed 

in bees (Even, Devaud and Barron, 2012).  

The facilitating effect of acute stress on behavioural flexibility is attributed to a 

sudden release of stress hormones (Hurtubise and Howland, 2017). In bees, however, 

this function could be achieved by octopamine. Octopamine is thought to act as a major 

stress hormone within the bee nervous system (Roeder, 2005, 2020), with increased 

levels of this biogenic amine observed during energetically demanding situations 

(Davenport and Evans, 1984; Roeder, 2005; Adamo and Baker, 2011; Adamo, Kovalko 

and Mosher, 2013). In the peripheral nervous system, octopamine plays a role in 

stress-related physiological responses (Even, Devaud and Barron, 2012). In the 

central nervous system, however, octopamine acts as a neuromodulator that mediates 

sensory and cognitive processes associated with feeding (Giurfa, 2006; Rein et al., 

2013). Given the latter, octopamine plays a key role in appetitive learning and memory 

(Hammer and Menzel, 1998; Unoki, Matsumoto and Mizunami, 2005). Octopamine is 

also known for its role in regulating reward sensitivity. For example, honeybees 

(Scheiner et al., 2002) and bumblebees (Muth, Breslow and Leonard, 2023) show 

increased sensitivity to sucrose after receiving higher doses of octopamine. By fine-

tuning the sensory system, octopamine increases animals’ “preparedness to learn”, 

which in turn facilitates appetitive learning (Scheiner et al., 2002). 

Shaking is an acute stressor. Therefore, it is reasonable to speculate that 
shaking may increase the levels of biogenic amines, especially octopamine. If so, the 

increase in octopamine levels may in turn have led to increased responsiveness to 

reward, thereby, facilitating learning. Similar speculations were made in the earlier 

study showing improved appetitive learning in honeybees exposed to stress delivered 

by formic acid exposure (Bachert and Scheiner, 2023). The authors explained their 

observed improvement in appetitive learning by the possibility of increased release of 

octopamine in the mushroom bodies initiated by stress. Octopamine, however, is not 

the only biogenic amine that is modulated by stress; serotonin and dopamine are also 

affected (Davenport and Evans, 1984; Harris and Woodring, 1992; Even, Devaud and 

Barron, 2012). As a result, the observed facilitating effect of stress on reversal learning 

in my study may be caused by the cumulative effect of several biogenic amines 

modulating different cognitive functions. For example, serotonin may facilitate 
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disengaging from previously reinforced stimuli (Hurtubise and Howland, 2017), while 

increased dopamine levels may further contribute to better learning by increasing 

arousal (Mustard, Pham and Smith, 2011), “wanting” (Huang et al., 2022), and perhaps 

attentional processes (Raza et al., 2022). A quantitative assessment of biogenic anime 

levels would be needed to confirm this hypothesis.  

 

Shaking has no effect when both flowers are rewarding 

Shaking facilitates reversal learning only in Experimental Condition 1 but not 

Experimental Condition 2. In the reversal phase, shaken bees showed no differences 

in the number of choices or errors made till the criterion was met. The conditions 

differed only in the rewards offered by flowers. While in Experimental Condition 1 

flowers were either highly rewarding or unrewarding, both flower types in Experimental 

Condition 2 carry a reward, although of different quality (50% vs 30%). Therefore, when 

landing on the incorrect flower in the second condition, bees had to choose to reject or 

accept the low-quality reward. As the results show, the tendency to accept low rewards 

was higher in the shaken group. Speculatively, these depletions might explain why 

shaking has no effect on reversal learning in Experimental Condition 2.  

When a stimulus in association with a reward continues to fail to provide the 

expected outcome, the reward associated with such stimuli gradually decreases 

(Izquierdo et al., 2017). However, sporadic acceptance of low rewards, as seen in 

Experimental Condition 2, may have delayed this extinction process. This is because 

the occasional depletion of the low reward could have reinforced the association with 

incorrect choices and thus interfered (at least to some extent) with a gradual decrease 

in the value associated with stimuli. This is further supported by a positive correlation 

between the number of total depletions and the total number of choices and errors to 

criterion. Thus, bees that depleted low rewards took longer to reverse. Therefore, the 

sporadic acceptance of low rewards may prolong the perseverance of the association 

of the initial stimulus with a high reward. This could have potentially counteracted any 

beneficial effect of shaking on reversal learning observed in Experimental Condition 1. 

The occasional low reward depletion in shaken bees is likely due to a 

combination of factors. For example, depletions could have occurred due to a sudden 

increase in energetic demands caused by shaking. This idea finds some support in an 
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earlier study, which showed that shaking not only lowered glycogen levels in muscles 

but also increased fructose levels in the haemolymph (Božič and Woodring, 1997). 

Changes in energy reserves observed in this study indicate an energy-demanding 

state induced by shaking. The consumption of the low reward by shaken bees in my 

study may represent a desperate attempt to restore energy losses. This would imply 

that when shaken, bees perceive the low reward as more valuable, as in times of need, 

any form of energy is considered beneficial. Similarly, as mentioned earlier, shaking 

may result in elevated octopamine levels and, therefore, an increased sensitivity to 

reward. The depletions of the low reward were occasional and did not persist 

throughout the entire reversal learning period. This suggests that the lower reward 

acceptance threshold induced by shaking is short-lived, just like the shaking-induced 

negative affective state. Once shaken bees have compensated for the energy loss and 

potentially returned to homeostasis (i.e., a neutral affective state), the shaken bees 

would begin to reject low rewards and not perform worse than control bees.  

 

Limitations of the study 

One great limitation of this study is that I did not measure levels of biogenic amines. 

Nonetheless, it is intriguing to consider the possibility that octopamine could play a role 

in enhancing the learning performance of stress bees. While the octopamine-driven 

explanation is supported by some earlier invertebrate literature (Davenport and Evans, 

1984; Harris and Woodring, 1992; Božič and Woodring, 1997; Even, Devaud and 

Barron, 2012), one particular study showed the opposite effect of shaking.  

A previous study showed reduced levels of octopamine, dopamine, and 

serotonin in the haemolymph of shaken honeybees (Bateson et al., 2011). Although 

the duration of shaking in Bateson et al. (2016) and my study was the same, 60 

seconds, the way in which shaking was administered was different. Bees were placed 

in harnesses in the Bateson et al. (2016) study while they were free-moving in mine. 

Shaking could potentially have a different effect on biogenic amine levels in these 

different settings.  

Firstly, harnessing could have itself induced a negative state. Thus, the effect of 

later shaking on the levels of these amines would be modulated. Bateson et al. (2016) 

did not specify the exact time between harnessing and haemolymph collection. 



CHAPTER FOUR 
. Acute stress enhances reversal learning in bees  

  145 

However, assuming it followed the protocol used in the main experiment, it could have 

included a 24-hour rest period. Therefore, being harnessed for such a long period of 

time could act as a chronic stressor. Indeed, the depression model in rodents uses 

exactly such treatment - chronic immobilisation (Kim and Han, 2006; Grissom and 

Bhatnagar, 2009). If so, prolonged harnessing could indeed cause a depression-like 

state in bees.  

Secondly, if considering such a depression-like state in harnessed bees, the 

reduced response to the subsequent stress can be expected. It is known that chronic 

stress can lead to stress habituation. For instance, the longer a bee experiences leg 

pinching, the less profound her stress response behaviour becomes (Harris and 

Woodring, 1992). As chronic stress gradually exhausts organisms, the ability to 

respond to subsequent acute stress can also be reduced (Vallès, Martí and Armario, 

2003; Rich and Romero, 2005). If the same is true with prolonged harnessing, it could 

have indeed induced a depression-like state in bees that resulted in reduced response 

to subsequent shaking.  

Lastly, prolonged harnessing could have reduced biogenic amine levels prior to 

shaking. One reason to think so is that, unlike Bateson et al. (2016), other studies that 

used shaking reported elevated, not reduced, levels of biogenic amines (Davenport 

and Evans, 1984; Harris and Woodring, 1992). Commonly, in these studies bees were 

freely moving before, during (somewhat), and after the stress administration. This has 

substantial similarity to my stress administration protocol. In my study, bees were 

placed in the shaker as soon as they entered the testing area. Despite the limited space 

in the shaker, the bee remained active throughout the shaking period, evident from a 

vigorous escape response during shaking and high reactivity afterwards. Increased 

levels of biogenic amine, therefore, could be expected with my treatment.  

Although this is speculative, shaking could thus possibly have had a different 

effect on the levels of biogenic amines in bees in my study and Bateson et al. (2016). 

Harnessing bees may act as a chronic stressor, generating a low-arousal- negative-

valence state, similar to depression in mammals. In such a state, lower levels of 

biogenic amines are expected. Therefore, acute stress, such as shaking could result 

in either further reduction in biogenic amine levels or an increase of lesser magnitude. 

In contrast, shaking “free-flying” bees in my experiment is more likely to induce a high-

arousal- negative-valence state. Therefore, elevated levels of biogenic amines are 
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expected. Methods like high-performance liquid chromatography could be used to 

confirm these speculations in the future.  

In this research, using reversal learning, I investigated how acute stress affects 

the ability of bees to adapt their behaviour to a change. I proposed that being in a 

negative emotion-like state would influence the bees’ ability to learn new stimulus-

reward associations. The results showed that when bees experienced acute stress 

induced by shaking, the ability to reverse previously learned behaviour was facilitated, 

and this facilitating effect occurred later in the reversal. The effect was however 

observed only when distinct reward outcomes were presented. These findings are 

consistent with what has been observed in studies on mammals that suggest the 

delayed impact of acute stress on behavioural flexibility. I speculate, that this 

improvement in behavioural flexibility in bees may be driven by stress-induced 

modulations of biogenic amine levels, such as octopamine. Shaking could also 

increase energy demands, enhance responsiveness to rewards and greater readiness 

for learning. Further investigations are needed to unravel the true underlying cause. 

Importantly facilitation effect was not observed when the outcome values were less 

contrasting. I suggest that observed occasional depletion of low rewards could have 

reinforced the initial associations between stimuli and rewards, thus obstructing the 

facilitating effects of stress. To further validate the underlying mechanisms at play it 

would be helpful to conduct studies that assess amine levels in free-flying bees both 

with and, without shaking-induced stress. 
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4.5. Appendix 

 

Table 2 
Summary of statistical model results analysing the impact of treatment group and experimental condition on 
bee learning performance in the initial phase of reversal learning 

Response 
variable Predictor variables Estimate Std. Error z value Pr(>|z|) 

Total choices (Intercept) 4.07 0.11 37.59 <0.0001 
 Treatment(Shaking) 0.10 0.12 0.79 0.430 
 Condition(Experimental Condition 1) -0.06 0.12 -0.47 0.639 

Total errors (Intercept) 3.15 0.14 21.91 <0.0001 
 Treatment(Shaking) 0.08 0.17 0.50 0.619 
 Condition(Experimental Condition 1) -0.03 0.17 -0.19 0.853 

The table presents a summary of results derived from statistical analyses conducted to examine potential 
variations in learning performance among bees assigned to distinct treatment groups (control and shaking) and 
experimental conditions (Experimental Condition 1: high reward vs. water, and Experimental Condition 2: high 

reward vs. low reward). In all models, the control treatment and experimental condition 2 serve as the 
reference groups. The information includes estimated coefficients, standard errors, z-values, and 

corresponding p-values for both response and predictor variables. 

Table 1 
Summary of best-fit mixed models to analyse bee learning performance in Initial Phase of reversal learning 

 Explanatory variables    

Dependent variable Fixed Random d.f. AIC ΔAIC 

Total choices Treatment+Experimental condition ID 4 456.43 0.00 

 Treatment*Experimental condition ID 5 458.38 1.95 

Total errors Treatment+Experimental condition ID 4 396.68  

 Treatment*Experimental condition ID 5 398.67 2.00 

Model pairwise comparison: Assessing the significance of interaction terms using anova() 

 Explanatory variables    

Dependent variable Fixed Random d.f. χ2 Pr(>χ2) 

Total choices Treatment+Experimental condition ID 4   

 Treatment*Experimental condition ID 5 0.05 0.83 

The table presents the model selection procedure undertaken to investigate the impact of treatment group 
(treatment: control and shaking) and experimental condition (Experimental Condition 1 and Experimental 

Condition 2) on learning performance during the initial phase of reversal learning. Two distinct models were 
employed to analyse choices to criterion and errors to criterion separately. The table includes specifications for 
both fixed and random explanatory variables, along with corresponding degrees of freedom (d.f.) and Akaike’s 

information criterion (AIC) values. The preferred model for each dependent variable, as determined by the 
lowest AIC value, is denoted in bold. Models that had a ∆AIC < 2 were considered not significantly different; in such cases, 

the significance of adding complexity (e.g., interaction term) was further assessed using anova(). 
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Table 3 
Summary of best-fit mixed models to analyse bee learning performance in Initial Phase of reversal learning 

 Explanatory variables    

Dependent variable Fixed Random d.f. AIC ΔAIC 

Total choices Treatment+Experimental condition ID 4 482.48 0.00 

 Treatment*Experimental condition ID 5 480.27 2.21 

Total errors Treatment+Experimental condition ID 4 429.23 0.00 

 Treatment*Experimental condition ID 5 428.51 0.72 

Model pairwise comparison: Assessing the significance of interaction terms using anova() 

 Explanatory variables    

Dependent variable Fixed Random d.f. χ2 Pr(>χ2) 

Total errors Treatment+Experimental condition ID 4   

 Treatment*Experimental condition ID 5 2.72 0.05 

The table presents the model selection procedure undertaken to investigate the impact of treatment group (treatment: control 
and shaking) and experimental condition (Experimental Condition 1 and Experimental Condition 2) on learning performance 
during the initial phase of reversal learning. Two distinct models were employed to analyse choices to criterion and errors to 

criterion separately. The table includes specifications for both fixed and random explanatory variables, along with 
corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) values. The preferred model for each 

dependent variable, as determined by the lowest AIC value, is denoted in bold.  Models that had a ∆AIC < 2 were considered 
not significantly different; in such cases, the significance of adding complexity (e.g., interaction term) was further assessed 

using anova(). 
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Table 4 
Summary of best-fit mixed models to analyse bee learning performance in early and late stages of reversal 
phase of reversal learning 

  Explanatory variables    

 Dependent variable Fixed Random d.f. AIC ΔAIC 

Ex
pe

rim
en

ta
l 

C
on

di
tio

n 
1 Total choices Treatment+Stage ID 5 462.63 0.00 

 Treatment*Stage ID 6 461.02 1.60 

Total errors Treatment+Stage ID 5 421.79 0.00 

 Treatment*Stage ID 6 410.70 2.08 

Ex
pe

rim
en

ta
l 

C
on

di
tio

n 
2  Total choices Treatment+Stage ID 5 465.75 0.00 

 Treatment*Stage ID 6 467.41 1.65 

Total errors Treatment+Stage ID 5 420.18 0.00 

 Treatment*Stage ID 6 421.67 1.48 

 
Model pairwise comparison: Assessing the significance of interaction terms using anova() 

  Explanatory variables    

 Dependent variable Fixed Random d.f. χ2 Pr(>χ2) 

Ex
pe

rim
en

ta
l 

C
on

di
tio

n 
1  

Total errors Treatment+Stage ID 5   

 Treatment*Stage ID 6 3.60 0.05 

      

      

Ex
pe

rim
en

ta
l 

C
on

di
tio

n 
2  

Total choices Treatment+Stage ID 5   

 Treatment*Stage ID 6 0.35 0.56 

Total errors Treatment+Stage ID 5   

 Treatment*Stage ID 6 0.52 0.47 

The table presents the model selection procedure undertaken to investigate the impact of the treatment group (Treatment: 
control and shaking) and the stage of reversal learning (Stage: early and late) on bee learning performance during the 

reversal phase. Two distinct models were employed to analyse choices to criterion and errors to criterion separately for each 
experimental condition. The table includes specifications for both fixed and random explanatory variables, along with 

corresponding degrees of freedom (d.f.) and Akaike’s information criterion (AIC) values. The preferred models for each 
dependent variable, as determined by the lowest AIC value, are denoted in bold. Models that had a ∆AIC < 2 were considered 

not significantly different; in such cases, the significance of adding complexity (e.g., interaction term) was further assessed 
using anova(). 
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Table 5 
Summary of statistical model results analysing bee learning performance in the reversal phase of reversal 
learning. 

Model 
Respons

e 
variable 

Predictor variables Estimat
e 

Std. 
Erro

r 

z 
valu

e 
Pr(>|z|

) 
O

ve
ra

ll 
le

ar
ni

ng
 p

er
fo

rm
an

ce
 

Total 
choices (Intercept) 4.85 0.08 62.9

7 
< 

0.0001 
 Treatment(Shaking) 0.06 0.11 0.60 0.551 
 Condition(Experimental Condition 1) -0.01 0.11 -0.11 0.914 

 Treatment(Shaking)*Condition(Experimen
tal Condition 1) -0.32 0.15 -2.09 0.036 

Total 
errors (Intercept) 4.20 0.08 49.9

6 
< 

0.0001 
 Treatment(Shaking) 0.06 0.12 0.47 0.640 
 Condition(Experimental Condition 1) 0.02 0.12 0.19 0.849 

 Treatment(Shaking)*Condition(Experimen
tal Condition 1) -0.28 0.17 -1.67 0.095 

Ea
rly

 a
nd

 la
te

 p
er

fo
rm

an
ce

 

Ex
pe

rim
en

ta
l C

on
di

tio
n 

1 

Total 
choices (Intercept) 4.04 0.14 29.4

0 
< 

0.0001  

Treatment(Shaking) 0.02 0.19 0.13 0.897  

Stage(Late) 0.24 0.18 1.30 0.193  

Treatment(Shaking)*Stage(Late) -0.53 0.27 -1.93 0.054 
Total 

errors (Intercept) 3.69 0.14 26.2
0 

< 
0.0001  

Treatment(Shaking) 0.01 0.20 0.06 0.949  

Stage(Late) -0.30 0.21 -1.41 0.159  

Treatment(Shaking)*Stage(Late) -0.67 0.33 -2.03 0.042 

Ex
pe

rim
en

ta
l C

on
di

tio
n 

2 

Total 
choices (Intercept) 3.99 0.12 34.0

3 
< 

0.0001  

Treatment(Shaking) 0.02 0.12 0.19 0.851  

Stage(Late) 0.38 0.12 3.08 0.002 
Total 

errors (Intercept) 3.70 0.14 26.6
3 

< 
0.0001  

Treatment(Shaking) -0.10 0.20 -0.50 0.617  

Stage(Late) -0.26 0.21 -1.28 0.202  

Treatment(Shaking)*Stage(Late) 0.21 0.29 0.72 0.472 

The table provides a comprehensive overview of the results obtained through statistical analyses of bee 
performance during the reversal phase. The analysis encompasses various response variables, including 

overall learning performance (total number of choices and errors to criterion), early and late performance (total 
choices and errors for each experimental condition separately). The predictor variables consist of the treatment group 

(Treatment: Control and Shaking), condition (Condition: Experimental Condition 1 and Experimental Condition 2), reversal 
learning stage (Stage: Early and Late). The specific reference group for each predictor variable is highlighted in bold. 

Statistically significant p value is highlighted in bold. Additionally, all models include information about estimated coefficients, 
standard errors, zvalues, and corresponding p-values for both response and predictor variables. 
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CHAPTER FIVE 

Exploring the bee brain in virtual reality: towards an 

eIective method to study the neural architecture of a 

miniature brain 
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5.1. Introduction 

Although the study of insect emotion is still in its early stages, several successful 

attempts have been made. Using the judgment bias task, emotion-like states in social 

bees have been demonstrated in this thesis (see Chapter Two), as well as in earlier 

studies (Bateson et al., 2011; Solvi, Baciadonna and Chittka, 2016; Schlüns et al., 

2017; Strang and Muth, 2023). I showed that, as in mammals, prior negative 

experiences modulate bee cognition and behaviour. However, it is crucial to 

acknowledge that merely identifying similarities in behavioural reactions is not 

sufficient. Exploring the mechanisms through which the brain generates and regulates 

these states is still an unexplored yet important field of research. 

Insect brains lack the cortical structures known to be involved in emotion in 

mammals (Panksepp, 2011). Nevertheless, time and time again, social bees have 

demonstrated the capacity of their tiny brains to exhibit rather sophisticated behaviours 

(Giurfa et al., 2001; Devaud et al., 2015; Chittka, 2017; Solvi, Al-Khudhairy and Chittka, 

2020). For instance, bees are capable of concept learning, such as understanding 

sameness and difference between stimuli (Giurfa et al., 2001). In mammals, such 

learning depends on the prefrontal cortex (Wallis, Anderson and Miller, 2001; Miller et 

al., 2003). Bees, however, achieve this through higher-order structures, such as 

mushroom bodies (Giurfa, 2013). Despite the evident structural differences between 

bee and mammalian brains, the mechanisms behind information processing, 

integration, and storage are rather similar (Hammer and Menzel, 1995; Joerges et al., 

1997; Wilson and Stevenson, 2003; Schultz, 2006; Szyszka, Galkin and Menzel, 2008; 

Menzel, 2014). Similarly, functional parallels have also been suggested – for instance, 

insect mushroom bodies have been cited to be analogous to the midbrain in 

vertebrates (Barron and Klein, 2016), while the central complex might be comparable 

to vertebrates’ basal ganglia (Strausfeld and Hirth, 2013). These higher-order brain 

structures, therefore, are the best candidates for exploring the neural correlates of 

emotion-like states in bees. 

The techniques available for in vivo assessments of the bee brain are rather 

limited. Common methods, e.g., calcium imaging or targeted inhibition of neural 

activity, involve injecting substances (such as calcium-sensitive dyes or blockers of 

voltage-gated channels) into specific brain regions or neurons of a harnessed animal. 

Despite obvious advantages, there are certain issues with applying these methods to 
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study emotion-like states. First, restricting the animals’ movement can impact their 

emotional state. For example, chronic immobilisation is used as a treatment to induce 

depression states in rodents (Kim and Han, 2006; Grissom and Bhatnagar, 2009). 

Similar effects may be expected in bees, thereby complicating the use of existing 

neurophysiological methods to study affective states.  

This challenge, however, can be overcome by conducting studies using virtual 

reality environments (VR). VR permits full control over the visual surroundings of the 

animals, while at the same time, allowing freedom of movement. In the past, VR has 

been successfully used in behavioural (Buatois et al., 2017, 2018, 2020), and 

neuroethological studies, e.g., involving electrophysiological recordings (Paulk et al., 

2014; Zwaka et al., 2019). Simpler neurophysiological techniques can also be explored 

for use in VR setups. An excellent avenue to investigate involves coupling behavioural 

assays in VR with transient silencing of selected brain regions using microinjections of 

local anaesthetics, e.g., procaine. The method has previously been applied to studying 

aversive learning in honeybees (Plath et al., 2017) but has not yet been tested in a 

more complex experimental setting. Therefore, microinjection and VR could indeed 

become a great tool for exploring several complex questions, including investigating 

the neural correlates of emotion-like states in bees. Yet, before moving further, it is very 

important to evaluate another possible concern.  

Targeted brain microinjection is a highly invasive technique (Søvik et al., 2016). 

It is therefore crucial to investigate whether cognitive abilities remain intact in animals 

before applying these methods to address more complex questions. Previously, Macri, 

Lafon and Avargues-weber (2021) explored the effectiveness of combining targeted 

microinjections with behavioural assays in the VR (Macri, Avargues-weber and Lafon, 

2021). The team used honeybees, Apis mellifera, to investigate whether the procedure 

required for microinjections caused significant brain damage. Two higher-order brain 

areas – the mushroom bodies and central complex - were injected with phosphate 

buffer saline (PBS), followed by subjecting bees to a colour discrimination task. 

Contrary to previous studies (Plath et al., 2017), most saline injected bees either failed 

to engage with the behavioural task or were unsuccessful in learning acquisition. It was 

therefore proposed to repeat the experiment with another social bee species, 

bumblebees (Bombus terrestris). Specifically, the aim of my study was to adjust 

existing microinjection-VR protocols to bumblebees and to assess whether this bee 

species is a better candidate model for the procedure. 
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5.2. Materials and Methods 

Animal housing and preparation  

I used four commercially raised Bombus terrestris colonies (Koppert, Cavaillon, 

France) in this experiment. Throughout the experiment, bees were kept in commercial 

boxes containing a highly nutritious food supply provided by the suppliers. To increase 

foraging motivation and deprive them of rich commercial food, bees used in 

experiments were kept on a low-quality diet overnight (at libitum 30% (w/w) sugar 

solution and water). On the day before the onset of the experiment, individual bees 

were collected by placing a glass vial at the box’s entrance. To attract bees towards 

the exit, the procedure was done under the red light (invisible to bees), with only the 

entrance illuminated with visible spectrum light. The collected bees were placed on ice 

for a short bout of cold anaesthesia and transferred into housing cages (10x5x7cm). I 

provided the bees with ad libitum low-quality sucrose solution (30%, w/w) and water. 

Overnight, I kept housing cages in the incubator under controlled conditions (50-60% 

humidity and 28°C temperature). I compared four different groups: the unmanipulated 

control group (C1), the ‘sham’ group with surgery only (C2), and two PBS-injected 

groups: with injections in the alpha lobes of the mushroom bodies (PBSAL) and in the 

central complex (PBSCX) respectively. 

 

Surgery and microinjection into brain structures  

The following day, bees were anaesthetised on ice and restrained in harnesses. To 

prepare the bee for surgery (groups C2, PBSAL and PBSCX), its head was 

immobilised with dental wax to prevent movement. The procedure was as described 

earlier (Søvik et al., 2016). In brief, the antennae were restrained with insect pins. A 

window was cut into the head cuticle to access the brain for injections (PBSCX, 

PBSAL). Three cuts were made - one at the border of the right eye, one above the 

median ocellus and one below the antennal stems. This created the flap that was 

helped opened through the procedure with an insect pin. To permit easy access to the 

nanoinjector, the glands and tracheae were gently moved aside. Following this, a small 

incision was made into the neurolemma exposing the area of interest. As soon as the 
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surgery was complete, the flap was repositioned and fixed with eicosane to prevent 

brain from drying (Søvik et al., 2016). 

 

 

Figure 1. Microsurgery and injection sites. A. Before surgery, the bee is briefly anesthetised on ice 

and harnessed. B. The surgery involves cutting a window into the head cuticle, with three incisions: one 

at the border of the right eye, one above the median ocellus and one below the antennal stems. C. After 

gently moving glands and tracheae aside, a small incision is made into the neurilemma to access the 

structure of interest and permit a smooth entry of the nanoinjector. The arrows indicate the injection 

sites: bilateral injection into the alpha lobes of the mushroom bodies (AL, red, dotted circles) and a single 

injection into the central complex (CX, blue, marked with X). The injections into the alpha lobes, D, and 
the central complex, E, were later confirmed under fluorescent lighting. 

 

Microinjections were performed 30 minutes before conditioning, a delay that is 

sufficient to induce a blockade of neurotransmission when procaine is administered 

(Devaud et al., 2007). In all cases, injections were performed using a pulled glass 

capillary (GC 100-10; Harvard Apparatus) connected to a pressure nanoinjector 
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(Nanoject III, Drummond). To target the MBs, ~1.0 nL of PBS was injected into each 

lobe at a depth of 50 μm and an angle of 68–70° relative to the brain surface. To target 

the central complex, ~1.0 nL of PBS was injected at a depth of 400 μm, entering the 

midline between the dorsal part of the ventral lobes (Fig 2). Fluorescein (0.5mg/ml) 

was added to the PBS solution to ensure the injection hit the area of interest. The site 

was confirmed after injection by fluorescence microscopy (Nikon Intensilight C-HGFI 

for fluorescence). Under fluorescent lighting, the injection site becomes visually 

identifiable. When targeting the alpha lobes of the mushroom bodies, the accuracy of 

the injection was confirmed when both lobes were illuminated. In the case of central 

complex injections, the accuracy of the injection was confirmed when the illumination 

was centralised (Fig. 1D, E). Bees that were injected incorrectly, such as those with 

only one lobe illuminated in the case of bilateral mushroom body injections, were 

excluded from the study. 

 

Tethering procedure 

The tethering procedure was performed right after either surgery (C2), injection 

(PBSAL, PBSCX) or harnessing (C1). The procedure was adopted from earlier work 

(Lafon et al., 2021). A harnessed bee was positioned vertically with a thorax exposed 

to a tether attachment (Fig. 3). The banded part of a tether needle was positioned on 

the bee’s thorax and fixed with a small amount of bee wax. After securing the tether, 

the bee was released from the harness and placed on a Styrofoam ball (50 mm in 

diameter) for familiarisation with a temporary set-up for 30 minutes. The temporary 

setup was identical to that employed in the VR experiment. This setup served as a 

treadmill on which a tethered bee could move as desired. 

  

Virtual reality set-up  

After 30 minutes of familiarisation with the temporary set-up, the bee was placed in the 

VR setup. All experiments used a closed-loop paradigm as described in Lafon et al., 

2021. I used software written by Dr Gregory Lafon that is publicly available at 

https://github.com/G-Lafon/BeeVR. The VR set-up comprised of Styrofoam ball (50 

mm in diameter, weight 1.07 g) placed in a 3-D printed cylindrical system (50 mm high, 

59 mm in diameter). The ball was supported by the airflow (33 L.min-1) continuously 
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supplied by the aquarium air pump (AquaOxy 2000). The cylindrical setup was fixed 

facing a half-cylinder vertical screen (semitransparent tracing paper, 268 mm in 

diameter, 200 mm in height), positioned at a distance of nine centimetres from the bee. 

A virtual environment was thus projected on this screen (video projector Acer K135).  

 

Figure 2. Experimental set-up and virtual environment. A) The tethering system consisted of a 

plastic cylinder (1) fitted into a holding frame. Within the cylinder, a glass cannula held the steel needle 

(2), with its curved end secured to the thorax of a bee using melted beeswax (3). B) Virtual environment. 
Bees were presented with a colour discrimination task involving learning the association between the 

colour of the cylinder and reward or punishment. 

 

Visual stimuli 

I trained bees to discriminate between two vertical-coloured virtual cylinders. The 

dimensions of both cylinders were the same as described earlier (Lafon et al., 2021). 

The colours were Dark Green (RGB: 0, 51, 1, with a dominant wavelength of 528 nm) 

and Blue (RGB: 0, 0, 255, with a dominant wavelength of 446 nm). At the beginning of 

each trial, the cylinders were positioned centrally at -50° and +50° from the bee’s body 

axis. The decision would be logged whenever a bee approached either cylinder within 

three centimetres and cantered it within her visual field (Lafon et al., 2021). 

 

Discrimination task and testing 
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The training protocol consisted of a single pre-training trial and six consecutive training 

trials followed by a single unrewarded test trial (Fig. 1). Pre-training was used to 

determine an innate colour preference and assign rewarding colours individually. I 

assigned the rewarding colour as the opposite of what was initially chosen. If no choice 

was made, the reward colour was assigned at random. A choice of the correct cylinder, 

CS+, was rewarded with 50% w/w sucrose solution, and an incorrect choice, CS-, of 

the opposite colour was associated with 1.2 g·L-1 quinine solution.  

In each trial, bees were presented with a black screen for 60 seconds, followed 

by the presentation of two cylinders (Fig. 3). Every trial continued until a bee fixated on 

one of two stimuli. If no choice was made, the trial automatically terminated after 180 

seconds. A dark screen was presented between trials for 60 seconds (Fig.3). Bees that 

did not make a choice in three or more trials were not included in the analysis. This 

resulted in the following percentages of bees kept for later analysis: 49% (20/41) C1 

group, 30% (21/70) C2 group, 27% (21/79) PBSAL group and ~17.9% (10/56) PBSCX 

group. At the end of the experiment, all animals were frozen at -20°C. 

After the last training trial and following a 60-second inter-trial interval as within 

the training block, bees were tested. The test consisted of a single presentation of both 

stimuli for a maximum of 180 seconds. Here, choices were not reinforced. As in 

previous work (Lafon et al., 2021), I recorded the first stimulus the bee fixated on and 

the duration of fixation. These variables were collected during both the training and test 

trials and used for later analysis.  

 

 

Figure 3. Conditioning protocol for colour discrimination learning. To determine a possible 
innate colour preference, bees were first offered a pre-training trial (unrewarded). Next, bees were 

trained for six conditioning trials lasting a maximum of three minutes each and separated by one 
minute (inter-trial interval). After the end of conditioning, bees were tested. Test consisted of a single 

trial during which cylinders were displayed for three minutes. Test choices were unreinforced. 
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Statistical analysis  

The data were plotted and analysed using RStudio v.3.2.2 (The R Foundation for 

Statistical Computing, Vienna, Austria, http://www.r-project.org) and custom-written 

scripts. To analyse the learning performance, each bee’s choice was categorised as 

either correct (CS+), incorrect (CS-) or no choice (NC). These categories were used to 

translate bee choices to a binary variable – “Score”. For example, if a bee fixated on a 

rewarded cylinder, the variable “Score” would be recorded as “1, 0, 0” for “Choice” 

categories CS+, CS-, and NC, respectively. Learning performance data were analysed 

using generalised mixed linear models (GLMM) with a binomial error distribution and 

a logit link function (glmer function, lme4 package) (Bates et al., 2015). As described 

earlier, “Score” was a binary dependent variable. The independent variables were the 

trial number (“Trial”), the choice category (“Choice”) and the treatment group 

(“Treatment”). The identity of the bee (“ID”) was included as a random intercept 

variable. I additionally fit a linear mixed model to analyse the walking speed of the bees 

during the acquisition trials (lmer function, lme4 package). Here, the treatment group 

(“Treatment”) and trial number (“Trial”) were included as fixed factors, and the identity 

of the bee (“ID”) as a random intercept variable. Bee performance in the test was also 

analysed using a generalised linear mixed model (GLMM) with a binomial error 

distribution and a logit link function. As with the learning performance analysis, the 

model included the choice category (CS+, CS-, NC) and treatment group as fixed 

factors, with “Bee ID” as a random factor. The significance of each fixed factor in the 

model was assessed using analysis of variance tests (Anova function, car package), 

and followed by post hoc multiple comparisons when applicable (Tukey p-value 

adjustment method, R package emmeans (Lenth et al., 2019). The time spent fixating 

on one of two choice types (CS+ vs CS-) was compared using the Wilcoxon single-

rank test. 

 

 

 

http://www.r-project.org/
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5.3. Results  

Comparing the learning performance of different treatment groups: all bees  

Bumblebees were subjected to manipulations varying in invasiveness to explore the 

possibility of using structure-specific procaine microinjections before testing bees 

under a controlled VR environment. The ability to learn colour-based discrimination 

was tested within four treatment groups: C1, unmanipulated control bees; C2, “sham” 

control bees subjected to surgery only; and two PBS-injected groups targeting the 

alpha lobes of the mushroom bodies, PBSAL, and the central complex, PBSCX. 

During the conditioning session, bees that failed to fixate on one of two cylinders 

for at least three trials were excluded. Due to the difference in the degree of brain 

damage caused by the manipulations, I expected an increase in excluded bees with 

increasing invasiveness. As demonstrated in Figure 4, there is a graduated increase 

in the proportion of discarded bees with an increasing degree of invasiveness (C1 

being non-invasive, and PBSCX most invasive due to the deeper location of the central 

complex in the brain). However, the difference was significant only between C1 and 

PBSCX (51.22% and 82.14%), as demonstrated by a paired proportion test (c²=9.73, 

df=1, p.adj<0.05) (Fig. 4). 

I then looked at learning acquisition performance during the training session. 

Learning curves were constructed based on the percentage of bees choosing the 

rewarding cylinder (CS+), unrewarding cylinder (CS-), or making no choice (NC) over 

the course of six training trials. No significant interaction between the group, the 

number of trials and bee choice were observed (c²=5.83, df:6, p=0.44), thereby 

showing that learning dynamics were similar across groups (Fig. 5).  

Only full control groups (without manipulations, C1) showed a significant 

interaction between CS and Trial (C1: c²=9.74, df:2, p<0.01). The paired trial-by-trial 

comparison of the likelihood of performing one of three behaviours (responding to CS+, 

CS- or not responding, NC) showed significant differences in the later trials with 

significantly more responses towards CS+ (see Table 1). 
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Figure 4. Percentage of excluded bees. The percentage of bees in each group that failed to make a 

choice in three or more trials. These bees were excluded from later testing; 51.22% of unmanipulated 

bees (C1, Nexcluded= 21, Ntotal = 40), 70% of ‘sham’ control (C2, Nexcluded = 49, Ntotal = 70), 73.42% of 
bilaterally saline-injected (PBSAL, Nexcluded = 58, Ntotal = 79) and 82.14% of central complex saline-

injected   (PBSCX, Nexcluded = 46, Ntotal = 56) bees were excluded. The asterisk indicates a statistically 

significant difference in the percentage of discarded bees between C1 and PBSCX (c²=9.73, df=1, p.adj 

< 0.05). 
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Figure 5. Performance of all bees trained under differential conditioning in VR. Panels depict 

learning acquisition over six training trials, expressed as the percentage of bees making a choice and 
95% CI. Making a correct choice is depicted in red (CS+), incorrect in black (CS-), and not choosing in 

grey (NC). Each panel corresponds to one of four treatment groups: unmanipulated bees, C1, n=20; 

“sham” control, C2, n=21; saline injected in both MB alpha lobes, PBSAL, n=21; saline injected into 

central complex, PBSCX, n=10. 

 

Walking speed as a measure of bee lethargy   

I next assessed whether the walking speed of bees varied between treatment groups 

over the training period (Fig. 6). The analysis revealed no significant interaction term 

between the trial number and the treatment group (c²=3.5234, df:3, p=0.32). This 

implies that there was no difference in the progression of the walking speed across 

trials between all treatment groups. However, the overall walking speed was 

significantly affected by the treatment group (c²=12.7507, df:3, p<0.01), even if it did 

not vary significantly across trials (c²=2.0009, df:1, p=0.157). Paired post-hoc analysis 

showed that the difference was due to a significant difference between C1 and both 

saline-injected groups (C1 vs PBSAL: t.ratio=4.37, df=68, p<0.001; C1 vs PBSCX: 
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t.ratio=4.44, df=68, p<0.001), and C2 and the central complex injected bees 

(t.ratio=2.74, df=68, p<0.038). 

 

Figure 6. Walking speed during the acquisition trials. None of the treatment groups showed a 

significant change in their walking speed across trials. Both saline-injected groups were significantly 

slower compared to unmanipulated bees (emmeans: C1 (n=20) vs PBSAL (n=21): p<0.001; C1 (n=20) 

vs PBSCX (n=10): p<0.001), but only the CX-injected bees differed in their walking speed from sham 

control bees (emmeans: C2 (n=21) vs CX (n=10), p<0.05). Dots depict the mean walking speed for each 

treatment group, error bars depict the standard error of the mean. 

 

Test Performance 

To further investigate the effect of manipulations on learning, I looked at bee 

performance in the test (Fig.7A). Additionally, I looked at the time bees kept the CS+ 

and the CS- in the centre of their visual field, i.e., fixation time (Fig.7B). As in the 

learning phase, only unmanipulated bees were significantly more likely to choose the 

correct cylinder (c²=23.5754, df:2, p<0.0001), and fixated significantly longer on the 

CS+ than the CS- (CS+ vs CS-, z=-2.44, df=19, p=0.02).  
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Comparing learning performance of different treatment groups: learners only  

Next, I assessed the learning dynamics of true learners in each group. Learners were 

considered bees who made correct choices in the non-reinforced test, while bees who 

made errors or did not make a choice were considered non-learners. The learning 

acquisition models were re-run including learners only. Although the curves did suggest 

a tendency for more learning during the training phase (Fig.8), the model did not show 

any significant effect of treatment (c²=8.7787, df:6, p=0.19). Therefore, even learners 

of different groups experienced similar learning dynamics. 

 

 

Figure 7. Test performance in a colour discrimination task. A) Percentage of bees making a choice. 
Correct choices are depicted in red (CS+); incorrect choices are depicted in black (CS-); making no 

choice is depicted in grey (NC). Each panel represents one of four treatment groups: unmanipulated 

control, C1, n=20; “sham” control, n=21, C2; saline injected in both alpha lobes of the mushroom bodies, 

n=21, PBSAL; and saline injected into the central complex, n=10, PBSCX. Within each panel, bars 

labelled with different lowercase letters indicate significant differences between the groups (p < 0.05). 

B) Time spent fixating on one of two coloured bars. Fixating on the cylinder associated with a reward is 

depicted in red (CS+), and the cylinder associated with punishment in grey (CS-). 
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Figure 8. Performance of learner bees trained under differential conditioning in VR. Panels depict 

learning acquisition over six training trials, expressed as the percentage of bees making a choice and 
95% CI. Making a correct choice is depicted in red (CS+), incorrect in black (CS-), and not choosing in 

grey (NC). Each panel corresponds to one of four treatment groups: unmanipulated bees, C1, n=17; 

“sham” control, C2, n=10; saline injected in both MB alpha lobes, PBSAL, n=10; saline injected into 

central complex, PBSCX, n=4. 

 

5.4. Discussion 

The objective of the study was to adapt existing microinjection and VR protocols for 

bumblebees and evaluate whether the procedure affects their cognitive abilities. To 

address this concern, I examined the influence of saline injections on colour learning 

performance in VR. I demonstrated that even with reducing the pre-VR waiting time 

from the standard 60 minutes to 30 minutes (Macri, Avargues-weber and Lafon, 2021), 

unmanipulated bumblebees (Group C1) are still able to complete a colour 

discrimination task. Thus, reduced time spent in the dark before the conditioning onset 

did not impair learning. Keeping the pre-VR time period short, becomes important 

when using procaine as a compound for transiently inactivating brain areas of interest 

in the future. After injection, the procaine remains active for a maximum of 90 minutes 
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(Devaud et al., 2007), therefore, with waiting time reduced to 30 minutes, the 

discrimination learning experiment can be completed well within this period.  

A significant number of bees failed to pass the exclusion criterion. Importantly, 

the percentage increased as the complexity of site-specific injections increased. 

Injecting into the central complex had the most negative impact. The central complex 

plays a key role in analysing sensory data and translating it into appropriate 

behavioural reactions, and thus is responsible for generating motor responses (Pfeiffer 

and Homberg, 2014; Plath and Barron, 2015). Considering the depth of its localisation 

within the bee brain, injecting saline into this region is likely to result in significant 

damage to the central complex, as well as surrounding tissue, explaining the high 

number of eliminated bees in the central complex injected group.  

The substantial tissue damage caused by the procedure could also explain the 

lack of learning acquisition. Both the mushroom bodies and central complex are known 

to be involved in visual learning. The lobes of the mushroom bodies are the output 

regions of sensory signals (Menzel, 1999). The central complex not only plays a crucial 

role in motor function (Strauss, 2002; Neuser et al., 2008; Triphan et al., 2010; 

Homberg et al., 2011; Ritzmann et al., 2012) but also visual memory (Neuser et al., 

2008; Kong et al., 2010). Impaired learning could be expected if these brain areas 

malfunction. Alternatively, the lack of learning acquisition in the present study could be 

a result of impaired motor response rather than learning per se. In an earlier study by 

Plath et al. (2017), where no impairments were observed with saline injections, bees 

only needed to avoid spending time in one of the two-coloured chambers associated 

with an electric shock. In our task, on the other hand, bees had to walk on a ball to 

approach coloured cylinders in VR. Controlling ball movements while being tethered 

can be considered a significantly more demanding motor task as compared to walking, 

which was the required behaviour in the Plath et al. (2017) study. Tissue damage is 

likely to have occurred in both studies. It may, however, have been, less noticeable in 

Plath et al. study (2017) because the motor requirements were not as demanding. The 

significant reduction in walking speed with increasing invasiveness of the procedures 

further supports these speculations. Here, just as with the exclusion criterion discussed 

earlier, the central complex injected bees walked slowest. Due to the role that this 

particular area of the brain plays in generating appropriate motor responses, exploring 

the central complex using microinjection techniques might present certain difficulties. 
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Finally, it should also be noted that the final sample size for this study was 

relatively small. A significant number of bees did not engage in the task, and 

consequently, did not meet the inclusion criteria. The percentage of bees eliminated 

for the least invasive treatment, “sham” control, was 51% while reaching as high as 

82% for the considerably most invasive group that received a saline injection into the 

central complex. Given such a drastic reduction in sample size, it is therefore possible 

that the analysis simply lacks statistical power. A larger sample size would be 

necessary to define whether learning acquisition was truly impaired across treatments. 

Moreover, including more bees in the final analysis could also control for the observed 

individual variability. Specifically, it would allow one to exclude bees that failed to probe 

both reward and punishment. When making a correct choice, some bees were 

unsuccessful in extending their proboscis and probe a reward. Although these bees 

met the inclusion criterion and were included in the final analysis, it remains unclear 

whether they learned to associate colour with the correct outcome. Experiencing both 

rewards and punishments is crucial for associative learning tasks. Consequently, 

including these bees could potentially misrepresent the performance of the group by 

possibly masking the learning acquisition in those bees who fully completed the task 

(i.e., probed both reward and punisher).  

In this study, I explored the possibility of combining brain microinjections with 

behavioural assays performed in a virtual environment. The main objective was to 

evaluate the potential harm of the required procedures, such as brain surgery and site-

specific injection. Using a simple colour discrimination task, I demonstrate that the 

cognitive abilities required to perform the task in VR are negatively affected. Both the 

surgical procedures and saline injections resulted in an increased number of excluded 

bumblebees and reduced learning performance. Despite these negative results, I 

emphasise the need for follow-up studies. The technique has been successfully 

applied in past studies (Plath et al., 2017). Therefore, given the relatively small final 

sample size, the results presented here could be misleading. Thus, more data are 

needed to reach firm conclusions.  
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6.1. Summary of findings 

In this thesis, I investigated the effects of stress-induced affective states on visual 

decision-making in the buff-tailed bumblebee (Bombus terrestris). The primary goal of 

my work was to first establish a new judgment bias test for measuring emotion-like 

states in bees and re-assess whether bees in a negative state are indeed “pessimistic”. 

Next, I experimentally investigated whether being in such a state impacts bee decision-

making in a way akin to mammals. Specifically, I tested whether being in a negative 

state lead to the modulation of information processing at early and later stages of 

decision-making. The former was assessed by estimating visual acuity while the latter 

was assessed by measuring behavioural flexibility.  

Overall, my results demonstrate the capacity for states in bees that resemble 

emotions in mammals. Importantly, the findings not only provide evidence that negative 

emotion-like states in bees exist but that these states directly affect the way visual 

information is processed to guide bee decisions. In the first experimental chapter 

(Chapter Two) I revisited the judgment bias paradigm. I developed a new test that 

utilises active choice design to eliminate earlier confounds. My results provide strong 

evidence that, stressed bees do indeed exhibit a pessimistic bias. The results also 

provide strong evidence that a state-dependent sensory bias, particularly the ability to 

differentiate conditioned colours, could not explain the observed behaviour. Further 

validation for interpreting the observed pessimistic behaviour as a judgment rather than 

a sensory bias was provided by mathematical modelling. Both the behavioural and 

modelling results thus strongly suggest that stressed bees are truly pessimistic. 

Importantly, modelling also proposed that the best explanation for the observed biased 

responses in stressed bees was due to a drastic change in their prior expectations of 

reward. This suggests that when in a negative state, bees perceive higher rewards as 

less likely. Taken together, the results of this chapter suggest that negative 

manipulations do indeed affect bee decision-making under ambiguity in a way that 

parallels state-dependent judgment biases in mammals. In addition to providing much 

stronger evidence for the existence of such states, my work also provides a testable 

hypothesis about the mechanisms underlying judgment biases in bees.  

After confirming the presence of emotion-like states in bumblebees, I next 

explored whether these states affect decision-making through the modulation of visual 

information at different processing stages (Chapters Three and Chapter Four). To 
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assess the effects of stress on early vision, I aimed to measure the perceptual 

thresholds for fundamental characteristics processed early in the visual pathway – 

contrast and spatial frequency. I demonstrate that, similar to humans (Becker, 2009; 

Bocanegra and Zeelenberg, 2009; Bocanegra, 2011), the processing of both these 

low-level features is modulated when in a negative state. These results therefore 

suggest that threat exposure, mimicked by shaking, fine-tune bee early vision to 

facilitate finer detail perception and increase certainty in their decision-making.  

I further investigated how stress-induced states modulate later stages of 

information processing using a reversal learning paradigm (Chapter Four). Reversal 

learning assesses the capacity to adapt one’s behaviour to change (Kehagia, Murray 

and Robbins, 2010) This ability requires accurate evaluation and integration of 

information. I demonstrate that being in a negative state facilitates faster adaptation by 

bees to changes in stimuli-outcome contingencies. Moreover, I argue that the affect-

inducing manipulation specifically facilitated new excitation learning but not extinction 

learning. I also speculate that this positive effect is driven by a treatment-dependent 

increase in sensitivity to rewards. This speculation finds partial support in the results 

observed in the second experimental condition. When both outcomes were rewarding, 

no treatment-specific modulatory effects were observed. This was possibly because 

bees in a negative state were more accepting of lower rewards, as evidenced by 

greater low reward depletions, thus indicating a temporal increase in sensitivity to 

rewards. Therefore, when in a negative state, bees exhibit greater sensitivity to 

changes in rewards, enabling them to adapt more effectively to such changes.  

The final aim of my thesis was to investigate possible options for future 

neurophysiological explorations of emotion-like states in bees (see Chapter Five). In 

the absence of sophisticated methods, techniques involving targeted microinjections 

of compounds, like procaine, that suppress neural activity are an important avenue to 

explore. In principle, such microinjection could be coupled with virtual reality 

behavioural assays. In my fifth chapter, I explored the effects of site-specific 

microinjections on bee cognition. Injecting bees with saline alone greatly impaired 

learning performance. While the injection procedures indeed damaged neural tissue, 

it is however unclear if the lack of learning acquisition observed in the study is due to 

impaired cognitive function, impaired motor function, or both. Taken together, although 

the results are far from promising, it remains unclear whether the combination of 

microinjection with VR is truly a non-viable method.  
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6.2. Limitations and future work  

This research provides substantial evidence demonstrating that emotion-like states 

affect bee decision-making. Nevertheless, some limitations should be considered. The 

rationale behind designing the experiments presented in Chapters Three and Four was 

that emotion can modulate distinct stages of information processing. While the assays 

used to explore this hypothesis - visual acuity and reversal learning - are a good fit, 

they have some limitations. In bees, just as in mammals, the neurophysiological 

processing of visual information can be complex. Such processing is achieved at 

sequential stages within the brain: beginning with the transformation and segregation 

in the peripheral visual neuropils, followed by the integration of information in higher-

order brain centres (Paulk et al., 2008, 2009). Processing of achromatic cues begins 

within the optic lobes, where neurons in the lamina exhibit amplitude responses to 

varying spatial frequencies and contrasts (Ryan et al., 2020). In humans, these low-

level visual features are also processed in the early visual processing areas and can 

undergo emotional modulations (Becker, 2009; Bocanegra and Zeelenberg, 2009; 

Bocanegra, 2011). In Chapter Three, I aimed to address whether the same is true in 

bees. However, while estimating contrast and spatial resolution thresholds reflects 

differences in responding to these low-level visual features, it remains unknown 

whether the behavioural response was driven by differences in neural activity 

originating specifically in the peripheral neuropils. Therefore, it would be of great 

interest to perform neurophysiological measurements to further confirm state-induced 

modulations of early vision. Furthermore, it would be highly valuable to compare the 

visual acuity thresholds obtained through behavioural measures in my study with 

estimates gathered through pattern electroretinography (Ryan et al., 2020). Similarly, 

the goal of Chapter Four was to use reversal learning – a paradigm that requires 

higher-order brain structures (Boitard et al., 2015) – to identify whether later 

information processing undergoes emotional modulation in bees. As with visual acuity 

experiments, it could also benefit from a neurophysiological investigation in the future.  

The final limitation to mention, and perhaps of greatest interest for future work, 

involves assessing biogenic amines in shaken bees. In the introductory section of my 

thesis, I presented evidence suggesting that biogenic amines are probably working 

together to facilitate comprehensive coordination among the subsystems of the 

nervous system. Given biogenic amine structural and functional commonalities, this 
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coordination appears to be conserved across both vertebrates and invertebrates 

(LeDoux, 2012). Importantly, such holistic coordination is suggested to support the 

transmission of emotion-evoking information to various brain regions (Lövheim, 2012). 

Therefore, it is not unreasonable to suggest that the difference in behaviour observed 

in some of the experiments (or even all) might be influenced by changes in biogenic 

amines, explaining the results. For example, as I discuss in Chapter Four, the 

facilitating effect of shaking on reversal learning could be potentially well explained by 

an increase in reward sensitivity mediated by an increase in octopamine. Although the 

proposed explanation is rooted in previous work linking octopamine with reward 

processing (Scheiner et al., 2002; Giurfa, 2006; Rein et al., 2013; Muth, Breslow and 

Leonard, 2023), previous work had shown that the shaking treatment decreased levels 

of all three systemic biogenic amines, including octopamine (Bateson et al., 2011). 

However, the procedure by which shaking was administrated in my study and this early 

work is different (as I argue in Chapter Four). Nevertheless, to resolve this issue, 

assessing levels of biogenic amines in shaken bees using the same procedure of 

shaking as in my study is essential. If such a change is indeed observed, it would be 

interesting to take it further and estimate how the change unfolds over time. Perhaps, 

it would be possible to detect a time period when the levels return to the base line thus 

indicating the termination of the negative affective state. Taken together, such a 

biogenic amine study could indeed give us a better insight into the neural dynamics 

supporting negative emotion-like states in bees.  

 

6.3. The adaptive value of negative emotion-like states in bees 

The approach adopted in my thesis did not aim to find which human discrete emotion 

best matched the states observed in bees. Emotional expressions in species 

significantly different from ours are probably so distinct that trying to find homologous 

expressions might not be productive. A more valuable approach is to explore the 

functional properties of these states — namely, whether they support the survival goals 

of the species — and compare these functions to emotional states in other animals. 

Therefore, the key question to my thesis was not whether bumblebees have “fear” or 

some other human-like emotion but, rather, whether they have inner states that have 

functional properties analogous to those in other animals. Therefore, the remaining 
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question to as is: could the differences in response observed in my experiments be 

thought of as adaptive?  

Emotions are thought to evolve from reflexes to permit a more flexible response 

to an environment to achieve important survival goals – approaching resources and 

avoiding punishments (Mendl, Oliver and Paul, 2010). An animal’s response to rewards 

and punishments is orchestrated by emotions that are shaped by cognitive appraisals 

of situations necessitating such responses. For example, experiencing a predatory 

attack activates the flight-or-fight response, increases energetic demands, and leads 

to appraising the current state of the world as dangerous. To survive in a given state of 

the world, resources might become more valuable, and responding more efficiently to 

perceived threats might become more beneficial. Thus, lowering the threshold for 

response to both rewards and punishment might function adaptively (Nettle and 

Bateson, 2012). Neurophysiological, cognitive, and behavioural changes thus must 

take place to support such response tendencies. For example, the reduced threshold 

for threat could be achieved by increasing the processing of threat-related features. 

This was observed in the visual acuity experiment (Chapter Three) where an increase 

in visual acuity, specifically in processing fine details, was estimated in shaken bees. 

Such modulation could be an advantage as perceiving finer information may facilitate 

the detection of their natural predators, such as crab spiders Misumena vatia (Dukas 

and Morse, 2003). Threat avoidance therefore could be considered as one possible 

adaptive function carried by a negative emotion-like state in bees. Another such 

function could be surviving in unpredictable environments. Becoming more sensitive 

to reward and punishment can facilitate the ability to rapidly learn from experiences 

and adapt behaviour. When in a negative state this becomes crucial for survival, 

especially if the environmental conditions are unstable. Thus, emotion might 

orchestrate cognitive change to support such flexibility. This idea is supported by the 

results presented in Chapter Four. Bees that were subjected to a negative state were 

better at reversing their learning when the stimulus-outcome contingencies changed. 

Therefore, another functional property of negative emotion-like states in bees is to 

quickly adjust behaviour in a way that supports current needs.  

While detecting threats and adjusting to changes in the environment are clearly 

advantageous adaptations, displaying pessimistic tendencies may appear 

contradictory. When faced with an ambiguous situation, with information equally 

suggesting the possibility of favourable and less favourable outcomes, why would bees 
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be biased toward the latter? There could be some arguments that this behaviour might 

indeed be beneficial. Pessimism is thought to be an adaptive “investment strategy” in 

an environment of scarcity, unpredictability, and dangers (Leahy, 2002). Therefore, a 

pessimist is more likely to avoid risky decisions that could jeopardize what they have 

already accumulated in pursuit of more rewarding opportunities, which, in such 

unfavourable environments, are considered unlikely. Similarly, experiencing negative 

events, e.g., predatory attacks, exhausts energetic stores available to an animal and 

signals that the present state of the world is rather unfavourable. Therefore, adopting 

a pessimistic strategy allows the individual to avoid costs associated with risky 

decisions, thereby facilitating survival. In other words, from an evolutionary 

perspective, when conditions are unfavourable, having reduced future expectations is 

adaptive. Similar thinking can be applied to the pessimistic-like behaviour observed in 

Chapter Two. Experiencing a predatory attack, which demands high energy to 

overcome (Even, Devaud and Barron, 2012), triggers a state in bees signalling an 

unfavourable environment — uncertain, scarce, and dangerous - thereby lowering 

expectations regarding positive outcomes. Anticipating negative outcomes, such as 

expecting flowers to stop providing rewards, promotes less risky behaviour in bees, as 

earlier studies demonstrate that these bees are more likely to terminate persisting on 

unfavourable flower patches (Gil, Marco and Menzel, 2007; Gil and De Marco, 2009), 

and thus save time and energy. Thus, it is worth speculating that in natural scenarios, 

a pessimistic bias induced by dangers could benefit bee survival by guiding their 

decisions toward less risky options. 

Taken together, my results thus argue for emotion-like states in bees that enable 

adaptive responses to their environment. 
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