
School of Computing Science

Enabling Efficient ML-based IoT
Applications: Edge-Cloud Collaboration

for Deployment, Updates, and
Optimization

Bin Qian

Submitted for the degree of Doctor of
Philosophy in the School of Computing
Science, Newcastle University, UK

Jul 2023

© 2023, Bin Qian

- B -

Abstract

The rapid integration of the physical world with the Internet through the IoT has led

to a massive network of connected devices. ML has emerged as a crucial technology

for processing and analyzing the vast amounts of diverse data generated by this IoT

network, enabling intelligent IoT applications. The combination of ML and IoT has

seen significant growth, enabling innovative use cases and leveraging cloud computing

for data analysis and pattern extraction.

ML-based IoT applications face challenges in effectively analyzing the vast amounts of

data generated by diverse IoT devices. Transferring data to centralized cloud centers

can be inefficient for timely analysis, and cloud computing may not always be suitable

for emerging IoT applications. To overcome these challenges, a federated approach

that combines cloud and edge resources is crucial. Edge computing brings comput-

ing operations to resource-constrained edge devices, enabling real-time responses and

reducing data transmission to the cloud. Collaborating edge and cloud resources in

a federated system allows for efficient data processing at the edge and complex ML

algorithms in the cloud. This collaboration improves response times, reduces latency,

enhances scalability, and optimizes resource utilization in ML-based IoT applications.

An important challenge in edge-cloud collaboration is aggregating microservices in

a way that meets application requirements such as latency, throughput, energy con-

sumption, and model prediction accuracy. The edge-cloud collaboration aims to char-

acterize Quality of Service (QoS) metrics based on microservice composition plans

and adapt them to deployment sites, considering contextual factors and deployment

locations. Furthermore, these plans need to be adaptable to fluctuations in computing

environments throughout the application’s execution. A feedback-driven orchestra-

tion mechanism is necessary to detect changes in infrastructure performance and QoS

metrics.

In the edge-cloud computing paradigm, an additional challenge is the inconsistent

model prediction performance observed in distributed environments. Models are con-

- i -

figured differently to accommodate resource constraints, leading to heterogeneity in

model architectures and configurations. This heterogeneity can result in different out-

puts from models when provided with the same input, posing a systemic problem that

hinders prediction agreement within the application. Currently, there is a need for a

systematic design to efficiently detect and minimize model inconsistency in distributed

deep learning applications.

To address the above mentioned challenges, the key contributions of this thesis are

listed below:

• DesigningOsmoticGate , a video analytics task offloading framework that is ca-

pable of generating optimal workload balancing strategies, based on a Hierarchy

Queue Model and a two-stage gradient-based algorithm.

• Based on the research outcomes in OsmoticGate , implementing an online

multi-agent reinforcement learning system named OsmoticGate2 , which in-

volves a co-designed algorithm and system to achieve workload balancing in

dynamic and distributed deep learning (DL) applications.

• Implementing DEEPCON , an adaptive deployment framework to quickly de-

tect and improve model consistency through over-the-air parallel training and

online knowledge distillation that enables teacher-student learning among all

deployed models.

- ii -

Declaration

I declare that this thesis is my own work unless otherwise stated. No part of this the-

sis has previously been submitted for a degree or any other qualification at Newcastle

University or any other institution.

Bin Qian

July 2023

- iii -

- iv -

Publications

Published

1. Bin Qian , Yubo Xuan, Di Wu, Zhenyu Wen, Renyu Yang, Shibo He, Jiming

Chen, and Rajiv Ranjan. “Edge-Cloud Collaborative Streaming Video Analytics

with Multi-agent Deep Reinforcement Learning” IEEE Networks Magazine 2024.

2. Bin Qian, Zhenyu Wen, Junqi Tang, Ye Yuan, Albert Y. Zomaya, Rajiv Ran-

jan. “OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for the

Internet of Things” IEEE Transactions on Computers (TC) 01 (2022): 1-14.

3. Bin Qian, Jie Su, Zhenyu Wen, Devki Nandan Jha, Yinhao Li, Yu Guan, Deepak

Puthal et al. “Orchestrating the development lifecycle of machine learning-based

IoT applications: A taxonomy and survey” ACM Computing Surveys (CSUR)

53, no. 4 (2020): 1-47.

4. ZhenyuWen, Renyu Yang, Bin Qian, Yubo Xuan, Lingling Lu, Zheng Wang, Hao

Peng, Jie Xu, Albert Y Zomaya, Rajiv Ranjan. “JANUS: Latency-Aware Traffic

Scheduling for IoT Data Streaming in Edge Environments” IEEE Transactions

on Services Computing (TSC) 53, no. 4 (2020): 1-47.

5. Jiaxu Qian, Zhenyu Wen, Bin Qian, Qin Yuan, Jianbin Qin, Qi Xuan, Ye Yuan.

“Across Images and Graphs for Question Answering” IEEE International Con-

ference on Data Engineering (ICDE) 2024.

6. Rudresh Dwivedi, Devam Dave, Het Naik, Smiti Singhal, Rana Omer, Pankesh

Patel, Bin Qian, Zhenyu Wen, Tejal Shah, Graham Morgan, Rajiv Ranjan. “Ex-

plainable AI (XAI): Core ideas, techniques, and solutions”ACM Computing Sur-

veys (CSUR) 55, no. 9 (2023) 1-33

7. Zhenyu Wen, Haozhen Hu, Renyu Yang, Bin Qian, Ringo WH Sham, Rui Sun,

Jie Xu, Pankesh Patel, Omer Rana, Schahram Dustdar, Rajiv Ranjan. “Or-

- v -

chestrating Networked Machine Learning Applications Using Autosteer” IEEE

Internet Computing 26, no. 6 (2022), 51-58

8. Shuyun Luo, Hang Li, Zhenyu Wen, Bin Qian, Graham Morgan, Antonella

Longo, Omer Rana, and Rajiv Ranjan. “Blockchain-based task offloading in

drone-aided mobile edge computing” IEEE Network 35, no. 1 (2021): 124-129.

9. Feng Lu, Wei Li, Song Lin, Chengwangli Peng, Zhiyong Wang, Bin Qian, Ra-

jiv Ranjan, Hai Jin, and Albert Y. Zomaya. “Multi-scale Features Fusion for

the Detection of Tiny Bleeding in Wireless Capsule Endoscopy Images” ACM

Transactions on Internet of Things 3, no. 1 (2021): 1-19.

Under Review

1. Bin Qian, Jiaxu Qian, Zhenyu Wen, Yinhao Li, Shibo He, Jiming Chen, Albert

Y. Zomaya and Rajiv Ranjan. “DeepCon: Improving Distributed Deep Learning

Model Consistency in Edge-Cloud Environment via Distillation” (IEEE Trans-

actions on Computers (TC) , under review)

2. Bin Qian, Yubo Xuan, Zhenyu Wen, and Rajiv Ranjan. “Edge-Cloud Collabo-

rative Streaming Video Analytics on Open Environments” (In Submission)

- vi -

Acknowledgements

I am privileged to be under the guidance and mentorship of Prof. Rajiv Ranjan, serving

as my esteemed doctoral advisor. His consistent support and invaluable feedback have

not just been in the academic area, but also in the well-being of my personal life. I also

wish to extend my sincere appreciation to my co-supervisor, Prof. Zhenyu Wen, whose

patient and diligent guidance has been instrumental in equipping me with the skills to

conduct independent research as well as foster effective collaboration with others. The

successful completion of this thesis owes a profound debt to the profound influence

and support of both Prof. Rajiv Ranjan and Prof. Zhenyu Wen during my pursuit

of the Ph.D. journey. Without their presence, this achievement would not have been

possible.

I would like to thank my colleagues: Yinhao Li, Ayman Noor, Devki Nandan Jha,

Jedsada Phengsuwan, Khaled Alwasel, Nipun Balan, Umit Demirbaga, Fawzy Habeeb,

Deepak Puthal, Jie Su, Gagangeet Aujla, Xinyuan Liu, Chengming Zhou; I am grateful

to many graduate students I met throughout the years at Newcastle University and

Zhejiang University of Technology. I learned manything new from each of them. I

would like to thank my co-authors Junqi Tang, Renyu Yang, Shuyun Luo, Di Wu,

Yubo Xuan, and others for kindly sharing their valuable experiences in our work.

Finally, I would like to thank my parents for their patience and support over the years.

In particular, I am very grateful to my girlfriend Yilin for her support, companion and

motivation on the long journey.

- vii -

- viii -

Contents

1 Introduction 1

1.1 Research Questions . 3

1.2 Contributions . 7

1.3 Thesis Structure . 8

2 Background and Literature Review 11

2.1 ML-based IoT applications . 12

2.1.1 ML-based IoT application - A Smart City Use Case 12

2.1.2 Taxonomy of the literature review 13

2.2 Cloud AI . 14

2.2.1 TML vs. DL vs. RL . 14

2.2.2 Traditional Machine Learning 17

2.2.3 Deep Learning . 20

2.2.4 Reinforcement Learning (RL) 23

2.2.5 Distributed Machine Learning 24

2.2.6 Optimize Cloud AI . 28

2.3 Edge AI . 29

2.3.1 Efficient Model Architecture . 30

2.3.2 Model Compression . 31

2.3.3 Declarative Machine Learning and Deployment 33

2.3.4 Deployment Optimization . 36

2.4 Edge-cloud Collaboration . 38

2.4.1 Federated Learning . 38

2.4.2 Knowledge Transfer Learning 39

2.4.3 Distributed ML systems . 40

2.5 Edge Video Analytics (EVA) . 44

2.5.1 EVA Application Architectures 44

2.5.2 Techniques for optimizing the performance of EVA applications 46

2.5.2.1 Performance profiling: 46

2.5.2.2 Workload Scheduling: 48

2.5.2.3 Other research works 50

2.6 Gaps and challenges in edge-cloud collaboration 51

2.7 Conclusion . 53

- ix -

3 OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for the
Internet of Things 55

3.1 Introduction . 57

3.2 Background and Motivation . 60

3.2.1 Edge-Cloud Computing Paradigm for Video Analytics 60

3.2.2 Motivation . 60

3.3 System Model . 62

3.3.1 Adapting Bitrate-based Video Streaming 62

3.3.2 Hierarchical Queue Model (HQM) 63

3.3.3 Latency Model . 64

3.3.4 Throughput Model . 66

3.4 Constrained Min-Latency Problem . 67

3.4.1 Problem Formulation . 67

3.4.2 Challenges in the optimization task 68

3.4.3 Problem Transformation . 69

3.5 Two-stage Algorithm Design . 71

3.5.1 Overview of Two-Stage Gradient Algorithm 72

3.5.2 Projected Gradient Descent for Video Analytic Offloading (PGD-
VAO) . 73

3.5.2.1 Choice of Line Search 73

3.5.3 Projected Gradient Sampling for Video Analytic Offloading (PGS-
VAO) . 74

3.5.4 Switching between PGD-VAO and PGS-VAO 75

3.5.5 Difference between projected gradient descent and projected gra-
dient sampling algorithm . 79

3.5.6 The Complexity of the Algorithms 79

3.6 Evaluation . 80

3.6.1 Obtaining the parameters for HQM via real-world benchmark . 80

3.6.2 Simulation . 84

3.6.3 Comparison With Existing Approaches 86

3.6.3.1 The Impact of Network Bandwidth 86

3.6.3.2 The Impact of System Workload 87

3.6.3.3 The Impact of Computing Resources 87

3.6.3.4 The Impact of Video Resolution 89

3.6.4 Impact of Throughput Constraint 90

- x -

3.6.5 The Complexity Analysis of the Algorithms 91

3.6.6 Real-world Test-bed . 91

3.7 Related Work . 92

3.8 Conclusions . 93

3.9 Proof of Lemma 5.1 . 93

3.10 Proof of Theorem 5.2 . 94

4 OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics with
Multiagent Deep Reinforcement Learning 97

4.1 Introduction . 98

4.2 System Overview . 100

4.3 Multi-agent RL-based Controllers . 102

4.3.1 Optimization Objective . 103

4.3.2 Architecture of RL agents . 104

4.3.3 RL States and Actions . 106

4.3.4 Reward Function . 107

4.3.5 Centralized Training and Decentralized Execution (CTDE) in
OsmoticGate2 . 107

4.4 Implementation Details . 109

4.4.1 Video Analytics Module . 109

4.4.1.1 Parallel Video Encoder 109

4.4.1.2 Inference Engine . 109

4.4.1.3 Concurrent Listener 110

4.4.2 Multi-agent Controllers . 110

4.4.3 Message-forwarding Module . 110

4.5 PERFORMANCE EVALUATION . 111

4.5.1 Experimental Setting . 111

4.5.2 Convergence and Performance under Different Penalty Weights . 113

4.5.3 Performance Comparison with Baselines 114

4.6 Conclusion . 115

5 DEEPCON: Improving Geo-distributed Deep Learning Model Consistency
in Edge-Cloud Environment via Distillation 117

5.1 Introduction . 118

5.2 Overview of DeepCon . 122

- xi -

5.3 Design of DMML . 123

5.3.1 From Accuracy to Consistency 124

5.3.2 Problem definition . 126

5.3.3 Basic Deep Mixup Mutual Learning (DMML) 127

5.3.3.1 Deep Mixup Label . 128

5.3.3.2 Multi-model Distillation 128

5.3.3.3 DMML Algorithm . 129

5.4 Over-the-Air Update in DeepCon . 130

5.4.1 Over-the-air update in DeepCon 130

5.4.2 Parallel Training of DMML (DMML-Par) 132

5.5 Evaluation . 135

5.5.1 Experiment Setup . 135

5.5.2 Identify and Quantify Gap between Acc and CC 137

5.5.3 DMML Performance on Vision and Language Tasks 139

5.5.4 Performance of DMML-Par . 140

5.5.5 The impact of parameter α . 141

5.6 Related Work . 142

5.7 Conclusion . 143

6 Conclusion 145

6.1 Thesis Summary . 146

6.2 Future Research Directions . 148

6.2.1 Agile adaptation of decision-making agents in open environment. 148

6.2.2 Improving generalization via adapting large language models for
networking. 149

6.2.3 Precise control on delayed system feedback. 149

References 151

- xii -

List of Figures

1.1 Deployment and Update Lifecycle in Edge-Cloud Computing 4

2.1 Smart City . 12

2.2 Literature Taxonomy . 13

2.3 Reinforcement Learning Paradigm . 16

2.4 Examples of Supervised Learning (Linear Regression) and
Unsupervised Learning (Clustering) 17

2.5 Reinforcement Learning Categorization 23

2.6 Distributed Machine Learning Pipeline 25

3.1 Video Analytics in Edge-Cloud Computing Paradigm 60

3.2 What is Affecting the Performance of Cloud-edge Video Analysis
System? . 61

3.3 Hierarchical Queue Model in OsmoticGate 63

3.4 High-level Overview of Two-stage Algorithm 72

3.5 Illustration of the Weak-Wolfe line search mechanism, which in each
iteration seeks a step-size to optimally decrease the objective function
value and make sure that the next gradient direction to be as
orthogonal as possible to current gradient direction. 74

3.6 Latency V.S. Chunk duration . 84

3.7 Performance under Different System Workloads 85

3.8 Performance under Different Network Bandwidth 86

3.9 The Latency with Various Edge Nodes and Cloud Servers 88

3.10 Impact of Throughput Constraint on System Latency with Varying
Resolution . 89

3.11 Algorithm Computation Latency with Different Edge Nodes 90

3.12 Testbed vs Simulation . 91

4.1 RL-based Edge-Cloud Collaborative Video Analytics in
OsmoticGate2. The streaming videos are encoded in the edge nodes
and then processed on both the edge and the cloud. Our
OsmoticGate2 agents control the edge behaviors with various
configurations. The two modules are communicated via a message
forwarding module across the edge and the cloud. 101

4.2 RL Agent architecture . 102

- xiii -

4.3 Convergence and Performance of OsmoticGate2 under Different
Penalty Weights . 113

4.4 Performance of OsmoticGate2 and baseline with Penalty Weights of
0.5 . 114

5.1 The Failures Caused by Model Inconsistency in Recyclable Waste
Classification . 119

5.2 DeepCon Overview . 123

5.3 The overview of Basic Computation of Deep Mixup Mutual Learning
(DMML). The same inputs are fed to all models and get results M1 ...
MN . Then, each Mn and true label y jointly generate a mixup label
M̃n controlled by a weighting parameter α. For each model, the loss
function is computed by comparing its output Mx against all other
mixup labels M̃ . For example, L1 is computed by M1 and
M̃ = {M̃2...M̃N}. 127

5.4 The High-level Implementation of DeepCon 131

5.5 Example of DMML-Par on 5 Models and 4 workers 134

5.6 Acc and CC Gap (Eq. 5.6) with Different Model Numbers and
Architectures. 137

5.7 Evaluation of DMML-Par with 5 models on 3 datasets 140

5.8 Metrics (%) with Weighting Parameter α, Resnet20 + VGG13 141

- xiv -

List of Tables

2.1 List of OS, programming language and platform in IoT layers 35

3.1 Emulated Network Configuration . 82

3.2 Testbed Benchmarking . 82

3.3 Model Accuracy under Various Bitrates and the Video Resolution is
1080P. 83

4.1 Notation . 103

4.2 The average inference accuracy and processing latency for each video
chunk with different models, including the encoding, decoding latency.
This does not include the queue waiting time, and the transmission
latency. 112

5.1 Different Metrics Reported on CIFAR10/100 124

5.2 DeepCon APIs . 132

5.3 Correct Consistency (%) and Acc,cc Gap on the CIFAR10/100 and
IMDB Dataset with 2 and 5 Models. 138

- xv -

- xvi -

1
Introduction

Contents
1.1 Research Questions . 3

1.2 Contributions . 7

1.3 Thesis Structure . 8

- 1 -

Chapter 1: Introduction

The rapid advancement of hardware, software, and communication technologies has

significantly accelerated the integration of the physical world with the Internet through

the Internet of Things (IoT). According to a report from Statista 1, it is projected that

approximately 75.44 billion IoT devices will be connected to the Internet by 2025,

indicating the tremendous scale of this interconnected network. These IoT devices

generate an enormous volume of data with diverse modalities, presenting both oppor-

tunities and challenges. Effectively processing and analyzing this vast amount of data

is crucial for the development of intelligent IoT applications. In this context, Machine

Learning (ML) emerges as a pivotal technology that enables data intelligence, allowing

us to gain insights and explore the complexities of the real world. The combination

of ML and IoT-type applications is currently undergoing explosive growth, with nu-

merous innovative use cases being developed, e.g., image processing, natural language

processing, speech recognition, and other intelligent services [229]. This convergence

leverages the power of ML algorithms to extract meaningful patterns and knowledge

from IoT-generated data, with the support of cloud computing.

Cloud computing grants immediate access to a shared pool of computing resources, en-

compassing storage, applications, and services, accessible over the Internet. Cloud AI,

on the other hand, offers scalable, cost-effective, and easily accessible artificial intelli-

gence capabilities, empowering organizations to leverage robust computing resources,

foster effective collaboration, and drive innovation without the need for significant in-

frastructure investments. Cloud AI research primarily focuses on enhancing model per-

formance in various aspects such as generalization [37], robustness [258], fairness [200],

and more. Through meticulous design choices, including model architectures, loss func-

tions, and leveraging recent advancements in large language models [339], researchers

aim to push the boundaries of AI performance within the realm of ample computing

power and storage provided by cloud clusters.

Despite the immense capabilities of cloud AI, the exponential growth of the IoT

presents a significant challenge: the unprecedented transfer of data from edge de-

vices to data centers in large volumes. Additionally, cloud AI encounters significant

obstacles in meeting the real-time latency and privacy requirements of applications

1https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/

- 2 -

Chapter 1: Introduction

such as autonomous driving [152], real-time video analysis [230], and more. To ad-

dress these concerns, the adoption of a decentralized computing paradigm called edge

computing becomes imperative. Edge computing allows for distributed model training

and inference closer to the data sources, effectively reducing transmission delays. This

approach enables significant advancements in meeting real-time requirements and en-

suring data privacy. In the field of edge computing, there is a pressing need to expand

the frontiers of AI to encompass edge devices, thus unlocking their full potential in

terms of performance and capabilities, even in resource-constrained environments. De-

signing lightweight model architectures, and on-device computation optimizations, are

all promising research directions aiming at fast and energy-efficient edge computing.

ML-based IoT applications require collaboration between cloud computing and edge

computing, considering their distinct characteristics, to achieve a comprehensive solu-

tion that encompasses both hardware and software aspects. This collaboration gives

rise to a hierarchical computing architecture in which massive distributed end devices,

edge servers, and central cloud servers play crucial roles. Extensive research has been

conducted in academia and industry exploring various aspects of this collaboration.

For example, Federated Learning [171] has emerged as a prominent research area,

focusing on privacy-preserving and distributed model training. Large-scale recom-

mendation systems [101] and distributed video analytics [229] are additional domains

that have garnered significant attention. Through the orchestration of distributed and

heterogeneous computing resources, edge-cloud collaboration introduces new enabling

technologies that facilitate the provision of distributed, low-latency, and reliable in-

telligent services. These advancements are applicable during both the training and

inference stages of ML-based IoT applications.

1.1 Research Questions

Figure 1.1 shows edge-cloud collaboration that spans two main infrastructure layers.

Both layers consist of microservices for application-specific functionalities and network

management. According to the high-level requirements of different applications, mi-

croservices are composed via networks within and across different layers. The edge

- 3 -

Chapter 1: Introduction

Cloud Computing

Edge Computing

MSMS
net

Cloud
MSMS

net

Cloud

MS
net

MSEdge

MS
net

MSEdge

MS
net

MSEdge

MS
net

MS net

MS Microservice

Microservice for
network

Update

Deployment

Figure 1.1: Deployment and Update Lifecycle in Edge-Cloud Computing

computing layer in ML-based IoT applications usually includes data-generating de-

vices (i.e., cameras, sensors), data transmission devices (i.e., gateways), and computing

nodes (i.e., Raspberry PI). These devices can perform various types of operations on

the raw data collected in the environment, such as encoding or filtering of the incom-

ing data streams. The cloud computing layer contains large-scale clusters to provide

computing resources for high-performance microservices, including application serving

services and updating services. The deployment and update lifecycle in edge-cloud

computing involves the efficient provisioning, deployment, continuous updating, and

optimization of ML-based IoT applications across edge and cloud resources.

The microservices deployment in a distributed and federated edge-cloud system re-

quires suitable provisioning solutions that can aggregate various types of resources in

both environments. An important problem in this context is understanding how to

aggregate these microservices in a way that supports application requirements such as

latency, throughput, energy consumption, and model prediction accuracy. Edge-cloud

collaboration attempts to characterize these Quality of Service (QoS) metrics in re-

sponse to the microservice composition plans and adapt to deployment sites, adapt

them to deployment sites, taking into account the deployment locations and contex-

tual factors. Moreover, it is essential for these plans to be scalable and adaptable to

fluctuations in the dynamic computing environments that may occur over the entire

application execution period. In this regard, a feedback-driven orchestration mech-

- 4 -

Chapter 1: Introduction

anism is necessary to detect changes in the infrastructure’s performance and QoS

metrics, while also being easily scalable to accommodate environments with multiple

interconnected devices.

Another prevalent problem in distributed environments during application runtime is

the issue of inconsistent model prediction results. In a typical distributed Deep Learn-

ing (DL) based application, models are configured differently to meet the requirements

of resource constraints. For instance, a large ResNet56 model is deployed on the cloud

server while a small lightweight MobileNet model is more suitable for the end-user

device with fewer computation resources. However, the heterogeneity of the model

architectures and configurations may bring a systemic problem - models may produce

different outputs when given the same input. This inconsistency problem may cause

the failure of prediction agreement inside the application. To tackle this issue, it is

necessary to implement a systemic design that can effectively detect model inconsis-

tencies, along with the development of novel algorithms aimed at updating the models

and minimizing such inconsistencies in distributed deep learning (DL) applications.

Taking into account these problems and concerns mentioned above, we formulate the

following three research questions (RQ) during application deployment and update:

• (RQ1) How can the relationships between system composition plans and system

Quality of Service (QoS) metrics be effectively modeled in the edge-cloud com-

puting paradigm during application deployment? Furthermore, what approaches

can be employed to optimize these composition plans in order to maximize the

desired QoS metrics?

• (RQ2) How can the extension and integration of these composition plans with

running DL applications be achieved to ensure seamless scalability within dy-

namic and distributed edge-cloud environments?

• (RQ3) During application runtime, how can the efficiency of detecting and mini-

mizing model inconsistency in distributed DL applications be improved through

the collaboration between edge and cloud resources?

To answer RQ1 needs to consider (1) the heterogeneity of the edge node: Each edge

- 5 -

Chapter 1: Introduction

node has a different processing rate based on current working situations (e.g., the num-

ber of IoT devices from which data are ingested). The proportion of the streaming

data offloaded to the cloud should consider the computing and network load of each

individual edge (e.g., CPU, upstream link utilization); (2) the interplay among edge

nodes and cloud servers: all edge nodes may forward the data to the cloud simulta-

neously, without considering the offload policies of others. This may cause starvation

on the cloud server where the data from some edge nodes may be delayed for process-

ing; (3) the adaptation of modern streaming protocols for data analytics in ML-based

IoT applications. Streaming protocols are essential for content delivery. They break

streams into small segments, send them to target servers, and reassemble them at the

destination. The streaming content analytical framework needs to carefully adapt to

these protocols, in particular needs to consider how varying numbers of contents within

a segment impact the offloading policy. Once the above parameters have been mod-

eled, the optimization algorithm must take into careful consideration the complexity of

the formulated optimization problem as well as the complexity of the algorithm itself.

To address RQ2, a comprehensive monitoring system is essential to capture the dy-

namic runtime performance of the distributed system. This entails monitoring the sys-

tem’s data input rate, current workload, communication bandwidth between the edge

and cloud servers, and key quality-of-service (QoS) metrics such as latency, through-

put, and prediction accuracy. Additionally, a distributed intelligent decision-making

algorithm is necessary. This algorithm takes into account the system’s status and

generates decisions that optimize the system’s workflow, ensuring a balanced opera-

tion. Furthermore, a holistic system design is crucial to enable online training of the

algorithm. This design allows the algorithm to adaptively learn from the system’s

dynamics and make decisions that maximize the system’s QoS metrics. This adap-

tive learning process ensures that the algorithm continually evolves and adjusts its

configurations to achieve optimal performance.

Finally, RQ3 studies the model consistency problem within geo-distributed Deep Learn-

ing applications. Existing research fails to consider how to detect and reduce such

inconsistency when multiple models are collaborating in a real-world distributed ap-

plication. An algorithm and system co-design solution is required to interact with the

- 6 -

Chapter 1: Introduction

distributed models and improve the consistency of system outputs. To be precise, we

need to tackle the following challenges while building such distributed DL applications.

1) How to detect the inconsistency among the distributed models? An edge-based DL

applications, the models are distributed and adaptively configured. This brings the

challenge of how to efficiently interact with the different outputs of the models to

provide a unified consistency measurement. 2) How to efficiently reduce the inconsis-

tency among the heterogeneous models? In an edge-based DL application, the models

deployed on the edge nodes are heterogeneous and distributed. Therefore, how to effi-

ciently update (or fine-tune) these models becomes a challenge for both algorithm and

system design. In particular, on the one hand, the proposed inconsistency reduction

algorithm should have the flexibility and scalability to fine-tune multiple (greater than

two) heterogeneous models simultaneously. On the other hand, the proposed system

should have the ability to coordinate the models across the cloud and edge nodes in a

distributed manner.

1.2 Contributions

In this thesis, I make the principal contributions as follows:

1. My first contribution is a framework OsmoticGate that considers the chal-

lenges in practical deployment of edge computing, and proposes a novel tech-

nique to uncover the influence of edge-cloud interaction during offloading policy

design. I develop a new hierarchical queue model to describe the system dy-

namics of a video analytic system in an edge-cloud environment. The model is

adapted to bitrate-based video streaming and focuses on modeling the processing

latency and throughput of a video analytics system. Then I formulate the task

offloading problem as a nonsmooth, non-convex, and constrained optimization

problem, and propose a gradient-based algorithm to solve this problem efficiently.

I also feed the model parameter through real-world benchmark and compare our

algorithms with SOTA methods in both simulated environment and real-world

testbed.

- 7 -

Chapter 1: Introduction

2. My second contribution is a distributed system OsmoticGate2 that utilizes

multi-agent reinforcement learning. Building upon my first contribution, this

system features automated monitoring, controlling, and learning capabilities, and

incorporates a distributed multi-agent reinforcement learning algorithm known as

MAPPO. MAPPO forms the core of the system and is tightly integrated within

the framework. This reinforcement learning agent features centralized training

and decentralized deployment, enabling the system to make fast decisions and

learn from its environment. To validate the effectiveness of the proposed sys-

tem, I conduct experiments on a real-world testbed that incorporates edge-cloud

collaboration. These experiments provide empirical evidence of the system’s

capabilities and its ability to achieve desired outcomes.

3. My third contribution is designing and implementing a system DEEPCON to

realize our goal of quickly improving the model consistency of edge-cloud-based

applications. I illustrate the importance of consistency in evaluating the perfor-

mance of geo-distributed DL applications and define a new consistency metric

(CC) for measurement. Then I propose DMML, a KD-based learning algorithm

for cross-model learning, improving the consistency among the models. To im-

prove the DMML’s scalability, I develop the DMML-Par that can scale DMML

to multiple GPU nodes. Then I design and implement DEEPCON to provide

non-stop updates to improve the model consistency of geo-distributed DL appli-

cation. Moreover, DEEPCON offers an algorithm and system co-design solution

to maintain a geo-distributed DL application deployment life-cycle. Finally, I

evaluate DMML with both vision and language classifications and evaluate the

training speed of DEEPCON on the same dataset.

1.3 Thesis Structure

Chapter 1 describes the general background information and motivation behind the

topic and illustrates the research questions and main contributions of this research.

Chapter 2 presents background material and a summary of work closely related to the

original research described in this thesis.

- 8 -

Chapter 1: Introduction

Chapter 3 presents OsmoticGate which investigates video streaming processing task

offloading in edge-cloud computing paradigm. Based on bitrate-based video streaming

protocols, a Hierarchy Queue Model is proposed to capture system workload dynam-

ics and its relation to system latency, and throughput. A two-stage gradient-based

algorithm has been proposed to minimize system latency while ensuring minimal

throughput. Extensive evaluation has been conducted to validate the effectiveness

of OsmoticGate in both simulation and real-world testbed.

Chapter 4 presents OsmoticGate2 , an online multi-agent reinforcement learning

system designed to achieve workload balancing in dynamic and distributed deep learn-

ing (DL) applications. Utilizing the state-of-the-art multi-agent reinforcement learn-

ing algorithm MAPPO, all agents actively interact with real-world environments and

continuously learn from these interactions. Through this learning process, the system

optimizes its performance in a dynamic setting. The experimental results demonstrate

that OsmoticGate2 effectively adapts to changing system configurations while en-

suring stable runtime performance. These findings highlight the system’s ability to

successfully balance workloads and maintain desired performance levels in dynamic

and distributed DL applications.

Chapter 5 presents DEEPCON , an adaptive deployment framework to quickly im-

prove model consistency through over-the-air parallel training. A whole pipeline is

designed for quickly detecting the inconsistency within the systems along with an effi-

cient learning algorithm (DMML) for improving the consistency between the models.

In order to further accelerate the training process, a high-scalable algorithm DMML-

Par, asynchronous parallel training of DMML is designed which adapts easily to vari-

ous numbers of computation resources. DEEPCON is prototyped and implemented

with a set of APIs for seamless communication between the edge and cloud layers. The

evaluation results show the effectiveness of DMML in improving model consistency.

The training speed-up of DMMLPar is also evaluated, which can guarantee the best

consistency improvement while greatly reducing the training time.

Chapter 6 summarises and provides the conclusion of the work presented in this thesis

and proposes directions for further work in the area.

- 9 -

Chapter 1: Introduction

- 10 -

2
Background and Literature

Review

Contents
2.1 ML-based IoT applications . 12

2.1.1 ML-based IoT application - A Smart City Use Case 12

2.1.2 Taxonomy of the literature review 13

2.2 Cloud AI . 14

2.2.1 TML vs. DL vs. RL . 14

2.2.2 Traditional Machine Learning 17

2.2.3 Deep Learning . 20

2.2.4 Reinforcement Learning (RL) 23

2.2.5 Distributed Machine Learning 24

2.2.6 Optimize Cloud AI . 28

2.3 Edge AI . 29

2.3.1 Efficient Model Architecture . 30

2.3.2 Model Compression . 31

2.3.3 Declarative Machine Learning and Deployment 33

2.3.4 Deployment Optimization . 36

2.4 Edge-cloud Collaboration . 38

2.4.1 Federated Learning . 38

2.4.2 Knowledge Transfer Learning 39

2.4.3 Distributed ML systems . 40

2.5 Edge Video Analytics (EVA) . 44

2.5.1 EVA Application Architectures 44

2.5.2 Techniques for optimizing the performance of EVA applications 46

2.6 Gaps and challenges in edge-cloud collaboration 51

2.7 Conclusion . 53

- 11 -

Chapter 2: Background and Literature Review

Summary

This chapter starts by describing some of the background information concerning the

overall topic, including a brief primer on ML-based IoT applications, cloud AI, edge

AI, and edge-cloud collaborations. At the same time, gaps in current research are

highlighted and then briefly illustrated, and how this thesis fills these gaps.

2.1 ML-based IoT applications

2.1.1 ML-based IoT application - A Smart City Use Case

Cl
ou

d

Ed
ge

Io
T

Machine learning

Smart car navigation system
Smart traffic routing system

Support

Figure 2.1: Smart City

Smart city uses modern communication and information techniques to monitor, inte-

grate and analyze the data collected from core systems running across cities. Mean-

while, smart city makes intelligent responses to various use cases, such as traffic con-

trol, weather forecasting, industrial and commercial activities. Fig. 2.1 represents a

smart city which consists of various IoT applications with many of them using Machine

Learning (ML) techniques. For example, a smart traffic routing system consists of a

large number of cameras monitoring the road traffic and a smart algorithm running

on the cloud recommending the optimal routes for users [341]. On the other hand, a

smart car navigation system [134] allows the passengers to set and change destinations

- 12 -

Chapter 2: Background and Literature Review

via built-in car audio devices. The two systems work together to provide real-time in-

teractive routing services. More specifically, the user’s voice commands are translated

in the car edge side and sent to the cloud where the smart traffic routing system works.

The best route is translated back to voice guiding users to their destinations. The ap-

plications mentioned above entail a wide array of computing resources, such as cloud,

edge, and IoT devices, and employ various ML techniques. As a result, orchestrating

the microservices within these ML-based IoT applications poses significant challenges

for both the ML models and the IoT system.

2.1.2 Taxonomy of the literature review

Choice of
Algorithms

Distributed
Machine Learning

Efficient Nework
Architecture

Model
Compression

Deployment
Optimization

Cloud AI

Edge-Cloud
Collaboration

Edge AI

Optimze Cloud AI

Federated
Learning

Knowledge
Transfer Learning

Gaps ?
Distributed
ML Systems

Edge
Video Analytics

Figure 2.2: Literature Taxonomy

Figure 2.2 shows the taxonomy of the background and literature of this thesis. In the

edge-cloud collaborative learning paradigm, different layers perform different types

of computations. The first step is usually performed on the cloud server (see Cloud

AI in §2.2), where we implement and train the model with various ML algorithms,

optimizing them to achieve high efficiency without sacrificing too much accuracy. Effi-

cient distributed machine learning techniques are utilized for fast model training with

abundant cloud resources. The research on the edge AI (see §2.3), on the other side,

focuses more on the efficient model architectures and deployment strategies that op-

timizes the on-device model performance. This includes less latency, and resource

- 13 -

Chapter 2: Background and Literature Review

usage, while sacrificing model prediction accuracy. Finally, based on the techniques

mentioned above, the research on edge-cloud collaboration (see §2.4) utilizes compu-

tation and communication resources across the two layers, along with the abundant

data source for realizing high-performance geo-distributed collaborative learning.

2.2 Cloud AI

AI has undergone remarkable development in recent years, surpassing human per-

formance in various open-source competition benchmarks. A significant factor con-

tributing to this success is the utilization of cloud computing, specifically large-scale

distributed clusters, which greatly accelerates AI model training, referred to as cloud

AI. In this review, we explore cloud models, optimization techniques, and distributed

machine learning methods employed to expedite the model generation process.

2.2.1 TML vs. DL vs. RL

Model selection aims to find the optimal ML model to perform a user’s specified tasks,

whilst adapting to the complexity of IoT environments. In this section, we first discuss

the model selection from three main categories i.e., TML, DL and RL, followed by a

survey of well-known models (or algorithms) in each category and their corresponding

criteria for model selection.

In this survey, we roughly divide the ML approaches/concepts into TML, DL and

RL. Compared with the most popular DL , TML is relatively lightweight. It is a

set of algorithms that directly transform the input data (to output), according to

certain criteria. For supervised cases when a class label is available for training, TML

aims to map the input data to the labels by optimising a model, which can be used

to infer unseen data at the test stage. However, since the relationship between raw

data and label might be highly non-linear, feature engineering— a heuristic trial-and-

error process — is normally required to construct the appropriate input feature. The

TML model is relatively simple, the interpretability (e.g., the relationship between the

engineered features and the labels) tends to be high.

- 14 -

Chapter 2: Background and Literature Review

DL has become popular in recent years. Consisting of multiple layers, DL is power-

ful for modeling complex non-linear relationships (between the input and output) and

thus does not require the aforementioned heuristic (and expensive) feature engineering

process, making it a popular modelling approach in many fields such as computer vi-

sion and natural language processing. Compared with TML, DL models tend to have

more parameters (to be estimated) and generally they require more data for reliable

representation learning. However, it is crucial to guarantee the data quality and a re-

cent empirical study[209] suggested the increasing number of noisy/less-representative

training samples may harm DL’s performance, making it less generalizable to unseen

test data. Moreover, DL’s multilayer structures make it difficult to interpret the com-

plex relationship between input (i.e., raw features) and output. However, more and

more visualisation techniques (e.g., attention map [330]) were used, which play an

important role in understanding DL’s decision-making process.

RL has become increasingly popular due to its success in addressing challenging se-

quential decision-making problems [272]. Some of these achievements are based on

the combination of DL and RL, i.e., Deep Reinforcement Learning. It has shown

its considerable performance in natural language processing [167, 304], computer vi-

sion [16, 57, 241, 271, 316], robotics [232] and IoT systems [192, 193, 337] and related

applications like video games [16], visual tracking [241, 271, 316], action prediction [57],

robotic grasping [232], question answering [304], dialogue generation [167], etc. In RL,

there is usually one or more agent(s) interacting with the outside environment, where

optimal control policies are learnt through experience. Fig. 2.3 illustrates the iterative

interaction circle, where the agent starts without knowing anything about environment

or task. Each time the agent takes action based on the environment states, and it re-

ceives a reward from the environment. RL optimises this process such that it learns

to make decisions with higher rewards received.

Discussion. In IoT environments, a variety of problems can be modelled by using the

aforementioned three approaches. The applications range from system and networking

[193] [192], smart city [337] [168], to smart grid [299] [244], etc. To begin with modeling,

it is essential for users to choose a suitable learning concept at the first stage. The

main selection criteria can be divided into two categories: Function-based selection

- 15 -

Chapter 2: Background and Literature Review

Agent Environment

Action

Observation

Reward

Figure 2.3: Reinforcement Learning Paradigm

and Power Consumption-based selection.

Function-based selection aims to choose an appropriate concept based on their func-

tional difference. For example, RL benefits from its iterative environment ↔ agent

interaction property, and can be applied to various applications which need interaction

with environment or system such as smart temperature control systems, or recommen-

dation systems (with cold start problem). On the other hand, TML algorithms are

more suitable for modelling structured data (with high-level semantic attributes), espe-

cially when interpretability is required. DL models are typically used to model complex

unstructured data, e.g., images, audios, time-series data, etc. and are an ideal choice

especially with high amount of training data and low requirement on interpretability.

Power Consumption-based selection aims to choose an appropriate model given con-

straints in computational power or latency. In contrast to TML, the powerful RL/DL

models are normally computationally expensive with high overhead. Recently, model

compression techniques were developed, which may provide a relatively efficient solu-

tion for using RL/DL models for some IoT applications. However, on some mobile

platforms with very limited hardware resources (e.g., power, memory, storage), it is

still challenging to employ compressed RL/DL models, especially when there are some

performance requirements (e.g., accuracy, or real-time inference) [61]. On the other

hand, lightweight TML may be more efficient, yet reasonable accuracy can only be

achieved with appropriate features (e.g., high level attributes derived from the time-

consuming feature engineering).

- 16 -

Chapter 2: Background and Literature Review

Supervised learning Unsupervised learning

Figure 2.4: Examples of Supervised Learning (Linear Regression) and Unsupervised
Learning (Clustering)

2.2.2 Traditional Machine Learning

Herein we demonstrate several popular TML algorithms, and discuss the criteria for

choosing the TML algorithms. Given different tasks, TML can be further divided into

Supervised Learning and Unsupervised Learning.

Supervised Learning. Supervised learning algorithm (i.e., Fig. 2.4) can be used when

both the input data X and the corresponding labels Y are provided (for training), and

it aims to learn a mapping function such that Y :← f(X). Supervised learning algo-

rithms have been widely used in IoT applications, we introduce the most representative

classifiers below.

Perceptron and Logistic Regression (LR) are probably the simplest linear classifiers.

For both models, the model (i.e., weights and bias) is basically a simple linear transfor-

mation. Perceptron can perform binary classification simply based on the sign of the

(linearly) transformed input data, while LR will further scale the transformed value

into probability (via sigmoid function), before a thresholding function is applied for the

binary classification decision. LR can also be extended to process multi-class classifi-

cation scenarios by using softmax as the scaling function, with class-wise probabilities

as output.

Artificial Neural Networks (ANN) is a general extension of the aforementioned linear

classifiers. Compared with Perceptron or LR which linearly project input data to the

output, ANN has an additional “hidden layer” (with a non-linear activation function),

- 17 -

Chapter 2: Background and Literature Review

which enables ANN to model non-linearity. However, in contrast to linear classifiers,

this additional hidden layer makes it more difficult to see the relationship between

the input and output data (i.e., low interpretability). Although in theory, with one

hidden layer ANN can model any complex non-linear functions, in practice it has

limited generalization capabilities when facing unseen data. ANN with more layers,

also referred to as deep neural networks, tend to have better modelling capability,

which will be introduced in the next subsection.

Decision Tree (DT) [233] and Random Forest (RF) [40] are two tree-structure based

non-linear classifiers. Based on certain attribute-splitting criteria (e.g., Information

Gain or Gini Impurity), DT can analyse the most informative attributes sequentially

(i.e., splitting) until the final decision can be made. The tree structure makes it

interpretable and it has reasonable accuracy with low-dimensional semantic attributes.

However, it faces “the curse of dimensionality” problem and does not generalize well

when the input feature quality is low. RF, on the other hand, can effectively address

this overfitting issue. RF is an ensemble approach on aggregating different small-

scale DTs, which are derived based on random sampling of the features/datasets.

The random sampling mechanism can effectively reduce the dimensionality (for each

individualDT) while the aggregation function can smooth the uncertainty of individual

DT s, making RF a powerful model with great generalisation capabilities. However,

the interpretability of RF tends to be less obvious than that of DT, owing to the

random sampling and aggregation mechanisms.

Support Vector Machine (SVM) [71] is another popular supervised learning method. It

is also called large margin classifier as it aims at finding a hyperplane that is capable of

separating the data points (belonging to different classes) with the largest margin. For

non-linearly separable datasets, various kernels (e.g., RBF (Radial Basis Function))

can be applied into the SVM framework with good generalization ability. Yet the

time complexity for training this algorithm can be very high (i.e., O(N3) [8], where

N represents the dataset size), making it less suitable for big datasets. On the other

hand, K-Nearest Neighbour (KNN)[74], which does not require a training process (also

referred to as lazy learning), is another powerful non-linear classifier. The classification

is performed by distance calculation (between query and all the training examples),

- 18 -

Chapter 2: Background and Literature Review

distance ranking, and majority voting among the (K) nearest neighbours. So selecting

suitable distance functions/metrics (for different tasks) is one of the key issues in

KNN. Since for any query sample, the distance calculation has to be performed for

every sample in the whole training set, it can be time-consuming and thus less scalable

to large datasets. Different from the aforementioned methods, Naive Bayesian (NB)

algorithm [98] takes the prior knowledge of the class distribution into account. Based

on the assumption that the features are conditionally independent, the likelihood of

each feature can be calculated independently, before being combined with the prior

probability according to the Bayes’ rule. If the feature-independence assumption is not

significantly violated (e.g., low-dimensional structured data), it can be a very effective

and efficient tool.

Unsupervised Learning. The unsupervised learning algorithm (see Fig. 2.4 right) aims

at learning the inherent relationship between the data when only input data X exists

(without class label Y). For example, the clustering algorithm can be used to find

the potential patterns of some unlabelled data and the obtained results can be used

for future analysis. K-Means [113] and Principal Component Analysis (PCA) [255]

are the two most popular unsupervised learning algorithms. K-means aims to find

K group patterns from data by iteratively assigning each sample to different clusters

based on the distance between the sample and the centroid of each cluster. PCA is

normally used for dimensionality reduction, which can de-correlate the raw features

before selecting the most informative ones.

Discussion. For IoT applications, a common principle is to select the algorithm with

the highest performance in terms of effectiveness and efficiency. One can run all related

algorithms (e.g., supervised, or unsupervised), before selecting the most appropriate

one. For effectiveness, one has to define the most suitable evaluation metrics, which

can be task-dependent, e.g., accuracy or mean-f1 score for classification tasks, or mean

squared errors for regression, etc. Before model selection, a number of factors should

be taken into account: data structure (structured data, or unstructured data which

may need additional preprocessing), data size (small or large), prior knowledge (e.g.,

class distribution), data separability (linearly, or non-linearly separable which may

require additional feature engineering), dimensionality (low, or high which may require

- 19 -

Chapter 2: Background and Literature Review

dimensionality reduction), etc. There may also exist additional requirements from

the users/stakeholders, e.g., interpretability for health diagnosis. Additionally, it is

necessary to understand the efficiency requirement specific to an IoT application and

one has to consider how the training/testing time grows with respect to data size. Take

KNN as an example: although no training time is taken, KNN ’s inference time can

be very high (especially with a large training set), and thus presumably unsuitable for

certain time-critical IoT applications. Also, the deployment environment is another

non-negligible factor when developing IoT applications since many applications run

(or partially run) on low power computing resources.

2.2.3 Deep Learning

In this section, we primarily introduce three classical deep models (i.e., Deep Neu-

ral Networks (DNN)/ Multilayer Perceptron (MLP), Convolutional Neural Networks

(CNN) and Recurrent Neural Networks (RNN)) for supervised learning tasks on un-

structured data such as image, video, text, time-series data, etc. We also brief two

popular unsupervised models: Autoencoder (AE), and Generative Adversarial Net-

works (GAN).

Supervised DL. Next, we will introduce three basic supervised DL models: DNN,

CNN and RNN, which require both the data and label for training.

Deep Neural Networks (DNN). As previously mentioned, a deep neural network (DNN)

is an ANN with more than one hidden layer, and hence it is also called multilayer

perceptron (MLP). Compared with ANN with a single hidden layer, DNN has more

powerful modelling capabilities and its deep structure makes it easier for it to learn

higher-level semantic features, which is crucial for classification tasks on complex data.

However, for high-dimensional unstructured input data (such as images), there may be

many model parameters to be estimated, and in this case, overfitting may occur if there

is not enough labelled data. Nevertheless, generally DNN has decent performance

when input dimensionality is not extremely high, and it has been successfully applied

to various applications, for example human action recognition [284], traffic congestion

prediction[83] and healthcare[212].

- 20 -

Chapter 2: Background and Literature Review

Convolutional Neural Network (CNN). When it comes to high-dimensional unstruc-

tured data such as images, in visual recognition tasks it is hard to directly map the

raw image pixels into target labels due to the complex non-linear relationship. The

traditional way is to perform feature engineering, which is normally a trial-and-error

process, and may require domain knowledge in certain circumstances, before TML is

applied. This heuristic approach is normally time-consuming, and there exist substan-

tial recognition errors even in simple tasks since it is very challenging to hand-engineer

the high-level semantic features. CNN, a deep neural network with convolutional lay-

ers and pooling layers, can address this issue effectively. The convolution operation

can extract the higher level features while the pooling operation can keep the most

informative responses and reduce the dimensionality. Compared with DNN, the weight

sharing concept (of the convolution operation) enables CNN to capture the local pat-

tern without suffering from the “curse of high-dimensionality” from the input. These

operations and the hierarchical nature make CNN a powerful tool for extracting high-

level semantic representations from raw image pixels directly, and successfully applied

to various recognition tasks such as object recognition, image segmentation [96] and

object detection [114]. Because of the decent performance on various visual analy-

sis tasks, CNN is usually considered as the first choice for some camera-based IoT

applications, for example traffic sign detection [256].

Recurrent Neural Networks (RNN). Nowadays, with the increasing amount of gener-

ated stream and sequential data from various sensors, time series analysis has become

popular among the machine learning (ML) community. RNN is a sequential modelling

technique that can effectively combine the temporal information and current signal into

the hidden units for time-series classification/prediction. An improved RNN named

Long Short Term Memory (LSTM) [121], including complex gates and memory cells

within the hidden units for “better memories”, became popular in various applica-

tions such as speech recognition [104], video analysis [283], language translation [187],

activity recognition [106] etc. Since data streaming is most common in the IoT envi-

ronment, RNN (LSTM) is deemed as one of the most powerful modelling techniques,

and there are various IoT applications such as smart assistant [97, 284], smart car

navigator system [134], malware threat hunting [109], network traffic forecasting [235],

- 21 -

Chapter 2: Background and Literature Review

equipment condition forecasting [332], energy demand prediction system [206], load

forecasting [156], etc.

Unsupervised DL. We will also introduce two unsupervised DL models: Autoen-

coder (AE) [23] and Generative Adversarial Network (GAN) [102].

Without requiring any label information, AE can extract compact features and recon-

struct the original (high-dimensional) data with the extracted features. It is normally

used for dimensionality reduction, latent distribution analysis or outlier detection.

GAN, on the other hand, applies an adversarial process to learn the “real” distribution

from the input data. More precisely, GAN consists of two parts, namely generator

and discriminator. The generator aims at generating indistinguishable samples com-

pared to the real data. While the discriminator works adversarially to distinguish the

generated fake samples from the real data. It is an iterative competition process that

will eventually lead to a state where the generated samples are indistinguishable from

the real data. With the learnt ”real” distribution, one can generate various samples for

different purposes. AE and GAN are both powerful tools in the computer vision field,

and their properties make them promising approaches for IoT applications. AE can

be used for diagnosis/fault detection tasks [65, 217] or simply as a preprocessing tool

(i.e., feature extraction/dimensionality reduction). GAN has been used for studies on

generating rare category samples, and this upsampling approach may further improve

the model performance [335, 336].

Discussion. The aforementioned DL models can be effective tools for processing differ-

ent unstructured data types. The way of applying them is generally very flexible, and

they can be used jointly to process complex data from various sources in the IoT envi-

ronments. For example, although CNN /RNN could be used in an end-to-end manner

(e.g., as image/time-series classifiers), they could also be used as feature extractors,

based on which one can easily aggregate features extracted from different sources (e.g.,

audio, images, sensor data). With high-dimensional video data, one can either model

by training CNN+ LSTM jointly [287], or use CNN /AE as feature extractors, be-

fore the sequential modelling (e.g., using LSTM). However, when modelling the data

with limited labels (e.g., rare event), one needs to consider the potential overfitting

effect when using DL directly. One may go back to the TML approaches or use some

- 22 -

Chapter 2: Background and Literature Review

upsampling techniques (e.g., GAN) to alleviate this effect.

2.2.4 Reinforcement Learning (RL)

In this section, we first introduce the strategies used to formulate the aforementioned

video streaming example (see §2.2) with Reinforcement Learning (RL). As mentioned

earlier, in RL an agent interacts with the environment, learning an optimal control

policy through experience. It requires three key elements, observation, action, and

reward. Based on these, we can formulate the adaptive bitrate streaming problem.

Specifically, observation can be the buffer occupancy, network throughput, etc. At

each step, the agent decides the bitrate of the next chunk. A reward (for example the

quality of service feedback from the user) is received after the agent takes action (chunk

bitrate). The algorithm proposed in [193] collects and generalizes the results of per-

forming the past decisions and optimizes its policy from different network conditions.

This RL-based algorithm can also make the system robust to various environmental

noises such as unseen network conditions, video properties, etc.

As shown in Fig. 2.5, there is a plethora of algorithms in the whole reinforcement learn-

ing family. Here we focus on selecting appropriate RL algorithms based on different

selection criteria.

Value
FunctionPolicy

Policy
Based

Value
Based

 Actor
Cr itic

Model Free

Model
Free

Model
based

RL categorization

Figure 2.5: Reinforcement Learning Categorization

Environment Modelling Cost In RL modelling, sample efficiency is one of the ma-

jor challenges. Normally the RL agent can interact either with the real world or a

simulated environment during training. However, it can be difficult to simulate the

heterogeneous IoT environments and complex IoT devices. RL models can also be

trained directly in real world IoT environments, yet one major limitation is the heavy

- 23 -

Chapter 2: Background and Literature Review

training cost, which may range from seconds to minutes for each step. The model-

based RL method, a method that can reduce the sample complexity, can decrease the

training time significantly. It first learns a predictive model of the real world, based

on which the decisions can be made. When compared with model-free approaches,

model-based methods are still in their infancy, and because of the efficiency property,

they may attract more attention in the near future.

Action Space: The action space of RL algorithms can be either continuous or discrete.

For those RL algorithms with discrete action space, they choose from a finite number

of actions at runtime. Take the video streaming task for example, the action space

is different bitrates for each chunk. Another task formulated in discrete action space

can be found in [192], where the action space is the “schedule of the job at i-th slot”.

Available algorithms for discrete action space tasks most reside in the policy gradient

group, for example DQN, DDQN. The continuous action space, on the other hand, is

infinite for all possible actions. Relationships exist between the actions that are usually

sampled from certain distributions such as Gaussian distribution. For example, in an

energy-harvesting management system, PPO algorithm [249] is used to control IoT

nodes for power allocation. The action space, as stated in [207], is sampled from

a Gaussian distribution to denote the load of each node ranging from 0% to 100%.

Similarly, in another work [14] that studied energy harvesting WSNs, the Actor-Critic

[154] algorithm is implemented to control the packet rate during transmission. One

advantage of continuous action space lies in its ability to accurately control the system,

thus a higher QoE is expected.

2.2.5 Distributed Machine Learning

Modern ML models such as neural networks require a substantial amount of data for

the training process. These data are usually aggregated and stored in the cloud server

where training happens. However, when the training process of large volume data out-

paces the computing power of a single machine, we need to leverage multiple machines

available in the server cluster. This requires the development of novel distributed ML

systems and parallel training mechanisms which distribute and accelerate the machine

learning workload.

- 24 -

Chapter 2: Background and Literature Review

Gradient
Aggregation

Single
Machine

Optimization
Sub-model/

Data partition
Split Data

/ Model

Figure 2.6: Distributed Machine Learning Pipeline

Fig 2.6 shows the schematic diagram of a distributed ML pipeline. It has multiple

components which are engaged in Training Concurrency, Single Machine Optimization,

and Distributed System. In Training Concurrency, either the models or the data

are split into small chunks and placed on different devices. With Single Machine

Optimization (which shares similar techniques as conventional ML, see § 2.2.6) that

accelerates the training process, we get all local gradient updates. Finally, Distributed

System discusses strategies that efficiently aggregate the gradient updates.

Training Concurrency in Distributed ML. In the distributed machine learning, the

selection of parallel strategy depends on two factors: data size and model size. When

either the datasets or the model parameters are too big for single-machine processing,

it is straightforward to consider partitioning them into smaller chunks for processing

at different places. Here we first introduce two basic methods data parallel, model

parallel. We also introduce pipeline parallel and other hybrid approaches that take

advantage of both approaches.

Data Parallel. In a multi-core system where a single core can not store all the data,

data parallel is considered by either splitting the data samples or the features. Data

parallel has been successfully applied to numerous machine learning algorithms [66]

with each core working independently on a subset of data. It can be used for training

ML algorithm for example decision trees and other linear models where the features

are relatively independent. Parallel with the split of data features, though, it can not

be used directly with neural networks because different dimensions of the features are

- 25 -

Chapter 2: Background and Literature Review

highly correlated.

In deep learning, data-parallel works by distributing the training dataset across dif-

ferent GPU units. The dominant data parallel approach is batch parallelism where

mini-batch SGD is employed to compute local gradient updates on a subset of the

data. A central server is responsible for aggregating all local updates to global pa-

rameter and pushing new models back to the working units. One of the earliest works

trained with GPUs can be found in [234] where the authors implemented distributed

mini-batch SGD unsupervised learning concurrently with thousands of threads in a

single GPU. By varying the batch size [103, 263, 312], this method is effective in re-

ducing the communication cost without too much accuracy loss. In the next paragraph,

we will discuss more about the parallel SGD algorithms [197, 268, 315, 327, 346] for

improving the communication efficiency, which can be seen as one way of improving

the performance of data parallelism. Another type of data parallel that addresses the

memory limit on single GPU is spatial parallelism [146]. Spatial parallelism considers

partitioning spatial tensors into smaller subdivisions and allocating them to separate

processing units. It thus differs from batch parallelism in that the latter puts the

groups of data in the same process. Spatial parallelism approach has proven to show

near linear speedup on modern multi-GPU systems.

Model Parallel. Data parallel suffers from the infeasibility of dealing with very large

models especially when it exceeds the capacity of a single node. Model parallel ad-

dresses this problem by splitting the model with only a subset of the whole model run-

ning on each node [39, 79, 150, 164]. The computation graphs can be divided within

the layers (horizontal) or across the layers (vertical). Mesh-tensorflow [254] allows lin-

ear within-layer scaling of model parameters across multiple devices after compiling a

computation graph into a SPMD program. However, this approach requires high com-

munication cost as it needs to split and combine model updates across a large number

of units. [133] introduced decoupled parallel backpropagation to break the sequential

limitation of the back-propagation between the nodes, greatly increasing the training

speed without much accuracy loss. For CNN, as each layer can be specified as five

dimensions including: samples, height, width, channels, and filters, existing literature

[88, 89] studies the split of models among dimensions. Another research direction that

- 26 -

Chapter 2: Background and Literature Review

optimizes the communication overhead is by searching the optimal partition and de-

vice placement of computation graphs via reinforcement learning [202]. The literature

[138, 291] followed this idea and shows interest in automatic search of optimal parallel

strategies.

Pipeline Parallel. Although model parallel has proven successful in training extremely

large models, the implementation is complicated due to the complexity of the neural

network structure. This is especially true for CNNs since the convolution operators are

highly correlated. Also, GPU utilization is low for model parallel. Due to the gradient

interdependence between different partitions, usually only one GPU is in use each

time. To solve the aforementioned problems, pipelining has been studied [224, 302]

for speeding up the model training. With pipeline parallel, models are partitioned

and displayed across different GPUs. Then mini-batches of training data are injected

to the pipeline for concurrent processing of different inputs at the same time. Fewer

worker GPUs are idle in the pipeline parallel setting as each node is allocated jobs,

without waiting for other nodes to finish their work. According to the synchronization

strategy we discussed earlier, gradients are aggregated by either synchronous pipeline

model (GPipe [130]) or asynchronous pipeline model (PipeDream [112], SpecTrain

[54], XPipe [105]). Theoretical analysis of pipeline parallel optimzation has also been

studied and with Pipeline Parallel Random Smoothing (PPRS) [69], convergence rates

can be further accelerated.

Hybrid. Data and model parallel are not mutually exclusive. Hybrid approaches that

combine the benefits of both methods are effective in further accelerating the training

process. Pipeline parallel [112, 130] can be seen as an approach built on top of data

parallel and model parallel. Apart from that, [157] proposed combining data parallel

and model parallel for different types of operators. With data parallel for CNN layers

and model parallel for DNN layers, it achieved a 6.25× speed up with only 1% of

accuracy loss on eight GPUs. Another implementation MAPS-Multi [27] borrows

the idea of [157] and automates the partitioning of workload among multiple GPUs,

achieving 3.12× speed up on four GTX 780 GPUs. Other forms of data parallel and

model parallel hybrids exist in the literature [63, 79, 99, 100] that reduce the overall

communication and computation overhead.

- 27 -

Chapter 2: Background and Literature Review

2.2.6 Optimize Cloud AI

Model training via a single machine is a common strategy for ML model generation. By

placing the learning-related computation in the same place, the model learns from the

data and updates its parameters. In this subsection, we highlight two approaches that

leverage hardware for the training process acceleration: Computation Optimization,

Algorithm Optmization.

Computation Optimization The basic computation unit of neural networks consists of

vector-vector, vector-matrix and matrix-matrix operations. Efficient implementation

of computations can accelerate the training and inference process. The Basic Linear

Algebra Subprogram (BLAS) 1 standardizes the building blocks for basic vector, matrix

operations. A higher level linear algebra library such as cuBLAS 2 implements BLAS

on top of NVIDIA CUDA and is efficient in utilizing the GPU computation resource.

Intel Math Kernel Library (MKL) 3, on the other hand, maximizes performance on

Intel processors and is compatible with BLAS without the change of code.

Different DL architectures (e.g., DNNs, CNNs and RNNs) may require different op-

timizations in terms of basic computations. The DNN computation is usually basic

matrix-matrix multiplication and the aforementioned BLAS libraries can efficiently

accelerate the computations with GPU resources. The CNNs and RNNs are different

in their convolution and recurrent computations. Convolutions can not fully utilize

the multi-core processors and the acceleration can be achieved by unrolling the con-

volution [52] to matrix-matrix computation or computing convolutions as point-wise

product [195]. For RNN (LSTM), the complex gate structures and consecutive recur-

rent layers differ from the DNNs and CNNs in that these computation units can not

be split and deployed directly at different devices. This has made parallel computation

difficult to apply. Optimization is possible though, with implementations on top of

NVIDIA cuDNN [62]. Computations among the same gates can be grouped into larger

matrix operations [15] and save intermediate steps. We can also accelerate by caching

RNN units’ weights with the GPU’s inverted memory hierarchy [84]. The weights are

1http://www.netlib.org/blas
2https://docs.nvidia.com/cuda/cublas/
3https://software.intel.com/en-us/mkl

- 28 -

Chapter 2: Background and Literature Review

reusable between time steps, making a maximum 30× speed up on a TitanX GPU.

Algorithm Optimization Apart from the resource utilization optimization, the algorith-

mic level optimization is another important research direction for efficient model train-

ing and faster convergence. Optimization algorithms aim at minimizing/maximizing

a loss function that varies for different machine learning tasks. They can be divided

into two categories: First Order Optimization and Second Order Optimization.

First Order Optimization methods minimizing/maximizing the loss function with the

gradient values with respect to the model parameters. Gradient Descent is one of

the most important algorithms for neural networks. After back-propagation from the

loss function, the model parameters are updated towards the opposite direction of the

gradient. Gradient descent approaches fall into local optima when the absolute value

is either too big or too small. Also it updates the gradient of the whole data set at

one time, memory limitation is always a big problem. Variants have been proposed

to address the aforementioned problems, including Stochastic gradient descent [35],

mini-batch gradient descent [80]. Also, much famous research enables faster model

convergence: Momentum [231], AdaGrad [93], RMSProp [118], ADAM [151]. Second

Order Optimization methods take second order derivative for minimizing/maximizing

loss function. Compared to the First Order Optimization, it consumes more computa-

tion power and is less popular for machine learning model training. However, Second

Order Optimization considers the surface curvature performance and is less likely to

get stuck on saddle points. Thus it sometimes outperforms the First Order Optimiza-

tion. Famous Second Order Optimization methods include [19, 46, 116, 205, 218]. For

a more systematic survey on the optimization methods for machine learning training,

one can refer to [36].

2.3 Edge AI

The breakthrough of AI on edge devices has led to a plethora of intelligent applica-

tions. The traditional cloud-based paradigm, though effective, raises concerns about

data privacy and reliance on network conditions due to data uploading. To address

these challenges, edge inference has emerged, allowing us to deploy models partially

- 29 -

Chapter 2: Background and Literature Review

or entirely on mobile devices for local predictions. However, edge inference is complex

as it must accommodate limited computing, storage, and energy resources on mobile

devices. This section reviews essential techniques aimed at optimizing models for edge

deployment.

2.3.1 Efficient Model Architecture

The state-of-the-art DL models often require high computational resources beyond

the capabilities of IoT devices. Those models that perform well on large CPU and

GPU clusters may suffer from unacceptable inference latency or even be unable to

run on edge devices (e.g. Raspberry Pi). Tuning the deep neural network model

architectures to increase the efficiency without sacrificing much accuracy has been an

active research area. In this section, we will cover three main optimization directions:

Efficient architecture design, Neural architecture search and Model compression.

Efficient architecture design. There exist neural network models that can specifically

match the resource and application constraints. They aim to explore highly efficient

basic architecture specially designed for platforms such as mobiles, robots as well as

other IoT devices. MobileNets [124] is among the most famous works and proposed to

use depth-wise separable convolutions [257] to build CNN models. By controlling the

model hyper-parameters, MobileNets can strike an optimal balance between the accu-

racy and the constraints (e.g., computing resources). Later in MobileNetv2 [248], the

inverted residual with linear bottleneck architecture was introduced to significantly re-

duce the operations and memory usage. Other important works include Xception [64]

ShuffleNet [333], ShuffleNetv2 [188], CondenseNet [128]. These neural network mod-

els optimize on-device inference performance via efficient design of building blocks,

achieving much less computational complexity while keeping or even raising accuracy

on various computer vision datasets. Some work even outperforms the neural architec-

tures generated through exhaustive automatic model search. Also, different building

blocks can be combined together for even lighter models.

Neural architecture search (NAS). Another research direction named neural archi-

tecture search aims at searching an optimal model structure in a predefined search

- 30 -

Chapter 2: Background and Literature Review

space. There are usually three types of algorithms: reinforcement learning approach

[180, 225], Genetic Algorithm (GA) based [181, 238], and other algorithms [21, 42].

The models generated by these methods are normally constrained to smaller model

sizes. Model size and operation quality are the two most common metrics to be

optimized, over other metrics such as inference time or power consumption. Represen-

tative works including MONAS [126], DPP-Net [85], RENA [344], Pareto-NASH [95]

and MnasNet [276] are interested in finding the best model architectures to meet these

constraints. These approaches are more straightforward as they optimize directly over

real world performance. However, one drawback of NAS is the extensive computing

power required for finding the optimal neural architectures. Thus, the already gen-

erated architectures can be utilized as guidance for future design for more efficient

neural network model architecture.

2.3.2 Model Compression

As modern state-of-art DL models can be very large, reducing the model compu-

tation cost is crucial for deploying the models on IoT devices, especially for those

latency-sensitive real-time applications. Model compression methods can be divided

into four categories, Parameter pruning and sharing, Low-rank factorization, Trans-

ferred/compact convolutional filters and Knowledge distillation. Hereby we briefly

summaries the categories of model compression techniques and list several important

works.

Parameter pruning and sharing method aims to find and remove the redundant pa-

rameters (of DL models) for higher efficiency and generalization. One direction is

to apply quantization techniques. The DL’s parameters/weights are usually stored

in memory with 32-bits, and quantization techniques can compress them into 16-bits

[108], 8-bits [285] or even 1-bit [72, 73, 237]. On the other hand, weight pruning and

sharing (in pre-trained DL models) has also attracted interest among the community.

Some popular methods imposed L1 or L2 regularization constraints [163, 297], which

can penalize models with more parameters, yielding the effect of pruning unnecessary

parameters.

- 31 -

Chapter 2: Background and Literature Review

Low-rank factorization method decomposes the CNN or DNN tensors to lower ranks.

The tensor matrix decomposition is implemented for each layer of the DL model.

That is, once the decomposition for a certain layer is completed, the parameter size

will be fixed (for this layer) and the decomposition will proceed to the next layer.

Interesting work can be found in [162]. However, there are two major drawbacks. For

very large DL models, it may be very expensive to perform decomposition owing to

large parameter matrices. On the other hand, its layer-wise nature may also yield

cumulative error, diverting the compression results to be far from optimal.

Transferred/compact convolutional filters method reduces the memory consumption

by implementing special structural convolutional filters. Motivated by the equivari-

ant group theory [68], the transferred convolutional filter transforms the model layers

to a more compact structure, thus reducing the overall parameter space. The fam-

ily of transformation functions [166, 253, 319] operates in the spatial domain of the

convolutional filters to compress the whole model parameters. Compared to other

model compression methods, transferred convolutional filters methods are less stable

due to the strong transfer assumptions. However, when the assumption holds, the

compact convolutional filter can have very good performance. In [273, 300], the filters

were decomposed from 3× 3 or bigger to 1× 1 convolutions—ideal operations for IoT

devices.

Knowledge distillation method learns a new, more compact model that mimics the

function presented by the original complex DL model. The idea came from the work

in [43], where a neural network model was applied to mimic the behavior of a large clas-

sifier ensemble system. Later this idea has been extended to the complex DL methods

[119], more details can be found in [22, 243, 317]. However, currently the knowl-

edge distillation methods are limited to classification tasks and further development is

required.

Discussion. Types of model compression techniques have their own strengths and

weaknesses and thus optimal choice is based on specific user requirements. Parameter

pruning and sharing methods are the most commonly applied techniques for compres-

sion models from original models. It is stable as with proper tuning, this approach

usually delivers no or few accuracy losses. On the other hand, Transferred/compact

- 32 -

Chapter 2: Background and Literature Review

convolutional filters methods address the compression from scratch. This end-to-end

efficient design for improving the CNN performance approach shares similar insights

to the efficient neural architecture design approach as we discussed earlier. Knowledge

distillation methods are promising when working with relatively small datasets as the

student model can benefit from the teacher model with less data. All these methods

are not mutually exclusive, we can make combinations based on specific use cases to

optimize the models that are more suitable for low-resource IoT devices.

When the ML model development process is finished, the developed models are to

be deployed and composed as an application in the complex IoT environments. To

simplify the deployment, the ML models and underlying infrastructure need to be

specified (§2.3.3). Next, the optimization techniques can be applied to generate the

deployment plans that select the suitable ML models for the deployment, optimizs

the resource utilization of the model deployment and improve the reusability of the

deployed models (§2.3.4). Once the deployment plans are generated, the models will be

deployed over the specified infrastructure and the deployed models will be composed

as well.

2.3.3 Declarative Machine Learning and Deployment

Declarative ML. Declarative ML aims to use high-level language to specify ML tasks

by separating the applications from the underlying data representation, model train-

ing and computing resources. There are three general properties of declarative ML.

First, the high-level specification only considers data types of input, intermediate re-

sults and output. They are exposed as abstract data types without considering the

physical representation of the data or how the data is processed by the underlying

ML models. Second, the ML tasks are specified as high-level operations through well-

defined semantics. The basic operation primitives and their expected accuracy levels

(or confidence interval) are defined accordingly. Based on the operation semantics,

declarative ML systems select the features and underlying ML models automatically

or semi-automatically, optimize the model performance and accuracy for varying data

characteristics and runtime environments. Notably, the selection is based on the avail-

able models, provided as services. Finally, the correctness of the ML models must

- 33 -

Chapter 2: Background and Literature Review

be satisfied when a given model produces the equivalent results in any computing re-

sources with the same input data and configurations. As a result, the declarative ML

enables execution of the ML models over various hardware and computation platforms

(such as Apache Spark) without any changes. Besides, these specification languages

also bring flexibility and usability in the ML model deployment stage.

SystemML [31] is an implementation of declarative ML on Apache Spark. Through

domain-specific languages, it specifies the ML models as abstract data types and opera-

tions, independent of their implementation. The system is able to specify the majority

of ML models: matrix factorizations, dimension reduction, survival models for train-

ing and scoring, classification, descriptive statistics, clustering and regression. There

is also other state-of-the-art research on declarative ML, including TUPAQ [265] and

Columbus [322]. They utilize language specification and modelling technologies to

describe the ML models for automatic model and feature selection, performance and

resource optimization, model and data reuse.

Declarative Deployment. Hardware in the IoT environment consists of three basic

types of device: data generating devices, data processing devices and data transferring

devices. Data generating devices are also called “Things” (e.g., sensors, CCTV) and

are used to collect environmental data. Data transferring devices such as router, IoT

gateway, base station are used to transfer the generated data to the data processing

devices. Data processing devices are used to run the analytic jobs. They can be GPU,

CPU and TPU servers running in cloud or ARM based edge device such as Rasp-

berry Pi and Arduino. An ML-based IoT application is usually running across a fully

distributed environment, such that it requires correct specification of the component

devices as well as the precise interoperation between these devices. [260] lists fun-

damental aspects that may simplify the hardware specification, i.e., processor, clock

rate, general purpose input/output (GPIO), connectivity methods (Wi-Fi, Bluetooth,

wired connection) and communication protocols (serial peripheral interface), universal

asynchronous receiver-transmitter (UART).

Regarding the software, it is often categorized into three groups based on operation

levels: operating system (OS), programming language and platform. IoT OS allows

users to achieve the basic behavior of a computer within internet-connected devices.

- 34 -

Chapter 2: Background and Literature Review

Software Specification Cloud Edge IoT devices

Main OS

- Ubuntu
- CentOS
- Debian
- RHEL
- Windows Server
- Amazon Linux

- Raspbian
- NOOBS
- Amazon FreeRTOS
- RIOT
- Google Fuchsia OS
- Windows 10 IoT

- Amazon FreeRTOS
- Contiki
- TinyOS
- RIOT
- Ubuntu Core
- Mbed OS

Programming Language

- Java
- ASP.NET
- Python
- PHP
- Ruby

- Java
- Python
- C
- C++
- JavaScript

- C
- C++
- Java
- JavaScript
- Python

Platforms

- AWS
- Azure
- Google Cloud Platform
- IBM Cloud
- Oracle Cloud

- Amazon Greengrass
- EdgeX
- Cisco IOx
- Akraino Edge Stack
- Eclipse ioFog

- AWS IoT
- Azure IoT
- GCP IoT
- IBM Watson
- Cisco IoT cloud connect

Table 2.1: List of OS, programming language and platform in IoT layers

The choice of OS in different layers of the IoT environment depends on the hardware

properties such as memory and CPU. The programming language helps the developers

to build various applications in different working environments with diverse constraints.

The choice depends on the capability of devices and the purpose of the application [47].

The IoT software platform is a system that simplifies the development and deployment

of the ML-based IoT application. It is an essential element of a huge IoT ecosystem

which can be leveraged to connect new elements to the system. The details of the most

popular OSs, programming languages, and platforms in IoT domain are in table 2.1 .

The heterogeneity of IoT infrastructures makes the deployment very complicated and

difficult to automate. To overcome this issue, the infrastructure must be described and

specified by machine understandable languages. Then, the declarative deployment

systems are able to automatically map the ML models to the infrastructures and

generate the deployment plans that optimize the performance and the accuracy.

The declarative TOSCA model [76] is able to specify the common infrastructures

such as Raspberry Pis and cloud VM (hardware), MQTT and XMPP (communication

protocol). The deployment logic can be defined through TOSCA Lifecycle Interface

that allows users to customize the deployment steps. However, this declarative model is

still very basic and can not handle complex deployments such as specifying the details

of ML based application. Moreover, the IoT applications consist of installing devices

and sensors which require human tasks. These tasks are not natively supported by any

- 35 -

Chapter 2: Background and Literature Review

available declarative deployment [41]. The imperative tool (e.g., kubectl commands)

allows the technical experts with diverse knowledge of different deployment systems

and APIs to interact with a deployment system and decide what actions should be

taken. However, current imperative frameworks such as Juju, Kubernetes still do not

support interactions such as sensor installation. In future, declarative deployment

systems should interact with declarative ML systems to deploy a complex application

over the heterogeneity of IoT infrastructure while supporting the human tasks through

a more human centered imperative deployment model.

2.3.4 Deployment Optimization

When the infrastructures and deployment workflow of the ML models are specified,

the deployment optimization problem can be formed as a mathematical expression

subject to a set of system constraints. Then, resource allocation algorithms can be

used to efficiently and precisely find the best solution for the given mathematical ex-

pressions. Moreover, the optimization objectives are a set of QoS parameters including

storage and memory space, budget, task execution time and communication delay etc,.

These algorithms can be divided into two classes based on whether an optimal solu-

tion can be guaranteed: meta-heuristic method and iterative method (or mathematical

optimization). Nowadays, ML methods are becoming popular and being applied to

solve these resource allocation problems by learning “good” solutions from the data.

We investigate the representative works in resource allocation based on these three

classes.

Iterative-based method. This class of algorithm generates a sequence of improved ap-

proximate solutions where each solution is driven by previous solutions. Eventually, the

solutions will converge to an optimal point proved by a rigorous mathematical analysis.

The heuristic-based iterative methods are also very common, but we categorize this

type of algorithms into the meta-heuristic based method. The most popular algorithms

of this class include newton’s method [190, 191], gradient method [26] and ellipsoid

method [185]. To apply and adapt iterative-based algorithms to optimize resource

allocation requires strong mathematical background, which can be an obstruction for

software developers to utilize these algorithms to optimize their deployment. Further-

- 36 -

Chapter 2: Background and Literature Review

more, the algorithms have the variety of performance for different problems in terms

of efficiency and accuracy. As a result, more algorithms from iterative-based methods

need to be studied and simplified by the system researchers, providing toolkits (or

solvers) to tackle different optimization problems in IoT application deployment.

Meta-heuristic based method. The optimization problems in IoT applications can

have large search spaces or be time-sensitive. The meta-heuristic based method is

faster than iterative-based method in finding a near-optimal solution. This type of

method consists of two subclasses: trajectory-based method and population-based

method. The trajectory-based method finds a suitable solution with a trajectory de-

fined in the search space. First, the resource allocation problems are mapped into

a set of search problems such as variable neighborhood search, iterated local search,

simulated annealing and tabu search. Then, the meta-heuristic algorithms are used to

find the solutions. Many survey papers [111, 182, 262] have reviewed the algorithms

applied for resource allocation in IoT, cloud computing, mobile computing. Addition-

ally, population-based methods aim to find a suitable solution in the search space that

is described as the evolution of a population of solutions. This method is also called

evolutionary computation and the most well-known algorithm is the genetic algorithm.

[320] investigates the resource allocation problems solved by evolutionary approaches

in cloud computing.

Machine learning based method. ML based method is inspired by the ability of data

to represent the performance and utilization of the contemporary systems. The ML

based methods are used to build data-driven models that allows the target systems

to learn and generate an optimized deployment plan. The proposed algorithms have

been used to optimize various QoS parameters such as latency [193, 309], resource

utilization [203], energy consumption [28] and many others. Zhang et al. [323] have

given a comprehensive survey of the ML based methods used for resource allocation

in mobile and wireless networking.

Deployment (or resource allocation) optimization problems have been studied for

decades, and remain a huge legacy for overcoming the optimization problems in deploy-

ing ML-based IoT applications. Instead of developing new optimization algorithms,

more efforts are required to model the complex optimization problems, in which the

- 37 -

Chapter 2: Background and Literature Review

system scale, conditions and diversity have been amplified significantly.

2.4 Edge-cloud Collaboration

Edge-cloud collaborative learning and inference has garnered significant interest across

various research communities due to recent privacy concerns and latency requirements.

For instance, when dealing with sensitive patient data, privacy is a paramount concern

during the training and serving of AI models. This has motivated the development

of federated learning, which distributes the training to local edge devices and updates

the central cloud server, effectively reducing data transmission and addressing privacy

concerns.

Moreover, knowledge transfer learning plays a crucial role in this ecosystem, facilitating

the efficient transfer of knowledge between cloud and edge environments. This process

accelerates model training and fosters collaborative intelligence among edge devices,

ultimately resulting in enhanced model performance in the distributed setting.

The integration of distributed machine learning (§2.2.5) and edge-cloud collaboration

leads to improved machine learning performance, responsiveness, and resource effi-

ciency in distributed settings. In this section, we summarize the basics of federated

learning (§2.4.1) and knowledge transfer learning (§2.4.2). We also highlight system

design considerations that could benefit distributed learning in edgel-cloud computing

paradigms (§2.4.3).

2.4.1 Federated Learning

In traditional distributed machine learning, the training usually happens in the cloud

data center with aggregated training data generated by collecting, labeling, and shuf-

fling raw data. The training data is thus considered identical and independent dis-

tributed (IID) and balanced. This facilitates the training process as one only needs to

consider distributing the training task across various computation units and updating

the model by aggregating all local gradient updates. However, this is not the case when

IoT comes into play. The ML-based IoT applications differ from the traditional ML

applications in that they usually generate data from heterogeneous geo-distributed

- 38 -

Chapter 2: Background and Literature Review

devices (e.g., user behavior data from mobile phones). These data can be privacy-

sensitive as users usually prefer not to leak personal information, making conventional

distributed ML algorithms infeasible for solving such problems. Thus novel optimzia-

tion techniques are required to enable training in such scenarios.

Federated learning (FL) [155] is a type of distributed machine learning research that

moves the training close to the distributed IoT devices. It learns a global model by

aggregating local gradient updates and does not require the movement of the raw data

to the cloud center. FederatedAveraging (FedAvg) [198] is a decentralized learning

algorithm specifically designed for the FL. It implements synchronous local SGD [56]

on each device with a global server averaging over a fraction of all the model updates

per iteration. FedAvg is capable of training high-accuracy models on various datasets

with many fewer communication rounds. Following this work, [155] proposed two

approaches: Structured updates and sketched updates for reducing the communication

cost, achieving higher communication efficiency. Further research addresses the privacy

limitation of FL by Differential Privacy [199] and Secure Aggregation [33]. Finally, [32]

delivers system-level implementation of FL based on previously mentioned techniques.

It is able to train deep learning models with local data stored on mobile phones.

FL is still developing rapidly with many challenges remaining to be solved. On the

one hand, FL shares similar challenges as in conventional distributed machine learning

methods in terms of more efficient communication protocol, synchronization strategy

as well as parallel optimziation algorithms. On the other hand, the distinct setting of

FL requires more research preserving the privacy of training data, ensuring the fairness

and addressing bias in the data. For a more thorough survey on details of FL, one can

refer to [147].

2.4.2 Knowledge Transfer Learning

The knowledge learned from trained models can be transferred and adapted to new

tasks, and it is especially helpful when limited data/labels are available. In this section,

we introduce four types of knowledge transfer learning (KTL) approaches: Transfer

learning, Meta-learning, Online learning, and Continual learning.

- 39 -

Chapter 2: Background and Literature Review

Transfer Learning [275] — transferring knowledge across datasets— is the most popu-

lar KTL approach. It trains a model in the source domain (with adequate data/labels,

e.g., on ImageNet [81] for general visual recognition tasks), and fine-tunes the model

parameters in the target domain to accommodate the new tasks (e.g., medical imaging

analysis on rare diseases). The rationale behind is that low-level and mid-level features

can be representative enough and thus shared across different domains. In this case,

only the parameters related to high-level feature extraction need to be updated. This

mechanism does not require a large amount of data annotation for learning reliable

representation in the new tasks, which could be useful in cases when annotations are

expensive (e.g., medical applications). Meta Learning [286] is another popular KTL

approach; instead of transferring knowledge across datasets, it focuses on knowledge

transfer across tasks. Meta learning means learning knowledge or patterns from a

large number of tasks, then transfer this knowledge for more efficient learning of new

tasks. When with continuous data streaming, it is also desirable to update the model

with incoming data, and in this case Online Learning [122] can be used. However,

it is difficult to model when the incoming data is from a different distribution or a

different task. Most recently, Continual Learning[221] was proposed to address this

issue. Not only can it accommodate the new tasks or data with unknown distribution,

it can also maintain the performance on the old/historical tasks (i.e., no forgetting

[148]), making it a practical tool for real-world IoT applications. These four KTL

approaches are similar in concept yet have different use cases. Transfer/Meta learning

are focused on knowledge transfer across datasets or tasks (irrespective of data types),

while online/continuous learning are more suitable for data streaming and can transfer

the knowledge continuously to the new incoming data or tasks.

2.4.3 Distributed ML systems

When we have acquired a local model update with partial data slice, multi-node and

multi-thread collaboration are important for effectively updating the model. Network

communication plays an important role in sharing information across the nodes. In

this section, we present the three most important features in network communication:

1) network topology, 2) synchronization strategy and 3) communication efficiency.

- 40 -

Chapter 2: Background and Literature Review

Network Topology. The network topology defines the node connection approach in

the distributed machine learning system. When the data and models are relatively

simple, it is common to utilize existing Message Passing Interface (MPI) or MapReduce

infrastructure for the training. Later when the systems are becoming more and more

complex, new topologies should be designed to facilitate the parameter update.

The Iterative MapReduce (IMR) or AllReduce approaches are commonly used for syn-

chronous data parallel training. Typical IMR engines (for example the Spark MLlib

[201]) generalizes MapReduce and enables the iterative training required by most ML

algorithms. Synchronous training can also be implemented by AllReduce topology.

MPI4 (Message Passing Interface) supports AllReduce and is efficient for CPU-CPU

communication. Many researchers implement their own version of AllReduce for ex-

ample Caffe2 Gloo5, Baidu Ring AllReduce6. In the ring-Allreduce topology, all nodes

connect to each other without a central server, just like a ring. The training gradients

are aggregated through their neighbors on the ring. To provide more efficient commu-

nication for DL workload in the GPU cluster, libraries such as Nvidia NCCL [70] are

developed and support the AllReduce topology. In NCCL2 [137], the multi-node dis-

tribution feature is also introduced. Horovod [251] replaces the Baidu ring-Allreduce

backend with NCCL2 for efficient distribution.

A Parameter Server (PS) infrastructure [169] is usually composed of a set of worker

nodes and a server node which gathers and distributes computation from worker nodes.

As asynchronous training of PS neglects stragglers, it provides better fault tolerance

capability when some of the nodes break down. Parameter server also features high

scalability and flexibility. Users can add nodes to the cluster without restarting the

cluster. Famous projects such as DMTK Microsoft Multiverso [94], Petuum [303] and

DistBelief [79] enable training of even larger networks.

Synchronization Strategy. In distributed ML, model parameter synchronization be-

tween worker nodes is cost-extensive. The trade-off between the communication and

the fresher updates has great impact on the parallelism efficiency.

Bulk Synchronous Parallel (BSP) [196] is the simplest strategy for ensuring model

4https://computing.llnl.gov/tutorials/mpi/
5https://github.com/facebookincubator/gloo
6https://github.com/baidu-research/baidu-allreduce

- 41 -

Chapter 2: Background and Literature Review

consistency of all worker nodes. For each training iteration, all nodes wait for the last

(slowest) node to finish the computation and the next iteration does not start before

the all the model updates are aggregated. Total Asynchronous Parallel (TAP) [79]

approaches are proposed to address the problem of the stragglers within the network.

With TAP, all worker nodes access the global model via a shared memory. They

can pull and update global model parameters any time when the training is finished.

As there is no update barrier for this approach, the system fault tolerance is greatly

improved. However, stale model updates can not guarantee convergence to global

optimum. Many famous frameworks use the TAP strategy, including Hogwild! [239]

and Cyclades [220].

Stale Synchronous Parallel (SSP) [120] compromises between fully-synchronous and

asynchronous schemes. It allows maximum staleness by allowing faster working nodes

to read global parameters without waiting for slower nodes. As a result, the workers

spend more time doing valuable computation, thereby improving the training speed

greatly. But when there is too much staleness within the system, the convergence

speed can be significantly reduced. Many state-of-the-art distributed training systems

implement BSP and SSP for efficient parallelism, for example tensorflow [7], Geeps

[75], Petuum [303].

In contrast to the SSP which limits the staleness of the model update, the Approxi-

mate Synchronous Parallel [125] (ASP) limits the correctness. In Gaia [125], for each

local model updates, the global parameter is aggregated only if the parameter change

exceeds a predefined threshold. This “significance” only strategy eliminates unneces-

sary model updates and is efficient in utilizing the limited bandwidth. However, the

empirical determination of the threshold only considers the network traffic and is in-

sufficient for dealing with dynamics in the IoT environment. [292] has addressed this

problem by also considering resource constraints for efficient parallelism.

Communication Efficiency. Communication overhead is the key and often the bot-

tleneck in distributed machine learning [170]. The sequential optimization algorithms

implemented in the worker nodes require frequent read and write from the globally

shared parameters which poses a great challenge on balancing network bandwidth

and communication frequency. To increase communication efficiency, we can either

- 42 -

Chapter 2: Background and Literature Review

reduce the size of the model gradient (communication content) or the communication

frequency.

Communication content. The gradient size between working nodes is correlated to

both the model size itself and the gradient compression rate. We have reviewed four

types of model compression techniques in §2.3.1 which are effective in reducing the

overall gradient size. Hereby we focus on the techniques that compress the gradient

before transmission, and discuss the gradient quantization and sparsification.

Gradient quantization differs from the weight quantization (§2.3.1) as the former com-

presses the gradient transmission between worker nodes while the latter focuses on

faster inference via smaller model size. Works that reduce the gradient precision [78]

have been proposed and 1-bit quantization [250, 269] is effective in greatly reduc-

ing the computation overhead. Based on the idea, QSGD [11] and Terngrad [298]

consider stochastic quantization where gradients are randomly rounded to lower preci-

sion. Additionally, weight quantization and gradient quantization can also be combined

[123, 131, 301, 324, 343] for efficient on-device acceleration.

The weights of the DNNs are usually sparse and due to the large number of unchanged

weights in each iteration, the gradient updates are even more sparse. This sparsification

nature of the gradient transmission has been utilized for more efficient communication.

Gradient sparsification works by sending only important gradients when exceeding a

fixed threshold [269] or adaptive threshold [90]. Gradient Dropping [9] uses layer

normalization to keep the convergence speed. DGC [178] uses local gradient clipping

for sending important gradients first while the less important ones are aggregated with

momentum correction for later transmission.

Communication Frequency. Local (Parallel) SGD [197, 268, 315, 327, 346] entails

performing local updates several times before parameter aggregation. Motivated by

reducing the inter-node communication, this approach is also called model averaging.

One-shot averaging [197, 346] considers only one aggregation during the whole train-

ing process. While [327] argues that one-shot averaging can cause inaccuracy and

proposes more frequent communications, many works [177, 228, 314, 331] prove the

applicability of the model averaging approach in various deep learning applications.

In an asynchronous setting, the communication frequency can also be maneuvered

- 43 -

Chapter 2: Background and Literature Review

through the push and pull operations in the worker nodes. DistBelief [79] has adopted

this approach with a larger push interval compared to the pull interval.

2.5 Edge Video Analytics (EVA)

Video analytics (VA) refers to the process of extracting valuable information from

video data utilizing computer vision as well as other deep learning techniques. VA

tasks includes recognizing patterns, identifying objects, and tracking movements to

analyze and understand video content, enabling data-driven decision-making. VA

finds applications in various domains, such as security and surveillance for monitoring

camera feeds and detecting intrusions, traffic management for optimizing traffic flow

and identifying incidents, manufacturing and industrial applications for identifying

product defects and ensuring worker safety.

Edge video analytics (EVA), as defined in [345], entails performing analytics that

leverages the computing resources across the end, edge and the cloud to maximize the

performance of VA applications, i.e., the accuracy, latency, scalability of VA systems.

EVA is a specialized area within the broader field of Video Analytics (VA) that con-

centrates on tackling the specific difficulties related to real-time video processing, data

transmission, and system optimization. Current research in EVA primarily centers

around enhancing the performance of systems and applications. This involves endeav-

ors like creating streamlined Video Analytics Pipelines (VAPs) by eliminating unneces-

sary computations [306], maximizing resource utilization through load balancing [132],

and improving execution efficiency through on-device workload scheduling [179].

2.5.1 EVA Application Architectures

The design of an EVA application heavily relies on factors such as scalability, flexi-

bility, and specific system characteristics like the number of executors and resource

availability. To enhance application performance and mitigate challenges in future

maintenance, EVA architectures have undergone several transformations. These in-

clude transitioning from monolithic architectures to microservices architectures, and

ultimately to serverless microservices architectures.

- 44 -

Chapter 2: Background and Literature Review

(1) Monolithic Architectures: Traditionally, applications followed a tightly coupled

approach where all processes were bundled together as a single service, known as the

monolithic architecture [77, 227]. In this architecture, if one module of the application

faces high demand, scaling the entire architecture becomes necessary by provisioning

a virtual machine (VM) to accommodate a new instance of the application. The

monolithic architecture poses a risk to service availability because the interdependence

and coupling among modules amplify the impact of a failure in a single module. Some

early work on EVA adopts a monolithic architecture, such as vehicle detection [295],

license plate recognition [53, 92], and traffic congestion analysis [288]. These services

may suffer from slow responses, errors, or even downtime, due to the fact that the entire

application is enclosed within a single codebase and must be deployed and scaled as a

unified entity.

(2) Microservices Architectures: The microservices architecture, in contrast, involves

constructing an application using a set of loosely coupled and finely grained microser-

vices [77, 82, 214, 227]. These microservices can be developed independently using

different programming languages, deployed separately on diverse infrastructures, and

managed by distinct operational teams. They communicate with each other through

well-defined and lightweight application programming interfaces (APIs). In the event

of a surge in video feeds, the vehicle detection microservice can be scaled indepen-

dently while the other microservices continue to function normally. The microser-

vices architecture has gained significant popularity in EVA applications due to its

adaptability and scalability. Examples such as the application pipeline of Microsoft

Rocket [12, 50, 184] consists of a series of microservices, including decoding, back-

ground subtraction, light DNN object detector, heavy DNN object detector, and

databases. Can be independently configured to meet different needs, executed across

edge hardware and Azure cloud. And, the NVIDIA multi-camera intelligent garage

application [211] divides pipes into edges and clouds. Edge decoding, detection, lo-

calization, tracking, and sending metadata to the cloud for event detection and data

aggregation. With the increase of cameras, only edge microservices need to be ex-

panded.

(3) Serverless Architectures: Serverless computing is a cloud computing model in

- 45 -

Chapter 2: Background and Literature Review

which the infrastructure required to run and scale applications is managed by a cloud

provider [183]. Tasks such as load balancing, auto-scaling, fault tolerance, networking,

and maintenance are handled by the cloud provider, allowing application developers to

focus solely on writing code. In a serverless architecture, applications are decomposed

into smaller, independent functions (often just a few lines of code) that are executed

on-demand rather than continuously running on a server [25, 49]. These functions are

triggered by specific events, such as an HTTP request or a database change, and the

cloud provider allocates the necessary resources for their execution. Once the execution

is complete, the resources are released. Typical serverless EVA applications include

smart cars[29, 149], real-time security monitoring[223, 289], and traffic flow analysis

and management in smart cities[91].

Serverless computing can be combined with a microservices architecture [24, 49], re-

sulting in a widely adopted architectural approach known as a serverless microservices

architecture [136]. In a serverless microservices architecture, a microservice is imple-

mented as a set of event-driven functions. This architecture offers improved granularity

and resource utilization. However, the choice between a microservices architecture and

a serverless microservices architecture depends on the specific needs and requirements

of an EVA application.

2.5.2 Techniques for optimizing the performance of EVA
applications

2.5.2.1 Performance profiling:

The performance of an EVA depends on various configurations and workload place-

ment strategies that trade off between different resource usages and analytics quality.

Selecting an appropriate configuration can minimize resource demands while main-

taining the desired level of analytics quality. Workload placement is also crucial in

edge computing, as application performance can vary based on the availability of re-

sources on different executors. Profiling [210] is a commonly used technique to gather

information about program characteristics during execution, enabling analysis of the

program’s dynamic behavior. Profiling information, referred to as a profile, can be uti-

lized to optimize configuration and placement strategies. Profiling can be conducted

- 46 -

Chapter 2: Background and Literature Review

either offline or online, depending on the specific requirements and constraints.

Offline profiling is a common approach used for obtaining an accurate profile, which

involves running running EVA tasks multiple times with various inputs and configura-

tions on all available devices. The profiler collects metrics such as accuracy, execution

latency, resource usage, memory etc. Typically, a portion of the video data is labeled

using high-quality configurations, which are representative of the target application

scenarios, which is then used for profiling. However, the cost of profiling can be high

due to the exponential growth of the search space as the number of parameters, such as

configurations and placements, increases. For example, VideoStorm [325]’s offline pro-

filer generates query resource-quality profile, which took 20 CPU days on a 10 minute

video with 414 configurations. VideoEdge [132] considers a more complex profiling

problem in hierarchical clusters, with a search space of 1800 combinations from differ-

ent resolutions, frame rates, object detectors, trackers and placements plans. In order

to accelerate the profiling process, VideoEdge merges common components among

multiple queries and caches intermediate results.

Offline profiling faces the challenge of not capturing the diverse visual characteristics

present in real-world scenes. This could result in decisions that do not account for

the inherent trade-offs between resources and accuracy, leading to sub-optimal VA

configurations. Content-aware profiling offers a promising solution to this problem by

incorporating content features as additional dimensions in the profile. This approach

involves training a prediction model based on the augmented profile, and then esti-

mate the performance online. By considering video characteristics in the prediction,

the model can adapt dynamically at runtime. ApproxNet [306] measures the frame

complexity and temporal continuity on the edge devices, while ApproxDet [307] fur-

ther employs video characteristics such as the number of objects, the sizes, and their

movement speeds to meature their patterns of motion. THus, ApproxDet can better

predict the accuracy and latency of different configurations and select the ones that

reveals superiority. CEVAS [329] also measures the video content dynamics via met-

rics such as average number of objects for better profiling performance. The offline

profiling approach, however, heavily depend on domain expertise for selecting features,

and entails low generalizability. While they may work well in certain scenarios, they

- 47 -

Chapter 2: Background and Literature Review

may not perform effectively in others. Spatula [135] also leverages offline profiling for

efficient cross-camera video analytics on large camera networks. By leveraging spatial

and temporal correlations across cameras, the profiling search space has been greatly

reduced, thus reduce the cost of cross-camera analytics.

Online Profiling addresses this issue by periodically updating the profiles for stream-

ing EVA applications. Therefore, the main challenge of online profiling is how to reduce

the computation overhead of the periodic profiling. Chameleon [142] employs online

profiling to thoroughly profile all configurations and produce several candidate config-

urations. Through the use of cross-camera correlation and video content consistency,

these candidate configurations are distributed and propagated across different spatial

and temporal contexts. This strategy helps reduce the overall cost associated with

extensive profiling. However, it’s worth noting that this approach is relatively coarse-

grained and relies on the establishment of a predefined time interval for conducting the

profiling process. Awstream [321] integrates both offline profiling and online profiling

in its approach, where online profiling gradually improves upon the initial bootstrap

profile obtained from offline profiling. To enhance efficiency, Awstream selectively pro-

files a subset of configurations that are considered Pareto-optimal. A comprehensive

profiling is triggered solely when additional resources become accessible, ensuring the

current profile remains up to date.

2.5.2.2 Workload Scheduling:

In an EVA application, users can remotely submit various types of requests, such as

queries or continuous video feeds. The service provider is responsible for fulfilling these

requests and ensuring SLAs. To efficiently manage network, computation, and stor-

age resources, the service provider must determine the optimal devices for handling

these requests. One feasible approach is to implement the application in a microser-

vice architecture that allows for independent deployment, scaling, and updating of

each component. This architecture enables flexibility in workload placement and task

offloading between different devices, enabling service providers to maximize resource

utilization and revenue.

Optimized transmission: The common approach of offloading workloads from IoT

- 48 -

Chapter 2: Background and Literature Review

edges to on-premise edges or clouds is driven by the limited computing capacities of

IoT edges. Nonetheless, blindly offloading every frame without considering redundancy

can result in unnecessary overhead due to limited network resources. To mitigate these

issues, the use of a filter [48, 59, 174, 293] to eliminate redundant frames prior to offload-

ing is beneficial, along with techniques like frame compression or subsampling [277] to

minimize communication overhead. Notably, solutions like CloudSeg [293] employs the

streaming of low-resolution videos, which are then processed in the cloud to recover

high-resolution frames with super-resolution techniques. Similarly, DDS [91] contin-

uously sends low-quality videos to an edge server for inference, selectively resending

regions with higher quality based on feedback from the server. VPaaS [326] introduces

a video streaming protocol that optimizes bandwidth and reduces round-trip time

(RTT) by transmitting low-quality video to the cloud. The system can then identify

specific regions within video frames that require further processing at the fog ends. At

the fog ends, a lightweight DNN model is used to correct any misidentified labels in

these regions. Spider [176] presents a multi-hop millimeter-wave (mmWave) wireless

relay network design that addresses the challenges of physical blockages in mmWave

links. Spider combines a low-latency Wi-Fi control plane with a mmWave relay data

plane to enable efficient rerouting around blockages. It also presents innovative algo-

rithms for video bit-rate allocation and scalable routing, which prioritize maximizing

video analytics accuracy rather than solely focusing on data throughput.

Analytics task offloading: An Video Analytics Pipeline (VAP) consists of multiple

components with varying resource demands. For example video encoding and de-

coding are CPU-dependent while CNN-based object detection relies heavily on GPU

resources. Partitioning the VAP into individual tasks and assigning them to suitable

devices can enhance execution efficiency. This approach offers greater flexibility in

how the pipeline is executed, enabling tasks to be distributed among different execu-

tors. By doing so, resource allocation can be optimized, leading to improved overall

efficiency of the system.

For example, LAVEA [311] and CEVAS [329] investigates serverless VAP that exe-

cutes different stateless functions across the edge and the cloud devices. To avoid

unnecessary computation, MCDDN [110] and Mainstream [139] take into account the

- 49 -

Chapter 2: Background and Literature Review

possibility of combining shared tasks from different applications that operate on the

same stream. If two applications require object detection in input frames, these tasks

can be merged to eliminate redundancy. GEMEL [219] further extends the idea by

“model merging” technique that shares layers and weights between similar architec-

tures in edge models. This technique could reduce memory and swapping delay as

compared to stem-sharing approach in Mainstream. Distream [318] is a distributed

live video analytics system which dynamically adapts to workload changes, achieving

low-latency, high-throughput, and scalable live video analytics by effectively balancing

workloads between smart cameras and the edge cluster. EdgeDuet [310] combines local

detection of large objects with offloading the detection of small objects to the edge.

The primary focus is on reducing the latency associated with small object detection

through tile-level parallelism. By optimizing the offloaded detection pipeline at the tile

level instead of the entire frame, EdgeDuet achieves a balance between high accuracy

and low latency. Zhou [342] and EdgeFlow [127] propose spatial partitioning of the

feature maps for model parallel processing. On the other hand, REMIX [144] presents

a image partitioning mechanism where an input frame is dynamically partitioned into

multiple blocks, and an appropriate object detector is assigned to each block based on

different characteristics.

2.5.2.3 Other research works

Continuous learning: Ekya [29], as presented in the paper by Bhardwaj et al.

(2022), focuses on mitigating data drifting issues during inference, where deployed

models encounter real data that deviates from the training data. By effectively man-

aging the tradeoff between the accuracy of the retrained model and inference accuracy

via a micro-profiler, Ekya tackles the challenge of simultaneously supporting inference

and retraining tasks on edge servers.

Privacy-preserving VAP: With the growing importance of video-analytics-as-a-

service in the cloud industry, maintaining the privacy of analyzed videos is a significant

concern. Although trusted execution environments (TEEs) offer promise in preventing

direct disclosure of private video content, they are still vulnerable to side-channel

attacks. Visor [226] addresses these challenges by providing protection for user video

- 50 -

Chapter 2: Background and Literature Review

streams and machine learning models, even in the presence of compromised cloud

platforms and untrusted co-tenants. By implementing a hybrid TEE that spans both

the CPU and GPU, Visor effectively mitigates side-channel attacks resulting from

data-dependent access patterns in video modules and also addresses potential leakage

in the CPU-GPU communication channel.

2.6 Gaps and challenges in edge-cloud collaboration

The above literature review provides an overview of key research content related to

cloud AI, edge AI, and edge-cloud collaborations. these research highlights the im-

portance of edge-cloud collaborations for improving QoS performance in ML-based

IoT applications. However, current research mainly focuses on the optimization of

the models during the training process; there remains a huge gap in terms of the

optimization of the models after development.

As shown in §2.1.1, a smart car navigator system comprises multiple ML models,

including speech recognition, text classification, text generation and text-to-speech

(TTS) model. Deployment of ML models in a pipeline requires proper composition

plans to maximize the user QoS:

1) Action composition is defined by composing a set of basic actions for complex

decisions. In a self-driving car operating system, actions can be accelerating, braking,

turning left and right, etc. The combination of various action spaces increases the

difficulties of learning optimal decisions in such complex systems. Hierarchical abstract

machines (HAM) [261] are well studied in the context of reinforcement learning [222,

282] by allowing agents to select from a constrained list of action spaces, speeding up

the learning and adaptation to the new environment.

2) Model composition aims to create an ML-based IoT application by using reusable,

portable, self-contained modules via inserting new components or removing existing

components. Apache Airflow 7 is an open-source platform for creating, scheduling and

monitoring workflows in Python. The Valohai8 operator is an extension of Airflow

7https://airflow.apache.org/
8https://valohai.com/

- 51 -

Chapter 2: Background and Literature Review

that utilizes the docker container to build self-contained modules for each model while

providing flexibility for users to define the steps to execute.

The following gaps and challenges are highlighted for compositing the ML models in

the edge-cloud computing paradigm:

• How to chain the dependent models. Each individual ML model has its own

specification and data format of the inputs and outputs. The challenge is to

design a data messaging system to orchestrate the data flow across different

models while considering their required specifications and data format.

• How to allocate computing resources automatically for different models. An

application chained by various ML models requires different computing resources

across heterogeneous infrastructures, i.e., edge devices and cloud servers. It

is challenging to provision computing resources efficiently for the chained ML

models while meeting their performance requirements.

• In distributed and dynamic environments, how to effectively adapt the provision

plans to ensure system instability. In such environments, it is challenging to

design an algorithm that could interact with many devices and dynamic envi-

ronments to generate an optimal strategy.

• How to monitor failure. The composed application consists of a set of ML models

that needs to be monitored, ensuring that everything is executed as anticipated.

However, ML models differ from traditional software in that ML models are

highly stochastic, leading to possible disagreement in prediction results. It is

challenging to define and detect such system failures.

• How to update the models to reduce system failure. It is challenging to design

a cross-model learning algorithm to reduce the disagreement among the models.

Also, how to leverage computation resources across different computation devices

to speed up training is also a challenging topic.

- 52 -

Chapter 2: Background and Literature Review

2.7 Conclusion

In this section, I conduct a thorough survey on the hot topics of edge-cloud collabora-

tion. Starting from an example of an ML-based IoT application, I highlight several fa-

mous types of Cloud AI algorithms that are commonly developed in this context. Then,

I introduce Edge AI techniques that enable efficient on-device model optimization and

deployment. I also list common edge-cloud collaborative computing paradigms in the

literature and highlight that the optimization of model performance in terms of de-

ployment and update remains a huge gap. The rest of the thesis aims to fill this gap

in terms of enabling efficient deployment, and updates in ML-based IoT applications,

via optimized edge-cloud Collaboration techniques.

- 53 -

Chapter 2: Background and Literature Review

- 54 -

3
OSMOTICGATE: Adaptive

Edge-based Real-time Video
Analytics for the Internet of

Things

Contents
3.1 Introduction . 57

3.2 Background and Motivation . 60

3.2.1 Edge-Cloud Computing Paradigm for Video Analytics 60

3.2.2 Motivation . 60

3.3 System Model . 62

3.3.1 Adapting Bitrate-based Video Streaming 62

3.3.2 Hierarchical Queue Model (HQM) 63

3.3.3 Latency Model . 64

3.3.4 Throughput Model . 66

3.4 Constrained Min-Latency Problem . 67

3.4.1 Problem Formulation . 67

3.4.2 Challenges in the optimization task 68

3.4.3 Problem Transformation . 69

3.5 Two-stage Algorithm Design . 71

3.5.1 Overview of Two-Stage Gradient Algorithm 72

3.5.2 Projected Gradient Descent for Video Analytic Offloading (PGD-
VAO) . 73

3.5.3 Projected Gradient Sampling for Video Analytic Offloading (PGS-
VAO) . 74

3.5.4 Switching between PGD-VAO and PGS-VAO 75

3.5.5 Difference between projected gradient descent and projected gra-
dient sampling algorithm . 79

3.5.6 The Complexity of the Algorithms 79

- 55 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

3.6 Evaluation . 80

3.6.1 Obtaining the parameters for HQM via real-world benchmark 80

3.6.2 Simulation . 84

3.6.3 Comparison With Existing Approaches 86

3.6.4 Impact of Throughput Constraint 90

3.6.5 The Complexity Analysis of the Algorithms 91

3.6.6 Real-world Test-bed . 91

3.7 Related Work . 92

3.8 Conclusions . 93

3.9 Proof of Lemma 5.1 . 93

3.10 Proof of Theorem 5.2 . 94

- 56 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

Summary

This chapter presents OsmoticGate, a video analytics task offloading framework that

is capable of generating optimal workload balancing strategies, based on a Hierarchy

Queue Model and a two-stage gradient-based algorithm. Experiments on both simu-

lation and real-world testbed show that OsmoticGate can achieve low latency given

different system configurations.

3.1 Introduction

The adoption of Internet-of-Things (IoT) devices, including set-top boxes, embedded

computers, and mobile devices, have increased in the context of video generation, de-

livery, and processing applications. A case in point, each minute 300 hours of video are

uploaded onto Youtube. As noted by ourselves [229] and others [115], deep learning

technologies and its offshoots are becoming cornerstone for enabling IoT video ana-

lytics applications such as security surveillance [3], image object tracking [4], home or

industrial building automation [2].

Although the computing power of IoT devices has improved significantly, more research

is required in order to optimize the execution of deep learning models on the same. For

example, there is a need to develop optimization techniques that can balance the IoT

devices’ resource constraint (e.g., processing power and memory) and deep learning

model’s complexity and performance (e.g., processing latency, accuracy). HUAWEI

mate 10 pro only has 200MB memory for its Neural Processing Units (NPU) which is

not enough to run many advanced deep learning models, such as Faster R-CNN [242].

Moreover, NVIDIA Jetson Nano can only process 5 video frames in each second by

using ResNet model [216], far from meeting the requirements of real-time processing.

This bottleneck will be dramatically amplified as the IoT data volume and velocity

continues to grow exponentially.

Developing an offloading technique to balance the video analytics workload, driven by

the edge and cloud resources’ computing and processing capabilities, has evolved as

promising approach [236, 277]. DeepDecision [236] is the first attempt that combines

- 57 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

the low power edge devices with more powerful cloud servers to execute deep learning

model both locally and remotely. However, this approach does not support fine-grained

offloading of video frames across edge and cloud within a single window, which may

lead to inefficient resource utilization. The inefficiency is caused by the possible idle

time of either edge devices or cloud servers when the window size is not well tuned

(see more details in §5.2). FastVA [277] proposes a local frame buffer for fine-grained

splitting of video data within a window. This solution is not suitable when number of

frames within a window can change over time. For example, when cameras are con-

figured to adaptive bitrate protocols. Furthermore, FastVA fails to coordinate video

analytics workload across multiple edge nodes which may cause queuing delay in the

cloud. We discuss this issue through a primary benchmark in §5.2. VideoPipe [247],

VideoEdge [132], VideoStorm [325] and Chameleon [142] focus on scheduling and con-

figuring the video analytics jobs (queries) on edge or cloud computing clusters. These

approaches have two key limitations: (i) they may run out of capacity at the edge

layer as most of these devices are resource constraint and (ii) unable to run complex

deep learning models on resource constraint devices, which may be required for more

complex IoT application scenarios (e.g., city level traffic modeling).

In the practical deployment of edge computing, an offloading policy needs to consider

three facts : 1) heterogeneity of edge node – Each edge node has different processing

rate based on current working situations (e.g., number of IoT devices to ingest data

from). The proportion of the video offloaded to cloud should consider the computing

and network load of each individual edge (e.g., CPU utilization, upstream link utiliza-

tion). 2) interplay among edge nodes and cloud servers – All edge nodes may forward

the video to the cloud simultaneously, without considering others’ offloading policies.

This may cause starvation on the cloud server where the video from some edge nodes

may be delayed for processing. 3) modern video streaming protocols adaption – Video

streaming protocols are essential for video delivery. They break video into small seg-

ments, send to target servers and reassemble them at destination. Video analytical

framework needs to carefully adapt to this protocol, in particular needs to consider

how varying number of frames within a segments impact the offloading policy.

Objective. Our approach OsmoticGate therefore considers the facts in practical

- 58 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

deployment of edge computing, and proposes a novel technique to uncover the influence

of these facts to offloading policy design. In particular, we develop a hierarchical queue

model to capture the heterogeneity of edge node, in which the resource constraints

(e.g., computing capacity and network bandwidth) of each edge nodes are used to

parameterize the local queue and the global queue performance models. Thereafter, we

attempt to minimize the processing latency of each video stream to achieve the real-

time analytics. Specially, we formulate our problem as a non-smooth, non-convex,

constrained min-latency optimization problem. To efficiently find an approximate

solution of this problem, we develop a two-stage gradient-based algorithm and compare

it with the state-of-the-art (SOTA) solutions (e.g., FastVA, DeepDecision, HillClimb

[245]). Our evaluation demonstrates the advantages of workload-based modeling and

the proposed algorithms reduce 2 × latency compared with SOTA methods in 5G

network.

The contributions of this paper are as follows:

• We develop a new hierarchical queue model to describe the system dynamics

of a video analytic system in edge-cloud environment. The proposed model is

adapted to bitrate-based video streaming and focus on modeling the processing

latency and throughput of a video stream analysis system (§3.3).

• We formulate the task offloading problem as a non-smooth, non-convex and

constrained optimization problem (§3.4), and propose a gradient-based algorithm

to efficiently solve this problem (§3.5).

• We feed the model parameter through real-world benchmark and evaluate our

algorithms by comparing SOTA method in simulated environment (§3.6).

Position of the work. Our framework is generic for modeling the workload of complex

video analytic system while resolving the optimal workload balance problem. The

focus of the proposed systems is to minimize the system latency while maintaining the

throughput within the user-defined bounds. In the future, the framework can be easily

extended to include new decision variables including accuracy, energy consumption,

resolution, bit-rate as well as as the choice of deep learning models.

- 59 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

3.2 Background and Motivation

3.2.1 Edge-Cloud Computing Paradigm for Video Analytics

Process

Video Stream
Transmision Protocols

Data Center
(Cloud)

Processing Results from
Edge Nodes

Edge Nodes

WAN (e.g., 4G, 5G)

...

Figure 3.1: Video Analytics in Edge-Cloud Computing Paradigm

In this work, we target to provide a general solution for efficiently performing video

analysis on the emerging edge-cloud computing paradigm [229] as shown in Fig. 3.1.

In this computing paradigm, a set of video generating devices (e.g. traffic surveillance

cameras, drones, mobile phones) are generating live video stream which can be pro-

cessed either on low-power edge computing device (e.g. Raspberry pi, Jetson Nano,

computing chips), or cloud data center with GPU cluster. Extensive research [240, 242]

have been conducted in deep learning and adapted to assist video analytics. The com-

munication among edge nodes and data center is via Wide Area Network (WAN),

using various video stream transmission protocols.

3.2.2 Motivation

In order to efficiently perform video analysis on edge-cloud computing paradigm, the

key is when and how to offload the video streaming to data center. In the following, we

use a real-world traffic monitoring application and conduct two benchmark experiments

to study the impact of the three complexities mentioned in §3.1.

- 60 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

0 3 6 9 12 15 18 21 24 27 30
Video Frame

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

(s
)

Bitrate-based
Frame-based

(a) Transmission Latency Comparison

0.0 0.2 0.4 0.6 0.8 1.0
Offload Rate

0.0

0.4

0.8

1.2

1.6

2.0

La
te

nc
y

[s
]

Overloaded Edge
Congested Network
FastVA
Optimal
DeepDecision

(b) Heavy System Workload

Figure 3.2: What is Affecting the Performance of Cloud-edge Video Analysis System?

Setup. We deploy a retrained YOLOv3-tiny (detailed in §3.6.1) on both a Jetson Nano

and a GPU server to count the number of cars in each video frame, with an emulated

5G network environment.

Bitrate-based V.S. Frame-based Video Transmission. We crop input video into seg-

ments containing 3 to 30 frames and deliver them from the edge to the cloud server

using two types of transmission methods: 1) bitrate-based method that compresses

the input video in H.264 format before transmission; and 2) frame-based method that

transfers the video frames sequentially. As shown in Fig. 3.2(a), with the increase of

video size, the difference of the transmission time between bitrate-based and frame-

based method increases dramatically. The bitrate-based one is almost 10× faster than

the frame-based one, when the number of frame is 30.

Understanding the System Workload is Essential. In this experiment, we inject video

traffic for 60 seconds between edge node and cloud server while emulating following

system dynamics: i.e., I) Heavy traffic between the edge node and server: we inject 10

seconds of video chunks to the communication queue beforehand; II) Heavy load in the

edge: we inject 10 seconds of video chunks to the edge processing queue beforehand.

Next, we benchmark two SOTA offloading techniques (FastVA and DeepDecision) and

an exhaustive method. Fig. 3.2(b) shows that changing system workload impacts the

optimal offloading rate. Moreover, we conclude that SOTA solutions are unable to

achieve optimal offloading rate when subjected to system dynamics I and II.

Challenges. Bitrate-based video stream transmission is efficient and commonly used

in real-world applications. However, adapting the video analytics pipeline to this

- 61 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

transmission protocol requires video encoding/decoding process and smooth feeding

of the data into the analytics model. Hence, the first requirement (R1) is to study

and design a mechanism for splitting the video streaming processing task to a granular

level that allows efficient encoding/decoding, assisting optimal offloading performance

tuning. The second requirement (R2) is to develop a novel model that automati-

cally captures the dynamic workload in the proposed video analytics system. In the

practical deployment, the edge node heterogeneity, network variation, as well as the in-

terplay between the edge nodes and cloud servers can induce complicated and dynamic

workload within the system. Finally, the third requirement (R3) is to design a new

algorithm that adapts to the proposed model and optimizes the system performance.

3.3 System Model

In this section, we first show a new design that allows our OsmoticGate to adapt to

bitrate-based video streaming, and then propose a Hierarchical Queue Model (HQM)

to describe the system behaviors for video analytics. Finally, we model two key metrics

for measuring system performance: processing latency and system throughput.

3.3.1 Adapting Bitrate-based Video Streaming

A video chunk is a segment of video stream which contains a sequence of video frames.

In order to utilize the bitrate-based video streaming and meet the requirement (R1),

we split a time window of video into m chunks. We therefore are capable of offloading

a proportion β of the chunks to server for processing.

On edge node k, each video is parameterised by a bitrate b(k) encoding as defined in

Eq. 3.1.

b(k) = α(k) ∗ f (k) ∗ r(k) ∗ c(k) (3.1)

We use superscript k to denote metrics on edge node k. f (k) is the video frame rate,

and r(k) is the resolution of a raw video frame. Next, α(k) represents the bits required

to represent each image pixel, c(k) is the compression rate with video encoding. Next,

for each split, the start time and chunk duration are set. As video encoding must store

key frame (i.e., I-frame) within the video as well as cross-frame information variation

- 62 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

at a fixed time interval, we locate I-frames as well as the group of pictures (GOPS)1

within the duration. Different video encoding techniques can adapt c(k) and α(k) to

different settings. After this stage, video chunks can either be offloaded to cloud or

processed locally. Finally, the decode is the process of converting video chunks into

video frames. The extracted frames are processed by deep learning models where real

detection happens.

3.3.2 Hierarchical Queue Model (HQM)

𝐄𝐝𝐠𝐞 𝐍𝐨𝐝𝐞 (𝐄(𝟎))

... Encoder Diverter
15

4

3

2
(β("))

Local Processing
(Q$("))

Offloading (Q%("))

𝜇$(")
Offloading Policy

Chunk Duration
OSMOTICGATE

...
De

co
de

r

𝐄𝐝𝐠𝐞 𝐍𝐨𝐝𝐞 (𝐄(𝟏))

𝐄𝐝𝐠𝐞 𝐍𝐨𝐝𝐞 (𝐄(𝟐))

Q&

µ&
𝜆&(")

𝜆&($)

𝜆&(%)

𝜆&

Decoder

Data center
(DC)

Figure 3.3: Hierarchical Queue Model in OsmoticGate

To meet (R2), we develop HQM as in Fig. 3.3, which uncovers the system bottleneck

in edge-cloud video processing system. Each edge node E(k) contains one offloading

queue Q
(k)
T and local processing queue Q

(k)
E . QC is the data center queue that receives

the video chunks from any Q
(k)
T . All video in Q

(k)
E and QC must be decoded into frames

in Decoder before being processed.

The computed inputs of Q
(k)
E and Q

(k)
T are as follows:

λ
(k)
E (β

(k)
E) = β

(k)
E ∗ n

(k)/∆t

λ
(k)
T (β

(k)
E) = (1− β

(k)
E) ∗ n(k)/∆t (3.2)

For n(k) chunks to be processed during time interval ∆t, a proportion β
(k)
E is placed

at E(k). λ
(k)
E (β

(k)
E) and λ

(k)
T (β

(k)
E) are input rate of Q

(k)
E and Q

(k)
T respectively. As

1https://en.wikipedia.org/wiki/Group of pictures

- 63 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

they can contain decimal numbers, We round the inputs to the closest integer number

throughout the following paper.

3.3.3 Latency Model

In this subsection, we aim to model the end-to-end latency of processing each video

chunk. For example, there are n chunks of video that are injected to our system

during interval ∆t (including those already in the system). The latency is the average

time of processing all n chunks. First, we assume that the size for each chunk is s(k)

(bits/chunk). The processing latency l
(k)
E for each video chunk on E(k) has positive

correlation with s(k) as formalized in Eq. (3.3) and is assumed the same for chunks in

the same Q
(k)
E :

l
(k)
E = a

(k)
E + b

(k)
E ∗ s

(k) (3.3)

where b
(k)
E is a constant that defines relation between the processing latency and the

size of each chunk. a
(k)
E is the oscillation introduced by the underlying hardware such

as the video decoding latency. Similarly, the processing latency lC(r) in the servers

can be expressed as :

lC = aC + bC ∗ s(k) (3.4)

bC indicates the coefficient between the processing latency and the size of a given

chunk, and aC is the underlying hardware influence.

Assuming uploading bandwidth between E(k) andDC is B(k), the average transmission

latency per chunk l
(k)
T is:

l
(k)
T =

s(k)

B(k)
(3.5)

l
(k)
T is the same for all chunks in Q

(k)
T .

Compute the latency of Q
(k)
E . Let Size(Q

(k)
E) denotes the number of video chunks in

Q
(k)
E at time t. The input rate of Q

(k)
E is λ

(k)
E (β

(k)
E), linearly correlated with β

(k)
E (see

Eq. (3.2)).

Given system parameters, the queuing latency of ith video chunk injected toQ
(k)
E during

∆t (with respect to the offloading rate β
(k)
E) is denoted by T

(k)
QE

(i, β
(k)
E):

T
(k)
QE

(i, β
(k)
E) = (Size(Q

(k)
E) + i) ∗ l(k)E −

i

λ
(k)
E (β

(k)
E)

(3.6)

- 64 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

(Size(Q
(k)
E) + i) ∗ l(k)E indicates the timestamp that the ith chunk is popped out from

Q
(k)
E , i

λ
(k)
E (β

(k)
E)

is the timestamp of the chunk arrived at the queue.

The sum of the processing latency for all items injected into the queue can be expressed

in Eq. (3.7).

T
(k)
E (β

(k)
E) =

Size(Q
(k)
E)∑

i=1

i ∗ l(k)E +

λ
(k)
E (β

(k)
E)∆t∑

i=1

max{T
Q

(k)
E
(i, β

(k)
E), l

(k)
E } (3.7)

T
(k)
E is the cumulative latency with two components: the first part is the latency for

processing (including queueing latency) the remaining video chunks in Q
(k)
E , i.e., i∗ l(k)E

is the cumulative latency of popping the ith chunk out of the queue; the second part is

the cumulative time cost of popping the injected video chunks during time ∆t out of

the queue. The max term indicates that minimum processing latency must be greater

than pure edge processing latency l
(k)
E (processed instantly after entering the queue).

Compute the latency of Q
(k)
T . Similar computation applies to the Transmission Queue.

Denote Size(Q
(k)
T) as the number of video chunks in the Transmission Queue at time

t, the input rate is λ
(k)
T (β

(k)
E) (see Eq. (3.2)). The queuing latency for ith chunk in the

transmission queue is computed through:

T
(k)
QT

(i, β
(k)
E) = (Size(Q

(k)
T) + i) ∗ l(k)T −

i

λ
(k)
T (β

(k)
E)

(3.8)

The accumulated processing latency is computed in Eq. (3.9):

T
(k)
T (β

(k)
E) =

Size(Q
(k)
T)∑

i=1

i ∗ l(k)T +

λ
(k)
T (β

(k)
E)∆t∑

i=1

max{T
Q

(k)
T
(i, β

(k)
E), l

(k)
T } (3.9)

Compute the latency of QC . Assume that Size(QC) represents the number of video

chunks in the cloud queue at time t, µ
(k)
T = 1

l
(k)
T

indicates the output rate of Q
(K)
T , the

offload rate of all edge nodes is β:

β := [β
(1)
E , β

(2)
E , ..., β

(k)
E] (3.10)

During ∆t, the total number of video chunks coming into each transmission queue is

- 65 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

denoted by N
(k)
QT

(β
(k)
E):

N
(k)
QT

(β
(k)
E) = λ

(k)
T (β

(k)
E) ∗∆t+ Size(Q

(k)
T) (3.11)

which adds up the injected chunks λ
(k)
T (β

(k)
E) ∗∆t and the chunks already in the queue

Size(Q
(k)
T).

Thus, the overall input rate λC(β) of QC is defined by:

λC(β) =
K∑
k=1

λ
(k)
C (β

(k)
E) =

K∑
k=1

min{µ(k)
T ,

N
(k)
QT

(β
(k)
E)

∆t
} (3.12)

Input rate λ
(k)
C (β

(k)
E) from each node is limited by the minimum between the video

transmission rate µ
(k)
T and average producing rate N

(k)
QT

(β
(k)
E)/∆t from each transmis-

sion queue. λC(β) sums up the output from all K transmission queues.

Again, we compute the queuing latency of ith chunk arrived at QC by:

T
(k)
QC

(i, β
(k)
E) = (Size(QC) + i) ∗ lC −

i

λC(β
(k)
E)

(3.13)

The cumulative processing latency of QC is:

TC(β) =

Size(QC)∑
i=1

i ∗ lC +

λC(β)∆t∑
i=1

max{T (k)
QC

(i, β
(k)
E), lC} (3.14)

As a result, the cumulative latency for processing all video chunks generated during

time ∆t in the system is:

T (β) =
K∑
k=1

[T
(k)
E (β

(k)
E) + T

(k)
T (β

(k)
E)] + TC(β) (3.15)

3.3.4 Throughput Model

We define system throughput as the number of chunks that can be processed within

time ∆t. It is total throughput for the proposed system.

Compute the throughput of E(k). Assume that the output rate of Q
(k)
E is µ

(k)
E = 1

l
(k)
E

,

total number of chunks in Q
(k)
E during ∆t is:

N
(k)
E (β

(k)
E) = λ

(k)
E (β

(k)
E)∆t+ Size(Q

(k)
E) (3.16)

- 66 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

which is affected by offloading ratio β
(k)
E .

The throughput of the E(k) is shown in Eq. (3.17):

I
(k)
E (β

(k)
E) = min{µ(k)

E ,
N

(k)
E (β

(k)
E)

∆t
} (3.17)

If the queued chunks are greater than the processing capacity µ
(k)
E , the throughput

I
(k)
E equals µ

(k)
E . Otherwise, I

(k)
E equals the processing rate of available chunks, i.e.,

N
(k)
E (β

(k)
E)/∆t.

Compute the throughput of Cloud DC. The number of chunks in QC at time t is

constrained by cumulative number of chunks 1) injected into, 2) popped out from all

Q
(k)
T , which are defined by NQTin

and NQTout
respectively:

NQTin
=

K∑
k=1

(λ
(k)
T ∆t) and NQTout

=
K∑
k=1

(µ
(k)
T ∆t) (3.18)

The cloud throughput is affected by the output rate of QC and the total number of

chunks in QC , which can be formalized by the following:

IC(β) = min{NQTin
+Size(QC)

∆t
,
NQTout

+Size(QC)

∆t
, µC} (3.19)

The first two terms indicate two upper limits for all available chunks, which includes

transmitted chunks from E(k) and chunks already in the cloud queue Size(QC). µ
(k)
C =

1
lC

is the output rate of QC .

Finally, the system throughput model is:

I(β) =
K∑
k=1

I
(k)
E (β

(k)
E) + IC(β) (3.20)

3.4 Constrained Min-Latency Problem

3.4.1 Problem Formulation

To satisfy the requirement (R3), we aim to minimize the system latency, while achiev-

ing the defined minimal throughput constraint. To simplify the problem, we fix the

video encoding configurations and optimize the offloading parameters. Here we relax

- 67 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

the parameters β
(k)
E and allow them to be any real numbers between 0 and 1 in order

to fit our continuous optimization schemes. After we finish the optimization stage, we

round them to the nearest values which will enforce λ
(k)
E (β

(k)
E)∆t to be integers at the

end. Recall β := [β
(1)
E , β

(2)
E , ..., β

(K)
E], our formulation for the optimization objective

reads:

argmin
β∈RK

T (β) (3.21)

s.t. C1 : I(β) ≥ I∗ (3.22)

C2 : β ∈ [0, 1]K (3.23)

C1 represents that the system throughput must equal or greater than a predefined

constraint I∗. C2 denotes that the video offloading rates β
(k)
E are restricted between

[0, 1].

3.4.2 Challenges in the optimization task

Constrained optimization. In our formulation, we enforce constraints C1 and C2 that

regularize the decision boundary of the input variable β
(k)
E . Hence, the optimization al-

gorithms must take the constraints into account and ensure feasibility and convergence

simultaneously.

Non-smooth optimization with Lipschiz continuity. Our objective function T (·) is a

Lipschitz-continuous function which satisfies:

∥T (x)− T (y)∥2 ≤M∥x− y∥2,∀x, y ∈ RK (3.24)

When M < +∞, Eq. (3.21) is a non-smooth function globally, because its components

have a piece-wise smooth structure of the form max{f1(β), f2(β)}. For example, the

Eq. (3.7)) includes the term max{(Size(Q(k)
E)+ i) ∗ l(k)E − i

λ
(k)
E (β

(k)
E)

, l
(k)
E }, where we have

f1(β) = (Size(Q
(k)
E) + i) ∗ l(k)E − i

λ
(k)
E (β

(k)
E)

, f2(β) = l
(k)
E which is non-differentiable when

f1(β) = f2(β). Since both f1(β) and f2(β) are smooth functions, T (·) is smooth in

most time when the following condition is met: x ∈ RK which satisfies f1(x) ̸= f2(x),

there exists a radius ε(x) > 0 :

∥▽T (x)− ▽T (y)∥2 ≤ L(x)∥x− y∥2, ∀y : ∥x− y∥2 ≤ ε(x) (3.25)

- 68 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

where we denote L(x) < +∞ as the local-smoothness parameter at the point x which

is the smallest possible positive value to ensure Eq. (3.25) to hold.

Non-convex optimization. We observe that objective function T (β) (see Eq. (3.15)

is also non-convex. Since each component of T
(k)
E (β

(k)
E), T

(k)
T (β

(k)
E) and TC(β) includes a

sum of non-convex functions. For example, in Eq. (3.7) we have
∑λ

(k)
E (β

(k)
E)∆t

i=1 max{(Size(Q(k)
E)+

i) ∗ l(k)E − i

λ
(k)
E (β

(k)
E)

, l
(k)
E }, where λ

(k)
E = β

(k)
E ∗n(k)/∆t, and then the first term in the max

is a concave function in β
(k)
E , while l

(k)
E is a constant. Hence all the elements in the sum

is either non-convex or a constant function. As a result, It is a non-convex optimiza-

tion problem that is a NP-Hard problem and in general is impossible to be globally

optimized in polynomial time [86]. We hence aim to find a local minimum solution.

3.4.3 Problem Transformation

To solve the non-convex problem through a gradient-based method, in this section,

we derive the adaptation of the objective function and the gradient accordingly. The

adaptation discussed in this section will assist in derivation of gradient information as

discussed in §3.5.

Adaptation of
∑

(·). In Eq. (3.7), (3.9) and (3.14) we have the summation in the form

of
∑f1(β

(k)
E)

i=1 (i ∗ f2(β(k)
E)) which can not be directly used for computation against the

offloading rate f(β
(k)
E). To adapt them into an expression with respect to the offloading

rate f(β
(k)
E), such that gradient can be computed wherever possible.

For Eq. (3.7), we have T
(k)
E (β

(k)
E) = a +

∑f1(β
(k)
E)

i=1 f2(i, β
(k)
E) where a is a constant,

f1 = β
(k)
E ∗ ∆t and f2(i, β

(k)
E) = max{(Size(Q(k)

E) + i) ∗ l(k)E − i

λ
(k)
E (β

(k)
E)

, l
(k)
E }. We first

extract the i from f2(i, β
(k)
E) into the form f2(β

(k)
E), so that:

f(β
(k)
E) =

∑f1(β
(k)
E)

i=1 i ∗ f2(β(k)
E)

= 1
2
(1 + f1(β

(k)
E)) ∗ f1(β(k)

E) ∗ f2(β(k)
E) (3.26)

The gradient of f(β
(k)
E) is expressed as g(β

(k)
E):

- 69 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

g(β
(k)
E) = (1

2
+ f1(β

(k)
E)) ∗ f2(β(k)

E) +

1
2
(1 + f1(β

(k)
E)) ∗ f1(β(k)

E) ∗ f ′
2(β

(k)
E) (3.27)

To ease the computation of gradient, we smooth the value space of β
(k)
E by transforming

it from discrete to continuous space. We choose the closest discrete value after deciding

the final offloading ratio β
(k)
E .

Relaxation of min(·) and max(·). The non-smoothness in our optimization function

is introduced by min(·) and max(·) terms. We need to relax these terms to remove

the non-smoothness. For example in f2(β
(k)
E) = max{f3(·), f4(·)}. where f3(·) =

Size(Q
(k)
E) + i) ∗ l(k)E − i

λ
(k)
E (β

(k)
E)

and f4(·) = l
(k)
E }. The relaxation can be implemented

by:

max(f3(·), f4(·)) =

f3(·) f3(·) > f4(·)

f4(·) f3(·) < f4(·)
(3.28)

With the system parameters and offloading rates, the value of f3(·) and f4(·) are

determined, and thus the min(·) term is relaxed. By doing so, we can ensure that

non-smoothness in the function is removed while not changing the problem statement

of formulation. However, there is no expression when f3(·) = f4(·). This problem

needs to be resolved with our Alg. 2 (detailed in §3.5.3) . Similarly, min(f3(·), f4(·))

terms in Eq. (3.12) and (3.19) can be relaxed as the following:

min(f3(·), f4(·)) =

f3(·) f3(·) < f4(·)

f4(·) f3(·) > f4(·)
(3.29)

Relaxation of LC . To enable the adaptation of Eq. (3.26) in Eq. (3.14), we make the

following relaxation. lC is the latency of processing video chunks in server side. To

simplify the computation, we assume that lC(r) is the same for any types of chunks

from various edge nodes, i.e., LC =
∑K

k=1 L
(k)
C /K.

- 70 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

3.5 Two-stage Algorithm Design

In the previous section we have presented the formulation of the constrained min-

latency optimization objective. Now in this section we complete the algorithmic design

by adapting the gradient-based optimization methods as the solver according to the

characteristics of our objective. The proposed formulation of the optimization task

and the adaptation of the gradient-based algorithms jointly form a core contribution

of this work.

Why Gradient-based Algorithm. The gradient-based algorithms [213, 281], although

do not have theoretical guarantees for finding the global optima, have been adapted

to provide numerical solutions for many non-convex optimization problems. Moti-

vated by the characteristics of our objective function, a two-stage gradient algorithm

is proposed for solving Eq. (3.21). We use the gradient-based methods to find an

approximate solution. The first motivation behind such choice is that the objective

function’s gradients can be efficiently computed (O(
∑K

k=1 n
(k)) floating point opera-

tions). Meanwhile as it is locally smooth almost everywhere, gradient-based methods

can guarantee decrease at each iteration with suitable step-sizes and fast convergence

rates.

We consider the gradient-based methods to be the most suitable choices for our op-

timization task. One may consider the zeroth-order methods such as the HillClimb,

which does not exploit the gradient information (note that in our setting the gradient

evaluation is as efficient as the function value query) and have poor convergence rates

[267] especially in high dimensions. The higher-order methods such as the Newton-

type methods, are also unsuitable for our tasks, since they typically need significantly

more computational cost [38] for deriving the descent direction and handling the con-

straints compare to gradient-based methods. Moreover it is known that in non-convex

settings, the benefit of higher-order oracles become very little [153], which makes the

use of higher-order methods rather unnecessary.

Alternatively, one may consider adapting the stochastic gradient descent (SGD) meth-

ods [34, 280] to our task. Such methods compute efficient approximations of the

gradients ∇T (·) on randomly subsampled minibatches of the loss function T (·) as the

- 71 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

Algorithm1

Algorithm2

Local Smoothness
Condition

Meet

Violate
IF

Update Step

Update Step

Figure 3.4: High-level Overview of Two-stage Algorithm

descent direction. The SGD methods are tailored for huge-scale tasks such as training

deep neural nets on a large dataset. Since our optimization task is rather mild-scale

(and also considering the practical limitations and downsides2 of SGD discussed in

[279]), we deem it as unnecessary to adopt stochastic gradient techniques at the mo-

ment, and leave the investigation for the practicality of SGD-type algorithms in our

task as a future direction.

3.5.1 Overview of Two-Stage Gradient Algorithm

Denoting Q as the constraint set resulted by C1 and C2:

Q := {v ∈ [0, 1]K | I(v) ≥ I∗}, (3.30)

we define the projection operator as the following:

PQ(x) := argmin
y∈Q

1

2
∥x− y∥22. (3.31)

The projection operator takes any point x ∈ RK and returns its closest point within

the constraint set. Then our algorithms for solving Eq. (3.21) can be generally ex-

pressed as the following iterative form:

βj+1 = PQ(βj − ηjγj), (3.32)

where ηj is the step size chosen at iteration j, while γj is some descent direction which

seeks to decrease the function value T (·). The most simple and efficient choice is the

2Compared to the full gradient descent methods, SGD methods can have slower convergence
rates in some scenarios/regimes [279], and require significantly more frequent calls on the projection
operators [278]. Moreover, they are less compatible with the line-search schemes, and have less
parallelizability [281].

- 72 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

gradient direction:
γj = ▽T (βj), (3.33)

Since the objective function is globally non-smooth, for each step we need to choose a

step-size ηj adapts to the local smoothness as described in Eq. (3.25). Therefore, our

proposed algorithm consist of two stages as shown in Fig. 3.4. If the local-smoothness

condition, a generalized sufficient decrease property, is met, the efficient algorithm

PGD-VAO (§3.5.2) is applied for updating the steps. Otherwise, PGS-VAO (§3.5.3)

is applied for updating the steps. Based on this switch, the algorithm converges after

several iterations. The detail of how to switch between two algorithm is discussed in

§3.5.4. Finally, we analyze the algorithm complexity in §3.5.6.

3.5.2 Projected Gradient Descent for Video Analytic Of-
floading (PGD-VAO)

We first present our projected gradient descent algorithm tailored for solving optimiza-

tion task Eq. (3.21) in Alg. 1. In Step 0, we first compute the gradient at point βj

by transferring min(·) and max(·) through Eq. (3.28) and Eq. (3.29). Then, the gra-

dient can be computed by Eq. (3.27). Since the local smoothness parameter defined

in Eq. (3.25) at point β – the L(β) is not known for each update but the practical

step-size choice of gradient step is dependent on this parameter, we adopt the weak-

wolfe line-search [165] scheme which estimates the local smoothness and allow us to

use an adaptive step-size throughout iterations (see Step 1). Also, we discuss how to

choose line search algorithms to improve the performance of PGD-VAO in §3.5.2.1. In

Step 2, we compute next point yj+1. Then, in Step 3, we check whether yj+1 meets

the constraint, if not it will be returned to the closet point within the constraint set,

denoted βj+1.

3.5.2.1 Choice of Line Search

In practice the theoretically ideal step-size of ηj = O(1/L(βj)) cannot be exactly

computed since it is computationally intractable and unnecessary to get the exact

value of L(βj), hence the line-search schemes have been widely-adopted as numerical

solutions. For instance, the back-tracking line-search scheme, being the most simple

- 73 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

Optima

Loss landscape in 2D
Current

iterate

Gradient direction

Next gradient direction

Update

Line-search

Figure 3.5: Illustration of the Weak-Wolfe line search mechanism, which in each itera-
tion seeks a step-size to optimally decrease the objective function value and make sure
that the next gradient direction to be as orthogonal as possible to current gradient
direction.

yet widely-applied choice, can be expressed as finding step size ηj such that a sufficient

decrease is numerically enforced:

T (βj − ηjγj) ≤ T (βj)− w1ηj⟨∇T (βj),γj⟩, (3.34)

with parameter w1 ∈ (0, 1) configurable, while the (weak) Wolfe line-search scheme

[165] uses an additional condition:

⟨∇T (βj − ηjγj),γj⟩ ≤ w2⟨∇T (βj),γj⟩, (3.35)

with a tunable parameter w2 ∈ [w1, 1). The idea behind the Wolfe-type line-search is

simple, as we can observe from above experession, that besides seeking a decrease in

functional value, it enforce the gradient direction of the forthcoming iteration to be

as orthogonal as possible w.r.t the current descent direction γj (which in the case of

PGD-VAO γj = ∇T (βj)). We also illustrate in 2D the mechanism of such a line-search

method in Figure 3.5. The Wolfe-type line search methods are known for providing

a more accurate estimation of the ideal step-sizes compare to the backtracking line-

search.

3.5.3 Projected Gradient Sampling for Video Analytic Of-
floading (PGS-VAO)

In this subsection we present our PGS-VAO algorithm tailored for solving our con-

strained optimization task as Alg. 2. The gradient sampling was proposed in [45]

- 74 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

Algorithm 1: Projected Gradient Descent for Video Analytic Offloading (PGD-
VAO)

Input: Initial point β0 at which T is differentiable,
weak wolfe line search parameter w1, w2, constraints Q, total number of iterations J
for j = 1, 2, ..., J do

Step 0: Compute the gradient
γj = ▽ T (βj)
Step 1: Step length calculation
ηj = line search(βj ,γj , w1, w2)
Step 2: Update yj+1 = βj − ηjγj

Step 3: Projection βj+1 = argminx∈Q
1
2 ||x− yj+1||22

end

whereby addressing the non-smooth property of the objective function.

Step 1: With sampled points in Step 0, we compute all gradients at these points

following the same procedure as Step 0 in Alg. (1) . Following the recent research

in [44], we use the non-normalized search direction −γj as opposed to −γj/||γj||2 in

[45]. If the norm of the gradient ||γj|| is smaller than the optimality tolerance νj,

we terminate this loop, reduce the sampling radius ϵj and optimality tolerance νj,

continue next iteration.

Step 2: We numerically observe that the original backtracking line search applied in

[44] does not provide consistent results. We hence replace backtracking line search by

bisection line search satisfying Weak Wolfe conditions.

Step 3: After each update, if the resulting points is out of boundary yj+1 /∈ Q, we

implement projection step 4, otherwise we continue next loop.

Step 4: We solve for each step, yj+1 that do not meet both C1 and C2 will be projected

back to the points within the original variable space Q that are closed to the current

position yj+1 in terms of euclidean distance and we obtain βj+1 to move to the next

iteration.

3.5.4 Switching between PGD-VAO and PGS-VAO

In this subsection we discuss the condition that makes the PGD-VAO non-convergent

and we have to switch to the PGS-VAO iterations. Once our algorithm reaches the

point that the PGD iterations are able to make progress, our algorithm may switch

- 75 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

Algorithm 2: Projected Gradient Sampling for Video Analytic Offloading (PGS-
VAO)

Input:
Initial point β0 at which T is differentiable, closed unit ball B, maximum step N .
initial sampling radius ϵ0 > 0, sample radius reduction factor θϵ ∈ [0, 1], sample size
m ≥ K + 1.
Optimality tolerance νj ≥ 0. Optimality tolerance reduction factor θν ∈ [0, 1]
weak wolfe line search parameter w1, w2, constraints Q
for j ∈ N do

Step 0: Gradient Sampling
Independently sample {βj,1,βj,2, ...,βj,m} from B(βj , ϵj);
Step 1: Search direction calculation
Compute γj as the solution of argming∈G ||g||22, where
G = Conv{∇T (βj,0),∇T (βj,1), ...,∇T (βj,m)};
if ||γj || ≤ νj then

tj = 0, set νj+1 = θννj , ϵj+1= θϵϵj ;
go to step 3

else
set νj+1 = νj , ϵj+1 = ϵj ;
go to step 2

end
Step 2: Step length calculation
ηj = line search(βj,0,γj , w1, w2)
Step 3: Update yj+1 = βj − ηjγj

if yj+1 /∈ Q then
go to step 4;

else
set νj+1 = θννj , ϵj+1= θϵϵj ;
continue

end
Step 4: Projection βj+1 = argminx∈Q

1
2 ||x− yj+1||22

end

back to PGD-VAO.

A theoretical analysis on the convergence of PGD-VAO. We start by presenting in

Lemma 3.5.1 a generalized sufficient decrease property when the local smoothness

holds, which is essential for the convergence of our algorithm. The proof strategy of

this lemma is standard and follows similar steps as the sufficient-decrease result in [87]

which was originally derived for globally-smooth composite objectives. We include the

proof in the Appendix A for completeness. Next we will use this lemma to analyze

when the projected gradient descent with practical line-search schemes will converge

to a stationary point.

Lemma 3.5.1 (Local Sufficient Decrease Property) Let x ∈ Q and T (·) is locally smooth

- 76 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

around x with a radius ε(x) such that:

∥▽T (x)− ▽T (v)∥2 ≤ L(x)∥x− v∥2,∀v : ∥x− v∥2 ≤ ε(x), (3.36)

where we denote L(x) < +∞ as local-smoothness parameter at the point x which is
the smallest possible positive value to ensure (3.36) to hold, and z = PQ(x− ηγ) with
the step-size η is suitably chosen such that ∥z− x∥2 ≤ ε, then for any a > 0 we have:

0 ≤ T (x)− T (z) +
1

2aL(x)
∥γ − ▽T (x)∥22

+[
L(x)(a+ 1)

2
− 1

2η
]∥x− z∥22

We now apply the local sufficient decrease property by Lemma 3.5.1 to show that

when local smoothness holds with a lower-bounded radius ε(βj) ≥ ε > 0, the updating

sequence βj generated by Alg.1 converges to a stationary point. We start by defining

the generalized gradient map at any position x as:

G(x) :=
1

η
[x− PQ(x− η▽T (x))]. (3.37)

When the vector x− η▽T (x) is in the constraint set Q, it is clear that G(x) = ▽T (x).

Theorem 3.5.2 (Convergence of PGD-VAO under local-smoothness) Suppose for all
iteration j, the updates βj admit local smoothness with a radius lower bounded as
ε(βj) ≥ ε > 0, ηj = 1

2aL(βj)
for some a > 1, then the accumulative average gradient

norm, G(J) := 1
J

∑J
j=1 ∥G(βj)∥22 converges at a rate O(1/J):

G(J) ≤
8aT (β0)maxj∈[J] L(βj)

J
, (3.38)

and meanwhile ∥G(βJ)∥22 → 0 as J → +∞.

We provide the proof in Appendix B. Theorem 3.5.2 suggests that for the case where we

have local-smoothness lower bounded above 0 throughout the iterations, the sequence

generated by Alg.1 strictly converges to a stationary point of Eq. (3.21). However,

when the iteration violates this condition, the gradient norm G(J) will be unbounded

and we cannot guarantee convergence for stationary point at this case. This potential

weakness of PGD-VAO motivates us to adopt the class of gradient sampling algorithms

of Burke et al [44, 45] which is tailored for addressing such a non-convergent issue of

line-search gradient descent methods in non-smooth optimization 3. While the PGD-

3We refer the readers to [44, Figure 1] for an illustration of the non-convergent issue of gradient
descent (with line-search) and how gradient sampling can overcome this.

- 77 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

VAO is computationally efficient, our PGS-VAO algorithm demands significantly more

computation cost. Ideally we wish to run the efficient PGD-VAO algorithm whenever

the local-smoothness holds with a non-decreasing radius.

Practical implementation. From our analysis we can see that it is easy to check in

practice when should we switch from PGD-VAO to PGS-VAO. We can observe from

the proof of Theorem 3.5.2 presented in the supplemental material, that only when

ηj = O(1/L(βj)) can we derive the bound in Eq. (3.38). Meanwhile if the radius

ε(βj) → 0, then the local sufficient decrease cannot hold unless the step size must

also shrink ηj → 0. In the context of Theorem 3.5.2, it is equivalent to regard this

case as ηj = 1
2aL(βj)

with a → +∞, and hence the right-hand-side of (3.38) become

unbounded:
8aT (β0)maxj∈[J] L(βj)

J
→ +∞, and at such case the PGD-VAO cannot have

guaranteed convergence to stationary point and we need to switch to PGS-VAO.

Recall that we use a line-search algorithm to estimate the local-smoothness and adap-

tively determine the step-size. If we observe that the step-sizes given by the line-search

scheme keep decreasing towards 0 for a number of iterations, then it suggests that se-

quence arrives at a regime where the local smoothness fails to hold. At such case we

need to switch to PGS-VAO for further progress.

To be more specific, a most practical scheme for determining the switching point could

be: first selecting a small step-size threshold ηa which is close to 0; then if the step-sizes

chosen by the line-search scheme are below this threshold consecutively for a number

of iterations, we may switch to the Alg 2. Similarly, after a few iterations of using

costly Alg 2, if the step-sizes chosen by the line-search scheme are above this threshold,

we may switch back to use the efficient PGD-VAO iterations.

Discussion. Although the gradient-based methods cannot guarantee convergence to

the global optima for non-convex objectives in general, numerically we found that our

algorithms consistently converge to well-performing solutions which are sufficient in

practice. This phenomenon seems to suggest that our objective function is likely to

be a well-behaved non-convex function, such that local minimas are almost as good as

global optima. However, we plan to investigate this problem in the future at a greater

depth.

- 78 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

3.5.5 Difference between projected gradient descent and pro-
jected gradient sampling algorithm

Projected gradient descent is an iterative optimization algorithm that aims to find

the optimal solution within a constrained set of feasible solutions. It operates by

iteratively updating the current solution in the direction of the negative gradient of

the objective function while ensuring that the updated solution remains within the

feasible set. This is achieved by projecting the updated solution onto the feasible

set, effectively enforcing the constraints. The process continues until a convergence

criterion is met or a maximum number of iterations is reached.

The projected gradient descent, however, can not be directly used in case of non-

smooth objective functions as the function gradients at non-smooth points can not be

directly obtained. When using projected gradient sampling for solving non-smooth

optimization problems, it mainly focuses on generating samples from a probability

distribution that reflects the underlying nonsmooth objective function. The gradient

at non-smooth points can thus be approximated by approaches such as averaging over

samples in close proximity or importance sampling methods. The two approaches

differ mainly in that gradient sampling aims to generate representative samples from

a distribution, enabling exploration and sampling tasks rather than convergence to a

specific optimum.

3.5.6 The Complexity of the Algorithms

The complexity per iteration of the PGD-VAO algorithm is relatively low. To evaluate

the gradient of T
(k)
E (β

(k)
E), T

(k)
T (β

(k)
E) and TC(β) in E.q 3.7, 3.9 and 3.14, the number

of element-wise gradient evaluation is β
(k)
E n(k), (1− β

(k)
E)n(k) and

∑K
k=1min{µ(k)

T , (1−

β
(k)
E)n(k) + Size(Q

(k)
T)} respectively. Denote n̄ = 1

K

∑K
k=1 n

(k) (where K is the total

number of edge nodes) we can see that the gradient evaluation takes O(n̄K) floating

point operations, while the line search takes the same order of complexity and pro-

jection step takes O(K) floating point operations, and hence the total complexity per

iteration of PGD-VAO is O(n̄K).

However, the PGS-VAO algorithm is much more computationally expensive per itera-

- 79 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

tion. It first needs to compute at leastK+1 gradients which cost O(n̄K2), then solving

the QP subproblem in step 1 takes O(K3) floating point operations. The complexity

of PGS-VAO per iteration is O(n̄K2 +K3). Hence the PGS-VAO iterations are much

more computationally expensive than PGD-VAO iterations.

3.6 Evaluation

In the evaluation, we first benchmark system performance of the cloud-edge video

processing system (as shown in Fig 3.1) in a real world test-bed and then feed the

benchmarked parameters to our model. Next, we evaluate the performance of Os-

moticGate through simulations, and compare its performance with the SOTA solu-

tions.

Assumptions: In this chapter, the streaming video analytics system is evaluated on a

road traffic monitoring application. For real-time analytics applications as such, the

latency requirement is stringent, less than 30 ms per frame [308]. The optimization

goal in this chapter is thus minimizing processing latency to meet the real-time require-

ments. In order to realize such goals, we establish a testbed that comprises the edge

and the cloud server. We assume both ends are equipped with GPUs for processing

deep learning model workloads. The edge has limited computation power. The cloud

has more computing power, but still has its limitation. This assumption is realistic as

the cloud service such as Asure is on a pay-as-you-go basis. Based on that, we build

a testbed with Jetson nanos and a workstation with 1080ti GPU as edge and cloud

respectively.

3.6.1 Obtaining the parameters for HQM via real-world bench-
mark

Parameters. To make the HQM capture the system behaviors of the cloud-edge video

processing system, we conduct a set of real-world benchmark experiments to obtain

the modeling parameters. Specifically, in §3.3.2, we model the relationship between the

processing latency of system components against the video size. Hereby we benchmark

three sets of parameters including edge inference latency (Eq. (3.3)), cloud inference

- 80 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

latency (Eq. (3.4)) and network transmission latency (Eq. (3.5)). We also add 10%

of oscillation to the network bandwidth to simulate real-world condition.

Environment Set-up. We use NVIDIA Jetson Nano (with ARM Cortex-A57 CPU and

4GB RAM) as the edge node and the cloud server is a bare metal Ubuntu machine,

with 20 cores (Intel(R) Xeon(R) Silver 4114 CPU @ 2.20GHz), GeForce GTX1080 Ti

graphics card and 32 GB RAM. The network is configured by by using Linux traffic

control (TC) as shown in Table 3.1, according to real world measurement4.

Dataset and Deep Learning Model. We aim to achieve real-time road traffic monitor-

ing which requires to detect the number of cars in each video frame. We therefore train

a YOLOv3-tiny, a variant of the YOLOv3 [240] with 9 layers by using Jackson video

dataset [48]. Since the dataset does not provide the labels, we extract image frames

from the video and manually annotate 2500 frames for training purpose. The labeled

dataset is available at [5]. The models are implemented with Darknet5 and trained on

our server. The trained YOLOv3-tiny is deployed on both server and edge. Moreover,

TensorRT6 is used to optimize the deployment on Jetson Nano for high-performance

inference.

Standard MOTChallenge 7 dataset provides a rich collection of datasets for stimulating

novel research and algorithms for optimizing the analytics performance in emerging

tasks like cross-camera vehicle tracking. However, the aim of this is to reduce system

processing latency by leveraging computation resource across the edge and the cloud.

The task-offloading strategy developed in this chapter can be applied for different video

processing workloads. For simplicity, we choose Jackson video dataset, the same as in

FilterForward [48] that also aims to develop low-latency edge-cloud streaming video

analytics application.

Benchmarking Results. Table. 3.2 shows the inference speed of the cloud server and

edge node, we record the end-to-end latency from video decoding to completion of the

inference procedure. We see that the inference latency increase linearly against the

4https://www.opensignal.com/reports/2018/04/uk/state-of-the-mobile-network
5http://pjreddie.com/darknet
6https://developer.nvidia.com/tensorrt
7https://motchallenge.net/

- 81 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

Network Latency Upload Bandwidth

2G 500ms 0.1Mbps

3G 80ms 1Mbps

4G 40ms 8Mbps

5G 20ms 20Mbps

Table 3.1: Emulated Network Configuration

chunk size. Also, cloud server has 10x of processing speed, compared that to edge

node. We feed these benchmarked parameters to model in Eq. (3.3)and (3.4).

Also, we record end-to-end transmission latency under difference network environ-

ments. With the benchmark results, we can approximate the relation between the

chunk size and transmission latency as formulated in Eq. (3.5).

Chunk Size to Chunk Duration. As illustrated in Eq. (3.3), (3.4) and (3.5), we are

interested in the relation between the latency and the chunk size. However, chunk

size is not directly configurable with FFMpeg processing. We resolve this by mapping

the chunk duration to chunk size as shown in Table 3.2, such that all experiments

can be implemented with chunk duration as a control variable. Our benchmark result

indicates that chunk size maintain a linear relation with the chunk duration, and that

the processing latency fits our modeling proposition in Eq. (3.3), (3.4) and (3.5).

Chunk
Duration

(s)

Chunk
Size
(KB)

Cloud
Inference
Latency(s)

Edge
Inference
Latency (s)

Transmission
Latency

(s)
2G 3G 4G 5G

0.1 315 0.065 0.497 15.62 1.565 0.196 0.114
0.2 330 0.08 0.698 19.81 2.013 0.252 0.142
0.3 341 0.095 0.923 21.98 2.242 0.28 0.162
0.4 348 0.11 1.143 25.41 2.573 0.322 0.183
0.5 352 0.125 1.353 26.11 2.683 0.336 0.191
0.6 358 0.14 1.552 28.44 2.916 0.364 0.211
0.7 365 0.165 1.751 31.9 3.363 0.42 0.242
0.8 371 0.17 1.952 38.11 3.921 0.49 0.281
0.9 378 0.185 2.151 41.13 4.364 0.546 0.313
1.0 384 0.20 2.354 47.43 4.923 0.616 0.355

Table 3.2: Testbed Benchmarking

Additionally, the video which is encoded with lower bitrate, can have less latency and

bandwidth cost as well as higher throughput, compared to that is encoded with higher

bitrate. However, the lower bitrate may lead to lower model accuracy. In order to

mitigate the accuracy loss while maximizing the system throughput, video encoding

configuration has to be carefully designed.

- 82 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

Bitrate (kb/s) Precision Recall F1
1000 0.9626 0.9338 0.9433
500 0.9661 0.9247 0.9400
250 0.9670 0.9052 0.9286
100 0.9607 0.7358 0.8121

Table 3.3: Model Accuracy under Various Bitrates and the Video Resolution is 1080P.

In the following, we evaluate the relation between model inference accuracy and bitrate.

DeepDecision [236] has evaluated that resolution does not impact greatly on model

inference accuracy. The model prediction accuracy is computed against the annotated

car objects in the video frame. The overlapping between the detection and annotation

bounding boxes is computed using IoU (Interaction of Union) metrics. We identify

one detection as true positive when computed IoU metric exceeds a threshold (0.7

in out setting). As both the prediction accuracy and coverage are important, we

consider F1 score as metric to evaluate model performance. Table 3.3 shows that the

prediction precision does not decrease too much with the reduction of bitrate. Note

that the accuracy decrease dramatically when the bitrate is lower than 100kb/s. In

this paper, we set the bitrate as 1000kb/s for the rest of experiments. We are aware

that accuracy of YOLOv3-Tiny could be inferior to YOLO. However, for our developed

real-world dataset, yolov3-tiny already achieves acceptable accuracy. This work focus

on minimizing workload inference latency, we consider YOLOv3-Tiny throughout the

experiment. Developing methodologies to benchmark and improve the accuracy of

these models is subject to future work. In future work, an resource aware encoding

method that tunes the bitrate automatically based on the available resources can be

plugged into OsmoticGate.

Determine the Chunk Duration. As discussed in §3.3.2, We adapted video analytics

task offloading based on bitrate video streaming. The following evaluates the impacts

of the video split granularity (i.e., chunk duration) to the system performance. To

this end, we first configure the input rate of video stream and network as 30 frame/s

and 5G, and consider two scenarios below: 1) Varying system workload : We set three

system status, i.e. no workloads (empty), normal workloads (normal) and heavy work-

loads (busy) across the whole system. We also encode video bitrate and resolution at

1000kb/s and 1080P, receptively. 2) Varying video resolution: we adjust the resolution

- 83 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

0.0 0.5 1.0 1.5 2.0
Chunk Duration [s]

0.0

0.2

0.4

0.6

0.8
La

te
nc

y
[s

]
Empty
Normal
Busy

(a) Varying System Workload

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Chunk Duration [s]

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

[s
]

1080P
720P
480P

(b) Varying Video Resolution

Figure 3.6: Latency V.S. Chunk duration

of input video among 1080P, 720P and 480P, and set the system in normal condition.

In both scenarios, we vary the chunk duration from 0.2 second to 2 second and report

its influence to latency.

Fig 3.6(a) shows that the optimal chunk duration decreases with the increase of the

system workload, i.e., the optimal chunk duration for busy, normal and empty are

0.6 seconds, 0.8 seconds and 1.4 seconds, respectively. In Fig. 3.6(b), our finding is

that the smaller the video resolution, the smaller optimal chunk duration. Due to the

fact that the lower video resolution requires less time to process each video chunk,

the whole system configuration should be reduced as well for achieving smaller system

latency.

Another finding from Fig. 3.6 is that when the video chunk is too small, the latency

increases dramatically. It is because only a few frame is included in a chunk and

the benefit of video compression is not sufficiently utilized. Also, more computing

resources are wasted in encoding and decoding.

In the following evaluations, we use the obtained optimal settings of chunk duration.

For more complex environment, in future, we can train reinforcement learning models

to decide the optimal chunk duration automatically [193].

3.6.2 Simulation

Configuration. We configure the system parameters according to Table 3.2, the input

rate of each edge node is 30 frame/s, and video resolutions are 1080P, 720P and 480P,

respectively. The network is the same as benchmarking experiments (see Table 3.1).

- 84 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

Empty Normal Busy
System Workload

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(a) Uniform System Workload under 3G
Network

Empty Normal Busy
System Workload

0.0

0.1

0.2

0.3

0.4

0.5

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(b) Uniform System Workload under 5G
Network

Edge Net Cloud
Overloaded/Congested System Nodes

0.0

0.2

0.4

0.6

0.8

1.0

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(c) Imbalanced System Workload under
3G Network

Edge Net Cloud
Overloaded/Congested System Nodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(d) Imbalanced System Workload under
5G Network

Figure 3.7: Performance under Different System Workloads

The system workload is set as no workloads (empty), normal workloads (normal) and

heavy workloads (busy), with 0, 5 and 10 video chunks in the respective queues. Time

interval ∆t is 30 seconds for all experiments.

Evaluation Metric. We mainly consider two metrics in our evaluation: 1) Latency –

the average latency of processing each video frame; this include the data transmission

time and processing time either on edge or cloud. 2) Throughput–the number of the

video frame processed in each second.

Algorithms. Although we proposed a two-stage algorithmic strategy to overcome a

potential issue that the PGD iterations could converge at non-stationary points, our

extensive numerical experiments do not observe such a case. Hence we compared our

algorithms PGD-VAO and PGS-VAO separately with three baseline solutions below.

We implemented and parameterized these baseline techniques based on our system

configurations.

• DeepDecision: considers the optimization problem that during each time interval,

video is processed only on the edge side or the cloud side depending on system

- 85 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

2G 3G 4G 5G
Networks

0.0
0.5
1.0
1.5
2.0
2.5
3.0

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(a) Algorithm Comparison

2G 3G 4G 5G
Networks

0.0

0.5

1.0

1.5

2.0

La
te

nc
y

[s
]

Cloud
Edge
Network

(b) System Latency Proportion (PGS-
VAO)

Figure 3.8: Performance under Different Network Bandwidth

throughput.

• FastVA: considers making most use of network transmission to offload the video

chunks to the cloud.

• HillClimb: utilizes the Hill Climbing [245] algorithm to solve our optimization

problem.

3.6.3 Comparison With Existing Approaches

In this subsection, we analyze the algorithm performance under various system condi-

tions. For all experiments, optimal chunk duration is chosen based on the benchmark-

ing results as shown in Fig. 3.6. We configure the number of edge node , cloud server

and video resolution as 10, 1 and 720P respectively, if not otherwise stated.

3.6.3.1 The Impact of Network Bandwidth

Fig. 3.8(a) shows that with the increase of the network bandwidth, the latency is

greatly reduced. In 3G condition, the latency is 2× of that in 4G and 5G. However,

when network is 4G and 5G, there is no obvious performance difference. It is be-

cause more data are transmitted to the cloud when the network speed increase, more

computing resources from cloud server is utilized until it is saturated.

In order to better understand the trends, we show the latency introduced by different

components using PGS-VAO, according to our HQM in Fig. 3.8(b). In 2G and 3G

network, the latency is introduced by data queuing for processing in the edge nodes and

- 86 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

transmitting to the cloud. As the improvement of network, our algorithm can adapt

to this change, offloading more data to the cloud to utilize the computing resources

from cloud, thereby reducing latency.

3.6.3.2 The Impact of System Workload

We first test the general performance of the algorithms with uniform system work-

loads, i.e., empty, normal and busy workload for all system queues. Then, we tune

the workload imbalance by setting overloaded edge and cloud nodes, and congested

network conditions respectively. We set these nodes as busy while keeping others as

normal. We conduct the experiments in both 3G and 5G networks.

Fig. 3.7(a) and 3.7(b) indicate that with the increase of the workload, the system

latency is increasing as well. It is also obvious that HQM-based algorithms (e.g., PGS-

VAO, PGD-VAO) perform better than non-HQM-based algorithms (e.g., FastVA),

which performs better in 5G (see Fig. 3.7(b)).

Fig. 3.7(a) illustrates that our proposed algorithm can capture the the system bottle

which is the network speed and understand that maximizing the network utility is

the best strategy. FastVA shares the similar offloading strategy, thereby achieving

similar performance compared to our algorithms. However, FastVA cannot adapt to

the change of system status, using the same offloading strategy in 5G network (as

shown in Fig. 3.7(b)). Since the network is not the bottleneck, the ideal offloading

policy should based on the processing capacity of both edge nodes and cloud server.

To further highlight the advantage of our algorithms, we imbalance the workload on

different components modeled by our HQM. In particular, when the bottleneck is on

the cloud/network, i.e., a lot of data is queuing for either transmitting or processing

on the cloud, both FastVA and DeepDecision fail to make right offloading decision. In

5G network (see Fig 3.7(d)), the situation is magnified because FastVA is able to push

more data to cloud server, without considering the queued data on network or cloud.

3.6.3.3 The Impact of Computing Resources

In this experiment, we evaluate the performance of the algorithms with different com-

puting resources. We first fix the number of cloud servers from 1 to 5 and vary the

- 87 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

10 20 30 40 50
Edge Nodes

0.0
0.2
0.4
0.6
0.8
1.0
1.2

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(a) 1 Cloud Node

10 20 30 40 50
Edge Nodes

0.0
0.1
0.2
0.3
0.4
0.5

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(b) 5 Cloud Nodes

1 2 3 4 5
Cloud Nodes

0.0

0.1

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(c) 10 Edge Nodes

1 2 3 4 5
Cloud Nodes

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(d) 30 Edge Nodes

Figure 3.9: The Latency with Various Edge Nodes and Cloud Servers

number of edge nodes from 10 to 50 to report the system latency. Then we set edge

nodes as 10 and 30 and vary the cloud nodes from 1 to 5. The experiment is conducted

in 5G network, and results are shown in Fig. 3.9.

The findings are two-folds. First, from Fig. 3.9(a) and 3.9(b), we can see that the cloud

processing capability has great impact on the overall system processing latency. When

there is only one cloud node, the processing latency is approximately 5 × than the

system with 5 cloud nodes. However, if the capacity of cloud server become sufficient,

adding more cloud resources will not affect the overall system processing latency (see

Fig. 3.9(c) and 3.9(d)). When the ratio of number of edge node and cloud server is

10:1, the system latency can be reduced to less than 0.1s. The latency reaches 0.2s

when the ratio is around 15:1. This is also revealed in Fig. 3.9(c) and 3.9(d), when

the ratio exceeds 15:1, the overall latency increases dramatically. This indicates that

one cloud server is not sufficient for supporting more than 15 edge nodes. In order to

scale up the system, appropriate cloud servers should be added with the increase of

the edge nodes .

Moreover, our proposed method always performs better than baseline methods in any

- 88 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

1080P 720P 480P
Resolution

0.0
0.2
0.4
0.6
0.8
1.0

La
te

nc
y

[s
]

DeepDecision
HillClimb
FastVA
PGS-VAO
PGD-VAO

(a) Impact of Resolution on Latency

20 60 100 140 180
Throughput [frame/s]

0.5

0.7

0.9

1.1

La
te

nc
y

[s
]

PGS-VAO
PGD-VAO
HillClimb
FastVA
DeepDecision

(b) Input Video Resolution (1080P)

20 60 100 140 180 220
Throughput [frame/s]

0.2

0.3

0.4

0.5

0.6

La
te

nc
y

[s
]

PGS-VAO
PGD-VAO
HillClimb
FastVa
DeepDecision

(c) Input Video Resolution (720P)

20 60 100 140 180 220
Throughput [frame/s]

0.0

0.1

0.2

La
te

nc
y

[s
]

PGS-VAO
PGD-VAO
HillClimb
FastVA
DeepDecision

(d) Input Video Resolution (480P)

Figure 3.10: Impact of Throughput Constraint on System Latency with Varying Res-
olution

condition. There is no significant performance difference between PGS-VAO and PGD-

VAO, but as discussed earlier, PGS-VAO is more stable in dealing with non-smooth

value functions, it is still worth to use PGS-VAO when the computation reaches break

point.

3.6.3.4 The Impact of Video Resolution

In this subsection, we vary the video resolution from 1080P to 480P and show its

impact on latency in Fig. 3.10(a). Our proposed algorithm outperform all other

baseline methods. In general, the latency of 720P and 480P video is about 1/2 and

1/6 of that in 1080P video, near linear reduction with resolution decreasing. The

reduction of the latency is caused by two reasons: 1) less data needs to be transmitted

2) faster inference time. Video resolution also affects the system throughput and we

will discuss it in next subsection.

- 89 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

5 10 15 20 25 30 35 40 45 50
Edge Nodes

0

1

2

3

4

5

Co
m

pu
ta

tio
n

La
te

nc
y

[s
]

HillClimb
DeepDecision
FastVA
PGS-VAO
PGD-VAO

Figure 3.11: Algorithm Computation Latency with Different Edge Nodes

3.6.4 Impact of Throughput Constraint

Recall E.q 3.21, our optimization problem is to minimize the system latency which is

bounded by a pre-defined throughput threshold (I∗ in C1). In order to study the impact

of the I∗ on latency, our experiments are conducted under different video resolution,

while we adjust the throughput constraint with different values.

Fig. 3.10(b), 3.10(c) and 3.10(d) shows that our proposed algorithms can archive less

latency, compared to other methods, and ensure the latency is fluctuating in a certain

range with the varying of throughput constraints. This fluctuation is caused by the

network oscillation that we add into the simulated network environments. HillClimb is

implemented based on HQM, but it fails to obtain the optimal solution in some cases.

For example, Fig. 3.10(b), 3.10(c) shows that when the throughput is set higher than

180, the latency increases significantly. Moreover, FastVA and DeepDecision are not

based on HQM, and they therefore do not have throughout constraint. We report the

monitored throughput by using two algorithms.

Additionally, it is a challenge to set an optimal throughput constraint that is affected

by many factors such as input stream rate, network conditions and video resolution etc.

Throughout, in this paper, for each set of the experiment, we manually set throughput

constraint below the maximum system throughput to ensure smooth running of the

optimization algorithms. More advance method is desired to maximize the throughput

in future work.

- 90 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

0.0 0.2 0.4 0.6 0.8 1.0
Offload Rate

0.1

0.2

0.3

0.4

La
te

nc
y

[s
]

Real Testbed
Simulation

(a) System Latency with Different Of-
floading Rate

Testbed Simulation
Environment

0.0

0.1

0.2

0.3

0.4

La
te

nc
y

[s
]

0.0

0.5

0.0

0.4 0.4

0.0

0.5

0.0

0.4 0.4

DeepDecision
HillClimb
FastVA

PGS-VAO
PGD-VAO

(b) Algorithm Performance in Different
Environments

Figure 3.12: Testbed vs Simulation

3.6.5 The Complexity Analysis of the Algorithms

In section 3.5.6, we analyzed the algorithm complexity and we validate the analysis in

this subsection. Fig. 3.11 shows the execution time of the HQM-based algorithms to

compute an offloading solution. PGD-VAO outperforms other two algorithms in terms

of efficiency; its computation time increase linearly as the edge nodes increase. The

computation time of PGS-VAO has a superlinear growth when the number of edge

node increase. The results experimentally confirm our time complexity analysis for

both PGD-VAO and PGS-VAO.

3.6.6 Real-world Test-bed

We evaluate the performance of the OsmoticGate using a lab test-bed in order to

compare the real-system performance against simulation.

Lab Test-bed Configuration. The real-world test-bed is configured with Jetson Nanos

and servers. We connect 4 Jetson-Nanos to the GPU server and set the connection

as 5G with TC. To emulate the workload of the transmission queues, we maintain all

transmission queues with 30 video chunks to saturate the cloud server. Time interval

∆t is set as 30 seconds.

Fig. 3.12(a) reports the average queuing latency for both the simulation and the test-

bed environment given different offloading rates. Generally, the computed simulation

latency is quite close to the real test-bed. The difference between the two is less than

0.01 seconds for most cases and the two curves nearly overlap at several points. Small

oscillation has been noted for the real test-bed as well. The complexity of the data

- 91 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

transmission and processing pipelines, as well as the varying working conditions of the

HQM, are all factors that introduce oscillation to the test-bed performance.

Fig. 3.12(b) compares our proposed algorithm and other baselines in both test-bed

and simulation environments. Overall, the HQM based algorithms (i.e., PGS-VAO,

PGD-VAO, HillClimb) can achieve better performance as compared to non-HQM

based algorithms (i.e., DeepDecision, FastVA). HillClimb, PGS-VAO and PGD-VAO

all reach near-optimal point around 0.5 and 0.4, as seen in Fig. 3.12(a), while DeepDe-

cision and FastVA consider transmitting all processing tasks to the cloud. PGS-VAO

and PGD-VAO outperform the other baselines by 2x. This huge difference has proved

the necessity to consider system workload dynamics when making offloading decisions.

3.7 Related Work

Content Delivery Network. Content Delivery Network (CDN) has been well studied

in many areas including vehicle monitoring [305], Unmanned Aerial Vehicle (UAV)

monitoring [17] and smart city [58]. The main goal of CDN is to use various tech-

nologies such as caching [159, 215] or machine learning (ML) [51, 246] to optimizing

streaming data delivery in network level. Our OsmoticGate can be built up on these

underlying systems to have better performance of video analytic task offloading.

Video Streaming System. Video streaming systems aim to deliver video data un-

der different network conditions, while meeting various QoS requirements, including

latency, throughput and system re-buffering level. To this end, the adaptive video

streaming algorithms aim to configure the video stream to achieve efficiency video de-

livery. The existing work usually consider two factors: i) Rate-based algorithm that

decides the bitrate based on network bandwidth assumption [143, 175, 270]. ii) Buffer-

based algorithms that consider the client’s playback buffer [129, 266]. This method

keeps the system buffer at a stable level without sacrificing the video quality at large.

Our work is built upon the modern video streaming technologies. Unlike the tradi-

tional video streaming systems that focus the QoS of video delivery. Instead, we target

to offload the video processing tasks over edge+cloud environment

Video Analytic Task Offloading. [132, 142, 247, 325] have been conducted on schedul-

- 92 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

ing and configuring the video analytics jobs (queries). DeepDecision [236] considers

both edge and cloud for conducting video analytics. However, it chooses CNNs only

on one node (edge/cloud) for processing the videos. FastVA [277] considers offloading

from local NPU to edge server, CrowdVision [186] considers client-server task offload-

ing. However, They all fail to consider the system workload thus can not deliver

optimal decisions under heavy-loaded systems. Also, these works treated video as se-

quence of images, whereas we consider bitrate-based video analytics that benefit from

modern video streaming protocols.

3.8 Conclusions

InOsmoticGate, we investigated video streaming processing task offloading in cloud-

edge computing paradigm. Based on bitrate-based video streaming protocols, we pro-

pose a HQM that is capable of capturing system workload dynamics. We model

the system latency and throughput and then formulate a non-smooth, non-convex,

constrained min-latency optimization problem. A two-stage gradient-based has been

proposed which features switching between PGS-VAO and PGD-VAO algorithms. We

have analyzed the convergence bound of PGA-VAO. Using this bound, we give prac-

tical implementation criteria for switching between the two algorithms. Extensive

benchmarking has been conducted that serve as the foundations of our experiments.

Simulation results showed that the our algorithm outperforms baseline works. Also,

the two-stage algorithm is stable given different throughput constraints and various

system conditions, which confirmed its effectiveness.

3.9 Proof of Lemma 5.1

By the definition of z we have:

z = argmin
v∈Q
{⟨γ, v − x⟩+ 1

2η
∥v − x∥22}. (3.39)

Then for any point y ∈ Q statisfies ∥x− y∥2 ≤ ε:

⟨γ, z − x⟩+ 1

2η
∥z − x∥22 ≤ ⟨γ, y − x⟩+ 1

2η
∥y − x∥22, (3.40)

- 93 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

and hence:

0 ≤ ⟨γ, y − z⟩+ 1

2η
(∥x− y∥22 + ∥x− z∥22) (3.41)

Now due to the fact that for t ∈ [0, 1] we have ∂T
∂t
(x+t(x−z)) = ⟨▽T (x+t(x−z)), x−z⟩,

and also consider the local-smooth condition, we have:

|T (z)− T (x)− ⟨▽T (x), z − x⟩| (3.42)

=

∫ 1

0

⟨▽T (x+ t(z − x))− ▽T (x), z − x⟩dt (3.43)

≤
∫ 1

0

∥▽T (x+ t(z − x))− ▽T (x)∥2∥x− z∥2dt (3.44)

≤ L(x)

2
∥x− z∥22. (3.45)

Hence we have:

T (z)− T (x) ≤ ⟨▽T (x), z − x⟩+ L(x)

2
∥x− z∥22. (3.46)

Now set y = x in (3.41) and take the sum, we have:

0 ≤ T (x)− T (z) + ⟨▽T (x)− γ, z − x⟩+ [
L(x)

2
+

1

2η
]∥x− z∥22, (3.47)

Next we use Young’s inequality to have the following decomposed upper bound for

⟨▽T (x)− γ, z − x⟩, that ∀a > 0:

⟨▽T (x)− γ, z − x⟩ ≤ 1

2aL(x)
∥▽T (x)− γ∥22 +

aL(x)

2
∥x− z∥22, (3.48)

and hence:

0 ≤ T (x)− T (z) +
1

2aL(x)
∥▽T (x)− γ∥22

+[
L(x)

2
+

aL(x)

2
+

1

2η
]∥x− z∥22,

3.10 Proof of Theorem 5.2

We first apply the local sufficient decrease property by Lemma 3.5.1, setting γj =

▽T (βj) and a > 1, then for all iteration j = 1, 2, ..., J we can write:

T (βj+1) ≤ T (βj) + [
a

2
L(βj)−

1

2ηj
]∥βj+1 − βj∥22, (3.49)

- 94 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

til the first iteration:

T (β1) ≤ T (β0) + [
a

2
L(β0)−

1

2η1
]∥β1 − β0∥22. (3.50)

Then by summing up all these inequalities from 1 to J , and noting that ∥βj+1−βj∥ =

η2j∥G(βj)∥22, we have:

J∑
j=1

η2j [
1

2ηj
− a

2
L(βj)]∥G(βj)∥22 ≤ T (β0)− T (βJ) ≤ T (β0). (3.51)

To provide the sharpest bound we set ηj = 1
2aL(βj)

which would maximize the term

η2j [
1

2ηj
− a

2
L(βj)]. Then we have:

1

8aLmax

J∑
j=1

∥G(βj)∥22 ≤
J∑

j=1

1

8aL(βj)
∥G(βj)∥22 ≤ T (β0), (3.52)

where we denote Lmax = maxj L(βj). Then immediately we have the accumulative

average gradient norm convergence rate as O(1/J):

G(J) ≤ 8aLmaxT (β0)

J
, (3.53)

and since as J → +∞, G(J)→ 0 so ∥G(βJ)∥22 → 0.

- 95 -

Chapter 3: OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for
the Internet of Things

- 96 -

4
OsmoticGate2: Edge-Cloud

Collaborative Real-time Video
Analytics with Multiagent Deep

Reinforcement Learning

Contents
4.1 Introduction . 98

4.2 System Overview . 100

4.3 Multi-agent RL-based Controllers . 102

4.3.1 Optimization Objective . 103

4.3.2 Architecture of RL agents . 104

4.3.3 RL States and Actions . 106

4.3.4 Reward Function . 107

4.3.5 Centralized Training and Decentralized Execution (CTDE) in
OsmoticGate2 . 107

4.4 Implementation Details . 109

4.4.1 Video Analytics Module . 109

4.4.2 Multi-agent Controllers . 110

4.4.3 Message-forwarding Module . 110

4.5 PERFORMANCE EVALUATION . 111

4.5.1 Experimental Setting . 111

4.5.2 Convergence and Performance under Different Penalty Weights 113

4.5.3 Performance Comparison with Baselines 114

4.6 Conclusion . 115

- 97 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

Summary

The content presented in this chapter is based on and expands upon the previously

introduced Osmoticagate framework from chapter 3. This chapter introduces Osmot-

icagate2, an online multi-agent reinforcement learning system designed for edge-cloud

collaborative real-time video analytics. The experiments conducted in real-world en-

vironments confirm that Osmoticagate2 can effectively adapt to dynamic settings and

achieve high prediction accuracy in real-time scenarios.

4.1 Introduction

Video analytic is of utmost importance in a range of computer vision applications, in-

cluding video surveillance [328], augmented reality, and autonomous driving. Presently,

Deep Neural Networks (DNNs) serve as the foundational technology for cutting-edge

video analytic algorithms, ensuring exceptional precision for the end users. Neverthe-

less, the deployment of DNN models for video analytics in real-world settings presents

numerous obstacles. These models are highly computationally demanding, featuring

hundreds of layers, which leads to significant inference latency. Moreover, the sheer

magnitude of streaming video data gives rise to apprehensions regarding the transmis-

sion of raw data to the cloud for inference due to the exorbitant costs associated with

bandwidth and the ensuing insufferable delays in transmission.

One promising means to tackle bandwidth expenses and data transmission delays in

video analytic applications is deploying DNN models on edge nodes situated in close

proximity to users. These edge nodes can swiftly receive streaming videos from such

end devices as cameras or mobile phones with minimized delays. However, they in-

evitably fall short in processing capabilities and become overwhelmed especially during

peak times with non-negligible delays. Hence, video analytics systems imperatively

require elaborate considerations of both edge and cloud resources for optimal perfor-

mance guarantee in overloaded situations.

There are many existing studies on video analytics pipelines in the continuum of edge

and cloud computing. For instance, A2 [141] and EdgeAdaptor [338] delved into the

- 98 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

choice of distinct DNN models to optimize delay and accuracy. DeepDecision [236],

FastVA [277], and Osmoticgate [230] investigated new offloading mechanisms between

the edge and the cloud to fine-tune video analytics setups. They primarily take into

account video preprocessing and model selection on the edge side to strike a balance

between inference accuracy and delay. Reducto [173], and ClodSeg [294] employed

frame filtering and resolution downsizing techniques to minimize communication costs

during video transmission while preserving accuracy. However, these approaches can

hardly adapt to dynamic environments where the fluctuation of available computing

and communication resources is the norm rather than the exception across distributed

edge nodes.

When it comes to optimizing video analytics pipelines in a highly distributed and

dynamic environment, two main challenges remain unsettled: i) It is impractical to

scale up the system due to the large configuration space in distributed systems. System

states and configurations will drastically increase with the increment of the device

number, and it is time-consuming for a centralized controller to search for an optimal

configuration that maximizes the system resource usage across the edge and the cloud.

For example, Chicago police analyze 30,000 camera streams in real time [1], and making

decisions in a centralized manner is impossible. Thus the decentralized controlling

system is imperative in such a distributed system. ii) Achieving a self-configuring plan

for both cloud and edge nodes is challenging. In an edge-cloud setting, every agent,

whether cloud or edge, strives to optimize their resource usage, which can impact the

entire system’s performance. For instance, if the network bandwidth is sufficient, each

edge node may be more inclined to offload more data to the cloud, which may saturate

the cloud and reduce the performance of the entire system.

To address the aforementioned challenges, we present OsmoticGate2, a distributed

orchestration system for optimizing video analytics across the edge and the cloud.

In our system, multiple edge devices work collaboratively and choose the appropri-

ate configurations to maximize system Quality of Service (QoS) performance. To

improve the system scalability, we deploy on each edge node a controller for generat-

ing video analytics configurations, based on local status only. Additionally, we have

developed a mechanism grounded in multi-agent reinforcement learning, which uti-

- 99 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

lizes the Centralized Training and Decentralized Execution (CTDE) approach. This

strategy allows all agents to engage in collaborative learning within the Osmotic-

Gate2 server. The resulting OsmoticGate2 offers notable advantages, including

exceptional scalability, adaptability, and efficiency, all achieved through a carefully

optimized system-algorithm co-design.

Experiments on a real testbed with edge-cloud collaboration validate the system’s

effectiveness in enabling real-time and accurate video analytics. The paper’s main

contributions are summarized as follows:

• Design OsmoticGate2, an edge-cloud collaborative video analytics system in

which the edge nodes and the cloud server can collaborate for video encoding

and video analytics.

• Design an online multi-agent reinforcement learning algorithm (MAPPO) for or-

chestrating the system configurations within the systems. The agents of multiple

edge nodes collaboratively learn the optimal policy by sharing their information

to maximize their respective rewards.

• We evaluate the performance the proposed algorithm with real-world datasets

and testbeds. Our method can achieve the best performance in terms of rewards,

inference accuracy, as well as the target system latency.

4.2 System Overview

An overview of the proposed streaming video analytics architecture OsmoticGate2

is depicted in Fig. 4.1, where a large number of edge devices work collaboratively

with the cloud server to perform video analytics jobs on streaming video generated

from end devices. The streaming video is first encoded into small chunks and then

processed locally on edge devices, with all results aggregated on the cloud server in

the end. When the edge device is unable to process all the video streams in real time,

a proportion of the video chunks are transmitted to the cloud for processing as well.

The extra video transmission overhead for cloud computing raises challenges on bal-

ancing the communication and computation resources in edge-cloud collaborative ana-

- 100 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

…Edge K

…Edge 2

…

…
…

…

…n 4 2

…m 3 1

Video Chunks

Configurations

Cloud Server

Decoder

Local Agent

Edge 1

OSMOTICGATE2 Client K

Decoder

Message Forwarding Module

Agent replicaSystem Stats

OSMOTICGATE2 Server

RL TrainerSys Monitor
…RL Agent K

RL Agent 1Edge Monitor

Inference Result

Local Stats

Agent Updates

System Stats

Parallel Encoder
1

2
3

m
4

n

… …

Concurrent Listener

Agent Updates

Figure 4.1: RL-based Edge-Cloud Collaborative Video Analytics in OsmoticGate2.
The streaming videos are encoded in the edge nodes and then processed on both the
edge and the cloud. Our OsmoticGate2 agents control the edge behaviors with
various configurations. The two modules are communicated via a message forwarding
module across the edge and the cloud.

lytics. As compared to edge computing, cloud computing incurs extra communication

overhead but benefits lower processing latency. The balance between the communica-

tion and computation is further complicated when the system scales with more edge

devices in the system. Thus, an adaptive mechanism that learns the system dynamics

is necessary in consideration of the system scalability.

OsmoticGate2 develops a novel mechanism capable of adaptively generating system

configurations to improve the system QoS metrics, i.e., accuracy and latency. It is

composed of three major components: the video analytics modules, the multi-agent

controllers as well as the message-forwarding modules. The three components are

modularized and communicated via the message-forwarding modules, featuring seam-

less “monitoring - updating” across the edge-cloud computing paradigm, enabling the

smooth running of the OsmoticGate2. In general, OsmoticGate2 has three main

design considerations:

Adaptability: We design multi-agent RL-based controllers for generating configura-

tions and updating controllers based on local and global system status.

Scalability: We implement centralized training and decentralized execution (CTDE)

- 101 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

Offload rate

Bitrate

Resolution

Model

Local State 1

Local State k

Local State 2

Local State 1

Predicted Value

Local Inference
Queue Size

Bandwidth

Transmission
Queue Size

Previous Actions
at time t-1

FC Layer

Tanh

Sigm
oid

FC Layer

Tanh

Actor Network

Sample

M
ultivariate N

orm
al

Action
variance

Action Mean

DNN Network

FC Layer

Tanh

FC Layer

FC Layer

Tanh

DNN Network

Actions at time t

Critic Network

….

Cloud Queue
Size

Figure 4.2: RL Agent architecture

strategies for the controllers, alleviating the problems of generating configurations

from high-dimension search spaces, especially when there are many edge devices in

the system.

Efficiency: We implement on-device acceleration techniques on both computation and

communication for video processing across the edge and the cloud server.

4.3 Multi-agent RL-based Controllers

We consider a classic real-time video analytics application, as depicted in Fig. 5.2.

This application comprises multiple edge devices denoted as Ek, for k ∈ {1, 2, ..., K},

and a cloud server referred to as S. Each Ek is responsible for receiving video streams

and performing video analytics jobs in real time. Before the encoded video streams are

input into the deep learning models for video analytics, they are placed in task queues,

where they await decoding into image frames at both endpoints. Then an appropriate

model is selected to meet the quality of service (QoS) requirements specific to the

application. All the outcomes generated are then consolidated and sent to the cloud

monitor, alongside other system status information.

For N chunks of video streams generated from Ek, the overall average processing

latency ltk averages over two components: 1). Edge processing latency edge processing

pipeline includes four components: the video encoding latency, the waiting time in

the queue, the video decoding latency, and the inference latency. 2). Cloud processing

latency cloud processing places extra system overhead. During cloud inference, except

aforementioned latency, one extra latency comes from the transmission latency between

the edge and the cloud. The notation table is shown in Table 4.1.

- 102 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

Table 4.1: Notation

Notation Description
t Current time step t.
K The total number of edge devices.
Ek Edge device k, k ∈K.
S The cloud server.
rtk Video resolution of edge device k at time step t.
btk Video bitrate of edge device k at time step t.
mt

k Inference model candidate of edge device k at time step t.
µt
k The offloading ratio for edge device k at time step t.

QI tk The size of local inference queue for edge device k at time step t.
QT t

k The size of transmission queue for offloading at time step t.
Qt

S The size of inference queue for server s at time step t.
Bt

k The network bandwidth of edge device k at time step t.
At

k The action for edge device k at time step t.
acctk The average accuracy from edge device k at time steps t.
ltk The inference latency of edge device k at time steps t.

ltargetk The latency target of edge device k.
Ot

k The local state of edge device k at time step t.
Gt The global state of the server S at time step t.
Rt

k The reward of edge device k at time step t.
lthres The latency threshold in reward function
F The reward penalty when latency exceeds threshold lthres

M Maximum training episode
T Maximum steps in one episode

4.3.1 Optimization Objective

Throughout the whole T running time within the system, we consider two optimization

objectives: the average system processing latency and the average inference accuracy.

Assume the average inference accuracy during one time interval ∆t is acctk, our opti-

mization objective is formulated as follows:

maximize
At

k

1

T

T∑
t=1

acctk

subject to At
k = {rtk, btk,mt

k, µ
t
k};

|ltk − ltargetk | ≤ ϵ,∀t ∈ T

(4.1)

For each Ek, we aim to maximize the average inference accuracy during the system

running time T , while ensuring the average processing latency is close to a preset

latency threshold ltargetk . We set a slack variable ϵ such that the small latency variance

- 103 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

|ltk − ltargetk | is acceptable during the application production. Subject to different QoS

metrics of the real-time stream processing systems, ltargetk can be variably adjusted as

well for each edge device. The generated configurations for video processing include

the video bitrate btk, frame resolution rtk, and the choice of model mt
k used for video

analytics. Additionally, the smart agent must make decisions about the offloading rate

µt
k, representing the proportion of stream data to be transferred from device k to the

server S.

The key problem for the RL agent lies in figuring out the optimal value, denoted as At
k,

for Ek at every time step, with the goal of enhancing the precision of system predic-

tions. The difficulty lies in factoring in dynamic system limitations, like computational

resources and network capacity, while being contextually aware. The objective is to

strike the right balance between ensuring stable system response times and achieving

the highest level of accuracy by making informed choices regarding video analytics

configurations.

Based on the system model and the optimization objective as represented in Equa-

tion 4.1, we elaborate on the intricate blueprints of the fundamental elements in the

reinforcement learning (RL) agent, i.e., the architecture of the RL agent, the RL state,

the RL action, the reward function. In addition, we also demonstrate how to train the

RL agent in the system.

4.3.2 Architecture of RL agents

Actor-critic framework: Figure. 4.2 illustrates the architecture of RL agents in our

system. We adopt an architecture of actor-critic paradigm where multiple actor net-

works are deployed on each edge device Ek for outputting the optimal policy. Following

the design in [313], each edge device k has its own pair of actor and critic network on

the central server S. The advantage of this design is that each edge device Ek can

focus on optimizing its own policy while sharing the learning from local trails through

a critic network on the cloud. We use the Proximal Policy Optimization (PPO) [249]

as the actor-critic RL algorithm in this paper and denote the architecture of PPO used

as the multiple agents PPO (MAPPO).

- 104 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

The actor network π is responsible for learning the agent’s policy. It maps agent

observations O to the mean and standard deviation of a Multivariate Gaussian Dis-

tribution, from which an action is sampled, in continuous action spaces. The actor

network maximizes the expected cumulative reward over time by adjusting its network

parameters in a way that leads to better actions in various states, ultimately improv-

ing the agent’s performance. In this work, the input of the actor network is the local

state of each Ek, and the output is probability distributions of 4 actions. They are

later cast to the system configurations in the environment. The architecture of the

actor network includes a 2-layer DNN network with a sigmoid activation function and

a hyper-parameter action variance.

We sample the actions via a multivariate normal distribution with the action mean

generated from the DNN network and the action variance. There have been many

techniques for enabling efficient model exploration during training, as reflected in [160].

In this paper, we employ a parameterized exploration technique for action sampling

modules in agent actors. Specifically, the distribution variance exponentially decreases

along with different training episodes, i.e., standard deviation std = 0.5 ∗ 0.96episode.

As compared to exploration techniques such as extra entropy loss in optimization

objective, the benefit of such mechanism is enabling fast training of the algorithm,

which is especially important in real-world systems.

The critic network, on the other hand, estimates the value of being in a particular

state or taking a particular action in a given state. It takes states and actions as

input and outputs a value, which represents the expected cumulative reward that can

be obtained from that state-action pair. By comparing the estimated values with the

actual rewards, the agent can update its policy network to maximize the expected

rewards. In this work, the input of the critic network is an embedding layer that

concatenates all local states and the cloud queue size. After performing feedforwarding

with a two-layer DNN network, the output of the critic network is the predicted value

given the global state.

- 105 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

4.3.3 RL States and Actions

The system state reflects the working status within the system at every time step t.

Concretely, we distinguish two states, i.e., the local state (Ot
k) on each edge device Ek

and the global state (Gt) on the server S. On the edge side, each device Ek takes the

local state Ot
k as the input at time step t to output the optimal action At

k. The global

state Gt is used as the input of the global critic network at time step t.

The local state Ot
k for each Ek includes the size of the transmission queue QT t

k, the

size of the local inference queue QI tk, the average network bandwidth Bt
k between Ek

and the cloud S, and the agent’s action at the previous time step t− 1. At time slot

t, we denote the local state of each agent k as Ot
k = {QI tk, QT t

k, B
t
k, A

t
k}

On the cloud server S, the global state Gt includes all local states and the size of cloud

queue Qt
S from all edge devices. The global critic network takes the global state and

estimates the value of state-action value function, i.e., the expected cumulative reward

an RL agent can achieve following its policy. The global state Gt at time step t is

defined as Gt = {Qt
S, O

t
1, O

t
2, ..., O

t
k}. where k is the number of all edge devices.

The RL action generated by each edge device k should consider the critical decisions

with the system model, i.e., the resolution of generated images rtk, the bitrate for

encoding and decoding the video stream btk, the candidates of different models mt
k, and

the offloading ratio of the generated images µt
k. The RL agent action for each edge

device k at time step t can be expressed as At
k = {rtk, btk,mt

k, µ
t
k}. Specifically, we design

three decision variables rtk, b
t
k, and mt

k as discrete variables. The resolution choices rtk

are three-folds: 240P, 360P, and 540P. The video bitrate btk has three choices as well:

500kbps, 1000kbps, and 3000kbps. The model choice on the edge sidemt
k includes three

model variants of YOLOv8, named YOLOv8-m, YOLOv8-s, YOLOv8-n. While on

the cloud side, we use YOLOv8-m only, with the best accuracy and largeset inference

latency as well. The data offloading ratio µt
k is designed as a continuous variable

from [0,1] to concisely control the proportion of data transferred to the cloud. During

system implementation, µt
k portions of the video chunks are offloaded to the cloud

while the rest are processed locally. The combination of the chosen actions can cover

a wide range of accuracy and latency requirements that are suited for different types

- 106 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

of QoS requirements, i.e., highest accuracy or moderated accuracy with acceptable

system latency.

4.3.4 Reward Function

The reward function guides the optimization direction and is the core of the RL agent.

Based on our system optimization goal in Equation 4.1, for each time step t, we

formulate the reward Rt
k as follows:

Rt
k =

acctk − ω ∗ |ltk − ltargetk | ltk ≤ lthres

−ω ∗ F − (ltk − lthres) otherwise

(4.2)

where acctk is the average accuracy at time step t, and ω ∗ |ltk − ltargetk | is the latency

constraint with a positive ω balancing the weights between the accuracy and latency.

When the latency ltk exceeds the pre-defined threshold lthres, we place another linear

penalty term−ω∗F−(ltk−lthres), where with F a positive number to penalize the action

that leads to high latency. ω weighting term is included to ensure that the rewards

under normal conditions are not overshadowed. By doing so, the agent is motivated to

complete the task as close to the desired time as possible while maximizing accuracy.

4.3.5 Centralized Training and Decentralized Execution (CTDE)
in OsmoticGate2

In our paper, the number of edge devices, the number of bitrates, resolutions, model

choices and the offloading rates all could increase the complexity of the decision-

making. In MAPPO, we have designed centralized training and decentralized deploy-

ment strategy for alleviating the scalability problems. Specifically, by using centralized

training, the agents can learn and coordinate their actions based on a global view of

the environment. This allows them to capture complex interactions and dependencies

more effectively during the learning process. In our paper, for each configuration we se-

lect three values that could reveal performance variations across them. Increasing the

number of configurations will not raise scalability issues. Since the agents operate in a

decentralized manner, making decisions based on their local observations and learned

- 107 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

Algorithm 3: RL agent training in OsmoticGate2

1 Input: the number of the edge device K, maximum episode M, maximum time
step T

2 Output: the actor of each device k, [πk,∀k ∈ K]
3 for each episode m ∈M do
4 τ1, ..., τK = [] empty list
5 for each device Ek, k ∈ K in parallel do
6 Initialize parameters θk for the actor πk, and ϕk for the critic Vk

7 for each time step t ∈ T do
8 1. observe the agent’s local state Ot

k and global state Gt
k

9 2. Get actions At
k = πk(O

t
k; θ

t
k)

10 3. execute the action Ak(t) in environment
11 4. observe the agent’s local state Ot+1

k and global state Gt+1
k

12 5. get the reward with Rt
k with Eq. 4.2

13 6. τk+ = [At
k, O

t
k, G

t
k, R

t
k, O

t+1
k , Gt+1

k]

14 end
15 Update θk via Adam
16 Update ϕk via Adam

17 end

18 end
19 return RL agents

policies. Each agent acts independently and does not require access to the full state or

information of other agents. In our system, we implement in OsmoticGate2 server

the RL trainer and deploy in OsmoticGate2 client the local agents. Auto-scaling

can be implemented for the cloud server as well to support inference tasks for more

devices in the future.

Algorithm 3 illustrates how we train the actor and critic network of each RL agent.

First of all, we initialize the environment for each device, and initialize the parameters

θk of the actor πk, and the parameters ϕk of the critic Vk. When the RL agents are

ready, both the server and the edge nodes start receiving the video streams. During

the training process, each edge node is allocated a buffer list τk. At time step t, the

agent observes the local state Ot
k and the global state Gt

k, then the action is generated

At
k = πk(O

t
k; θ

t
k). The At

k is executed in the system until time step t + 1. At this

time step, the new local state Ot+1
k , global state Gt+1

k , as well as the reward Rt
k are

observed in the cloud server. All these stats are collected in the system as one buffer

for updating the model parameters. The agents continue to interact with the system

until the end of the episode where t == T . After one episode, for each pair of actor θk

- 108 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

and ϕk, all collected samples in the trajectory are fed to the objective function of the

respective actor and critic networks, and the network parameters are updated with

ADAM optimizers.

4.4 Implementation Details

4.4.1 Video Analytics Module

The video analytics module is built upon the work in Osmoticgate [230] while we ex-

tend the framework with several parallel techniques to speed up the video processing

operations. The processing process in OsmoticGate2 includes video encoding, in-

ference, and video transmission across the edge and the cloud server. We illustrate in

the following subsections the techniques employed to speed up the processing within

the system.

4.4.1.1 Parallel Video Encoder

When the video streams are fed into the edge devices, they are encoded within the

system with the configuration command from the OsmoticGate2 clients. The en-

coding process entails compressing the video streams to target bitrate and resolutions,

in order to accelerate the inference speed. As encoding computation is highly CPU-

intensive, we utilize the multi-core architecture and implement multi-process encoding

for accelerating the encoding process in the first place. Specifically, the video streams

are split into small chunks and encoded concurrently in different processes. The results

are then pushed to the local processing queue for local inference or transmission queue

to be processed by the cloud server.

4.4.1.2 Inference Engine

We implement inference engines for both the edge and cloud devices for making pre-

dictions on the encoded video chunks. On the edge devices, models of various config-

urations are loaded into the memory. OsmoticGate2 clients decide the appropriate

model to be used for processing the current chunks. On the cloud server, only a large

- 109 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

model with the best performance is deployed for making predictions. All received

video chunks are decoded into batches of frames before being loaded into the models

for inference.

4.4.1.3 Concurrent Listener

When transmitting the raw video contents from the edge to the cloud, the packet re-

assembly may take much time and it is easy for the socket to get stuck at this time. This

is especially true when multiple clients are transmitting to the cloud simultaneously,

where the clients have to wait for the other clients to send all the content.

Thus, we design a socket pool with each containing a worker process listening to con-

nections and receiving the packets. The concurrent processes are continuously mon-

itoring a whole socket pool, re-assembling the received packets. All received packets

are sent to the queue, then the cloud cluster for further processing.

4.4.2 Multi-agent Controllers

The core of the OsmoticGate2 is the coordination of components for alleviating the

computation and communication bottlenecks across the edge and cloud servers. In

order to do so, we deploy on each edge device an OsmoticGate2 client and a global

OsmoticGate2 server on the cloud. Each OsmoticGate2 client contains an agent

and generates system configurations for controlling the local processing operation in

real-time. The configurations are generated based on local system stats collected via

the Edge Monitor and the previously generated configurations.

Specifically, the System Monitor is deployed on the OsmoticGate2 server collecting

all local stats. A RL Trainer is deployed on the cloud server along with all local agents.

Via collected information from the System Monitor, the RL Trainer is able to jointly

update all agents, such to achieve the goal of optimal system performance.

4.4.3 Message-forwarding Module

In order to realize the seamless control between the video analytics module and the

multi-agent controllers mentioned above, we implement the Message-forwarding mod-

- 110 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

ule as a middleware to exchange information between these two modules across the

edge and the cloud.

The module is based on RabbitMQ where we initiate two queues: 1) System Stats

queue for forwarding the inference results from all devices as well as the local/global

stats. All stats from both the edge devices and cloud server are then aggregated

in the system monitor to assist the agent training process 2) Agent Replica queue

for forwarding and deploying the updated agents to the edge side. OsmoticGate2

server contains all agent replicas within the system. Once the agents are updated via

the RL trainer, the newly generated models are sent to the target device, ensuring all

agents are up-to-date, conforming to the system states.

4.5 PERFORMANCE EVALUATION

4.5.1 Experimental Setting

Testbed: We use 4 NVIDIA Jetson Xavier NX (with ARMv8.2 CPU and 8GB RAM)

as the edge nodes and the cloud server is a bare metal Ubuntu machine, with 8 cores

(Intel(R) Core(TM) i7-9700K CPU @ 3.60GHz), GeForce RTX3090 graphics card and

48 GB RAM. The cloud operating system is Ubuntu 20.04.

Dataset: We use road traffic video datasets from UA-DETRAC [296] to construct

our video analytics system, which contains 10 hours of video captured at 24 different

locations at Beijing and Tianjin in China 1. The videos are recorded at 30 frames per

second (fps), with a resolution of 960×540 pixels. We subtract from the simple and

medium category a total of 120s of video data to construct our training dataset.

In order to simulate real-world bandwidth connection, we use public traces from

oboe [10] with TC to control the bandwidth between the edge and the cloud server. We

sample a sub-trace from all the traces and repeatedly emulate the bandwidth through-

out the whole training process. In particular, during the training of each episode, the

network condition changes every 20 seconds, and the duration of each time step t is

set to 10 seconds.

1https://detrac-db.rit.albany.edu/

- 111 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

Table 4.2: The average inference accuracy and processing latency for each video chunk
with different models, including the encoding, decoding latency. This does not include
the queue waiting time, and the transmission latency.

Edge Accuracy Latency(s)
Model(YOLOv8) m s n m s n

540P 0.844 0.794 0.746 2.117 1.646 1.025
360P 0.817 0.763 0.721 1.512 1.306 0.851
240P 0.762 0.731 0.653 1.289 1.174 0.754

Cloud Accuracy Latency(s)
Bitrate(kbps) 3000 1000 500 3000 1000 500

540P 0.846 0.814 0.741 0.707 0.677 0.668
360P 0.842 0.818 0.775 0.569 0.548 0.542
240P 0.815 0.797 0.767 0.483 0.473 0.467

System Configuration: We consider object detection when analyzing the video data in

UA-DETRAC and deploy yolo [6] models for detection. We use the same architectures

as in [6] and deploy on the edge device YOLOv8-n, YOLOv8-s, YOLOv8-m models

with 3.2M, 11.2M, 25.9M parameters respectively. As cloud has enough computation

power, we only deploy the YOLOv8-m model with highest accuracy. The models are

pre-trained on COCO dataset fine-tuned on UA-DETRAC subset later. During the

fine-tuning process, we start with a learning rate of 0.01 and a batchsize of 64 and

train for 300 epochs, and then adjust the learning rate to 0.001 and continue training

300 epochs to get the final model.

We show in Table 4.2 the running performance of different models in the system. Due

to the different processing pipelines, the inference accuracy of different edge models are

correlated with the video frame resolution as encoding to smaller bitrate is unnecessary.

Whereas the cloud performance is influenced by both the resolution and video stream

bitrate. The system configuration space is further complicated by the offloading rate

as well. In the reward function, F is set to 1 and lthres is set to 1.5 in all experiments.

Baseline methods: We assess the performance of our approach by contrasting it with

the following baseline.

1) OSMOTICGATE [230]: the cloud server models the system and collects global

information, using a two-stage gradient-based algorithm to provide offloading strategies

for each edge node.

2) FastVA [277]: considers making the most use of network transmission to offload the

- 112 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

0 20 40 60 80 100
Episode

1.5

1.0

0.5

0.0

0.5

R
ew

ar
d

=0.5
=1

=2
=4

(a) Reward Curve

0 20 40 60 80 100
Episode

0.74

0.76

0.78

0.80

A
cc

ur
ac

y

=0.5
=1

=2
=4

(b) Accuracy Curve

0 20 40 60 80 100
Episode

1.0

1.4

1.8

2.2

La
te

nc
y(

s)

=0.5
=1

=2
=4

(c) Latency Curve

Figure 4.3: Convergence and Performance of OsmoticGate2 under Different Penalty
Weights

video chunks to the cloud.

3) Edge-Median: edge nodes choose the smallest offload rate, the medium resolution,

the medium bitrate, and the medium model.

4) DeepDecision [236]: addresses an optimization challenge wherein video processing

occurs selectively either at the edge or the cloud side, contingent upon the prevailing

system throughput within each time interval.

5) Cloud-Min: edge nodes choose the largest offload rate, and choose the smallest

resolution and the lowest bitrate.

6) Edge-Min: edge nodes choose the smallest offload rate, resolution, lowest bitrate,

and the smallest model.

4.5.2 Convergence and Performance under Different Penalty
Weights

We analyze the convergence of the proposed OsmoticGate2 under different penalty

weights ω, i.e., 0.5, 1, 2, 4. We set ltarget as 1 in this experiment. As seen in Fig. 4.3,

all 4 sets of experiments can converge to a stable policy. The convergence can be

fast at around 40 episodes, which validates the effectiveness of the proposed MAPPO

algorithm. In Fig. 4.3(a), the overall reward decreases when ω gets larger, with around

0.77, 0.63, 0.48, and 0.23 reward for 4 penalty weights respectively. This is mainly due

to the larger penalty incurred from the deviations of the latency target. However, the

reward does not fully reflect the system performance as it combines both the latency

and accuracy of the system.

- 113 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

- 1 . 5

- 1 . 0

- 0 . 5

0 . 0

0 . 5

1 . 0
��

Re
wa

rd

 M A P P O O S M O T I C G A T E E d g e - M e d i a n F a s t V A D e e p D e c i s i o n C l o u d - M i n E d g e - M i n

- 1 . 5
- 1 . 0
- 0 . 5
0 . 0
0 . 5
1 . 0

Re
wa

rd

(b) Average reward

0 . 6

0 . 7

0 . 8

0 . 9

Ac
cur

acy

(c) Average inference accuracy

1 . 0
2 . 0
3 . 0
4 . 0
5 . 0
6 . 0

La
ten

cy(
s)

(d) Average latency

Figure 4.4: Performance of OsmoticGate2 and baseline with Penalty Weights of 0.5

From the accuracy curve and latency curve in Fig. 4.3(b) and 4.3(c), when the value

of ω is set to 0.5, our algorithm attains its highest accuracy of 0.79. This is primar-

ily because a smaller value of ω places greater emphasis on achieving high accuracy.

During the training process, the accuracy curve gradually converges to a point and

the latency is stable at the end. As reflected in Fig. 4.3(c), the convergence latency

is around 1s, which satisfies the pre-defined ltarget. The training curve reveals that

our algorithm learns configurations that prioritize meeting the latency target over

maximizing accuracy.

4.5.3 Performance Comparison with Baselines

In this experiment, we compare the performance of the proposed algorithm with several

baselines. We set ω to be 0.5, and lttarget to be 1. We report the average reward for

different methods in Fig. 4.4(b) and the detailed system performance in Fig. 4.4(c)

and 4.4(d).

From Fig. 4.4(b), we can see that MAPPO outperforms baselines in all experiments.

OsmoticGate is the most competitive baseline in the literature. However, as its primary

goal was to minimize system processing latency, OsmoticGate finally achieves 0.88

latency and 0.76 accuracy, an inferior performance as compared to us. FastVA achieves

the highest accuracy 0.815 and latency 4.67, as it tends to transmit as many as possible

video chunks to the cloud, but it leads to cloud overload. Other simple heuristics such

as Edge-Median and Edge-Min all lead to worse performance in our experiments. In

conclusion, ourOsmoticGate2 with MAPPOmethod strictly conforms to the system

performance target, i.e., maximize accuracy while ensuring around 1.0 system latency.

OsmoticGate2 can ensure real-time streaming video processing while maximizing

- 114 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

the prediction accuracy. The experimental results validate the superiority of the multi-

agent reinforcement learning in our OsmoticGate2.

4.6 Conclusion

In this paper, we study the problem of real-time video analytics across the edge and

cloud environments. We propose OsmoticGate2 for orchestrating the configurations

and performing task offloading across the edge and the cloud. In order to adapt to dis-

tributed and dynamic environments, we introduce a sophisticated online multi-agent

reinforcement learning system crafted. Powered by the cutting-edge multi-agent rein-

forcement learning algorithm MAPPO, all agents are actively engaged in real-world

environments, continually learning from these interactions. This dynamic learning

process enables the system to optimize its performance effectively in a changing en-

vironment. Through rigorous experimentation, we show exceptional adaptability to

varying system configurations while maintaining stable runtime performance.

- 115 -

Chapter 4: OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics
with Multiagent Deep Reinforcement Learning

- 116 -

5
DEEPCON: Improving

Geo-distributed Deep Learning
Model Consistency in Edge-Cloud

Environment via Distillation

Contents
5.1 Introduction . 118

5.2 Overview of DeepCon . 122

5.3 Design of DMML . 123

5.3.1 From Accuracy to Consistency 124

5.3.2 Problem definition . 126

5.3.3 Basic Deep Mixup Mutual Learning (DMML) 127

5.4 Over-the-Air Update in DeepCon . 130

5.4.1 Over-the-air update in DeepCon 130

5.4.2 Parallel Training of DMML (DMML-Par) 132

5.5 Evaluation . 135

5.5.1 Experiment Setup . 135

5.5.2 Identify and Quantify Gap between Acc and CC 137

5.5.3 DMML Performance on Vision and Language Tasks 139

5.5.4 Performance of DMML-Par . 140

5.5.5 The impact of parameter α . 141

5.6 Related Work . 142

5.7 Conclusion . 143

- 117 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Summary

This chapter studies a model inconsistency problem that incurs when deploying many

models on distributed edge-cloud computing paradigms. I design and implement

DeepCon, an adaptive deployment system across the edge-cloud layer for over-the-

air model updates. I also implement DMML-Par, an asynchronous parallel training

algorithm for quickly updating the models and improving consistency. My experiment

results on both vision and language tasks demonstrate that DMML could improve

the model consistency up to 4%, 7%, and 13% at CIFAR10/100 and IMDB datasets

without sacrificing the accuracy of individual models. I also show that the DMML-Par

is up to 60% faster compared to simple synchronous parallel training.

Chapter 4 proposes a streaming video analytics system that features high accuracy and

low processing latency. Thus, the evaluation was thus performed with videos on the

proposed OsmoticGate2 system. One problem raised after system deployment is the

inconsistent predictions of many deployed models in the application. Thus, Chapter 5

aims to address model consistence problems and proposes an algorithm named DMML-

par for fast training of the deep learning models to increase model consistency. The

evaluation set up and dataset choice is aligned with the research problems in Chapter

5. We use images as it’s the basic processing unit of deep learning models and we use

cloud servers with multiple GPUs for evaluating the training speed of the DMML-par.

5.1 Introduction

The deployment platforms of DL models are distributed across various hardware de-

vices, including cloud or edge GPU, end-user mobile phones, and IoT devices, as high-

lighted in [229]. These platforms form the fundamental infrastructure of distributed

Deep Learning applications. However, since these devices differ in their hardware

capabilities, it is necessary to adaptively deploy multiple DL models that share simi-

lar functions but with different architectures and parameters, to efficiently utilize the

available resources.

- 118 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

A B

D C

(a) Recyclable Waste Classification

Correct
Incorrect

Case A: Consistent Case B: Inconsistent
Predictions Predictions

Examples Class MA MB MC MD

Picked
By MA1 MB1 MC1 MD1

Picked
By

X1 - X12
X13 A A A A A MA B B A A MB

X14 A A A A A MA B B A A MB

X15 B B B B B MB D D B B /
X16 B B B B B MB D D B B /
X17 C D D D D MD C C B B /
X18 C D D D D MD C C B B /
X19 D C C C C MC D D A A /
X20 D C C C C MC D D A A /

Acc 16/20=80% 80% 16/20=80% 60%

Result

A B C D
… … … …
A A B B D D CC

A B C D
… … … …

CC

A

D DB

A

B

(b) Example Classification Results for 2 Sets of Models

Figure 5.1: The Failures Caused by Model Inconsistency in Recyclable Waste Classi-
fication

Example. A distributed Recyclable Waste Classification application [194], for exam-

ple, consists of multiple robot arms with each responsible for picking up a specific type

of item and placing it into corresponding bins (see Figure 5.1(a)). However, different

items require different robotic arms, such as rigid robotic arms for metals and flexible

robotic arms for lamps. These robotic arms are often manufactured by different com-

panies and use different hardware platforms, thus deploying different DL models (e.g.,

ResNet101 [115], MobileNet [124] and VGG13 [259]) to classify recyclable objects. The

heterogeneity of the hardware and software may lead to potential issues with system

compatibility as follows.

Systemic problem . Multiple models within the application may produce different

outputs when given the same input because the models are usually trained individually

or calibrated to different configurations after development. Table 5.1(b) shows two

cases of 4 arms classifying and picking items from the conveyors. In case A, MA, MB,

MC , MD are designed to pick item A, B, C and D respectively. The setting is the

same for case B as well, with one difference that, in case B, MA1, MB1, MC1, MD1

may generate different classification results for the same item: X13−X20. We assume

that all models have achieved their best classification accuracy, i.e., 80% classification

accuracy. We then compare the picking results for 2 sets of arms. For the first 12

examples, we assume that all models are making correct predictions (marked as green),

such that these items are correctly picked by respective arms. However, for the rest

- 119 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

8 examples, the 2 sets of models behave differently. In case A X17 − X20, items C

and D are incorrectly classified (marked red) as D and C respectively. Thus, arm

MD picks X17 and X18, arm MC pick X19 and X20 to their respective bins, causing

misclassification bad cases in the system. For example X13−X16, 4 models are making

correct predictions as well. Finally, the system is able to correctly pick 16 items out

of 20 examples.

The situation is much worse for case B with models producing different classification

results for the same item. For item A in example X13 and X14, and item B in example

X15 and X16, they are only possible to be correctly picked when MA1 or MB1 makes

correct predictions respectively. However, both MA1 and MB1 mistakenly classify

object A as B for X13 and X14, thus MB1 picks them into bin B, causing a system

failure. MA1 and MB1 also misclassify B as D for X15 and X16, and omit them in the

conveyor, waiting for other arms to pick them up. MC1 and MD1 make the correct

classification for all these 4 items but they are just not designed to pick either A or B,

thusX15 andX16 are finally left on the conveyor, with no arms capable of picking them.

Similar situations are observed for example X17 −X20, even though there are models

making correct classifications, they are just not targeting the specific items. Thus the

whole system omits these items and left them on the waiting conveyor, leading to a

clog of the running system.

When comparing 2 cases, we observe that the unpredictable inconsistent results be-

tween different models may 1) fail on previously correct picks and 2) completely omit

items on the conveyers. This inconsistency reduces the ability of the system to cor-

rectly sort objects (from 80% to 60%) and potentially collapses the whole system and

causes much energy waste.

To overcome this problem, the models need to work collaboratively to identify the in-

consistent cases, and interact with each other, learning from each to achieve a “consen-

sus”. Some previous works have attempted to address this problem as well. [145, 208,

252, 264] study model“irreproducibility/disagreement”problem during model training.

These works report different factors that models may not make consistent predictions,

including activation functions [252], model randomness [264], model architectures [208],

optimizers [145]. They also design specific techniques to reduce such “irreproducibil-

- 120 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

ity/disagreement”during model training. Some preliminary work [20, 30, 140] are pro-

posed to reduce the model inconsistency during model re-training as well. However,

these methods only consider the inconsistency when the same model is continuously

updated during the training process. They are not applicable to a number of models

with different parameters and architectures, which is a common case in real-world IoT

applications.

In conclusion, some preliminary research has looked at factors that cause and ap-

proaches to reduce model inconsistency. However, they have not considered how to

detect and reduce such inconsistency when multiple models are collaborating in a real-

world distributed application. An algorithm and system co-design solution is required

to interact with the distributed models and improve the consistency of system outputs.

To be precise, we need to tackle the following challenges while building such distributed

DL applications. 1) How to detect the inconsistency among the distributed

models? An edge-based DL-applications, the models are distributed and adaptively

configured. This brings the challenge of how to efficiently interact with the different

outputs of the models to provide a unified consistency measurement. 2) How to

efficiently reduce the inconsistency among the heterogeneous models? In

an edge-based DL application, the models deployed on the edge nodes are heteroge-

neous and distributed. Therefore, how to efficiently update (or fine-tune) these models

becomes a challenge for both algorithm and system design. In particular, on the one

hand, the proposed inconsistency reduction algorithm should have the flexibility and

scalability to fine-tune multiple (greater than two) heterogeneous models simultane-

ously. On the other hand, the proposed system should have the ability to coordinate

the models across the cloud and edge nodes in a distributed manner.

We design and implement DeepCon to realize our goal of quickly improving the

model consistency of an edge-based application. We first develop the core technology

of DeepCon which is a learning algorithm - Deep Mixup Mutual Learning based on

knowledge distillation (KD) [119] that forces models to generate more similar outputs.

Similar to KD, DMML enables a student model to mimic the behavior of the teacher

model by learning from its output and ground truth labels. Furthermore, we extend

DMML and implement asynchronous parallel DMML (DMML-Par) for accelerating

- 121 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

the model training in multiple GPU workers. Finally, we develop a set of APIs to

support seamless communications between edge and cloud for data collecting (Edge),

model consistency validating (Cloud), and model updating (GPU cluster).

Overall, this paper makes the following key contributions:

• DMML for improving model consistency (§5.2 and §5.3). We illustrate the

importance of consistency in evaluating the performance of geo-distributed DL

applications and define a new consistency metric (CC) for measurement. Then

we propose DMML, a KD-based learning algorithm for cross-model learning, im-

proving the consistency among the models. To improve the DMML’s scalability,

we develop the DMML-Par that can scale DMML to multiple GPU nodes.

• Design and implementation of DeepCon (§5.4). DeepCon provides non-stop

updates to improve the model consistency of geo-distributed DL applications.

Moreover, DeepCon offers an algorithm and system co-design solution to main-

tain a geo-distributed DL application deployment life-cycle.

• Comprehensive evaluation of DeepCon (§5.5). We evaluate DMML with both

vision and language classifications: CIFAR-10, CIFAR-100, and IMDB. We also

evaluate the training speed of DeepCon on the same dataset. Our results

show that DMML can achieve 34.1% to 56.8% CC improvement on pre-trained

models. Our DeepCon can also achieve up to 60% speed up compared to the

simple model parallel algorithm.

5.2 Overview of DeepCon

DeepCon aims to develop an adaptive deep learning model deployment system that

combines the computing resources from the cloud server, GPU cluster, and edge de-

vices, which enables the models to be updated in OTA (over-the-air) manner. To this

end, we build DeepCon that comprises two main components: Deep Mixup Mutual

Learning (DMML) algorithm and OTA controller.

The DMML algorithm is running on a cloud, which is developed to optimize the param-

eters of the models to mitigate the inconsistency when the inconsistency is detected or

- 122 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Edge

GPU ClusterModel
Replica

Cloud Data Center

Model

Edge

…

Train

Update
Model

Deploy

Validate

Validate

DMML (§3)

OTA
Controller

(§4)

Figure 5.2: DeepCon Overview

exceeded a threshold (see §5.3.3). The OTA controller orchestrates the model update

and re-deployment across cloud and edge devices (see §5.4). It maintains a deep learn-

ing application deployment life-cycle through the following operations, i.e., Deploy →

Validate→ Train→ Update→ Deploy. The high-level system overview of DeepCon

is shown in Fig 5.2.

The system achieves the following three goals.

• Seamless OTA. DeepCon utilizes the computing resources both from edge de-

vices and the cloud to achieve seamless OTA. This algorithm and system co-

design solution ensures the non-stop update of the models on the host devices.

• Generability. We develop a generic deep learning model updating algorithm for

easy fine-tuning of models without being affected by the number of models and

the model architectures.

• Scalability. The proposed model updating algorithm is able to fine-tune the

models in parallel and automatically scale to multiple computing nodes. There-

fore, if the application developers want to reduce update latency, he/she only

needs to add more computing resources and require zero code changes.

5.3 Design of DMML

In this section, we describe the design of DMML. Following the phenomenon ob-

served in Table 5.1(b), we first provide a formal definition of the consistency in Deep-

Con (Section 5.3.1). Then we present a transformation that transfers the problem

- 123 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Metrics
Acc1 Acc2 C CC <Acc-CC>

CIFAR-10
ResNet20+ResNet20 91.73 91.78 92.65 88.56 3.17
ResNet20+ResNet56 91.73 93.27 92.51 89.30 2.43
ResNet20+VGG13 91.73 93.26 92.34 89.15 2.58

CIFAR-100
ResNet20+ResNet20 66.86 67.47 70.00 58.28 8.58
ResNet20+ResNet56 66.86 70.47 69.89 59.47 7.39
ResNet20+VGG13 66.86 71.57 68.75 59.74 7.12

Table 5.1: Different Metrics Reported on CIFAR10/100

of improving the consistency of various models to knowledge distillation tasks (sec-

tion 5.3.2). Finally, we develop an online knowledge distillation-based method to solve

the problem (section 5.3.3).

5.3.1 From Accuracy to Consistency

The key idea of this paper is to improve the consistency between the models, while

not sacrificing individual model accuracy. In this section, we first provide a definition

of consistency, and compare the difference between accuracy and consistency.

Accuracy (Acc). Accuracy measures the probability of a model correctly predicting

the ground truth labels. For any given task, a set of N models {M1 ... MN}, Dataset

D(X, Y), we have the following definition:

Acc(Mn) = E
(x,y)∼D

[1{Mn(x) = y}] (5.1)

For any model Mn and data {x, y} ∈ D(X, Y), Acc(Mn) measures the probability of

a model Mn correctly predicting the labels y.

Consistency (C). Consistency measures the probability of multiple models produc-

ing the same result given the same input. Given {x, y} ∈ D and N models {M1 ...

MN}, we have the following definition:

C(M1...MN) = E
(x,y)∼D

[1{M1(x) = ... = MN(x)}] (5.2)

C measures the probability of models {M1...MN} predicting the same result at a given

point x.

- 124 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Correct Consistency (CC): the Intersection between Accuracy (Acc) and

Consistency (C). Consistency (C) only measures if all models produce the same

results, no matter if they are correct or not. In real-world applications, we are more

interested in consistent and correct predictions for a set of models within the same

application. Thus, we use correct consistency (CC) to define this as shown in Eq. 5.3.

CC(M1...MN) = E
(x,y)∼D

[1{M1(x) = ... = MN(x) = y}] (5.3)

CC measures the probability of multiple models {M1 ... MN} correctly predicting the

target y at the same input point x.

CC is at the intersection between the Consistent (C) and correct outputs (Acc) pro-

duced by all the models, as formulated in Eq. 5.5.

CC(M1...MN) = C(M1...MN) ∩ Acc(M1)... ∩ ...Acc(MN) (5.4)

Theoretical Gap of Improvement between Accuracy and Correct Con-

sistency: Gap <Acc-CC>. For a set of reported model accuracy Acc(M1) ...

Acc(MN), the maximum ideal CC is min{Acc(M1), ..., Acc(MN)}: the accuracy of the

smallest/worst performed model.

Thus for multiple models {M1 ... MN}, the gap for improvement is defined as:

< Acc− CC >= min{Acc(M1)...Acc(MN)} − CC(M1...MN). (5.5)

Table 5.1 compares the Top-1 accuracy and consistency metrics (C, CC, and <Acc-

CC>) of CIFAR-10 and CIFAR-100 dataset obtained from our pre-trained models.

Three pairs of model parameters are generated as follows: (i) The same model ar-

chitecture but trained twice with different initialization parameters (ResNet20 and

ResNet20). (ii) Models with the same backbone module but with different depths

(ResNet20 and ResNet56). (iii) Models with totally different architectures (ResNet20

and VGG13).

From the experimental results, we have the following observations: (i) The incon-

sistency is ubiquitous even for the same model that is trained twice with different

initialization weights. (ii) The Gap <Acc-CC> between (Acc) and (CC) increases

- 125 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

with more complex tasks, from around 3% in CIFAR10 to around 8% in CIFAR100.

The gap <Acc-CC> may come from different model architectures, random initializa-

tion weights, different data orders [264], etc. This motivated the paper to build a

system that can efficiently improve the CC of a distributed DL application.

5.3.2 Problem definition

To ensure the consistency of various models, we have the following optimization goal.

arg max
M1..MN

CC(M1, ...,MN)

s.t. Acc(Mn;D)− Acc(M
′

n;D) <= ξ

∀Mn ∈ {M1..MN}

ξ ≥ 0

(5.6)

For any dataset D, we aim to maximize the CC for all models {M1 ... MN}. Denote

Mn and M
′
n as models before/after re-parameterization, we also add a constraint for

model accuracy. The slack factor ξ allows the optimized M
′
n to stand a maximum

accuracy loss by ξ as compared to the original Mn. For most of our experiments, we

set ξ = 0, such that we ensure all models do not drop accuracy during the optimization

process.

Solving the optimization problem with Knowledge Distillation. Knowledge distilla-

tion (KG) [119] allows teaching or ”distilling”the knowledge from one or a set of models

to other models, which naturally meets the optimization goal illustrated in Eq. 5.6.

To transfer the optimization problem to a KD task, we first have the following goals:

argmin
MS

{x,y}∈DL(MS(x), y) + L(MS(x),MT (x)) (5.7)

Given a teacher model MT and labeled dataset D(X, Y), the goal of KD is to generate

a student model MS by learning from both MT and D(X, Y) [119]. Two loss functions

L(MS(x), y) and L(MS(x),MT (x)) measures the difference between MS and D, MT

respectively. By minimizing both loss functions at the same time, the learned MS

retains the knowledge from MT and the dataset D.

- 126 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

M1(x)

	M#2……

……

α

1- α

α

1- α

y

M2(x)

y

MN(x)

…

loss(M1(x), 	M#)

Model 1

Model 2

Model N
	𝑀#N

	M# = {	M#2 ... 	𝑀#N}
Mixup Labels

(x, y)

Figure 5.3: The overview of Basic Computation of Deep Mixup Mutual Learning
(DMML). The same inputs are fed to all models and get results M1 ... MN . Then,
each Mn and true label y jointly generate a mixup label M̃n controlled by a weighting
parameter α. For each model, the loss function is computed by comparing its output
Mx against all other mixup labels M̃ . For example, L1 is computed by M1 and M̃ =
{M̃2...M̃N}.

We note the ground truth label y could also be regarded as the output of a perfect

model. In order to agree with the output of all models and the ground truth label,

our optimization goal could be formulated as:

arg min
M1..MN

{x,y}∈DL(y,M1(x)...MN(x)) (5.8)

Whereby the loss function measures the difference between all models and the ground

truth label. However, it is infeasible to optimize all the models at the same time.

More practically, we can recursively reparameterize a model to minimize its difference

against all other models and the ground truth label:

argmin
Mn

{x,y}∈DL(y,M1(x)...MN(x)),∀Mn ∈ {M1..MN} (5.9)

The remaining problem is to construct the loss function L(Mn;D) of each model Mn

on dataset D, which will be discussed in the following section.

5.3.3 Basic Deep Mixup Mutual Learning (DMML)

In order to minimize the loss function defined in E.q 5.9, we design a DMMLalgorithm

that consists of two components Deep Mixup Label and Multi-model Distillation (see

- 127 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Fig. 5.3).

5.3.3.1 Deep Mixup Label

Deep Mixup Label is a learning target that allows DMML to improve consistency

among models while ensuring that individual models still maintain or even improve

original accuracy after training. The Deep Mixup Label is a weighted average between

the model’s output and ground truth label as defined in Eq. 5.10.

M̃(x, y,Mn, α) = αMn(x) + (1− α)y (5.10)

At point {x, y}, M̃ averages the ground truth label y and pseudo label (output) gen-

erated from model Mn(x), controlled by the weighting parameter α. The Deep Mixup

Label can be applied to most deep learning tasks, Mn(x) can be the output of any form

generated by the models, i.e., bounding box coordinates for detection tasks. For the

classification task we evaluate in this paper, Mn(x) can be the outputs after softmax

indicating the probabilities of one sample x belonging to any class y ∈ Y .

5.3.3.2 Multi-model Distillation

Fig. 5.3 shows the details of how to use multiple generated Deep Mixup Labels to train

a target model through DMML. Assume we have N models in total, and we would like

to update the k-th model Mk. Then, for each of other N − 1 models and data points

{x, y}, we extract the computed Deep Mixup Label M̃(x, y,Mn, α), ∀n ∈ N, n ̸= k.

For each Deep Mixup Label, we compute the difference of Mk(x) against the Deep

Mixup Label M̃(x, y,Mn, α) with a loss function. All loss functions are summed and

averaged to get the final loss function for model Mk, as shown in E.q 5.11:

L(Mk, {x, y}) =
1

N − 1

N∑
n=1,n ̸=k

L(Mk(x), M̃(x, y,Mn, α)) (5.11)

Finally, the computed loss is sent back to the model Mk for computing the gradients

and updating the model parameters. (see example M1 in Fig. 5.3). In this paper, we

use cross entropy for computing each loss in E.q 5.11.

- 128 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Algorithm 4: Deep Mixup Mutual Learning (DMML)

1 Input: Training data D (X,Y), learning rate γ(t), Mixup Ratio α, N pre-trained
models M = {M1,M2 ... MN}

2 Initialize: t← 0

3 while Not Convergence do
4 for randomly sample batch data {x,y} ∈ D do

5 M̃ ← new list()
6 for n ∈ N do

7 // Compute M̃n(x, y,Mn, α) with E.q. 5.10

8 M̃n ← M̃n(x, y,Mn, α)

9 end
10 for n ∈ N do
11 Ln ← 0
12 for k ∈ N do
13 if k ̸= n then

14 Ln ← Ln + L(Mn, M̃k)
15 end

16 end
17 Ln ← Ln / (N − 1)

18 Mn ←Mn + γt
∂Ln

∂Mn

19 end

20 end
21 t = t + 1
22 update learning rate γ(t)

23 end

The design of mixup labels and loss function of multi-model distillation forces the

model to update parameters such to produce consistent outputs compared to other

models. The accuracy of the models, though, remains stable during training as we

mixup up the ground truth label in the Deep Mixup Labels. We carefully tuned α such

that the consistency is maximized while the accuracy of individual models is preserved.

We validate the effects of mixup ratio α in Fig. 5.8 as well.

5.3.3.3 DMML Algorithm

Based on Deep Mixup label and multi-model Distillation, we develop an algorithm,

namely DMML, that optimizes all models’ parameters simultaneously. Alg. 4 shows

detail of the proposed DMML.

For a given model Mn ∈M and the sampled data {x, y}, we compute the Deep Mixup

- 129 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Label M̃n (see line 7). Then, we use E.q. 5.11 to compute the average of the difference

between the output of Mn and other deep mixup labels (from line 10 to 19). Next, we

update Ln and Mn as shown in line 17 and 18. In each iteration, the learning rate γ(t)

will be updated based on convergence curves to speed up algorithm convergence [204].

Obviously, DMML is not very scaled with the increasing number of models. The next

subsection introduces a parallel DMML algorithm.

5.4 Over-the-Air Update in DeepCon

Over-the-air (OTA) updates play a crucial role in distributed deep learning applica-

tions, ensuring seamless integration of the latest advancements and improvements,

empowering the models to continuously evolve and adapt to emerging system failures.

By integrating computation and communication across the edge and the cloud, OTA

updates can accomplish the fine-tuning of the deployed models via efficient data sam-

pling and parallel computation, thereby significantly improving the update efficiency.

The key observation in DMML is that the models are updated synchronously in the

central server with a global data set. In DeepCon, we propose the OTA update ap-

proach of distributed models with data sampling and asynchronous parallel training,

emphasizing the coordination between the cloud and edge nodes for real-time moni-

toring and agile parallel training in order to rapidly enhance model consistency after

deployment.

The overview of implementation on OTA is shown in Fig.5.4, and its high-level API

call are listed in table 5.2. Finally, we discuss how to improve the scalability of the

proposed method (section 5.4.2).

5.4.1 Over-the-air update in DeepCon

Cloud. The cloud holds replicas of all models within the system and implements the

OTA Controller (see Fig. 5.2) via multiple modules for coordinating with the GPU

cluster and various edge nodes, updating and deploying models. When the Consistency

Validation module detects the inconsistency of models, the Training Task Scheduler

will be triggered and performs the model fine-tuning process over GPU cluster. The

- 130 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Cloud Datacenter
GPU Cluster

Communication
Module

Training Task
Scheduler

Agent

M1 M2 M3 Mn...

Edge-Cloud
Coordinator

Model Replicas

M1

Edge Node 1

Algorithms

Master Node

DMML DMML
-Par

…

AgentMn

Edge Node n

…

Deploy Upload Replace

Consistency
Validation

Figure 5.4: The High-level Implementation of DeepCon

updated models, thereafter, are pushed to the corresponding edge nodes for further

deployment. The Edge-Cloud Coordinator communicates with the GPU cluster, CPU

server (Master node), and edge nodes through the Communication Module to per-

form the following operations, i.e., model deployment, data uploading, model training,

model validation, and model update.

Edge node. One each edge node, a pre-trained model is deployed and makes predictions

for incoming stream data. The Agent caches the data samples and their inference

results and shares them with the cloud in a defined time interval. These data will be

used to check the consistency of models deployed on various edge nodes.

I: Training Task Scheduler. The scheduler is designed to orchestrate training algo-

rithms to update the models in the GPU cluster. We, therefore, define two main

APIs: trainModels(w,m, t) and getModels(t). trainModels(w,m, t, a) defines that

in task t a set of models m are trained on w workers (i.e., GPU nodes) via algorithm

a. getModels(t) returns the updated models in task t.

II: Consistency Validation. After the sampled inference results and data are gathered,

getV alid(m, r, l) check the consistency of a set of models m based on the inference

results r and true labels l of the collected sample data. The labels l can be obtained

- 131 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Table 5.2: DeepCon APIs

Cloud APIs Description
trainModels(w,m, t, a) In task t a set of models m are trained on w workers via algorithm a.
getModels(t) Returns the updated models in task t.
getV alid(m, r, l) Returns the CC of a set of models m based on the inference results r and true

labels l of the collected sample data.
getDeploy(m, e) Specifies the pre-trained model m to be deployed on edge node e.
getReplace(m, e) Replace the running model on the edge node e with the updated model m.

Edge node APIs Description
install(m) Builds a instance of model m.
migrate(m1,m2) Moves the input streams from model m1 to model m2 for inference.
stop(m) Stop the instance of model m.
getUpload(d, r) Upload the sampled data stream d and their corresponding inference results r

to the cloud.

through automated data labeling method [60, 172] or human workers (e.g., Amazon

Mechanical Turk).

III: Communication Module. This module interacts the Edge-Cloud Coordinator in

Cloud with the Agent in each edge node to provide seamless OTA solution. To this

end, in Edge-Cloud Coordinator the getDeploy(m, e) specifies the pre-trained model

m to be deployed on the edge node e. Next, the getReplace(m, e) is designed to

replace the running model on the edge node e with the updated model m. To provide

“no stop” model replacement operation, the three high-level APIs i.e., install(m),

migrate(m1,m2) and stop(m) in edge node agent are design. install(m) builds a

instance of model m, and migrate(m1,m2) moves the input streams from model m1 to

model m2 for inference, and stop(m) is to stop and remove the instance of model m.

Finally, the getUpload(d, r) uploads the sampled data stream d and their corresponding

inference results r to the cloud for further validation. In this paper, we assume that

both cloud and edge node have right to access the raw data, and the privacy preserving

will be considered in future work.

5.4.2 Parallel Training of DMML (DMML-Par)

In this subsection, we propose DMML-Par, an approach that parallelizes the DMML,

which can be scaled up to multiple GPU nodes in a distributed manner. Alg. 2

illustrates the details of DMML-Par. We develop an asynchronous mechanism that

allows DMML-Par to offer a lock-free, non-wait model parameter exchange solution

during the fine-tuning phase.

- 132 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Algorithm 5: Parallel Deep Mixup Mutual Learning (DMML-Par)

1 Input: Training data D (X,Y), learning rate γ(t), Mixup Ratio α, N pre-trained
models M = {M1,M2 ... MN}, GPU workers c ∈ C, server S

2 Initialize: t ← 0
3 Server model replica: MS ←M
4 run model ← new list([False for n in N])
5 nodes idle ← new list([True for c in C])

6 while Not Convergence do
7 for c ∈ C do
8 if nodes idle[c] == False then
9 continue

10 else
11 for n ∈ N do
12 if run model[n] == False then
13 nodes idle[c] ← False
14 run model[n] ← True
15 // Remote procedure call to train Mn on worker c
16 Train(Mn, α, t, c, n)
17 break

18 end

19 end

20 end

21 end
22 t = t + 1
23 update learning rate γ(t)

24 end

25 Update(c, n, Mn):
26 // Update Mn in S
27 MS

n ←Mn

28 nodes idle[c] ← True
29 run model[n] ← False

30 Train(Mn, α, t, c, n):
31 // Worker c pulls latest model from S
32 M ←MS

33 for randomly sample batch data {x,y} ∈ D do
34 Ln ← 0
35 for k ∈ N do
36 if k ̸= n then

37 // Compute M̃k(x, y,Mk, α) with E.q. 5.10

38 M̃k ← M̃k(x, y,Mk, α)

39 Ln ← Ln + L(Mn, M̃k)

40 end

41 end
42 Ln ← Ln / (N − 1)

43 Mn ←Mn + γt
∂Ln

∂Mn

44 end
45 // Remote procedure call to update model n and release the worker c
46 Update(c , n, Mn)

- 133 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Ti
m

e

Worker 1 Worker 2 Worker 3 Worker 4

R1

R2

R1
R1

R2

M1 M3 M4 M2 M5

R2 R3

R2
R1

R2

R3

R1

R3

Allocate models to the workers

Figure 5.5: Example of DMML-Par on 5 Models and 4 workers

We first initialize two lists run model and nodes idle for maintaining the states of the

models and workers, where their index represents the corresponding worker and model.

All models are not yet allocated and all workers are not occupied (see line 4 and 5).

Then for all the workers cn ∈ C in sequence, we first check if worker cn is idle (line 8),

and if not we will move to the next idle worker. If the worker is idle, we check the

model status in run model and allocate the selected model Mn ∈M to an idle worker

cn. Then, Mn and worker cn is marked as running and occupied (line 13). At the same

time, the training process is distributed to the target worker cn via Train().

For training Mn (from line 30 to 46), the first state is to pull the latest model replica

from the global model replica MS. Then, we compute the deep mixup labels and

loss against Mn(x), compute the gradients, and update Mn. We iterate through the

dataset D until all data has been trained once (from line 33 to 43). Finally, the

Update() function is called to update the Mn to the server and release the worker c

(from line 25 to 29).

Discussion. The asynchronous design of DMML-Par ensures maximum utilization of

available computation resources across the GPU clusters. We ensure that all models

get the same rounds of training, such to mitigate the performance drop brought by the

asynchronous parallel training (see Fig. 5.7). DMML-Par is also easily scalable and

adaptive to a dynamic number of worker nodes, to meet the latency requirements of

the users.

Example of DMML-Par with 5 models on 4 workers. Fig. 5.5 shows how DMML-Par

- 134 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

allocates the models to various workers for parallel training. In the first round, we

train models 1 to 4 on workers 1 to 4 respectively. When worker 4 finishes its process,

only model 5 (M5) is not trained. Thus, M5 is allocated to worker 4. Next, when

worker 3 completes the training process for M3, two models i.e., M3, and M4 are able

to be allocated to worker 3 (the other three models are still doing first-round training).

Since M3 was trained on worker 3 already, we directly run the second-round training

for M3 on worker 3. Following the same scheduling policy, we allocate M2, M1, and

M4 to workers 1, 2, and 3, respectively. Notably, before starting a training process

on a worker and a training process finishes, DMML-Par will pull the latest version of

all models from the master node (see Alg. 2 line 32) and push the trained model to

the master node (see Alg. 2 line 27), this operation allows the models to be updated

asynchronously maximizing the utility of computing resources.

5.5 Evaluation

5.5.1 Experiment Setup

Datasets. CIFAR-10 and CIFAR-100 [158] datasets contain 10 and 100 classes respec-

tively. They are split into 50,000 images for training and 10,000 for testing, with each

32 x 32 colored pixel. IMDB [189] is a binary text classification task that contains

25,000 data samples for both the train and test sets.

Models. For the image classification task, we use three network architectures and

vary their architecture depth when generating models: ResNet-20, ResNet-56 [115]

and MobileNetv2 x0 5, MobileNetv2 x1 4 [124] and VGG13 [259]. For text classifi-

cation task, 5 different structures are implemented for the experiments: TextRNN,

BiLSTM, TextCNN, TextRCNN and Self-Attention. All models use pre-trained glove

embeddings for feature representation.

Cluster Setup. We implement all neural networks and training processes with Pytorch

and perform experiments on a Ubuntu 16.04 Linux server equipped with 5 Nvidia Tesla

V100 GPU, 40 Intel Gold 5218 CPUs, and 100GB memory. All pre-trained models are

generated by ourselves serving as base models for further fine-tuning. For pre-training

- 135 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

CIFAR models we use SGD optimizer and the initial learning rate is set to 0.1, 100

epochs and drop every 30 epochs. All fine-tuning learning rate is set to 0.01, 50 epochs,

and drop every 20 epochs. For IMDB training, ADAM is used and the learning rate is

set to 0.0001 for both pre-training and fine-tuning with 200 and 100 epochs respectively.

We also construct 100-dim glove embeddings for IMDB and fix the embedding during

all experiments. Data augmentation is applied for both vision and language tasks:

vision datasets are augmented with random crops of 4 padding sizes and horizontal

flips; language tasks randomly replace words with default tokens. Note that for pre-

training we do not aim to reach the best-benchmarked accuracy for respective model

architectures and datasets. For all our settings, the pre-trained models have converged

to a stable point and we show the benefits of different techniques for improving the

CC and reducing the <Acc-CC> gap.

Baselines. We compare our method against the following baselines. 1) Vanilla-

KD [119] assume all students learn from the teachers and true labels with distillation

loss and cross-entropy loss. KD is widely studied for training small networks that

mimics the behaviors of large networks. 2) Label Smooth [20, 140, 274] regulates the

true label and is capable of reducing model churn during training. We extend KD

with label smoothing for comparison. 3) Mixup Distillation [140] proposes distillation

based training for reducing model churn. We extend the method to multiple mod-

els where all models but the best-performed model learn from the best models. 4)

Ensemble Distillation: Ensemble methods are not directly applicable to models with

different architectures. We implement ensemble distill where each model learns from

the ground truth label and the average ensemble logits from all models in the group.

5) KDCL [107] is similar to ensemble distillation but implements random augmen-

tation to different models during model training. The training loss consists of both

entropy loss with true label and distillation loss with ensemble digits. 6) Deep Mutual

Learning [334] is an online-KD method that jointly learns multiple models at the same

time. The loss consists of entropy loss with true label and pair-wise distillation loss

against all other models. 7) Co-Distillation [13] is another online-KD method that

enables parallel training of multiple models. The training loss consists of entropy loss

and distillation loss against average logits over all other models. For a fair comparison,

- 136 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

2 4 6 8 10
Number of Models

2
4
6
8

10
12

<A
cc

 -
CC

>
Resnet20
VGG13
Mobilenetv2
Mixture Models

(a) CIFAR-10

2 4 6 8 10
Number of Models

5

10

15

20

25

<A
cc

 -
CC

>

Resnet20
VGG13
Mobilenetv2
Mixture Models

(b) CIFAR-100

Figure 5.6: Acc and CC Gap (Eq. 5.6) with Different Model Numbers and Architec-
tures.

all baseline results and DMML are implemented with the same optimizer and training

epochs. We vary the weighting parameters and report the results with the best Correct

Consistency (CC) metric.

Metrics. The evaluation metrics we used in the paper include: 1) Correct Consis-

tency (E.q 5.3 CC): the percentage of all models to all produce the positive results

given the same input. 2) Performance gap between ACC and CC: <Acc-CC> =

min{Acc(M1), ..., Acc(MN)} − CC(M1...MN) (E.q 5.5).

All experiments are repeated 5 times with average value, and standard deviation re-

ported in the results. We only report results that maintain or increase individual

model accuracy, making sure no accuracy loss during training.

5.5.2 Identify and Quantify Gap between Acc and CC

We have revealed in Table. 5.1 that CC between models is always inferior to any

model’s Acc. The maximum CC between the models can not exceed the accuracy

of the worst performed model, i.e., CCmax(M1..MN) = min{Acc(M1) ... Acc(Mn)}.

Ideally, we want to increase CC such that when the worst-performed models correctly

classify an input, all other models produce the same correct predictions as well.

As the goal of DeepCon is to improve the CC metric among models, we first need

to quantify the theoretical maximum gap between a set of pre-trained models. In this

subsection, we quantify the extent of the <Acc-CC> gap with different numbers and

architectures of models. We repeat training Resnet20, VGG13, and MobileNetv2 x0 5

- 137 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

CIFAR10 CIFAR100 IMDB
CC ↑ <Acc-CC> ↓ CC ↑ <Acc-CC> ↓ CC ↑ <Acc-CC> ↓
ResNet20 + VGG13 ResNet20 + VGG13 TextRCNN + SelfAtten

Pretrained 89.15 2.58 59.74 7.12 62.76 11.89
vanilla kd 89.34±0.05 2.69±0.07 60.02±0.07 7.36±0.18 66.58±0.43 7.79±0.38

ls 89.45±0.06 2.63±0.06 59.79±0.02 7.35±0.08 67.12±0.23 7.53±0.13
mixup 89.48±0.18 2.64±0.13 60.31±0.11 7.19±0.13 67.21±0.32 7.44±0.41

ensemble-distill 90.00±0.21 2.21±0.16 61.81±0.07 5.69±0.15 67.44±0.18 6.66±0.26
kdcl 89.87±0.14 2.21±0.12 61.84±0.11 5.95±0.05 66.89±0.22 6.74±0.17
dml 90.44±0.12 1.88±0.12 62.59±0.24 5.06±0.23 67.35±1.15 6.29±0.23

co-distill 90.40±0.05 1.96±0.09 62.91±0.07 5.01±0.18 67.30±0.74 6.25±0.45
dmml 90.74±0.07 1.7±0.02 62.83±0.06 4.57±0.18 69.75±0.13 5.14±0.33

5 Models 5 Models 5 Models
Pretrained 84.27 8.34±0.78 50.35 19.69±2.13 46.86 26.61±1.97
vanilla kd 85.00±0.10 7.85±0.61 50.82±0.15 19.4±1.90 52.67±0.10 21.88±1.16

ls 85.29±0.09 7.64±0.62 50.77±0.05 19.57±2.09 53.01±0.26 21.62±1.10
Mixup 85.61±0.11 7.36±0.63 52.35±0.20 18.32±2.08 53.3±0.03 21.32±1.09

ensemble-distill 86.85±0.17 6.39±0.73 55.22±0.20 16.45±2.27 51.41±2.61 21.96±0.79
kdcl 86.51±0.20 6.66±0.70 54.34±0.15 17.26±2.25 51.05±3.21 22.18±0.91
dml 87.50±0.17 5.80±0.67 56.11±0.18 15.74±2.20 57.21±0.24 18.2±0.66

co-distill 87.23±0.10 6.05±0.72 55.64±0.09 16.15±2.29 57.21±0.07 18.31±0.63
dmml 88.17±0.07 4.98±0.52 57.38±0.07 13.93±2.11 59.45±0.19 16.31±0.59

Table 5.3: Correct Consistency (%) and Acc,cc Gap on the CIFAR10/100 and IMDB
Dataset with 2 and 5 Models.

20 times and report the average gap between model accuracy and consistency. We

then report the mean, upper, and lower bound of the gap.

Figure 5.6 shows our benchmarking results. We make the following three observations:

1) The <Acc-CC> gap increases with the increase of model numbers. When more

models join the evaluation, the gap increase is almost linear to the model numbers, for

both CIFAR10 and CIFAR100. In CIFAR-100, this gap is over 20% for all cases with

10 models, revealing a huge gap between the model accuracy and consistency. 2) For

the same model, MobileNetv2 and ResNet20 report the highest gap on two datasets.

Also, we evaluated the mixed model scenario, its gap is highest with large variance

as well, compared to the case where models have the same architecture. 3) Gap

increases with the complexity of the tasks: Comparing both datasets, CIFAR100 report

nearly double the gap compared to CIFAR100 under all circumstances. The above

findings necessitate the need to improve model consistency, which is paramount for geo-

distributed deep learning applications with multiple models and varying configurations.

- 138 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

5.5.3 DMML Performance on Vision and Language Tasks

Table 5.3 compares the performance of DMML to other baselines on three popular

datasets: CIFAR10, CIFAR100 and IMDB. We conduct 2 sets of experiments with 2

models and 5 models respectively.

Generally, in all experiments, the implemented baselines as well as DMML are capa-

ble of improving the consistency CC among the models, indicating that cross-model

learning is effective in generating more similar models, regardless of the model archi-

tectures and parameters. Online KD methods (e.g., dml, codistill, dmml, kdcl and

ensembledistill) are more effective as compared to offline-KD (e.g., vanilla kd, label

smooth, mixup) in overall performance.

In experiments with 2 models, DMML is able to reduce about 34.1%, 35.8%, and

56.8% of <Acc-CC> for 3 datasets respectively. DMML achieves higher CC than

baseline solutions in most cases. However, DMML reports slightly worse CC than

codistillation on ResNet20 + VGG13, CIFAR100 experiment. This is because the co-

distillation improves all models’ Acc thereby resulting the better CC. However, this

method only works in rare cases and very randomly.

On IMDB dataset (NLP), we observe much higher inconsistency for pre-trained Tex-

tRCNN and SelfAttention models, due to the bigger difference between their model

architectures. After applying our methods to the models, the CC can be greatly

improved, meaning that DMML is more effective for models of greater difference.

KDCL [107] as reported in the paper can improve model invariance by adding image

distortion for each model but is less effective in improving model consistency. In the

following, we conduct experiments with 5 models of different architectures to show the

scalability of DMML in improving model consistency.

Comparing the experiments of 5 models and 2 models, we see a larger difference of

<Acc-CC>: 8.34%, 19.69%, and 26.61% for the three datasets. After applying DMML,

the <Acc-CC> has reduced to 4.98%, 13.93%, and 16.31%, indicating 40.28%, 29.25%

and 38.70% reduction to this gap. Comparing the computer vision tasks and NLP

tasks, we also see a larger gap in the latter, despite that all models use the same glove

embeddings at the first layer. In the future, we will investigate the performance of

- 139 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

0 1000 2000 3000 4000
Time (s)

48
50
52
54
56
58

CC
 (%

) DMML-Par
20 epochs
50 epochs
DMML-SP
20 epochs
50 epochs

(a) Convergence Curve on CIFAR100 val-
idation set, 5 GPU workers

1 3 5
Workers

0
250
500
750

1000
1250
1500

Ti
m

e
(S

)

DMML DMML-SP DMML-Par

(b) CIFAR10

1 3 5
Workers

0
500

1000
1500
2000
2500
3000

Ti
m

e
(S

)

DMML DMML-SP DMML-Par

(c) CIFAR100

1 3 5
Workers

0
250
500
750

1000
1250

Ti
m

e
(S

)

DMML DMML-SP DMML-Par

(d) IMDB

Figure 5.7: Evaluation of DMML-Par with 5 models on 3 datasets

DMML for other basic language tasks, i.e., semantic parsing [117].

5.5.4 Performance of DMML-Par

Fig. 5.7 plots the performance of DMML-Par implemented in our DeepCon. We train

the model on 1, 3, and 5 workers (GPU nodes) with three datasets. As a comparison,

we extend DMML to a simple synchronous parallel training algorithm namely DMML-

SP. We iteratively allocate model training tasks to available workers and wait for all

the models to be trained once. Then we update the whole server model replica and

push them to the next round of training. We also report the performance of DMML

as a baseline. All training setup and parameter setting are the same as the DMML,

including the Mixup ratio, the learning rate, and optimizers.

Fig. 5.7(a) shows the convergence curve of DMML-SP and DMML-Par with 5 models

on the CIFAR100 validation set. Generally, we see that the training speed of DMML-

Par is much faster than DMML-SP. It takes 725 and 1838 seconds for DMML-Par to

complete 20 and 50 rounds of model training, nearly 60% reduction as compared to

DMML-SP (i.e., 1739 and 4427 seconds respectively.) As far as the CC metric, DMML-

- 140 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

Par also reports faster and stable growth as compared to the DMML-SP. After finishing

50 rounds of training, the highest CC reported is 56.45, slightly worse than the best

CC (57.38) reported in Tab. 5.3. However, when we continue training for a few rounds,

we can still guarantee the best CC as compared to synchronous DMML-SP.

Fig. 5.7(b), 5.7(c), and 5.7(d) report latency of three algorithms. We report the

minimum time it takes for each algorithm to reach the best CC as marked by Tab. 5.3.

Overall, on three datasets, DMML-Par can reduce 20%, 14%, and 20% training time

compared to DMML-SP and DMML on average, while reaching the same CC. In

reality, we can opt to sacrifice few CC for much less training time, e.g., in Fig. 5.7(a),

DMML-Par already achieves 56.12% CC (1% less than best CC) when training for only

1100s, much faster than 1950s when reaching the best CC as reported in Fig. 5.7(c).

Also, we can observe that the training time of both DMML-SP and DMML-Par de-

creases with the increase in the number of workers. However, DMML-SP has to wait

for all models to finish their round of training and then update the models, which may

cause some nodes to be idle.

5.5.5 The impact of parameter α

We analyze how the weight parameter α affects the model accuracy and correct con-

sistency (CC) metric. In Fig. 5.8 we report the hyper-parameter tuning results of α

on the two datasets, with varying the α from 0 to 0.9.

0.0 0.2 0.4 0.6 0.8
89

90

91

92

93

94
ResNet20 VGG13 CC

(a) CIFAR-10

0.0 0.2 0.4 0.6 0.8
59

62

65

68

71

74
ResNet20 VGG13 CC

(b) CIFAR-100

Figure 5.8: Metrics (%) with Weighting Parameter α, Resnet20 + VGG13

We notice that with the increase of α (more model output in the label mixup), the CC

metric is getting better, while the accuracy remains stable, and slightly outperforms

- 141 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

the accuracy of the pre-trained models respectively. The maximum point is reached

around 0.7/0.8 and then starts to drop when further increasing α. This indicates that

around 20% of information from the true label is already a strong indicator, enough

to keep the model stable from the accuracy perspective.

5.6 Related Work

Model Consistency. model consistency measures the ability of models to produce the

same outputs when fed with same/similar inputs. It is different from accuracy in that

the later measures the prediction of each individual model, without considering the

relationship between different models.

Model consistency has been studied in several related areas by different terminologies.

[145, 208] attempt to quantify the disagreement level between two networks trained

on the same dataset. They reveal that model disagreement could arise from different

architectures and initializations, training samples and optimizers. [252, 264] study

the reproducibility problem during model re-training and conclude that factors like

activation functions or data order could lead to drastic prediction differences between

the fine-tuned model and the base model. [67, 340] report model instability which

measures the output variation of a given model when slight perturbation is added

to the input sources. A stability loss is added to the training loss to mitigate the

model instability. Prediction Churn [20, 30, 140] propose churn, another definition

to measure model consistency during the training process. By using techniques such

as mixup label [140], adaptive label smoothing [20], models at different phases are

forced to produce same results during the training process. [290] is most related

to the definition in our paper, which apply ensemble-based techniques during model

training to improve model consistency. However, the ensemble technique is limited in

applicability when models are different in sizes or architectures.

In summary, the existence of model inconsistency is ubuiquitous during model training

and deployment. Some attempts have been made to improve model consistency, but

are limited to model training phase with the same model architecture. There is no

study on the severity of model consistency with the growth of system complexity,

- 142 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

i.e., the growing model size, different model architectures. Also, a general method

is required to guarantee consistency between the models in a ML system that needs

consistency guarantee.

Model Distillation. knowledge distillation [18, 119] is first proposed to train a shallow

network that mimics the behavior of a deep network. The training process lever-

ages knowledge from both the ground true label and the teacher network. Knowledge

representation from the teacher model could be from the model output at the final

layer [119] or feature maps from middle layers [243], with loss computed by KL diver-

gence loss, or MSE loss. When there is a lack of pre-trained teacher models, however,

online knowledge distillation [334] enable simultaneous training of both the teacher

and student models at the same time. In Deep Mutual Learning (DML) [334], the

model update is implemented via averaged pair-wise distillation loss for the current

model against all other models. Co-distillation [107] is similar to DML and is directly

applicable to training large-cohort models in a collaborative way. It is also studied

that co-distillation in effective in reducing model inconsistency. Many other works

extend the training paradigm of online KD by by using ensembles of model outputs

and the true label [107], adding diverse peers [55] or multi-branch architecture [161].

We compare DMML with many of the above baselines on online-KD and techniques

on improving model consistency. We show that DMML is easy to implement, effective

in improving model consistency and generic on different data sources, i.e., vision and

language datsets.

5.7 Conclusion

In this paper, we propose DeepCon, an adaptive deployment framework for quickly

improving the model consistency via over-the-air parallel training. We design a whole

pipeline for quickly detecting the inconsistency within the systems, and propose an

efficient learning algorithm (DMML) based on knowledge distillation for improving the

consistency between the models. In order to further accelerate the training process,

we implement DMML-Par, asynchronous parallel training of DMML, a high-scalable

algorithm that is easily adapted to various numbers of computation resources. We

- 143 -

Chapter 5: DEEPCON: Improving Geo-distributed Deep Learning Model
Consistency in Edge-Cloud Environment via Distillation

prototypeDeepCon and implement a set of APIs for seamless communication between

the edge and cloud layers. The evaluation results show the effectiveness of DMML in

improving model consistency. We also evaluate the training speed up of DMML-Par,

which can guarantee the best consistency improvement while greatly reducing the

training time. In the future, we plan to extend the implementation and experience

with more real-world applications, e.g., PersonReID, and Object Detection.

- 144 -

6
Conclusion

Contents
6.1 Thesis Summary . 146

6.2 Future Research Directions . 148

6.2.1 Agile adaptation of decision-making agents in open environment. 148

6.2.2 Improving generalization via adapting large language models for
networking. 149

6.2.3 Precise control on delayed system feedback. 149

- 145 -

Chapter 6: Conclusion

Summary

In this chapter, we summarize the research work presented in this thesis. Then, we

outline the contributions and propose future research directions for addressing the

existing challenges in the current state-of-the-art.

6.1 Thesis Summary

The relentless advancement of computing power has propelled the evolution of AI,

from cloud AI to edge AI, and now to the collaborative frontier of edge-cloud AI.

This dynamic edge-cloud computing paradigm has ushered in a new era of innova-

tion, significantly augmenting the development of ML-based IoT applications. The

synergy between edge and cloud computing fosters a flourishing environment where

high accuracy, low latency, and unwavering stability converge. This thesis showcases

the implementation of multiple distributed ML-based IoT applications, alongside the

strategic design of a comprehensive suite of edge-cloud collaborative optimization algo-

rithms. The core objective of this research is to enhance the quality of service (QoS)

metrics of these applications, with a particular focus on optimizing system latency,

prediction accuracy, and model consistency after deployment.

Chapter 1 provides an overview of ML-based IoT applications within the broader

context of edge-cloud collaborative computing. It also touches upon the deployment

and update Lifecycle in Edge-Cloud Computing. Additionally, it addresses challenges

and research questions, highlighting the contributions made by the thesis.

Chapter 2 introduces a practical ML-based IoT application set in the context of a

smart city. Furthermore, I delve into the fundamental concepts of cloud AI, edge AI,

and the innovative domain of edge-cloud collaborative AI. The primary emphasis of

this thesis lies in tackling the intricate challenges related to performance optimization

after deployment, which we address through the application of cutting-edge edge-cloud

collaborative AI techniques.

Chapter 3 presents OsmoticGate, an in-depth exploration of video streaming pro-

cessing task offloading in the context of edge-cloud computing paradigm. Leveraging

- 146 -

Chapter 6: Conclusion

bitrate-based video streaming protocols, I introduce a novel Hierarchy Queue Model

to comprehensively capture the dynamics of system workload and its direct impact

on system latency and throughput. To optimize system performance, a two-stage

gradient-based algorithm is meticulously devised. This algorithm aims to minimize sys-

tem latency while ensuring the maintenance of a minimal throughput level. Rigorous

evaluation and testing of OsmoticGate are carried out, encompassing both simulation

scenarios and real-world testbed experiments, to establish and validate its effectiveness

and practicality.

Chapter 4 introduces OsmoticGate2, a sophisticated online multi-agent reinforcement

learning system crafted to achieve workload balancing in dynamic and distributed

deep learning (DL) applications. Powered by the cutting-edge multi-agent reinforce-

ment learning algorithm MAPPO, all agents are actively engaged in real-world envi-

ronments, continually learning from these interactions. This dynamic learning process

enables the system to optimize its performance effectively in a changing environment.

Through rigorous experimentation, OsmoticGate2 showcases its exceptional adaptabil-

ity to varying system configurations while maintaining stable runtime performance.

The experimental results serve as compelling evidence of OsmoticGate2’s capability to

successfully balance workloads and sustain desired performance levels in the context

of dynamic and distributed DL applications.

Chapter 5 introduces DEEPCON, a highly adaptable deployment framework aimed

at swiftly enhancing model consistency through over-the-air parallel training. The

framework encompasses a comprehensive pipeline designed to rapidly detect incon-

sistencies within the systems. It incorporates an efficient learning algorithm, DMML,

specifically tailored to improve model consistency between different models. To further

expedite the training process, an innovative high-scalable algorithm, DMMLPar, facil-

itates asynchronous parallel training of DMML, effectively adapting to varying com-

putation resource availability. The implementation of DEEPCON includes a seamless

set of APIs that enable seamless communication between the edge and cloud layers.

The evaluation results unequivocally demonstrate the efficacy of DMML in improving

model consistency. Furthermore, the training speed-up achieved by DMMLPar is rig-

orously assessed, showcasing its ability to guarantee the most significant consistency

- 147 -

Chapter 6: Conclusion

improvement while substantially reducing training time.

Research Impact: Generally, the work presented in this thesis is generic applicable for

improving analytics performance of deep learning based IoT applications. More specif-

ically, the system modelling methodology implemented in OsmoticGate can precisely

capture the implicit and complex relationship between system configurations and QoS

metrics. Meanwhile, OsmoticGate can greatly reduce system analytics latency via

balancing workloads across the edge and the cloud. Then, OsmoticGate2 can be used

for generating configurations that jointly optimize latency and accuracy, in a more

dynamic environment that comprises more edge devices. Finally, DeepCon ensures

system stability by enforcing consistent analytics results among all models within the

application.

Based on the research outcomes in this thesis, a prototype system for streaming data

analytics is established. The system comprises a data plane that can process various

types of streaming data with computation resources across the edge and the cloud.

Meanwhile, a control plane is closely integrated within the system that can system

dynamics and generate configuration for optimizing various system QoS performance.

The prototype, however, is still in its early stage. More enhancement can be made

from the following perspectives:

6.2 Future Research Directions

6.2.1 Agile adaptation of decision-making agents in open
environment.

To promote deployment of deep learning applications in real-world, some recent re-

search has started to explore coordination of agents in open environments. This usually

entails online adaption of the agents when the environment changes. For example, in

large-scale distributed environments, the cameras and devices could join in or leave

the application anytime. It is thus necessary for the agents to adapt themselves to the

new environments and new trends. Meanwhile, exploration and adaptation would in-

evitably generate configurations that may harm the stability of the underling system.

How to enable safe exploration during adaptation is also important in this case.

- 148 -

Chapter 6: Conclusion

6.2.2 Improving generalization via adapting large language
models for networking.

Many networking tasks now employ deep learning (DL) or reinforcement learning (RL)

techniques to solve complex system optimization problems. However, the DL or RL-

based algorithms entails intensive engineering overhead for different tasks. Moreover,

the deep learning models tend to achieve poor generalization performance across dif-

ferent or unseen environments. In the case of task-offloading in video analytics, the

deployed models face challenges in generalizing to complex and dynamic networks,

workloads, computation resources. Motivated by the recent success of large language

models (LLMs), a promising future research direction is the adaptation of LLM for

improving the generalization capability of decision-making agents in network-based

video analytics applications.

6.2.3 Precise control on delayed system feedback.

The system feedbacks could be delayed in streaming analytics scenarios. For example,

the retrieval of analytics results of all video chunks during a time-interval may be

delayed due to the inadequate computation resources during this period. The delayed

feedbacks pose a challenge of training task-offloading agents using logs with incomplete

information. When being applied to real-world applications, the challenges becomes

more severe as the streaming video analytics orchestration agents need to be re-trained

frequently and the system logs need to be collected over short time scales. Existing

approach simply ignore the unobserved feedbacks, resulting in bias in the training and

thus harm the accuracy of the task-offloading agents. A novel approach that addresses

delayed feedback during agent training is thus necessary and a promising research

direction in improving the decision-making accuracy in streaming applications.

- 149 -

150

References

[1] Can 30,000 cameras help solve chicago’s crime problem?
µhttps://www.nytimes.com/2018/05/26/us/ chicago-police-

surveillance.html. Accessed: 2023-10-31.

[2] Dust networks applications: Industrial automation.

[3] Piper: All-in-one wireless security system.

[4] Provigial target tracking and analysis.

[5] Training dataset.

[6] Yolov8. µhttps://github.com/ultralytics/ultralytics. Accessed: 2024-
03-19.

[7] M Abadi, P Barham, J Chen, Z Chen, A Davis, J Dean, M Devin, S Ghemawat,
G Irving, M Isard, et al. Tensorflow: A system for large-scale machine learning.
In 12th USENIX Symposium on OSDI, pages 265–283, 2016.

[8] A Abdiansah and R Wardoyo. Time complexity analysis of support vector ma-
chines (svm) in libsvm. International journal computer and application, 2015.

[9] A. F Aji and K Heafield. Sparse communication for distributed gradient descent.
In Proceedings of the 2017 Conference on Empirical Methods in Natural Language
Processing, pages 440–445, 2017.

[10] Z Akhtar, Y. S Nam, R Govindan, S Rao, J Chen, E Katz-Bassett, B Ribeiro,
J Zhan, and H Zhang. Oboe: Auto-tuning video abr algorithms to network
conditions. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, pages 44–58, 2018.

[11] D Alistarh, D Grubic, J Li, R Tomioka, and M Vojnovic. Qsgd: Communication-
efficient sgd via gradient quantization and encoding. In Advances in Neural
Information Processing Systems, pages 1709–1720, 2017.

[12] G Ananthanarayanan, Y Shu, L Cox, and V Bahl. Project rocket plat-
form—designed for easy, customizable live video analytics—is open source. Mi-
crosoft Research Blog, 2020.

[13] R Anil, G Pereyra, A Passos, R Ormandi, G. E Dahl, and G. E Hinton. Large
scale distributed neural network training through online distillation. In Interna-
tional Conference on Learning Representations, 2018.

[14] F. A Aoudia, M Gautier, and O Berder. Rlman: an energy manager based
on reinforcement learning for energy harvesting wireless sensor networks. IEEE
Transactions on Green Communications and Networking, 2(2):408–417, 2018.

- 151 -

https://www.nytimes.com/2018/05/26/us/ chicago-police-surveillance.html
https://www.nytimes.com/2018/05/26/us/ chicago-police-surveillance.html
https://github.com/ultralytics/ultralytics

[15] J Appleyard, T Kocisky, and P Blunsom. Optimizing performance of recurrent
neural networks on gpus. arXiv preprint arXiv:1604.01946, 2016.

[16] K Arulkumaran, M. P Deisenroth, M Brundage, and A. A Bharath. A brief
survey of deep reinforcement learning. arXiv preprint arXiv:1708.05866, 2017.

[17] A Asheralieva and D Niyato. Game theory and lyapunov optimization for cloud-
based content delivery networks with device-to-device and uav-enabled caching.
IEEE Transactions on Vehicular Technology, 68(10):10094–10110, 2019.

[18] J Ba and R Caruana. Do deep nets really need to be deep? Advances in Neural
Information Processing Systems, 27, 2014.

[19] J Ba, R Grosse, and J Martens. Distributed second-order optimization using
kronecker-factored approximations. 2016.

[20] D Bahri and H Jiang. Locally adaptive label smoothing for predictive churn.
arXiv preprint arXiv:2102.05140, 2021.

[21] B Baker, O Gupta, R Raskar, and N Naik. Accelerating neural architecture
search using performance prediction. arXiv preprint arXiv:1705.10823, 2017.

[22] A. K Balan, V Rathod, K. P Murphy, and M Welling. Bayesian dark knowledge.
In Advances in Neural Information Processing Systems, pages 3438–3446, 2015.

[23] P Baldi. Autoencoders, unsupervised learning, and deep architectures. In Pro-
ceedings of ICML workshop on unsupervised and transfer learning, pages 37–49,
2012.

[24] I Baldini, P Castro, K Chang, P Cheng, S Fink, V Ishakian, N Mitchell,
V Muthusamy, R Rabbah, A Slominski, et al. Serverless computing: Current
trends and open problems. Research advances in cloud computing, pages 1–20,
2017.

[25] D Barcelona-Pons, M Sánchez-Artigas, G Paŕıs, P Sutra, and P Garćıa-López.
On the faas track: Building stateful distributed applications with serverless archi-
tectures. In Proceedings of the 20th international middleware conference, pages
41–54, 2019.

[26] A Beck, A Nedić, A Ozdaglar, and M Teboulle. An o(1/k) gradient method for
network resource allocation problems. IEEE Transactions on Control of Network
Systems, 1(1):64–73, 2014.

[27] T Ben-Nun, E Levy, A Barak, and E Rubin. Memory access patterns: the
missing piece of the multi-gpu puzzle. In SC’15: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–12. IEEE, 2015.

[28] J. L Berral, Í Goiri, R Nou, F Julià, J Guitart, R Gavaldà, and J Torres. Towards
energy-aware scheduling in data centers using machine learning. In Proceedings of
the 1st International Conference on energy-Efficient Computing and Networking,
pages 215–224. ACM, 2010.

- 152 -

[29] R Bhardwaj, Z Xia, G Ananthanarayanan, J Jiang, Y Shu, N Karianakis,
K Hsieh, P Bahl, and I Stoica. Ekya: Continuous learning of video analyt-
ics models on edge compute servers. In 19th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 22), pages 119–135, 2022.

[30] S Bhojanapalli, K Wilber, A Veit, A. S Rawat, S Kim, A Menon, and S Ku-
mar. On the reproducibility of neural network predictions. arXiv preprint
arXiv:2102.03349, 2021.

[31] M Boehm, M. W Dusenberry, D Eriksson, A. V Evfimievski, F. M Manshadi,
N Pansare, B Reinwald, F. R Reiss, P Sen, A. C Surve, et al. Systemml:
Declarative machine learning on spark. Proceedings of the VLDB Endowment,
9(13):1425–1436, 2016.

[32] K Bonawitz, H Eichner, W Grieskamp, D Huba, A Ingerman, V Ivanov, C Kid-
don, J Konecny, S Mazzocchi, H. B McMahan, et al. Towards federated learning
at scale: System design. arXiv preprint arXiv:1902.01046, 2019.

[33] K Bonawitz, F Salehi, J Konečnỳ, B McMahan, and M Gruteser. Feder-
ated learning with autotuned communication-efficient secure aggregation. arXiv
preprint arXiv:1912.00131, 2019.

[34] L Bottou. Large-scale machine learning with stochastic gradient descent. In
Proceedings of COMPSTAT’2010, pages 177–186. Springer, 2010.

[35] L Bottou. Stochastic gradient descent tricks. In Neural networks: Tricks of the
trade, pages 421–436. Springer, 2012.

[36] L Bottou, F. E Curtis, and J Nocedal. Optimization methods for large-scale
machine learning. Siam Review, 60(2):223–311, 2018.

[37] O Bousquet, S Boucheron, and G Lugosi. Introduction to statistical learning
theory. In Summer School on Machine Learning, pages 169–207. Springer, 2003.

[38] S Boyd and L Vandenberghe. Convex optimization. Cambridge university press,
2004.

[39] J. K Bradley, A Kyrola, D Bickson, and C Guestrin. Parallel coordinate descent
for l1-regularized loss minimization. arXiv preprint arXiv:1105.5379, 2011.

[40] L Breiman. Random forests. Machine learning, 45(1):5–32, 2001.

[41] U Breitenbucher, K Kepes, F Leymann, and M Wurster. Declarative vs. imper-
ative: How to model the automated deployment of iot applications? Proceedings
of the 11th Advanced Summer School on Service Oriented Computing, pages
18–27, 2017.

[42] A Brock, T Lim, J. M Ritchie, and N Weston. Smash: one-shot model architec-
ture search through hypernetworks. arXiv preprint arXiv:1708.05344, 2017.

- 153 -

[43] C Buciluǎ, R Caruana, and A Niculescu-Mizil. Model compression. In Proceed-
ings of the 12th ACM SIGKDD international conference on Knowledge discovery
and data mining. ACM, 2006.

[44] J. V Burke, F. E Curtis, A. S Lewis, M. L Overton, and L. E Simões. Gra-
dient sampling methods for nonsmooth optimization. In Numerical Nonsmooth
Optimization, pages 201–225. Springer, 2020.

[45] J. V Burke, A. S Lewis, and M. L Overton. A robust gradient sampling algo-
rithm for nonsmooth, nonconvex optimization. SIAM Journal on Optimization,
15(3):751–779, 2005.

[46] R. H Byrd, S. L Hansen, J Nocedal, and Y Singer. A stochastic quasi-newton
method for large-scale optimization. SIAM Journal on Optimization, 26(2):1008–
1031, 2016.

[47] B Cabé, E. I. W Group, et al. Iot developer survey 2018. SlideShare, April, 13,
2018.

[48] C Canel, T Kim, G Zhou, C Li, H Lim, D. G Andersen, M Kaminsky, and
S Dulloor. Scaling video analytics on constrained edge nodes. Proceedings of
Machine Learning and Systems, 1:406–417, 2019.

[49] P Castro, V Ishakian, V Muthusamy, and A Slominski. The rise of serverless
computing. Communications of the ACM, 62(12):44–54, 2019.

[50] R Chandra. Farmbeats: Empowering farmers with affordable digital agriculture
solutions. In ASA, CSSA and SSSA International Annual Meetings (2019).
ASA-CSSA-SSSA, 2019.

[51] Z Chang, L Lei, Z Zhou, S Mao, and T Ristaniemi. Learn to cache: Machine
learning for network edge caching in the big data era. IEEE Wireless Commu-
nications, 25(3):28–35, 2018.

[52] K Chellapilla, S Puri, and P Simard. High performance convolutional neural
networks for document processing. In 10th International Workshop on Frontiers
in Handwriting Recognition. Suvisoft, 2006.

[53] C. L. P Chen and B Wang. Random-positioned license plate recognition using
hybrid broad learning system and convolutional networks. IEEE Transactions
on Intelligent Transportation Systems, 23(1):444–456, 2022.

[54] C.-C Chen, C.-L Yang, and H.-Y Cheng. Efficient and robust parallel dnn
training through model parallelism on multi-gpu platform. arXiv preprint
arXiv:1809.02839, 2018.

[55] D Chen, J.-P Mei, C Wang, Y Feng, and C Chen. Online knowledge distilla-
tion with diverse peers. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 3430–3437, 2020.

[56] J Chen, X Pan, R Monga, S Bengio, and R Jozefowicz. Revisiting distributed
synchronous sgd. arXiv preprint arXiv:1604.00981, 2016.

- 154 -

[57] L Chen, J Lu, Z Song, and J Zhou. Part-activated deep reinforcement learning
for action prediction. In Proceedings of the European Conference on Computer
Vision (ECCV), pages 421–436, 2018.

[58] M Chen, L Wang, J Chen, X Wei, and L Lei. A computing and content delivery
network in the smart city: Scenario, framework, and analysis. IEEE Network,
33(2):89–95, 2019.

[59] T. Y.-H Chen, L Ravindranath, S Deng, P Bahl, and H Balakrishnan. Glimpse:
Continuous, real-time object recognition on mobile devices. In Proceedings of
the 13th ACM conference on embedded networked sensor systems, pages 155–
168, 2015.

[60] Y Chen, S Liu, X Zhang, K Liu, and J Zhao. Automatically labeled data genera-
tion for large scale event extraction. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), pages
409–419, 2017.

[61] Y Cheng, D Wang, P Zhou, and T Zhang. A survey of model compression and
acceleration for deep neural networks. arXiv preprint arXiv:1710.09282, 2017.

[62] S Chetlur, C Woolley, P Vandermersch, J Cohen, J Tran, B Catanzaro, and
E Shelhamer. cudnn: Efficient primitives for deep learning. arXiv preprint
arXiv:1410.0759, 2014.

[63] T Chilimbi, Y Suzue, J Apacible, and K Kalyanaraman. Project adam: Build-
ing an efficient and scalable deep learning training system. In 11th USENIX
Symposium on OSDI, pages 571–582, 2014.

[64] F Chollet. Xception: Deep learning with depthwise separable convolutions. In
Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 1251–1258, 2017.

[65] P Chopra and S. K Yadav. Fault detection and classification by unsupervised
feature extraction and dimensionality reduction. Complex & Intelligent Systems,
2015.

[66] C.-T Chu, S. K Kim, Y.-A Lin, Y Yu, G Bradski, K Olukotun, and A. Y Ng. Map-
reduce for machine learning on multicore. In Advances in neural information
processing systems, pages 281–288, 2007.

[67] E Cidon, E Pergament, Z Asgar, A Cidon, and S Katti. Characterizing and
taming model instability across edge devices. Proceedings of Machine Learning
and Systems, 3, 2021.

[68] T Cohen and M Welling. Group equivariant convolutional networks. In Inter-
national conference on machine learning, pages 2990–2999, 2016.

[69] I Colin, L Dos Santos, and K Scaman. Theoretical limits of pipeline parallel
optimization and application to distributed deep learning. In Advances in Neural
Information Processing Systems, pages 12350–12359, 2019.

- 155 -

[70] N Corporation. Nvidia collective communications library (nccl), 2015.

[71] C Cortes and V Vapnik. Support-vector networks. Machine learning, 20(3):273–
297, 1995.

[72] M Courbariaux, Y Bengio, and J.-P David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in NIPS, 2015.

[73] M Courbariaux, I Hubara, D Soudry, R El-Yaniv, and Y Bengio. Binarized
neural networks: Training deep neural networks with weights and activations
constrained to+ 1 or-1. arXiv, 2016.

[74] T. M Cover, P Hart, et al. Nearest neighbor pattern classification. 1967.

[75] H Cui, H Zhang, G. R Ganger, P. B Gibbons, and E. P Xing. Geeps: Scalable
deep learning on distributed gpus with a gpu-specialized parameter server. In
Proceedings of the Eleventh European Conference on Computer Systems, pages
1–16, 2016.

[76] A. C. F da Silva, U Breitenbücher, P Hirmer, K Képes, O Kopp, F Leymann,
B Mitschang, and R Steinke. Internet of things out of the box: Using tosca for
automating the deployment of iot environments. In CLOSER, pages 330–339,
2017.

[77] L De Lauretis. From monolithic architecture to microservices architecture. In
2019 IEEE International Symposium on Software Reliability Engineering Work-
shops (ISSREW), pages 93–96. IEEE, 2019.

[78] C. M De Sa, C Zhang, K Olukotun, and C Ré. Taming the wild: A unified anal-
ysis of hogwild-style algorithms. In Advances in neural information processing
systems, pages 2674–2682, 2015.

[79] J Dean, G Corrado, R Monga, K Chen, M Devin, M Mao, A Senior, P Tucker,
K Yang, Q. V Le, et al. Large scale distributed deep networks. In Advances in
neural information processing systems, pages 1223–1231, 2012.

[80] O Dekel, R Gilad-Bachrach, O Shamir, and L Xiao. Optimal distributed on-
line prediction using mini-batches. Journal of Machine Learning Research,
13(Jan):165–202, 2012.

[81] J Deng, W Dong, R Socher, L.-J Li, K Li, and L Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009.

[82] S Deng, Z Xiang, J Taheri, M. A Khoshkholghi, J Yin, A. Y Zomaya, and
S Dustdar. Optimal application deployment in resource constrained distributed
edges. IEEE transactions on mobile computing, 20(5):1907–1923, 2020.

[83] S Devi and T Neetha. Machine learning based traffic congestion prediction in a
iot based smart city. 2017.

- 156 -

[84] G Diamos, S Sengupta, B Catanzaro, M Chrzanowski, A Coates, E Elsen, J En-
gel, A Hannun, and S Satheesh. Persistent rnns: Stashing recurrent weights
on-chip. In International Conference on Machine Learning, pages 2024–2033,
2016.

[85] J.-D Dong, A.-C Cheng, D.-C Juan, W Wei, and M Sun. Dpp-net: Device-aware
progressive search for pareto-optimal neural architectures. In Proceedings of the
ECCV, pages 517–531, 2018.

[86] D. L Donoho. For most large underdetermined systems of linear equations the
minimal 1-norm solution is also the sparsest solution. Communications on Pure
and Applied Mathematics: A Journal Issued by the Courant Institute of Mathe-
matical Sciences, 59(6):797–829, 2006.

[87] D Driggs, J Tang, J Liang, M Davies, and C.-B Schönlieb. Spring: A fast
stochastic proximal alternating method for non-smooth non-convex optimization.
arXiv preprint arXiv:2002.12266, 2020.

[88] N Dryden, N Maruyama, T Benson, T Moon, M Snir, and B Van Essen. Improv-
ing strong-scaling of cnn training by exploiting finer-grained parallelism. In 2019
IEEE International Parallel and Distributed Processing Symposium (IPDPS),
pages 210–220. IEEE, 2019.

[89] N Dryden, N Maruyama, T Moon, T Benson, M Snir, and B Van Essen. Channel
and filter parallelism for large-scale cnn training. In Proceedings of the Inter-
national Conference for High Performance Computing, Networking, Storage and
Analysis, pages 1–20, 2019.

[90] N Dryden, T Moon, S. A Jacobs, and B Van Essen. Communication quantization
for data-parallel training of deep neural networks. In 2016 2nd Workshop on
Machine Learning in HPC Environments (MLHPC), pages 1–8. IEEE, 2016.

[91] K Du, A Pervaiz, X Yuan, A Chowdhery, Q Zhang, H Hoffmann, and J Jiang.
Server-driven video streaming for deep learning inference. In Proceedings of the
Annual conference of the ACM Special Interest Group on Data Communication
on the applications, technologies, architectures, and protocols for computer com-
munication, pages 557–570, 2020.

[92] S Du, M Ibrahim, M Shehata, and W Badawy. Automatic license plate recogni-
tion (alpr): A state-of-the-art review. IEEE Transactions on circuits and systems
for video technology, 23(2):311–325, 2012.

[93] J Duchi, E Hazan, and Y Singer. Adaptive subgradient methods for online
learning and stochastic optimization. Journal of Machine Learning Research,
12(Jul):2121–2159, 2011.

[94] A Elk. Distributed machine learning toolkit: Big data, big model, flexibility,
efficiency, 2019.

[95] T Elsken, J. H Metzen, and F Hutter. Multi-objective architecture search for
cnns. arXiv preprint arXiv:1804.09081, 2, 2018.

- 157 -

[96] M Everingham, L Van Gool, C. K. I Williams, J Winn, and A Zisserman. The
pascal visual object classes (voc) challenge. International Journal of Computer
Vision, 88(2):303–338, June 2010.

[97] G Frewat, C Baroud, R Sammour, A Kassem, and M Hamad. Android voice
recognition application with multi speaker feature. In 2016 18th MELECON,
pages 1–5. IEEE, 2016.

[98] N Friedman, D Geiger, and M Goldszmidt. Bayesian network classifiers. Machine
learning, 29(2-3):131–163, 1997.

[99] A. L Gaunt, M. A Johnson, M Riechert, D Tarlow, R Tomioka, D Vytiniotis, and
S Webster. Ampnet: Asynchronous model-parallel training for dynamic neural
networks. arXiv preprint arXiv:1705.09786, 2017.

[100] A Gholami, A Azad, P Jin, K Keutzer, and A Buluc. Integrated model, batch,
and domain parallelism in training neural networks. In Proceedings of the 30th on
Symposium on Parallelism in Algorithms and Architectures, pages 77–86, 2018.

[101] Y Gong, Z Jiang, Y Feng, B Hu, K Zhao, Q Liu, and W Ou. Edgerec: recom-
mender system on edge in mobile taobao. In Proceedings of the 29th ACM In-
ternational Conference on Information & Knowledge Management, pages 2477–
2484, 2020.

[102] I Goodfellow, J Pouget-Abadie, M Mirza, B Xu, D Warde-Farley, S Ozair,
A Courville, and Y Bengio. Generative adversarial nets. In Advances in neural
information processing systems, pages 2672–2680, 2014.

[103] P Goyal, P Dollár, R Girshick, P Noordhuis, L Wesolowski, A Kyrola, A Tulloch,
Y Jia, and K He. Accurate, large minibatch sgd: Training imagenet in 1 hour.
arXiv preprint arXiv:1706.02677, 2017.

[104] A Graves, A rahman Mohamed, and G. E Hinton. Speech recognition with deep
recurrent neural networks. ICASSP, pages 6645–6649, 2013.

[105] L Guan, W Yin, D Li, and X Lu. Xpipe: Efficient pipeline model parallelism for
multi-gpu dnn training. arXiv preprint arXiv:1911.04610, 2019.

[106] Y Guan and T Plötz. Ensembles of deep lstm learners for activity recognition
using wearables. IMWUT, 1(2):11, 2017.

[107] Q Guo, X Wang, Y Wu, Z Yu, D Liang, X Hu, and P Luo. Online knowledge dis-
tillation via collaborative learning. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 11020–11029, 2020.

[108] S Gupta, A Agrawal, K Gopalakrishnan, and P Narayanan. Deep learning with
limited numerical precision. In International Conference on Machine Learning,
pages 1737–1746, 2015.

[109] H HaddadPajouh, A Dehghantanha, R Khayami, and K.-K. R Choo. A deep
recurrent neural network based approach for internet of things malware threat
hunting. Future Generation Computer Systems, 85:88–96, 2018.

- 158 -

[110] S Han, H Shen, M Philipose, S Agarwal, A Wolman, and A Krishnamurthy.
Mcdnn: An approximation-based execution framework for deep stream process-
ing under resource constraints. In Proceedings of the 14th Annual International
Conference on Mobile Systems, Applications, and Services, pages 123–136, 2016.

[111] P Hansen, N Mladenović, and J. A. M Pérez. Variable neighbourhood search:
methods and applications. Annals of Operations Research, 175(1):367–407, 2010.

[112] A Harlap, D Narayanan, A Phanishayee, V Seshadri, N Devanur, G Ganger, and
P Gibbons. Pipedream: Fast and efficient pipeline parallel dnn training. arXiv
preprint arXiv:1806.03377, 2018.

[113] J. A Hartigan and M. A Wong. Algorithm as 136: A k-means clustering al-
gorithm. Journal of the Royal Statistical Society. Series C (Applied Statistics),
28(1), 1979.

[114] K He, G Gkioxari, P Dollar, and R. B Girshick. Mask r-cnn. 2017 IEEE
International Conference on Computer Vision (ICCV), pages 2980–2988, 2017.

[115] K He, X Zhang, S Ren, and J Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016.

[116] X He, D Mudigere, M Smelyanskiy, and M Takác. Distributed hessian-free
optimization for deep neural network. In Workshops at the Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

[117] C Hidey, F Liu, and R Goel. Reducing model jitter: Stable re-training of se-
mantic parsers in production environments. arXiv preprint arXiv:2204.04735,
2022.

[118] G Hinton. Rmsprop, 2019.

[119] G Hinton, O Vinyals, and J Dean. Distilling the knowledge in a neural network.
arXiv preprint arXiv:1503.02531, 2015.

[120] Q Ho, J Cipar, H Cui, S Lee, J. K Kim, P. B Gibbons, G. A Gibson, G Ganger,
and E. P Xing. More effective distributed ml via a stale synchronous parallel
parameter server. In Advances in neural information processing systems, pages
1223–1231, 2013.

[121] S Hochreiter and J Schmidhuber. Long short-term memory. Neural computation,
9(8):1735–1780, 1997.

[122] S. C Hoi, D Sahoo, J Lu, and P Zhao. Online learning: A comprehensive survey.
arXiv preprint arXiv:1802.02871, 2018.

[123] L Hou, R Zhang, and J. T Kwok. Analysis of quantized models. In International
Conference on Learning Representations, 2019.

- 159 -

[124] A. G Howard, M Zhu, B Chen, D Kalenichenko, W Wang, T Weyand, M An-
dreetto, and H Adam. Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.

[125] K Hsieh, A Harlap, N Vijaykumar, D Konomis, G. R Ganger, P. B Gibbons, and
OMutlu. Gaia: Geo-distributed machine learning approaching {LAN} speeds. In
14th {USENIX} Symposium on Networked Systems Design and Implementation
({NSDI} 17), pages 629–647, 2017.

[126] C.-H Hsu, S.-H Chang, J.-H Liang, H.-P Chou, C.-H Liu, S.-C Chang, J.-Y Pan,
Y.-T Chen, W Wei, and D.-C Juan. Monas: Multi-objective neural architecture
search using reinforcement learning. arXiv preprint arXiv:1806.10332, 2018.

[127] C Hu and B Li. Distributed inference with deep learning models across hetero-
geneous edge devices. In IEEE INFOCOM 2022-IEEE Conference on Computer
Communications, pages 330–339. IEEE, 2022.

[128] G Huang, S Liu, L Van der Maaten, and K. Q Weinberger. Condensenet: An
efficient densenet using learned group convolutions. In Proceedings of the IEEE
Conference on CVPR, pages 2752–2761, 2018.

[129] T.-Y Huang, R Johari, N McKeown, M Trunnell, and M Watson. A buffer-based
approach to rate adaptation: Evidence from a large video streaming service. In
Proceedings of the 2014 ACM conference on SIGCOMM, pages 187–198, 2014.

[130] Y Huang, Y Cheng, A Bapna, O Firat, D Chen, M Chen, H Lee, J Ngiam,
Q. V Le, Y Wu, et al. Gpipe: Efficient training of giant neural networks using
pipeline parallelism. In Advances in Neural Information Processing Systems,
pages 103–112, 2019.

[131] I Hubara, M Courbariaux, D Soudry, R El-Yaniv, and Y Bengio. Quantized
neural networks: Training neural networks with low precision weights and acti-
vations. The Journal of Machine Learning Research, 18(1):6869–6898, 2017.

[132] C.-C Hung, G Ananthanarayanan, P Bodik, L Golubchik, M Yu, P Bahl, and
M Philipose. Videoedge: Processing camera streams using hierarchical clusters.
In 2018 IEEE/ACM Symposium on Edge Computing (SEC), pages 115–131.
IEEE, 2018.

[133] Z Huo, B Gu, Q Yang, and H Huang. Decoupled parallel backpropagation with
convergence guarantee. arXiv preprint arXiv:1804.10574, 2018.

[134] J Ivanecky and S Mehlhase. An in-car speech recognition system for disabled
drivers. In International Conference on Text, Speech and Dialogue, pages 505–
512. Springer, 2012.

[135] S Jain, X Zhang, Y Zhou, G Ananthanarayanan, J Jiang, Y Shu, P Bahl, and
J Gonzalez. Spatula: Efficient cross-camera video analytics on large camera
networks. In 2020 IEEE/ACM Symposium on Edge Computing (SEC), pages
110–124. IEEE, 2020.

- 160 -

[136] S. Y Jang, B Kostadinov, and D Lee. Microservice-based edge device architecture
for video analytics. In SEC, pages 165–177, 2021.

[137] S Jeaugey. Nccl 2.0, 2017.

[138] Z Jia, M Zaharia, and A Aiken. Beyond data and model parallelism for deep
neural networks. arXiv preprint arXiv:1807.05358, 2018.

[139] A. H Jiang, D. L.-K Wong, C Canel, L Tang, I Misra, M Kaminsky, M. A
Kozuch, P Pillai, D. G Andersen, and G. R Ganger. Mainstream: Dynamic
{Stem-Sharing} for {Multi-Tenant} video processing. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 29–42, 2018.

[140] H Jiang, H Narasimhan, D Bahri, A Cotter, and A Rostamizadeh. Churn re-
duction via distillation. arXiv preprint arXiv:2106.02654, 2021.

[141] J Jiang, Z Luo, C Hu, Z He, Z Wang, S Xia, and C Wu. Joint model and
data adaptation for cloud inference serving. In 2021 IEEE Real-Time Systems
Symposium (RTSS), pages 279–289, 2021.

[142] J Jiang, G Ananthanarayanan, P Bodik, S Sen, and I Stoica. Chameleon: scal-
able adaptation of video analytics. In Proceedings of the 2018 conference of the
ACM special interest group on data communication, pages 253–266, 2018.

[143] J Jiang, V Sekar, H Milner, D Shepherd, I Stoica, and H Zhang. {CFA}: A
practical prediction system for video qoe optimization. In 13th {USENIX} Sym-
posium on Networked Systems Design and Implementation ({NSDI} 16), pages
137–150, 2016.

[144] S Jiang, Z Lin, Y Li, Y Shu, and Y Liu. Flexible high-resolution object detec-
tion on edge devices with tunable latency. In Proceedings of the 27th Annual
International Conference on Mobile Computing and Networking, pages 559–572,
2021.

[145] Y Jiang, V Nagarajan, C Baek, and J. Z Kolter. Assessing generalization of sgd
via disagreement. In ICLR, 2021.

[146] P Jin, B Ginsburg, and K Keutzer. Spatially parallel convolutions. 2018.

[147] P Kairouz, H. B McMahan, B Avent, A Bellet, M Bennis, A. N Bhagoji,
K Bonawitz, Z Charles, G Cormode, R Cummings, et al. Advances and open
problems in federated learning. arXiv preprint arXiv:1912.04977, 2019.

[148] R Kemker, M McClure, A Abitino, T. L Hayes, and C Kanan. Measuring
catastrophic forgetting in neural networks. In Thirty-second AAAI conference
on artificial intelligence, 2018.

[149] M Khani, G Ananthanarayanan, K Hsieh, J Jiang, R Netravali, Y Shu, M Al-
izadeh, and V Bahl. {RECL}: Responsive {Resource-Efficient} continuous learn-
ing for video analytics. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23), pages 917–932, 2023.

- 161 -

[150] J. K Kim, Q Ho, S Lee, X Zheng, W Dai, G. A Gibson, and E. P Xing. Strads:
a distributed framework for scheduled model parallel machine learning. In Pro-
ceedings of the Eleventh European Conference on Computer Systems, pages 1–16,
2016.

[151] D. P Kingma and J Ba. Adam: A method for stochastic optimization. Interna-
tional Conference on Learning Representations (ICLR), 2015.

[152] B. R Kiran, I Sobh, V Talpaert, P Mannion, A. A Al Sallab, S Yogamani, and
P Pérez. Deep reinforcement learning for autonomous driving: A survey. IEEE
Transactions on Intelligent Transportation Systems, 23(6):4909–4926, 2021.

[153] J Kohler, L Adolphs, and A Lucchi. Adaptive norms for deep learning with
regularized newton methods. NeurIPS 2019 Workshop: Beyond First-Order
Optimization Methods in Machine Learning, pages arXiv–1905, 2019.

[154] V. R Konda and J. N Tsitsiklis. Actor-critic algorithms. In Advances in neural
information processing systems, pages 1008–1014, 2000.

[155] J Konečnỳ, H. B McMahan, D Ramage, and P Richtárik. Federated optimiza-
tion: Distributed machine learning for on-device intelligence. arXiv preprint
arXiv:1610.02527, 2016.

[156] W Kong, Z. Y Dong, Y Jia, D. J Hill, Y Xu, and Y Zhang. Short-term residential
load forecasting based on lstm recurrent neural network. IEEE Transactions on
Smart Grid, 10(1):841–851, 2017.

[157] A Krizhevsky. One weird trick for parallelizing convolutional neural networks.
arXiv preprint arXiv:1404.5997, 2014.

[158] A Krizhevsky, V Nair, and G Hinton. Cifar-10 cifar-100 (canadian institute for
advanced research).

[159] T.-Y Ku, J. D Shin, Y.-S Chung, and H Choi. Hybrid cache architecture using big
data analysis for content delivery network. In 2014 IEEE Fourth International
Conference on Big Data and Cloud Computing, pages 273–274. IEEE, 2014.

[160] P Ladosz, L Weng, M Kim, and H Oh. Exploration in deep reinforcement
learning: A survey. Information Fusion, 85:1–22, 2022.

[161] X Lan, X Zhu, and S Gong. Knowledge distillation by on-the-fly native ensem-
ble. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pages 7528–7538, 2018.

[162] V Lebedev, Y Ganin, M Rakhuba, I Oseledets, and V Lempitsky. Speeding-up
convolutional neural networks using fine-tuned cp-decomposition. arXiv preprint
arXiv:1412.6553, 2014.

[163] V Lebedev and V Lempitsky. Fast convnets using group-wise brain damage. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recogni-
tion, 2016.

- 162 -

[164] S Lee, J. K Kim, X Zheng, Q Ho, G. A Gibson, and E. P Xing. On model
parallelization and scheduling strategies for distributed machine learning. In
Advances in neural information processing systems, pages 2834–2842, 2014.

[165] A. S Lewis and M. L Overton. Nonsmooth optimization via quasi-newton meth-
ods. (Mathematical Programming) 2013, 141(1):135–163, 2013.

[166] H Li, W Ouyang, and X Wang. Multi-bias non-linear activation in deep neural
networks. In International conference on machine learning, pages 221–229, 2016.

[167] J Li, W Monroe, A Ritter, M Galley, J Gao, and D Jurafsky. Deep reinforcement
learning for dialogue generation. arXiv preprint arXiv:1606.01541, 2016.

[168] L Li, Y Lv, and F.-Y Wang. Traffic signal timing via deep reinforcement learning.
IEEE/CAA Journal of Automatica Sinica, 3(3):247–254, 2016.

[169] M Li, D. G Andersen, J. W Park, A. J Smola, A Ahmed, V Josifovski, J Long,
E. J Shekita, and B.-Y Su. Scaling distributed machine learning with the pa-
rameter server. In 11th USENIX Symposium on OSDI, pages 583–598, 2014.

[170] M Li, D. G Andersen, A. J Smola, and K Yu. Communication efficient distributed
machine learning with the parameter server. In Advances in Neural Information
Processing Systems, 2014.

[171] T Li, A. K Sahu, A Talwalkar, and V Smith. Federated learning: Challenges,
methods, and future directions. IEEE signal processing magazine, 37(3):50–60,
2020.

[172] X Li and Y Guo. Adaptive active learning for image classification. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 859–
866, 2013.

[173] Y Li, A Padmanabhan, P Zhao, Y Wang, et al. Reducto: On-camera filter-
ing for resource-efficient real-time video analytics. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer Commu-
nication, page 359–376, 2020.

[174] Y Li, A Padmanabhan, P Zhao, Y Wang, G. H Xu, and R Netravali. Reducto:
On-camera filtering for resource-efficient real-time video analytics. In Proceedings
of the Annual conference of the ACM Special Interest Group on Data Communi-
cation on the applications, technologies, architectures, and protocols for computer
communication, pages 359–376, 2020.

[175] Z Li, X Zhu, J Gahm, R Pan, H Hu, A. C Begen, and D Oran. Probe and adapt:
Rate adaptation for http video streaming at scale. IEEE Journal on Selected
Areas in Communications, 32(4):719–733, 2014.

[176] Z Li, Y Shu, G Ananthanarayanan, L Shangguan, K Jamieson, and P Bahl.
Spider: A multi-hop millimeter-wave network for live video analytics. In 2021
IEEE/ACM Symposium on Edge Computing (SEC), pages 178–191. IEEE, 2021.

- 163 -

[177] T Lin, S. U Stich, K. K Patel, and M Jaggi. Don’t use large mini-batches, use
local sgd. arXiv preprint arXiv:1808.07217, 2018.

[178] Y Lin, S Han, H Mao, Y Wang, and W. J Dally. Deep gradient compression:
Reducing the communication bandwidth for distributed training. arXiv preprint
arXiv:1712.01887, 2017.

[179] N Ling, K Wang, Y He, G Xing, and D Xie. Rt-mdl: Supporting real-time
mixed deep learning tasks on edge platforms. In Proceedings of the 19th ACM
conference on embedded networked sensor systems, pages 1–14, 2021.

[180] C Liu, B Zoph, M Neumann, J Shlens, W Hua, L.-J Li, L Fei-Fei, A Yuille,
J Huang, and K Murphy. Progressive neural architecture search. In Proceedings
of the European Conference on Computer Vision (ECCV), pages 19–34, 2018.

[181] H Liu, K Simonyan, O Vinyals, C Fernando, and K Kavukcuoglu. Hi-
erarchical representations for efficient architecture search. arXiv preprint
arXiv:1711.00436, 2017.

[182] L Liu, M Zhang, Y Lin, and L Qin. A survey on workflow management and
scheduling in cloud computing. In 2014 14th IEEE/ACM International Sympo-
sium on Cluster, Cloud and Grid Computing, pages 837–846. IEEE, 2014.

[183] W Lloyd, S Ramesh, S Chinthalapati, L Ly, and S Pallickara. Serverless com-
puting: An investigation of factors influencing microservice performance. In
2018 IEEE international conference on cloud engineering (IC2E), pages 159–
169. IEEE, 2018.

[184] F Loewenherz, V Bahl, and Y Wang. Video analytics towards vision zero. In-
stitute of Transportation Engineers. ITE Journal, 87(3):25, 2017.

[185] Q Lu, T Peng, W Wang, W Wang, and C Hu. Utility-based resource allocation
in uplink of ofdma-based cognitive radio networks. International Journal of
Communication Systems, 23(2):252–274, 2010.

[186] Z Lu, K Chan, S Pu, and T La Porta. Crowdvision: A computing platform
for video crowdprocessing using deep learning. IEEE Transactions on Mobile
Computing, 18(7):1513–1526, 2018.

[187] M.-T Luong, H Pham, and C. D Manning. Effective approaches to attention-
based neural machine translation. EMNLP, 2015.

[188] N Ma, X Zhang, H.-T Zheng, and J Sun. Shufflenet v2: Practical guidelines for
efficient cnn architecture design. In Proceedings of the European Conference on
Computer Vision (ECCV), 2018.

[189] A Maas, R. E Daly, P. T Pham, D Huang, A. Y Ng, and C Potts. Learning
word vectors for sentiment analysis. In Proceedings of the 49th annual meeting
of the association for computational linguistics: Human language technologies,
pages 142–150, 2011.

- 164 -

[190] R Madan, J Borran, A Sampath, N Bhushan, A Khandekar, and T Ji. Cell as-
sociation and interference coordination in heterogeneous lte-a cellular networks.
IEEE Journal on selected areas in communications, 28(9):1479–1489, 2010.

[191] R Madan, S. P Boyd, and S Lall. Fast algorithms for resource allocation in
wireless cellular networks. IEEE/ACM Transactions on Networking (TON),
18(3):973–984, 2010.

[192] H Mao, M Alizadeh, I Menache, and S Kandula. Resource management with
deep reinforcement learning. In Proceedings of the 15th ACM Workshop on Hot
Topics in Networks. ACM, 2016.

[193] H Mao, R Netravali, and M Alizadeh. Neural adaptive video streaming with
pensieve. In Proceedings of the Conference of the ACM Special Interest Group
on Data Communication, pages 197–210, 2017.

[194] W.-L Mao, W.-C Chen, C.-T Wang, and Y.-H Lin. Recycling waste classifica-
tion using optimized convolutional neural network. Resources, Conservation and
Recycling, 164:105132, 2021.

[195] M Mathieu, M Henaff, and Y LeCun. Fast training of convolutional networks
through ffts. arXiv preprint arXiv:1312.5851, 2013.

[196] W McColl. Bulk synchronous parallel computing. Abstract Machine Models for
Highly Parallel Computers, Oxford University Press, Oxford, 1995.

[197] R McDonald, K Hall, and G Mann. Distributed training strategies for the struc-
tured perceptron. In Human language technologies: The 2010 annual conference
of the North American chapter of the association for computational linguistics,
pages 456–464. Association for Computational Linguistics, 2010.

[198] H. B McMahan, E Moore, D Ramage, S Hampson, et al. Communication-
efficient learning of deep networks from decentralized data. arXiv preprint
arXiv:1602.05629, 2016.

[199] H. B McMahan, D Ramage, K Talwar, and L Zhang. Learning differentially
private recurrent language models. ICLR 2018, 2017.

[200] N Mehrabi, F Morstatter, N Saxena, K Lerman, and A Galstyan. A survey
on bias and fairness in machine learning. ACM computing surveys (CSUR),
54(6):1–35, 2021.

[201] X Meng, J Bradley, B Yavuz, E Sparks, S Venkataraman, D Liu, J Freeman,
D Tsai, M Amde, S Owen, et al. Mllib: Machine learning in apache spark. The
Journal of Machine Learning Research, 17(1):1235–1241, 2016.

[202] A Mirhoseini, A Goldie, H Pham, B Steiner, Q. V Le, and J Dean. A hierarchical
model for device placement. 2018.

- 165 -

[203] A Mirhoseini, H Pham, Q. V Le, B Steiner, R Larsen, Y Zhou, N Kumar,
M Norouzi, S Bengio, and J Dean. Device placement optimization with re-
inforcement learning. In Proceedings of the 34th International Conference on
Machine Learning-Volume 70, pages 2430–2439. JMLR. org, 2017.

[204] G Montavon, G Orr, and K.-R Müller. Neural networks: tricks of the trade,
volume 7700. springer, 2012.

[205] P Moritz, R Nishihara, and M Jordan. A linearly-convergent stochastic l-bfgs
algorithm. In Artificial Intelligence and Statistics, pages 249–258, 2016.

[206] M. S Munir, S. F Abedin, M. G. R Alam, D. H Kim, and C. S Hong. Rnn based
energy demand prediction for smart-home in smart-grid framework. 2017.

[207] A Murad, F. A Kraemer, K Bach, and G Taylor. Autonomous man-
agement of energy-harvesting iot nodes using deep reinforcement learning.
arXiv:1905.04181, 2019.

[208] P Nakkiran and Y Bansal. Distributional generalization: A new kind of gener-
alization. arXiv preprint arXiv:2009.08092, 2020.

[209] P Nakkiran, G Kaplun, Y Bansal, T Yang, B Barak, and I Sutskever. Deep
double descent: Where bigger models and more data hurt. arXiv preprint
arXiv:1912.02292, 2019.

[210] M. A Namjoshi and P. A Kulkarni. Novel online profiling for virtual machines.
In Proceedings of the 6th ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, pages 133–144, 2010.

[211] M Naphade, V Kolar, and S Biswas. Multi-camera large-scale intelligent video
analytics with deepstream sdk. Accessed: March, 9, 2023.

[212] P Naraei, A Abhari, and A Sadeghian. Application of multilayer perceptron
neural networks and support vector machines in classification of healthcare data.
In FTC, pages 848–852, Dec 2016.

[213] Y Nesterov. Gradient methods for minimizing composite functions. Mathematical
Programming, 140(1):125–161, 2013.

[214] C Nguyen, A Mehta, C Klein, and E Elmroth. Why cloud applications are not
ready for the edge (yet). In Proceedings of the 4th ACM/IEEE Symposium on
Edge Computing, pages 250–263, 2019.

[215] J Ni and D. H Tsang. Large-scale cooperative caching and application-level mul-
ticast in multimedia content delivery networks. IEEE Communications Maga-
zine, 43(5):98–105, 2005.

[216] Nvidia. Jetson Nano: Deep Learning Inference Benchmarks, 2021 (accessed 19,
1, 2021).

[217] D Oh and I Yun. Residual error based anomaly detection using auto-encoder in
smd machine sound. Sensors, 18(5):1308, 2018.

- 166 -

[218] K Osawa, Y Tsuji, Y Ueno, A Naruse, R Yokota, and S Matsuoka. Second-order
optimization method for large mini-batch: Training resnet-50 on imagenet in 35
epochs. arXiv preprint arXiv:1811.12019, 2018.

[219] A Padmanabhan, N Agarwal, A Iyer, G Ananthanarayanan, Y Shu, N Kar-
ianakis, G. H Xu, and R Netravali. Gemel: Model merging for {Memory-
Efficient},{Real-Time} video analytics at the edge. In 20th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 23), pages 973–994,
2023.

[220] X Pan, M Lam, S Tu, D Papailiopoulos, C Zhang, M. I Jordan, K Ramchandran,
and C Re. Cyclades: Conflict-free asynchronous machine learning. In Advances
in Neural Information Processing Systems, pages 2568–2576, 2016.

[221] G. I Parisi, R Kemker, J. L Part, C Kanan, and S Wermter. Continual lifelong
learning with neural networks: A review. Neural Networks, 2019.

[222] R Parr and S. J Russell. Reinforcement learning with hierarchies of machines.
In NIPS, 1998.

[223] I Pelle, J Czentye, J Dóka, A Kern, B. P Gerő, and B Sonkoly. Operating latency
sensitive applications on public serverless edge cloud platforms. IEEE Internet
of Things Journal, 8(10):7954–7972, 2020.

[224] A Petrowski, G Dreyfus, and C Girault. Performance analysis of a pipelined
backpropagation parallel algorithm. IEEE Transactions on Neural Networks,
4(6):970–981, 1993.

[225] H Pham, M. Y Guan, B Zoph, Q. V Le, and J Dean. Efficient neural architecture
search via parameter sharing. arXiv preprint arXiv:1802.03268, 2018.

[226] R Poddar, G Ananthanarayanan, S Setty, S Volos, and R. A Popa.
Visor:{Privacy-Preserving} video analytics as a cloud service. In 29th USENIX
Security Symposium (USENIX Security 20), pages 1039–1056, 2020.

[227] F Ponce, G Márquez, and H Astudillo. Migrating from monolithic architecture
to microservices: A rapid review. In 2019 38th International Conference of the
Chilean Computer Science Society (SCCC), pages 1–7. IEEE, 2019.

[228] D Povey, X zhang, and S Khudanpur. Parallel training of dnns with natural
gradient and parameter averaging. ICLR 2015 -, Aug 2017.

[229] B Qian, J Su, Z Wen, D. N Jha, Y Li, Y Guan, D Puthal, P James, R Yang, A. Y
Zomaya, et al. Orchestrating the development lifecycle of machine learning-based
iot applications: A taxonomy and survey. ACM Computing Surveys (CSUR),
53(4):1–47, 2020.

[230] B Qian, Z Wen, J Tang, Y Yuan, A. Y Zomaya, and R Ranjan. Osmoticgate:
Adaptive edge-based real-time video analytics for the internet of things. IEEE
Transactions on Computers, 72(4):1178–1193, 2022.

- 167 -

[231] N Qian. On the momentum term in gradient descent learning algorithms. Neural
networks, 12(1):145–151, 1999.

[232] D Quillen, E Jang, O Nachum, C Finn, J Ibarz, and S Levine. Deep reinforcement
learning for vision-based robotic grasping: A simulated comparative evaluation
of off-policy methods. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 6284–6291. IEEE, 2018.

[233] J. R Quinlan. Induction of decision trees. Machine learning, 1(1):81–106, 1986.

[234] R Raina, A Madhavan, and A. Y Ng. Large-scale deep unsupervised learning
using graphics processors. In Proceedings of the 26th annual ICML. ACM, 2009.

[235] N Ramakrishnan and T Soni. Network traffic prediction using recurrent neural
networks. In 2018 17th IEEE ICMLA. IEEE, 2018.

[236] X Ran, H Chen, X Zhu, Z Liu, and J Chen. Deepdecision: A mobile deep
learning framework for edge video analytics. In IEEE INFOCOM 2018-IEEE
Conference on Computer Communications, pages 1421–1429. IEEE, 2018.

[237] M Rastegari, V Ordonez, J Redmon, and A Farhadi. Xnor-net: Imagenet classi-
fication using binary convolutional neural networks. In European Conference on
Computer Vision. Springer, 2016.

[238] E Real, A Aggarwal, Y Huang, and Q. V Le. Regularized evolution for image
classifier architecture search. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2019.

[239] B Recht, C Re, S Wright, and F Niu. Hogwild: A lock-free approach to paral-
lelizing stochastic gradient descent. In Advances in neural information processing
systems, pages 693–701, 2011.

[240] J Redmon and A Farhadi. Yolov3: An incremental improvement. arXiv preprint
arXiv:1804.02767, 2018.

[241] L Ren, X Yuan, J Lu, M Yang, and J Zhou. Deep reinforcement learning with
iterative shift for visual tracking. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 684–700, 2018.

[242] S Ren, K He, R Girshick, and J Sun. Faster r-cnn: towards real-time object
detection with region proposal networks. In Proceedings of the 28th International
Conference on Neural Information Processing Systems-Volume 1, pages 91–99,
2015.

[243] A Romero, N Ballas, S. E Kahou, A Chassang, C Gatta, and Y Bengio. Fitnets:
Hints for thin deep nets. arXiv preprint arXiv:1412.6550, 2014.

[244] F Ruelens, B. J Claessens, S Vandael, B De Schutter, R Babuška, and R Bel-
mans. Residential demand response of thermostatically controlled loads using
batch reinforcement learning. IEEE Transactions on Smart Grid, 8(5):2149–
2159, 2016.

- 168 -

[245] S Russell and P Norvig. Artificial intelligence: a modern approach. 2002.

[246] A Sadeghi, G Wang, and G. B Giannakis. Deep reinforcement learning for
adaptive caching in hierarchical content delivery networks. IEEE Transactions
on Cognitive Communications and Networking, 5(4):1024–1033, 2019.

[247] M Salehe, Z Hu, S. H Mortazavi, I Mohomed, and T Capes. Videopipe: Build-
ing video stream processing pipelines at the edge. In Proceedings of the 20th
International Middleware Conference Industrial Track, pages 43–49, 2019.

[248] M Sandler, A Howard, M Zhu, A Zhmoginov, and L.-C Chen. Mobilenetv2:
Inverted residuals and linear bottlenecks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018.

[249] J Schulman, F Wolski, P Dhariwal, A Radford, and O Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[250] F Seide, H Fu, J Droppo, G Li, and D Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth An-
nual Conference of the International Speech Communication Association, 2014.

[251] A Sergeev and M Del Balso. Horovod: fast and easy distributed deep learning
in tensorflow. arXiv preprint arXiv:1802.05799, 2018.

[252] G. I Shamir, D Lin, and L Coviello. Smooth activations and reproducibility in
deep networks. arXiv preprint arXiv:2010.09931, 2020.

[253] W Shang, K Sohn, D Almeida, and H Lee. Understanding and improving convo-
lutional neural networks via concatenated rectified linear units. In ICML, pages
2217–2225, 2016.

[254] N Shazeer, Y Cheng, N Parmar, D Tran, A Vaswani, P Koanantakool,
P Hawkins, H Lee, M Hong, C Young, R Sepassi, and B Hechtman. Mesh-
TensorFlow: Deep learning for supercomputers. In Neural Information Process-
ing Systems, 2018.

[255] J Shlens. A tutorial on principal component analysis. arXiv preprint
arXiv:1404.1100, 2014.

[256] A Shustanov and P Yakimov. Cnn design for real-time traffic sign recognition.
Procedia engineering, 201:718–725, 2017.

[257] L Sifre and S Mallat. Rigid-motion scattering for image classification. Ph. D.
dissertation, 2014.

[258] S. H Silva and P Najafirad. Opportunities and challenges in deep learning ad-
versarial robustness: A survey. arXiv preprint arXiv:2007.00753, 2020.

[259] K Simonyan and A Zisserman. Very deep convolutional networks for large-scale
image recognition. arXiv preprint arXiv:1409.1556, 2014.

- 169 -

[260] K. J Singh and D. S Kapoor. Create your own internet of things: A survey of
iot platforms. IEEE Consumer Electronics Magazine, 6(2):57–68, 2017.

[261] S. P Singh. Reinforcement learning with a hierarchy of abstract models. In
Proceedings of the National Conference on Artificial Intelligence. JOHN WILEY
& SONS LTD, 1992.

[262] S Singh and I Chana. A survey on resource scheduling in cloud computing:
Issues and challenges. Journal of grid computing, 14(2):217–264, 2016.

[263] S. L Smith, P.-J Kindermans, C Ying, and Q. V Le. Don’t decay the learning
rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

[264] R. R Snapp and G. I Shamir. Synthesizing irreproducibility in deep networks.
arXiv preprint arXiv:2102.10696, 2021.

[265] E. R Sparks, A Talwalkar, D Haas, M. J Franklin, M. I Jordan, and T Kraska.
Automating model search for large scale machine learning. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, pages 368–380. ACM, 2015.

[266] K Spiteri, R Urgaonkar, and R. K Sitaraman. Bola: Near-optimal bitrate adap-
tation for online videos. IEEE/ACM Transactions on Networking, 28(4):1698–
1711, 2020.

[267] S. U Stich, C. L Muller, and B Gartner. Optimization of convex functions with
random pursuit. SIAM Journal on Optimization, 23(2):1284–1309, 2013.

[268] S. U Stich. Local sgd converges fast and communicates little. In ICLR 2019 ICLR
2019 International Conference on Learning Representations, number CONF,
2019.

[269] N Strom. Scalable distributed dnn training using commodity gpu cloud comput-
ing. In Sixteenth Annual Conference of the International Speech Communication
Association, 2015.

[270] Y Sun, X Yin, J Jiang, V Sekar, F Lin, N Wang, T Liu, and B Sinopoli. Cs2p:
Improving video bitrate selection and adaptation with data-driven throughput
prediction. In Proceedings of the 2016 ACM SIGCOMM Conference, pages 272–
285, 2016.

[271] J Supancic III and D Ramanan. Tracking as online decision-making: Learning a
policy from streaming videos with reinforcement learning. In Proceedings of the
IEEE International Conference on Computer Vision, pages 322–331, 2017.

[272] R. S Sutton and A. G Barto. Reinforcement learning: An introduction. MIT
press, 2018.

[273] C Szegedy, S Ioffe, V Vanhoucke, and A. A Alemi. Inception-v4, inception-
resnet and the impact of residual connections on learning. In Thirty-First AAAI
Conference on Artificial Intelligence, 2017.

- 170 -

[274] C Szegedy, V Vanhoucke, S Ioffe, J Shlens, and Z Wojna. Rethinking the incep-
tion architecture for computer vision. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2818–2826, 2016.

[275] C Tan, F Sun, T Kong, W Zhang, C Yang, and C Liu. A survey on deep transfer
learning. In International conference on artificial neural networks, pages 270–
279. Springer, 2018.

[276] M Tan, B Chen, R Pang, V Vasudevan, M Sandler, A Howard, and Q. V Le.
Mnasnet: Platform-aware neural architecture search for mobile. In CVPR, 2019.

[277] T Tan and G Cao. Fastva: Deep learning video analytics through edge processing
and npu in mobile. In IEEE INFOCOM 2020-IEEE Conference on Computer
Communications, pages 1947–1956. IEEE, 2020.

[278] J Tang and M Davies. A fast stochastic plug-and-play admm for imaging inverse
problems. arXiv preprint arXiv:2006.11630, 2020.

[279] J Tang, K Egiazarian, M Golbabaee, and M Davies. The practicality of stochastic
optimization in imaging inverse problems. IEEE Transactions on Computational
Imaging, 6:1471–1485, 2020.

[280] J Tang, M Golbabaee, F Bach, and M. E davies. Rest-katyusha: Exploiting the
solution's structure via scheduled restart schemes. In Advances in Neural Infor-
mation Processing Systems 31, pages 427–438. Curran Associates, Inc., 2018.

[281] J Tang, M Golbabaee, and M. E Davies. Gradient projection iterative sketch for
large-scale constrained least-squares. In International Conference on Machine
Learning, pages 3377–3386. PMLR, 2017.

[282] S Thrun and A Schwartz. Finding structure in reinforcement learning. In NIPS,
1995.

[283] A Ullah, J Ahmad, K Muhammad, M Sajjad, and S. W Baik. Action recognition
in video sequences using deep bi-directional lstm with cnn features. IEEE Access,
6:1155–1166, 2018.

[284] M Vacher, B Lecouteux, J. S Romero, M Ajili, F Portet, and S Rossato. Speech
and speaker recognition for home automation: Preliminary results. In SpeD.
IEEE, 2015.

[285] V Vanhoucke, A Senior, and M. Z Mao. Improving the speed of neural networks
on cpus. 2011.

[286] J Vanschoren. Meta-learning: A survey. arXiv preprint arXiv:1810.03548, 2018.

[287] S Venugopalan, H Xu, J Donahue, M Rohrbach, R Mooney, and K Saenko.
Translating videos to natural language using deep recurrent neural networks.
arXiv preprint arXiv:1412.4729, 2014.

- 171 -

[288] J Wan, Y Yuan, and Q Wang. Traffic congestion analysis: A new perspective. In
2017 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 1398–1402, 2017.

[289] I Wang, E Liri, and K Ramakrishnan. Supporting iot applications with serverless
edge clouds. In 2020 IEEE 9th International Conference on Cloud Networking
(CloudNet), pages 1–4. IEEE, 2020.

[290] L Wang, D Ghosh, M. T. G Diaz, A Farahat, M Alam, C Gupta, J Chen, and
M Marathe. Wisdom of the ensemble: Improving consistency of deep learning
models. arXiv preprint arXiv:2011.06796, 2020.

[291] M Wang, C.-c Huang, and J Li. Supporting very large models using automatic
dataflow graph partitioning. In Proceedings of the Fourteenth EuroSys Confer-
ence 2019, pages 1–17, 2019.

[292] S Wang, T Tuor, T Salonidis, K. K Leung, C Makaya, T He, and K Chan.
When edge meets learning: Adaptive control for resource-constrained distributed
machine learning. In IEEE INFOCOM 2018-IEEE Conference on Computer
Communications, pages 63–71. IEEE, 2018.

[293] Y Wang, W Wang, J Zhang, J Jiang, and K Chen. Bridging the {Edge-Cloud}
barrier for real-time advanced vision analytics. In 11th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 19), 2019.

[294] Y Wang, W Wang, J Zhang, J Jiang, and K Chen. Bridging the Edge-Cloud
barrier for real-time advanced vision analytics. In 11th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 19), 2019.

[295] Z Wang, J Zhan, C Duan, X Guan, P Lu, and K Yang. A review of vehicle detec-
tion techniques for intelligent vehicles. IEEE Transactions on Neural Networks
and Learning Systems, 34(8):3811–3831, 2022.

[296] L Wen, D Du, Z Cai, Z Lei, M Chang, H Qi, J Lim, M Yang, and S Lyu.
UA-DETRAC: A new benchmark and protocol for multi-object detection and
tracking. Computer Vision and Image Understanding, 2020.

[297] W Wen, C Wu, Y Wang, Y Chen, and H Li. Learning structured sparsity in deep
neural networks. In Advances in neural information processing systems, pages
2074–2082, 2016.

[298] W Wen, C Xu, F Yan, C Wu, Y Wang, Y Chen, and H Li. Terngrad: Ternary
gradients to reduce communication in distributed deep learning. In Advances in
neural information processing systems, pages 1509–1519, 2017.

[299] Z Wen, D O’Neill, and H Maei. Optimal demand response using device-based re-
inforcement learning. IEEE Transactions on Smart Grid, 6(5):2312–2324, 2015.

[300] B Wu, F Iandola, P. H Jin, and K Keutzer. Squeezedet: Unified, small, low power
fully convolutional neural networks for real-time object detection for autonomous
driving. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition Workshops, pages 129–137, 2017.

- 172 -

[301] S Wu, G Li, F Chen, and L Shi. Training and inference with integers in deep
neural networks. In International Conference on Learning Representations, 2018.

[302] Y Wu, M Schuster, Z Chen, Q. V Le, M Norouzi, W Macherey, M Krikun,
Y Cao, Q Gao, K Macherey, et al. Google’s neural machine translation sys-
tem: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

[303] E. P Xing, Q Ho, W Dai, J. K Kim, J Wei, S Lee, X Zheng, P Xie, A Kumar,
and Y Yu. Petuum: A new platform for distributed machine learning on big
data. IEEE Transactions on Big Data, 1(2):49–67, 2015.

[304] C Xiong, V Zhong, and R Socher. Dcn+: Mixed objective and deep residual
coattention for question answering. arXiv preprint arXiv:1711.00106, 2017.

[305] W Xiong, C Shan, Z Sun, and Q Meng. Real-time processing and storage of
multimedia data with content delivery network in vehicle monitoring system. In
2018 6th International Conference on Wireless Networks and Mobile Communi-
cations (WINCOM), pages 1–4. IEEE, 2018.

[306] R Xu, R Kumar, P Wang, P Bai, G Meghanath, S Chaterji, S Mitra, and
S Bagchi. Approxnet: Content and contention-aware video object classification
system for embedded clients. ACM Transactions on Sensor Networks (TOSN),
18(1):1–27, 2021.

[307] R Xu, C.-l Zhang, P Wang, J Lee, S Mitra, S Chaterji, Y Li, and S Bagchi.
Approxdet: content and contention-aware approximate object detection for mo-
biles. In Proceedings of the 18th Conference on Embedded Networked Sensor
Systems, pages 449–462, 2020.

[308] R Xu, S Razavi, and R Zheng. Edge video analytics: A survey on applications,
systems and enabling techniques. IEEE Communications Surveys & Tutorials,
2023.

[309] N. J Yadwadkar, B Hariharan, J. E Gonzalez, and R Katz. Multi-task learning for
straggler avoiding predictive job scheduling. The Journal of Machine Learning
Research, 17(1):3692–3728, 2016.

[310] Z Yang, X Wang, J Wu, Y Zhao, Q Ma, X Miao, L Zhang, and Z Zhou. Edge-
duet: Tiling small object detection for edge assisted autonomous mobile vision.
IEEE/ACM Transactions on Networking, 2022.

[311] S Yi, Z Hao, Q Zhang, Q Zhang, W Shi, and Q Li. Lavea: Latency-aware video
analytics on edge computing platform. In Proceedings of the Second ACM/IEEE
Symposium on Edge Computing, pages 1–13, 2017.

[312] Y You, I Gitman, and B Ginsburg. Large batch training of convolutional net-
works. arXiv preprint arXiv:1708.03888, 2017.

[313] C Yu, A Velu, E Vinitsky, J Gao, Y Wang, A Bayen, and Y Wu. The surpris-
ing effectiveness of ppo in cooperative multi-agent games. Advances in Neural
Information Processing Systems, 35:24611–24624, 2022.

- 173 -

[314] H Yu, S Yang, and S Zhu. Parallel restarted sgd for non-convex optimization with
faster convergence and less communication. arXiv preprint arXiv:1807.06629,
2(4):7, 2018.

[315] H Yu, S Yang, and S Zhu. Parallel restarted sgd with faster convergence and less
communication: Demystifying why model averaging works for deep learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages
5693–5700, 2019.

[316] S Yun, J Choi, Y Yoo, K Yun, and J Young Choi. Action-decision networks for
visual tracking with deep reinforcement learning. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2711–2720, 2017.

[317] S Zagoruyko and N Komodakis. Paying more attention to attention: Improving
the performance of convolutional neural networks via attention transfer. arXiv
preprint arXiv:1612.03928, 2016.

[318] X Zeng, B Fang, H Shen, and M Zhang. Distream: scaling live video analytics
with workload-adaptive distributed edge intelligence. In Proceedings of the 18th
Conference on Embedded Networked Sensor Systems, pages 409–421, 2020.

[319] S Zhai, Y Cheng, Z. M Zhang, and W Lu. Doubly convolutional neural networks.
In Advances in neural information processing systems, pages 1082–1090, 2016.

[320] Z.-H Zhan, X.-F Liu, Y.-J Gong, J Zhang, H. S.-H Chung, and Y Li. Cloud
computing resource scheduling and a survey of its evolutionary approaches. ACM
Computing Surveys (CSUR), 47(4):63, 2015.

[321] B Zhang, X Jin, S Ratnasamy, J Wawrzynek, and E. A Lee. Awstream: Adaptive
wide-area streaming analytics. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication, pages 236–252, 2018.

[322] C Zhang, A Kumar, and C Ré. Materialization optimizations for feature selection
workloads. ACM Transactions on Database Systems (TODS), 41(1):2, 2016.

[323] C Zhang, P Patras, and H Haddadi. Deep learning in mobile and wireless net-
working: A survey. IEEE Communications Surveys & Tutorials, 2019.

[324] H Zhang, J Li, K Kara, D Alistarh, J Liu, and C Zhang. Zipml: Training
linear models with end-to-end low precision, and a little bit of deep learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume
70, pages 4035–4043. JMLR. org, 2017.

[325] H Zhang, G Ananthanarayanan, P Bodik, M Philipose, P Bahl, and M. J Freed-
man. Live video analytics at scale with approximation and {Delay-Tolerance}.
In 14th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 17), pages 377–392, 2017.

[326] H Zhang, M Shen, Y Huang, Y Wen, Y Luo, G Gao, and K Guan. A server-
less cloud-fog platform for dnn-based video analytics with incremental learning.
arXiv preprint arXiv:2102.03012, 2021.

- 174 -

[327] J Zhang, C De Sa, I Mitliagkas, and C Ré. Parallel sgd: When does averaging
help? arXiv preprint arXiv:1606.07365, 2016.

[328] L Zhang, J Xu, Z Lu, and L Song. Crossvision: Real-time on-camera video anal-
ysis via common roi load balancing. IEEE Transactions on Mobile Computing,
pages 1–13, 2023.

[329] M Zhang, F Wang, Y Zhu, J Liu, and Z Wang. Towards cloud-edge collaborative
online video analytics with fine-grained serverless pipelines. In Proceedings of the
12th ACM Multimedia Systems Conference, pages 80–93, 2021.

[330] Q.-s Zhang and S.-C Zhu. Visual interpretability for deep learning: a sur-
vey. Frontiers of Information Technology & Electronic Engineering, 19(1):27–39,
2018.

[331] S Zhang, A. E Choromanska, and Y LeCun. Deep learning with elastic averaging
sgd. In Advances in neural information processing systems, pages 685–693, 2015.

[332] W Zhang, W Guo, X Liu, Y Liu, J Zhou, B Li, Q Lu, and S Yang. Lstm-based
analysis of industrial iot equipment. IEEE Access, 6:23551–23560, 2018.

[333] X Zhang, X Zhou, M Lin, and J Sun. Shufflenet: An extremely efficient convo-
lutional neural network for mobile devices. In CVPR, pages 6848–6856, 2018.

[334] Y Zhang, T Xiang, T. M Hospedales, and H Lu. Deep mutual learning. In Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 4320–4328, 2018.

[335] C Zhao, C Chen, Z He, and Z Wu. Application of auxiliary classifier wasser-
stein generative adversarial networks in wireless signal classification of illegal
unmanned aerial vehicles. Applied Sciences, 8(12):2664, 2018.

[336] C Zhao, M Shi, Z Cai, and C Chen. Research on the open-categorical classifica-
tion of the internet-of-things based on generative adversarial networks. Applied
Sciences, 2018.

[337] D Zhao, Y Chen, and L Lv. Deep reinforcement learning with visual attention
for vehicle classification. IEEE Transactions on Cognitive and Developmental
Systems, 2016.

[338] K Zhao, Z Zhou, X Chen, R Zhou, X Zhang, et al. Edgeadaptor: Online configu-
ration adaption, model selection and resource provisioning for edge dnn inference
serving at scale. IEEE Transactions on Mobile Computing, 22(10):5870–5886,
2023.

[339] W. X Zhao, K Zhou, J Li, T Tang, X Wang, Y Hou, Y Min, B Zhang,
J Zhang, Z Dong, et al. A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

[340] S Zheng, Y Song, T Leung, and I Goodfellow. Improving the robustness of deep
neural networks via stability training. In Proceedings of the ieee conference on
computer vision and pattern recognition, pages 4480–4488, 2016.

- 175 -

[341] B Zhou, J Cao, X Zeng, and H Wu. Adaptive traffic light control in wireless
sensor network-based intelligent transportation system. In VTC, pages 1–5.
IEEE, 2010.

[342] L Zhou, M. H Samavatian, A Bacha, S Majumdar, and R Teodorescu. Adaptive
parallel execution of deep neural networks on heterogeneous edge devices. In
Proceedings of the 4th ACM/IEEE Symposium on Edge Computing, pages 195–
208, 2019.

[343] S Zhou, Y Wu, Z Ni, X Zhou, H Wen, and Y Zou. Dorefa-net: Training
low bitwidth convolutional neural networks with low bitwidth gradients. arXiv
preprint arXiv:1606.06160, 2016.

[344] Y Zhou, S Ebrahimi, S. Ö Arık, H Yu, H Liu, and G Diamos. Resource-efficient
neural architect. arXiv preprint arXiv:1806.07912, 2018.

[345] Z Zhou, X Chen, E Li, L Zeng, K Luo, and J Zhang. Edge intelligence: Paving
the last mile of artificial intelligence with edge computing. Proceedings of the
IEEE, 107(8):1738–1762, 2019.

[346] M Zinkevich, M Weimer, L Li, and A. J Smola. Parallelized stochastic gradient
descent. In Advances in neural information processing systems, pages 2595–2603,
2010.

176

	Introduction
	Research Questions
	Contributions
	Thesis Structure

	Background and Literature Review
	ML-based IoT applications
	ML-based IoT application - A Smart City Use Case
	Taxonomy of the literature review

	Cloud AI
	TML vs. DL vs. RL
	Traditional Machine Learning
	Deep Learning
	Reinforcement Learning (RL)
	Distributed Machine Learning
	Optimize Cloud AI

	Edge AI
	Efficient Model Architecture
	Model Compression
	Declarative Machine Learning and Deployment
	Deployment Optimization

	Edge-cloud Collaboration
	Federated Learning
	Knowledge Transfer Learning
	Distributed ML systems

	Edge Video Analytics (EVA)
	EVA Application Architectures
	Techniques for optimizing the performance of EVA applications
	Performance profiling:
	Workload Scheduling:
	Other research works

	Gaps and challenges in edge-cloud collaboration
	Conclusion

	OSMOTICGATE: Adaptive Edge-based Real-time Video Analytics for the Internet of Things
	Introduction
	Background and Motivation
	Edge-Cloud Computing Paradigm for Video Analytics
	Motivation

	System Model
	Adapting Bitrate-based Video Streaming
	Hierarchical Queue Model (HQM)
	Latency Model
	Throughput Model

	Constrained Min-Latency Problem
	Problem Formulation
	Challenges in the optimization task
	Problem Transformation

	Two-stage Algorithm Design
	Overview of Two-Stage Gradient Algorithm
	Projected Gradient Descent for Video Analytic Offloading (PGD-VAO)
	Choice of Line Search

	Projected Gradient Sampling for Video Analytic Offloading (PGS-VAO)
	Switching between PGD-VAO and PGS-VAO
	Difference between projected gradient descent and projected gradient sampling algorithm
	The Complexity of the Algorithms

	Evaluation
	Obtaining the parameters for HQM via real-world benchmark
	Simulation
	Comparison With Existing Approaches
	The Impact of Network Bandwidth
	The Impact of System Workload
	The Impact of Computing Resources
	The Impact of Video Resolution

	Impact of Throughput Constraint
	The Complexity Analysis of the Algorithms
	Real-world Test-bed

	Related Work
	Conclusions
	Proof of Lemma 5.1
	Proof of Theorem 5.2

	OsmoticGate2: Edge-Cloud Collaborative Real-time Video Analytics with Multiagent Deep Reinforcement Learning
	Introduction
	System Overview
	Multi-agent RL-based Controllers
	Optimization Objective
	Architecture of RL agents
	RL States and Actions
	Reward Function
	Centralized Training and Decentralized Execution (CTDE) in OsmoticGate2

	Implementation Details
	Video Analytics Module
	Parallel Video Encoder
	Inference Engine
	Concurrent Listener

	Multi-agent Controllers
	Message-forwarding Module

	PERFORMANCE EVALUATION
	Experimental Setting
	Convergence and Performance under Different Penalty Weights
	Performance Comparison with Baselines

	Conclusion

	DEEPCON: Improving Geo-distributed Deep Learning Model Consistency in Edge-Cloud Environment via Distillation
	Introduction
	Overview of DeepCon
	Design of DMML
	From Accuracy to Consistency
	Problem definition
	Basic Deep Mixup Mutual Learning (DMML)
	Deep Mixup Label
	Multi-model Distillation
	DMML Algorithm

	Over-the-Air Update in DeepCon
	Over-the-air update in DeepCon
	Parallel Training of DMML (DMML-Par)

	Evaluation
	Experiment Setup
	Identify and Quantify Gap between Acc and CC
	DMML Performance on Vision and Language Tasks
	Performance of DMML-Par
	The impact of parameter

	Related Work
	Conclusion

	Conclusion
	Thesis Summary
	Future Research Directions
	Agile adaptation of decision-making agents in open environment.
	Improving generalization via adapting large language models for networking.
	Precise control on delayed system feedback.

	References

