
 

i 

 

 

Automated Methodologies to 

Assess Welfare of Rhesus 

Macaques (Macaca mulatta) in a 

Breeding Colony 

 

Giulia Ciminelli 

 

A thesis submitted for the degree of Doctor of 

Philosophy 

 

 

Biosciences Institute 

Newcastle University 

November 2023 



 

ii 

 

 

 

Abstract 

This thesis endeavours to explore the application of machine learning-based methodologies 

to gain valuable insights into the behaviour of captive Rhesus macaques. The primary 

objectives are to enhance their welfare and streamline management practices. Rhesus 

macaques hold significant importance in biomedical research, making their welfare a 

paramount concern in such environments. The subjects of this study reside within a 

breeding colony in the UK, serving as a source of individuals for neuroscientific laboratories. 

These macaques are grouped into breeding and juvenile cohorts, with continuous 

surveillance via a comprehensive CCTV system at the Centre of Macaques, comprising 

cameras within each enclosure. 

Efficient macaque management is crucial not only for ensuring their well-being but also for 

facilitating successful breeding programs and the subsequent supply of animals to research 

laboratories. However, the process of guaranteeing both their welfare and the collection of 

informative behaviour data necessitates specialized personnel, incurring significant time and 

financial costs. 

This study presents three distinct implementations of computer vision-based pipelines that 

leverage video footage from the existing CCTV system and researcher-recorded videos to 

autonomously collect and analyse behaviour of interest. This innovative approach not only 

saves time in data collection and analysis but also extracts previously unattainable 

information for the facility's staff. 

The first project focuses on temperament assessment in macaques, employing three models 

based on object detection and pose estimation. These models analyse pre-existing 

researcher-recorded videos designed for the same purpose. 
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The second project investigates diverse foraging patterns based on varying food mixes 

provided. This automated methodology utilizes object detection to calculate the percentage 

of macaques engaged in foraging activities from CCTV footage. 

The third project aims to evaluate two enrichment items, one food-based and one non-

food-based. The automated methodology relies on object detection algorithms to extract 

data concerning the number of individuals interacting with these objects over specified time 

intervals. 

These projects harness existing camera infrastructure and furnish invaluable insights into 

neophobia, temperament, preferred food choices, and enrichment planning, all of which 

inform crucial management decisions. Consequently, this thesis underscores the advantages 

of employing such methodologies and illustrates their potential for broader application, 

with the capacity to enhance the welfare and management of non-human primates in 

similar facilities. 
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Automated Macaque Behaviour 

The Automated Macaque Behaviour repository is available at 

https://github.com/GiuliaCiminelli/AutomatedMacaqueBehaviour and contains four folders, 

each tailored to a specific project: 

• Temperament Test: This folder includes Python scripts for extracting information 

from three models: two based on DeepLabCut and one based on YOLACT. 

• Foraging: This directory is subdivided into three sub-folders, each aligning with a 

distinct project. Every sub-folder contains Python and R scripts for extracting data on 

the number of macaques foraging.  

• Enrichment_Yolcat: This folder includes Python and R scripts designed for extracting 

movement information from a YOLACT-based model trained to recognize a white 

tank, used as enrichment. 

• Enrichment_Yolo: This folder contains Python and R scripts for counting the 

percentage of macaques interacting with an enrichment puzzle. The YOLO-based 

model can be accessed within the 'Model' sub-folder. 

  

https://github.com/GiuliaCiminelli/AutomatedMacaqueBehaviour
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Chapter 1. Introduction 

1.1 Overview 

Macaques play an essential role in medical and scientific research because of their similarity 

to humans in physiology, reproduction, cognition and social complexity (Phillips et al., 

2014). However, this social complexity, makes their management a challenge in captivity. 

Many research facilities housing captive animals must balance the need for standardized 

housing conditions, essential for treatments, husbandry, and sample collection, with the 

desire for a more varied environment. This typically includes multi-sex and multi-age groups, 

presence of enrichments, and a diverse food selection. All of these factors contribute to the 

macaques' welfare. 

Studies have shown that providing a social environment that mimics the behavioural biology 

of macaques in their natural habitat not only enhances the welfare of these animals but also 

positively influences the reproducibility and consistency of research outcomes (Hannibal et 

al., 2017). However, the implementation, control, and management of a complex 

environment for macaques can be time-consuming.  In this thesis, I explore how recent 

advances in machine learning can contribute to the collection and analysis of data, which, 

holds the potential to enhance the management of macaques residing in a breeding colony 

under varying conditions.  

1.2 Motivation and Problems 

The welfare of laboratory non-human primates (NHPs) is one of the most challenging and 

contested issues concerning animals used in biomedical research. In laboratories, as well as 

in any other facilities hosting captive animals, the personnel have the legal and moral 

obligation to guarantee a high standard of animal welfare. Observing behaviour is one of the 

most used methods to assess animal welfare.  However, conducting behavioural 

observations is time consuming to implement and it requires trained personnel (Porto et al., 

2013; Mathis et al., 2018; Weinstein, 2018). To collect data on specific behaviours of 

interest, a human observer may need to watch hours of video and observe individuals for 

extended periods, which can be tiring and affect data reliability (Young et al., 1979; Mathis 
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et al., 2018; Bateson and Martin, 2021; Kennedy, 2022). On the other hand, different 

observers can score the same behaviour differently adding inconsistency and bias to the 

data collected (Young et al., 1979; Tuyttens et al., 2014; Kennedy, 2022). Moreover, 

watching for behaviours that are infrequent but important can be very tedious for the 

human observer and some behaviours may not be visible at all.  

Automated video analyses have previously found application in the evaluation and 

enhancement of animal welfare. Notable examples include the utilization of optical flow in 

the assessment of movement patterns in chickens and other farm animals, as well as the 

deployment of pixel difference methods in macaque studies (Dawkins, Cain and Roberts, 

2012; Gronskyte et al., 2016; Green, 2018; Wurtz et al., 2019). Although these 

methodologies have proven effective in detecting animal movement, they have been unable 

to capture more detailed behaviours. Consequently, they are limited in their capacity to 

investigate more intricate welfare-related inquiries, such as the examination of interactions 

with objects and food. However, the advancements in machine learning and computer 

vision, have the potential to solve some of these challenges (Blumrosen, Hawellek and 

Pesaran, 2017; Kennedy, 2022). In the last 20 years, artificial intelligence algorithms have 

replaced many human tasks, and several toolboxes based on computer vision have been 

implemented to identify body parts and objects in videos of humans and other animals (i.e. 

Blanco Negrete et al., 2021; Bolya et al., n.d.; Labuguen et al., 2019). Video-based systems 

are consistent, effective, and allow for data recording for future study  (Rushen, Chapinal 

and de Passillé, 2012; Okinda et al., 2020). Moreover, these approaches are able to gather 

more data recording the environment and the individuals within it, save time in data 

analyses and collection, and are cost effective (Pimm et al., 2015; Barnard et al., 2016; 

Mathis et al., 2018; Weinstein, 2018). Computer vision-based technologies also remove the 

need for sensors or marks, making them non-invasive and non-intrusive, without affecting 

individuals’ behaviours (Line et al., 1990; Rushen, Chapinal and de Passillé, 2012; Porto et 

al., 2013; Aroeira et al., 2016; Chen, Zhu and Norton, 2021). On the other hand, it is crucial 

to acknowledge the potential risks associated with employing automated technologies for 

welfare assessment and enhancement. These technologies are susceptible to failure, often 

requiring external validation, and may not always capture all meaningful indicators of 

animal welfare (Dawkins, 2021a; Tuyttens, Molento and Benaissa, 2022). This limitation 
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could result in a biased focus solely on the data that these technologies are capable of 

collecting. 

Despite the rising availability of machine learning algorithms and increasing interest from 

the animal behaviour research community, there are still many challenges in using 

computer vision methodologies to extract valuable data. One major limitation is the 

restricted amount of animal data available for algorithm training compared to the vast 

amount of human data (Labuguen et al., 2021; Li et al., 2022). Additionally, NHPs, as many 

other species, may assume unusual postures, have similar features, or be occluded by 

objects or structures in their environment, making individual identification and behaviour 

detection challenging (Vidal et al., 2021). These are only some of the main limitations 

concerning the use of computer vision methodologies to study animal behaviour. 

1.3 Animal Welfare: Current Measures and Strategies 

The definition of animal welfare has been the subject of extensive research and assessing it 

has proven to be a very challenging task. Although various definitions and approaches have 

been proposed over the past decades, there are still only general guidelines and a broad 

definition of animal welfare. Animal welfare emerged as a young science in 1965 with the 

Brambell report and has since evolved, particularly with the concept of animals as sentient 

individuals, which emphasized the need to identify their needs and experiences (Brambell, 

1965; Millman et al., 2004). This led to the development of the Five Freedoms by the FAWC 

in 1993, which include freedom from thirst, hunger, and malnutrition; freedom from 

discomfort; freedom from pain, injury, and disease; freedom to express normal behaviour; 

and freedom from fear and distress (Millman et al., 2004; Duncan, 2006; Carenzi and Verga, 

2009).  

Contrary to these definitions, Dawkins has advocated for defining welfare without relying on 

consciousness or related concepts. This perspective favours a viewpoint where an animal 

with good welfare is deemed healthy and satisfied with its needs fulfilled (Dawkins, 2021b). 

Another recent approach involves the 5 domains model proposed by Mellor (Mellor, 2017; 

Mellor et al., 2020). Each of these domains (nutrition, environment, health, behaviour and 

mental state) serves to highlight specific areas pertinent to both the assessment and 
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management of animal welfare with a central focus on prioritizing animal feelings (Mellor, 

2017). Continuing the evolution of animal welfare definitions, the concept of quality of life 

has emerged as a significant milestone, aiming to foster a positive welfare state. The UK 

Farm Animal Welfare Council introduced the idea of "a life not worth living," which pertains 

to comprehensive lists of potential positive impacts and their generation (Yeates, 2011; 

Mellor, 2016).  

In laboratories and breeding colonies that house NHPs, an animal's welfare is deemed 

satisfactory if it meets the following criteria: (1) it is in good physical health, (2) it can 

participate in a diverse range of advantageous species-typical activities and demonstrates 

minimal abnormal behaviour, (3) it is not consistently under distress, and (4) it can 

competently adjust to daily modifications in its social and physical environment by fulfilling 

its own requirements (Novak and Suomi, 1988). However, it is crucial to recognize that for 

non-human primates (NHPs) to effectively serve their designated roles in medical research, 

a proactive, concerted effort is necessary. This effort should focus on implementing 

refinement strategies to minimize harm and enhance welfare throughout their lives, 

ensuring their well-being is consistently upheld (Buchanan-Smith et al., 2023). 

The Directive 2010/63/EU mandates that macaques used in experimental procedures must 

be born from animals within licensed, self-sustaining colonies to minimize the impact on 

wild populations. This thesis will focus on the welfare of NHPs within breeding colonies, 

which are facilities designed to house multiple groups of the same species (in this case 

rhesus macaques) with the aim of producing enough individuals so that some can be 

removed for use in scientific research (Ha and Sussman, 2023). This condition differs from 

the laboratory setting since the animals are housed in larger groups and are less likely to be 

involved in biomedical experimental procedures. However, it is important to note that 

breeding colonies also differ from zoo settings, where primates are typically able to live in 

more natural environments with access to outdoor space and stable social groups (Coleman 

et al., 2023). As a result, these facilities have specific characteristics and welfare needs and 

must find a balance between them and achieving the aim of breeding and maintaining the 

animal population.  
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Ensuring appropriate housing for NHPs in captivity is a crucial aspect of their welfare (Ha 

and Sussman, 2023). Enclosures should be sufficiently spacious to accommodate the 

animals comfortably, yet still be easy to clean and provide a clear view of each individual. 

Additionally, the enclosures should have structures that allow the animals to engage in 

natural behaviours such as resting, climbing, exploring, and foraging. Therefore, the 

presence of structural enrichments, visual barriers to hide and avoid conspecifics, substrates 

that promote foraging and prosocial behaviour, and a lighting system that mimics natural 

lighting conditions as closely as possible are all essential requirements (Bayne et al., 1992; 

Blois-Heulin and Jubin, 2004; Crast, Bloomsmith and Jonesteller, 2015; Ha and Sussman, 

2023).  

Once the enclosures are appropriate, the next challenge is the formation of social groups. 

Choosing individuals to form a breeding group needs to take into account many factors, 

such as genetic proximity, available space, and social compatibility (Albert, Jeong and 

Barabási, 2000; Kanthaswamy et al., 2006; Coleman and Novak, 2017; McCowan, Beisner 

and Hannibal, 2018; Beisner et al., 2023). Forming groups is a continuous challenge in a 

breeding colony, as it is necessary to avoid inbreeding and maintain genetic diversity. To 

achieve this, it is crucial to dismantle and create new social groups, and to remove and 

introduce individuals from already stable ones. However, these practices can destabilise the 

group’s social structure and lead to aggression, poor welfare, and injuries. Once a stable 

group is formed, it needs to be maintained, assuring the welfare of the individuals in it. This 

can be another challenge in a breeding colony where the animals have no access to outdoor 

spaces and live in a controlled environment. Non-human primates are known for their 

intelligence, and this means that living in an environment lacking complexity can lead to 

boredom and apathy (Buchanan-Smith, 2011a). Therefore, it is essential to provide 

environmental enrichment to keep the primates mentally and physically stimulated and 

enhance their overall welfare. These are only some of the main issues that can affect the 

welfare of macaques in a breeding colony, and as such, great care and expertise are 

required to manage the group dynamics of a breeding colony and ensure the welfare of the 

NHPs housed within it. 
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Despite the numerous approaches and definitions proposed, evaluating the welfare of 

primates remains a complex task. However, ensuring good welfare is a fundamental 

objective for all institutions that house NHPs, and evaluating whether this objective has 

been achieved is a crucial aspect of animal management. One of the most commonly used 

techniques to assess primate welfare is measuring their behaviour. This involves identifying 

and limiting abnormal behaviours while promoting positive emotional states. Abnormal 

behaviours are classified as those behaviours that deviate from the norm for that species, 

both qualitatively and quantitatively (Lutz and Baker, 2023). These behaviours can vary in 

type and frequency, some can have little impact on the animal welfare, while others can 

negatively affect the animal welfare  (Lutz and Baker, 2023). Certain abnormal behaviours 

exhibited by animals may indicate that their captive environment is lacking the necessary 

characteristics to fulfil their behavioural needs (Rushen and Mason, 2006). For this reason, it 

is essential to provide a stimulating environment that promotes the manifestation of a large 

number of species-specific behaviours. This can be achieved through providing adequate 

and stimulating housing conditions, as well as ensuring the opportunity for socialization with 

conspecifics, delivering predictable husbandry procedures, and limiting location changes 

(Waitt and Buchanan-Smith, 2001b; Bellanca and Crockett, 2002; Lutz et al., 2007a; Lutz and 

Baker, 2023). The most commonly employed strategies to not only reduce abnormal 

behaviours but also promote species-typical ones are structural enrichments. Nonetheless, 

the effectiveness of this approach is not always certain and is influenced by factors such as 

the animal's history, welfare status, and the type of enrichment provided (Lutz and Baker, 

2023). In addition, what worked for a while will not necessary work forever. When an 

animal becomes habituated to an enrichment, it may lose its purpose, and its presence may 

no longer be beneficial. To prevent this, it is crucial to rotate and change the enrichments 

regularly and to be able to identify when they are no longer engaging for the animals.  

Nonhuman primates in their natural habitat exhibit an innate curiosity towards their 

surroundings, leading them to investigate and handle a diverse array of objects. Often, such 

exploratory behaviours are motivated by their search for sustenance. In the wild, free-

ranging primates devote a substantial portion of their time to foraging and hunting, whereas 

those in captivity are usually provided with only one or two meals a day, leading to a decline 

in their foraging behaviour (Lutz and Novak, 2005). Consequently, providing foraging 
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opportunities throughout food-based enrichment, different foraging mixes, and spreading 

food within the enclosure can be beneficial. Increasing the time spent by animals on 

foraging has been demonstrated to reduce abnormal behaviour, prevent the development 

of stereotypic behaviours, and alleviate boredom (Lutz and Novak, 2005; Kemp, 2023).  

While the environment plays a crucial role in primate behaviour, individual temperament 

and personality also have an impact. Robinson and Weiss emphasized the need to 

investigate the connection between personality and welfare in NHPs since primate 

personality traits can influence the psychological impact of enrichment, such as fear and 

boredom. (Robinson and Weiss, 2023). It is also essential to consider neophobia when 

introducing new stimuli, whether it be food, objects, or situations, to prevent incidents and 

tensions within the group (Hoy, Murray and Tribe, 2009; Lutz and Baker, 2023). Moreover, 

individual personality has been shown to be linked with their welfare, and it is used to 

assess their emotional and physiological state, as well as their ability to cope with new 

situations and to form affiliative relationships (Weinstein and Capitanio, 2008; Weiss et al., 

2011; Gottlieb, Capitanio and McCowan, 2013a). 

In conclusion, the welfare of non-human primates in captivity is a multifactorial issue that 

requires thoughtful consideration of multiple factors. To optimize NHPs welfare, it is 

imperative to provide opportunities for socialization, environmental enrichment, physical 

activity, and cognitive stimulation, while also systematically measuring their effects on the 

animals. 

1.4 Rhesus Macaque Welfare 

This next section reviews the welfare of rhesus macaques in breeding colonies. Macaques 

welfare comprises numerous factors, such as physical health, access to species-typical 

activities, minimal abnormal behaviour, and the capacity to adapt to daily changes in social 

and physical environment (Hannibal et al., 2017; Lutz and Baker, 2023). 

1.4.1 Macaque Behaviour in Captivity: Concerns and Needs 

Rhesus macaques (Macaca mulatta) are social animals and live in groups of varying size, 

typically ranging from 10 to more than 200 individuals (Hasan et al., 2013; K N 

Balasubramaniam et al., 2014). Because of their extensive adaptability, this macaque 
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species can thrive in diverse geographical regions characterized by varying climates and 

ecological conditions (Jaman and Huffman, 2013). Their hierarchical structure is typically 

regulated by dominant males and females, who use aggression and displacement to gain 

priority access to resources such as food, water, and mates (Lutz, Well and Novak, 2003; 

Thierry, Singh and Kaumanns, 2004; C. K. Lutz and Novak, 2005; Lutz et al., 2007a; Beisner 

and Isbell, 2011a; Gottlieb, Coleman and McCowan, 2013). Macaques are diurnal and spend 

much of their time foraging for food, which includes a variety of fruits, seeds, and leaves, as 

well as insects, and small animals (Yeager, 1996; Hill, 1997; Hanya, 2004a). As in many other 

primate species, communication is an important aspect of rhesus macaque behaviour; they 

use a variety of vocalizations, facial expressions, and body postures to communicate with 

one another and regulate interactions within their group. These signals are used in several 

circumstances, in both affiliative and submissive communications, between same sex 

individuals and in male-female interactions, as well as in mother-infant dyads (Maestripieri 

and Wallen, 1997). Although rhesus macaques can live in a range of environments, including 

tropical forests and urban areas, adapting to life in captivity remains a challenge (Lutz and 

Novak, 2005).  

Due to their highly intelligent and social nature, complex behaviour and cognitive needs, it is 

necessary to provide captive rhesus macaques with opportunities for environmental 

enrichment, socialization, and physical activity. These measures are essential for mitigating 

boredom and enhancing the overall welfare of this specie. Despite the numerous efforts, 

different housing conditions and group settings can lead to abnormal behaviours that can 

vary from mild (pacing, flipping, self-sucking, etc) to extreme forms (self-injury behaviours). 

These situations can cause an increase in aggression in a species which already controls its 

social system with more frequent and more severe aggression than most other macaque 

species (Lutz, Well and Novak, 2003; Thierry, Singh and Kaumanns, 2004; C. K. Lutz and 

Novak, 2005; Lutz et al., 2007a; Beisner and Isbell, 2011a; Gottlieb, Coleman and McCowan, 

2013). While some modifications in management have been made to decrease aggressive 

behaviours in captivity (Pruetz and Isbell, 2000; Beisner and Isbell, 2011a), there are still 

some factors that increase aggression in laboratory monkeys, such as, the impossibility to 

escape threatening situations, the introduction or removal of individuals from social groups, 
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veterinary interventions and food competition (Beisner and Isbell, 2011a; Beisner et al., 

2015; McCowan, Beisner and Hannibal, 2018).  

1.4.2 Macaques in Research 

Non-human primates (NHPs), such as macaques, have been utilized in a variety of scientific 

fields, including neuroscience, infectious diseases, and behavioural research (Gardner and 

Luciw, 2008; Isoda, Atsushi and Ninomiya, 2018; Chiou et al., 2020). Due to their similarities 

to humans, their availability and suitability for use in controlled laboratory environments, 

studies on NHPs have the potential to significantly contribute to scientific knowledge 

(Passingham, 2009; Caselli and Chelazzi, 2011; Uno, Uehara and Yamazaki, 2016; Hannibal et 

al., 2017). Macaques, in particular, have played a vital role in biomedical research, leading 

to Nobel Prizes, new treatments for Alzheimer’s and Parkinson’s diseases, and ground-

breaking insights into various aspects of neuroscience (Wiesel, 1982; Norrby and Prusiner, 

2007; Capitanio and Emborg, 2008; Roelfsema and Treue, 2014; Wang, 2019). Additionally, 

these species are utilized in the development and testing of new treatments for human 

diseases, as well as vaccine development and drug testing. Notably, macaques have been 

instrumental in understanding and developing vaccines for SARS-CoV-2, as they exhibit 

COVID-19 symptoms, providing a valuable model for investigating the virus's 

pathophysiology and developing therapeutic and prophylactic interventions (Salguero et al., 

2021; Urano et al., 2021). 

Despite the fact that the use of non-human primates (NHPs) in biomedical research is 

comparatively small, comprising 0.08% of all animals used for scientific purposes in the UK, 

their use is still essential for scientific and medical progress (Mitchell et al., 2021). However, 

the use of NHPs in research is controversial due to ethical concerns. For example, the 

utilization of chimpanzees and other apes in medical research has been widely discussed in 

the past century. In the United States, there has been a substantial decline in the use of 

these species over the past few decades of the 20th century, with many companies 

discontinuing their use since the early 2000s (Turner, 2023). Similarly, in Europe, a 

significant trend away from the employment of chimpanzees in research emerged during 

the 1990s and early 2000s, culminating in a complete ban on ape usage in research across 

the continent (Turner, 2023). 
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Efforts have been made to reduce and refine animal use while ensuring the validity and 

reliability of research results. NHPs are intelligent, long-lived, non-domesticated and social 

animals that can experience pain and suffering, and the use of animals in research is a 

contentious issue (Tardif et al., 2013). Moreover, insufficient welfare can significantly 

influence research outcomes, compromising their validity and reliability, thereby 

exacerbating the reproducibility crisis in the behavioural sciences (Garner, 2005; Richter, 

Garner and Würbel, 2009). To address these concerns, regulations have been established to 

ensure appropriate treatment of NHPs in research (Tardif et al., 2013). For example, the 

Animal Welfare Act in the United States sets minimum standards for the care and use of 

animals in research, and the Institutional Animal Care and Use Committee (IACUC) is 

responsible for reviewing and approving all research protocols involving animals (Cohen, 

2006; Tardif et al., 2013). In addition, many efforts have been made to reduce and refine 

animal use while ensuring the validity and reliability of research results. These efforts are 

guided by the principles of the "3Rs": Replacement, Reduction, and Refinement (Prescott, 

2023). Replacement refers to the use of alternative methods that do not involve animals, 

reduction refers to minimizing the number of animals used in research while maintaining 

the scientific validity of the research, and refinement refers to minimizing the potential for 

pain, suffering, and distress in animals used in research (Guhad, 2005). The implementation 

of the 3Rs has led to the development of guidelines and regulations governing the care and 

use of animals in research, including NHPs.  

In conclusion, while the use of macaques in biomedical research is crucial for scientific and 

medical progress, it is also a contentious issue due to ethical concerns regarding the 

treatment of these animals. To address these concerns, regulations, and guidelines have 

been established to ensure their appropriate treatment in research while minimizing their 

potential for pain, suffering, and distress. These efforts have led to the development of 

guidelines governing the care and use of animals in research, including macaques, and will 

continue to be essential in ensuring that research is conducted ethically while advancing 

scientific and medical progress.   



11 

 

1.5 Automated Methodologies Applied to Animal Welfare 

In this thesis, I will focus on automated methodologies based on machine learning (ML). 

Machine learning algorithms are designed to learn from data and identify patterns that 

enable them to make predictions or classify new, unseen data. These algorithms can be 

grouped into different types: 

1. Supervised learning: Algorithms learn from labelled data, where each example has a 

known outcome or target variable. The goal is to learn a mapping between the input 

data and the corresponding output. 

 

2. Unsupervised learning: Algorithms analyse unlabelled data to discover patterns, 

structures, or relationships within the data. They do not have predefined target 

variables but aim to uncover inherent patterns or groupings. 

 

3. Reinforcement learning: Algorithms learn through trial and error and interaction 

with an environment. They receive feedback in the form of rewards or penalties 

based on their actions and use this feedback to optimize their decision-making 

processes. 

In this thesis, all models are based on supervised learning algorithms. 

ML can tackle challenging tasks that are otherwise difficult to handle. By leveraging ML, it is 

possible to effectively address significant questions across various domains, social structure, 

collective behaviour, communication, and animal welfare (Valletta et al., 2017). Deep 

learning is a specific subset of machine learning that utilizes deep neural networks to 

automatically learn complex patterns and representations directly from raw data. It 

eliminates the need for extensive manual feature engineering by allowing the network to 

extract hierarchical features from the data itself. 

Machine learning and deep learning technologies have emerged as powerful tools for 

evaluating and measuring animal welfare in diverse species and settings, spanning from 

laboratory animals to farm animals.  
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Particularly, laboratory mice and rats have received significant attention in this context, as 

they are extensively used in biomedical research and exhibit distinct postures and 

movements that are comparatively easier to discern than those of primates. By leveraging 

machine learning models, it becomes possible to uncover underlying patterns in mouse 

behaviour without any subjective biases from observers. These approaches open up new 

avenues for assessing even subtle changes in behaviour, particularly in the context of pain 

assessment in laboratory rodents (Tuttle et al., 2018; Jirkof, Rudeck and Lewejohann, 2019; 

Andresen et al., 2020; Fried et al., 2020). 

In addition, automated behaviour detection has been extensively explored in farm animals 

to enhance animal welfare. Notably, there have been several significant advancements in 

the context of pigs, specifically in early detection of tail biting, which is a significant concern 

for their welfare (Matthews et al., 2016; D’Eath et al., 2018; Chen, Zhu and Norton, 2021). 

Similarly, attention has been dedicated to improving the welfare of cows, with a primary 

focus on locomotion and addressing the prevalent issue of lameness (Chen, Zhu and Norton, 

2021; Shahinfar et al., 2021; Tassinari et al., 2021). Comparable approaches have also been 

employed in other farm species, such as sheep and chickens, to monitor and enhance their 

welfare (i.e. sheep and chicken (Fogarty et al., 2020; de Alencar Nääs et al., 2021)). 

The automated techniques utilized in this thesis will predominantly rely on computer vision 

methodologies. Computer vision, a branch of artificial intelligence, is dedicated to 

empowering machines to extract valuable information from images, videos, and various 

visual inputs. This decision and its application are influenced by several factors, including the 

widespread availability of video recordings documenting macaque behaviour and the non-

intrusive nature of the approach. By relying on computer vision, it becomes possible to 

collect behavioural data without the need for additional devices such as tags, 

accelerometers, or trackers. This approach offers a cost-effective and less intrusive means of 

studying and analysing macaque behaviour in a captive setting. 

1.5.1 Computer vision techniques  

Computer vision is based on two specific technologies: deep learning and convolutional 

neural network (CNN). The former is a type of machine learning that uses training data to 
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categorize image content without a priori specification of image features (LeCun, Bengio 

and Hinton, 2015; Weinstein, 2018). The latter helps the previous learning process, breaking 

images down into pixels and assigning them tags or labels (Fujiyoshi, Hirakawa and 

Yamashita, 2019). The CNN takes this name from a mathematical linear operation between 

matrixes called convolution that is used to make predictions from the previously extracted 

information (Albawi, Mohammed and Al-Zawi, 2017; Fujiyoshi, Hirakawa and Yamashita, 

2019).  

A computer vision system typically involves several key steps (Figure 1), including: 

1. Image acquisition: To begin, the system acquires image or video data using a camera 

or other sensors. 

2. Pre-processing: The raw data is then pre-processed to enhance the quality of the 

image, which includes noise reduction, contrast adjustment, and resizing. 

3. Feature extraction: In this stage, using a CNN algorithm, the system identifies key 

features of the image or video, such as edges, shapes, and textures.  

4. Object detection: Once the features are identified, the system can detect objects in 

the image or video, and classify them into different categories, such as people, cars, 

or animals. 

5. Recognition and classification: The system then matches the detected objects to a 

pre-defined database of known objects or categories and classifies them accordingly. 

6. Interpretation: Finally, the system interprets the data, which could involve 

recognizing patterns, identifying anomalies, or making predictions. 

Computer vision has been used to solve several tasks; we will be focusing on the ones 

involving object recognition and pose estimation.  
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Figure 1: Example of key steps characterizing a computer vision system. 

 

1.5.2 Object Recognition 

Object recognition involves finding one or more objects in an image, recognizing them, and 

returning their position(s) within the image. This information can be obtained at the image-

level, using an object detection algorithm that extract bounding boxes (rectangular regions 

delineating objects within images), or at the pixel-level, using a instance segmentation 

algorithm that produce instance masks (binary image where each pixel is assigned a value 

indicating whether it belongs to a specific object) (Matthews et al., 2017; Wang et al., 2020; 

Wu et al., 2021) (Refer to Chapter 2 for more details). 

Object recognition is a valuable tool in animal welfare research, where it can be used to 

detect and track animal behaviour and improve the quality of care provided to animals. For 

example, object recognition techniques can be used to monitor the health and welfare of 

livestock animals, such as cattle and pigs. By using deep learning methods to recognize 

behaviours such as feeding, drinking, aggressions, lameness and nursing, it is possible to 

detect changes in an animal's posture, gait, and activity levels, which can indicate potential 

health issues. (Chen, Zhu and Norton, 2021). This information can then be used to improve 

the welfare of the animals and reduce the risk of disease outbreaks. Object recognition can 

also be used to monitor the use of enrichment items in captive animals, such as toys or 

puzzles. By tracking the animals' interactions with these items, it is possible to gain insights 
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into the animals' behaviour, preferences, and welfare (de Chaumont et al., 2019; Chen et 

al., 2020). Moreover, object recognition can be used in wildlife conservation efforts. For 

instance, camera traps and drones can gather information on the number and distribution 

of animals in their natural habitats (van Gemert et al., 2015; Carl et al., 2020; Chalmers et 

al., 2021). This information can be used to track population trends, identify habitat 

hotspots, and develop conservation strategies to protect these animals and their 

ecosystems. In the case of macaques, object recognition has been employed to detect and 

track the animals in their natural habitat as well as monitor their behaviour during cognitive 

tasks, demonstrating its potential for furthering our understanding of their welfare 

(Chiverton, Micheletta and Waller, 2015; Bethell, Khan and Hussain, 2022; Pineda et al., 

2023). Overall, object recognition is a versatile tool that can be used in a variety of animal 

welfare applications, from monitoring the health of livestock animals to assess animal 

welfare in captivity.  

For the purpose of this thesis, I used object recognition to detect both the macaques and 

various enrichment items within their pens. I have tested several object detection 

algorithms, including SIPEC (Marks et al., 2020) and YOLO (Ma and Yang, 2022), but 

encountered implementation difficulties. However, better results were achieved using Argos 

(Ray and Stopfer, 2022), a toolkit that utilizes YOLACT (You Only Look At CoefficienTs) for 

CNN-based segmentation. Consequently, YOLACT (Bolya et al., 2019) was chosen as the 

primary algorithm for tracking both macaques and the objects of interest. One of the 

advantages of YOLACT is its ease of installation compared to other algorithms, and it can 

deliver fast results using a single Graphics Processing Unit (GPU). This feature is particularly 

valuable in the field of animal behaviour research, as many animal facilities lack the 

resources to invest in multiple GPUs.  

Towards the culmination of my PhD, a real-time object detection algorithm called YOLOv8 

was introduced. This iteration of YOLO (You Only Look Once) represented a significant 

advancement over its predecessors, including YOLOv5, particularly in terms of ease of 

installation and usability  (Jocher, G., Chaurasia, A., & Qiu, 2023; Terven and Cordova-

Esparza, 2023). Built on the PyTorch framework and implemented in Python, this latest 

version of YOLO's single-shot detection approach maintains the core objective of optimizing 
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the balance between speed and accuracy. It achieves this by keeping the model size small, 

making it convenient for users to work with on a single GPU, similar to YOLACT. Ultralytics, 

the developers of YOLOv8, released the algorithm in January 2023, offering multiple modes 

that support training, prediction, and validation for various tasks, such as detection, 

segmentation, and pose estimation. This versatility enhances the algorithm's utility across 

different applications. 

1.5.3 Pose Estimation 

Pose estimation is the process of determining the position and orientation of an object or 

objects within an image or video. It is largely used to track individuals and detect their 

geometrical configuration of multiple body parts (Andriluka et al., 2018; Mathis et al., 2018; 

Labuguen et al., 2019). There are several approaches to pose estimation in computer vision, 

including deep learning-based methods. These approaches utilize advanced neural 

networks, such as convolutional neural networks (CNNs), to learn features and patterns, and 

then use this knowledge to estimate the poses of objects. Deep learning-based methods 

have several key advantages over traditional pose estimation techniques. For example, they 

can handle more complex and varied data inputs, learn from large datasets, and adapt to 

different scenarios without the need for extensive manual tuning.  

Pose estimation has been increasingly used in animal welfare research to monitor the 

behaviour and welfare of animals. By accurately estimating the pose of animals, it is possible 

to gain valuable insights into their movements, posture, and activity levels, which can be 

indicative of their welfare state. Animal pose estimation and tracking has been applied to 

several species both in the wild and in captive settings with the aim of collecting behaviour 

and promoting welfare (de Chaumont et al., 2019; Marks et al., 2020, 2022; Blanco Negrete 

et al., 2021; Joska et al., 2021; Arnkærn et al., 2022; Nasiri et al., 2022; Yang et al., 2022). 

Over the past few years, numerous models have been developed to detect and recognize 

the poses and behaviours of non-human primates (NHPs). Some of these models use 2D 

cameras to estimate pose in NHPs that move freely within indoor enclosures (Bala et al., 

2020; Marks et al., 2022), while others focus on outdoor NHPs (Desai et al., 2022; Yao et al., 

2023) or primates in their natural habitats (Labuguen et al., 2019, 2021). All of these models 
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aim to address similar challenges: identifying NHPs' movements and behaviours in diverse 

environments, despite occlusions, unusual postures, and varying lighting conditions. 

Compared to other animals, primates are more challenging to track due to their highly 

flexible body joints, which allow them to assume complex positions and move in three-

dimensional space. These characteristics present two major issues: substantial obstruction 

and extensive variability in appearance (Hayden, Park and Zimmermann, 2022). These 

problems are further intensified in a breeding colony environment due to the large 

population confined to a limited space, the presence of multiple structures and enrichment 

elements within the enclosure, and the constraints imposed by camera angles and positions. 

Consequently, the development of a dependable algorithm for accurately estimating NHPs 

poses remains an elusive goal. 

For the purpose of this thesis, I have selected DeepLabCut (DLC) (Mathis et al., 2018) as the 

pose estimation algorithm for detecting macaque body parts. One of the advantages of DLC 

is that it does not require any markers or sensors to be attached to the animals, which is 

impractical with macaques. Furthermore, DLC yields reliable results using only a single 

camera, which is crucial as the videos used in these studies were previously recorded for 

other purposes. DLC offers a user-friendly GUI interface that encompasses all the necessary 

functions. It has been utilized to train the MacaquePose open dataset (Labuguen et al., 

2021) and to develop a model capable of detecting face landmarks on macaques across a 

wide range of ages and genders. The model was trained using images of individuals from the 

breeding colony at the Centre for Macaques.  

Initially, I trained DLC to identify and monitor individuals within various macaque groups. 

However, I encountered challenges, including overlapping animals and suboptimal video 

quality, which impeded my ability to achieve the desired outcomes. Consequently, I shifted 

my approach to employ DLC for the purpose of detecting specific body parts of individual 

macaques during temperament tests. This modified strategy enabled me to concentrate on 

a single macaque at a time, thereby mitigating the aforementioned issues. 
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1.6 Conclusion 

Understanding the behaviour of NHPs is important in fields such as biology, primatology, 

and biomedicine. Despite this, accurately quantifying primate behaviour has been a 

longstanding challenge because of its complexity, cost, and low data availability. However, 

recent technological advancements have sparked a behavioural measurement revolution 

that offers affordable and scalable rigor (Hayden, Park and Zimmermann, 2022). These 

novel techniques have the ability to analyse vast quantities of data, enabling the detection 

of subtle and infrequent behaviours, as well as changes in behaviour over time. Additionally, 

these techniques can actively enhance welfare by focusing on evaluating animal outputs 

such as their physiological, health, or behavioural responses to these environmental inputs 

(Hewson, 2003; Truelove et al., 2020; Knaebe et al., 2022). Furthermore, behavioural 

tracking and imaging techniques in neuroscience experiments can impact the 3Rs by 

providing vast amounts of data for post hoc analyses, richer behaviour, and fewer 

individuals needed, ultimately improving their housing and husbandry conditions (Bethell, 

Khan and Hussain, 2022; Knaebe et al., 2022). 

In conclusion, my PhD project utilized these technologies to enhance the welfare of captive 

macaques, with a specific emphasis on enrichments, foraging patterns, and temperament 

assessment. These areas of investigation provide insights that can guide interventions aimed 

at enabling animals to engage in their natural behaviours. By leveraging machine learning 

based technologies, we can better understand and address the unique needs and 

preferences of captive primates, ultimately improving their quality of life and promoting 

their overall welfare. 

1.7 Aims and Objectives 

The primary aim of this research is to develop automated methodologies to collect and 

analyse rhesus macaques’ behaviours that can be used to improve their welfare in a 

breeding colony setting. Automating the analysis of primate behaviour in videos poses a 

significant challenge that necessitates breaking it down into manageable objectives. For my 

thesis, I have specifically focused on the following goals: 
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1. Assess temperament in individual macaques by automating the video 

analyses of standardised temperament tests. 

2. Evaluate enrichment usage in different groups of macaques by 

automating the video analyses of CCTV systems. 

3. Analyse foraging behaviour in different groups of macaques by 

automating the video analyses of CCTV systems. 
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Chapter 2. Materials and Methods 

2.1 Introduction 

The studies presented in this thesis are based on data collected from the Medical Research 

Council Centre for Macaques (CFM) in Porton Down, Salisbury, UK. The establishment of 

CFM dates back to 2003 when it was initiated as a breeding colony of rhesus macaques. Its 

primary purpose is to provide non-human primates to UK universities for academic 

research.  

All data obtained for the studies described in this thesis is derived from camera recordings. 

Videos of group-housed macaques, were automatically captured and stored using a CCTV 

system (See sub-section The data encompass a range of information, including weaning 

dates, location transitions, births (pertaining to breeding females), health assessments, 

medication records, treatments, veterinary checks, reports of injuries, and individual weight 

measurements. In the context of the Foraging Project, the data on injuries rate and 

individuals' weight, have been used in conjunction with the information derived from the 

automated methodology. 

Footage of the Macaques). Videos of temperament tests carried out on individual animals 

were collected using camcorders by the student or member of staff responsible for 

conducting the tests. 

In this chapter, I will provide detailed information about the animals involved in the studies, 

including their environment and husbandry practices. I will also elucidate various deep 

learning models employed for the extraction of information from video data. In addition, I 

will explain the software used to prepare the data for training and validation of deep 

learning models used in extracting information from videos. Finally, I will detail the 

methodologies utilized for cleaning and analysing the output data generated by the 
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sequential arrangement of automated steps (i.e. models, R scripts, Python scripts), known 

as pipelines, designed to efficiently execute a series of tasks or processes. 

For a thorough understanding of the number of animals, group composition, and model 

specifics in the studies, please refer to the dedicated chapters, providing extensive insights 

into the research, methodologies, and outcomes of each project. 

2.2 The Centre for Macaques 

2.2.1 The Animals 

The non-human primates bred at the CFM are Indian origin rhesus macaques (Macaca 

mulatta). They are medium-sized primates with an average body length of about 50 to 70 

centimetres and a tail length of approximately 20 to 30 centimetres. They have a robust 

build with a pinkish-brown or greyish-brown fur colour. The face is pale pink, and the cheeks 

are adorned with characteristic whisker-like tufts. They live in groups that typically consist of 

several adult males, multiple females, and their offspring. Within the group, there is a 

dominance hierarchy that determines access to resources and mating opportunities. The 

macaques at the CFM tend to breed between October to January and to give birth from 

April to July, after a gestation period between 160 to 175 days. 

Due to their anatomy and behaviour, rhesus macaques make it challenging to securely 

attach and maintain any wearable sensors (such as collars, or bracelets). These animals are 

agile climbers and have dexterous hands, which could result in them removing or damaging 

any attached identification tags on their bodies. Therefore, to distinguish individual 

monkeys within the colony, a unique identification system is implemented. Each monkey is 

assigned initials that are tattooed on their chest by a trained technician while the monkey is 

under sedation. This process takes place during their first annual health screening, typically 

when the monkey reaches approximately one year of age. 

2.2.2 The Facility 

CFM is a self-sustaining breeding colony, meaning there is no need to acquire animals from 

outside the facility. Currently, it produces an average of 25 infants per year, with some 

infants being retained for use in breeding. Macaques are typically supplied to universities 
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between the ages of 3 and 5 years and are most frequently used in neuroscience research, 

with smaller numbers used in ophthalmology and immunology research.  

The colony comprises male and female macaques of various ages, which are housed in 

either breeding groups, typically consisting of one adult male, multiple females, and their 

offspring, or single-sex juvenile groups. The group size can vary from 2 to 27 individuals and 

each group is housed in a separate enclosure within the facility.  

As part of the breeding program, a subset of the infants born within the breeding groups, 

typically between 12 to 30 months of age, are transitioned into single-sex groups. These 

groups are specifically established to raise and prepare the macaques for their future role in 

biomedical research. Subsequently, these individuals are provided to universities to support 

various research studies in the field of biomedicine.  

The CFM facility provides appropriate habitats and living conditions that emulate the natural 

environment of macaques, ensuring their well-being and reproductive health. At the centre, 

each enclosure is divided into two distinct areas: the play pen and the cage room. 

The play pen has dimensions of 8.04 meters in length, 3.35 meters in width, and 2.8 meters 

in height (Figure 2). This area is equipped with various enrichment items, suspended 
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structures, visual barriers, and shelves to facilitate natural behaviours such as climbing, 

jumping, and resting at different heights. 

Figure 2: Images extracted from the CCTV system recording a play pen at CFM. 
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The cage room measures 6.12 meters in length, 1.5 meters in width, and 2.8 meters in 

height. This area is divided into three levels and can be further sectioned off as needed 

(Figure 3). 

The macaques have unrestricted access between the play pen and the cage room through 

four hatches located at different heights, except when separation is required for cleaning, 

veterinary treatment, or testing. Both areas are illuminated by artificial lighting following a 

12-hour light and 12-hour dark cycle, while the play pen also receives natural light through a 

large bay window. The enclosures are maintained at a consistent temperature between 18 

to 20 degrees Celsius and a constant humidity level ranging from 55% to 65%. 

Figure 3: Example of one of the cage rooms at CFM. 

2.2.3 The Husbandry 

At the CFM, a team of 10 animal technicians is dedicated to the care and well-being of the 

macaques. These technicians work from 8:00 to 16:00, providing care for the macaques 

seven days a week. However, there is a reduced staff presence during weekends, with only 2 

members of staff at the facility. The primary responsibilities of the technicians include 
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feeding the animals, maintaining cleanliness in the enclosures, and regularly introducing 

new enrichments to promote the macaques' mental and physical stimulation.   

Rhesus macaques display an omnivorous diet, encompassing a wide range of food sources 

such as fruits, seeds, leaves, insects, and small vertebrates. At the colony, the macaques are 

provided with one feeding session each morning. Their diet primarily consists of specially 

formulated complete diet pellets, designed to meet all their nutritional requirements. A 

diverse array of fruit and vegetable-based forage mixes are incorporated with the diet 

pellets, totalling seven unique mixes assigned to specific days of the week. This approach 

serves multiple purposes, encouraging the macaques to engage in natural foraging 

behaviours while enhancing the variety in their diet. To facilitate feeding, staff enter the 

play pen through a door. They proceed approximately 1.5 meters into the room and evenly 

distribute the food by tossing buckets containing the food items onto the ground. Water 

dispensers are placed throughout both the play pen and the cage room, always allowing the 

macaques continuous access to fresh water. 

Cleaning takes place on a biweekly schedule, specifically allocated for two days per group. 

The staff follows a rotational pattern, attending to either the play pen or the cage room 

during each cleaning session. The process entails removing all existing wood shavings 

bedding, thoroughly washing the entire enclosure, and subsequently replenishing it with 

fresh straw bedding. Cleaning a single room typically requires approximately 4 to 6 hours. 

During this period, the monkeys are temporarily relocated to the adjacent room, a measure 

taken to safeguard both their safety and that of the staff.  It is important to note that the 

enclosures are exclusively cleaned on weekdays. 

There are few events linked to the necessary husbandry practice that can be stressful for 

the macaques at CFM. The annual health screen is one of these. It occurs once per annum 

for each group. On the day of the screen every animal in the group apart from the infants 

are sedated with ketamine (10mg/kg) and transported to the on-site surgery room. The 

entire procedure takes approximately 1 hour. Juveniles born in the previous calendar year 

are also administered with an identification tattoo on their chest, if they are at least 12 

months old. 
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Another stressful event is the removal or introduction of a male from or into a breeding 

group. To prevent inbreeding and enhance mating outcomes, new breeding groups are 

formed or disbanded annually. However, these transitions are carefully managed to 

prioritize the group's welfare and stability. The process involves pre-introduction 

assessment, quarantine, gradual exposure through sight and smell, controlled physical 

introductions, establishing group dynamics, and continuous monitoring.  

As the primary focus of this thesis centres on examining the impact of management 

strategies, including feeding procedures and enrichment planning, on macaque welfare 

rather than quantifying the effects of stressful procedures, attention has been given to the 

selection of observation periods at the group level. This approach is aimed at mitigating 

potential sources of interference and upholding the integrity of the data collected. This 

includes avoiding cleaning days, weeks with health screenings, and other stressful events 

such as group disruptions or breakdowns. By minimizing these factors, the data collected 

can provide a clearer and more accurate representation of the natural behaviour and 

dynamics within the macaque groups. 

2.3 Ethical Statement 

The data collection took place at the Medical Research Council's 'Centre for Macaques', 

which adheres to the regulatory standards set by the UK Home Office for housing captive 

non-human primates. Since all the studies conducted in this thesis were observational in 

nature, no additional licensing was necessary. However, for the Enrichment Item Usage 

Study, which involved introducing objects into the enclosures, approval was obtained during 

the Centre for Macaques AWERB meeting held on March 13, 2023 (approval number: 

CFM2023E001). The PhD project itself was ethically approved by the Newcastle University 

Animal Welfare and Ethical Review Body. 

2.4 Data Collection 

The thesis contained three different studies: Temperament Test, Enrichment Item Usage, 

Foraging Project. The data used for the different studies are categorized into two main 

sources: information pertaining to the colony and recorded footage of the animals. 
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2.4.1 Information about the Colony 

At the CFM, daily records for health and husbandry-related information are maintained in 

paper health records for each animal and day books for each group. Data from these 

records, are entered into an electronic database (Oracle based system provided by ENOS; 

https://poweredbyenos.com/). The data encompass a range of information, including 

weaning dates, location transitions, births (pertaining to breeding females), health 

assessments, medication records, treatments, veterinary checks, reports of injuries, and 

individual weight measurements. In the context of the Foraging Project, the data on injuries 

rate and individuals' weight, have been used in conjunction with the information derived 

from the automated methodology. 

2.4.2 Footage of the Macaques  

The videos utilized for the Temperament Test study were captured using two Sony HDR-

CX625 Full HD Compact Camcorders cameras that were temporarily positioned outside the 

cage room specifically for the duration of the tests. In contrast, the videos employed for the 

other two studies were obtained through a CCTV system that continuously recorded the 

play pens round the clock. Each of these rooms has an Axis P1455-LE camera, these are 

record via Power-over-Ethernet cables to an Axis Camera Station S1148.  

All the collected videos, regardless of the source, were subjected to analysis using deep 

learning-based models. These models enabled the automated processing and extraction of 

relevant behavioural information from the footage, facilitating the study and exploration of 

various aspects related to macaque welfare and behaviour. 

  

https://poweredbyenos.com/
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2.5 Deep Learning Models 

Deep learning is a subfield of machine learning that utilizes artificial neural networks, also 

known as deep neural networks, to learn and make predictions or decisions.  

In this thesis, I will present three distinct projects, each employing various deep learning 

models: 

1- Temperament Test Project  

This investigation encompasses three separate models: 

• Two models built on the foundation of DeepLabCut, designed to 

detect and distinguish various macaque body parts. 

• One model, based on YOLACT, dedicated to detecting and identifying 

six different objects. 

2- Foraging Project 

This research revolves around a YOLACT-based model, focused on the task of 

detecting macaques within different playpens. 

3- Enrichment Project 

This study comprises two models: 

• One built upon YOLACT, aimed at detecting and tracking a specific 

object. 

• Another model based on YOLOV8, intended to identify macaques 

within various playpens, parts of an enrichment puzzle, and the front 

platform within the playpens. 

 

In order to enable a deep learning model to learn from data and make accurate predictions 

or decisions on new data, it is necessary to train it. Training a deep learning model involves 

two primary phases: training and validation. During the training phase, the model learns to 

make label predictions or segment objects in the image. Label predictions involves 

classifying objects in the image, while perform segmentation involves identifying and 

outlining object boundaries using techniques like bounding boxes and masks (Matthews et 

al., 2017; Wang et al., 2020; Wu et al., 2021). Bounding boxes are rectangular regions that 
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tightly enclose objects of interest in an image, whereas masks are pixel-level 

representations that precisely delineate the shape and extent of objects, providing a more 

fine-grained segmentation. accurate predictions or decisions on new data, it is necessary to 

train it. Training a deep learning model involves two primary phases: training and testing.  

2.5.1 Training 

In supervised learning (see 0Chapter 2 for more details), during the training phase, the 

model learns from a labelled dataset, also known as the training set, which consists of input 

data and corresponding target labels. The model iteratively adjusts its internal parameters, 

also known as weights and biases, to minimize the difference between its predicted labels 

and the true labels in the training set (Kavakiotis et al., 2017).  

The training process involves passing the training data through the neural network, 

calculating the predictions, comparing them to the true labels, and updating the weights 

using optimization algorithms such as gradient descent and backpropagation (Figure 4).  

 

Figure 4: Diagram showing the main steps to train a deep learning-based model. 

This iterative process continues until the model reaches a point where the predictions align 

closely with the true labels in the training set. The goal is to minimize the training loss, 

which quantifies the discrepancy between the predicted and true labels. After the model 

has completed training, it proceeds to the validation phase, where the hyperparameters are 

assessed. These hyperparameters are configuration settings predetermined before the 
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commencement of training in a machine learning or deep learning model. They wield 

significant influence in shaping the model's architecture and its behaviour throughout the 

training process. 

2.5.2 Testing and Evaluation 

During testing, the model is evaluated using a separate dataset called the test set 

(Kavakiotis et al., 2017). This dataset contains examples that the model has not seen during 

training. The purpose of the test set is to assess the generalization performance of the 

model. By making predictions on the test set and comparing them to the true labels, metrics 

such as accuracy, precision, recall (for categorical labels), or mean squared error and mean 

average precision (for continuous predictions) are calculated to measure the model's 

performance. The ground truth, which represents the true, accurate labels or annotations, is 

used for this comparison. This evaluation helps in understanding how well the model is 

likely to perform on new, unseen data. 

In each study, I established a pipeline to extract the necessary information. These pipelines 

consisted of a sequence of interconnected and ordered processing steps. These steps 

included running deep learning models on videos, refining the model's output, and 

extracting essential information, such as the count of detections and the positions of 

detected objects. To evaluate these pipelines, I used the accuracy, recall and precision.  

Accuracy is a common evaluation metric used in machine learning to measure the 

performance of a classification model. It represents the proportion of correctly predicted 

instances out of the total number of predictions made. In other words, accuracy indicates 

how often the model's predictions align with the ground truth. 

Recall, also known as sensitivity or true positive rate, measures the proportion of correctly 

predicted positive instances out of all actual positive instances that were attempted. It 

focuses on the ability of the model to identify all positive instances, avoiding false negatives. 

Recall is calculated by dividing the number of true positive predictions by the sum of true 

positive and false negative predictions. 

Precision measures the proportion of correctly predicted positive instances out of all 

instances predicted as positive. It focuses on the accuracy of positive predictions and helps 
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evaluate the model's ability to minimize false positives. Precision is calculated by dividing 

the number of true positive predictions by the sum of true positive and false positive 

predictions. 

To perform a comprehensive evaluation of the individual models within each pipeline, I 

utilized three distinct evaluation metrics, each selected based on the inherent evaluation 

methods of the underlying algorithm used for the model. For instance, classification models, 

such as those based on YOLACT and YOLO (Bolya et al., 2019; Jocher, G., Chaurasia, A., & 

Qiu, 2023), which yield class labels as outputs, were assessed using metrics that focus on 

classification accuracy, precision, and recall. Conversely, regression models like DeepLabCut 

(Mathis et al., 2018), which produce numerical values within a range of real numbers, were 

evaluated using metrics designed to gauge the model's proficiency in making accurate 

numerical predictions. 

I used the mean average precision (mAP) to evaluate the YOLCAT models’ performance 

(Bolya et al., no date; Liu, 2009). The mAP compares the ground-truth bounding box (and 

mask) to the detected box (and mask) and returns a score. It measures how accurately the 

model identifies and localizes objects within an image.  

𝑚𝐴𝑃 =
𝐴𝑃1 + 𝐴𝑃2 + . . . + 𝐴𝑃𝑛

𝑛
 

Where 𝐴𝑃1, 𝐴𝑃2, … , 𝐴𝑃𝑛 are the average precision values (𝐴𝑃) for each object category. 𝐴𝑃𝑖 

is the area under the Precision- Recall Curve for the object 𝑖. This curve is obtained by 

plotting the model's precision and recall values as a function of the model's confidence 

score threshold. 𝑛 is the total number of object categories. 
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The higher the score, the more accurate the model is in its detections. In addition, the mAP, 

can be calculated for different thresholds of Intersection over Union (IoU) (Rahman and 

Wang, 2016). IoU is a metric that evaluates the accuracy of bounding box predictions. It 

measures the overlap between the predicted bounding box and the ground truth bounding 

box of an object in an image ( 

Figure 5). 

 

Figure 5: Example of Intersection of Union (IoU). 

The confusion matrix was used as tabular representation to evaluate the YOLO model's 

performance in identifying objects within the videos (Li and Deng, 2019; Jocher, G., 

Chaurasia, A., & Qiu, 2023). In object detection, the matrix provides a detailed breakdown of 

the model's predictions for each class of objects, taking into account both classification and 

localization aspects. 

The model using YOLO was trained to discern macaques, two enrichment items, and a 

wooden platform. Consequently, its associated confusion matrix featured five columns and 

five rows. These rows correspond to the individual classes (macaques, two enrichment 

items, wooden platform, and background), with an extra row allocated for the "background" 

class. This class assumes significance in delineating regions in an image devoid of any objects 

of interest. This inclusion empowers the model to discern that not every portion of an image 

necessarily hosts a detectable object. This proves particularly beneficial in scenarios where 

objects of interest are relatively sparse within video frames. 
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In the context of a confusion matrix, the rows signify the Predicted Classes, where each row 

encapsulates a distinct class of objects anticipated by the model. Conversely, the columns 

represent the True Classes, encapsulating the classes designated for detection by the model. 

The diagonal elements (top-left to bottom-right) of the matrix represent the cases where 

the model made correct predictions. While the off-diagonal elements represent cases where 

the model made wrong predictions (Figure 6).  

Figure 6: Confusion matrix from the YOLO model used in the Enrichment Project. 

Finally, I used the Mean Squared Error (MSE) to evaluate the DeepLabCut models’ 

performance (Mathis et al., 2018). The MSE loss function is calculated as the squared 

difference between the model’s prediction and the ground truth, averaged across the whole 

dataset.  

𝑀𝑆𝐸 =
1

𝑁
∑(𝑦𝑖 − 𝑦̂𝑖)

2

𝑁

𝑖=1

 

Where 𝑦𝑖 are the ground truth values, 𝑦̂𝑖 are the model’s prediction values, and 𝑁 is the 

total number of objects. 

2.5.3 Preparing the Databases 

DeepLabCut, YOLACT (You Only Look At CoefficienTs) and YOLO (You Only Look Once) 

require supervised learning, where both the input data and the corresponding target labels 
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are provided (Mathis et al., 2018; Bolya et al., 2019; Jocher, Chaurasia and Qiu, 2023). To 

create these datasets, I used three graphical user interfaces (GUI). 

DeepLabCut provides a GUI (Figure 7) that allows the user to extract the frames from videos, 

label them, train the model, and use it on new videos (Mathis et al., 2018).  

 

Figure 7: DeepLabCut GUI. Extract Frames Tab. 
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To create the datasets for training and testing of the YOLACT models, I used the annotation 

tool provided by Argos (Ray and Stopfer, 2022). This facilitated the process of labelling 

images and exporting them in a format compatible with YOLACT for training purposes 

(Figure 8). 

 

 

Figure 8: Argos GUI. 
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To generate the necessary data for training and validating the YOLO model I employed a 

segment-anything-annotator that incorporates features from both the Segment Anything 

Model (SAM) and labelme (Wada, no date; Kirillov et al., 2023) ( 

Figure 9). This user interface (UI) was released in 2023, towards the conclusion of my PhD, 

limiting its usage to my latest project. The methodology boasts a significant advantage: it 

can produce high-quality object masks from simple input prompts, like points, resulting in a 

faster labelling process compared to conventional methods. 

 

Figure 9: Segment Anything Annotator UI. 

To attain satisfactory accuracy for each model, I needed to label fewer than 500 images for 

training and testing, this has been possible thanks to a machine learning technique called 

transfer learning. This involves leveraging knowledge gained from one task or domain to 

improve performance on another related task or domain. In transfer learning, a pre-trained 

model, which has been trained on a large dataset for a specific task, is utilized as a starting 

point or a feature extractor for a different but related task. 

The idea behind transfer learning is that the features learned by the pre-trained model on 

the source task can be generalized and transferred to the target task, even if the target task 

has a different dataset or slightly different requirements. Rather than training a new model 
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from scratch on the target task, transfer learning allows us to benefit from the knowledge 

already captured by the pre-trained model.  

To pre-train a model, there are several available large-scale image databases. DeepLabCut, 

for instance, is pre-trained on ImageNet, a dataset comprising over 14 million images 

categorized into more than 20,000 classes or categories (Mathis et al., 2018). On the other 

hand, both YOLACT and YOLO are pre-trained on COCO (Common Objects in Context), which 

contains 330,000 images covering 80 common object categories (Bolya et al., 2019). 

Notably, the latter database provides both labels and segmentation data for each image, 

while ImageNet solely offers labels. 

2.5.4 Data Processing 

Once the models were trained and utilized to extract information from unseen videos, the 

outputs of these algorithms, DeepLabCut (DLC), YOLACT and YOLO, consist of CSV (Comma-

Separated Values) files containing thousands of entries, each representing specific details 

captured during the analysis process. 

The CSV files typically include the following types of information: 

1- Body Part Coordinates: For DLC, the CSV file contains the x and y coordinates of each 

identified body part in the video frames. These coordinates represent the positions 

of body parts such as joints, limbs, or other points of interest. These values allow for 

tracking and analysing the movement or position of specific body parts over time. 

2- Bounding Box Coordinates: For YOLACT and YOLO, the CSV file includes the bounding 

box coordinates for detected objects or classes in the video frames. The bounding 

box specifies the position and size of an object in the image. It consists of the top-left 

corner coordinates (x, y) and the width and height of the bounding box. This 

information helps in identifying and localizing objects of interest within the video 

frames. 

3- Likelihood or Confidence Scores: Both DLC, YOLACT and YOLO provide likelihood or 

confidence scores associated with each data entry. These scores represent the 

model's level of certainty or confidence in its predictions or detections. Higher scores 
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indicate a higher degree of confidence in the accuracy of the predictions, while lower 

scores may indicate uncertainty or lower confidence. 

4- Classes or Labels: For YOLACT and YOLO, the CSV file contains information about the 

detected object classes or labels. Each entry specifies the class or category to which 

an object belongs, such as "person", "macaques", "raisins" etc. This information 

enables the identification and classification of different objects present in the video 

frames. 

Due to the large volume of data generated by the models, it was essential to undergo a data 

cleaning process to ensure the data align with the desired outcomes and objectives. Data 

cleaning involves a series of tasks such as removing unneeded data, handling missing values, 

standardizing formats, removing values associated with low confidence scores, correcting 

errors, and resolving inconsistencies in the data. This helps mitigate the impact of noisy or 

unreliable data on the interpretation of results, facilitating the data analyses.  

2.6 Other Software 

To create and compile the training dataset for the various models, I utilized the Python 

programming language (version 3.9.13). Python offers a wide range of libraries and 

frameworks that are well-suited for data manipulation, pre-processing, and model training. 

For data processing and statistical analyses, I employed R, specifically version 4.0.4. R 

provides a comprehensive set of tools and packages for data manipulation, visualization, 

and statistical modelling, making it suitable for conducting rigorous analyses on the 

obtained data. 
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Chapter 3. Exploring Macaque Temperament Assessment through Deep 

Learning: A Study on Behaviour Recognition in Temperament Tests 

3.1 Abstract 

Knowing temperament in captive non-human primates by gauging individual responses to 

novel objects holds significance in their management. Typically, temperament tests are 

evaluated through focal observation and manual behavioural coding, a method demanding 

trained personnel and significant time investment. In this study, I explored whether 

computer vision techniques could be used to automate collection of behavioural data from 

rhesus macaques (Macaca mulatta) during temperament tests. 

A total of 130 individual temperament tests were recorded using two cameras, one 

positioned at the front of the cage and another on the side. Three distinct deep learning-

based models were trained and validated using images extracted from a subset of 

temperament test videos. These models were employed to quantify relevant behavioural 

parameters crucial for temperament assessment, including movement patterns, exploratory 

behaviour, and latency to approach novel stimuli. 

The results obtained from the pipeline constructed upon these models were compared with 

manually coded data collected by a human observer. Both datasets were then applied to a 

case study aimed at investigating the impact of the protocols in place during Covid-19 

pandemic on macaque behaviour. It is worth noting that due to video limitations, I 

encountered challenges in obtaining reliable data regarding latency to approach to the 

novelties.  

Nevertheless, my automated method successfully extracted previously unrecorded 

behaviours crucial for temperament assessment in macaques, enabling the demonstration 

that macaques born and raised during the Covid-19 pandemic exhibited a higher level of 

neophobia during temperament tests compared to the cohort tested before the pandemic. 
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3.2 Introduction 

Annually, approximately 100,000 primates are employed in global research endeavors. 

Macaques, due to their close genetic resemblance and physiological-cognitive parallels to 

humans, are favored for studies with translational implications (Kalin and Shelton, 1989). 

Ensuring optimal welfare for these valuable research subjects necessitates informed 

management practices, with temperament assessment emerging as a key strategy in captive 

non-human primate care (Coleman et al., 2012; Coleman and Schapiro, 2021). 

Temperament, sometimes synonymous with personality (Capitanio, Mendoza and Cole, 

2011), reflects a biologically inherent disposition in an individual's consistent response to 

stimuli over time (Stamps and Groothuis, 2010; Schmidt and Poole, 2020). Quantitative 

temperament evaluation encompasses standardized tests measuring behavior in reaction to 

set stimuli or trait ratings by experienced caretakers, employing Likert scale ratings of 

descriptive adjectives to gauge distinct temperament facets (refer Freeman and Gosling, 

2010; Coleman and Pierre, 2014). 

Assessing temperament in rhesus macaques held for research offers insights into various 

challenges, including injury susceptibility, abnormal behaviour development, health status, 

group stability, training success, husbandry response, social bond formation, and pair 

housing compatibility (Coleman, Tully and McMillan, 2005; Weinstein and Capitanio, 2008, 

2012; Vandeleest, McCowan and Capitanio, 2011; Button et al., 2013; Gottlieb and 

Capitanio, 2013; Gottlieb, Coleman and McCowan, 2013; Gottlieb et al., 2019; Doelling et 

al., 2021; Fox et al., 2021). This assessment helps identify individuals at risk and informs 

strategies for their management and research outcomes. 

Numerous factors play a role in shaping temperament, including prenatal exposure to stress 

affecting infant emotional responsiveness and postnatal experiences (Timmermans and 

Vossen, 1996; Herrington, Del Rosso and Capitanio, 2016). Notably, assessing temperament 

in captive populations requires attention to habituation to human presence, which has been 

shown to influence responses to novel stimuli. Recent research on vervet monkeys 

(Chlorocebus pygerythrus) and orangutans (Pongo sp.) underscores how prior exposure to 

humans fosters curiosity and exploration of novel objects (Damerius et al., 2017; Forss et al., 

2022). In addition, in captivity, habituation is pivotal for animal well-being, minimizing 
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undue stress from human interaction. However, the COVID-19 pandemic disrupted habitual 

exposure for primates at the Medial Research Council’s Centre for Macaques (CFM), 

potentially impacting their welfare and data quality for biomedical research (Schapiro and 

Hau, 2023). Ensuring consistent and documented levels of habituation is essential for 

maintaining reliable research outcomes involving primates.  

Traditionally, temperament assessments entail laborious manual observations and 

behavioral data collection, reliant on skilled personnel (Porto et al., 2013; Barnard et al., 

2016; Mathis et al., 2018; Weinstein, 2018). The human observer needs to watch videos 

recording the test and code behaviours of interest throughout the entire test, typically 

spanning a duration of 15 to 20 minutes. However, strides in machine learning and 

computer vision offer promising avenues to address these challenges (Blumrosen, Hawellek 

and Pesaran, 2017; Kennedy, 2022). 

This study focuses on analysing temperament tests to extract valuable insights for 

evaluating macaques' neophobia at the CFM. Specifically, the objective was to uncover the 

stimulus-monkey interaction by employing object detection, localization techniques, and 

pose estimation. These models were applied to examine the influence of reduced 

habituation due to COVID-19 procedures on macaques' responses to various stimuli in 

temperament tests.  

3.3 Materials and Methods 

3.3.1 Facility and Subjects 

Temperament tests were conducted at the Medical Research Council’s Centre for Macaques 

(CFM) involving 130 rhesus macaques, with 59 of them being females, spanning across four 

birth cohorts. These assessments took place around their 3rd birthday, with ages ranging 

from 2.97 to 3.51 years (mean ± SD = 3.07 ± 0.1), spanning the period from March 2019 to 

August 2022. 

Staff at the CFM typically engages in routine habituation practices, which can encompass 

training sessions or providing treats like raisins and peanuts to the monkeys. However, due 

to the COVID-19 pandemic, staffing levels were halved, leading to a substantial reduction in 

habituation efforts. This proactive measure aimed to mitigate the risk of SARS-CoV-2 
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transmission to the monkeys (see detailed habituation hours in the colony from 2019 to 

2022 in Table 1). 

Year Recorded hours of habituation 

2019 135.08 

2020 48.33 

2021 18.17 

2022 71.58 

Table 1: Total recorded hours of habituation/training for all the macaques in the colony by 
year. 

  

The CFM provides rhesus macaques with access to a playpen and an adjoining cage area 

(see Chapter 2).  Within the cage room, two cage sections are positioned across from each 

other, separated by about 1.5 meters. This layout enables two distinct groups to have visual 

exposure to each other. During testing, neither the opposite group nor the individual's 

group mates had visual contact with the subject being tested. For the actual testing process, 

the individual was isolated from the group in the adjacent cage room, running parallel to 

their playpen. The testing area's dimensions were 6.0 meters in length, 1.5 meters in width, 

and 0.9 meters in height. To provide a visual barrier, a black sheet was placed on the front 

of the cage that is farthest from the door, covering approximately one-third of the cage area 

where observers entered. 

The temperament tests initiated with a five-minute acclimatization phase, during which the 

monkey interacted with familiar food (raisins). Following this, three sequential two-minute 

phases were conducted: one with a novel food and two featuring novel objects. Each 

monkey was assigned randomly to one of two stimulus sets, and the presentation sequence 

consistently followed 'novel food' first, 'novel object 1' second, and 'novel object 2' third (as 

illustrated in Figure 10). The stimuli were positioned on a small wooden block placed at the 

centre of the cage exterior (Figure 11). Throughout the test, the monkey was solitary in the 
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testing area, except when a researcher entered to replace the stimulus and introduce the 

next one at the phase's conclusion. 

The temperament tests were recorded on two Sony HDR-CX625 Full HD Compact 

Camcorders: one situated on the outside of a clear panel on the side of the cage, the other 

in front of the cage where the stimulus was presented (Figure 11). 

 

Figure 10: Different phases of a temperament test. The novelties were randomly assigned 
from two sets of stimuli: Stimulus set 1 and Stimulus set 2). 
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Figure 11: Cage setting during temperament tests. a) Cage room was set up with a wooden 
shelf outside of the cage where the different items used for the test were positioned. The 
tests were recorded using two cameras, one positioned on the side of the cage and the other 
on the front of the cage. b) Camera view from the side of the cage. c) Camera view from the 
front of the cage. 
 

3.3.2 Automated Methodologies 

To address the primary objective of assessing stimulus-monkey interaction, an approach 

encompassing object detection, localization, and pose estimation was selected to elucidate 

the intricacies of monkey-stimulus dynamics (further details about these approaches are 

available in Chapter 2). This methodology enables the determination of the monkey's spatial 

position, or relevant body parts, in relation to the stimulus. 

To achieve this goal, two distinct computer vision models have been employed to analyse 

the video recording the temperament tests. Computer vision is a process by which 

information is extracted from visual inputs like images and videos using computational 

techniques. The models capitalize on the utilization of the real-time instance segmentation 

tool, You Only Look At CoefficienTs (YOLACT) (Bolya et al., 2019), a deep learning technique 

rooted in Convolutional Neural Network (CNN) principles and renowned for its efficacy in 

localizing objects within complex visual scenes (LeCun, Bengio and Hinton, 2015; Weinstein, 

2018). Together with YOLACT, DeepLabCut (Mathis et al., 2018), a foundation stone in 

contemporary marker-less pose estimation, has been integrated into the analytical 
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framework. This was essential to accurately track specific body parts on individual monkeys, 

enhancing the ability to analyse how the individuals interact with the stimuli.  

Object Detection Model 

The aim of the YOLACT-based was to detect the ID and the location (bbox x, y coordinate) of 

6 objects used during the tests. This model processes video input sourced from the forward-

positioned cage camera (Figure 11b) and yields outputs comprising object IDs along with 

their respective regions of interest (ROIs) (Figure 12). YOLACT, having undergone training, 

has acquired the capacity to discern six distinct object classes: Familiar Food (FF), Novel 

Food (NF), Novel Objects 1 (NO1), and Novel Objects 2 (NO2) (Figure 10). Notably, the 

model has been trained to conflate the familiar food items from both stimulus sets into a 

unified class, while concurrently trained to discriminate among all four novel objects. This 

stratagem was adopted due to the similar visual attributes of the two familiar food 

categories.  

The model demonstrates reasonable performance in detecting Novel Objects, manifesting a 

nominal false-positive rate of 7.9% and a satisfactory true-positive rate of 96% (Table 2). A 

nuanced assessment of the familiar food items in terms of false-positive and true-positive 

rates was unfeasible. This is attributed to the likelihood of these food items being consumed 

during the testing phase, thereby potentially disrupting the frames where their detection 

was expected but remained unattainable due to consumption. For a comprehensive 

evaluation encompassing all six classes, refer to Table 3. 

Rope Toy  Owl Toy  Yellow Toy  Mr. Potato Toy  

TP FP TP FP TP FP TP FP 

94% 7% 94% 1.5% 99% 16% 97% 7% 

Table 2: Average percentage of true positive (TP) and false positive (FP) for the different 
Novel Objects. 
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   All .50 .60 .70 .80 .90 

Box  74 94 92 86 79 53 

Mask  68 91 90 84 76 37 

Table 3: Mean average precision (mAP) for the Object Detection Model. The mAP compares 
the ground-truth bounding box (and mask) to the detected box (and mask) and returns a 
score. These comparisons are reported for different IoU thresholds, which represent the 
proportion of overlap between the predicted bounding box (or mask) and the ground truth 
bounding box (or mask) in relation to their combined area. For instance, an IoU of .50 
signifies a 50% overlap. 

 

 

Figure 12: Examples of Object Detection model’s visual outputs. a) showing the Familiar 
Food and b) showing the Novel Object 2 from Stimulus Set 2. 

Object Interaction Model 

The Object Interaction Model was designed to identify the locations of 8 specific body parts 

utilized for interacting with the food and objects provided during the tests. The model was 

employed to determine the positional attributes of specific anatomical elements, namely 

the monkey's hands, feet, eyes, mouth, and nose, within the video recordings (Table 5). 

Based on DeepLabCut, this model takes video inputs sourced from the forward-positioned 

cage camera (Figure 11b), adeptly identifying up to eight distinct body parts normally used 

by the monkeys to interact with novelties. Demonstrating sound performance, the model 

showcases a negligible overall error during both training and testing phases, as detailed in  

 

Training Error (pixels) Testing Error (pixels) 
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Object Interaction Model 3.12 (3.0) 4.85 (3.67) 

Tracking Model 1.91 (1.91) 8.34 (5.24) 

Table 4. 

 

 

Training Error (pixels) Testing Error (pixels) 

Object Interaction Model 3.12 (3.0) 4.85 (3.67) 

Tracking Model 1.91 (1.91) 8.34 (5.24) 

Table 4: Mean Squared Error for the Tracking and Object Interaction Pipeline (from 
DeepLabCut evaluation). Numbers are given as overall error (error if threshold >0.9). The 
error is calculated as the difference in pixels between the ground truth and the model 
output.  

The model's output, spotlighting the detected animal body parts, was used to capture 

interactions with the items of interest (Figure 13). Specifically, the coordinates (x and y) of 

these body parts, in conjunction with the output from the Object Detection Model, are 

harnessed to discern instances when the animal engages with the items. This determination 

is founded on the premise that the x, y coordinates derived from the Object Interaction 

Model, which identified the position of the body part within the frame, fall within the region 

of interest (ROI) outlined by the Object Detection Model. This model identifies the location 

(bounding box) of the object. If the x, y coordinates of the body parts are within the area of 

the ROI, then an approach is detected. (As illustrated in Figure 16). 
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Figure 13: Examples of Object Interaction model’s visual outputs. a) showing an approach 
from the Novel Food phase and b) showing an approach from the Novel Object 1 phase. 

Utilizing both the Object Detection Model and the Object Interaction Model, it was possible 

to gain valuable insights into the monkeys' interactions with the stimuli, focusing on 

extracting behavioural metrics such as approach latency and the frequency of approaches to 

the stimuli (behaviours defined in 3.3.3). 

In order to delve into the monkeys' responses to the diverse stimuli, a third model was 

employed. The Tracking Model had the aim of meticulously tracking alterations in individual 

relative positioning over time and it was used to extract the monkey movement patterns 

(Figure 16).  

Tracking Model 

Tracking Model body parts Object Interaction Model body parts 

Right and Left Eye Right and Left Eye 

Nose Nose 

Mouth Mouth 

Right and Left Foot Right and Left Ear 

Right and Left Hand Right and Left Shoulder  

Top of the Head 

Back of the Neck 

Right and Left Elbow 

Right and Left Hand 

Right and Left Hip 

Right and Left Knee 



61 

 

The Tracking Model, based on DeepLabCut, was developed to utilize the coordinates of 24 

body parts for tracking macaques around the cage, enabling the extraction of their 

movement patterns. The model utilizes video inputs sourced from the laterally positioned 

cage camera (Figure 11a). This model demonstrates proficiency in detecting and localizing 

up to 26 distinct body parts (Table 5), yielding commendable performance with an 

appreciably modest overall error rate during both training and testing stages ( 

 

Training Error (pixels) Testing Error (pixels) 

Object Interaction Model 3.12 (3.0) 4.85 (3.67) 

Tracking Model 1.91 (1.91) 8.34 (5.24) 

Table 4). 

Table 5: List of body parts detected by the Tracking Model and the Object Interaction Model. 

 

The model's output has been employed to enable tracking of animal movement within the 
cage (Figure 14). This is achieved by extracting the central coordinate of the animal's head 
(Figure 16). To provide illustrative context, Figure 15 presents two distinct examples of cage 
exploration undertaken by separate individuals during their temperament tests.

Figure 14: Examples of Tracking model’s visual outputs. a) showing a monkey walking 
towards the side camera and b) showing a monkey walking away from the side camera.  

 

Right and Left Ankle 

Right and Left Foot 

Tail Base 

Tail Tip 
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Figure 15: Example of two movement patterns extracted from the Tracking Model for two 
different individuals. The x and y axes represent the head coordinate extracted from the 
model. The darkest points represent the monkey position at the beginning of the video while 
the lightest ones represent its position towards the end of the recording. 

 



63 

 

 

 

 

 

 

 

 

 

Figure 16: Diagram illustrating the pipeline for the analysis. The figure shows how each of 
the models were used to obtain the final behavioural variables coded. 

 

3.3.3 Behaviour Extraction 

Using our three models it has been possible to extract behavioural information used to 

assess temperament in rhesus macaques. In total, three behaviours were coded: number of 

approaches, latency to approach, amount of movement (Figure 16).  

Exploratory Behaviour 

This behaviour is defined as the amount of time that the individual spent close 

(approaching) to the objects. The quantification of approaches to distinct stimuli (FF, NF, 

NO1, and NO2) was achieved through the incorporation of the region of interest (ROI) 
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derived from the Object Detection Model and the coordinates corresponding to body parts 

engaged in approaching novelty, as extracted from the Object Interaction Model. To ensure 

comprehensive coverage of all interaction types, the dimensions of the ROI were amplified 

tenfold for food-related stimuli and merely doubled for novel objects. This adjustment 

accounted for the divergent dimensions of the stimuli, facilitating the detection of 

approaches encompassing various interactions beyond mere physical contact, such as 

sniffing and close observation. 

An approach event was registered when at least one body part, with a confidence score of 

0.8 or higher, was detected within the expanded ROI. For characterization as an approach, 

the animal's body parts—nose, mouth, hands, and feet—needed to be situated within the 

ROI of the novelty stimulus. This encompassed a spectrum of behaviours including touching, 

inspecting, and licking. This behaviour offers a window into various dimensions of macaque 

temperament and neophobia, reflecting aspects such as exploratory tendencies, risk 

attitude, and impulsivity (Barr et al., 2008; Santillán-Doherty et al., 2010; Amici et al., 2020). 

The procedural framework employed for extracting the number of approaches is rooted in 

Python (version 3.9.13) and serves a multi-faceted purpose: (1) to refine the output from 

both the Object Detection Model and the Object Interaction Model, extracting pertinent 

information, like coordinates with confidence scores exceeding 0.8, (2) to determine 

instances where Object Interaction Model coordinates align with ROIs delineated by the 

Object Detection Model, and (3) to quantify the number of approach occurrences for each 

test phase. 

Latency to First Approach  

The computation of latency entailed measuring the time elapsed from the moment the item 

was introduced onto the wooden shelf to the instant when the animal's initial approach to it 

occurred. This data holds considerable significance within the realm of analyses focused on 

neophobia, novel object interest, and stress indicators studies (Kinnally et al., 2008; 

Laudenslager et al., 2011; Simpson et al., 2019; Amici et al., 2020). Leveraging the previously 

outlined framework, it becomes feasible to collect latency-related insights for each test 

condition. Notably, the calculation of latency to approach was confined to the first approach 
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within each test phase, and it was computed by deducting the commencement of the 

respective phase from the time of interaction within that phase. 

Amount of Movement  

The Tracking Model was utilized to capture the time period during which macaques actively 

explored the cage environment. The evaluation of this behaviour requires a labour-intensive 

process when executed manually; however, comprehending the extent of a monkey's 

environmental exploration among novel circumstances or unfamiliar objects stands as 

imperative information for gauging neophobia, anxiety levels, and the broader response to 

novel stimuli (Pomeransky and Khriplovich, 1999; Rogers et al., 2008; Gottlieb and 

Capitanio, 2013). To capture this behaviour, a Python-based pipeline was employed to 

analyse changes in coordinates over consecutive frames, allowing for the extraction and 

examination of movement patterns. This pipeline identified two distinct behaviours: 

movement and freeze. It accomplished this by tracking the average position of a macaque's 

face. In instances where the face was not visible (indicating that the monkey was not facing 

the camera), it used the average coordinates of other body parts. The pipeline then 

calculated the difference in these coordinates between two subsequent frames. Movements 

were recorded if the difference exceeded 4 pixels; otherwise, a freezing state was noted.  

3.3.4 Behaviours Coded by the Human Observer 

A manual coding of all the videos was performed by D. Massey using BORIS version 7.9.8 

(Friard and Gamba, 2016). Behaviours were categorized as either states, indicating 

durations, or events, encompassing frequencies and latencies (Altmann, 1974). For a list and 

definition of the behaviour manually coded by the human observer see Table 6. 
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Behaviour Operational Definition Outcome Variable 

Behind Visual 

Barrier 

Individual is sat, moving, or climbing in the 

area of the cage behind the visual barrier. 

Freeze duration to be recorded separately. 

Duration 

Freeze Individual is in a tense posture with ventrum 

pressed down or towards floor for more than 

2 seconds.  

Duration 

Escape 
Attempts   

 

Individual tries to squeeze one or more limb 

through the wooden slats; each attempt is 

separated by 2 seconds. 

Frequency 

Latency to Approach The first time the individual initiates 

movement toward the direction of the novel 

object/food whilst looking in that direction.  

Latency 

Table 6:  Operational definitions and outcome measures for behaviours coded by human 
observer. 

 

The Latency to Approach served as a benchmark for validating the accuracy of the pipeline 

and the models. Given the time-intensive nature of quantifying both movement extent and 

the overall count of approaches through manual observation, these behaviours were not 

subjected to manual coding. On the other hand, behaviours like Escape Attempts and 

Behind Visual Barrier could not be reliably detected by the automated pipeline due to their 

intricate characteristics. 
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3.3.5 Statistical Analyses 

Assessing reliability  

To evaluate the consistency between two human coders, a subset of 30% of all videos was 

randomly selected and subjected to coding by an independent coder to gauge inter-

observer reliability. The additional coder received comprehensive training on each 

behaviour outlined in the ethogram, alongside visual demonstrations from relevant videos. 

Importantly, the secondary coder was kept blind to both the identity of the monkeys and 

their weaning age. The assessment of reliability entailed the computation of Intraclass 

Correlation Coefficients (ICCs) using the ICC function within the 'psych' package in R 

(Revelle, 2020), employing an ICC (2,1) model that gauges the level of absolute agreement 

between coders. This model assumes that the measurement from a solitary coder serves as 

the foundational basis for measurement (Shrout and Fleiss, 1979; McGraw and Wong, 1996; 

Koo and Li, 2016). Notably, this reliability analysis was restricted to variables encompassed 

in the analytical framework. 

Similarly, ICC (2,1) was computed to determine absolute agreement between a single 

human coder (D. Massey) and the automated pipeline for (1) latency to approach in each 

phase across all videos and (2) latency to approach in each phase specifically for videos 

where both the human and the pipeline identified an approach. Furthermore, to gauge the 

strength of the correlation between latency to approach as coded by the human and the 

pipeline, Pearson's correlation coefficient was calculated. 

Principal Component Analysis  

Principal Component Analysis (PCA) was employed to reduce the complexity of two 

datasets: (1) variables derived from human coding and (2) variables exclusively from the 

pipeline. For human-derived variables, 'behind visual barrier', 'escape attempts', and 'freeze' 

were aggregated across the three novel phases to create an overarching measure of 

neophobia. Meanwhile, latency variables for each phase were retained individually to 

account for potential variances in monkeys' responses to different food and objects. In the 

pipeline-derived dataset, 'movement' and 'freeze' were combined across all phases, akin to 

the human PCA approach, with phase-specific latency variables also included. 
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All variables slated for PCA underwent standardization, ensuring a mean of 0 and a standard 

deviation of 1. The optimal number of components was determined through parallel 

analysis utilizing the 'paran' package in R (Horn, 1965; Dinno and Dinno, 2018). 

For human-derived data, parallel analysis disclosed the retention of a single component, 

rendering PCA rotation unnecessary. Conversely, pipeline-derived data revealed the need to 

preserve two components, necessitating the application of an orthogonal (varimax) rotation 

to uphold the independence of these components. PCA was carried out using the 'principal' 

function within the psych package (Revelle, 2020), followed by the extraction of 

differentially weighted component scores for subsequent analyses. 

Model Fitting  

Two distinct models were applied to the dataset, each having an individual principal 

component as its outcome. To assess the combined impact, a multiple regression approach 

was employed using the 'lm' function in R. The independent factors considered for analysis 

included Sex (categorical: female or male), Cohort (categorical: 2019, 2020, 2021, or 2022), 

and the duration of macaque habituation treatment (continuous). While the dependent 

variables where the two individual principal components.  Subsequently, a range of 

assessments was conducted to ensure model robustness and credibility, encompassing 

diagnostics such as Cook's distance, DFBetas, DFFits, leverage, and Variance Inflation 

Factors. Additionally, checks were made for the distribution of residuals and the plotting of 

residuals against fitted values. Notably, none of these assessments revealed any 

conspicuous instances of influential cases or significant deviations from the assumptions of 

normality and homogeneity of residual (Quinn and Keough, 2002; Field, 2005). 
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3.4 Results 

3.4.1 Agreement between Manual Observations and Model Estimations for Latency to First 

Approach 

The pipeline demonstrated an overall detection accuracy of 88% for identifying initial 

approaches in all experimental phases compared to manual coding. 

In the context of the Familiar Food phase (FF), the machine learning (ML)-based pipeline 

exhibited instances in which it inferred that certain monkeys had approached the stimuli, a 

conclusion that was not corroborated by the human observer's analyses. For the remaining 

experimental phases, the pipeline exhibited an underestimation of the number of monkey 

approaches when compared to human observations. In addition, it is noteworthy that there 

were occasions of concurrence between the human observer and the ML model (refer to 

Table 7 for more details). 

Phase Human Observer Pipeline Agreement 

Familiar Food 100 118 93% 

Novel Food 83 96 87% 

Novel Object 1 75 56 64% 

Novel Object 2 73 72  83% 

 Table 7: Agreement between the human and ML pipeline for the count of monkeys 
approaching, categorized by phase. The "Agreement" column within the table represents the 
percentage of individual macaques approaching concurrently detected by both the human 
observer and the pipeline. 

 

Yet, when encompassing only all the monkeys that were independently recognized as 

approaching by both the human observer and the pipeline in the dataset, the level of 

complete agreement between the pipeline's output and the human observer fell under 50% 

for all phases except for Novel Object 2. Furthermore, the correlation coefficients exhibited 

a lower level of agreement for the familiar and novel food phases, while they demonstrated 

a moderate level of agreement for the novel object phases (Table 8). As a contrasting point 
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of consideration, the inter-observer reliability between two human coders, when evaluating 

the latency to approach, demonstrated a high level of absolute agreement (ICC (2,1) = 0.9; 

95% CI (lower, upper) = 0.87, 0.93). 

Table 8: Intraclass Correlation Coefficients (ICC) and reliability (r) for latency to first 
approach for full dataset. 

 ICC Pearson’s correlation  

Phase ICC (2,1) CI (lower, 
upper) 

p r df CI (lower, 
upper) 

p 

Familiar 
Food 

0.21 0.04,0.37 0.020 0.26 127 0.09,0.41 0.003 

Novel 
Food 

0.44 0.29,0.57 <0.0001 0.45 127 0.3,0.6 <0.0001 

Novel 
Object 1 

0.47 0.3,0.58 <0.0001 0.47 127 0.32,0.6 <0.0001 

Novel 
Object 2 

0.65 0.54,0.74 <0.0001 0.65 127 0.54,0.74 <0.0001 
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In contrast, when analysing only the individuals identified as approaching by both the human 

observer and the pipeline in the different phases, the level of agreement was lower for the 

familiar and novel food phases, while it reached a moderate level for the novel object phases. 

Notably, the correlations between these subsets of data displayed a stronger connection 

compared to the entire dataset (Table 9 and Figure 17). 

Table 9: Intraclass Correlation Coefficients (ICC) and reliability (r) for latency to first 
approach within the subset of data where concordance exists between human observer and 
ML pipeline in identifying approaching monkeys. 

 

 

 ICC Pearson’s correlation  

Phase ICC (2,1) CI (lower, 
upper) 

p r df CI (lower, 
upper) 

p 

Familiar 
Food 

0.11 -0.6,0.3 0.09 0.16 91 -0.04,0.35 0.12 

Novel 
Food 

0.52 0.33,0.67 <0.0001 0.53 71 0.34,0.68 <0.0001 

Novel 
Object 1 

0.78 0.64,0.87 <0.0001 0.78 46 0.65,0.87 <0.0001 

Novel 
Object 2 

0.66 0.5,0.78 <0.0001 0.67 59 0.51,0.79 <0.0001 
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Figure 17: Scatter plots showing the correlation between human and ML pipeline latency to 
first approach in each phase: A) Familiar Food; B) Novel Food; C) Novel Object 1; D) Novel 
Object 2. All latency variables are measured in seconds. 

 

3.4.2 Principal Component Analysis 

Machine Learning Pipeline 

Three components with eigenvalues exceeding 1 were identified, and parallel analysis for 

component retention indicated that one component exhibited a magnitude greater than 

what would typically be anticipated from random data (as determined by 300 iterations) at 

the 95th percentile. This specific component demonstrated positive salient loadings for 
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latency to the first approach within each phase of the temperament test, indicating longer 

latency periods. In addition, it had negative loadings for exploratory behaviour and time 

spent moving, along with a positive salient loading for time spent still. As a result, this 

component was labelled as 'Neophobia_ML' ( 

Variable Loading ‘Neophobia_ML’ h2 

Latency (FF) 0.63 0.4 

Latency (NF) 0.64 0.42 

Latency (NO1) 0.67 0.45 

Latency (NO2) 0.63 0.4 

Movement  -0.69 0.47 

Time Spent Still 0.61 0.37 

Exploratory Behaviour -0.42 0.18 

 Table 10). Notably, 'Neophobia_ML' accounted for 38% of the total variance observed 

across the individual variables.   

Variable Loading ‘Neophobia_ML’ h2 

Latency (FF) 0.63 0.4 

Latency (NF) 0.64 0.42 

Latency (NO1) 0.67 0.45 

Latency (NO2) 0.63 0.4 

Movement  -0.69 0.47 
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Time Spent Still 0.61 0.37 

Exploratory Behaviour -0.42 0.18 

 Table 10: Loadings and Communality (denoted by h2) of the first principal component from 
the ML pipeline output. 

 

Human Observer Coding 

Without the variables extracted from the pipeline, the analysis unveiled the presence of 

three components with eigenvalues exceeding the value of 1. Subsequently, conducting 

parallel analysis for component retention revealed a solitary component that surpassed the 

expected magnitude derived from random data (based on 210 iterations) at the 95th 

percentile. This particular component, defined as Neophobia_HO, exhibited positive salient 

loadings for latency to approach across all phases, as well as freeze behaviour (as presented 

in Table 11), thereby elucidating 30% of the total variance encompassing individual 

variables. However, including the data obtained from the ML pipeline, it was possible to 

explicate a more substantial proportion of the variance within the principal component.  

Variable Loading Neophobia_HO h2 

Latency (FF) 0.63 0.39 

Latency (NF) 0.68 0.46 

Latency (NO1) 0.62 0.39 

Latency (NO2) 0.71 0.49 

Behind Visual Barrier 0.15 0.02 

Freezing Behaviour 0.51 0.27 

Escape Attempts -0.28 0.08 
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 Table 11: Loadings of the variables into the Principal Component Analyses and Communality 
(denoted by h2). Variables from human coding. 

3.4.3 Cohort Differences Due to Human Exposure  

Two linear models were fit to each principal component: one derived from the machine 

learning pipeline (Neophobia_ML) and one from the manual human observations 

(Neophobia_HO), see Error! Reference source not found.. 

Differences arose in the models assessing the effects of sex, cohort, and routine habituation 

practices days on neophobia. The Neophobia_ML model, which relied on data from the 

automated pipeline, indicated that none of the predictor variables had a discernible 

influence on the variation in neophobia scores (as illustrated in Table 12 and Figure 18). 

In contrast, the Neophobia_HO model, derived from human observations, found significant 

effects of cohort and a marginally non-significant effect of routine habituation practices 

(treatment) days on neophobia scores. Specifically, the Neophobia_HO model estimated 

that cohorts from 2020 and 2022 exhibited approximately half a standard deviation higher 

levels of neophobia compared to the 2019 cohort, while no significant differences were 

observed among other cohorts (refer to Table 13 and Figure 18Error! Reference source not 

found.). Additionally, it suggested a decrease in neophobia by 0.02 standard deviations for 

each additional day of routine habituation practices (treatment). 
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Despite the absence of statistical significance in the results obtained from the ML pipeline, it 

is noteworthy that the estimated trends aligned with those derived from human 

observations (as detailed inError! Reference source not found. and Table 13). 

Table 12: Coefficients for the ML pipeline model fits to each principal component. 

Est 

SE 

t 

p 

CI(Lower) 

CI(Upper) 

 

Neophobia_ML 

-0.16 

0.22 

-0.73 

0.46 

-0.61 

0.28 

Intercept 

0.22 

0.179 

1.23 

0.2 

-0.13 

0.6 

Sex 

0.35 

0.24 

0.14 

0.15 

-0.13 

0.84 

Cohort 

(2020) 

0.1 

0.26 

0.41 

0.7 

-0.41 

0.62 

Cohort 

(2021) 

0.18 

0.3 

0.7 

0.5 

-0.35 

0.71 

Cohort 

(2022) 

-0.02 

0.01 

-1.6 

0.1 

-0.04 

0.004 

Treatment 
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Table 13: Coefficients for the Human Observer model fits to each principal component. 

 

 

Est 

SE 

t 

p 

CI(Lower) 

CI(Upper) 

 

Neophobia_HO 

-0.150 

0.213 

-0.701 

0.485 

-0.572 

0.273 

Intercept 

-0.001 

0.174 

-0.005 

0.996 

-0.346 

0.344 

Sex 

0.522 

0.234 

2.231 

0.027 

0.059 

0.985 

Cohort 

(2020) 

0.182 

0.250 

0.728 

0.468 

-0.313 

0.678 

Cohort 

(2021) 

0.516 

0.258 

1.998 

0.048 

0.005 

1.027 

Cohort 

(2022) 

-0.020 

0.010 

-1.951 

0.053 

-0.041 

0.0003 

Treatment  
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Figure 18: Boxplots displaying neophobia scores by cohort for the model deriving from 
human observations. Dots represent individual data points. Boxes represent the lower and 
upper quartiles. Solid horizontal lines represent the median. Solid vertical lines represent the 
range of the data. Dots that are disconnected from the solid vertical line represent outliers 
that are 1.5 times the inter-quartile-range larger or smaller than the upper or lower 
quartiles, respectively. Dashed horizontal line represents mean neophobia score at zero.  

. 

3.5 Discussion 

Using three computer vision models, I was able to show how it could be possible to collect 

behaviours useful to assess neophobia and temperament using automated methodologies.  

The machine learning based pipeline exhibited an overall accuracy of 88%. Nevertheless, 

there were notable challenges, particularly in the familiar food phase, where a considerable 

number of false positives were detected. Across the other phases, the pipeline performed 

relatively better but still not within an acceptable range when assessed using the Interclass 

Correlation Coefficient. The potential for enhancement in accuracy is evident, primarily 

through the acquisition of higher-quality video data (Aqqa, Mantini and Shah, 2019; 

Bergstrom and Messinger, 2023). Notably, the accuracy of detecting the latency to approach 

in this study is compromised due to the pre-recorded nature of the videos, which were not 

initially intended for automating temperament tests. Variations in camera resolution, 

position, and angles across different tests may have impacted the accuracy of the models 

trained on the front camera videos, leading to the discrepancies from human observer 

identifications. To enhance accuracy, future studies should focus on synchronizing the two 
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cameras to provide a precise 3D layout of the cage room, minimizing false positives, and 

ensuring the actual presence of the monkey near the novelty, rather than just passing by in 

the background. Additionally, refining bounding box overlap assessments from both camera 

angles would offer a more comprehensive understanding of the approach. These goals are 

attainable with adjusted camera settings for studies specifically dedicated to automating 

approach detection.  

Using videos from the side camera, it was possible to train the Tracking Model and extract 

data on movement and freezing behaviours that would have been impractical for a human 

observer to collect. Specifically, I tracked the animals' movements around the cage and 

extracted movement patterns for each individual, in every different test condition. While 

manual analysis during the temperament test would have been too time-consuming, both 

freezing and movement are important indicators in evaluating temperament, fear 

responses, and neophobia in primates. Movement tends to be linked with a gentle 

temperament, indicating a greater willingness to engage with novelty (Gottlieb, Capitanio 

and McCowan, 2013b). Conversely, freezing is a recognized response associated with fear 

and anxiety (Kalin and Shelton, 1989; Bethell et al., 2019). Furthermore, the automated 

pipeline allowed me to extract the exploratory behaviour, which, too, would have been 

impractical to manually code. This behaviour is commonly used in the context of evaluating 

temperament in macaques, where individuals who allocate more time to exploring novel 

objects are typically classified as more exploratory and less fearful than their counterparts 

(Coleman, Tully and McMillan, 2005). 

These findings shed light on the behaviour of individuals with heightened levels of 

neophobia, indicating that they tend to engage in less movement and exploration while 

exhibiting a greater propensity for freezing. These outcomes align with existing literature on 

neophobia and fearfulness in macaques and other species.  

In the case of the study investigating neophobia differences among various cohorts of 

macaques before, during, and after the COVID-19 pandemic, both the automated pipeline 

and manual coding identified an increase in neophobia among cohorts born and raised 

during and after the pandemic, as compared to the 2019 cohort. However, the data 
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extracted from the pipeline, while demonstrating a similar trend to that observed by the 

human coder, failed to yield statistically significant results. This discrepancy can be 

attributed to the pipeline's low accuracy during the food phases, which was exacerbated by 

video data not being optimally suited for training machine learning models. 

This study, however, lays a foundational framework, demonstrating the viability of 

automatically detecting macaques approaching novelty in various phases, providing 

valuable insights into the steps needed to achieve this. In addition, it highlights the impact 

of human interaction on reducing neophobia in macaques and show the significance of 

exposing these animals at the CFM, as well as in similar facilities, to human contact. 
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Chapter 4. Unravelling Macaque Foraging Behaviour: An Object Detection 

Approach  

4.1 Abstract 

In the context of captive facilities hosting animals, ensuring optimal nutrient intake while 

mitigating issues such as obesity is paramount. Notably, obesity poses a prevalent concern 

among captive Non-Human Primates (NHP), often surpassing their wild counterparts in 

weight. The nature of the diet and its method of delivery also significantly impact aggression 

and competitive behaviour, particularly among rhesus macaques, recognized for their 

competition for resources in both captivity and the wild. 

Furthermore, foraging in natural habitats exhibits profound seasonal variations that can 

influence food choices and the effort required for food procurement. Therefore, gathering 

comprehensive information on foraging behaviour in different situations becomes essential 

for maintaining high welfare standards in captivity. However, collecting such data is time-

consuming, given that foraging behaviours can span hours and involve the entire group 

simultaneously. 

This study explores the effects of foraging mixtures, pellet sizes, and seasonal fluctuations 

on captive rhesus macaques at the Centre for Macaques (CFM). To streamline data 

collection and alleviate the human workload, automated techniques were employed to 

extract information from video recordings of macaques foraging at CFM. Subsequently, this 

data was analysed using a computer vision-based pipeline. The YOLACT object detection 

algorithm was utilized to identify foraging macaques across 15 distinct enclosures, 

successfully detecting their activity without requiring human observation. Thanks to the 

application of these automated methodologies, grounded in deep learning, it was possible 

to yield valuable insights that not only enhance animal management but also inform dietary 

decisions effectively. Through this approach, I discovered that macaques exhibit increased 

foraging behaviour when presented with chopped food, observed changes in foraging levels 

in response to alterations in food size, and discerned distinct foraging patterns across 

varying seasons.  
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4.2 Introduction 

Macaques typically allocate over 30% of their time to foraging activities (Menon and Poirier, 

1996; Hanya, 2004b; Hoshino et al., 2022). Foraging not only provides essential nutrients 

and sustains a healthy body condition but also mitigates issues like boredom and abnormal 

behaviours commonly observed in captive animals (Novak et al., 1998; Gottlieb, Maier and 

Coleman, 2015). Engaging in foraging activities involves exploring the surroundings, moving 

around, and manipulating food and objects, all of which are intrinsic to macaque species-

typical behaviour (Pyke, Pulliam and Charnov, 1977; Agetsuma, 1995). In their natural 

habitat, macaques predominantly consume leaves, fruits, and buds, adhering to a high fibre, 

low-fat diet (Yeager, 1996; Hill, 1997; Hanya, 2004a). Replicating such a diet in captivity is 

crucial to prevent overweight-related health problems (Zijlmans et al., 2021). While many 

primate facilities provide various foraging mixes and a diverse diet, different foods require 

different foraging strategies, influencing the animals' behaviour, time allocation, and overall 

well-being (Leigh, 1994; Agetsuma, 1995; Schwitzer and Kaumanns, 2001).  

At the Centre for Macaques (CFM), approximately 200 rhesus macaques (Macaca mulatta) 

are housed and bred. This macaque species exhibits more frequent and severe aggression 

compared to other macaque species, both in the wild and in captivity (Lutz, Well and Novak, 

2003; Thierry, Singh and Kaumanns, 2004; Corrine K. Lutz and Novak, 2005; Lutz et al., 

2007a; Beisner and Isbell, 2011b; Gottlieb, Capitanio and McCowan, 2013a). In a captive 

setting, aggression is more prevalent and escalates more rapidly (Thierry, Singh and 

Kaumanns, 2004; McCowan et al., 2008; Beisner and Isbell, 2011b). Resource competition is 

a common cause of aggression, as it limits the access of lower-ranking individuals to food 

(Southwick, 1967; Mathy and Isbell, 2002; Chancellor and Isbell, 2008). In order to address 

this issue, the CFM has implemented an intervention by increasing the size of food pellets. 

This modification allows lower-ranking individuals to obtain larger chunks of food, enabling 

them to eat in quieter areas of the enclosure away from more dominant animals. Although 

this change in food size benefits subordinate and younger individuals, it may also influence 

the time spent foraging, as larger food is easier to locate. 

Rhesus macaques at CFM exhibit seasonal breeding patterns, typically breeding between 

October and January, with births occurring from April to July after a gestation period of 160 
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to 175 days. During the breeding season, male macaques compete for mating opportunities, 

and energetically demanding behaviours like consortship can enhance reproductive success 

(Higham, Heistermann and Maestripieri, 2011). In addition, high-ranking males allocate 

more time to feeding prior the mating season, compared to low-ranking males (Higham, 

Heistermann and Maestripieri, 2011). Consequently, by the end of the mating season, high-

ranking males are often in poorer physical condition. In female rhesus macaques, body size 

and higher physical condition during mating season influence the likelihood of first 

conception, and smaller females generally have lower reproductive success (Bercovitch et 

al., 1999). Moreover, during the lactation period, mothers of other macaque species adopt 

an energy-conserving strategy, trading increased resting time for reduced feeding time 

(Marlies Heesen, 2014). Many studies report as, in both males and females, the time spent 

foraging is strongly influenced by the quantity and quality of available food in the wild 

(Agetsuma, 1995; Hill, 1997; Jaman, Huffman and Takemoto, 2010). However, the impact of 

seasons, such as the breeding and birth seasons, on the foraging patterns of captive rhesus 

macaques remains understudied due to the constant and reliable availability of appropriate 

food throughout the year. Furthermore, collecting foraging data is a time-intensive process, 

primarily because this behaviour can persist for hours each day and typically involves the 

majority of animals within the group simultaneously. 

This study aims to investigate how various foraging mixtures and varying pellet sizes impact 

the foraging behaviour of captive rhesus macaques. Specifically, I seek to determine which 

foraging mixtures elicit more foraging activity, such as those containing smaller food 

portions or more enticing food items. Additionally, I aim to assess if the presence of larger 

pellets significantly prolongs foraging time within the group. Furthermore, I aim to examine 

the potential influence of different seasons on the foraging patterns of rhesus macaques at 

CFM, shedding light on this relatively understudied topic. 

In addition to foraging data, information on the occurrence of injuries in the group and the 

weight of the animals were collected. The injury rates were used to explore whether 

increased foraging behaviour correlates with a lower occurrence of aggression. It is well-

established that providing more opportunities for foraging can decrease competition and 

aggression in macaque groups (van Schaik et al., 1983; Saito Chiemi, 1996; Steenbeek and 
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Sterck, 1997; Beisner and Isbell, 2011a; Grove, 2012). Weight data were employed to 

examine the potential correlation between increased foraging behaviour and higher body 

weight, with the potential of assessing the issue of obesity, a prevalent concern among 

captive NHP populations and closely tied to individual dietary habits (Schwitzer and 

Kaumanns, 2001; Bauer et al., 2011; Pontzer and Pontzer, 2023). 

To minimize time and cost associated with data collection, automated methodologies were 

employed in this study. Recent advancements in machine learning have facilitated the 

development of tools capable of detecting and identifying objects in videos. Leveraging this 

technology, we were able to collect consistent and reliable data in a faster and non-invasive 

manner (Rushen, Chapinal and de Passillé, 2012; Porto et al., 2013; Aroeira et al., 2016; 

Okinda et al., 2020; Chen, Zhu and Norton, 2021).  

In this project, the YOLACT object detection algorithm was employed to identify macaques 

across 15 diverse enclosures. Due to the intricacies of enclosure layouts and camera 

positioning, directly detecting foraging behaviour proved challenging. Nevertheless, since at 

the CFM macaques are fed with food dispersed onto the ground, a region of interest 

encompassing the enclosure floor was designated to recognize a macaque's foraging activity 

(refer to Materials and Methods for comprehensive information).  

 

4.3 Materials and Methods 

4.3.1 Facility and subjects 

At CFM, rhesus macaques were socially housed in breeding groups consisting of one adult 

male, multiple females, and their offspring. After weaning, the young monkeys were 

relocated to same-sex peer groups of similar age. The study groups, comprising up to 27 

individuals, resided in enclosures with a playpen area covered in sawdust, cleaned every 

two weeks. The monkeys were provided with a daily diet consisting of commercial food 

pellets, seed and lentil mix, occasional raisins and nuts during training sessions, and 7 

different forage mixes ( 
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Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Mushroom 
and Radish 

Leek and 
Tomato 

Red Cabbage 
and 
Courgette 

Eggs and 
Sweet 
Potato 

Parsnip 
and 
Pepper 

Spinach/ 
Watercress 

Orange 

 Table 14). The staff prepared the vegetables by chopping them, while oranges and 

tomatoes were provided to the monkeys in their whole form. On the 29th of September 

2022, the CFM started providing larger pellets to the macaques. The food was distributed on 

the ground by technicians from the front to the middle of the playpen each morning (Figure 

19). 

Monday Tuesday Wednesday Thursday Friday Saturday Sunday 

Mushroom 
and Radish 

Leek and 
Tomato 

Red Cabbage 
and 
Courgette 

Eggs and 
Sweet 
Potato 

Parsnip 
and 
Pepper 

Spinach/ 
Watercress 

Orange 

 Table 14: List of foraging mixes for each day of the week. 

 

4.3.2 Data Collected 

For this study, video recordings were captured at a frame rate of 15 frames per second using 

Axis P1435-LE CCTV cameras, which were installed individually in each play pen. The 

recorded videos were then analysed on a standard commercial laptop (XPS-15 with a Nvidia 

Geforce GTX 1650 Ti card). I utilized three different datasets to investigate (1) the effect of 

different foraging mixes on foraging behaviour, (2) the effect of pellet size on foraging 

behaviour, and (3) the effect of seasons on foraging behaviour. 

1. Foraging Mixes study 

The first dataset included videos of 15 macaque groups, comprising 9 breeding groups (BG) 

and 6 juvenile groups (JG), with a mean group size of 10 (SD = 2.7). Each group was recorded 

for 3 weeks after feeding time, for 2 hours per day. The total data collected for this study 
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amounted to 588 hours, and the analysis was conducted over a period of 5 days using an 

automated pipeline. 

2. Pellet Size study 

The second dataset consisted of videos of 14 macaque groups, comprising of 9 breeding 

groups (BG) and 5 juvenile groups (JG), with a mean group size of 10 (SD = 2.8). For each 

group, I collected 4 weeks of videos (2 weeks before and 2 weeks after a pellet size change) 

after feeding time, for 2 hours per day. The total data collected for this study amounted to 

784 hours, and the analysis was completed within a week using the automated pipeline. 

In these datasets, weeks involving room cleaning, health screenings, or other management 

procedures were excluded. The process of room cleaning necessitates relocating the 

animals from the playpen to the cage room, which subtracts time that could otherwise be 

spent on foraging. In addition, it is important to note that health and management 

procedures are recognized stressors for the animals, and this stress can influence their 

behaviour, including their foraging activities. 

3. Seasons study 

The third dataset comprised videos of 14 macaque breeding groups, with a mean group size 

of 11 (SD = 2.8). For each group, I collected videos for 13 weekends from October to 

December 2022 (breeding season) and 13 weekends from March to May 2023 (birth 

season), capturing 2 hours after feeding time. To limit disturbance from technicians and 

ensure consistent data collection, while excluding days with exceptional proceedings such as 

the removal of an individual, health checks, or injured animals, I specifically focused on 

weekends. The total data collected for this study amounted to 1456 hours, and the analysis 

was conducted over a period of 2 weeks using the automated pipeline. 

For this study, data on injuries and weights were extracted from the CFM database (see 

Chapter 2: Materials and Methods). The objective was to explore the impact of foraging 

behaviour on aggression and obesity, as previous studies have demonstrated its potential 

influence on both these factors (Schwitzer and Kaumanns, 2001; Mathy and Isbell, 2002; 

Vogel, 2005; Farmer et al., 2010; Bauer et al., 2011; Brereton, 2022; Pontzer and Pontzer, 
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2023). As this study was conducted on different macaque groups, a conversion was 

necessary to transform the data from individual-level to group-level analysis. 

In the study, only injuries that required veterinary attention, such as medicine 

administration or suturing, were included. Specifically, injuries resulting from aggressions 

and fighting were considered, while those with unknown causes, which were more likely to 

be accidental, were excluded.  

To convert the data from individual-level (injuries per animal in the group) to group-level 

(average number of injuries per group), the following calculations were performed: 

1- The number of injuries per month for each individual. 

2- The average number of injuries recorded per month per individual. 

3- The average number of injuries recorded per month for each group. 

Weights data at the CFM are collected during the annual health screenings for each 

individual. Utilizing a total of 11,921 data points gathered over the past 15 years, weight 

values for each age class and sex were determined by calculating the median of individual 

weights. Age class are defined as inTable 15.  

Table 15: Summary of the age class. 

Age class Age range in years 

Infant 0-1 

Juvenile 1-2.5 

Adolescent 2.5-4 

Young Adult 4-7 

Adult 7+ 
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To streamline the dataset and convert the weights information from the individual-level to 

the group-level, the following calculations were carried out: 

1- Each individual was assigned a score representing the percentage deviation of its 

weight from the median weight for its corresponding sex/age class. 

2- The average score was calculated for each group. 

3- The number of individuals above the median weight was recorded for each group. 

These calculations allowed for a more concise representation of the weight data, facilitating 

the analysis and comparison of weight trends at the group level. 

4.3.3 Automated Methodology 

The methodology used to collect the data for this study is based on computer vision: a 

process that enable computers to extract information from visual inputs. In this case, the 

algorithm YOLACT (Bolya et al., 2019) was used to build a model able to detect the 

macaques in the CCTV videos (Chapter 2, for more details). The model was trained on 674 

labelled images of macaques foraging, with a split of 70% for training and 30% for testing 

(See Section 2.5.3 for more details). These images were randomly extracted from a subset of 

the whole dataset of videos recording the macaques foraging. The model precision, showing 

the intersection over union (IoU) for different thresholds is shown in 

 All .50 .60 .70 .80 .90 

Box 25.5 56.3 27.7 6.9 1.2 0.2 

Mask 21.5 55.4 43.0 21.3 1.6 0 

 Table 16. IOU is a measure of the overlap between the predicted bounding box (and mask) 

and the ground truth bounding box (and mask) (see Chapter 2 for details). 

 All .50 .60 .70 .80 .90 
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Box 25.5 56.3 27.7 6.9 1.2 0.2 

Mask 21.5 55.4 43.0 21.3 1.6 0 

 Table 16: Mean average precision (mAP) for the Foraging Model. The mAP compares the 
ground-truth bounding box (and mask) to the detected box (and mask) and returns a score. 
These comparisons are reported for different IoU thresholds, which represent the proportion 
of overlap between the predicted bounding box (or mask) and the ground truth bounding 
box (or mask) in relation to their combined area. For instance, an IoU of .50 signifies a 50% 
overlap. 

 

Because of the complexity of the enclosures (i.e., many structures and enrichment present 

in the play pen) and the position of the cameras (i.e., cameras recording from above), I was 

not able to use existing computer vision models to properly identify macaques’ behaviour. 

This is a common problem in automated detection of animal behaviour, in fact most of the 

time the studies using such technologies focused on animal detection, tracking and position, 

rather than actual behaviour identification (Pons, Jaen and Catala, 2017; Valletta et al., 

2017; Kleanthous et al., 2022). Therefore, to address these limitations, I built a pipeline able 

to identify the macaques foraging following this definition: a monkey foraging is any 

individual detected by the model in a specific region of interest (ROI) that is the part of the 

play pen where the monkeys spend more time foraging and where the food is located 

(Figure 19). This assumption has been validated by comparing manually coded estimates of 

the number of monkeys foraging with the pipeline output ( 
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 Table 17). As indicated in the table below, the accuracy in detecting macaques within the 

enclosure is lower than that for detecting macaques while foraging. This discrepancy arises 

Number of Videos 15 

Number of Frames 165 

True Positive (TP): Instances where the model correctly detects the presence of a macaque 307 

True Negative (TN): Instances where the model correctly detects the absence of a macaque 27 

False Positive (FP): Instances where the model incorrectly detects a macaque when there is 

none present 

34 

False Negative (FN): Instances where the model fails to detect a macaque when one is 

present 

73 

Accuracy in detecting the macaques in the play pen 

( 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ) 

76% 

Accuracy in detecting the macaques foraging 

( Detected monkey in ROI 

𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑛 𝑅𝑂𝐼+𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑚𝑜𝑛𝑘𝑒𝑦 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑅𝑂𝐼
 ) 

97% 

Recall in detecting macaques foraging 

( Detected monkey in ROI 

𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑛 𝑅𝑂𝐼+𝑁𝑜𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑘𝑒𝑦 𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑖𝑛 𝑅𝑂𝐼
 ) 

81% 

Precision in detecting macaques foraging 

( Detected monkey in ROI 

𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑛 𝑅𝑂𝐼+𝑁𝑜𝑛−𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑛 𝑅𝑂𝐼 
 ) 

90% 
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from the challenges in accurately identifying macaques positioned behind structures or at 

the rear of the enclosures. Notably, the region of interest (ROI) employed for detecting 

foraging macaques excludes these areas, resulting in a higher accuracy in foraging detection 

compared to the overall accuracy across the entire playpen.  

The manual data extraction process involved selecting one video at random for each of the 

16 groups. From these videos, a total of 11 frames were extracted, spaced 10 minutes apart. 

Within these frames, manual counts were performed to determine the number of 

macaques within ROI (MPR), the number of macaques engaged in foraging within the ROI 

(MFIR), and the number of macaques foraging outside the ROI (MFOR). Subsequently, these 

manually collected data were compared to the number of detected monkeys within the ROI 

(MO) as identified by the automated process ( Table 18).  

To extract the percentage of macaques foraging I built a pipeline using YOLACT to detect the 

monkeys, a Python script to extract the ROI and R to extract the percentage of macaques 

foraging (Figure 20). This pipeline is able to detect monkeys foraging in 15 different 

enclosures. 
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 Table 17: The table shows the evaluation of the pipeline. It reports the accuracy of the model in 
detecting the macaques, the accuracy, recall and precision of the pipeline in detecting the 
macaques foraging in the region of interest (ROI). 

Number of Videos 15 

Number of Frames 165 

True Positive (TP): Instances where the model correctly detects the presence of a macaque 307 

True Negative (TN): Instances where the model correctly detects the absence of a macaque 27 

False Positive (FP): Instances where the model incorrectly detects a macaque when there is 

none present 

34 

False Negative (FN): Instances where the model fails to detect a macaque when one is 

present 

73 

Accuracy in detecting the macaques in the play pen 

( 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ) 

76% 

Accuracy in detecting the macaques foraging 

( Detected monkey in ROI 

𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑛 𝑅𝑂𝐼+𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑚𝑜𝑛𝑘𝑒𝑦 𝑜𝑢𝑡𝑠𝑖𝑑𝑒 𝑅𝑂𝐼
 ) 

97% 

Recall in detecting macaques foraging 

( Detected monkey in ROI 

𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑛 𝑅𝑂𝐼+𝑁𝑜𝑛−𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑘𝑒𝑦 𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑖𝑛 𝑅𝑂𝐼
 ) 

81% 

Precision in detecting macaques foraging 

( Detected monkey in ROI 

𝐹𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑛 𝑅𝑂𝐼+𝑁𝑜𝑛−𝑓𝑜𝑟𝑎𝑔𝑖𝑛𝑔 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑 𝑚𝑜𝑛𝑘𝑒𝑦 𝑖𝑛 𝑅𝑂𝐼 
 ) 

90% 



97 

 

 

 Table 18: Comparison of Model Detection and Manual Coding Data for G03 Group Video: MO 
(Model Output), MPR (Manual Presence in ROI), MFIR (Manual Foraging in ROI), MFOR (Manual 
Foraging outside ROI). TP (True Positive) obtains as (min(MO,MFIR)), FP (False Positive) as  (MO-
MFIR), True Negative as (no monkeys in both manual and model output), False Negative (MFIR-MO) 
were calculated for model accuracy, with model accuracy in detecting foraging macaques as MO / 
(MFIR + MFOR). 

 

Group Minutes MO MPR MFIR MFOR TP FP TN FN Accuracy 

Detection 

Accuracy 
Foraging  

G03 0 0 0 0 0 0 0 1 0 1 1 

G03 10 7 9 8 0 7 0 0 2 0.77 0.87 

G03 20 7 9 8 0 7 0 0 2 0.77 0.87 

G03 30 3 6 4 0 3 0 0 3 0.5 0.75 

G03 40 4 5 5 0 4 0 0 1 0.8 0.8 

G03 50 7 8 7 0 7 0 0 1 0.87 1 

G03 60 4 7 6 0 4 0 0 3 0.57 0.66 

G03 70 4 4 4 0 4 0 0 0 1 1 

G03 80 0 0 0 0 0 0 1 0 1 1 

G03 90 0 0 0 0 0 0 1 0 1 1 

G03 100 0 0 0 0 0 0 1 0 1 1 
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Figure 19: Model output. The individuals in the blue square (bbox) are the one detected by 
the model. The red polygon is the ROI where most of the food is located. The blue bbox 
located within the red ROI are the individuals identified as macaques foraging by the 
pipeline.  
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Figure 20: The pipeline begins with the Foraging model extracting bounding boxes of the 
monkeys in action. Next, a Python script defines the Region of Interest (ROI) for each 
enclosure. Finally, leveraging these outputs, R calculates the percentage of monkeys 
engaged in foraging activities. 

 

4.3.4 Statistical Analyses 

To analyse the output data from the pipeline, I utilized R Studio (version 4.0.4; R Core Team 

2021) on Windows 10. All statistical analyses were two-tailed, and an alpha level of 0.05 was 

set. A linear mixed model analysis was employed to examine the data, allowing for the 

incorporation of both fixed and random effects to account for potential sources of variation 
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within the dataset. To test the model assumptions histograms, normal probability plots of 

residuals, and quantile-quantile plots were employed (Hartig, 2018). The lmer function from 

the lme4 package was used to model the foraging data (Bates, D and Maechler, M and 

Bolker, BM and Walker, 2014). The percentage of monkeys engaged in foraging served as 

the dependent variable in all studies, while the different foraging mixes, pellet size (small or 

big), and seasons were independent variables for their respective studies. Additionally, each 

model included group size and group type (breeding group or juvenile group) as fixed 

factors, and group identity as a random factor. To control for group size, the percentage of 

monkeys foraging was calculated by dividing the number of detected animals in the ROI in 

each frame by the number of macaques in the group. 

Furthermore, a Pearson's correlation coefficient was computed to examine the relationship 

between the percentage of monkeys foraging, the group size, the average number of 

injuries per group, and the number of individuals above the median weight of the group.  
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4.4 Results 

1.  Foraging Mixes study 

Using the pipeline, I was able to demonstrate a significant effect of different foraging mixes 

on the average percentage of monkeys engaged in foraging activities (F (6,84) = 6.35, p < 

0.001). The results indicate that foraging mixes consisting of smaller food items, such as 

mushroom and radish on Mondays, and spinach and watercress on Saturdays, are 

associated with a higher percentage of macaques foraging (Figure 21). The linear mixed-

effects model (lmm), also showed a significant negative effect of the group size on the 

percentage of monkey foraging (F (1, 12) = 8.07, p = 0.01).  

 

Figure 21:  Boxplot illustrating the distribution of mean percentages of monkeys foraging 
across different foraging mixes. Each boxplot represents a unique foraging mix (FM), with 
the central line indicating the median percentage of monkeys foraging. The box extends 
from the lower to upper quartiles, while the whiskers show the data range. Outliers are 
denoted by black dots.  
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2. Pellet Size study 

Using the pipeline, I observed an increase in the percentage of monkeys engaged in foraging 

after the change in pellet size (Figure 22). However, this change was not statistically 

significant (F (1, 13) = 0.02, p = 0.8) with a mean difference in percentage of macaques 

foraging of 0.127, 95% CI [-1.23, 1.56]. Similar to the previous study, the linear mixed-effects 

model (lmm) revealed a significant negative effect of group size on the percentage of 

monkeys engaged in foraging (F (1, 11) = 39.1, p < 0.001). 

Figure 22: Percentage of monkeys engaged in foraging calculated over a period of 4 weeks 
before and after the change in pellet size, from small to big. 
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3. Season study 

The data obtained through the automated methodology indicates a significant effect of the 

seasons (breeding season and birth season) on the percentage of monkeys engaged in 

foraging (F (5, 351) = 6.7, p < 0.001). The statistical analysis revealed a significant increase in 

the percentage of macaques foraging during the final months of the breeding season (Figure 

23, see 

Months Mean Difference 95% CI 

December - November -5.16 [-6.84, -3.32] 

December - October -1.60 [-3.45, 0.36] 

December - May -0.33 [-2.12, 1.76] 

December - April -2.30 [-3.83, -0.78] 

December - March -1.69 [-3.32 -0.043] 

November - October 0.14 [-1.97, 2.0] 

November - May 1.41 [-0.64, 3.86] 

November - April -0.55 [-2.19, 1.43] 

November - March 0.05 [-1.51, 1.84] 

October - May 4.31 [2.14, 6.81] 

October - April 2.34 [0.18, 4.96] 

October - March 2.96 [0.44, 6.01] 

May - April -3.96 [-5.43, -2.71] 
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May - March -3.35 [-4.53, -2.06] 

April - March 3.01 [1.77, 4.55] 

 Table 19 for mean effect size information). Similar to the previous studies, the linear mixed-

effects model (lmm) revealed a significant effect of group size on the percentage of 

monkeys engaged in foraging, with larger group showing a lower percentage of macaques 

foraging (F (1, 277) = 48.8, p < 0.001).  

 

Figure 23: Percentage of monkeys engaged in foraging calculated over a period of 6 months, 
specifically during the breeding season (October to December) and the birth season (March 
to May). The blue dots represent the percentage of macaques foraging for each group 
during the birth season, while the red dots represent the percentage of macaques foraging 
for each group during the breeding season. 
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Months Mean Difference 95% CI 

December - November -5.16 [-6.84, -3.32] 

December - October -1.60 [-3.45, 0.36] 

December - May -0.33 [-2.12, 1.76] 

December - April -2.30 [-3.83, -0.78] 

December - March -1.69 [-3.32 -0.043] 

November - October 0.14 [-1.97, 2.0] 

November - May 1.41 [-0.64, 3.86] 

November - April -0.55 [-2.19, 1.43] 

November - March 0.05 [-1.51, 1.84] 

October - May 4.31 [2.14, 6.81] 

October - April 2.34 [0.18, 4.96] 

October - March 2.96 [0.44, 6.01] 

May - April -3.96 [-5.43, -2.71] 

May - March -3.35 [-4.53, -2.06] 

April - March 3.01 [1.77, 4.55] 

 Table 19: Mean Difference and Confidence Intervals for the different months. 
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Following the previous results, I observed a significant negative correlation between the 

percentage of macaques foraging and group size (r (96) = -0.31, p = 0.001), indicating that 

smaller groups exhibit a higher percentage of monkeys engaged in foraging (Figure 24).  

 

 

Figure 24: Relationship between the percentage of monkeys foraging and the group size, 
examined for the 15 groups of macaques that take part in the Foraging Mixes study. 
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Additionally, I found a significant negative correlation between the percentage of macaques 

foraging and the average number of injuries recorded per group over the study period (r 

(96) = -0.63, p = 0.002). This suggests that groups with a higher number of injuries tend to 

have a lower percentage of monkeys participating in foraging activities (Figure 25).  

 

Figure 25: Relationship between the percentage of monkeys foraging and the number of 
injuries recorded, examined for the 15 groups of macaques that take part in the Foraging 
Mixes study. 
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Moreover, I explored the relationship between the percentage of macaques foraging and 
the number of individuals with weights above the median weight of the group. However, 
this relationship was not found to be statistically significant (r (96) = 0.17, p = 0.09), 
indicating that I was not able to show how the number of heavier individuals in a group 
influence the percentage of monkeys engaged in foraging (Figure 26).  

 

 

Figure 26: Relationship between the percentage of monkeys foraging and the number of 
individuals above the median weight of the group, examined for 15 groups of macaques. 

 

4.5 Discussion 

Using a machine learning based pipeline, it was possible to explore feeding strategies across 

diverse situations, obtaining valuable insights into group foraging patterns and the influence 

of different foods on foraging behaviour. Non-human primates (NHPs), like many other 

species in captivity, often face challenges such as boredom, social disruption, and welfare 

issues. Facilities that care for wild animals invest considerable effort in understanding their 

behaviour and adjusting husbandry practices to enhance their welfare. 
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Chopping food is a commonly practiced feeding method in zoos and other facilities housing 

wild animals (Farmer et al., 2010). Several studies have shown that chopped food results in 

reduced stress, increased activity, and more foraging behaviour in many primate species, 

whereas clumped food leads to decreased activity and less foraging (Waasdorp et al., 2021). 

Chopped food has also been to decrease aggression within groups of rhesus macaques  

(Mathy and Isbell, 2002). However, there are conflicting results in other species, with some 

studies showing no significant effect on aggression and foraging behaviour, or even an 

increase in food manipulation when whole food is provided (Farmer et al., 2010; Brereton, 

2022). Using my model, I was able to demonstrate that providing chopped foods such as 

spinach, watercress, and mushrooms keeps the macaques more engaged in foraging 

compared to foraging mixes with higher carbohydrate, fructose, and glucose contents (e.g., 

oranges and tomatoes), which are preferred by other primate species (Laska, 2001; 

Jildmalm, Amundin and Laska, 2008; Clay et al., 2009). Feeding strategies, gut morphology, 

and nutrient requirements vary greatly among primate species, posing challenges for 

providing appropriate diets in captivity (Crissey and Pribyl, 1997). This insight into macaques 

foraging behaviour will assist care staff and management at CFM in providing better food 

options for the animals. In addition, these findings were previously unavailable due to the 

time-consuming nature of observing long-lasting behaviours like foraging, which require 

constant monitoring by care staff. 

By understanding the factors influencing foraging, CFM can now provide better food options 

for the animals, taking into account the intense competition for food resources often 

observed among NHPs (Janson, 1985; Robichaud, Lefebvre and Robidoux, 1996; Saito 

Chiemi, 1996; Koenig, 2000). Similar patterns have been observed in capuchin monkeys, 

where food intake and foraging activities are correlated with dominance status and the 

number of aggressions received (Janson, 1985; Vogel, 2005). In captive environments with 

concentrated and easy to monopolize resources, contest competition tends to be even 

higher (Vogel, 2005). Dominant individuals within a group have higher food intake and may 

exclude subordinates from feeding opportunities (Koenig, 2000; Vogel, 2005). Additionally, 

larger groups of monkeys show a decrease in per-capita food intake due to indirect food 

competition and aggressive food competition. At CFM, the change in pellet size was 

intended to help subordinate individuals access more food and prevent dominant 
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individuals from monopolizing all the resources (Smith, Lindburg and Vehrencamp, 1989; 

Farmer et al., 2010). The pipeline's findings regarding the percentage of individuals foraging 

with larger pellet sizes at CFM, although not statistically significant, show a modest increase. 

Importantly, this result supports the implementation of pellet size adjustments without 

negatively impacting foraging patterns. While the study did not observe changes in 

subordinate foraging behaviour, it provides valuable insights into the stability of foraging 

behaviour in macaques throughout the year. 

Previous studies on wild macaques have consistently shown that foraging behaviour 

remains relatively stable over time, with variations primarily driven by food availability in 

the environment (Agetsuma, 1995; Jaman, Huffman and Takemoto, 2010). Seasonal 

variations in food availability can affect foraging behaviour and drive dietary shifts towards 

fruits or leaves based on the time of year (Garber, 1987; Agetsuma, 1995; Jaman, Huffman 

and Takemoto, 2010; Trapanese, Meunier and Masi, 2019). However, information about the 

feeding strategies and nutrient intake of free-ranging primates, particularly during breeding 

and birth seasons, remains incomplete (Crissey and Pribyl, 1997). In some NHPs, lactating 

females consume more food than males and non-reproductive females, both in captivity 

and in the wild (Garber, 1987). However, in other monkey species, lactating females exhibit 

a decrease in feeding time, which could be attributed to the birth season coinciding with the 

dry season, a period of food scarcity (Harrison, 1984). The foraging behaviour observed 

during the birth season, as detected by the pipeline, shares similarities with patterns 

observed in black howler monkeys where lactating females spending more time inactive 

compared to non-lactating females (Dias, Rangel-Negrín and Canales-Espinosa, 2011). 

Furthermore, in the black howler monkey species, females initially exhibit higher levels of 

inactivity during the lactation period but gradually increase their foraging activities towards 

the end of the season (Dias, Rangel-Negrín and Canales-Espinosa, 2011). Similar low 

foraging behaviour patterns can be observed in baboons, where heightened vigilance levels 

are observed during the beginning of the birth season, resulting in decrease overall time 

dedicated to feeding during lactation compared to non-lactating periods (Barrett, Halliday 

and Henzi, 2006).  
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In terms of primate reproduction, males typically invest in body size, sexual traits, and mate 

searching, while females focus their efforts on mate choice, pregnancy, and lactation 

(Wolfe, 1986; Gomendio, 1991; Crissey and Pribyl, 1997; Soltis et al., 1999; Kappeler and 

Van Schaik, 2004; Thomsen et al., 2006). For instance, male rhesus macaques tend to gain 

more weight and accumulate greater fat reserves prior to the breeding season to cope with 

the energetic demands of mating (Muehlenbein et al., 2002). Similarly, female rhesus 

macaques exhibit higher body mass and fat levels at the beginning of the mating season, 

ensuring sufficient physical condition to cover the energy costs associated with mating 

activity (Garcia et al., 2011). Interestingly, despite the constant availability of food, male 

rhesus macaques display a decrease in feeding time between mating and non-mating 

seasons, suggesting a potential prioritization of energy towards mating rather than feeding  

(Bercovitch, 1997; Garcia et al., 2011). Similar patterns have been observed at CFM, where 

males' weights after the breeding season were recorded to be lower than in previous 

periods. However, my results indicate a significant increase in the percentage of macaques 

foraging during the breeding seasons. This is not in conflict with the weight loss in males 

since most individuals in the breeding groups are females, who may increase their time 

spent foraging to cope with the energy expenditure of mating and subsequent pregnancy. 

These findings shed light on an understudied topic concerning the effect of seasons on 

foraging behaviours in captive non-human primates, where food is consistently available 

throughout the year, but seasonal breeding still occurs.  

Additionally, it is important to recognize that social dynamics play a significant role in the 

behaviour and well-being of non-human primates (NHPs). Different housing conditions and 

group settings in rhesus monkeys (Macaca mulatta) have been found to result in abnormal 

behaviours and increased aggression. Rhesus monkeys already exhibit a higher frequency 

and severity of aggression compared to other macaque species, making deleterious 

aggression a major concern in group-housed macaques (Thierry, Singh and Kaumanns, 2004; 

Corrine K. Lutz and Novak, 2005; Lutz et al., 2007a; Beisner and Isbell, 2011a; Gottlieb, 

Capitanio and McCowan, 2013b; Lutz and Baker, 2023). Food monopolization is one of the 

causes of aggression in macaques, and numerous studies have demonstrated how they tend 

to monopolize food patches through aggressive behaviours. Larger and less crowded food 

patches can reduce competition within the group (van Schaik et al., 1983; Saito Chiemi, 
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1996; Steenbeek and Sterck, 1997; Beisner and Isbell, 2011a; Grove, 2012). While this 

behaviour occurs both in the wild and in captivity, aggression rates are often higher in 

captive settings due to the limited options for animals to escape aggressive encounters. This 

can lead to escalated aggression and an increased risk of injuries (Thierry, Singh and 

Kaumanns, 2004; McCowan et al., 2008; Beisner and Isbell, 2011a; K.N. Balasubramaniam et 

al., 2014). The study results demonstrate how a deep learning-based pipeline can effectively 

collect, analyse, and extract information that aligns with existing knowledge about NHP 

behaviour in social groups. Specifically, the findings indicate that smaller groups tend to 

have a higher percentage of monkeys engaged in foraging, and a higher percentage of 

monkeys foraging correlates with lower injury rates within the group. This can be attributed 

to reduced interference and competition among group members, resulting in improved 

access to food resources (van Schaik et al., 1983; Saito Chiemi, 1996; Steenbeek and Sterck, 

1997; Beisner and Isbell, 2011a; Grove, 2012). These insights underscore the importance of 

considering group size and composition when establishing social groups and monitoring 

behaviors such as foraging. By managing these factors, it becomes possible to better care 

for the group, enhance their welfare, and mitigate aggression within the group (Bayne et al., 

1992). 

The data collected by the pipeline shows a non-significant positive correlation between the 

percentage of macaques foraging and the number of overweight individuals in the group. 

This can be due to foraging not being the only factor influencing macaques body mass 

(Altmann et al., 1993; Bauer et al., 2011).  

Overall, this study provides valuable insights into the feeding behaviours of NHPs, 

highlighting the importance of considering food presentation and group dynamics to 

enhance welfare and manage aggression within social groups. 
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Chapter 5. Enhancing Enrichment Evaluation: An Object Detection Approach 

for Assessing Enrichment Usage in Macaques 

5.1 Abstract 

Enrichment programs are pivotal for improving the welfare of captive animals, especially 

non-human primates (NHPs), leading to enhanced physical well-being and more reliable 

research outcomes. It is crucial to not only establish a well-thought-out enrichment plan but 

also to regularly assess and fine-tune it. This is important because animals may habituate to 

constant stimuli, and diligent monitoring of their behavioural responses guarantees that 

resources are optimally allocated. Although it is crucial to monitor behavioural responses to 

enrichment, this task can be time intensive. Therefore, automating this process is a 

significant goal to pursue.  

In this project, I employed two distinct computer vision-based pipelines to evaluate 

monkeys’ interactions with different enrichment items: a white tank containing raisins and a 

non-food-based puzzle. The first pipeline effectively detects and quantifies the movement of 

the enrichment item, analysing its usage both when containing food and when empty. The 

second pipeline accurately counts the number of monkeys interacting with the puzzle over 

time, shedding light on how quickly interest wanes. Through the application of these 

automated methods, it is evident that the macaques maintain their interest in the white 

tank enrichment, even after several months since its introduction. Additionally, it is possible 

to observe a notable attraction towards a new non-food based enrichment, particularly 

during peak activity periods. This serves as a compelling illustration of how these 

methodologies can effectively and consistently monitor macaque engagement with 

enrichments in an automated manner. 

5.2 Introduction  

Enrichment programs are designed to provide stimulating and engaging experiences for 

animals in captivity, promoting their physical and psychological well-being. Enrichments 

serve multiple goals, ranging from reducing abnormal and stereotypical behaviours to 

promoting more naturalistic activities like exploration, foraging, and play, ultimately leading 

to improved reproduction and breeding success (Shepherdson, 1994; Newberry, 1995; 
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Swaisgood and Shepherdson, 2006; Kemp, 2023). As a result, facilities housing wild animals 

dedicate significant time and effort to plan, introduce, and evaluate enrichment programs. 

However, not all enrichments are created equal, and careful consideration of the animals' 

needs, biological nature, history, and the intended purpose of the enrichment is crucial 

(Kemp, 2023). Practicality, safety, and cost considerations also play a vital role in the 

decision-making process (Hare, Rich and Worley, 2007; Kemp, 2023).  

Despite the extensive literature on enrichment usage in captive settings for non-human 

primates (NHPs) and other species, generalizations may not always be applicable. The 

success of an enrichment strategy can be influenced by factors such as enclosure structure, 

group dynamics, and the animals' past experiences, making individualized approaches 

essential (Corrine K. Lutz and Novak, 2005; Kemp, 2023).  

To effectively implement enrichments, it becomes evident that enrichment is not simply the 

introduction of novel toys or structures into the enclosure. Rather, it requires careful 

planning and the establishment of a comprehensive program that considers all these 

aspects. 

Once the enrichment program is designed, the type of enrichment to be utilized becomes a 

crucial decision. Among the various categories of enrichment, this study will focus on 

inanimate objects, which encompass structural enrichment (e.g., shelves and platforms), 

food-based enrichment, sensory enrichment, and cognitive enrichment (Keeling, Alford and 

Bloomsmith, 1991; Corrine K. Lutz and Novak, 2005; Buchanan-Smith, 2011b; Kemp, 2023).  

Structural enrichments play a pivotal role for NHPs, as they enable them to exhibit 

naturalistic behaviours like climbing, jumping, and exploring, enriching their living 

environment (de França Santos et al., 2022; Kemp, 2023). However, their continuous 

availability might make them less interesting or challenging for the animals over time. 

On the other hand, food-based enrichment tends to retain the animals' interest and elicit an 

immediate response, keeping them engaged for longer periods. Moreover, it promotes 

foraging behaviour, encouraging natural activities (Sha et al., 2012). However, food-based 

enrichment must be carefully managed, as providing additional food to the animals' diet can 
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lead to nutritional problems such as obesity (Kemp, 2023). Obesity is a common issue in 

captive primates and is associated with health problems, decreased welfare, and adverse 

effects on reproduction outcomes (Leigh, 1994; Schwitzer and Kaumanns, 2001; Elwell and 

Vaglio, 2023).  

Another type of enrichment is sensory enrichment, which involves the use of coloured 

items, objects with different textures, shapes, and smells. NHPs are known to use sensory 

cues to communicate and interact with their environment (Prescott, 2006; Passarelli, 

Gamberini and Fattori, 2021). This form of enrichment can stimulate naturalistic behaviours, 

such as play, visual exploration, and tactile exploration. However, animals may lose interest 

relatively quickly if a sensory item becomes familiar and lacks novelty, unlike food-based 

enrichment (Kemp, 2023).   

To maintain the animals' engagement in non-food based enrichment, complexity can be 

added to the items. Cognitive enrichment has the potential to engage NHPs in various tasks, 

stimulating their problem-solving abilities, tool usage, and exploration of different ways to 

interact with the objects, and it can even promote cooperation between individuals 

(Meehan and Mench, 2007; Kemp, 2023).  

The effectiveness of enrichment, regardless of its type, needs to be assessed. This is crucial 

since planning and implementing an enrichment program can be costly and time-consuming 

(Newberry, 1995). Monitoring the effectiveness of enrichment ensures that resources are 

being wisely invested and that the program aligns with its intended goals. Assessing the 

enrichment also provides insights into whether the animals are still interested and engaged 

with the stimuli, particularly when the enrichment remains a constant presence in their 

enclosure. 

Repeated exposure to a constant object in an animal's environment can result in decreased 

interest compared to an intermittent object (Kemp, 2023). The phenomenon behind this 

reduced interest is habituation, a well-documented concept in animal behaviour (Gallistel, 

1990; Kuczaj et al., 2002). Thus, it is necessary not only to evaluate the enrichment's 

effectiveness initially but also to monitor it over time, considering both immediate and 

prolonged responses for a comprehensive assessment. 
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Behavioural responses are commonly used to assess the effectiveness of enrichment, 

particularly since the introduction of stimuli often aims to promote specific behaviours 

(Kemp, 2023). However, collecting behavioural data from groups of captive animals can be 

complex and time-consuming, leading to inadequately tested enrichments (Swaisgood and 

Shepherdson, 2005). Consequently, some stimuli may remain in the enclosures even when 

their effectiveness is no longer assured. 

In this chapter, I will demonstrate how automated methodologies can be used in assessing 

enrichment use and changes in use over time. Specifically, I will evaluate the use of two 

different types of enrichment:  

1- A food-based enrichment that is consistently present in the enclosure, aiming to 

assess its effectiveness and how usage changes when the food container is empty or 

full. 

2- A cognitive and sensory enrichment, specifically introduced for this study, with the 

objective of detecting changes in macaques' interest in it over time. 

 

5.3 Materials and Methods  

5.3.1 Facility and subjects 

At the Centre for Macaques (CFM), rhesus macaques were housed in socially structured 

breeding groups consisting of one adult male, multiple females, and their offspring. Once 

the young monkeys were weaned, they were moved to same-sex peer groups of similar age. 

Each study group comprised up to 18 individuals and resided in enclosures featuring a play 

pen area covered in sawdust, which was cleaned every two weeks (Chapter 2, for more 

details). The play pen was equipped with various enrichments, including structural objects 

like poles, shelves, and hoses, as well as food-based enrichment. For the purpose of this 

study, my focus was on two specific enrichments: a white tank filled with raisins and a 

cognitive puzzle. 

The white tank was suspended with a carabiner from one of the horizontal poles in the 

playpen and was filled with raisins every Monday morning during the regular feeding time 

for the macaques (Figure 27). The tank featured an open top, prompting the macaques to 
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employ various methods to extract the raisins. They may either shake and overturn the tank 

from above, from the hose to which it is affixed with a carabiner, or access it from below 

while positioned on the ground. Raisins were a favoured treat, reserved exclusively for 

training and human habituation exercises. The quantity of raisins distributed within the tank 

corresponded to the size of the macaque group. Typically, the macaques demonstrated 

their adeptness by emptying the tank within a few hours. This enrichment was always 

present in the playpen and was already part of the enrichment plan when the study 

commenced. Although it was not possible to determine the exact date of its introduction 

due to different timelines, schedule changes, and group variations, the white tank was in 

each group for more than two months before the start of the study, ensuring it was no 

longer a novelty for the animals. 

 

Figure 27: Example of the white tank containing raisins. 

 

The cognitive puzzle was attached to one of the vertical poles in the play pen. Initially, it 

consisted of three metal hooks, one with a metal circle attached, one with a blue toy 

depicting a monkey (blue monkey), and one with several pieces of coloured wood of various 

shapes (wooden blocks). However, during the study, the blue monkey became damaged 

during one of the trials and was subsequently replaced with several pieces of coloured wood 
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of different shapes (Figure 28). The puzzle was intentionally designed to encourage 

macaques to manipulate the metal circle and wooden block around the metal hooks, 

providing them with exposure to varied materials, colours, and textures. In the case of the 

blue monkey, it afforded greater movement options because it was attached solely from its 

top side, and its material properties permitted the macaques to pull and twist it. This 

enrichment was introduced into the enclosure specifically for the purpose of the study and 

has not been previously presented to the macaques. 

 

Figure 28:The two enrichment items. On the left is the version with the blue toy and on the 
right is the version with the wooden blocks. 

 

5.3.2 Data Collected  

For this study, video recordings were captured using Axis P1435-LE CCTV cameras, which 

were installed individually in each play pen. The recorded videos for the white tank 

enrichment were then analysed on a standard commercial laptop (XPS-15 with a Nvidia 

Geforce GTX 1650 Ti card). While the videos concerning the puzzle enrichment were 

analysed with a Scan Systems 3XS Deep Learning DBP G2-18C machines with two Nvidia 

Geforce RTX 3080 Turbo v2 cards, running Ubuntu 22.04. 
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 White Tank Enrichment 

This study involved a dataset comprising information from 9 different macaque groups, 

consisting of 5 breeding groups (BG) and 4 juvenile groups (JG), with an average group size 

of 10 (SD = 2.9). Each group was observed and recorded for a total of 3 Mondays (when the 

white tank contained raisins) and 3 Thursdays (when the tank was empty), all within the 

same 3 weeks, after the regular feeding time. Monday was selected due to enrichment 

being filled on that day, while Thursday was chosen to ensure the enrichment was emptied, 

being several days from Monday. This also ensured that Thursday was not too close to the 

weekend when staffing levels are reduced and routines differ from weekdays. Each 

observation period lasted for 6 hours per day.  

Puzzle Enrichment  

This study involved a dataset comprising information from 12 different macaque groups, 

consisting of 6 breeding groups (BG) and 6 juvenile groups (JG), with an average group size 

of 10 (SD = 2.8).  

Each group was observed and recorded for a total of 27 days after the puzzle enrichment 

was introduced to the play pen. Each observation period lasted for 12 hours per day, 

starting at approximately 7:00. Days involving room cleaning were omitted from the 

datasets. This process requires temporarily relocating the animals from the play pen to the 

cage room, thus reducing the available time for interacting with the enrichment.  

5.3.3 Automated Methodologies 

The methodology used to collect the data for this study is based on computer vision: a 

process that enable computers to extract information from visual data.  

White Tank Enrichment 

A specialized model was trained to detect the white tank itself, rather than focusing on the 

macaques. The white tank’s distinctive bright colour and fixed shape facilitated a more 

streamlined training process, leading to considerable time savings during both the labelling 

and training stages. The model is based on the YOLACT algorithm (Bolya et al., 2019) and is 
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capable of detecting the white tank in the CCTV videos in each macaque group (Figure 27). 

The model was trained on 292 labelled images, with a split of 70% for training and 30% for 

validation. These images were randomly extracted from a subset of the whole dataset of 

videos recording the macaques interacting with the tank. However, to test the ability of the 

model to generalise, one group was excluded from the training set. These were randomly 

selected and did not include images from every group participating in the study. The model 

precision, showing the intersection over union (IoU) is shown on 

 All .50 .60 .70 .80 .90 

Box 76.7 100 100 98 88.8 20.1 

Mask 82.5 100 100 94.2 92.1 59.5 

 Table 20. IOU is a measure of the overlap between the predicted bounding box (and mask) 

and the ground truth bounding box (and mask) (see Chapter 2 for more details). 

Figure 29: Model output. The blue square (bbox) contains the detect white tank.  
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 All .50 .60 .70 .80 .90 

Box 76.7 100 100 98 88.8 20.1 

Mask 82.5 100 100 94.2 92.1 59.5 

 Table 20: Mean average precision (mAP) for the Enrichment Model. The mAP compares the 
ground-truth bounding box (and mask) to the detected box (and mask) and returns a score. 
These comparisons are reported for different IoU thresholds. 

To gain insights into the macaques' interaction with the enrichment, the tank movement 

was used as a proxy for its usage. The object detection model provides coordinates of the 

bounding box (bbox) detecting the white tank (Figure 29). Extracting the tank's movement 

involved using an R script that took the x and y bbox coordinates as input and applied a 

Gaussian Kernel for smoothing. This process significantly enhanced the visualization of the 

model output in the CSV file.  

Next, I computed the average variance difference between sequential x and y values, which 

helped determine an appropriate threshold for these coordinates. Subsequently, I 

conducted a convolution operation between the coordinate differences for each frame and 

the Gaussian kernel. By doing this, I could identify instances where the convolution results 

exceeded the calculated threshold, indicating significant object movement (Figure 30). 

 

Figure 30: The pipeline begins with the Enrichment model extracting bounding boxes of the 
white tank. Next, a R script extracts the movement of the detected item. The output of the R 
script is validated using BORIS.  
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The validity of using item movement as a proxy for its usage was confirmed by comparing 

the pipeline's output with the ground truth. The ground truth data were obtained by 

analysing videos using BORIS (Friard and Gamba, 2016) which allowed for the collection of 

the actual time the macaques spent interacting with the item. For this validation, six videos 

were randomly selected from various macaque groups, and a manual analysis was 

performed, covering more than 111 thousand frames (Figure 31). These manual analyses 

recorded the time the animals spent interacting with the tank, both when it was moving and 

when it was not, collecting all the intervals of interaction (Table 21). 

 

Figure 31: The figure displays the x coordinates of the centre of bounding boxes after being 
smoothed using the Gaussian kernel. The x-axis represents frame numbers, and the y-axis 
represents the smoothened x coordinates. The red horizontal line shows the x threshold 
providing a visual reference of the frames where the object is moving.  
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Number of Videos 6 

Number of Frames 111,465 

True Positive (TP): Instances where the model correctly 

detects the presence of a macaque 

1150 

True Negative (TN): Instances where the model correctly 

detects the absence of a macaque 

110,309 

False Positive (FP): Instances where the model incorrectly 

detects a macaque when there is none present 

146 

False Negative (FN): Instances where the model fails to 

detect a macaque when one is present 

198 

Accuracy in assessing enrichment usage 

( 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ) 

99% 

Recall in assessing enrichment usage 

( 𝑇𝑃 

𝑇𝑃+𝐹𝑁
 ) 

85% 

Precision in assessing enrichment usage 

( 𝑇𝑃 

𝑇𝑃+𝐹𝑃 
 ) 

88% 

 Table 21: The table shows the evaluation of the pipeline. It reports the accuracy, recall and 
precision of the pipeline in detecting the white tank usage. 
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Puzzle Enrichment 

In this case, the level of movement observed in the puzzle was relatively minimal compared 

to the white tank study. Consequently, a different approach was required to assess 

enrichment usage. To directly quantify individual interactions, a model capable of detecting 

both the macaques and the enrichment item was employed. The model utilized a 

combination of YOLOv8 (Terven and Cordova-Esparza, 2023) and Segment Anything Model 

(SAM) (Kirillov et al., 2023) to label the data used for the training and validation phases 

(Refer to Chapter 2 for more details). Leveraging SAM for data annotation facilitated a faster 

and simpler labelling process, while YOLOv8 ensured more accurate detection of the 

macaques.  

The YOLOv8 model underwent training to identify macaques, the wooden platform situated 

at the front of the enclosure, the blue monkey and the wooden blocks on the enrichment 

puzzle (Figure 28, Figure 32). The model was trained on a dataset of 258 labelled frames 

extracted from part of the CCTV system recording different groups of macaques, yielding an 

overall acceptable performance (

 

Table 22). Notably, as demonstrated in the table below, objects closer to the cameras were 

detected with greater accuracy. This distinction proved valuable, as our focus was primarily 

on macaques interacting with the puzzle in the foreground. Conversely, those situated 

towards the rear of the enclosure, near the window, were not within the scope of this study, 

and were more prone to being mistaken for background elements (see
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Table 22) due to their distance from the camera, presenting a challenge even for a human 

observer. Additionally, stable objects such as the blue monkey and the front platform 

exhibited the highest levels of accuracy (83% and 92%, see

 

Table 22).  
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Table 22: Confusion Matrix representing the accuracy of the model in detecting each object. 
Each row represents a specific class of objects that the model is trying to detect. Each 
column represents the classes that the model predicts. The diagonal elements of the matrix 
represent the cases where the model made correct predictions. The off-diagonal elements 
represent cases where the model made wrong prediction.  On the axis there are the 4 classes 
of objects (Wooden Blocks from the enrichment puzzle, Front Platform, Monkey, Blue 
Monkey from the enrichment puzzle) and the background. The background are objects that 
do not belong to either of the classes but detected as one of them (false positive). 

 

Due to unsatisfactory wooden block detection (57% accuracy, see

 

Table 22), any macaque engaging with the enrichment was considered within the region of 

interest (ROI) surrounding the enrichment. Moreover, as the enrichment was positioned 

behind the front platform, to prevent counting macaques on the platform as individuals 
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within the ROI, those whose area overlapped with the front platform were excluded from 

the count of individuals interacting with the enrichment (Figure 33).  

The object detection model captures the count of interacting macaques with the 

enrichment in a single frame per second, recorded at a frame rate of 15 frames per second. 

This results in a substantial dataset, yielding a total of 3600 data points per hour of video. To 

streamline this dataset, an R script was employed to calculate the percentage of macaques 

engaging with the enrichment for each hour of observation. 

The pipeline's accuracy was further assessed by comparing the number of macaques 

detected within the ROI with those identified by a human observer. In this analysis, one 

video was randomly selected from each of the 12 groups. For a total of 13 frames for each 

video, taken at hourly intervals, both the model and the human observer independently 

counted the number of individuals within the ROI. The model achieved an accuracy of 87.5% 

in detecting macaques within the ROI ( 

Number of Videos 12 

Number of Frames 156 

True Positive (TP) 45 

True Negative (TN) 102 

False Positive (FP) 10 

False Negative (FN) 11 

Accuracy in detecting the macaques in the ROI 

( 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ) 

87.5% 
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 Table 23). 

Number of Videos 12 

Number of Frames 156 

True Positive (TP) 45 

True Negative (TN) 102 

False Positive (FP) 10 

False Negative (FN) 11 

Accuracy in detecting the macaques in the ROI 

( 
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ) 

87.5% 

 Table 23: The table shows the validation of the pipeline. It reports the accuracy of the model 
in detecting the macaques in the region of interest (ROI) around the enrichment puzzle. 
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Figure 32: Frame extracted from a YOLOv8 model output video. The objects enclosed in black 
boxes are the ones utilized to gather information regarding the enrichment interaction. 

 

 

Figure 33: The pipeline begins with the Enrichment model based on Yolov8 detecting several 
objects. Next, a Python script extracts the number of macaques in the ROI, excluding the one 
positioned on the front platform. 

 

5.3.4 Statistical Analyses 

To analyse the output data from the two pipelines, I utilized R Studio (version 4.0.4; R Core 

Team 2021) on Windows 10. All statistical analyses were two-tailed, and an alpha level of 
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0.05 was set. A linear mixed model analysis was employed to examine the data, allowing for 

the incorporation of both fixed and random effects to account for potential sources of 

variation within the dataset. To test the model assumptions histograms, normal probability 

plots of residuals, and quantile-quantile plots were employed (Hartig, 2018). The lmer 

function from the lme4 package was used to model the interaction data (Bates, D and 

Maechler, M and Bolker, BM and Walker, 2014).  

White Tank Enrichment 

In this study, to account for potential instances of missed tank detection (false negative), 

movement was quantified as a percentage of the tank's motion when it was reliably 

detected by the model. 

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑡𝑎𝑛𝑘 𝑖𝑠 𝑚𝑜𝑣𝑖𝑛𝑔

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑓𝑟𝑎𝑚𝑒𝑠 𝑤ℎ𝑒𝑟𝑒 𝑡ℎ𝑒 𝑡𝑎𝑛𝑘 𝑖𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

Consequently, the dependent variable was the percentage of tank movement defined with 

the above equation.  While the independent variables focused on specific days of the week, 

specifically Mondays and Thursdays. Furthermore, the model incorporated fixed factors 

such as group size and group type (breeding group or juvenile group), while group identity 

was treated as a random factor.  

Puzzle Enrichment 

In this study, to control for group size, the number of monkeys interacting with the items 

was adjusted by dividing the number of detected animals in each frame by the number of 

macaques in the group. Therefore, the dependent variable was the percentage of monkeys 

interacting with the item, and the independent variables were the days since the 

enrichment was added in the group and the presence/absence of the blue monkey. 

Furthermore, the model incorporated fixed factors such as group size and group type 

(breeding group or juvenile group), weekday and hour of the day. Group identity was 

treated as a random factor. 
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In order to address a high number of zero values in the dataset—reflecting periods when 

the macaques were non-interactive with the enrichment—a logarithmic transformation was 

applied following the equation: 𝑥 = log(𝑦 + 1) 

Where 𝑦 were the percentage of macaques interacting with the enrichment. 

This transformation was employed to mitigate the skewness caused by the presence of 

zeros and to ensure the data met the assumptions required for statistical analyses.  
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5.4 Results 

5.4.1 White Tank Study 

The object detection-based pipeline yielded significant findings in the percentage of item 

movement (ratio of frames in which the item was detected in motion to the total number of 

frames in which the item was detected) between Mondays, when the white tank was filled 

with raisins, and Thursdays, when the white tank remained empty. In total, the study 

accumulated 324 hours of data, which was subsequently analysed using an automated 

pipeline over a span of 3 days. 

A significant difference (F (2,150) = 60, p < 0.001) was observed in the percentage of time 

where the item was in motion during the first hour after feeding time compared to the 

subsequent hours (Figure 34). However, no significant difference (F (1,7) = 0.1, p = 0.7) in 

item interaction was observed between Breeding groups and Juvenile groups (Figure 35). 

 

Figure 34: Percentage of frames where the tank was moving on Mondays (pink) and 
Thursdays (blue). The percentage are categorised into three-time intervals: first hour after 
feeding time (1H), two hours after feeding time (2H), last hours of observation (Other). 



139 

 

The results demonstrate that during the initial hour after feeding time on both days, there 

was a higher interaction with the item, which gradually decreased in the subsequent hours. 

Moreover, overall item movement was significant higher (F (2,150) = 8, p = 0.005) on 

Thursdays when the tank was empty, for both breeding groups and juvenile groups (Figure 

35, see  

Group type Mean Difference Confidence Interval (95%) 

Breeding Group 0.183 [0.038, 0.29] 

Juvenile Group 0.34 [0.24, 0.43] 

Table 24 for effect size information).  

 

 

Figure 35: Percentage of frames where the white tank was in motion, categorized separately 
by group type: Breeding group (on the left) and Juvenile group (on the right). 

Group type Mean Difference Confidence Interval (95%) 

Breeding Group 0.183 [0.038, 0.29] 



140 

 

Juvenile Group 0.34 [0.24, 0.43] 

Table 24:  Mean Difference in white tank movement and Confidence Intervals for the 
different months. 

 

5.4.2 Puzzle Enrichment  

The object detection-based model analysed 303 days of observations for a total of 3636 

hours of data and required just a single hour to analyse the content of a single day of video 

recordings. The pipeline identified a decreasing trend in the number of macaques 

interacting with the puzzle in the month after its introduction (F (1,3043) = 132, p < 0.001) 

(Figure 36).  

 

Figure 36: Percentage of monkeys interacting with the enrichment over the 27 days of 
observations. 
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Furthermore, the automated methodology identified a non-significant increase in puzzle 

engagement for the variant containing the blue monkey, compared to the one featuring 

only wooden blocks (F (1,5.1) = 5.3, p = 0.06) (Figure 37).  

  

Figure 37: Percentage of monkeys interacting with the puzzle enrichment only featuring the 
wooden blocks and the one with the blue monkey. 
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The group size also had a significant negative effect on the percentage of macaques 

interacting with the enrichment, with bigger groups interacting less with the puzzle (F (1, 19) 

= 7.2, p = 0.01) (Figure 36). 

 

Figure 36: Percentage of Macaques Interacting with Puzzle Enrichment. Circles denote 
breeding groups; triangles represent stock groups. 
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The day of the week and the hour of the day also influenced the enrichment usage, with the 

puzzle being used less during the weekend and later in the evening (F (1, 4054) = 2.2, p = 

0.03; F (1, 4050) = 273, p < 0.001) (Figure 37 and Table 25). 

 

Figure 37: Percentage of macaques per each group interacting with the puzzle enrichment 
grouped by time of day (from 7:00 to 19:00). 
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Day of the Week Percentage of Monkeys Interacting 

Monday 2.20 

Tuesday 2.36 

Wednesday 2.43 

Thursday 2.55 

Friday 2.34 

Saturday 2.10 

Sunday 2.09 

 

Table 25: Table showing percentage of monkeys interacting with the puzzle across days of 
the week. 

 

5.5 Discussion 

Both models demonstrated the capability to automatically detect macaque interactions with 

enrichments effectively. The approaches, one focusing on detecting the white tank and 

tracking its movements, and the other identifying macaques in close proximity to the puzzle 

enrichment, exhibited high accuracy and provided valuable insights. These insights will be 

used to enhance enrichment planning and identify when enrichments cease to be engaging, 

and macaques lose interest in them. 

Even with the extended presence of the tank in the enclosures, the macaques continue to 

actively engage with and utilize the enrichment. Notably, the animals exhibited heightened 

interaction with the tank when it was devoid of contents. It is important to highlight that the 

tank is replenished subsequent to feeding sessions. On both days, irrespective of its 

contents, there was an elevated level of engagement shortly post-feeding compared to 

subsequent hours. However, in instances where the item was empty, macaque interaction 
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surpassed that observed when it was filled. This heightened interaction during emptiness 

may be attributed to intensified efforts in extracting food from the tank, potentially 

stemming from the frustration induced by its empty state even after the designated feeding 

period. In fact, even though the tank is not removed when empty, this behaviour could be 

associated with a form of enrichment removal, which is known to be particularly frustrating 

and can reduce the satisfaction derived from low-reward enrichment (Amsel, 1958; Papini, 

2003; Latham and Mason, 2010). However, since the animals at CFM consistently live in 

enriched enclosures, this change in how the white tank enrichment is presented is unlikely 

to impact their overall welfare (Latham and Mason, 2010). 

While one may posit that if the tank consistently contains raisins only on Mondays, the 

animals at CFM should anticipate this routine, empirical evidence suggests that regular 

feeding times do not necessarily render routines reliably predictable (Waitt and Buchanan-

Smith, 2001a). The anticipation of food appears to be elicited by cues preceding the feeding 

event, indicating that animals may form associations beyond strict temporal patterns (Waitt 

and Buchanan-Smith, 2001a). In essence, if the animals come to link the presence of raisins 

in the white tank with feeding time, an expectation of its replenishment on a daily basis may 

arise. 

In summation, the white tank enrichment continues to captivate the macaques at CFM, 

eliciting species-specific behaviours, including manipulation and foraging. Importantly, these 

behaviours persist even in the absence of high-caloric food items like raisins, suggesting that 

the enrichment itself may serve as a stimulating factor independent of daily food provision. 

Contrastingly, it is well-documented that straightforward toys experience a rapid decline in 

usage among NHPs (Bayne et al., 1993; C. K. Lutz and Novak, 2005; Kemp, 2023). Therefore, 

when considering non-food-based enrichment, the ability to monitor animals' interest in 

these items is paramount. The employment of this automated pipeline enabled the 

detection of an initial decline in interest towards the puzzle in the majority of groups, 

followed by a subsequent surge of interaction towards the conclusion of the four-week 

experiment. Nevertheless, the results also evince variability in the percentage of macaques 

engaging with the puzzle across different groups, aligning with numerous other studies 
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affirming that age, sex, and individual differences exert an influence on non-food based 

enrichment utilization (C. K. Lutz and Novak, 2005). 

Additionally, factors such as destructibility, complexity, physical alterability, texture, 

manipulability, colour, and size of the objects may influence their utility (Pruetz and Isbell, 

2000).  The model successfully discerned disparities among various types of puzzles, 

illustrating how the presence of a brightly coloured rubber toy (i.e., the blue monkey) 

amplified interactions with the puzzle, even if not significantly. The blue monkey was 

brightly coloured and stood out distinctly from the neutral-toned wooden blocks, both in 

texture and appearance. Its design, featuring distinctive facial features like eyes, added an 

extra layer of visual interest. This observation suggests that puzzles with more complexity 

and a variety of toys might be more engaging for the macaques (Schapiro and Bloomsmith, 

1995; Kemp, 2023).  

The pipeline shows a decrease in percentage of macaques interacting with the puzzle during 

feeding time (8-9 am) and in the afternoon/evening (3-6 pm) while the macaques’ group is 

known to be resting. In addition, the pipeline brought to light a notable decline in puzzle 

usage, particularly during weekends and late afternoons. This phenomenon can be 

attributed to reduced staffing levels and a generally quieter atmosphere at CFM during 

these times. Existing studies on non-human primates in zoo environments consistently 

demonstrate that their behaviour is influenced by human presence (Hosey and Druck, 1987; 

Chamove, Hosey and Schaetzel, 1988; Wells, 2005). Specifically, these animals tend to 

exhibit increased activity and spend more time near the front of their enclosures when 

there is a greater influx of visitors. Conversely, in times of low human presence, they tend to 

allocate more time to rest and relaxation (Wells, 2005). This dual effect likely contributes to 

both the weekend and late afternoon reductions in enrichment interaction observed at 

CFM, coinciding with lower staff presence. Using the YOLOv8-based pipeline will enable 

gathering of precise data on the positions of macaques within the play pen. This will 

facilitate an examination of whether the animals are indeed allocating more time to 

established resting zones, such as the front and back platforms.  
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In the case of the puzzle enrichment, it was observed that larger groups had a lower 

percentage of individuals interacting with the item. This phenomenon may be attributed to 

heightened competition and aggression within these larger macaque groups, potentially 

leading to a monopolization of the item (C. K. Lutz and Novak, 2005; Olsson and Westlund, 

2007). Additionally, it is well-established that group size influences the time allocation of 

primates in social settings. They tend to invest more time in actions like grooming, social 

interactions, and maintaining vigilance, subtracting time to other activities (Lehmann, 

Korstjens and Dunbar, 2007). This suggests that in larger groups, providing multiple puzzle 

enrichments may better accommodate to their needs. 

Despite prevailing studies suggesting that young animals tend to exhibit greater interest in 

novelty and enrichment (Schapiro and Bloomsmith, 1995; Schapiro et al., 1996; C. K. Lutz 

and Novak, 2005), the current project did not yield any significant difference in enrichment 

interaction between group types. This could potentially be attributed to the presence of 

young individuals within the breeding group as well as in the juvenile groups.  

In conclusion, the utilization of this automated pipelines not only enables the detection of 

macaque interactions with enrichments but also facilitates comparative analyses of various 

enrichments and their impact on different groups. Furthermore, the results can be 

harnessed to enhance the management of the enrichment program and formulate a more 

effective strategy tailored to the specific requirements and preferences of each group. 
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Chapter 6. Discussion and Future work 

6.1 Thesis Objectives 

The objective of this thesis was to leverage machine learning and computer vision to 

facilitate the acquisition and analysis of data essential for the assessment and enhancement 

of macaque welfare within a breeding colony. Three distinct projects were developed to 

investigate individual and group macaque behaviours. 

Initially, pre-recorded videos of temperament tests were utilized to train three models 

designed to identify movement patterns, exploratory behaviour, and approaches to objects 

during the tests. The primary aim was to enable the automated assessment of neophobia in 

macaques while capturing both behaviours previously coded by human observers and new 

behaviours that had not been coded previously due to their labour-intensive nature.  

Subsequently, a pipeline was constructed to detect macaques engaging in foraging 

activities, with the goal of investigating foraging patterns across different contexts. This 

permitted the collection of data pertaining to preferred foraging materials, and pellet sizes 

and seasonal foraging habits.  

Additionally, the pipeline provided insights into one of the challenges within captive 

macaque populations: aggression (van Schaik et al., 1983; Saito Chiemi, 1996; Steenbeek 

and Sterck, 1997; Thierry, Singh and Kaumanns, 2004; McCowan et al., 2008; Beisner and 

Isbell, 2011c; Grove, 2012). It revealed how foraging could contribute to reducing injury 

rates within macaque groups. 

The final project involved the automated evaluation of two enrichment items. The first item 

comprised a white tank periodically filled with raisins; a food-based enrichment that had 

been present in the enclosure for several months before the study commenced. The second 

enrichment item consisted of a cognitive puzzle introduced into the enclosure for the 

purpose of the study, representing a novelty for the monkeys. The primary objective of this 

project was to explore the association between boredom and non-food-based enrichment, 
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with a focus on identifying the point at which these items would no longer captivate the 

interest of the macaques.  

These findings underscore the significance of technological advancements in the field of 

animal welfare research and open avenues for further investigations into enhancing the 

welfare of captive macaque populations. 

6.2 Achievements and Limitations 

This thesis demonstrates the potential of computer vision to enhance the study of animal 

behaviour while reducing human involvement in data collection and analyses.  

Through this methodology, previously unrecorded behaviours have been captured and 

integrated into a standardised test for macaque temperament, such as exploratory 

behaviour and movement patterns. The results derived from the automated pipeline 

revealed a correlation between reduced levels of neophobia and heightened exploratory 

behaviour and movement. Conversely, more fearful individuals exhibited increased freezing 

behaviour and decreased interaction with objects, consistent with findings in existing 

literature (Kalin and Shelton, 1989; Coleman, Tully and McMillan, 2005; Bethell et al., 2019). 

These behaviours are known to be crucial for assessing macaques' temperament and can 

offer new insights into the study of neophobia (Barr et al., 2008; Santillán-Doherty et al., 

2010; Gottlieb and Capitanio, 2013; Amici et al., 2020). While this pipeline may not 

completely meet the standard for accurately detecting latency to approach when compared 

to manual coding, it serves as a proof of concept, illustrating the feasibility of such 

methodologies. It offers understandings into the requisites for video setup and study design 

aimed at training and establishing automated systems for behaviour collection in 

temperament assessments. This project paves the way for future studies explicitly tailored 

to exploit the potential of this automated approach. 

Utilizing computer vision models based on YOLACT (Bolya et al., 2019), a real-time object 

segmentation system, has enabled the collection of other previously unattainable data at 

the Centre for Macaques (CFM), including foraging patterns and food preferences. The 

findings demonstrated that offering chopped foods such as spinach, watercress, and 

mushrooms maintained macaques' heightened engagement in foraging when compared to 
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foraging mixes rich in carbohydrates, fructose, and glucose (e.g., oranges and tomatoes), 

which are known to be favoured by other primate species (Laska, 2001; Jildmalm, Amundin 

and Laska, 2008; Clay et al., 2009).  

Moreover, the versatility of YOLACT extends to monitoring and assessing the utilization of 

enrichment. This approach provides insights into the dynamic patterns of enrichment usage, 

effectively minimizing the necessity for manual intervention. The automated pipeline 

revealed ongoing interest in the enrichment among the macaques, even when the item 

lacked food content. These findings assist in refining and adapting the enrichment strategy 

as necessary.  

The most recent advances and applications in this study have been driven by YOLOv8, a real 

time object detection system, and the Segment Anything Model (SAM), a labelling and mask 

generator system (Jocher, G., Chaurasia, A., & Qiu, 2023; Kirillov et al., 2023). The former 

offers faster information retrieval compared to YOLACT, as evidenced in the non-food-based 

enrichment evaluation project where the automated analysis indicated a decline in interest 

in item over the course of a one-month observation period, confirming that toys can lose 

their appeal quickly among macaques (Bayne et al., 1993; Corrine K. Lutz and Novak, 2005; 

Kemp, 2023). SAM, on the other hand, has proven instrumental in streamlining the labelling 

aspect of the work, further reducing human involvement and increasing agreement 

between labellers (F (3, 300) = 10.996, p < 0.001) (Figure 38). 
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Figure 38: Agreement, indicated as Intersection over Union (IoU), between 3 labellers (j,g,c) 
labelling macaques. Blue line shows agreement between labellers using SAM, green line 
shows agreement between labellers using manual labelling, red line shows agreement 
between labellers using both SAM and the manual system. 

The pipeline developed for the foraging patterns and food preferences is scheduled for 

integration into routine behaviour assessment and welfare monitoring at the breeding 

colony. This advance will empower staff to better monitor macaques' foraging behaviours 

and promptly detect any changes that might affect their welfare. In addition, the model 

based on YOLOv8 will serve to monitor the macaques, gathering essential data on enclosure 

usage and movement patterns (see sections below for more details).  

 

6.3 Future Refinements 

It is important to note that these methodologies are continuously evolving due to the rapid 

changes in the field of machine learning and computer vision. Therefore, the models 

proposed in this thesis hold the potential for refinement. 
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In particular, the temperament test pipeline requires further enhancement, mainly related 

to video quality. Emphasizing the need to standardize camera positions and achieve 

synchronization between the two cameras is pivotal. Such efforts will serve to increase the 

performance of the object detection model and enhance the overall accuracy of the 

pipeline, thereby diminishing the incidence of false positives. 

Additionally, for both the foraging and enrichment pipelines, it would be advantageous to 

train a computer vision model capable of detecting when staff members enter the playpen 

to feed the animals. This would eliminate the need to manually identify feeding times from 

each video. This enhancement can be achieved using both YOLACT and YOLOv8 and would 

streamline the video selection and exportation process from the CFM's CCTV system. The 

dataset necessary to train the human detector model has already been prepared, although 

time constraints prevented me from training the model and applying it to the videos. 

Nevertheless, this enhancement is entirely feasible to integrate into the automated 

methodology outlined in this thesis. 

6.4 Possible Applications 

The adaptable nature of the pipeline employed for collecting and analysing data in the 

temperament test holds promise for similar assessments aimed at evaluating temperament 

and neophobia in Non-Human Primates (NHP). To facilitate this adaptation, it would entail 

retraining the DeepLabCut (DLC) (Mathis et al., 2018) models using a limited set of new 

frames extracted from videos captured during similar tests conducted in different facilities. 

In cases where the tests involve macaques, minor retraining on a new dataset derived from 

videos of the novel tests would be necessary. Should the tests encompass other NHP 

species, the DLC models would require training on a dataset specific to the frames extracted 

from videos of these new tests. In parallel, the YOLACT model would necessitate training on 

a fresh dataset containing frames extracted from videos capturing the novelties utilized in 

these tests. A collaborative effort to tailor this pipeline for the temperament tests 

conducted at the Oregon National Primate Research Center is already underway, 

highlighting the potential for cross-facility applications and advances in temperament 

assessment methodologies. 
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As mentioned earlier, both the pipeline designed for identifying foraging patterns and the 

ones employed to assess enrichment usage are set to become integral components of the 

technology employed at the Centre of Macaques for enhancing macaques' welfare 

assessment. Furthermore, these pipelines hold the potential to offer benefits to larger 

macaque research centres, breeding colonies, as well as zoos and sanctuaries housing 

extensive primate populations. However, with the greater complexity of settings in these 

facilities, which include larger enclosures and a higher abundance of enrichment items, the 

need for a more diverse and complex dataset for thorough model training becomes vital. 

Fulfilling this requirement necessitates procuring a fresh set of labelled data. The 

implementation of SAM considerably streamlines the data labelling process, marking a 

noteworthy improvement over previous methods. This innovation implies that obtaining the 

necessary labelled data is now a more manageable and efficient task. Additionally, by 

training these models on the YOLOv8 architecture, the resulting pipeline stands to achieve 

heightened precision and reliability in detecting both the animals and the various structures 

present within their environment. This advancement is particularly valuable in navigating 

the complexities inherent in larger and more diverse primate habitats. 

These insights are invaluable for management strategies, aiding in the informed planning of 

enrichment programs, food selection, and optimal presentation to the macaques. However, 

there exists the potential for further information extraction using analogous pipelines. 

Elements such as enclosure-wide movement, utilization of structures, spatial distribution, 

and deviations from established patterns hold promise for exploration. This realm of 

information could be harnessed to identify stress levels and social disruptions within 

macaque groups. Notably, in primates, patterns of spatial choice and movement are 

intrinsically linked to aggression and social hierarchy (Janson, 1990). For instance, chasing 

behaviours, involving multiple individuals, serve as indicators of aggression (Higley et al., 

1996; Muller and Wrangham, 2004). Thus, these methodologies possess the potential to 

delve deeper into the dynamics of macaque groups, equipping researchers with tools to 

pinpoint stressors and potential disruptions within their social fabric. This capacity holds 

special significance in the context of captive non-human primates, where the most 

challenging issue revolves around the identification (refer to Appendix A for more details) 

and resolution of aggressions and social disruptions (Thierry, Singh and Kaumanns, 2004; 
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Corrine K. Lutz and Novak, 2005; Lutz et al., 2007b, 2007a; Gottlieb, Coleman and McCowan, 

2013; Beisner et al., 2015). 

6.5 Conclusion 

The methodologies outlined in this thesis have proven to be not only versatile but also 

dynamic, representing a multi-faceted approach that merges a spectrum of machine 

learning algorithms, ranging from pose estimation models to object detection techniques. 

These tailored pipelines have not only facilitated a comprehensive exploration but have also 

paved the way for an array of investigations into the intricate behaviour and social dynamics 

exhibited by macaques at the Centre for Macaques. 

Through these pipelines, I have been able to unravel a diverse array of macaque behaviours, 

shedding light on individuals’ interactions, exploration, and responses within their 

environment. Importantly, the data harnessed from these pipelines has emerged as an asset 

for colony management, empowering more informed decision-making when it comes to the 

macaques' welfare. The gathered insights have led to the refinement of feeding plans and 

enrichment strategies, both for optimizing existing protocols and charting out management 

activities. This not only reinforces the existing practices but also lays a foundation for future 

strategies and initiatives. 

Furthermore, these pipelines are not confined to this stage alone. They are on the edge to 

transcend their current utility, being allocated for continual deployment at the Centre for 

Macaques in forthcoming research endeavours. Beyond these walls, there exists the 

potential for these pipelines to play a role in other macaque facilities, including the Oregon 

National Primate Research Center, thereby contributing to a broader understanding of 

primate behaviours. 

As the realm of machine learning continues to evolve with each passing day, my thesis 

journey underscores the perpetual evolution of this field, unveiling new algorithms and 

models. While I have charted significant progress, the future indicates opportunities for 

enhancements. I have highlighted the avenues where adjustments and improvements are 

primed to refine accuracy and expedite data extraction from videos, further alleviating the 

burden on human resources. The use of these evolving technologies holds the promise of 
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not only a more accurate understanding of animal behaviour but also a more efficient and 

humane approach to monitoring animal welfare. 
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Appendix A 

Identifying the individuals 

Regarding the identification of social structures within macaque groups and their dynamic changes 

over time, a significant enhancement would involve the capability to individually identify each 

macaque. This advance would greatly contribute to the accurate detection and tracking of social 

structures and their fluctuations. 

Automated detection of social structure 

In the initial stages of my PhD research, I embarked on creating an automated system 

capable of extracting proximity data from videos featuring macaque breeding groups. The 

primary aim was to discern their social structure and capture insights into alterations within 

this structure over time using social network analysis. The knowledge of the monkeys' 

positions and their proximity to one another holds great potential for understanding the 

dominance hierarchy present within these groups (Corradino, 1990; Singh, D’Souza and 

Singh, 1992; Zhang et al., 2012). This understanding is pivotal for effective colony 

management, given that successful management hinges on comprehending these dynamics. 

Furthermore, this knowledge is particularly valuable in comprehending the effects of stress-

inducing scenarios, such as health assessments, the removal or introduction of individuals 

from groups, on the broader social structure (Ferin et al., 1976; Fuller et al., 1984; Beisner 

and Isbell, 2011c; Blumrosen, Hawellek and Pesaran, 2017; Hannibal et al., 2017; McCowan, 

Beisner and Hannibal, 2018). Particularly, special attention was given to the last scenario. 

Despite efforts to reduce aggressive behaviours in captive settings, such as those employed 

in CFM and other non-human primate breeding facilities, certain factors still contribute to 

heightened aggression (Pruetz and Isbell, 2000; Beisner and Isbell, 2011b). These include the 

lack of escape options in threatening situations and, notably, the introduction of new male 

individuals into breeding groups. While introducing new males is a common practice in 

maintaining genetic diversity and improving productivity within a breeding colony, it can 

lead to complex challenges, including the potential for failure and multiple injuries (Massey 

et al., 2022). Such changes in group dynamics can cause instability, disrupting social orders 

and leading to ambiguous relationships, accompanied by physiological changes indicative of 
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stress (Wolfensohn and Honess, 2008; Hannibal et al., 2017; McCowan, Beisner and 

Hannibal, 2018). To address these situations more effectively, a heightened level of 

observational vigilance by management staff is required to accurately ascertain hierarchy 

rankings, facilitating the well-informed removal of specific animals if necessary (Coleman et 

al., 2012). However, this approach is often constrained, focusing on a select few individuals 

and for a limited duration. Moreover, it mainly allows for the detection of significant 

alterations in already compromised animals, making early intervention challenging 

(Weissbrod et al., 2013; Matthews et al., 2017). 

Given these challenges, there is a need to develop an automated model capable of 

detecting the social structure within macaque breeding groups and recognizing changes in 

group hierarchy resulting from the introduction of new male members. This methodology 

aimed to highlight the repercussions of such introductions on existing groups and to 

compare resultant social structure changes with the success or failure of these 

introductions. 
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At CFM, due to variations in lighting, the presence of obstructions, and the differing sizes of 

the monkeys in frame based on their location, identifying individual macaques becomes 

challenging when a single camera covers the entire enclosure. Consequently, a different 

approach was taken, training the model on videos capturing specific key areas (as illustrated 

in Figure 39). 

Figure 39: Key areas recorded by the camera. The red square identifies the shelf in front of 
the window, and the blue area identifies the area on the ground in front of the windows. 
Both areas are mainly used for affiliative behaviours and resting behaviours. 

The primary goals in detecting the social structure of these groups encompassed the 

following: 

1. Identifying animals within the video. 

2. Distinguishing individual macaques. 

3. Tracking these animals and extracting information about their proximity to one 

another. 

4. Performing social network analysis to discern shifts in interactions between 

individuals. 
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Drawing inspiration from C. Witham's previous work (Witham, 2018), a multi-faceted 

methodology was created to extract the aforementioned information: 

1. Employing two models for face and profile detection to locate animals and their 

facial features. These detectors were based on the cascade object detector function 

in Matlab (for more detailes refer to Witham, 2018). 

2. Utilizing a face recognition model to accurately identify individual macaques (for 

more detailes refer to Witham, 2018). 

3. Employing DeepLabCut (DLC) landmark detection to validate detected faces, 

ensuring a minimum of three landmarks from DLC. 

4. Implementing KLT tracking (Kanade-Lucas-Tomasi points tracker) to record proximity 

information. 

Initially, the approach utilized DLC for single-animal tracking, as the multi-animal DLC 

version was unavailable at that time.  

This pipeline encountered notable limitations, particularly when macaques were not 

squarely facing the camera or when they were entangled in overlapping configurations or 

unconventional postures. Regrettably, these situations led to suboptimal accuracy in 

comparison to human observations ( 

Video 

 

No Frames 
Tracked 

No Frames 
Identified 

No Frames 
Present GT 

No Frames 
Present GT 

Correctly 
Identified 

DA051214 1997 1584 4264 46.83% 79.32% 

DA180315 4070 2341 12276 33.15% 57.52% 

JU300614 2600 2253 11658 22.30% 86.65% 

JU290614 2914 2267 10230 28.48% 77.80% 
SO1507141 12589 11873 17543 71.76% 94.31% 

SO1507142 10688 10655 14374 74.36% 99.69% 

ST1902141 8243 6922 18012 45.76% 83.97% 

UTO80416 7754 7404 22504 34.45% 95.48% 

Table 26 and  

 No Frames 
Tracked 

No Frames 
Identified 

No Frames 
Present GT 

Tracked Correctly 
Identified 

Total 10688 10655 14374 74.36% 99.69% 
Lala 3475 3475 4756 73.07% 100% 
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Libby 1743 1743 2591 67.27% 100% 
Love 474 463 806 58.81% 97.68% 
Meg 4996 4974 6002 83.24% 99.56% 
Leah 0 0 74 0  

Wispa 0 0 41 0  
Yuletide 
(young) 

0 0 36 0  

Zahara 
(young) 

0 0 68 0  

Table 27). 
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Video 

 

No Frames 
Tracked 

No Frames 
Identified 

No Frames 
Present GT 

No Frames 
Present GT 

Correctly 
Identified 

DA051214 1997 1584 4264 46.83% 79.32% 

DA180315 4070 2341 12276 33.15% 57.52% 

JU300614 2600 2253 11658 22.30% 86.65% 

JU290614 2914 2267 10230 28.48% 77.80% 

SO1507141 12589 11873 17543 71.76% 94.31% 
SO1507142 10688 10655 14374 74.36% 99.69% 

ST1902141 8243 6922 18012 45.76% 83.97% 

UTO80416 7754 7404 22504 34.45% 95.48% 

Table 26: This table presents accuracy metrics for the multi-animal tracking and 
identification system across nine videos. The metrics include the number of frames with 

correct tracking (No Frames Tracked), correct identification (No Frames Identified), and 

frames with monkeys present in ground truth (No Frames Present GT). The model's 

accuracy is reflected in terms of the percentage of correctly tracked instances compared 

to ground truth (% Tracked) and the number of correctly identified instances compared 

to tracked instances (Correctly Identified). 

 
 

 No Frames 
Tracked 

No Frames 
Identified 

No Frames 
Present GT 

Tracked Correctly 
Identified 

Total 10688 10655 14374 74.36% 99.69% 
Lala 3475 3475 4756 73.07% 100% 

Libby 1743 1743 2591 67.27% 100% 
Love 474 463 806 58.81% 97.68% 
Meg 4996 4974 6002 83.24% 99.56% 
Leah 0 0 74 0  

Wispa 0 0 41 0  
Yuletide 
(young) 

0 0 36 0  

Zahara 
(young) 

0 0 68 0  

Table 27. The table illustrates tracking and identification outcomes for a group of 8 monkeys 
engaged in stable behaviours such as sitting, grooming, and resting. Despite the stationary 
nature of these behaviours, the pipeline encountered challenges in tracking half of the 
individuals within the group. 

 

Subsequently, I explored an alternative approach based on YOLACT, aiming to enhance 

macaque detection. This involved using YOLACT for animal detection and subsequently 
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applying face and profile detection on the detected individuals. While this approach led to 

improved macaque detection, challenges persisted in finding a dependable tracking 

algorithm to furnish reliable proximity data. 

However, there is a potential avenue to address this limitation by leveraging a robust 

tracking mechanism, like the one offered by YOLOv8. This advance could provide a solution 

to the challenge posed by animals not facing the camera. In essence, a proficient tracker 

could rectify the issue of unidentifiable instances. With the aid of such a tracker, the 

pipeline could assign identities to previously unidentified tracks, particularly when the 

animal in question comes into view of the camera. It is crucial to emphasize the significance 

of maintaining extended tracking periods and deploying an algorithm that can effectively 

track an individual even when it partially disappears behind objects or overlaps with others. 

In doing so, this approach holds the potential to significantly enhance the accuracy and 

completeness of the collected data, ultimately enabling a more comprehensive analysis for 

social network assessment. 
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