Visual Active Tracking in Simulation
with Task-Relevant Features and Deep
Reinforcement Learning

Kirsten Nicole Crane

School of Computing

Newcastle University

This dissertation is submitted for the degree of
Doctor of Philosophy

June 2024

I would like to dedicate this thesis to my mum, who has asked me about it, supported me,
worried for me, and celebrated with me, from the very first day to the very last.

Declaration

I hereby declare that except where specific reference is made to the work of others, the
contents of this dissertation are original and have not been submitted in whole or in part
for consideration for any other degree or qualification in this, or any other university. This
dissertation is my own work and contains nothing which is the outcome of work done in
collaboration with others, except as specified in the text and Acknowledgements. This
dissertation contains fewer than 65,000 words including appendices, bibliography, footnotes,

tables and equations and has fewer than 150 figures.

Kirsten Nicole Crane
June 2024

Acknowledgements

Thank you to my supervisors Dr. Stephen McGough, Prof. Nick Wright, and Prof. Per
Berggren for their continued support and expert advice throughout my PhD.

Thank you to Prof. Paul Watson for the opportunity to pursue a PhD through the Cloud
Computing for Big Data CDT, and to Dr. Savas Parastatidis for his generous alumni donations
which funded my preceding Masters degree.

Thank you to Dr. Matthew Sharpe for all of the fieldwork efforts and for answering any

questions that required domain knowledge.

Thank you to Tawn Kramer for developing and open sourcing SD Sandbox and gym_donkeycar.

Thank you also to Antonin Raffin and the rest of the Stable Baselines core developers team.

Thank you to Jennifer Wood and Andrew Turnbull for your support with University admin-
istration, international conference trips, and the organisation of CDT activities, both social
and professional. A special thank you to Jennifer Wood for the emotional support she has

provided as I have navigated some difficult personal circumstances.

An enormous thank you to Georgia Atkinson and Dr. Cameron Trotter, with whom I have
had discussions more or less every day for the entirety of this project. You have been beyond

generous with your time and support.

Finally, thank you to my parents, Nigel and Elaine Crane, my siblings, my partner, my dog,
and my extended family; especially my uncle David Crane who recommended the PhD

programme. I would not have achieved what I have without you all.

This work was supported by the Engineering and Physical Sciences Research Council
Centre for Doctoral Training in Cloud Computing for Big Data
[EP/LO15358/1]

Abstract

Using an autonomous underwater vehicle to film marine animals such as dolphins in their
natural habitat can greatly aid monitoring, health assessment and animal behaviour research.
Having a vehicle autonomously follow and orient toward a species of interest, without
the need for tagging, presents a challenging visual active tracking (VAT) problem using
image data from the onboard camera. This thesis investigates model-free deep reinforcement
learning (DRL) algorithm Soft Actor Critic (SAC) as a potential solution. The utility of
this approach is demonstrated in simulation. A follow-up robotics project would then need
to look at integrating the simulation-trained control policy with the real vehicle. DRL was
selected given that it can support accurate, real-time tracking without needing to model the
complexities of a marine environment.

In the VAT literature, research can be divided into end-to-end and task-separated solutions,
based on whether or not the state estimation and control sub-tasks are jointly optimised.
The benefit of joint optimisation is that state estimation can respond to control performance,
and the control can adapt to imperfect state estimation. The challenge is that this requires
a network large enough for learning rich representations, whilst also needing to limit the
number of network parameters for the difficult credit assignment problem faced by the DRL
agent. This thesis explores an approach to VAT which is end-to-end but alleviates some of the
burden by learning the majority of perceptual skills prior to agent training, with a separate
model - a variational autoencoder (VAE). Furthermore, the task-relevance of these perceptual
skills is ensured through the use of a multi-part loss function fed by three auxiliary tasks of
target state prediction. This approach to a constrained VAE was presented by Bonatti et al.
(2020) in the aerial navigation space, upstream of imitation learning. This thesis extends the
approach to DRL and VAT, with a new framework called T2FO (tracking with task-relevant
feature observations). T2FO achieves mean episodic return of 2,057 from a possible 3,000,
across 100 inference runs of the trained policy. The framework outperforms three baseline
SAC policies trained with raw image observations (1,049), unconstrained VAE features
(1,198) and target state predictions from the auxiliary networks (1,987).

Neither agent training nor VAE training were possible without first developing a cus-
tom environment for the custom problem. This thesis additionally presents three environ-
ments developed using the commercial game engine Unity and Open AI’s widely used
library Gym: a toy environment CubeTrack, a car environment DonkeyTrack, and an
application-focused underwater environment SWiMM DEEPeR. For supplementary videos
see https://www.youtube.com/channel /UCA4fgSfe2IctRvEN-Gro0rQ.

https://www.youtube.com/channel/UCA4fgSfe2IctRv5N-Gr0OrQ

Table of contents

List of figures

List of tables

1 Introduction

1.1
1.2
1.3
1.4

2 Background

2.1

2.2

23

24

Impact Areas and Research Question
Aims and Contributionso
Thesis Structure e e e
Publications
Deep Learning
2.1.1 Objective functions
2.1.2 Gradient-based learning,
2.1.3 Backpropagation L
2.1.4 Convolutional neural networks
Feature Learning
2.2.1 Autoencoders
2.2.2 Variational Autoencoder
Reinforcement Learning L.
2.3.1 Terminology
232 Formalism
233 Valuefunctions
2.3.4 Monte Carlo and Temporal Difference learning
Deep RL Algorithms
24.1 DeepQ-Network (DQN)
2.4.2 Vanilla Policy Gradient (VPG)

2.4.3 Deep Deterministic Policy Gradient (DDPG)

vii

ix

—_— O W W =

iv

Table of contents

2.4.4 Twin Delayed Deep Deterministic Policy Gradient (TD3) 44
2.4.5 Soft Actor Critic (SAC) o 45
2.5 Summary ... e e e e e e 48
Game Engines as a Platform for Simulated Learning Environments 49
3.1 Introduction 49
32 RelatedWork 53
3.2.1 Toyenvironmentso 53
3.2.2 Car and drone environments 54
323 AUVsimulations 54
33 CubeTrack e 60
33.1 Simulator 60
332 Communication v it e e 63
333 Environment oL 63
34 DonkeyTrack 65
34.1 Simulator 65
342 Communication 68
343 Environment 69
35 SWIMMDEEPeR 69
35.1 Simulator 70
3,52 Communication e 75
353 Environment L 76
3.6 Summary e 79
Learning Task-Relevant Features from Image Data 81
4.1 Introduction e e 81
42 RelatedWork 82
4.2.1 State representation learning L. 83
4.2.2 The ‘cross-modal’ approach 85
4.3 Methodology 87
4.3.1 Data collection for VAE training 88
43.2 Featurelearning Lo 89
4.3.3 Reproducingin SWiIMM DEEPeR 92
4.3.4 Domain transfer experiment 93
44 Results. e 96
4.4.1 Ablation experiment L. 101

442 SWIMMDEEPeRresults. 106

Table of contents

443

4.5 Summary

Domain transfer results

5 Visual Active Tracking with Soft Actor Critic

5.1 Introduction
5.2 RelatedWork
5.2.1 Task-separated solutions .
5.2.2 End-to-end solutions . . .
5.3 Methodology
5.3.1 T2FO framework
5.3.2 Reward engineering . . .
5.3.3 SAC implementation . . .
54 Results.
5.4.1 CubeTrack results
5.4.2 DonkeyTrack results . . .
5.4.3 SWiMM DEEPeR results .
5.4.4 Inference results
5.4.5 Responsible reporting . .
5.4.6 Ablation experiments . . .

5.5 Summary

6 Conclusion

6.1 Thesis Summary

6.2 Evaluation Against Thesis Aims .

6.3 Future Research Directions
6.3.1 Addressing the visual domain gap
6.3.2 Addressing the physics domain gap
6.3.3 Introducing a memory component
6.3.4 Scaling control dimensions
6.3.5 Multi-object tracking . . .
6.3.6 Distractor-aware tracking .
6.3.7 Vehicle integration

6.4 Closing Remarks

References

A SWiMM DEEPeR server configuration

109
114

117
117
119
119
123
126
126
128
132
138
138
141
145
148
148
151
154

157
157
158
160
160
162
163
164
165
165
166
166

169

185

vi Table of contents

B Autoencoder network architectures 189
B.1 Architectures used in the cross-modal framework 189
B.2 Architectures used in the World Models framework 191

List of figures

1.1
1.2

2.1
2.2
23
24
2.5

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.11

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

The BlueROV2 from Blue Robotics.

High level overview of the proposed solution.

Example diagrams of artificial neural networks.
Visual aid for understanding convolutions, from Dumoulin and Visin (2016).
An example convolutional autoencoder architecture, from Guo et al. (2017).
The agent-environment interaction cycle, from Sutton and Barto (2018). . .
Taxonomy of seminal DRL algorithms, from ‘Spinning Up in Deep RL" (2018).

lustration of the software stack required by simulation-based agent training.
Comparison table between SWiMM DEEPeR and existing AUV simulations.
Examples of existing game-engine-based AUV simulations.
Screenshot of CubeTrack in game view.
Screenshot of CubeTrack in scene view.
Diagram of the ML-Agents framework, from Unity-Technologies (2017a) .
Screenshot of the DonkeyTrack simulation at the start of a new episode.
BlueROV?2 with labelled motion axes.

Ilustration of communication network.

Constrained latent space visualisation, from Bonatti et al. (2020).
Architecture diagram for the encoder network of the VAE.
Overview of the cross-modal method for learning a constrained VAE
Collecting real world image data for domain transfer experiment.
Example image reconstructions from the constrained VAE.
Visualisations of the constrained VAE latent space decodings.
Visualisations of the constrained VAE latent space interpolation.
Example image reconstructions from unconstrained VAE.

Visualisation of unconstrained VAE latent space interpolation.

4.10 Visualisation of unconstrained VAE latent space decodings.

56

viii

List of figures

4.11
4.12
4.13
4.14

4.15

4.16
4.17
4.18
4.19
4.20
4.21

5.1
52
53
54
5.5
5.6
5.7

5.8

Example image reconstructions from VAE trained on smaller dataset. . . . 104
Example image reconstructions from VAE sans residual blocks. 105
Example image reconstructions from the constrained VAE in SWiMM DEEPeR 106

Visualisation of the constrained VAE latent space decodings in SWiMM

DEEPeR e 107
Visualisation of the constrained VAE latent space interpolation in SWiMM

DEEPeR e 107
Reconstruction results of domain transfer experiment. 109
Reconstruction results of domain transfer experiment with pre-processing. . 110
Plot of simulated and real world encodings, sans pre-processing. 113
Plot of simulated and real world encodings, with version one pre-processing. 113

Plot of simulated and real world encodings, with version two pre-processing. 113
Plot of simulated and real world encodings, with version three pre-processing.113

High-level illustration of the simulation-based training framework. 127
Reward engineering illustrations. 130
Graph of episodic return for final version training run in CubeTrack. 140
Comparing episodic return graphs across reward functions in DonkeyTrack. 144

Episodic return graphs for the SWiMM DEEPeR environment. 146
Graphs of episodic return for five equivalent training runs. 150
Comparing episodic return graphs between the proposed framework T2FO

and other observationtypes L L. 152
Comparing moving averages of episodic return between the proposed frame-
work T2FO and other observation types 154

List of tables

4.1

4.2

4.3
4.4

5.1

B.1
B.2
B.3
B.4
B.5

Table of mean absolute error for predicted target car distance (r), azimuth

(0) and yaw (y) against ground truth values. 98
Table of mean absolute error for predicted dolphin distance (r), azimuth (8)

and yaw (y) against ground truth values. 109
Table of mean state prediction error for domain transfer experiment. 112
Table of average image similarity for domain transfer experiment. 112

Comparing agent performance metrics between the proposed framework

T2FO and other observationtypes 151
Architecture for cross-modal ‘Dronet’ encoder network (i.e. ResNet-8) . . . 189
Architecture for cross-modal decoder network 190
Architecture for state prediction multilayer perceptrons (MLPs) 190
Architecture for World Models encoder network 191

Architecture for World Models decoder network 191

Chapter 1
Introduction

Conscious of it or not, humans have fantastically good vision-based motor skills, referred
to as visuomotor-control. Yet even the simplest of tasks, such as reaching, grasping and
object manipulation, can pose a big challenge to machines (Levine et al., 2016a). Of course
machines can perform basic motor tasks without visual perception or other human-like
cognitive capabilities. These non-intelligent machines have become widespread in industries
such as manufacturing, where the environment is highly structured and the tasks are low-skill.
However, in a new age of automation driven by artificial intelligence (Al), the focus is on
building robots with the cognitive skills to tackle complex problems in more realistic, noisy
and unpredictable environments. Al techniques and sub-disciplines can be grouped under
two main strands (Samoili et al., 2020). The first rule-based strand includes knowledge
representation, reasoning, and planning. In the second strand, where cognitive skills are
learnt and not programmed, Al branches into the sub-disciplines of computer vision, natural
lanuage processing (NLP) and machine learning (ML). Across all of these sub-disciplines,
the use of deep neural networks provides the ability to learn from raw, unstructured data —
referred to as deep learning (DL).

Solving visual tasks with deep neural networks can be traced as far back as 1989 with LeNet,
widely considered as the first convolutional neural network (LeCun et al., 1989). However, it
was not until well after the millennium that faster GPUs, the arrival of big data, and solutions
to the vanishing gradient problem pushed deep learning into a global boom. In 2009, Fei-Fei
Li of Stanford University launched ImageNet (Russakovsky et al., 2015), a free database of
more than 14 million labelled images. This provided a real catalyst for the computer vision
community, leading to milestone developments such as AlexNet (Krizhevsky et al., 2012), ZF
Net (Zeiler and Fergus, 2014) and VGG Net (Simonyan and Zisserman, 2014). Since then,

classic computer vision tasks such as classification, localisation, detection, and segmentation

2 Introduction

have progressed enormously. For example, at the time of writing, top-1 accuracy (how often
the model assigns the highest probability to the correct class) on ImageNet classification is
as high as 91% (Yu et al., 2022). Visuomotor-control, on the other hand, remains very much
an open problem, especially in the context of robotics and embodied Al

When it comes to challenging visuomotor problems such as autonomous driving, navigation
and visual active tracking, the incentive for success is huge. In transportation, autonomous
cars are expected to reduce traffic accidents, improve traffic efficiency, and reduce fuel costs
(Waldrop et al., 2015). Autonomous mobile robots can be deployed as service robots in
homes (Portugal et al., 2015) or in medical facilities (Fragapane et al., 2020), and in fact
they were utilised at the height of the Covid-19 pandemic (Cardona et al., 2020). Unmanned
aerial vehicles (UAVs), or drones, can be used for anything from power line inspections
(Iversen et al., 2021) to providing counter measures for malicious drone activity (Cetin et al.,
2020). In the growing commercial drone market, deep learning could improve autonomous
features such as the currently GPS-reliant ‘follow-me’ technology sought after by hobbyist
cinematographers (Do and Ahn, 2018). In defence, as militaries around the world compete for
the portions of the electromagnetic spectrum used to control unmanned vehicles and combat
systems, progress in Al-driven automation is not just a nice to have — it is a high-stakes race
(Swett et al., 2021).

Cars and drones may be the better known of the autonomous vehicles, but the applications
for autonomous underwater vehicles (AUVs) are enormous, from inspecting marine infras-
tructures for the energy industry, to detecting naval mines for the defence industry (Inzartsev,
2009). They are also a valuable asset for research. Dangers such as high water pressure and
fluctuating currents complicate and prevent ocean exploration, but AUVs can extend our
reach. They are smaller, lighter and more portable in comparison to submarines, and yet
they can be robust enough to handle extreme environments such as the deep ocean or polar
regions. This benefits a broad range of scientific fields, including medicine, geology, ecology
and meteorology. Amidst a backdrop of climate change, biodiversity loss and depleting land
resources, the adoption of AUVs and other technology in areas like exploration and conser-
vation may well be crucial (Liu et al., 2022). The next section details the very specific AUV
application this thesis considers, as well as the impact of this application and a high-level

research question.

1.1 Impact Areas and Research Question 3

1.1 Impact Areas and Research Question

This thesis focuses on the application of AUVs to the scientific field of marine biology,
specifically marine mammal research, such as population monitoring, sound production, and
the assessment of bycatch and other anthropogenic threats. Population monitoring often
involves conducting longitudinal research on the species of interest, producing a catalogue of
individuals sighted during dedicated surveys. Monitoring cetaceans (whales and dolphins) is
particularly important because they are natural sentinels (barometers) of ecosystem health
(Bossart, 2011). They feed at a high trophic level, have a long life span, and their thick layer
of blubber can store anthropogenic toxins. This makes them useful indicators of changes to
ocean temperature, salinity, currents, production hotspots, food webs, contaminant levels,

and disease pathways (Moore, 2008).

Conventional data collection methods tend to be vessel-based. For example, above water
photographs are taken of the dorsal fin as the animal breaches the waterline. These are
then used in a process called photo-identification — cross-referencing incoming data with
a catalogue, for the purpose of identifying individuals from unique features such as dorsal
fin shape, notches, scarring, and pigmentation (Wiirsig and Wiirsig, 1977). Similarly, the
behaviour of the animals during any given sighting is determined by surface activity, using
broad categories such as resting, foraging, travelling or socialising. These methods have
some obvious limitations when studying members of a species that spends the majority of

their time underwater, especially when they surface so fleetingly and with lots of spray.

The best scientific insights and conservation outcomes require varied data, including aerial
photography, underwater photography, and underwater acoustic recordings collected in
unison with underwater video footage. For example, underwater video stills can support
external health assessment, such as the identification of a skin disorder amongst the monitored
population (VanBressem et al., 2018). The same underwater imagery would also benefit
photo-identification, given that more of the animal would be visible and therefore any unique
markers on the head, flanks, fluke or pectoral fins could also be incorporated. However,
where underwater data would likely contribute most is behavioural study. Underwater video
data would allow researchers to observe a much broader range of behaviours as well as
individual differences, providing insights into the nature of social interactions, for example.
The opportunity to link these observations with time-matched audio recordings would also

provide exciting new data for studying vocalisations.

4 Introduction

The footage that supported the VanBressem et al. study was captured by a human diver.
Diving with these animals requires a licence, good sea conditions, daylight hours, and a
nearby support vessel. An AUV on the other hand is a bit more robust to deployment
conditions, and can travel faster, deeper and with more agility. As such, there has been an
increasing use of AUVs in marine mammal research (Dutton et al., 2019; Nelms et al., 2021).
There is also the potential for independent missions, or at least the ability to stray further
from a supporting research vessel, avoiding any compounding influence this might have on
animal behaviour (Guerra et al., 2014; Heiler et al., 2016). A prime example of the utility
of AUVs is the ‘SharkCam’ study Kukulya et al. (2015) on white sharks near Guadalupe
Island, Mexico. In this and similar follow-up studies (Dodge et al., 2018; Kukulya et al.,
2016; Packard et al., 2013), the AUV was fitted with an Ultra Short BaseLine receiver, used
to interrogate a 38cm transponder tag attached to the dorsal fin of the shark. The round trip
travel time of the response provided the shark’s range, whilst beam-forming of the response
provided a bearing, and a second, time-delayed response provided a depth. Together, this
3D location was fed into a (non-disclosed) algorithm, using past behavioural data to forward
predict the shark’s location and therefore target location for the vehicle to move to. Following
this methodology, footage captured at 100m provided the very first observations of deep
water attacks, and detailed behavioural data that the authors claim would be impossible to

collect with conventional techniques.

Whilst the study was a success in terms of the observational outcomes, the autonomous active
tracking was sub-optimal. For example, Kukulya et al. note the poor performance of the
prediction algorithm due to limited training data and the shark’s dynamic movements. They
describe regular tracking failures such as ‘fly-bys’ (motoring past the animal) and needing to
manually adjust the vehicle’s speed. Furthermore, the methodology relies on first being able
to find and successfully tag the shark. Although the use of animal-borne electronic devices is
common practice in marine science, it is challenging and time consuming, requiring expertise
within the team, an appropriate tag (sometimes species specific), and lots of considerations
with respect to the safety and welfare of both the animal and the crew. Methods of deployment
and best practice guidelines continue to improve, however the process is not without hazards
(Andrews et al., 2019; Horning et al., 2019, 2017). This prompts the question:

Can computer vision and deep learning facilitate a better performing, tagless method
of AUV control for collecting data on free-roaming marine megafauna in the wild?

1.2 Aims and Contributions 5

Fig. 1.1 The BlueROV2 from Blue Robotics.

The next section translates this high-level research question into a problem specification
and set of aims, firstly in terms of the big picture, and then in terms of the specific problem
addressed by this thesis.

1.2 Aims and Contributions

The ultimate aim is to send out an AUV on an independent mission to survey a given area and
collect high quality data if and when a target species is encountered. The craft recommended
by collaborators in the School of Engineering is pictured in Figure 1.1 - the BlueROV2
from Blue Robotics!. As the most affordable, high-performance remote operated vehicle
(ROV) on the market, it is a popular choice, with many accessories and expansion options.
More importantly, it uses open source software with thorough documentation, facilitating
development and modifications. Like most ROVs, the BlueROV?2 is designed to be connected
to a long umbilical tether used for sending sensory information and receiving commands
from a human pilot. As long as 300m, the tether connects with a laptop, which then connects
with a gamepad controller. Although the vehicle can (and will) be used in this way, the long
tether can be hard to manage, is costly, and can limit the range and freedom of movement of
the vehicle (Wynn et al., 2014).

"https://bluerobotics.com/store/rov/bluerov2/

6 Introduction

The goal, therefore, is to cut the cord between human and robot and introduce autonomous
control. In recent times, AUVs have become commercially available but are intended for
large corporations and cost anything from tens of thousands to millions of pounds (Fowler
et al., 2016). Modifying the BlueROV?2 is therefore more cost-effective, but this will require
in-house development of autonomous control algorithms which we seek to provide through
deep learning. AUVs have varying levels of autonomy and, in the case of commercial
AUVs, an autonomous operational mode is typically nothing more than preplanned route
following. Here, the requirement is for visual active tracking of a dynamic, moving target
— a two-part problem of state estimation and control, demanding high processing speeds
and adaptive sequential decision making. This specification motivates the need to use deep
reinforcement learning (DRL) — a machine learning paradigm (detailed in Chapter 2) which
has had considerable success at directly mapping pixels to control; so called end-to-end
control (e.g. Mnih et al. (2015), Lillicrap et al. (2016)). Although DRL could be used with
non-visual observations, the standard configuration of the BlueROV?2 ships with a monocular

RGB camera, and therefore image data presents the most cost-effective solution.

Figure 1.2 provides a high level overview of the proposed solution. Without a tether, the
modified BlueROV?2 requires an alternative method of communication. Since radio waves
do not propagate well through water, most AUV use acoustic waves, however this method
suffers from small bandwidths, low data rates, high latency, limited range, frequent data loss
and is susceptible to security threats (Liu et al., 2022). This is not well suited to real-time
decision making. Instead, the trained deep neural networks and the scripts that orchestrate
model inference will sit on the BlueROV?2’s existing onboard Raspberry Pi. Some form of
land or vessel communication will still be required for purposes such as human-in-the-loop,
mission evaluation, and system recovery. These much less frequent interactions will need to
suffer the higher latency, but the autonomous operational mode will benefit from the very
low latency of an onboard solution. The DRL algorithm further benefits from not needing to
model the complex and highly non-linear hydrodynamics of the vehicle. Since BlueROV2
is designed to receive human operator commands, the vehicle has sophisticated autopilot
software (ArduSub ? and Ardupilot %), responsible for translating inputs from a gamepad

into signals for the individual thrusters.

To develop this proposed solution to the point of deployment, with all of the necessary
safety features and capabilities, will undoubtedly require a multi-part solution and a huge

Zhttps://www.ardusub.com/
3https://ardupilot.org/

1.2 Aims and Contributions 7

Pixhawk

ARDUCLOT|™

[steering, throttle]

€ Id Aluaqdsey

Fig. 1.2 High level overview of the proposed solution: camera frames are sent to the onboard
Raspberry Pi, where 1) an autoencoder maps the raw image to a 1D feature vector, and 2) a
policy network maps the feature vector to a throttle and steering value to be sent forward to
the existing autopilot software.

number of considerations. For a species that travels in pods, a multi-object tracking algorithm
is required. For a species that might interpret tailgating as predatory, the active tracking
algorithm will need to position itself intelligently. In all cases, the algorithm will need to
incorporate collision avoidance and battle against tides and other hydrodynamic forces. The
enormity of this challenge is going to require a project that spans multiple PhD projects, with
collaboration across the School of Computing, School of Engineering, and School of Natural
and Environmental Sciences.

For this computer science doctorate project, the focus is on the underlying computer science
problem of DRL for visual active tracking, and represents initial forays into the problem.
As is extremely common in the DRL field, the project uses a simulation for training agents.

8 Introduction

A simulation representing this very niche problem was not available off-the-shelf, therefore
it was necessary to tackle both agent training and environment development. The agent is
trained in simulation as a precursor to using the agent to control the real vehicle, with or
without additional real-world training. However, this process of sim-to-real transfer falls
outside the scope of this thesis and would be better suited to a robotics project. Instead, the
robustness of the simulation-trained models to the sim-to-real gap is tested with a proof of

concept study toward the end of Chapter 4.

Finally, given the difficulty of vision-based DRL, control has been limited to two dimensions
— forward and backward on the z-plane (surge, or thrust) and rotation around the vertical axis
(yaw, or steering). The problem does not consider heave (depth), pitch or roll. The active
tracking problem has also been reduced to distractor-free, single-object tracking. Distractor-
free means that the learning environment provides an empty scene other than the moving
target object. This restricts collision avoidance to collisions with the target itself, and allows
the solution to be class-agnostic i.e. the only required classification capability is between

object and background, not between object and object.

The main contributions are as follows:

1. T2FO: A framework for the training of visual active tracking. The acronym stands for
‘tracking with task-relevant feature observations’, describing a framework whereby a
pre-trained encoder network takes a raw image observation of the DRL environment,
encodes it to a one-dimensional feature vector, and then passes this feature observation
as input to a DRL policy network. Specifically, the pre-trained encoder is a variational
autoencoder, but one trained with the downstream control task in mind, using auxiliary
tasks of target state prediction in order to cosntrain and disentangle what is learnt in a
subset of the features, ensuring their task relevance. This solution is novel to visual
active tracking, and outperforms the same policy network trained with raw image

observation or standard, unconstrained features.

2. CubeTrack: A new, open source, Unity learning environment for the DRL researcher.
This toy problem of two cubes moving around an enclosed platform follows the design
of environments within the suite provided by the Unity ML-Agents Toolkit (Unity-
Technologies, 2017b). At the time of writing, this environment suite did not include an
active tracking problem, and so CubeTrack addresses that gap. The simple graphics,
high-contrast colours, discrete action space, and option to use ground truth object
properties as a vector observation, make this environment a perfect test environment or

entry-level environment for active tracking research.

1.3 Thesis Structure 9

3. DonkeyTrack: A modified version of the open source, Unity learning environment
‘gym-donkeycar’ (Kramer, 2018). The original environment is intended for the problem
of track racing whereas DonkeyTrack repurposes the environment for active tracking.
In comparison to CubeTrack, DonkeyTrack is a more realistic environment, both
in terms of visual and physical fidelity. It also progresses from discrete actions to
continuous control. DonkeyTrack was a necessary stand-in environment whilst a
collaboration was formed with the Games Engineering department to develop a custom
underwater environment.

4. SWiMM DEEPeR: A new, open source, underwater Unity learning environment,
purpose built for the conservation application described. The simulation includes
a pseudo-realistic open ocean scene, animated dolphin, and simulated BlueROV?2
vehicle. A real focus is placed on the environment being user-friendly and data-driven,
making as many aspects as possible configurable without needing to rebuild the Unity
executable. This custom-built application is essential to ongoing work on this project,
but also benefits both the underwater robotics and DRL communities. To the best
of the author’s knowledge, it is the first AUV simulation in the underwater robotics
community to provide a conservation angle. In the DRL community, it adds to a limited
number of pseudo-realistic environments for learning greater than two dimensions of
continuous control.

1.3 Thesis Structure

Chapter 2 This initial chapter entitled ‘Background’ lays the theoretical foundations on
which the rest of the thesis is built. Background in terms of related research is reserved
for Chapters 3, 4 and 5, such that a dedicated literature review is presented in proximity
to the work to which it corresponds. The first section provides a definition for deep
learning and then introduces neural networks, objective functions, gradient based learn-
ing and backpropagation. Next are two model types central to the proposed solution
— the convolutional neural network and the (variational) autoencoder. Following this
is a broad introduction to model-free reinforcement learning, before focusing in on

model-free deep reinforcement learning and the core algorithms in this space.

Chapter 3 This is the first of the core research chapters and the equivalent of a data chapter.
The introduction to this chapter explains why simulation-based training is necessary,
the involved software stack, and why there is a growing trend toward the use of

commercial game engines. The related work section reviews relevant platforms,

10

Introduction

toolkits and environments, starting with general purpose toy environments, before
looking at higher fidelity car, drone, and finally, AUV simulations. The main body of
the chapter then presents all three custom environments developed in the course of this
project: CubeTrack, DonkeyTrack, and SWiMM DEEPeR.

Chapter 4 This second core research chapter introduces the idea of decoupling represen-

tation learning from policy learning (learning control), both to reduce training times
and to improve the robustness of sim-to-real transfer. The related work section reviews
examples of just that, first in terms of standard representation learning and then in terms
of state representation learning. The work presented in this chapter is a reproduction
of the ‘Cross-Modal Variational Autoencoder’ presented by Bonatti et al. (2020), but
using the DonkeyTrack environment as opposed to AirSim. A section is dedicated
to summarising the approach proposed by this paper, before detailing the data collec-
tion and models in the methodology section, including an initial ‘proof of concept’
experiment into sim-to-real transfer. The results section reproduces the same figures as
the original paper to provide a direct comparison, providing evidence of the method’s
reproducibility and successful transfer to new simulation environments. An ablation
study compares the results to an unconstrained variational autoencoder with the same
architecture, and a variational autoencoder without the residual blocks provided by the
ResNet architecture. Results are also provided for the sim-to-real transfer experiment,
assessing the similarity of feature vectors encoded from simulated images to feature

vectors encoded from real world counterpart images.

Chapter 5 This third and final research chapter focuses on policy learning. The introduction

goes in to more detail on visual active tracking as a visuomotor-control problem, and
how it differs from the better known problem of visual object tracking. The related work
section reviews notable solutions to similar problems, comparing the task-separated
approach to visuomotor-control versus end-to-end. The methodology section details
the overall framework for policy training, reward functions and episode termination
criteria, and the Stable Baselines implementation of the Soft Actor Critic algorithm
introduced in Chapter 2. The results section provides training graphs of episodic return,
inference results and videos of trained agent behaviour, across all three environments,
but with greater focus on the DonkeyTrack environment where the majority of tuning
and experimentation was carried out. The influence of various hyperparameters and
reward functions is reported on, with a note on responsible reporting. An experiment

is dedicated to comparing observation spaces (raw pixels versus feature vectors, versus

1.4 Publications 11

state predictions) and to comparing feature observations learnt under the cross-modal

approach as opposed to an unconstrained approach.

Chapter 6 This chapter summarises the thesis and provides a critical evaluation against the
thesis aims. The future work section describes several interesting directions for future

research, building upon the work undertaken in this thesis.

1.4 Publications

The work outlined in this thesis has led to the publication of the following peer-reviewed

paper:

Appleby et al. (2023) Appleby, Sam, Crane, Kirsten, Bergami, Giacomo and McGough, A.
Stephen, 2023. SWiMM DEEPeR: A Simulated Underwater Environment for Tracking
Marine Mammals Using Deep Reinforcement Learning and BlueROV2.

Specifically, this paper relates to the development of the novel underwater environment
SWiMM DEEPeR, including the Unity simulation, Python application, and network commu-
nication between the two. It therefore mostly relates to Chapter 3, but provides results for
autoencoder training (Chapter 4) and policy training (Chapter 5). This paper was accepted to
IEEE Conference on Games 2023 for a fifteen minute talk. Post conference, an invitation
was received to contribute an extended version to the IEEE Transactions on Games journal,
running a special issue to highlight the best works from the conference. Equal contribution
was provided by the first and second author, but given the focus of the conference it was felt
that it was more appropriate for Samuel Appleby, the games engineering student, to be first
author. Samuel was responsible for developing the Unity simulation, I was responsible for
the Python application and for the requirements of the Unity simulation, and we collaborated

together on the network communication.

The following publication was also produced during this thesis. Born from the same working
collaboration, it shares the same motivation (Al for conservation), but is not directly related

to the contents of this thesis.

Trotter et al. (2020) Trotter, Cameron, Atkinson, Georgia, Sharpe, Matt, Richardson, Kirsten
McGough, A. Stephen, Wright, Nick, Burville, Ben and Berggren, Per, 2020. The
Northumberland Dolphin Dataset: A Multimedia Individual Cetacean Dataset for Fine-
Grained Categorisation. In The 6™ Workshop on Fine-Grained Visual Categorization,
CVPR 2019. Available: doi.org/10.48550/arXiv.1908.02669.

https://doi.org/10.48550/arXiv.1908.02669

12 Introduction

Specifically, this paper presents a novel computer vision image dataset of two different
dolphin species, annotated for both coarse and fine-grained instance segmentation and
categorisation. Although this dataset does not feed any of the models discussed in this thesis,
a crew of at least two (but ideally four) people were required to collect this data, conducting
North Sea surveys in a research vessel as many days as the weather permitted during the
summer months each year. Therefore, the more people from the lab that contributed, the
more feasible this was. The resulting dataset has been well received; it was used by Meta
Al Research to evaluate their ‘Segment Anything Model” (Kirillov et al., 2023) and was
included in a publicly hosted Kaggle competition *.

“https://www.kaggle.com/c/happy-whale-and-dolphin/

https://www.kaggle.com/c/happy-whale-and-dolphin/

Chapter 2

Background

2.1 Deep Learning

Machine learning describes the ability of computer systems to learn in the absence of rules
and explicit instruction, using statistical models to draw inferences from patterns in data.
The term ‘deep learning’ indicates the use of an artificial neural network (ANN) with two
or more processing layers, affording greater complexity of learnt representations. In a deep
neural network (DNN), each layer builds on the next, representing the input data at a greater
and greater level of abstraction until, at the final layer, the network outputs a prediction
(Goodfellow et al., 2016, Chapter 6). This process of forward propagation, giving rise to the
name feed-forward network, is what allows for DNNSs to learn directly from raw, unstructured
data, unlike classical machine learning which requires a method of feature extraction (see
Khalid et al. (2014) for examples). Learning features as opposed to specifying features can

be extremely powerful and removes the need for any domain knowledge.

Introductions to deep learning commonly illustrate a DNN with a simple, directed, acyclical
graph, such as the one in Figure 2.1a. In research papers, network visualisations look more
like Figure 2.1b, representing layers as blocks to avoid drawing hundreds of nodes and edges.
The nodes of a neural network are called neurons, named after the specialised information
processing units of the brain. Biological neurons receive multiple incoming signals through
structures called dendrites that branch from the cell body. The cell’s output travels down
a fiber called the axon as a sequence of electrical pulses called action potentials. At the
synapse (axon end), the signal is transmitted to the dendrites of other neurons across a small
gap (cleft), typically with a chemical signalling process involving neurotransmitters (Sutton
and Barto, 2018, Chapter 15). Inspired by this, artificial neurons in hidden layers (any

layer between the ‘visible’ input and output layers) receive multiple inputs from neurons in

14 Background

Output units é ()
W

K

o4 \dense

-
[
@

P,
=
B

dense dense

1000

128 Max 1
Max 178 Max pooling ¢
pooling pooling

=1
5|
P
=
B
@

(b) A diagram of the AlexNet architecture from Krizhevsky et al. (2012)

Fig. 2.1 Example diagrams of artificial neural networks.

the previous layer and pass a single output to neurons in the next layer. If each neuron is

connected to all of the neurons in the previous layer, it is referred to as a fully-connected layer.

At the level of a single node, inputs are combined with a weighted sum, followed by the
addition of a vector called the bias (b), followed by a simple non-linear transformation
such as the rectified linear unit (ReLU) transformation — max (0,z) (Nair and Hinton, 2010).
Taking from the idea of biological neurons ‘firing’ or ‘activating’, the resulting scalar value is
called the activation and the non-linear function applied to the weighted sum, the activation
function. The same vector-to-scalar function is performed in parallel by all neurons in the
layer, and the scalar outputs are combined to provide the vector input to neurons in the next
layer. Therefore, the layer as a whole provides a vector-to-vector function and the network as
a whole can be viewed as a nested function or function chain. The idea is that the resulting
complex function approximates a function y = f(x) which maps input x to desired output y

2.1 Deep Learning 15

(Goodfellow et al., 2016, Chapter 6).

There are lots of factors that affect this mapping, including the number of layers, the number
of neurons in each layer, and the non-linear activation functions that are used, to name just a
few. Many of these are design choices for the programmer and will be task-specific, although
there are popular architectures that seem to do well across a range of tasks, and a handful
of activation functions which are almost always selected from in practice (see Sharma et al.
(2017) for examples). Introducing these non-linearities throughout the computational graph
allows the machine to learn complex representations with non-linear decision boundaries.
The concept of learning here refers to an iterative tuning process done at the level of the
weighted sum. The vectors of weights assigned to the neurons are collectively referred to as
the network’s parameters, often denoted 6. Typically, these are randomly initialised and then
adjusted a small amount with each network update (with the amount and cadence specified by
hyperparameters). A common methodology for network updates is gradient-based learning,

discussed in section 2.1.2 following an introduction to objective functions.

2.1.1 Objective functions

A key concept in deep learning is that of an objective function J(6). Without some means
of measuring the quality of the model output, the machine cannot be expected to optimise
the model parameters. A very common expression of ‘quality’ is some measure of error.
To provide an example, if the task is to predict house prices and the frue price is known
(regression problem with a supervised learning approach), then the error can be measured as
the difference between the prediction and the ground truth with a function such as

(yi —$i)*

M=

1
NS

i

where y; is the ground truth value, ¥; is the predicted value, and N is the number of samples.
This particular objective function is called the mean squared error (MSE). When an objective
function measures something that ought to be minimised, it is commonly referred to as a
loss function or cost function (see Wang et al. (2022) for a summary and analysis of 31
classical loss functions, including hinge loss, logarithmic loss and Softmax cross entropy
loss). The unsupervised and reinforced learning paradigms also use objective functions. For
example, unsupervised training of a generative model will likely involve some measure of

divergence - the difference between the distribution of our input data (e.g. a photograph) and

16 Background

the distribution of our generated data (e.g. the photograph styled as a Monet painting).

One unifying way to talk about objective functions is to formulate the problem as a density
estimation problem, and one solution to density estimation is Maximum Likelihood Esti-
mation (MLE). Typically, MLE is described as finding P(X) (the probability distribution of
X) that best explains the observed data. This is done by maximising L(X), the likelihood
of observing data X. This same approach can be applied to data where we have input and
output variables, changing P(X) to P(Y|X) (the probability of output ¥ given input X) and
changing L(X) to L(Y|X). Both the probability and likelihood are written as P(Y|X;6),
since they are also conditional on the model parameters. Note that a semicolon is used
since 0 is an unknown parameter and not a random variable. The capitalisation of X and
Y indicates a set of multiple individual samples. Given a training dataset with N samples
of input data X and output data Y, P(Y|X;0) is actually the joint probability distribution
Hﬁvzl P(Y;|X;; 0). Multiplying many small probabilities together can be numerically unstable
and so the probability is expressed as a log-probability and the product restated as a sum
according to the log rule log,(mn) = log,(m) +log,(n). The likelihood therefore becomes a
log likelihood, and is typically multiplied by -1, such that it is something to minimise and not
maximise. The resulting negative log-likelihood is also called the cross-entropy between the
training data and the model distribution. Cost functions like MSE can be derived from here
by expanding the equation and dropping any terms that do not depend on 6 (Goodfellow
et al., 2016, Chapter 6).

2.1.2 Gradient-based learning

For any given set of model parameters, the model can be evaluated according to the objective
function. As discussed, the objective function produces some measure of model output qual-
ity, such as loss, as an average over input samples. If one were to map all possible parameter
choices to this quality measure, the result would be a very highly dimensional plane given
that the model has many parameters (see Li et al. (2018b) for visualisations referred to as
loss landscapes). The aim of model optimisation is to find the global minimum (deepest
trough) on this plane since, at this point, the parameter values produce the smallest loss. With
each model update, the computer system computes the gradient of the current position on
the landscape (i.e. the gradient of the objective function using the outputs produced with the
current model parameters). Parameters are then adjusted a small amount in the direction of
negative gradient (if the quality measure is something like cost that ought to be minimised).
Obviously, if the quality measure is instead something to maximise, then parameters are
updated in the direction of positive gradient. If the high dimensional plane were convex, this

2.1 Deep Learning 17

would represent a small step toward the global minimum. However, since it is non-convex,

the update might represent a step toward a local minimum.

In one dimension, the gradient of a function f(x) is the derivative of the function i.e. f’(x) or
8f(x)

=5 In multi-dimensions, the gradient is the vector of partial derivatives along each dimen-
sion i.e. (Sgg) , 5;};) e 55)5)‘)) or V. f(x). Applying this to deep learning, the parameters of a

network can be updated each iteration with

0« 6—aVyJ(0)

where J is something of the form %Zﬁi £ (i,i), like the MSE equation given in 2.1.1. The
Vg denotes we are taking the gradient with respect to (w.r.t) the network parameters, and the
o multiplier is the learning rate. There will be much said on learning rates in later sections,
but for now it is a value less than one which limits the size of the update step.

A problem with this update rule is the computational expense of averaging over N when
N is very large, as it needs to be when applying deep learning. Rather than evaluate the
model against all samples before taking an update step, it is possible to evaluate the model
against a subset of samples (a mini-batch), providing an estimate of the overall loss. This
approach is called mini-batch Stochastic Gradient Descent (SGD) based on the method of
stochastic approximation first described by Robbins and Monro (1951). Evaluating the model
against a subset of data provides a noisy gradient estimate and as such the ‘path’ to the
optimal solution will be less direct (hence the term stochastic). Whilst this results in a longer
convergence time, it reduces computational time and memory requirements. As such, SGD
and its improved variants are widely used and, when compared with other gradient-based

algorithms, provide the best generalisation performance (Bottou and Bousquet, 2007).

2.1.3 Backpropagation

Even if the averaging were removed entirely and the objective function were fed just one
sample, computing the gradient of the objective function w.r.t the network parameters is
non-trivial when the network may have millions of trainable parameters. In a fully-connected
layer, each node in the layer has a number of parameters equal to the number of nodes in the
previous layer. Therefore, the number of parameters for the layer is the number of nodes in
the previous layer multiplied by the number of nodes in the layer, plus the number of nodes

in the layer (since each node barring the bias is also connected to the bias of the previous

18 Background

layer). When the network is 152 layers deep, as it is in a variant of ResNet (He et al., 2016),
the number of partial derivatives to compute becomes very large. Backpropagation, short for
‘backward propagation of errors’, provides an efficient method for computing the gradient
analytically as opposed to numerically, using the chain rule

V(g(x) =g (f(x)) f'(x)

i.e. how to find the derivative of a composite function. In the opening of Section 2.1, the
network was described as a computational graph — a chain of functions for the input to pass
through in what is called the forward pass. The objective function can be thought of as just
one more function at the end of this function chain, and then backpropagation is essentially
a backward pass through the function chain to recursively compute the gradient w.r.t every
variable in the computational graph. Moving back through the network layers, information
(i.e. partial derivatives) is passed back, reducing the amount of computation required at the
next layer. Backpropagation was first proposed by Linnainmaa in their Master’s thesis in
1970, but it was not until 1986 that Rumelhart et al. demonstrated the advantage of using

backpropagation when working with computational graphs.

2.1.4 Convolutional neural networks

The standard form of feed-forward network discussed thus far is often referred to as a Multi-
layer Perceptron. In the computer vision context, the input data is image data, represented as
ahxwxd (ordxw x h) matrix of pixel values, where % is the image height, w is the image
width, and d is the number of colour channels (i.e. 3 for RGB images). Of course, the matrix
can be flattened to give a 1 x hwd vector, which can then be passed through an MLP like
any other data. However, treating the pixel values as a 1D vector means that crucial spatial
information is lost. To this end, the convolutional neural network (CNN) was introduced —
the idea appearing in the late 1980s (Fukushima, 1988) and the first practical application
being seen in the late 1990s (LeCun et al., 2015) in the context of digit recognition using the
MNIST dataset (Deng, 2012).

Recall how, in an MLP, the incoming values to each neuron are combined in a weighted sum
to give a single value called the activation. This weighted sum is a dot product between the
input vector and the weight vector. In CNNs, weights are stored in a matrix called a kernel or
filter, with the same depth as the input data and often something like 3 x 3 or 5 x 5 width and
height. Starting (typically) in the top left corner, the kernel is overlaid with the image and a

dot product taken. Using a sliding window method, the kernel is then moved right by n pixels

2.1 Deep Learning 19

al FTTT
(U
-

[B il
a0 el
-

- -
oo b @ e o b @ e @i v @ e el @i
[P A S} [PR T [PR Ty

Vil
e d el el b L T DL S e - | L E L I -

L Ll L L
v -:l:l IZI:rII-:l:I IZI:r 0

F=1==1"="F= %= Fr=r=%

E
[U N R R L]
Lowdeofeebode ol n b=

T TrTAT T [e Bl el il Rl i i | r- SrFTATTETTC
s ik s 0w D g @il vl

1 L]
o,]
- L
i i
- P e

1]
ll_l I_] I_!

-
rgprosorn
bad ssfas ks

grosmrnpe
sde ste s ks

Fig. 2.2 Visual aid for understanding convolutions, from Dumoulin and Visin (2016). The
blue squares represent the image matrix (surrounded with padding), the grey squares represent
the kernel, and the green squares represent the feature map.

(called the stride) and the dot product taken again. Depending on the image-to-kernel width
ratio and the stride, the kernel may overhang the image when it reaches the edge. Rather than
not take a dot product here, the image can be padded i.e. the border of the image surrounded
with additional values. The three common padding type are fixed (filling the outer padded
region with a fixed value, usually zero), reflection (reflecting the input image pixels about the
border), and replication (copying the nearest border pixel). Each dot product is stored in the
corresponding cell of the output matrix called the activation map or feature map. In the case
where depth is greater than one, as with RGB images, the kernel will have the same number
of dimensions and the channels are summed element-wise along with the bias. Figure 2.2
provides a visual aid.

The kernel size K, stride S and padding P determine the size of the feature map according
to the formula [(I — F +2x P)/S] + 1, where I is the size of the input image. Using a small
kernel not only reduces computation (the sparse weights advantage), but encourages a form
of dimensionality reduction. Thinking about this in quite a literal sense, a raw image might

20 Background

be thousands of pixels tall and wide, but the number of pixels containing edges will only be a
small subset. Interestingly, the convolutional layers of a CNN act in much the same way as
the visual pathways of the brain, representing raw data with increasing levels of complexity,
from edges to shapes to objects. In addition, different kernels can be applied over the same
input, producing multiple feature maps and allowing the model to distil different features
at the same level, for example, image brightness as well as edges. As before with MLPs,

features like these are learnt and not specified.

Other than convolutional layers, CNNs also utilise pooling layers to down sample the data,
reducing sensitivity to the position of features. Pooling layers apply the same sliding window
approach as convolutional layers, except rather than learn the operation (i.e. the coefficients
of the weighted sum) the operation is specified. For example, taking the maximum of all
values in the window (max pooling) or the mean (average pooling). As features become
more and more abstract, spatial dependencies dissolve and the feature map can be flattened
and passed through a fully-connected layer. In a classification task, for example, the final
layer will be a fully-connected layer with the same number of neurons as classes. Use of the
Softmax activation function produces values in the range [0, 1] which sum to one, allowing

the model to output the probability of the input belonging to the class for each class.

There are additional implementation details and additional concepts such as equivariant
representations that are beyond the scope of this chapter. The material covered here provides
enough background on deep learning to provide a foundation for the deep reinforcement
learning algorithms and deep generative models presented as solutions. The reader is pointed
to the Stanford University lecture collection ‘Convolutional Neural Networks for Visual
Recognition’ (2017) for a comprehensive and detailed explanation of backpropagation,
objective functions, optimisation, CNNs, and lots of additional content such as regularisation
methods, gradient descent algorithms other than vanilla SGD, and another family of networks

called the recurrent neural network.

2.2 Feature Learning

Convolutional neural networks appear wherever there is image data involved, providing
the underlying architecture for many models, across a wide range of tasks. As discussed,
convolutional layers and pooling layers can be used to learn a compressed representation
of the data. In the classification example presented above, the utility of the compressed

representation (features) is reflected in the prediction error. If the features do not capture

2.2 Feature Learning 21

28x28x1

Tdxl4x32 Tdxl4x32

1152 1152
4
TuTub4 \ TuTub4

_’@ Ix3xi28 10 3n3ni28
Conv3

stride=2 h

DeConv3
stride=2

Conv2 I
stride=2 L g
Flatten FC

Conv1 DeConv2
stride=2 stride=2

DeConv1
stride=2

Fig. 2.3 An example convolutional autoencoder architecture, from Guo et al. (2017).

meaningful attributes of the input data then the model will not be able to perform the task
and the discrepancy between output and ground truth will be large. Learnt features can also
be evaluated in an unsupervised manner, in the absence of any prediction task or labels. If
the task for the model is to simply decompress the compressed representation and recover
the input data, then the model is incentivised to work toward a compression which is as close
to lossless as possible. This method of DNN-based representation learning, with no other

objective but to learn good features, can be achieved with a model called an autoencoder.

2.2.1 Autoencoders

An autoencoder is a special use case of a feed-forward network whereby the dimensionality
of the output matches the input, but the input has to pass through a ‘bottle neck’ of hidden
layers which reduce the dimensionality of the data down to a low-dimensional vector of
features called the latent vector. In the case of image data, the feed-forward network is a
CNN. Convolutional layers, like the ones discussed in 2.1.4, down sample the data, whilst
transposed convolutional layers (sometimes wrongly referred to as deconvolutional layers)
up sample the data in an attempt to recover the input. Often autoencoders are discussed as if
they were two models — the down sampling layers between the input and the latent vector
being the ‘encoder’ and the up sampling layers between the latent vector and the output being
the ‘decoder’. Together they can be depicted with an hourglass shaped architecture, like the
one shown in Figure 2.3. Note that if the encoder and decoder had only one layer and the
non-linear activation functions were removed, the autoencoder would fulfil the same role as
principal component analysis (PCA), although without the orthogonality constraints.

Given that the task is to reconstruct the input, the optimisation problem can be formulated

as if it were a supervised learning problem, using the reconstruction as the prediction X and

22 Background

the input data x as its own ground truth label. For this reason, a more accurate description
of the optimisation process would be self-supervised. The reconstruction error .Z(x, %) can
then be something like MSE using the pixel-wise differences, and the algorithm can utilise
SGD to find the minimum. Once trained, the decoder can be discarded and the trained
encoder maintained for use as a feature extractor. Trained encoders are often useful in
the preprocessing stage of a wider framework, taking raw data as input and outputting a

low-dimensional latent vector to serve as input to another model.

2.2.2 Variational Autoencoder

In a revised form called a variational autoencoder (VAE), autoencoders have also made a big
contribution to the generative models family of DNNs. After training, rather than discard
the decoder and utilise the encoder, the reverse can be done, discarding the encoder and
utilising the decoder for content generation, much like the generator model in a generative
adversarial network (GAN). The idea is that, if we simply sample a latent vector from the
latent space rather than map an input image to the latent space, then the decoder will produce
an image that belongs to the same space as the input data but is ‘new’ as opposed to a
reconstruction. In practice, decoding a randomly sampled latent vector will likely produce a
meaningless output unless the latent space is well organised. Not only should all points in
the latent space produce meaningful decodings (completeness), the learnt space should also
have continuity, i.e. two points close together should produce similar content once decoded.
Since the organisation of the latent space depends on both the distribution of the data in the
original space, the dimensionality of the latent space (hyperparameter), and the architecture
of the encoder, it is easier to control the adoption of good latent space properties with explicit

regularisation.

In a vanilla autoencoder, the encoder outputs a vector of n feature values. In a VAE, the 1 x n
encoder output is doubled to 1 x 2n, with the first n values representing means y and the
second n values representing standard deviations ¢ of n univariate normal distributions (or
together, the covariance matrix of one multivariate normal distribution). The feature value
for each dimension of the latent space is then sampled from the corresponding univariate
distribution for that dimension. As such, if x is our image sample, y is our encoder output

and z is our latent vector, then

2.2 Feature Learning 23

(Z17~~~7Zn) ~ ('LL’Z)
where L= (y1,...,Yn), COV[ZHZJ] 0

and Cov|zi,zi| = 67 =y?., for i,jin 1,...n

The change from feature values to feature distributions allows for a second term in the VAE
objective function, producing

L(x, %) = HX—)?HZ—I—BKL[N(‘LLX,ZX),N(O,I)]

where x is the input image, £ is the image reconstruction, KL is short for Kullback-Leibler
divergence, and f is a hyperparameter which determines the weighting applied to the second
objective. Specifically, the added regularisation term is the Kullback-Leibler (KL) divergence
between the multivariate Gaussian described by the encoder output and a standard multivari-
ate Gaussian with mean zero and covariance matrix / (identity matrix). The KL divergence
between two probability distributions can be thought of as a distance metric, and so the
model is incentivised to make the encoded distributions ‘close to’ a standard multivariate
Gaussian (i.e. to produce a mean close to zero and a covariance matrix close to 7). Distance
is not entirely the correct term since the metric is not commutative. When comparing two
distributions P(x) and Q(x), KL divergence represents the average predictive power of a
sample from P(x) when trying to distinguish P(x) from Q(x). The higher this value, the more
dissimilar the two functions i.e. the greater the predictive power of an average individual
sample, the stronger evidence it provides that Q(x) is not P(x). This concept of predictive

power is why the KL divergence is sometimes referred to as the relative entropy.

Penalising distance from a common target distribution encourages encodings to overlap,
helping toward completeness and continuity. However, as is the case with regularisation, by
forcibly preventing the encoder from overfitting, reconstruction loss is increased. The two
objectives create a trade-off, and therefore the multiplier B is included as a hyperparameter
to control the weighting of the second term. This fairly intuitive objective function can also
be derived using Bayes theorem and the statistical method of variational inference, hence
the name variational autoencoder. This derivation is well beyond the scope of this chapter
but the interested reader is referred to Kingma and Welling (2019) and other works by these
founding authors for a theoretical deep dive, or to Zhai et al. (2018) for derivations of each

of the variants of the autoencoder across its lineage.

24 Background

2.3 Reinforcement Learning

Reinforcement learning is one of three paradigms in machine learning, sitting somewhere
in the middle of the supervised and unsupervised paradigms. In supervised learning, data
is labelled as input-output pairs, providing a ground truth for any given input sample. Con-
versely, in unsupervised learning the data is unlabelled and the model is left to find patterns
and hidden structure in the data. In reinforcement learning (RL), the learning process could
be described as semi-supervised, with the algorithm receiving partial feedback in the form
of a numeric reward signal. Both positive and negative values can be issued, with a value
further toward positive infinity signalling that a behaviour, or a situation, is considered
‘better’ than if a value further toward negative infinity had been returned. Borrowing from
B.F. Skinner’s operant conditioning methodology in Psychology (Skinner, 1988), the idea
is that the decision or behaviour will be strengthened or suppressed in accordance with this
feedback. Informally, this makes RL somewhat akin to teaching a dog to sit, or to a parent
using a gold star chart to discourage tantrums and encourage chores.

Perhaps attributable to this parallel with animalistic learning, the language of RL is very much
personified, referring to the model or algorithm as an agent, actively exploring and interacting
with an environment. At each time step, the agent observes the state of the environment and
chooses an action based on this observation. The action is then implemented, pushing the
environment into a next state according to a state transition probability matrix unknown to
the agent. The next state is observed by the agent and the cycle continues (see figure 2.4).
The agent’s interaction with the environment at each time step (state, action, next state) is
passed through the reward function and the returned value becomes a sort of label for the
data trace and the basis for any learning. As such, the reward function is an important design
feature and an expression of what is considered good, bad, better or worse. It can be as dense
or as sparse as the designer deems suitable, with anything from an informative value at every
time step to a reward of zero for every state but the the terminal state, for example, if the
agent were to win in a game of chess. In this way, RL provides a framework for training
a machine to perform a sequential decision making task without necessarily knowing, or
wanting to expose, what the ‘correct’ or best decision is at any given moment. Chess is a
perfect example here — not even a chess grand master would know definitively how to label
every single board configuration with the ground truth best move, but most people would be

able to congratulate the winner.

2.3 Reinforcement Learning 25

"‘J Agent Il
state reward action

Sr R! Ar
RHI ("

e E—

S.. | Environment |€———

o

Fig. 2.4 The agent-environment interaction cycle, from Sutton and Barto (2018).

2.3.1 Terminology

The reinforcement learning paradigm introduces a lot of new terms. Before describing any
RL algorithms, or concepts behind the alogirthms, it is worthwhile providing clear definitions

for the most important terms.

State (s) A complete description of the environment at a given time step. If a task has a
terminal state it is considered episodic. If there is no terminal state it is considered continuous.
All RL work in this thesis is in the context of episodic tasks. The full set of possible states in

an environment is called the state space, expressed S. The state at time step ¢ 1s expressed s;.

Observation (0) What information the agent receives on the state of the environment. If

any information is omitted the observation is considered a partial observation.

Note: Many papers and textbooks use s where technically it ought to be 0. Following this
norm, s will be used throughout notation, but we acknowledge that there is a distinction here.

Also note that the next state is expressed interchangeably as s, 1 and s'.

Action (@) The decision selected by the agent. The full set of actions available in the
environment is called the action space, expressed A. There are two types of action space:
continuous (real-valued vectors) and discrete (finite number of options). The full set of
actions available in a particular state is expressed A(s), the action taken at time step 7 is

expressed a;, and the next action is expressed interchangably as a, | or d’.

Reward (r) The numeric token issued by the programmed reward function R, taking state

and action as arguments. The reward function can be thought of as part of the environment,

26 Background

with rewards being issued to the agent following an action (as seen in Figure 2.4). Note
that this immediate reward is expressed interchangeable as r;, given s;_1 and a;_1, or r; 1,
given s; and a,. This is simply a notation choice as the two are logically the same. The r;
notation will be used throughout this thesis.

Policy () A table or function mapping observations to actions i.e. the agent’s rulebook
or strategy. A policy can be deterministic (a direct mapping from observation to action,
sometimes denoted with u instead of) or stochastic (observations map to an action dis-
tribution, in the case of continuous action spaces, or to action probabilities in the case of
discrete). Further details on this and action sampling are reserved for section 2.4 since there

are differences in implementation across algorithms.

Trajectory (7) A sequence of observed states and taken actions, sometimes called environ-

ment rollouts.

Return (R(7)) Total cumulative reward for a trajectory. The return can be described as
having a finite horizon, i.e. T has a finite number of time steps 7', or it can be described as
having an infinite horizon, i.e. 7 is infinitely long. Additionally, return can be undiscounted
(rewards simply summed) or discounted (reward at each time step is first multiplied by a
discount factor y which decays throughout the time series). Discounted return means that
a reward received k time steps in the future is worth *~! times less than an immediate
reward. Using a discount factor not only encapsulates the idea that reward now is preferable
to reward received later (because of the increasing uncertainty around future events), it also
makes infinite horizons mathematically tractable. In the context of episodic tasks, like the
ones discussed in this thesis, return has a finite horizon and discounting is not essential,
however, RL literature and formalism tend to use a unified notation. It is straightforward to
apply infinite-horizon discounted return to both continuous and episodic tasks by making
the terminal state in episodic tasks a special absorbing state which transitions to itself in a

continuous loop but with reward zero.

Note: The term ‘return’ and the term ‘reward-to-go’ are often used interchangeably but they
are not the same. Strictly, return R(7) is the sum of rewards across the entire trajectory,
whereas reward-to-go G; is the sum of rewards from the current time step onward, i.e. from
r.+1 onward. Mostly, we are interested in the latter. In the case where ‘return’ is used to
mean sum of rewards from the current point onward, the assumption is that s; is being treat

as sg of the trajectory.

2.3 Reinforcement Learning 27

Policy-based vs value-based In policy-based RL (often called policy optimisation), the
policy is represented explicitly as 7(als) and is optimised directly. In value-based methods
(often called Q-learning), the policy is represented implicitly in an approximation of the
optimal action value function Q*. Here, actions are selected by maximising over value
estimates. This of course is still policy optimisation albeit indirect and is inherently less

stable for being indirect. It does however allow for learning to take place off-policy.

Off-policy vs on-policy Off-policy means updates can utilise data collected at any point
and with any policy or policy version. This data re-use makes off-policy learning more
sample efficient than on-policy learning. With on-policy learning, incoming data is used and
then thrown away, meaning all updates are based on data collected by the most up-to-date

version of the policy.

2.3.2 Formalism

Formally, the environment in RL is a Markov Decision Process (MDP) described by the
tuple < S,A,R,P,po >, where S is the state space, A is the action space, R is the reward
function, P is the transition probability function and py is the starting state distribution. This
process describing the environment satisfies the Markov property — the future is independent
of the past given the present. What this means is that transitions are conditioned only on
the most recent state and action, since the most recent state encapsulates any history. With
this property in mind, below are some key formulas that will help with understanding when

discussing algorithms in greater detail. In the case of deterministic policies,

ar = p(st)

whereas in the case of stochastic policies,

ar ~ 1(.|s;)

The probability of a trajectory with T time steps is

T

P(t|m) = po(so) I_—([)P(St+l|st;at)ﬂ(at‘st)

28 Background

that is, the probability of the initial state multiplied by the product of probabilities for each
state, action, next state tuple in the trajectory. In turn, this is the probability of taking the

action multiplied by the state transition probability.

Expected return is then

ERD]= [PORE)

(o)

where R(T) = Z Yritit

k=0

Finally, an explanation of the log-derivative trick is given in preparation for later derivations.
Consider X is a function g(x) such as m(a|s) or P(t|r), making logX the composite function
f(g(x)). The chain rule specifies that V f(g(x)) = g’(f(x)) - f(x), and since the derivative of
logx with respect to x is 1/x, f’(g(x)) here becomes 1/X. If we leave g’(x) written as VX,
ViogX = VX /X. By multiplying VlogX by X we are saying that X multiplied by VX /X is

equal to VX, which is true given that we are multiplying and dividing by the same term.
The result is

VX =XVliogX.

2.3.3 Value functions

The next crucial concept in RL is that of assigning value to states and actions. Intuitively,
‘value’ indicates to the agent how good the state or action is, given the agent’s goal. Math-
ematically, the value of a state v*(s), for example, is the expected return for a trajectory
starting in state s and following policy 7 thereafter. In value-based RL, the agent is tasked
with estimating the value of states it has visited, and actions it has taken in visited states, and
can improve upon these estimates with increasing experience. Estimates are ‘held’ in a value
function, e.g. the state value function V (s). Value functions are so integral to RL, it is worth
covering not only the equations but some of their properties and the relationships between

them.

The state value function can be expressed

2.3 Reinforcement Learning 29

V7i(s) = IE[GJSI =]

and the optimal value function holds the value of each state under the optimal policy 7* i.e.
the policy which maximises the RHS

Vi(s) = max VE(s)

An important property of the value function is that it obeys a special self-consistency equation
called the Bellman equation. Put simply, the value function is recursive in nature, where the
value of any state is equal to the reward of being there plus the value of where you land next.
Mathematically, the value of state s; is equal to the immediate reward ;| plus the value of
the next state s, |, where the immediate reward is governed by R(s;,a;) and a, is governed

by 7(a;|s;). Below is a derivation that encapsulates all of this.

V7 (s) =E[Gils; =] 2.1)
=E[re+1+YGrrtls = 5] 22)
= ;ﬂ(ah)z,;p(ﬂrlsaanm YE[Gislsii =] (2.3)
= ;ﬂ(ds}ZP(S’,rls,a)[H WE(s')] (2.4)
S VE(s) = mgzxz p(s'r|s,a)[r+yV*(s')] (2.5)

The first step (2.2) is to pull the ;41 term out from G;, which is the sum of all reward
values from 7+ 1 onward. The next step (2.3) is to rewrite the expectation of r;y| as
Y ,.crrp(rls), a weighted average of its possible numeric outcomes, where the weights are
the probabilities of the outcome occurring. However, the p(r|s) distribution is a marginal
distribution that also contains the variables a and s', where p(r|s) = YycsYuca P(s',a,r|s) =
YoesYucap(als)p(s',r|s). Note that in 2.3 (in line withSutton and Barto (2018)) the set
notation has been dropped from the sum subscript for readability and p(als) is written as
7(als). In the next step (2.4), since the value of s is equal to the expectation of G; (2.1), the
expectation of G;;| can be replaced with the value of s'. Finally, if V* holds the value of

each state under the optimal policy, then it is not necessary to consider the full set of a € A

30 Background

when expanding the expectation of 7,1, since the optimal policy will always select the action
with the highest value.

Very similar to the value function is the action value function or state-action value function,
denoted Q. The subtle difference is that Q(s,a) takes a state-action pair and gives the
expected return for a trajectory starting in state s, taking action a (which may or may not

have came from the policy) and then following policy 7 thereafter.

The action value function can be expressed

Q" (s,a) = IE,[GAS, =s,a; = d

and the optimal action value function is

0" (5,a) = max 0" (s,a)

Similarly, the derivation for the Bellman equation and Bellman optimality equation is

Q”(s,a) = E[G;|s; = s,a; = a]

B

=E[ri41+ YGit1l|s: = 5,0 = d

T

- ZZ s’ rls,a)[r+ YIE[Gt+1|St+1 =)]

:Z s’ rls,a)[r+yV7(s")]

.'.Q* =Y p(s',rls, a)[r+}/maxQ (s',d")]

s'r

The steps here are the same as the derivation of V except a is known and so there is no sum

over a € A. There are relationships between V and Q which are useful to note, e.g.

2.3 Reinforcement Learning 31

VE(s) = E [0%(s.a)
V*(s) = max Q*(s,a)

Q*(s,a) = E[ri+1+ YV (s141) |5t = 5,0, = d (2.6)

Finally, there is a combination of V and Q referred to as the advantage function and denoted
A. Intuitively, the advantage function gives a sense of how much better an action is compared
to the other choices for a given situation on average. It is therefore the relative value of a

state-action pair as opposed to absolute value. Mathematically, it is expressed as

A"(s,a) = Q" (s,a) —V*(s) (2.7)

2.3.4 Monte Carlo and Temporal Difference learning

Bootstrapping is the method of updating an estimate using a previous estimate, and it is very
widely used in RL and DRL algorithms. Therefore, to provide some reassurance on the
validity of this method, the concept is explained here, but in the context of shallow, tabular RL
for greater clarity. Specifically, this section provides a brief introduction to the Monte Carlo
method and the Temporal Difference learning method TD(0). The difference between these
two families stems from how the algorithm computes the expectation of reward-to-go on
which value estimates are based. Importantly, the two are opposite ends of a scale describing
the degree to which they bootstrap. As mentioned, the assumption here is that all tasks being
learnt are episodic i.e. at some point the agent fails or succeeds in some way, wins or loses

the game, violates a condition, or the session times out.

A fairly obvious way of computing an expectation is to use the mean. If the agent interacts
with the environment until the end of an episode, makes a record of the reward-to-go for
each state (or state-action pair), and repeats N times, the mean of these samples will tend
toward true V (or true Q) as N tends toward infinity. Of course, it is possible to calculate
this mean incrementally rather than wait until N episodes have been played out. To do so,
the current mean (and therefore most up-to-date estimate of V or Q) is subtracted from the
new sample of G;. The result is divided by N and then appended to (i.e. summed with) the
current estimate. The multiplication by 1/N updates the currently held mean to the new

mean, having added the new sample to the population. It is also possible to replace 1 /N with

32 Background

a step size multiplier — a value less than one often denoted by & and interchangeably referred
to as the learning rate. What the step size multiplier does is to move the current estimate
some way toward the new mean. Following this logic, the update rule for an estimate such as
V7(s) is

V(s) < V*(s¢) + at[Gr — V™ (s1)]

The update rule for an estimate of Q would look the same, substituting V*(s;) for Q" (s, ar).
In fact, whilst the terms may change, this structure of updating an estimate a little bit in the
direction of the error will crop up time and time again. Updating an estimate incrementally
like this facilitates a framework for learning called general policy iteration (GPI) — an iterative
two-stage process that alternates between evaluation (using data to refine value estimates)
and policy improvement (using information on state and state-action pair values to adjust the
policy). “Each creates a moving target for the other, but together they cause both policy and
value function to approach optimality” Sutton and Barto (2018).

Albeit incremental, estimate updates in Monte Carlo learning are reserved until the end of
an episode. TD(0) takes the incremental approach to the extreme, updating the estimate for
V or Q after each time step as opposed to each episode. Rather than updating the estimate
with experienced reward-to-go (G;), TD(0) updates the estimate for V or Q with an estimate
of the reward-to-go. An estimate of reward-to-go is exactly what V and Q provide, and this
is where the bootstrapping comes in — updating an estimate with a previous estimate. The
update rule is as follows

V(s) < V7 (se) +afre + YV (s01) — V7 (s1)] (2.8)

The format is the same as before except G; is replaced with r; + YV ™ (s, 1), what is called
the TD target. Again, any terms involving some form of V (s) can be replaced with Q(s,a)
to get the update rule for Q. Note the connection to the Bellman equation. An expansion
of Gy is 141+ Yriy2 + ¥*ris3+ ..., and since V and Q are recursive, everything following
r;+1 can be substituted with the value of the next state or state-action pair. That is, G; and
Fe+1+ YV™(s141) are in fact equivelant when V is true V. The difference, of course, is that V
in the above update rule is only an estimate of V and yet, over time, the highly bootstrapped
estimate is still able to converge, since the TD target is one step of experience more informed

than the previous estimate. There is a trade-off here between bias and variance. G; is an

2.4 Deep RL Algorithms 33

unbiased estimate of value whereas the TD target is biased. However, TD is lower variance
because G; is based on the actual trajectory of the agent, which includes noise all the way
through, whereas the TD target only incurs noise over one step. The lower variance means
TD is more efficient, however the bootstrapping means TD is more sensitive to initial values

and, in the case of function approximators, is not guaranteed to converge.

These update rules are just a starting point for shallow RL. The method of TD(0) which
involves one step of experience prior to update expands to n-steps, filling the gap between
TD(0) and the Monte Carlo method. Should the reader be interested, there are additional
methods such as TD(A), additional concepts such as eligibility traces and importance sam-
pling, and named algorithms such as SARSA and Q-learning. Given that the work presented
in this thesis uses deep reinforcement learning, details are reserved for the next section on
DRL algorithms.

The transition from RL to DRL revolves around using function approximation in place of
lookup tables for the policy and value function(s). Specifically, it involves using parame-
terised DNNs, denoting the network parameters (connecting weights) typically with 6 or
¢. As such, V*(s) becomes V(s) or V™ (s) or, with a slight abuse of notation, the 7 is
dropped to give Vy(s). Using functions in place of tables becomes important for complex
tasks where the state space is too large to hold in memory. Functions also carry the benefit of

interpolation, providing values for unvisited states.

The material covered in this section summarises the seminal textbook Reinforcement Learn-
ing: An Introduction by Sutton and Barto (2018). Learning about this material was also
greatly aided by the video lecture series ‘RL Course by David Silver’ (2015), available
on YouTube. Silver is a professor at City University London and principal researcher at
DeepMind, leading the AlphaGo, AlphaZero and AlphaStar projects famously known for
being the first programs to beat the world champions of Go, Chess, and StarCraft.

2.4 Deep RL Algorithms

In tabular RL, value functions are lookup tables and estimates are updated directly. In DRL,
value functions are neural networks and estimates are updated indirectly by updating network
parameters. Figure 2.5 provides a taxonomy illustration for some of the most seminal DRL
algorithms. At a high level, DRL algorithms can be categorised as either model-based or

model-free. If an agent has access to a model of its environment and is therefore privy to state

34 Background

transitions and reward allocation, decision making can be based on forward planning. Rather
than take a particular action and observe the consequences, the agent can consult the model
and consider what would happen for a range of possible choices. This process of simulating
environment rollouts is referred to as introspection and is clearly more sample efficient (fewer
environment interactions required) than the trial and error approach of model-free methods.
However, ground truth models of the environment are very rarely available and building
a model of the environment requires experience, circling back to the necessity to collect
samples. Model-free methods circumvent the need to learn a model of the environment and
instead focus directly on learning what behaviour maximises return. They are also easier to
implement and tune and have received the most attention in the field. Given this, model-free
DRL was selected for the work in this thesis, and will be the focus of all algorithm discussions

from hereafter.

Learning what behaviour maximises return, that is, closing the gap between an agent’s
current policy and the optimal policy for a given environment, can largely be achieved in
one of two ways. In policy optimisation methods, the policy is represented explicitly as the
function 7g (als) and is updated toward the optimal policy by gradient ascent on a measure
of policy performance J(7g). In Q-learning methods, the policy is represented implicitly in
an approximation of the optimal action value function Q*, written Qg (s,a). Here, actions
are selected by maximising over value estimates and estimates are improved by gradient
descent on a measure of error between ‘true’ Q* and the approximation. Although Q-learning
and policy optimisation form two categories of algorithm, they are not all that distinct, with
significant crossover in implementation (for example, using an approximator of Q within
J(mg)). Hybrid algorithms have also emerged in order to best exploit the various trade-offs.
One example of this is Soft Actor Critic, the algorithm selected in this thesis for reasons to
be discussed in the dedicated Soft Actor Critic (SAC) section below.

Before detailing SAC, a handful of earlier algorithms are discussed. This is done in order
to build up to a more accessible explanation of SAC, as well as providing a more detailed
compare and contrast. Vanilla Policy Gradient and Deep Q-Network are presented as the most
prominent examples of policy optimisation and Q-learning respectively. Deep Deterministic
Policy Gradient (DDPGQ) is then presented as the first algorithm to appear in the hybrid space.
Finally, Twin Delayed Deep Deterministic Policy Gradient (TD3) and SAC are discussed as
two alternative improvements on DDPG.

2.4 Deep RL Algorithms 35

RL Algorithms
Model-Free RL Model-Based RL

Policy Optimization Q-Learning Learn the Model Given the Model
‘ Policy Gradient <«— s ~ —ﬁ DQN ‘ —P{ ‘World Models L) AlphaZero
- 7 > DDPG <« - g - 7 -
‘ A2C/A3C 1(— - \ —ﬁ C51 ‘ —P{ 12A ‘
5 / —> TD3 «— - . /
f ~ §) f ~ - ~
‘ PPO ‘<— - —ﬁ QR-DQN ‘ —% MBMF ‘
L J 5 SAC < L) L y

—_—— L) p —_——
‘ TRPO ‘(— 4>{ HER *>{ MBVE

Fig. 2.5 Taxonomy of seminal DRL algorithms, from ‘Spinning Up in Deep RL’ (2018).

2.4.1 Deep Q-Network (DQN)

Q-learning methods like Deep Q-Networks (DQN) approximate the optimal action value
function Q*, that is, the maximum return one could expect from the given state-action pairing
across all policy options (or the state-action value when acting according to the optimal policy
r*). If ground truth values were available, then learning the parameterised approximation
Qg could be approached with a least squares algorithm, minimising the mean squared error
between the approximation and ground truth. Since RL is not supervised and ground truth Q
values are not available, DQN replaces true Q* with a ‘target’ (y; in equation 2.9) i.e. esti-
mate of the ground truth. This approach to the least squares algorithm mirrors the approach
introduced in Section 2.3.4 on Monte Carlo and Temporal Difference learning. As before,
the value estimate can take many forms, including G; or a bootstrapped TD target. The TD
target introduced in equation 2.8 was with respect to estimating V. Since DQN estimates
Q*, the TD target is r + ymax,Qg(s’,a’), matching the Bellman optimality equation for Q
(equation 2.6).

In order to find the minimum of this objective .Z;(6;), the gradient is taken, as shown in
equation 2.10. Had the y; term been the oracle Q* or the target G;, then it would be clear why
the gradient of this term is not taken, since it does not depend on the parameters 6. Although
the target r + ymax,Qg(s’,a’) does depend on 0, in practice the gradient of this term is still
not taken, so as not to reverse the flow of time (the mathematics becomes problematic when
trying to update an estimate of what is going to happen toward what has already happened).
The expectation is removed by sampling the gradient at each time step and descending the

36 Background

gradient a small amount each time 1.e. SGD. As shown in the update rule (equation 2.11),
at each time step the parameters are adjusted by an amount proportional to the learning
rate @, in the direction of negative gradient. In principle this method should converge on
or be close to the global minimum, meaning that the approximator Qg has been fit to the
true optimal action value function Q*. The policy is then implicit in Q, i.e. it is the greedy

strategy a = maxQg(s,a).
a

Zi@)= E [(ni—0g(s.0))’] (2.9)

s,a,r,s'~U (D)
Vo, Zi(6;) = EU(D)[(r+ }/macllx Q5(s',d") — Qg.(5,a)V,0¢,(s,a)] (2.10)
0ir1 =0+ 0V Zi(6) (2.11)

The implementation of DQN presented in 2013 by Mnih et al. (and presented again in Nature
in 2015 by Mnih et al.) includes two design choices that have a stabilising effect on learning:

1. Experience replay — The agent’s experience at each time step (s;,ay, 1y, 5,41) is stored
in a dataset D called the replay memory. When applying the update rule, a minibatch of
these traces is sampled at random from D (hence the s,a,r,s" ~ U(D) in equation 2.9
and equation 2.10, where U stands for uniform). This has a stabilising effect because
randomising the samples used in an update decorrelates the data, reducing the variance

of the update.

2. Target network — Updating Qg toward values generated with the same iteratively
updated Qg creates somewhat of a moving target situation. To reduce correlations
between the approximator and the target, a separate Q-network is used for the genera-
tion of the target value (target network), the parameters of which, 6, are only updated
periodically, by cloning the iteratively updated Q-network every C steps. Freezing
the parameters of the target network for a chosen number of steps helps with stability,

making divergence and oscillations less likely.

Using experience replay makes DQN an off-policy algorithm because the update uses data
from D which may have been collected some time ago according to different parameter
values. Off-policy learning works in this setting because Q* should satisfy the Bellman
equation for any possible transition and so the circumstances under which the transition
was sampled are not important when trying to approximate Q* with mean-squared Bellman
error (MSBE) minimisation. Off-policy learning has the benefit of being more data efficient,

since transitions can be used for updates again and again. An additional benefit is that, with

2.4 Deep RL Algorithms 37

on-policy learning, the policy is always updated according to data collected by the most
current version of the policy, introducing the possibility of a downward spiral (a bad policy
leading to poor data, leading to an even worse policy). Learning can oscillate, blow up
(diverge instead of converge) or get stuck in a poor local minimum. The uniform sampling
used in experience replay can help mitigate this. Collecting data off-policy also provides
an opportunity to bake in a degree of exploration to the data collecting policy (behavioural
policy) whilst keeping the target policy (the policy being optimised for use at inference
time) fully exploitative. Both policies can be implicit in the same Q-function. At inference
time the policy is said to be greedy, with actions always selected using a max operator over
state-action values. At training time the policy is said to be €-greedy, with actions selected in
that same greedy manner with probability 1 — €, but otherwise selected at random. Selecting
actions at random a proportion of the time helps to expand knowledge and map uncharted
territory, potentially leading to the discovery of higher value action selections than the current
best strategy.

DQN is the only example from the Q-learning section of the taxonomy discussed in detail.
The next algorithms presented fall under the policy optimisation branch, starting with the
vanilla form and adding various extensions throughout the algorithms that follow. In DQN,
the selection of a using the max operator is computationally expensive, making it undesirable
for use with large or continuous action spaces, as well as limiting the algorithm to the
generation of deterministic policies. Policy optimisation algorithms, on the other hand, are
capable of learning stochastic policies given that they directly model the policy with action
probabilities. Also, with DQN, a small change in the value estimate can affect whether or not
the action is selected and this discontinuity can be an obstacle to convergence. With policy
optimisation, changes to the policy are much smoother, with only small changes to the policy
parameters and additional constructs such as trust regions. This being said, value-based
methods like DQN, in the right setting, are very efficient, with the max operator being a very

aggressive way of pushing the policy toward an optimal policy.

2.4.2 Vanilla Policy Gradient (VPG)

Policy optimisation methods like Vanilla Policy Gradient (VPG) parameterise the policy
function so that it can be updated directly as opposed to being updated as an outcome of
updating a value function approximator. Whereas with value function approximators the
objective function was a loss function to be minimised, with policy optimisation the ob-
jective function is a measure of performance and therefore something to maximise. This

performance-measuring objective function J(7g) is simply the expected return R(7), experi-

38 Background

enced as a result of following the policy. The gradient, V¢J(my), is referred to as the policy
gradient, hence the term policy gradient methods.

The derivation for the policy gradient is a useful derivation to walk through given that it forms
the basis of so many algorithms. If we consider a sampled trajectory 7 as a random variable X
with a continuous distribution and a probability density function P(7|6), then the expectation
of R(7) can be expanded by integrating g(x) (the reward function R) multiplied by f(x)
(the probability density function P) for all values of X. The gradient of our performance
objective J(7g) is therefore equivalent to the gradient of E[R(7)] and therefore equivalent
to the gradient of [P(7|0)R(7). The gradient can be brought under the integral since

integration is with respect to 7 and the gradient is with respect to 6.

VoJ(mg) =Vg E [R(‘L')]

= Vo [P(T/O)R(7)
_ /f VoP(7|6)R(7)

Using the log-derivative trick described in Section 2.3.2, the gradient of the trajectory proba-
bility multiplied by the return can be transformed into the trajectory probability multiplied
by the gradient of the log of the trajectory probability, multiplied by the return. The integral
and the trajectory probability multiplier can then be taken back out, returning the expression
to expectation form.

VoJ(mg) =V E [R(7)]

—V, /T P(z|6)R(1)
_ /T VoP(1|0)R(7)
_ /T P(7|0)VelogP(t|0)R(1)

= E [VologP(t|0)R(7)]
T~Tlg
If we sum over timesteps, P(7|0) can be substituted for g (a;|s;), the joint probability of
choosing action a given state s and parameters 0. This is because, if we refer back to the
definition for P(|m) in the formalism section (Section 2.3.2), 7(a,|s;) is the only term which

2.4 Deep RL Algorithms 39

depends on 0, and the product can be replaced with a sum given that the log is taken. Finally,
the expectation can be estimated with a sample mean, by summing over trajectories in a set

of trajectories D and dividing by |D|.

VoJ(m9) =Ve E [R(7)]

=Vo [PGEIOIR(7)
- /T VoP(|6)R(1)

:/TP(T|0)V910gP(T|9)R(T)
)

— [[VelogP(t|0)R()]

T~Tlg
T
Ve](ﬂ'@) = E [Z Vglogn'g(a,|st)R(T)] (2.12)
T~Tlg =0
T
-.8=1/ID|'Y. Y Voglogme(a|s:)R() (2.13)
teDt=0

The result is an expression that can be numerically computed from a finite number of environ-
ment interactions. The logmg (als) term seen in equation 2.12 and equation 2.13 is sometimes
referred to as the ‘log-prob’, with the gradient of this term referred to as the ‘grad-log-prob’
or the ‘score function’. The grad-log-prob was introduced in Section 2.1.1, when discussing
the objective function in the context of density estimation. To recap, the score function de-
scribes the direction in which to change parameters in order to find the maximum likelihood
estimator, that is, the parameterised model Py(X) that most resembles the true probability
distribution P(X) and so maximises the likelihood of data X being generated. As a concave
function, the parameter values that give the maximum likelihood estimator are the 6 values
associated with the apex of this function, where the gradient is zero, meaning there is no way

to make data X more likely.

In supervised learning, data X is a fixed data distribution providing a static target for optimi-
sation, but in reinforcement learning there is no fixed dataset. In policy optimisation, Py (X)
is the policy approximation, P(X) is the optimal policy, and data X is the conditional distri-
bution of optimal actions generated by following the optimal policy. Not only is X unknown,
but the data being generated by the approximator 7y is dependent on the parameters being
optimised, making it quite unlike a score function in the traditional sense. Even so, when
evaluated at the current parameters, with data generated by the current parameters

40 Background

(hence the need for on-policy learning), Vglogmy(als) can instruct which direction to update
the parameters to increase the likelihood of that same data being observed again i.e. that
same action being selected again. Put simply, it tells us how to get more of something. By
taking a step in the direction of this gradient multiplied by the return, the probability of
actions resulting in positive return is increased whilst the probability of actions resulting in

negative return is decreased, relative to the return magnitude.

This is intuitively pleasing although by using the multiplier R(7) (the sum of rewards obtained
across the full trajectory thus far), actions a; are being evaluated based on rewards obtained
prior to time . What would make more sense is to evaluate the decision based on rewards
obtained after the decision is taken, i.e. the reward-to-go G;. VPG, using G; as the multiplier,
is better known as the ‘REINFORCE’ algorithm, proposed by Williams in 1992. In practice
this algorithm is rarely used because, as with all Monte-Carlo methods, it is low bias but
high variance. Policy evaluation based on rewards actually obtained avoids any bias given
that no estimation is involved, but since rewards obtained in one trajectory could vary wildly
from the next, it introduces a lot of noise into the policy gradient estimate that scales with
trajectory length, slowing convergence.

The variance can be reduced by subtracting some form of ‘baseline’ value. A common
choice for b is the state value function, or, since the true state value function is unknown, an
approximation Vj (s;). Mathematically this is valid because any function b that only depends
on state s can be added or subtracted from the expression for the policy gradient without
changing it in expectation, since Eq,~z,[Vologmg (a;|s;)b(s;)] = 0. Subtracting Vi (s,) from
G; alleviates some of the noise in G; by reducing it to a measure of return relative to the
return expressed by V, which is an average measure of return. Clearly, this relative value will
fluctuate less than an absolute value of return and therefore variance is reduced, making it a

more conservative and stable approach.

As has already been seen, another way to reduce variance is to replace G; with a lower
variance estimate of return, perhaps Q(s,a). If both approaches are used, i.e. the baseline
V(s) is subtracted from the return estimate Q(s,a), then the score function becomes an
estimate of the advantage A, described in equation 2.7. Updating the policy in favour of
decisions that panned out better than expected, away from decisions that panned out worse
than expected, and remaining neutral to decisions that cultivated an expected level of return is,
again, intuitively pleasing. In a method called general advantage estimation (GAE) proposed
by Schulman et al. (2015), G; is replaced with the TD target r,; 1 + YV (s;+1), before subtract-

2.4 Deep RL Algorithms 41

ing the baseline V (s;). This version of advantage estimation reduces the number of required
networks from three to two, requiring an approximation of V but not Q. Any algorithm that
combines policy gradient estimation with value function approximation (whether it be V, Q
or both) belongs to a family of algorithms called ‘actor-critic’ algorithms, discussed as early
as 1999 by Sutton et al.. The policy network is referred to as the ‘actor’, updating the policy
parameters 0 in the direction stipulated by the ‘critic’ (some value function approximation),

parameterised by ¢ and updated concurrently.

To conclude, the update rule for VPG is

Orr1 = Qk—i—(XVgJ(ﬂ'gk) (2.14)

T
whereVgJ(7g) = E [Z Velogme (ar|s:)A™ (s;,ay)]
™o 1=0
with the term A” (s,,a,) representing just one example of the score function which is, in

practice, implemented in lots of different ways.

2.4.3 Deep Deterministic Policy Gradient (DDPG)

Policy optimisation algorithms like VPG are sample inefficient since they can only learn
from fresh samples collected with the current policy; there is no data re-use. Returning to the
idea of off-policy learning where data re-use is possible, recall how in DQN the policy is
implicit in Q by selecting the action with the greatest state-action value, i.e. argmax, Q(s,a).
Therefore, by learning Q*, we get a* for free. This approach is fine for small discrete action
spaces, but when working with large or continuous action spaces the max operator becomes

problematic.

DDPG, (Lillicrap et al., 2016) was the first algorithm to appear in the hybrid section of the
taxonomy graph, combining DQN with the policy gradient algorithm to produce a version
of DQN that avoids the max operator and therefore is suitable for the large and continuous
action spaces which so frequently come up in research areas such as robotics. Like policy
gradient methods, DDPG uses a neural network to explicitly model the policy. However,
rather than learn stochastic policy 7(.|s), DDPG learns the deterministic policy a = u(s).
Just as the objective in VPG and variants was to learn ¥, the objective is to learn optimal
policy u*. Since the policy is deterministic, in the case where u is in fact optimal, then
the action selected by u ought to be the action with the highest value. As such, DDPG

42 Background

circumvents the expensive max operator by approximating it with max,Q(s,a) =~ Q(s, u(s)),
transforming the MSBE function from DQN

ZL(9)= E [(Q(s,a) = (r+ymax Qy(s',a")))*]
s,a,r,s'~U(D) a
into
LO)= B [(Opls) =+ 10 hols)] @15

In both cases, the target is telling us the same thing — it is an estimate of the return we
expect to see following this state-action pairing by looking at the immediate reward plus the
best possible return we can expect given the next state. The difference is that, before, we
were arriving at the best possible return by looking at the values attached to next state s’ for
every action in the action space and selecting the one with the maximum value. However,
because we are concurrently learning an explicit policy that is deterministic and (hopefully)
converging on the optimal policy, then we need only look at the value attached to the action
that this policy selects for. That is, tg(s) ought to give the action that maximises Qg (s, a),
and so using it as input to the Q-function is approximately equivalent to using the max

operator on the Q-function outputs.

In 2014, the team at DeepMind demonstrated that not only was it possible to learn g (s)
with the policy gradient algorithm, but that estimating the gradient of a deterministic policy
is in fact more efficient than estimating the gradient of a stochastic policy (Silver et al., 2014).
Recall that, with policy gradient methods, the objective function J(7y) is a measure of perfor-
mance and can be expressed as the expected return from a trajectory experienced following
the policy under evaluation. This expectation E;~z, [R(7)] was expanded to [, P(T|0)R(T).
Recall also the discussion on how it made more sense to use the expected return from the
present onward (G;) and that this could be estimated with Q” (s, a), therefore [, P(7|0)R(7)
becomes [p™(s) [, m(als)Q™(s,a). When the policy is not the stochastic policy 7 but the
deterministic policy u, the probability of the action a can be dropped and J(g) becomes
JsP* (s)OH (s, 1o (s)). Therefore, the policy gradient in the deterministic setting is equivalent
to the expected gradient of the state-action value function. Estimating the gradient in this

setting only involves integrating over the state space and not the state and action space, hence

2.4 Deep RL Algorithms 43

the improved efficiency.

The chain rule Vf(g(x)) = ¢'(f(x)) - f'(x) means that the gradient of QH (s, Lg(s)) with
respect to 6 becomes the gradient of the Q-function with respect to @ multiplied by the
gradient of the policy with respect to 0. This limits DDPG to use with continuous action
spaces, so that Q(s,a) can be presumed to be differentiable with respect to a. The resulting

policy gradient (2.17) and update rule (2.16) is

Okt = 9k—|—OCV9J(,I.L9k) (2.16)
where Vo (16) = [pH(s)Va@" (5. o (s)) Vakta(s) ds
= S’E“ [VaQ# (Saa)Velie (S)|a:u9(s)] (2.17)

As with the move from Q-Learning to DQN, the 2016 deep implementation of Silver et al.’s
deterministic policy gradient algorithm applies the same stabilising methods as DQN, i.e. a
replay buffer to decorrelate the data and a second network Qg (s, it(s")) (target network) to
address the moving target problem. As in DQN, the parameters of the target Q-network ‘lag
behind’ the parameters of the primary Q-network. In DQN this was approached in quite a
literal way by only updating the target Q-network periodically. In DDPG, the parameters
of the target Q-network are updated each time the main network is updated, but with a
soft update of the form ¢ <— p@ + (1 — p)¢, where p is a hyperparameter between 0 and 1
(usually close to 1). This method is called polyak averaging and causes the target Q-network
to change more slowly despite being updated at the same rate. The policy used in the target
value calculation is also an additional network, referred to as the target policy (notation
Ug(s))) and updated in the same way with polyak averaging. Finally, DDPG introduces batch
normalisation to address the problem of finding hyperparameter values that generalise to
features with different physical units (and potentially different environments). Across the
samples in a minibatch, each dimension is normalised to have unit mean and variance, and a

running average of the mean and variance is taken to use for normalisation at test time.

As with DQN, the algorithm is off-policy, meaning that exploration can be encouraged in the
behavioural policy. This is of increased importance when the policy is deterministic because
the variety of experience is reduced. In DDPG, rather than the behavioural policy including
random action selections a proportion of the time, the behavioural policy includes noise (a

time correlated noise process called Ornstein-Uhlenbeck noise (Uhlenbeck and Ornstein,

44 Background

1930)) at every time step. In essence, this is just making the deterministic policy more
stochastic. In fact, even before the injection of noise, a deterministic policy is just a special
case of the stochastic policy, where the probability distribution contains only one non-zero
value over one action. As discussed in the DQN section, off-policy learning is appropriate
for MSBE minimisation given Q* should satisfy the Bellman equation for any transition. As
discussed in the VPG section, policy gradient methods ordinarily require on-policy learning.
It is possible to estimate the policy gradient with off-policy data if an importance sampling
ratio is used (weighting the update with the probability ratio between the target policy and
behavioural policy), however because the deterministic policy gradient removes the integral

over actions, taking into account differences in action probabilities is not necessary.

Like any Q-learning algorithm, DDPG can suffer from overestimated Q-values propagating
through the training iterations, causing policy collapse. The next algorithm is a variant of
DDPG with alterations to mitigate these difficulties.

2.4.4 Twin Delayed Deep Deterministic Policy Gradient (TD3)

TD3 (Fujimoto et al., 2018) applies three alterations to DDPG. The first is a trick brought
over from a variation of DQN called Double DQN (Van Hasselt et al., 2016) to address the
issue of overestimated value. Double Q-learning uses two Q-networks, one to fulfil the usual
role of policy evaluation and one specifically for use with the max operator when it comes
to action selection, decoupling the implicit policy from the value function. TD3 also uses
two Q-networks, but tackles overestimation head on by using the lesser of the two values in
both MSBE functions, as a form of clipping. Underestimation bias is still problematic but
not as problematic as overestimation bias, since underestimation does not propagate via TD
updates (Bawa and Ramos, 2021).

The second alteration is to delay policy updates. TD3 implements polyak averaging when
updating the target policy and target Q-network, as in DDPG, to address the moving target
problem, but it also updates the policy networks less frequently than the Q-networks. The
paper suggests every other Q-network update is sufficient, but the idea is to delay policy
updates until the Q-value error is small enough to reliably inform the policy, in an attempt to
avoid the downward spiral situation where bad estimates reduce policy performance, leading

to poor data, leading to even worse estimates, and so on.

The third and final alteration is a slight adjustment to the way that DDPG adds noise to
actions. Rather than use time-correlated Ornstein-Uhlenbeck noise, TD3 used plain and

2.4 Deep RL Algorithms 45

simple Gaussian noise, since it is easier to implement and the authors claim the former
provides no performance benefit. Noise & is sampled from N(0,c), clipped between an
upper and lower limit, and added to each dimension of the action. In the DDPG section,
adding noise to actions was described as a mechanism for baking a degree of exploration into
the policy. In the TD3 literature, adding noise is commonly described as policy smoothing,
so-called because if the Q-network overestimates the value of an action, producing a big
spike in the function, then some of the value ascribed to that action can be drawn out and
ascribed elsewhere (smoothing the spike) by performing an action that is similar but not the
same (the action plus noise). Preventing the policy from being too exploitative like this is the

same thing as encouraging the policy to explore.

2.4.5 Soft Actor Critic (SAC)

Whilst TD3 decorates DDPG with tricks, SAC (Haarnoja et al., 2018) introduces a major
change to the objective function. The notion of an exploration-exploitation trade-off has
been a recurring theme, and whereas other algorithms discussed so far have learnt a fully
exploitative policy and then injected exploration, either with noise or with proportional
random sampling, SAC instead adds a measure of exploration into the objective function, so
that the policy learns to explore as well as exploit. By stepping away from exploitation-led
optimisation, the model is more likely to capture any near-optimal strategies that exist,
allocating near-equal probability to actions that are nearly as good. The authors argue this
makes SAC more stable than DDPG with its notorious brittle convergence properties and

sensitivity to hyperparameters.

The objective function in SAC is a two-part objective, maximising the policy’s entropy as
well as expected return. Intuitively, entropy can be described as the level of surprise or
uncertainty for a distribution P(X). The concept of entropy actually originates from infor-
mation theory and the work of Shannon in the 1940s. The information entropy, or Shannon
entropy, of a random variable is the amount of storage (e.g. number of bits) required to
store the variable. More specifically, it is the absolute minimum amount of storage required
to succinctly capture the information of a variable, where amount of information is not
only dictated by the amount of different values a variable might take on (the raw data),
but the process by which the variable takes on different values. How the number of bits
could possibly translate as uncertainty is not obvious, but Vajapeyam (2014) provides a good
analogy, pointing out that the amount of information in an email is not simply the number of
words, or the number of possible words in the language the email is written in. If an email

provides details on an event that happens every week at the same time and place then it is

46 Background

not informative or ‘surprising’ at all. Surprise in the context of probability distributions is
inversely related to bias, for example, the outcome of a weighted coin which always lands
on heads is not going to be surprising at all, whereas a fair coin with uniform probability
yields maximum uncertainty and therefore maximum entropy. Hence, with the objective to

maximise entropy as well as return, the algorithm is encouraged to produce a smoother policy.

In SAC, the optimal policy * is considered as

(o]

Tt = argm;thTNn[;)Yr(R(Sz,Clt,St+l) + AH (7 (-]5:)))]

where H is the entropy measure and A, called the entropy temperature, is a hyperparameter
which controls the weighting placed on the entropy component of the objective. Note that
SAC learns a stochastic policy not a deterministic policy, which makes sense in the context

of an entropy maximising objective (a deterministic policy would definitely not meet the ‘be
surprising’ brief).

Asin TD3, the SAC algorithm learns two Q-functions. As before, each function is represented
by two networks, a primary network and a target network updated more slowly with polyak
averaging. Q-network parameters are updated with MSBE minimisation, regressing to a
shared target which uses the smaller of the two Q-values (clipped double-Q trick). The
difference between the MSBE loss function in DDPG and TD3 (equation 2.15) and the
MSBE loss function used in SAC is a change to the TD target r + YQ(s’, u(s’)). The change
stems from a new formulation of the Bellman equations with an appended entropy term. For
example,

0" (s,a) = Ig[R(s,a,s') +y0™(s',d)]

becomes

Q"(s,a) =]Q[R(Sya,S') +7(Q"(s',d") + AH(n(|s)))]

where H(P) :)EP[—lOgP(X)]

leading to a modified TD target

2.4 Deep RL Algorithms 47

Q" (s,a) =~ ;1 +y(Q"(s',d) — AMogn(d'|s')), a~m(ls)

Note the substituting of (s) with 7(.|s). Note also a subtle bar notation on the next action
term a’. This notation is there to stress that next action a’ is sampled from the current policy

and not the replay memory D, as is the case for r and 5.

In terms of policy optimisation, SAC maximises the objective function

J(mo) = E [Q¢(s;ar) — Alogme (arls:)]

ai~T

derived from a minimisation of the expected KL divergence

exp(Qy (st -))

Zo(s1))]

J(mg) = E [Dxr(mo(-|s:)l]
s¢~D

(see the original paper from Haarnoja et al. (2018), specifically appendix B.2, or the Lilian
Weng resource ‘Policy Gradient Algorithms’ (2018) for full derivations). Ignoring the
logmg(a;|sy) entropy term, this is the same approach taken in DDPG, where E¢~z[R(7)] is
expressed as [¢p™(s) [, w(als)Q™(s,a), which in turn is expressed as Fgpu [Q" (s, 1(s))],
except this time the stochastic policy prevents the dropping of the integration over actions.
This introduces a pain point, as this distribution depends on the policy parameters. SAC
therefore uses a reparameterisation trick whereby, rather than sampling actions from 7g(.|s),
it instead samples noise vector & from some fixed distribution, such as a spherical or standard

Gaussian, and then represents 7y implicitly in a neural network transformation

a=fo(&:s)

such as

d(s,é):tanh(,ug(s)-i—cg(s)@é), &NN(OJ)

The tanh acts as a squashing function, bounding the actions to a finite range. The fact that

the standard deviations are a network output and not a state-independent parameter vector, as

48 Background

in the other policy optimisation algorithms, means they depend on state in a complex way.
The final objective is then

J(m9) = gIEN[Q”Q (s,do(s,8)) — Alogmg(do(s,&)|s)]

2.5 Summary

This chapter covers the key terms, concepts and methods required to understand the novel
work presented in this thesis. The proposed solution is a pipeline of two models: a variational
autoencoder and a policy network trained with DRL algorithm Soft Actor Critic. Both are
deep learning models and the former receives image data as input, hence why an overview
of deep learning and computer vision is provided, before detailing the VAE model type.
Then, rather than jump straight to presenting SAC, the chapter builds up to it, starting with
RL in general (core concepts, terminology and formalism), before covering value functions,
bootstrapping, and some of the most important algorithms which preceded it. This is because
the mathematics is much easier to understand starting with the simplest case of policy-based
(VPG) and value-based (DQN) learning, and then layering on techniques and changes with
each new algorithm that was published. Note that, in addition to the seminal papers which
introduce these algorithms, derivations and explanations provided in Section 2.4 have been
guided by the educational resource ‘Spinning Up in Deep RL’ (2018) produced by OpenAl,
and the detailed blog ‘Policy Gradient Algorithms’ (2018) from Lilian Weng’s website
Lil’Log. 5.

All of the presented algorithms address the challenge of balancing exploration and exploita-
tion. However, it was explained how SAC is unique in the way it approaches this challenge,
incorporating exploration directly into the objective function with an entropy maximisation
term as opposed to learning a fully exploitative policy and then injecting stochasticity later.
This form of policy smoothing prevents the policy from collapsing into always selecting
the same action, and allows the policy to capture multiple modes of near-optimal behaviour.
This, along with the double Q-learning trick, makes SAC more stable, as well as the sample
efficiency gained from off-policy learning.

Chapter 3

Game Engines as a Platform for
Simulated Learning Environments

3.1 Introduction

Deep reinforcement learning is notoriously sample inefficient and therefore data hungry, a
problem exacerbated by a large state space, as is the case in vision-based DRL, or large action
space, as is the case in complex control problems. Data hungry models are problematic
in real-world application research since real-world data is often expensive, difficult and
time-consuming to collect. The expense and difficulties of real-world experimentation are
particularly impeding in the context of underwater robotics, requiring tanks, pools or trials in
open water. Training, testing or collecting data in open environments like the sea requires a
lot of resources and logistics. With the researcher at the surface on board the research vessel
and the robot operating underwater, even just assessing performance can become complicated.
Also, days and weeks could pass without a sighting of the animals, and conducting surveys
is highly weather dependent.

Beyond these challenges, model-free DRL for robotic control introduces a much bigger com-
plication. In this experiential learning paradigm, data is collected through agent-environment
interactions, meaning the agent is inexperienced and prone to error in the early phases of train-
ing. These errors could be costly, causing damage to the physical system (see Koryakovskiy
et al. (2017) as an example). They could also be dangerous, especially in contexts outside
of a lab (a concern being actively addressed by research giants like OpenAl (Ray et al.,
2019)). When it comes to training a vehicle to follow a wild animal, allowing unrestricted

experiential learning in the real world environment is just not an option, posing too great

50 Game Engines as a Platform for Simulated Learning Environments

a risk to the animal. The solution that many researchers have turned to, particularly at the

intersection of reinforcement learning and robotics, is simulators.

In a sim-to-real approach, the robot is trained in a synthetic environment and then deployed
in a real environment. Training in simulation is cheaper, safer, easier and more reproducible,
due to the higher degree of control. Simulation-based training is also a lot more scalable,
with the ability to train a large number of robots in parallel, and offers small practical benefits,
such as instant resets when training episodically. Crucially, simulations afford automated data
labelling. The most obvious beneficiaries of this are approaches like tracking by detection,
whereby bounding box annotation requires intensive human effort. Accuracy is as much
a benefit as time here, since human annotation is prone to error and fatigue, even with
crowdsourcing approaches such as Amazon Mechanical Turk (Crowston, 2012). However,
supervised methods are not the only beneficiary. In RL, we can think of the reward value
as the data label. When it comes to complex, fine-grained control tasks, the agent is likely
going to require a dense and informative reward signal, i.e. a label per time step, and a label
involving ground truth measurements, such as target distance in the case of visual active
tracking (VAT). In the real world, calculating ground truth object distances would require
specialist equipment (e.g. stereo cameras), whereas in the virtual world, there is direct access
to state variables such as positions, orientations and speeds. Since the reward signal is only

required at training time, this is a big win for sim-to-real DRL.

With these advantages come some problems. The first is a problem known as the ‘sim-to-real
gap’ — a term used to describe the disparity between the simulated and real world, both
in the visual domain and the dynamics domain. The second is the problem of sourcing or
developing a suitable simulation. In some ways, this is analogous to the problem of sourcing
a suitably large, suitably labelled dataset for supervised learning. However, when it comes
to 3D learning environments, the availability of open source resources is less and the skills
required for custom development are greater. The terms environment and simulation tend to
get used interchangeably, but it is important to understand that an ‘environment’ is typically
an entire software stack. Throughout the rest of this thesis, the term simulation will be re-
served for the application providing the graphics (and perhaps physics). This can be thought
of as the environment’s front end — the place where environment interactions are actually
played out i.e. action decisions are implemented and data is collected. A simulation alone
does not provide a learning environment, however. It is also necessary to define the MDP
(see Section 2.3.2) governing the agent’s learning of a particular problem. American artificial

intelligence company OpenAl provide the open source Python library Gym (Brockman et al.,

3.1 Introduction 51

ML library

RL library

Gym wrapper

API

simulation

Fig. 3.1 llustration of the software stack required by simulation-based agent training.

2016) as a standard API for expressing an MDP. This can be thought of as the environment’s
back end, and will be referred to as the ‘Gym environment’ or ‘Gym wrapper’.

Figure 3.1 provides an illustration of a typical software stack. An ML library like Ten-
sorFlow (Abadi et al., 2015) is used by a DRL library like Stable Baselines (Hill et al.,
2018a) to implement a DRL algorithm. Most if not all DRL libraries integrate with Gym
(sometimes exclusively), and so the interface between the algorithm and the environment
can be seamlessly taken care of just by providing the environment with a Gym wrapper (i.e.
extending the Gym class Env). The difficulty lies in developing the simulation itself, and the
communication between the simulation and the Gym environment. This API is responsible
for sending simulation data (observations) and retrieving model outputs (actions), and is
therefore critical to the cyclical agent-environment interactions at the heart of RL. Not only
does this communication need to be fast enough to support real-time simulation, it needs
to be robust enough to ensure that the generated data traces [obs, action, next obs,

reward, done] are correctly paired.

Developing this full stack from the ground up requires time, effort, and a diverse skill set.
As such, a large amount of DRL research utilises a small number of existing open source
environments, similar to the pervasiveness of ImageNet (Deng et al., 2009) in supervised
computer vision research. These environments provide a useful benchmark when proposing

new algorithms or optimisations. However, in application-focused research, a custom prob-

52 Game Engines as a Platform for Simulated Learning Environments

lem is likely to require a custom environment.

This need has fed into a growing trend toward the use of commercial game engines. Commer-
cial, cross-platform game engines such as Unity (Haas, 2014) and Unreal Engine (Sanders,
2016) bring powerful graphics rendering and sophisticated physics under one roof, along
with intuitive development tools, extensive documentation, and a large, active community.
Their GUI-driven, real-time editors make 3D creation efficient and accessible to new devel-
opers, with mechanisms like drag and drop. Both have a dedicated ‘asset store’, with a large
collection of models and plugins available for purchase. These assets, many of which are
free, can be easily imported into a wider project, accelerating development further. Primarily
used to develop games, these platforms have been massively extended over the years through
public demand, to the point of providing realistic and physically accurate environments
suitable for research.

This chapter details three novel, Unity-hosted, 3D learning environments developed during the
course of this project. All three support visual active tracking, but only the last environment,
SWiMM DEEPeR, focusses on the intended deployment context. Although the Unity Editor
is designed to be accessible to new developers, simulating water is particularly difficult, and
creating a pseudo-realistic underwater open ocean environment complete with controllable
AUV and animated marine mammals requires experience. A collaboration was formed with
the School of Computing’s Game Engineering group to outsource development. Forming
this collaboration was a slow process, due in part to the pandemic. Therefore, two other
environments were developed to progress development of the Gym environment and DRL
algorithm. The first was CubeTrack, representing a simplified version of the VAT problem
(discrete action space, simple physics, simple graphics, and a small, closed environment),
ideal for environment testing and the early stages of reward engineering. For this environment,
the communication API was handled by the ML-Agents toolkit (Juliani et al., 2018) described
in the next section, and the simulation was built from the ground up, utilising ML-Agents’
prefabs. The second was DonkeyTrack, a modification of an existing Gym wrapped Unity
simulation, with custom communication framework. This open world environment allowed
for experimentation within a more realistic continuous control setting whilst work on SWiMM
DEEPeR progressed.

3.2 Related Work 53

3.2 Related Work

3.2.1 Toy environments

Research in DRL relies heavily on a limited selection of off-the-shelf, open source toy envi-
ronments. Prominent examples include the suite of toy environments provided by OpenAl
Gym, the ‘DeepMind Control Suite’ (Tassa et al., 2018), and the Unity Machine Learning
Agents Toolkit (ML-Agents) (Juliani et al., 2018). The simplicity of these environments,
good documentation, and sharing of results/hyperparameters makes them a good starting
point for students and researchers entering the field. They are also an extremely valuable
resource for RL research and development (R&D). When algorithms are developed or mod-
ified, it is important to benchmark against results generated in the same environment, and
therefore their pervasiveness is beneficial. However, they lack variety and they lack realism,
providing little use for application-focused research, especially where there is the intention

to transfer the learnt policy to a real setting.

This is especially true of OpenAl Gym, which provides mostly 2D environments. Gym is
both an API (via the Python package gym) and a collection of open source environments.
The environments are organised into collections, with increasing problem difficulty and
simulation complexity. For example, the ‘classic control’ collection could be considered
the entry-level collection in terms of difficulty. These computerised renditions of classic
problems from control theory (e.g. the inverted pendulum swingup problem) require only
PyGame (Kelly, 2016) for 2D graphics rendering. The collection ‘Box2D’ offers a step
up in difficulty, including games like ‘Lunar Lander’, ‘Car Racing’ and ‘Bipedal Walker’.
These environments use PyGame for rendering but also use Box2D (Parberry, 2017) for
2D physics simulation. There is then a collection of Atari games, simulated using Stella
(1996), a multi-platform Atari 2600 emulator, and the Arcade Learning Environment (ALE),
a simple framework which separates the details of emulation from agent design (Bellemare
et al., 2013). The last and perhaps most challenging is the the MuJoCo collection. MuJoCo
(Todorov et al., 2012) (multi-joint dynamics with contact) is a physics engine developed by

Emo Todorov for the robotics startup Roboti, and later acquired by DeepMind.

The DeepMind Control Suite extends this Gym MuJoCo collection. These environments
are all 3D, there is greater representation of real-world problems (e.g. a simplified soccer-
like problem), and there are collections specific to niche research areas, such as language
(Hermann et al. (2017)), meta-learning (Wang et al. (2021)), and Al safety (Leike et al.
(2017)). However, these environments are still very abstract toy environments, they are

54 Game Engines as a Platform for Simulated Learning Environments

not realistic or even pseudo-realistic. The ML-Agents Toolkit provides a similar offering.
Like Gym, ML-Agents is both an environment collection and an API. Although all of the
environments are 3D and although ML-Agents utilises a commercial game engine, they
are still very much toy problems, ranging in difficulty from tasks like block pushing to
multi-agent games like soccer. Across all tasks, the graphics are cartoon-like and the scene is
a contained, floating platform. The code and official documentation can be accessed via the
public GitHub repository (Unity-Technologies, 2017b).

3.2.2 Car and drone environments

Moving into the space of pseudo-realistic, game-engine-based environments, there are several
prominent examples looking at vehicle control. For example, in 2017 Microsoft Research
released AirSim as a simulation platform for autonomous driving research (Shah et al., 2018).
Built on Unreal Engine 4 (but with an experimental Unity release), AirSim provides pseudo-
realistic urban scenes containing roads, city blocks, power lines and trees. The platform
supports both manual control and programmatic control, with an API accessible via a variety
of languages. This API is available as an independent library, such that it can be deployed
on a vehicle’s onboard computing device. The primary focus of AirSim is aerial autonomy,
although the platform does provide car simulations also. Other well-known car simulations
include CARLA from Intel (Dosovitskiy et al., 2017) and TORCS (The Open Racing Car
Simulator) from Espié and Guionneau (2016). CARLA is built on Unreal Engine 4, and has
been developed from the ground up to support autonomous driving research, incorporating
realistic and varied scenarios such as traffic, pedestrians, weather etc. TORCS on the other
hand is focused on track racing, and is as much a game as it is a research platform. The
popular platform has cultivated a large community, hosting competitions for researchers
and hobbyists to submit their Al controllers. Similar to this is the Donkey Car community,
with competitions running both in the simulated environment and in real environments
with Al-controlled, modified toy cars. This Unity simulation (SDSandbox, 2017) and Gym
wrapper (gym-donkeycar, 2018) from Tawn Kramer is the basis for DonkeyTrack detailed
in Section 3.4. All of these platforms offer sophisticated physics and, in the case of AirSim
and CARLA, extremely high visual fidelity. However, they do not provide the appropriate
problem (VAT) or the appropriate context (AUV control in an open ocean environment).

3.2.3 AUV simulations

A focused search was conducted for existing AUV simulations. Surveys from Matsebe et al.

and Cook et al. provide a good starting point, however these surveys are now dated (published

3.2 Related Work 55

in 2008 and 2014 respectively) and are not entirely relevant; a lot of the reviewed simulations
are focused on ROV pilot training, for example, and therefore do not offer programmatic
control. Below are four projects that have been identified as prominent examples of AUV
simulators offering programmatic control. Table 3.2 provides a summary of the key features
to make the contributions of SWiMM DEEPeR clear. Firstly, the simulations in the first two
columns do not utilise game engines whereas the third and fourth do, similar to SWiMM
DEEPeR. The former two are also examples of projects that sit firmly in the robotics research
space. They are geared toward use cases like mission planning, mission re-enactment, system
testing and vehicle design prototyping. Whilst they offer programmatic control, the focus
is more toward conventional control strategies, and DRL is not natively supported, or at
least not in a way that is straightforward. There is also a strong focus on accurate hardware
simulation, whereas, in the simulations presented in this chapter, fidelity is less important.
Instead, computational expense is minimised in order to provide the speed and efficiency
required for training data-hungry algorithms within a feasible time frame and computational
budget. Based on this, SWiMM DEEPeR, like HoloOcean, chooses not to integrate with
Robot Operating System (ROS) (Koubaa et al., 2017) — a popular robotics middleware
suite which serves as a distributed control centre, allowing different nodes (Python and C++
packages) to communicate through ‘topics’ within and across machines, via publishing and

subscribing mechanisms.

UUYV Simulator

Unmanned Underwater Vehicle (UUV) Simulator from Manhaes et al. (2016) extends Gazebo
(Koenig and Howard, 2004), a leading simulation platform in the robotics field. It does
so through the addition of custom underwater modules not otherwise provided, including
hydrostatic and hydrodynamic effects, thrusters, fins, and typical underwater sensors. The
Gazebo platform exploits the OGRE graphics rendering engine, four dynamic physics engines
(ODE, Bullet, Simbody and DART), and provides integration with the middleware software
ROS. Both Gazebo and ROS are well-documented, well-maintained, and their use allows for
accurate physical behaviour. However, UUV Simulator itself does not look to be actively
maintained, and provides no integrated DRL support. Gazebo and ROS are also heavy
project dependencies, making installation and usage more cumbersome (Gazebo’s Windows
installation has 18 steps, for example). That being said, there are some pretty recent and pretty
relevant examples of DRL research using UUV Simulator. In 2020, Zhang et al. used UUV
Simulator to train a DRL controller to perform path following (both straight and sinusoidal),
experimenting with different combinations of environmental and human-allocated rewards.

In 2022, Grando et al. used UUV Simulator to train a DRL controller to perform mapless

56 Game Engines as a Platform for Simulated Learning Environments

uuv UWSim URSim HoloOcean SWiMM
Simulator DEEPeR
Game Engine ‘ X X v 4 v
Graphics OpenGL OSG (os- DirectX DirectX 11 DirectX
g0Ocean) + Metal + +12 + Metal +
OpenGL + OpenGL +
Vulkan Vulkan
Physics ODE + Bullet (os- PhysX PhysX PhysX
Bullet + gBullet)
Simbody +
DART
Communication | TCP/IP TCP/TP TCP/TP Shared TCP/TP
Memory
ROS Integration | v/ v X X
Low- X X X 4 v
dependency
Action Inference ‘ X X X X 4
DRL Integration \ X X X 4 4
Configurable \ X v v v v
Dynamic X X X X v/
Target

Fig. 3.2 Comparison table between SWiMM DEEPeR and existing AUV simulations. The
first three columns are examples of simulations geared more toward robotics and there-
fore value fidelity, whereas SWiMM DEEPeR and HoloOcean aim to be lightweight, fast,
minimally computationally expensive and DRL integrated. SWiMM DEEPeR additionally
supports VAT with the introduction of dynamic targets.

navigation and obstacle avoidance, with a hybrid vehicle capable of transitioning from air to

water and water to air. In both cases, the simulated environment is a pool.

UWSim

Underwater Simulator (UWSim) from Pérez Soler et al. (2013) is a custom built solution
utilising Open Scene Graph (OSG) (OpenSceneGraph, 1999) and osgOcean (Bale, 2008).
OSG is a cross-platform graphics API which uses C++ and OpenGL, whilst osgOcean is

a wrapper library specifically for creating realistic underwater rendering in OpenGL (for

3.2 Related Work 57

example, ‘god rays’ or surface glare). To achieve physical accuracy, the wrapper osgBullet
(Martz, 2011) provides contact physics for OSG. UWSim provides underwater vehicles,
surface vessels, robotic manipulators, customisable widgets, and a network interface to
ROS, allowing for hardware-in-the-loop simulation. Although UWSim provides a suitable
underwater simulation, there is no integrated DRL support. Furthermore, it is designed
as a kinematic simulator, meaning that the vehicle is ‘controlled’ by updating the object’s
position and rotation. Dynamic simulation (responding to forces) in UWSim requires an
external module coded in Matlab, limited to single-body vehicle control. Setting up a new
simulation can also be laborious, with XML description files instead of a user interface, and
a lack of documentation. Kermorgant (2014) provide an example of pairing UWSim with
Gazebo in order to benefit from Gazebo’s user interface and dynamic simulation. However,
the integration requires rather complex file synchronisation, scene initialisation still requires
monolithic XML description, and the project repository (freefloating-gazebo) is now archived.
Despite this, it is still being used by other researchers to this day (e.g. Mehta et al. (2021)).

URSim

The project URSim from Katara et al. (2019) is an example of another Unity-hosted solution.
This engine provides support for several graphics APIs (DirectX, Metal, OpenGL, Vulkan),
calculating and using whichever is the most suitable at runtime. It also provides realistic
physics via Nvidia’s PhysX (NVIDIAGameWorks, 2015). Whilst URSim exploits the same
game engine as the simulations presented in this chapter, the similarities end there. URSim
focusses mostly on mission planning and conventional control methods, integrating with ROS
via the plugin ROSBridge (Crick et al., 2017). The paper hints at ‘tracking functionality’, but
then makes no further reference to object tracking or neural-network-based control. It may
be possible to train DRL agents in URSim using the ROS package openai_ros, although
this makes reference to Gazebo and therefore will likely not work out of the box with a
project utilising Unity and ROSBridge. It is also a fairly complicated way in which to pair
Unity with Gym, introducing an unnecessary heavy dependency when there is not the need
to make use of the many sensor, actuator and controller components offered by ROS. If the
only role of Unity is to generate data, then direct communication with Python, as is done in
the next example, makes a lot more sense. URSim is also limited to a pool environment (see
Figure 3.3), although in 2021 Osa and Orukpe extended URSim to provide a collection of

ocean-themed sandbox environments.

58 Game Engines as a Platform for Simulated Learning Environments

(a) Image of URSim from Katara et al. (2019).

(b) Image of HoloOcean from Potokar et al. (2022b).

Fig. 3.3 Examples of existing game-engine-based AUV simulations.

HoloOcean

HoloOcean from Potokar et al. (2022a) exploits Unreal Engine 4, providing a graphics
renderer DirectX11/12 API and PhysX. HoloOcean is a fork of HoloDeck (Greaves et al.,
2018) — a Python API with a Gym-like interface — for supporting game-engine-based rein-
forcement learning. HoloOcean then augments HoloDeck with a game binary, offering a
pseudo-realistic ocean environment complete with accurate underwater dynamics, a realistic
imaging sonar implementation, and other underwater sensor models. As such, HoloOcean is
much more lightweight than the solutions discussed thus far. It has no reliance on ROS; all
communication is via the Python interface, and so installation is quick and straightforward.
HoloOcean is very flexible and customisable, with good documentation. Whilst graphical

3.2 Related Work 59

customisation allows for a wider range of computational systems, there is still the requirement
for a ‘competent GPU’, whereas the simulations presented in this chapter have much lower

computational demand.

Connection to this thesis

The HoloOcean environment is the most comparable to the application-focused environment
presented in this thesis, SWiMM DEEPeR. There are however some differences. The former
simulates an in-house rover (see Figure 3.3), whereas the latter simulates the BlueROV2 from
Blue Robotics — an affordable and widely used commercial vehicle. The reason for this was
to better support open source science and collaborative research. The two simulations are also
focused on slightly different problem spaces. All of the scenes provided by HoloOcean con-
tain static marine structures such as shipwrecks, piers, dams and pipes, suitable for training
navigation policies. SWiMM DEEPeR on the other hand contains animated marine mammal
models, providing a simulation in a new application space (conservation) as well as a new
problem space (visual active tracking). Had HoloOcean been published earlier, SWiMM
DEEPeR may well have been developed as an extension, however the two were developed in
parallel. HoloOcean is certainly a bigger and more advanced project, yet SWiMM DEEPeR
offers what is needed for the custom problem that has been posed. The benefit of developing
SWiMM DEEPeR from the ground up is the complete control over (and understanding
of) the implementation, particularly with respect to the communication framework. The
communication framework implemented in HoloDeck is complex and unfamiliar, taking a
shared buffer approach involving semaphores, whereas SWiMM DEEPeR uses the much

more widely used TCP protocol.

TCP is a connection-oriented protocol, establishing and maintaining a connection until the
two involved applications have finished exchanging messages. The protocol determines how
to segment data into packets and then sends these packets to (and receives packets from) the
network layer. TCP is a particularly strict protocol that aims for error-free data transmission.
It requires an acknowledgement that packets have arrived, and handles re-transmission of
dropped or corrupt packets. Together with the Internet Protocol (IP), it provides the basic

rules that define the internet.

60 Game Engines as a Platform for Simulated Learning Environments

Fig. 3.4 Screenshot of CubeTrack in game view.

3.3 CubeTrack

The environment presented in this section is a novel environment developed from scratch for

the purpose of this doctorate research. The code for CubeTrack is available at !.

3.3.1 Simulator

As with all three novel environments presented in this chapter, the environment CubeTrack
1s powered by the Unity game engine. The specific version of Unity used for developing
CubeTrack was version 2019.4.4f1. CubeTrack is an example of building a game-engine
simulation from the ground up without outsourcing. As such, the simulation is extremely
simple. The Unity scene itself has three main components: a dark grey, flat, rectangular
platform, a purple cube (the moving target), and a blue cube (the RL agent). The platform
is enclosed by walls to prevent either cube from falling off the floating platform into the
abyss of the simulated world. The two cubes are prefabs from the open source ML-Agents
repository (Unity-Technologies, 2017b). The world camera and directional light make up the
other objects in the Unity Editor Hierarchy window. Both cubes cast and receive shadows, as

do the walls of the platform. Figure 3.4 provides a visual of the rendered game.

Thttps://github.com/kncrane/CubeTrack

https://github.com/kncrane/CubeTrack

3.3 CubeTrack 61

Target

The target cube constitutes what is called a non-player character (NPC) in games development,
that is, any game object not controlled by a player, otherwise referred to as an Al character.
This terminology is somewhat confusing in this context, since the Al character is the object
not being controlled by a machine learning algorithm, and the ‘player’ character is not
in fact being controlled by a human. For clarity, Al is referring to the wider definition
of Al, which includes rule-based systems, and the true Al, the RL agent, is the player in
this context. In CubeTrack, the target cube NPC is implemented as a ‘NavMesh Agent’
(Unity-Documentation, 2021). Adding a NavMesh Agent component to a game object a)
helps to create characters which avoid moving obstacles, including other NPCs, and b) helps
with pathfinding and movement within a restricted area called a NavMesh. The process of
creating a NavMesh data structure from the scene geometry is called ‘baking’. Once baked,
the mesh describes the walkable surfaces of the game. From there, scripting the NPC is as
simple as setting the desired destination point — everything else is taken care of by Unity. In
CubeTrack, this destination point is randomly selected from 13 waypoints evenly spaced
around the platform (see green dots in Figure 3.5). The waypoints are in fact small cylinder
objects, with their mesh renderer turned off and their capsule collider turned off. They are
each assigned the same tag, named ‘RandomPoint’. The resulting behaviour is that the target
cube will travel in a straight line to a random location on the platform, before pivoting and
heading off in a new direction. The speed of the target cube remains constant, set to 4 after
some experimentation. At the start of each episode, the target spawns in a random location on
the platform, requiring a degree of search before track. The script handling target movement
can be found in the CubeTrack repository ! at 2.

Agent

The agent cube has a ‘Rigidbody’ component, meaning it is subject to gravity, will react to
collisions, and will respond to forces applied by the scripting API (Unity-Documentation,
2021). The mass field of the Rigidbody component was set to 10 kilograms and the ‘drag’
(friction against the ground in this case) was set to 0.5 (how much velocity is lost per tick).
The choice of value in both cases alters the way in which the game object responds to applied
forces, therefore it was possible to experiment with different values and then observe the
result in a demo run of the simulation. Values were chosen that gave sensible visual results,
for example, the cube does not travel for too long before coming to a natural stop. The agent

cube also has an additional child object — a camera pointing out from the front face of the

2 Assets/Scripts/TargetMovement.cs

62 Game Engines as a Platform for Simulated Learning Environments

Fig. 3.5 Screenshot of CubeTrack in scene view. The green dots are the waypoints.

cube, with field of view (FOV) set to 60.

Importantly, the agent cube has several components made available after installing the
ML-Agents C# SDK (the Unity package com.unity.ml-agents) via the Unity Editor’s
package manager registry. These components include the scripts ‘BehaviourParameters’,
‘DecisionRequester’ and ‘CameraSensor’. The first has fields for declaring the type and size
of the observation and action spaces, similar to how these would be declared in the initialiser
of a Gym environment. The second defines the frame rate for action implementation (set to
1) and whether to implement an action repeatedly until the next decision is received (set to

true). The third ensures the first person view (FPV) camera stays with the cube as it moves.

The agent cube also has a script ‘AgentMovement’, providing an implementation for the
ML-Agents class Agent by extending functions OnEpisodeBegin and OnActionReceived.
These functions define the Unity-side behaviour given Python-side calls to reset and step
respectively. The OnEpisodeBegin function increments the episode counter, resets the
agent’s velocity to zero, and places both the target cube and agent cube in a random starting
position and facing direction. The OnActionReceived implements the action decision
(details provided in Section 3.3.3). With ML-Agents, the reward function code is also
Unity-side, embedded in the OnActionReceived function. Details of the reward function
are reserved for Chapter 5 (Section 5.3.2) alongside details of policy learning. Finally, the
‘AgentMovement’ script includes a check against the episode termination criteria (again,
reserved for Chapter 5) within Unity’s FixedUpdate function (called each tick of the physics

3.3 CubeTrack 63

system), and a section of code allowing for keyboard control of the agent when the ‘Behaviour
Type’ component is set to ‘Heuristic’. The ‘AgentMovement’ script can be found in the

CubeTrack repository ! at 3.

3.3.2 Communication

Message passing between the Unity application and Python program is achieved over an open
socket using the ML-Agents Python API. Details are extracted away from the user, however
the GitHub repository documentation provides a high-level overview (see Figure 3.6). The
box ‘Python Trainer’ refers to the algorithm implementations provided in the dedicated pack-
age mlagents, with single command-line utility mlagents-learn. This package interfaces
with the package mlagents_envs (Python API), specifically the UnityEnvironment class
residing in environment.py. Parts of this class resemble the Gym class Env, including
functions like step and reset. However, the class also packs and unpacks messages to send
to and receive from the external communicator residing in the Unity application. The Python
side of this message passing (located in rpc_communicator.py) is achieved with gRPC

(Wang et al., 1993), with Python as the server and Unity as the client.

Any agents with the ‘behaviour type’ field set to ‘Default’ within the ‘BehaviourParameters’
component will receive actions from the external communicator. It is possible for the same
action to go to multiple agents (i.e. shared policy). The other two behaviour types are
‘Inference Only’ and ‘Heuristic Only’. The former signals the agent to use a pretrained model.
This requires the user to drag and drop a suitable file type into the ‘BehaviourParameters’
‘Model’ field. Integrated models are made possible with the Unity Inference Engine, which
uses compute shaders to run the neural network within Unity. The latter behaviour type
signals the agent to interface with the Heuristic class, where the user can provide a rule-

based policy or something like a keyboard listener to enable manual control.

3.3.3 Environment
Observations

As is good practice, the correctness of the algorithm and environment were first tested using
what was deemed to be an easier problem — tracking with vector observations. The chosen
vector observation had 12 elements: the x and z coordinate of the target’s position, the x and

z coordinate of the agent’s position, the x, y and z coordinate of the target’s forward vector

3 Assets/Scripts/Visual AgentMovement.cs

64 Game Engines as a Platform for Simulated Learning Environments

Learning Environment

Behavior A Behavior C Behavior D

Python API Python Trainer

Fig. 3.6 Diagram of the ML-Agents framework, from Unity-Technologies (2017a)

(facing direction), the x, y and z coordinate of the agent’s forward vector, the target’s velocity,
and the agent’s velocity. Once the agent had successfully learnt to track with this explicit
information, observations were switched to visual. Image observations in CubeTrack are
84 x 84 RGB images from the agent’s onboard FPV camera, saved to file as a PNG.

Actions

CubeTrack is set up with a discrete action space. There are five levels: do nothing, forward,
backward, turn left, and turn right. Since the agent cube has a Rigidbody component, it is
possible to move the cube with an application of force. This is much more in line with the
end goal of vehicle control than simply translating the agent’s position. Algorithm 1 provides
pseduocode for action implementation. For forward and backward, a positive and negative
force were applied respectively to the agent’s forward vector, using Unity’s AddForce ()

3.4 DonkeyTrack 65

Algorithm 1 CubeTrack action implementation pseudocode

if action == ‘forward’ then
transform.forward x forceMultiplier
else if action == ‘backward’ then
transform.forward x - forceMultiplier
else if action == ‘turn left’ then
transform.up x - torqueMultiplier
else if action == ‘turn right’ then
transform.up x torqueMultiplier
else
do nothing
end if

function. After experimentation, a multiplier of 500 was applied in both cases. For turn right
and turn left, a positive and negative force were applied respectively to the agent’s vertical y
axis, using Unity’s AddTorque () function. After experimentation, the multiplier for these
turning forces was set to 250. These multipliers were selected on the premise that they had a
visible effect on the cube, but were very slight. By mapping the action decision to a very
subtle force application, the agent is afforded greater control; if the agent wants to make
a very small movement, it can, and if it wants to accelerate it can select the same action

decision for multiple consecutive time steps.

3.4 DonkeyTrack

The environment presented in this section is a novel environment, developed for the purpose
of this doctorate research by modifying an existing open source project. Specifically, Donkey-
Track extends the Unity simulator ‘SDSandbox’ and the Python package gym-donkeycar,
both developed by Tawn Kramer (2017; 2018). The code for DonkeyTrack is available at 4.

3.4.1 Simulator

The original simulation, ‘SDSandbox’, was developed to facilitate training a self-driving car
in a racing context, with a particular focus on imitation learning. The version cloned was
built with Unity 21.04.15. Shipping with a selection of indoor and outdoor racetracks, the
simulator supports manual control, model training and model inference. The Unity project is
advanced and difficult to unpick as an inexperienced game developer, however, with minimal

changes, it has been possible to repurpose the project for training a self-driving car in the

“https://github.com/kncrane/gym-donkeytrack

https://github.com/kncrane/gym-donkeytrack

66 Game Engines as a Platform for Simulated Learning Environments

context of VAT. Utilising the multiplayer functionality, a second car can be added to the
simulation without any changes on the Unity side. The multiplayer functionality is set up
to spawn one car per client-server connection, and so, by requesting two connections from
the Python environment initialisation code, the scene dynamically loads with two instances
of the car prefab. The data sent from and received by the Python server is with respect to
the game object assigned to the client, and so both cars can send observations and receive
control signals independently. To keep modifications to a minimum, one car can be sent
action decisions randomly sampled from the action space. This car is the moving target. The
other is sent action decisions output by a policy network. This car is the RL agent. Since the
cars can also be configured from the Python end, the appearance of the two cars was made
differentiable to aid evaluation. The agent car was given the white roll cage synonymous
with ‘Donkey Car’, whilst the target was given a normal shell typical of RC cars, in blue.
The target car does not require any of the data sent up from Unity to make an action decision,
however this information is utilised in the reward function, and in gym-donkeycar the
reward function is implemented server-side, not client-side. For this reason, the information

exchange is left in place.

In this way, it is possible to train an agent for VAT without needing to rebuild the compiled
Unity game binary. However, following experimentation, a handful of changes were intro-
duced on the Unity side to facilitate learning. These changes were minor enough to not
require any restructuring (or indeed deep understanding) of the complex Unity project. They

were as follows:

* In order to reward the agent based on heading as well as distance (as was successful in
CubeTrack), the Python environment requires the forward vector of both cars, as well
as the position coordinates that are already sent up. Therefore, transform. forward
was added to the SendTelemetry () message constructed in the C# script ‘“TcpCarHan-
dler.cs’.

* When a second client connection is made, the default second instance of the car prefab
is spawned 5 metres to the left of the first car, lining up the would-be racers on the start
line. Additional racers, if included, are spawned behind. Spawning the second car to
the left means the agent starts each episode with a relatively high reward signal (given
the target is close) paired with an empty visual observation (given the target is outside
of the agent’s FOV). This data is not particularly helpful, especially to a naive agent.
To optimise this, a modification was made so that the second car is spawned directly in
front of the first, starting the episode with the agent in the optimal tracking position

(see Figure 3.7). To do so, edits were made to the CarSpawner class in the C# script

3.4 DonkeyTrack 67

Fig. 3.7 Screenshot of the DonkeyTrack simulation at the start of a new episode.

‘CarSpawner.cs’. The distCarRows variable in the initialiser was changed from 5 to
15, and in the function GetStartPosRot (), the ‘offset’ on the x axis was commented

out and the offset on the z axis was changed from negative to positive.

* The majority of the scenes offered by ‘SDSandbox’ include obstacles. This is problem-
atic when the target object is driving randomly, as it can collide and become stuck. For
this reason, the rebuild of the game binary was limited to the ‘generated road’ scene —
a tarmac road in a sandy desert, free from any obstacles. The tarmac race track is not
needed for VAT but was initially left alone. However, watching the agent, failure cases
(i.e. losing the target) appeared correlated with crossing the race track. The layout of
the scene meant that crossing the race track was an infrequent event when following
a random target. As such, it was felt that the agent had insufficient data to learn the
optimal actions in that scenario. To assist the agent and make the problem easier, the
road generation boolean in this scene was set to False, producing a very homogenous
environment of empty desert.

Producing a moving target from a ‘player’ addition was a quick and simple solution that

works. However, at the point the user wants to incorporate obstacles, a better solution would

68 Game Engines as a Platform for Simulated Learning Environments

be to use a NavMesh Agent with built in collision avoidance, as in CubeTrack. Incorporating
this new Game Object into the ‘SDSandbox’ simulator was going to be non trivial and so the
simpler solution was taken in the first instance. An even better solution would be to use the
multiplayer functionality, but feed the target car actions from a (separate) policy. This policy
could be programmed, pretrained, or trained in parallel with an adversarial design similar
to the one described by Zhong et al. (2018). Again, implementing this would be non trivial,
especially when working with a third-party algorithm implementation. Both approaches offer

feasible solutions, but would require more development time.

3.4.2 Communication

DonkeyTrack utilises the existing communication framework provided by gym-donkeycar —
a client-server paradigm whereby the Python application is the server and the Unity applica-
tion is the client. The network protocol is TCP — a protocol that guarantees the integrity of
the data being communicated over a network (i.e. ensures all packets reach their destination
by waiting for an acknowledgement before sending the next). This protocol requires an
initial handshake to establish the connection. In gym-donkeycar, the design of the commu-
nication framework is to allow for continuous channels. That is, either process is able to
send/receive at any point. Correct ordering of messages is maintained with a queueing system.

Given the requirement for message interpretation between client and server, the package
utilises JSON, a universal and flexible language with support for object serialisation. All
messages are JSON serialised into a UTF-8 string and then encoded to byte array, before
being sent over the network. The server then needs to decode to JSON string, and load this
into a JSON dictionary (the Python equivalent of a JSON object). Message fields with native
data types (for example, the coordinates of the AUV) are directly accessible, whereas the
image data needs additional unpacking. To collect image data, Unity renders the 2D image to
a texture, and then encodes this render texture as a jpeg or png (i.e. a byte array). The server
therefore has to reverse this encoding (with base64 decode), but may not cast to the right
type, and so follows up with explicit byte array casting, reading the image data with Python
Imaging Library, and casting to NumPy array.

3.5 SWiMM DEEPeR 69

3.4.3 Environment
Observations

DonkeyTrack supports both visual observations and feature vector observations; images
encoded to a low-dimensional numeric vector using a pretrained autoencoder (the focus of
the next chapter). If the environment initialiser is passed a filepath to a pretrained model,
then feature vector observations are selected, otherwise image observations are assumed. If
using feature vector observations, the observation space is declared as a Box space, with float
values in the range [—oo, 0] and shape 1 x n_z. The value of n_z (the size of the learnt latent
space) is determined at runtime by accessing the stored data of the pretrained model. If using
visual observations, the observation space is declared as a Box space, with integer values in
the range 0-255 and shape w x h x 3. The width (w) and height (%) are calculated dynamically
at runtime using the resolution of the simulated camera, specified in the configuration file.
The observation width mirrors the raw image width, whereas the height is reduced by one
third. This is because raw images received by the client are cropped, removing the top third

of the image which is entirely sykbox and therefore redundant information.

Actions

The DonkeyTrack action space is a Box space made up of two values, the first determining
the steering angle and the second determining the throttle. Both are assigned the symmetric
range [-1, 1]. The range [-1, 1] is advisory when using SAC because of the Tanh squashing
function. Also, unlike racing, the ability to reverse in order to decelerate is important in VAT

to maintain an optimal tracking distance and avoid colliding with the target.

3.5 SWiMM DEEPeR

The environment presented in this section is a novel environment developed from scratch for
the purpose of this doctorate research. Whereas CubeTrack was developed independently,
SWiMM DEEPeR was developed collaboratively with PhD student Samuel Appleby from
the Game Engineering group (co-author of the IEEE Conference on Games 2023 paper
in Section 1.4). Like the previous environments, there is both a Unity application and
a Python application. As an experienced game developer, Samuel was responsible for
coding the Unity application, guided by my requirements. This code is available at > in
a public repository named SiM DEEPeR. The DokeyTrack Python application (including

Shttps://github.com/Samuel Appleby/SiM_DEEPeR

https://github.com/SamuelAppleby/SiM_DEEPeR

70 Game Engines as a Platform for Simulated Learning Environments

the implementation of server communication) provided a starting point for the Python-side
development. Modifications to the Gym environment were handled by myself. Modifications
to the communication network were handled by Samuel. This code is available at ® in a
public repository named SWiMM DEEPeR.

3.5.1 Simulator

The SWiMM DEEPeR project is built on Unity v.2021.3.20f1. Taking inspiration from
footage captured during North Sea pelagic fieldwork, the simulation is of an open ocean
environment. True to the real world footage, there is no sea bed, rock formations, vegetation,
or marine structures, just open water. A depth-dependent colour gradient is implemented
to simulate loss of light with increasing distance from the surface. Shaders help emulate
a pseudo-realistic water surface. In-keeping with the other two environments, the tracking
problem is reduced to single-object, distractor-free tracking, and so the only two game
objects in the scene are the target (the dolphin) and the agent (the AUV). Both objects utilise
third-party assets purchased from the Unity asset store. With the intention of sim-to-real
transfer in future work, the AUV is a model of the BlueROV2 specifically, as opposed to a
generic vehicle model.

An underwater environment is much more difficult to simulate with high physical and visual
fidelity, given that water dynamics are not natively supported by Unity’s physics engine
PhysX. Whilst many hydrodynamic forces (e.g. water drag and currents) are reserved for

future work, special attention was afforded to providing pseudo-realistic buoyancy.

Buoyancy modelling

The buoyant force enacting upon any submerged volume is directly proportional to the
volume of fluid displaced:

Fg =prsVs

where py = density of the fluid, g = gravitational constant, and Vy = volume of fluid

displaced. According to Archimede’s Principle, this can be simplified to

Fg =Wy

®https://github.com/Samuel Appleby/SWiMM_DEEPeR

https://github.com/SamuelAppleby/SWiMM_DEEPeR

3.5 SWiMM DEEPeR 71

where Wy is the weight of the displaced water. Upon full submersion, further increases to
depth will have no effect on the resulting force, since the volume of water displaced is equal
to the volume of the object. In a simulation, buoyancy can only ever be approximated, given
that buoyant forces are acting on all volumes to the level of the atom. One accurate approach,
proposed by Katara et al. (2019), is to apply a local force per every triangle of an object’s 3D
mesh which is below the surface. Any triangles partially submerged must be dissected into

smaller triangles. The total buoyant force is calculated as:

where z() = distance from triangle centre to the surface, S () — surface area, n) = normal
to the surface, and m is the submerged triangle count. Accurate buoyancy calculations such
as this become increasingly computationally expensive with mesh complexity. In SWiMM
DEEPeR, the BlueROV2 mesh has over 1.67 x 10° polygons, therefore performing such run-
time calculations would be detrimental to system performance, and is not strictly necessary in
this case given that physical fidelity is not the primary concern. The simplest implementation
would be to apply a singular force at the centre of the mesh, however this would not provide
the local forces required to stabilise an object on the surface of the water, resulting in a
very unrealistic simulation. The chosen implementation is a compromise between realism
and computational expense. Rather than apply a force per triangle, small objects we call
‘floats’ are provided at configurable positions around the mesh, and the net buoyant force is
distributed at their local positions on the Rigidbody. The net buoyant force is assumed to be
constant (as it would be once the vehicle was fully submerged).

AUV modelling

The selected AUV model is a 3D mesh of the Blue Robotics’ BlueROV?2 vehicle, designed
by 3D Molier International and consisting of 1.67407 x 10° triangles. Like the agent cube
and Donkey Car objects in CubeTrack and DonkeyTrack, the AUV in SWiMM DEEPeR
displays realistic Netwonian physics through the use of a Rigidbody component, meaning
the object responds to the effects of gravity, friction and other external forces. Setting the
Rigidbody coefficients dictate the degree to which game objects are affected by these forces.
The mass component was set to 1.4kg to match the weight of the real vehicle, provided in
the vehicle’s specification (BlueRobotics, 2022). As mentioned, realistic modelling of water
drag and other hydrodynamic forces is reserved for future work. Reference was also made
to the vehicle’s specification when setting the attributes of the simulated camera, allowing

for realistic camera rendering (sensor size, focal length etc). To avoid unnecessary complex

72 Game Engines as a Platform for Simulated Learning Environments

Heave (w) [+Y]

K1) Yaw ()

roll (p)
Fig. 3.8 BlueROV?2 with labelled motion axes.

physics calculations, the AUV is given a ‘Box Collider’ component using the exact measure-
ments from the vehicle specification. The simple box shape provides a rough approximation
of the collision bounds of the complex mesh. It also guides the positioning of the ‘float’

objects included for buoyancy distribution.

Movement of the real BlueROV2 is achieved using fixed-position thrusters with both clock-
wise and counterclockwise propellers. Figure 3.9a provides an illustration of the BlueROV2’s
default 6-thruster vectored configuration. This standard configuration is unable to modify
pitch and roll (von Benzon et al., 2022). The simulation stays true to this, offering four
degrees of freedom: surge, sway, heave and yaw (see Figure 3.8). With the real vehicle,
control signals are received from a joystick controller (see Figure 3.9b). These signals are
sent from the joystick to a laptop, and from the laptop to the vehicle’s onboard Raspberry Pi3,
via the vehicle’s tether. On the Raspberry Pi, commands are forwarded to the vehicle’s Pix-
hawk Flight Controller across a UDP client/server connection, using the MAVLink protocol
and Python library Pymavlink (Robotics, 2023). Here, the software ArduPilot (specifically,
ArduSub) (ArduPilot, 2010) translates the signals into appropriate values for the individual
thrusters. The ArduPilot project has nearly 400 contributors, and incorporates extremely
sophisticated physics models to support features such as stabilisation. It would therefore
make sense, when transferring the learnt behavioural policy to the real vehicle, to continue
to utilise this software i.e. to take the outputs of the trained policy network (stored on the
Raspberry Pi) and send them to the Pixhawk. This requires the RL agent to learn how to
select the appropriate joystick signal, not how to select the appropriate actuator signal per

3.5 SWiMM DEEPeR 73

(52 R
’//A A

(a) BlueROV?2 default thruster configura- (b) Xbox joystick controller for
tion. BlueROV2.

Fig. 3.9 BlueROV?2 specifications.

thruster. For this reason, SWiMM DEEPeR does not need to simulate the individual thrusters,
it need only simulate the resulting force and direction.

Dolphin modelling

The selected dolphin model is designed by Junnichi Suko’. This model consists of 3.5 x 10°
triangles, and includes a rigged skeleton and pseudo-realistic animation patterns (see Figure
3.10). More expensive assets with higher visual fidelity were available, but these exploited
the HDRP Unity rendering pipeline which does not have shader backward compatibility with
the Unity built-in pipeline, which benefits from low graphical requirements. A simple Finite
State Machine (FSM) is used to simulate pseudo-realistic dolphin movement. Similar to
the target cube in CubeTrack, the dolphin moves toward an invisible waypoint, randomly
generated within a threshold distance from the dolphin. Once the waypoint is reached, a new
waypoint is generated. The dolphin model also uses a simulated FOV via cosine calculations
with a threshold distance. If an object is detected within the FOV, the dolphin will soar above
it, simulating realistic collision avoidance behaviour (when working with greater than two
dimensions of control). A collision volume is included for when object contact still occurs.
By giving the dolphin a collision volume but not a Rigidbody component, suitable movement
and collision detection can be achieved without the computational expense that physical
simulation incurs.

"https://junichistamesi.wixsite.com/my-personal-site

https://junichistamesi.wixsite.com/my-personal-site

74 Game Engines as a Platform for Simulated Learning Environments

Fig. 3.10 Common bottlenose dolphin (Tursiops truncatus) model.

Configurability

Central to the design philosophy of SWiMM DEEPeR is server-side configuration. The
gym-donkeycar package offers this to an extent, with the ability to configure the car object
(body shape, colour, and floating player name) and onboard camera (resolution, encoding,
FOV, offset, rotation etc.) by passing a dictionary variable of configuration options to the
environment constructor. For anything outside of this (for example, changing the second car
to spawn out in front rather than on the left), it was necessary to edit the Unity project directly
and rebuild the application. This was difficult for someone outside the project development
team, and particularly for a machine learning engineer with limited game development expe-
rience. With this in mind, SWiMM DEEPeR places a real focus on flexibility and data-driven

design.

In SWiMM DEEPeR, the repository includes a single JSON file, populated with a default
configuration for the user to edit. To aid reproducibility, the full configuration file is provided
in Appendix A, showing the configuration used for the training run referenced in results
Section 5.4. In terms of the AUV, it is possible to configure the motor, the camera, and the
vehicle rig. Motor configuration includes stability force and stability threshold, linear thrust
power and angular thrust power (force multipliers). Camera configuration includes resolution,
sensor width, sensor height, and focal length. Configuration of the vehicle rig equates to
configuration of the game object’s mass, simulating the ability to add ballast weights to the

rig of the real vehicle.

In terms of the dolphin target object, it is possible to set the minimum and maximum speed,
the size of the dolphin, and the rotation offset. Booleans are provided for randomised
movement (as opposed to straight), randomised starting positions, and spawning out in front
of the vehicle. Individual waypoint axes (x,y,z) can be turned on or off, making it possible
to limit the dolphin’s movement to a single plane. In preparation for multi-object tracking

support, target object spawning is highly configurable, with the user being able to set the

3.5 SWiMM DEEPeR 75

spawn timer, the spawn container ratio, the spawn radius, the maximum number of dolphins
that can spawn at any one time, and the maximum number of dolphins that can exist in the

world.

3.5.2 Communication

The communication framework in SWiMM DEEPeR takes inspiration from the project
gym-donkeycar. It provides the same asynchronous (separate to the main thread) bidi-
rectional communication, using a client-server paradigm and TCP as the chosen protocol.
However, rather than allow for continuous communication, message passing is more strictly
controlled (see Figure 3.11). Inspired by the uni-directional RL cycle, the client/server awaits
a message from the other before sending a response. The cost of this is a reduction in step
rate. The client cannot proceed with camera rendering, for example, until it has received an
action, as opposed to the data sitting in a queue ready to go. The benefit, however, is that
it guarantees observation/action handshakes i.e. the correct association between action and
next observation. The strict design reduces network throughput and eliminates any risk of
the server receiving a ‘stale’ observation, because the only time the client can send data is
when it has received an action. The Python (server) side code for this communication cycle
can be found in the SWiMM DEEPeR repository ¢ at 8. The Unity (client) side code for this

communication cycle can be found in the SiM DEEPeR repository © at °.

Connectionless protocols (such as UDP) provide a faster communication channel but do not
offer the same data integrity guarantees. UDP was considered as an additional configurable
option for the user to select when training on a local machine, given that in this scenario
datagram loss or disordering would be much less likely. However, UDP is bottlenecked by
the maximum datagram size (1500 bytes) supported on the physical layer (ethernet) and
is therefore not able to send the amount of data required by this application; even very
small images quickly exceed this threshold. Messages could be de(re)constructed across the
network, however this process is costly and, at least in this context, there would need to be a
re-request of datagrams if any message parts were lost (which is essentially what TCP does,

very efficiently).

8gym_underwater/sim_comms.py
9 Assets/Scripts/Network/Server.cs

76 Game Engines as a Platform for Simulated Learning Environments

Unity Client

Main Thread

e iR R ey

P Pt
77 N i N
{_ bind sock " acc conn
S~ < S

~ ~.

\/ bind sock
~.

-

_

-
req conn

N\ L
AN

\\\\\ > 1

~— e ——

N

Sub-thread (Threaded)

Main Thread

Python Server

Fig. 3.11 Illustration of communication network. Red areas indicate busy waits, where the
client(server) await data from each other, while blue indicates internal waits, where data is
not sent until the internal conditions are met. Orange areas are required by TCP protocol.

3.5.3 Environment
Observations

In SWiMM DEEPeR there are three observation spaces: state vectors, feature vectors, and
image observations. As in CubeTrack, there is the option to use vector observations of ground
truth state information from Unity. Specifically, this is a 12-element vector containing the {x,
v, z} values of the AUV’s position and forward vector, along with the same six values for
the target object. Providing a state vector observation space facilitates environment and/or
algorithm testing. As in DonkeyTrack, there is the option to use feature vector observations
output from a trained autoencoder, the length of which is dictated by the number of learnt
feature dimensions. Finally, there is the option to use image observations (8-bit pixel values),
either at the resolution sent from the client, or with additional server-side scaling.

Both the Unity camera resolution and the resolution output by the server-side scaling are
configurable. When using feature vector observations, images need to be passed to the
encoder with the same dimensions used during training (for example, 64 x 64 for the models
reported in Chapter 4). However, the real vehicle’s low-light HD USB camera is 1920 x 1080
(BlueRobotics, 2023). One approach would be to set the Unity ‘Camera’ component’s

‘physical camera’ attribute to have the same focal length and sensor size as the real camera,

3.5 SWiMM DEEPeR 77

and then scale the raw simulated images to the necessary encoder size within the Python
application. This would exactly mirror the process on the real system. The problem is that
simulation-based training requires data transfer across a TCP communication channel, and
the larger the image the slower this transfer, significantly lengthening the already large wall
clock time of training runs. Two experiments were conducted to compare a) client-side
scaling versus server-side scaling, and b) rendering size. Both experiments utilise the cosine

similarity metric for assessing the similarity (.#’) between two images:

= TR =
Il \/):?:1‘452\/):?:13;'2

Each pixel tuple is scaled between O and 1, and the metric ensures that each resulting score is

& =cos(0)

normalised between 0 and 1, thus providing a percentage-based score that is easily compara-
ble.

The first experiment revealed that, regardless of whether camera frames are resized client side
or server side, the resulting images are near identical. At the time of running the experiment,
a training and test dataset of example camera images had been rendered from the simulated
AUV’s onboard camera with a fully automated data collection script, ready for autoencoder
training and testing in Chapter 4. This data collection script ensures uniformly distributed
target poses (see Section 4.3.1). For this experiment, 1,000 images were randomly sampled
from the test dataset. Images were resized from the simulated camera resolution (640 x 360)
to the required encoder resolution (64 x 64) with two different methods — quad rendering
on the client side, and interpolation techniques on the server side. Then, for each of the
1,000 images, the cosine similarity was calculated between the two resized outputs, using
equation 3.1. Mean similarity was 99.998%. To ensure that this high degree of similarity was
independent of starting resolution, the data collection script was re-ran, rendering images
at 1920 x 1080 (the resolution of the inbuilt camera on the real vehicle). Again, 1,000
images were randomly sampled from the test dataset and resized to 64 x 64 with the two
resizing methods. Mean cosine similarity was 99.997%. The conclusion was that, whilst the
real system will need to perform resizing with Python on the vehicle’s onboard computing
device, for simulation-based training resizing can be done client side with Unity, minimising

throughput across the network.

The second experiment revealed that the efficiency of simulation-based training can be
further improved by rendering the low resolution directly, as opposed to resizing. The data

collection script was modified to render the camera at three different resolutions with each

78 Game Engines as a Platform for Simulated Learning Environments

change to the target pose. This resulted in three training datasets and three test datasets, at
the resolutions 1920 x 1080, 640 x 360 and 64 x 64. Image files were named numerically
according to the order of collection, and so it was possible to randomly sample 1,000 images
from one of the test datasets and then select the counterpart images from the remaining two
test datasets. This ensured that the only difference across the three sets of 1,000 images
was the resolution. Images rendered at 1920 x 1080 and 640 x 360 were resized to 64 x 64
with quad rendering on the client side. For both resized image sets, the cosine similarity
was calculated between the resized image and the same image rendered at 64 x 64. Mean
similarity was 99.286% with images resized from 1920 x 1080, and 99.289% with images
resized from 640 x 360. The conclusion was that, whilst resizing will be necessary on the
real system, for simulation-based training resizing can be avoided altogether. Rendering at a
larger resolution requires greater computational power and therefore, since the results suggest
that the comparative loss is negligible, it is preferable to directly render the low resolution.

Actions

The full action space is implemented as a five-part continuous action space. The first
four actions correspond with the vehicle’s four degrees of freedom given a default thruster
configuration {x, y, z, r}, (x,y,z,r € [—1,1]), as illustrated in Figure 3.8. x,y,z represent
linear force along the AUV’s axis (i.e. lateral thrust or sway, vertical thrust or heave, and
forward thrust or surge), and r represents proportional angular force around the AUV’s y
axis (i.e. yaw). The fifth action, d, is used to determine the AUV’s ‘depth hold’ mode, Me,

according to

true, if d > 0.5 and M? # true

M,d:() = true, Mth =
false, ifd < 0.5 and M¢ # false

The first term means that the simulation always loads with depth hold switched on. The
second term means that depth hold mode is switched off when it is on and the value of d
received from the server is less than 0.5, and it is switched on when it is not already on, and
d is 0.5 or greater.

A 5D continuous action space presents a much greater challenge than the previous two
environments, therefore SWiMM DEEPeR facilitates curriculum learning by making the
number of control dimensions configurable. For example, if 2D is selected, then 7 will

output values for z and r with all other values forced to zero. In this scenario, the user can

3.6 Summary 79

also limit the movement of the target to the y plane.

There is also greater consideration of ~ow an action is implemented client-side. Real-time
game simulations have core game logic running upwards of 60Hz, with physics operating at
an even higher rate. Therefore, the communication network will always operate at a lower
frequency than the simulation, since observations can only be sent at most once a frame. As
the Unity client operates at a much higher frequency, we provide different behaviours for

how to infer action messages:

* maintain (default). Persists between frames. Upon receiving the next action, the

previous is overridden.

* onReceive. Enacted for one physics tick only. No actions are applied until another

message is received.

* freeze. Enabled for one physics tick. Upon sending an observation, the physics engine

18 frozen until the next action is received.

* freezeMaintain (hybrid). A combination of the above. Each action persists for
the frames between receiving an action and sending an observation, upon which the

physics engine is frozen.

3.6 Summary

This chapter has introduced three novel data generation environments for using deep rein-
forcement learning to solve the problem of visual active tracking. CubeTrack offers a typical
toy environment in the style of ML-Agents, DonkeyTrack offers a slightly more complex (but
still low realism) racing car environment, and SWiMM DEEPeR offers a pseudo-realistic
open ocean environment concentrated on the very specific problem of BlueROV?2 control and
cetacean filming. All three are a combination of a Unity application generating the data, and
a Python application running the DRL algorithm. In addition, all three adopt a client-server
architecture, with Unity as the client and Python as the server. In CubeTrack, aspects of the
Gym environment such as the reward function sit client-side and server communication is
handled by ML-Agents using gRPC. In DonkeyTrack and SWiMM DEEPeR, the entire Gym
wrapper implementation sits server side, receiving raw game data from the client using TCP.
In CubeTrack the action space is discrete and observations can be either image observations
(i.e. camera frames) or ground truth, task-relevant state information such as positions and

headings. In DonkeyTrack and SWiMM DEEPeR the action space is continuous, and there is

80 Game Engines as a Platform for Simulated Learning Environments

the additional option to use feature vector observations, integrating the autoencoder described
in the next chapter as a preprocessing module for received image data. As a ground vehi-
cle, DonkeyTrack addresses two-dimensional control, whereas SWiMM DEEPeR supports
an action space of anywhere up to five dimensions. In Chapter 5, the suitability of these

environments for agent training is demonstrated.

Chapter 4

Learning Task-Relevant Features from
Image Data

4.1 Introduction

When machine learning algorithms take image data as input, the image is received as a matrix
of pixel values per colour channel. The dimensionality of the data is therefore very high
and directly related to the camera resolution. For example, the BlueROV2 camera has a
resolution of 1920 x 1080, producing 6,220,800 pixel values for the algorithm to work with
per data sample. Whilst DRL algorithms like DQN have demonstrated the ability to learn
directly from pixel data (e.g. Mnih et al. (2015)), image-based DRL is notoriously difficult,
requiring millions of training examples to solve a given task. In Section 2.4, this problem of
sample inefficiency cropped up numerous times. For example, recall how off-policy learning
improves sample inefficiency with the introduction of a replay buffer and the data re-use that
this affords. Rather than tackle sample inefficiency from within the algorithm, this chapter
takes one step back and looks at how to improve what is passed in to the algorithm.

Referring back to the RL terminology introduced in Section 2.3.1, the subtle distinction
was made between the state of the environment (a complete description of the environment
at a given time step), and an observation of the environment (what information the agent
receives). Despite a camera frame constituting what is known as a ‘partial observation’ (the
agent is not privy to all of the possible information available on the state), it is likely to have
much higher dimensionality than the state it represents, for example, a position vector or
velocity. This implies that the observation carries a lot of redundant information, requiring
the DRL algorithm to filter out the task-relevant sensory information in order to make good

82 Learning Task-Relevant Features from Image Data

decisions. The policy network therefore has a dual task: mapping the observation to the
underlying state, and then mapping the state prediction to an action prediction. Both of these
tasks are highly complex tasks in and of themselves, for example, state estimation requires
basic perceptual skills (the detection of edges, textures, shapes etc.) ahead of anything else.
Therefore the dual-task is a big ask of what is typically a very shallow model when it comes
to DRL policy networks. As has been discussed, DRL is notoriously data hungry, requiring
a magnitude greater amount of data than supervised learning to converge. This presents
a problem when training large networks with many parameters (Deisenroth et al., 2013),
therefore it is common to opt for a policy network only two to three layers deep (see the
default policies offered by Stable Baselines (Hill et al., 2018b)) so as not to have too large an
optimisation space for the algorithm to have to explore with only indirect supervision. One
way to remove some of the strain on the shallow policy network is to decouple representation
learning (those more basic perceptual skills) from policy learning.

4.2 Related Work

A seminal paper on this approach from David Ha and Jiirgen Schmidhuber (2018) likens
this decoupling to the way in which the human brain uses internal models, built on prior
experience, to help handle vast amounts of incoming sensory information. By separating
out the two tasks, the first can be assigned to a neural network sufficiently large for learning
rich spatial (and potentially temporal) representations, whilst the second can be assigned to a
neural network sufficiently small for the credit assignment problem (learning the value of
states and actions through experience). A smaller policy network means fewer parameters,
reducing the search space for the policy optimisation algorithm, and a lower dimensional
observation creates a smaller observation space, reducing the amount of required exploration
and interpolation across unseen states. Furthermore, abstract representations can help to-
ward a degree of invariance to perceptual variability, producing a policy that is more robust
and able to generalise beyond the conditions of training. This is particularly important for
simulation-trained policies intended for sim-to-real transfer. The hope would be that whilst
the two domains present a large gap in raw data space, the gap is reduced or entirely closed

in feature space.

The Ha and Schmidhuber ‘World Models’ paper presents an 8-layer ConvVAE as a ‘vision
module’ for preprocessing data prior to reaching the policy network. Variational autoencoders
were introduced in Sections 2.2.1 and 2.2.2. Another good example of autoencoder pre-

processing is provided by Mattner et al. (2012), who demonstrate competitive performance

4.2 Related Work 83

against an RL controller fed motor sensor data, in a real-world setup of the popular inverted
pendulum task. Of particular relevance, a VAE has also been applied to the gym-donkeycar
environment, on which the DonkeyTrack environment from Chapter 3 is based. This un-
published work is presented in the Medium article ‘Learning to Drive Smoothly in Minutes’
(2019). The author, Antonin Raffin, describes training a 64-dimensional version of the ‘World
Models’ VAE implementation on 10,000 images collected from the simulated car’s onboard
camera, whilst running the SD Sandbox simulation in manual control mode. The trained
VAE is then paired with SAC to achieve a high performing track racing policy in under 20

minutes.

All of these examples perform representation learning with a VAE, as is proposed here.
These related works also provide examples of learning representations for the purpose of
a downstream control task, as is proposed here. One limitation of this approach is that
autoencoders are traditionally trained in an unsupervised manner, and as such, there is no
control over what features are learnt, nor is it easy to interpret what has been learnt. It is
therefore not guaranteed that the model will encode all of the information actually relevant
to the downstream control task, or at least not without using a wide enough net (i.e. a
large enough latent space), compromising on the benefits of dimensionality reduction. To
address this limitation, the proposed solution utilises a specific type of representation learning
referred to as state representation learning.

4.2.1 State representation learning

When representation learning and policy learning are not decoupled and the RL model is
fed raw sensory data, the implicit process of feature learning performed by the RL model
is supported by context-relevant feedback, i.e. the next state and reward issued by the envi-
ronment. Explicit feature learning (as is the case when representation and policy learning
are decoupled) can also be framed in this way, giving birth to an area of research commonly
referred to as ‘state representation learning’.

According to a review of the field, “state representation learning (SRL) focuses on a particular
kind of representation learning where learned features are in low dimension, evolve through
time, and are influenced by actions of an agent” (Lesort et al., 2018, p. 1). That is, rather than
solely compress the observation, the idea is to learn a mapping from the observation to the
underlying state. Bohmer et al. (2015) lay out some criteria for a good state representation,
including being able to represent the true state well enough for policy improvement, allowing

the value function approximation to generalise to unseen states, being low dimensional for

84 Learning Task-Relevant Features from Image Data

efficient estimation, and carrying the Markov property (all of the necessary information can
be obtained from the representation of the current state, without looking at previous states).
Some of these are a reframing of desirable characteristics for representations in general. For
example, good support for value interpolation will come from a latent space which is smooth
and continuous.

The review by Lesort et al. and a paper from Raffin et al. (2018) introducing the ‘S-RL
Toolbox’ both provide a good overview of common approaches to SRL, including forward
models, inverse models, and learning using generic priors. Many of these approaches can be
implemented to involve an autoencoder, but in some way or other utilise system dynamics to
constrain the learnt latent space. For example, given observation o;, the encoding z; can be
used in combination with action g, to predict Z;11, which is then remapped onto the pixel
space to give 0,1 1. This is referred to as a forward dynamics model given the prediction of a
future state. The prediction 6,1 is then compared to o, 1 and the pixel-wise error backprop-
agated through the entire model. The prediction, otherwise referred to as a transition, from
Z; to Z;41 can either be fixed or parameterised (i.e. learnt). It can also be constrained, with
many implementations opting for a simple linear constraint of the form W xz; + U xa; +V
(Goroshin et al., 2015; Van Hoof et al., 2016; Watter et al., 2015). An inverse dynamics model
is then the reverse, predicting a; from encoded observations z; and z;41. Shelhamer et al.
(2016) use the error between d; and a, as an auxiliary loss function within the policy gradients
algorithm Asynchronous Advantage Actor Critic (A3C), for example. Many examples also
exist of using a forward model and inverse model in combination (Agrawal et al., 2016;
Duan, 2017; Zhang et al., 2018), including the well-known Inverse Curiosity Module (ICM)
(Pathak et al., 2017).

A commonality between the methods discussed above is the reliance on action a;. This poses
several limitations. The first is the requirement to learn representations online, meaning the
distribution of features is changing over time, adding yet another non-stationarity which
could introduce instability into policy training. Secondly, if the autoencoder (or other feature
learning model) is large and therefore slow to train, it would be preferable to train this model
just once, offline, rather than train this model again and again across the potentially large num-
ber of RL training runs demanded by reward engineering and hyperparameter tuning. Thirdly,
constraining feature learning with a;, only ensures that controllable elements of the environ-
ment are represented. The position of a target object, for example, may not be encoded, since
the agent cannot directly act on it (Raffin et al., 2019). Clearly this would be an issue for VAT.

4.2 Related Work 85

A huge benefit of training in simulation, as has already been mentioned, is the easy access
to state information. With access to true state s;, it is possible to take more of a supervised
learning approach to SRL. A great example of this is a 2020 paper from Bonatti et al. on
learning representations for aerial navigation. Interestingly, although the authors reference
many of the seminal papers in the field, they choose not to use the term SRL and instead
describe the approach as ‘cross-modal’, in line with a series of works using the same termi-
nology (Aytar et al., 2017; Erin Liong et al., 2017; Ngiam et al., 2011; Spurr et al., 2018).
This simple and elegant approach supports learning a regularised and task-relevant feature
space fully offline. Bonatti et al. then take the encoder network from this trained autoencoder

and use it in combination with imitation learning in order to achieve aerial navigation.

In this thesis, the reproducability of this approach is tested, applying the method to two new
environments, DonkeyTrack and SWiMM DEEPeR. More importantly, the method is applied
to the challenging problem space of VAT for the first time, in a new framework which utilises
the constrained encoder network as a pre-processing module in front of DRL algorithm SAC.
To the best of the authors knowledge, this is a novel solution which we refer to as T2FO
(tracking with task-relevant feature observations). The next section provides a more detailed

review of the original approach before presenting the methodology used here.

4.2.2 The ‘cross-modal’ approach

In Bonatti et al.’s cross-modal approach, training data is made up of two separate modalities:
1) raw camera data, sometimes referred to as the unsupervised data, and 2) a four-part vector
of system states, collectively referred to as the ‘pose’ and sometimes as the supervised data.
Specifically, the pose is the spherical coordinates and yaw of a large, red square on stilts,
referred to as a gate. A series of these gates provides goals through which a drone must
navigate. Different to the work presented in this thesis, Bonatti et al. opt for imitation
learning from expert trajectories (human control) as their control method, but similarly adopt
a sim-to-real approach, mastering the perception-control task entirely in simulation before
attempting to transfer the learnt policy to a real-world set up of the same task. Prior to any
policy learning however, the authors propose a method of offline representation learning,
using the two data modalities, a VAE, and a number of MLPs, in a framework initially
proposed by Spurr et al. (2018) in the context of hand pose estimation. The authors refer
to the solution as a cross-modal VAE (CM-VAE), but essentially the proposed model is a
constrained VAE.

86 Learning Task-Relevant Features from Image Data

As with a vanilla VAE, images are encoded into a 1 x 2N vector of means and standard
deviations, producing N normal univariate Gaussians, one per feature channel. A value can
be sampled from each distribution to give latent vector z. Before passing the full vector to the
image decoder, the first, second, third and fourth element of z are also passed, individually,
to four small MLPs, each tasked with predicting one of the four system states. Predictions
are compared to the ground truth value for each variable, producing four MSE loss values.
These values are summed with the regular MSE and KL divergence term from comparing
the image reconstruction with the input image. The sum provides a total loss value for the

sample on which to compute and apply gradients.

The results show very clearly how the first four dimensions of the feature space represent the
system variables they were allocated to predict (see Figure 4.1). The authors demonstrate this
by singling out a feature dimension (i.e. setting all other features to zero) and decoding the
feature at regular intervals. The decoded images of the red gates vary in size along the first
dimension, horizontal offset along the second, vertical offset along the third, and rotation
along the fourth, depicting a successful encoding of distance, azimuth, zenith, and yaw re-
spectively. The remaining dimensions are much more abstract and it is difficult to understand
what is being represented, as is often the case for all dimensions when using an unconstrained
model. The authors describe the framework as providing implicit regularisation of the latent

space, with the multi-task objective forcing the disentanglement of the first four elements of z.

Importantly, the control policy fed feature vectors from this regularised latent space was the
best performing control policy. It markedly outperformed both the control policy fed feature
vectors from the unregularised VAE, and the control policy fed raw images. It even slightly
outperformed the control policy fed system state estimates produced by a direct regression
model. In the real world, the control policy fed feature vectors from the regularised latent
space achieved over three times the performance of the control policy fed state estimates
from the regression model. The former was also stress-tested for transferability, with the
authors evaluating the policy on unseen track configurations, in strong winds, in snow, and
in scenarios of extreme visual variation to the simulated world in which it was trained (for
example, a striped floor). The drone was still able to achieve over 1km of autonomous
flight, demonstrating how regularisation can prevent the encoder from overfitting to the
simulated data. The vanilla VAE and end-to-end policies are not reported on in the real-world
setting, possibly because the lower level of performance in the simulation made it unsafe or

unfeasible to evaluate in the real setting.

4.3 Methodology 87

a) CM-VAE with latent space constraints (z,,,,)

|9=======h===l

.wﬂiiﬁﬁﬂiil
i e s s e e el

Al il
s s s i s e 5 S SR 2 3
ST e
e e s e e e i I N O
e T T

Fig. 4.1 Constrained latent space visualisation, from Bonatti et al. (2020).

4.3 Methodology

By far the greatest adaptation to the method presented by Bonatti et al. is the way in
which this thesis utilises the encoder network post-training, using it to encode raw image
observations of the DRL learning environment to task-relevant feature observations (the
novel framework T2FO). However, the focus of this chapter is on the autonecoder training
itself, reserving the wider framework for Chapter 5. In terms of the autoencoder training, the
Bonatti et al. method required some modifications. A minor modification involved reducing
the four-part system state vector to length three, since the ground vehicle in DonkeyTrack
need not consider zenith (elevation), and AUV control in SWiMM DEEPeR was restricted
to horizontal movement (reducing the problem complexity in the first instance). A much
greater degree of modification came from a requirement to translate the Bonatti codebase
from TensorFlow 2 to TensorFlow 1, so that the saved encoder network was compatible
with the DRL policy and value networks and could be used in one unified framework; these
networks utilise the widely used, well maintained DRL library Stable Baselines,available
only in TensorFlow 1 or PyTorch at the time of writing. This migration was non-trivial, since

88 Learning Task-Relevant Features from Image Data

the library underwent a dramatic reinvention to meet the growing demand for higher-level
programming. Changes included tight integration of Keras, default Eager execution, and
Pythonic function execution. Migrating version 1 to 2 is supported by TensorFlow with
the provision of automated scripts, however the reverse had to be coded manually. At the
time of implementing, the SWiMM DEEPeR environment had not yet been developed,
therefore Chapter 4 is largely in the context of the DonkeyTrack environment. Once the
SWiMM DEEPeR environment was ready, the methodology reported here was replicated.
Any differences are highlighted in Section 4.3.3 and the results are provided in Section 4.4.2.

4.3.1 Data collection for VAE training

The models described in the following section were trained on a novel synthetic dataset of
300K labelled images generated for this research. Images, here, are frames rendered from the
simulated agent car’s onboard FPV camera. Labels constitute a vector of three system state
values: radial distance r, azimuth 6, and yaw y. These three values were used to describe the
location and rotation of the target car relative to the agent car. The variables r and 6 together
make up the polar coordinates of the target car when treating the agent car as the origin. The
variable v is then the rotation, in degrees, around the vertical axis, treating the yaw of the
agent car as zero. The synthetic nature of the data afforded a high level of control over data
collection. Initially, data was collected by driving the car manually with a ‘teleoperation’
script pulled from the Raffin and Sokolkov (2019) repository (originally implemented within
the Rodriguez and Raffin (2018) repository). However, it soon became apparent that not only
did this demand significant time and effort, it was also not the best way to generate a well
balanced dataset.

Inspired by the Bonatti et al. codebase, data generation was then fully automated. The
process was to first move the agent car to a random position and rotation in the simulation,
and then move the target car, keeping the target within the agent’s FOV. Once both cars were
in place, the next step was to render the agent car’s camera, save out the resulting image,
and write the value for r, 0 and y to a new row in the CSV file. Image files were given a
numeric filename from 1 to 300K in sequential order, such that the filename matched the row
number of the CSV file. Since the image was rendered from the agent car’s FPV camera,
it would have been possible to hold the agent car stationary and only move the target car,
however changing the position and rotation of the agent car relative to the simulated light
source introduced variation in shadows. This was important to simulate given that shadow
variation would be present in real-world data. Algorithm 2 provides more detail on how this
automated data collection process was realised. The code can be found in the DonkeyTrack

4.3 Methodology 89

repository # in the file ‘image_gen.py’ at the root of the repository.

Selecting the range for r was experimental. A distance any smaller than 5 caused the cars
to collide and be thrown into the air, producing a poor quality image. A distance of 30 was
considered the maximum distance at which the target was still reasonably discernible in the
image. As explained in Section 3.4.3, images sent from Unity were cropped, reducing the
raw image height by one third. This is because the top third of the image is entirely sykbox
and therefore redundant information. Generating a folder of 300K images, along with a 300k
row CSV file, took approximately 42 hours wall-clock time on a Thinkpad T480s laptop with
an Intel Core 17-8550U processor (4 cores, 8 threads). Whilst this is still a long runtime,
no human effort was required beyond launching the script. In addition, the use of random

sampling produced a balanced dataset, i.e. each state variable is uniformly distributed.

4.3.2 Feature learning

Feature learning within the cross-modal framework involved five DNNs: one image encoder
network, one image decoder network, and three MLPs, one for each of r, 8 and y. This
was one fewer than the Bonatti et al. paper, since the three dimensional nature of aerial
navigation involved the prediction of an additional state, zenith ¢ (elevation). The three
networks allocated to state prediction were three instances of the same small network of two
dense layers. The image decoder was also simplistic, made up of six transpose convolutional
layers. The biggest network was afforded to image encoding (see Figure 4.2), using the
8-layer ResNet (He et al., 2016) architecture presented as ‘Dronet’ by Loquercio et al. (2018).
Further details on all five models can be found in Tables 1 - 3 of Appendix B.1.

For training, the same hyperparameters were transferred across from the Bonatti et al. reposi-
tory: batch size 32, B = 8.0, and an initial learning rate of 10~%, optimised using the ‘Adam’
optimisation method (Kingma Diederik and Adam, 2014). The f value here represents the
multiplier used in the loss function to control the weighting of the KL divergence term. The
number of features (i.e. length of latent vector z) was set to 10, the same as the Bonatti et al.
repository, but the number of epochs was reduced from 50 to 30, having seen the loss curve
begin to plateau from as early as 10 epochs. Given the results were comparable with those

reported in the Bonatti et al. paper, no hyperparameter tuning was deemed necessary.

The 300K dataset was randomly split into 90% training data and 10% validation data using
the Scipy package and a seed of 42. The TensorFlow API tf.data.Dataset was used to
support the input pipeline. The dataset object was populated both with the state data from

90

Learning Task-Relevant Features from Image Data

Algorithm 2 Automated data collection pseudocode.

1

2:

10:

11:

12:
13:

14:

for i in N, where N is the number of samples to collect do

Randomly sample Cartesian coordinates x4 and y,4, for agent position, where x4 €
[—30,30] and y4 € [—30,30].

Randomly sample the yaw (in degrees), Yy, for agent rotation around vertical z-axis,
where yy € [—90,90].

Express rotation [yy,0,0] as Euler angles, and then as Quaternion (Q%, @, 03, O%).

Send the agent’s Cartesian coordinates and Quaternion rotation to Unity.

Randomly sample radial distance, r, and relative azimuth, 6, where r € [5,30] and
Ok € [—0o, &], and where

90 x 0.7
o=

2
=315.

> Note: the numerator is the simulated camera’s FOV multiplied by a value less
than one to account for the fact that the FOV is a cone, not a square.
Calculate the target’s Cartesian coordinates, xg and yg, relative to the agent, using
r and O as the distance and angle (in radians) in a polar coordinate system with the
agent’s position as the origin.

T
9—5+9R

xXgr =1 % cos(0)

yr =r xsin(0).

> Note: azimuth is measured from the x-axis but the onboard camera points down
the y-axis, .". /2 + O indicates the target azimuth is w.r.t the agent’s facing direction.
Relative height zz = 0.
Translate the target’s relative coordinates to world coordinates (xr,yr,zr) with

(X7, y7,21) = [*A,Y4,24) + R(XR, YR, ZR)

where R(-) applies a rotation to the given Cartesian coordinates, and the rotation is the
inverse of (0%, 0,05, 0%).

Randomly sample the yaw (in degrees), Wg, for the target relative to y,, where
yr € [—90,90].

Calculate the yaw, yr, for the target according to Wyr = Yy + Wg and express the
rotation [yr,0,0] as Euler angles, and then as Quaternion (Q}, QyT7 7, OF).

Send the target car’s Cartesian coordinates and Quaternion rotation to Unity.

Request Unity to render agent’s onboard camera and send image over the network.

Write r, Og, Y to file to provide ground truth labels for target’s radial distance,
azimuth and yaw. Since Or was used in the context of a polar coordinate system, it
represents an angle in radians and is converted to degrees before writing to file.
end for

4.3 Methodology 91

< 64 32 nz*2
~—>@ﬁ -
fcl fc2 fc3

flatten

’ -"'-, :_..-' p
Ixlconv,32,/2 = < 1x1conv, 128,/2
1x1 conv, 64, /2

Fig. 4.2 Architecture diagram for the encoder network of the VAE. The architecture of the
decoder is much simpler and does not require a diagram, but is detailed in Appendix B.1

the CSV and with the filepath to each image in the image folder. The large amount of data
meant that a list of image arrays was too large to fit in memory, and so it was necessary to
load images dynamically at runtime. It was therefore important to ensure that filepaths were
ordered numerically by filename and not with character by character lexicographic sorting,
as 1s default with string variables. This ensured that images were paired with their correct
‘label’ i.e. vector of ground truth state variables. All state variable values were normalised to
be in the range [-1, 1]. At runtime, images were scaled down to 64 x 64 and normalised to
be in the range [-1,1]. Each epoch of training was followed by an epoch of validation, with
all loss values logged to Tensorboard. Model weights were saved every five epochs, as well

as at the end of the training run.

Figure 4.3 provides an overview of the data flow per training iteration. As described in
Section 4.2.2, images were first passed through the encoder network, returning a vector of
means and standard deviations describing 10 univariate normal distributions. A random
sample was taken from each distribution to form the 10-part latent vector z, passed as input
to the image decoder. In addition, the first, second and third element of 7 were passed,
individually, to each of the three MLPs. The MSE between model output and ground truth
was then computed in each case — the image reconstruction with the input image, and the state
prediction with the ground truth state data provided by the CSV. A weighted sum provided a
total loss value to pass to the Adam optimiser.

92 Learning Task-Relevant Features from Image Data

Image
Decoder
Image
Encoder /
>4
o — >
™~ State

, \ Decoder

0

Fig. 4.3 Overview of the cross-modal method for learning a constrained VAE. The input is a
64 x 64 image. The output is a reconstruction of the same 64 x 64 image, and a prediction
for target radial distance (r), azimuth (8) and yaw (y).

4.3.3 Reproducing in SWiMM DEEPeR

Feature learning within the SWiMM DEEPeR environment was approached using the same
codebase, retaining the three state dimensions (distance, azimuth, yaw). Although ultimately
the SWiMM DEEPeR environment is intended for training 3D control, within the scope of
this thesis policy learning is reduced to 2D control, training the AUV to follow the dolphin
on a flat invisible y-plane (results reported in Chapter 5). Therefore, it was not necessary to

reintroduce zenith (elevation).

Automated data collection was revisited, implementing the exact same procedure expressed
in Algorithm 2, but with a Unity script (C#) as opposed to a Python script. This second
implementation of automated data collection improves upon the Bonatti et al. (2020) imple-
mentation. Firstly, having the script client side removes the requirement to send messages
across the network, drastically reducing the wall clock time for data collection. Secondly,
wall clock time was reduced further by directly rendering 64 x 64 images, as opposed to ren-
dering and saving out 120 x 120 images and then scaling them to 64 x 64 during autoencoder
training. As discussed in Section 3.5.3, the resulting image is near-identical to rendering a

higher resolution image and then scaling.

Automated data collection in SWiMM DEEPeR also differs with respect to the value ranges
for the state variables. The r range is decreased from [5,30] to [2,20]. This is because r
depends on the size of the world axes and the SWiMM DEEPeR world is much larger. In both
the AirSim and DonkeyTrack environments, relative yaw values are sampled from a range of

4.3 Methodology 93

180° (specifically, [-180,0] in AirSim, and [-90,90] in DonkeyTrack). In SWiMM DEEPeR,
relative yaw values are sampled from a range of 360° (specifically, [-180,180]). For Bonatti
et al., the smaller yaw range is permissible since the object (square red gate) has z+y-axis
symmetry, i.e. it looks identical from the front and back. This is not the case for the car or
dolphin target objects; there is asymmetry of head versus tail, and of bonnet versus bumper.
In DonkeyTrack, this asymmetry is not important, since the target is always driving forward
with only slight changes in direction, and so is only ever viewed from behind. However, in
the application-focused SWiMM DEEPeR environment, this target behaviour was deemed
unrealistic. Given that the dolphin target was controlled Unity side (with dedicated movement
scripting) and not Python side (with random action space sampling), it was possible to have
the dolphin express curiosity in the AUV. Occasionally the dolphin will loop round and
travel directly toward the AUV. This produces front-facing camera images, hence the need to
sample yaw from the full 360° range.

The same hyperparameters were carried across from the DonkeyTrack environment, which
in turn utilised the Bonatti et al. hyperparameters: 10 feature dimensions, batch size 32,
B = 8.0, an initial learning rate of 10~%, and Adam optimisation (seed=31). The number
of training epochs was raised from 30 back to the 50 reported by Bonatti et al.. Training
took 45 hours and 25 minutes on a Razer Blade Pro laptop (Intel Core 17-10875H CPU @
2.30GHz - 5.10 GHz, 64GB DDR4 2933MHz RAM, 265GB disk space).

4.3.4 Domain transfer experiment

In the opening to Section 4.2, it was explained that one benefit of using a feature vector as
an environment observation when training an RL agent is that the feature vector presents
a much more abstract representation of the raw data, providing the agent with a degree of
invariance to perceptual variability. This is of course crucial when taking the sim-to-real
approach to policy training, given the requirement to transfer the learnt policy from one
visual and physical domain to another. Whether or not this claim holds true can be explicitly

investigated prior to any attempt to control the real vehicle with a simulation-trained policy.

When comparing the real world and simulated environments, no matter how good the sim-
ulation, there will always be both a visual and a physical domain gap (hence why the
term domain transfer is used to describe the challenge of performing real-world inference
on a simulation-trained model). With a small enough visual domain gap, a vision-based,
simulation-trained policy will map real world observations to the same action decisions as
(contextually) identical simulated observations. This would address at least half the challenge

94 Learning Task-Relevant Features from Image Data

of successful sim-to-real policy transfer; whether or not the optimal action decision is the
same in both domains depends on the physical domain gap. Ignoring, for now, this latter
problem, an important question becomes: do real world raw image observations map to the
same place in latent space as their simulated raw image counterparts? This section details the
methodology of a proof-of-concept experiment designed to assess whether (and how well)

image encoding closes the visual domain gap.

In order to run this proof-of-concept experiment, a small subset of 42 simulated images were
manually selected from the DonkeyTrack 30,000 image test dataset. Images were selected
such that there was good variation in target distance, azimuth and yaw, as well as variation in
shadow appearance. For each simulated image, a real world mock-up image was collected
using a standard blue RC car as the target car, and the official Donkey Car model purchased
from Robocar Store ! (see Figure 4.4a). The Donkey Car is fitted with a Raspberry Pi 4
and a wide angle Raspberry Pi camera. On a host machine, it is possible to SSH into the
Raspberry Pi, instruct the camera to capture an image, and save to file. With the simulated
image displayed on a tablet for reference, the position and rotation of the blue RC car was
experimented with until the image captured by the Donkey Car’s onboard camera was of
similar likeness (see Figure 4.4b). This process was made slightly more difficult by the wide
angle lens. Images were manually cropped following collection, both to alter the image ratio
from rectangular to square before scaling, and as an easier means of getting the target car the
right distance from the edges of the frame. Once real world data had been collected, both the
real and simulated image sets were passed through the trained VAE. All images were scaled
to 64 x 64 and pixel values were normalised to the range [-1,1] prior to passing through.
State values were not collected given that the model is trained to predict Unity coordinates,

which do not map to real world measurement units in any straightforward way.

A total of four methods were used to assess the similarity of simulated and real encodings.
Firstly, if real world images are being mapped to the same place in latent space, then real
world reconstructions should present the same quality as simulated reconstructions. Secondly,
if real world images are being mapped to the same place in latent space, then real world
state predictions should remain accurate, presenting a similar Mean Absolute Error (MAE).
Since real world state values were not collected, state prediction error for real world image
encodings was calculated using the state values for the associated simulated image as the
ground truth. This introduces somewhat of a limitation — if the simulated and real images

are not identical in terms of properties such as the car-to-image pixel ratio, then any error

Thttps://www.robocarstore.com/

https://www.robocarstore.com/

4.3 Methodology 95

(b) Photograph of the data collection set up.

Fig. 4.4 Collecting real world image data for domain transfer experiment.

in prediction could be attributed to this difference as well as to any difference in encoding.
However, it was still interesting to inspect the model’s performance on this front; even if the
model was not able to accurately predict the value to the nearest unit, for example, would it
at least respect relative distance, azimuth and yaw, i.e. assign a smaller distance value to an
image with the car closer to the camera than another image.

Thirdly, image sets were passed through the encoder network to produce sets of latent vectors.
The Euclidean distance between each latent vector pair was then calculated with

EU(a,b) = /(a1 —b1) + (@ — b2 + ..+ (g — by)? 4.1)

96 Learning Task-Relevant Features from Image Data

where a is the latent vector of the simulated image, and a,, is the value of this latent vector’s
n'" dimension, and where b is the latent vector of the real world image counterpart, and b, is

the value of this latent vector’s n/ dimension. Euclidean similarity is then defined as

1

SimilarityEU (a.b) = 4 E i b))
a,

4.2)

Finally, in order to visualise these distances, the 1 x 10 latent vectors were reduced to
two dimensions with T-distributed stochastic neighbour embedding (t-SNE) — a popular
non-linear dimensionality reduction technique, sometimes referred to as manifold learning
(Van der Maaten and Hinton, 2008). Whereas traditional, linear dimensionality reduction
techniques such as Principal Components Analysis aim to keep embeddings of dissimilar
samples far apart, t-SNE aims to keep embeddings of similar samples close together, which
is more effective for high-dimensional data that lies on or near a low-dimensional, non-linear
manifold. The similarity of two samples, x; and x;, is the conditional probability p(j|i) that
x; would pick x; as its neighbour, if neighbours were picked in proportion to their probability
density under a Gaussian centred at x;. This approach turns out to be better than other
nonlinear dimensionality reduction techniques at creating a single map which captures both
the local structure of the data, and the global structure at many different scales.

4.4 Results

Models were evaluated against a separate 30k dataset, generated with the same automated
script described in Section 4.3.1. Model performance was assessed with the same metrics and
visualisations presented by Bonatti et al., to allow for direct comparison. Firstly, the quality of
the learnt latent space was evaluated via a visual assessment of image reconstructions. Figure
4.5 provides 50 randomly selected input images from the 30K image test dataset described in
section 4.3.1, together with their corresponding reconstructions (decoded outputs). Scanning
the image tiles left to right, starting in the top left corner of the tile grip, image tiles are
presented in pairs, with the input image on the left and the decoded output on the right.

Whilst reconstructions are blurry in comparison to the original image, in every single case the
meaningful content of the image is captured accurately. Both the target car and the shadow
produced by the tracking car is reconstructed in the right position, at the right angle, and

to the right scale, even when the target has an extremely small pixel footprint on the im-

4.4 Results 97

— .
8 240 S
: - - -.--..

™
"!,'

Fig. 4.5 Fifty randomly selected input images from the 30K image test dataset, together
with their corresponding decoded output image. Starting with the top left image tile and
scanning across the row, images are displayed in pairs, with the input image on the left and
the decoded output on the right.

98 Learning Task-Relevant Features from Image Data

Env r [m] 0 [°] v [°]

AirSim (Bonatti et al.) 0.39 + 0.023 2.6 = 0.23 10 £+ 0.75
DonkeyTrack 0.46 +0.003 0.65 = 0.004 12.09 £+ 0.097

Table 4.1 Table of mean absolute error for predicted target car distance (r), azimuth (0) and
yaw () against ground truth values.

age. This qualitative analysis is supplemented with a quantitative analysis of state predictions.

The values in Table 4.1 represent the mean absolute error and standard error for the predicted
distance, azimuth and yaw of the target car. The same results from the Bonatti et al. paper
are presented above for reference (the lowest value across the two environments is in bold).
As can be seen, results are comparable (within 3 units of each other), with a slightly higher
error for distance and yaw, but a lower error for azimuth. As detailed in Section 4.3.2, the
models were trained for 30 epochs and not 50 as in the original paper. It is possible that the
additional 20 epochs would further lower the error for r and y to that reported by Bonatti
et al. but a) the margins are already so small and b) the prediction task is only a secondary
task used for regularisation purposes, and so it was deemed an unnecessary use of compute

resources.

Of arguably greater importance is evidence for the disentanglement of the first three feature
channels. Figure 4.1 (taken from the Bonatti et al. paper) provides a useful visualisation of
the latent space. The same visualisation was generated for the DonkeyTrack data (Figure
4.6a). In this figure, all image tiles are image reconstructions output by the decoder, images
are not presented in pairs as in Figure 4.5. Instead, each row is dedicated to one of the
10 feature channels. Per row, one of the 10 feature channels has a non-zero value and the
remaining nine feature channels are set to zero. Each successive column left to right provides
a decoding of a different value for the feature of interest, starting with -0.02 on the far left
and increasing the value by equal increments up to a value of 0.02 for the image tile on the
far right. It was necessary to experiment with decodings in order to find the appropriate
feature value range, that is, the feature values representing the extremes of the property (e.g.
distance).

The first row represents the feature channel passed as input to the prediction model for
radial distance. As the value for this feature is increased, the decoded image goes from not
containing the target car at all, to containing an increasingly large target car. This feature

therefore successfully encapsulates the concept of target distance. The second row represents

4.4 Results 99

seseeeendbbfe
YT i Il
(a) Mural of learnt latent space decodings, with each row representing a feature from z in isolation

(b) Repeat of third row () but zoomed in, i.e. with z[0] (r) increased from zero to 0.02

Fig. 4.6 Visualisations of the constrained VAE latent space decodings, providing insight into
what the model has learnt and what the model is representing per channel.

the feature channel passed as input to the prediction model for azimuth. Similarly, the
decoded images provide clear evidence for a learnt representation of azimuth. When the
value of this feature is low the target appears on the far right of the image, moving across
to the far left of the image as the value is increased. Both of these channels appear exactly
as they do in the visualisation from the Bonatti et al. paper. The third row of Figure 4.1 is
skipped, since no representation of zenith was learnt. Instead, the third row of Figure 4.6a

100 Learning Task-Relevant Features from Image Data

represents the feature channel passed as input to the prediction model for yaw. This state
variable is harder to discern in Figure 4.6a compared to Figure 4.1 (row 4) because of the
car’s distance and solid shape — the space in the centre of the red gate makes it easier to
appreciate rotation. It can just be made out that the car changes from side-on, to front-on, to
side-on, however Figure 4.6b provides a clearer visualisation of the same feature channel,
but with the ‘distance feature’ (z[0]) turned up. The remaining seven rows represent the
unconstrained feature channels. These channels encode other information deemed relevant
by the model, but it is not clear what features they represent, other than shadow shape and size.

Image, p IMmage,
E ' aeas .- - -
L | - - [P

(a) Synthetic images decoded from latent space interpolation

r 6]
9.8 | 18.8 83.1 1
g g 3
E = =,
3.4 1 —28.0 1 20.5

j,a .[b j,a I,b !;'I I.b

(b) Synthetic state values decoded from latent space interpolation

Fig. 4.7 Visualisations of the constrained VAE latent space interpolation. Image and state
decodings from ten original latent vectors, generated by interpolating between the encoding
for image a and the encoding for image b

4.4 Results 101

Finally, in the brief introduction to variational autoencoders provided in Section 2.2.2, two
desirable qualities were mentioned: completeness (all points in the latent space produce
meaningful decodings) and continuity (two points close together should produce similar
content once decoded). The interpretable first three rows of Figure 4.6a clearly demonstrate
continuity. To further demonstrate the continuity and smoothness of the latent space mani-
folds, two points in the space are selected at random, by randomly selecting two images from
the test dataset and encoding them. The resulting vectors z, and z; are then interpolated to
produce 10 new vectors, by incrementing z, by one tenth of the difference between z, and z,
element wise. Figure 4.7 shows the results of decoding these evenly spaced new points in the
latent space, both in terms of the image reconstruction and the state prediction. The images
and values are described as ‘synthetic’ because there was no input image on which the latent
vectors were based. Both the images and state values transition smoothly from a to b, as they
do in the results presented by Bonatti et al..

4.4.1 Ablation experiment

An ablation study was conducted to properly decipher the contribution of the cross-modal
approach to feature learning. This involved dropping the cross-modal element and training
unconstrained variational autoencoders on the same dataset and with the same hyperparame-
ters. Firstly, an unconstrained variant was implemented using the exact same architecture for
the encoder (the ‘Dronet’ ResNet) and decoder (six transpose convolutional layers) but with
the secondary objective omitted, i.e. latent vector z was passed through the image decoder
but not the state prediction MLPs. The objective function therefore returned to the original
two terms: the reconstruction error and the KL divergence. Image reconstructions produced
by this model were just as accurate as image reconstructions produced by the constrained
VAE, as can be seen by the example reconstructions in Figure 4.8. Again, reconstructions are
blurred but the shape, size, position and rotation of objects is entirely faithful to the input

image.

Figure 4.9 provides an interpolation between the same two images used to produce Figure
4.7a. The two figures are not dissimilar but the transition from left to right in Figure 4.9 is not
as smooth, suggesting a lower degree of continuity in this learnt latent space. However, the
difference between the two latent spaces is most apparent when viewed channel-wise. The ‘z
mural’ for the unconstrained VAE, presented in Figure 4.10, is less interpretable; variations
in target size, offset and rotation can be seen but are much more mixed across channels. It is
perhaps most appropriate, therefore, to describe the contribution of the cross-modal approach
as a disentangling of features, as they do in the Bonatti et al. paper. Still, it is not possible to

102 Learning Task-Relevant Features from Image Data

Fig. 4.8 Example image reconstructions from unconstrained VAE. Starting with the top left

image tile and scanning across the row, images are displayed in pairs, with the original image
on the left and the reconstruction on the right.

. | ‘ -. |

Fig. 4.9 Visualisation of unconstrained VAE latent space interpolation.

4.4 Results 103
“TTTTITILEERR
AN T T T IrrIrr T’
111111139 ds
s e e e e o i i A A
Fig. 4.10 Visualisation of unconstrained VAE latent space decodings, providing insight into
what the model has learnt and what the model is representing per channel.

say whether one set of learnt representations is definitively better than the other. Whether
constrained representations improve policy learning is explored in Chapter 5.

Prior to adopting the cross-modal approach, feature learning had been attempted using the
VAE architecture from the Ha and Schmidhuber World Models paper, as was done in the
‘Learning to Drive Smoothly in Minutes’ (2019) repository. Importantly, this architecture
does not include residual blocks. The performance of this model in the DonkeyTrack envi-
ronment was poor. Not only did the reconstructions lack accuracy in terms of shape and size,

104 Learning Task-Relevant Features from Image Data

(a) An example image and reconstruction with a near (large) target

(b) An example image and reconstruction with a far (small) target

Fig. 4.11 Example image reconstructions from VAE trained on smaller dataset (10k images).
Note: the environment is the same, the red and blue colour channels have been switched due
to an OpenCV specificity

if the target car was distant and therefore had a small pixel footprint, the car object would not

be encoded and the image reconstruction would be entirely background (see Figure 4.11).

The consensus was that, in these cases, the difference in reconstruction error between a
reconstruction containing the target car and a reconstruction not containing the target car was
too small to encourage target encoding. Attempts were made to correct this with a weighted
reconstruction error, using OpenCV to work out the target to image ratio. The error was
weighted with the inverse of this ratio, inflating the error in the case of small targets, but the
issue persisted. When the issue of omitting small targets did not present in later work with
the cross-modal trained VAE, there was a question of whether the latent space constraint
was providing a resolve. Interestingly, Bonatti et al. suggest just that. However, this is not
strictly true because small targets were not omitted by the uncontrained VAE (Figure 4.8). It
was not clear whether the resolve was coming from the deeper ResNet-8 encoder and its use
of residual blocks (compared to the 4-layer CNN World Models encoder), or the increase
in data volume (training on 300k images for 30 epochs, compared to 10k images for 50
epochs). To answer this, the World Models implementation was revisited and ran on the 300k
DonkeyTrack dataset. Figure 4.12 provides the reconstruction results.

4.4 Results

105

- - - - - - - - -
- - = = = <
— - - - - - -
- - P — P So— p— — - - T o
— — — — - — - - -
- — — — -] — —

Fig. 4.12 Example image reconstructions from VAE sans residual blocks. Starting with
the top left image tile and scanning across the row, images are displayed in pairs, with the

original image on the left and the reconstruction on the right.

As can be seen, the World Models decoder does reconstruct the target in all cases, suggesting

that data volume alone provided a resolve. However, note that, even when trained on the

same amount of data for the same length of time, the reconstructions are far less detailed,

failing to capture holes or distinct object parts. Instead objects are represented as grey blocks,

capturing the correct shape and proportion but nothing further. This would suggest that

something about the ResNet-8 architecture, whether it be the additional convolutional layers

or the skip connections between them, is allowing the encoder to capture finer details.

106

Learning Task-Relevant Features from Image Data

Fig. 4.13 Example image reconstructions from the constrained VAE in SWiMM DEEPeR.
Starting with the top left image tile and scanning across the row, images are displayed in
pairs, with the original image on the left and the reconstruction on the right.

4.4.2 SWiMM DEEPeR results

Figure 4.13 presents example image samples paired with their reconstructions. The lack of

colour contrast between target and background makes the images difficult to discern, but it

is still possible to make out that the shape, size, position and rotation of the target has been

reconstructed accurately for images with the target in view.

Figure 4.14 presents the z-mural visualisation of the learnt latent space. This figure had

to be generated slightly differently to previous z-murals. The first row represents feature 1

incremented from -0.02 to 0.02 left to right, whilst features 2 to 10 are set to zero, the same

4.4 Results 107

Fig. 4.14 Visualisation of the constrained VAE latent space decodings in SWiMM DEEPeR

Fig. 4.15 Visualisation of the constrained VAE latent space interpolation in SWiMM DEEPeR

108 Learning Task-Relevant Features from Image Data

as before. However, for the remaining rows, the process as it was before produced seemingly
empty images. This is because the process as it was before sets feature 1 to zero on all rows
except the first row. A value of zero for feature 1 (z[0]) represents the target at a middle
distance (i.e. a value of r at the midpoint of the specified r range). In DonkeyTrack, the target
was still discernible in the image tiles at this middle distance, whilst in SWiMM DEEPeR
the target is not discernible at this middle distance (note how the target disappears by the
6th image tile on the first row). This is because ‘distance’ is different between environments
since world scale depends on mesh scaling. To appreciate the representation of azimuth and
yaw (and remaining feature channels), the value of z[0] was set to -0.02 as opposed to zero
on rows 2 to 10, bringing the target closer. With this change it is possible to see that the

concepts of azimuth and yaw have been represented smoothly.

Figure 4.15 presents the latent space interpolation. As before, the image tiles on the far
left and far right are taken from the test dataset. Images were selected which represent the
extremes of azimuth and yaw. For example, in the left image the target is side-on and on
the far left of the frame, pointing to the left (i.e. close to 180° yaw). In the right image the
target is side-on and on the far right of the frame, pointing to the right (i.e. close to zero yaw).
The intermediate image tiles are synthetic images generated by the model by interpolating
between the latent vectors for the left and right images. The visualisation illustrates a learnt

latent space with good continuity, as before.

Table 4.2 presents the state prediction results for SWiMM DEEPeR alongside the Donkey-
Track and AirSim values. Although the MAE is marginally higher for both distance and
azimuth, the model is still high performing for these state variables. However, for yaw, the
MAE is considerably higher. As was explained in Section 4.3.3, relative yaw is sampled
from a 360° range when collecting image data from the SWiMM DEEPeR environment.
Therefore, the model is predicting yaw from a value range that is twice as large compared to
the DonkeyTrack or Bonatti et al. AirSim environments. The shape of the target object and
small pixel footprint in the image also add to the difficulty. At a resolution of 64 x 64, it is
not possible to discern head from fluke when the target object is viewed from the front or
back, making the large MAE for yaw quite understandable. These kinds of challenges are
echoed in related work. For example, in Cai et al., the authors report that “Most fish in the
dataset are extremely thin when viewed from the back or top, in these perspectives they lack
any distinguishing visual characteristics. The homogeneous colours in these settings, due to
colour absorption, and similar textures from the backgrounds, in the case of fish in reefs or

squids in rocky terrain, tend to cause all the trackers to fail” (Cai et al., 2023, p. 16). Given

4.4 Results 109

Env r [m] 0 [°] v [°]

AirSim 0.39 £0.023 2.6+0.23 10 + 0.75
DonkeyTrack 0.46 +0.003 0.65 + 0.004 12.09 £ 0.097
SWiMM 1.25 £0.008 1.41 £0.012 49.95 £0.329

Table 4.2 Table of mean absolute error for predicted dolphin distance (r), azimuth (8) and
yaw () against ground truth values.

this context-specific challenge, future work ought to experiment with image resolution and

the trade-off between processing speed and performance (specifically, yaw prediction).

4.4.3 Domain transfer results

Figure 4.16 provides the reconstruction results for the domain transfer experiment. Across the
top row are six example images pulled from the simulated image test dataset, along with their
corresponding reconstruction (decoded output from the constrained VAE) directly underneath
on the second row. As has already been demonstrated in Figure 4.5, the reconstructions are
accurate in terms of target position, rotation and size. The third row then shows the real
world mock ups of the same images, along with their reconstructions on the fourth row. It is
clearly visible from these reconstructions that the model has been negatively impacted by the

Fig. 4.16 Reconstruction results of domain transfer experiment. Real world images are shown
across the third row, with their reconstructions underneath. For reference, the associated
simulated images are shown across the first row, with their reconstructions underneath.

110

Learning Task-Relevant Features from Image Data

e

B & o 7
| [
4 o -

(a) Result of brightening background following colour masking of the target car.

(b) Result of changing the background colour following colour masking of the target car.

. o —= - g — _ - e —=

m
- - .

(c) Result of an incorrect application of pixel normalisation and de-normalisation.

Fig. 4.17 Reconstruction results of domain transfer experiment with pre-processing.

domain shift. When the model receives the real world input image, rather than treat it as an

instance of the contextually identical simulated image, it is treating it as an unseen example

and mapping it to a new point in the latent space. In columns three to six, the reconstruction

is essentially just noise, and therefore this new point is likely outside of the learnt space. In

the

first and second column, the sample looks to have been mapped to a point within the

learnt space, but not to the same point as the associated simulated image.

The most striking visual difference between the two domains is the colour of the ground. To

test whether this was the cause of the poor performance, some basic approaches to image

preprocessing were trialled using OpenCV. Figure 4.17 provides the results. In Figure 4.17a,

an attempt has been made to isolate the pixels belonging to the target car using OpenCV'’s

4.4 Results 111

inRange function to produce a mask for the provided HSV colour range. Pixels not belong-
ing to the mask were then brightened, using the convertScaleAbs function with beta set
to 100. Deciding on the colour range for the mask was a trial and error process, utilising
the colour selection tool in Inkscape and other online tools. Whilst the real RC car is blue,
it is not block blue as it is in the simulation; it is two-tone (blue and black) and covered in
text logos, making it difficult to find a colour range that produced a complete mask without

picking up any of the background.

Similarly, in Figure 4.17b, the same approach has been taken but with a straight colour
swap, hard coding non-mask pixels to RGB colour (230,230,220) in an attempt to match
the colour of the background in the synthetic images. This second approach produces a
clear degradation in results. The results of the first approach are more ambiguous, but
certainly do not offer any substantial improvement. Interestingly, the most marked im-
provement was observed in the results of an undergraduate dissertation project centred
around this experiment. The student made a code error leading to the colour irregularities
in Figure 4.17c. When images are loaded in from file, they are scaled and normalised in
preparation for being fed to the VAE, using the equation image = image/255.0 2.0 — 1.0.
Before displaying an image, or applying preprocessing, pixels are de-normalised, using
the equation image = ((image + 1.0)/2.0%255.0).astype(np.uint8) to take pixels from the
range [-1.0,1.0] back to the range [0,255]. However, the student had applied the incorrect
equation image = (image * 255.0).astype(np.uint8). They then converted the image from
RGB to BGR, increased the brightness and contrast, converted the image back to RGB, and
applied the correct normalisation equation. Experimentation with this code revealed that
the parameters passed to the convertScaleAbs function resulted in a negligible change
in brightness/contrast, but the incorrect equation created a shift in pixel values. Why this
particular preprocessing outcome was beneficial to the model is unclear. One explanation is
that the shift in pixel values increases the colour contrast between target and background.
Perhaps the magnitude of this contrast is more important than absolute colour values when it
comes to reducing the visual domain gap. Irrespective of the explanation, what this result
does indicate is that image pre-processing could provide a solution. However, additional
time was not dedicated to experimenting with pre-processing, as it was not considered a
robust solution; any change to the real environment (e.g weather conditions) would require
modification to pre-processing. Chapter 6 discusses much more sophisticated and robust
approaches.

112 Learning Task-Relevant Features from Image Data

Table 4.3 provides the state prediction results for the various image sets. Note that the MAE
values for the simulated image set are different to those provided in Table 4.1 since the values
in Table 4.1 are for the entire test set (30K images), whereas the values in Table 4.3 are
only for the small sample set (42 images). The MAE values for the real world image set
are considerably higher, particularly in the case of yaw. In most cases, this error reduces
for processed real world images, but is still not competitive with predictions from simulated
encodings. As with the reconstructions, this demonstrates that the domain shift is affecting
how images are being embedded.

Image Set r [m] 0 [°] v [°]
Simulated 0.23 +0.028 0.64 £ 0.060 4.90 &+ 0.615
Real no proc. 7.78 £ 0.697 15.75 +1.674 63.16 + 6.300
Real bright 492 +0.588 9.53 £0.999 43.02 4 5.146
Real colour swap 6.15+0.629 1234 +1.12 66.55 +5.963
Real incorrect norm 7.69 + 0.686 14.59 + 1.281 45.51 4+ 4.103

Table 4.3 Table of mean state prediction error for domain transfer experiment.

Table 4.4 provides the mean similarity scores. To reiterate, a similarity score is calculated
by feeding the 1 x 10 latent vector of a simulated image, and the 1 x 10 latent vector of the
real world counterpart image, into equations 4.1 and 4.2. The values in the table are then
the means of these scores across all 42 images. With this metric, zero represents entirely
dissimilar and one represents entirely similar. Therefore, these results suggest that encoding
pairs are only moderately similar, despite representing the ‘same image’ contextually. Pre-
processing the real images before encoding produces a very marginal increase in encoding

similarity.

Image Set Mean Similarity
Real no proc. 0.42
Real bright 0.46
Real colour swap 0.44
Real incorrect norm 0.42

Table 4.4 Table of average image similarity for domain transfer experiment.
Each value is the mean similarity score between all image encodings from the
simulated image set, and all image encodings from the image set
described in the left column.

4.4 Results 113
o® ©
4 '.n. 4 °
L]
’ .
% . . .
° L]
. U © S .
2 ° 3 2 « = .
® .)
. o~ L4 .
. L4 c
t;l o LY '. S . .
2 . a ° S 0 . = .
2 . . & . .
Q e %o 4 g o L4
E . a o' ¢
[a] - ° ®e L4 e o o
° L]
-2 * o
L]
.
-4
—4
-8 —6 -4 -2 0 2
-6 —4 -2 0 2 Dimension 1

Dimension 1

Fig. 4.18 Plot of simulated and real world
encodings, sans pre-processing. Blue = sim-
ulated images. Orange = real images.

Dimension 2

-4

-6 -4 -2 0 2 4
Dimension 1

Fig. 4.20 Plot of simulated and real world
encodings, with version two pre-processing.
Blue = simulated images. Orange = real
images.

Fig. 4.19 Plot of simulated and real world
encodings, with version one pre-processing.
Blue = simulated images. Orange = real
images.

40
30

20 o °

10 © 210 ol o

Dimension 2

-10

-20

-40 -30 -20 -10 0 10 20 30
Dimension 1

Fig. 4.21 Plot of simulated and real
world encodings, with version three pre-
processing. Blue = simulated images. Or-
ange = real images.

114 Learning Task-Relevant Features from Image Data

Having a numeric representation of image set similarity can be useful, but interpretability is
low. Figures 4.18 to 4.21 provide scatter plots of encodings. In order to visualise encodings
on a two-dimensional plot, it was necessary to perform dimensionality reduction with t-SNE,
reducing the ten feature values to two. Each point on the scatter plot represents a single image
encoding according to these two reduced feature dimensions. Across all plots, blue points
are simulated images and orange points are real images (with or without pre-processing).
Figure 4.18 is a plot of real world images without any pre-processing. The plot shows a
very clear dissimilarity between simulated and real embeddings; more so than the euclidean
similarity score had suggested. Viewed in this way, it is clear that real images are being
mapped to an entirely new area of the latent space. Figure 4.19 is a plot of real world images
following the first version of pre-processing (masking the target car and then brightening the
background). This version of pre-processing aligns the orientation of the cluster, but the two
sets are still highly separable. Figure 4.20 is a plot of the real world images following the
second version of pre-processing (masking the target and then colour swapping background
pixels). This seems to push the two image sets further away in (reduced) latent space. Figure
4.21 is a plot of real world images following the third version of pre-processing (applying
the incorrect de-normalisation function). Again, interestingly, this appears to provide some

benefit. Although the two sets are not yet mixing, one is encircling the other.

4.5 Summary

Chapter 4 focuses on the concept of decoupling feature learning from policy learning. By
learning basic perceptual skills ahead of control, the complexity of the DRL task is reduced,
and therefore the complexity and depth of the DRL networks can be reduced, reducing in
turn the DRL parameter search space. In addition, the observation search space is reduced,
since there can be fewer variants of a 1 x 10 vector than a matrix of thousands of pixel values.
The feature learning was approached with an autoencoder, trained on a dataset of camera
frame examples. The model’s task was to encode the input image into a 1 x 10 numeric
vector of feature values, and then decode the vector back to the original image dimensions,
using the reconstruction loss (difference between the input and output image) to optimise the

encoding function.

There were two model optimisations to this autoencoder. Firstly, the autoencoder was
‘variational’, meaning the encoder network outputs 10 feature distributions as opposed to

10 feature values. A KL-divergence term is added to the objective function to penalise

4.5 Summary 115

‘distance’ from a standard normal distribution, encouraging feature space completeness
and continuity. Secondly, three auxiliary decoder networks were introduced, with the task
of predicting the distance, azimuth and yaw of the target, from the first, second and third
feature values respectively. The error terms associated with these three predictions are then
summed with the standard two error terms. Doing so encourages the encoder to represent
these task-relevant metrics with the first three features, reserving the remaining features for
unconstrained representation learning. This approach was introduced by Bonatti et al. (2020)
as a cross-modal VAE.

The body of work described in this chapter successfully replicates this approach. Improve-
ments in efficiency were made to automated data collection, bringing this functionality client
side. In terms of feature learning, the same quality of results were observed despite migrat-
ing the codebase to TensorFlow 1 and despite applying the method to new environments.
Evidence of completeness is provided by the visual analysis of reconstructions alongside
their source image. Evidence of disentanglement is provided by a mural of the latent space
channels, and evidence of continuity is provided by a latent space interpolation between two
image samples. Quantitative analysis of state predictions presented marginally higher error
for radial distance and yaw, but lower error for azimuth. An ablation experiment attributed
disentanglement and continuity to the ‘cross modal’ framework, that is, the use of a secondary
objective, state prediction, as a regularisation tool. A further ablation experiment attributed
completeness and a resolve for the omitted target problem to dataset volume, whilst detail
was suspected to be afforded by the ResNet-8 architecture.

Results were also successfully replicated in the SWiMM DEEPeR environment, although the
encoding and therefore prediction of target yaw was more challenging due to the requirement
to make predictions through the full 360° range. At a resolution of 64 x 64, the facing
direction of the dolphin is not discernable at certain rotations, therefore future work will need
to address this, either with an increase to image resolution or with alternative computer vision
techniques. Yaw prediction aside, both the DonkeyTrack and SWiMM DEEPeR constrained
VAEs were deemed as high performing and ready for use in control training.

In the introduction of this chapter, two claims were made about the benefits of decoupling
feature learning from policy learning: improving algorithm efficiency and improving algo-
rithm robustness. The former will be tested in Chapter 5, directly comparing policy training
with raw image observations to policy training with feature observations. The latter was

investigated with a domain transfer experiment, assessing the similarity of feature vectors

116 Learning Task-Relevant Features from Image Data

encoded from simulated and real world image counterparts. This experiment revealed that the
constrained VAE was not robust to the visual domain gap. The model did not map real world
image counterparts to the same or similar place in latent space. In fact, image reconstructions
of noise revealed that the real images had been treated as unseen examples, mapping to an

area outside of the learnt latent space.

Given the results of this experiment, we can conclude that a real vehicle driving autonomously
according to a simulation-trained policy, would not succeed in actively tracking a real target
car, since latent vectors serve as observations to the policy network, and real world latent
vectors are not representing the correct contextual information. Therefore, the use of a
VAE alone is not sufficient to combat the sim-to-real gap, even when using the cross-modal
framework for VAE training. However, this does not rule VAEs out as an approach. The

future work section of Chapter 6 discusses the two main avenues down which to proceed.

In their closing paragraph, Bonatti et al. suggest that the cross-modal, semi-supervised
approach to learning task-relevant features be extended to other environments and to other
robotic tasks, giving specific mention to autonomous driving and robotic manipulation.
Through the work described in this chapter, this suggestion has been realised, extending
the constrained VAE training to new environments and a new context (the downstream
autonomous driving task of VAT). In the next chapter, the suggestion is realised further,
extending the downstream control section part of the approach. As mentioned,Bonatti et al.
proposed using the trained encoder network as a preprocessing module for an imitation
learning model. Chapter 5 explores utilising the trained encoder in a different way, serving
instead the policy network (or ‘actor’) of the reinforcement learning algorithm Soft Actor

Critic, in a novel framework we call T2FO.

Chapter 5

Visual Active Tracking with Soft Actor
Critic

5.1 Introduction

Visual active tracking (VAT) is a very specific type of object tracking that constitutes both
a computer vision problem and a control problem. The aim is to follow a moving target
object, where ‘follow’ can mean both orienting toward and travelling toward. For example,
the task could involve rotating a camera on a camera gimbal, or the task could involve
the autonomous driving of a camera-mounted vehicle. In either case, the input is the vi-
sual observation (i.e. camera frame) and the output is the control signal. In the visual
domain, the goal is to keep the target(s) in frame, most likely central and with an optimal
pixel footprint. More generally, active tracking, sometimes called active object tracking
(AOT), can involve sensing devices beyond cameras and observations beyond visual ob-

servations. The defining characteristic is the element of control in addition to state estimation.

In the computer vision literature, more often than not, use of the term ‘object tracking’ refers
not to VAT but to another closely related problem. This related problem is widely referred to
as visual object tracking (VOT). Where one is active, the other is passive. VOT requires state
estimation but not control. Specifically, the task is to estimate the state of a target object in
each frame of a video sequence given an annotation in the first frame (see Fiaz et al. (2019a)
or Li et al. (2013) for example surveys). Typically, this is an estimation of location and
size, expressed with something like a bounding box, contour, silhouette or object centroid.
The algorithm ought to be generalisable, capable of tracking any given target, hence most
VOT benchmark competitions (e.g. Kristan et al. (2021)) do not disclose the intended target

118 Visual Active Tracking with Soft Actor Critic

until the first frame of model evaluation. The video data may be historical (filmed at an
earlier date) or live streamed, but in either case the algorithm has no influence over the next
incoming frame. The task is purely an annotation task, involving data processing but not
data collection. As such, it is much more analogous to the classic computer vision task of
detection (Zou et al., 2019) — the same task of drawing a bounding box around each instance
of a certain semantic class, but constrained to a single image and therefore a single moment
in time. Where one is static the other is dynamic. In object detection, there is no preservation
of identity across images, whereas in VOT there is the need to associate detections across

time into an object trajectory.

All three tasks, VAT, VOT and detection, require appearance modelling (understanding what
to look for) and localisation (looking for it). An appearance model is a representation of the
target composed of object descriptors called features. Whether those features are learnt, in
the case of deep learning, or hand engineered, it is crucial for the algorithm to be robust to
appearance change, requiring an object representation that is invariant to scale, illumination,
viewpoint, and so on. The algorithm should aim for zero false negatives (missed detections)
and zero false positives (incorrect detections), despite partial occlusions, background clutter,
and objects with similar appearance (distractor objects). The dynamic problems, VOT and
VAT, may need to deal with additional appearance-based challenges, such as motion blur, and
additional problem strands, such as target recovery. There is also diminished data availability,
with fewer labelled video datasets than labelled image datasets, and fewer still data generation
environments, such as those discussed in Chapter 3. However, the biggest factor that sets
apart VOT and VAT from object detection is the high processing speed demanded by the

real-time nature of the problem.

The close relationship between the three tasks does of course mean they can be stacked. VOT
can be approached by performing object detection on each frame of the video sequence,
and then VAT can be approached by feeding the resulting state estimation to a separate
control algorithm. However, the naive application of a deep object detector for VOT is highly
inefficient. Since a detection algorithm has no contextual information, localisation involves
evaluating the appearance model exhaustively at every possible location in the image, and
the resulting tracking algorithm could not operate at real-time. To improve efficiency, most
VOT algorithms constrain their search region, either with simple logic (for example, the last
known target location) or with some form of motion modelling such as filtering or regression

techniques.

5.2 Related Work 119

VOT has been intensively studied, with numerous survey papers (e.g. Fiaz et al. (2019b);
Li et al. (2018c¢); Soleimanitaleb et al. (2019); Verma (2017)) and annual benchmark com-
petitions. As such, there is no shortage of high-performing, real-time solutions to pair with
a controller for VAT; examples of which are provided in the opening of the next section
under the heading of task-separated solutions. However, in 2018, Luo et al. proposed the
first end-to-end solution to VAT, providing a direct mapping from pixels to control with deep
reinforcement learning, as was famously introduced by Mnih et al. (2013) in the context
of the Atari games. The authors argue that an end-to-end solution is optimal given that
parameters in all components can co-adapt and cooperate to achieve a single objective,
and report superior performance when compared to task-separated solutions (more detail
provided in next section). Since this paper there have been a number of extensions, but in
general the problem of VAT is relatively under studied, and therefore Section 5.2.2 draws on
examples of end-to-end solutions from other perception-control tasks. Finally, the concept of
decoupled feature learning from Chapter 4 is reintroduced, explaining where this sits relative
to the task-separated and end-to-end approaches, and why this is expected to produce the
best results for the given problem. By the end of the next section, it should be clear why
the approach to policy learning reported in this chapter has been taken — an approach which

provides a novel solution to visual active tracking.

5.2 Related Work

5.2.1 Task-separated solutions

To reiterate, a task-separated solution to VAT is a solution which treats perception and control
as two separate problem components. A common approach to the control component is to
use a linear controller, such as the Proportional-integral-derivative (PID) controller. A PID
controller continually calculates the error between a desired state (‘setpoint’) and the current
state (as measure by the ‘process variable’), and applies a correction. The proportional term
ensures the correction is proportional to the error, the integral term accounts for changes in
the error over time, and the derivative term is a best estimate of the future trend, based on the
error’s rate of change (Borase et al., 2021). Due to their simplicity, PID controllers are the
most extensively used controllers, both traditionally and in modern applications, making an
appearance in 90-95% of control loops (Astrom and Higglund, 2001; Diaz-Rodriguez et al.,
2019). However, they are fairly slow to respond, and would therefore require a slow-moving
target in the case of VAT. For example, Yao et al. utilise three separate PID controllers (one
for distance, one for height, and one for yaw) to control a real robotic blimp tasked with

120 Visual Active Tracking with Soft Actor Critic

following a human target, and report “the blimp is able to follow the human to a certain
extent given that human is not moving too fast” (Yao et al., 2017, p.5). In this instance, the
controllers are fed the motion primitives of the blimp along with an estimate of the human’s
3D position using a Haar face detection model paired with a KLT (Kanade-Lucas-Tomasi)
feature tracker (Suhr, 2009).

In the absence of additional sensors providing motion primitives, control can be implemented
purely based on the error between current and desired features on the image plane. This is
typically referred to as visual servoing, or image-based visual servoing (IBVS) specifically.
In the context of VAT, this often involves keeping the target’s bounding box near the centre
of the image, and keeping the height of the bounding box near a predefined constant. For
example, Zhu et al. (2019) use this approach to control a real mobile robot tasked with
following a slow-moving human target. The bounding boxes are provided by a custom
VOT solution, FlowTrack++, which combines Siamese Neural Networks with optical flow
information, to simultaneously locate and regress a moving target. If the target is lost, the
size of the search region is iteratively increased until recovered. The authors report that
this solution outperforms the same control method paired with well-known VOT algorithms
GOTURN (Held et al., 2016) and ECO (Danelljan et al., 2017). In Akhloufi et al. (2019),
there is also a visual servoing approach to control, but paired with YOLO v2 (Redmon and
Farhadi, 2017) and SAP (Search Area Proposal) based on particle filters. For this paper, the
context is ‘drones chasing drones’, requiring 3D control. Whilst the video data is real data,
the control output is evaluated offline, without actually flying the vehicle. In both of these
examples, the control output is a high-level, discrete signal, which then needs to be realised

by the vehicle’s built-in controller.

A focused search for AUV vision-based tracking of marine animals identified a number of
highly relevant papers which, in all cases, presented task-separated solutions. For example,
Kumar et al. (2018) discuss the premise of having an AUV performing pre-planned route
following, whilst simultaneously extracting features from each camera frame and comparing
to a feature database pre-indexed with features of the target species. Once a match is made,
the AUV tracks the animal using VOT algorithm ORB (Oriented FAST and Rotated BRIEF)
(OpenCV, 2011), and uses visual servoing for control (specifically, the pixel distance between
the centre of the bounding box and the centre of the image). Only the VOT component of this
proposed solution is tested, with a static camera recording a goldfish in an otherwise empty
tank. In 2021, Yoerger et al. successfully tracked stationary or very slow moving jellyfish

and larvaceans in-situ, with a ‘Mesobot’ platform deep down in the Ocean Twilight Zone.

5.2 Related Work 121

For VOT, they used a blob detector (OpenCV, 2010), taking input from a stereo camera
and producing a range, bearing, and vertical offset value for the servo system. The authors
profess the solution to be straightforward and suggest implementing a deep tracker in future
work.

In the same year, Katija et al. did just this, using a multi-class RetinaNet (Lin et al., 2017) de-
tection model on the left and right frames of a stereo camera onboard their MBARI MiniROV.
A data association strategy was used to associate detections to a given target, before forward-
ing to a dedicated subprocess. Specifically, the bounding box pairs for a given target were
fed to a UKF (unscented Kalman Filter) (Wan and Van Der Merwe, 2001) to generate a state
estimate in 3D vehicle coordinates. In both Katija et al. and Yoerger et al., the controller
is commanded to update the vehicle position in order to centre the target in the camera
frame. Whilst the ResNet50 (He et al., 2016) underlying the RetinaNet detector can provide
richer features than the much simpler ORB or blob detector, naive tracking-by-detection is
inefficient, as discussed. It also requires a large amount of domain-specific labelled data,

which is rarely available and difficult to acquire.

With this in mind, Cai et al. (2023) propose a semi-supervised approach to the perception
component. In general, the VOT literature presents two families of approaches: discrim-
inative trackers which consider tracking as a classification problem (as in the supervised
tracking-by-detection paradigm), discriminating target object from background, and gener-
ative trackers which consider tracking as a matching problem, exploiting some similarity
criterion to find the best-matched window. Within the latter family, there is an abundance
of competition-winning trackers based on Siamese Neural Networks (e.g. Bertinetto et al.
(2016), He et al. (2018b), He et al. (2018a), Li et al. (2018a), Wang et al. (2019)). Cai
et al. selected 13 of these trackers and evaluated them on their domain-specific dataset
VMAT (Visual Marine Animal Tracking). As a compilation of existing scientific sources
and their own fieldwork footage, this dataset provides 33 fully labelled video sequences of
varied length, across 17 marine animal species, a range of habitats, and a range of swimming
behaviours. They then deployed the best performing VOT algorithm, KeepTrackFast (Mayer
et al., 2021), on their custom-built AUV, CUREE (McGuire et al., 2023). The AUV performs
closed-loop, visual servoing control using the KeepTrackFast detections; adjusting yaw to
centre the target and adjusting range to maintain constant bounding box width (found to be
more stable than height or area). With this solution they were able to track jacks, jellyfish

and barracuda for up to 10 minutes, with occasional human operator interjection.

122 Visual Active Tracking with Soft Actor Critic

Finally, and of particular note, is a paper from Yu et al. (2020) presenting a task-separated
solution, but with a DRL approach to control. The context is still marine animal tracking
and AUV control, although not in-situ (in a pool environment), with a static or else slow
moving model of a dolphin, with one-dimension of control, and with a greater focus on the
bio-inspired movement of the AUV (a custom built robotic fish) and the camera stabilisation
that this then requires. Rather than feed the algorithm image data and employ end-to-end
control, camera frames are sent to an onshore computer to detect the dolphin with VOT
algorithm KCF (Kernelized Correlation Filter) (Henriques et al., 2014). The position of the
dolphin relative to the AUV (yaw, not distance) is then inferred from this image detection,
using information from the potentiometer equipped on the motor shaft of the AUV’s camera.
The calculated yaw angle and its derivative make up the state vector fed to the DRL controller
(specifically, DRL algorithm DDPG). Control of the AUV is governed using a central pattern
generator (CPG) as the system actuation. According to this CPG-based locomotion control,
the yaw of the AUV 7y can be changed by adjusting the direction-related offset variable f3.
It is this variable, 3, which the DDPG policy network provides. The DDPG controller was
pretrained with a graph-like simulation in MATLAB, before training with the real system
in a pool environment. Interestingly, the authors compared the DDPG controller with a
conventional PID controller and report DDPG tracking to be more smooth and stable, with
no steady-state error, whereas PID tracking presents overshoot above 0.5 radians and a
steady-state error at 0.2 radians. The authors also report that their solution suffers from
considerable lag, and suggest feeding camera frames directly to the DDPG controller for

future work.

Across all of the provided examples, there are some common limitations. One is the capability
of the more traditional control strategies such as visual servoing and PID controllers. These
methods are widely used and can work well in certain scenarios, but are not appropriate for
fast moving targets such as dolphins. PID controllers also require careful manual tuning, as
reported by Yao et al. (2017). More sophisticated control strategies exist, such as ‘Lyapunov-
based’ and ‘fuzzy logic’, however these approaches require accurate dynamic modelling to
derive control laws. This is extremely difficult in an aquatic environment with parametric
uncertainties and external disturbances. In contrast, reinforcement learning has the ability
to accomplish adaptive controllers without access to accurate dynamic models or prior
knowledge. Secondly, there is often a requirement for labelled image or video data in order
to train the perception module, especially where this module is a deep VOT solution capable
of providing robust features. In contrast, the sim-to-real DRL approach (proposed in this

work) provides deep features, but the game engine offers unlimited labelled data without

5.2 Related Work 123

the need for manual annotation. Finally, most of the provided examples rely on expensive
sensors such as stereo cameras and not solely on a monocular camera, which is the aim here
given the standard configuration of the BlueROV2.

5.2.2 End-to-end solutions

In 2018, Luo et al. proposed an end-to-end approach to visual active tracking, in order to
alleviate the difficulties of data labelling, control implementation, and jointly tuning separated
sub-tasks. As in Yu et al. (2020), they train the DRL controller in simulation. However, rather
than simulate active tracking with two points on a 2-dimensional graph, the authors leverage
a commercial game engine to provide a 3-dimensional environment, as proposed in Chapter 3.
Specifically, they use two Unreal Engine environments — ViZDoom (Kempka et al., 2016), an
RL research platform based on the monster video game Doom, and an unnamed custom urban
environment with pedestrians as target objects. The raw camera frames from the agent’s
FPV camera provide the observation, the same as here. The action space is a 6-part discrete
action space (turn-left, turn-left-and-move-forward, turn-right, turn-right-and-move-forward,
move forward, and do nothing), similar to CubeTrack but different from the continuous
action space of DonkeyTrack and SWiMM DEEPeR. The chosen DRL algorithm was A3C
(Mnih et al., 2016). The core idea behind A3C is to decorrelate the agent’s data into a more
stationary process using parallelisation in an on-policy approach, as opposed to the use of
replay buffers in an off-policy approach. During training, several threads are launched, each
maintaining a separate agent and environment, but all utilising the same network parameters.
These paramaters are updated asynchronously in a lock-free manner, and hence ‘experience’
is shared.

Luo et al. evaluated the learnt policy across 100 inference runs, and report that the agent
is able to maintain target tracking (as indicated by an average episode length of 2959 + 32
from a maximum of 3000), and position itself well (as indicated by an average cumulative
episodic reward of 2547 4 58). Moreover, the end-to-end RL policy massively outperforms
a selection of VOT algorithms paired with a PID-like module operating over the same 6-
part action set and in the same environments. For comparison, all of these VOT methods
achieve approximately -450 cumulative episodic reward. The authors report that Meanshift
(Comaniciu et al., 2000), Kernelized Correlation Filter (KCF) (Henriques et al., 2014), and
Correlation (Danelljan et al., 2014) all struggle with camera shift between continuous frames,
and so are not as suited to active tracking as they are to passive tracking. Multiple Instance

Learning (MIL) (Babenko et al., 2009) works reasonably well in the active tracking scenario,

124 Visual Active Tracking with Soft Actor Critic

but drifts when the target turns suddenly.

To test the feasibility of sim-to-real transfer, the learnt policy is also evaluated on real-world
video data. Although the camera cannot be influenced, the footage is fed through the model
frame by frame, visualising each action prediction such that it is possible to qualitatively
assess the appropriateness of the model’s decision. The results of this are promising and, in a
later paper (Luo et al., 2019), are backed up by real world experiments, utilising YOLOvV3
(Redmon and Farhadi, 2018) not for tracking but for evaluation. In simulation, the policy is
evaluated using the same reward function used for training, which in turn uses coordinates
provisioned by the game engine. In the real world these coordinates would be expensive
to collect, and so instead performance is measured according to target centering and size
consistency, using the bounding box produced by YOLOV3. Calculating a reward value in
this way would also make it possible to continue policy training in the real world setting,
although Luo et al. suggest this was not necessary, the augmentation techniques used during

training were sufficient to allow for zero-shot transfer.

Later, the same research group presented AD-VAT (Adversarial Dueling mechanism for
learning Visual Active Tracking) (Zhong et al., 2019b) and AD-VAT+ (Zhong et al., 2019a),
which uses the same end-to-end approach but within an adversarial framework. Rather
than present the agent with an unintelligent target performing path following or randomised
movement, the target itself is a DRL agent, trained in parallel. For the most part, the agents
compete within a zero-sum game, although beyond a given distance threshold the game
becomes non-zero-sum and the target is penalised for exiting the tracker’s field of view. This
design was found to be most conducive to learning, as was training a ‘tracker-aware’ target

tasked with predicting the tracker’s reward as an auxiliary task.

Outside of the tracking literature, a comparison between end-to-end and task-separated
visuomotor control was addressed much earlier, in a seminal paper from the University of
California Berkeley in 2016. Levine et al. use vision-based DRL on a real 7-DoF robotic
arm, to perform a range of complex manipulation tasks such as inserting a block into a shape
sorting cube and screwing a cap onto a bottle. The authors state that “by learning the entire
mapping from perception to control, the perception layers can be adapted to optimize task
performance, and the motor control layers can be adapted to imperfect perception” (Levine
et al., 2016b, p.3). The results of their direct comparison corroborate, with the end-to-end
trained policy markedly outperforming the task-separated solution, across all four tasks.

For example, the success rate across 27 trials of the shape sorting cube was 96.3% for the

5.2 Related Work 125

end-to-end solution and 0% for the task-separated solution.

The end-to-end solution of Levine et al. is slightly different to the end-to-end solution of
Luo et al.. Whilst both map raw pixels directly to control with a CNN-based policy network,
Luo et al. begin policy training from randomly initialised weights, whilst Levine et al. begin
policy training with pretrained weights. Levine et al. argue that, whilst it is optimal to
combine the training of vision and control, training both together from scratch leads to a large
number of iterations spent learning low-level aspects of vision; a learning process that can be
tackled much more efficiently with supervised learning in isolation. As such, Levine et al.
append their chosen CNN architecture with a fully connected layer, and train the network to
do pose regression with supervised learning — an approach much more comparable to the
approach taken here. They then remove the fully connected layer and embed the trained
convolutional layers into their policy network, further optimising the weights within the
context of visuomotor control. In the VAT literature, the second of two solutions proposed
by Akhloufi et al. (2019) has a similar flavour, using convolutional layers from a pretrained
VGG-M network (Chatfield et al., 2014) within the policy network. Both of these examples
can still be regarded as an end-to-end solution, albeit much more efficient. Luo et al. do not
report on wall clock time, but report obtaining the best validation results at around 48 x 10°
iterations (for comparison, the training runs reported in this chapter are typically 1 x 10°
steps). Considering this is in a synthetic environment with a discrete action space reduced
to yaw and thrust, it is fair to assume that this approach (training end-to-end from scratch)
would take infeasibly long as the problem scaled (e.g. directly supplying torque to a robot

with 7 degrees of freedom).

The concept of learning visual features ahead of policy learning revisits the same ideas
introduced in Chapter 4. However, the two approaches are subtly different. Whereas Levine
et al. continue to optimise their convolutional layers (perception) when learning control,
in Bonatti et al. (2020) the convolutional layers are fixed when learning control, i.e. they
become a preprocessing module. Therefore, arguably, this is no longer end-to-end. In fact, if
the target pose (distance, azimuth and yaw) predicted by the auxiliary networks served as
the agent’s observation, then this would be exactly equivalent