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"Men are more apt to be mistaken in their generalisations than 
in their particular observations. " 

Niccolo Machiavelli (1469-1527). 



Abstract 
We propose a general Bayes analysis for nested model comparisons which 
does not suffer from Lindley's paradox. It does not use Bayes factors, but 
uses the posterior distribution of the likelihood ratio between the models 
evaluated at the true values of the nuisance parameters. This is obtained 
directly from the posterior distribution of the full model parameters. The 
analysis requires only conventional uninformative or flat priors, and prior 
odds on the models. 

The conclusions from the posterior distribution of the likelihood ratio are 
in general in conflict with Bayes factor conclusions, but are in agreement with 
frequentist likelihood ratio test conclusions. Bayes factor conclusions and 
those from the BIC are, even in simple cases, in conflict with conclusions from 
HPD intervals for the same parameters, and appear untenable in general. 

Examples of the new analysis are given, with comparisons to classical 
P-values and Bayes factors. 
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Chapter 1 

Introduction 

1.1 Motivation 
In this thesis we address the point null hypothesis testing problem from 

a Bayesian viewpoint. An important issue in the evaluation of Bayes and 
frequentist theories is the difference in the conclusions from Bayes factors and 
the likelihood ratio (LR) tests in large samples, due to the "Lindley paradox" 
(Lindley 1957, Bartlett 1957). One important aspect of this difference is the 
ability of Bayes factors to strongly support a point null hypothesis, where 
a frequentist analysis can only "fail to reject" with a large P-value; it can 
never support it strongly. 

We illustrate this feature with an example due to Stone (1997) from the 
discussion of Aitkin (1997). A physicist running a particle-counting exper- 
iment wishes to identify the proportion 0 of a certain type of particle. He 
has a well-defined scientific hypothesis that 9=0.2 precisely. There is no 
specific alternative. He counts n= 527135 particles and finds r= 106298 of 
the specified type. 

The problem is to make inferences concerning the probability of success, 
6, in a series of n trials with r successes. The likelihood has the following 
form from the binomial distribution 

L(O) 
(fl)(i 

_)n_r9r, 0<0<1. 
r 

The frequentist test of 9= Bo = 0.2 uses the maximum likelihood estimator 
of 8,9 = 0.201652, together with its standard error SE(8) = 0.0005526, 

giving ZO = 
(8 

- 80) /SE(8) = 2.990 and so the null hypothesis is firmly 

rejected with two-sided P=0.0028. At this stage we can also calculate the 
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1.1. Motivation 

maximised likelihood ratio to be 

L(e°) 
= 0.01124, 

L(O) 

and note that the likelihood at 0=0.2 is very small relative to the likelihood 
at 8. 

The physicist now takes the proper uniform prior ir(O) = 1,0 <0<I 
under the alternative hypothesis, and computes the Bayes factor 

L(eo) Bf L(e)7r(e)dO' 
in the following manner. Firstly recall that the beta distribution, ß(a, b), has 
the form 

r(a+b) 
ý(x, = r(a)r(b) xQ-i (1 - x)b-17 0<x<1. 

In this case, by comparison of f (x) above to our form for L(O) we can see 
that the term in the denominator of the Bayes factor reduces to the integral 
of a beta likelihood between 0 and 1. We see that 

1 
L(9)7r(8)d8 =1 L(9)d8 = 

(527135) r(106299)T(420838) 

00 106298 F(527137) 

The posterior distribution of 8, using this proper uniform prior is 

9jr - ß(106299,420838). 

As we are working with a large sample we can approximate this distribution 
with the normal distribution 

0r NN (0, SE (Ö)'). 

We calculate the Bayes factor 

B= 
L(90) 

f L(O)ir(9)dG 
(527135) 0.8 4208370 2106298 

106298 

(527135) 1'(106299)]F(420838)/r(527137) 106298 

F(527137) 
08 4208370 2106298 

I'(106299)F(420838) ' 
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1.1. Motivation 

which is the density of Bjr evaluated at 8= 00 = 0.2. Under the normal 
approximation this is 

1 (00 2 

B= exp 
27 SE(0) 2SE(8)2 

O(Z0) 

SE(e)' 

where 0(") is the standard normal density function and ZO is as defined 
earlier. Therefore we can see that 

B=1 0(Zo) = 8.26. 
SE 

Assuming equal prior weight on the null and (general) alternative hypotheses, 
the Bayes factor equals the posterior odds on the null hypothesis: we seem to 
have quite strong posterior evidence in favour of Ho, despite the apparently 
strong frequentist evidence against Ho. 

A similar conclusion is reached from the closely related Bayesian Infor- 
mation Criterion, Schwartz (1978). This is interpreted in the same way as 
-2 times the logarithm of a standard Bayes factor and is defined here as 

BIC = -2 log 
L(09 

Lý)) 
-v log n, 

where v is the number of unknown parameters under the null hypothesis 
subtracted from the number under the alternative hypothesis. Here V=I 
because B is the only unknown parameter under the alternative and it is 
known under the null. Therefore 

106298 1- 0° 420837 

BIC = -2log 
e° 

13.17521 
0 1-8 

_ -2(106298[log Oo - log 9] + 420837[log(1 - Bo) - log(1 - 8)]) 

- 13.17521 
8.976366 - 13.17521 

- -4.198844. 

The likelihood ratio test statistic of 8.98 for the null hypothesis is outweighed 
by the penalty function log n= 13.18 on the alternative model, giving a BIC 
of 4.20 in favour of the null model. The BIC is a special case of the Bayes 
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1.1. Motivation 

factor when the information in a proper normal prior is proportional (in 

sample size) to that of the sample (Smith and Spiegelhalter 1980). 
This inconsistency between frequentist and Bayes conclusions is not, how- 

ever, a sign of conflict between the theories. It is, instead, a conflict within 
Bayes theory. Here the posterior distribution of 8 is the Beta distribution 

with parameters 106299 and 420838, which is essentially normal with mean 
8 and standard deviation SE(8). The posterior probability that 8>0.2 is 
1(2.990) = 0.9986 =1- P/2. Any Bayesian using this prior will have very 
strong posterior belief that 8 does not have the value specified under the 
null hypothesis, but a larger value. Equivalently, the 99% highest posterior 
density interval for 0 is 

0+2.576SE(9) = (0.20023,0.20308), 

which excludes 00. 
This inconsistency between Bayes factor and posterior density conclu- 

sions results from the integration of the likelihood over the prior. It has been 
frequently pointed out (e. g. Aitkin 1991,1997), that for a fixed prior the 
increasing concentration of the likelihood as n --+ oo results in a decreasing 
integrated likelihood. This has the consequence that the Bayes factor can be- 

come arbitrarily large for any specified value 00, however small its likelihood 

relative to that at 9. 
Dempster (1974,1997) and Aitkin (1997) addressed this difficulty by 

considering the posterior distribution of the likelihood ratio itself. Aitkin 
(1991) had also considered the ratio of the posterior mean of the likelihood 
under each model. Their aim was to make an inferential statement directly 
about the ratio L(8o)/L(9), where 0 is unknown under the alternative, but 
has a known posterior distribution 

L(0)ß(0) 
7-(el Y) =f L(e)7r(e)de 

Since the likelihood ratio 

LR(9) = L(9o)/L(9) 

is a parametric function of 9, it has a posterior distribution 7r(LRjy) which 
can be obtained from that of 6. 

Given a specified value of 9 under the alternative hypothesis, a likeli- 
hood ratio LR <k would constitute strong sample evidence against Ho for 
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1.1. Motivation 

sufficiently small k. Motivated by this observation, the posterior probability 

Irk = Pr(LR(9) <kI y) 

for a given value of k can then be computed, and if this probability is suffi- 
ciently large, the sample evidence against Ho would be persuasive. 

We now return to the example considered earlier. Without loss of gener- 
ality we can discard the constant of proportionality as we are interested in a 
ratio of two such likelihoods. The likelihood, under a normal approximation 
as seen earlier, is then 

L(9) = exp 
(0 - ý)2 
2SE2 

and therefore 

W 
-2 log L(9) = 

(0 - Oý 
- Z2. 

SE 

Then the likelihood ratio LR for testing Oo against 0 satisfies 

2logLR=Zo -Z2 

where Z has a posterior N(0,1) distribution. It follows that 

7x = Pr(LR<k), 

= Pr(-2 log LR > -2 log k), 

= Pr(Z2 < Zo +2 log k), 

where Z2 has a posterior xi distribution under Ho. Taking k=0.1 with 
ZO = 2.990 as before, gives 

710.1 = Pr(Z2 < 2.9902 - 4.605) = 0.963. 

We note that taking k=1 instead of 0.1 gives 71 = 0.9972 =1-P. 
Thus this form of Bayes analysis leads to the same conclusion as the HPD 

interval and the frequentist analysis, and contradicts the Bayes factor and 
BIC conclusions. 

Aitkin (1997) extended Dempster's approach to the general nuisance pa- 
rameter model: in assessing a null hypothesis Ho :0= 9o in a model with 
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1.2. A simple example 

nuisance parameter 0, he considered the "true likelihood ratio" 

LR L(9o, 0)/L(e, 0) 

evaluated at the true values of 8 and ¢. These are unknown, but the joint 
posterior distribution ßr(8,01y) from the "full model" provides, as for the 
sample model above, the posterior distribution of LR, and hence the pos- 
terior probability that LR < k. Aitkin also generalised Dempster's striking 
result for k=1, given above, to the nuisance parameter case. This means 
that for a normal likelihood L(9,0) and flat prior distributions for the un- 
known parameters, the P-value under the null hypothesis equals the posterior 
probability that the true likelihood ratio is greater than 1. This can be read 
as meaning that the null hypothesis is better supported than the alternative. 
This result provides a unification of Bayes, likelihood and frequentist conclu- 
sions in the point null hypothesis testing problem. Note also that here we 
assume that the nuisance parameter takes the same value under both the null 
and the alternative hypotheses. This differs from the maximised likelihood 
ratio approach in which we estimate it separately under the two models. 

We now illustrate this approach further with a particularly simple exam- 
ple. 

1.2 A simple example 
We observe a single realisation (x) of a normal random variable with known 

variance, cr2. Without loss of generality we may set a=1 so that our model 
is 

X- N(1c, 1) 

with µ unknown. We wish to test the point null hypothesis Ho := /-to 
against the general alternative Hl :µ µo with µ, µo E R. We set µo =0 
without any loss of generality. We firstly consider the likelihood ratio, LR, 
which we define as 

LR = 
L(O) 
L(µ) 

For this model the likelihood function itself is given by 

L(M) =1 exp 
1 

(x - p)2 
2ýr 2 
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1.2. A simple example 

so that 

LR=exp 
1 

[(x-ß. 
G)2-x2] . 2 

Therefore 

2IogLR=Y-x2 

where 

Y= ýx 
- 1uý2 = rµ 

_ xl2 

The prior distribution for 'u is taken to be diffuse so that we may express the 
posterior as 

ýcýN(x, 1). 

We can now see that the posterior distribution of Y is xi and if we consider 
that LR <k is equivalent to 2 log LR <2 log k for real, positive k then we 
find 

7r, ß = Pr(LR < kjx) 

= Pr (Y - x2 <2 log k) 

= Pr (Y <2 log k+ x2) . 

Therefore the posterior distribution of the likelihood ratio is simply a shifted 
xi distribution. When k=1 we obtain the following: 

7r1 = Pr(Y < x2) 

= Pr(-x<Z<x) 

=1-P, 

where ZN N(0,1) and P is the two-sided P-value of the observation x. 
Hence, once more rrl =1-P. 

In addition to the form given above for lrk we can also obtain the max- 
imised likelihood ratio (MLR) by calculating the ratio of the likelihoods 

maximised under the two hypotheses. Under the null hypothesis this is sim- 
ply 

1 x2 L(0) = 27exp -2 



1.2. A simple example 

while under the alternative we make use of Vic, the maximum likelihood esti- 
mator of M. Here this is µ=x and we obtain the maximised likelihood 

L (JG) = exP -1(x _ ,)2 2-7r 
1 

vl'2 
Therefore 

MLR = 
L(O) 
L(A) 

x2 
= exp -2 

We now illustrate the difficulties involved in calculating a Bayes factor using 
diffuse priors over an infinite range. Under the alternative hypothesis we 
take the proper flat prior for 

1u as 

7 ý/) = 2C on -C<p 

The integrated likelihood under this alternative is 

J 
00 

LB = 
00 

L(µ)7r (i) d 
-1c 

= 2ý, 
O(x-µ) dy 

-c 

-I [(D(x + C) - 4)(x - C)] 
2C 

where 0(") and I(") are the standard normal density and distribution func- 
tions respectively. As C -4 oc with increasing diffuseness LB -+ 0, and so 
the Bayes factor 

B= 
L() 

moo. LB 

This, once more, is the Lindley (or Barlett) paradox. Whatever the value of 
x, if the prior is sufficiently diffuse the Bayes factor will appear to strongly 
support the null hypothesis. Here and for similar examples later in the thesis 
we are unable to calculate a Bayes factor for an improper flat prior over an 
infinite range. 
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1.3. Structure of the thesis 

1.3 Structure of the thesis 
Aitkin (1997) considered the large-sample properties of the Irk approach and 
the re-calibration needed for standard frequentist and likelihood methods. 
He considered only one small-sample example. In the rest of this thesis we 
apply this approach to several difficult model comparison problems. Some 
are nested model comparisons while others are not, but all can be treated 
by the same general method, since we require only that the models being 
compared are both nested in a larger family. This approach applies directly 
to the comparison of any two models which are themselves nested in a higher 
family, irrespective of whether one is nested in the other. 

We firstly consider, in Chapter 2, the familar problem of testing a normal 
mean in the situation where the variance is unknown. This is the problem 
whose standard analysis is performed by the t-test. In Chapter 3 we examine 
a problem that was first presented by Pitman (1937). We are given a two- 
variable normal regression and wish to select which of the two possible single- 
variable regression models is best supported by the data. Chapter 4 concerns 
the choice between a general AR(1) model for time series data and the special 
case of a (non-stationary) random walk. This is adapted from a problem 
studied by Marriott and Newbold (1998). Finally, in Chapter 5, we consider 
the well-known example due to Cox (1962). In this case having observed a 
sample from a discrete distribution we wish to determine whether a Poisson 
or a geometric distribution is better supported by the data. 

In Chapters 3 and 5 we are able to use (improper) prior distributions in 
order to calculate Bayes factors for comparison purposes. We are able to do 
this in a straightforward manner as these examples are non-nested. We also 
obtain the maximised likelihood ratio in these cases. 

We are unfortunately unable to calculate the actual Bayes factor for the 
problems that we consider in Chapters 2 and 4. The Bayes factor involves 
a ratio of integrated likelihoods under the two hypotheses being considered 
and for the cases given it is not possible to evaluate the required integrals 
over the infinite parameter spaces. We discuss this issue further in Chapter 6, 
where we suggest other possible comparisons as further work. This actually 
indicates a further strength of our approach as we are able to consider any 
choice of prior distribution whereas it is impossible to use the flat priors on 
infinite parameter spaces in order to calculate a Bayes factor. 

We now note that it is possible to express all four of these applications 
in the same general form. For the calculation of Irk, we require the following 
elements, given a model parameter 6 and data Y: 

(a) Hypotheses Ho, Hl (or Hl, H2) and (possibly) a third encompassing 
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1.3. Structure of the thesis 

hypothesis He. This refers to a parent hypothesis that both Ho and Hl 
are nested within and in certain cases is simply Hl. 

(b) A prior distribution over 6E He. 

(c) A parameterisation of 6 such that 

6= (e, 'y), 

where B is the parameter of interest and is specified under the null 
hypothesis and specified or a nuisance parameter under the alternative. 
y is a nuisance parameter under both models. 

For each example we then calculate (if possible in the case of the Bayes 
factor) the following quantities, denoting the likelihood function by L(. ) and 
the (improper and uninformative) prior distribution used in the calculation 
of the Bayes factor by 7("). We here assume that we are working with Ho 
and Hl. 

(i) The maximised likelihood ratio which depends only on the data and is 
defined as 

MLR = 
max6 Lo (b) 

maxb L1(S)' 

where L0(") and L1(") are the likelihood functions under the two models. 
(ii) The posterior distribution of the "true" likelihood ratio. This is defined 

as 7r, ß = Pr (LR(5) <k ly) where 

LR(6) = 
L0(6) 
L1(6) 

Note that this depends on both the data and the parameter J. 

(iii) The Bayes factor, defined here as 

B_f 
Lo (6)7r(6) d6 

f L1(6))7r(6) db 

It is not always possible to calculate the Bayes factor. In fact, as 
discussed earlier, we are only able to obtain this for two of the four 
examples discussed. 

10 



1.3. Structure of the thesis 

We should note here that all but the first of these quantities depend on 
the choice of the nuisance parameter 'y. The MLR however is invariant 

under reparameterisation of either the parameter of interest or the nuisance 
parameter. The dependence of the posterior distribution of LR, and indeed 
the Bayes factor, on the choice of parameterisation is to be expected if we 
are comparing different models. The dependence on the nuisance parameter 
-y may be reduced by the use of the orthogonal parameterisation for two 
parameters, should this exist. Alternatively the parameterisation which gives 
a diagonal expected information matrix could be chosen, if one exists. 

We are now able to cast the examples discussed in the remainder of the 
thesis in the terms given above. For full details of the models the reader 
should refer to the relevant chapter. 

1.3.1 Testing normal mean, a unknown 
In this example our parameter is 6_ (au, or), corresponding to a normal mean 
and variance. The required elements are as follows: 

(a) Hypotheses: 

Ho: Yr N(0, a2), 
H1= He: Y^' N(p, a2). 

(b) We use a flat (diffuse) prior on (µ, log a) under He. 

(c) Parameters: 

8=µ, 7=a. 

This is one of the examples where, due to the problems of integrating an 
improper prior over an infinite parameter space, we are unable to obtain the 
Bayes factor. 

1.3.2 The choice between two single-variable regres- 
sions 

Our parameter here is b= (ßo, 011 02, a) and we are also given two covariate 
vectors xl and x2 which we are interested in choosing between. We have the 
following required elements: 

11 



1.3. Structure of the thesis 

(a) Hypotheses: 

H1 :YN N(ßo + ß1x1i, 2), 

H2 :Y- N(ßo + ß2x2i, 2), 
He :i ^ý N(ß0 + ß1x1 + ß2x2i, a2). 

(b) We use a flat (diffuse) prior on (ßo, ßl, ß2, log a) under He. 

(c) Parameters: 

e= (ßl, ß2), 7= (ßo, 9). 

Here our two hypotheses are not nested within each other but within an 
encompassing hypothesis and so we are able to obtain a Bayes factor for 
model comparison using a diffuse prior on (ßo 

�ßl ) 
02,9) 

. 

1.3.3 The choice between random walk and AR(1) time 
series 

Our parameter here is b= ('u, a, q) and we are interested in choosing between 
a random walk (0 = 1) and a more general AR(1) model for our data. The 
elements for calculation of irk are as follows: 

(a) Hypotheses: 

Ho :Y lY-l - N(Y-1, a2)7 
Hl = He :Yl Y-1 ^J N(q1-l + (1 - O)µ, or 2). 

(b) We use a flat (diffuse) prior on ((1 - O) u, log a, 0) under He. 

(c) Parameters: 

e=ýb, 'y=(, a). 
Once more, in this nested case, we are unable to obtain a Bayes factor when 
using improper priors. 

1.3.4 The choice between Poisson and geometric dis- 
tributions 

We nest both the Poisson (Hl) and geometric (H2) distributions within the 

encompassing negative binomial distribution and here use the parameter 
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1.3. Structure of the thesis 

6= (1u, r). The elements we require follow: 

(a) Hypotheses: 

Hl :Y- P(lc) 
-- 

NB (I-t, oc), 

H2: Y-G NB 

He: YjN NB( , r). 

(b) We use both a flat (diffuse) prior on (µ/(, u + r), r) and a flat prior on 
(, µ/(µ + r), 1ogr) under He. 

(c) Parameters: 

8=r, 'y=i 

Again, as we have nested the Poisson and geometric hypotheses in the neg- 
ative binomial encompassing hypothesis, we are able to calculate a Bayes 
factor both for a diffuse prior on µ and a diffuse prior on log M. In this case 
we do not need to specify a prior for r as it is given under both Hl and H2 
so needs no consideration. 
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Chapter 2 

Testing normal mean, a 
unknown 

2.1 The t-test problem 
In Aitkin (1997) the problem of testing a normal mean with unknown vari- 
ance was considered. The standard method of analysis for this problem is 
the t-test. We present the analysis of this problem from the Aitkin paper and 
extend it by completing the numerical integration mentioned in the paper 
and displaying the resultant values for irk. 

We consider the following model, where we have n observations from a 
general normal distribution: 

Xi N(µ, o2), 1=1,2, ... ,n 

with both j and o unknown. We wish to test the point null hypothesis 
Ho :y= /-to against the general alternative Hl :u µo with p, µo E R. 

2.2 Likelihood ratio 
We first consider the likelihood ratio, LR, which we define to be 

LR = 
L(bLo, a) 
L(p, a) 

14 



2.2. Likelihood ratio 

which uses a section through the likelihood at the true but unknown or. Here 

n11 
L(it, or) _ exp -2 (xi - {ý)2 

gor 
1) 

_1n1 
27fQ 

exp 
2Q2 

(xz 
- 

)2 + µ)2J 

Z-1 

so that 

n 
LR = exp - 

Ii [(xi 
- 

)2 +(- /1o»2 - 
(x2 

- 
)2 

_(- 1)2 20' 2-1 

= exp 
{-20r2 

`ý 
- /1(y2 - 

(x 
- /1)2] 

Therefore 

-2 log LR =2 ýý 
- X0)2 -{-, ß)2J 

P (n 
- 1)s2 

- 
n(x -lull X 

n-1 O2 (12 

where 

1n 
s2 = (x2 -': t) 2 and t= 

n-1 i=1 

yo) 
s 

The joint prior distribution for (µ, log a) is taken to be diffuse so that we 
can express the joint posterior as 

Q a2 (n 
- 1)s2 

2 plaN 
2 r. 'Xn-1' 

nU 

We are interested in expressions of the form LR < k, or equivalently 
2 log LR > -2 log k, for some real k. If we define 

Y- n(x µ)2 
and Y2- 

(n - I)s2 
1 

07 2 g2 

then the posterior distributions of Yl I Y2 and Y2 are independent conditional 
on a, and are respectively X1 and X2_1 Since these distributions do not 
involve or, Yl and Y2 are unconditionally independent. 
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2.2. Likelihood ratio 

We now turn our attention to Irk = Pr(LR <k lx) 
. In this case we have 

2 

7r, ß = Pr Yl <t 
Y2 

+2 log k. 
n-1 

Note that when k=1, this simplifies to 

71 = Pr Yl < 
t2 

Y2 
n-1 

= Pr 
Yl /l< 

t2 
(Y2/(n 

- 
= Pr Fl,,,, 

-1 < t2) 

= 1-P 

where P is the frequentist P-value of the hypothesis being tested. In general, 
however, we consider k01 and here numerical evaluation of the posterior 
probability is required. 

We now define 

71 = -2 log k 

then 

2 

Irk=Pr 
t2 

-Y, >rý 
((n 

- 1) 

Now we know that the xv density is 

exp -z2 z2U 

22F(- 
2 

and Yl and Y2 are independent so their joint distribution is 

ý2 3 {-- l 
exp 

2 f(yi, ýJ2) =12 
Y2 2 

a 
(1) 

exp 
2fn_1 

22T -r 22 
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2.3. Results 

Now F(1/2) = and 

n - 1 
r 

( 
f= 2 

n 
23 
n/2-1 (n_(2i+1)) 

72 
i=1 

if ri>2 is odd 

if n> 2 is even. 

Define 

so that 

n-1 -1 [V-x2nr 

27 

f)=r yj Z y2 23 exp {-} Y2 (yi 
7 Y2 exp 

ý 
2 

Looking at the region t2Y2/(n - 1) - Yl > 77 where, in addition, both Yl and 
Y2> 0 we see that if we set 

Yi=Yi, 0<Yi<00, 

then we require that 

P 

n_lY2-Y1 
>777 

which is equivalent to 

- Y2 > (71 + YI ) 7Z i 

t2 

We can now use this result to express Irk in terms of an integral over the joint 
distribution of Y1, Y2. So we have 

223 eXP -2 
y2 dýJ2 dyl Y 7fk =K1 

00 

=o 
Yz 1/2 exp - 

ýyl 
(£--- 

l 
yý 

2.3 Results 
Unfortunately this integral is not possible to evaluate analytically so the 
integral is evaluated by numerical integration. This was carried out using 
Maple for sample sizes n from 3 to 21 (so that the degrees of freedom on 
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2.3. Results 

Table 2.1: Irk & Pforn=3 

k 
t . 01 

.05 .1 . 15 .2 1 P-value 
1.0 

. 00006 
. 00144 . 00577 . 01299 . 02309 . 57736 . 42265 

1.1 
. 00030 

. 00434 . 01365 . 02669 . 04294 . 61396 . 38604 
1.2 . 00079 

. 01009 . 02642 . 04641 . 06920 . 64700 . 35300 
1.3 

. 00291 . 01953 . 04436 . 07168 . 10075 . 67675 . 32325 
1.4 . 00640 . 03309 . 06712 . 10152 . 13616 . 70353 . 29647 
1.5 . 01214 . 05075 . 09397 . 13475 . 17402 . 72761 

. 27239 
1.6 . 02052 . 07215 . 12399 . 17020 . 21309 . 74927 . 25073 
1.7 . 03175 . 09670 . 15623 . 20683 . 25239 . 76877 . 23123 
1.8 . 04582 . 12374 . 18981 . 24379 . 29117 . 78633 . 21367 
1.9 . 06255 . 15257 . 22400 . 28042 . 32888 . 80218 . 19782 
2.0 . 08165 . 18257 . 25820 . 31623 . 36515 . 81650 . 18350 
2.1 . 10275 . 21318 . 29193 . 35086 . 39976 . 82945 . 17055 
2.2 . 12544 . 24394 . 32484 . 38409 . 43258 . 84119 . 15881 
2.3 . 14936 . 27446 . 35669 . 41578 . 46356 . 85185 . 14815 
2.4 . 17411 . 30446 . 38731 . 44586 . 49270 . 86155 . 13845 
2.5 . 19939 . 33372 . 41659 . 47431 . 52005 . 87039 . 12961 
2.6 . 22491 . 36208 . 44449 . 50114 . 54566 . 87846 . 12154 
2.7 . 25041 . 38942 . 47099 . 52640 . 56963 . 88584 . 11416 
2.8 . 27571 . 41566 . 49609 . 55015 . 59204 . 89261 . 10739 
2.9 . 30064 . 44083 . 51983 . 57245 . 61298 . 89882 . 10118 
3.0 . 32507 . 46484 . 54225 . 59338 . 63255 . 90453 . 09547 

Y2 ran from 2 to 20) and for given values of t, which is the only sample 
quantity which affects the integral for 7k. Thus it is possible to calculate 'rk 
for this range of values of t, for various values of k. We should note that as 
a result of evaluating the integral numerically there is a known error of at 
most 5x 10-10. In order to save space but still display results across the full 

range of n considered, Tables 2.1 to 2.3 present only the cases n=3,11,21. 
Full tables are available from the author. 
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2.4. Discussion 

Table2.2: 7r, ß &Pforn=11 

k 
t . 01 

. 05 .1 . 15 .2 1 P-value 
1.0 

. 00000 . 00000 . 00000 . 00001 . 00013 . 65911 . 34089 
1.1 

. 00000 . 00000 . 00001 . 00019 . 00113 . 70289 . 29711 
1.2 

. 00000 . 00000 . 00016 . 00133 . 00554 . 74220 
. 25780 

1.3 
. 00000 

. 00004 . 00102 . 00572 . 01795 . 77723 . 22277 
1.4 . 00000 . 00031 . 00421 . 01719 . 04334 . 80823 . 19177 
1.5 . 00001 . 00144 . 01257 . 03992 . 08465 . 83549 . 16451 
1.6 . 00004 . 00482 . 02949 . 07662 . 14154 . 85932 . 14068 
1.7 . 00022 

. 01261 . 05776 . 12747 . 21079 . 88003 . 11997 
1.8 . 00085 

. 02729 . 09851 . 19028 . 28767 . 89795 . 10205 
1.9 . 00257 . 05098 . 15094 . 26135 . 36734 . 91338 . 08662 
2.0 

. 00642 . 08478 . 21274 . 33652 . 44569 . 92661 . 07339 
2.1 . 01376 . 12851 . 28071 . 41202 . 51972 . 93792 . 06208 
2.2 

. 02605 . 18088 . 35153 . 48433 . 58758 . 94756 . 05244 
2.3 . 04453 . 23979 . 42221 . 55288 . 64834 . 95575 . 04425 
2.4 . 06997 . 30279 . 49037 . 61492 . 70179 . 96268 . 03732 
2.5 . 10257 . 36746 . 55432 . 67039 . 74816 . 96855 . 03145 
2.6 . 14191 . 43165 . 61302 . 71925 . 78797 . 97351 . 02649 
2.7 . 18704 . 49364 . 66595 . 76176 . 82186 . 97769 . 02231 
2.8 . 23669 . 55216 . 71301 . 79841 . 85056 . 98121 . 01879 
2.9 . 28943 . 46440 . 75437 . 82977 . 87473 . 98417 . 01583 
3.0 . 34379 . 65589 . 79039 . 85645 . 89504 . 98666 . 01334 

2.4 Discussion 
We now examine Tables 2.1 to 2.3 and compare them to the standard t-test 
for this problem. The rejection criteria differ considerably in that, as we have 

already stated, we can take different values for both k and 'irk when using 
our (k, 'rk) test while the t-test rejects the null hypothesis when the P-value 
is less than a certain value, 0.05, say. This P-value can be read off from the 
tables in the last column for each value of t. The (k, Irk) formulation requires 
that we reject Ho when 'irk is considered to be large for sufficiently small k, 

egif 710.1>0.7. 
From the tables we see that the P-value decreases roughly exponentially 

as t increases for a given value of n and the same effect occurs for a given 
value of t as we increase n. Now since 7r1 =1-P we see an increase in 7r1 
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2.4. Discussion 

Table2.3: 7k& P for n- 21 

k 
t . 01 

. 05 .1 . 15 .2 1 P-value 
1.0 

. 00000 
. 00000 . 00000 . 00000 . 00000 . 67074 . 32926 

1.1 
. 00000 . 00000 . 00000 . 00000 . 00002 . 71560 

. 28440 
1.2 . 00000 . 00000 . 00000 . 00003 . 00038 . 75584 

. 24416 
1.3 . 00000 . 00000 . 00002 . 00039 . 00307 . 79162 

. 20838 
1.4 . 00000 . 00000 . 00021 

. 00271 
. 01386 

. 82316 . 17684 
1.5 . 00000 . 00003 . 00150 

. 01165 . 04181 . 85076 
. 14924 

1.6 . 00000 . 00025 . 00666 
. 03453 . 09424 . 87472 

. 12528 
1.7 . 00000 . 00142 . 02089 

. 07821 . 17174 . 89537 
. 10463 

1.8 . 00001 . 00552 . 05038 
. 14495 . 26782 . 91304 . 08696 

1.9 . 00007 . 01618 . 09940 . 23105 . 37235 . 92805 . 07195 
2.0 . 00039 . 03795 . 16811 . 32876 . 47563 . 94073 . 05927 
2.1 . 00152 . 07474 . 25241 . 42934 

. 57071 . 95138 . 04862 
2.2 . 00473 . 12819 . 34567 . 52549 . 65385 . 96027 . 03973 
2.3 . 01203 . 19695 . 44078 . 61242 . 72392 . 96765 . 03235 
2.4 . 02607 . 27717 . 53181 . 68776 . 78146 . 97375 . 02625 
2.5 . 04947 . 36366 . 61471 . 75105 . 82787 . 97877 . 02123 
2.6 . 08415 . 45112 . 68733 . 80301 . 86485 . 98287 . 01713 
2.7 . 13073 . 53511 . 74907 . 84495 . 89408 . 98622 . 01378 
2.8 . 18834 . 61244 . 80036 . 87842 . 91708 . 98894 . 01106 
2.9 . 25483 . 68124 . 84220 . 90488 . 93511 . 99115 . 00885 
3.0 . 32721 . 74079 . 87589 . 92570 . 94923 . 99292 . 00708 

in both these cases. It is very interesting to note that as we increase n for 

values of k other than 1, we can observe different behaviour depending on the 
value of k that we are considering. For example, for the value k=0.2,70.2 
decreases with n for t<1.8, but increases with n for t>1.9. For k=0.05, 

70.05 decreases with n for t<2.4, but first increases and then decreases as n 
increases for t=2.5, and increases with n for t>2.6. The cut-off points for 
this decreasing behaviour for the different values of k are given in Table 2.4. 

It is notable that for large P-values, the posterior probabilities change 
dramatically with n, while for small P-values they are relatively stable with 
n. Table 2.5 shows this for 710.2. 
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2.5. Simulation 

Table 2.4: Approximate t cut-off for values of k 

k 0.2 0.15 0.1 0.05 0.01 
Cut-off 1.8 2.0 2.2 2.5 3.0 

Table 2.5: P-value, t and 7r0.2 for given n 

n pt 70.2 Pt 70.2 Pt 70.2 Pt 70.2 

3 . 101 2.9 . 613 --- --- --- 
11 . 102 1.8 . 288 . 052 2.2 . 588 . 026 2.6 . 788 . 016 2.9 . 875 
21 . 105 1.7 . 172 . 049 2.1 . 571 . 026 2.4 . 781 . 017 2.6 . 865 

2.5 Simulation 
The preceding work, while providing us with the values of Irk, is computa- 
tionally time-consuming with each of the preceeding tables taking upwards 
of a day to compile. We therefore consider finding a more efficient method 
to evaluate irk. 

Recall that 
2 

7k=t Y2-Yl>-21ogk . (n - 1) 

The simulation approach can now be expressed directly in terms of finding 
the distribution of the random variable t2Y2/(n - 1) - Yl by simulating Yl 

and Y2. The tail area probabilities follow directly. 
For any given dataset both t and n are known and since 71 is a constant 

which we set at a specific numerical value, the only random elements in this 

expression are the (independent) random variables Yl and Y2. It follows that 

we can obtain an approximation to irk in the following manner: 
First, given t and n, we simulate a large number (N) of pairs (y1, Y2) and 

for each pair we then evaluate 
P 

h(yi, Y2) _ (n _ 1) Y2 - Y1. 

We now ascertain the number of pairs for which h(yi, y2) >q for our chosen 

r] and divide this by N to give an approximate value for 'irk. This method 
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2.6. Further discussion 

Table 2.6: Estimated lrk &P for n=3 

k 
t . 01 . 05 .1 . 15 .2 1 P-value 

1.0 . 000 . 001 . 005 . 012 . 022 . 578 . 422 
1.1 . 000 . 004 . 013 . 025 . 042 . 612 . 388 
1.2 . 001 . 009 . 025 . 045 . 067 . 647 . 353 
1.3 . 002 . 018 . 042 . 069 . 097 . 677 . 323 
1.4 . 006 . 031 . 065 . 099 . 130 . 704 . 296 
1.5 . 012 . 048 . 090 . 129 . 168 . 729 . 271 
1.6 . 019 . 071 . 118 . 164 . 208 . 752 . 248 
1.7 . 030 . 092 . 150 . 202 . 247 . 769 . 231 
1.8 . 044 . 119 . 184 . 238 . 285 . 787 . 213 
1.9 . 061 . 146 . 220 . 274 . 327 . 804 . 196 
2.0 . 078 . 176 . 253 . 313 . 366 . 817 . 183 
2.1 . 099 . 208 . 287 . 351 . 403 . 830 . 170 
2.2 . 121 . 238 . 323 . 388 . 435 . 843 . 157 
2.3 . 143 . 269 . 356 . 419 . 467 . 853 . 147 
2.4 . 167 . 301 . 389 . 448 . 493 . 862 . 138 
2.5 

. 192 
. 332 . 419 

. 475 
. 520 . 872 . 128 

2.6 . 220 . 361 . 447 . 502 . 544 . 880 . 120 
2.7 . 246 . 391 . 471 . 525 . 566 . 888 . 112 
2.8 . 267 . 417 . 497 . 548 . 587 . 894 . 106 
2.9 . 295 . 442 . 518 . 570 . 607 . 900 . 100 
3.0 . 322 . 465 . 541 . 588 . 625 . 906 . 094 

speeds up the evaluation of irk very considerably with each table now taking 

no longer than a few minutes to compile. As can be seen in the following 
tables, the values from the simulation compare well with the values calculated 
earlier using numerical integration. Note that here we are taking N= 10000 

and that once more we display, in Tables 2.6 to 2.8, only the results relating 
ton=3,11,21. 

2.6 Further discussion 

Examination of the tables and comparison with the results given earlier shows 
that the estimated '/rk are reasonably close to the values obtained through nu- 
merical integration and that the same patterns are exhibited. Therefore, the 
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2.6. Further discussion 

Table 2.7: Estimated '1rk &P for n= 11 

k 
t . 01 . 05 .1 . 15 .2 1 P-value 

1.0 . 000 . 000 . 000 . 000 . 000 . 669 . 331 
1.1 . 000 . 000 . 000 . 000 . 001 . 710 . 290 
1.2 . 000 . 000 . 000 . 001 . 004 . 742 . 258 
1.3 . 000 . 000 . 001 . 004 . 016 . 774 . 226 
1.4 . 000 . 000 . 003 . 016 . 039 . 807 . 193 
1.5 . 000 . 001 

. 012 . 035 . 083 . 836 . 164 
1.6 . 000 . 003 . 026 . 075 . 144 . 858 . 142 
1.7 . 000 . 012 . 052 . 129 . 213 . 880 . 120 
1.8 . 001 . 024 . 099 . 195 . 296 . 896 . 104 
1.9 . 002 . 046 . 155 . 270 . 375 . 912 . 088 
2.0 . 005 . 082 . 216 . 344 . 447 . 925 . 075 
2.1 . 012 . 131 . 289 . 417 . 520 . 936 . 064 
2.2 . 023 . 186 . 356 . 484 . 591 . 946 . 054 
2.3 . 040 . 246 . 425 . 552 . 649 . 954 . 046 
2.4 . 065 . 309 . 490 . 616 . 702 . 961 . 039 
2.5 . 103 . 370 . 554 . 673 . 749 . 967 . 033 
2.6 . 146 . 435 . 615 . 719 . 789 . 971 . 029 
2.7 . 192 . 496 . 667 . 764 . 826 . 976 . 024 
2.8 . 243 . 551 . 712 . 800 . 854 . 980 . 020 
2.9 . 295 . 607 . 754 . 834 . 875 . 983 . 017 
3.0 . 348 . 655 . 792 . 859 . 892 . 987 . 013 

comments made in the earlier discussion (section 2.4) concerning the values 
of Irk remain relevant here with reference to the tables obtained through sim- 
ulation. We therefore consider issues arising specifically from the simulation 
method. 

As this method produces only an approximation to Irk, we consider the 

possible error built into the procedure. We are, in effect, simulating a value 
of the random variable Nfrk which has a Binomial distribution: 

N7rk - Bin (N, Irk) . 

In order to obtain a feel for the potential error in our approximation to irk 
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2.6. Further discussion 

Table 2.8: Estimated Irk &P for n= 21 

k 

t . 01 . 05 .1 . 15 .2 1 P-value 
1.0 

. 000 
. 000 . 000 . 000 . 000 . 667 . 333 

1.1 . 000 . 000 . 000 . 000 . 000 . 711 . 289 
1.2 . 000 

. 000 . 000 . 000 . 000 . 753 
. 247 

1.3 . 000 
. 000 . 000 . 000 . 002 . 790 

. 210 
1.4 . 000 . 000 . 000 . 002 . 013 . 820 . 180 
1.5 . 000 . 000 . 001 . 011 . 042 . 848 . 152 
1.6 . 000 

. 000 . 005 . 034 . 096 . 873 . 127 
1.7 . 000 

. 001 . 020 . 080 . 173 . 894 . 106 
1.8 . 000 

. 004 . 052 . 144 . 265 . 913 . 087 
1.9 . 000 

. 016 . 101 . 231 . 366 . 927 . 073 
2.0 . 000 . 038 . 169 . 325 . 471 . 940 . 060 
2.1 . 001 

. 077 . 250 . 424 . 566 . 951 . 049 
2.2 . 004 . 130 . 342 . 522 . 651 . 961 . 039 
2.3 . 012 . 198 . 436 . 607 . 722 . 968 . 032 
2.4 . 027 . 274 . 525 . 686 . 779 . 974 . 026 
2.5 . 051 

. 358 . 609 . 752 . 827 . 978 . 022 
2.6 . 086 . 445 . 686 . 800 . 863 . 982 . 018 
2.7 . 131 . 528 . 750 . 843 . 894 . 987 . 013 
2.8 . 188 . 608 . 798 . 878 . 915 . 989 . 011 
2.9 . 253 . 680 . 840 . 905 . 933 . 990 . 010 
3.0 . 323 . 739 . 877 . 923 . 948 . 992 . 008 

we require the variance of our estimator, irk. Now we know that 

E (N'rk) = N7rk =E (frk) = Irk 7 
Var(Nfrk) = Nlrk(1-Irk) = Var(frk)=7F'ß(1-7k) 

N 

As V ar (irk) depends on the (unknown) exact value of 7k we must instead 
use the estimated variance of the estimator 

irk (I - *k) Var(ltk)= 
N 

This is a maximum, for fixed N, when 'rk = 1/2. Hence the maximum value 
that this estimated variance can attain is 1/(4N), which for our earlier choice 
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2.6. Further discussion 

of N= 10000 is 0.000025; the corresponding sampling standard error is at 
most 0.005. Thus the true proportion lies with 95% confidence within 2 

standard errors (at most 0.01) of the observed proportion reported in Tables 
2.6 to 2.8. The mimimum value is zero and is attained at irk = 0,1. A 

comparison of the tables obtained through numerical integration and simu- 
lation establishes that the maximum difference is approximately 0.01. We 

can therefore be confident that our approximate values obtained through 
simulation are accurate to within 0.01 of the true values. 

It is straightforward to obtain the (approximate) cumulative distribution 
function of the likelihood ratio by simply plotting Irk against k. We undertake 
this procedure for our selected values of n and t and alongside these plots 
we also display the corresponding density estimates. The densities are esti- 
mated using the "density" function in the software package R which provides 
kernel density estimates. The software disperses the mass of the empirical 
distribution function over a grid and then convolves this approximation with 
a discretised version of a normal kernel before using linear approximation to 
evaluate the density. The distribution and density functions for n=3,11,21 
and t=1,2,3 are shown in Figures 2.1 to 2.3. On the density plots we 
also display, as a vertical line, the maximised likelihood ratio (MLR). This is 

obtained using the maximum likelihood estimates (µ, &) of (µ, (7) under Hl 
in addition to the maximum likelihood estimate, & of u under Ho. We define 

MLR = 
L(µo, &) 
L(ý, a) 

Standard maximisation techniques give: 

X, 

2 s2 (n - 1) 

n 
&2 

s2(n- l+t2) 

n 

It is straightforward to show that the MLR (in favour of the null model) is 

given by 

n n/2 
MLR = 

(fl+t2) 

It is immediately apparent from the density plots that, for t=2 and 
3, the 11ILR overstates the evidence in favour of the null hypothesis as its 

value lies to the right of the peak of our distribution. This overstatement 
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2.6. Further discussion 

Figure 2.1: Distribution (left) & density (right) functions for n=3, t -- 
11 2,3. Vertical line shows k= MLR. 
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2.6. Further discussion 

Figure 2.2: Distribution (left) & density (right) functions for n= 11, t 
1,2,3. Vertical line shows k= MLR. 
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2.6. Further discussion 

Figure 2.3: Distribution (left) & density (right) functions for n= 21, t -- 
11 2,3. Vertical line shows k= MLR. 
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2.6. Further discussion 

appears to lessen in severity as n increases. In the case of t=1, the 1VILR 
is actually to the left of the peak, overstating the evidence against the null 
hypothesis. Again this overstatement lessens as n increases, so that we see 
that the MLR improves as a statement of evidence for larger sample sizes. 

Examination of the graphs also suggests that we investigate the effect 
that t and n have on the mean, variance and skewness of the likelihood ratio 
since the density plots appear to exhibit the anticipated decrease in mean 
as t increases and as n increases. We also observe an apparent increase in 
skewness with t. Recall that 

7P 
Irk = Pr 

t 
Y2-Yl>-21ogk 

(n - 1) 
2 

= Pr exp 
{1r 

Yl -t Y2 < 1ý 
. 2 (n-1) 

We can characterise the distribution of irk by considering the random variable 

y11 t2Y2 
LR=exp 

2 2(n-1) ' 

and in particular E (LR) 
,V ar (LR) and Slew (LR) 

. 
As a result of the inde- 

pendence of Yl and Y2 we have 

2 
2 

E (LR) =E exp 
Yl 

exp 
t 

2 2(n - 1) 
E (LR1LR2) =E (LR1) E (LR2) 

where 
2 

LR1 = exp 
Yl 

and LR2 = exp -t 
Y2 

2 2(n - 1) 

Recall that the moment generating function (mgf) of a xm random variable, 
Z, is 

11 
E(exp{tZ}) 

m/2 
= 1-2t ' tC 

2 

and is undefined otherwise. Therefore E(LR1) is undefined and so conse- 
quently is E(LR). We can also see that this is true for E(LR1) and hence 
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2.6. Further discussion 

for V ar (LR) 
. Further 

Slew (LR) = 
E ([LR -E (LR)]3) 

Var (LR)3/2 

is also undefined as we can see from the mgf that this is the case for E (LR'I) 
. This behaviour is a result of the (very) heavy tail of the distribution of the 

likelihood ratio. 
While we are not able to obtain summary statistics for LR itself, we can 

for log LR, the log of the likelihood ratio. Here 

2 
log LR = 

IY1 
-t Y2. 

2 2(n - 1) 

We shall use the following results for a xm random variable Z: 

E (Z) = m, Var (Z) = 2m, 
E (Z2) = m(m + 2), E (Z') = m(m + 2) (m + 4), 

Skew (Z) _$. 
m 

Using these results we obtain 

E (log LR) 

Var (log LR) 

1 t2 
2 2' 

_1 
t4 

2+2(n-1) (*) 

Note that it is possible for E(logLR) to be positive if tl < 1. In this case, 
the null hypothesis is better supported (in expectation) than the alternative. 

In order to evaluate the skewness 

Slew (log LR) =E 
([log LR - E(log LR)]3) 

{V ar (log LR) }3/2 
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2.6. Further discussion 

we require some preliminary calculations. Expanding (log LR)3, we obtain 

E ([log LR]3) -1E (Y, ') - 
3t2 

E (Y12) E (Y2) 
8 8(n - 1) 

+ 
3t4 

2E 
(Y1) E (Y2) 

- 

t6 

3E 
(Y3) 

8(n - 1)2 8(n - 1)3 
15 

- 
9t2 

+ 
3t4(n + 1) 

_ 
t6 (n + 1)(n + 3) 

88 8(n - 1) 8(n - 1)2 

Also 

E([log LR - E(log LR)]3) 

=E ([log LR]3) - 3E ([log LR]2) E (log LR) + 2E (log LR)3 . 
Using EQ log LR] 2) =V ar (log LR) +E (log LR) 2 and the formulae given 
earlier we obtain 

E([log LR - E(log LR) 
t6 

]3) -- 1- . (n -1)2 

Combining this result with (*) we can see that 

Skew (log LR) = 

t6 
1- 

(n -1)2 (t) 1 t4 3/2 

2+2(n-1) 

We now consider how these summary statistics behave as we let our sample 
size, n, tend to infinity. First, E(log LR) is actually independent of n and so 
remains fixed irrespective of the sample size. We also see that Var(log LR) -+ 
1/2, a value independent of t. A similar effect is seen with the skewness, 
which, by considering (t) can be seen to tend to 2\. This is also independent 
of t and is the value of the skewness of aX random variable. This can be 
explained as we may observe that log LR becomes dominated by the term in 
Yi, a Xi random variable, as n -+ oc. 

We now relate our work to the case where the variance is known which 
we examined in Section 1.2 where we had n=I observation, x. We found 
that 

irk = Pr(Yl <2 log k+ x2) 
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2.6. Further discussion 

where Yl - xi as before. This means that the distribution of 2 log LR is 

concentrated above -x2. 
If we now consider the plots in Figures 2.1 to 2.3 we see that generally 

the density peaks show the pattern given in Table 2.9. The case for n=3 
does show a slightly different peak for t=1 however, this being at around 
k=0.9,2 log k -- -0.211. We can observe from the table that the maximum 

Table 2.9: Location of approximate peaks in density 

t k 2logk 
1 0.7 -0.713 
2 0.1 -4.605 
3 0.01 -9.210 

density (of 2 log LR) occurs around the value of -t2 in these cases and we 
can also see from the plots that this distribution is similarly concentrated 
above this value as in the known variance case. 
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Chapter 3 

The choice between two 
single-variable regressions 

3.1 Introduction 
We now consider a problem which was first presented by Pitman (1937). We 
are given the two-variable normal regression 

M: Yi I x1 , x2i'" Nß0+ß1x1 +ß2x2i, a2)7 i=1,2,... 
, 92 

and we are interested in selecting the better of the two single-variable models 
using xl only or x2 only. Williams (1959) gives a motivating example with 
two measures predicting wood density; further details of this example are 
given in Section 3.4. We formulate the two hypotheses Hl : /32 = 0, where 
only xl is needed, and H2 : , 

ßl = 0, where only x2 is required. We denote the 
models under Hl and H2 by Ml and M2 respectively and we wish to discover 

which of these hypotheses is better-supported by the data. 

3.2 Model likelihoods 

Let the vectors of observations be denoted by xl = (xli), x2 = (x22), and de- 
fine the design matrices X= [1, x1, x2], Xl = [1, x1], X2 = [1, x2], with cor- 
responding parameter vectors , 

QT = (ßo, 
N1 

ß2), /1 = (ßo, ßi) 
N2 = (00, ß2) 
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3.2. Model likelihoods 

The full model likelihood under M is 

L(N0, ý1, ý2, or) -- 

12n 

exp - 
12 

(y - Xß), (y - Xß) 
1 (27r) a 2ý 

ex'p 
12 

[RSS + (ý 
- 

ß)T XTX 
(ý - jß)] (27r)n 2n 2ý 

where RSS = (y - X/ )T (y - X, ß) is the residual sum of squares evaluated 
at the maximum likelihood estimator ß. 

We have 

N(O, or 
2(XTX)\-1), 

RSS 

ý 
xn-3 lJll 

using either frequentist or Bayes assumptions. Under the second, the distri- 
bution of (ß - ß) is conditional on a. 

For the two sub-models, the likelihood for Ml can be written as 

L1 = L(ßo, ßl, 0, o, ) = exp - 
12 

[Rss + (ßl - ß1)T Xi Xl ($i - )31)] (2, )n/2 07 n 2ý 

while for M2 

L- L(& 07 ý27 9) -1n exp 
{_22[Rss2 

+A--2 
(27r) /2a ý 

where for j=1,2 

of=(XTXj)_'Xjy, 

and 

RSSj = (y 
- Xj1j)T (y 

- 
xjýj)" 

The likelihood ratio between Ml and M2 is 

Lý 1ý 
LR =L= exp - 212 

(RSSI - RSS2 + Q1 - QZ , 2 

where QI and Q2 are quadratic forms in ß1 and ß2, with 

1 
Qj= 

ýýj-ß) T 
Xjxj 

0i-0i) 
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3.2. Model likelihoods 

Therefore 

-2logLR =2 (RSSI - RSS2 + Q1 - Q2)- 
01 

We now assume, without any loss of generality (since the origin of x1 and 
x2 can be absorbed into , ß0), that xl and x2 are centred, so that E xli = E x2i `0. Then, for j, k=1,2, we define 

Sik =E xjixki, Sjy = 
Y, 

xjiyi, Sy =E Yi, 

and 

Xr x_ 72 O ]xT=[Y]. 
O Sii ' Shy 

Then for the full model 
S11 S12 

_1 ,'ll 
S12 

S12 S22 
S 

S12 S22 I 
S-1 

XTX =n0' (XTX)_l _ 
1/n 0 

0S0S 

Sy 
XT 4y= sly 

Sty 

Now, using a diffuse prior distribution, we have 

ßi 
or2S-1 N2 /ý2 i 

Therefore, the posterior distribution of the likelihood ratio is 

irk = Pr(LR < k) = Pr 
RSSI - RSS2 

2+ 
Q1 

2 
Qz 

> -2 log k. 

Using our earlier results we can see that 

Q1 
- 

Q2 = n(y - 
ß0)2 + S11(ý1 

- 
ý1)2 

- 
[n(g 

- 
ß0)2 + S22(ý2 

- 
02)2] 

S11(ý1 `01 
2-S22(ý2-02 2. 
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3.2. Model likelihoods 

We note that this quadratic form in (, ßl) ß2) is not centred at the full MLE 
(ß1, ß2) but at the MLEs under the two sub-models. 

Now 

RSSI - RSS2 RSS RSSI - RSS2 

0-2 0-2 
X RSS 

where the second term is the model comparison of the two hypotheses relative 
to the full model. Let 

RSSI - RSS2 
RSS 

then 

irk=Pr tR2S+Q1 
2Q2 >-2logk . 

If we now define, 

ßj -/j and 
Q 

%Yj 
ýj 

-Ij 

O 

then 

Q 
1- 

Q2 
Si 2 

Q 
S, 

2-1 "%1 - 22 ý%2 

We see that the form for Irk once more requires either numerical integration 
or simulation in order to obtain values for this probability. In light of our 
previous experience we shall use a simulation method, analagous to that of 
the previous chapter. 

In order to simulate from (Q1 - Q2)/a2 we have to be able to simulate 
values of lye for j=1,2. We know that 

72 72 

and if we now observe that we can write yj as 

ý7- ý7j ýj) + ýjI 
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3.3. Simulation 

we see that, as we can simulate (/3 - ßi) /u using RSS/a2 , x2_3 to obtain 
a value for the unknown (random) quantity a, we are able to simulate from 
(Q1 - Q2)/a by obtaining realisations from 'y2 - 'y2. This quantity has a bi- 
variate normal distribution with a (possibly) non-diagonal covariance matrix. 

3.3 Simulation 

Let 77 = -2 log k and 

-2logLR=tR 2S +Q1 2Q2. 

Recall that Irk = Pr[-2 log LR > q], 'yj = (/3 
- 

ýj) /a and 

Q1 
- 

Q2 
22 

2= 
S1171 

-S2272 . Q 

We know that, for a given dataset, we can calculate S11, S12 and S22. 
Standard linear regression techniques provide estimates of ,j and ßj, and, 
thereby values for S-1, RSS, RSS1 and RSS2. We can therefore calculate 

RSSI - RSS2 
RSS 

We can easily simulate from RSS/a2 ,x 
_3 then obtain realisations from 

(Q1 
- 

Q2)/a2 in the following manner, by simulating values of 'yj. 
We can obtain an observation from (Q1 - Q2)/a2 by substituting real- 

isations of tyl and -y2 into (*). We can obtain the sample values of rye via 
the standard method for multivariate normal sampling for realisations of 
('}j - ', ). We know 

1. 'Y2 
r, N (0, S_11 

'i2 ý2 

We firstly simulate from 

and then from 

(71 
- 

mil)1(72 

(72 
- 72)^' N(O, S22), 

N (S12(72 - 
ý2ý r" S22 

%2) 
5,11 

_ 

(S12)2 

' 5221 
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3.4. Bayes factor and maximised likelihood ratio 

We then use our simulated value of RSS/072 to obtain a value of a in order 
to form 

22 
Q1 

- 
Q2 

_ , 
5+11 (-/1 

-E- 

ý1 
- 

ý1 

- , 
5'22 72 - ý2 + 

ý2 
- 

ý2 

Q2 Q 

Hence, we can simulate the necessary value required for our simulation based 
procedure to estimate 'irk. We generate a large number (N) of observations 
from 

12 Q1 
- 

Q2 
Xn-37 

a2 

and for each set of values we then evaluate L. We then simply ascertain the 
number of pairs for which L> 77 for our chosen rj and divide this by N to 
give an approximate value for 'irk. As in the previous chapter we have that 
the estimated variance of our estimator 'rk is 

Irk (1 -irk ) 
Var (Irk) = N 

Once more, we see that this has a maximum of 1/(4N) and hence we can 
choose N such that we obtain a desired level of minimum accuracy. 

3.4 Bayes factor and maximised likelihood ra- 
tio 

For comparison purposes we shall also calculate the Bayes factor and the 
maximised likelihood ratio for this example. We proceed in the following 
fashion. 

3.4.1 Bayes factor calculation 
We define the Bayes factor (in favour of M1, the model using xl only, over 
M2) to be 

f 00 , 
=o 

fß7 
oo 

f0L 013 0, or) 7r0� (ßo)7r, 3, (01)ß, (a) dß0 dß1 da 
B= ßi=- ßo=- 

U=o ßfa=-ý 
f L(ßo, 0, ß2ý U) 7ßO (ßo)ßß2 (ß2) 7ro- (or) dßo dß2 dam' ßo=-oo f 00 
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3.4. Bayes factor and maximised likelihood ratio 

where the (improper) prior distributions for ßo, j3 , , 
ß2 and a are taken to be 

diffuse and are given by 

7,30 (ß) = 71ßi (ß) = 1Tß2 (0) k17 
-00<ß<00 

and 

7o- (a) = k2i o< Or <OO. 
Note that we may ignore the constants of proportionality k1 and k2 as they 
will cancel when we calculate the ratio of integrals. Using these priors the 
Bayes factor can be written as 

B=fLldß1da 
f L2 dß2 da 

where, as defined previously for j=1,2, 

Lj 
1 

exp - 
ýRSS+ (- 

- (2ýr) 

{22 

ý 

-Q ßj), RSSj is the residual -(ßoß sum of squares and ßj is the maximum i 
likelihood estimate of 8j for model M3. Aitkin (1991, pp. 119) shows that 

f Lj dß da = 2-3/2,. -(n-2)/2r 
(n; 3 

IXE Xj -1/2RSS3 
(n-3)/2 

Earlier we saw that 

n0 
= ý xT 0 Si, 

where Sjj = >i xýi, and so I Xý Xj = nSjj. Therefore the Bayes factor is 

B= 
X2511 -1/2 RSSl -(n-3)/2 

ns22 

[R8s2j 

SS22 SS2 (n-3)/2 

s1E1 RSSl 

We note that the second term of this expression is a function of ratio of the 

residual sum of squares for the two sub-models. 
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3.4. Bayes factor and maximised likelihood ratio 

3.4.2 Maximised likelihood ratio calculation 
Writing the full model likelihood from Section 3.2 as 

L(ß0, 
N1, 

ß2, a) = exp - 

1(y 

- 
Xß)T (y 

- 
Xß) 

(27) 

12n 

20r2 

_11n (2ý)n 2ýn exp - 2a2 
E (ýJi - 00 

- 
ý1xli 

- 
02x2i )2 

1/ i=1 

we define the maximised likelihood ratio to be 

MLR = 
&(')) 

L(ß 2, o' 
2 

2) &(2)) 

Here we consider the maximum likelihood estimates of the parameters under 
the two sub-models. We denote the estimate of /3j under model Mi by ßj(2) 
and use the same notation for the estimates of a-. The residual sum of squares 
for each sub-model are 

n 

RSS1 = 
(y2 

- ý3(1) - Q(l) li 
Z-1 

and 
n2 

RSS2 = 
(Yi 

- 
(2) 

- 
22)x2i 

i=1 

By differentiation of the likelihood function with respect to a and setting the 
resultant form equal to zero we find that, under model Mi for i=1,2, 

äßi)2 _ 
RSSZ 

n 
Hence, we see that the maximised likelihood ratio is given by 

MLR 
(n/(27) )n/2 RSS, n/2e-n/2 

= (n/(27r) )n/2 RSS2_n/2e-n/2 

RSS2 n/2 

RSSI 

This is simply a function of the ratio of the residual sum of squares for the 
two sub-models. This fact, when considered in conjuction with the similar 
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3.5. Example 

Table 3.1: Strength of radiata pine with density and resin-adjusted density 

Strength Density Adjusted Density Strength Density Adjusted Density 
3040 29.2 25.4 2470 24.7 22.2 
3610 32.3 32.2 3480 31.3 31.0 
3810 31.5 30.9 2330 24.5 23.9 
1800 19.9 19.2 3110 27.3 27.2 
3160 27.1 26.3 2310 24.0 23.9 
4360 33.8 33.2 1880 21.5 21.0 
3670 32.2 29.0 1740 22.5 22.0 
2250 27.5 23.8 2650 25.6 25.3 
4970 34.5 34.2 2620 26.2 25.7 
2900 26.7 26.4 1670 21.1 20.0 
2540 24.1 23.9 3840 30.7 30.7 
3800 32.7 32.6 4600 32.6 32.5 
1900 22.1 20.8 2530 25.3 23.1 
2920 30.8 29.8 4990 38.9 38.1 
1670 22.1 21.3 3310 29.2 28.5 
3450 30.1 29.2 3600 31.4 31.4 
2850 26.7 25.9 1590 22.1 21.4 
3770 30.3 29.8 3850 32.0 30.6 
2480 23.2 22.6 3570 30.3 30.3 
2620 29.9 23.8 1890 20.8 18.4 
3030 33.2 29.4 3030 28.2 28.2 

form of the Bayes factor, makes the relative values of RSS1 and RSS2 a 
useful guide as to which model we should prefer. 

3.5 Example 

We consider the dataset used in the Williams (1959) example. We are given 
42 observations of the strength of radiata pine, together with the correspond- 
ing density and density adjusted for resin content. The data are shown in 
Table 3.1. We are interested in making a choice between the two single- 
variable models, each using only one of the density measures. We make 
this choice as the two explanatory variables are essentially functions of one 
another as they are measuring the same quantity in two different ways. 
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3.5. Example 

In terms of our original model, M, we represent the strength by yi, the 
density by x1i and the resin-adjusted density by x2i for i=1,2,... , 42. Our 
hypotheses now take the following meanings: 

Hl selects the model with the non-adjusted density measure only and 
H2 the model with the resin-adjusted density measure only. 

In our derivation we assumed that both covariates summed to zero, and 
therefore we use new (centred) covariates 

xj =xj -xj, j=1,2. 

At this point we recall that RSSj represents the residual sum of squares 
when fitting model Mj, and that M1 is the model using only xl as a regressor 
and M2 is the model using only x2. The following key summaries can be 

calculated from the data: 

x1 = 27.85952, x2 = 26.78810, RSS = 2979320, 
RSSI = 4602769, 

ßl = 35.92847, 
ß2 = 183.2733, 

RSS2 = 3066459, 

, 
ß2 = 149.9736, 

t=0.5156578, 
Ql = 184.5528, 

811 = 828.2412, S22-885.5840. 

It is clear from the values of RSS, RSS1 and RSS2 that the data favour M2, 
the resin-adjusted density model, as there is little difference in RSS between 
the full model and the model using x2 alone. This means that our method 
should favour using the resin-adjusted density. 

We also obtain 

828.2412 820.7898 
S- 

(820.7898 
885.5840 

with inverse 

S-1 = 
0.01481 -0.01373 (-0.01373 

0.01385 

We now simulate N= 100000 observations from x2_3 and the random quan- 
tities (72 - 72) and (7y' - 'Y1) (72 - 72), using 

(72 - 72) - N(0,0.01385), 
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3.5. Example 

and 

('Yi - %yl) I (72 
- 72) - N(-0.99100(72 - ý2), 0.00121). 

Table 3.2 shows the the estimates obtained for 'Trk. 

Table 3.2: Approximate Irk values of k 

k 7fk k ? fk 

2.0 0.972 1.9 0.973 
1.8 0.972 1.7 0.972 
1.6 0.972 1.5 0.972 
1.4 0.971 1.3 0.971 
1.2 0.971 1.1 0.971 
1.0 0.971 0.9 0.971 
0.8 0.971 0.7 0.971 
0.6 0.971 0.5 0.970 
0.4 0.970 0.3 0.970 
0.2 0.969 0.1 0.969 

From inspection of Table 3.2, we can see that we have a very strong 
preference towards H2. This is particularly shown by the large value of irl. 
Hence we, once more, see a strong preference towards the resin-adjusted 
density model. 

Figure 3.1 gives a plot of the (approximate) cumulative distribution func- 
tion of the likelihood ratio by plotting 'Irk against k. Alongside this we show 
the corresponding density estimate, again obtained using the software pack- 
age R. This figure shows that the density is concentrated near k=0, once 
more indicating very strong support for H2 for these data. We are also able 
to calculate both the Bayes factor and the maximised likelihood ratio for this 

example: 

B= 
885.5840 3066459 39/2 

= 0.000376 
828.2412 4602769 ' 

3066459 21 
MLR = 4602769 = 0.000198. 

These results agree with the conclusion of extremely strong support for M2 

which was given by our Irk method. 
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3.5. Example 

Figure 3.1: Distribution (left) & density (right) functions for the Williams 
data 
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Chapter 4 

The choice between random 
walk and AR(1) time series 

4.1 Introduction 

We adapt the model comparison problem of Marriott and Newbold (1998) 
to a slightly simpler model. Specifically consider the AR(1) model 

Xi I Xi-i - N(OXZ-i + (1 - 0)b1, Q2), i=1,2, ... ,n 

where we condition on the initial X0. This model is stationary for 10 < 1, 

and our interest is in the point null hypothesis Ho :0=1, where the model 
is a non-stationary random walk. For 101 >1 the model is non-stationary 
with increasing variance. 

In the formulation of Marriott and Newbold, the parameter space is con- 
strained to 101 < 1. However, there is nothing in the above model that 

requires this constraint. Indeed it is usually imposed (artificially) after dif- 
ferencing to remove any non-stationary trend. Without this constraint, the 

model is a simple re-parametrization of the linear regression model 

Xi 1 Xi-1 ^' N(c + ßXi-1, a2) 

with ß=0 and a= (1 - q)µ. Under the null hypothesis Ho :0=1, 
(a = 0, ß= 1), the likelihood function is flat in µ. This is a rank deficiency 
in the model which causes no difficulty however in our analysis. 
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4.2. Likelihood ratio 

4.2 Likelihood ratio 
The likelihood function (omitting multiplicative constants) is 

L(p, or, 0) = eXp -1 lxi - oxi-1 - n 2ý2 
i=1 

and under Ho :0=1, this is 

11n I'(/', or, 1) =- exp 
E(Xi 

- xi-1)2 
Qn 

To-r2 
i=1 

The likelihood ratio is 

LR = 
L(li, a, 1) 
L(lu, a, ý) 

1 [E{x_xl_(1_}2_ n 

= exp 2Q2 
E(Xi 

- xi-1) 
2 

i-1 i=1 

We now re-parameterize to a and ß. Using diffuse priors, the posterior 
distributions of a, ß and or are given by standard results from regression 
analysis (in the absence of parameter constraints) as 

e= ýa, ý)T I x7 Q r" N 
((&)T 2(xT X)-1 

)7 
QRSS 2 iýn-2 

where ä, ß are the MLEs, X is the design matrix [1, x], where 

xT = (x0, x17... ' xn-1) and 1T = (17 
... 1 

1). 

If we define 

T (x1, x2,... 7 xn), 

the residual sum of squares is 

RSS = (y - XO)T(y - XO). 

Then 

LR=exp 
12 {RSS+(9_ý)TXTX(9_O)_D}} 

2 
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4.3. Evaluation of 7k 

and 

-2logLR =-2 RSS+(8-9)TXTX(B-9) -D1 , aJ 

where D is the sum of squared lag 1 differences. Therefore the posterior 
probability Irk = Pr(LR < k) is 

Irk - Pr 
t 

01 

RSS 2 D+ 2 (e - 6)T XT X (8 - 9) <2 log k 

_ 
RSS RSS -D1 Pr 

Q2 
X RSS +2 (9 - 9)T xT x (9 - 9) <2 log 1ý 

= Pr - 
2F 

Y2+Yl<2 log k 
n-2 

where Yl ti x2, Y2 'xn_2 and 

F= 
(D - RSS)/2 
RSS/(n - 2) 

is the F-statistic for testing Ho :0=1 (oz = 0, ß= 1) against Hl :01 by 
the usual ANOVA. Again the posterior distribution is a (weighted) difference 

of central x2 random variables. 
As before we first consider the case when k=1. Here we obtain 

ßr1 = Pr Yl < 
2F 

Y2 
n-2 

= Pr [F2, 
n-2 < F] . 

This is easily found by reference to the appropriate F distribution table. 
We now return to the general case where we firstly take 0<k<1 so that 

log k<0. For this particular example we are able to evaluate Irk analytically 
in the following way. 

4.3 Evaluation of lrk 
If we now once more define 

7]=-2logk 
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4.3. Evaluation of irk 

and note that rr >0 then we can see that we have the following general form 
for Irk : 

7k=Pr(aY2-Yi>i1) 

where 

2F 

n-2 

We now consider the various possibilities for a and we do this by considering 
various values that F can assume. We should first note that, for indentifia- 
bility of the three parameters, a, ß, a, we restrict ourselves to n>2. We can 
also see that if we allowed n=2 we would, in this case, be faced with F=0. 
This would leave us unable to evaluate a and hence unable to obtain irk. 

A slight rearrangement of the form for F gives 

n-2 D 
F2 

RSS -1. 

Under Ho, the sampling distribution of F has the form of an F distribution 
and hence F>0. Now, if F=0 then a= 0 and we see that in this case 

Irk=Pr (-Yl>T7)I 

the probability of a (random) negative number being larger than a positive 
number. Therefore, in this case, irk = 0. 

We now concern ourselves with the case 0<F< oc. In this range we 
know that a>0 and we also know that 71 > 0. We are interested in obtaining 
a value for 

irk = Pr (aY2 - Yl > 7)) . 

Yl has density function 

fig(Yi)= 
exp{-y} 2 

2 

and Y2 

fY2 (Y2) = 

n-4 

exp{-y2}y22 2 
n22 (n221 22FJ 
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4.3. Evaluation of 'irk 

We also note that Yl and Y2 are independent. We see that we may re-arrange 
the expression aye - y1 > 71 >0 as 0< yl < ay2 - 77 and hence obtain y2 >ä. 
Using these results to give our ranges of integration we proceed as follows: 

00 aye-17 
7Tk = fY2 (y2) fyi (y1) dYl dy2, 

f? 

7/a 0 

00 

= fß'2 (y2) 1- exp 
ay2 - rl 

-2 dy2, 
77/a 

1) 

_f 
? l/00 

fY2 (Y2) dy2 
- fY2 (Y2) exp -2 dy2. 

aJý/a 

Now let us define G(x) to be the (cumulative) distribution function of a 
X _2 random variable and also let g(x) = G'(x) be the corresponding density 
function. Then 

9(x) = 
n-4 

exp{2}x 2 
x>o. 2 2`r (n22) 

2 

Recall now that Y2 X2 _2 so that 

7k G\ 7/ 
-" 

fY2 (Y2) exp -aY2 
- 77 dy2. 

f/a 

2 

{1- 

CL 

If we now re-arrange the integrand we obtain 

'z °° a+I 
7k=1-G(l- 

ne-2 
21 

2Y2 
24 exp - 

ýJ2 dy2 
\alý 2 22x(2) i'/a 

Changing variables from Y2 to y3 = (a + l)y2 we obtain 

eXP ý2ý 00 
n24 ys 1 

l- n- 2Z (n 
22 

(a+ n- 22 i+i/a 
y3 exP 

{- 
2J 

dýJ3 1- G\ 
a2 F)1) 

We now see that the integrand has the same general form as the density of 
a Xn_2 distribution so that we find 

%Tk -1-G 
ex p2 {Z 

-G 
(71 

+ 
ýl } 

a2a (a+ ý) 
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4.4. Results 

If we now substitute our expressions for a and 7) we see that 

gk 
'irk = 

{i_c(__2)b0)} 
F 

n-2 
(r n-2) 2 11 rl 

n-2 

Iý (n 
-2+ 2F) 2 l' - °l 

(n-2)logk 
2logk -. F 

We now note that if we substitute F=0 into the above form we obtain 
7r, ß =0 so that when n>2 this form holds for 0<F< oc. 

Evaluation of 'r/ in the case 1<k< oc proceeds in a similar fashion. 
Here we have that rq <0 which implies that y2 >0>n /a and hence 

00 aye-7 

7k - 
0fY2 

(y2) fYi (y1) dpi dy2 

0 

We obtain: 

Irk = {1 - G(0)} - 
eXp n_2 {1 - G(0)} 

, (a +1) 2 
n-2 

2 n-2 
= 1- 

n-2 
0<F<oo. 

k (n 
-2+ 2F 2 

4.4 Results 
We now proceed as in the work on testing a normal mean with unknown a by 

calculating 7k for a range of values of F and 0<k<1. We display results 
for n= 10,50,100 in Tables 4.1 to 4.3. 

4.5 Discussion 
If we recall that higher values of Irk indicate that we are more likely to reject 
the random walk model in favour of the AR(1) model with parameter q :ý1, 
we can see that, as we would expect, Irk increases with both k and F. If we 
now consider a fixed F and look at the behaviour of Irk when we increase n, 
we again see that here irk is increasing, meaning that, as would be expected, 
for larger n we require a smaller value of F to provide convincing evidence 
against the random walk model than for smaller n. 
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4.5. Discussion 

Table4.1: ltk & Pfor n=10 

k 
F 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 P 
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
0.2 0.000 0.000 0.000 0.000 0.000 0.001 0.005 0.028 0.091 0.177 0.823 
0.4 0.000 0.000 0.000 0.002 0.011 0.036 0.085 0.158 0.242 0.317 0.683 
0.6 0.000 0.001 0.007 0.027 0.067 0.128 0.206 0.289 0.365 0.428 0.572 
0.8 0.001 0.009 0.036 0.085 0.155 0.237 0.321 0.399 0.464 0.518 0.482 
1.0 0.005 0.032 0.088 0.165 0.252 0.340 0.420 0.489 0.545 0.590 0.410 
1.2 0.016 0.072 0.156 0.251 0.345 0.430 0.503 0.563 0.611 0.650 0.350 
1.4 0.037 0.125 0.230 0.334 0.427 0.507 0.572 0.624 0.665 0.699 0.301 
1.6 0.068 0.185 0.304 0.410 0.499 0.572 0.629 0.675 0.711 0.740 0.260 
1.8 0.108 0.249 0.375 0.478 0.561 0.627 0.678 0.717 0.749 0.774 0.226 
2.0 0.154 0.312 0.439 0.539 0.615 0.673 0.718 0.753 0.781 0.802 0.198 
2.2 0.203 0.372 0.498 0.591 0.661 0.713 0.753 0.783 0.808 0.827 0.173 
2.4 0.254 0.429 0.551 0.637 0.700 0.747 0.782 0.809 0.830 0.847 0.153 
2.6 0.304 0.481 0.597 0.677 0.734 0.776 0.807 0.831 0.850 0.865 0.135 
2.8 0.353 0.529 0.639 0.712 0.764 0.801 0.829 0.850 0.867 0.880 0.120 
3.0 0.401 0.573 0.675 0.743 0.789 0.823 0.848 0.867 0.882 0.893 0.107 

We now plot both the cumulative distribution and the density functions 

of the likelihood ratio. The cumulative distribution is obtained by simply 
plotting irk against k while the density is obtained by direct differentiation 

of the function obtained for 7Fk. This means that where irk =0 the den- 

sity is identically zero. Elsewhere we proceed as follows, firstly considering 
0<k<1. We require the derivative of irk with respect to k, denoting this 
by 7' and applying the chain rule we find 

_lg 
(71 exp{2} 

-9 

(q 
+ 

1ýaa a(a + 1) 2 

exp 2} rý 
2(2 a a +1) =2 

Substituting our expressions for a and rj we obtain 

ýý - 
n-2 (n-2)logk 

+ 
(n-2)'24 

_49 gk 
(_21o 

kF 9Fk (n -2+ 2F) "2 
(n 

- 
2) n-2 

T n-2 
k2(n-2-ß-2F) 2 

(n - 2) log k 
2 log k 

F 

(n - 2) log k 
Fl 
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4.5. Discussion 

Table 4.2: Irk & Pforn=50 

k 
P 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 P 
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.008 0.090 0.181 0.819 
0.4 0.000 0.000 0.000 0.000 0.000 0.004 0.054 0.159 0.253 0.327 0.673 
0.6 0.000 0.000 0.000 0.001 0.016 0.094 0.211 0.309 0.386 0.447 0.553 
0.8 0.000 0.000 0.001 0.023 0.114 0.242 0.350 0.431 0.494 0.545 0.455 
1.0 0.000 0.000 0.018 0.110 0.253 0.374 0.464 0.531 0.583 0.625 0.375 
1.2 0.000 0.007 0.081 0.237 0.380 0.483 0.557 0.612 0.655 0.690 0.310 
1.4 0.000 0.036 0.187 0.361 0.487 0.573 0.634 0.679 0.715 0.744 0.256 
1.6 0.003 0.102 0.306 0.469 0.575 0.646 0.696 0.734 0.764 0.788 0.212 
1.8 0.016 0.196 0.417 0.559 0.647 0.706 0.748 0.780 0.804 0.824 0.176 
2.0 0.048 0.302 0.513 0.634 0.707 0.756 0.791 0.817 0.837 0.854 0.146 
2.2 0.103 0.406 0.594 0.695 0.756 0.797 0.826 0.848 0.865 0.878 0.122 
2.4 0.178 0.499 0.662 0.746 0.797 0.831 0.855 0.873 0.887 0.898 0.102 
2.6 0.265 0.579 0.718 0.788 0.831 0.859 0.879 0.894 0.906 0.915 0.085 
2.8 0.356 0.647 0.764 0.823 0.858 0.882 0.899 0.912 0.921 0.929 0.071 
3.0 0.443 0.704 0.803 0.852 0.882 0.901 0.915 0.926 0.934 0.941 0.059 

For 1<k< oo we find simply that 

i 71 = 

(n 
- 

ý/ n22 

"' n-' 
k2 (n -2+ 2F) 22 

We show these plots of the distribution and density functions in Figures 
4.1 to 4.3 for our selected values of n with F=1,2,3. 

For the cases graphed we also calculate the maximised likelihood 

ratio (MLR). This is obtained using the maximum likelihood estimate & of 
a) under Ho in addition to the maximum likelihood estimates, (µ, &, q) of 
Cu, a, q) under Hl. Note that the form of the likelihood is independent of 
'u under Ho and that, in fact, under Hl we only require the value of RSS 

in addition to &. This is because µ, ý enter the maximised likelihood only 
through the residual sum of squares which we express here as 

RSS(xi - 
ýXi-l 

-2 
i=1 
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4.5. Discussion 

Figure 4.1: Distribution (left) & density (right) functions for n= 10, F= 
1,2,3 
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4,5. Discussion 

Figure 4.2: Distribution (left) & density (right) functions for n= 50, F= 
1,2,3 
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4.5. Discussion 

Figure 4.3: Distribution (left) & density (right) functions for n= 100, F= 
1,2,3 
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4.5. Discussion 

Table 4.3: Irk &P for n= 100 

k 
F 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 P 
0.0 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 
0.2 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.004 0.090 0.181 0.819 
0.4 0.000 0.000 0.000 0.000 0.000 0.001 0.048 0.161 0.254 0.329 0.671 
0.6 0.000 0.000 0.000 0.000 0.007 0.088 0.213 0.311 0.388 0.449 0.551 
0.8 0.000 0.000 0.000 0.010 0.105 0.246 0.354 0.435 0.498 0.548 0.452 
1.0 0.000 0.000 0.006 0.096 0.257 0.381 0.469 0.535 0.587 0.628 0.372 
1.2 0.000 0.001 0.059 0.238 0.389 0.491 0.563 0.618 0.660 0.694 0.306 
1.4 0.000 0.016 0.178 0.371 0.497 0.581 0.641 0.686 0.721 0.749 0.251 
1.6 0.000 0.075 0.312 0.482 0.586 0.655 0.704 0.741 0.770 0.793 0.207 
1.8 0.004 0.181 0.431 0.573 0.659 0.715 0.756 0.787 0.810 0.829 0.171 
2.0 0.021 0.305 0.531 0.648 0.718 0.765 0.799 0.824 0.844 0.859 0.141 
2.2 0.069 0.421 0.613 0.709 0.768 0.806 0.834 0.855 0.871 0.884 0.116 
2.4 0.150 0.520 0.680 0.760 0.808 0.840 0.863 0.880 0.893 0.904 0.096 
2.6 0.253 0.603 0.735 0.802 0.841 0.868 0.887 0.901 0.912 0.921 0.079 
2.8 0.362 0.672 0.781 0.836 0.869 0.891 0.906 0.918 0.927 0.934 0.066 
3.0 0.463 0.728 0.819 0.864 0.891 0.909 0.922 0.932 0.940 0.946 0.054 

Recall also that we have set 
n 

D= (xi 
- xi-1)2, 

Zý1 

and if we define 

MLR = 
L( 1) 

, L(µßý, ý) 

then under Ho, the random walk model, we see that the likelihood is given 
by 

2- 

D2 
L(µß ýý 1) =1 exp ("r n a) 2g 

This is maximised by 

_2 
D 

cr=- 
n 
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4.5. Discussion 

and the corresponding maximised likelihood is 

L &, 1) -- 
nn/2 

exp 27ý nDn/2 

{-}. 

We now evaluate the likelihood under Hl at µ and ý for general a to give 

{RSS12 
(2irar)n 

exp 
2U 

This is at a maximum when 

ý2=&2= 
RSS 

n 

and we obtain the maximised likelihood, 

I' (µß &, 0) _- 2ý n 
nn/2 
RSSn/2 2Xp 

{_n 

We now see that the MLR (in favour of the null model) is given by 

(RSS)2 
MLR =D 

If we recall that 

ý, 
- 

(D - RSS)/2 
RSS/(n - 2) ' 

then we can express the MLR as 

n2 n/2 
MLR = 2F-fin-2 

Table 4.4 shows the values of this statistic graphed in Figures 4.1 to 4.3. We 

see that these values broadly agree with the peaks of the density plots in 
the figures meaning that we have consistent conclusions from both the irk 
method and the MLR. 

We see from the density plots that as we move away from F=0 (essen- 

tially moving away from the null model) the density becomes more concen- 
trated towards k=0. As we would hope, this shows stronger preference for 

the alternative model. 
Further examination of the graphs, as in our work relating to the t-test, 
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4.5. Discussion 

Table 4.4: Maximised likelihood ratio values 

F 
n 1 2 3 
10 0.328 0.132 0.061 
50 0.360 0.135 0.053 
100 0.364 0.135 0.051 

suggests that we examine the effect that F and n have on the mean, variance 
and skewness of the likelihood ratio. We now proceed as in our earlier work, 
recalling that Yl - X2 and Y2 - x2_2. Now 

'rk = Pr 
2F 

Y2 - 'i > rJ 
n-2 

, = Pr 
1 

Y1 - 
2F 

Y2 < log k 
2 n-2 

= Pr exp 
1 

y1 - 
2F 

. Y2 <k 2 n-2 

and if we now let 

LR=exp 
1 
2Y1 

F 
Y2 

n-2 

then we simply wish to evaluate E(LR), Var(LR) and Skew(LR). As a 
result of the independence of Yl and Y2 we know that 

E LR =E 
(exP{Yi}exP{2Y2}) 

()=E 

(LR1LR2) =E (LR1) E (LR2) 

where 
1 

LR1 = exp 2 Yl 
, 

LR2 = exp -F Y2 
n-2 
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4.5. Discussion 

We know from our earlier work that E (LR1) is undefined which, once more, 
means that E(LR), V ar (LR) and Skew (LR) are all undefined. As before, 
though, we are able to obtain the summary statistics for M- log LR. We 
know that 

IF 
Y2 M=2 Y1 -n-2, 

and it is then straightforward to obtain 

and 

Now recall 

E(M)=1-F 

2F2 
Var(M)=1+(n_2)2. 

2F 

n-2' 

so that to calculate the skewness we proceed as follows 

E(M3) _1 E(Y3) -8 E(Y2)E(Y2) + 
3a2 

E(Yi)E(Y2) - 
a3 E(ß'2) 7 8888 

=6- 3a(n - 2) + 
3a2 

n(n - 2) - 
a3 

n(n - 2) (n + 2). 
48 

Again using our earlier work we know that 

Skew(M) _ 
E(M3) - 3E(M2)E(M) + 2E(M)3 

Var(M)3/2 

and using 

we can see that 

E(M2) = Var(M) + E(M)2 

Skew(M) - 
E(M3) - 3Var(M)E(M) - E(M)3 

Var(M)3/2 

2- a3(n - 2) 
ýl+ 

2 
(n-2))3/2. 
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4.5. Discussion 

If we now consider how these summary statistics behave as we let our sam- 
ple size n tend to infinity we observe that E(M) =1-F is independent of 
sample size and that 

Var(M) =1+ 
2F 2 

-ý 1+0=1. 
n-2 

It is notable that the limit of the variance is, as with our earlier work, inde- 
pendent of the observed data. If we now consider the skewness and use our 
result for the limit of the variance we can see that 

Slew (M) - 

8F3 
2- 

ýn - 2ý2 2-0 
-2. 1-0 2F 2 

3/2 

1+ (n-2) 

Once more we have a result that is independent of the data observed. 
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Chapter 5 

The choice between Poisson 
and geometric distributions 

5.1 Introduction 
In the famous example of Cox (1962), a sample yl, y27 ... , yn is observed 
from a discrete distribution which is either a Poisson (Hi) or a geometric 
(H2) distribution. We shall use our likelihood method to investigate how to 
decide which of these two hypotheses is better-supported by the data. We 
parametrise both distributions to have mean u. Under Hl we have: 

Pr(Y = y) = e-/'µy/y!, y=0,1, ... . 

While under H2 we have: 

Pr(Y=y) =µy/(1+M)y+l, y=0,1,... . 

5.2 Likelihood ratio 
Let the model implied by hypothesis HZ be denoted by Mi for i=1,2. 
We shall embed both of these models in the negative binomial family, with 
probability function: 

Pr(Y = y) = 
y+r- 1r-1 )TY/(r++r, 

µ' r>0, y-0,11»** . 

When r=1 this simplifies to the geometric form given above for M2 and 
when r -3 oc we obtain the form for the Poisson model (MI). We shall 
denote J: i yj by y+ and we then see that the likelihood from the negative 
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5.3. Evaluation of Tk 

binomial model is 

L(µ, r) _r_1r µy2/(r + µ)YZ+rý 

n (yi+r-1 

i-1 
\1 

rnr µy+ n (yi+r- 1 

(r +, y++nr 
i=1 

The likelihood ratio of Ml relative to M2 is 

LR = 
Lßµ, oc) 

= 
e-ný`, u'+/ f1 yj! 

- L(/-ß, 1) µY+/(l + )y++n 

Then 

Irk = Pr(LR < k) 
n 

= Pr e-nµ 1+ , )y++n <k fl 
yi! 

1 

e-nµ (1 + µ1l y++n 
l 

II1n yz! 

Pr y± +1 log(1 + µ) - /c <I log k+ log yZ! 
nn i 

n 
= Pr P+ n log k- y+ log(1 + j) + log y2! / log(1 + p) >1, 

1 

which is an integral over a region in the (p, r) plane of the joint posterior 
distribution of (, u, r) derived from the likelihood. 

5.3 Evaluation of Irk 
In order to employ our simulation method to evaluate 'irk it is clear from the 

above form that we must obtain a realisation of p from the joint posterior 
and then test whether 

n 

g(A) = {�+ 1 
log k- y+ log(1 + µ) + log yZ! log(1 + µ) > 1. 

n1 

Unfortunately, due to the fact that there is no conjugate prior that we can 

place on r (the index of the negative binomial distribution), we are unable 
to obtain a straightforward joint posterior distribution of (µ, r) from which 
to simulate , u. We therefore require a different method of simulation, and 
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5.3. Evaluation of Irk 

consider the following reparameterisation of the negative binomial, using 
p= PAP + r). 

n 

L (p, r) = py+ (1 - p) nr I 
(yi+r_1\ 

rr1' i-1 

py+(1-p)nr n 
B(y++1, nr+l) 

(Yi +r -1 
B(y++1, nr+1) r-1 i-1 

where B(a, b) is the beta function 

B(a, b) - 
r(a)F(b) 
IF(a + b) 

If we now use a flat prior for p, we see that 

pr, y-ß(y++1, nr+1), 

so that, given r, we are able to simulate from p (and hence from 
ia) . 

This 
flat prior for p means that the prior for p is given by 

r 
ýr + µ\2. 

Denoting ir(r) as the chosen (marginal) prior distribution for r, we see 
that the posterior for r can be written as 

1 
7r(r y) oc B(y++1, nr+l 

n (Yi++rr -1 ir(r). 
i=1 

If we now define h(r) so that 7r(rly) oc h(r) we have 

n yi+r-1 h(r) =B(y++1, nr+1)fl 
r-1 

ir(r). 
i-1 

For our given data, yl, ... , yn, we now plot h(r) against r and note that as 
r increases there appears to be a value after which h(r) becomes negligible. 
We take rm to be this value of r; this is evaluated by recording the value at 
which h(r) drops below a selected tolerance level. This is shown in Figure 
5.1. 

Our next step is to evaluate h(r(i)) over a fine grid of r() covering (0, r, n]. 
We can then obtain the empirical cumulative distribution function F(r) 
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5.3. Evaluation of 7k 

h(r) 

I 

Tm 

which is 

F(r) _ 

ET(i)<r h(r( )) 

ET(i) h(r()) 

We now find ourselves in a position to simulate a value of u in the following 

manner. Firstly we simulate u from U(0,1) then using interpolation we 
obtain the value of r which has this value of the (empirical) cumulative 
distribution function. Using this value of r we simulate a value of p from the 
Beta distribution given above. Finally we obtain u using 

rp 
lý= 1_p 

We can now proceed in our familar fashion and obtain an estimate for irk 
(given data and k) using the proportion of times in a large sample that 

g(/c) > 1. 
We now demonstrate that the posterior distribution for r obtained above 

is in fact integrable, and hence can simply be transformed into a proper 
posterior. Recall that we defined the function h(r) to be proportional to the 
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5.3. Evaluation of irk 

posterior density function, then, denoting by ca value independent of r, 

7r(r1y) = ch(r) 

, ('= 
(r) 

c7r(r)r(y++l)T(nr+1) 
n r(yi+r) 

T(nr+y++2 I' r Fy2-ß-1 

For large r we may apply Stirling's formula (Stirling 1730) to the function 
F(. ), that is 

1'(x + 1) 

Or, if we recall I'(x + 1) = xT (x), 

IF (x) 27 e-xxx-112 

We find 

7(rI rl_i 

n 
)f 7r (T) = cB(y++1, nr+1 

(yi+r-1 

r-1 2-1 

27Te-nr (nr)nr+l/2 

2 27re-(nr+y++l) (nr + y+ + 1)nr+y++3/ 
n 27e-(yi+r) (yz + r)yi+r-1/2 

Xý 27fe-rrr-1/2 
i-1 
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As r is large we approximate (1 + n/n)' by eu, giving 

n 
1 

7(r y) , c7r(r) 
y++1ey++1 

fJ [r ey` 
rj 1J 

i=1 

We observe that this is asymptotically 

7(rIy) r- 
N 

c7 (r) 
ry+ 

ry++i 

cir(r) 
1 
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65 



5.4. Bayes factor and maximised likelihood ratio 

So if 7-(r) is constant, 7(rly) will not be integrable because 1/r falls off too 
slowly. We note 

100 1 

dr -ý [log r] i° . 1r 

If 7r(r) a 1/r then 7r(r y) will be integrable. However, by truncating the 
range of r at rm the problem of integrability disappears as only finite ranges 
are involved. 

5.4 Bayes factor and maximised likelihood ra- 
tio 

For comparison purposes we shall also calculate the Bayes factor and the 
maximised likelihood ratio. This proceeds in the following manner. 

5.4.1 Bayes factor calculation 
We define the Bayes factor (in favour of Ml, the Poisson model, over M2) to 
be 

_f 
,O L(li, oo)7r(µ) d1i 
0, BJ0 

L(µ, l)ß(µ) du 

where the prior distribution for p is taken to be diffuse and is given by 

71(µ) = kµ-s 
for either s=0 or s=1. Note that we may ignore the constant of pro- 
portionality k as it will cancel when we calculate the ratio of integrals. We 

consider two prior distributions here for comparison purposes, the prior with 
s=1 placing more weight on smaller values of u. 

We first consider the term in the numerator of the Bayes factor: 

00 

LP = L(µ, oc)7(l-p) dbt 
fo 

0o -nµµy+-s 

_ ý7, ý 
dµ 

0 l11 yi 

1 °° 
e-nl-LI-ty+-s d%ý 

ll1 yi. 0 
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5.4. Bayes factor and maximised likelihood ratio 

If we now make the substitution u= nµ we obtain 

P1 
°° 

_u 
(U)Y+S 1 

fl1 yi. 0nn 

1 00 

- 
ny+-s+l ][I yid O 

e-uuy+-s du 

F(y+ - 
ss 1+ 

1) 
! ny+-s+l fn yz' 1 

We now perform a similar calculation for the geometric term in the denomi- 
nator of the Bayes factor: 

J 
Oo 

LG = L(p, 1)7r(l-c) dµ 
0 
00 

_ JPy+-s(1 + /. G)-y+-n dp 

0 

Using u= 1/(/-t + 1) we obtain 

U y+ s1 -y+-n 1 
du 

uu u2 
1 

Uy++n 
u)y+-s 

0 uy++2 

du 

i 
u)Y+-sun+s-2 du 

0 

_ 
F(n+s- 1)F(y+- s+1) 

F(n + y+) 

We can now see that the Bayes factor is given by 

_LP_ 
F(n+y+) 

fý yj! ' 
B Lc F(n +s- 1)ny+-s+' 12. 

5.4.2 Maximised likelihood ratio calculation 
We define the maximised likelihood ratio to be 

MLR = 
(µP' 

L(ýG, 1)' 
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where f± is the maximum likelihood estimator (mle) of u under the Poisson 
model and , üG is the mle of p under the geometric model. By differentiating 
the likelihood functions with respect to ,u and setting the resultant forms 
equal to zero we find that 

AP Y+ 

n 

We therefore find that the maximised likelihood ratio is given by 

MLR ; 
L(y+/n, oc) 

_ 
e-y+(1 + y+/n)y++n 

L(y+/n, 1) fi yi! 

5.5 Examples 
In order to demonstrate the use of the above method we consider applying it 
to randomly generated data. We take samples both of size 10 and 100 from 
Poisson, geometric and negative binomial (taking r= 5) distributions with 
the mean for each distribution taken to be the same. Means of 0.8,0.9 and 1 
are considered. We use the method described above to obtain estimates of Irk 
considering the following prior distributions for r (note that we may ignore 
normalisation constants as they are absorbed into the constant ic mentioned 
earlier which plays no part in this method). 

1 
7r1(r) = 

7r2(r) = 1. 

In order to estimate 7Fk we set our tolerance level for h(r) to be 0.01 x max h(r) 
and we use a simulation sample size of 100. This means that the apparent 
variance of our estimates is at most 0.0025, however, in this example there is 
additional potential error due to the use of an approximation to the posterior 
distribution from which we are sampling. We present the results in the fol- 
lowing tables (Tables 5.1 to 5.6) with each table consisting of our estimates 
of 7k using all distributions and priors for a fixed mean and sample size. We 
should recall that large values of Irk provide evidence against the Poisson 
hypothesis. As this example is non-nested there is no classical P-value to 
display here. In Table 5.7 we also display the Bayes factors (as described 

previously) and the maximised likelihood ratio for each sample. 
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5.5. Examples 

Table 5.1: irk with mean 0.8, sample size 10 

Sample 
.1 .2 .3 .4 

k 

.5 .6 .7 .8 .9 1 
P, prior 1 . 02 . 02 . 03 . 03 . 04 . 05 . 05 . 05 . 05 . 05 
P, prior 2 0 . 02 . 02 . 02 . 03 . 03 . 03 . 04 . 04 . 05 

NB (5), prior 1 0 0 0 0 0 0 0 0 0 . 01 
NB(5), prior 2 0 . 02 . 02 . 02 . 02 . 02 . 02 . 02 . 03 . 03 

G, prior 1 . 05 . 07 . 08 . 10 . 14 . 26 . 50 1 1 1 
G, prior 2 . 02 . 04 . 04 . 07 . 14 . 25 . 50 1 1 1 

Table 5.2: 7k with mean 0.8, sample size 100 

Sample 
.1 .2 .3 .4 

k 

.5 .6 .7 .8 .9 1 
P, prior l 0 0 0 0 0 0 0 0 0 0 
P, prior 2 0 0 0 0 0 0 0 0 0 0 

NB(5), prior 1 0 0 0 0 0 0 0 0 0 0 
NB(5), prior 2 0 0 0 0 0 0 0 0 0 0 

G, prior 1 1 1 1 1 1 1 1 1 1 1 
G, prior 2 1 1 1 1 1 1 1 1 1 1 

Table 5.3: 'irk with mean 0.9, sample size 10 

Sample .1 .2 .3 .4 

k 

.5 .6 .7 .8 .9 1 
P, prior 1 . 02 . 02 . 03 . 03 . 04 . 05 . 05 . 05 . 05 . 05 
P, prior 2 0 . 02 . 02 . 02 . 03 . 03 . 03 . 04 . 04 . 05 

NB(5), prior 1 0 0 0 0 0 0 0 0 0 . 01 
NB(5), prior 2 0 . 02 . 02 . 02 . 02 . 02 . 02 . 02 . 03 . 03 

G, prior 1 . 05 . 07 . 08 . 10 . 14 . 26 . 50 1 1 1 
G, prior 2 . 02 . 04 . 04 . 07 . 14 . 25 . 50 1 1 1 
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Table 5.4: ltk with mean 0.9, sample size 100 

Sample 
.1 .2 .3 .4 

k 

.5 .6 .7 .8 .9 1 
P, prior l 0 0 0 0 0 0 0 0 0 0 
P, prior 2 0 0 0 0 0 0 0 0 0 0 

NB (5), prior 1 1 1 1 1 1 1 1 1 1 1 
NB (5), prior 2 1 1 1 1 1 1 1 1 1 1 

G, prior 1 1 1 1 1 1 1 1 1 1 1 
G, prior 2 1 1 1 1 1 1 1 1 1 1 

Table 5.5: Irk With mean 1, sample size 10 

Sample 
.1 .2 .3 .4 

k 

.5 .6 .7 .8 .9 1 
P, prior 1 0 0 . 01 . 02 . 02 . 03 . 03 . 03 . 03 . 04 
P, prior 2 0 . 

01 
. 
01 

. 01 . 
01 

. 01 . 01 
. 02 . 02 

. 
03 

NB(5), prior 1 . 03 . 08 . 09 . 14 . 23 . 44 . 67 1 1 1 
NB(5), prior 2 . 02 . 05 . 05 . 11 . 18 . 35 . 62 1 1 1 

G, prior 1 . 03 . 03 . 08 . 13 . 21 . 36 . 62 1 1 1 
G, prior 2 . 01 . 03 . 04 . 10 . 17 . 36 . 60 1 1 1 

Table 5.6: irk with mean 1, sample size 100 

Sample .1 .2 .3 .4 

k 

.5 .6 .7 .8 .9 1 
P, prior l 0 0 0 0 0 0 0 0 0 0 
P, prior 2 0 0 0 0 0 0 0 0 0 0 

NB(5), prior 1 0 0 0 0 0 0 0 0 0 . 01 
NB(5), prior 2 0 0 0 0 0 0 0 . 01 . 01 . 01 

G, prior 1 1 1 1 1 1 1 1 1 1 1 
G, prior 2 1 1 1 1 1 1 1 1 1 1 
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5.6. Discussion 

Table 5.7: Bayes factors and maximised likelihood ratios 

Sample B, s=0 B, s=1 MLR 
P 1.544 1.716 2.035 

mean 0.8 NB(5) 3.243 3.604 4.572 
G 1.081 1.201 1.475 
P 3.771 4.190 5.951 

size 10 mean 0.9 NB(5) 3.771 4.190 5.951 
G 0.594 0.660 0.754 
P 2.595 2.883 3.772 

mean 1 NB(5) 0.541 0.601 0.738 
G 0.541 0.601 0.762 
P 5.653 5.710 7.248 

mean 0.8 NB(5) 61.793 62.417 83.071 
G 0.000 0.000 0.000 
P 5345.472 5399.467 7484.709 

size 100 mean 0.9 NB(5) 0.001 0.001 0.001 
G 0.000 0.000 0.000 
P 42751.64 43183.47 61248.78 

mean 1 NB(5) 5.332 5.386 7.025 
G 0.000 0.000 0.000 

5.6 Discussion 
If we consider firstly the tables concerning the samples of size 10, we see 
that the choice of prior distribution has very little effect on the estimates 
obtained for Jrk and that in these examples the evidence provided by 7k is 

supporting, or not supporting, the Poisson hypothesis against the geometric 
both strongly and correctly when the actual data is taken from the Poisson 

or geometric respectively. In these two cases, therefore, lrk is identifying the 

correct model. However, the samples from the negative binomial do support 
the Poisson hypothesis for means of 0.8 and 0.9 but provide some evidence 
against it in the case where the mean is taken to be 1. 

The same general pattern is observed in the tables showing the results 
when the sample size is 100, however in this case the sample from the negative 
binomial with mean of 0.9 does not support the Poisson hypothesis while 
those with a mean of 0.8 or 1 do. What is most striking in these tables, 
however is the fact that we only obtain 'irk =0 or Irk =1 and that there 
is no apparent variation with k. This latter observation is explained in the 
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following manner. If we recall that 

9(ý> _ 
log(1 + /i) +n (log k+ ýZ 

1 log yi! ) 
log(1 + µ) 

I 

and that irk = Pr(g(, a) > 1) then it is clear to see that k only enters g(µ) 
through the (log k)/n term. This means that in the range of k being con- 
sidered there is very little change in the value of g(µ) log(1 + u) with k as 
(log 1)/n =0 and (log 0.1)/n = -2.3/n. This means that in the n= 10 case 
the maximum difference between values of g(p) log(1 + u) is approximately 
0.23 whereas in the n= 100 case this difference is at most 0.023. Therefore, 
particularly for larger sample sizes, we observe little variation of irk with k. 
We may interpret this result as a covergence of the likelihood ratio to that 
for the true u, since as n -+ oo 9 converges to , u, removing the nuisance 
parameter and hence giving a fixed likelihood ratio for Poisson to geometric. 

We now consider the results we obtain from the Bayes factors (or indeed 
the maximised likelihood ratio which in these examples behaves in a similar 
fashion). Table 5.7 clearly shows that changing the prior distribution to that 
with s=1, in this case, has very little effect. Recalling that for both the 
Bayes factor and MLR values greater than 1 indicate support for the Poisson 
hypothesis (this support increasing as the size of B or MLR increases) while 
values less than 1 similiarly indicate support for the geometric hypothesis, 

we are able to compare these with our 'rk method. Examination of the tables 
shows that, for the smaller sample size we obtain stronger support for the 
(correct, in the Poisson and geometric sample case) favoured hypothesis when 
using the 'irk method. For the larger sample size we have broad agreement 
between the methods, with slightly stronger conclusions arising from the 'irk 
approach. 

Once more, we are also able to plot the distribution function of the likeli- 
hood ratio regarded as a function of k, as well as an estimate of the density. 
In this case we must use a crude estimate of the gradient between each value 
of k considered. This is due to our inability to obtain a closed form for the 

posterior distribution above. The following Figures (5.2 to 5.4) show the 

plots for the case where our sample mean is 0.8 and we have a sample size of 
10. A larger range of kE [0,3] has been used in these plots in order to better 

observe features of the distribution. It should also be noted that different 

samples have been used to generate these plots than were used to give the 

previous tables of irk. The use of a sample size of 10 means that the make 
up of these samples can be very different, explaining the different values for 

irk in the range of kE [0,1]. In addition this dependence on the particular 
data samples explains the small difference between the plots for the Poisson 
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and geometric in this case. These plots appear to be very similar with the 
Poisson peaking around k=2 and the geometric, which we may expect to 
have a peak below k=1, peaking around k=1.5. 

Examination of these figures shows that, as we would expect, the density 
for the geometric distribution is concentrated at smaller values of k than for 
that of the Poisson distribution. There appears to be little or no difference 
between the two prior distributions considered for any of the three samples. 
However, in the negative binomial case we still obtain only relatively small 
values for irk and thus we see no clear pattern emerging in this general case. 
This is to be expected as the negative binomial sample is taken from neither 
the Poisson nor the geomteric and therefore we may expect more inconclusive 
results. 

5.7 Another example 
We now use our method of analysis to examine the dataset used by Cox 
(1962). The data are shown in Table 5.8 and are a sample of size 30 drawn 
from a Poisson with mean 0.8. We conduct our analysis in the fashion de- 

scribed above, again using both priors, and the results are shown in Table 
5.9. The maximised likelihood ratio and Bayes factors, 

MLR = 20.126, B- 
14.221 if s=0 
14.712 ifs=1, 

suggest that we consider kE [14,20] in addition to values of kE (0,1]. 

Table 5.8: Cox (1962) data 

Variate value Observed frequency 
0 12 
1 11 
2 6 
3 1 

>4 0 

We can clearly see from the values of Irk shown that we obtain very strong 
support for the Poisson hypothesis and that, as we suspected, the distribution 

of the likelihood ratio appears to be concentrated in the range [14,20]. In 

the analysis of the data in his 1962 paper Cox finds a ratio of roughly 60 to 1 
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Figure 5.2: Distribution (left) and density (right) plots for both prior 1 (top) 

and prior 2 (bottom) - Poisson sample 
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5.7. Another example 

Figure 5.3: Distribution (left) and density (right) plots for both prior 1 (top) 

and prior 2 (bottom) - Negative Binomial sample 

6 

U) 0 

off- 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 

k 

C5 

N 
O 
O 

ö 
ö 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 

k 

O 
N 
0 

U) ö 

0 
ö 

U) 9 

0 
0 
0 

O 
N 
0 

ö 

ö 

0 

0 0 
0 

75 

k 

k 



5.7. Another example 

Figure 5.4: Distribution (left) and density (right) plots for both prior 1 (top) 

and prior 2 (bottom) - Geometric sample 
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5.7. Another example 

Table 5.9: irk for the Cox (1962) data 

k 
.1 .2 .3 .4 .5 .6 .7 .8 .9 1 

prior 1 
prior 2 

0 
0.01 

0 
0.01 

0 
0.01 

0 
0.01 

0 
0.01 

0 
0.01 

0 
0.01 

0 
0.01 

0 
0.01 

0 
0.01 

k 14 14.4 14.8 15.2 15.6 16 16.4 16.8 17.2 17.6 
prior 
prior 

1 
2 

0.29 
0.28 

0.30 
0.30 

0.32 
0.33 

0.33 
0.35 

0.34 
0.37 

0.38 
0.37 

0.44 
0.40 

0.49 
0.44 

0.53 
0.47 

0.54 
0.49 

k 18 18.4 18.8 19.2 19.6 20 
prior 
prior 

1 
2 

0.58 
0.53 

0.68 
0.55 

0.70 
0.58 

0.74 
0.63 

0.82 
0.69 

0.92 
0.85 

in favour of the Poisson hypothesis so we find ourselves in broad agreement 
with these findings. The Bayes factor and MLR approaches find ratios of 
around 14 to 1 and 20 to 1 respectively, in favour of the Poisson hypothesis. 
This is once more strong preference, although not as convincing as the Cox 

result or our extremely low values for ltk, kE (0,1]. There is again little 
difference between the results obtained by using different prior distributions. 

Once more we also plot the estimates of the distribution and density 

as functions of k. Figure 5.5 shows these for both priors using the range 
kc [14,20]. We can clearly see from these plots that the distribution of the 
likelihood ratio is indeed concentrated here, well away from k=0, so that 

we can see the strong support for the Poisson hypothesis once more. 

77 



P- 

5.7. Another example 

Figure 5.5: Distribution (left) and density (right) plots for both prior 1 (top) 
and prior 2 (bottom) 
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Chapter 6 

Summary 

The approach applied in the four examples of model comparison problems 
is more general than that in Aitkin (1997), which used an identical basic 
concept of using the posterior distribution of the likelihood ratio statistic and 
formed the starting point for our discussion. We now are able to handle the 
common family problem in a similar fashion by considering 'irk, the (posterior) 
probability that the likelihood ratio between the two models being compared 
takes a value of less than k. 

In the preceding work we have examined a number of diverse model com- 
parison problems, which despite their differences can now be handled using 
the same general approach. We firstly considered the familiar case of test- 
ing a Normal mean with unknown variance, the problem classically solved 
by applying the t-test. In our formulation we were able to express Irk as 
the probability of a linear combination of independent x2 random variables 
taking a value greater than -2 log k. We will also observe this in another 
example. In this case we were unable to provide an analytic expression for 
this probability and instead obtain its value via either numerical integration, 
or the more efficient method of simulation. 

Secondly we examined the problem of choosing between which of the two 
possible single-variable regression models to use when given a two variable 
Normal regression. These two single-variable models are both nested within 
the parent two variable regression. In this case irk is not quite as simple 
as a linear combination of two independent X2 random variables but we 
are, however, still capable of simulating values from the more complicated 
distributions involved and hence we can evaluate irk in a straightforward 
fashion. 

We also studied the problem of deciding whether time series data came 
from a general AR(1) model or from a non-stationary random walk, a special 
case of the auto-regressive model. Once more we were able to express Irk as 
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the probability of a linear combination of independent X2 random variables 
taking a value greater than -2 log k. In this case, however, because of par- 
ticular properties of the x2 distribution (this is an exponential distribution 
with mean 2) we are able to complete the integration analytically and ob- 
tain an exact solution for Irk (in terms of the distribution function of the X2 
distribution) without the need for either numerical integration or simulation. 

The final example analysed does not share this property. Indeed, the 
problem of deciding whether a Poisson or a geometric distribution is better 
supported by a sample of discrete data raises another problem. Once we have 
nested both these distributions within the negative binomial distribution 
we find that there is no conjugate prior that we can place on the index 
of the negative binomial distribution and hence we are unable to obtain a 
straightforward posterior to use for the simulation we require in order to 
estimate irk. Details of the method we employ for our simulation can be 
found in the appropriate chapter but we may say here that it allows us to 
simulate (at least approximately) from any posterior distribution irrespective 
of the existence of conjugate priors. Using this we complete the simulation 
and are therefore able to evaluate 'irk. 

The examples studied in the previous chapters have demonstrated the use 
of an alternative method of model comparison which, as shown in the intro- 
duction for a simple example, avoids the Lindley paradox. Further demon- 

stration of the lack of agreement between our conclusions, and indeed those 
from standard frequentist methods, with those from Bayes factor methods 
when considering the specific cases discussed in the body of the thesis would 
be an option for continued study. As mentioned in the introduction, and 
emphasised later in this section, this is not possible for all the examples con- 
sidered, when considering the uninformative priors that we have chosen to 
use. 

The ability of our method to analyse the common family problem is not a 
property exhibited by the standard Bayes factor methods, as we have seen by 

our inability to demonstrate their use with the uninformative priors selected 
for our comparison. Indeed it is straightforward to adapt our method to 

allow any prior distribution to be placed on the parameters as the particular 
approach applied in the Poisson versus geometric example can be used in any 
situation where exact analytic or more standard simulation techniques are 
impossible to find or apply. Common family problems are more difficult by 
Bayes factor methods because the informative reference priors, if they exist, 
for the two models may well be different; the common-family approach that 

we apply allows a single common prior for the nuisance parameter under both 

models. 
We have seen that it is relatively simple to apply Monte Carlo simulation 
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methods to these examples, even for cases where the nuisance parameter prior 
does not have an analytic form. We have seen that for any such problem 
we are now able to use the simulation method (at least approximately) to 
obtain an estimate for Irk. 

Although nested and common-family problems cover a great deal of model 
comparison problems they are by no means the only form that these can 
take. Conjectural ways of dealing with the comparison of more general mod- 
els, apart from Dempster's suggestion of using the posterior distribution of 
the deviance under each model, include using mixtures or other (artificial) 
functions of the two models to force them into a composite single family, to 
which the common-family approach can then be applied. 
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