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“Men are more apt to be mistaken in their generalisations than
in thewr particular observations.”

Niccolo Machiavelli (1469-1527).



Abstract

We propose a general Bayes analysis for nested model comparisons which
does not suffer from Lindley’s paradox. It does not use Bayes factors, but
uses the posterior distribution of the likelihood ratio between the models
evaluated at the true values of the nuisance parameters. This is obtained
directly from the posterior distribution of the full model parameters. The
analysis requires only conventional uninformative or flat priors, and prior
odds on the models.

The conclusions from the posterior distribution of the likelihood ratio are
1in general 1in conflict with Bayes factor conclusions, but are in agreement with
frequentist likelihood ratio test conclusions. Bayes factor conclusions and
those from the BIC are, even in simple cases, in conflict with conclusions from
HPD intervals for the same parameters, and appear untenable in general.

Examples of the new analysis are given, with comparisons to classical
P-values and Bayes factors.
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Chapter 1

Introduction

1.1 Motivation

In this thesis we address the point null hypothesis testing problem ifrom
a Bayesian viewpoint. An important issue in the evaluation of Bayes and
frequentist theories is the difference in the conclusions from Bayes factors and
the likelihood ratio (LR) tests in large samples, due to the “Lindley paradox”
(Lindley 1957, Bartlett 1957). One important aspect of this difference is the
ability of Bayes factors to strongly support a point null hypothesis, where
a frequentist analysis can only “fail to reject” with a large P-value; it can

never support 1t strongly.
We illustrate this feature with an example due to Stone (1997) from the

discussion of Aitkin (1997). A physicist running a particle-counting exper-
iment wishes to identify the proportion 6 of a certain type of particle. He
has a well-defined scientific hypothesis that 8 = 0.2 precisely. There is no
specific alternative. He counts n = 527135 particles and finds » = 106298 of

the specified type.
The problem is to make inferences concerning the probability of success,

0, in a series of n trials with r successes. The likelihood has the following
form from the binomial distribution

L(6) = (:’f) (1-6)""0", 0<6<1.

The frequentist test of 6 = 6y = 0.2 uses the maximum likelihood estimator
of §, & = 0.201652, together with its standard error SE(Q) 0.0000526,

giving Zp = (9 — 90) /SE(6 )) = 2.990 and so the null hypothesis is firmly
rejected with two-sided P = 0.0028. At this stage we can also calculate the
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maximised likelihood ratio to be

L(Q,Pl —0.01124.
L(9)

and note that the likelihood at 6 = 0.2 is very small relative to the likelihood
at 6.
The physicist now takes the proper uniform prior 7(8) =1, 0 < 6 < 1
under the alternative hypothesis, and computes the Bayes factor
L(6)

7= TIor0@

in the following manner. Firstly recall that the beta distribution, £(a, b), has
the form

2 M1 -2, O0<z<l.

In this case, by comparison of f(x) above to our form for L(#) we can see
that the term in the denominator of the Bayes factor reduces to the integral
of a beta likelihood between 0 and 1. We see that

: 1 527135\ I'(106299)I"(420838)
L = | L(#)dI = CA e AT
/0 (O)m(0)d /0 (6)d9 (106298) ['(527137)

The posterior distribution of #, using this proper uniform prior is
0|lr ~ (106299, 420838).

As we are working with a large sample we can approximate this distribution
with the normal distribution

~ A

Olr ~N(0,SE(8)%).
We calculate the Bayes factor

L(6)
]i(é)w(@)d@

527135 420837 106298
(10_6298)0.8 0.2

(527135) T (106299)T(420838) /T'(527137)

106298

B

]

['(527137) N Q420837 0106298
____ 0.8420837() 9106298
(106299)I"(420838)




1.1. Motivation

which is the density of f|r evaluated at § = 6, = 0.2. Under the normal
approximation this is

S Y N e
° = V21 SE(6) g ( 25E(é‘)2)

where ¢(-) is the standard normal density function and Z, is as defined
earlier. T'herefore we can see that

1
B = 5 (Zy) = 8.26.

Assuming equal prior weight on the null and (general) alternative hypotheses,
the Bayes factor equals the posterior odds on the null hypothesis: we seem to
have quite strong posterior evidence in favour of H,, despite the apparently
strong frequentist evidence against Hj.

A similar conclusion is reached from the closely related Bayesian Infor-
mation Criterion, Schwartz (1978). This is interpreted in the same way as

—2 times the logarithm of a standard Bayes factor and is defined here as

L(6)

BIC = —2log ¢ ——= ? —vlogn,
g{L(Q)} °

where v 1s the number of unknown parameters under the null hypothesis
subtracted from the number under the alternative hypothesis. Here v = 1
because 6 is the only unknown parameter under the alternative and it is
known under the null. Therefore

9.\ 106298 /1 g N 420837
BIC = —2log { (2) (=) } - 13.17521

—2(106298[log 6 — log 0] + 420837[log(1 — 6;) — log(1 — 6)])
~ 13.17521

= 8.976366 — 13.17521

= —4.198844.

The likelihood ratio test statistic of 8.98 for the null hypothesis is outweighed
by the penalty function logn = 13.18 on the alternative model, giving a BIC
of 4.20 in favour of the null model. The BIC is a special case of the Bayes
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factor when the information in a proper normal prior is proportional (in
sample size) to that of the sample (Smith and Spiegelhalter 1980).

T'his inconsistency between frequentist and Bayes conclusions 1s not, how-
ever, a sign of conflict between the theories. It is, instead, a conflict within
Bayes theory. Here the posterior distribution of 6 is the Beta distribution
with parameters 106299 and 420838, which is essentially normal with mean
¢ and standard deviation SE (é) The posterior probability that # > 0.2 is
®(2.990) = 0.9986 = 1 — P/2. Any Bayesian using this prior will have very
strong posterior beliet that 6 does not have the value specified under the

null hypothesis, but a larger value. Equivalently, the 99% highest posterior
density interval for € is

A+ 2.576SF(0) = (0.20023,0.20308),

which excludes 6.

This inconsistency between Bayes factor and posterior density conclu-
sions results from the integration of the likelihood over the prior. It has been
frequently pointed out (e.g. Aitkin 1991, 1997), that for a fixed prior the
increasing concentration of the likelihood as n — oo results in a decreasing
integrated likelihood. This has the consequence that the Bayes factor can be-
come arbitrarily large for any specified value 0y, however small its likelihood
relative to that at 6.

Dempster (1974, 1997) and Aitkin (1997) addressed this difficulty by
considering the posterior distribution of the likelihood ratio itself. Aitkin
(1991) had also considered the ratio of the posterior mean of the likelihood
under each model. Their aim was to make an inferential statement directly
about the ratio L(6y)/L(0), where 6 is unknown under the alternative, but
has a known posterior distribution

_ L(B)7 ()
m(0ly) = TL(O)(6)do

Since the likelihood ratio
LR(0) = L(6y)/L(0)

is a parametric function of 6, it has a posterior distribution 7(LR|y) which

can be obtained from that of 6.
GGiven a specified value of ¢ under the alternative hypothesis, a likeli-

hood ratio LR < k would constitute strong sample evidence against H; for
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sutficiently small k. Motivated by this observation, the posterior probability
mr, = Pr(LR(0) < k| y)

for a given value of £ can then be computed, and if this probability is suffi-
ciently large, the sample evidence against H, would be persuasive.

We now return to the example considered earlier. Without loss of gener-
ality we can discard the constant of proportionality as we are interested in a
ratio ot two such likelihoods. The likelihood, under a normal approximation

as seen earlier, 1s then
o €07
L(g) — XD { QSEQ

and therefore

0 _ N2

Then the likelihood ratio LR for testing 8, against 8 satisfies

—2log LR = Z; — 7~
where Z has a posterior N(0,1) distribution. It follows that

Te = P?"(LR < k),
Pr(—2log LR > —2logk),
Pr(Z* < Z2 4+ 2logk),

|

where Z° has a posterior x? distribution under H,. Taking k = 0.1 with
Zo = 2.990 as before, gives

mo1 = Pr(Z* < 2.990° — 4.605) = 0.963.

We note that taking k£ = 1 instead of 0.1 gives m; = 0.9972 =1 — P.

Thus this form of Bayes analysis leads to the same conclusion as the HPD
interval and the frequentist analysis, and contradicts the Bayes factor and
BIC conclusions.

Aitkin (1997) extended Dempster’s approach to the general nuisance pa-
rameter model: in assessing a null hypothesis Hy : 8 = 6, in a model with
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nuisance parameter ¢, he considered the “true likelihood ratio”

LR = L(6y, ¢)/L(6, ¢)

evaluated at the true values of # and ¢. These are unknown, but the joint
posterior distribution 7 (6, ¢|y) from the “full model” provides, as for the
sample model above, the posterior distribution of LR, and hence the pos-
terior probability that LR < k. Aitkin also generalised Dempster’s striking
result for £ = 1, given above, to the nuisance parameter case. This means
that for a normal likelihood L(6, ¢) and flat prior distributions for the un-
known parameters, the P-value under the null hypothesis equals the posterior
probability that the true likelihood ratio is greater than 1. This can be read
as meaning that the null hypothesis is better supported than the alternative.
1'his result provides a unification of Bayes, likelihood and frequentist conclu-
sions 1n the point null hypothesis testing problem. Note also that here we
assume that the nuisance parameter takes the same value under both the null
and the alternative hypotheses. This differs from the maximised likelihood
ratio approach in which we estimate 1t separately under the two models.

We now 1llustrate this approach further with a particularly simple exam-
ple.

1.2 A simple example

We observe a single realisation (z) of a normal random variable with known
variance, o2. Without loss of generality we may set ¢ = 1 so that our model
1S

X ~ N(u,1)

with g4 unknown. We wish to test the point null hypothesis Hy : u = ug
against the general alternative Hy : u # ug with u, ug € R. We set pg = 0
without any loss of generality. We firstly consider the likelihood ratio, LR,
which we define as

For this model the likelihood function itself is given by

L(p) = \/%exp {—%—(ﬂ: - u)Q}
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SO that
LR:exp{% (z—p)’ =z } .
Therefore
2log LR =Y — z°
where

Y = (z - p)* = (p—2)

The prior distribution for 4 is taken to be diffuse so that we may express the
posterior as

pu~ Nz, 1).

We can now see that the posterior distribution of Y is x# and if we consider
that LR < k is equivalent to 2log LR < 2logk for real, positive k then we
find

Pr(LR < k|x)
Pr(Y — z* < 2logk)
= Pr(Y <2logk + z°).

)
=
|

Therefore the posterior distribution of the likelihood ratio is simply a shifted
x; distribution. When k = 1 we obtain the following:

|

Pr(Y < z*)
Pr(—x < Z < z)
1_P

m

|

where Z ~ N(0,1) and P is the two-sided P-value of the observation z.

Hence, once more my =1 — P.
In addition to the form given above for n; we can also obtain the max-

imised likelihood ratio (M LR) by calculating the ratio of the likelihoods
maximised under the two hypotheses. Under the null hypothesis this is sim-

ply

1 T*
L(0) = Vor: exp {'——2—} 7
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while under the alternative we make use of i, the maximum likelihood esti-
mator of u. Here this is i = x and we obtain the maximised likelihood

|

L) = e {30 - |
712__;.

i

‘Therefore

MLR = —=

We now illustrate the difficulties involved in calculating a Bayes factor using
diffuse priors over an infinite range. Under the alternative hypothesis we
take the proper flat prior for i as

1
W(u)-—zCon —(C<u<+C.

The integrated likelihood under this alternative is

/m ) () dp
Lo
T+

C) =2z —C)].

LB

|

|

f

2C

where ¢(-) and ®(-) are the standard normal density and distribution func-
tions respectively. As C' — oo with increasing diffuseness LB — 0. and so

the Bayes factor
L(0)

B = LB—%OO.

This, once more, is the Lindley (or Barlett) paradox. Whatever the value of
z, if the prior is sufficiently diffuse the Bayes factor will appear to strongly
support the null hypothesis. Here and for similar examples later in the thesis
we are unable to calculate a Bayes factor for an improper flat prior over an

infinite range.
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1.3 Structure of the thesis

Aitkin (1997) considered the large-sample properties of the 7 approach and
the re-calibration needed for standard frequentist and likelihood methods.
He considered only one small-sample example. In the rest of this thesis we
apply this approach to several difficult model comparison problems. Some
are nested model comparisons while others are not, but all can be treated
by the same general method, since we require only that the models being
compared are both nested in a larger family. This approach applies directly
to the comparison of any two models which are themselves nested in a higher
family, irrespective of whether one is nested in the other.

We firstly consider, in Chapter 2, the familar problem of testing a normal
mean 1n the situation where the variance is unknown. This is the problem
whose standard analysis is performed by the ¢-test. In Chapter 3 we examine
a problem that was first presented by Pitman (1937). We are given a two-
variable normal regression and wish to select which of the two possible single-
variable regression models is best supported by the data. Chapter 4 concerns
the choice between a general AR (1) model for time series data and the special
case of a (non-stationary) random walk. This is adapted from a problem
studied by Marriott and Newbold (1998). Finally, in Chapter 5, we consider
the well-known example due to Cox (1962). In this case having observed a
sample from a discrete distribution we wish to determine whether a Poisson
or a geometric distribution is better supported by the data.

In Chapters 3 and 5 we are able to use (improper) prior distributions in
order to calculate Bayes factors for comparison purposes. We are able to do
this in a straightforward manner as these examples are non-nested. We also
obtain the maximised likelihood ratio in these cases.

We are unfortunately unable to calculate the actual Bayes factor for the
problems that we consider in Chapters 2 and 4. The Bayes factor involves
a ratio of integrated likelihoods under the two hypotheses being considered
and for the cases given it is not possible to evaluate the required integrals
over the infinite parameter spaces. We discuss this issue further in Chapter 6,
where we suggest other possible comparisons as further work. This actually
indicates a further strength of our approach as we are able to consider any
choice of prior distribution whereas it is impossible to use the flat priors on
infinite parameter spaces in order to calculate a Bayes factor.

We now note that it is possible to express all four of these applications
in the same general form. For the calculation of 7, we require the following

elements, given a model parameter 0 and data Y;:

(a) Hypotheses Hy, H; (or H;, H) and (possibly) a third encompassing
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hypothesis H,. This refers to a parent hypothesis that both H, and H,
are nested within and in certain cases is simply H;.

(b) A prior distribution over § € H,.

(c) A parameterisation of § such that

0 = (6,7),

where 6 is the parameter of interest and is specified under the null
hypothesis and specified or a nuisance parameter under the alternative.
7Y 18 a nuisance parameter under both models.

For each example we then calculate (if possible in the case of the Bayes
factor) the following quantities, denoting the likelihood function by L(:) and
the (improper and uninformative) prior distribution used in the calculation

of the Bayes factor by m(-). We here assume that we are working with H,
and Hl.

(i) The maximised likelihood ratio which depends only on the data and is
defined as

max,5 LO (5)

MLR =
ft = Iftaxs Ll(é‘),

where Ly(-) and L, (-) are the likelihood functions under the two models.

(ii) The posterior distribution of the “true” likelihood ratio. This is defined
as My, = Pr(LR(6) < k|y) where

Note that this depends on both the data and the parameter 4.

(iii) The Bayes factor, defined here as

fLo

~ [ Li( ch

It is not always possible to calculate the Bayes factor. In fact, as
discussed earlier, we are only able to obtain this for two of the four

examples discussed.

10
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We should note here that all but the first of these quantities depend on
the choice of the nuisance parameter v. The M LR however 1s Invariant
under reparameterisation of either the parameter of interest or the nuisance
parameter. The dependence of the posterior distribution of LR, and indeed
the Bayes factor, on the choice of parameterisation is to be expected if we
are comparing different models. The dependence on the nuisance parameter
v may be reduced by the use of the orthogonal parameterisation for two
parameters, should this exist. Alternatively the parameterisation which gives
a diagonal expected information matrix could be chosen, if one exists.

We are now able to cast the examples discussed in the remainder ot the
thesis 1n the terms given above. For full details of the models the reader
should refer to the relevant chapter.

1.3.1 Testing normal mean, o unknown

In this example our parameter is 6 = (u, o), corresponding to a normal mean
and variance. The required elements are as follows:

(a) Hypotheses:

HO: Y; NN(O,O'Q),
H =H,: Y,~N(u,oc%

(b) We use a flat (diffuse) prior on (u,logo) under H..

(c) Parameters:
0=p, y=o0

This is one of the examples where, due to the problems of integrating an
improper prior over an infinite parameter space, we are unable to obtain the

Bayes factor.

1.3.2 The choice between two single-variable regres-
S101NS

Our parameter here is § = (8o, b1, B2, 0) and we are also given two covariate
vectors z; and x, which we are interested in choosing between. We have the

following required elements:

11
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(a) Hypotheses:

H1 : Y; ~ N(ﬁo T ﬁlxliaoj):
HQ : Y; ~ N(ﬁo T 52332737 02)3
H,: Y, ~ N(ﬁo + b1y, + /BQina 02)-

(b) We use a flat (diffuse) prior on (B, 81, B2,log o) under H,.

(c) Parameters:
0 = (51, 52), v = (Bo, ).

Here our two hypotheses are not nested within each other but within an
encompassing hypothesis and so we are able to obtain a Bayes factor for
model comparison using a diffuse prior on (By, 81, 32, 7).

1.3.3 The choice between random walk and AR(1) time
series

Our parameter here is 6 = (u, 0, ¢) and we are interested in choosing between
a random walk (¢ = 1) and a more general AR(1) model for our data. The
elements for calculation of 7. are as follows:

(a) Hypotheses:

HO : Y;'Y:i—l i N(Y;—laoj)a
Hi=H.: Y|Y;o1 ~ N(@Yi_1 + (1 — ¢)u, 0°).

(b) We use a flat (diffuse) prior on ((1 — ¢)u,logo, ¢) under H,.

(c) Parameters:
0 = ?, Y= '(ﬂ, J)‘

Once more, in this nested case, we are unable to obtain a Bayes factor when
using 1mproper priors.

1.3.4 The choice between Poisson and geometric dis-
tributions

We nest both the Poisson (H;) and geometric (H;) distributions within the
encompassing negative binomial distribution and here use the parameter

12
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0 = (u, 7). The elements we require follow:

(a) Hypotheses:
Hy: Y~ P(u) = NB(u,00),

0+ 1
H,: Yy~ NB(u,r).

(b) We use both a flat (diffuse) prior on (p/(p+ r),r) and a flat prior on
(u/(p+ 1), logr) under H,.

(c) Parameters:
0=r, v=p

Again, as we have nested the Poisson and geometric hypotheses in the neg-
atlve binomial encompassing hypothesis, we are able to calculate a Bayes
factor both for a diffuse prior on 1 and a diffuse prior on log 1. In this case
we do not need to specity a prior for r as it is given under both H; and H>
so needs no consideration.

13



Chapter 2

lesting normal mean, o
unknown

2.1 The t-test problem

In Aitkin (1997) the problem of testing a normal mean with unknown vari-
ance was considered. The standard method of analysis for this problem is
the {-test. We present the analysis of this problem from the Aitkin paper and
extend 1t by completing the numerical integration mentioned in the paper
and displaying the resultant values for .

We consider the following model, where we have n observations from a
general normal distribution:

X;~N(u,0%), i=1,2,...,n

with both y and o unknown. We wish to test the point null hypothesis
Hy : u = po against the general alternative H; : u # pg with u, g € R.

2.2 Likelihood ratio

We first consider the likelihood ratio, L R, which we define to be

LR — L(MUJ_?-_)

L, o)

14
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which uses a section through the likelihood at the true but unknown o. Here

L, o) = fl ( — exp {—'éé-g(xi - ﬂ)Q})

b 2mo

1
i
—
|
N
o~
D
P4
w
—
|
%
Q —t
A\
\'M:
8
|
=3
e
1
)
|
=
N
N —

1—=1
so that
1
LR = exp{ 572 (xz“f)z—F(.’f—-uo)z—(ﬂ,‘z—f)z* (33_/1/)2]}
1=1
_ nr _ 2 _
T exp{ 9 52 [(.T—p&o) _(37_‘#)2]}
Theretore
n -
—2logLR = 2 (Z = po)” — (Z — h
t? (n—1)s* n(Z— p)?
— X ————— —
n —1 o2 o°
where

T

5% = : Z(azz —%)? and t = \/ﬁ(f—ﬂ—l.

n — 1
1=1 S

The joint prior distribution for (u,logo) is taken to be diffuse so that we
can express the joint posterior as

2 —1 2 .
/J,‘O'NN (SI_Z','O-_), (n )3 2

()

We are interested 1n expressions of the form LR < k, or equivalently
—2log LR > —2logk, tor some real k. If we define

)2
@=Ly

2

n—1)s?

72

then the posterior distributions of Y7|Y5 and Y5 are independent conditional
on o, and are respectively x4 and x-_,. Since these distributions do not
involve o, Y; and Y, are unconditionally independent.

15



22 Lfke/fhood ratio

We now turn our attention to 7, = Pr(LR < k|z). In this case we have

n— 1

2

Note that when k£ = 1, this simplifies to

tQ
T = PT(}G< }/2)

n—1
Y1/1 2)
= Pr — < t
(Yz/(n—l)
Pr (Fl,nml < t2)
1 - P

|

where P is the frequentist P-value of the hypothesis being tested. In general,
however, we consider k # 1 and here numerical evaluation of the posterior
probability is required.

We now define

n=—2logk
then
t°Y5
=Pr|—-Y) > .
& T((n—n 1 "7)

Now we know that the xZ density is

and Y7 and Y5 are independent so their joint distribution is

o (e (2]
L 92 5 5

f(y1,y2) = . (%)I‘(n;l)

16



2.3 1 Kesults

(.”"_?i)! if n > 2is odd

I’(n_l) /21
— & — (241
2 T H (n ‘L )) it n > 2 1s even.

Define

so that

1 n-=3
f(ylayQ) — RY, 2y22 CXP {—%—}exp {'-yz} :

Looking at the region t°Y,/(n — 1) — Y; > n where, in addition, both Y; and
Yo > 0 we see that if we set

Y1:y1a0<yl<ooﬁ

then we require that

which is equivalent to

We can now use this result to express 7, in terms of an integral over the joint
distribution of Y7, Y5. So we have

ML — K oC —1/2 exX {—yl} - “;3 exp{——-g—%} dy dy
T y1=0 yl P 2 Yo = (y1+n)(n—1) Y2 Y 2 ] -

12

2.3 Results

Unfortunately this integral is not possible to evaluate analytically so the
integral is evaluated by numerical integration. This was carried out using
Maple for sample sizes n from 3 to 21 (so that the degrees of freedom on

17



2.3. Results

Table 2.1: m. & P torn = 3

|

05

1.1
1.2
1.3
1.4

1.0

1.0 |
1.7 |
1.8 |
1.9
2.0 |
2.1 |
| 2.2
2.3
2.4 |
| 2.0
2.6
2.7 |
2.8
2.9

3.0} .

l t | .01

1.0 | .00006
00030
00079
00291
00640
01214
02052
03175
04582
06255
08165
10275
12544
14936
17411
119939
22491
25041
27571
30064

32507

00144
00434
01009
01953
03309
05075
07215
09670
12374
15257
18257
21318
24394
27446
30446
33372
36208
138942
41566
44083
46484

Nl

00577

01365
02642
04436
06712
09397
12399
15623
18981
22400
20820
29193
32484
30669
38731
41659
44449
47099
49609
01983

54225

01299
02669
04641
07168
10152
13475
17020
20683
24379
128042
31623
35086
38409
41578
44586
47431
50114
52640
55015
57245
59338

15

2 1 | P-value
02309 .57736 | .42265
04294 61396 | .38604
06920 .64700 | .35300
10075 .67675 | .32325
13616 .70353 | .29647
17402 72761 | .27239
21309 .74927 | .25073
25239 76877 | .23123
20117 .78633 | .21367
32888 .80218 | .19782
36515 .81650 | .18350
39976 .82945 | .17055
43258 .84119 | .15881
46356 .85185 | .14815
49270 .86155 | .13845
52005 .87039 | .12961
54566 .87846 | .12154
56963 .88584 | .11416
59204 .89261 | .10739
61298 .89882 | .10118
63255 .90453 | .09547

Y ran from 2 to 20) and for given values of ¢, which is the only sample
quantity which affects the integral for 7. Thus 1t is possible to calculate 7
for this range of values of ¢, for various values of k. We should note that as
a result of evaluating the integral numerically there is a known error of at
most 5 X 10~1%. In order to save space but still display results across the full
range of n considered, Tables 2.1 to 2.3 present only the cases n = 3,11, 21.

Full tables are available from the author.

13



2.4. Discussion

Table 2.2: m. & P torn =11

k

K l 0 05 1 15 2 1 [P-value]
1.0 | .00000 .00000 .00000 .00001 .00013 .65911 | .34089
1.1 | .00000 .00000 .00001 .00019 .00113 .70289 | .29711
1.2 | .00000 .00000 .00016 .00133 .00554 .74220 | .25780

1.3 | .00000 .00004 .00102 .00572 .01795 .77723 | .22277
1.4 | .00000 .00031 .00421 .01719 .04334 .80823 | .19177 |
1.5 | .00001 .00144 .01257 .03992 .08465 .83549 | .16451 |
1.6 | .00004 .00482 .02949 .07662 .14154 .85932 | .14068

| 1.7 | .00022 .01261 .05776 .12747 .21079 .88003 | .11997
1.8 | .00085 .02729 .09851 .19028 .28767 .89795 | .10205

' 1.9 ! 00257 .05098 .15094 .26135 .36734 .91338 | .08662 |
2.0 | .00642 .08478 .21274 .33652 .44569 .92661 | .07339

2.1 |.01376 .12851 .28071 .41202 .51972 .93792 | .06208

1 2.2 1 .02605 .18088 .35153 .48433 .58758 .94756 | .05244

2.3 1.04453 23979 42221 55288 .64834 95575 | .04425
2.4 | .06997 .30279 .49037 .61492 .70179 .96268 | .03732
2.5 | .10257 .36746 .55432 .67039 .74816 .96855 | .03145

' 2.6 | 14191 43165 .61302 .71925 .78797 97351 | .02649

2.7 |.18704 49364 .66595 .76176 .82186 .97769 | .02231

| 2.8 | .23669 55216 .71301 .79841 .85056 .98121 | .01879 |

| 2.9 | .28943 46440 .75437 .82977 .87473 .98417 | .01583

1 3.0 | .34379 65589 .79039 .85645 .89504 .98666 | .01334

2.4 Discussion

We now examine Tables 2.1 to 2.3 and compare them to the standard ¢-test
for this problem. The rejection criteria differ considerably in that, as we have
already stated, we can take difterent values for both £ and 7, when using
our (k, ) test while the t-test rejects the null hypothesis when the P-value
is less than a certain value, 0.05, say. This P-value can be read off from the
tables in the last column for each value of t. The (k, 7¢) formulation requires
that we reject Hy when 7 is considered to be large for sufliciently small &,

eg it g1 > 0.7.
From the tables we see that the P-value decreases roughly exponentially

as t increases for a given value of n and the same eflect occurs for a given
value of t as we Increase n. Now since m; = 1 — P we see an increase in

19



2.4. Discussion

Table 2.3: m. & P for n = 21

- S — il

k

¢t | 0 05 1 15 2 1 |[P-value
1.0 [ .00000 .00000 .00000 .00000 .00000 .67074 | .32926
1.1 | .00000 .00000 .00000 .00000 .00002 .71560 | .28440
1.2 | .00000 .00000 .00000 .00003 .00038 .75584 | .24416 |
1.3 | .00000 .00000 .00002 .00039 .00307 .79162 | .20838

| 1.4 | .00000 .00000 .00021 .00271 .01386 .82316 | .17684
1.5 | .00000 .00003 .00150 .01165 .04181 .85076 | .14924

| 1.6 | .00000 .00025 .00666 .03453 .09424 .87472 | .12528
1.7/|.00000 .00142 .02089 .07821 .17174 .89537 | .10463 |
1.8 1 .00001 .00552 .05038 .14495 .26782 .91304 | .08696
1.9 | .00007 .01618 .09940 .23105 .37235 .92805 | .07195
2.0 | .00039 .03795 .16811 .32876 .47563 .94073 | .05927
2.1 ].00152 .07474 .25241 .42934 57071 .95138 | .04862
2.2 1.00473 .12819 .34567 .52549 .65385 .96027 | .03973
2.3 |.01203 .19695 .44078 .61242 .72392 .96765 | .03235

| 2.4 |.02607 .27717 .53181 .68776 .78146 .97375 | .02625

2.5 |.04947 .36366 .61471 .75105 .82787 .97877 | .02123

| 2.6 | .08415 .45112 .68733 .80301 .86485 .98287 | .01713 |
2.7 | .13073 .53511 .74907 .84495 .89408 .98622 | .01378

2.8 | .18834 .61244 .80036 .87842 .91708 .98894 | .01106
2.9 | 25483 .68124 .84220 .90488 .93511 .99115 | .00885

3.0 | 32721 74079 87589 .92570 .94923 .99292 | .00708

in both these cases. It is very interesting to note that as we increase n for
values of k£ other than 1, we can observe different behaviour depending on the
value of k£ that we are considering. For example, for the value £k = 0.2, 15
decreases with n for ¢t < 1.8, but increases with n for ¢ > 1.9. For £ = 0.05,
mo.05 decreases with n for ¢t < 2.4, but first increases and then decreases as n
increases for ¢ = 2.5, and increases with n for ¢ > 2.6. The cut-off points for
this decreasing behaviour for the different values of k are given in Table 2.4.

It is notable that for large P-values, the posterior probabilities change
dramatically with n, while for small P-values they are relatively stable with

n. Table 2.5 shows this for 7.
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L 2.5. Simulation

Table 2.4: Approximate t cut-oft for values of &

& J02 015 01 0.05 0.01
Cut-off | 1.8 20 22 25 3.0

Table 2.5: P-value, t and 7y, for given n

70.2

— | N —
I P t 702 I P T 7TT0.2 P L 0.2 P L

3 | .101 29 613 - -

11].102 1.8 288 |.052 22 .58 |.026 2.6 .788(.016 2.9 .875
121|105 1.7 172 ].049 21 571 |.026 24 .781 l 017 2.6 865

s

2.5 Simulation

The preceding work, while providing us with the values of 7, 1s computa-
tionally time-consuming with each of the preceeding tables taking upwards
of a day to compile. We therefore consider finding a more efficient method

to evaluate .
Recall that

t2
=Pr| —Y,—Y, > —2logk ).
= Pr (Gt > 2o )
The simulation approach can now be expressed directly in terms of finding
the distribution of the random variable t*Y5/(n — 1) — Y; by simulating Y;

and Y,. The tail area probabilities follow directly.
For any given dataset both £ and n are known and since 7 1s a constant

which we set at a specific numerical value, the only random elements in this
expression are the (independent) random variables Y7 and Y;. It tollows that
we can obtain an approximation to 7 in the following manner:

First, given t and n, we simulate a large number (V) of pairs (y1,y2) and

for each pair we then evaluate

t2
n— 1

h(@h,yz) — ( )yz—?h-

We now ascertain the number of pairs for which h(y1,y2) > 1 for our chosen
n and divide this by NV to give an approximate value for m. 'This method
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26. Further discussion

Table 2.6: Estimated 7. & P for n = 3

k
t .01 05 .1 15 2 1 | P-value
1.0 | .000 .001 .005 .012 .022 578 | .422 |
1.1].000 .004 .013 .025 .042 .612| .388 |
1.2 1.001 .009 .025 .045 .067 .647| .353
1.3 1.002 .018 .042 .069 .097 .677 | .323
1.4 |.006 .031 .065 .099 .130 .704 | .296
1.5 1.012 .048 .090 .129 .168 .729 | .271
1.6 l 019 .071 .118 .164 .208 .752 | .248
1.71.030 .092 .150 .202 247 769 | .231
1.8 |.044 .119 .184 .238 285 .787 | .213 |
1.9 ' 061 .146 .220 274 .327 804 | .196
2.0 | .078 .176 .253 .313 .366 .817 | .183
2.1 1.099 .208 .287 .351 .403 .830 | .170
2.2 1.121 238 .323 388 435 .843 | .157
' 2.3 l 143 269 .356 .419 467 853 | .147
2.4 | .167 .301 .389 .448 .493 .862 | .138
2.5].192 .332 419 475 520 .872| .128
2.6 |.220 .361 .447 502 .544 .880 | .120
2.7 | 246 .391 471 525 .566 .888 | .112
2.8 | 267 417 497 548 587 .894 | .106
2.9 | .295 442 518 570 .607 .900 | .100
3.0 |.322 .465 .541 .588 .625 .906 | .094

speeds up the evaluation of m; very considerably with each table now taking
no longer than a few minutes to compile. As can be seen in the following
tables, the values from the simulation compare well with the values calculated
earlier using numerical integration. Note that here we are taking N = 10000
and that once more we display, in Tables 2.6 to 2.8, only the results relating

ton = 3,11, 21.

2.6 Further discussion

Examination of the tables and comparison with the results given earlier shows
that the estimated 7 are reasonably close to the values obtained through nu-
merical integration and that the same patterns are exhibited. Theretore, the
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2.6. Further discussion

Table 2.7: Estimated 7 & P for n = 11

B o k
01 05 .1 15 2 1 P-value
1.0 | .000 .000 .000 .000 .000 .669| .331 |
1.1 {.000 .000 .000 .000 .001 .710| .290 i
1.2 | .000 .000 .000 .001 .004 .742| .258
1.3 1.000 .000 .001 .004 .016 .774| .226
1.4 | 000 .000 .003 .016 .039 .807 | .193
1.5 |.000 .001 .012 .035 .083 836 | .164 l
1.6 | .000 .003 .026 .075 .144 858 | .142
1.7 1.000 .012 .052 .129 .213 880 | .120
1.8].001 .024 .099 .195 .296 .896 | .104 |
1.9 |.002 .046 .155 .270 .375 .912 | .088
2.0 .005 .082 216 .344 447 925| .075
12.11.012 .131 289 417 520 .936 | .064 I
2.2 |.023 .186 .356 .484 .591 .946 | .054
2.3 1.040 .246 425 552 649 .954 | .046
2.4 |.065 .309 .490 .616 .702 .961 | .039
2.5 1.103 .370 .554 673 .749 .967 | .033
2.6 | .146 .435 .615 .719 .789 971 | .029
2.7 1.192 .496 667 .764 .826 .976| .024
2.8 1.243 .551 .712 .800 .854 980 | .020
2.9 1 .295 607 .754 834 875 983 | .017
3.0 |.348 .655 .792 .859 .892 987 | .013

comments made in the earlier discussion (section 2.4) concerning the values
of m; remain relevant here with reterence to the tables obtained through sim-
ulation. We therefore consider issues arising specifically from the simulation
method.

As this method produces only an approximation to 7, we consider the
possible error built into the procedure. We are, 1n effect, simulating a value
of the random variable N7, which has a Binomial distribution:

Nf[’k ~ Bin (N,?Tk).

In order to obtain a feel for the potential error 1n our approximation to my



2.6. Further discussion

Table 2.8: Estimated 7. & P for n = 21

.

2
01 05 1 15 .2 1 | P-value
0. 000 .000 .000 .000 .667 ] .333 |
1.1 |.000 .000 .000 .000 .000 .711! 289 |
1.2 1 .000 .000 .000 .000 .000 .753 | .247
(1.3 | .000 .000 .000 .000 .002 .790| .210
l 1.4 |.000 .000 .000 .002 .013 .820| .180 }
1.5 1.000 .000 .001 .011 .042 .848 | .159
1.6 | .000 .000 .005 .034 .096 .873| .127
1.7 1 .000 .001 .020 .080 .173 .894 | .106
1.81.000 .004 .052 .144 .265 .913 | .087 |
1.9 1.000 .016 .101 .231 .366 .927 | .073
2.0 |.000 .038 .169 .325 .471 .940 | .060
2.1 |.001 .077 250 .424 .566 .951 | .049
2.2 1.004 .130 .342 .522 651 .961 | .039 i‘
2.3 .012 198 436 .607 .722 .968 | .032
2.4 1 .027 274 525 686 .779 974 | .026
0.51.051 .358 .609 .752 827 .978 | .029
445 686 .800 .863 .982 | .018
528 750 .843 894 987 | .013
608 .798 878 915 .989 | .011
680 .840 .905 .933 .990 .010‘J
739 877 .923 948 992 | .008

we require the variance ot our estimator, 7. Now we know that

E(N#y) = Nm = E () = 7y,
] —
Ny (]. -—7Tk) = Var (ﬁ'k) = L ( N ﬂ-k).

Var (N’ﬁ'k)

As Var(7;) depends on the (unknown) exact value of 7y we must instead
use the estimated variance of the estimator

e (1 — )
.

%(ﬁk) —

This is a maximum, for fixed N, when 7, = 1/2. Hence the maximum value
that this estimated variance can attain is 1/(4/V), which for our earlier choice
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26. Further discussion

of N = 10000 is 0.000025; the corresponding sampling standard error 1s at
most 0.005. Thus the true proportion lies with 95% confidence within 2
standard errors (at most 0.01) of the observed proportion reported in Tables
2.6 to 2.8. The mimimum value is zero and is attained at 7, = 0,1. A
comparison of the tables obtained through numerical integration and simu-
lation establishes that the maximum difference i1s approximately 0.01. We
can therefore be confident that our approximate values obtained through
simulation are accurate to within 0.01 of the true values.

[t is straightforward to obtain the (approximate) cumulative distribution
function of the likelihood ratio by simply plotting 7, against k. We undertake
this procedure for our selected values of n and ¢ and alongside these plots
we also display the corresponding density estimates. The densities are esti-
mated using the “density” function in the software package R which provides
kernel density estimates. The software disperses the mass of the empirical
distribution function over a grid and then convolves this approximation with
a discretised version of a normal kernel before using linear approximation to
evaluate the density. The distribution and density functions for n = 3,11, 21
and ¢t = 1,2,3 are shown in Figures 2.1 to 2.3. On the density plots we
also display, as a vertical line, the maximised likelihood ratio (MLR). This is
obtained using the maximum likelihood estimates (j, o) of (i, ) under H,
in addition to the maximum likelihood estimate, o of o under Hy. We define

L(/'LO:'&)
MLR = ————=.
L(j, 0)

Standard maximisation techniques give:

po= 1z
. s*(n — 1)
o = — —,
T
g = — — —.
T

It is straightforward to show that the MLR (in favour of the null model) is
given by

n— 1 n/2
MK = (%,-—1+t2) |

It is immediately apparent from the density plots that, for £ = 2 and
3. the M LR overstates the evidence in favour of the null hypothesis as its
value lies to the right of the peak of our distribution. This overstatement
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2 6. Further discussion

Figure 2.1: Distribution (left) & density (right) functions for n = 3,1 =
1,2,3. Vertical line shows £ = M LR.
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2.6. Further discussion

Figure 2.2: Distribution (left) & density (right) functions for n = 11,7 =
1,2,3. Vertical line shows k = MLR.
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2.6. Further discussion

Figure 2.3: Distribution (left) & density (right) functions for n = 21, =
1,2,3. Vertical line shows k = MLR.
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2.6. Further discussion

appears to lessen in severity as n increases. In the case of t = 1, the M LR
1s actually to the left of the peak, overstating the evidence against the null
hypothesis. Again this overstatement lessens as n increases, so that we see
that the M LR improves as a statement of evidence for larger sample sizes.
Examination of the graphs also suggests that we investigate the effect
that ¢ and n have on the mean, variance and skewness of the likelihood ratio
since the density plots appear to exhibit the anticipated decrease in mean

as t increases and as n increases. We also observe an apparent increase in
skewness with ¢. Recall that

Tk

t2
Pr ((n— 1)Y2 — Y > —-210gk)

el <)

We can characterise the distribution of 7, by considering the random variable

Y; t?Y,
2 2(n—1))°

LR = exp{

and in particular F(LR),Var(LR) and Skew(LR). As a result of the inde-
pendence of Y; and Y5 we have

. (eXp {%}e"p {‘2;‘?1)}) ’

E(LR,LR,) = E(LR,) E (LR>)

|

E (LR)

|

where

Y] B t°Ys
LR, = exp{—;} and LRy = exp{ > n — 1)}

Recall that the moment generating function (mgf) of a x;, random variable,
Z, 1S

1 \™? 1
S t < =
Bl iz) = (125) 1<

and is undefined otherwise. Therefore E(LR;) is undefined and so conse-
quently is E(LR). We can also see that this is true for E(LR{) and hence
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2.6. _Further discussion

tor Var(LR). Further

E([LR - E (LR))’)
Var (LR)*?

Skew (LR) =

1s also undefined as we can see from the mgf that this is the case for E (LRY).

This behaviour is a result of the (very) heavy tail of the distribution of the
likelihood ratio.

While we are not able to obtain summary statistics for LR itself, we can
for log LR, the log of the likelihood ratio. Here

1 {4

logLR = -Y; — —Y,,.
o8 2" 2ln—1)"7

We shall use the following results for a x? random variable Z:

E(Z)=m, Var(Z) =2m,
E(Z?)=m(m+2), E(Z% =m(m+2)(m+4),

Skew (Z) = \/%

Using these results we obtain

_,_

1

t2
E(logLR) = = — 5

Var (log LR)

2
1 ¢
2 " 2(n—1) (*)

Note that it 1s possible for E(log LR) to be positive if |¢t| < 1. In this case,

the null hypothesis is better supported (in expectation) than the alternative.
In order to evaluate the skewness

E ([log LR — E(log LR)]?)

Skew (log LR) = — —
log LE {Var (log LR)}*/?
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2.6. Further discussion

we require some preliminary calculations. Expanding (log LR)®, we obtain

B(log L) = GE () = gy B (V) B (¥
3t* ) £ ;

H
|
|
l
+
\
|

Also

E([logLR — E(log LR)]®)
= E([llog LR®) - 3E ([log LR]?) E (log LR) + 2E (log LR)® .

Using E([log LR)*) = Var(logLR) + E(log LR)?> and the formulae given
earlier we obtain

tﬁ
E(llogLR — E(log LR)]?) = 1 — —.
(llog (log LR)]") 1)
Combining this result with (x) we can see that
6
1 — : 2
Skew (log LR) = n=1) - (1)

1 t4 3/2
(5+%n—n)

We now consider how these summary statistics behave as we let our sample
size, n, tend to infinity. First, F(log LR) is actually independent of n and so
remains fixed irrespective of the sample size. We also see that Var(log LR) —
1/2, a value independent of ¢. A similar effect is seen with the skewness
which, by considering (1) can be seen to tend to 2v/2. This is also independent,
of ¢t and is the value of the skewness of a x* random variable. This can be
explained as we may observe that log LR becomes dominated by the term in
Y1, a x7 random variable, as n — oc.

We now relate our work to the case where the variance is known which
we examined in Section 1.2 where we had n = 1 observation, z. We found

that

e = Pr(Y: < 2logk + z%)
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2 6. Further discussion

where Y] ~ x4 as before. This means that the distribution of 2log L& 1s
concentrated above —z2.

If we now consider the plots in Figures 2.1 to 2.3 we see that generally
the density peaks show the pattern given in Table 2.9. The case for n = 3
does show a slightly different peak for ¢ = 1 however, this being at around
k=0.9, 2logk = —0.211. We can observe from the table that the maximum

Table 2.9: Location of approximate peaks in density

t| k 2logk
1] 0.7 -0.713 '
21 0.1 -4.605
310.01 -9.210

density (of 2log LR) occurs around the value of —t* in these cases and we
can also see from the plots that this distribution is similarly concentrated

above this value as in the known variance case.
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Chapter 3

The choice between two
single-variable regressions

3.1 Introduction

We now consider a problem which was first presented by Pitman (1937). We
are given the two-variable normal regression

M :y; | 14, T2 ~ N(Bo + Biz1i + Pozxai,0%), 1=1,2,...,n

and we are interested in selecting the better of the two single-variable models
using x; only or x5 only. Williams (1959) gives a motivating example with
two measures predicting wood density; further details of this example are
given 1n Section 3.4. We formulate the two hypotheses H; : 85 = 0, where
only z; is needed, and H, : 5; = 0, where only x5 is required. We denote the
models under H; and H, by M; and M, respectively and we wish to discover
which of these hypotheses is better-supported by the data.

3.2 Model likelihoods

Let the vectors of observations be denoted by r1 = (T ) = (x9;), and de-
fine the design matrices X = [1, ¢y, 2], X; = {1, :cl] [1, T-|, with cor-
responding parameter vectors ,BT (Bo, 51, Ba), [‘31 — (ﬁ 1), ﬁg = (Bo, F2).

‘cb H
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3._2. Model likelihoods

The full model likelihood under M is

L(Bo, 51, Po,0) = : ““eXP{_Ql (Y —-Xﬁ)T(y - XB)}’

(27T)n/20-n g2

: exp{ : RSS+ (B —B)'X"X(B - B)J},

(2m)"/ 207 207

where RSS = (y — XB)T(y — X B) is the residual sum of squares evaluated
at the maximum likelihood estimator 3.
We have

RSS

i X'n,—B

(B~ B) ~ N(0,5*(XTX)™),

7%

using either frequentist or Bayes assumptions. Under the second, the distri-
bution of (8 — 3) is conditional on o.

For the two sub-models, the likelihood for M, can be written as

Ll :L(/BOHBMOJO-): : exp{_ : [RSSl+(Bl_Bl)TX?Xl(Bl_ﬁl)J}?

(2m)n/20m 207

while for M,

Lo = L(B0,0,8;,0) = L exp {—- 1 RSS; + (52 — 52)TX5X2(52 — 52)]} ?

(2m)n/ 20" 202
where for j =1, 2
/Bj — (X;'FXJ)HIXJI%

and

e d

RSS; = (y — Xj/éj)T(y - X;B,).

The likelihood ratio between M; and M, 1s

- 942

L 1
LR:—I—-——‘GXP{ (1"?551—RSSQ'W-Q1—'Qg)}j
where (); and () are quadratic forms in 8, and 3,, with

0= (8,-8) X%, (3, 8)
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3.2. Model /ikf/ihoods

Therefore
1
o2

'—-210gLR: (RSSl —RSSQ+Q1 —Qg).

We now assume, without any loss of generality (since the origin of z; and
z2 can be absorbed into ), that z; and z, are centred, so that Y z;; =
Y x9; = 0. Then, for j,k = 1,2, we define

Ojk = ziﬂjifﬁki, Sjy = ijiyia Oy = Zyi,

and

| 0} S
XTX, = | | X7 :[ y}.
7 0 5y, i Sy

Then for the full model

o Sll J512-# -1 PSH 812
S T {’ 812 522 ) S - I_ 512 322 y

XTX:[S g} (XTX)*:[U” 591],

Sy
XTy — Sly :
Sy

Now, using a diffuse prior distribution, we have

(& )l~~](5)s]

Therefore, the posterior distribution of the likelihood ratio is

RS55, ——2_113852 4+ @ —2-@ > —210gk) .
o o

m, = Pr(LR < k) :P'r(

Using our earlier results we can see that

(g — Bo)? + Su(Br — B1)* — (7 = Bo)* + S22(B2 — B2)°]
511(51 — B1)? = Saa(Be — B2)°.

h — Q-
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3.2 /\_/lodel /ike__/ihoods

We note that this quadratic form in (81, 32) is not centred at the full MLE

(5, Bg) but at the MLEs under the two sub-models.
Now

RSS,— RSS, RSS _ RSS, — RSS;

b
T —

g2 o2 8 RSS

where the second term is the model comparison of the two hypotheses relative
to the full model. Let

RSS1 — RSS,

—
RSS

then

T = Pr (tRSS + @1~ Qs

If we now define,

Vi = bi = b, and
>

: B; — B,

R
o

then
K1 — (o
2 — 511’}/% — 522’)/%-

We see that the form for 7, once more requires either numerical integration
or simulation in order to obtain values for this probability. In light of our
previous experience we shall use a simulation method, analagous to that of

the previous chapter.
In order to simulate from (Q; — Q2)/0* we have to be able to simulate

values of 7, for 7 = 1,2. We know that

(71‘“’71)
Yo — Y2

and if we now observe that we can write ; as

o~ N (O,S"‘l)

vi = (v — %)+ Y,
B; — B

o

(’Y ;) +
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3.3. Simulation

we see that, as we can simulate (3; — 3;)/o using RSS/0? ~ x2_; to obtain
a value for the unknown (random) quantity o, we are able to simulate from

(Q1 — Q2)/0 by obtaining realisations from «; — 4;. This quantity has a bi-
variate normal distribution with a (possibly) non-diagonal covariance matrix.

3.3 Simulation

Let n = —2log k and

—2log LR = Eé’S Ql Q2

o2 o2

Recall that 7, = Pr[—2log LR > 1], v, = (8; — f3;) /o and
Q1 — Qo

0-2

— 511”)/% — 522’)/3- (*)

We know that, for a given dataset, we can calculate 511, S1o and So.
Standard linear regression techniques provide estimates of 3, and B;, and,

thereby values for S™!, RSS, RSS; and RSS,. We can therefore calculate

 RSS, — RSS,
~  RSS

We can easily simulate from RSS/o* ~ x2_, then obtain realisations from
(@1 — Q2)/0” in the following manner, by simulating values of ;.

We can obtain an observation from (Q; — @),)/0* by substituting real-
isations of y; and v, into (). We can obtain the sample values of v, via
the standard method for multivariate normal sampling for realisations of

(7 — ;). We know

(71"?1 ) ~N(0,571).

Y2 — 72
We firstly simulate from

(72 T ;}h/Q) ~ N(Oa 522)3

and then tfrom




3.4. Bayes factor and maximised likelthood ratio

We then use our simulated value of RSS/o* to obtain a value of ¢ in order
to form

Hence, we can simulate the necessary value required for our simulation based
procedure to estimate m,. We generate a large number (V) of observations

from
9, Ql B QQ
X'n,—.?,) 0_2 T

and for each set of values we then evaluate L. We then simply ascertain the
number of pairs for which L > 7 for our chosen 1 and divide this by N to
give an approximate value for 7. As in the previous chapter we have that
the estimated variance of our estimator 7 is

. ro (1 — 7
Var () = Wk(N Wk).

Once more, we see that this has a maximum of 1/(4/N) and hence we can
choose N such that we obtain a desired level of minimum accuracy.

3.4 Bayes factor and maximised likelihood ra-
t10

For comparison purposes we shall also calculate the Bayes factor and the

maximised likelihood ratio for this example. We proceed in the following

tashion.

3.4.1 Bayes factor calculation

We define the Bayes factor (in favour of M;, the model using x; only, over
Mg) to be

Jomo Jne—co Jppeoo L(Bo: B1, 0, 0)ms, (Bo) s, (B) o (o) dBo dfy do
[0 Joneoo Jimm—oo L(B0, 0, B2, 0) 75, (Bo)ms, (B2} (o) dfo dB; do

B =
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3.4. Bayes factor and maximised likelihood ratio

where the (improper) prior distributions for Sy, 81, 82 and o are taken to be
diffuse and are given by

ﬂ-/@o(ﬁ) — T, (ﬁ) — 7]-;32(6) = k1, —00<f <0

and
Ty(0) =ky, 0<0 <00,

Note that we may ignore the constants of proportionality £; and k, as they
will cancel when we calculate the ratio of integrals. Using these priors the
Bayes tactor can be written as

B — le dﬁl do
fLQ d/B2 dO'

where, as defined previously for y =1, 2,

1 1 ~ -
L; = 'eXP{*Q ~[RSS; + (B, — B,)" X; X;(B, —5j)]},

(2m)"/ 207 o

/BJT = (B, B;), RSS; is the residual sum of squares and 3 ; 18 the maximum
likelihood estimate of 3, for model M;. Aitkin (1991, pp. 119) shows that

n— 3
2

/Lj dB,; do = 9—3/2 —(n=2)/21 ( ) !XfXj|‘1/2RSSj_(”_3)/2_

BEarlier we saw that

Ty _ 71 0
XjXJ_[O Sjj}’

where S;; = >, 2%, and so |X; X;| = nS;;. Therefore the Bayes factor is

1 710
nSi ~1/2 RSS, —(n—3)/2
(?ﬁszg" ) [ESSJ
S, [ RSS,\ " )/3
Sn ('RSS'{) |

B

We note that the second term of this expression 1s a function of ratio of the
residual sum of squares for the two sub-models.
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3.4. Bayes factor and maximised likelihood ratio

3.4.2 Maximised likelihood ratio calculation

Writing the full model likelihood from Section 3.2 as

1 1
L(/BOMBI)BQ}O) — Wexp{ 20.2(y__X/8)T(y_X/6)}3
1 1 «
— (271_)”/20_71 CXPp { 20_2 Z (yz — /60 o leli — 521'22')2} ;
1=1

we define the maximised likelihood ratio to be

g LB, Bi",0,6%)

L(ﬁ(Q) 5(2) 5(2) )

Here we consider the maximum likelihood estimates of the parameters under
the two sub-models. We denote the estimate of B; under model M; by ﬁ(z)
and use the same notation for the estimates of . The residual sum of squares
for each sub-model are

n

RSS5; = Z (yz — ﬁél) — Bfl)ﬂfli)Q

1=1

and

T

RSS; =" (i = B — APwn)

1=1

By differentiation of the likelihood function with respect to o and setting the
resultant form equal to zero we find that, under model M, for: =1.2.

RS S;

T

5_(%)2 —

Hence, we see that the maximised likelihood ratio is given by

(n/(2m))"? RSS{™?en/2
(77,/(27r))“/2 RSS; ™ ?e=n/2

RS S,

RS S5,
This is simply a function of the ratio of the residual sum of squares for the
two sub-models. This fact, when considered in conjuction with the similar

MLR =

40



3.5. Example

Table 3.1: Strength of radiata pine with density and resin-adjusted density

ikl = —"

Strength | Density | Adjusted Density || Strength | Density | Adjusted Density
3040 | 29.2 25.4 2470 24.7 | 222 |
3610 32.3 32.2 3480 31.3 31.0
- 3810 31.5 30.9 2330 24.5 23.9
1800 19.9 19.2 3110 27.3 27.9
3160 27.1 26.3 2310 | 24.0 23.9
4360 33.8 33.2 1880 21.5 21.0
3670 32.2 29.0 1740 22.5 22.0
2250 27.5 23.8 2650 25.6 25.3
4970 34.5 34.9 2620 26.2 25.7
2000 26.7 26.4 1670 | 21.1 20.0
2540 24.1 23.9 3840 30.7 30.7
3800 32.7 | 32.6 4600 32.6 32.5
1900 22.1 | 20.8 2530 25.3 23.1
2920 30.8 | 29.8 4990 38.9 38.1
1670 221 21.3 3310 29.9 28.5
3450 30.1 29.2 3600 31.4 31.4
2850 26.7 25.9 1590 22.1 21.4
3770 30.3 29.8 3850 32.0 30.6
2480 23.2 22.6 3570 30.3 30.3
2620 29.9 23.8 1890 20.8 18.4
3030 33.2 29.4 3030 8.2 28.9

form of the Bayes factor, makes the relative values of RSS; and RSS, a
useful guide as to which model we should prefer.

3.5 Example

We consider the dataset used in the Williams (1959) example. We are given
42 observations of the strength of radiata pine, together with the correspond-
ing density and density adjusted for resin content. The data are shown in
Table 3.1. We are interested in making a choice between the two single-
variable models, each using only one of the density measures. We make
this choice as the two explanatory variables are essentially functions of one
another as they are measuring the same quantity in two different ways.
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3.5. Example

In terms of our original model, M, we represent the strength by y;, the
density by x;; and the resin-adjusted density by z5; forz =1,2,...,42. Our
hypotheses now take the following meanings:

H, selects the model with the non-adjusted density measure only and
H, the model with the resin-adjusted density measure only.

In our derivation we assumed that both covariates summed to zero, and
therefore we use new (centred) covariates

:]’Jj:wj—(]_’,'jj ]:1,2

At this point we recall that RSS, represents the residual sum of squares
when fitting model M, and that M, is the model using only @; as a regressor
and M, is the model using only 5. The following key summaries can be

calculated from the data:

7, = 27.85952. T, = 26.78810, RSS = 2979320,
RSS, = 4602769, RSS, = 3066459, t = 0.5156578,

B, = 35.92847, B, = 149.9736, [, = 184.5528,

B, = 183.2733, S;; = 828.2412, S5, = 885.5840.

It is clear from the values of RSS, RSS; and RS S, that the data favour M,
the resin-adjusted density model, as there is little difference in RS.S between
the full model and the model using o, alone. This means that our method

should favour using the resin-adjusted density.
We also obtain

o (8282412 8207898
— | 820.7898 885.5840 )

with inverse

g-1_ ( 0.01481 —0.01373
~ \ —0.01373 0.01385 /°

We now simulate N = 100000 observations from x:_, and the random quan-
tities (v, — 42) and (y1 — H1)|(v2 — ¥2), using

(72 T &2) 7 N(Oa 001385)a

42



