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"Men are more apt to be mistaken in their generalisations than 
in their particular observations. " 

Niccolo Machiavelli (1469-1527). 



Abstract 
We propose a general Bayes analysis for nested model comparisons which 
does not suffer from Lindley's paradox. It does not use Bayes factors, but 
uses the posterior distribution of the likelihood ratio between the models 
evaluated at the true values of the nuisance parameters. This is obtained 
directly from the posterior distribution of the full model parameters. The 
analysis requires only conventional uninformative or flat priors, and prior 
odds on the models. 

The conclusions from the posterior distribution of the likelihood ratio are 
in general in conflict with Bayes factor conclusions, but are in agreement with 
frequentist likelihood ratio test conclusions. Bayes factor conclusions and 
those from the BIC are, even in simple cases, in conflict with conclusions from 
HPD intervals for the same parameters, and appear untenable in general. 

Examples of the new analysis are given, with comparisons to classical 
P-values and Bayes factors. 
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Chapter 1 

Introduction 

1.1 Motivation 
In this thesis we address the point null hypothesis testing problem from 

a Bayesian viewpoint. An important issue in the evaluation of Bayes and 
frequentist theories is the difference in the conclusions from Bayes factors and 
the likelihood ratio (LR) tests in large samples, due to the "Lindley paradox" 
(Lindley 1957, Bartlett 1957). One important aspect of this difference is the 
ability of Bayes factors to strongly support a point null hypothesis, where 
a frequentist analysis can only "fail to reject" with a large P-value; it can 
never support it strongly. 

We illustrate this feature with an example due to Stone (1997) from the 
discussion of Aitkin (1997). A physicist running a particle-counting exper- 
iment wishes to identify the proportion 0 of a certain type of particle. He 
has a well-defined scientific hypothesis that 9=0.2 precisely. There is no 
specific alternative. He counts n= 527135 particles and finds r= 106298 of 
the specified type. 

The problem is to make inferences concerning the probability of success, 
6, in a series of n trials with r successes. The likelihood has the following 
form from the binomial distribution 

L(O) 
(fl)(i 

_)n_r9r, 0<0<1. 
r 

The frequentist test of 9= Bo = 0.2 uses the maximum likelihood estimator 
of 8,9 = 0.201652, together with its standard error SE(8) = 0.0005526, 

giving ZO = 
(8 

- 80) /SE(8) = 2.990 and so the null hypothesis is firmly 

rejected with two-sided P=0.0028. At this stage we can also calculate the 
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1.1. Motivation 

maximised likelihood ratio to be 

L(e°) 
= 0.01124, 

L(O) 

and note that the likelihood at 0=0.2 is very small relative to the likelihood 
at 8. 

The physicist now takes the proper uniform prior ir(O) = 1,0 <0<I 
under the alternative hypothesis, and computes the Bayes factor 

L(eo) Bf L(e)7r(e)dO' 
in the following manner. Firstly recall that the beta distribution, ß(a, b), has 
the form 

r(a+b) 
ý(x, = r(a)r(b) xQ-i (1 - x)b-17 0<x<1. 

In this case, by comparison of f (x) above to our form for L(O) we can see 
that the term in the denominator of the Bayes factor reduces to the integral 
of a beta likelihood between 0 and 1. We see that 

1 
L(9)7r(8)d8 =1 L(9)d8 = 

(527135) r(106299)T(420838) 

00 106298 F(527137) 

The posterior distribution of 8, using this proper uniform prior is 

9jr - ß(106299,420838). 

As we are working with a large sample we can approximate this distribution 
with the normal distribution 

0r NN (0, SE (Ö)'). 

We calculate the Bayes factor 

B= 
L(90) 

f L(O)ir(9)dG 
(527135) 0.8 4208370 2106298 

106298 

(527135) 1'(106299)]F(420838)/r(527137) 106298 

F(527137) 
08 4208370 2106298 

I'(106299)F(420838) ' 
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1.1. Motivation 

which is the density of Bjr evaluated at 8= 00 = 0.2. Under the normal 
approximation this is 

1 (00 2 

B= exp 
27 SE(0) 2SE(8)2 

O(Z0) 

SE(e)' 

where 0(") is the standard normal density function and ZO is as defined 
earlier. Therefore we can see that 

B=1 0(Zo) = 8.26. 
SE 

Assuming equal prior weight on the null and (general) alternative hypotheses, 
the Bayes factor equals the posterior odds on the null hypothesis: we seem to 
have quite strong posterior evidence in favour of Ho, despite the apparently 
strong frequentist evidence against Ho. 

A similar conclusion is reached from the closely related Bayesian Infor- 
mation Criterion, Schwartz (1978). This is interpreted in the same way as 
-2 times the logarithm of a standard Bayes factor and is defined here as 

BIC = -2 log 
L(09 

Lý)) 
-v log n, 

where v is the number of unknown parameters under the null hypothesis 
subtracted from the number under the alternative hypothesis. Here V=I 
because B is the only unknown parameter under the alternative and it is 
known under the null. Therefore 

106298 1- 0° 420837 

BIC = -2log 
e° 

13.17521 
0 1-8 

_ -2(106298[log Oo - log 9] + 420837[log(1 - Bo) - log(1 - 8)]) 

- 13.17521 
8.976366 - 13.17521 

- -4.198844. 

The likelihood ratio test statistic of 8.98 for the null hypothesis is outweighed 
by the penalty function log n= 13.18 on the alternative model, giving a BIC 
of 4.20 in favour of the null model. The BIC is a special case of the Bayes 
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1.1. Motivation 

factor when the information in a proper normal prior is proportional (in 

sample size) to that of the sample (Smith and Spiegelhalter 1980). 
This inconsistency between frequentist and Bayes conclusions is not, how- 

ever, a sign of conflict between the theories. It is, instead, a conflict within 
Bayes theory. Here the posterior distribution of 8 is the Beta distribution 

with parameters 106299 and 420838, which is essentially normal with mean 
8 and standard deviation SE(8). The posterior probability that 8>0.2 is 
1(2.990) = 0.9986 =1- P/2. Any Bayesian using this prior will have very 
strong posterior belief that 8 does not have the value specified under the 
null hypothesis, but a larger value. Equivalently, the 99% highest posterior 
density interval for 0 is 

0+2.576SE(9) = (0.20023,0.20308), 

which excludes 00. 
This inconsistency between Bayes factor and posterior density conclu- 

sions results from the integration of the likelihood over the prior. It has been 
frequently pointed out (e. g. Aitkin 1991,1997), that for a fixed prior the 
increasing concentration of the likelihood as n --+ oo results in a decreasing 
integrated likelihood. This has the consequence that the Bayes factor can be- 

come arbitrarily large for any specified value 00, however small its likelihood 

relative to that at 9. 
Dempster (1974,1997) and Aitkin (1997) addressed this difficulty by 

considering the posterior distribution of the likelihood ratio itself. Aitkin 
(1991) had also considered the ratio of the posterior mean of the likelihood 
under each model. Their aim was to make an inferential statement directly 
about the ratio L(8o)/L(9), where 0 is unknown under the alternative, but 
has a known posterior distribution 

L(0)ß(0) 
7-(el Y) =f L(e)7r(e)de 

Since the likelihood ratio 

LR(9) = L(9o)/L(9) 

is a parametric function of 9, it has a posterior distribution 7r(LRjy) which 
can be obtained from that of 6. 

Given a specified value of 9 under the alternative hypothesis, a likeli- 
hood ratio LR <k would constitute strong sample evidence against Ho for 
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1.1. Motivation 

sufficiently small k. Motivated by this observation, the posterior probability 

Irk = Pr(LR(9) <kI y) 

for a given value of k can then be computed, and if this probability is suffi- 
ciently large, the sample evidence against Ho would be persuasive. 

We now return to the example considered earlier. Without loss of gener- 
ality we can discard the constant of proportionality as we are interested in a 
ratio of two such likelihoods. The likelihood, under a normal approximation 
as seen earlier, is then 

L(9) = exp 
(0 - ý)2 
2SE2 

and therefore 

W 
-2 log L(9) = 

(0 - Oý 
- Z2. 

SE 

Then the likelihood ratio LR for testing Oo against 0 satisfies 

2logLR=Zo -Z2 

where Z has a posterior N(0,1) distribution. It follows that 

7x = Pr(LR<k), 

= Pr(-2 log LR > -2 log k), 

= Pr(Z2 < Zo +2 log k), 

where Z2 has a posterior xi distribution under Ho. Taking k=0.1 with 
ZO = 2.990 as before, gives 

710.1 = Pr(Z2 < 2.9902 - 4.605) = 0.963. 

We note that taking k=1 instead of 0.1 gives 71 = 0.9972 =1-P. 
Thus this form of Bayes analysis leads to the same conclusion as the HPD 

interval and the frequentist analysis, and contradicts the Bayes factor and 
BIC conclusions. 

Aitkin (1997) extended Dempster's approach to the general nuisance pa- 
rameter model: in assessing a null hypothesis Ho :0= 9o in a model with 
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1.2. A simple example 

nuisance parameter 0, he considered the "true likelihood ratio" 

LR L(9o, 0)/L(e, 0) 

evaluated at the true values of 8 and ¢. These are unknown, but the joint 
posterior distribution ßr(8,01y) from the "full model" provides, as for the 
sample model above, the posterior distribution of LR, and hence the pos- 
terior probability that LR < k. Aitkin also generalised Dempster's striking 
result for k=1, given above, to the nuisance parameter case. This means 
that for a normal likelihood L(9,0) and flat prior distributions for the un- 
known parameters, the P-value under the null hypothesis equals the posterior 
probability that the true likelihood ratio is greater than 1. This can be read 
as meaning that the null hypothesis is better supported than the alternative. 
This result provides a unification of Bayes, likelihood and frequentist conclu- 
sions in the point null hypothesis testing problem. Note also that here we 
assume that the nuisance parameter takes the same value under both the null 
and the alternative hypotheses. This differs from the maximised likelihood 
ratio approach in which we estimate it separately under the two models. 

We now illustrate this approach further with a particularly simple exam- 
ple. 

1.2 A simple example 
We observe a single realisation (x) of a normal random variable with known 

variance, cr2. Without loss of generality we may set a=1 so that our model 
is 

X- N(1c, 1) 

with µ unknown. We wish to test the point null hypothesis Ho := /-to 
against the general alternative Hl :µ µo with µ, µo E R. We set µo =0 
without any loss of generality. We firstly consider the likelihood ratio, LR, 
which we define as 

LR = 
L(O) 
L(µ) 

For this model the likelihood function itself is given by 

L(M) =1 exp 
1 

(x - p)2 
2ýr 2 
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1.2. A simple example 

so that 

LR=exp 
1 

[(x-ß. 
G)2-x2] . 2 

Therefore 

2IogLR=Y-x2 

where 

Y= ýx 
- 1uý2 = rµ 

_ xl2 

The prior distribution for 'u is taken to be diffuse so that we may express the 
posterior as 

ýcýN(x, 1). 

We can now see that the posterior distribution of Y is xi and if we consider 
that LR <k is equivalent to 2 log LR <2 log k for real, positive k then we 
find 

7r, ß = Pr(LR < kjx) 

= Pr (Y - x2 <2 log k) 

= Pr (Y <2 log k+ x2) . 

Therefore the posterior distribution of the likelihood ratio is simply a shifted 
xi distribution. When k=1 we obtain the following: 

7r1 = Pr(Y < x2) 

= Pr(-x<Z<x) 

=1-P, 

where ZN N(0,1) and P is the two-sided P-value of the observation x. 
Hence, once more rrl =1-P. 

In addition to the form given above for lrk we can also obtain the max- 
imised likelihood ratio (MLR) by calculating the ratio of the likelihoods 

maximised under the two hypotheses. Under the null hypothesis this is sim- 
ply 

1 x2 L(0) = 27exp -2 



1.2. A simple example 

while under the alternative we make use of Vic, the maximum likelihood esti- 
mator of M. Here this is µ=x and we obtain the maximised likelihood 

L (JG) = exP -1(x _ ,)2 2-7r 
1 

vl'2 
Therefore 

MLR = 
L(O) 
L(A) 

x2 
= exp -2 

We now illustrate the difficulties involved in calculating a Bayes factor using 
diffuse priors over an infinite range. Under the alternative hypothesis we 
take the proper flat prior for 

1u as 

7 ý/) = 2C on -C<p 

The integrated likelihood under this alternative is 

J 
00 

LB = 
00 

L(µ)7r (i) d 
-1c 

= 2ý, 
O(x-µ) dy 

-c 

-I [(D(x + C) - 4)(x - C)] 
2C 

where 0(") and I(") are the standard normal density and distribution func- 
tions respectively. As C -4 oc with increasing diffuseness LB -+ 0, and so 
the Bayes factor 

B= 
L() 

moo. LB 

This, once more, is the Lindley (or Barlett) paradox. Whatever the value of 
x, if the prior is sufficiently diffuse the Bayes factor will appear to strongly 
support the null hypothesis. Here and for similar examples later in the thesis 
we are unable to calculate a Bayes factor for an improper flat prior over an 
infinite range. 
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1.3. Structure of the thesis 

1.3 Structure of the thesis 
Aitkin (1997) considered the large-sample properties of the Irk approach and 
the re-calibration needed for standard frequentist and likelihood methods. 
He considered only one small-sample example. In the rest of this thesis we 
apply this approach to several difficult model comparison problems. Some 
are nested model comparisons while others are not, but all can be treated 
by the same general method, since we require only that the models being 
compared are both nested in a larger family. This approach applies directly 
to the comparison of any two models which are themselves nested in a higher 
family, irrespective of whether one is nested in the other. 

We firstly consider, in Chapter 2, the familar problem of testing a normal 
mean in the situation where the variance is unknown. This is the problem 
whose standard analysis is performed by the t-test. In Chapter 3 we examine 
a problem that was first presented by Pitman (1937). We are given a two- 
variable normal regression and wish to select which of the two possible single- 
variable regression models is best supported by the data. Chapter 4 concerns 
the choice between a general AR(1) model for time series data and the special 
case of a (non-stationary) random walk. This is adapted from a problem 
studied by Marriott and Newbold (1998). Finally, in Chapter 5, we consider 
the well-known example due to Cox (1962). In this case having observed a 
sample from a discrete distribution we wish to determine whether a Poisson 
or a geometric distribution is better supported by the data. 

In Chapters 3 and 5 we are able to use (improper) prior distributions in 
order to calculate Bayes factors for comparison purposes. We are able to do 
this in a straightforward manner as these examples are non-nested. We also 
obtain the maximised likelihood ratio in these cases. 

We are unfortunately unable to calculate the actual Bayes factor for the 
problems that we consider in Chapters 2 and 4. The Bayes factor involves 
a ratio of integrated likelihoods under the two hypotheses being considered 
and for the cases given it is not possible to evaluate the required integrals 
over the infinite parameter spaces. We discuss this issue further in Chapter 6, 
where we suggest other possible comparisons as further work. This actually 
indicates a further strength of our approach as we are able to consider any 
choice of prior distribution whereas it is impossible to use the flat priors on 
infinite parameter spaces in order to calculate a Bayes factor. 

We now note that it is possible to express all four of these applications 
in the same general form. For the calculation of Irk, we require the following 
elements, given a model parameter 6 and data Y: 

(a) Hypotheses Ho, Hl (or Hl, H2) and (possibly) a third encompassing 
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1.3. Structure of the thesis 

hypothesis He. This refers to a parent hypothesis that both Ho and Hl 
are nested within and in certain cases is simply Hl. 

(b) A prior distribution over 6E He. 

(c) A parameterisation of 6 such that 

6= (e, 'y), 

where B is the parameter of interest and is specified under the null 
hypothesis and specified or a nuisance parameter under the alternative. 
y is a nuisance parameter under both models. 

For each example we then calculate (if possible in the case of the Bayes 
factor) the following quantities, denoting the likelihood function by L(. ) and 
the (improper and uninformative) prior distribution used in the calculation 
of the Bayes factor by 7("). We here assume that we are working with Ho 
and Hl. 

(i) The maximised likelihood ratio which depends only on the data and is 
defined as 

MLR = 
max6 Lo (b) 

maxb L1(S)' 

where L0(") and L1(") are the likelihood functions under the two models. 
(ii) The posterior distribution of the "true" likelihood ratio. This is defined 

as 7r, ß = Pr (LR(5) <k ly) where 

LR(6) = 
L0(6) 
L1(6) 

Note that this depends on both the data and the parameter J. 

(iii) The Bayes factor, defined here as 

B_f 
Lo (6)7r(6) d6 

f L1(6))7r(6) db 

It is not always possible to calculate the Bayes factor. In fact, as 
discussed earlier, we are only able to obtain this for two of the four 
examples discussed. 

10 



1.3. Structure of the thesis 

We should note here that all but the first of these quantities depend on 
the choice of the nuisance parameter 'y. The MLR however is invariant 

under reparameterisation of either the parameter of interest or the nuisance 
parameter. The dependence of the posterior distribution of LR, and indeed 
the Bayes factor, on the choice of parameterisation is to be expected if we 
are comparing different models. The dependence on the nuisance parameter 
-y may be reduced by the use of the orthogonal parameterisation for two 
parameters, should this exist. Alternatively the parameterisation which gives 
a diagonal expected information matrix could be chosen, if one exists. 

We are now able to cast the examples discussed in the remainder of the 
thesis in the terms given above. For full details of the models the reader 
should refer to the relevant chapter. 

1.3.1 Testing normal mean, a unknown 
In this example our parameter is 6_ (au, or), corresponding to a normal mean 
and variance. The required elements are as follows: 

(a) Hypotheses: 

Ho: Yr N(0, a2), 
H1= He: Y^' N(p, a2). 

(b) We use a flat (diffuse) prior on (µ, log a) under He. 

(c) Parameters: 

8=µ, 7=a. 

This is one of the examples where, due to the problems of integrating an 
improper prior over an infinite parameter space, we are unable to obtain the 
Bayes factor. 

1.3.2 The choice between two single-variable regres- 
sions 

Our parameter here is b= (ßo, 011 02, a) and we are also given two covariate 
vectors xl and x2 which we are interested in choosing between. We have the 
following required elements: 

11 



1.3. Structure of the thesis 

(a) Hypotheses: 

H1 :YN N(ßo + ß1x1i, 2), 

H2 :Y- N(ßo + ß2x2i, 2), 
He :i ^ý N(ß0 + ß1x1 + ß2x2i, a2). 

(b) We use a flat (diffuse) prior on (ßo, ßl, ß2, log a) under He. 

(c) Parameters: 

e= (ßl, ß2), 7= (ßo, 9). 

Here our two hypotheses are not nested within each other but within an 
encompassing hypothesis and so we are able to obtain a Bayes factor for 
model comparison using a diffuse prior on (ßo 

�ßl ) 
02,9) 

. 

1.3.3 The choice between random walk and AR(1) time 
series 

Our parameter here is b= ('u, a, q) and we are interested in choosing between 
a random walk (0 = 1) and a more general AR(1) model for our data. The 
elements for calculation of irk are as follows: 

(a) Hypotheses: 

Ho :Y lY-l - N(Y-1, a2)7 
Hl = He :Yl Y-1 ^J N(q1-l + (1 - O)µ, or 2). 

(b) We use a flat (diffuse) prior on ((1 - O) u, log a, 0) under He. 

(c) Parameters: 

e=ýb, 'y=(, a). 
Once more, in this nested case, we are unable to obtain a Bayes factor when 
using improper priors. 

1.3.4 The choice between Poisson and geometric dis- 
tributions 

We nest both the Poisson (Hl) and geometric (H2) distributions within the 

encompassing negative binomial distribution and here use the parameter 
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1.3. Structure of the thesis 

6= (1u, r). The elements we require follow: 

(a) Hypotheses: 

Hl :Y- P(lc) 
-- 

NB (I-t, oc), 

H2: Y-G NB 

He: YjN NB( , r). 

(b) We use both a flat (diffuse) prior on (µ/(, u + r), r) and a flat prior on 
(, µ/(µ + r), 1ogr) under He. 

(c) Parameters: 

8=r, 'y=i 

Again, as we have nested the Poisson and geometric hypotheses in the neg- 
ative binomial encompassing hypothesis, we are able to calculate a Bayes 
factor both for a diffuse prior on µ and a diffuse prior on log M. In this case 
we do not need to specify a prior for r as it is given under both Hl and H2 
so needs no consideration. 
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Chapter 2 

Testing normal mean, a 
unknown 

2.1 The t-test problem 
In Aitkin (1997) the problem of testing a normal mean with unknown vari- 
ance was considered. The standard method of analysis for this problem is 
the t-test. We present the analysis of this problem from the Aitkin paper and 
extend it by completing the numerical integration mentioned in the paper 
and displaying the resultant values for irk. 

We consider the following model, where we have n observations from a 
general normal distribution: 

Xi N(µ, o2), 1=1,2, ... ,n 

with both j and o unknown. We wish to test the point null hypothesis 
Ho :y= /-to against the general alternative Hl :u µo with p, µo E R. 

2.2 Likelihood ratio 
We first consider the likelihood ratio, LR, which we define to be 

LR = 
L(bLo, a) 
L(p, a) 

14 



2.2. Likelihood ratio 

which uses a section through the likelihood at the true but unknown or. Here 

n11 
L(it, or) _ exp -2 (xi - {ý)2 

gor 
1) 

_1n1 
27fQ 

exp 
2Q2 

(xz 
- 

)2 + µ)2J 

Z-1 

so that 

n 
LR = exp - 

Ii [(xi 
- 

)2 +(- /1o»2 - 
(x2 

- 
)2 

_(- 1)2 20' 2-1 

= exp 
{-20r2 

`ý 
- /1(y2 - 

(x 
- /1)2] 

Therefore 

-2 log LR =2 ýý 
- X0)2 -{-, ß)2J 

P (n 
- 1)s2 

- 
n(x -lull X 

n-1 O2 (12 

where 

1n 
s2 = (x2 -': t) 2 and t= 

n-1 i=1 

yo) 
s 

The joint prior distribution for (µ, log a) is taken to be diffuse so that we 
can express the joint posterior as 

Q a2 (n 
- 1)s2 

2 plaN 
2 r. 'Xn-1' 

nU 

We are interested in expressions of the form LR < k, or equivalently 
2 log LR > -2 log k, for some real k. If we define 

Y- n(x µ)2 
and Y2- 

(n - I)s2 
1 

07 2 g2 

then the posterior distributions of Yl I Y2 and Y2 are independent conditional 
on a, and are respectively X1 and X2_1 Since these distributions do not 
involve or, Yl and Y2 are unconditionally independent. 
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2.2. Likelihood ratio 

We now turn our attention to Irk = Pr(LR <k lx) 
. In this case we have 

2 

7r, ß = Pr Yl <t 
Y2 

+2 log k. 
n-1 

Note that when k=1, this simplifies to 

71 = Pr Yl < 
t2 

Y2 
n-1 

= Pr 
Yl /l< 

t2 
(Y2/(n 

- 
= Pr Fl,,,, 

-1 < t2) 

= 1-P 

where P is the frequentist P-value of the hypothesis being tested. In general, 
however, we consider k01 and here numerical evaluation of the posterior 
probability is required. 

We now define 

71 = -2 log k 

then 

2 

Irk=Pr 
t2 

-Y, >rý 
((n 

- 1) 

Now we know that the xv density is 

exp -z2 z2U 

22F(- 
2 

and Yl and Y2 are independent so their joint distribution is 

ý2 3 {-- l 
exp 

2 f(yi, ýJ2) =12 
Y2 2 

a 
(1) 

exp 
2fn_1 

22T -r 22 
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2.3. Results 

Now F(1/2) = and 

n - 1 
r 

( 
f= 2 

n 
23 
n/2-1 (n_(2i+1)) 

72 
i=1 

if ri>2 is odd 

if n> 2 is even. 

Define 

so that 

n-1 -1 [V-x2nr 

27 

f)=r yj Z y2 23 exp {-} Y2 (yi 
7 Y2 exp 

ý 
2 

Looking at the region t2Y2/(n - 1) - Yl > 77 where, in addition, both Yl and 
Y2> 0 we see that if we set 

Yi=Yi, 0<Yi<00, 

then we require that 

P 

n_lY2-Y1 
>777 

which is equivalent to 

- Y2 > (71 + YI ) 7Z i 

t2 

We can now use this result to express Irk in terms of an integral over the joint 
distribution of Y1, Y2. So we have 

223 eXP -2 
y2 dýJ2 dyl Y 7fk =K1 

00 

=o 
Yz 1/2 exp - 

ýyl 
(£--- 

l 
yý 

2.3 Results 
Unfortunately this integral is not possible to evaluate analytically so the 
integral is evaluated by numerical integration. This was carried out using 
Maple for sample sizes n from 3 to 21 (so that the degrees of freedom on 
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2.3. Results 

Table 2.1: Irk & Pforn=3 

k 
t . 01 

.05 .1 . 15 .2 1 P-value 
1.0 

. 00006 
. 00144 . 00577 . 01299 . 02309 . 57736 . 42265 

1.1 
. 00030 

. 00434 . 01365 . 02669 . 04294 . 61396 . 38604 
1.2 . 00079 

. 01009 . 02642 . 04641 . 06920 . 64700 . 35300 
1.3 

. 00291 . 01953 . 04436 . 07168 . 10075 . 67675 . 32325 
1.4 . 00640 . 03309 . 06712 . 10152 . 13616 . 70353 . 29647 
1.5 . 01214 . 05075 . 09397 . 13475 . 17402 . 72761 

. 27239 
1.6 . 02052 . 07215 . 12399 . 17020 . 21309 . 74927 . 25073 
1.7 . 03175 . 09670 . 15623 . 20683 . 25239 . 76877 . 23123 
1.8 . 04582 . 12374 . 18981 . 24379 . 29117 . 78633 . 21367 
1.9 . 06255 . 15257 . 22400 . 28042 . 32888 . 80218 . 19782 
2.0 . 08165 . 18257 . 25820 . 31623 . 36515 . 81650 . 18350 
2.1 . 10275 . 21318 . 29193 . 35086 . 39976 . 82945 . 17055 
2.2 . 12544 . 24394 . 32484 . 38409 . 43258 . 84119 . 15881 
2.3 . 14936 . 27446 . 35669 . 41578 . 46356 . 85185 . 14815 
2.4 . 17411 . 30446 . 38731 . 44586 . 49270 . 86155 . 13845 
2.5 . 19939 . 33372 . 41659 . 47431 . 52005 . 87039 . 12961 
2.6 . 22491 . 36208 . 44449 . 50114 . 54566 . 87846 . 12154 
2.7 . 25041 . 38942 . 47099 . 52640 . 56963 . 88584 . 11416 
2.8 . 27571 . 41566 . 49609 . 55015 . 59204 . 89261 . 10739 
2.9 . 30064 . 44083 . 51983 . 57245 . 61298 . 89882 . 10118 
3.0 . 32507 . 46484 . 54225 . 59338 . 63255 . 90453 . 09547 

Y2 ran from 2 to 20) and for given values of t, which is the only sample 
quantity which affects the integral for 7k. Thus it is possible to calculate 'rk 
for this range of values of t, for various values of k. We should note that as 
a result of evaluating the integral numerically there is a known error of at 
most 5x 10-10. In order to save space but still display results across the full 

range of n considered, Tables 2.1 to 2.3 present only the cases n=3,11,21. 
Full tables are available from the author. 
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2.4. Discussion 

Table2.2: 7r, ß &Pforn=11 

k 
t . 01 

. 05 .1 . 15 .2 1 P-value 
1.0 

. 00000 . 00000 . 00000 . 00001 . 00013 . 65911 . 34089 
1.1 

. 00000 . 00000 . 00001 . 00019 . 00113 . 70289 . 29711 
1.2 

. 00000 . 00000 . 00016 . 00133 . 00554 . 74220 
. 25780 

1.3 
. 00000 

. 00004 . 00102 . 00572 . 01795 . 77723 . 22277 
1.4 . 00000 . 00031 . 00421 . 01719 . 04334 . 80823 . 19177 
1.5 . 00001 . 00144 . 01257 . 03992 . 08465 . 83549 . 16451 
1.6 . 00004 . 00482 . 02949 . 07662 . 14154 . 85932 . 14068 
1.7 . 00022 

. 01261 . 05776 . 12747 . 21079 . 88003 . 11997 
1.8 . 00085 

. 02729 . 09851 . 19028 . 28767 . 89795 . 10205 
1.9 . 00257 . 05098 . 15094 . 26135 . 36734 . 91338 . 08662 
2.0 

. 00642 . 08478 . 21274 . 33652 . 44569 . 92661 . 07339 
2.1 . 01376 . 12851 . 28071 . 41202 . 51972 . 93792 . 06208 
2.2 

. 02605 . 18088 . 35153 . 48433 . 58758 . 94756 . 05244 
2.3 . 04453 . 23979 . 42221 . 55288 . 64834 . 95575 . 04425 
2.4 . 06997 . 30279 . 49037 . 61492 . 70179 . 96268 . 03732 
2.5 . 10257 . 36746 . 55432 . 67039 . 74816 . 96855 . 03145 
2.6 . 14191 . 43165 . 61302 . 71925 . 78797 . 97351 . 02649 
2.7 . 18704 . 49364 . 66595 . 76176 . 82186 . 97769 . 02231 
2.8 . 23669 . 55216 . 71301 . 79841 . 85056 . 98121 . 01879 
2.9 . 28943 . 46440 . 75437 . 82977 . 87473 . 98417 . 01583 
3.0 . 34379 . 65589 . 79039 . 85645 . 89504 . 98666 . 01334 

2.4 Discussion 
We now examine Tables 2.1 to 2.3 and compare them to the standard t-test 
for this problem. The rejection criteria differ considerably in that, as we have 

already stated, we can take different values for both k and 'irk when using 
our (k, 'rk) test while the t-test rejects the null hypothesis when the P-value 
is less than a certain value, 0.05, say. This P-value can be read off from the 
tables in the last column for each value of t. The (k, Irk) formulation requires 
that we reject Ho when 'irk is considered to be large for sufficiently small k, 

egif 710.1>0.7. 
From the tables we see that the P-value decreases roughly exponentially 

as t increases for a given value of n and the same effect occurs for a given 
value of t as we increase n. Now since 7r1 =1-P we see an increase in 7r1 
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2.4. Discussion 

Table2.3: 7k& P for n- 21 

k 
t . 01 

. 05 .1 . 15 .2 1 P-value 
1.0 

. 00000 
. 00000 . 00000 . 00000 . 00000 . 67074 . 32926 

1.1 
. 00000 . 00000 . 00000 . 00000 . 00002 . 71560 

. 28440 
1.2 . 00000 . 00000 . 00000 . 00003 . 00038 . 75584 

. 24416 
1.3 . 00000 . 00000 . 00002 . 00039 . 00307 . 79162 

. 20838 
1.4 . 00000 . 00000 . 00021 

. 00271 
. 01386 

. 82316 . 17684 
1.5 . 00000 . 00003 . 00150 

. 01165 . 04181 . 85076 
. 14924 

1.6 . 00000 . 00025 . 00666 
. 03453 . 09424 . 87472 

. 12528 
1.7 . 00000 . 00142 . 02089 

. 07821 . 17174 . 89537 
. 10463 

1.8 . 00001 . 00552 . 05038 
. 14495 . 26782 . 91304 . 08696 

1.9 . 00007 . 01618 . 09940 . 23105 . 37235 . 92805 . 07195 
2.0 . 00039 . 03795 . 16811 . 32876 . 47563 . 94073 . 05927 
2.1 . 00152 . 07474 . 25241 . 42934 

. 57071 . 95138 . 04862 
2.2 . 00473 . 12819 . 34567 . 52549 . 65385 . 96027 . 03973 
2.3 . 01203 . 19695 . 44078 . 61242 . 72392 . 96765 . 03235 
2.4 . 02607 . 27717 . 53181 . 68776 . 78146 . 97375 . 02625 
2.5 . 04947 . 36366 . 61471 . 75105 . 82787 . 97877 . 02123 
2.6 . 08415 . 45112 . 68733 . 80301 . 86485 . 98287 . 01713 
2.7 . 13073 . 53511 . 74907 . 84495 . 89408 . 98622 . 01378 
2.8 . 18834 . 61244 . 80036 . 87842 . 91708 . 98894 . 01106 
2.9 . 25483 . 68124 . 84220 . 90488 . 93511 . 99115 . 00885 
3.0 . 32721 . 74079 . 87589 . 92570 . 94923 . 99292 . 00708 

in both these cases. It is very interesting to note that as we increase n for 

values of k other than 1, we can observe different behaviour depending on the 
value of k that we are considering. For example, for the value k=0.2,70.2 
decreases with n for t<1.8, but increases with n for t>1.9. For k=0.05, 

70.05 decreases with n for t<2.4, but first increases and then decreases as n 
increases for t=2.5, and increases with n for t>2.6. The cut-off points for 
this decreasing behaviour for the different values of k are given in Table 2.4. 

It is notable that for large P-values, the posterior probabilities change 
dramatically with n, while for small P-values they are relatively stable with 
n. Table 2.5 shows this for 710.2. 
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2.5. Simulation 

Table 2.4: Approximate t cut-off for values of k 

k 0.2 0.15 0.1 0.05 0.01 
Cut-off 1.8 2.0 2.2 2.5 3.0 

Table 2.5: P-value, t and 7r0.2 for given n 

n pt 70.2 Pt 70.2 Pt 70.2 Pt 70.2 

3 . 101 2.9 . 613 --- --- --- 
11 . 102 1.8 . 288 . 052 2.2 . 588 . 026 2.6 . 788 . 016 2.9 . 875 
21 . 105 1.7 . 172 . 049 2.1 . 571 . 026 2.4 . 781 . 017 2.6 . 865 

2.5 Simulation 
The preceding work, while providing us with the values of Irk, is computa- 
tionally time-consuming with each of the preceeding tables taking upwards 
of a day to compile. We therefore consider finding a more efficient method 
to evaluate irk. 

Recall that 
2 

7k=t Y2-Yl>-21ogk . (n - 1) 

The simulation approach can now be expressed directly in terms of finding 
the distribution of the random variable t2Y2/(n - 1) - Yl by simulating Yl 

and Y2. The tail area probabilities follow directly. 
For any given dataset both t and n are known and since 71 is a constant 

which we set at a specific numerical value, the only random elements in this 

expression are the (independent) random variables Yl and Y2. It follows that 

we can obtain an approximation to irk in the following manner: 
First, given t and n, we simulate a large number (N) of pairs (y1, Y2) and 

for each pair we then evaluate 
P 

h(yi, Y2) _ (n _ 1) Y2 - Y1. 

We now ascertain the number of pairs for which h(yi, y2) >q for our chosen 

r] and divide this by N to give an approximate value for 'irk. This method 
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2.6. Further discussion 

Table 2.6: Estimated lrk &P for n=3 

k 
t . 01 . 05 .1 . 15 .2 1 P-value 

1.0 . 000 . 001 . 005 . 012 . 022 . 578 . 422 
1.1 . 000 . 004 . 013 . 025 . 042 . 612 . 388 
1.2 . 001 . 009 . 025 . 045 . 067 . 647 . 353 
1.3 . 002 . 018 . 042 . 069 . 097 . 677 . 323 
1.4 . 006 . 031 . 065 . 099 . 130 . 704 . 296 
1.5 . 012 . 048 . 090 . 129 . 168 . 729 . 271 
1.6 . 019 . 071 . 118 . 164 . 208 . 752 . 248 
1.7 . 030 . 092 . 150 . 202 . 247 . 769 . 231 
1.8 . 044 . 119 . 184 . 238 . 285 . 787 . 213 
1.9 . 061 . 146 . 220 . 274 . 327 . 804 . 196 
2.0 . 078 . 176 . 253 . 313 . 366 . 817 . 183 
2.1 . 099 . 208 . 287 . 351 . 403 . 830 . 170 
2.2 . 121 . 238 . 323 . 388 . 435 . 843 . 157 
2.3 . 143 . 269 . 356 . 419 . 467 . 853 . 147 
2.4 . 167 . 301 . 389 . 448 . 493 . 862 . 138 
2.5 

. 192 
. 332 . 419 

. 475 
. 520 . 872 . 128 

2.6 . 220 . 361 . 447 . 502 . 544 . 880 . 120 
2.7 . 246 . 391 . 471 . 525 . 566 . 888 . 112 
2.8 . 267 . 417 . 497 . 548 . 587 . 894 . 106 
2.9 . 295 . 442 . 518 . 570 . 607 . 900 . 100 
3.0 . 322 . 465 . 541 . 588 . 625 . 906 . 094 

speeds up the evaluation of irk very considerably with each table now taking 

no longer than a few minutes to compile. As can be seen in the following 
tables, the values from the simulation compare well with the values calculated 
earlier using numerical integration. Note that here we are taking N= 10000 

and that once more we display, in Tables 2.6 to 2.8, only the results relating 
ton=3,11,21. 

2.6 Further discussion 

Examination of the tables and comparison with the results given earlier shows 
that the estimated '/rk are reasonably close to the values obtained through nu- 
merical integration and that the same patterns are exhibited. Therefore, the 
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2.6. Further discussion 

Table 2.7: Estimated '1rk &P for n= 11 

k 
t . 01 . 05 .1 . 15 .2 1 P-value 

1.0 . 000 . 000 . 000 . 000 . 000 . 669 . 331 
1.1 . 000 . 000 . 000 . 000 . 001 . 710 . 290 
1.2 . 000 . 000 . 000 . 001 . 004 . 742 . 258 
1.3 . 000 . 000 . 001 . 004 . 016 . 774 . 226 
1.4 . 000 . 000 . 003 . 016 . 039 . 807 . 193 
1.5 . 000 . 001 

. 012 . 035 . 083 . 836 . 164 
1.6 . 000 . 003 . 026 . 075 . 144 . 858 . 142 
1.7 . 000 . 012 . 052 . 129 . 213 . 880 . 120 
1.8 . 001 . 024 . 099 . 195 . 296 . 896 . 104 
1.9 . 002 . 046 . 155 . 270 . 375 . 912 . 088 
2.0 . 005 . 082 . 216 . 344 . 447 . 925 . 075 
2.1 . 012 . 131 . 289 . 417 . 520 . 936 . 064 
2.2 . 023 . 186 . 356 . 484 . 591 . 946 . 054 
2.3 . 040 . 246 . 425 . 552 . 649 . 954 . 046 
2.4 . 065 . 309 . 490 . 616 . 702 . 961 . 039 
2.5 . 103 . 370 . 554 . 673 . 749 . 967 . 033 
2.6 . 146 . 435 . 615 . 719 . 789 . 971 . 029 
2.7 . 192 . 496 . 667 . 764 . 826 . 976 . 024 
2.8 . 243 . 551 . 712 . 800 . 854 . 980 . 020 
2.9 . 295 . 607 . 754 . 834 . 875 . 983 . 017 
3.0 . 348 . 655 . 792 . 859 . 892 . 987 . 013 

comments made in the earlier discussion (section 2.4) concerning the values 
of Irk remain relevant here with reference to the tables obtained through sim- 
ulation. We therefore consider issues arising specifically from the simulation 
method. 

As this method produces only an approximation to Irk, we consider the 

possible error built into the procedure. We are, in effect, simulating a value 
of the random variable Nfrk which has a Binomial distribution: 

N7rk - Bin (N, Irk) . 

In order to obtain a feel for the potential error in our approximation to irk 
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2.6. Further discussion 

Table 2.8: Estimated Irk &P for n= 21 

k 

t . 01 . 05 .1 . 15 .2 1 P-value 
1.0 

. 000 
. 000 . 000 . 000 . 000 . 667 . 333 

1.1 . 000 . 000 . 000 . 000 . 000 . 711 . 289 
1.2 . 000 

. 000 . 000 . 000 . 000 . 753 
. 247 

1.3 . 000 
. 000 . 000 . 000 . 002 . 790 

. 210 
1.4 . 000 . 000 . 000 . 002 . 013 . 820 . 180 
1.5 . 000 . 000 . 001 . 011 . 042 . 848 . 152 
1.6 . 000 

. 000 . 005 . 034 . 096 . 873 . 127 
1.7 . 000 

. 001 . 020 . 080 . 173 . 894 . 106 
1.8 . 000 

. 004 . 052 . 144 . 265 . 913 . 087 
1.9 . 000 

. 016 . 101 . 231 . 366 . 927 . 073 
2.0 . 000 . 038 . 169 . 325 . 471 . 940 . 060 
2.1 . 001 

. 077 . 250 . 424 . 566 . 951 . 049 
2.2 . 004 . 130 . 342 . 522 . 651 . 961 . 039 
2.3 . 012 . 198 . 436 . 607 . 722 . 968 . 032 
2.4 . 027 . 274 . 525 . 686 . 779 . 974 . 026 
2.5 . 051 

. 358 . 609 . 752 . 827 . 978 . 022 
2.6 . 086 . 445 . 686 . 800 . 863 . 982 . 018 
2.7 . 131 . 528 . 750 . 843 . 894 . 987 . 013 
2.8 . 188 . 608 . 798 . 878 . 915 . 989 . 011 
2.9 . 253 . 680 . 840 . 905 . 933 . 990 . 010 
3.0 . 323 . 739 . 877 . 923 . 948 . 992 . 008 

we require the variance of our estimator, irk. Now we know that 

E (N'rk) = N7rk =E (frk) = Irk 7 
Var(Nfrk) = Nlrk(1-Irk) = Var(frk)=7F'ß(1-7k) 

N 

As V ar (irk) depends on the (unknown) exact value of 7k we must instead 
use the estimated variance of the estimator 

irk (I - *k) Var(ltk)= 
N 

This is a maximum, for fixed N, when 'rk = 1/2. Hence the maximum value 
that this estimated variance can attain is 1/(4N), which for our earlier choice 
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2.6. Further discussion 

of N= 10000 is 0.000025; the corresponding sampling standard error is at 
most 0.005. Thus the true proportion lies with 95% confidence within 2 

standard errors (at most 0.01) of the observed proportion reported in Tables 
2.6 to 2.8. The mimimum value is zero and is attained at irk = 0,1. A 

comparison of the tables obtained through numerical integration and simu- 
lation establishes that the maximum difference is approximately 0.01. We 

can therefore be confident that our approximate values obtained through 
simulation are accurate to within 0.01 of the true values. 

It is straightforward to obtain the (approximate) cumulative distribution 
function of the likelihood ratio by simply plotting Irk against k. We undertake 
this procedure for our selected values of n and t and alongside these plots 
we also display the corresponding density estimates. The densities are esti- 
mated using the "density" function in the software package R which provides 
kernel density estimates. The software disperses the mass of the empirical 
distribution function over a grid and then convolves this approximation with 
a discretised version of a normal kernel before using linear approximation to 
evaluate the density. The distribution and density functions for n=3,11,21 
and t=1,2,3 are shown in Figures 2.1 to 2.3. On the density plots we 
also display, as a vertical line, the maximised likelihood ratio (MLR). This is 

obtained using the maximum likelihood estimates (µ, &) of (µ, (7) under Hl 
in addition to the maximum likelihood estimate, & of u under Ho. We define 

MLR = 
L(µo, &) 
L(ý, a) 

Standard maximisation techniques give: 

X, 

2 s2 (n - 1) 

n 
&2 

s2(n- l+t2) 

n 

It is straightforward to show that the MLR (in favour of the null model) is 

given by 

n n/2 
MLR = 

(fl+t2) 

It is immediately apparent from the density plots that, for t=2 and 
3, the 11ILR overstates the evidence in favour of the null hypothesis as its 

value lies to the right of the peak of our distribution. This overstatement 
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2.6. Further discussion 

Figure 2.1: Distribution (left) & density (right) functions for n=3, t -- 
11 2,3. Vertical line shows k= MLR. 
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2.6. Further discussion 

Figure 2.2: Distribution (left) & density (right) functions for n= 11, t 
1,2,3. Vertical line shows k= MLR. 
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2.6. Further discussion 

Figure 2.3: Distribution (left) & density (right) functions for n= 21, t -- 
11 2,3. Vertical line shows k= MLR. 
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2.6. Further discussion 

appears to lessen in severity as n increases. In the case of t=1, the 1VILR 
is actually to the left of the peak, overstating the evidence against the null 
hypothesis. Again this overstatement lessens as n increases, so that we see 
that the MLR improves as a statement of evidence for larger sample sizes. 

Examination of the graphs also suggests that we investigate the effect 
that t and n have on the mean, variance and skewness of the likelihood ratio 
since the density plots appear to exhibit the anticipated decrease in mean 
as t increases and as n increases. We also observe an apparent increase in 
skewness with t. Recall that 

7P 
Irk = Pr 

t 
Y2-Yl>-21ogk 

(n - 1) 
2 

= Pr exp 
{1r 

Yl -t Y2 < 1ý 
. 2 (n-1) 

We can characterise the distribution of irk by considering the random variable 

y11 t2Y2 
LR=exp 

2 2(n-1) ' 

and in particular E (LR) 
,V ar (LR) and Slew (LR) 

. 
As a result of the inde- 

pendence of Yl and Y2 we have 

2 
2 

E (LR) =E exp 
Yl 

exp 
t 

2 2(n - 1) 
E (LR1LR2) =E (LR1) E (LR2) 

where 
2 

LR1 = exp 
Yl 

and LR2 = exp -t 
Y2 

2 2(n - 1) 

Recall that the moment generating function (mgf) of a xm random variable, 
Z, is 

11 
E(exp{tZ}) 

m/2 
= 1-2t ' tC 

2 

and is undefined otherwise. Therefore E(LR1) is undefined and so conse- 
quently is E(LR). We can also see that this is true for E(LR1) and hence 
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2.6. Further discussion 

for V ar (LR) 
. Further 

Slew (LR) = 
E ([LR -E (LR)]3) 

Var (LR)3/2 

is also undefined as we can see from the mgf that this is the case for E (LR'I) 
. This behaviour is a result of the (very) heavy tail of the distribution of the 

likelihood ratio. 
While we are not able to obtain summary statistics for LR itself, we can 

for log LR, the log of the likelihood ratio. Here 

2 
log LR = 

IY1 
-t Y2. 

2 2(n - 1) 

We shall use the following results for a xm random variable Z: 

E (Z) = m, Var (Z) = 2m, 
E (Z2) = m(m + 2), E (Z') = m(m + 2) (m + 4), 

Skew (Z) _$. 
m 

Using these results we obtain 

E (log LR) 

Var (log LR) 

1 t2 
2 2' 

_1 
t4 

2+2(n-1) (*) 

Note that it is possible for E(logLR) to be positive if tl < 1. In this case, 
the null hypothesis is better supported (in expectation) than the alternative. 

In order to evaluate the skewness 

Slew (log LR) =E 
([log LR - E(log LR)]3) 

{V ar (log LR) }3/2 
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2.6. Further discussion 

we require some preliminary calculations. Expanding (log LR)3, we obtain 

E ([log LR]3) -1E (Y, ') - 
3t2 

E (Y12) E (Y2) 
8 8(n - 1) 

+ 
3t4 

2E 
(Y1) E (Y2) 

- 

t6 

3E 
(Y3) 

8(n - 1)2 8(n - 1)3 
15 

- 
9t2 

+ 
3t4(n + 1) 

_ 
t6 (n + 1)(n + 3) 

88 8(n - 1) 8(n - 1)2 

Also 

E([log LR - E(log LR)]3) 

=E ([log LR]3) - 3E ([log LR]2) E (log LR) + 2E (log LR)3 . 
Using EQ log LR] 2) =V ar (log LR) +E (log LR) 2 and the formulae given 
earlier we obtain 

E([log LR - E(log LR) 
t6 

]3) -- 1- . (n -1)2 

Combining this result with (*) we can see that 

Skew (log LR) = 

t6 
1- 

(n -1)2 (t) 1 t4 3/2 

2+2(n-1) 

We now consider how these summary statistics behave as we let our sample 
size, n, tend to infinity. First, E(log LR) is actually independent of n and so 
remains fixed irrespective of the sample size. We also see that Var(log LR) -+ 
1/2, a value independent of t. A similar effect is seen with the skewness, 
which, by considering (t) can be seen to tend to 2\. This is also independent 
of t and is the value of the skewness of aX random variable. This can be 
explained as we may observe that log LR becomes dominated by the term in 
Yi, a Xi random variable, as n -+ oc. 

We now relate our work to the case where the variance is known which 
we examined in Section 1.2 where we had n=I observation, x. We found 
that 

irk = Pr(Yl <2 log k+ x2) 
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2.6. Further discussion 

where Yl - xi as before. This means that the distribution of 2 log LR is 

concentrated above -x2. 
If we now consider the plots in Figures 2.1 to 2.3 we see that generally 

the density peaks show the pattern given in Table 2.9. The case for n=3 
does show a slightly different peak for t=1 however, this being at around 
k=0.9,2 log k -- -0.211. We can observe from the table that the maximum 

Table 2.9: Location of approximate peaks in density 

t k 2logk 
1 0.7 -0.713 
2 0.1 -4.605 
3 0.01 -9.210 

density (of 2 log LR) occurs around the value of -t2 in these cases and we 
can also see from the plots that this distribution is similarly concentrated 
above this value as in the known variance case. 
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Chapter 3 

The choice between two 
single-variable regressions 

3.1 Introduction 
We now consider a problem which was first presented by Pitman (1937). We 
are given the two-variable normal regression 

M: Yi I x1 , x2i'" Nß0+ß1x1 +ß2x2i, a2)7 i=1,2,... 
, 92 

and we are interested in selecting the better of the two single-variable models 
using xl only or x2 only. Williams (1959) gives a motivating example with 
two measures predicting wood density; further details of this example are 
given in Section 3.4. We formulate the two hypotheses Hl : /32 = 0, where 
only xl is needed, and H2 : , 

ßl = 0, where only x2 is required. We denote the 
models under Hl and H2 by Ml and M2 respectively and we wish to discover 

which of these hypotheses is better-supported by the data. 

3.2 Model likelihoods 

Let the vectors of observations be denoted by xl = (xli), x2 = (x22), and de- 
fine the design matrices X= [1, x1, x2], Xl = [1, x1], X2 = [1, x2], with cor- 
responding parameter vectors , 

QT = (ßo, 
N1 

ß2), /1 = (ßo, ßi) 
N2 = (00, ß2) 
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3.2. Model likelihoods 

The full model likelihood under M is 

L(N0, ý1, ý2, or) -- 

12n 

exp - 
12 

(y - Xß), (y - Xß) 
1 (27r) a 2ý 

ex'p 
12 

[RSS + (ý 
- 

ß)T XTX 
(ý - jß)] (27r)n 2n 2ý 

where RSS = (y - X/ )T (y - X, ß) is the residual sum of squares evaluated 
at the maximum likelihood estimator ß. 

We have 

N(O, or 
2(XTX)\-1), 

RSS 

ý 
xn-3 lJll 

using either frequentist or Bayes assumptions. Under the second, the distri- 
bution of (ß - ß) is conditional on a. 

For the two sub-models, the likelihood for Ml can be written as 

L1 = L(ßo, ßl, 0, o, ) = exp - 
12 

[Rss + (ßl - ß1)T Xi Xl ($i - )31)] (2, )n/2 07 n 2ý 

while for M2 

L- L(& 07 ý27 9) -1n exp 
{_22[Rss2 

+A--2 
(27r) /2a ý 

where for j=1,2 

of=(XTXj)_'Xjy, 

and 

RSSj = (y 
- Xj1j)T (y 

- 
xjýj)" 

The likelihood ratio between Ml and M2 is 

Lý 1ý 
LR =L= exp - 212 

(RSSI - RSS2 + Q1 - QZ , 2 

where QI and Q2 are quadratic forms in ß1 and ß2, with 

1 
Qj= 

ýýj-ß) T 
Xjxj 

0i-0i) 
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3.2. Model likelihoods 

Therefore 

-2logLR =2 (RSSI - RSS2 + Q1 - Q2)- 
01 

We now assume, without any loss of generality (since the origin of x1 and 
x2 can be absorbed into , ß0), that xl and x2 are centred, so that E xli = E x2i `0. Then, for j, k=1,2, we define 

Sik =E xjixki, Sjy = 
Y, 

xjiyi, Sy =E Yi, 

and 

Xr x_ 72 O ]xT=[Y]. 
O Sii ' Shy 

Then for the full model 
S11 S12 

_1 ,'ll 
S12 

S12 S22 
S 

S12 S22 I 
S-1 

XTX =n0' (XTX)_l _ 
1/n 0 

0S0S 

Sy 
XT 4y= sly 

Sty 

Now, using a diffuse prior distribution, we have 

ßi 
or2S-1 N2 /ý2 i 

Therefore, the posterior distribution of the likelihood ratio is 

irk = Pr(LR < k) = Pr 
RSSI - RSS2 

2+ 
Q1 

2 
Qz 

> -2 log k. 

Using our earlier results we can see that 

Q1 
- 

Q2 = n(y - 
ß0)2 + S11(ý1 

- 
ý1)2 

- 
[n(g 

- 
ß0)2 + S22(ý2 

- 
02)2] 

S11(ý1 `01 
2-S22(ý2-02 2. 
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3.2. Model likelihoods 

We note that this quadratic form in (, ßl) ß2) is not centred at the full MLE 
(ß1, ß2) but at the MLEs under the two sub-models. 

Now 

RSSI - RSS2 RSS RSSI - RSS2 

0-2 0-2 
X RSS 

where the second term is the model comparison of the two hypotheses relative 
to the full model. Let 

RSSI - RSS2 
RSS 

then 

irk=Pr tR2S+Q1 
2Q2 >-2logk . 

If we now define, 

ßj -/j and 
Q 

%Yj 
ýj 

-Ij 

O 

then 

Q 
1- 

Q2 
Si 2 

Q 
S, 

2-1 "%1 - 22 ý%2 

We see that the form for Irk once more requires either numerical integration 
or simulation in order to obtain values for this probability. In light of our 
previous experience we shall use a simulation method, analagous to that of 
the previous chapter. 

In order to simulate from (Q1 - Q2)/a2 we have to be able to simulate 
values of lye for j=1,2. We know that 

72 72 

and if we now observe that we can write yj as 

ý7- ý7j ýj) + ýjI 
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3.3. Simulation 

we see that, as we can simulate (/3 - ßi) /u using RSS/a2 , x2_3 to obtain 
a value for the unknown (random) quantity a, we are able to simulate from 
(Q1 - Q2)/a by obtaining realisations from 'y2 - 'y2. This quantity has a bi- 
variate normal distribution with a (possibly) non-diagonal covariance matrix. 

3.3 Simulation 

Let 77 = -2 log k and 

-2logLR=tR 2S +Q1 2Q2. 

Recall that Irk = Pr[-2 log LR > q], 'yj = (/3 
- 

ýj) /a and 

Q1 
- 

Q2 
22 

2= 
S1171 

-S2272 . Q 

We know that, for a given dataset, we can calculate S11, S12 and S22. 
Standard linear regression techniques provide estimates of ,j and ßj, and, 
thereby values for S-1, RSS, RSS1 and RSS2. We can therefore calculate 

RSSI - RSS2 
RSS 

We can easily simulate from RSS/a2 ,x 
_3 then obtain realisations from 

(Q1 
- 

Q2)/a2 in the following manner, by simulating values of 'yj. 
We can obtain an observation from (Q1 - Q2)/a2 by substituting real- 

isations of tyl and -y2 into (*). We can obtain the sample values of rye via 
the standard method for multivariate normal sampling for realisations of 
('}j - ', ). We know 

1. 'Y2 
r, N (0, S_11 

'i2 ý2 

We firstly simulate from 

and then from 

(71 
- 

mil)1(72 

(72 
- 72)^' N(O, S22), 

N (S12(72 - 
ý2ý r" S22 

%2) 
5,11 

_ 

(S12)2 

' 5221 
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3.4. Bayes factor and maximised likelihood ratio 

We then use our simulated value of RSS/072 to obtain a value of a in order 
to form 

22 
Q1 

- 
Q2 

_ , 
5+11 (-/1 

-E- 

ý1 
- 

ý1 

- , 
5'22 72 - ý2 + 

ý2 
- 

ý2 

Q2 Q 

Hence, we can simulate the necessary value required for our simulation based 
procedure to estimate 'irk. We generate a large number (N) of observations 
from 

12 Q1 
- 

Q2 
Xn-37 

a2 

and for each set of values we then evaluate L. We then simply ascertain the 
number of pairs for which L> 77 for our chosen rj and divide this by N to 
give an approximate value for 'irk. As in the previous chapter we have that 
the estimated variance of our estimator 'rk is 

Irk (1 -irk ) 
Var (Irk) = N 

Once more, we see that this has a maximum of 1/(4N) and hence we can 
choose N such that we obtain a desired level of minimum accuracy. 

3.4 Bayes factor and maximised likelihood ra- 
tio 

For comparison purposes we shall also calculate the Bayes factor and the 
maximised likelihood ratio for this example. We proceed in the following 
fashion. 

3.4.1 Bayes factor calculation 
We define the Bayes factor (in favour of M1, the model using xl only, over 
M2) to be 

f 00 , 
=o 

fß7 
oo 

f0L 013 0, or) 7r0� (ßo)7r, 3, (01)ß, (a) dß0 dß1 da 
B= ßi=- ßo=- 

U=o ßfa=-ý 
f L(ßo, 0, ß2ý U) 7ßO (ßo)ßß2 (ß2) 7ro- (or) dßo dß2 dam' ßo=-oo f 00 
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3.4. Bayes factor and maximised likelihood ratio 

where the (improper) prior distributions for ßo, j3 , , 
ß2 and a are taken to be 

diffuse and are given by 

7,30 (ß) = 71ßi (ß) = 1Tß2 (0) k17 
-00<ß<00 

and 

7o- (a) = k2i o< Or <OO. 
Note that we may ignore the constants of proportionality k1 and k2 as they 
will cancel when we calculate the ratio of integrals. Using these priors the 
Bayes factor can be written as 

B=fLldß1da 
f L2 dß2 da 

where, as defined previously for j=1,2, 

Lj 
1 

exp - 
ýRSS+ (- 

- (2ýr) 

{22 

ý 

-Q ßj), RSSj is the residual -(ßoß sum of squares and ßj is the maximum i 
likelihood estimate of 8j for model M3. Aitkin (1991, pp. 119) shows that 

f Lj dß da = 2-3/2,. -(n-2)/2r 
(n; 3 

IXE Xj -1/2RSS3 
(n-3)/2 

Earlier we saw that 

n0 
= ý xT 0 Si, 

where Sjj = >i xýi, and so I Xý Xj = nSjj. Therefore the Bayes factor is 

B= 
X2511 -1/2 RSSl -(n-3)/2 

ns22 

[R8s2j 

SS22 SS2 (n-3)/2 

s1E1 RSSl 

We note that the second term of this expression is a function of ratio of the 

residual sum of squares for the two sub-models. 
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3.4. Bayes factor and maximised likelihood ratio 

3.4.2 Maximised likelihood ratio calculation 
Writing the full model likelihood from Section 3.2 as 

L(ß0, 
N1, 

ß2, a) = exp - 

1(y 

- 
Xß)T (y 

- 
Xß) 

(27) 

12n 

20r2 

_11n (2ý)n 2ýn exp - 2a2 
E (ýJi - 00 

- 
ý1xli 

- 
02x2i )2 

1/ i=1 

we define the maximised likelihood ratio to be 

MLR = 
&(')) 

L(ß 2, o' 
2 

2) &(2)) 

Here we consider the maximum likelihood estimates of the parameters under 
the two sub-models. We denote the estimate of /3j under model Mi by ßj(2) 
and use the same notation for the estimates of a-. The residual sum of squares 
for each sub-model are 

n 

RSS1 = 
(y2 

- ý3(1) - Q(l) li 
Z-1 

and 
n2 

RSS2 = 
(Yi 

- 
(2) 

- 
22)x2i 

i=1 

By differentiation of the likelihood function with respect to a and setting the 
resultant form equal to zero we find that, under model Mi for i=1,2, 

äßi)2 _ 
RSSZ 

n 
Hence, we see that the maximised likelihood ratio is given by 

MLR 
(n/(27) )n/2 RSS, n/2e-n/2 

= (n/(27r) )n/2 RSS2_n/2e-n/2 

RSS2 n/2 

RSSI 

This is simply a function of the ratio of the residual sum of squares for the 
two sub-models. This fact, when considered in conjuction with the similar 
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3.5. Example 

Table 3.1: Strength of radiata pine with density and resin-adjusted density 

Strength Density Adjusted Density Strength Density Adjusted Density 
3040 29.2 25.4 2470 24.7 22.2 
3610 32.3 32.2 3480 31.3 31.0 
3810 31.5 30.9 2330 24.5 23.9 
1800 19.9 19.2 3110 27.3 27.2 
3160 27.1 26.3 2310 24.0 23.9 
4360 33.8 33.2 1880 21.5 21.0 
3670 32.2 29.0 1740 22.5 22.0 
2250 27.5 23.8 2650 25.6 25.3 
4970 34.5 34.2 2620 26.2 25.7 
2900 26.7 26.4 1670 21.1 20.0 
2540 24.1 23.9 3840 30.7 30.7 
3800 32.7 32.6 4600 32.6 32.5 
1900 22.1 20.8 2530 25.3 23.1 
2920 30.8 29.8 4990 38.9 38.1 
1670 22.1 21.3 3310 29.2 28.5 
3450 30.1 29.2 3600 31.4 31.4 
2850 26.7 25.9 1590 22.1 21.4 
3770 30.3 29.8 3850 32.0 30.6 
2480 23.2 22.6 3570 30.3 30.3 
2620 29.9 23.8 1890 20.8 18.4 
3030 33.2 29.4 3030 28.2 28.2 

form of the Bayes factor, makes the relative values of RSS1 and RSS2 a 
useful guide as to which model we should prefer. 

3.5 Example 

We consider the dataset used in the Williams (1959) example. We are given 
42 observations of the strength of radiata pine, together with the correspond- 
ing density and density adjusted for resin content. The data are shown in 
Table 3.1. We are interested in making a choice between the two single- 
variable models, each using only one of the density measures. We make 
this choice as the two explanatory variables are essentially functions of one 
another as they are measuring the same quantity in two different ways. 
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3.5. Example 

In terms of our original model, M, we represent the strength by yi, the 
density by x1i and the resin-adjusted density by x2i for i=1,2,... , 42. Our 
hypotheses now take the following meanings: 

Hl selects the model with the non-adjusted density measure only and 
H2 the model with the resin-adjusted density measure only. 

In our derivation we assumed that both covariates summed to zero, and 
therefore we use new (centred) covariates 

xj =xj -xj, j=1,2. 

At this point we recall that RSSj represents the residual sum of squares 
when fitting model Mj, and that M1 is the model using only xl as a regressor 
and M2 is the model using only x2. The following key summaries can be 

calculated from the data: 

x1 = 27.85952, x2 = 26.78810, RSS = 2979320, 
RSSI = 4602769, 

ßl = 35.92847, 
ß2 = 183.2733, 

RSS2 = 3066459, 

, 
ß2 = 149.9736, 

t=0.5156578, 
Ql = 184.5528, 

811 = 828.2412, S22-885.5840. 

It is clear from the values of RSS, RSS1 and RSS2 that the data favour M2, 
the resin-adjusted density model, as there is little difference in RSS between 
the full model and the model using x2 alone. This means that our method 
should favour using the resin-adjusted density. 

We also obtain 

828.2412 820.7898 
S- 

(820.7898 
885.5840 

with inverse 

S-1 = 
0.01481 -0.01373 (-0.01373 

0.01385 

We now simulate N= 100000 observations from x2_3 and the random quan- 
tities (72 - 72) and (7y' - 'Y1) (72 - 72), using 

(72 - 72) - N(0,0.01385), 
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