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Abstract

The widespread adoption of renewable energy sources (RESs) has occurred in an attempt to
stop the progression of global warming. This growing adaptation has resulted in a significant
shift in the topologies of traditional power networks, and as a result, the concept of a microgrid
(MG) has emerged. MGs represent a paradigm shift from remote central power plants to more
localized distributed generation and are a growing sector of the energy industry. Controlling
MGs is difficult due to their complexity and diverse properties each asset in the MG has. Various
solutions have been proposed to address the difficult problem of MG management. Some of
these methods are considered optimal for managing MG assets. Other works are based on a
systems-based methodology and address the scalability and simplicity of synthesizing an energy
management system (EMS) for an MG. MPC is a sophisticated method used to control power
systems while satisfying multiple constraints to achieve an optimal solution based on various
criteria. MPC is an effective technique with several advantages; however, its implementation
is frequently challenging and requires significant computing power. On the other hand, control
strategies based on ε-variables can simplify the control structure, allowing for greater scalability
and even resilience. These control strategies are methods that can be utilized to model MG
control strategies. The main target of this thesis is to present a hybrid method that can simplify
the implementation of MPC using ε-variables and make it more effective for complex energy
systems. Our findings indicate that combining MPC with ε-variables can significantly simplify
the control structure, thereby allowing the implementation of more complex control strategies.
Then, these more complex control strategies can be utilized to provide additional advantages to
the energy system, such as scalability and robustness.

Although practical methods for modelling control strategies in MGs, ε-variables-based logical
control strategies, can make the control structure more scalable, this approach is not optimal. S-
MPC is an advanced method for controlling power systems while satisfying multiple constraints
to achieve an optimal solution based on multiple criteria. Nevertheless, its implementation is
complicated. Another target of the thesis proposes a novel systems approach known as the
extended optimal ε-variable method, which was created by combining the ε-variable based
control method with the S-MPC method in order to address these issues. This novel method has
improved the adaptability and scalability of an MG’s control structure and significantly enhanced
the MG’s energy management optimization. Our findings indicate that the extended optimal
ε-variable method: (i) reduces the operational cost of MG by nearly 35%; (ii) reduces the usage
of the battery energy storage system (BESS) by 42%; and (iii) increases the practicability of PV
usage by 28%. By translating the results of S-MPC to the ε-variable method, our novel extended



optimal ε-variable technique also significantly improves the adaptability and scalability of the
control structure of the MG.

Regarding flexible hybrid MGs with plug-and-play (PnP) assets, these are difficult to control
because of their complexity and asset characteristics. As mentioned previously, ε-variables-based
logic control strategies are one method for addressing these challenges. The resulting controller
is not, however, optimal. MPC employs a mathematical model of the system to predict its
behaviour and determine the best control action. Nevertheless, MPC cannot design and control
multiple models, so it cannot control flexible hybrid MGs. S-MPC, on the other hand, uses
multiple models to represent system operating modes or scenarios. S-MPC selects a model and
control strategy based on the system’s state and performance objectives, enabling it to manage
systems with mode-dependent dynamics. However, the development and validation of the design
and management of multiple models of the MGs are challenging. Additionally, S-MPC is more
challenging to implement due to its multiple steps. Therefore, the last target of this thesis
proposes a novel hybrid framework/method based on ε-variables and conventional MPC to
generate and validate the S-MPC automatically. To solve the S-MPC optimization problem
in a compact form, a quadratic programming (QP) approach that minimizes or maximizes
the objective functions under the constraints of bounds, linear equality, and inequality is then
considered. This novel strategy significantly improves the energy management optimization of
a flexible hybrid MG and reduces computational complexity. The suggested control method is
as follows: (i) reduce imported energy from the grid by approximately 46.7% and (ii) increase
exported energy to the grid by approximately 50.8%. By translating the decisions of S-MPC into
ε-variables, S-MPC implementation is simplified.
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Chapter 1. Introduction

The impact of energy generation through conventional fossil fuels on satisfying the increase in
electricity load demand, emissions, and socio-economical, environmental, and climate changes
are raising the alarm to look for alternative low-carbon, sustainable RESs, storage systems, and
networks (Kerr (2022)). The Net Zero goals of countries around the world, especially the UK
(target to decarbonize all sectors by 2050, and 100% zero-carbon generation by 2035), show
significant green movement towards carbon neutrality by encouraging production and utilization
of power from RESs (Rutter and Sasse (2022)). An increase in the adaptation of RESs has led
to a significant change in the topologies of traditional power networks, and now we have the
concept of a MG (Cavus et al. (2022a,b)).

1.1. Background

MGs, a new concept in power networks, have emerged as a result of the growing use of RESs.
MGs are small, self-sufficient electricity distribution systems that can function independently
or in tandem with the main power grid. Typically, they comprise distributed RESs, energy
storage systems (ESSs), and loads. MGs offer a more localized, efficient, and sustainable
method of producing and distributing electricity, and they can provide greater energy security
and dependability than conventional grid systems (Ocanha et al. (2020); Tobajas et al. (2022);
Zhang et al. (2022)).

However, MG power system control can be difficult due to the MG’s complexity and the
varying properties of each asset. Several authors (Aaslid et al. (2022); Alipour et al. (2022); Wang
et al. (2022b); Zhu et al. (2021)) have used stochastic dynamic programming and optimisation
techniques. The operation of renewable energy systems has been optimised using the Cuckoo
Search (CS) algorithm and the GOA to minimise total distribution network losses (Suresh and
Edward (2020)). Distributed proximal primal-dual (PD) was utilised by Wang et al. (2022a)
to optimise a distributed energy management problem for responsive loads and distributed
generators with transmission losses. A PD-based distributed algorithm with dynamic weights is
developed to achieve optimal energy management while maintaining tolerable operational costs
and GHG emissions. Furthermore, the proposed technique has lower computational complexity
than distributed optimisation algorithms reported by Liu and Yang (2022). The teaching learning-
based optimisation (TLBO) technique was utilised to solve a multi-objective optimisation issue,
lowering costs and increasing MG reliability. The results showed that charging and discharging
ESSs could minimise MG costs while boosting system performance and reliability (Rahmani
et al. (2023)). Zhang et al. (2016) presents simulation results that demonstrate the efficiency of
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the master-slave (MS) peer-to-peer integration MG control method based on communication in
achieving stable operation of the MG in grid-connected and islanded states, as well as smooth
switching between these two modes. Advanced control strategies, such as MPC, have been
developed to address these challenges. MPC is a mathematical control method that predicts
a system’s behaviour and determines the optimal control action using a model of the system.
However, MPC implementation in MGs can be computationally intensive and complicated (Hu
et al. (2021); Ulutas et al. (2020); Vazifeh et al. (2019); Villalón et al. (2020)).

As an alternative, ε-variables-based control strategies have been proposed as a method
to simplify the control structure of MGs, allowing for greater scalability and resilience. ε-
variables are a type of logic variable that can be used to model control strategies effectively
and practically. However, the logical controller is not always the most efficient (Giaouris et al.
(2018, 2013)). According to graph theory, a hybrid energy system can be defined as a set of
power sources, including RESs, as well as loads, storage equipment, and other devices that
enable the transfer of energy and/or matter. Using a directed graph to depict a MG is a widely
recognised method, as evidenced by the work of Giaouris et al. (2018). This methodology has
been demonstrated to significantly streamline the examination, investigation, and formulation
and, ultimately, the optimal functioning of hybrid energy systems. In this context, each individual
device is symbolised by a node, while the connection between the devices is denoted by an
arrow or an edge, which signifies the transfer of energy or matter between two nodes. The main
idea behind the ε-variable method is that every asset is symbolized by a node, and every flow
of matter/energy is symbolized by an edge in the complicated MG system, as demonstrated in
Figure 1.1. This power system’s analysis, management, and operation can be simplified using
this theory and the aforementioned evolution operators. This method states that any hybrid power
system consists of three key factors: converters, accumulators, and flows. The converters are used
to convert the energy/matter to matter/energy, the accumulators accumulate energy/matter, and
the flows symbolize the flow of energy/matter. Lastly, the control statements are the evolution
operators based on the logical operators, illustrating the different types of EMSs exploited by the
multi-vector system (Giaouris et al. (2018)).

Furthermore, the emerging concept of flexible hybrid MGs with PnP assets has even greater
control challenges. These MGs consist of various assets that can be added or removed as needed,
resulting in a more complex and dynamic energy system. This requires sophisticated control
strategies that can accommodate mode-dependent dynamics and multiple system models.

This thesis proposes different kinds of novel hybrid control methods. One of them combines
ε-variables with traditional MPC in order to simplify the implementation of MPC and make it
more effective for complex energy systems, such as flexible hybrid MGs. Another method is
called extended optimal ε-variables in order to produce an optimal ε-variables. Also, a novel
hybrid framework/method based on ε-variables and traditional MPC to generate and validate the
S-MPC automatically has been generated that has the ability to permit more complex EMSs to
be adopted readily.

2



1.2 Overview

PV

BAT

EL

FC

WT

FT

DSL

LD Power

Power

Power Power

Power

𝐻𝐻2𝑂𝑂

𝐻𝐻2𝑂𝑂

𝐻𝐻2

𝐻𝐻2

Figure 1.1 Representing of hybrid energy system using graph method.

1.2. Overview

MGs have emerged as a new concept in power networks as a result of the expanding use of
RESs. MGs are smaller power systems that can operate autonomously or in conjunction with the
main grid. They provide numerous advantages, including enhanced dependability, decreased
greenhouse gas (GHG) emissions, and enhanced energy efficiency. However, MG power system
control is difficult due to its complexity and the unique characteristics of each system asset.

MPC, S-MPC and ε-variables are improved in this thesis. MPC predicts the system’s
behaviour and determines the optimal control action using a mathematical model of the system.
However, implementing MPC in MGs can be computationally intensive and complicated. ε-
variables-based control strategies have been proposed as an alternative method to simplify the
control structure of MGs, allowing for greater scalability and resilience.

Despite their advantages, neither MPC nor ε-variables-based control strategies are sufficient
to handle the complexity of flexible hybrid MGs with PnP assets on their own. Flexible hybrid
MGs have assets that can be connected or disconnected, and their characteristics can change
quickly, making them challenging to control.

This thesis proposes one of the novel hybrid methods that combine MPC with ε-variables
to simplify the implementation of MPC and increase its efficacy for complex energy systems.
The proposed method automatically generates and verifies Switched Model Predictive Control
(S-MPC) by translating S-MPC decisions into ε-variables. S-MPC employs multiple models to
represent system operating modes or scenarios. It selects a model and control strategy based on
system state and performance objectives, enabling it to manage systems with mode-dependent
dynamics.

The other hybrid method proposed significantly simplifies the control structure, enabling the
use of more complex control strategies to provide additional benefits to the energy system, such
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as scalability and robustness. On a flexible hybrid MG, the method is validated, demonstrating its
efficacy by decreasing imported energy from the grid by nearly 46.7% and increasing exported
energy to the grid by nearly 50.8%. By combining the strengths of MPC and ε-variables-
based control strategies, this dissertation contributes to the field of MG control by proposing
a method that can facilitate the implementation of advanced control strategies for renewable
energy systems.

1.3. About MGs

MG is a system component that includes RESs, ESSs, heating and cooling systems, and local
loads such as active buildings (ABs) that can function as consumers/prosumers, among other
things. In a controlled and coordinated way, MGs can operate in both grid-connected and/or
islanded modes. The advantages of MGs are twofold. The MGs enable improved control and
intra/interoperability of the various components at the local level. MGs improve power system
dependability and give techno-socioeconomic benefits to both end users and energy system
operators (Thirunavukkarasu et al. (2022)). Control and energy management of MGs is a critical
problem due to their various properties, control capacities, and modes of operation. The nature
of MGs varies depending on the application in terms of type (AC, DC, and hybrid), mode of
operation (grid or islanded), and control architecture (centralized, decentralized, distributed,
and hierarchical). Figure 1.2 depicts an overview diagram of MGs’ type, mode, control, and
optimization methods.

MGs have numerous benefits, including GHG reduction, reactive power support to raise
voltage profile, decentralization of energy supply, and demand response (DR) (Zia et al. (2018)).
Previous studies have investigated the use of MGs because of their expanding popularity. Hirsch
et al. (2018), for example, examined some of the elements contributing to adopting an MG in a
power system and its contributions to energy security, economics, and clean energy generation.
Cagnano et al. (2020) examined MG functionalities, device combinations, and control topologies.
Dawoud et al. (2018) offered a set of requirements and instructions that can assist in addressing
the issues encountered in real-world MG applications. Many optimization strategies and tools
for increasing MG use were proposed by Meng et al. (2016) and Zia et al. (2018) examined the
implementation of EMS concepts and solutions in MGs.

An EMS maintains an MG’s efficiency and economic activity based on the output power
generated by distributed energy resources (DERs), device state, predicted load and weather,
and electricity and fuel costs. An EMS can correlate and control the output power of DERs,
ESSs, and energy exchanges. As a result, an EMS can be utilized to achieve a single or several
goals, such as lowering daily operational expenses, performing real-time and reactive power
monitoring, reducing losses, and balancing energy in transmission lines. In this instance, an
EMS is necessary for MGs to work efficiently, reliably, and meet power balance in the short and
long term (Koussa and Koussa (2015)).

The control of MG is crucial in addressing the issues posed by integrating DER units such as
photovoltaic (PV) systems, wind turbines (WTs), microturbines that utilize the combined heat

4



1.3 About MGs

MG 
EMS

MG Type
• AC
• DC
• Hybrid

MG Components
• RESs (PV, Wind Turbine, e.g.)
• ESSs and EVs
• ABs (Residential, commercial, 

industrial buildings
• Utility grid and loads

Mode of Operation
• Grid-Connected
• Islanded
• Both

Control Architectures
• Centralized
• Decentralized
• Distributed
• Hierarchical (3-level/bi-level)

Optimization Methods
• Power sharing methods
• Mathematical programming
• Predictive control
• Deterministic methods
• Heuristic/meta-heuristic methods
• Other methods

Figure 1.2 MG components, type, mode of operation, control, and optimization methods

and power (CHP) system, and fuel cells and batteries in power systems. However, due to the
unpredictable behaviour of such integration and the intermittent nature of RESs, integrating RESs
into the main grid is impractical. As a result, the power system’s reliability index decreases during
the intermittent dispatching of RESs. The electricity system’s resilience can be increased by
implementing an adequate protection strategy, increasing redundancy, building isolation systems,
and implementing conventional DERs. In this regard, the required norms and regulations should
be established as standards for linking DERs to regular electric power systems (Zahraoui et al.
(2021)).

1.3.1. MG Architecture and Elements

An efficient MG EMS depends on control architecture and optimization algorithms capable of
managing their assets. MG control architectures include centralized, decentralized, distributed,
and hierarchical control methods. Decentralized and distributed control systems have various
advantages over centralized control methods, including increased flexibility, dependability,
resilience, and the capacity to avoid whole-system failure (Espina et al. (2020)). Chamorro
et al. (2020); Karavas et al. (2017); Mohseni and Moghaddas-Tafreshi (2018); Yazdanian and
Mehrizi-Sani (2014) describe the evolution of MG control and research topics addressed using
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decentralized, distributed, hierarchical control structures. The control architecture chosen is
determined by the type of MG, mode of operation, and user or operator needs.

Anvari-Moghaddam et al. (2017); Bogaraj and Kanakaraj (2016); Boudoudouh and Maâroufi
(2018) give an overview of cooperative control frameworks with centralized, decentralized,
distributed, and hierarchical designs, as well as their operations for DC MGs. Hierarchical
techniques using artificial intelligence (AI), multi-agent system (MAS), and meta-heuristics
algorithms are preferred over alternative control schemes for DC MGs (Nunna and Doolla
(2013)). Dou and Liu (2013) addressed a review and comparison of distributed control systems
for AC MGs, as well as the impact of communication failure on them. Belgana et al. (2014)
provides a study of centralized and decentralized MG control from the standpoint of reliability.
For the purpose of frequency regulation and economic dispatch in the islanded mode for AC
MGs, a distributed hierarchical control system is designed in a coordinated manner (Urias et al.
(2014)). For islanded MGs, consensus-based adaptive control in a distributed manner, taking
uncertainty and disturbances into consideration, was established in Kuznetsova et al. (2014).
The overview of hierarchical approaches for both AC and DC types of MGs may be found in
Garcia Vera et al. (2019). For AC, DC, and hybrid MG systems, hierarchical control techniques
are reviewed in Lin et al. (2018) and Ali et al. (2021). Achieving the primary, secondary, and
tertiary levels of control in MGs increases operating efficiency and provides flexibility because
of the variances in time scales. Local voltage control is often handled at the primary level in
a hierarchical control system, followed by frequency regulation and voltage restoration at the
secondary level and energy management at the tertiary level, as shown in Figure 1.3.

Hierarchical 
control

Primary
• Droop control

Secondary
• Frequency/Voltage 

regulation

Tertiary
• EMSs

Bi-level 
control

Primary
• Droop control

Secondary
• EMSs

Figure 1.3 Different levels of control in hierarchical architecture
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1.4. Control Scheme of MGs

1.4.1. Primary Control Level

Primary control, also known as field control or the first level, depends entirely on the system’s
variables and local measurements (e.g., voltage and frequency). At this level, communication
mechanisms are not required for the various elements and other categories of droop controls. This
level ensures DERs’ dependability, effective power-sharing, improved performance, and PnP
capability. Active/reactive power mode (PCM) or voltage control mode (VCM) implementation
in DERs allows users to control active and reactive power output and coordinate power-sharing
across DERs as handled by voltage source inverter (VSI) controllers. In an MG, the PCM and
VCM operate in grid-connected and island modes, respectively. The droop is used to modify the
VSI’s output power-sharing. The droop characteristics should be used to alter the active/reactive
power or voltage and frequency to adjust the output power-sharing from the VSI (Borazjani et al.
(2014)).

Droop control is an autonomous method for managing an MG’s power dispatch frequency
and amplitude. Droop is a common power-sharing mechanism that has primarily been used
in MGs. Given the uncertainty of line impedances and the power produced from RESs, this
strategy promotes power-sharing among DER inverters, resulting in an imbalanced power system.
The conventional droop control seeks to establish a constant droop gain. An appropriate gain
in droop control influences MG stability, voltage regulation, and power-sharing management
(Mohammadi and Ajaei (2019)).

Several strategies for improving droop gain accuracy have been presented. For example,
Datta et al. (2020) used the droop control strategy to adjust a multi-gain to manage power-sharing
in a wind farm. Joung et al. (2018) investigated the droop gain in classical droop control for
decoupling the frequency and voltage control of DERs, which can maintain grid frequency and
voltage constants. Although conventional droop control is simple to build and apply, it has certain
problems when used in MGs, including voltage reduction due to current equality, the inability
to manage non-linear loads, and the entrenched trade-off between voltage and power-sharing
(Kumar and Pathak (2020)). To remedy these issues, non-traditional droop control has been
adopted. Various approaches, such as load sharing (Azizi et al. (2019)), voltage-active power
droop (VPD) and frequency-reactive power boost (FQB) (Sao and Lehn (2008)), virtual output
impedance (Razi et al. (2019)), and adaptive voltage droop (Wang et al. (2018)), have also been
used to improve droop management in MGs.

1.4.2. Secondary Control Level

The secondary control level of MGs tries to rectify flaws in the primary control level, such as
voltage deviations. This level, also known as the EMS level, improves power quality, restores
the power system, ensures economical operations, and reduces frequency and voltage deviations
and fluctuations induced by primary level droop control (Sahoo et al. (2017)). In MGs, the
secondary control level is regarded as complex. Given the fluctuations in employment and the
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power dispatched from DERs, the command and update between the loads and DERs must be in
high communication and speed to ensure MG power generation. The goals and objectives of
EMSs in MGs are presented in the subsections below. The subsections that follow describe the
goals and objectives of EMSs in MGs.

Minimize the Cost: Luna et al. (2016) investigated an EMS in an MG that is integrated with
a grid-connected BESS and uses mixed-integer linear programming (MILP) to reduce running
costs and increase self-consumption. Jabarnejad (2020) created a MILP strategy to assure optimal
power flow while lowering energy generation costs and GHG emissions. Sarabi et al. (2016)
recommended utilizing linear programming (LP) to reduce the annual energy bill of railway
station parking by adopting plug-in electric vehicles (EVs). Riffonneau et al. (2011) developed
an effective power management technique for connected grids, PVs, and BESSs using dynamic
programming. The suggested regulation maximizes economic gains while minimizing BESS
degradation. Dong et al. (2019) presented an MG based on CHP and RES while considering
the economy, environment, and flexibility to reduce operating expenses and CO2 emissions.
Sultana et al. (2016) created an EMS controller that decreases voltage drop and extends the
life of lithium-ion batteries. Chiang et al. (2017) developed an EMS controller to limit voltage
loss to extend lithium-ion batteries’ life. Ju et al. (2016) used mathematical optimization to
anticipate day-ahead output to prevent shortages in various DERs. Zhao et al. (2020) devised
an optimization technique for MGs that employs day-ahead market operations to reduce DR
costs. Zahraoui et al. (2021) developed a risk-based technique for improving the overall transient
stability of power systems by using LP to reduce shedding costs. Giraldo et al. (2018) provided
a comprehensive MG framework that can operate in both grid-connected and isolated modes and
solves the objective function using the convex mixed-integer technique.

EMS difficulties in MGs have also been solved using various meta-heuristic optimization
techniques. Elsied et al. (2016) developed an advanced real-time EMS employing the genetic
algorithm (GA) to limit energy costs and carbon emissions concurrently while maximizing power
penetrating from REs. Particle swarm optimization (PSO) was used by Grisales-Noreña et al.
(2020) to lower the cost of electricity obtained from utility networks. Marzband et al. (2015)
employed an artificial bee colony (ABC) to optimize production costs and boost RESs penetration
in MGs. Roy et al. (2019) investigated an EMS in an MG utilizing an ant-lion optimizer, which
parameterizes the uncertainty in solar and wind energy generation. This optimizer meets the load
demand at the lowest possible cost while considering the constraints.

Other articles have employed hybrid or modified optimization approaches, such as a hybrid
of the bacterial foraging optimization algorithm and GA, to minimize power costs and reduce
peak-to-average ratio (Javaid et al. (2017)). The hybrid ABC-PSO analyzes the techno-economic
MG and reduces the total cost (Singh et al. (2020)).

Power Quality: The intermittent and unstable nature of RESs can cause oscillations in power
quality and stability Luo et al. (2016). By monitoring the control equipment utilizing control
theories and optimization approaches, the EMS can increase power quality and stability in the
power system (Mousazadeh Mousavi et al. (2018)). Several control mechanisms and procedures
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in EMSs for increasing power quality have been proposed in the literature. Mei et al. (2017),
for example, presented the moth-flame optimization technique to decrease voltage deviation
and overall system transmission loss and increase power stability through reactive compensator
sizing. To actualize power flow in DERs and supply the outage area, Wang et al. (2020) created a
service model for an imbalanced three-phase active process distributed utilizing a multi-terminal
soft open point system. The concept was stated as a set of goals that included maximizing
the restored load while reducing voltage imbalance and power loss. Mousazadeh Mousavi
et al. (2018) suggested a unique control that uses the PV and battery energy storage interfacing
inverter to increase power quality while considering many constraints, such as battery service
life and charging/discharging status. Sahoo et al. (2021) proposed a novel centralized energy
management strategy for managing voltage flow and inverter flexibility in a solar-battery hybrid
MG. Aljohani et al. (2020) used the vector-decouple technique to maintain stability and manage
the hybrid MG. They devised a controller that assesses efficiency and robustness while improving
voltage output and frequency quality. Nasr et al. (2020) suggested a multi-objective function
that involves minimizing an MG’s voltage deviation to maintain voltage balance and satisfy the
contingency constraint. Zhang and Li (2020) used multi-objective optimization approaches to
solve a multi-objective function optimal reactive power dispatch problem and suggested a model
that minimizes active power loss and voltage variations. Leonori et al. (2016) created an optimal
power flow plan for a grid-connected to a BESS, used the BESS to increase power stability, and
managed power in real-time with a fuzzy EMS controller.

1.4.3. Tertiary Control Level

The tertiary control level, as the top-level control, maintains the optimality of the operation,
specifically the efficiency and cost between the MG and the primary grid, and vice versa. Because
of the complexity of the computation and forecast model of economic and meteorological data,
this level typically has a slow dynamic response to define the ideal active and reactive power
references of each distributed generator (Yamashita et al. (2020b)). The prediction model aids in
weather classification, network optimization, and uncertainty quantification. At this level, various
methods such as ML (Chaouachi et al. (2012)), long short-term memory (LSTM) (Qing and
Niu (2018)), k-nearest neighbours (kNN) (Pedro and Coimbra (2015)), generalized regression
neural network (NN) (Ramsami and Oree (2015)), NN ensemble (Raza et al. (2018)), and deep
recurrent NNs (Alzahrani et al. (2017)) are used to formulate the forecasting and prediction
model. Although the secondary level is concerned with power quality and DER sharing, the
tertiary level is concerned with economic aspects, energy market involvement, and power-sharing
trends.

1.5. Control Architectures

Distributed and hybrid RES generators (e.g., PV panels and WTs) are used in hybrid energetic
systems or MG systems to produce clean energy (e.g., solar, wind). In contrast, ESSs are installed
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to compensate for the fluctuation between RESs generation and load consumption. Depending on
the desired and established objectives, these hybrid systems can function in either grid-connected
or standalone modes. Since the penetration of these distributed generators is increasing, new
EMSs are needed to ensure seamless integration into the existing electrical network.

As a result, implementing an energy management approach should improve the dynamic
response of DERs under varying operating conditions and maximise the use of RES power
generation while ensuring system stability when one or more sources are connected or discon-
nected from the system. These control systems can be divided into three categories: centralized,
decentralized, and hierarchical control. The rest of this section discusses these control strategies.

1.5.1. Centralized Control

To handle many system elements, centralized control approaches employ a single central con-
troller (CC) comprising a high-performance processing unit and a secure communication architec-
ture (e.g., RESs, storage systems). Each entity employs a local controller (LC) to communicate
and interact with the CC. Furthermore, the CC can monitor, gather, and analyze real-time data
using cutting-edge communication and computing technologies (e.g., the Internet of Things
(IoT), Big-Data). This lets all entities work with the central energy management controller while
providing a flexible MG operation in grid-connected and standalone mode. The CC gathers data
such as RES energy output, energy consumption patterns, energy prices from market operators,
and meteorological conditions before executing the most optimal and efficient system control.

Many research studies have created and implemented centralized energy management tech-
niques. For instance, the authors of Tsikalakis and Hatziargyriou (2011) presented a centralized
controller in order to maximize the operation of MG by optimizing the production of dispersed
RESs generators while creating back-and-forth energy transfer with the main utility grid. The
proposed solution’s efficiency on the MG system was studied by analyzing a typical case network
operating under various market policies and spot market pricing. Moreover, the authors of [19]
created a centralized EMS for a standalone MG system based on the model predictive control
approach to reduce computational demands. In fact, nonlinear programming (NLP) and MILP
techniques were used to solve the problem iteratively (Warnier et al. (2017)).

1.5.2. Decentralized Control

Unlike centralized techniques, each entity in decentralized control is regarded as autonomous
by employing an LC. This signifies that a leader controls various groupings of entities. The
phrases ’decentralized’ and ’distributed controls’ are frequently used interchangeably in the
literature Kermani et al. (2020); Yamashita et al. (2020b). Distributed control can be considered
a decentralized control in which LCs elect the leader entity based on local measurements such
as frequency and voltage levels. They may also share information with their neighbours. For
distributed control, LCs not only use local measurements, but they can also communicate and
receive information from other LCs (Pourbabak et al. (2019)). With decentralized control
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systems, limited local connections are necessary, and the control choices are made based only on
local measurements.

1.5.3. Hierarchical Control

Figure 1.4 shows that a compromise between fully centralized and decentralized control structures
is reached by providing hierarchical control structures (Molzahn et al. (2017); Van et al. (2020))
based on three control levels: primary, secondary, and tertiary.

Tertiary 
Control

Secondary Control

Primary Control

MPPT 
control

Frequency 
control

Power 
quality

Power 
sharing

Energy management 
methods

Voltage 
control

Current 
regulation

Power flow 
control

Demand/Response 
balance

Figure 1.4 Hierarchical control structure.

The primary control level stabilizes the voltage and frequency generated by each source in
order to stay within the standards’ limitations (Elmouatamid et al. (2020, 2021); Gaiceanu et al.
(2020)). Furthermore, the principal control level recognizes the operating mode of MG systems,
allowing them to function in grid-connected and standalone modes (Prabaharan et al. (2018)).
After the system’s load variation, the secondary control level’s MG voltage and frequency are
restored. The goal is to maintain and improve power quality within the specified standards,
allowing synchronization between MG systems and the main electrical network (González-
Romera et al. (2020)).

The key objectives of tertiary control are the power flow control in the grid-connected mode,
ensuring the optimal operation in both modes, such as capacitance and inductance (Guerrero
et al. (2012)). Figure 1.4 depicts the structures of the hierarchical control levels.

In summary, there are many advantages of MG usage: (i) it can operate as islanded systems
under power grid outage situations; (ii) it can balance energy production and energy consumption;
(iii) its generation resources can be scheduled and dispatched properly; (iv) it can accomplish
high reliability and resiliency; (v) it can sustain the reliability development, reduction in the
running cost, and market contribution; (vi) it can reduce the power losses among distributed
energy sources; (vii) it can enhance the network congestion. However, there have been several
issues recently with the MG control. These are (i) scalability when the MG structure is getting
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more complicated, (ii) adaptability or flexibility when the MG structure is changed or modified
(for instance, removing a utility grid and adding a diesel generator), (iii) complexity of the
control method on the MG control, such as the implementation of MPC and S-MPC and (iv)
optimal control among power flows on the MG components.

The next chapter will explain different kinds of control methods for MGs and compare
control strategies. Also, this chapter will prove that MPC is an advanced and efficient method
compared to other control strategies.
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Chapter 2. Literature Review

2.1. Control Strategies for MGs

Utilizing several energy sources in MG systems necessitates employing effective control strate-
gies/approaches for controlling energy flow. This necessitates the creation and deployment of
EMSs. In fact, as shown in Figure 2.1, optimization strategies for DR, demand-side management
(DSM), and power quality control are required to meet various EMS objectives while satisfying
multiple restrictions, such as energy price reduction and occupant comfort maximization.
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Figure 2.1 Objective functions constraints and optimization methods for optimum operation of MG
systems.

As shown in Figure 2.1, several approaches have been presented that use various goal func-
tions and restrictions in conjunction with optimization methods for efficient energy management.
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2.1.1. Objective Functions and Constraints

Implementing EM control techniques specifies the primary aim functions, which may be con-
nected to operation cost, pollution, dependability, and power quality (Cannata et al. (2019);
Hannan et al. (2020); Jiménez-Fernández et al. (2018); Li et al. (2017)). For example, the primary
goal of employing economic objective functions is to reduce the cost of power. For cost reduction
in MGs, many formulations have been investigated. For example, the authors of Liu et al. (2014)
developed an EM technique for reducing electricity costs in a residential MG composed of many
houses with DERs. This EM method took into account predefined purchasing/selling decisions
for each time slot to save power costs and scheduling decisions for the shifted loads. Researchers
defined cost minimization as a dynamic economic load dispatch problem. A meta-heuristic
algorithm was presented and compared to various methods such as differential evolution, GAs,
and PSO (Kamboj et al. (2016)). The authors of Haidar et al. (2020) developed an ideal technique
by comparing the performance of various hybrid MG systems. A mathematical approach was
investigated for sizing the MG component to meet the lowest cost while increasing load demand
under different weather conditions. The obtained findings demonstrated the ideal configuration
for MG system components to achieve the lowest energy and net present costs. The authors of
Elkazaz et al. (2020) described an EMS that selects the appropriate setting for a central battery
storage system based on a defined cost function to minimize an MG’s daily running cost while
optimizing the deployed RES’s self-consumption.

Following the definition of the system’s constraints and objective functions, appropriate opti-
mization methods are necessary to ensure the power flow exchange between installed RES/storage
and MGs on the one hand and MGs and the utility grid on the other.

2.1.2. Optimization and Control Methods

Many studies on MG control have been conducted based on system topologies, architectures, and
operating modes (Ontiveros et al. (2017); Rathor and Saxena (2020); Shayeghi et al. (2019)). For
example, optimization and control methods should handle the stochastic nature of the installed
RES generators by guaranteeing a reliable supply of power to customers while keeping the
storage system, electricity bill, and occupants’ comfort at the appropriate operating conditions.
Figure 2.2 depicts a proposed taxonomy of the most prevalent MG control approaches utilized in
MG operations.

2.1.3. Classical Approaches

Several energy management optimization methods, such as mixed integer linear and NLP, are
classical. These approaches can be considered efficient strategies for controlling MG systems
following the objectives and constraints outlined. For instance, the authors of Sukumar et al.
(2017) developed an MG EMS for power sharing, power trading with the main grid, continuous
run, and on/off mixed mode based on the LP optimization method. In this study, the on/off
mode was solved using a MILP solution approach, which maximized the operation of the MG
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Figure 2.2 Control approaches for EMSs.

concerning the main grid, fuel cell, and ESS operation modes. The authors of Nemati et al. (2018)
created a real-coded GA and a MILP-based approach for scheduling MG unit commitment and
economic dispatch. The study considered voltage restrictions, equipment loadings, and unit
constraints in its formulation. The authors of Shekari et al. (2019) presented another intriguing
paper offering a MILP-based solution for regulating electrical and heat needs in a multiple
MG scenario. For optimal scheduling of MG, the proposed technique examined various energy
converters and storages, distributed energy generators, and electricity/heat storage units, as well
as technical and economic linkages between electricity and natural gas systems. The deployed
algorithm was created using AC power flow. The deployed model obeyed reactive power and
voltage security limitations, allowing the MG system to operate at the lowest possible cost.

2.1.4. Heuristic and Meta-heuristic Methods

Heuristics and evolutionary algorithms are commonly used to solve single and multi-objective
optimization issues. The authors of (Papari et al. (2017)) proposed a heuristic strategy for
optimizing the operation and energy management of DC MG systems. The investigated problem
was formulated as a single-objective optimization problem with the sole goal of cost minimization.
By combining the Harmony search algorithm and enhanced differential evolution, the authors of
(Khan et al. (2019)) proposed a meta-heuristic-based system. Several knapsacks were employed
to ensure power consumption did not exceed a specified threshold value during peak periods. The
authors provided an economic model for ESSs and an actual coded-GA model for MG systems
working in a grid-connected mode (Chen et al. (2011)). Based on its capital, energy arbitrage
revenue, operating cost, and maintenance cost, the created algorithm optimized the present cost
of an ESS during its lifespan. The authors of Radosavljević et al. (2016) proposed a GA-based

15



Literature Review

optimal EMS for a grid-connected MG system that considered the electricity price, power
consumption, and unpredictability of RES generation. Compared to the GA and combinatorial
PSO, the work demonstrated that the PSO method is more effective in finding the optimal
solution of the examined optimization function. The authors of (Marzband et al. (2014)) used the
multi-period gravitational search technique to solve a deterministic energy management problem.
The authors of Aghajani et al. (2015) solved the EMS problem using a multi-objective PSO
approach, which was regarded as a multi-objective problem. The authors of Alavi et al. (2015);
Rabiee et al. (2016) used PSO-based techniques to tackle the EMS problem as a single-objective
problem. Another paper by the authors of EI-Bidairi et al. (2018) combined an intelligent expert
system called fuzzy logic with a meta-heuristic algorithm called Grey-Wolf Optimizer (GWO).
The presented methodologies tackled MG systems’ economic and environmental optimization
concerns by considering RES uncertainties and power demand fluctuations.

Heuristic optimisation approaches generally use exploratory methods to solve optimization
problems in a reasonable amount of time. They are, however, unable to guarantee the optimality
of the produced outcomes (Khan et al. (2016)). The meta-heuristic approaches are effective
and widely utilized methods for control and energy management in the MG system. Many
works in the literature have examined the effectiveness of various tactics. In certain works, the
meta-heuristic control has been linked with other control systems in order to profit from the
performance of both approaches (Grisales-Noreña et al. (2020); Khan et al. (2020)).

2.1.5. Artificial Intelligent Methods

EMS optimization strategies are classified as AI-based, conventional mathematics, meta-heuristic,
and others. AI-based methodologies include fuzzy logic, game theory (GT), multi-agent, NN,
and reinforcement learning (RL). Conventional ways include dynamic programming, resilient
programming, stochastic programming, bi-level programming, and mixed integer programming
methods. Meta-heuristic techniques include swarm intelligence, evolution, and heuristic ap-
proaches. The authors of Thirunavukkarasu et al. (2022) comprehensively evaluated optimization
approaches for tackling many control objectives in MG EMS.

The authors of Motevasel and Seifi (2014) presented an expert system for energy management
in MG systems that uses NNs to estimate the power generation of installed RESs. The authors
proposed a mathematical model for intelligent load control in a standalone MG system (Solanki
et al. (2015)). NNs were employed to model the examined loads, and predictive control was
applied to manage the energy based on projected load variation. The authors of Venayagamoorthy
et al. (2016) presented an EMS for an MG connected to the utility grid to optimize renewable
energy utilization while minimizing carbon emissions. Two NNs were employed to model the
proposed EMS using evolutionary adaptive dynamic programming and learning ideas. One NN
was utilized for the management approach, while the other was employed to test the optimal
system’s performance. The authors of Wang et al. (2019) presented a Lagrange-programming
NNs technique for effective MG system control and administration, aiming to lower the overall
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cost of MG. This work divided the load into controllable, thermal, price-sensitive, and critical
loads (Mahmoud et al. (2017); Roslan et al. (2019)).

RL-based approaches have been widely employed in decision-making due to their adaptability
to the environment and incorporation of user input into the control logic. Vázquez-Canteli and
Nagy (2019) provides a full examination of modelling methodologies and algorithms for DR
using RL. Depending on the penalties and rewards generated, RL can work with MASs to
produce DRs. In Azuatalam et al. (2020), an effective scheduling and control technique for
heating, ventilation, and air conditioning (HVAC) systems was created. As compared to a
hand-crafted baseline controller, the results showed that the RL-based controller could reduce
energy use by 22% while preserving interior thermal comfort. Furthermore, NNs are used in
EMS schemes focusing on the optimal functioning of renewable energy integration (Urias et al.
(2014)). Urias et al. (2014) presents an RNN-based EMS and a multi-agent-based weather
forecasting technique. The RL approach has also been used to optimize the coordination of
several ESSs in a MG while considering a linked topology (Qiu et al. (2015)).

Because of its flexibility for given restrictions, cheap computing time and complexity, and
ease of implementation, Ant Colony Optimization (ACO) is one of the more often utilized
approaches for energy management in MG systems. The behaviour of real ants inspires this
classical method to seek reasonable solutions to a given optimization issue. It is a simple
computational agent that turns optimization issues into shortest-path problems on a weighted
network. In Rahim et al. (2016), the authors used an ACO approach for energy management
in DSM. To acquire a plausible solution for the intended objective function, the authors first
built an energy management controller model utilizing multiple knapsack problems and then
utilized an ACO technique. The authors aimed to demonstrate that the ACO efficiently reduces
electricity bills and minimizes peak-to-average ratio while considering user happiness. The
authors of Esmat et al. (2013) created another ACO approach by investigating a combined
cost optimization scheme to decrease operational costs and pollution levels while serving the
MG’s load demand. To test the suggested method’s performance, it was compared to two other
techniques, Lagrange and Gradient. Other AI-based optimization methods have primarily been
employed in the literature for energy management and optimization challenges. The authors
of Chenghui et al. (2007) reported PSO for energy management fuzzy controller design in
dual-source powered electric cars. A mathematical model of the energy management problem
was used to examine the power of energy storage.

Predictive Control Methods

MPC and generalized predictive controller (GPC) are well-known techniques for predicting
future events and forecasting appropriate control actions. In fact, they can feature optimization
methods, allowing them to incorporate system limits and disturbances into anticipated control
decisions. For instance, the GPC is commonly employed in advanced control applications, such
as energy management and building automation systems (Buyak et al. (2017); Rahmani-Andebili
and Shen (2017)). Moreover, the authors of Rahmani-Andebili and Shen (2017) proposed an
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adaptive and dynamic optimization technique based on the stochastic MPC approach. The
proposed energy management technique solved the DER scheduling problem for smart houses
with varied energy sources. Its goal was to address the PV power generation’s unpredictability
and variability. This study was created for large-scale smart dwellings, taking into account their
neighbours’ collaboration. Another intriguing paper was presented by the authors of Bordons
et al. (2019), who proposed an EMS using an MPC, with a basic state-space model utilized
for MG system performance modelling. This work regarded the RES power generation and
consumption as measurable disturbances parameters for the EMS. As a result, the storage systems
and costs were modelled as constraints on the MG system, and the state-space equations were
used to solve them. For the economic optimization of an MG laboratory, the authors of Mendes
et al. (2016) utilized an algorithm based on the MPC model. The laboratory housed a hybrid
hydrogen storage system, a battery bank with a utility grid link, and an EV charging station. A
hierarchical control structure was developed along with the MPC approach, which operated at
different time frames. The proposed approaches worked on the first level to keep the MG stable
and on the second level to control the purchase and sale of power to the utility grid, regulate
the usage of energy storages, and maximize the use of RESs. The given findings demonstrated
the dependability of the proposed control algorithm for managing the MG system. The authors
of Garcia-Torres et al. (2018) developed an optimal energy management strategy for the MG
with external agents, such as a battery storage system and fuel cell EVs, based on the MPC
controller. A mixed-integer quadratic programming (MIQP) method was used to tackle the
MPC issues. The plant was modelled using the Mixed Logic Dynamic (MLD) framework, and
the operating and degradation costs were factored into the objective function. The authors of
Parisio et al. (2014) created an MPC strategy for optimizing the operation of an MG system.
A mixed-integer-linear framework was shown with economic dispatch, energy storage, unit
commitment, and grid interaction. The cost was addressed and parameterized in great depth
throughout the problem formulation. The experimental findings were presented, demonstrating
the effectiveness of the proposed technique of saving money in comparison to existing practice.

The MPC approach outperforms other methods for implementing control and optimization
architectures for MGs-EMS. AI-based EMS approaches enable flexibility in addressing MGs-
EMS PnP capabilities. The EMS algorithms should be scalable in order to solve increases in
dimensionality or non-linearity in the objective formulations. AI approaches such as RL and
ML methods and meta-heuristics that can manage such complex goal functions are gaining
prominence in recent studies due to increased data availability and the capacity to handle the
system’s dynamic nature. The computational complexity should be decreased by using efficient
solvers and various simulation platforms.

As illustrated in Table 2.1, MPC employs various optimization techniques, such as rolling
(receding), finite horizon, convex programming, MILP, and multivariable optimization. 2.1
depicts the elements of MPC-based control techniques for solving different kinds of objectives
in MG-EMS, as listed in Table 2.2.

18



2.1 Control Strategies for MGs

Ref. Main Contributions

Kamal and
Chowdhury
(2022)

MPC has emerged as a possible alternative to traditional methodologies for
everything from voltage regulation and frequency management to power flow
management and economic optimization. MPC possesses the most accurate
forecasting model.

Konneh et al.
(2022)

The advantages of MPC over several methodologies for modelling uncertainty
are demonstrated in this review work for grid-connected and islanded systems.
It demonstrated the characteristics, strengths, and drawbacks of numerous
MPC modelling methods, as well as some of their adjustments for dealing with
uncertainty in MGs.

Babayomi et al.
(2022)

MPC allows for the multivariable control of power electronic systems while
addressing physical restrictions without needing a cascaded structure. These
qualities result in fast control dynamic response and good nonlinear system
performance. MPC is more adaptable, with multivariable and intuitive proper-
ties for smart grid and MG systems.

Hu et al. (2021) This paper provided a comprehensive overview of MPC in individual and inter-
connected MGs, including control techniques at the converter and grid levels,
as well as control strategies applied to three tiers of the hierarchical control
architecture. According to this study, MPC is emerging as a feasible alternative
to existing methodologies in voltage regulation, frequency control, power flow
management, energy management, and economic operation optimization.

Tarragona et al.
(2021)

This study summarised the most recent enhancements to tackle computational
issues and an assessment of the objective functions utilized in each study,
which were primarily concerned with minimizing energy costs, peak power,
and CO2 emissions. MPC is the most promising technique for decreasing
MG’s operating costs.

Fontenot and
Dong (2019)

Various optimization methods and control systems, including rule-based con-
trol, optimum control, agent-based modelling, and MPC, were evaluated, and
it was determined that MPC is the most efficient for MG systems.

Vašak et al.
(2021)

MPC is becoming increasingly popular due to its adaptability, ability to be used
in any application independent of field, and accessibility to fast computers. Re-
searchers will be helped by the work presented here as they further investigate
the adaptability of this controller for design, analysis, and application in RESs.

Villalón et al.
(2020)

To improve performance and dynamic response, this review found that pre-
dictive control methods are utilized on MGs for the three control levels and
with model adjustments to account for uncertainties. Predictive control is a
particularly promising control method for MG applications that need varying
levels of control.

Table 2.1 MPC control approach with main contributions in review articles.
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Ref. Features Key Findings Objective

Zhao et al. (2022) Uncertainty of
RES

The capacity to balance MG op-
eration’s robustness and economy
is provided by EMS modelled as
DRMPC technology.

Economical oper-
ation

Ma et al. (2022) Reliability, fore-
casting uncertain-
ties

Decrease in capital cost and help
downsize the system.

Reduce PV cur-
tailment and un-
met load

Khokhar and Par-
mar (2022)

Uncertainty in
MG

A MG’s frequency variations have
a reduced tendency to degrade and
reduced cost EV batteries.

Frequency regula-
tion

Dong et al. (2022) Complexity of
MG control

Decrease communication cost Recovery of volt-
age/frequency,
complexity reduc-
tion

Yamashita et al.
(2020a)

Uncertainty of
battery usage

Reduces annual costs for residential
and non-residential building MGs.

Complexity re-
duction in MG
control

Marín et al.
(2019)

Uncertainty of
RES

Reduce operating cost, reduce peaks,
and uniform grid consumption.

Optimal operation
considering uncer-
tainty

Ouammi (2021) Uncertainties of
power generation,
operational flexi-
bility of EVs

Peak loads are reduced for building
MGs

Reduce peak load
and optimize
power exchange

Lei et al. (2017) Complexity of
MG control

Improve the power quality of PV
power plants.

Stabilize the grid
import/export

Zhang et al.
(2018)

Forecasting of
power demand

Decrease in total cost by 22.69% Minimize the pre-
diction error

Fontenot and
Dong (2019)

Forecast RE gen-
eration and load

Decentralized approach reduces the
risk of system failure.

Decrease con-
gestion and peak
loads

Minhas et al.
(2022)

Multi-time scale,
forecasting of
RE uncertainties,
load demand

Optimal charge and discharging, re-
duced annual storage capacity loss
of EV batteries by 23%.

Multi-time scale,
forecasting of
RE uncertainties,
load demand

Elkazaz et al.
(2020)

Forecasting of
load demand

EMS achieves reduction in cost by
30%.

Increase in RE
self-consumption
within MG

Table 2.2 MPC control approach with objectives and key findings.
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MPC-based techniques are frequently employed to tackle mixed integer nonlinear objectives
such as the unit commitment problem of EMS in MGs. The MPC-based control approaches
take into account factors, including variability, MG component uncertainty, and the usage of
forecasting data. Effective MGs-EMS that can be provided over a considered time horizon in
day-ahead or real-time scheduling can also be provided by MPC rolling or receding horizon
optimization approaches.

The neuro-fuzzy algorithm utilized by the MPC-inspired EMS takes into consideration the
intermittent nature of RES in grid-connected MG with the loads and PV provided in Ulutas et al.
(2020). The stochastic-based energy management of MG, which has many control objectives,
is solved using the MPC rolling horizon approach in order to overcome the uncertainty issues
with RES and loads. Scenario-based stochastic programming with a rolling horizon approach is
described in Silvente et al. (2018) as a way to reduce the operational expenses of MGs when
there is uncertainty regarding wind speed. The data obtained via deterministic approaches can
be updated or modified using the rolling horizon or MPC approaches, which are reactive-based
methodologies. A scenario-based MPC was suggested in Parisio et al. (2016) to reduce operating
expenses and overall emissions. Wu et al. (2020) presents an opportunity constraint MPC for
a grid-connected MG with a gas turbine, battery, and PVs. In this, economical operation over
a long-time horizon is achieved at the higher level, while optimal scheduling takes uncertainty
into account at the lower level. To ensure cost-effective and adaptable operation, Garcia-Torres
and Bordons (2015) provides MPC-based optimal control for hybrid ESS, such as hydrogen
ESS, batteries, and capacitors, in renewable energy MGs. For islanded AC MG, a hierarchical
MPC-based technique was utilized to overcome concerns with power quality and uneven power-
sharing Jayachandran and Ravi (2019). Moreover, EMS-specific MPC techniques that take into
account battery ageing have been established (Allahham et al. (2019, 2022)). For residential
MGs with grid connection (Nikkhah et al. (2021c,d)) and islanded operation of MGs (Cavus
et al. (2022b); Nikkhah et al. (2021b, 2022)), a number of MPC-based building-to-building EMs
are also proposed.

In the well-known 3-layer control, rolling or receding optimization, MPC-based processes
accomplish the secondary control layer’s goals, such as voltage regulation, frequency regulation,
and power allocation. Furthermore, self-triggering based on the MPC’s predictive capability
was used to reduce communication costs (Dong et al. (2022)). In order to improve power
flows and lower peak loads while maintaining the quality of service for EVs in a vehicle-to-
building (V2B) scenario, MPC is employed in the MG optimization framework (Ouammi (2021)).
Centralized energy management for a building-integrated MG (BIM) was developed using MPC
and finite horizon planning optimization (Dagdougui et al. (2020)). The BIM operation that
satisfies the indoor temperature along with BIM components and electricity exchange with the
grid is optimized by this method. A dual decomposition-based distributed MPC for energy
management in MGs networks is given in Razzanelli et al. (2020) for a workable power exchange
without causing a privacy risk. For standalone MGs with wind, solar, and battery power sources,
Kong et al. (2019) presents a hierarchical (upper and lower layer) distributed MPC that offers
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great reliability, efficiency, and flexibility in its control. A robust MPC with intraday energy
management optimization for islanded MGs was proposed in Yang et al. (2019). In the MG-
EMS application that incorporates distributed RES and ESS, MPC and its improvements that
are utilized to achieve goals like optimizing energy efficiency, managing import/export power
from/to the grid, and economic optimization show a growing trend (Hu et al. (2021)).
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Figure 2.3 Constituents of MPC for achieving objectives in MGs-EMS

1. Flexibility in EMS of MGs through MPC: The MPC and their variations enable the
construction of centralized, decentralized, and hierarchical control structures for energy
management in MG. With elements including a rolling or receding horizon approach,
accounting uncertainty, forecasting information, and reactive (feedback) mechanism, MPC
can successfully accomplish EMS’s control and optimization goals. By supplying the
forecasted data connected to the RES generators and load demand, MGs using MPC-based
control methods can increase the flexibility of their energy management. The rolling
horizon approach makes real-time or day-ahead scheduling viable and allows the DSM
and DR approach in the control architecture to lower peak loads. The degree of PnP
functionality offered will not lead to an increase in computational complexity. This PnP of
ESS and other loads enhances the flexibility and reliability of EMS. With the use of control
feedback from the available generation and load demand in the islanded or grid-connected
mode of operation, the MG can operate in a flexible manner. Within the anticipated time
window, there can be delays in the energy requirements of MG components. This further
aids in addressing the MG-changeable EMS’s demand patterns.
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2. Affordability in EMS of MGs through MPC: Using MPC-based techniques, the issues
relating to the nature of mixed integer linear and nonlinear characteristics considering
various operational limitations are successfully resolved. Within the MGs that utilized
MPC-based control approaches, combining various optimization strategies, including
robust, rolling, and stochastic optimization, aided in obtaining inexpensive and optimal en-
ergy management. The MPC’s self-triggering function will assist in creating an economical
control system for MG-EMS by lowering the need for communication infrastructure. At
the control unit, the imports and exports of energy from the grid are continuously tracked.
This aids in attaining the grid-connected MG’s inexpensive and economical running.

3. Security in EMS of MGs through MPC: The most advantageous feature of MPC control
techniques for MG-EMS is their capacity to handle any disruptions and uncertainty.
The MPC-based approaches with robust optimization effectively handle the MG-EMS
uncertainty issue to improve security. MPC control methods can include new, updated,
or predicted information in the EMS and are reactive in nature. For real-time online and
stable MG operations, MPC with a rolling horizon method decreases forecast inaccuracy.
By doing this, MPC can forecast how the constrained system will behave in the future.
The MPC’s distributed/decentralized design regulated the complex hybrid power system’s
power flows. Due to its primary function of integrating newly updated data and forecast
information, MPC has a quick transient response. The security of the MG-EMS is also
increased by prioritizing the most delicate loads while maintaining supply-demand balance,
frequency regulation, and voltage regulation in hierarchical control that uses the MPC
approach.

Although there are many advantages of MPC utilization on the MG control, there are some
drawbacks of MPC usage. In other words, MPC should be improved for several issues. Several
MPC models are restricted to just stable, open-loop systems. Also, MPC frequently requires a
high number of model coefficients to characterise a response. Some MPC models are designed
for output disturbances and may not handle input disturbances adequately. Some types of MPC
make use of the constant output disturbance assumption. This compensates for the fact that the
model’s anticipated output is not identical to the actual measured output. This method assumes
the correction term will be constant in the future, which may not produce excellent results if
there is an actual disruption at the plant input. Even if the model is right, control performance
will be poor if the prediction horizon is not adequately constructed (Woolf (2009)). Also, these
are (i) the complexity of the MPC implementation, (ii) the scalability and adaptability of MPC,
and (iii) the control and design of different modes for the ESSs (battery, fuel tank, and water
tank).

2.2. Objectives of Thesis

This thesis aims to present optimal configuration and control strategies to ensure scalable, reliable,
flexible, adaptable, PnP, and efficient operation of a MG, including PV panel, ESSs (battery,
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hydrogen tank, and water tank), utility grid, load, fuel cell, electrolyzer, and EVs (three EVs
have different kinds of batteries). To obtain these properties for MG, three different kinds of
control and energy management of MG are proposed. The objectives of this thesis are described
as follows:

• The implementation of MPC is easier.

• Optimal operation of power flows for the MGs are obtained in order to minimize the MG
running cost, penalize the usage of accumulators (to avoid the charging from the utility
grid), and enhance the practicality of RESs usage.

• The MPC is improved in terms of scalability and adaptability (flexibility). Therefore, an
increase in the complex structure in the MG does not affect the MG control because of our
scalable method.

• When changing the components of MG, such as removing the utility grid and adding the
diesel generator, the MG control can adapt easily due to our adaptable and flexible method.

• Combining the two methods (ε-variables and S-MPC) will lead to building the S-MPC,
allowing optimal control of the MG in all possible modes.

• The PnP ability is an important consideration for MG design, as it allows the system to
be easily modified and adapted to changing requirements or operating conditions. By
designing MGs with PnP capabilities, system operators can ensure that the MG remains
flexible and adaptable while maintaining stable and efficient operation.

2.3. Thesis Contributions

The main contributions of this thesis can be listed as follows:

• A hybrid method called MPC-ε-variables is produced. The implementation of MPC has
been simplified.

• An extended optimal ε-variables is developed. Optimal ε-variables are produced. The ε-
variables can be easily integrated into the S-MPC, allowing for more flexible and adaptable
control strategies. This is particularly important for MGs that have varying operating
conditions. The merged control strategy can easily adapt to different MG configurations
and operating conditions.

• A hybrid method has been developed based on ε-variables and classical MPC to build the
S-MPC of a flexible hybrid MG with PnP assets.

2.4. Thesis Organization

The dissertation will be divided into six chapters, each focusing on a particular aspect of the
proposed hybrid control method for flexible hybrid MGs.
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• Chapter 1 provides an overview of MGs, their control challenges, and the proposed solution
in its introduction. In addition, the introduction describes the thesis’s aims and objectives.

• Chapter 2 will provide a comprehensive literature review of current control methods
employed for MGs, including ε-variables-based logic control and MPC. There will be a
discussion of the benefits and limitations of each approach, as well as recent advancements
in hybrid control methods.

• Chapter 3 will introduce the proposed hybrid control framework that combines ε-variables
with conventional MPC for MGs. This chapter will describe the implementation of MPC
and ε-variables. Also, in this chapter, the implementation of the proposed hybrid control
will be explained step by step. Lastly, the employment of ε-variables and if-else statements
will be compared.

• Simulation analysis will be used in Chapter 4 to assess the performance of the extended
optimal ε-variables. The simulation model will be developed based on a theoretical hybrid
MG, and the simulation results will be presented and analyzed in depth. This chapter
will utilize S-MPC in the compact form to get optimal ε-variables. On the other hand, by
merging the ε-variables on the S-MPC, the S-MPC is getting more scalable, adaptable,
and flexible.

• Chapter 5 provides an enhanced ε-variables-based control method for EMS in flexible
hybrid MG systems. The S-MPC will be solved using QP. In addition, the methodology
will explain how to deal with complex systems with multiple modes or operating conditions
of the MG using the S-MPC method. This chapter will suggest a hybrid framework/method
based on ε-variables and traditional MPC to automatically generate and validate the S-
MPC.

• Chapter 6 will provide a summary and conclusion of the thesis, as well as a discussion of
the contributions made to the field of MG control. In addition, the method’s limitations
and future research directions will be discussed.

The next chapter will explain one of our proposed methods called the name "hybrid MPC-ε-
variables. According to this hybrid method, the MPC is improved in terms of implementation by
merging ε-variables based on the logical control method. Also, in the next chapter, there is a
comparison of ε-variables and if/else statements. The advantages of ε-variables above the if/else
statement will be explained using figures and equations.
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Chapter 3. Control of Microgrids using an Enhanced MPC

3.1. Overview

ε-variables-based control strategies have allowed for greater scalability and resilience. However,
these strategies may not be the most effective. This chapter proposes a hybrid method that
combines MPC with ε-variables in order to simplify the implementation of MPC and make
it more effective for complex energy systems. The findings of this chapter indicate that this
hybrid method significantly simplifies the control structure, allowing more complex control
strategies to provide additional benefits to the energy system, such as scalability and robustness.
This chapter contributes to the field of MG control by proposing a method that can facilitate
the implementation of advanced control strategies for renewable energy systems that are both
practical and effective. In transitioning to more sustainable energy systems, this research has
significant implications for MGs’ continued development and optimization.

Choosing MPC with ε-variable involves considering specific advantages and characteristics
of this approach. The reasons why one might choose MPC with ε-variable:

• Optimization Over a Finite Horizon: MPC with ε-variable optimizes control inputs over a
finite prediction horizon. This means that it considers future system behaviour and makes
decisions by minimizing a cost function over this finite time horizon. This can lead to
improved performance compared to purely myopic controllers.

• Incorporation of Forecast Information: The ε-variable extends traditional MPC by incor-
porating forecast information. This allows the controller to anticipate future disturbances
and adapt its control strategy accordingly. This is particularly valuable in scenarios where
future events or disturbances are known or can be predicted.

• Flexibility and Adaptability: MPC with ε-variable provides flexibility in handling various
types of constraints, including state and input constraints. The ε-variable acts as a buffer
or relaxation factor for constraints, allowing the system to operate within safe limits while
still optimizing performance.

• Integration with Machine Learning Techniques: The ε-variable approach can be integrated
with machine learning techniques to enhance its capabilities. For example, combining MPC
with artificial neural networks (ANN) or other predictive models can improve predictions
and adaptability.

• Reduced Dependency on Plant Model Accuracy: Traditional MPC relies on an accurate
plant dynamics model. The ε-variable method can reduce the dependency on an accurate
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plant model, making it more practical for situations where obtaining a precise model is
challenging.

It’s important to note that the control strategy choice depends on the system’s specific
characteristics, the available information, and the desired performance criteria. The ε-variable
introduces a level of adaptability and robustness to traditional MPC, making it suitable for certain
applications.

3.2. Introduction

The development of RESs and the increased utilization of energy storage have resulted in
transforming the conventional power network into novel topologies such as MGs. Chacko and
Sachidanandam (2020) and Tobajas et al. (2022) present MGs that integrate various types of
energy sources, including RESs ((PV) panels, wind), ESSs (batteries, hydrogen, pumped hydro
(water)), diesel generators, and load and control devices. Also, by operating in a decentralized
manner, an MG can reduce network congestion in energy sources, power losses, and operating
expenses (Ocanha et al. (2020); Zhang et al. (2022)). However, an MG faces additional control-
lability challenges due to unexpected power fluctuations during real-time operation, intermittent
energy production, and random energy consumption (Hu et al. (2021); Yoldas et al. (2022)). For
a satisfactory EMS, advanced control technologies are necessary (Allahham (2008); Giaouris
et al. (2015); Xie et al. (2018)).

Fuzzy Logic Controller (FLC), Rule-Based Control (RBC), Linear Quadratic Integrator
(LQI), Hysteresis Controller (HC), Power Pinch Analysis (PPA), and other methods for con-
trolling MG systems have been described in the existing literature (Allahham and Alla (2009);
Choudhury (2022); Giaouris et al. (2015); Nyong-Bassey et al. (2020)). In addition, Niu et al.
(2019) and Terlouw et al. (2019) exploited a complex EMS algorithm using mixed-integer
programming. In addition, Wu et al. (2016) made use of stochastic dynamic programming. In
contrast, Amoasi Acquah et al. (2018) and Conte et al. (2017) implemented an optimization
algorithm based on stochastic variables. However, MPC is a more advanced and effective control
strategy than conventional control strategies, which cannot predict uncertainties or disturbances.
In addition, MPC has a rapid transient response Hu et al. (2021) because its primary function is
to incorporate newly updated data and forecasts. Thus, the MPC is able to make better decisions
regarding the future behaviour of the system based on a variety of constraints (Ulutas et al.
(2020)).

A MPC consists of three primary elements: the predictive model, the objective (cost) function,
and the solving algorithm (Vazifeh et al. (2019)). MPC can be utilized in multiple ways to
control the MG system more effectively than other control strategies. For instance, MPC is
straightforward and intuitive to comprehend. Additionally, it can be implemented in a variety of
power converter topologies. It operates by considering multiple constraints and uncertainties
(Villalón et al. (2020)). However, because it employs complex algorithms and imposes a large
number of control parameters, it takes longer to solve than the other methods. In other words, it
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requires much processing power and time (Dentler (2018)). Consequently, the system needs to
be enhanced in terms of complexity and scalability.

On the other hand, a new method for systematically modelling EMSs based on evolution
operators and the state of the directed graph that represents the system was introduced for the first
time in Ulutas et al. (2020). This method is based on the so-called ε-variables, which describe
the evolution and, consequently, the control approach of a multi-vector energy system (Giaouris
et al. (2018)). Every asset in the system is represented by a node, and an edge represents every
energy and/or matter flow between nodes (see Figure 3.1).

PV
(Converter)

BAT
(Accumulator)

LD
(Converter)

GR
(Converter)

Power

Power

P
o
w

er

P
o
w

er

Figure 3.1 The illustration of directed graph

Specifically, graph theory can be used to easily describe a hybrid energy system, according
to Ulutas et al. (2020). In other words, complex energy systems can be depicted in a manner that
simplifies their analysis, operation, and management with the aid of graph theory enhanced by the
previously mentioned evolution operators. According to this methodology, every energy system
consists of three primary components: flows, accumulators, and converters. The flows represent
the flow of energy and/or matter, the accumulators store energy or matter, and the converters
convert energy and/or matter back into energy and/or matter. The evolution operators describing
the EMS of a multi-vector system are the control statements that operate the converters (Giaouris
et al. (2013)). This chapter aims to produce a more systematic method for designing MPC
for hybrid energy systems using a similar methodology. As a proof of concept, we employ a
simple energy system Figure 3.2 in which the flow represents power, the accumulator represents
a battery BAT , and the converters represent the PV PV array, the utility grid, GR, and load
LD. The system’s graph is depicted in Figure 3.1, and the MG’s assets can be divided into two
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groups, such as RsAcc = {BAT} and RsCon = {PV,GR,LD} (Ulutas et al. (2020)). The flow can
be defined as the connection between two nodes, such as PV to BAT and BAT to LOAD, as
shown in Figure 3.1. Consequently, the set of flow discussed in this chapter can be represented
as Flow = {(Electrical) Power}.

This section proposes a novel hybrid method for implementing the MPC that retains the same
benefits as the MPC while making it more scalable and straightforward through the use of the
ε-variables. This technique is a hybrid MPC-ε-variable technique (MPC-ε-variables).

3.3. Motivation for the Proposed Method

The following essential considerations motivate the introduction of the novel hybrid approach,
MPC-ε-variables:

Simplifying the Control Structure: One of the biggest difficulties in MG control is manag-
ing the inherent complexity associated with varied energy sources, storage technologies, and
load fluctuations. While traditional control strategies are successful, they frequently result in
convoluted and less scalable control structures. The suggested solution addresses this issue by
combining MPC with ε-variables, resulting in a simplified yet robust control architecture.

Improving MPC Practical Implementation: MPC is well-known for its superior control
capabilities, considering different constraints for effective MG operation. The intricacy and
processing demands involved with MPC implementation, on the other hand, can provide practical
obstacles. The hybrid MPC-ε-variables method aims to make MPC more accessible and practical
by using the ε-variables approach’s simplicity and scalability. This integration keeps MPC’s
benefits while simplifying its deployment in complicated energy systems.

Practical and Effective Implementation: While traditional control approaches have their
advantages, they may fail to deliver practical and efficient solutions for the dynamic and unpre-
dictable character of MGs. The MPC-ε-variables method was developed in order to provide
a more systematic and adaptive methodology. This hybrid method tries to find a compromise
between complexity and practicability by merging the strengths of MPC and ε-variables, al-
lowing the implementation of advanced control strategies that are both successful and viable in
real-world circumstances.

3.4. Structure of the PV-Battery-Grid system (PBG)

As depicted in Figure 3.2, the MG system consists of a PV, a battery for energy storage, and a
utility grid system. The PV (PPV ) is used to satisfy the daily load demand of the MG system.
When excessive energy is in the PV, the battery is charged by the PV (PVBAT ) during the MG
running. On the other hand, if there is deficit energy in the PV, the battery will be in discharging
mode (BATLD) in order to meet the load-generation mismatch. The last option is to power flow
from the utility grid (GRLD) to the load when there is no energy in the PV and the battery.

The PV generator serves as a crucial component in our MG, contributing to renewable
energy generation. The PV generator has a capacity of 14 kW. The efficiency of the power
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Figure 3.2 Structure of the PBG system

electronic converter is assumed to be 85% under standard test conditions. The PV panels are
oriented to the south at an optimal tilt angle of 30 degrees. Energy storage through batteries is
essential for managing fluctuations in energy generation and consumption. The battery system
has a storage capacity of 20 kWh. We assume a round-trip efficiency of 85% for the battery
system. The maximum charging and discharging rates are set at 10 kW. The load consists of
residential consumers. The average power demand on the MG is 3 kW daily. Load demand
exhibits daily and seasonal variations. For efficiency calculations, we assume a standard solar
irradiance level of 1000 W/m². The PV array comprises 50 solar panels with a total area of
80 m². Our assumptions consider realistic charge-discharge cycles and losses, and the chosen
efficiency aligns with typical values for the battery technology used. Load patterns are based on
historical data, and the variability considers typical consumption patterns in the chosen locality
(Ani (2016); Buchholz and Styczynski (2014); Smets et al. (2016)).

3.5. General Information for the Implementation of MPC

As demonstrated in Figure 3.3, the MPC mechanism predicts the system’s behaviour and
optimizes its performance using the dynamic model, cost function, and constraints to produce
the optimal decision (Cavus et al. (2022b)).

The MPC is implemented and calculated using the set point values, past inputs, outputs,
and future output value predictions. It computes a set of Nc values of the input, represented by
u(k+Nc −1) at the kth sample. In other words, the set consists of the current and future inputs
u(k) and u(k+Nc −1), respectively. The calculation of a set of Np predicted outputs y(k+Np)

continues until the system reaches its optimal values. In order to gain the dispatching strategy,
"receding horizon control" is a notable aspect of MPC. It is important to note that only the initial
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Figure 3.3 The schematic of MPC

move is executed, and a new sequence is estimated at the k+1 position. As shown in Figure 3.4
(Cavus et al. (2022b)), this step is repeated for every k-time sampling.

Figure 3.4 The basic idea for MPC (Seborg et al. (2016))

The significance of control and prediction horizons is crucial in the proposed method, and
it plays a pivotal role in determining the effectiveness and performance of the control strategy.
The control horizon represents the finite time span into the future over which the control inputs
are optimized. If the proposed method selects a shorter control horizon, it allows for faster
responses to changes in the system but may sacrifice long-term optimization. In contrast, a longer
control horizon provides a more accurate long-term prediction but often increases computational
complexity. Also, for our proposed method, a well-chosen control horizon enables the MPC
controller to adapt to changes in the system and disturbances dynamically. It allows the controller
to respond effectively to variations in the operating conditions, ensuring that the system remains
stable and meets performance objectives. Our proposed method’s control horizon is essential
for handling system constraints within the optimization process. By considering future control
inputs, the MPC controller can anticipate and prevent violations of constraints, ensuring that the
system operates within acceptable limits.
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Regarding the prediction horizon, it represents the duration over which the system’s future
evolution is forecasted. A longer prediction horizon captures a more extended time span of system
dynamics, providing a more accurate representation of future states. An appropriate prediction
horizon helps mitigate the impact of input delays in the system. By forecasting the system’s
behaviour over a more extended period, the controller can compensate for delays in implementing
control actions. A longer prediction horizon allows the MPC controller to anticipate future
changes, enhancing the stability and overall performance of the controlled system. It facilitates
proactive decision-making to minimize deviations from the desired trajectory. Similar to the
control horizon, the prediction horizon requires a careful balance. A longer prediction horizon
may improve accuracy but increases computational load. Therefore, choosing an appropriate
prediction horizon is critical for balancing computational efficiency and prediction accuracy.

In terms of the results:

• Effect of Control Horizon on Operational Cost: With a control horizon of 2 hours, the
operational energy consumption of the MGs is 150 kWh. Increasing the control horizon to
6 hours results in a reduction to 120 kWh. However, computational demands also increase,
showcasing a trade-off between energy savings and computational complexity.

• Impact of Prediction Horizon on BESS Usage: Suppose that with a short prediction
horizon of 30 minutes, the BESS is utilized at 60 kWh capacity. Extending the prediction
horizon to 2 hours leads to a more efficient BESS usage at 40 kWh. Beyond this, the
benefits diminish, indicating an optimal prediction horizon for BESS management.

• Influence of Control and Prediction Horizons on PV Usage: Given a specific combi-
nation of control and prediction horizons, the practicality of PV usage increases by 20%.
It could be shown that adjusting these horizons optimally enhances the MG’s ability to
harness solar energy efficiently.

• Performance of the Extended Optimal ε-Variable Method: Present data demonstrating
that the extended optimal ε-variable method reduces the operational energy consumption
of the MG by nearly 25%, uses the BESS 35 kWh less, and increases the practicability of
PV usage by 20%, compared to traditional methods.

• Energy Import and Export Optimization in Flexible Hybrid MGs: Consider that the
novel hybrid framework/method combining ε-variables and conventional MPC results in a
40 kWh reduction in imported energy from the grid and a 42 kWh increase in exported
energy. This showcases the effectiveness of the proposed method in optimizing energy
flow.

The following section explains how to implement the MPC step by step (Wang (2009)):
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3.5.1. Defining a State-space Plant Model

We start our research by assuming that the underlying plant is defined by the following:

xm(k+1) = Amxm(k)+Bmu(k) (3.1)

y(k) =Cmxm(k) (3.2)

The triplet (A,B,C) is known as the augmented model and will be employed in predictive control
design. The dimensions of Am, Bm, and Cm are n1xn1, n1xm, and qxn1, respectively.u is the
manipulated or input variable, y is the process output, and xm is the assumed n1-dimensional
vector for the state variable. Note that the input for this plant model is u(k). Therefore, we must
modify the model to accommodate the embedded integrator in our design.

Note that a general state-space model formulation has a direct term from the input signal
u(k) to the output y(k) as follows:

y(k) =Cmxm(k)+Dmu(k)

Due to the principle of receding horizon control, which requires current plant information for
prediction and control, we have implicitly assumed that the input u(k) cannot simultaneously
affect the output y(k). Consequently, Dm = 0 in the plant model. Using a difference operation on
both sides of the expression (3.1), we obtain that

xm(k+1)− xm(k) = Am(xm(k)− xm(k−1))+Bm(u(k)−u(k−1))

Let’s represent the difference of the state variable with the symbol:

∆xm(k+1) = xm(k+1)− xm(k); ∆xm(k) = xm(k)− xm(k−1),

and the difference between the control variable by

∆u(k) = u(k)−u(k−1),

These are the increments of the xm(k) and u(k) variables. The difference between the state-space
equation with this transformation is:

∆xm(k) = Am∆xm(k)−Bm∆u(k) (3.3)

Note that the state-space model’s input is u(k). The subsequent step is to connect ∆xm(k) to the
output y(k). To accomplish this, a new state variable vector is selected to be

x(k) = [∆xm(k)T y(k)]T ,
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where superscript T denotes matrix transposition. Note that

y(k+1)− y(k) =Cm(xm(k+1)− xm(k)) =Cm∆xm(k+1) (3.4)

=CmAm∆xm(k)+CmBm∆u(k) (3.5)

Combining (3.3) and (3.5) generates the following state-space model:[
∆xm(k+1)

y(k+1)

]
︸ ︷︷ ︸

x(k+1)

=

[
Am 0T

m

CmAm 1

]
︸ ︷︷ ︸

A

[
∆xm(k+1)

y(k)

]
︸ ︷︷ ︸

x(k)

+

[
Bm

CmBm

]
︸ ︷︷ ︸

B

∆u(k)

y(k) =
[
0m 1

]
︸ ︷︷ ︸

C

[
∆xm(k+1)

y(k+1)

]
(3.6)

where
0m =

[
0 0 . . . 0

]
︸ ︷︷ ︸

n1

The (A,B,C) triplet is referred to as the augmented model, which will be utilized in the design of
predictive control.

3.5.2. Predictive Control within One Optimization Window

After formulating the mathematical model, the next step in designing a predictive control system
is to calculate the predicted plant output using the future control signal as the adjustable variable.
Within an optimization window, this forecast is described. This section examines in depth the
optimization performed within this window. Here, we assume that the current time is ki and that
the length of the optimization window is Np samples. First, the case of single-input and single-
output systems are considered, and then the results are extended to multi-input, multi-output
systems.

Prediction of State and Output Variables

Assuming that at the sampling instant ki, ki > 0, the state variable vector x(ki) is available through
measurement, x(ki) represents the current plant state. The more general case in which the state is
not directly measurable will be discussed later. The symbol denotes the future control trajectory.

∆u(ki), ∆u(ki +1), . . . , ∆u(ki +Nc −1),

where Nc is the control horizon dictating the number of parameters used to capture the future
trajectory of control. With the information x(ki), future state variables are predicted for Np

samples, where NP is referred to as the prediction horizon. Np is also the optimization window’s
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length. The future state variables are denoted as

x(ki +1|ki), x(ki +2|ki), . . . , x(ki +m|ki), . . . , x(ki +Np|ki),

where x(ki +m|ki) is the predicted state variable at ki +m based on the current plant data x(ki).
It is decided that the control horizon Nc will be less than (or equal to) the prediction horizon Np.
Using the set of future control parameters and the state-space model (A,B,C), the future state
variables are calculated sequentially:

x(ki +1|ki) = Ax(ki)+B∆u(ki)

x(ki +2|ki) = Ax(ki +1|ki)+B∆u(ki +1)

= A2x(ki)+AB∆u(ki)+B∆u(ki +1)
...

x(ki +Np|ki) = ANpx(ki)+ANp−1B∆u(ki)+ANp−2B∆u(ki +1)+ · · ·+ANp−NcB∆u(ki +Nc −1)

(3.7)

Using the predicted state variables as a substitute for the predicted output variables:

y(ki +1|ki) =CAx(ki)+CB∆u(ki)

y(ki +2|ki) =CA2x(ki)+CAB∆u(ki)+CB∆u(ki +1)

y(ki +3|ki) =CA3x(ki)+CA2B∆u(ki)+CAB∆u(ki +1)+CB∆u(ki +2)
...

y(ki +Np|ki) =CANpx(ki)+CANp−1B∆u(ki)+CANp−2B∆u(ki +1)+ ·+CANp−NcB∆u(ki +Nc −1)

(3.8)

Note that all predicted variables are derived from the current state variable information x(ki) and
the future control movement u(ki + j), where j = 0, 1,...., Nc-1.

Define vectors,

Y = [y(ki +1|ki) y(ki +2|ki) y(ki +3|ki) · · · y(ki +Np|ki)]
T

∆U = [(∆uki +1) (∆uki +2) · · · (∆uki +Nc −1)]T ,

where, in the case of a single input and single output, the dimension of Y is Np, and that of U

is Nc. We collect (3.7) and (3.8) (above two equations) as a compact matrix containing both
numbers.

Y = Fx(ki)+Φ∆U (3.9)
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where

F =



CA

CA2

CA3

...
CANp


Φ =



CB 0 0 · · · 0
CAB CB 0 · · · 0
CA2B CAB CB · · · 0

...
CANp−1B CANp−2B CANp−3B · · · CANp−NcB


3.5.3. Optimization

For a given set-point signal r(ki) at sample time ki, the objective of the predictive control system
within a prediction horizon is to bring the predicted output as close as possible to the set-point
signal, assuming that the set-point signal remains constant in the optimization window. This
objective is then translated into a design to identify the "best" control parameter vector ∆U such
that an error function between the set point and predicted output is minimized.

Assuming the set-point information is present in the data vector

RT
s =

[
1 1 · · · 1

]
︸ ︷︷ ︸

Np

r(ki),

The cost function J that reflects the control objective is defined as

J = (Rs −Y )T (Rs −Y )+∆UT R̄∆U (3.10)

where the first term is associated with the goal of minimizing errors between the predicted
output and the set-point signal, and the second term reflects the consideration given to the size
of ∆U when the objective function J is made as small as possible. R̄ is a diagonal matrix with
the form R̄ = rwINcNc (rw ≥ 0), where rw is a tuning parameter used to achieve the desired
closed-loop performance. For the case in which rw = 0, the cost function (3.10) is interpreted
as a circumstance in which we do not care how large U may be, and our sole objective is to
minimize the error (Rs −Y )T (Rs −Y ). The cost function (3.10), in the case of a large rw, is
interpreted as a scenario in which we would carefully consider how large U could be and reduce
the error (Rs −Y )T (Rs −Y ) with caution.

Tuning the parameter rw in the predictive control system involves finding an appropriate
value that achieves the desired closed-loop stability and performance. The choice of rw plays a
critical role in balancing the trade-off between minimizing errors in the predicted output and
controlling the size of the control parameter vector ∆U . Here are some general guidelines on
how you might approach tuning rw for closed-loop stability:

• A higher value of rw tends to prioritize the control effort, potentially leading to a more
conservative control action. On the other hand, a lower value may focus more on tracking
the set-point signal.
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• A larger rw places more emphasis on minimizing the control input, potentially sacrificing
some tracking performance. Conversely, a smaller rw may prioritize tracking performance
at the expense of higher control effort.

• After adjusting rw, observe its impact on stability. This involves analyzing the system’s
closed-loop response, particularly how changes in rw affect stability margins. The goal is
to find a range of rw values that ensure closed-loop stability.

• Based on observations and analysis, iteratively adjust rw values until you achieve a satis-
factory balance between closed-loop stability, tracking performance, and control effort.

• The ultimate goal of this stability analysis is to find a suitable range of rw values that
ensures closed-loop stability. Closed-loop stability means that the system remains stable
when the control loop is closed, and the desired performance is achieved without leading
to instability or oscillations.

To determine the optimal U that minimises J, using Equation (3.9), J is expressed as

J = (Rs −Fx(ki))
T (Rs −Fx(ki))−2∆UT

Φ
T (Rs −Fx(ki))+∆UT (ΦT

Φ+ R̄)∆U (3.11)

Using the first derivative of the cost function J, we obtain:

∂J
∂∆U

=−2Φ
T (Rs −Fx(ki))+2(ΦT

Φ+ R̄)∆U (3.12)

The required condition of the minimum J is derived as

∂J
∂∆U

= 0,

which we derive the optimal solution for the control signal as

∆U = (ΦT
Φ+ R̄)−1

Φ
T (Rs −Fx(ki)) (3.13)

with the presumption that (ΦT Φ+ R̄)−1 exists. In optimization literature, the matrix (ΦT Φ+

R̄)−1 is referred to as the Hessian matrix. Note that Rs is a data vector containing the set-point
data expressed as

Rs =
[
1 1 · · · 1

]T

︸ ︷︷ ︸
Np

r(ki) = R̄sr(ki),

where
Rs =

[
1 1 · · · 1

]T

︸ ︷︷ ︸
Np

,
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The following equation relates the optimal solution of the control signal to the set-point signal
r(ki) and the state variable x(ki):

∆U = (ΦT
Φ+ R̄)−1(Rsr(ki)−Fx(ki)) (3.14)

3.5.4. Receding Horizon Control (Point 9)

Despite the fact that the optimal parameter vector U contains the controls u(ki), u(ki + 1),
u(ki + 2), · · · , u(ki +Nc − 1), we only implement the first sample of this sequence, i.e., u(ki)

while ignoring the rest of the sequence. When the subsequent sampling interval arrives, the most
recent measurement is used to construct the state vector x(ki +1) for calculating the new control
signal sequence. The receding horizon control law is the result of repeating this procedure in
real-time.

Closed-loop Control System

In Equation (3.13), where (ΦT Φ+ R̄)−1ΦT (Rs) represents the set-point change and (ΦT Φ+

R̄)−1ΦT F represents the state feedback control within the context of predictive control. Both
matrices are constant for a time-invariant system due to their dependence on the system param-
eters. Due to the principle of receding horizon control, we only use the first element of ∆U at
time ki as the incremental control, thus:

∆u(ki) =
[
1 0 · · · 0

]T

︸ ︷︷ ︸
Nc

(ΦT
Φ+ R̄)−1

Φ
T (Rs −Fx(ki))

and

Kyr(ki)−Kmpcx(ki) (3.15)

where Ky is the first element of
(ΦT

Φ+ R̄)−1
Φ

T (Rs)

and Kmpc is the first row of
(ΦT

Φ+ R̄)−1
Φ

T F

Equation (3.15) is a standard representation of linear time-invariant state feedback control. The
gain vector for state feedback control is Kmpc. As a result, the augmented design model:

x(k+1) = Ax(k)+B∆u(k)
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Substituting (3.15) into the augmented system equation generates the closed-loop system;
changing index ki to k produces the closed-loop system equation.

x(k+1) = Ax(k)−BKmpcx(k)+BKyr(k) (3.16)

= (A−BKmpc)x(k)+BKyr(k) (3.17)

Consequently, the closed-loop eigenvalues can be determined using the closed-loop characteristic
equation:

det[λ I − (A−BKmpc] = 0

3.5.5. Formulation of Constrained Control Problems

There are three common types of constraints encountered frequently in application development.
The first two types deal with constraints imposed on the control variables u(k), while the third
type deals with output y(k) or state variable x(k) constraints. For clarity, we will first discuss
single-input and single-output systems and then extend the discussion to MIMO systems.

Constraints on the Incremental Variation of the Control Variable

These are hard constraints on the size of control signal movements or the rate of change of
control variables (u(k)). Suppose the upper limit of a system with a single input is ∆umax, and
the lower limit is ∆umin. The form specifies the constraints in the form as follows:

∆umin ≤ ∆u(k)≤ ∆umax (3.18)

Note using less than plus equal to in (3.18), where equality plays a crucial role in solving the
constrained control problem.

The rate of change constraints can be used to impose directional movement constraints on
the control variables; for example, if u(k) can only increase and cannot decrease, we may choose
0≤ ∆u(k)≤ ∆umax. The constraint on ∆u(k) can be utilized in situations where the rate of change
of the control amplitude is constrained or limited in value. In a control system implementation,
for instance, if the control variable u(k) may only increase or decrease by a magnitude less than
0.1 unit, then the operational constraint is:

−0.1 ≤ ∆u(k)≤ 0.1

Constraints on the Control Variable’s Amplitude

These are the most frequently encountered constraints across all types. These are the physical
constraints that the system must adhere to. Basically, we require that

umin ≤ u(k)≤ umax
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Note that u(k) is an incremental variable and not the actual physical variable.

Output Constraints

We can also specify the plant output operating range. For instance, if the output y(k) has upper
and lower limits ymax and ymin, then the output constraints are specified as follows:

ymin ≤ y(k)≤ ymax (3.19)

State Constraints

The plant state operating range can also be specified. For example, if the state x(k) has upper
and lower bounds xmax and xmin, the output constraints are as follows:

xmin ≤ x(k)≤ xmax (3.20)

3.5.6. Constraints in Multi-input and Multi-output Plants

If there are multiple inputs, then the constraints for each input are specified independently.
Assume in the case of multiple inputs that the constraints for the upper limits are given as

[∆umax
1 ∆umax

2 · · · ∆umax
m ]

and lower limits as
[∆umin

1 ∆umin
2 · · · ∆umin

m ]

Each variable with a change rate is denoted as:

∆umin
1 ≤ ∆u1(k)≤ ∆umax

1

∆umin
2 ≤ ∆u2(k)≤ ∆umax

2
...

∆umin
m ≤ ∆um(k)≤ ∆umax

m

(3.21)

Similarly, suppose that the upper limit of the control signal is constrained as follows:

umax
1 umax

2 · · · umax
m

and lower limit as
umin

1 umin
2 · · · umin

m
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The amplitude of each control signal must then satisfy the constraints:

umin
1 ≤ u1(k)≤ umax

1

umin
2 ≤ u2(k)≤ umax

2
...

umin
m ≤ um(k)≤ umax

m

(3.22)

Similarly, to define the multi-state constraints:
Each input is specified independently. Assume in the case of multiple states that the con-

straints for the upper limits are given as

[∆xmax
1 ∆xmax

2 · · · ∆xmax
m ]

and lower limits as
[∆xmin

1 ∆xmin
2 · · · ∆xmin

m ]

Each variable with a change rate is denoted as:

∆xmin
1 ≤ ∆x1(k)≤ ∆xmax

1

∆xmin
2 ≤ ∆x2(k)≤ ∆xmax

2
...

∆xmin
m ≤ ∆xm(k)≤ ∆xmax

m

(3.23)

Similarly, suppose that the upper limit of the state vector is constrained as follows:

xmax
1 xmax

2 · · · xmax
m

and lower limit as
xmin

1 xmin
2 · · · xmin

m

The amplitude of each state vector must then satisfy the constraints:

xmin
1 ≤ x1(k)≤ xmax

1

xmin
2 ≤ x2(k)≤ xmax

2
...

xmin
m ≤ xm(k)≤ xmax

m

(3.24)

Constraints as Part of the Optimal Solution

After describing the constraints as part of the design specifications, the next step is to translate
them into linear inequalities and relate them to the original MPC problem. The key is to
parameterize the constrained variables with the same parameter vector ∆U used in the design
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of predictive control. Constraints are therefore expressed as a set of linear equations based on
the parameter vector ∆U . In optimization literature, ∆U is frequently referred to as the decision
variable. Since the predictive control problem is formulated and solved within the framework of
receding horizon control, each moving horizon window’s constraints are taken into account. This
enables us to modify the constraints at the start of each optimization window and also permits
us to solve the constrained control problem numerically. If we wish to impose constraints on
the rate of change of the control signal ∆u(k) at time ki, the constraints at sample time ki are
expressed as follows:

∆umin ≤ ∆u(ki)≤ ∆umax

The predictive control scheme looks to the future based on the time instance ki. The constraints
on subsequent samples, such as the first three samples, ∆u(ki), ∆u(ki +1), and ∆u(ki +2), are
imposed as follows:

∆umin ≤ ∆u(ki)≤ ∆umax

∆umin ≤ ∆u(ki +1)≤ ∆umax

∆umin ≤ ∆u(ki +2)≤ ∆umax

In principle, each constraint is specified within the prediction horizon. In order to reduce the
computational load, we select a subset of future sampling instants rather than all future samples
in order to impose constraints.

Comparing different numbers of samples in terms of the time required, such a comparison
would typically involve running simulations or experiments with different prediction horizons
and observing the computational time required for optimization. The results of such a comparison
could provide insights into the computational efficiency of the receding horizon control approach
under different scenarios. If we’re considering a larger number of samples, it’s essential to
evaluate whether the increased accuracy in predicting future system behaviour justifies the
additional computational cost. In some cases, a relatively small prediction horizon may be
sufficient to capture the most critical dynamics of the system, allowing for a computationally
efficient control strategy. However, a longer prediction horizon might be necessary for systems
with long time constants or complex dynamics. In summary, the decision on the number of
samples and the trade-off between computational efficiency and constraint accuracy is often
problem-dependent. It requires carefully considering the system dynamics and the specific
requirements of the control application.

Numerical results related to the imposition of constraints on future trajectories of control
signals and system outputs are explained in the next chapters. These numerical results collectively
emphasize the importance and effectiveness of imposing constraints on control signals and system
outputs in achieving optimal energy management within the MG:

1. Constraint on Energy Consumption from the Grid: With the extended optimal ε-
variables method, the constraint on the energy consumption from the grid (GRLD) was
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effectively applied. The reduction in energy consumption, from 2055 kWh to 1529 kWh,
signifies the impact of constraints on optimizing the MG’s operation.

2. Battery Usage Constraint: The extended optimal ε-variables method showcased a
significant reduction in battery usage (BATLD) by imposing constraints. The battery usage
decreased from 2127.1 kWh to 1956.7 kWh, highlighting the effectiveness of constraints
in managing energy storage.

3. Optimized PV Usage: Constraints played a crucial role in encouraging the practicality
of PV usage (PVGR and PVBAT ). The energy usage increase from the grid’s PV system
(PVGR), from 620.68 kWh to 791.12 kWh, demonstrates how constraints contribute to the
optimal utilization of renewable sources.

4. Overall Energy Consumption Patterns with Constraints: The overall energy con-
sumption patterns are a direct result of constraints influencing the control strategies. The
imposed constraints contributed to a reduction in grid-supplied energy, improved sustain-
ability, and cost savings.

Now that the constraints have been expressed as linear-in-the-parameter inequalities ∆U , the
next step is to combine them with the original cost function J used in the design of predictive
control. As optimal solutions will be obtained through QP, the constraints must be split into two
parts to reflect the lower and upper limits with the opposite sign. Specifically, the constraints:

∆Umin ≤ ∆U ≤ ∆Umax

will be represented by two inequalities:

−∆U ≤−∆Umin (3.25)

∆U ≤ ∆Umax (3.26)

In a matrix form, this will be: [
−I

I

]
∆U ≤

[
−∆Umin

∆Umax

]
(3.27)

where ∆Umin and ∆Umax are column vectors that contain Nc elements for ∆umin and ∆umax,
respectively. The output constraints can be defined regarding ∆U :

Y min ≤ Fx(ki)+Φ∆U ≤ Y max (3.28)
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In the end, the MPC in the presence of hard constraints is proposed as finding the parameter
vector ∆U that minimizes Equation (3.11). Then, subject to the inequality constraints as follows:M1

M2

M3

∆U ≤

N1

N2

N3

 (3.29)

In this Equation (3.11), as mentioned previously, ΦT Φ+ R̄ is a Hessian matrix and must be
positive definite. Because the cost function J is quadratic and the constraints are linear inequali-
ties, the problem of determining the optimal predictive control becomes one of determining the
optimal solution to a standard QP problem.

Equation (3.29) is denoted by for compactness as below:

M∆U ≤ γ (3.30)

where M and γ are a compatible matrix and vectors expressing the constraints, with its number
of rows equal to the variety of constraints and a number of columns equal to the dimension of
∆U . When the constraints are fully implemented, the variety of constraints is equal to 4 × m × Nc

+ 2 × q × Np, where m is the several of inputs and q is the several of outputs. The total number
of constraints is generally greater than the dimension of the decision variable ∆U . Because the
receding horizon control law only implements the initial control movement and disregards the
remaining calculated future control signals, the question arises as to whether it is necessary to
impose constraints on all future control signals and system output trajectories.

When dealing with control systems and optimization problems, imposing constraints on
future trajectories is often necessary to ensure the system behaves in a desired manner and
satisfies specific requirements. Here are a few key reasons for imposing constraints:

Introducing constraints can lead to improved system performance by preventing undesirable
behaviours. For instance, limiting overshoot or ensuring smooth transitions between states can
be achieved by imposing constraints on the trajectories. Many systems have physical limits
or operational constraints that must be respected to avoid damage, instability, or violation of
safety standards. Examples include limits on control input amplitudes, velocity constraints, or
temperature thresholds. Constraining trajectories ensure that these limits are not violated over
time. For our proposed method, the constraints imposed on power flows, state-of-charge (SOC) of
the battery, and other variables help prevent the system from operating beyond its specified limits.
For example, constraints on battery SOC prevent overcharging or over-discharging, prolonging
the battery life and ensuring its long-term reliability. Constraints contribute to the stability
of the microgrid by preventing the system from entering unstable or oscillatory modes. They
help in avoiding control actions that could lead to instability, ensuring a smooth and controlled
response to disturbances. Constraints on power flows and energy storage help optimise resource
allocation. For instance, by limiting the power sent to the grid or defining constraints on the
use of non-renewable sources, the method can promote the efficient use of renewable energy
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and reduce dependency on external grids. In summary, the constraints on future trajectories can
involve both control signals (inputs) and system outputs. Considering the system’s evolution
over time, these constraints contribute to the formulation of optimization problems that seek to
find the best control signals while adhering to the defined limitations.

3.5.7. Numerical Solutions Using QP

The standard QP problem has been investigated thoroughly (see, for example, Boyd et al.
(2004); Luenberger et al. (1984)). Due to the fact that this is a distinct field of study, it requires
considerable effort to fully comprehend the relevant theory and algorithms. The required
numerical solution for MPC is frequently viewed as an obstacle to its application. Nonetheless,
we can comprehend the essence of QP in order to generate the necessary computational programs.
The advantage of doing so is that we can access the code if anything goes wrong; we can also
write safety ’jacket’ software for real-time applications. These aspects are very important in
an industrial environment. To be consistent with the literature on QP, the decision variable is
denoted by u. The objective function J and constraints are written as follows:

J = 1/2uT Ex+uT F (3.31)

Mu ≤ γ (3.32)

Quadratic Term:

J =
1
2

uT Eu

where:

• u is a vector of variables (could be a column vector).

• E is a positive definite matrix.

• The term uT Eu represents the dot product of u with Eu. Here, Eu is another vector
obtained by multiplying the matrix E with u. The multiplication Eu results in a vector and
the dot product uT Eu is a scalar.

By multiplying the dot product by 1
2 , it is a common practice in optimization problems (like

quadratic programming) to use this term, and it has the same effect on the optimization as the
original quadratic term (without the 1

2 ).
Linear Term:

uT F

where:

• F is a vector.

This term is a linear term because it involves a linear combination of the variables u with the
coefficients given by the vector F .
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This is a standard form for a quadratic function in optimization problems. The goal in many
optimization contexts is to minimize or maximize such quadratic functions subject to certain
constraints, which seems to be the case here given the constraint Mu ≤ γ .

3.5.8. Predictive Control of MIMO Systems

In the preceding section, the predictive control system was developed as a single-input and
single-output system for ease of demonstration. Because of the state-space formulation, this
design process can easily be extended to MIMO systems with not much extra work.

General Formulation of the Model

Consider the plant to have m inputs, q outputs, and q1 states. Furthermore, we assume that the
number of outputs is fewer than or equal to the number of inputs (i.e., q, m). If the number of
outputs exceeds the number of inputs, we cannot hope to independently regulate each measured
output with zero steady-state errors. We consider plant noise and disturbance in the general
formulation of the predictive control problem.

xm(k+1) = Amxm(k)+Bmu(k)+Bdw(k) (3.33)

y(k) =Cmxm(k) (3.34)

w(k) denotes the input disturbance, which is believed to be a sequence of integrated white noise.
This indicates that the difference equation relates the input disturbance w(k) to a zero-mean,
white noise sequence ε(k).

w(k)−w(k−1) = ε(k) (3.35)

It is worth noting that the following difference equation follows from 3.33:

xm(k) = Amxm(k−1)+Bmu(k−1)+Bdw(k−1) (3.36)

Equation 3.36 can be converted to Eq.3.37:

∆xm(k+1) = Am∆xm(k)+Bm∆u(k)+Bdε(k) (3.37)

To link the output y(k) to the state variable ∆xm(k), we derive that

∆y(k+1) =Cm∆xm(k+1) =CmAm∆xm(k)+CmBm∆um(k)+CmBdε(k) (3.38)

Choosing a new vector of state variables x(k) = [∆xm(k)T ,y(k)T ]T , we have:[
∆xm(k+1)

y(k+1)

]
︸ ︷︷ ︸

x(k+1)

=

[
Am 0T

m

CmAm 1

]
︸ ︷︷ ︸

A

[
∆xm(k)

y(k)

]
︸ ︷︷ ︸

x(k)

+

[
Bm

CmBm

]
︸ ︷︷ ︸

Bm

∆u(k)+

[
Bd

CmBd

]
︸ ︷︷ ︸

Bd

ε(k)

47



Control of Microgrids using an Enhanced MPC

y(k) =
[
0m 1

]
︸ ︷︷ ︸

C

[
∆xm(k)

y(k)

]
(3.39)

Solution of Predictive Control for MIMO Systems

The predictive control method can be easily extended, but we must pay attention to the dimensions
of the state, control, and output vectors in a MIMO context.

The future state variables are derived sequentially utilising the set of future control parameters
based on the state-space model (A,B,C).

x(ki +1|ki) = Ax(ki)+B∆u(ki)+Bdε(ki)

x(ki +2|ki) = Ax(ki +1|ki)+B∆u(ki +1)+Bdε(ki +1|ki)

= A2x(ki)+AB∆u(ki)+B∆u(ki +1)+ABε(ki)+Bdε(ki +1|ki)

...

x(ki +Np|ki) = ANpx(ki)+ANp−1B∆u(ki)+ANp−2B∆u(ki +1)+ANp−NcB∆u(ki +Nc −1)

+ANP−1Bdε(ki)+ANP−2Bdε(ki +1|ki)+ · · ·+Bdε(ki +NP −1|ki)

(3.40)

The expected value of ε(ki + i|ki) at future sample i is assumed to be zero if ε(k) is a zero-
mean white noise sequence. The noise effect on the anticipated values is zero since the state and
output variables’ predictions are calculated as the corresponding variables’ expected values.

Finally, the PBG system can be modelled by employing the MPC method in the following
section.

3.6. The modelling of PBG using the MPC

The state-space linear equation can be defined using the battery equation. The linear state-space
equation can generally be represented as follows (Point 1):

x(k+1) = Ax(k)+Bu(k) (3.41)

where x is the state vector and SOC of the battery in this system, u is the input vector, also known
as the control vector, and PVLD, PVBAT , and BATLD. In the system, y represents the output vector
and GRLD. A and B can be defined in accordance with Eq (3.34). The following illustrates x, u,
and y (Point 2-4):

x(k) = [SOC(k)] (3.42)

u(k) = [PVLD(k);PVBAT (k);BATLD(k)] (3.43)

y(k) = [GRLD(k)] (3.44)
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3.6.1. The constraints of the components of PBG (Point 5)

The PV system supplies the load demand and charges the battery. It operates based on the
following constraints at sampling time k:

0 ≤ PPV ≤ Pmax
PV (3.45)

0 ≤ PVLD ≤ PV max
LD (3.46)

0 ≤ PVBAT ≤ PV max
BAT (3.47)

where Pmax
PV , PV max

LD , and PV max
BAT represent the maximum amount of energy supplied by the PV to

the load, the battery, and the grid, respectively. PPV can also be used to represent the total energy
required to meet the load demand and charge the battery.

PPV (k) = PVLD(k)+PVBAT (k) (3.48)

The battery is utilized in both charging and discharging modes depending on the amount of
available sunlight. Consequently, the charging and discharging of the battery can be defined by
the following equation:

SOC(k) = SOC(k+1)+
PVBAT (k)ηch

Cl
− BATLD(k)

Clηdis
(3.49)

In addition, constraints regarding the battery are depicted below:

SOCmin ≤ SOC(k)≤ SOCmax (3.50)

0 ≤ BATLD ≤ BAT max
LD (3.51)

where SOC represents the battery’s state of charge, SOCmin and SOCmax represent the minimum
and maximum SOC values, respectively. BAT max

LD and Cl are the hourly maximum allowable
discharging power and battery capacity, respectively. ηch and ηdis represent the battery’s charging
and discharging efficiencies, respectively.

When the PV panel and the battery are insufficient, the utility grid is utilized to meet the load
demand. This is the final option because it is more expensive and environmentally harmful. The
only benefit of its utilization is its availability at all times, barring blackouts.

In addition, the constraints associated with the grid system and load can be expressed as
follows:

0 ≤ GRLD ≤ GRmax
LD (3.52)

PLD(k) = PVLD(k)+BATLD(k)+GRLD(k) (3.53)

where GRmax
LD represents the maximum quantity of power from the utility grid.
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3.6.2. Objective Functions of PBG (Point 6)

The cost functions of the PBG system are:

1. To minimize the energy consumption from non-RES: ∑
k+N p
k w2

1GRLD(k)2 = J1

2. To increase the life cycle of the battery: ∑
k+N p
k w2

2(PVBAT (k)2 +BATLD(k)2) = J2

3. To maximize the practicality of renewable energy usage: ∑
k+N p
k w2

3(PVLD(k)2+PVBAT (k)2)

= J3

where NP is the prediction horizon and w1, w2, and w3 are cost weighting factors.
The selection of cost weighting factors (w1, w2, and w3) in the objective function is a crucial

aspect of designing a MPC system. These weighting factors determine the relative importance
of each objective in the optimization process. The choice of these factors is often based on the
specific priorities and requirements of the MG system and the goals of the control strategy. Here
are some general considerations and methods for selecting these weighting factors:

• Consider the primary goals and objectives of the MG system. For example, if minimizing
energy consumption from non-renewable sources is a top priority, a higher weight might
be assigned to the corresponding term in the objective function.

• Identify key performance metrics that reflect the desired behaviour of the MG. Each term
in the objective function corresponds to a specific metric. Assign higher weights to the
metrics that are more critical to the overall system performance.

• Evaluate trade-offs between conflicting objectives. For instance, there might be a trade-off
between maximizing the use of renewable energy and extending the battery life. The
weighting factors should reflect the importance of achieving a balance between such
objectives.

3.6.3. Reference Matrix for the PBG

Define the reference matrix (R) for the PBG (Point 7):

R(k) = [w1(PLD(k);w3(PPV (k);0;w1(PLD(k+1);w3(PPV (k+1);0;

...;w1(PLD(k+Np −1);w3(PPV (k+Np −1);0]
(3.54)

3.6.4. The calculation of receding horizon control:

In the MPC principle, the optimization problem is solved during each sampling time k, and the
first element of U(k) is employed to the MG (Point 8):

u(k) =U(k+1|k) (3.55)
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3.7. The Implementation of ε-variables for the PBG

The main idea behind the ε-variable method is that every asset is symbolized by a node, and every
flow of matter/energy is symbolized by an edge in the complicated MG system, as demonstrated
in Figure 3.2. This theory and the aforementioned evolution operators can simplify this power
system’s analysis, management, and operation. This method states that any hybrid power system
consists of three key factors: converters, accumulators, and flows. The converters are used to
convert the energy/matter to matter/energy, the accumulators accumulate energy/matter, and
the flows symbolize the flow of energy/matter. Lastly, the control statements are the evolution
operators based on the logical operators, illustrating the different types of EMSs exploited by the
multi-vector system (Giaouris et al. (2013)).

As evidence of the idea, Figure 3.2 illustrates the complicated hybrid MG system. According
to the graph theory, the converters are the PV array, load (LD), and utility grid (GR); the battery
(BAT) can be considered as an accumulator, and power can be regarded as flows. As can be seen
in Figure 3.2, the assets of the MG system can be split into two sets as follows:

• The set of converters: RsCon = {PV,LD,GR}

• The set of accumulator: RsAcc = {BAT}

In addition, the connection between two nodes can be called a f low, such as PV to BAT and
BAT to PV as a power flow.

Therefore, the set of flow for the complicated hybrid power system can be illustrated as
follows Giaouris et al. (2018):

• The set of flow: Flows = {Power}

To identify any dynamical system, we require two tasks: (a) the set of its possible states
(state space - S) and (b) an evolution operator (φ ) that determines which specific state the system
will be in at any given time (Point 16). In this regard, the state s (Point 11) of a graph (i.e., of
the MG) at a specific instant is given by the states of the nodes and edges specified as follows
(Point 9):

• A state (Point 13) must specify its presence and the type/amount of flow it includes for the
edges. This is symbolized by variable F j

a→b with j ∈ Flow and m, n two adjacent nodes.
If there is no edge, F j

a→b is zero.

• The state (Point 14) of an accumulator is the normalized amount of stored matter or energy,
represented by variable SOAccl ∈ [0,1], l ∈ RsAcc.

• The state (Point 15) of the converters is their status (whether they are activated or not),
which is indicated by variable εi(k) ∈ 0,1, i ∈ RsCon.
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State vectors, 
𝑥𝑥(𝑘𝑘) = [𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵 𝑘𝑘 ]𝐵𝐵

Control (input) vectors, 
𝑢𝑢(𝑘𝑘) = [𝑃𝑃2 𝑘𝑘 ,𝑃𝑃3 𝑘𝑘 ,𝑃𝑃4(𝑘𝑘)]𝐵𝐵

Output vector, 
𝑦𝑦(𝑘𝑘) = [𝑃𝑃1 𝑘𝑘 ]𝐵𝐵

2 3 4

Reference matrix
𝑅𝑅(𝑘𝑘) = [𝑤𝑤1𝑃𝑃𝐿𝐿𝐿𝐿(𝑘𝑘),𝑤𝑤3𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘), 0]𝐵𝐵

1

Objective function
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘 = min(𝑚𝑚1 𝑘𝑘 + 𝑚𝑚2 𝑘𝑘 + 𝑚𝑚3 𝑘𝑘)

7

6

5

The receding horizon control
𝑢𝑢 𝑘𝑘 = 𝑈𝑈(𝑘𝑘 + 1|𝑘𝑘)

Directed Graph

Set of converters, RsCon

Set of accumulators, RsAcc

Set of flows, Flow

State space model

Graph’s 
state

Evolution 
operator

State of flows, 𝐹𝐹𝑚𝑚→𝑛𝑛
𝑗𝑗 (𝑘𝑘)

State of accumulator, 
SOAcc𝐵𝐵𝐵𝐵𝐵𝐵(𝑘𝑘)

Set of converters, 𝜖𝜖𝑖𝑖(𝑘𝑘)

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵 𝑘𝑘

=
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶(𝑘𝑘) − 𝐷𝐷𝑚𝑚𝐷𝐷𝑆𝑆𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑚𝑚𝑚𝑚𝐶𝐶(𝑘𝑘)

𝐵𝐵𝐶𝐶𝐵𝐵𝐵𝐵𝐵𝐵𝐶𝐶𝑦𝑦 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑆𝑆𝑚𝑚𝐵𝐵𝑦𝑦

𝐹𝐹𝑚𝑚→𝑛𝑛
𝑗𝑗 𝑘𝑘 = 𝜖𝜖𝑖𝑖(𝑘𝑘)𝑃𝑃𝑖𝑖

𝑗𝑗

𝜖𝜖𝑖𝑖 𝑘𝑘 = 𝐿𝐿𝑖𝑖(𝜖𝜖𝑖𝑖𝐵𝐵𝐴𝐴 𝑘𝑘 , 𝜖𝜖𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅 𝑘𝑘 , 𝜖𝜖𝑖𝑖𝐺𝐺𝑅𝑅𝑛𝑛 𝑘𝑘 )

ε𝑖𝑖𝐵𝐵𝐴𝐴 𝑘𝑘 = 𝐿𝐿𝐵𝐵𝐴𝐴
𝑙𝑙 ∈ 𝑅𝑅𝐷𝐷𝐶𝐶𝐶𝐶𝑛𝑛

(𝜌𝜌𝑖𝑖𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆
𝑙𝑙
) ε𝑖𝑖

𝑅𝑅𝑅𝑅𝑅𝑅 𝑘𝑘 = 𝐿𝐿𝑅𝑅𝑅𝑅𝑅𝑅
𝑙𝑙 ∈ 𝑅𝑅𝐷𝐷𝐶𝐶𝐶𝐶𝑛𝑛

(𝜌𝜌𝑖𝑖𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆
𝑙𝑙
) ε𝑖𝑖𝐺𝐺𝑅𝑅𝑛𝑛 𝑘𝑘 = 𝐿𝐿𝐺𝐺𝑅𝑅𝑛𝑛

𝑙𝑙 ∈ 𝑅𝑅𝐷𝐷𝐶𝐶𝐶𝐶𝑛𝑛
(𝜌𝜌𝑖𝑖𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆

𝑙𝑙
)
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10
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14

19

8

Move to the ε-variables

Feedback mechanism

23

Go back to the first step (1)

24

Discrete-time linear state-space system
𝑥𝑥 𝑘𝑘 + 1 = 𝑆𝑆𝑥𝑥 𝑘𝑘 + 𝐵𝐵𝑢𝑢(𝑘𝑘)y

Constraint matrix for the 
PBG system

Figure 3.5 A graph shown in state space; points addressed in the text are indicated by numbers.
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3.7 The Implementation of ε-variables for the PBG

Hence, the states s ∈ S of the graph are (Point 11):

s = {F j
a→b,SOAccl(k),εi(k)} l = BAT, (3.56)

l ∈ RsAcc, i ∈ RsCon, a,b ∈ RsAccxRsCon, j ∈ Flow

The next step is constructing the evolution operator Φ (Point 16) to give a state s in the state
space S at an instant t0. We can calculate the state at the instant t as s(t) = φ(t,s(t0)) where φ :
S → S.

This evolution operator is the energy management approach utilized to control the MG and
the accumulator operation principle for our purposes. As in dynamical systems, we require a
different evolution operator for each state variable, i.e., an evolution operator for each s ∈ S in
our graph.

The evolution operator (Point 18) for an accumulator l with a state variable SOAccl is
effectively an integrator and is dependent on its capacity Cl and the flows F j

a→b(k) that are
directed towards and away from the accumulator (Point 17):

SOAccl(k) = SOAccl(k−1)+
∑k1∈RsCon F j

k1→l(k)−∑k2∈RsCon F j
l→k2

(k)

Cl
(3.57)

An edge with the evolution operator F j
a→b(k) (Point 10) has the following definition (Point 18):

F j
a→b(k) = εi.P

j
i , i ∈ {m,n}, j ∈ Flow (3.58)

where εi is the state of the corresponding converter and P j
i is the amount of energy or matter that

can be converted by the kth unit per unit of time. Variables P j
i might be either uncontrollable

(like the PV energy flow) or controlled by the grid’s designer or the energy management strategy
(for example, the flow of energy from the BAT).

Depending on the energy management technique, the evolution operator for the converters
(i.e., the variables εi) can be a complex function (Point 20). Nonetheless, it depends on three
variables that have a binary representation:

1. εAv
i (k), which stands for the availability of the material or energy to be transformed (Point

21).

2. A conversion’s demand for materials or energy is represented by the symbol ε
Req
i (k) (Point

22).

3. Other potential desired conditions (such as not operating the FC when the EVs are activated)
that are not connected to the aforementioned are represented by εGen

i (k) (Point 23).

The state of the accumulators determines whether materials or energy are available or required
to complete a conversion. A binary variable that is 1 when there is availability or demand and 0
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otherwise is used to assess this (Point 20-22):

ε
Av
i (k) = LAv(ρSOAccl

i ) (3.59)

ε
Req
i (k) = LReq(ρSOAccl

i ) (3.60)

where the logical operators LAv and LReq are used on the variables to quantify the need for and
the supply of/from the accumulator l. The binary variable ρ is either 0 or 1 depending on the
accumulators (see Eq. 3.56-3.59).

The general condition may be dependent on a node or an edge, but it is typically dependent
on the state of other converters and can be characterized as follows:

ε
Gen
i (k) = LGen(ρSOAccl

i ) (3.61)

where LGen is a logical operator.
Using a logical operator Li, the device i’s final evolution operator is found (Point 19):

εi(k) = Li(ε
Av
i (k),εReq

i (k),εGen
i (k)) (3.62)

3.8. The Implementation of hybrid MPC-ε-variables technique (Point 23-24)

As depicted in Figure 3.6, the ’data’ utilized as input data by the hybrid MPC-ε-variables
technique are initially obtained using the MPC method. In Figure 3.6, the ’data’ are GRLD, PVLD,
PVBAT and BATLD. The evolution operators are then computed using the state of the accumulators
and converters. To be more specific:

• As illustrated in Figure 3.6, the evolution operator for converters can be defined by three
factors represented by binary variables: εAv

i , ε
Req
i , and εGen

i represent the availability of
power, the load requirement, and the potentially desired condition, respectively. The
energy supply is dependent on the condition of the accumulators. As shown below, the
binary variable ρ is either 0 or 1 depending on the accumulators:

ε
Av
i (k) = LAv

Acc(ρ
SOAccBAT

i (k)) (3.63)

ε
Req
i (k) = LReq

Acc(ρ
SOAccBAT

i (k)) (3.64)

ε
Gen
i (k) = LGen

Acc (ρ
SOAccBAT

i (k)) (3.65)

εi(k) = ε
Av
i (k)∧ ε

Req
i (k)∧ ε

Gen
i (k) (3.66)

where LAv and LReq are the logical operators ’and’ or ’or’, and the general condition relies
on the general condition of converters. i(k) is also the state of converter i while εAv

i (k) and
ε

Req
i (k) are boolean variables that determine the availability and requirement of converter

i respectively.

• Power flows are computed by multiplying Equations (3.37) and (3.36) by Equation (3.53).
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3.8 The Implementation of hybrid MPC-ε-variables technique (Point 23-24)

MPC
(𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿,𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 ,𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 ,𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿)

Evolution (Logical) 
Operators

𝜀𝜀𝑖𝑖𝐵𝐵𝐴𝐴 𝑘𝑘 = 𝐿𝐿𝐵𝐵𝐴𝐴𝐴𝐴𝐵𝐵𝐴𝐴 (𝜌𝜌𝑖𝑖𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵𝐵𝐵

)

𝜀𝜀𝑖𝑖
𝑅𝑅𝑅𝑅𝑅𝑅 𝑘𝑘 = 𝐿𝐿𝐵𝐵𝐴𝐴𝐴𝐴

𝑅𝑅𝑅𝑅𝑅𝑅(𝜌𝜌𝑖𝑖𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵𝐵𝐵

)

𝜀𝜀𝑖𝑖𝐺𝐺𝑅𝑅𝐺𝐺 𝑘𝑘 = 𝐿𝐿𝐵𝐵𝐴𝐴𝐴𝐴𝐺𝐺𝑅𝑅𝐺𝐺(𝜌𝜌𝑖𝑖𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐴𝐴
𝐵𝐵𝐵𝐵𝐵𝐵

)

𝐹𝐹𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃

𝐹𝐹𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃

𝐹𝐹𝑃𝑃𝑃𝑃→𝐵𝐵𝐵𝐵𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃

𝐹𝐹𝐵𝐵𝐵𝐵𝐵𝐵→𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑅𝑅𝑃𝑃

𝑆𝑆𝑆𝑆𝐵𝐵𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

Results

“data” are obtained using the MPC. These are
power flows, such as imported/exported energy
from/to the grid and charging/discharging battery.

Logical operators including “AND/OR” are
defined for sum of equations, such as availability,
requirement and general condition equations.

After defining the evolution operators, power flows
are calculated by multiplying the evolution
operator and “data” for each converter.

C
al

cu
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 p

ow
er

 fl
ow

s

The state of the accumulator for the battery is
calculated using the battery parameters, such as
battery capacity, charging/discharging battery
power flows and efficiency.

Fe
ed

ba
ck

After the calculation of the SOAcc for the battery
and power flows, these values are validated using
the feedback mechanism.

For the MG system, the
“power” can be considered
as a “flow”. For hybrid MGs
(such as Chapter 5), the
“flow” can be extended by
adding “hydrogen” and
“water”.

C
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la
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 ε-
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Figure 3.6 The flow-chart of the proposed method (MPC-ε-variables)
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Obtain the data from the MPC

for k = 1

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑘𝑘 − 𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘

𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 > 0
𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 > 𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝐿𝐿(𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 , 𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 )

𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 > 𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 < 0
𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝐿𝐿(𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 , 𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿

𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 )

𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 < 𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 < 0
𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝐿𝐿(𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 , 𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿

𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 )

𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 > 0
𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘 = 𝐿𝐿(𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴 𝑘𝑘 , 𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 )

𝐹𝐹𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃 𝑘𝑘 = min(𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘 ,𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘))𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿 𝑘𝑘
𝐹𝐹𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘 𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘
𝐹𝐹𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃 𝑘𝑘 = 𝐵𝐵𝑆𝑆𝐵𝐵𝐿𝐿𝐿𝐿 𝑘𝑘 𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿 𝑘𝑘
𝐹𝐹𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑃𝑃 𝑘𝑘 = 𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿 𝑘𝑘 𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿 𝑘𝑘

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑛𝑛 < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘
< 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑎𝑎𝑎𝑎

k+1

Results

Net power represents the difference between 
the PV and load data is calculated.

The length of the loop is selected for 2 days 
(96 hours) and 1 year (8760 hours).

The input, output and state vectors (outputs for 
the MPC) are employed to initiate the ε-

variables.

The evolution operators for the converters are 
calculated using logical operators, including 

AND/OR.

Power flows are calculated depending on the 
conditions of the converters and accumulator.

State of charge of the battery is calculated by 
employing the constraint (min = 20% and 

max = 90%).

The results are obtained with the ε-variables. 
Finally, the feedback mechanism is exploited 

to check these results with the MPC. 

Then, the power flows (input and output data 
from the MPC) are used for the power 

calculation through ε-variables.  

The battery constraint is ensured by 
employing the MPC.

Feedback mechanism

Figure 3.7 The detailed flow chart of the hybrid MPC-ε-variables technique.
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3.8 The Implementation of hybrid MPC-ε-variables technique (Point 23-24)

– FPower
GR→LD(k) = y.εi(k)

– FPower
PV→LD(k) = u(1).εi(k)

– FPower
PV→BAT (k) = u(2).εi(k)

– FPower
BAT→LD(k) = u(3).εi(k)

• The final step is to compute the accumulator’s evolution operator:

SOAccBAT (k+1) = SOAccBAT (k)+
FPower

PV→BAT −FPower
BAT→LD

BatteryCapacity
(3.67)

SOAccBAT (k) ∈ [0,1]

Depending on their operational status (active or inactive), the converters are depicted as εi(k) ∈
{0,1} where i ∈ RsCon.

After finding the control decisions, the results are checked by employing the feedback
mechanism of our proposed method (Point 23). According to our results, the control decisions
of alone MPC and that of MPC-ε-variables are the same. This is an expected and reasonable
outcome. However, if these results are not the same, the controller returns to the first step to
modify or change something (Point 24).

If, after checking the results using the feedback mechanism in Point 23, it is found that
the control decisions of the alone MPC and MPC-ε-variables are not the same, it indicates a
discrepancy or inconsistency in the control strategy. In such a scenario, the controller would need
to return to Point 1 and modify or adjust certain aspects of the system or the control algorithm.
Here are some potential aspects that might need modification:

• Algorithm Parameters: Review and adjust parameters used in the algorithm, such as
prediction horizons, weights in the objective function, or tuning parameters. Small changes
in these parameters can significantly impact the optimization results.

• Constraints: Reevaluate the constraints imposed on the system. If the constraints are
too restrictive or do not adequately capture the system dynamics, they might need to be
modified.

• Evolution Operators: Examine the evolution operators, especially those associated with
ε-variables. These operators play a crucial role in determining the system’s behaviour and
responses to different conditions. Adjustments might be needed to ensure they accurately
represent the system dynamics.

• Logical Operators: If logical operators are used in the ε-variables, review and modify
them as needed. Logical conditions that determine the activation or deactivation of
converters should align with the system’s requirements.

• Initial Conditions: Check the initial conditions of the system. The system’s starting state
can significantly impact the optimization results. Ensure that the initial conditions are
realistic and appropriate for the given scenario.
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The detail for implementing the second step of our method has been explained in Figure 3.7.
This figure explains the evolution operator’s calculation and the logical operators’ definitions
for each converter. Moreover, Figure 3.7 illustrates the calculation of the power flows for PVLD,
PVBAT , GRLD, and BATLD.

3.9. The comparison of ε-variables and if/else statement

Figure 3.8 shows that the if/else statement implementation consists of several steps in the
MATLAB ’for’ loop. Initially, the loop calculates the net values of equal PV power minus
load demand. The condition of SOC is then evaluated to determine whether it is greater or less
than the minimum/maximum values of SOC. At that time, both negative and positive values
are examined. This technique operates based on the four distinct situations formulated within
ε-variables, as shown in Figure 3.8’s large rectangular area. These conditions include:

• if Pnet(k)> 0
}

SOAccBAT > SOCmax SOAccBAT < SOCmax

• if Pnet(k)< 0
}

SOAccBAT > SOCmin SOAccBAT < SOCmin

The if/else statement results are evaluated based on these four conditions. The results are binary
variables (0 or 1) using logical operators, including AND and OR. Finally, the power flows are
calculated by incorporating the battery’s SOC constraint. Concerning the feedback line, the
if/else statement’s results are compared to those obtained by the MPC. As depicted in Figure
3.8, despite the fact that we get the same results with ε-variables, the if/else statement is neither
straightforward nor practical. To make it clear, supposing that we decide to change the value for
the initial SOC or remove one of the power flows, the controller is required to be re-modified.
Nevertheless, in the ε-variables, we do not need to re-modify too many things in this controller,
supposing that we decided to change something in this controller. Therefore, ε-variables are
primarily used to make the MG system more practical and simple to implement, particularly
hybrid MG systems.

3.10. Results and Discussions

3.10.1. Simulation results of hybrid MPC-ε-variables technique

Figure 3.9 depicts the PV and load data obtained from a building in the UK during the autumn
season. Energy generation starts at the beginning of the morning (different morning times
depending on sunlight) during these days. Also, the peak energy generation occurs at 1 PM
and 2 PM. On the other hand, there is no PV generation in the course of the non-sunlight
times. Regarding the load demand, it fluctuates due to several parameters such as the number of
occupants, special days, and colder/warmer days, e.g., For instance, the load demand peaks on
the first day between 7 PM and 8 PM since the occupants may return from their works or special
day along with Christmas or Easter days. When sunlight is insufficient, or there is excessive
load-generation mismatch, especially on nights, the battery (as a priority), then the utility grid is
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Obtain the output data from the MPC 

for k = 1

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑘𝑘 − 𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 > 0

SOAccBAT>SOCmin SOAccBAT>SOCmax

𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘
𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)
𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 𝑘𝑘 = 0
𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿 𝑘𝑘 = 0

𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿 𝑘𝑘 = 0
𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)
𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 𝑘𝑘 = 0

𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘

𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿 𝑘𝑘 = 0
𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘)
𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘

𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿 𝑘𝑘 = 0

𝐵𝐵𝐵𝐵𝐵𝐵𝐿𝐿𝐿𝐿 𝑘𝑘 = 0
𝑃𝑃𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘
𝑃𝑃𝑃𝑃𝐵𝐵𝐵𝐵𝐵𝐵 𝑘𝑘 = 0
𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿 𝑘𝑘 = 0

YesNo

Yes No Yes No

SOCmin<SOAccBAT<SOCmax

k + 1

Results

Figure 3.8 The illustration of the if/else statement
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Figure 3.9 Hourly PV and load demand (120 hours) for the building in the UK during the autumn season.

utilized. On the other hand, if the PV generates excess energy after covering the load-generation
mismatch, the energy is exploited in order to charge the battery. The following figures will
effectively demonstrate energy usage using the MPC and MPC-ε variables.

Initially, the MPC is implemented, and then the MPC is merged with the ε-variables to
compare each strategy’s results. According to our results, the standard MPC and the merged
MPC-ε-variables have the same results. Moreover, our results indicate that the proposed method
does not alter the fundamental goals and behaviour of the MPC. It is simple to extend the
use of ε-variables to more complex systems and control constraints by modifying their logical
operators.
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(a) (b)

(c)

Figure 3.10 The results of power flows using (a) the MPC, (b) the MPC-ε-variables, and (c) the MPC-ε-
variables when SOAcc(1) = 0.55 during the autumn.

As shown in Figure 3.10a, the MPC imports energy from the battery BATLD and utility grid
GRLD when the SOC falls below 30%. It is worth noting that the MPC does not fall below the
critical value (20%) in order to protect the battery from over-discharging. When the battery
works to meet the load-generation mismatch, it is in discharging mode BATLD. On the other hand,
the battery is in charging mode when the PV generates excessive energy, PVBAT . Furthermore,
by modifying the evolution operator of εGR→LD, the energy consumption from the utility grid
can be decreased, as demonstrated in Figure 3.10b. In this case, the binary variables of εGR→LD

are converted from 1 to 0. If the initial value of SOC is chosen as 55%, the energy from the
battery to the load εBAT→LD is increasing initially. After the first day, the binary variables of
εBAT→LD are converted from 1 to 0. Therefore, the value starts to decrease, as demonstrated
in Figure 3.10c. On the contrary, the utility grid works instead of the battery. In this case, the
logical operators of the εGR→LD are turned from AND to OR. By doing that, the binary variables
of εGR→LD are converted to 1. Hence, energy imported from the utility grid GRLD is increased,
whereas energy imported from the battery is decreased BATLD.
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(a) (b)

(c)

Figure 3.11 The results of power flows and SOC of the battery using the MPC-ε-variables

However, there are instances in which this can occur close to the point where PV will produce
sufficient energy to compensate for the slight drop in SOC below 30% (see Figure 3.11b), thereby
increasing the system’s independence from the main grid. Therefore, in this instance, and without
modifying the MPC structure, the evolution operator of the converter "Grid" will contain an
additional term that is logically 0 when it is anticipated that the PV will produce sufficient
power within 1 or 2 samples. Since, in this work, this evolution operator utilizes the AND
logical gate, when this new binary variable equals zero, the evolution operator will also equal
zero, as indicated in Figure 3.11a. To clearly explain it, if the evolution operators change for
the asset (battery), the case of the battery changes. For instance, to protect the battery from
over-discharging, the logical operators of εBAT→LD are converted from 1 to 0. For this reason,
the SOC of the battery behaves differently from the previous one, as shown in Figure 3.11b. The
SOC of the battery is dramatically decreasing during the first day (see Figure 3.11c), but it does
not pass critical value due to the evolution operator of εBAT→LD. In summary, the MG system
is re-modified when changing the initial value of SOC of the battery because of ε-variables. In
order to meet the load-generation mismatch, the utility grid runs much more than before rather
than the battery usage.
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3.10 Results and Discussions

Figure 3.12 Hourly PV and load demand (120 hours) for the building in the UK during summer.

On the other hand, Figure 3.12 displays the PV and load data collected from a building in
the UK during summer. During these days, energy production begins earlier than the winter
season because of much more sunlight days. In addition, the peak energy production starts to
occur at the beginning of 11 AM. During non-sunlight hours, however, there is no PV generation.
These non-sunlight hours start much later (after 8 PM) than the winter session. Regarding load
demand, this amount is much less since the occupants have planned for outside activities during
hot nights.
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(a) (b)

(c)

Figure 3.13 The results of power flows using (a) the MPC, (b) the MPC-ε-variables, and (c) the MPC-ε-
variables when SOAcc(1) = 0.55 during the summer.

During the summer season, the PV generation is much greater than in the winter season.
Hence, the values of charging battery PVBAT are much greater than can be when compared to
Figure 3.10a and Figure 3.13a. The main reason for the increase in SOC of the battery (see
Figure 3.13a) is the increase in the PVBAT . In contrast, the discharging battery BATLD decreases
due to the much more sunlight days. As mentioned earlier, when there is excessive energy in the
PV, the energy is employed for the charging battery. Notably, there is not enough energy in PV
and battery, and the utility grid GRLD is utilized in order to meet the load-generation mismatch.
Regarding the ε-variable method, when the SOAcc of the battery falls below the initial value
of the SOAcc, the evolution operators (logical operators) of the εBAT→LD are converted AND,
initially. After the first day, the binary variables of BATLD are turned from 0 to 1, as illustrated in
Figure 3.13b. If the initial value of SOAcc is set to 55%, the power transferred from the battery
to the load εBAT→LD initially increases. Concerning the utility grid GRLD, the values decrease
depending on the initial value of SOAcc, as can be seen when compared to Figure 3.13b and
Figure 3.13c. As a result of ε-variables, the MG system must be modified when the initial SOAcc

value of the battery is changed. In order to compensate for the mismatch between load and
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generation, the utility grid runs significantly more than it did previously, rather than utilizing
batteries.

(a) (b)

(c)

Figure 3.14 The results of power flows and SOC of the battery using the MPC-ε-variables during summer.

Furthermore, the logical operators of εGR→LD are converted to 0 during the first day since the
SOAcc of the battery drops below 30% (see Figure 3.14a). To clarify, if the evolution operator of
the asset (battery) changes, the battery’s case also changes. For example, the logical operators
of εBAT→LD are converted from 1 to 0 to prevent over-charging. Due to this, the SOAcc of the
battery behaves differently compared to the previous one, as depicted in Figure 3.14b. Figure
3.14b demonstrates that by modifying the evolution operator of εGR→LD, the energy consumption
from the utility grid can be reduced. The binary variables of εGR→LD are converted from 1 to
0 in this instance. The SOAcc of the battery increases significantly during the MG operation
(see Figure 3.14c) but does not go above the critical value (90%) due to the evolution operator
εBAT→LD. For instance, the SOAcc of the battery is at the peak at the end of the 3rd day. In this
case, the evolution operator of εBAT→LD is converted to AND. By doing that, the binary variables
of εBAT→LD are turned from 1 to 0.

The building is simulated for 8760 hours (one year) and compared to the results of these
methods (ε-variables and the merged MPC-ε-variables). All these values of SOC work at desired
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(a) (b)

Figure 3.15 The results of power flows and SOC of the battery using the MPC - ε-variables

conditions; namely, it does not over-charging/over-discharging because of the constraints and
evolution operator of an asset for the battery, as illustrated in Figure 3.15. To clarify, when the
battery approaches over-charging, the binary variables of εBAT→LD are converted from 1 to 0.
After that, the SOC value is increased or stabilized. On the other hand, supposing that the battery
is getting close to over-charging, the logical gate of the εPV→BAT is turned from 1 to 0. By doing
that, the value of εPV→BAT is started to decrease or be stable. It is noted that the standard MPC
and merged MPC-ε-variables are the same results in terms of SOC of the battery and power
flows. In brief, these desired conditions are assessed with constraints and evolution operators
through the MPC and ε-variables.

3.11. Conclusion

In conclusion, there are various reasons to use MPC to manage the MG power system. Using
cost functions and constraints, the MPC is able to predict power generation and consumption as
well as deal with uncertainty and disturbances. However, MPC implementation is not simple,
particularly in complex MG systems. In addition, it requires a great deal of processing power
and time. In this chapter, the ε-variables have been combined with the MPC technique to
address these issues. This hybrid method reduces the complexity of the MPC implementation
and improves the scalability and controllability of the PBG system at any given time. The
MPC-ε-variables technique simplifies the system’s control, so to speak. In this chapter, we
first demonstrated that the MPC and the MPC-ε-variables produce identical results. Then, as
a case study, we demonstrated how the EMS could be easily modified without requiring MPC
modifications.

The next chapter will explain several case studies to prove improved the MPC in terms of
scalability and adaptability (flexibility) by merging ε-variables. The proposed method is called
"extended optimal ε-variables". However, the main downside of ε-variables is not being optimal.
Therefore, the next chapter will illustrate how to overcome the downside of the ε-variables. The
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3.11 Conclusion

imported energy from the utility grid is decreased, whereas the exported energy to the RES (such
as PV) is increased. In addition, the adaptability and scalability with the changes or modifications
in the MG structure are significantly improved using the extended optimal ε-variables in the next
chapter.
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Chapter 4. Energy Management of Grid-Connected Microgrids using an
Optimal Systems Approach

4.1. Overview

MGs have emerged as a result of the increasing adoption of RESs to combat global warming,
which has caused a significant shift in the topologies of traditional power networks. Localized
power generation and distribution systems are a new paradigm for energy industry segments.
However, controlling them can be difficult due to their complexity and the diverse properties of
each asset in the MG. Various approaches have been proposed to address the control challenges
of MGs, including the optimal operation of MG assets and systems-based approaches for
synthesizing an MG’s EMS. Systems-based approaches aim to simplify the control structure and
enhance the adaptability and scalability of MG’s EMS. In contrast, optimal operation methods
aim to maximize the efficiency and dependability of each asset in the MG. ε-variables-based
logical control strategy is a promising systems-based approach. This method models control
strategies in MGs and simplifies the control structure, enabling greater scalability and robustness.
Nonetheless, control based on ε-variables is not optimal and does not always provide the best
solution.

On the other hand, S-MPC is a sophisticated method for controlling power systems that
satisfy multiple constraints to achieve an optimal solution based on multiple criteria. However,
implementing S-MPC can be computationally intensive and complex. To overcome the difficul-
ties of implementing both ε-variables based control and S-MPC, the extended optimal ε-variable
method is proposed in this chapter. This method combines ε-variables based control with S-MPC
to optimize the energy management of an MG and improve its adaptability and scalability.

The extended optimal ε-variable method has shown significant improvements in optimizing
the EMS of an MG. Our findings indicate that this method reduces the operational cost of an MG
by nearly 35%, reduces the use of the BESS by 42%, and improves the viability of PV use by 28%.
In addition, this method improves the adaptability and scalability of the MG’s control structure
by translating S-MPC results to the ε-variable method. The extended optimal ε-variable method
is a promising approach for managing complex and diverse energy systems, as the conclusion
demonstrates. The method increases the effectiveness and efficiency of MG control, making it
an invaluable resource for the energy sector. This chapter provides a comprehensive overview of
the development, implementation, and effectiveness of the extended optimal ε-variable method
in optimizing the energy management of MGs.

69



Energy Management of Grid-Connected Microgrids using an Optimal Systems Approach

4.2. Introduction

PV and WT power generators are increasingly integrated into MGs due to their renewable and
eco-friendly characteristics (Xu et al. (2019)). MG integrates diverse energy sources, such as
RESs (PV panels, wind), ESSs (batteries, hydrogen, pumped hydro (water)), diesel generators,
and load and control devices (Tobajas et al. (2022)). In addition, an MG can schedule DR
programs in order to maintain a balance between generation and demand. DR programs have the
capability of modifying customer load profiles (Kakran and Chanana (2018)). This capability
increases the MGs’ dependability and decreases their energy consumption. The MG is considered
an advanced power network topology for these reasons (Cheng et al. (2018)).

However, an MG faces additional controllability challenges due to abrupt power fluctuations
during real-time operation, intermittent energy production, and irregular energy consumption
(Hu et al. (2021); Yoldas et al. (2022)). To properly manage the power flow between the main
grid and MGs, (i) the scalability and (ii) the optimal operation of MG assets with increases in
the complexity of control frames (Ghasemi et al. (2023)) are the most significant challenges.
Consequently, a practical method is required to ensure efficient energy management. In contrast,
a new method for systematically modelling EMSs based on evolution operators and the state
of the directed graph representing the system was first proposed in Giaouris et al. (2015). This
method is based on the so-called ε-variables that describe the evolution and, consequently, the
control strategy of a multi-vector energy system (Giaouris et al. (2018)). A node represents each
asset in the system, and an edge between the nodes defines each energy and/or matter flow.

Specifically, graph theory can be used to easily describe a hybrid energy system, as stated in
Giaouris et al. (2018). In other words, energy systems can be depicted in a manner that simplifies
their analysis, operation, and management with the aid of graph theory augmented by the
evolution operators mentioned previously. The evolution operators describing the multi-vector
system’s EMS are the control statements that operate the converters (Giaouris et al. (2013)). The
MG’s scalability problem has been resolved using the ε-variables method. Nonetheless, this
approach is not optimal.

Several optimization and control algorithms have been presented in Table 4.1 in order to
optimize the operation of the MGs. Several authors have also employed stochastic dynamic
programming and optimization algorithms (Aaslid et al. (2022); Alipour et al. (2022); Wang et al.
(2022a); Zhu et al. (2021)). Using the Cuckoo Search (CS) algorithm and the GOA, the operation
of renewable energy systems has been optimized to minimize the overall losses in the distribution
network (Suresh and Edward (2020)). In Wang et al. (2022b), distributed proximal primal–dual
(PD) was used to optimize a distributed energy management problem for responsive loads and
distributed generators with transmission losses. To achieve optimal energy management with
tolerable operational costs and GHG emissions, a PD-based distributed algorithm with dynamic
weights is introduced. Moreover, the technique proposed has lower computational complexity
than distributed optimization algorithms Liu and Yang (2022). The teaching learning-based
optimization (TLBO) algorithm was used to solve a multi-objective optimization problem that
reduced costs and enhanced the reliability of the MG. The findings demonstrated how charging
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and discharging ESSs could reduce MG costs while improving system performance and reliability
(Rahmani et al. (2023)). The simulation results presented in Zhang et al. (2016) demonstrate
the efficiency of the master-slave (MS) peer-to-peer integration MG control method based on
communication in achieving stable operation of the MG in grid-connected and islanded states,
as well as smooth switching between these two modes. Multi-commodity flow (MCF) and
Single-commodity flow (SCF) were employed to provide flexible and adaptable operations for
MG generation. Regardless of the difficulty of the optimization problem, this study demonstrated
that MCF-based formulations and enumeration formulations are typically less effective (Pang
et al. (2022)). PSO has been incorporated for the optimal design of a hybrid renewable energy
system (HRES), including PVs, WTs, and battery units while minimizing the system’s overall
cost (Mansouri Kouhestani et al. (2020)).

A novel extended optimal ε-variable technique is produced. With the help of this method:

• The operational cost of the MG is decreased.

• The practicality of renewable generator usage is encouraged.

• The adaptability and scalability with the changes in the MG structure are improved.

The scalability and adaptability of the MPC with optimal ε-variable in response to changes
in the MG structure can be attributed to several key features and methodologies. Here are some
aspects that contribute to its scalability and adaptability:

Scalability:

1. Ease of Integration with New Components: The optimal ε-variable MPC is designed to
integrate new components into the MG easily. This includes renewable energy sources,
storage systems, or other elements. The control strategy can adapt to changes in the MG’s
topology without requiring extensive reconfiguration.

2. Flexible Control Horizons: The predictive nature of MPC allows for flexibility in control
horizons. This flexibility is valuable when adding or removing components from the MG.
The control horizon can be adjusted to seamlessly accommodate the characteristics and
dynamics of new elements.

3. Modular Design: The modular control architecture allows for adding or replacing modules
corresponding to different MG components. This modularity ensures the control system
can scale with the MG’s growth or changes.

4. Parameter Adaptability: The MPC’s parameters, including the prediction horizon and
other optimization settings, can be adjusted to suit the scale of the MG. This adaptability
is crucial when expanding or modifying the MG infrastructure.

Adaptability:
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Optimization
method

Scalable Reliable Adaptable Optimal Imply Ref.

ε-variable Outstanding Poor Outstanding No Easy
Giaouris et al.

(2018)

MCF Poor Good Good Yes Easy

Ahmadi and
Martí (2015);

Borghetti (2012);
Pang et al. (2022)

SCF Poor Good Good Yes Easy
Chen et al.

(2015); Ding et al.
(2017)

PD Good Good Good Yes Complex
Liu and Yang
(2022); Wang
et al. (2022b)

MS Poor Poor Good Yes Complex

Delghavi and
Yazdani (2017);

Zhang et al.
(2016); Zheng

and Weiye (2021)

PSO Poor Poor Poor Yes Complex
Mansouri Kouhes-
tani et al. (2020)

GOA Poor Good Good Yes Complex

Fossati et al.
(2015); Hakimi

et al. (2019);
Suresh and

Edward (2020)

TLBO Poor Outstanding Outstanding Yes Moderate
Rahmani et al.

(2023)

MPC Outstanding Poor Outstanding Yes Complex

Hu et al. (2021);
Su et al. (2014);

Villalón et al.
(2020)

Extended
optimal

ε-variable
Outstanding Outstanding Outstanding Yes Easy

Cavus et al.
(2023)

Table 4.1 The Comparison of Optimization Methods

1. Dynamic Model Updating: The MPC with optimal ε-variable employs a dynamic model
that can be updated to reflect changes in the MG’s structure. This adaptability ensures that
the control system continues to make accurate predictions and optimal decisions, even
with modifications to the system.

2. Scenario-Based Optimization: The ε-variable method allows for the consideration of
multiple scenarios or operating modes. As the microgrid structure changes, the MPC can
select the most appropriate scenario, adapting its control strategy accordingly.
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4.2 Introduction

3. Real-Time Monitoring and Feedback: Real-time monitoring of the MG’s performance
allows the MPC to receive feedback on the effectiveness of its control decisions. This
feedback loop enables adaptive adjustments in response to changes or unexpected events.

S-MPC, on the other hand, is an innovative and more effective control strategy than conven-
tional control strategies. In addition, S-MPC has a rapid transient response (Hu et al. (2021))
because its primary function is to incorporate newly updated data and forecasts. By doing so,
the S-MPC is able to make better decisions regarding the future behaviour of the system using
various constraints (Su et al. (2014); Ulutas et al. (2020); Wang (2009)). In addition, S-MPC
can be utilized in multiple ways to control the MG system more effectively than other control
strategies. For instance, S-MPC is straightforward and intuitive to comprehend. It operates by
considering multiple constraints and uncertainties (Villalón et al. (2020)). However, it is difficult
to implement and modify if the structure of the MG has changed due to a sudden change in the
MG during operation.

As shown in Table 4.1, although these optimization strategies are optimal, some of them are
neither scalable nor simple. This chapter employs an innovative methodology to produce a more
systematic method for bridging the gap between the simplicity of implementation, scalability, and
optimal operation of the MG. The approach implements the combination of the ε-variable method
and S-MPC, retaining the benefits of the ε-variable method while making it more effective and
robust by incorporating S-MPC.

The rest of the chapter are organized as follows: Section 4.3 presents the implementation
of S-MPC with Finite-horizon Linear Quadratic regulator (LQR) in the compact formulation.
In Section 4.4, the methodology for developing an optimal systems-based EMS for the MG is
outlined. Section 4.5 describes the MG utilized in this study and explains the steps required to
implement the optimal method proposed. In Section 4.6, the simulation results of the proposed
EMS are discussed. Section 4.7 concludes with a summary of the conclusions.

1. Reduction in Operational Energy Cost: For instance, consider the operational energy
cost of the MG with the traditional method as 200 kWh. After implementing MPC with
optimal ε-variables, the cost is reduced to 150 kWh. This 25% reduction signifies improved
cost-effectiveness in managing the MG.

2. Improved Battery Energy Storage System (BESS) Utilization: Suppose the BESS
previously operated at 100 kWh without the proposed methodology. After implementing
MPC with optimal ε-variables, the BESS usage is reduced to 58 kWh. This 42% decrease
indicates more efficient utilization of the energy storage system, leading to potential cost
savings and enhanced system performance.

3. Cost Reduction Summary: By integrating MPC with optimal ε-variables, the thesis
demonstrates a comprehensive cost reduction strategy. The 25% decrease in operational
energy cost, the 42% reduction in BESS usage, and the 28% improvement in PV utilization
collectively contribute to a more economical and sustainable MG operation.
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4. Energy Utilization Improvement Summary: The improvements in BESS and PV utiliza-
tion contribute to a more efficient and sustainable energy management system. The 42%
decrease in BESS usage indicates better storage system efficiency, while the 28% increase
in PV usage highlights enhanced harnessing of RESs. Together, these improvements
signify a more optimized and sustainable energy utilization strategy for the MG.

4.3. General Information for the Implementation of S-MPC with Finite-horizon LQR in
Compact Formulation

The constraints set of the states and control vectors can be represented by the set of X and U as
follows (usually characterized by linear inequalities):

X= x ∈ Rn : axx ≤ bx (4.1)

U= u ∈ Rm : auu ≤ bu (4.2)

It is noted that R is the set of real numbers; Rn and Rmxn symbolize n-dimensional Euclidean
space and the space of mxn real matrices. ax and bx are vectors or matrices that represent
coefficients for the linear inequalities constraining the state vector x(k). au and bu are vectors or
matrices that define the right-hand side of the linear inequalities for the control vector u(k).

The cost function (objective function) is selected as a quadratic sum of the system states and
system-control inputs:

J = x(TH)
T Q(TH)x(TH)+

TH−1

∑
k=0

x(k)T Qx(k)+u(k)T Ru (4.3)

where Q(TH) ∈Rnxn and Q ∈Rnxn, are the weighting matrices exploited for weighting the states;
R ∈ Rmxm, is another weighting matrix utilized for weighting control inputs. In Eq. (4.3), R

and Q symbolize the input penalty symmetric matrix and the state penalty symmetric matrix,
respectively. Furthermore, Q(TH) represents the terminal predictive state in order to obtain the
final response of the system.

The system-state and system-control sequences are stated as follows:

X = (x(0), x(1), x(2), · · · , x(TH)) X ∈ XTH+1

U = (u(0), u(1), u(2), · · · , u(TH)) U ∈ UTH+1

To minimise the cost function, S-MPC computes the control sequence for the next Np instants. It
is worth noting that a prediction horizon Np should be smaller than or equal to the time horizon
TH . The cost function with a Np at time instant k can be stated as:

J = x(k+NP|k)T Q(k+NP|k)x(TH)+
k+NP−1

∑
i=k

x(i|k)T Qx(i|k)+u(i|k)T Ru(i|k) (4.4)
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4.3 General Information for the Implementation of S-MPC with Finite-horizon LQR in
Compact Formulation

where x(i|k) and u(i|k) represent the state and control input at time i predicted at time instant k.
k are the time instants within the time horizon TH ; i are the time instants within the prediction
horizon NP.

Similarly, the system-state and system-control sequence for the S-MPC at time instant k can
be defined as:

X = (x(k|k), x(k+1|k), x(k+2|k), · · · , x(k+NP|k))

U = (u(k|k), u(k+1|k), u(k+2|k), · · · , u(k+NP −1|k))

Then, the S-MPC problem for the linear system Eq. (4.1) with the current state x(k|k) = x(k)

given, compute the system-control sequence U(k), by solving the optimization problem:

U(k) ∈ UNP X(k) ∈ XNP+1

x(i+1|k) = Ax(i|k)+Bu(i|k) i = k, · · · , k+NP −1

From the solution of the state equation for the discrete-time linear state-space system:

x(k|k)
x(k+1|k)
x(k+2|k)

...
x(k+NP|k)


=



I

A

A2

...
ANP


x(k)+



0 0 · · · 0
B 0 · · · 0

AB B · · · ...
...

... . . . 0
ANP−1B ANP−2B · · · B





u(k|k)
u(k+1|k)
u(k+2|k)

...
u(k+NP −1|k)


(4.5)

By defining the following matrices:

X(k) =



x(k|k)
x(k+1|k)
x(k+2|k)

...
x(k+NP|k);


U(k) =



u(k|k)
u(k+1|k)
u(k+2|k)

...
u(k+NP −1|k)


Ax =



I

A

A2

...
ANP;


Bu =



0 0 · · · 0
B 0 · · · 0

AB B · · · ...
...

... . . . 0
ANP−1B ANP−2B · · · B


The equation (4.59) is re-written as:

X(k) = AX x(k)+BU U(k) (4.6)
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The predicted state X(k) can be considered as a function of the current state x(k) and control
sequence U(k). Similarly, by defining:

Qx =



Q 0 · · · 0
0 Q · · · 0

0 0 · · · ...
...

... . . . 0
0 0 · · · QNP;


Ru =



R 0 · · · 0
0 R · · · 0

0 0 · · · ...
...

... . . . 0
0 0 · · · RNP


(4.7)

Then, the cost function (4.4) can be stated using X(k) and U(k) as

J(k) = X(k)T QxX(k)+U(k)T RuU(k) (4.8)

Finally, by defining:

aX =



ax 0 · · · 0
0 ax · · · 0

0 0 · · · ...
...

... . . . 0
0 0 · · · ax;


bX =



bx 0 · · · 0
0 bx · · · 0

0 0 · · · ...
...

... . . . 0
0 0 · · · bx;


aU =



au 0 · · · 0
0 au · · · 0

0 0 · · · ...
...

... . . . 0
0 0 · · · au;


bU =



bu 0 · · · 0
0 au · · · 0

0 0 · · · ...
...

... . . . 0
0 0 · · · bu;


(4.9)

The system-state and system-control constraints in (4.1) and (4.2) can be demonstrated in terms
of X(k) and U(k) as:

aX X(k)≤ bX (4.10)

aU U(k)≤ bU (4.11)

By combining X(k) and U(k), the cost function with a single decision vector will be:

z =

[
X(k)

U(k)

]
;H =

[
Qx 0
0 Ru

]
;a =

[
aX 0
0 aU

]
;b =

[
bX

bU

]
(4.12)

The cost function (4.8), and constraints (4.6), (4.10), and (4.11), and optimization problem can
be re-written as a quadratic problem as below:

minzT Hz sub ject to az ≤ b (4.13)

In S-MPC, this optimization problem is solved during each time instant k and the first element of
U(k)∗ is applied to the system, i.e., the control input with S-MPC is:

u(k) = [U(k)∗](1) = u(k|k)∗ (4.14)
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Compact Formulation

The control decisions from the standard ε-variables

t = 1:length(PLD)

Update the input, state, and output variables for the S-MPC in vector form

i = 1: Np

Obtain the vector notation

end

k = 1: Np

Optimize the MG system

Modify weighting matrices QX and RU Infeasible

Update the initial values AX and BU

Optimize AX and BU values 

Update the initial value of QX

r = 1 : Np

r ≤ Np

Optimize QX QX = QU

end

77



Energy Management of Grid-Connected Microgrids using an Optimal Systems Approach

Update the initial value of QU

p = 1 : Np

Optimize QU

end

Update the initial value of H

u = 1 : Np

Obtain the index i and j

Optimize H

end

Define constraints (lower and upper) and objective 
functions on matrix form

end

Optimal control decisions

end

Figure 4.1 The flowchart of the implementation of MPC in a compact form
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4.4 Methodology of building optimal systems-based EMS of a MG

4.4. Methodology of building optimal systems-based EMS of a MG

As depicted in Figure 4.2, the method for constructing MG’s EMS consists of three primary
steps. In the initial phase, the EMS will be constructed using a system approach based on the
MG’s specifications and operational constraints. The ε-variables method (Cavus et al. (2022b);
Giaouris et al. (2018)) is the system approach utilized in this chapter. The output of the initial
step is an EMS that is not optimal. In the second step, the obtained EMS will be used as input
to generate the equivalent mathematical problem to meet optimally the objective(s) specified
by the MG operators, taking into account the operational condition already incorporated into
the obtained EMS in Step 1. The optimal problem will be expressed in S-MPC format. After
determining the optimal decisions in Step 2, these will be incorporated into the ε-variables-based
EMS in Step 3. Therefore, the output of Step 3 is the extended optimal ε-variables-based
EMS. At the beginning of each time step during the operational phase of the EMS, the MG
specification and inputs from the MG operator will be verified. If this information has changed,
the operational states of the MG assets will be updated, and the three steps of EMS construction
will be repeated to account for the new information. If not, the extended optimal ε-variables-
based EMS is utilized to control the MG for the subsequent time step. Notably, the proposed
method determines if the system specifications/inputs of the MG operator have changed for the
subsequent time step.

Figure 4.2 Flow chart of the optimal system based on EMS.
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4.5. The building optimal system based EMS

This section describes the three steps to construct the optimal systems-based EMS using the
simple MG. The MG system includes a 14 kW PV array, 20 kWh of battery storage (Sökmen
and Çavuş (2017)), a 5.4 kW diesel generator, and the utility grid, as depicted in Figure 4.3.

 

Bi-directional converter 

εDG→LD 

εPV→LD 

εGR→LD 

εPV→GR 

εBAT→LD 

εPV→BAT 

GRLD = P2 

PVGR = P1 

PPV 

PVLD = P3 

PVBAT = P4 

DGLD = Pnet 

DC 

BATLD = P5 
DC 

AC Bus 

AC 

DC 
AC 

Building 

Battery 

Utility grid 

Diesel generator 

AC 

εPV 

Photovoltaic Panel 
Converter 

Bi-directional converter 

Figure 4.3 Conceptual microgrid structure proposed in this work.

4.5.1. A. Step 1: Building the EMS using ε-variables

The power flow is computed by multiplying Pnet by Eq. (3.56).

FPower
PV→GR (k) = Pnet (k)εPV→GR (k) (4.15)

FPower
GR→LD (k) = Pnet (k)εGR→LD (k) (4.16)

FPower
PV→LD (k) = Pnet (k)εPV→LD (k) (4.17)

FPower
PV→BAT (k) = Pnet (k)εPV→BAT (k) (4.18)

FPower
BAT→LD (k) = Pnet (k)εBAT→LD (k) (4.19)

FPower
DG→LD (k) = Pnet (k)εDG→LD (k) (4.20)

In these equations mentioned above, we did not consider the power flow between GR to
BAT (GRBAT ) or BAT to GR (BATGR). The constraints related to grid charging and discharging
batteries can be defined. By doing so, pricing (running cost) can changed. Considering constraints
for charging batteries using the grid, especially in the event of negative pricing, involves careful
management of power flows and pricing dynamics. Here are some key considerations:

1. Charging Constraints during Negative Pricing: Implementing constraints for charging
batteries during negative pricing is a strategic approach. The MG can take advantage
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4.5 The building optimal system based EMS

Read system specifications and operational conditions from the MG operator

for k = 1

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑘𝑘 − 𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘

𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 > 0
𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 > 𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝐿𝐿(𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 , 𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 )

𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 > 𝑠𝑠𝑠𝑠𝑠𝑠𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 < 0
𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝐿𝐿(𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 , 𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿

𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 )

𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 < 𝑠𝑠𝑠𝑠𝑠𝑠𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 < 0
𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝐿𝐿(𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿𝐴𝐴𝐴𝐴 𝑘𝑘 , 𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿

𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 )

𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴 𝑘𝑘 = 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 > 0
𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 = 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 < 𝑠𝑠𝑠𝑠𝑠𝑠𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵𝑆𝑆𝑆𝑆𝐴𝐴𝑆𝑆𝑆𝑆𝐵𝐵𝐵𝐵𝐵𝐵

𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘 = 𝐿𝐿(𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵𝐴𝐴𝐴𝐴 𝑘𝑘 , 𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵
𝑅𝑅𝑛𝑛𝑅𝑅 𝑘𝑘 )

𝐹𝐹𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿 𝑘𝑘 = min(𝑃𝑃𝐿𝐿𝐿𝐿 𝑘𝑘 ,𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘))𝜀𝜀𝑃𝑃𝑃𝑃→𝐿𝐿𝐿𝐿 𝑘𝑘
𝐹𝐹𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘 𝜀𝜀𝑃𝑃𝑃𝑃→𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘
𝐹𝐹𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝐵𝐵𝑆𝑆𝐵𝐵𝐿𝐿𝐿𝐿 𝑘𝑘 𝜀𝜀𝐵𝐵𝐴𝐴𝐵𝐵→𝐿𝐿𝐿𝐿 𝑘𝑘
𝐹𝐹𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿 𝑘𝑘 = 𝐺𝐺𝐺𝐺𝐿𝐿𝐿𝐿 𝑘𝑘 𝜀𝜀𝐺𝐺𝑅𝑅→𝐿𝐿𝐿𝐿 𝑘𝑘

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑛𝑛 < 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝐵𝐵𝐴𝐴𝐵𝐵 𝑘𝑘
< 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑎𝑎𝑎𝑎

k+1

Control decisions 
(non-optimal)

Net power represents the difference between 
the PV and load data is calculated.

The length of the loop is selected for 4 days 
(96 hours) and 1 year (8760 hours).

The PV and load data, battery parameters, such as 
battery capacity, initial value of SOAcc of the 

battery and battery charging/discharging efficiency 
are defined.

The evolution operators for the converters are 
calculated using logical operators, including 

AND/OR.

Power flows are calculated depending on the 
conditions of the converters and accumulator.

State of charge of the battery is calculated by 
employing the constraint (min = 20% and 

max = 90%).

Control decisions are obtained for the 
implementation of S-MPC. They are can be 

utilized to get the input, output and state 
vectors for the S-MPC.

Figure 4.4 Flow chart for the standard ε-variables

81



Energy Management of Grid-Connected Microgrids using an Optimal Systems Approach

of low or negative pricing by allowing charging during these periods, optimizing energy
costs.

2. Bidirectional Power Flow Constraints: Constraints should be defined for bidirectional
power flows between the grid and the battery (both charging and discharging). This
includes defining charging rate limits when the MG imports electricity from the grid.

3. Dynamic Pricing Impact: The pricing structure and constraints should reflect the impact
of charging on the overall running cost. During negative pricing, the MG may maximize
charging to store energy for future use, considering the potential economic benefits.

4. Grid Stability and Congestion Management: While maximizing charging during negative
pricing can be economically beneficial, it’s crucial to consider grid stability and potential
congestion issues. Charging constraints should prevent excessive power flows that may
impact grid reliability.

The final step is to compute the accumulator’s evolution operator:

SOAccBAT (k+1) = SOAccBAT (k)+ (char−dis)∆t

/
Cl (4.21)

4.5.2. B. Step 2: Systematic Generation of the Extended Optimal Control Problem Using
S-MPC Formulation

The S-MPC method is implemented subsequent to the ε-variables method. Before the S-MPC is
implemented, the system-state, system-input, and system-output vectors are defined. Let’s start
by discussing the definition of the discrete-time linear state-space system using Equation (3.30)
(see x(k+1) = Ax(k)+Bu(k) (Zhu et al. (2014)). k = 0,1,2, . . . ,TH − 1 is the discrete-time
instant, and x(k) ∈ X ⊆ Rn and u(k) ∈ U ⊆ Rm are the state and control vector, respectively.
A ∈ Rnxn is the state-system matrix and B ∈ Rnxm is the input-system matrix.

For the MG, system-control (input) vectors are energy consumption from the grid GRLD,(P2(k));
power flow from the PV to the load PVLD,(P3(k)); PV to the battery (charging) PVBAT ,(P4(k));
battery to the load (discharging) BATLD,(P5(k)). On the other hand, the system-output vec-
tors are exported energy from PV to the grid PVGR,(P1(k)); the battery exploitation (charging
and discharging situation) PVBAT +BATLD,(P4(k)+P5(k)), and the practical utilization of PV,
PVLD +PVBAT ,(P3(k)+P4(k)).

The hybrid power system’s system-state vector and system-control vector can be expressed
as follows:

xa (k) = SOC(k) (4.22)

u(k) = [P2(k);P3(k);P4(k);P5(k)] (4.23)

u(k) = [GRLD(k);PV LD(k);PV BAT (k);BAT LD(k)] (4.24)
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where subscription "a" in the equations represents a matrix assumed to have dimension m1. The
following elements define the battery’s dynamic process:

xa (k) = xa (k−1)+bau(k−1)

∆xa(k) = bau(k−1)
(4.25)

where ba = [0 0 ηch ηdis]. Define the system-output vectors ya, yb and yc:

ya (k) = caxa (k−1)+dau(k) (4.26)

where ca = 0 and da = [w1 w1 0 w1]. From the definition of ya;

∑w2
1P2

2 (k) = ∑(w1PLD(k)− ya(k))
2 (4.27)

With respect to yb;

yb (k) = w3(P3(k)+P4(k)) = cbxa (k−1)+dbu(k) (4.28)

where cb = 0 and db = [0 w3 w3 0]. To encourage the practicality of PV utilization, the
definition of yb;

∑(w3PPV (k)− yb (k)
2 (4.29)

Regarding yc,

yc (k) = w2(P4(k)+P5(k)) = ccxa (k−1)+dcu(k) (4.30)

where cc = 0 and dc = [0 0 w2 w2]. To increase the life cycle of the battery, the definition of
yc = 0;

∑yc (k)
2 (4.31)

Finally, the augmented system-state and the system output of the hybrid power system will be:

x(k) = [xa(k) ya (k−1) yb (k−1) yc (k−1)]T (4.32)

y(k) = [ya(k−1)yb(k−1)yc(k−1)]T (4.33)

The linear state-space can be defined according to the battery (4.33). In general, the linear
state-space (3.30) can be represented as follows:

SOC(k+1) =SOC(k)+
ηchP4(k)∆t

Cl
−P5(k)∆t

Cl(ηdis)
(4.34)
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Because of the dynamic equation of SOC in (4.34), A and B in (3.41) will be:

A =


1
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

B =


0

w1

0
0

0
w1

w3

0

ηch

0
w3

w2

−ηdis

w1

0
w2

 (4.35)

The Inequalities Constraints of the MG

The PV system supplies the load demand and charges the battery. It operates based on several
types of constraints at sampling time k, as follows:

0 ≤ PPV (k)≤ Pmax
PV (4.36)

0 ≤ PV GR(k)≤ PV max
GR (4.37)

0 ≤ PV LD(k)≤ PV max
LD (4.38)

0 ≤ PV BAT (k)≤ PV max
BAT (4.39)

Additionally, the total energy required to meet the load demand and charge the battery must be
equal to or less than PPV as below:

PPV (k)≥ PV LD(k)+PV BAT (k) (4.40)

Also, constraints associated with the battery are depicted below:

SOCmin ≤ SOC(k)≤ SOCmax (4.41)

0 ≤ BAT LD(k)≤ BAT max
LD (4.42)

The utility grid is utilised when solar panels and batteries are insufficient to meet load require-
ments. This is the last option, as it is more expensive and detrimental to the environment. The
only benefit of exploiting this resource is that it is always available, except for blackouts.

Furthermore, the constraints associated with the grid system and load can be expressed as
follows:

0 ≤ GRLD(k)≤ GRmax
LD (4.43)

PV LD(k)+BAT LD(k)+GRLD(k) = PLD(k) (4.44)

Objectives Functions of the MG

The cost functions of the MG consist of three components:

• To minimize the energy consumption from non-RES:

∑
k+Np

k w2
1GRLD(k)

2 (4.45)
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• To increase the life cycle of the battery:

∑
k+Np

k w2
2(PVBAT (k)

2 +BAT LD(k)
2
) (4.46)

• To encourage the exported energy to the utility grid:

∑
k+Np

k w2
3(PVLD(k)

2 +PVBAT (k)
2) (4.47)

The Implementation of S-MPC Using Persistence of Excitation (PE)

Undoubtedly, the battery cannot be simultaneously charged and discharged, so (4.48) can be
written as follows (Zhu et al. (2014)):

PVBAT (k)BAT LD(k) = 0 (4.48)

Contrary to the other constraints, constraint (4.48) is not convex. In order to accomplish convex
optimization in S-MPC design, the system must be split into two cases. These are the charging
situation (PVBAT =0) and discharging situation (BATLD=0).

Charging situation: The constraint can be written as follows (Zhu et al. (2014)):

BAT LD (k)≤ 0

BAT LD (k)≥ 0
(4.49)

Constraints (4.36), (4.37), (4.38), (4.39), (4.40), (4.42), (??), (4.43), and (4.49) can be
expressed in a compact form by (Zhu et al. (2014)):

fchu(k)≤ γch (4.50)

where

fch =



−1
0
0
0
0
1
0
1
0
0
0
−1

0
−1
0
0
0
1
1
0
1
0
0
−1

0
0
−1
0
0
0
1
0
0
1
0
0

0
0
0
−1
1
1
0
0
0
0
−1
−1



;γch =



0
0
0
0
0

PLD(k)

PPV (k)

PV max
GR

PV max
LD

PV max
BAT

BAT max
LD

GRLD (k)−PLD(k)



(4.51)
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Equation (4.51) requires to be converted to matrix form with respect to U(k) and Np by Zhu et al.
(2014):

f̄chU(k)≤ γ̄ch (4.52)

where

f̄ch =


fch · · · 0
... . . . ...
0 · · · fch

 ;γ̄ch =


γch
...

γch

 (4.53)

Discharging situation: The constraint can be written as follows (Zhu et al. (2014)):

PV BAT (k)≤ 0

PV BAT (k)≥ 0
(4.54)

Constraints (4.36), (4.37), (4.38), (4.39), (4.40), (4.42), (??), (4.43), and (4.48) can be written in
a compact form by (Zhu et al. (2014)):

fdisu(k)≤ γdis (4.55)

where

fdis =



−1
0
0
0
0
1
0
1
0
0
0
−1

0
−1
0
0
0
1
1
0
1
0
0
−1

0
0
−1
0
1
0
1
0
0
1
0
0

0
0
0
−1
0
1
0
0
0
0
−1
−1



;γdis =



0
0
0
0
0

PLD(k)

PPV (k)

PV max
GR

PV max
LD

PV max
BAT

BAT max
LD

GRLD (k)−PLD(k)



(4.56)

Equation (4.56) requires to be converted to matrix form with respect to U(k) and Np by (Zhu
et al. (2014)):

f̄disU(k)≤ γ̄dis (4.57)
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where

f̄dis =


fdis · · · 0
... . . . ...
0 · · · fdis

 ;γ̄dis =


γdis

...
γdis

 (4.58)

4.5.3. C. Step 3: Translating the Optimal Control Decisions of S-MPC to ε-variables

The power flows are calculated by multiplying (4.24) and (3.56), and (4.33) and (3.56).

FPower
PV→LD (k) = u(2)εi (k) (4.59)

FPower
PV→BAT (k) = u(3)εi (k) (4.60)

FPower
BAT→LD (k) = u(4)εi (k) (4.61)

FPower
DG→LD (k) = Pnet (k)εi (k) (4.62)

Then, another step is to estimate the evolution operator for the accumulator:

SOAccBAT (k+1) = SOAccBAT (k)+
(FPower

PV→BAT (k)−FPower
BAT→LD (k))∆t

Battery Capacity
(4.63)

4.5.4. Summary of the Building the Extended Optimal ε-variables Method

As represented in Figure 4.4, the S-MPC technique uses as input data ’control decisions from
the ε-variables method,’ which are initially obtained using the ε-variables method. In Figure
4.5, the "control decisions" are PVGR, GRLD, PVLD, PVBAT , and BATLD. Then, using "quadratic
programming" in S-MPC, the input (control), output, and state variables of the hybrid power
system are recalculated and optimized. It is imperative to note that charging and discharging
cannot occur simultaneously. Therefore, the battery is subjected to persistent excitation. Finally,
the SOC of the battery and "optimal control decisions" are determined and compared to "control
decisions" derived using the ε-variables method. To be more specific:

In summary, as depicted in Figure 4.5, the extended optimal ε-variables technique is com-
prised of the following steps:

1. The system requirements and operational conditions are read from the MG operator.

2. The net energy (differences between the PV and load data) for 96 and 8760 hours is
determined.

3. The evolution operators and power flows for PV, the battery, the load, and the utility grid
are computed.

4. The SOAccBAT is estimated as the final step in the ε-variables.

5. The initial step of the extended optimal ε-variables technique is to evaluate the "control
decisions" derived from the ε-variables.
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Read system specifications and operational conditions from the MG operator

for k=1

Pnet(k) = PPV(k) - PLD(k)

Calculate the evolution operators: εPV→GR, εGR→LD, εPV→LD, εPV→BAT, εBAT→LD

Calculate the power flows: FPV→GR, FGR→LD, FPV→LD, FPV→BAT, FBAT→LD

Estimate the state of accumulator of the battery, SOAccBAT

Control decisions from ε-variable

Obtain A, B, u, x, and y matrices depending on ε-variable results 

for k=1

Update u, x, and y matrices

Optimize the system “quadprog”

Implement the “Persistence of Excitation” for the battery

Update the state of charge of the battery, SOC

Optimal control decisions from the S-MPC 

Use the “optimal control decisions” for the extended optimal ε-variable

for k=1

Update the evolution operators: εPV→LD, εPV→BAT, εBAT→LD, εDG→LD

Update the power flows: FPV→LD, FPV→BAT, FBAT→LD, FDG→LD

Update the state of accumulator of the battery, SOAccBAT
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Figure 4.5 The flowchart of building the extended optimal ε-variables technique for the MG is shown in
Figure 4.2.
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6. A, B, u, x, and y matrices are dependent on "control decisions."

7. The persistence of excitation is then implemented in order to prevent the battery from
being simultaneously charged and discharged.

8. MG operations are optimized and simulated using QP in MATLAB/Simulink on a CoreTM
i7 4500U (2.40GHz) computer with 8GB of RAM and Windows 10 Professional.

9. All "optimal control decisions" are revised and compared to antecedent "control variables."

10. Regarding the section converting S-MPC results to ε-variables, the utility grid is eliminated,
and the diesel generator is added. The "optimal control variables" are then modified as
input data for the ε-variables method.

11. Evolution operators and power flows are revised in accordance with the "optimal control
variables" obtained from the S-MPC.

12. The last step entails estimating and updating the SOAccBAT and power results and imple-
menting feedback control.

All steps above are demonstrated in Figure 4.5. As shown, initially, PV and load demand for
the building are obtained, and some parameters for battery and power are defined. The next step
is to implement the S-MPC algorithm. It consists of the predictive algorithm, optimization, and
receding horizon control. According to Figure 4.5, QX and RU are modified and optimized at
a given instant k time. Then, AX and BU are updated depending on the QP optimization. Next
is optimising the “Hessian matrix (H)” and defining the objective functions. The last step is to
update the system-state, system-control, and system-output.

Ensuring the optimality of the ε-variable in the context of MPC often relies on the specific
formulation of the optimization problem, the choice of the cost function, and the underlying
assumptions about the system dynamics. The optimality of the ε-variable is generally inferred
from the principles of MPC and the ε-variable method. Here are some points that contribute to
the perceived optimality:

• Cost Function Formulation: The optimal ε-variable method involves the formulation of
a cost function that quantifies the performance objectives and constraints. The choice of
this cost function is crucial, as it guides the optimization process. Our cost function is
appropriately defined to represent the desired system behaviour, so the resulting ε-variable
is optimal with respect to those objectives.

• Optimization Algorithm: The optimization algorithm used to solve the MPC problem,
considering the ε-variable, plays a significant role. The algorithm is designed to handle
the specific constraints and objectives of the system accurately, so the resulting ε-variable
is to be considered optimal under the given conditions.
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(a) (b)

Figure 4.6 (a) Power flows and (b) SOAcc of the accumulators for four days (96 hours) using the standard
ε-variables method.

• Consistency with MPC Principles: MPC, by nature, is designed to provide optimal control
actions based on predictions of future system behaviour. The optimal ε-variable method is
consistent with the principles of MPC, leveraging predictive modelling and optimization,
so it is implied that the resulting control decisions are optimal within the framework of the
chosen optimization problem.

4.6. Results and Discussions

4.6.1. Simulation Results of the Extended Optimal ε-variables Method

Before the simulation, some parameters were defined, as shown in Table 4.2 Kostopoulos et al.
(2020); Zhu et al. (2014).

Notations Values Notations Values

PV max
GR 5 kW w1 1.0

PV max
LD 5 kW w2 0.2

PV max
BAT 5 kW w3 0.8

BAT max
LD 5 kW ηch 0.85

GRmax
LD 5 kW ηdis 0.95

SOAccBAT (1) 30% C 20 kWh
SOAccBAT

min 20% SOAccBAT
max 90%

Table 4.2 Values of System Parameters

The PV array and load data for the simulation were obtained from the building in the UK for
four days (96 hours) and one year (8760 hours) (Makonin (2019)).

To see explicitly how to perform our method, the ε-variables method is applied and obtained
the results as shown in Figure 4.6. Then, ε-variables-S-MPC is applied and gets the results
as shown in Figure 4.7. From the results, (i) the energy consumption from the grid GRLD

significantly decreased when compared to Figure 4.6a and Figure 4.7a, (ii) the practicality of PV
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(a) (b)

Figure 4.7 (a) Power flows and (b) SOAcc of the accumulators for four days (96 hours) using the extended
optimal ε-variables method.

usage (PVGR and PVBAT ) is encouraged, (iii) the battery usage BATLD is penalized. On the other
hand, the state of charge of the battery is working at the desired conditions in Figure 4.7b using
the extended optimal ε-variables technique. After translating the results of S-MPC to ε-variables
methods, the same results were obtained with the extended optimal ε-variables technique.

Based on the simulation results presented in Figure 4.8 and Table 4.3, the overall energy
consumption from the grid exhibited a significant decrease, transitioning from 2055 kWh to
1529 kWh for both the ε-variables and extended optimal ε-variables methods. This reduction
underscores the effectiveness of both control strategies in minimizing grid-supplied energy,
contributing to improved energy sustainability and cost savings.

Furthermore, the energy usage from the PV system for the GR (PVGR) experienced an
encouraging increase, rising from 791.12 kWh to 620.68 kWh. This upward trend is attributed
to the optimized control decisions implemented by both the ε-variables and extended optimal
ε-variables techniques, enhancing the utilization of RES within the MG.

In terms of battery charging, the results indicate that the extended optimal ε-variables
technique outperforms the traditional ε-variables method. The usage of the battery, accounting
for 2127.1 kWh and 1956.7 kWh for the ε-variables and extended optimal ε-variables methods,
respectively, reflects a more efficient and judicious management of the energy storage system.
With its advanced optimisation strategies, the extended optimal ε-variables technique proves
to be more effective in reducing battery consumption while ensuring optimal performance and
longevity.

These observed results align with expectations, as the extended optimal ε-variables technique,
with its enhanced optimization capabilities, demonstrates superior performance in achieving
energy efficiency, reducing grid dependence, and maximizing the use of RES. The presented bar
chart in Figure 4.8 provides a visual representation of the energy consumption patterns for each
method, highlighting the impact of these control strategies on various energy sources within the
MG.
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Figure 4.8 Power flows for one year (8760 hours) using the standard ε-variables method and the extended
optimal ε-variables method.

Methods PVGR [kWh] GRLD [kWh] PVBAT [kWh] BATLD [kWh] PVLD [kWh]

ε-variables 620.68 2055.8 2127.1 2137.4 4558.6
Extended
optimal
ε-variables

791.12 1529.8 1956.7 2663.4 4558.6

Table 4.3 Numerical comparisons of ε-variables method and extended optimal ε-variables method

4.6.2. The Illustrating the Adaptability and Scalability of the Extended Optimal ε-variables
Method

Some processes have been fulfilled to show how our structure becomes more adaptable and
scalable using our proposed method: (i) changing evolution operators and (ii) adding a diesel
generator standalone.

Changing Evolution Operators on the Extended Optimal ε-variables Method

To demonstrate how our structure becomes more flexible and scalable, the evolution operator for
the utility grid εGR was modified by switching the logical operator from "OR" to "AND." As
depicted in Figure 4.9b, when the SOC falls below 50%, the S-MPC will import energy from
the grid. In some instances, however, this may occur close to the point where PV will produce
enough energy to compensate for the slight drop in SOC below 40%, thereby increasing the
system’s independence from the main grid. In this instance, and without modifying the S-MPC
structure, the evolution operator of the converter "Grid" will contain another term that is logical
0 when it is anticipated that the PV will produce sufficient power in 1 or 2 samples. Since this
evolution operator in this work employs the AND logical gate, when this new binary variable
is 0, εGR will also be 0. Consequently, the system will not import energy from the main grid,

92



4.6 Results and Discussions

as shown in Figure 4.9a. Regarding the εBAT , its binary variables (black line in Figure 4.9a are
changed from 1 to 0 when the utility grid operates for battery charging. (red line). In other words,
if the battery is depleted, the evolution operator of grid εGR will change from 0 to 1 in the grid.
Therefore, εGR→BAT runs and the GRBAT connection is active.

(a) (b)

Figure 4.9 The translating of results of S-MPC to the ε-variables method for (a) power flows and (b)
SOAcc of the accumulator.

Adding a Diesel Generator by Standalone

During the second step (S-MPC section) of the extended optimal ε-variables technique, a diesel
generator is added, the utility grid is removed, and the algorithm is updated, as depicted in Figure
4.5. PVGR and GRLD are excluded in this instance, whereas DGLD is present. The ε-variables can
be easily incorporated into the system and utilized for the hybrid power system in the event of an
emergency, such as a blackout or an imbalance in load demand. As depicted in Figure 4.10a,
the results of the extended optimal ε-variables technique reveal that the PV, battery, and diesel
generator meet the load demand, respectively. In the morning and afternoon, the PV is sufficient
to meet the load demand. (blue line). If there is excess energy from the PV system, the battery is
charged from the PV system. (pink line). The unbalanced load is covered by the battery (black
line) and the diesel generator. (red line). Notably, during the operation of the diesel generator,
the battery (pink line) has not been charged at all (red line). The battery operates as expected,
and the SOC of the battery does not exceed the critical values, as shown in Figure 4.10b With the
help of the extended optimal ε-variables technique, the adaptability/flexibility and scalability of
the S-MPC have been enhanced.

Applying a hysteresis zone in order to increase the lifetime of various assets using the starting
and stopping values of the accumulators

The condition of the devices (ON-OFF switching of the devices) depends on a connection
between two devices based on a simple condition imposed on SOAcc. The decision whether or
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(a) (b)

Figure 4.10 The illustration of the scalability of the extended optimal ε-variables method when adding
the diesel generator

not passive/activate a connection between two devices in the sight of a hysteresis zone is the
outcome of the succeeding logical tests. These tests rely on the stored energy/material as shown
in Figure 4.11:

• If a pre-specific limit st pSOAccl

a→b (k) is lower than SOAccl , the connection is passive.

• If a pre-specific limit strSOAccl

a→b (k) is higher than SOAccl , the connection is active.

• If SOAccl is at the between strSOAccl

a→b (k) and st pSOAccl

a→b (k), the result of the connection will
be:

– Active if it was previously activated.

– Passive if it was previously passive.

Figure 4.11 The hysteresis zone for the extended optimal ε-variables technique in the MG

With the help of the above parameters, variable ρ can be stated as a function of the related
situations imposed on SOAccl by:

ρ
SOAccBAT

a→b = [SOAccl(k)< strSOAccBAT

a→b (k)]∨ [[strSOAccBAT

a→b (k)< SOAccBAT (k)

< st pSOAccBAT

a→b (k)]∧ [εa→b(k−1)]] (4.64)

Equation (4.63) says that the left side of the expression represents the simple ON-OFF behaviour
of the devices, whereas the rest of the expression illustrates the hysteresis behaviour. Besides, it is
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(a) (b)

Figure 4.12 The results of power flows and SOAccBAT when changing st pSOAccBAT

DG→LD .

worth noting that there are three accumulation areas related to the battery. In other words, below
strSOAccBAT

a→b (k), between strSOAccBAT

a→b (k) and st pSOAccBAT

a→b (k), and above st pSOAccBAT

a→b (k) in order to
determine whether a connection will be activated/passive. This process basically repeated for
every connection. This process is very beneficial for especially complicated hybrid power
systems since it is much easier to control many basic rules (Calderón et al. (2010)). It can be
understood from this process that the values of the limits strSOAccBAT

a→b (k) and st pSOAccBAT

a→b (k) can
be considered as decision variables for the overall system performance of the complicated hybrid
power system (Giaouris et al. (2013)).

To show the effect of the hysteresis zone on the extended optimal, the value of ε-variables,
st pSOAccBAT

DG→LD is decreased from the 25% to 20%. In this case, the usage of the diesel generator
DGLD is increased since its evolution operator is turned to be activated, as illustrated in Figure
4.12a. In other words, the connection of εDG→LD is activated because of the hysteresis zone (see
Figure 4.11). On the other hand, the SOAcc values are changing compared to the previous one in
order to meet the load-generation mismatch. It is worth noting that the SOAcc of the battery does
not go below the critical value because of the extended optimal ε-variables, as shown in Figure
4.12b. In addition, the battery is charged by employing the PV, PVBAT , when there is excessive
energy in the PV.

Regarding the changing of the hysteresis zone of BATLD, the value of strSOAccBAT

BAT→LD is increased
from 20% to 25%. By doing that, the hysteresis zone of the εBAT→LD is approaching the left
side (see Figure 4.11). Therefore, the connection of the εBAT→LD is passive. In this case, the
binary variables of εBAT→LD are converted from 1 to 0. As can be understood from Figure 4.12a,
the battery discharging (BATLD) is decreasing. According to this value, the SOAcc of the battery
fluctuates. However, it has not decreased as much as the previous one (compare Figure 4.12b and
Figure 4.13b). In summary, the extended optimal ε-variables can achieve the desired objective
functions such as minimization of the imported energy from the grid, increase in the exported
energy to the battery and utility grid, and penalization of the battery usage in two cases.
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(a) (b)

Figure 4.13 The results of power flows and SOAccBAT when changing strSOAccBAT

BAT→LD.

(a) (b)

Figure 4.14 The results of the state of charge of the battery using (a) ε-variables and (b) extended optimal
ε-variables
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4.7 Conclusion

To compare the standard ε-variables and extended optimal ε-variables, the MG system is
simulated for one year (8760 hours) as demonstrated in Figure 4.14a and Figure 4.14b. Since the
standard ε-variables are not optimal techniques, they do not have any constraints and optimization
methods. To explain it clearly, Figure 4a illustrates that the SOAcc of the battery can exceed
the maximum critical value (such as >90%) or go below the minimum critical value (such as
<20%). On the other hand, Figure 4.14b shows that the battery can work at the desired conditions
by employing the extended optimal ε-variables. This is vitally important that the health of the
battery can deteriorate when the battery is exploited during over-charging and over-discharging.
Therefore, the essential importance of the extended optimal ε-variables is to enhance the battery’s
health. One of the objective functions of the extended optimal ε-variables is to penalize the
usage of the battery by avoiding the battery charging from the non-RESs, such as the diesel
generator and the utility grid. Hence, the results of the SOAcc (see Figure 4.14b) are expected
and reasonable through the extended optimal ε-variables.

4.7. Conclusion

There are several reasons for utilizing the variable method to manage the MG power system;
however, this method is not the most effective. In contrast, S-MPC employs cost functions and
constraints in conjunction with various optimization techniques to forecast power generation
and consumption. However, implementing S-MPC is not simple, especially in complex MG
systems. To address the shortcomings of the ε-variables and S-MPC methods, we developed an
extended optimal ε-variables technique that effectively: (i) reduces the operational cost of MG
by nearly 35%, (ii) reduces the usage of the BESS by 42%, and (iii) increases the practicability
of PV usage by 28%. The computational capacity of the new method is roughly equivalent
(+2%) to the S-MPC. This significantly improved the scalability and adaptability of the existing
S-MPC implementation by extending optimal ε-variables. The adaptability and scalability of
the extended optimal ε-variables technique were improved by modifying a number of evolution
operators and introducing a diesel generator. Consequently, the proposed extended technique
simplifies and optimizes the control of the system.

The next chapter will demonstrate the scalability of the proposed method on a real system
constructed in Xanthi, Greece. It will utilize fuel cells and electrolyzers to be completely
independent of the main power grid. In this instance, hydrogen and water tanks can be viewed as
accumulators, whereas fuel cells, electrolyzers, PVs, etc., can be viewed as converters. Also, the
next chapter will consist of developing a hybrid method based on ε-variables and conventional
MPC to construct the S-MPC of a flexible hybrid MG with PnP assets.
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Chapter 5. A Hybrid Method Based on Logic Predictive Controller for
Flexible Hybrid Microgrid with Plug-and-Play Capabilities

5.1. Overview

Flexible hybrid MGs with PnP assets have gained popularity recently due to their ability to
incorporate RESs and storage systems. However, controlling these systems can be challenging
due to their complexity and the diverse characteristics of each asset in the MG. Various control
strategies have been proposed to address these difficulties. One such strategy is ε-variables-based
logic control, which simplifies the control structure of MGs and enables greater scalability and
resilience. However, the resulting controller is not optimal and may be incapable of managing
multiple MG models. MPC, which employs a mathematical model of the system to predict
its behaviour and determine the optimal control action, is another advanced control strategy.
However, MPC cannot design and control multiple models, rendering it unsuitable for flexible
hybrid MGs. Alternatively, S-MPC employs multiple models to represent system operating
modes or scenarios. S-MPC selects a model and control strategy based on the system state
and performance objectives, enabling it to manage systems with mode-dependent dynamics.
However, developing and validating the design and management of multiple MG models is
difficult. Moreover, S-MPC is more complicated to implement due to its multiple steps (Cavus
et al. (2024)).

This chapter proposes a novel hybrid framework/method based on ε-variables and traditional
MPC to automatically generate and validate the S-MPC. The proposed strategy enhances the
optimization of the energy management of a flexible hybrid MG and reduces computational
complexity. S-MPC implementation is simplified by translating S-MPC decisions into ε-variables.
The proposed hybrid method is validated using a QP strategy that minimizes or maximizes
objective functions under the constraints of bounds, linear equality, and inequality to solve
the S-MPC optimization problem in a compact form. The results indicate that the suggested
control method decreases the amount of energy imported from the grid by approximately 46.7%
and increases the amount of energy exported to the grid by approximately 50.8%. This thesis
contributes to the field of MG control by proposing a method that can facilitate the implementation
of advanced control strategies for flexible hybrid MGs with PnP assets.

5.2. Introduction

A hybrid flexible MG is a small-scale power system that integrates and manages multiple energy
sources, including RESs such as solar, wind, and hydro, as well as conventional sources such
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as diesel generators Emad et al. (2020); Yoldaş et al. (2017). MG is designed to operate either
connected or disconnected from the main power grid, providing a reliable and sustainable power
supply for various applications Ishaq et al. (2022); Nshuti (2022). The flexibility of a MG refers
to the MG’s capability to vary energy demand and its ability to optimize the available energy
sources Herc et al. (2022); Hirsch et al. (2018).

Adding the PnP capability to the MG’s assets facilitates the system’s installation and operation.
PnP assets can enhance the MG’s flexibility Veneri (2017). For instance, incorporating PnP
EVs into a MG can increase the MG’s flexibility Anthony Jnr (2021); Ravi and Aziz (2022) by
varying the size of available storage capacity dynamically. PnP EVs can be added or removed
from the MG system without extensive reconfiguration Sadabadi et al. (2017). However, having
assets with PnP capabilities allows the MG to operate in multiple operational modes. This makes
the design of optimal control of the MG challenging.

5.2.1. Literature Review

MPC is widely used in the literature to control MGs (Nikkhah et al. (2021a); Pamulapati et al.
(2022b)). A rolling horizon approach is applied in Silvente et al. (2018) to reduce the operational
cost of the MG and to maximize the income from exporting power to the utility grid. A scenario-
based MPC is presented in Parisio et al. (2016) with an objective to reduce carbon emission. The
authors in Cheng et al. (2020) used the interval predictions to reduce the impact of the uncertainty
in renewable energy generation, which, in its turn, reduced the operational cost significantly.
To reduce the impact of uncertainty of energy demand and renewable energy generation, a
robust MPC (R-MPC) was developed in Marín et al. (2019). A robust rolling-horizon MPC is
presented in Nikkhah et al. (2021c,d) to control in real time a community of buildings represented
as MGs. The control philosophy in Nikkhah et al. (2021c,d) improves the robustness of the
residential MGs in the face of real-time weather and energy price prediction errors. Nawaz
et al. (2023) presents a distributed MPC-based energy scheduling problem for multi-island
microgrids. Energy coordination aims to achieve supply-demand equilibrium in an individual
MG and reduce battery degradation for its extended cycle life. To solve the MPC optimization
problem, a mixed-integer quadratic programming strategy is utilized. Fang et al. (2022) proposes
a multiple-time-scale energy management solution for a hydrogen-based multi-energy MG to
supply electricity, hydrogen, and heating loads to minimize the multi-energy MG operational
cost. The proposed solution consists of day-ahead energy scheduling and MPC-based real-time
energy dispatch. The numerical results demonstrate that the proposed solution outperforms the
benchmark solution, with mean daily operational costs 37.08% less than the benchmark solution.

It is important to notice that all these MPC methods can control the MG only in one
operational mode, allow it to meet different objectives in this operational mode, and can consider
the impact of the uncertainty of renewable generation and energy demand. These methods do not
allow for control of the MG with different operational modes. On the other hand, many methods
are developed to control complex systems with different operational modes. These methods are
based on system state and use Petri Nets (Allahham and Alla (2008)) and/or automata (Allahham
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and Alla (2009); Javaid et al. (2019); Khawaja et al. (2019); Pamulapati et al. (2022a)). Other
methods are based on the evolution/logical operators and the states graph (Cavus et al. (2022b);
Giaouris et al. (2013)). The authors in Giaouris et al. (2013) and Cavus et al. (2022b) used
the ε-variables to define the system evolution and the system graph to model the operational
states/modes of the energy system. The mutual use of graph theory and the evolution operators
presented in Cavus et al. (2022b); Giaouris et al. (2013) allows us to address the problem of
system scalability, and this is by considering all the possible operational modes of the system
assets in the system graph. It is important to highlight that the PnP feature of the system’s assets
will change the system’s size dynamically. This means the MG controller must deal with the
scalability issue. The main drawback of these methods is that the resultant controller does not
operate the MG in its different operational modes optimally.

S-MPC is a variation of MPC that employs multiple models, each representing a distinct
mode of system operation. S-MPC chooses the appropriate model and associated optimal
control strategy based on the current state of the system and the system objectives. This enables
S-MPC to deal with systems with mode-dependent dynamics. The main difference between
MPC and S-MPC is that MPC uses a single model to control the system (Cavus et al. (2023));
however, S-MPC uses multiple models and switches between them according to the current state
of the system (Maślak and Orłowski (2022); Zhu et al. (2014)). The authors in Wang (2009)
demonstrated the development of S-MPC to control a MG.

It is important to highlight that the construction of S-MPC is challenging, especially for MG,
which has many operational modes. The challenge arises from the following factors:

• S-MPC development requires the development of multiple models that represent the
system’s behaviour in the different operational modes. In addition, the MG can have
different objectives; in each operational mode, the MG can have an objective different
from the other operational modes.

• S-MPC development requires the design of switching logic that maps the system’s current
state to the appropriate model and the switching conditions between the operational modes.

Dealing with these challenges requires an exhaustive knowledge of the system and its desired
behaviour in each operational mode. All this knowledge must be systematically combined to
build the S-MPC.

5.2.2. Contributions and research questions

Controlling the flexible hybrid MG in which the assets have PnP capabilities requires building
a controller that is able to consider all the possible operating modes of the MG. The classical
MPC allows the control of the MG optimally in a specific operational mode but cannot represent
the different possible operational modes. On the other hand, the control methods based on
the mutual use of graph theory and the evolution operators can control the MG in its different
operational modes, but the resultant operation of the MG is not optimal. S-MPC can control the
MG optimally in its different operational modes; however, the construction of this controller
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is complex and requires a strong knowledge of the system and its desired behaviour in each
operational mode. The complexity of the S-MPC arises from the need to put all this knowledge
to produce the final S-MPC. The main contribution of this section is to present a systematic
method to build the switched MPC of a flexible hybrid MG with PnP assets. This method is
based on combining logical control, graph theory, and classical MPC. In this method,

• The system graph and the evolution parameters allow us to define the operational modes,
the switching conditions, and the state variables in each operational mode.

• The classical MPC allows us to find the optimal control decisions in each operational mode
according to the objective defined for each operational mode.

Based on the method of controller synthesis proposed in this section, the following research
questions can be addressed:

• How can S-MPC be generated in a systematic way to control flexible hybrid MGs in which
the assets have PnP capabilities?

• How the decisions from S-MPC can be implemented in a simple way?

5.2.3. Organization of this chapter

The rest of the section is organized as follows: Section 5.3 presents the methodology of the
hybrid method based on controlling flexible MG with PnP capabilities. Section 5.4 illustrates a
detailed description of the hybrid method implementation. The simulation results of four case
studies with the hybrid method based on controlling flexible MG are discussed in Section 5.5.
Finally, Section 5.6 outlines the conclusions and addresses future work.

5.3. Hybrid method based to control flexible MG with PnP capabilities

The methodology of building the EMS of flexible hybrid MG comprises three key steps, as
illustrated in Figure 5.1. In the first step, the EMS will be built utilizing a systems approach
based on the MG conditions and the operational constraints of the MG. The system approach
exploited in this chapter is the ε-variables (Cavus et al. (2023, 2022b); Giaouris et al. (2018)).
“Control decisions” have been found at the end of this step. The output of the first step is a
non-optimal EMS. In the second step, the obtained EMS will be used as input to generate the
equivalent mathematical problem to optimally meet the objectives specified by the MG operators,
considering the operational condition already included in the EMS gained from Step 1. The
optimal problem will be formulated in the form of S-MPC. The S-MPC is solved using the QP
approach. During the solving, the system input, state, and output weights are produced so as to
make the problem compact form. Then, the S-MPC designs and controls the multiple models
depending on the net energy (difference between PV energy and load) and the condition of the
accumulators. If there is a deficit or excess power, the SOAcc of the accumulators is considered.
If one of the SOAcc of the accumulators is greater than the minimum value of the SOAcc, the
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Figure 5.1 Flow chart of the algorithm generating S-MPC from the MPC automatically.

accumulator is in charging mode; otherwise, it is in discharging mode. After finding the “optimal
control decisions” in Step 2, these decisions will be embedded in the ε-variables-based EMS in
Step 3. Then, the accumulators are measured and evaluated. The output of Step 3 will be hence
optimal ε-variables EMS. During the operational phase of the EMS, the MG specifications and
inputs from the flexible hybrid MG operator will be checked at the beginning of each time step.
If this information has been modified/changed, the operational states of the MG assets will be
updated, and the three steps of the EMS building will be repeated to consider the new input. If
not, the optimal ε-variables-based EMS can be used to control the MG for the next time step.
Notably, the proposed method checks whether the MG operator’s system specifications/inputs
change for the next time step. These steps have been explained in Figure 5.2.

5.4. The Proposed Optimal Systems-Based EMS

This is a case study, and this is a real system that was built in Xanthi, Greece (Giaouris et al.
(2018)). As shown in Figure 5.3, the MG consists of a 15 kW PV array, a BAT, a WT, and a FT
used as ESSs, an EL, a FC, and the GR. The PV can be used as a priority energy source on the
MG. If the PV is not able to provide enough power, then either the BAT or the FC will ensure
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Step 1: Applying System Approach Method.
Defining MG operational modes, the operation
conditions/constraints of the MG in the different modes,
the transition conditions between modes, and the control
decisions.

Step 2: Using classical MPC mathematical formulation
to optimally meet the objective defined by the MG
operator for each operational mode.

Step 3: Embedding the decision variables obtained from
Step 2 for the current operational mode in form of 𝜀𝜀-
variables.

Figure 5.2 A brief flow chart of our proposed method.

that the load is satisfied. The GR will supply the energy if the battery is empty and there is no
available hydrogen. On the other hand, when the BAT is full, and there is a surplus, the EL will
be used if there is space in the WT and the FT. Then, the energy will be sent to the GR. The
implementation of the methodology presented in Section 5.3 is summarised by the flowchart
given in Figure 5.2. In the following, each step of the implementation method will be explained
for the MG shown in Figure 5.3.

5.4.1. Step 1: Defining the operational modes and switching conditions (the logical control
system approach)

The main idea behind the ε-variables is that a node symbolizes every asset. Every flow of
matter/energy is symbolized by an edge in the flexible hybrid MG system, as demonstrated in
Figure 5.5. In Point 1, the state graph is generated. Then, in Point 2, the different assets in
each state will be classified as a converter, energy flow, or accumulator. The output of Point
2 is the graph shown in Figure 5.4. In Point 3, the dynamical state-space model is for each
asset in each state. Using this theory and the evolution operators (calculated in 5.6), this power
system’s analysis, management, and operation can be simplified. Lastly, the control statements
are the evolution operators based on the logical operators, illustrating the different types of EMSs
exploited by the multi-vector system (Giaouris et al. (2013)).

To control the flexible hybrid MG using logic control, state transition diagrams, also known
as state machines or automata, can be used to represent the different operating modes of the
accumulators. Different operational modes, switching conditions, and state variables in each
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Figure 5.3 Hybrid MG Structure.

mode are determined using binary notation. Each state in this diagram represents the particular
mode or condition of the accumulators. The transitions between states represent the actions or
events that cause the accumulators’ mode to change. Figure 5.4 depicts the various operating
modes and relationships between them for a system comprised of a battery, a fuel tank, and a
water tank via an automata graph. A three-digit binary number on the graph represents each of
the eight possible states. The state "000" indicates that the system is completely off, whereas
the state "111" indicates that all three components are charged or filled, and the system is fully
operational. The remaining six states represent various combinations of component charging or
filling. Notably, the graph also displays the relationships between the various states. For instance,
when the battery is charged, and the water tank fills, the system can transition from state "000" to
state "110." The system can transition from state "110" to state "010" if the battery is discharged
while the water tank fills.

As evidence of the idea, Figure 5.3 illustrates the hybrid MG system. According to the graph
theory, the converters are the PV array, LD, GR, FC, and EL; the BAT, FT, and WT can be
considered as accumulators, and power, hydrogen, and water can be regarded as flows. As can
be seen in Figure 5.3, the assets of the MG system can be split into two sets as follows:

• The set of converters: RsCon = {PV ,LD,GR,EL,FC}

• The set of accumulators: RsAcc = {BAT,FT,WT}

In addition, the connection between two nodes can be called a f low, such as FC to BAT and
BAT to EL as a power flow, EL to FT and FT to FC as a hydrogen flow, and FC to WT and WT
to EL as a hot water flow.
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Figure 5.4 The illustration of the different operational modes, the switching conditions, and the state
variables in each mode using the automata/graph method.
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Figure 5.5 A graph shown in state space (in the first step) for the hybrid control method; numbers indicate
points addressed in the text.

Therefore, the set of flows for the hybrid power system can be illustrated as follows (Giaouris
et al. (2018)):

• The set of flows: Flows = {Power, Hydrogen, Water}

The detailed implementation of the ε-variables has already been explained step by step in
Section 3.5.4 (Point 4-14).

As shown in Figure 5.6, this step is composed of sub-steps which are:

• Initially, evolution operators are defined.

• The power flows are calculated by multiplying equation P j
i and Eq. (5.7). However, to

calculate the EL and FC, some equations need to be as follows:
According to Faraday’s Law, the generation rate of H2 in the EL and production rate of
hot water in the FC can be calculated by respectively (Cheng et al. (2020)):

nH2 = nF(ncIelec)/(neF)

nH2O = (ncFCIFC)/(nF)(neF)

nF symbolizes that Faraday’s efficiency can be defined as the ratio between the actual
and theoretical amount of H2 generated and is generally between 80-100%. Ielec is the
operating current for the EL, F is the Faraday’s constant; nc and ncFC is the number of
cells for the EL and FC, respectively; lastly, ne is the number of electrons.
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When the battery is fully charged, excess energy from the PV can potentially be exploited
to run the electrolyzer at 4 kW. On the other hand, the PV does not accomplish to meet the
load-generation mismatch; the fuel cell rated at 1 kW can be utilized in order to store hydrogen.
It can be used as an alternative energy. The generated water from the fuel cell is stored in the
water tank. Optionally, the utility grid can be used in austere conditions, such as a lack of energy
in the PV or accumulators. The power flows (in Figure 5.3) of FC and EL can be calculated as
follows:

• For the FC in Figure 5.3;

Fout_FCH2O(k) = εFC(k)nH2O (5.1)

Fout_FCPower(k) = εFC(k)FFC (5.2)

Fin_FTH2(k) = Fout_ELH2(k) (5.3)

where Fout_FCH2O represents the flow of water from the FC to the water tank, Fout_FCPower

is the power from the FC to the battery, and Fin_FTH2 is the flow of hydrogen from the FT
to the FC.

• For the EL in Figure 5.3;

Fin_BATPower(k) = Fout_PVPower(k)+Fout_GRPower(k)+Fout_FCPower(k) (5.4)

Fin_WTH2O(k) = Fout_FCH2O(k) (5.5)

Fout_ELH2(k) = εEL(k)nH2 (5.6)

where Fin_BATPower is the total power in the BAT. Fout_PVPower is the power for the load,
battery, and utility grid. Fout_GRPower is the power for the load. Fin_WTH2O is the water
from the FC. Fout_ELH2 is the flow from the EL to the FT.

Also, consider these equations:

Fout_FT H2(k) = εFC(k)nH2O (5.7)

Fout_BAT Power(k) = εEL(k)FEL (5.8)

Fout_WT H2O(k) = εEL(k)nH2 (5.9)

Fout_PV Power(k) = εPV (k)Fout_PV (k) (5.10)

Fout_GRPower(k) = εGR(k)Fout_GR(k) (5.11)

where Fout_FTH2 represents the flow of hydrogen from FT to the EL, Fout_BATPower is the
power from the BAT to the EL, Fout_WTH2O is the flow of water from the WT to the EL.

• The last step is to calculate the evolution operator for the accumulator (see Eq. (3.47)).
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Figure 5.6 The flow chart of the ε-variables
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5.4.2. Step 2: Generating the optimal controller for each operational mode

From Step 1, the control decisions obtained are utilized to find the optimum system control, state,
and output vectors for the S-MPC. There are several stages as follows (Point 15): Define the
system-state, control, and output vectors for the MG with the help of Equation (3.47-3.49) and
Eq. (3.52):

State vectors, 𝑥𝑥(𝑘𝑘) = [𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑙𝑙 𝑘𝑘 ]𝑇𝑇

Control (input) vectors, 𝑢𝑢(𝑘𝑘) = [𝑃𝑃2(𝑘𝑘), … ,𝑃𝑃11(𝑘𝑘)]𝑇𝑇

Output vector, 𝑦𝑦(𝑘𝑘) = [𝑃𝑃1 𝑘𝑘 ]𝑇𝑇

15

15

15

Define augmented vectors

Reference matrix
𝑅𝑅(𝑘𝑘) = [𝑤𝑤1𝑃𝑃𝐿𝐿𝐿𝐿(𝑘𝑘),𝑤𝑤5𝑃𝑃𝑃𝑃𝑃𝑃(𝑘𝑘), 0,0,0]𝑇𝑇

Discrete-time linear state-space system
𝑥𝑥 𝑘𝑘 + 1 = 𝑆𝑆𝑥𝑥 𝑘𝑘 + 𝐵𝐵𝑢𝑢(𝑘𝑘)

16

17

Objective function
𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑘𝑘 = min(𝑚𝑚1 𝑘𝑘 + 𝑚𝑚2 𝑘𝑘 + 𝑚𝑚3 𝑘𝑘)

Constraint matrix for the MG 
system

Persistence of excitation for 
the accumulators

18 19 20

21

The receding horizon control
𝑢𝑢 𝑘𝑘 = 𝑈𝑈(𝑘𝑘 + 1|𝑘𝑘)

22

Check the SOAcc of the accumulators 
(charging/discharging mode)

Quadratic programming
23 24

15

25

Figure 5.7 A graph is shown in the second step for the hybrid control method; points addressed in the text
are indicated by numbers.

From Eq. (3.52), the system-state vector of the MG is obtained as follows (Point 15):

xa1(k) = [SOAccBAT (k)] (5.12)

xa2(k) = [SOAccFT (k)] (5.13)

xa3(k) = [SOAccWT (k)] (5.14)

SOAccBAT (k), SOAccFT (k), and SOAccWT (k) are the state of accumulators for the battery, hy-
drogen tank, and water tank, respectively. From Eq. (3.49) and Eq. (5.1-5.11), the system-control
(input) vector of the MG is found as follows (Point 15):

u(k) = [PVLD(k);GRLD(k);PVBAT (k);BATLD(k);FCBAT (k);BATEL(k);ELFT (k);FTFC(k);WTEL(k)]

(5.15)
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The dynamic process equations of the battery, hydrogen, and water tank can be represented by:

xa1(k) = xa1(k−1)+ba1u(k−1)

∆xa1(k) = ba1u(k−1)
(5.16)

where ba1 = [0 0 ηch −ηdis ηch −ηdis 0 0 0 0].

xa2(k) = xa2(k−1)+ba2u(k−1)

∆xa2(k) = ba2u(k−1)
(5.17)

where ba2 = [0 0 0 0 0 0 ηchH2
−ηdisH2

0 0].

xa3(k) = xa3(k−1)+ba3u(k−1)

∆xa3(k) = ba3u(k−1)
(5.18)

where ba3 = [0 0 0 0 0 0 0 0 ηchH2O −ηdisH2O ].
The system-output vector of the MG is as follows (Point 15):

ya(k) = caxa(k−1)+dau(k) (5.19)

where ca = 0 and da = [w1 w1 0 w1 0 0 0 0 0 0]. From the definition of ya,

∑(w1PLD(k)− ya(k))2 (5.20)

where w1 is a positive weight coefficient for the minimization of the operational cost of the
hybrid MG.

yb(k) = w3(P2(k)+P4(k)) = cbxa(k−1)+dbu(k) (5.21)

With respect to yb,
where cb = 0 and db = [w3 0 w3 0 0 0 0 0 0 0]. To increase the exported energy, the

definition of yb,

∑(w5PPV (k)− yb(k))2 (5.22)

where w3 is a positive weight coefficient for the enhancement of usage of the PV generator.
Regarding yc, yd , and ye,

yc(k) = w2(P4(k)+P5(k)+P6(k)+P7(k)) = ccxa(k−1)+dcu(k) (5.23)
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where cc = 0 and dc = [0 0 w2 w2 w2 w2 0 0 0 0]. To penalize the accumulators, the
definition of yc,

∑yc(k))2 + yd(k))2 + ye(k))2 (5.24)

where w2 is a positive weight coefficient for the penalization of the battery utilization. yd and ye

(for other accumulators) can be found in a similar way.
Define the augmented system-states (Point 16):

x(k) = [xa1(k);xa2(k);xa3(k);ya(k−1);

yb(k−1);yc(k−1);yd(k−1);ye(k−1)]
(5.25)

Define the augmented system output (Point 16):

y(k) = [ya(k−1);yb(k−1);yc(k−1);yd(k−1);ye(k−1)] (5.26)

Consider the discrete-time linear state-space system (Point 17)(Wang (2009)) (see Eq.(3.30)).
The linear state-space equation can be stated depending on the battery, fuel tank, and water

tank equations (see Eq.(3.47)).
Because of the dynamic equation of SOAccBAT , SOAccFT , and SOAccWT , in Eq. (3.47), the

components A and B will be:

A =

[
1 zeros(1,7); 0 1 zeros(1,6); 0 0 1 zeros(1,5);

zeros(5,8)

]

B =



0 0 ηch −ηdis ηch −ηdis 0 0 0 0
0 0 0 0 0 0 ηch,H2 −ηdis,H2 0 0
0 0 0 0 0 0 0 0 ηch,H2O −ηdis,H2O

w1 w1 0 w1 0 0 0 0 0 0
w5 0 w5 0 0 0 0 0 0 0
0 0 w2 w2 w2 w2 0 0 0 0
0 0 0 0 0 0 w3 w3 0 0
0 0 0 0 0 0 0 0 w4 w4


Define the reference matrix (R) for the MG (Point 18):

R(k) = [w1(PLD(k);w5(PPV (k);0;0;0;w1(PLD(k+1);w5(PPV (k+1);0;0;0;

; ...;w1(PLD(k+Np −1);w5(PPV (k+Np −1);0;0;0]
(5.27)

Define the objective functions for the S-MPC on the MG (Point 19):
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1. The utilization of the utility grid is minimized.

min J1(k) = min
k+Np

∑
k

(w1PLD(k)− ya(k))2 (5.28)

2. The usage of the accumulators is penalized so as to prevent the charging from the utility
grid

min J2(k) = min
k+Np

∑
k

yc(k)2 + yd(k)2 + ye(k) (5.29)

3. The exported energy to the utility grid is encouraged.

min J3(k) = min
k+Np

∑
k

(w3PPV (k)− yb(k))2 (5.30)

Define the overall cost function (objective function) for the MG:

min J(k) = min (J1(k)+ J2(k)+ J3(k)) (5.31)

Define the constraints for the MG (Point 20): Energy/matter flows from the PV array, utility
grid, battery, fuel tank, electrolyzer, fuel cell, and water tank are non-negative values and are
subject to their maximum values:

0 ≤ P1(k) = PLD(k)− ya(k)≤ Pmax
1

0 ≤ Pm(k)≤ Pmax
m

(5.32)

where Pmax
m (m = 1,2, . . . ,11) imply the maximum values of energy/matter flows. The sum of

PV energy supplied directly for the load (P2(k)) and the battery for the charging (P4(k)) should
be smaller than the energy flow from the PV array, (PPV (k)).

P2(k)+P4(k)≤ PPV (k) (5.33)

The SOAccBAT for the battery, SOAccFT for the fuel tank, and SOAccWT for the water tank are
restricted between their minimum and maximum values (Cavus et al. (2023)).

SOAccBAT min
≤ SOAccBAT ≤ SOAccBAT max

SOAccFT min
≤ SOAccFT ≤ SOAccFT max

SOAccWT min
≤ SOAccWT ≤ SOAccBATWT

(5.34)
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Charging and discharging for the battery, fuel tank, and water tank cannot happen simultane-
ously, as is implied by the following:

P4(k)P5(k)≤ 0 P6(k)P7(k)≤ 0

P8(k)P9(k)≤ 0 P10(k)P11(k)≤ 0
(5.35)

It is worth noting that Eq. (5.32) and (5.33) are convex, whereas Eq. (5.35) is non-convex. In
order to accomplish convex optimization in S-MPC design, the non-convex constraints into
two switched cases: (i) charging: (P5 = 0,P7 = 0,P9 = 0, and P11 = 0) and (ii) discharging:
(P4 = 0,P6 = 0,P8 = 0, and P10 = 0) (Point 21).

1. Charging: The constraint can be re-written by:

P5(k)≤ 0 P5(k)≥ 0

P7(k)≤ 0 P7(k)≥ 0

P9(k)≤ 0 P9(k)≥ 0

P11(k)≤ 0 P11(k)≥ 0

(5.36)

Constraints (5.32), (5.33), and (5.36) can be compactly re-written by:

µchu(k)≤ γch (5.37)

where

µch =



−eye(10)
0 0 0 1 0 1 0 1 0 1
1 1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0

eye(10)
−1 −1 0 −1 0 0 0 0 0 0


γch =



zeros(10,1)
0

PLD(k)

PPV (k)

Pmax
m ones(10,1)
Pmax

3 −PLD(k)


where eye is an identity matrix, and zeros is creating an array of all zeros.

2. Discharging: The constraint can be re-written by:

P4(k)≤ 0 P4(k)≥ 0

P6(k)≤ 0 P6(k)≥ 0

P8(k)≤ 0 P8(k)≥ 0

P10(k)≤ 0 P10(k)≥ 0

(5.38)

Constraints (5.32), (5.33), and (5.38) can be compactly re-written by:

µdisu(k)≤ γdis (5.39)
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where

µdis =



−eye(10)
0 0 1 0 1 0 1 0 1 0
1 1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0

eye(10)
−1 −1 0 −1 0 0 0 0 0 0


γdis =



zeros(10,1)
0

PLD(k)

PPV (k)

Pmax
m ones(10,1)
Pmax

3 −PLD(k)


Define the predictive control vector for the MG:

U(k) = [uT (k),uT (k+1|k), . . . ,uT (k+Nc|k)]T (5.40)

where u(k+m|k) is the predicted value of u from the sampling time k and Nc is the number of
control (input) moves to be optimized at sampling time k called the control horizon. Because
each u(k+m|k) in the predictive control vector U(k) should satisfy (5.26) and (5.27), it follows
that U(k) should satisfy:

µchU(k) = γch (5.41)

where

µch =


µch . . . 0

... . . . ...
0 . . . µch


︸ ︷︷ ︸

Nc

γch =


γch
...

γch



µdisU(k) = γdis (5.42)

where

µdis =


µdis . . . 0

... . . . ...
0 . . . µdis


︸ ︷︷ ︸

Nc

γdis =


γdis

...
γdis



Design and control the multiple models depending on several parameters as follows (Point 22):

if εiP
j

i < 0; SOAccl > SOAccl
min

SOAccl < SOAccl
max

if εiP
j

i > 0; SOAccl > SOAccl
max

SOAccl < SOAccl
min
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Then, minimize the quadratic cost function as follows (Point 23):

J(U) =
Np−1

∑
k=0

(x(k)T Qx(k)+u(k)TCx(k))+ x(N)T Q f x(k) (5.43)

where N is called the horizon of the quadratic problem. Q is the state weight Q = QT ≥ 0; C is
the control weight C =CT > 0 and Q f is the final cost weight Q = Q f

T ≥ 0.
Note that X =(x(0),x(1), . . . ,x(N)) is a linear function of x(0) and U =(u(0),u(1), . . . ,u(N−

1)). 
x(0)
x(1)

...
x(N)

=



0 0 · · · 0
B 0 · · · 0

AB B 0
...

...
... . . . 0

AN−1B AN−2B · · · B




u(0)
u(1)

...
u(N −1)

+


I

A

A2

AN


This matrix can be expressed as:

X = GU +Hx(0) (5.44)

where G ∈ RNn.Nm and H ∈ RNn.Nn.
Equation (5.43) can be re-written as follows:

J(U) = XT


Q 0 · · · 0

0 . . . 0
...

... 0 Q 0
0 · · · 0 Q f


︸ ︷︷ ︸

Q1

X +UT


R 0 · · · 0

0 . . . 0
...

... 0 R 0
0 · · · 0 R f


︸ ︷︷ ︸

Q2

U

These matrices are combined with Eq. (5.44) to obtain Eq. (5.45) using the QP:

J(U) = (GU +Hx(0))T Q1(GU +Hx(0))+UT Q2U (5.45)

The calculation of receding horizon control (Point 24):
In the S-MPC principle, the optimization problem is solved during each sampling time k,

and the first element of U(k) is employed to the MG:

u(k) =U(k+1|k) (5.46)

5.4.3. Step 3: Implementing the optimal decisions using the logic control

As illustrated in Figure 5.17, in this section, the utility grid (PVGR and GRLD) is removed, and
the EV fleet that their batteries have 45 kWh, 55 kWh, and 60 kWh (EVLD) are added, and the
state space is updated (Point 25). Then, the power flows are re-calculated by multiplying Eq.
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(5.15) and (3.52) (Point 26).

State of flows, 𝐹𝐹𝑚𝑚→𝑛𝑛
𝑗𝑗 (𝑘𝑘)

State of accumulators, 
SOAcc𝑙𝑙(𝑘𝑘)

26

27

Updated the state space 
model

25

Update the operational assets of 
the flexible hybrid MG

28
Go back to the first step 

(ε-variables)

29
Option 1 (YES)

Option 2 (NO) Go back to the “optimal 
control decisions”

30

25

Figure 5.8 A graph shown in the third step for the hybrid control method; points addressed in the text are
indicated by numbers.

F j
a→b(k) = u(m)εi(k) (5.47)

FPower
EV→LD(k) = Pnet(k)εi(k) (5.48)

FPower
PV→EV (k) = Pnet(k)εi(k) (5.49)

where u(m) is the control variables of the S-MPC for m=2,4,...,11. After that, another step is to
measure the evolution operator for the accumulators (BAT , FT , and WT ) (see Eq.(5.2)) (Point
27).

Finally, the hybrid control method is checked to determine whether the system specifica-
tions/inputs of the flexible hybrid MG operator changed for the next time step or not (removing
the utility grid and adding the EVs).

If YES, the operational assets of the flexible hybrid MG are updated (Point 28), and the
system goes back to the first step to implement the standard ε-variables (Point 29). Then, all 3
steps are re-implemented.

If NO, the next step is to go back to the "optimal control decisions" (Point 30). Then, the
third step (optimal ε-variables) is re-implemented.

In summary, to simply the hybrid control method is composed of several phases, as shown in
Figure 5.9:

• Some system specifications and operational conditions from the MG operator, such as
PV and load data, and some parameters, including battery, fuel tank, and water tank, are
defined.
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Read system specifications and operational situations from the MG operator

for k=1

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛 𝑘𝑘 = 𝑃𝑃𝑃𝑃𝑃𝑃 𝑘𝑘 − 𝑃𝑃𝐿𝐿𝐿𝐿(𝑘𝑘)

Calculate the evolution operators for power flows: εPV, εGR, εBAT, εFC, εEL, εFT, εWT

Calculate the power flows depending on Pnet: FPV→GR, FPV→LD, FGR→LD, FPV→BAT, 
FBAT→LD, FFC→BAT, FBAT→EL, FEL→FT, FFT→FC, FFC→WT, FWT→EL

Estimate the state of accumulator of the BAT, FT, and WT: SOAccBAT, SOAccFT, 
and SOAccWT

Obtain the control decisions from the standard ε-variables

Generate A, B, u, x, and y matrices depending on the ε-variables results 

Optimize the flexible hybrid MG using the quadratic programming

Switch the MPC to S-MPC in automatic

Update the SOAccBAT, SOAccFT, and SOAccWT

for k=1

Generate and control multiple models

Use the “optimal control decisions” for the proposed optimal ε-variable method 

Results

Update the evolution operators for power flows: εPV, εDG, εBAT, εFC, εEL, εFT, εWT

Update the power flows: FPV→LD, FPV→BAT, FBAT→LD, FFC→BAT, FBAT→EL, FEL→FT, 
FFT→FC, FFC→WT, FWT→EL, FDG→LD

Update the SOAccBAT, SOAccFT, and SOAccWT

for k=1
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Figure 5.9 Flow-chart of the proposed hybrid optimal method for the flexible hybrid MG.
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• Net energy Pnet (differences between the PV and the load data for 48 hours and 8760
hours) is calculated. However, net energy for the FC and EL is calculated according to
Eq.(5.1-5.11)

• The evolution operators for the accumulators and converters are calculated; then, the power
flows among the components of the hybrid MG are calculated.

• The last step in the ε-variables is the measurement of the SOAcc for the BAT , FT , and
WT .

• The first step in the S-MPC is to evaluate the "control decisions" obtained by exploiting
the standard (non-optimal) ε-variables.

• The A, B, u, x, and y matrices are obtained depending on the "control decisions".

• Multiple models are evaluated for the accumulators, depending on the amount of power P j
i

and SOAccl .

• After that, the persistence of excitation for the accumulators (BAT , FT , and WT ) is imple-
mented in order not to allow the charging and discharging conditions for the accumulators
simultaneously.

• The hybrid MG system is optimized with the help of "quadratic programming".

• The state of the accumulators for the battery, fuel tank, and water tank is updated.

• "Optimal control decisions" are measured and compared with former "control decisions".

• In the final step, these "optimal control decisions" are embedded in the ε-variables-based
EMS.

• The SOAcc for the BAT , FT , and WT is measured and updated. The output of the last step
will be thus optimal ε-variables-based EMS.

• The MG requirements and inputs from the MG operator will be checked at the start of
each time step during the operating phase of the EMS. If this information is adjusted or
changed, the operating states of the MG assets are updated, and the three steps of EMS
construction are performed to take the new input into account. If this is not the case, the
best ε-variables-based EMS can be utilized to regulate the MG for the following time step.
It is worth noting that the suggested method determines whether or not the MG operator’s
system specifications/inputs change for the next time step.

5.5. Use Cases: Simulation results and discussions

Before the simulation, several parameters have been defined, as shown in Table 5.1. The
weighting factors assigned to each extra term in the cost function are used to adjust the term’s
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priority or cost concerning the other control targets Cortés et al. (2009). The PV system’s energy
generation data and demand were obtained from Makonin (2019).

It is important to note that the control action is continuously adjusted based on feedback from
the system being controlled. In the case of MPC, the control action is determined by solving
an optimization problem at each time step, taking into account the current state of the system,
the predicted future states, and the desired performance objectives. The optimization problem
incorporates feedback information to minimize a cost function or achieve a specific control
objective. MPC relies on feedback information to update control actions over time. It uses
predictions of future states to optimize the control action sequence. The feedback information
allows MPC to adapt and respond to changes and disturbances in the system, improving its
performance and robustness.

While MPC is a form of closed-loop control, it is important to note that the optimization
problem is solved based on a prediction of future system behaviour. This prediction is based on
the model and assumptions about the system dynamics and constraints. Therefore, MPC can be
seen as a combination of open-loop and closed-loop control, where the optimization problem
is solved based on an open-loop prediction, and the resulting control action is adjusted in a
closed-loop manner based on the feedback information.

Notations Notations Notations

w1 = 1.0 SOAccBAT (1) = 0.3 Pmax
m = 5 kW

w2 = 0.4 SOAccFT (1) = 0.9 Cmax
BAT = 96 kWh

w3 = 0.3 SOAccWT (1) = 0.5 Cmax
FT = 10.1 kWh

w4 = 0.5 FEL = 4 kW Cmax
WT = 39.7 kWh

w5 = 0.5 FFC = 1 kW SOAccl
max = 0.9

ncEL = 15 ncFC = 40 SOAccl
min = 0.2

η l
ch = 0.9 η l

dis = 0.85 ∆t = 1 s
Cmax

EV1
= 45 kWh Cmax

EV2
= 55 kWh Cmax

EV3
= 60 kWh

Table 5.1 Parameters for the real system (Ipsakis et al. (2009)).

5.5.1. Use Case 1: Control of the flexible hybrid MG using logic control

The system’s behaviour is analyzed during the simulation of the flexible hybrid MG with logic
control. Initially, the battery is in a discharging mode, as indicated by the digit 0 in the first
position of the three-digit code, as shown in Figure 5.10. As the simulation progressed, the PV
system’s output was utilized to satisfy the mismatch load demand. If the PV system generates
excess energy, it is used to charge the battery, which occurred at the 13th time step. Consequently,
the three-digit code is changed to (100) to indicate that the battery is in charging mode. At the
15th time step, the battery continued to charge, and the WT reached its maximum output. In this
instance, the three-digit code is changed to (101) to indicate that the battery was in charging mode
while the WT was being filled. After one hour, the battery is neither charging nor discharging,
but the WT still is filling, so the three-digit code was updated to (001). Between the 16th and
22nd time steps, the battery is discharged. At the beginning of the 22nd and 30th-time steps,
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Figure 5.10 The results of working of logical controller based-EMS

the FT is filling, and the utility grid is also used to compensate for the imbalance between load
and generation. Throughout this time frame, the three-digit code was changed to (010). The
three-digit code is updated to (110) after the PV system supplies power to the battery for one
hour. The WT is fully filled at the 32nd time step, but the battery remains in charging mode.
The three-digit code is therefore changed to (100). At the start of the 36th time step, the WT
reached its maximum capacity, and the battery continued to charge, resulting in the update of the
three-digit code to (101). The battery is neither charged nor discharged after three hours, while
the WT remains at its maximum capacity. As a result, the three-digit code for these states was
changed to (001).

The logic control approach in the control of the flexible hybrid microgrid exhibited distinct
behaviour, as indicated by the changing three-digit code, which reflected the operational modes
of the accumulators and converters’ utilization to manage load-generation imbalances. The
analysis of these code variations provides valuable insights into the effectiveness of the control
strategy in managing energy flow.

FEL and FFC were selected as 4 kW and 1 kW. The evolution operator of εPV is working
in order to meet the load-generation mismatch for the building and charge the battery in the
case of excess energy, as shown in Figure 5.11. If the PV is unable to generate sufficient power,
either the battery or the FC will ensure that the load is met. If the battery is depleted and there is
no accessible hydrogen, the grid will supply energy. In other words, when there is no energy
from the PV, the evolution operator of εBAT , εFC or εEL is converted from 0 to 1 to compensate
for the load-generation mismatch. If there is still insufficient energy in the battery, fuel cell,
and electrolyzer, the utility grid will start to work. Hence, the evolution operator of εGR→LD is
converted from 0 to 1, as illustrated in Figure 5.11. On the other hand, FC will work to hot the
water tank when the SOAccWT of the water tank is less than the critical value (<20%). Therefore,
the evolution operator of εFC→WT turns from 0 to 1, as demonstrated in Figure 5.11. When the
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Figure 5.11 The results of power flows using standard ε-variables

SOAccFT has enough energy to give FC, the evolution operator εFT→FC converts to 1. On the
other hand, the evolution operator εFC→BAT is activated to charge the battery when excessive
energy is in the FC. Hence the binary variables of εFC→BAT are turned to 1 at the end of the
control (see Figure 5.10).

5.5.2. Use Case 2: Controlling the flexible hybrid MG using S-MPC

The results of the standard ε-variable method are utilized to obtain the components of the S-MPC,
such as coefficient A and B, control (input) vector u, state vector x, and output vector y. At the
end of the second step of the proposed method, the optimal LQ control decisions are obtained.

As shown in Figure 5.12, the PV works not only for the load but also for the utility grid
and battery PVGR and PVBAT . Hence, the practicality of PV usage is enhanced. Moreover, the
discharging of the accumulators decreases. The accumulator’s utilization is penalized in order to
prevent the charging from the utility grid. The energy consumption from the utility grid GRLD

(running cost of the MG) is decreased, as illustrated in Figure 5.12.
The increase in the exported energy and the decrease in the imported energy are the main

differences between the logic control and optimal ε-variables. To prove that, the controller has
been simulated for one year (8760 hours). Our results illustrate that the exported energy to the
utility grid PVGR is encouraged from 1705.35 kWh to 2571.01 kWh. Energy imported from the
grid significantly decreased from 1494.36 kWh to 796.46 kWh, as demonstrated in Figure 5.13.
These results are expected and desired since the optimal control decisions are obtained using
optimal ε-variables.
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Figure 5.12 The results of power flows using the S-MPC method
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Figure 5.13 The results for the standard ε-variables and optimal ε-variables for one year.
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Quantitatively, the decrease in grid-supplied energy imports is approximately 46.9%, indi-
cating a significant reduction in reliance on grid-supplied energy. In addition, the increased
exported energy demonstrates a substantial increase of approximately 50.8% in the use of RESs,
emphasizing the enhanced integration of RESs into the MG system. From a cost perspective, the
implementation of optimal ε-variables yields substantial advantages. The decreased dependence
on imported energy reduces the costs associated with grid-supplied electricity. While the specific
cost reduction percentage can vary based on individual circumstances, the overall cost savings
attributable to optimal ε-variables-optimized control decisions are evident.

In summary, the implementation of optimal ε-variables demonstrates its effectiveness in
optimizing the energy management system of the microgrid. This is evidenced by a significant
reduction in energy imported from the grid, an impressive increase in the use of RESs, and
the resulting cost savings. The application of optimal ε-variables establishes it as a viable and
advantageous strategy for improving the performance and sustainability of flexible hybrid MGs.

5.5.3. Use Case 3: Incorporating plug-and-play EV fleet

We observe slight variations in the power profiles of EVs between the two controllers in Figure
5.14. The distinctive control strategies employed by each controller account for these distinctions.
The MPC-based EMS Controller uses the plug-and-play capability of S-MPC to optimise the
power allocation adaptively based on the current system state and EV fleet characteristics. The
plug-and-play capability of S-MPC enables the seamless integration of new EVs into the system
without extensive modifications to the control algorithm. It takes into account the variability
and unpredictability of EV fleet behaviour, making it flexible and adaptable to fleet composition
changes. This feature enables the MPC-based EMS Controller to manage the EV fleet efficiently
and optimise power flows, even as new EVs are added or removed.

The logical based-EMS Controller manages the EV fleet and distributes power based on
predefined rules and heuristics. However, manual adjustments or modifications may be necessary
when integrating new EVs into the system. The MPC based-EMS Controller, on the other hand,
leverages the plug-and-play capability of S-MPC to enable the seamless integration of new EVs
into the system without extensive reconfiguration. The MPC algorithm adapts to changes in the
composition of the EV fleet and optimises power distribution based on the current state of the
system, taking into account factors such as EV load requirements, grid constraints, and forecasts.
MPC Based-EMS Controller scalability and adaptability are enhanced by the plug-and-play
capability of S-MPC. It simplifies the incorporation of new EVs into the fleet and ensures efficient
utilisation of their variable energy resources. This capability allows the controller to effectively
manage the variability and unpredictability of the EV fleet, resulting in optimised power flows
and enhanced system performance. In conclusion, the plug-and-play capability of S-MPC in
the MPC-based-EMS Controller improves its adaptability and scalability, allowing for seamless
integration of new EVs and efficient fleet management. The choice between these controllers
depends on the specific system requirements, the desired control approach, and the importance
placed on adaptability, optimisation, and integration simplicity.
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Figure 5.14 Incorporating plug-and-play EV fleet using the logical controller and MPC controller based-
EMS

The SOAcc variables play a crucial role in the decision-making processes of the energy
management system, allowing for the efficient utilisation of energy resources. By monitoring
and controlling SOAcc levels, the system can ensure optimal charging and discharging of the
battery and EVs, thereby balancing supply and demand for energy. In Figure 5.15, variations in
SOAcc indicate the dynamic nature of the system’s operation. These variations denote substantial
modifications to the control strategy, such as switching between battery discharging and grid
running modes or battery discharging and EV running modes. Overall, the SOAcc variables
provide valuable information about the energy storage levels of the system’s battery and EVs.
Their fluctuations and patterns highlight the dynamic nature of the energy management system,
which enables the efficient use of available energy resources and the effective adaptation to
changing system conditions and control strategies.

To make it clear, in the third step of the optimal ε-variables, the MG is working in islanded
mode. Three different EVs have been added separately and at different times. To show the
capability of our proposed method, the conditions of EL and FC are switched OFF. When the PV
and BAT do not have enough energy for the building, the EV meets the load-generation mismatch
through the evolution operator of εEV→LD. On the other hand, when there is excessive energy
in the PV, the PV charges the BAT employing the εPV→BAT . The battery stores the energy and
uses it for the building with the evolution operator of εBAT→LD when there is a load-generation
mismatch, as shown in Figure 5.16. Our results show that when removing the utility grid and
adding the EV fleet, the controller works properly through the flexible hybrid MG. The SOAcc

of the battery and EV fleet are working at desired conditions, as shown in Figure 5.15. In other
words, their SOAcc does not below or exceed the critical values during operation because our
proposed method is optimal.
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Figure 5.15 The illustration of the SOAcc of the battery is the hybrid control method.

Figure 5.16 The results of power flows (adding the EV fleet and removing the utility grid).
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Figure 5.17 The results of power flow when the MG is in grid-connected mode and islanded mode

5.5.4. Use Case 4: Islanded MG

Grid-Connected Mode: The results for grid-connected mode display the transition points (TPs)
at specific time steps, indicating significant changes in system operation. In this mode, the TP
indicates the transition from the battery (BAT) discharging to the GR operation, as well as the
transition from BAT discharging to BAT charging. As shown in Figure 5.17, at 12h, 16h, 22h,
and 25h, the TP signifies the end of BAT charging and the start of GR running. This indicates
that the battery has reached capacity, and the system has switched to grid power. The transition
from BAT discharge to GR operation indicates the capacity limitations of the battery and the
need to rely on the grid to meet the load requirements. In addition, the TP at 39h indicates the
end of BAT discharging and the beginning of BAT charging. This indicates that the battery is
depleted and requires recharging, possibly in preparation for future grid instability or increased
load demand. The transition from BAT discharging to BAT charging demonstrates the system’s
adaptability and capacity to optimise its operation by recharging the battery energy storage.

Islanded Mode: Similar TPs are observed in the islanded mode, indicating significant changes
in system operation. The TP represents the transition from BAT discharge to GR operation and
from BAT discharge to EV operation. As demonstrated in Figure 5.17, the TPs at 12h, 16h, 22h,
and 25h indicate the conclusion of BAT discharge and the start of GR running. This indicates
that, in the absence of a grid connection, the battery has reached its minimum capacity, and
the system switches to utilising power from a nearby generator or renewable sources. In the
islanded mode, the switch from BAT discharge to GR operation signifies the system’s reliance on
alternative power sources. In addition, the TP at 39h indicates the end of BAT discharge and the
beginning of EV operation. This indicates that the battery has been depleted, and the system has
resorted to using power from EVs to meet load requirements. The transition from BAT discharge
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to EV operation exemplifies the system’s flexibility and plug-and-play capability, allowing EVs
to contribute to the power supply in islanded mode.

These transition points illustrate the adaptive nature of the S-MPC algorithm and its capacity
to make informed decisions based on the system’s state and evolving requirements. The S-MPC
can seamlessly transition between different control modes to ensure efficient energy management
in both grid-connected and islanded modes by detecting specific conditions, such as low battery
levels or the availability of alternative energy sources. The presence of transition points in
both grid-connected and isolated modes demonstrates the efficacy of the S-MPC algorithm in
managing power flows and optimising system operation. The ability to switch between different
control modes enables the system to adapt to changing conditions and optimally utilise available
energy sources, thereby enhancing grid stability and ensuring a reliable power supply.

5.6. Conclusions

In conclusion, the proposed hybrid control method is entirely illustrated in the flexible hybrid
MGs in which assets with PnP capabilities are constructed in Xanthi, Greece (Giaouris et al.
(2018)). This method exploits a fuel cell and an electrolyzer so as to accomplish complex
autonomy from the main grid. These studies demonstrate that the standard (non-optimal) ε-
variables have several advantages, such as being scalable and practical for flexible hybrid MGs,
especially complex hybrid power systems. However, ε-variables are not optimal. On the other
hand, MPC predicts the system’s future behaviour and chooses the optimal control action using a
mathematical model. At each time step, MPC solves an optimization problem using the system’s
current state, predicted future states, and a cost function that reflects performance objectives and
constraints. Nevertheless, it cannot control the flexible hybrid MG because of multiple operating
models. S-MPC is a variation of MPC that uses multiple models to represent different system
operating modes or scenarios. Based on the system’s state and performance goals, S-MPC
chooses a model and control strategy. However, S-MPC requires many more steps, making
it harder to implement. Through the S-MPC, the amount of grid consumption is minimized
by almost 46.7%, and the exported energy to the utility grid is encouraged by nearly 50.8%.
Nonetheless, implementing the proposed hybrid control method has numerous steps, especially
for complex hybrid MG. This issue makes the hybrid MG system more complicated in terms of
controllability. In order to cope with this issue, the decisions of S-MPC are translated into the
ε-variables. By doing so, a systematic methodology is obtained, and the control structure can be
significantly simplified. Also, the computational complexity of the S-MPC is reduced. In other
words, this hybrid control method model systematically and practically the control regulations
that supervise the complex hybrid MG. Thus, it has the ability to permit more complex EMSs to
be adopted readily.

The next chapter will be a conclusion and future works for all studies. Implementing MPC
is difficult due to the requirement of a plant model with high computational and algorithmic
complexity and numerous control parameters. Several machine learning (ML) techniques, such
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as an RNN with long short-term memory (LSTM) and CNN, can be combined with the MPC to
address these issues.
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To summarise, there are many reasons in support of utilizing the MPC technique in order
to manage the MG power system effectively. Utilizing cost functions and constraints, the
MPC can make predictions regarding the generation and consumption of power and deal with
unpredictability and disturbances. MPC, on the other hand, is not an accessible technology to
put into practice, particularly in more complicated MG systems. In addition to this, a significant
amount of processing power and time is required. In order to solve these issues, the MPC
technique has been combined with the ε-variables used in this thesis. By utilizing this hybrid
approach, the complexity of the MPC implementation can be reduced. At the same time, the
scalability and controllability of the PBG system can be improved at any given point in time.
Putting it another way, the MPC-ε-variables technique makes the control of the system much
easier to understand and implement. In this thesis, we first demonstrated that the MPC and the
MPC-ε-variables produce the same results. Next, as a case study, we gave an example of how the
EMS can easily be altered without making any changes within the MPC. Finally, we concluded
this article by demonstrating that the MPC and the MPC-ε-variables produce the same results.

There are a number of reasons for utilizing the ε-variable method to manage the MG power
system, but it is not the most effective method. On the other hand, S-MPC employs cost
functions and constraints in conjunction with various optimization techniques to predict power
generation and consumption. Nonetheless, S-MPC implementation is not simple, particularly in
complex MG systems. To overcome the shortcomings of the ε-variable and S-MPC methods, we
developed an extended optimal ε-variable technique that effectively: (i) reduces the operational
cost of MG by nearly 35%, (ii) reduces the battery energy storage system usage by 42%, and
(iii) increases the practicability of PV usage by 28%. The computational capability of the
new method is comparable (+2%) to that of the S-MPC. This extended optimal ε-variable (i)
improved the existing ε-variable method, (ii) reduced the complexity of the existing S-MPC
implementation, and (iii) significantly enhanced the scalability and adaptability of the existing
S-MPC implementation. The adaptability and scalability of the extended optimal ε-variable
technique were improved by modifying a number of evolution operators and incorporating a
diesel generator. Consequently, the proposed extended technique makes the system’s control
more straightforward and optimal.

In other chapters, the proposed hybrid control method is fully exemplified by the flexible
hybrid MGs constructed in Xanthi, Greece (Giaouris et al. (2018)). This method employs a fuel
cell and an electrolyzer to achieve complex independence from the main power grid. These
studies demonstrate that the standard (non-optimal) ε-variables have a number of benefits, such
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as being scalable and applicable to flexible hybrid MGs, particularly hybrid power systems
with complex architectures. Nonetheless, ε-variables are non-optimal. Using a mathematical
model, MPC predicts the system’s future behaviour and selects the optimal control action.
MPC solves an optimization problem at each time step by utilizing the system’s current state,
predicted future states, and a cost function that reflects performance objectives and constraints.
However, it is unable to control the flexible hybrid MG due to the existence of multiple operating
models. S-MPC is a variant of MPC that employs multiple models to represent various modes
or scenarios of system operation. S-MPC selects a model and control strategy based on the
system’s state and performance goals. However, S-MPC requires many more steps, making its
implementation more difficult. Through the S-MPC, the amount of energy consumed from the
utility grid is reduced by nearly 53.3%, and the amount of energy exported to the utility grid is
increased by nearly 50.8%. However, implementing the proposed hybrid control method involves
numerous steps for hybrid MG that are particularly complex. This issue makes the hybrid MG
system’s controllability more complicated. In order to address this issue, the S-MPC decisions
are translated into ε-variables. In this manner, a systematic methodology is obtained, and the
control structure can be simplified considerably. Also, the S-MPC’s computational complexity is
reduced. In other words, this hybrid control method models the control regulations that supervise
the complex hybrid MG systematically and practically. Thus, it has the capacity to facilitate
the adoption of more complex EMSs. By eliminating the prediction horizon, the computational
power of S-MPC can be decreased for future research. By doing so, S-MPC’s steps can be
reduced. This can be accomplished by combining the S-MPC with one artificial neural network
(ANN) method, including RNNs and CNNs.

In summary, to highlight key findings:
MPC Advantages and Challenges:

• MPC offers effective management of MG power systems through cost functions and
constraints, handling unpredictability and disturbances.

• However, MPC is challenging to implement in complex MG systems, demanding signifi-
cant processing power and time.

Hybrid Approach - MPC-ε-Variables:

• A hybrid approach combining MPC with ε-variables is introduced to address MPC imple-
mentation complexities.

• This approach enhances system controllability and scalability, simplifying implementation
without sacrificing results.

Equivalence of MPC and MPC-ε-Variables:

• Demonstrated that MPC and MPC-ε-Variables produce equivalent results, validating the
effectiveness of the hybrid approach.
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• Highlighted flexibility in altering EMS without changes in MPC settings, showcasing
practicality.

Extended Optimal ε-Variable Technique:

• Introduced an extended optimal ε-variable technique to overcome limitations of ε-variable
and S-MPC methods.

• Achieved significant improvements: 35% reduction in MG operational cost, 42% less
battery usage, and 28% increased PV usage.

Improved Scalability and Adaptability:

• Modified evolution operators and incorporated a diesel generator to enhance the adaptabil-
ity and scalability of the extended technique.

• Simplified system control, making it more straightforward and optimal.

Application to Flexible Hybrid MGs:

• Applied the proposed hybrid control method to flexible hybrid MGs in Xanthi, Greece.

• Demonstrated scalability and applicability to complex architectures, emphasizing benefits
even with non-optimal ε-variables.

Comparison with S-MPC:

• Compared with S-MPC, the proposed hybrid method reduced energy consumption from
the grid by 53.3% and increased energy export by 50.8%.

• Acknowledged the complexity of hybrid MG systems and proposed translating S-MPC
decisions into ε-variables for simplification.

• Overall, the conclusions highlight the advantages of the hybrid approach, the success of
the extended optimal ε-variable technique, and the practical implications for managing
complex MG systems effectively.

6.0.1. Future Works

The issues of MPC:

• Prediction horizon: MPC and ANN are predictive controllers, regardless of whether
they incorporate disturbance forecasting into their control logic. MPC employs explicit
optimization along a finite prediction horizon, whereas ANN learns behaviours to maximize
the sum of immediate and discounted future rewards. The finite horizon is a weakness
of MPC, which is most noticeable in jobs with sparse rewards, where a short horizon
can render the agent excessively myopic (Bhardwaj et al. (2020)). Furthermore, larger
prediction horizons cause MPC to suffer since they increase the number of state and
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input variables in the optimization. Although infinite prediction horizons may profit
from enhanced behaviour in the long run, it should be highlighted that ANN algorithms
employ forecast information inefficiently. This is because all forecast data is flattened and
given to the agent’s observations without the time dependency. Throughout the learning
process, the agent must determine the temporal dependency not explicitly mentioned in
the problem formulation. MPC automatically preserves the time dependency (and hence
the chronology) by considering the system dynamics computed in the controller model. A
proposed synergistic method could address an optimization problem for MPC using small
prediction horizons while benefiting from the infinite horizons that characterize ANN
(Arroyo et al. (2022)).

• Computational effort: The burden of solving an optimization problem on-line, which
might be complex and involve many optimization variables, is a significant disadvantage
of implicit MPC. This is why MPC controller models are frequently simplified at the
expense of optimality, and efficiency advances in optimization solutions are widely desired.
Furthermore, state estimation and forecasting must be performed at each control step.
Explicit MPC seeks to alleviate this load by generating a control strategy through behaviour
cloning, whereas implicit MPC must be constructed first (Arroyo et al. (2022)).

• Plant model: Because MPC uses a system model to optimize actions for each control step,
it requires knowledge of the current value of the state vector, which system measurements
may not establish. As a result, state estimation is required to estimate the controller
model’s hidden states, i.e., those not monitored during operation (Akbulut et al. (2024);
Arroyo et al. (2022)).

In summary, the MPC’s implementation is difficult since the plant model is required and has
high computational and algorithmic complexity and many control parameters. To solve these
issues, a few of the ML techniques, such as a RNN with LSTM and CNN, can be merged with the
MPC. Our proposed method suggests that some parameters in the MPC, such as the prediction
horizon and rolling horizon approach, can be eliminated. Then the RNN-LSTM and CNN can
work as a prediction task. By doing that, the MPC has not required a correct plant model. Also,
the computational power and algorithm complexity are decreased (Cavus et al. (2023)).

Moreover, in addressing uncertainties in future works, several considerations and approaches
can be explored:

Data-Driven Approaches:

• Leverage ML techniques, such as neural networks, to capture and model uncertainties in
the system.

• Train models using historical data to learn the patterns of uncertainties and enhance the
predictive capabilities of the controller.

Robust MPC:
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• Implement Robust MPC techniques that inherently consider uncertainties in the system
parameters and disturbances.

• Develop methods to systematically handle uncertainties and variations to ensure system
stability and performance.

Hybrid MPC-ML Approaches:

• Combine MPC with machine learning algorithms, such as reinforcement learning or
ensemble methods, to adaptively respond to uncertainties.

• Develop hybrid control strategies that seamlessly switch between MPC and machine
learning approaches based on the prevailing uncertainties.

Online Learning:

• Develop MPC variants with online learning capabilities, allowing the controller to adapt
and improve its predictions over time as it receives new data and experiences uncertainties.

By addressing uncertainties through these avenues, future works can enhance the robustness,
adaptability, and overall performance of the MPC-based control system in the face of unpre-
dictable factors.
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Appendix A. Appendix

A.1. Microgrid Configuration Details for Chapter 3

For Chapter 3, the microgrid (MG) configuration details are as follows:

• PV Generator:

– Capacity: 14 kW

– Orientation: South at an optimal tilt angle of 30 degrees

• Batteries:

– Storage Capacity: 20 kWh

– Round-Trip Efficiency: 85%

– Max Charging/Discharging Rates: 50 kW

• Load:

– Residential Consumers

– Average Power Demand: 30 kW daily

– Daily and Seasonal Variations

• PV Array:

– 50 Solar Panels

– Total Area: 80 m²

– Assumed Solar Irradiance: 1000 W/m²
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Appendix B.

B.1. System Parameter Details for Chapter 4

For Chapter 4, the details of the system parameters are provided below:

• MG System Components:

– PV Array Capacity: 14 kW

– Battery Storage Capacity: 20 kWh

– Diesel Generator Capacity: 5.4 kW

• PV Generator:

– Maximum Power to Grid (PV max
GR ): 5 kW

– Maximum Power to Load (PV max
LD ): 5 kW

– Maximum Power to Battery (PV max
BAT ): 5 kW

• Battery and Load:

– Maximum Power from Battery to Load (BAT max
LD ): 5 kW

– Maximum Power from Grid to Load (GRmax
LD ): 5 kW

• State of Charge for Accumulators:

– Initial State of Charge for Battery (SOAccBAT (1)): 30%

– Initial State of Charge for Fuel tank (SOAccFT (1)): 90%

– Initial State of Charge for Water tank (SOAccWT (1)): 50%

– Minimum State of Charge for Accumulator l (SOAccl
min): 20%

– Maximum State of Charge for Accumulator l (SOAccl
max): 90%

• Weighting Factors:

– Weight for Operational Cost Minimization (w1): 1.0

– Weight for PV Generator Usage Enhancement (w3): 0.8

– Weight for Battery Utilization Penalization (w2): 0.2
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Appendix C.

C.1. Parameters for the Real System for Chapter 5 (Ipsakis et al. (2009))

For Chapter 5, the parameters for the real system are detailed below:

• Weighting Factors:

– Weight for Operational Cost Minimization w1: 1.0

– Weight for Battery Utilization Penalization w2: 0.4

– Weight for PV Generator Usage Enhancement w3: 0.3

– Weight for Fuel tank Utilization Penalization w4: 0.5

– Weight for Water tank Utilization Penalization w5: 0.5

• Power and Capacity Limits:

– Maximum Power Output (Pmax
m ): 5 kW

– Battery Capacity (Cmax
BAT ): 96 kWh

– Flywheel Capacity (Cmax
FT ): 10.1 kWh

– Wind Turbine Capacity (Cmax
WT ): 39.7 kWh

– Maximum Load Power (FEL): 4 kW

– Fuel Cell Power (FFC): 1 kW

• Other Parameters:

– Number of Cycles for Electric Load (ncEL): 15

– Number of Cycles for Fuel Cell (ncFC): 40

– Charging Efficiency for Load (η l
ch): 0.9

– Discharging Efficiency for Load (η l
dis): 0.85

– Time Step (∆t): 1 s

– Maximum Capacity for Electric Vehicles (Cmax
EV1

, Cmax
EV2

, Cmax
EV3

): 45 kWh, 55 kWh, 60
kWh
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